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Preface

The 12th Annual International Conference on Combinatorial Optimization and
Applications (COCOA 2018) was held during December 15–17, 2018, in Atlanta,
Georgia, USA. COCOA 2018 provided a forum for researchers working in the area
of theoretical computer science, combinatorics, and corresponding applications. The
technical program of the conference included 50 regular papers selected by the
Program Committee from 106 full submissions received in response to the call for
papers. Each submission received at least three reviews from Program Committee
members and/or external reviewers. The topics cover most aspects of theoretical
computer science and combinatorics related to computing, including combinatorial
optimization, geometric optimization, complexity and data structures, graph theory, etc.
Some of the papers were selected for publication in special issues of Theoretical
Computer Science and Journal of Combinatorial Optimization. It is expected that the
journal version of the selected papers will appear in a more complete form.

We thank everyone who made this meeting possible: the authors for submitting
papers, the Program Committee members, and external reviewers for volunteering their
time to review the conference papers. We also appreciate the financial sponsorship
from Springer. We would also like to extend a special thanks to the general chairs and
Organizing Committee for their work in making COCOA 2018 a successful event.
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Fast Approximation of Centrality and
Distances in Hyperbolic Graphs

V. Chepoi1, F. F. Dragan2(B), M. Habib3, Y. Vaxès1, and H. Alrasheed4

1 Laboratoire d’Informatique et Systèmes, Aix-Marseille Univ, CNRS, and Univ. de
Toulon Faculté des Sciences de Luminy, Marseille Cedex 9, 13288 Marseille, France

{victor.chepoi,yann.vaxes}@lif.univ-mrs.fr
2 Algorithmic Research Laboratory, Department of Computer Science, Kent State

University, Kent, Ohio, USA
dragan@cs.kent.edu

3 Institut de Recherche en Informatique Fondamentale, University Paris Diderot -
Paris7, Paris Cedex 13, 75205 Paris, France

habib@liafa.univ-paris-diderot.fr
4 Information Technology Department, King Saud University, Riyadh, Saudi Arabia

halrasheed@ksu.edu.sa

Abstract. We show that the eccentricities (and thus the centrality
indices) of all vertices of a δ-hyperbolic graph G = (V, E) can be com-
puted in linear time with an additive one-sided error of at most cδ, i.e.,
after a linear time preprocessing, for every vertex v of G one can com-
pute in O(1) time an estimate ê(v) of its eccentricity eccG(v) such that
eccG(v) ≤ ê(v) ≤ eccG(v)+cδ for a small constant c. We prove that every
δ-hyperbolic graph G has a shortest path tree, constructible in linear
time, such that for every vertex v of G, eccG(v) ≤ eccT (v) ≤ eccG(v)+cδ.
We also show that the distance matrix of G with an additive one-sided
error of at most c′δ can be computed in O(|V |2 log2 |V |) time, where
c′ < c is a small constant. Recent empirical studies show that many real-
world graphs (including Internet application networks, web networks,
collaboration networks, social networks, biological networks, and others)
have small hyperbolicity.

1 Introduction

The diameter diam(G) and the radius rad(G) of a graph G = (V,E) are two
fundamental metric parameters that have many important practical applications
in real world networks. The problem of finding the center C(G) of a graph G
is often studied as a facility location problem for networks where one needs to
select a single vertex to place a facility so that the maximum distance from any
demand vertex in the network is minimized. In the analysis of social networks
(e.g., citation networks or recommendation networks), biological systems (e.g.,
protein interaction networks), computer networks (e.g., the Internet or peer-
to-peer networks), transportation networks (e.g., public transportation or road
networks), etc., the eccentricity ecc(v) of a vertex v is used to measure the
importance of v in the network: the centrality index of v is defined as 1

ecc(v) .
c© Springer Nature Switzerland AG 2018
D. Kim et al. (Eds.): COCOA 2018, LNCS 11346, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-030-04651-4_1
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Being able to compute efficiently the diameter, center, radius, and vertex
centralities of a given graph has become an increasingly important problem in
the analysis of large networks. The algorithmic complexity of the diameter and
radius problems is very well-studied. For some special classes of graphs there are
efficient algorithms [1,7,12,16,29]. However, for general graphs, the only known
algorithms computing the diameter and the radius exactly compute the distance
between every pair of vertices in the graph, thus solving the all-pairs shortest
paths problem (APSP) and hence computing all eccentricities. In view of recent
negative results [1,6,36], this seems to be the best what one can do since even
for graphs with m = O(n) (where m is the number of edges and n is the number
of vertices) the existence of a subquadratic time (that is, O(n2−ε) time for some
ε > 0) algorithm for the diameter or the radius problem will refute the well
known Strong Exponential Time Hypothesis (SETH). Furthermore, recent work
[2] shows that if the radius of a possibly dense graph (m = O(n2)) can be
computed in subcubic time (O(n3−ε) for some ε > 0), then APSP also admits
a subcubic algorithm. Such an algorithm for APSP has long eluded researchers,
and it is often conjectured that it does not exist.

Motivated by these negative results, researches started devoting more atten-
tion to development of fast approximation algorithms. In the analysis of large-
scale networks, for fast estimations of diameter, center, radius, and centrality
indices, linear or almost linear time algorithms are desirable. One hopes also for
the all-pairs shortest paths problem to have o(nm) time small-constant–factor
approximation algorithms. In general graphs, both diameter and radius can be
2-approximated by a simple linear time algorithm which picks any node and
reports its eccentricity. A 3/2-approximation algorithm for the diameter and the
radius which runs in Õ(mn2/3) time was recently obtained in [10] (see also [4]
for an earlier Õ(n2 + m

√
n) time algorithm and [36] for a randomized Õ(m

√
n)

time algorithm). For the sparse graphs, this is an o(n2) time approximation
algorithm. Furthermore, under plausible assumptions, no O(n2−ε) time algo-
rithm can exist that (3/2− ε′)-approximates (for ε, ε′ > 0) the diameter [36] and
the radius [1] in sparse graphs. Similar results are known also for all eccentric-
ities: a 5/3-approximation to the eccentricities of all vertices can be computed
in Õ(m3/2) time [10] and, under plausible assumptions, no O(n2−ε) time algo-
rithm can exist that (5/3 − ε′)-approximates (for ε, ε′ > 0) the eccentricities of
all vertices in sparse graphs [1]. Better approximation algorithms are known for
some special classes of graphs [13,19,24,25].

Approximability of APSP is also extensively investigated. An additive 2-
approximation for APSP in unweighted undirected graphs (the graphs we con-
sider in this paper) was presented in [20]. It runs in Õ(min{n3/2m1/2, n7/3}) time
and hence improves the runtime of an earlier algorithm from [4]. In [5], an Õ(n2)
time algorithm was designed which computes an approximation of all distances
with a multiplicative error of 2 and an additive error of 1. Furthermore, [5] gives
an O(n2.24+o(1)ε−3 log(n/ε)) time algorithm that computes an approximation of
all distances with a multiplicative error of (1 + ε) and an additive error of 2.
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Better algorithms are known for some special classes of graphs (see [7,13,23]
and papers cited therein).

The need for fast approximation algorithms for estimating diameters, radii,
centrality indices, or all pairs shortest paths in large-scale complex networks
dictates to look for geometric and topological properties of those networks and
utilize them algorithmically. The classical relationships between the diameter,
radius, and center of trees and folklore linear time algorithms for their compu-
tation is one of the departing points of this research. A result from 1869 by C.
Jordan [31] asserts that the radius of a tree T is roughly equal to half of its
diameter and the center is either the middle vertex or the middle edge of any
diametral path. The diameter and a diametral pair of T can be computed (in
linear time) by a simple but elegant procedure: pick any vertex x, find any vertex
y furthest from x, and find once more a vertex z furthest from y; then return
{y, z} as a diametral pair. One computation of a furthest vertex is called an FP
scan; hence the diameter of a tree can be computed via two FP scans. This two
FP scans procedure can be extended to exact or approximate computation of
the diameter and radius in many classes of tree-like graphs. For example, this
approach was used to compute the radius and a central vertex of a chordal graph
in linear time [12]. In this case, the center of G is still close to the middle of all
(y, z)-shortest paths and dG(y, z) is not the diameter but is still its good approx-
imation: d(y, z) ≥ diam(G) − 2. Even better, the diameter of any chordal graph
can be approximated in linear time with an additive error 1 [25]. But it turns
out that the exact computation of diameters of chordal graphs is as difficult as
the general diameter problem: it is even difficult to decide if the diameter of a
split graph is 2 or 3.

The experience with chordal graphs shows that one have to abandon
the hope of having fast exact algorithms, even for very simple (from metric
point of view) graph-classes, and to search for fast algorithms approximating
diam(G), rad(G), C(G), eccG(v) with a small additive constant depending only
of the coarse geometry of the graph. Gromov hyperbolicity or the negative cur-
vature of a graph (and, more generally, of a metric space) is one such constant.
A graph G = (V,E) is δ-hyperbolic [9,27,28] if for any four vertices w, v, x, y of
G, the two largest of the three distance sums d(w, v) + d(x, y), d(w, x) + d(v, y),
d(w, y) + d(v, x) differ by at most 2δ ≥ 0. The hyperbolicity δ(G) of a graph
G is the smallest number δ such that G is δ-hyperbolic. The hyperbolicity can
be viewed as a local measure of how close a graph is metrically to a tree: the
smaller the hyperbolicity is, the closer its metric is to a tree-metric (trees are
0-hyperbolic and chordal graphs are 1-hyperbolic).

Recent empirical studies showed that many real-world graphs (including
Internet application networks, web networks, collaboration networks, social net-
works, biological networks, and others) are tree-like from a metric point of view
[3] or have small hyperbolicity [33,37]. It has been suggested in [33], and recently
formally proved in [17], that the property, observed in real-world networks, in
which traffic between nodes tends to go through a relatively small core of the
network, as if the shortest paths between them are curved inwards, is due to the
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hyperbolicity of the network. Small hyperbolicity in real-world graphs provides
also many algorithmic advantages. Efficient approximate solutions are attainable
for a number of optimization problems [13,14,17,18,26,38].

In [13] we initiated the investigation of diameter, center, and radius problems
for δ-hyperbolic graphs and we showed that the existing approach for trees can
be extended to this general framework. Namely, it is shown in [13] that if G is
a δ-hyperbolic graph and {y, z} is the pair returned after two FP scans, then
d(y, z) ≥ diam(G) − 2δ, diam(G) ≥ 2rad(G) − 4δ − 1, diam(C(G)) ≤ 4δ +
1, and C(G) is contained in a small ball centered at a middle vertex of any
shortest (y, z)-path. Consequently, we obtained linear time algorithms for the
diameter and radius problems with additive errors linearly depending on the
input graph’s hyperbolicity. In this paper, we advance this line of research and
provide a linear time algorithm for approximate computation of the eccentricities
(and thus of centrality indices) of all vertices of a δ-hyperbolic graph G, i.e., we
compute the approximate values of all eccentricities within the same time bounds
as one computes the approximation of the largest or the smallest eccentricity
(diam(G) or rad(G)). Namely, the algorithm outputs for every vertex v of G
an estimate ê(v) of eccG(v) such that eccG(v) ≤ ê(v) ≤ eccG(v) + cδ, where
c > 0 is a small constant. In fact, we demonstrate that G has a shortest path
tree, constructible in linear time, such that for every vertex v of G, eccG(v) ≤
eccT (v) ≤ eccG(v)+ cδ (a so-called eccentricity cδ-approximating spanning tree).
This is our first main result of this paper and the main ingredient in proving
it is the following interesting dependency between the eccentricities of vertices
of G and their distances to the center C(G): up to an additive error linearly
depending on δ, eccG(v) is equal to d(v, C(G)) plus rad(G). To establish this
new result, we have to revisit the results of [13] about diameters, radii, and
centers, by simplifying their proofs and extending them to all eccentricities.

Eccentricity k-approximating spanning trees were introduced by Prisner
in [35]. A spanning tree T of a graph G is called an eccentricity k-approximating
spanning tree if for every vertex v of G eccT (v) ≤ eccG(v)+k holds [35]. Prisner
observed that any graph admitting an additive tree k-spanner (that is, a spanning
tree T such that dT (v, u) ≤ dG(v, u)+k for every pair u, v) admits also an eccen-
tricity k-approximating spanning tree. Therefore, eccentricity k-approximating
spanning trees exist in interval graphs for k = 2 [32,34], in asteroidal-triple–free
graph [32], strongly chordal graphs [8] and dually chordal graphs [8] for k = 3.
On the other hand, although for every k there is a chordal graph without an addi-
tive tree k-spanner [32,34], yet as Prisner demonstrated in [35], every chordal
graph has an eccentricity 2-approximating spanning tree. Later this result was
extended in [24] to a larger family of graphs which includes all chordal graphs
and all plane triangulations with inner vertices of degree at least 7. Both those
classes belong to the class of 1-hyperbolic graphs. Thus, our result extends the
result of [35] to all δ-hyperbolic graphs.

As our second main result, we show that in every δ-hyperbolic graph G
all distances with an additive one-sided error of at most c′δ can be found in
O(|V |2 log2 |V |) time, where c′ < c is a small constant. With a recent result
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in [11], this demonstrates an equivalence between approximating the hyperbol-
icity and approximating the distances in graphs. Note that every δ-hyperbolic
graph G admits a distance approximating tree T [13,14], that is, a tree T (which
is not necessarily a spanning tree) such that dT (v, u) ≤ dG(v, u) + O(δ log n) for
every pair u, v. Such a tree can be used to compute all distances in G with an
additive one-sided error of at most O(δ log n) in O(|V |2) time. Our new result
removes the dependency of the additive error from log n and has a much smaller
constant in front of δ. Note also that tree T is not a spanning tree of G and thus
cannot serve as an eccentricity O(δ log n)-approximating spanning tree. Further-
more, as chordal graphs are 1-hyperbolic, for every k there is a 1-hyperbolic
graph without an additive tree k-spanner [32,34].

Finally, in the full version of the paper [15], we analyze the performance
of our algorithms for approximating eccentricities and distances on a number
of real-world networks. Our experimental results show that the estimates on
eccentricities and distances obtained are even better than the theoretical bounds
proved. Experimental results can be found in the full version of the paper [15].

2 Preliminaries

Center, Diameter, Centrality. All graphs G = (V,E) occurring in this paper
are finite, undirected, connected, without loops or multiple edges. We use n and
|V | interchangeably to denote the number of vertices and m and |E| to denote
the number of edges in G. The length of a path from a vertex v to a vertex u
is the number of edges in the path. The distance dG(u, v) between vertices u
and v is the length of a shortest path connecting u and v in G. The eccentricity
of a vertex v, denoted by eccG(v), is the largest distance from v to any other
vertex, i.e., eccG(v) = maxu∈V dG(v, u). The centrality index of v is 1

eccG(v) .
The radius rad(G) of a graph G is the minimum eccentricity of a vertex in G,
i.e., rad(G) = minv∈V eccG(v). The diameter diam(G) of a graph G is the the
maximum eccentricity of a vertex in G, i.e., diam(G) = maxv∈V eccG(v). The
center C(G) = {c ∈ V : eccG(c) = rad(G)} of a graph G is the set of vertices
with minimum eccentricity.

Gromov Hyperbolicity and Thin Geodesic Triangles. Let (X, d) be a
metric space. The Gromov product of y, z ∈ X with respect to w is defined
to be (y|z)w = 1

2 (d(y, w) + d(z, w) − d(y, z)). A metric space (X, d) is said
to be δ-hyperbolic [28] for δ ≥ 0 if (x|y)w ≥ min{(x|z)w, (y|z)w} − δ for all
w, x, y, z ∈ X. Equivalently, (X, d) is δ-hyperbolic if for any four points u, v, x, y
of X, the two largest of the three distance sums d(u, v)+d(x, y), d(u, x)+d(v, y),
d(u, y) + d(v, x) differ by at most 2δ ≥ 0. A connected graph G = (V,E) is δ-
hyperbolic (or of hyperbolicity δ) if the metric space (V, dG) is δ-hyperbolic, where
dG is the standard shortest path metric defined on G.

δ-Hyperbolic graphs generalize k-chordal and bounded tree-length graphs:
each k-chordal graph has the tree-length at most �k

2 � [21] and each tree-length λ
graph has hyperbolicity at most λ [13]. A graph is k-chordal if its induced cycles
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are of length at most k, and it is of tree-length λ if it has a tree-decomposition
into bags of diameter at most λ [21].

For geodesic metric spaces and graphs there exist several equivalent defini-
tions of δ-hyperbolicity involving different but comparable values of δ [9,27,28].
In this paper, we will use the definition via thin geodesic triangles. Let (X, d) be
a metric space. A geodesic joining two points x and y from X is a (continuous)
map f from the segment [a, b] of R1 of length |a − b| = d(x, y) to X such that
f(a) = x, f(b) = y, and d(f(s), f(t)) = |s − t| for all s, t ∈ [a, b]. A metric space
(X, d) is geodesic if every pair of points in X can be joined by a geodesic. Every
graph G = (V,E) can be transformed into a geodesic space (X, d) by replacing
every edge e = uv by a segment [u, v] of length 1; the segments may intersect only
at common ends. Then (V, dG) is isometrically embedded in a natural way in
(X, d). The restrictions of geodesics of X to the vertices V of G are the shortest
paths of G.

x

y

zx

y

z

mz

my

m

ϕ

mx

≤ δ

≤ δ ≤ δ

Fig. 1. A geodesic triangle Δ(x, y, z), the points mx, my, mz, and the tripod Υ (x, y, z)

Let (X, d) be a geodesic metric space. A geodesic triangle Δ(x, y, z) with
x, y, z ∈ X is the union [x, y]∪ [x, z]∪ [y, z] of three geodesic segments connecting
these vertices. Let mx be the point of the geodesic segment [y, z] located at
distance αy := (x|z)y = (d(y, x)+d(y, z)−d(x, z))/2 from y. Then mx is located
at distance αz := (y|x)z = (d(z, y)+d(z, x)−d(y, x))/2 from z because αy+αz =
d(y, z). Analogously, define the points my ∈ [x, z] and mz ∈ [x, y] both located
at distance αx := (y|z)x = (d(x, y) + d(x, z) − d(y, z))/2 from x; see Fig. 1 for
an illustration. There exists a unique isometry ϕ which maps Δ(x, y, z) to a
tripod T (x, y, z) consisting of three solid segments [x,m], [y,m], and [z,m] of
lengths αx, αy, and αz, respectively. This isometry maps the vertices x, y, z of
Δ(x, y, z) to the respective leaves of T (x, y, z) and the points mx,my, and mz to
the center m of this tripod. Any other point of T (x, y, z) is the image of exactly
two points of Δ(x, y, z). A geodesic triangle Δ(x, y, z) is called δ-thin if for all
points u, v ∈ Δ(x, y, z), ϕ(u) = ϕ(v) implies d(u, v) ≤ δ. A graph G = (V,E)
whose all geodesic triangles Δ(u, v, w), u, v, w ∈ V , are δ-thin is called a graph
with δ-thin triangles, and δ is called the thinness parameter of G.

The following result shows that hyperbolicity of a geodesic space or a graph
is equivalent to having thin geodesic triangles.
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Proposition 1 ([9,27,28]). Geodesic triangles of geodesic δ-hyperbolic spaces or
graphs are 4δ-thin. Conversely, geodesic spaces or graphs with δ-thin triangles
are δ-hyperbolic.

In what follows, we will need few more notions and notations. Let G = (V,E)
be a graph. By [x, y] we denote a shortest path connecting vertices x and y in
G; we call [x, y] a geodesic between x and y. A ball B(s, r) of G centered at
vertex s ∈ V and with radius r is the set of all vertices with distance no more
than r from s (i.e., B(s, r) := {v ∈ V : dG(v, s) ≤ r}). The kth-power of a
graph G = (V,E) is the graph Gk = (V,E′) such that xy ∈ E′ if and only if
0 < dG(x, y) ≤ k. Denote by F (x) := {y ∈ V : dG(x, y) = eccG(x)} the set of
all vertices of G that are most distant from x. Vertices x and y of G are called
mutually distant if x ∈ F (y) and y ∈ F (x), i.e., eccG(x) = eccG(y) = dG(x, y).

3 Fast Approximation of Eccentricities

In this section, we give linear and almost linear time algorithms for sharp estima-
tion of the diameters, the radii, the centers and the eccentricities of all vertices
in graphs with δ-thin triangles. Before presenting those algorithms, we establish
some conditional lower bounds on complexities of computing the diameters and
the radii in those graphs.

3.1 Conditional Lower Bounds on Complexities

Recent work has revealed convincing evidence that solving the diameter problem
in subquadratic time might not be possible, even in very special classes of graphs.
Roditty and Vassilevska W. [36] showed that an algorithm that can distinguish
between diameter 2 and 3 in a sparse graph in subquadratic time refutes the
following widely believed conjecture.

The Orthogonal Vectors Conjecture: There is no ε > 0 such that for all c ≥ 1,
there is an algorithm that given two lists of n binary vectors A,B ⊆ {0, 1}d

where d = c log n can determine if there is an orthogonal pair a ∈ A, b ∈ B, in
O(n2−e) time.

Williams [39] showed that the Orthogonal Vectors (OV) Conjecture is implied
by the well-known Strong Exponential Time Hypothesis (SETH) of Impagliazzo,
Paturi, and Zane [30]. Nowadays many papers base the hardness of problems on
SETH and the OV conjecture (see, e.g., [1,6] and papers cited therein). Since
all geodesic triangles of a graph constructed in the reduction in [36] are 2-thin,
we can rephrase the result from [36] as follows.

Statement 1. If for some ε > 0, there is an algorithm that can determine if a
given graph with 2-thin triangles, n vertices and m = O(n) edges has diameter
2 or 3 in O(n2−ε) time, then the Orthogonal Vector Conjecture is false.

To prove a similar lower bound result for the radius problem, recently Abboud
et al. [1] suggested to use the following natural and plausible variant of the OV
conjecture.
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The Hitting Set Conjecture: There is no ε > 0 such that for all c ≥ 1, there is
an algorithm that given two lists A,B of n subsets of a universe U of size c log n,
can decide in O(n2−e) time if there is a set in the first list that intersects every
set in the second list.

Abboud et al. [1] showed that an algorithm that can distinguish between
radius 2 and 3 in a sparse graph in subquadratic time refutes the Hitting Set
Conjecture. Since all geodesic triangles of a graph constructed in [1] are 2-thin,
rephrasing that result from [1], we have.

Statement 2. If for some ε > 0, there is an algorithm that can determine if a
given graph with 2-thin triangles, n vertices, and m = O(n) edges has radius 2
or 3 in O(n2−ε) time, then the Hitting Set Conjecture is false.

3.2 Fast Additive Approximations

In this subsection, we show that in a graph G with δ-thin triangles the eccentric-
ities of all vertices can be computed in total linear time with an additive error
depending on δ. We establish that the eccentricity of a vertex is determined (up-
to a small error) by how far the vertex is from the center C(G) of G. Finally, we
show how to construct a spanning tree T of G in which the eccentricity of any
vertex is its eccentricity in G up to an additive error depending only on δ. For
these purposes, we revisit and extend several results from our previous paper
[13] about diameters, radii, and centers of δ-hyperbolic graphs.

Define the eccentricity layers of a graph G as follows: for k = 0, . . . , diam(G)−
rad(G) set Ck(G) := {v ∈ V : eccG(v) = rad(G) + k}. With this notation, the
center of a graph is C(G) = C0(G). In what follows, it will be convenient to
define also the eccentricity of the middle point m of any edge xy of G; set
eccG(m) = min{eccG(x), eccG(y)} + 1/2.

We start with a proposition showing that, in a graph G with δ-thin triangles,
a middle vertex of any geodesic between two mutually distant vertices has the
eccentricity close to rad(G) and is not too far from the center C(G) of G.

Proposition 2. Let G be a graph with δ-thin triangles and u, v be a pair of
mutually distant vertices of G.

(a) If c∗ is the middle point of any (u, v)-geodesic, then eccG(c∗) ≤ dG(u,v)
2 +δ ≤

rad(G) + δ.
(b) If c is a middle vertex of any (u, v)-geodesic, then eccG(c) ≤ 
dG(u,v)

2 � + δ ≤
rad(G) + δ.

(c) dG(u, v) ≥ 2rad(G) − 2δ − 1. In particular, diam(G) ≥ 2rad(G) − 2δ − 1.
(d) If c is a middle vertex of any (u, v)-geodesic and x ∈ Ck(G), then k − δ ≤

dG(x, c) ≤ k + 2δ + 1. In particular, C(G) ⊆ B(c, 2δ + 1).

Proof. Let x be any vertex of G and Δ(u, v, x) := [u, v]∪[v, x]∪[x, u] be a geodesic
triangle, where [x, v], [x, u] are arbitrary geodesics connecting x with v, u. Let
mx be a point on [u, v] at distance (x|u)v = 1

2 (d(x, v) + d(v, u) − d(x, u)) from
v and at distance (x|v)u = 1

2 (d(x, u) + d(v, u) − d(x, v)) from u. Since u and
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v are mutually distant, we can assume that c∗ is located on [u, v] between v
and mx, i.e., d(v, c∗) ≤ d(v,mx) = (x|u)v, and hence (x|v)u ≤ (x|u)v. Since
dG(v, x) ≤ dG(v, u), we also get (u|v)x ≤ (x|v)u.

(a) By the triangle inequality and since dG(u, v) ≤ diam(G) ≤ 2rad(G), we get
dG(x, c∗) ≤ (u|v)x + δ + dG(u, c∗) − (x|v)u ≤ dG(u, c∗) + δ = dG(u,v)

2 + δ ≤
rad(G) + δ.

(b) Since c∗ = c when dG(u, v) is even and dG(c∗, c) = 1
2 when dG(u, v) is odd, we

have eccG(c) ≤ eccG(c∗)+ 1
2 . Additionally to the proof of (a), one needs only

to consider the case when dG(u, v) is odd. We know that the middle point c∗

sees all vertices of G within distance at most dG(u,v)
2 + δ. Hence, both ends

of the edge of (u, v)-geodesic, containing the point c∗, have eccentricities at
most dG(u,v)

2 + 1
2 + δ = 
dG(u,v)

2 � + δ ≤ 
 2rad(G)−1
2 � + δ = rad(G) + δ.

(c) Since a middle vertex c of any (u, v)-geodesic sees all vertices of G within
distance at most 
dG(u,v)

2 �+δ, if dG(u, v) ≤ 2rad(G)−2δ−2, then eccG(c) ≤

dG(u,v)

2 � + δ ≤ 
 2rad(G)−2δ−2
2 � + δ < rad(G), which is impossible.

(d) In the proof of (a), instead of any vertex x of G, consider any vertex x from
Ck(G). By the triangle inequality and since dG(u, v) ≥ 2rad(G)−2δ −1 and
both dG(u, x), dG(x, v) are at most rad(G) + k, we get dG(x, c∗) ≤ (u|v)x +
δ +(x|u)v −dG(v, c∗) = dG(v, x)−dG(v, c∗)+ δ ≤ rad(G)+k − dG(u,v)

2 + δ ≤
k+2δ+ 1

2 . Consequently, dG(x, c) ≤ dG(x, c∗)+ 1
2 ≤ k+2δ+1. On the other

hand, since eccG(x) ≤ eccG(c) + dG(x, c) and eccG(c) ≤ rad(G) + δ, by (a)
we get dG(x, c) ≥ eccG(x) − eccG(c) = k + rad(G) − eccG(c) ≥ k − δ. �
As an easy consequence of Proposition 2(d), we get that the eccentricity

eccG(x) of any vertex x is equal, up to an additive one-sided error of at most
4δ + 2, to dG(x,C(G)) + rad(G) (a proof can be found in the full version of this
paper [15]).

Corollary 1. For every vertex x of a graph G with δ-thin triangles,
dG(x,C(G)) + rad(G) − 4δ − 2 ≤ eccG(x) ≤ dG(x,C(G)) + rad(G).

It is interesting to note that the equality eccG(x) = dG(x,C(G)) + rad(G)
holds for every vertex of a graph G if and only if the eccentricity function eccG(·)
on G is unimodal (that is, every local minimum is a global minimum)[22]. A
slightly weaker condition holds for all chordal graphs [24]: for every vertex x of
a chordal graph G, eccG(x) ≥ dG(x,C(G)) + rad(G) − 1. Proofs of the following
two propositions can be found in the full version of the paper [15].

Proposition 3. Let G be a graph with δ-thin triangles and u, v be a pair of
vertices of G such that v ∈ F (u).

(a) If w is a vertex of a (u, v)-geodesic at distance rad(G) from v, then
eccG(w) ≤ rad(G) + δ.

(b) For every pair of vertices x, y ∈ V , max{dG(v, x), dG(v, y)} ≥ dG(x, y) − 2δ.
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(c) eccG(v) ≥ diam(G) − 2δ ≥ 2rad(G) − 4δ − 1.
(d) If t ∈ F (v), c is a vertex of a (v, t)-geodesic at distance 
dG(v,t)

2 � from t and
x ∈ Ck(G), then eccG(c) ≤ rad(G) + 3δ and k − 3δ ≤ dG(x, c) ≤ k + 3δ + 1.
In particular, C(G) ⊆ B(c, 3δ + 1).

Proposition 4. For every graph G with δ-thin triangles, diam(Ck(G)) ≤ 2k +
2δ + 1. In particular, diam(C(G)) ≤ 2δ + 1.

Diameter and Radius. For any graph G = (V,E) and any vertex u ∈ V , a
most distant from u vertex v ∈ F (u) can be found in linear (O(|E|)) time by a
breadth-first-search BFS(u) started at u. A pair of mutually distant vertices of
a connected graph G = (V,E) with δ-thin triangles can be computed in O(δ|E|)
total time as follows. By Proposition 3(c), if v is a most distant vertex from
u and t is a most distant vertex from v, then d(v, t) ≥ diam(G) − 2δ. Hence,
using at most O(δ) breadth-first-searches, one can generate a sequence of vertices
v := v1, t := v2, v3, . . . vk with k ≤ 2δ + 2 such that each vi is most distant from
vi−1 (with, v0 = u) and vk, vk−1 are mutually distant vertices (the initial value
d(v, t) ≥ diam(G) − 2δ can be improved at most 2δ times). By Proposition 2
and Proposition 3, we get the following additive approximations for the radius
and the diameter of a graph with δ-thin triangles.

Corollary 2. Let G = (V,E) be a graph with δ-thin triangles.

1. There is a linear (O(|E|)) time algorithm which finds in G a vertex c with
eccentricity at most rad(G) + 3δ and a vertex v with eccentricity at least
diam(G) − 2δ. Furthermore, C(G) ⊆ B(c, 3δ + 1) holds.

2. There is an almost linear (O(δ|E|)) time algorithm which finds in G a vertex
c with eccentricity at most rad(G) + δ. Furthermore, C(G) ⊆ B(c, 2δ + 1)
holds.

All Eccentricities. In what follows, we will show that all vertex eccentricities
of a graph with δ-thin triangles can be also additively approximated in (almost)
linear time. It will be convenient, for the middle point m of an edge e of G, to
define a BFS(m)-tree of G; it is nothing else than a BFS(e)-tree of G rooted
at edge e.

Proposition 5. Let G be a graph with δ-thin triangles.

(a) If v is a most distant vertex from an arbitrary vertex u, t is a most distant
vertex from v, c is a vertex of a (v, t)-geodesic at distance 
dG(v,t)

2 � from t
and T is a BFS(c)-tree of G, then eccG(x) ≤ eccT (x) ≤ eccG(x) + 6δ + 1.

(b) If c∗ is the middle point of any (u, v)-geodesic between a pair u, v of mutually
distant vertices of G and T is a BFS(c∗)-tree of G, then, for every vertex x
of G, eccG(x) ≤ eccT (x) ≤ eccG(x) + 2δ.
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Proof. (a) Let x be an arbitrary vertex of G and assume that eccG(x) =
rad(G) + k for some integer k ≥ 0. We know from Proposition 3(d) that
eccG(c) ≤ rad(G) + 3δ and dG(c, x) ≤ k + 3δ + 1. Since T is a BFS(c)-tree,
dG(x, c) = dT (x, c) and eccG(c) = eccT (c). Consider a vertex y in G such
that dT (x, y) = eccT (x). We have eccT (x) = dT (x, y) ≤ dT (x, c) + dT (c, y) ≤
dG(x, c) + eccT (c) = dG(x, c) + eccG(c) ≤ k + 3δ + 1 + rad(G) + 3δ =
rad(G) + k + 6δ + 1 = eccG(x) + 6δ + 1. As T is a spanning tree of G, evi-
dently, also eccG(x) ≤ eccT (x) holds.

(b) Consider an arbitrary vertex x of G and a geodesic triangle Δ(x, u, v) :=
[x, u]∪ [u, v]∪ [v, x], where [u, v] is a (u, v)-geodesic containing c∗ and [u, x], [v, x]
are arbitrary geodesics connecting x with u and v. Let mx be a point on [u, v]
which is at distance (x|u)v = 1

2 (dG(x, v)+dG(u, v)−dG(x, u)) from v and hence
at distance (x|v)u = 1

2 (dG(x, u) + dG(v, u) − dG(x, v)) from u. Without loss of
generality, we can assume that c∗ is located on [u, v] between v and mx. We have,
dG(x, c∗) ≤ (u|v)x + δ + dG(mx, c∗) = (u|v)x + δ + dG(u, c∗) − (v|x)u = (u|v)x +
δ + dG(v,u)

2 − (v|x)u, and eccG(x) ≥ dG(x, v) = (u|v)x + (u|x)v. Furthermore, by
Proposition 2(a), eccG(c∗) ≤ dG(v,u)

2 +δ. Hence, eccT (x)−eccG(x) ≤ dT (x, c∗)+
eccT (c∗) − eccG(x) = dG(x, c∗) + eccG(c∗) − eccG(x) ≤ (u|v)x + δ + dG(v,u)

2 −
(v|x)u + dG(v,u)

2 + δ − (u|v)x − (u|x)v = 2δ + dG(v, u)− ((v|x)u + (u|x)v) = 2δ. �
Theorem 1. Every graph G = (V,E) with δ-thin triangles admits an eccen-
tricity (2δ)-approximating spanning tree constructible in O(δ|E|) time and an
eccentricity (6δ + 1)-approximating spanning tree constructible in O(|E|) time.

Theorem 1 generalizes recent results from [24,35] that chordal graphs and some
of their generalizations admit eccentricity 2-approximating spanning trees.

Note that the eccentricities of all vertices in any tree T = (V,U) can be com-
puted in O(|V |) total time. As we noticed already, for trees the following facts are
true: (1) C(T ) consists of one or two adjacent vertices; (2) C(T ) and rad(T ) of T
can be found in linear time; (3) For any v ∈ V , eccT (v) = dT (v, C(T ))+ rad(T ).
Hence, using BFS(C(T )) on T one can compute dT (v, C(T )) for all v ∈ V
in total O(|V |) time. Adding now rad(T ) to dT (v, C(T )), one gets eccT (v) for
all v ∈ V . Consequently, by Theorem 1, we get the following additive approxi-
mations for the vertex eccentricities in graphs with δ-thin triangles.

Theorem 2. Let G = (V,E) be a graph with δ-thin triangles.

(1) There is an algorithm which in total linear (O(|E|)) time outputs for every
vertex v ∈ V an estimate ê(v) of its eccentricity eccG(v) such that eccG(v) ≤
ê(v) ≤ eccG(v) + 6δ + 1.

(2) There is an algorithm which in total almost linear (O(δ|E|)) time outputs
for every vertex v ∈ V an estimate ê(v) of its eccentricity eccG(v) such that
eccG(v) ≤ ê(v) ≤ eccG(v) + 2δ.

4 Fast Additive Approximation of All Distances

Here, we will show that if the δth power Gδ of a graph G with δ-thin triangles
is known in advance, then the distances in G can be additively approximated in
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O(|V |2) time. If Gδ is not known, then the distances can be additively approxi-
mated in almost quadratic time.

Our method is a generalization of an unified approach used in [23] to estimate
(or compute exactly) all pairs shortest paths in such special graph families as
k-chordal graphs, chordal graphs, AT-free graphs and many others. For example:
all distances in k-chordal graphs with an additive one-sided error of at most k−1
can be found in O(|V |2) time; all distances in chordal graphs with an additive
one-sided error of at most 1 can be found in O(|V |2) time and the all pairs
shortest path problem on a chordal graph G can be solved in O(|V |2) time if G2

is known. Note that in chordal graph all geodesic triangles are 2-thin.
Let G = (V,E) be a graph with δ-thin triangles. Pick an arbitrary start

vertex s ∈ V and construct a BFS(s)-tree T of G rooted at s. Denote by pT (x)
the parent and by hT (x) = dT (x, s) = dG(x, s) the height of a vertex x in T .
Since we will deal only with one tree T , we will often omit the subscript T . Let
PT (x, s) := (xq, xq−1, . . . , x1, s) and PT (y, s) := (yp, yp−1, . . . , y1, s) be the paths
of T connecting vertices x and y with the root s. By slT (x, y;λ) we denote the
largest index k such that dG(xk, yk) ≤ λ (the λ separation level). Our method
is based on the following simple fact.

Proposition 6. For every vertices x and y of a graph G with δ-thin triangles
and any BFS-tree T of G, hT (x)+hT (y)−2k−1 ≤ dG(x, y) ≤ hT (x)+hT (y)−
2k + dG(xk, yk), where k = slT (x, y; δ).

Proof. By the triangle inequality, dG(x, y) ≤ dG(x, xk)+dG(xk, yk)+dG(yk, y) =
hT (x)+hT (y)−2k +dG(xk, yk). Consider now an arbitrary (x, y)-geodesic [x, y]
in G. Let Δ(x, y, s) := [x, y] ∪ [x, s] ∪ [y, s] be a geodesic triangle, where [x, s] =
PT (x, s) and [y, s] = PT (y, s). Since Δ(x, y, s) is δ-thin, slT (x, y; δ) ≥ (x|y)s − 1

2 .
Hence, hT (x) − slT (x, y; δ) ≤ (s|y)x + 1

2 and hT (y) − slT (x, y; δ) ≤ (s|x)y + 1
2 .

As dG(x, y) = (s|y)x + (s|x)y, we get dG(x, y) ≥ hT (x) − slT (x, y; δ) + hT (y) −
slT (x, y; δ) − 1. �

Note that we may regard BFS(s) as having produced a numbering from n
to 1 in decreasing order of the vertices in V where vertex s is numbered n. As a
vertex is placed in the queue by BFS(s), it is given the next available number.
The last vertex visited is given the number 1. Let σ := [v1, v2, . . . , vn = s] be a
BFS(s)-ordering of the vertices of G and T be a BFS(s)-tree of G produced by a
BFS(s). Let σ(x) be the number assigned to a vertex x in this BFS(s)-ordering.
For two vertices x and y, we write x < y whenever σ(x) < σ(y).

First, we show that if Gδ is known in advance (i.e., its adjacency matrix
is given) for a graph G with δ-thin triangles, then the distances in G can be
additively approximated (with an additive one-sided error of at most δ + 1)
in O(|V |2) time. We consider the vertices of G in the order σ from 1 to n.
For each current vertex x we show that the values ̂d(x, y) := hT (x) + hT (y) −
2slT (x, y; δ)+δ for all vertices y with y > x can be computed in O(|V |) total time.
By Proposition 6, dG(x, y) ≤ ̂d(x, y) ≤ dG(x, y)+δ +1. The values ̂d(x, y) for all
y with y > x can be computed using the following simple procedure. We omit the
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subscripts G and T if no ambiguities arise. Let also Li = {v ∈ V : d(v, s) = i}.
In the procedure, Su represents vertices of a subtree of T rooted at u.

(01) set q := h(x)

(02) let Su := {u} for each vertex u ∈ Lq, u > x, and denote this family of sets by F
(03) for k = q downto 0 do

(04) let xk be the vertex from Lk ∩ PT (x, s)

(05) for each vertex u ∈ Lk with u > x do

(06) if dG(u, xk) ≤ δ (i.e., u = xk or u is adjacent to xk in Gδ) then

(07) for every v ∈ Su do

(08) set ̂d(x, v) := h(x) + h(v) − 2k + δ and remove Su from F
(09) /* update F for the next iteration */

(10) if k > 0 then

(11) for each vertex u ∈ Lk−1 do

(12) combine sets Su1 , . . . , Su� from F (� ≥ 0) with pT (u1) = . . . = pT (u�) = u

(13) into one new set Su := {u} ∪ Su1 ∪ . . . ∪ Su� /* when � = 0, Su := {u} */

(14) set also ̂d(x, s) := h(x).

Theorem 3. Let G = (V,E) be a graph with δ-thin triangles. Given Gδ, all
distances in G with an additive one-sided error of at most δ + 1 can be found in
O(|V |2) time.

To avoid the requirement that Gδ is given in advance, we can use any known
fast constant-factor approximation algorithm that in total T (|V |)-time computes
for every pair of vertices x, y of G a value ˜d(x, y) such that dG(x, y) ≤ ˜d(x, y) ≤
αdG(x, y)+β. We can show that, using such an algorithm as a preprocessing step,
the distances in a graph G with δ-thin triangles can be additively approximated
with an additive one-sided error of at most αδ +β +1 in O(T (|V |)+ |V |2) time.
Although one can use any known fast constant-factor approximation algorithm
in the preprocessing step, in what follows, we will demonstrate our idea using a
fast approximation algorithm from [5]. It computes in O(|V |2 log2 |V |) total time
for every pair x, y a value ˜d(x, y) such that dG(x, y) ≤ ˜d(x, y) ≤ 2dG(x, y) + 1.

Assume that the values ˜d(x, y), x, y ∈ V , are precomputed. By ˜slT (x, y;λ) we
denote now the largest index k such that ˜dG(xk, yk) ≤ λ. We have.

Proposition 7. For every vertices x and y of a graph G with δ-thin triangles,
any integer ρ ≥ δ, and any BFS-tree T of G, hT (x)+hT (y)−2k−1 ≤ dG(x, y) ≤
hT (x) + hT (y) − 2k + dG(xk, yk), where k = ˜slT (x, y; 2ρ + 1).

Proof of this propositions can be found in the full version of the paper [15].
Let ρ be any integer greater than or equal to δ. By replacing in our earlier
procedure lines (06) and (08) with

(06)′ if ˜d(u, xk) ≤ 2ρ + 1 then

(08)′ set ̂d(x, v) := h(x) + h(v) − 2k + 2ρ + 1 and remove Su from F
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we will compute for each current vertex x all values ̂d(x, y) := hT (x) + hT (y) −
2˜slT (x, y; 2ρ+1)+2ρ+1, y > x, in O(|V |) total time. By Proposition 7, dG(x, y) ≤
hT (x)+hT (y)−2˜slT (x, y; 2ρ+1)+dG(xk, yk) ≤ hT (x)+hT (y)−2˜slT (x, y; 2ρ+
1) + ˜d(xk, yk) ≤ hT (x) + hT (y) − 2˜slT (x, y; 2ρ + 1) + 2ρ + 1 = ̂d(x, y) and
̂d(x, y) = hT (x) + hT (y) − 2˜slT (x, y; 2ρ + 1) + 2ρ + 1 ≤ dG(x, y) + 2ρ + 2. Thus,
we have the following result:

Theorem 4. Let G = (V,E) be a graph with δ-thin triangles.

(a) If the value of δ is known, then all distances in G with an additive one-sided
error of at most 2δ + 2 can be found in O(|V |2 log2 |V |) time.

(b) If an approximation ρ of δ such that δ ≤ ρ ≤ aδ + b is known (where a and
b are constants), then all distances in G with an additive one-sided error of
at most 2(aδ + b + 1) can be found in O(|V |2 log2 |V |) time.

The second part of Theorem 4 says that if an approximation of the thinness
of a graph G is given, then all distances in G can be additively approximated
in O(|V |2 log2 |V |) time. Recently, it was shown in [11] that the converse is also
true. From an estimate of all distances in G with an additive one-sided error
of at most k, it is possible to compute in O(|V |2) time an estimation ρ∗ of the
thinness of G such that δ ≤ ρ∗ ≤ 8δ + 12k + 4, proving a Õ(|V |2)-equivalence
between approximating the thinness and approximating the distances in graphs.

Acknowledgements. The research of V.C., M.H., and Y.V. was supported by ANR
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Abstract. This paper presents an optimal Θ(n logn) algorithm for
determining time-minimal rectilinear paths among n transient rectilinear
obstacles. An obstacle is transient if it exists in the scene only for a spe-
cific time interval, i.e., it appears and then disappears at specific times.
Given a point robot moving with bounded speed among transient recti-
linear obstacles and a pair of points s, d, we determine a time-minimal,
obstacle-avoiding path from s to d. The main challenge in solving this
problem arises as the robot may be required to wait for an obstacle to
disappear, before it can continue moving toward the destination. Our
algorithm builds on the continuous Dijkstra paradigm, which simulates
propagating a wavefront from the source point. We also solve a query
version of this problem. For this, we build a planar subdivision with
respect to a fixed source point, so that minimum arrival time to any
query point can be reported in O(log n) time, using point location for
the query point in this subdivision.

Keywords: Shortest path · Transient obstacles · Time minimal path
Time discretization · Continuous dijkstra

1 Introduction

We study a variant of the classical shortest path problem in which each obsta-
cle exists only during a specific time interval. Such obstacles are called tran-
sient obstacles (see e.g., [5]). Besides solving an interesting problem in itself,
our solutions may find applications in other motion planning problems in time-
dependent environments. Transient obstacles can e.g., be used to approximate
dynamic obstacles in the plane [6,12]. In such settings, the trajectories of the
moving obstacles are divided into a set of small pieces. Each piece is treated
as a transient obstacle that exists in the scene only for the time interval in
which the moving obstacle and the piece intersect. The approximation quality
can be adjusted by varying the sizes of the pieces. This adequately models real
world scenarios in which robots are limited by the sampling rate of their sensors
acquiring information and executing motion commands.

In general, our model considering transient obstacles can be useful for appli-
cations where one can define a discretized representation of time by a set of
c© Springer Nature Switzerland AG 2018
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stages. For instance, in the area of path planning under uncertainty, one consid-
ers the following problem: Let {R1, ..., Rn} be a set of regions, where each region
becomes contaminated at a random time. The probability at which Ri is contam-
inated at time t, is given by a probability distribution Pi(t). In such a setting,
a natural approach is to search for a shortest path which is contamination-free
with high probability. This is a class of motion planning referred to as hazardous
region and shelter problems [11]. A suitable means of planning a low contami-
nation path, is to bound the probability at which the intersecting regions are
contaminated. More precisely, for a small value of ε ∈ [0, 1], the robot cannot
enter a region Ri if Pi(t) > ε. This can be viewed as a time discretization into a
set of “high risk” time intervals for the regions. Using the corresponding proba-
bility distribution, we can determine a time interval Ti (or in some cases more
than one), which contains the contamination time with a probability of 1 − ε.
This problem is easily transformed into our model where the confidence intervals
are mapped into existence intervals for the transient obstacles.

Related Work. The shortest path problem among transient obstacle was first
studied by Fujimura [5], who presented an O(n3 log n) time algorithm for find-
ing a time-minimal path among transient (non-intersecting) polygonal obstacles.
Later [7], he proposed an O(n4) time algorithm for a variant of this problem in
which the obstacles are allowed to occupy the same area of the plane (i.e., inter-
secting obstacles). A recently introduced model [8] considers another variation
of this problem, where the path is allowed to pass through k obstacles. They
present an O(k2n log n) time algorithm, where n is the total number of obstacle
vertices. A more complex version of this problem has been studied in [2], in
which the robot may pass through obstacles at some cost. They proved that this
problem is NP-hard even if the obstacles are vertical line segments.

Our Contributions. In this paper, we present an optimal Θ(n log n) time algo-
rithm for computing a time-minimal rectilinear path among rectilinear transient
obstacles. Although our problem is a special case of the shortest path problem
among transient obstacles, the methodology and the results of this work also have
the potential to lead to an improvement of the existing O(n3 log n) time algo-
rithm for the general case. We first discuss a simple problem instance in which the
given obstacles are rectilinear segments. Then, we generalize the algorithm devel-
oped for the simpler setting to simple rectilinear polygons. Section 2 describes
preliminaries, definitions and introduces some notation. Section 3 presents sev-
eral techniques that are subsequently employed in this paper. Building on these
techniques, Sect. 4 presents an O(n2 log n) time algorithm for the problem, which
is already an improvement over the existing algorithm applied to our setting.
Finally, Sect. 5 details our optimal Θ(n log n) time algorithm. Note: Due to
space limitation some technical details have been moved to the full version of
the paper [14].
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2 Preliminaries

Let E = {E1, ..., En} be a set of rectilinear transient edges, where each edge
Ei ∈ E exists in the scene during a time interval [T a

i , T d
i ], where 0 ≤ T a

i < T d
i .

The edges are disjoint, i.e., no two edges are allowed to overlap at any time.
We assume that the edges are in general position, which means that, no two
edges lie on a common line. Let R be a point robot having maximum speed
Vmax. For two given points s and d in the plane, our problem is to determine a
time-minimal rectilinear path for the point robot from s to d, denoted by π(s, d),
which is collision free, i.e., the point robot does not pass through the edges during
their existence intervals. W.l.o.g., we assume the robot always departs from s at
time 0.

Our strategy is to employ the “continuous Dijkstra” paradigm [9,16], which
has been applied to solve numerous shortest path problems among permanent
(i.e., non-transient) obstacles [9,13,15,16]. We provide here a brief description of
this paradigm. The continuous Dijkstra’s technique models the effects of sweep-
ing an advancing wavefront from the source point till it reaches the destination.
A wavefront (in L1 metric space) is defined as the set of points on the plane at
equal L1 distance from the source. Initially, the wavefront is point located at s.
After a short time period, it becomes a rhombus centered at s with diameter ε,
where ε is a small positive constant. The continuous Dijkstra’s algorithm pro-
ceeds by expanding the rhombus outward from its center point. At any point
in time, the wavefront consists of a set of line segments, known as wavelets.
A wavelet is defined as a maximal set of points on the wavefront, such that
each point on the wavelet has a shortest path from s via a common vertex.
Each wavelet originates at a vertex, which is called the source of the wavelet.
Therefore, each wavelets moves in one of the four fixed directions: north-east,
north-west, south-east, south-west. We abbreviate these four directions as {NE,
NW, SE, SW}. More precisely, the wavelets are in four fixed inclinations with
respect to the x-axis with angles: π/4, 3π/4, 5π/4 and 7π/4.

For our setting, we need to modify the continuous Dijkstra’s model described
above for metric shortest paths, to time-minimal paths among transient obsta-
cles. Note that, on a time-minimal path, the robot’s speed alternates between
Vmax (i.e., the robot is moving) and zero (i.e, the robot is waiting). It is easily
seen that, by arriving earlier at some obstacles and then waiting there until the
obstacle disappears, the robot can avoid any speed other than Vmax and zero.
After waiting the robot continues to move towards the next destination. The
points on the boundary of obstacles where robots may be waiting are called wait
points. The behavior of the wavefront changes at portions of obstacles that are
“potential” wait point candidates.

Given a point p in the plane, we say π(s, p) intersects an edge Ei, if it has a
wait point on Ei; and we say it intersects a vertex v if v ∈ π(s, p). Let S(π(s, p))
be the sequence of edges and vertices that π(s, p) intersects. We formally define
a wavelet as follows.
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Definition 1. A wavelet ω is a maximal set of points, such that for each pair
of points p, q ∈ ω there exist two paths π(s, p) and π(s, q) with equal arrival
times, for which S(π(s, p)) = S(π(s, q)). Let x be the last element in S(π(s, p)).
We say x is the origin of ω (or alternatively, we say that ω is originating from
x). If x is an edge, we say ω is a segment wavelet; otherwise, ω is a point
wavelet. A wavefront is defined as the union of the wavelets at an equal time.

By the above definition, similar to the original version of continuous Dijkstra,
the point wavelets are in four fixed inclinations with respect to the x-axis with
angles: {π/4, 3π/4, 5π/4, 7π/4}. Now, observe the following property of the time-
minimal paths in our setting.

Observation 1 [7]. When, after waiting on an edge Ei, the robot departs, at
some time T d

i , it will use a move perpendicular to the orientation of Ei.

By the above observation, each segment wavelet propagates outwards perpen-
dicularly to its originating segment. Since the edges are axis-parallel, each seg-
ment wavelet is oriented in one of four (axis-parallel) directions: {0, π/2, π, 3π/4}
and moves in one of four directions: north, south, east or west ; these are abbre-
viated as: {N, S, E, W}, respectively.

Our algorithm propagates a wavelet ω, with inclination θ, outwards by using
a sweep line through ω (refer to Sect. 4.1 for details). When ω encounters (or
“hits”) an obstacle, we add new wavelets originating from a vertex or an edge
of the obstacle. For each wavelet ω, we designate an area called search region,
from which ω propagates its interior (refer to Sect. 3.3 for a formal definition).
The time at which propagation starts is called departure time. A key property
that we will be subsequently using is that wavelets are line segments with fixed
inclinations. This enables us to efficiently find the next propagation“events”
using range searching queries (see Sect. 3) (events are intersections between the
wavelets and the obstacles).

We say a path is monotone if any axis-parallel line intersects the path in at
most one connected set. For any pair of consecutive vertices u and v on a shortest
path among non-transient obstacles, in [4], it is proven that the sub-path from
u to v is monotone. In the following lemma, whose proof is provided in the full
version of the paper [14], we show that the analogous property also holds for
time-minimal rectilinear paths among transient obstacles.

Lemma 1 (Monotonicity Property). In our model, let u and v be two con-
secutive vertices on π(s, d). The sub-path of π(s, d) from u to v, denoted by
π(u, v), is monotone.

Define a pair (p, t), as point source, denoted by σ(p, t), where p = (Xp, Yp) is
the x-y location of the robot at time t. We will simply say a path from σ instead
of a path leaving p at time t. Suppose the robot departs from σ by moving
north at maximum speed. For that motion, we define the north stop point for
σ, denoted by U(σ,N), as the first point on any obstacle that the robot “hits”
during the respective obstacles’ existence times. Analogously, we define U(σ, S),
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U(σ,E) and U(σ,W ) as the south, east and west stop points, respectively. Note
that the locations of the stop points may change depending on the departure
time t.

A point q ∈ Ei is called accessible from point source σ(p, t), if there exists a
time-minimal path from σ to q, denoted by π(σ, q), such that: (1) π(σ, q) contains
no wait points and (2) the robot arrives at q during the existence time interval of
Ei. We denote by T (σ, q) = t + ‖pq‖1

Vmax
the arrival time of this path, where ‖pq‖1

is the L1 distance between the two points. Observe that, any stop point for σ is
an accessible point from σ. Let U(σ,N) ∈ Ei be the north stop point for σ. We
define the north accessible segment of σ as a maximal set of accessible points on
Ei. Note that, U(σ,N) is a point on the north accessible segment. Analogously,
we define the other accessible segments of σ in the three other directions.

Given a sub-segment e=((X1, Y1), (X2, Y2)) of an edge Ei, we define a segment
source σ(e, T d

i ) = ∪p∈e {σ(p, T d
i )} as a maximal set of point sources located on

e having common departure time T d
i )}.

A point q ∈ Ei is a north accessible point for σ, if there is exist σ(p, T d
i ) ∈

σ(e, T d
i ) such that q=U(σ,N). We define the north stop segment for σ, denoted

by U(σ,N), as the maximal set of north accessible points which have minimum
distance to e. By the general position assumption, U(σ,N) is a connected sub-
segment of an edge in E. Intuitively, if we drag the segment e north, the north
stop segment is the first intersection between the dragging segment and the
obstacles. Analogously, we define U(σ, S), U(σ,E) and U(σ,W ).

3 Range Searching Techniques

When propagating a wavelet, we wish to quickly determine the next event, where
the wavelet intersects an obstacle. In this section, we present our techniques
employed to solve this problem. First, we present a solution to the problem of
determining the stop points for a query point source (see Lemma 3). Then, we
devise an algorithm to report the stop segments for a query segment source (see
Lemma 5). Using these stop points, we define a rectangular range (the search
region), which contains potential next points/edges hit by the wavelet. We iden-
tify these using a range searching technique, presented in Lemma6.

3.1 Finding the Stop Points

Given a query point source σ(p=(x, y), t), we denote by {U(σ,N), U(σ, S),
U(σ,E), U(σ,W )} the four stop points for σ. In this section, we present a
solution to find U(σ,N) and other stop points can be found analogously. Let
U(σ,N) ∈ Ei, where Ei = ((X1, Y ), (X2, Y )). By definition, the robot hits Ei

during its existence time interval. So, we must have T a
i ≤ t+ (Y −y)

Vmax
≤ T d

i . Hence,

T a
i − Y

Vmax
≤t − y

Vmax
≤ T d

i − Y

Vmax
. (1)
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Also, it is easily seen that,

X1 ≤ x ≤ X2. (2)

As a result, if the north stop point for σ is located on Ei, Eqs. (1) and (2) must
be satisfied. These equations can be viewed as one equation in two dimensions,
where the y values are replaced by (t − y

Vmax
): let rsi be a rectangle where

(X1, T
a
i − Y

Vmax
) and (X2, T

d
i − Y

Vmax
) is one of its opposite corner pairs. Given a

point p = (x, t − y
Vmax

), observe that p ∈ rsi if and only if σ satisfies the Eqs. (1)
and (2). We call rsi the south shadow range of Ei and p the south shadow point
of σ (see the full version of the paper for an example).

Observation 2. Let σ(p, t) be a query point source and U(σ,N) ∈ Ei be its
north stop point. Then, the south shadow point for σ is located inside the south
shadow range of Ei, i.e., p ∈ rsi .

Note that the reverse direction of the above observation does not always hold.
In other words, there are several edges whose shadow ranges contain p; however,
only one includes the north stop point. Recall that a stop point represents the
“first” intersection between the robot and the obstacles. So, U(σ,N) is located
on an obstacle whose Y value is minimum among all edges whose south shadow
range contain p. Thus, we assign a weight to a shadow range rsi , denoted by
ω(rsi ), which is the Y value of its corresponding (horizontal) edge Ei. In order
to find the north stop point for the query point source σ, we need to find the
minimum weight shadow range r that contains p.

Lemma 2 [1]. A set H of n axis-parallel rectangles, where each rectangle h ∈ H
has a weight ω(h) ∈ R, can be maintained so that the minimum weight rectan-
gle containing a query point can be determined in O(log n) query time, after
O(n log n) preprocessing time.

The following is the direct consequence of the above lemma.

Lemma 3. After O(n log n) time preprocessing, all stop points of a query point
source can be found in O(log n) time.

3.2 Finding the Stop Segments

Let σ(e, t) be a horizontal query segment source and U(σ,N) be its north stop
segment, where e = ((x1, y), (x2, y)). Define e = ((x1, t − y

Vmax
), (x2, t − y

Vmax
))

as the shadow segment of e. By Eqs. (1) and (2) and Observation 2, the following
can be observed.

Observation 3. Let σ(e, t) be a horizontal segment source and U(σ,N) ∈ Ei be
its north stop segment. Segment e intersects the south shadow range of Ei.
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Recall that a stop segment is defined as the first intersection between the
dragging segment e and the obstacles. Thus, U(σ,N) is located on a segment Ei

whose south shadow range’s interior intersects e and has minimum weight (i.e.,
Y value). We now consider two cases: firstly, let e be located entirely inside the
south shadow range of Ei. By definition, it is easily observed that the north stop
point for any source point on σ(e, t), is located on Ei. Thus, by locating a point
on e we can find the stop segment for σ(e, t) (see Lemma 2).

For the second case, assume e intersects the boundary of rsi . Let R be the
set of shadow ranges whose boundaries (horizontal and vertical line segments)
intersect e. By the following lemma, we can report the minimum weighted range
ri ∈ R whose boundary intersects the source segment e.

Lemma 4 [17]. Given a family of n rectilinear line segments L and a query
rectilinear line segment s, L can be preprocessed in O(n log n) time, so that a
minimum weight segment in L intersecting s, can be reported in O(log n) query
time.

Thus, the following lemma follows immediately.

Lemma 5. After O(n log n) time preprocessing, the stop segment for a query
segment source can be found in O(log n) time.

3.3 Range Searching for Minimum

Lemma 6 [3]. Let H be a dynamic set of points in IR2 where insertions and
deletions of the points are allowed. In O(n log n) time, we can preprocess H
into a data structure, so that, for a given query axis-parallel rectangle r, we can
determine a minimum weight point inside r ∩ H in O(log n) time. H can be
updated in O(log n) time per insertion/deletion.

Let V be the set of all vertices (end points of the edges in E) union {s, d}.
Let r be a query rectangle and p be one of its corners. We denote by vm, a vertex
of V located inside r with minimum L1 distance to p. W.l.o.g., assume p is the
bottom-left corner of r. Let B be an axis-parallel rectangular bounding box that
contains all vertices in V . We assign a weight to each vertex v ∈ V , denoted
by ω(v), which is the L1 distance between v and the bottom left corner of B.
Observe that vm is the minimum weight vertex in r. By Lemma 6, there is a
data structure [3] that allows finding vm in O(log n) query time, after O(n log n)
preprocessing time.

Let σ(p, t) be a query point source and U(σ,N) and U(σ,E) be its north
and east stop points, respectively. We define the north-east search region for
σ as the rectangle where U(σ,N) and U(σ,E) are its two opposite corners (see
Fig. 1 (a) as an example). If U(σ,N) or U(σ,E) does not exist, we say that the
north-east search region is undefined. Thus, we can define, at most, four search
regions corresponding to each query point source. For a horizontal (or vertical)
segment source σ(e, t), we define the segment search region of σ as a vertical
(or horizontal) strip of width |e| that entirely contains e. In the next section, we
use the search regions to locate the events where the wavelets hit the obstacles.
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4 Algorithm

We design a simple data structure to represent the wavelets. For each wavelet
ω(q, t, r), the data structure contains the following information:

– The source q, from which the wavelet is propagated. Recall that, wavelets
with inclinations {0, π/2, π, 3π/2} originate from segment sources. Conversely,
wavelets with inclinations {π/4, 3π/4, 5π/4, 7π/4} originate from the point
sources.

– The corresponding departure time of the wavelet, denoted by t.
– A search region r, which contains potential next intersections between the

wavelet and the obstacles. In order to propagate ω, we allow the wavelet to
sweep the interior of r and report “hits” by the wavelet.

4.1 Propagation

Propagating a wavelet ω(q, t, r) means to allow the wavelet to sweep in its des-
ignated direction, until it hits a vertex v (or alternatively, the body of an edge).
We assume that the minimum arrival time at q has been already calculated.
Then, we calculate a potential minimum arrival time at v using a shortest L1

path from q to v. This may involve deleting, updating, and creating wavelets
corresponding to the advancing wavefront. Since the source of a wavelet is either
a point or a segment, we present two algorithms to propagate these wavelets.

Before discussing the propagation algorithms, we introduce some notation
and give some definitions. Let σ(p, t) be a point source and rNE be its cor-
responding north-east search region. We denote by ω(σ, t, rNE) a wavelet that
originates at σ and is propagating north-east inside rNE . Similarly, we can define
(at most) three more wavelets, in the three directions {NW,SE, SE}, originat-
ing from σ. Denote by Wa(σ) the set of wavelets originating from σ in all (at
most) four directions. By Lemma 3, Wa(σ) can be found in O(log n) time, after
O(n log n) preprocessing time. By Lemma 3, for each wavelet ω ∈ Wa(σ), we
can find the closest vertex to σ inside its corresponding region in O(log n) time,
we denote this vertex by Γ (ω).

We design an algorithm called PropagatePoint(ω) (for details, see the full
version of the paper [14]) which propagates a point wavelet ω(σ, t, r) inside its
corresponding search region r. There are four types of point wavelets depending
on their directions (i.e, NE, NW , SE and SW ). W.l.o.g., we assume ω(σ, t, r) is
propagating north-east; other directions can be treated analogously. Two types
of events are discovered by this algorithm, which are explained next.

Firstly, the algorithm finds all accessible segments of σ, on the boundary of r.
For an example, see s1 and s2 in Fig. 1(a). Since the vertices are located in general
position, there are at most four accessible segments on the boundary of r (one
for each edge of r). For each discovered accessible segment, the algorithm adds
two types of wavelets to the queue: (1) a segment wavelet whose departure time
is the disappearance time of its associated edge and (2) a set of point wavelets
originating from the end points of the segment (in Fig. 1(a), these points are
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Fig. 1. The process of point propagation is illustrated. (a) ω is propagating north-east
and v is the first vertex it intersects; (b) when ω intersects v, it is split into three new
wavelets ω1, ω2 and ω3.

denoted by q1, p1, q2 and p2). By Lemmas 5 and 6, we identify these wavelets in
O(log n) time.

Secondly, the algorithm discovers the closest vertex to σ, say v (i.e., v =
Γ (ω)), as it is the first vertex hit by the wavelet. By Lemma 6, this vertex can
be determined in O(log n) time. When ω hits v, the wavelet is split into three
new wavelets. In Fig. 1(b), these wavelets are denoted by ω1, ω2 and ω3. We also
create (at most) four new wavelets, corresponding to v and its search regions
(i.e., the wavelets in Wa(σ)). Since all these operations are executed in O(log n)
time, we can conclude that PropagatePoint(ω) takes O(log n) time.

We now describe an algorithm called PropagateSegment(ω) (see the full
version of the paper [14]). This algorithm takes a segment wavelet as input and
propagates it inside its corresponding search region. There are four types of seg-
ment wavelets depending on their directions (i.e., N , E, W and S). W.l.o.g.,
assume ω(σ, t, r) is propagating north. The algorithm finds the north stop seg-
ment for σ, denoted by e′. Note that, by Lemma 5, this can be done in O(log n)
time. When ω hits e′, ω is split into smaller wavelets as follows. A new wavelet
ω′ originating from e′, is added to the queue. Then, the algorithm adds smaller
wavelets for the parts of ω which do not hit e′. As an example, see ω1 and ω2 in
Fig. 2(b). Additionally, if a vertex is hit by the segment wavelet, our algorithm
adds (at most) four point wavelets originating from the vertex. By Lemma3,
this can be done in O(log n) time. Thus, PropagateSegment(ω) runs in O(log n)
time.

4.2 A Naive Algorithm

In this section, we present a “naive” algorithm (see the full version of the paper
[14]), which reports the minimum arrival time at the destination in O(n2 log n)
time. Although the algorithm is not efficient, it illustrates our global approach
and serves as the basis for our optimal algorithm describe later in Sect. 5.
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Fig. 2. The process of a segment propagation is illustrated.

In this algorithm, our approach is to find the minimum arrival time at every
vertex in V from the source. To achieve this, a set of wavelets is created and main-
tained in a priority queue, whose keys are their t values (i.e., their corresponding
departure times). The queue is initialized with four initial point wavelets orig-
inating from the start point s in four directions NE, NW , SE and SW . In
each iteration, the algorithm proceeds by extracting a wavelet from the queue
with lowest value of t. If the wavelet originates from the destination point, the
minimum arrival time at the destination has been found. Otherwise, depending
on whether ω is a point wavelet or a segment wavelet, PropagatePoint(ω) or
PropagateSegment(ω) is executed, respectively. Recall that, these algorithms
propagate the given wavelet and add, or update, the wavelets in the queue, if
necessary. In the following lemma, we prove that the naive algorithm correctly
finds the minimum arrival at the destination.

Lemma 7. The naive algorithm reports the minimum arrival time at the desti-
nation.

Lemma 8. The naive algorithm runs in O(n2 log n) time.

Proof. We estimate the total number of calls to the functions
PropagatePoint(ω) and PropagateSegment(ω). More precisely, we need to
bound the total number of wavelets created in the process. Fujimora [7] proved
that at any given time, the size of the wavefront (i.e., the number of wavelets in
the priority queue) is O(n). Thus, each edge may be hit by O(n) wavelets and
consequently generate O(n) new wavelets. This means that the total number of
wavelets is bounded by O(n2). Recall that, each propagation can be executed
in optimal O(log n) time. Therefore, the naive algorithm runs in O(n2 log n)
time. ��

5 An Improved Algorithm

As we proved in Lemma 8, there may be up to O(n) wavelets originating from a
single edge. In Sect. 5.1, we will utilize a method called “expanding”, to reduce
the total number of segment propagations. Note though that the queue may
contain wavelets with overlapping search regions. Thus, each vertex may be hit
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by O(n) wavelets (the maximum size of the queue at any given time). To prevent
this from happening, in Sect. 5.2, we propose a procedure called “Narrowing”,
which shrinks the overlapping search regions, so that they do not sweep the same
area.

5.1 Wavelet Expanding

Let Wi be a maximal set of wavelets, originating from the body of Ei. Recall that,
the naive algorithm propagates every wavelet in Wi individually. In Lemma8, we
proved that the number of these wavelets in the priority queue will be quadratic
in the worst case. In this section, we propose an alternative approach in which,
we replace all wavelets in Wi by a single “expanded” wavelet. This wavelet is a
segment wavelet whose source is the body of the edge Ei. We will prove that this
replacement of wavelets permits avoiding the quadratic number of propagations.
The crucial property that we are employing is the following:

Observation 4. The wavelets in Wi simulate the robot’s motions when: (1) it
arrives at the body of the edge Ei in its existence time interval and (2) departs
from the edge, at time T d

i . In other words, the departure time of all wavelets in
Wi is the disappearance time of Ei.

W.l.o.g, we assume Ei is a horizontal edge. Let ω(σ=(v, t), t, r) be a wavelet
originating from a vertex v, propagating north-east. Suppose ω hits the interior
of edge Ei, i.e., U(σ,N) ∈ Ei. Thus, PropagatePoint(ω) creates some wavelet(s)
originating from the body of Ei (for details of the Algorithm see the full version of
the paper). The same process will be repeated for the newly generated wavelets,
at a later time. Notice that the sequence at which these wavelets are created is
sorted by their departure times. Thus, for each wavelet ω′ originating from the
body of an edge, we can find a sequence of wavelets, starting with the wavelet
ω originating from a vertex, which led to the creation ω′. We say σ is the root
point source of ω′. Since Ei is horizontal, we observe the following property of
the root point sources.

Property 1. Let ω(σ, t, r) ∈ Wi be a segment wavelet where σ((X1, Y ), (X2, Y )).
Then, there is an associated root point source σ=(v, t) for which: (a) v=(Xv, Yv)
is a vertex in V and (b) X1 ≤ Xv ≤ X2, i.e., σ is located south of σ.

We store the root point sources of the wavelets of Wi in a binary search tree
(BST) Bi. If Ei is horizontal, Bi is sorted by the x-coordinates of the point
sources; and if Ei is vertical, Bi is sorted by their y-coordinates. Next, we use a
method, called Expand, as follows: remove the wavelets of Wi from the queue
and replace them with an expanded wavelet ωi((Ei, T

d
i ), T d

i , ri), where ri is the
segment search region of Ei. The details of this procedure is presented in the full
version of the paper [14]. In this method, we update the binary trees as follows:
when ωi hits its north stop segment on the edge Ej , we construct Bj by applying
the appropriate Split and Merge operations on Bi and Bj . We define these two
functions as follows.
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• Split(T, x) : BST × IR → BST × BST . Given a BST T and a key value
x, split divides T into two BSTs Tl and Tr, where Tl consists of all point
sources in T with x-coordinates less than x; and Tr includes the rest of the
point sources.

• Merge(Tl, Tr) : BST × BST → BST . Let Tl and Tr be two BSTs, where
there exist a value x such that the point sources in Tl have lower (or equal)
x-coordinates than x and the point sources in Tr have greater (or equal) x-
coordinates than x. Function Merge creates a new BST which is the union
of Tl and Tr.

In the expanding algorithm (i.e., Expand(ω) in the full version of the paper),
the input is a wavelet ω originating from the body of an edge Ei. The algorithm
proceeds by initializing an empty BST Bi. Next, for any wavelet ω′ originating
from the body of Ei, it first removes ω′ from the queue. Then, it considers two
cases: (1) if ω′ is a non-expanded wavelet, it inserts the root point source of ω′

into Bi and (2) if ω′ is an expanded wavelet of edge Ej = ((Xl, Y ), (Xr, Y )), the
algorithm first splits Bj into two sub-trees Tl, Tr = Split(Bj ,Xr). Then, it splits
Tl again, such that T ′

l , T
′
r = Split(Tl,Xl). At this point, T ′

r represents the point
sources in Bj with x-coordinates between Xl and Xr. The algorithm merges T ′

r

with Bi using Bi = Merge(T ′
r, Bi). The rest of the point sources in Tr and T ′

l

are maintained in Bj using Bj = Merge(Tr, T
′
l ).

Since updating the binary search trees using the basic operations of merge
and split, can be done in O(log n) time, each iteration in the main loop of the
expanding algorithm runs in O(log n) time.

Now, we modify the naive algorithm described in Sect. 4.2 so that it uses the
“expanding” method. Let ω be a wavelet extracted from the priority queue. If
ω is originating from the body of Ei, we execute the expanding algorithm (see
the full version of the paper for details) to replace the wavelets of Wi with an
expanded wavelet. More precisely, if ω is originating from the body of Ei, we
execute Expand(ω) in the naive algorithm. We call this new algorithm Expanding
algorithm.

W.l.o.g., assume the expanded wavelet ωi is propagating north and
v=(Xv, Yv) is the first vertex that it hits. Although PropagateSegment(ωi)
identifies v, it may not report the arrival time at v. This is due to the fact
that the wavelets on the body of Ei have been replaced by a single wavelet ωi.
Thus, we need an alternative approach to calculate the minimum arrival time
at v. Suppose ωmin is the first wavelet in Wi that hits v (see Fig. 3). In the
remaining of this section, we show how to determine the minimum arrival time
at v, without explicitly calculating the wavelet ωmin. Recall that, the minimum
L1 distance from u to v is denoted by ‖uv‖1 , and the minimum L1 distance
between Ei and v is denoted by ‖Eiv‖1 .

Lemma 9. Let σ(u, t) ∈ Bi. If the robot departs from u at time t, the minimum
arrival time at v is Tv(u) = max

(
T d
i , t + ‖uv‖1−‖Eiv‖1

Vmax

)
+ ‖Eiv‖1

Vmax
.

Let σl = (vl, tl) be the point source in Bi, where vl is a vertex with the
largest X-coordinate smaller than Xv. For an example, see Fig. 3. Analogously,
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Fig. 3. The segment sources and point sources of an edge Ei are illustrated by red
segments and red squares, respectively. Among the wavelets originating from these
sources (i.e., the wavelets in Wi), ωmin is the first wavelet that hits vertex v.

let σr = (vr, tr), where vr has the smallest X-coordinate greater than Xv. Using
these notations, we state the following lemma whose proof is given in the full
version of the paper [14].

Lemma 10. Among the point sources in Bi, either point source σr or σl (defined
above) has the minimum arrival time at v.

Finally, by Lemmas 9 and 10, when a vertex v is discovered by an
expanded wavelet, we can find the minimum arrival time at v using tv =
min(Tv(vr), Tv(vl)). Since the calculation of tv is solely based on Ei, u and
v, it is not required to calculate the wavelets in Wi. Therefore, the following
corollary is obtained.

Corollary 1. The Expanding algorithm calculates the minimum arrival time at
the destination.

5.2 Wavelet Narrowing

In the previous section, we described a technique to reduce the number of
wavelets originating from the edges by a factor of n. Here, we need to address
another challenge: reducing the total number of vertex-originated wavelets. As
mentioned before, the search regions may overlap and hence, a vertex may create
O(n) point wavelets. To prevent this from happening, in this section, we propose
a procedure called “Narrowing” the wavelets.

Let ω1(σ1, t1, r1) and ω2(σ2, t2, r2) be a pair of point wavelets whose search
regions intersect (i.e., r1 ∩ r2 
= ∅). W.l.o.g., assume that ω1 and ω2 are propa-
gating toward the north-east. We denote by p, the bottom left corner of r1 ∩ r2
(see Fig. 4). Recall that T (σ, p) is the minimum arrival time at p from σ. Let
T1 = t1 + T (σ1, p) and T2 = t2 + T (σ2, p) be the minimum arrival times at p
from σ1 and σ2, respectively. The wavelet which arrives at p first is called the
dominant wavelet. W.l.o.g., assume T1 < T2 and thus, ω1 is dominant. Now, let
v ∈ r1 ∩ r2 be a vertex located inside the intersection of the two search regions.
Note that, ω1 hits v at time T (σ1, v) = T (σ1, p) + ‖pv‖1

Vmax
; and ω2 hits v at time

T (σ2, v) = T (σ2, p) + ‖pv‖1
Vmax

. Since T (σ1, p) < T (σ2, p), we obtain the following:
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Lemma 11. Let ω1(σ1, t1, r1) and ω2(σ2, t2, r2) be a pair of point wavelets,
where ω1 is the dominant wavelet. For any vertex v ∈ r1 ∩ r2, we have
T (σ1, v) < T (σ2, v).

By the above lemma, for any vertex v ∈ r1∩r2, the point source σ2 cannot be
on a shortest path from s to v. As a result, it is counter-productive to propagate
ω2 inside r1∩r2. Intuitively, we can avoid this by replacing ω2 with new wavelets
that are designated to sweep only inside r1\r2 (i.e., the areas inside r1 and
outside r2). This procedure is called Narrowing. Since the underlying search
regions are axis-parallel rectangles, we can narrow a wavelet by replacing its
search region by at most four smaller rectangles. As an illustration, in Fig. 4,
ω2 is replaced with two new wavelets ω′

2 and ω′
3 with smaller search regions.

The details of this procedure are presented in the full version of the paper [14].
Our approach for reducing the number of point wavelets is based on identifying
the dominant wavelets in each iteration. One greedy approach is to compare
all pairs of the wavelets and narrow the non-dominant ones. However, this may
result in quadratic number of narrowings. Our alternative approach is to execute
the narrow procedure for every pair of wavelets originating from two vertices v1
and v2, when: (1) there exists two wavelet ω1 and ω2 originating from v1 and
v2, respectively; and (2) either ω1 hits v2, or ω1 and ω2 hit the same vertex v3.
This modification of the Expanding algorithm results in a new algorithm which
we call the Narrowing algorithm. The following corollary is a direct consequence
of Lemma 11.

Fig. 4. An example of narrowing a wavelet; (a) the minimum arrival time at p is
identified from two point sources σ1 and σ2. The path from σ1 is faster, so ω1 is the
dominant wavelet; (b) ω2 is replaced with two wavelets ω′

2 and ω′
3 with smaller search

regions.

Corollary 2. The Narrowing algorithm calculates the minimum arrival time at
the destination.

In order to prove that the Narrowing algorithm runs in O(n log n) time, we
first establish a linear bound on the number of point wavelets created in the
process.
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Lemma 12. The total number of point wavelets created by the Narrowing algo-
rithm is O(n).

Proof Sketch. Intuitively, we prove the following: Let ω1 and ω2 be two north-
east propagating wavelets, originating from u1 and u2, respectively. Assume ω1

and ω2 both hit a vertex v. If u2 lies within a ‖u1v‖1 distance from u1 (in any
direction), then either ω1 or ω2 would be narrowed before hitting v, making it
impossible to have encountered v. So, there are at most two wavelets hitting v
from south-west. Therefore each vertex is hit by a constant number of wavelets
in total. See the full version of the paper [14] for the full proof. ��

By the above lemma, there are O(n) point wavelets in the queue. Further-
more, in Sect. 5.1, we proved that the total number of segment wavelets is also
O(n). Thus, the running time of the Narrowing algorithm is O(n log n). Finally,
by recording the sequence of the propagations during the process, we can actu-
ally construct the time-minimal path among the transient obstacles. Note that,
similarly to the optimality argument for the existing Θ(n log n) time algorithm
[18] for the non-transient obstacles (which is a special case of our problem), our
algorithm is also optimal.

Theorem 1. A time-minimal rectilinear path among transient rectilinear seg-
ments can be found in Θ(n log n) time.

As the algorithm proceeds, by recording the trace of the endpoints of the
wavelets, we can build a subdivision of the plane. Since the size of this subdivision
is proportional to n, by [10], we can construct a data structure to answer point
location queries in O(log n) time. Thus, we can build the shortest path map with
respect to a fixed source point in O(n log n) time. Now, for a given query point
q, the minimum arrival time at q from s, can be reported in O(log n) time.

Theorem 2. Given a set of n transient edges E, a fixed source point s and a
query point q, E can be preprocessed in O(n log n) time, so that the minimum
arrival time at q can be reported in O(log n) query time.
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Abstract. We propose a polynomial delay and polynomial space algo-
rithm for the enumeration of k-degenerate induced subgraphs in a given
graph. A graph G is k-degenerate if each of its induced subgraphs has a
vertex of degree at most k. The degeneracy is considered as an indicator
of the sparseness of the graph. Real-world graphs such as road networks,
social networks and internet networks often have small degeneracy. Com-
pared to other kinds of graph classes, bounded degeneracy does not give
many structural properties such as induced subgraph free, or minor free.
From this, using bounded degeneracy to reduce the time complexity is
often not trivial. In this paper, we investigate ways of handling the degen-
eracy and propose an efficient algorithm for the k-degenerate induced
subgraph enumeration. The time complexity is O (

min
{
Δ + kk′, (k′)2

})

time per solution with polynomial preprocessing time and the space com-
plexity is linear in the input graph size, where Δ and k′ are the maximum
degree and the degeneracy of the input graph.

Keywords: Graph algorithms · Enumeration algorithms
Polynomial delay · k-degenerate graphs

1 Introduction

The subgraph enumeration is to output all the subgraphs of the given graph
satisfying a certain structural condition such as being a tree and the density is
no less than a threshold. It is one of the fundamental problems widely studied in
the theoretical computer science for more than 40 years ([12] gives the overview
of this area). The complexity analysis of subgraph enumeration algorithms has
two main streams. One is of a usual style, that is evaluating the time complexity
in the input size. Generally speaking, the number of solutions is exponential
in the input size, thus the studies are done to reduce the constant factor c of
the time complexity of O (cn). This has an advantage that at the same time we
can often obtain a combinatorial result of bounding the number of subgraphs.
On the other hand, considering the practice, enumeration problems have less
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solutions, say polynomially many, thus evaluation only by the input size is too
much overestimating. In such cases, output polynomial time is considered. The
time complexity is evaluated by the input size n and the output size N that
is the number of solutions. An algorithm is called an output polynomial time
algorithm if it terminates in a time polynomial in the input size and the output
size. Further, we say it runs in poly(n) time for each solution if an algorithm
runs in O (poly(n)N) time plus polynomial time preprocessing. Further, we say
the algorithm runs in polynomial delay time if the computation time between
any two consecutive output solutions is polynomial in the input size.

A graph G is said to be k-degenerate [10] if any of its induced subgraphs
has at least one vertex of degree at most k. The degeneracy of G is the small-
est k such that G is k-degenerate. Intuitively speaking, if a graph has a small
degeneracy, then the graph is relatively sparse. It is said that real world graphs
often have small degeneracies [6,8]. Particularly, some graph classes have con-
stant degeneracies, e.g., trees, grid graphs, outer planar graphs, planar graphs,
bounded treewidth graphs, and H-minor-free graphs for fixed H. Bounded-size
degenerate graphs have received much attention. However, bounded degeneracy
does not give many structural properties such as minor free, compared to other
graph classes such as chordal graphs. Thus, despite its importance, there are not
so many studies on algorithms that utilize degeneracy. In this paper, we address
the problem of enumerating all induced k-degenerate subgraphs. We investigate
efficient search strategies that have characterization of irredundant moves, and
the way of checking the degeneracy in short time. These yield an efficient enu-
meration algorithm. There have been several studies on enumeration problems in
a bounded degenerate graph [4,6,9], for cliques, dominating sets, induced trees,
etc. To the best of our knowledge, there has been little research on the enumera-
tion of k-degenerate subgraphs, or k-degenerate induced subgraphs. The case of
k = 1 corresponds to the forest enumeration, thus there have been many stud-
ies, especially its connected version, that is, trees. Ferreira et al. proposed an
enumeration algorithm for subtrees of size exactly h in an undirected graph [7].
Wasa et al. improved their result to optimal [14], that is, their algorithm runs
in O (1) delay, when the input graphs are trees. For the induced version, the
authors proposed an algorithm [13] that enumerates all the vertex subsets that
induce a tree. Conte et al. proposed an enumeration algorithm for maximal k-
degenerate induced subgraphs in a chordal graph that runs in polynomial delay
and space [5]. On the other hand, Bauer et al. [2] studied the enumeration of all
k-degenerate induced graphs having n vertices and m edges.

We propose an efficient algorithm for enumerating k-degenerate induced
subgraphs in a given graph G = (V,E). Our algorithm runs in
O (

min
{
Δ + kk′, (k′)2

})
time per solution and uses O (|V | + |E|) space, where

Δ and k′ are the maximum degree and the degeneracy of an input graph. Note
that the algorithm outputs also disconnected subgraphs. In the enumeration
of k-degenerate subgraphs, the time consuming part is the computation of the
degeneracy of a newly generated subgraph. It takes O (|V | + |E|) time with
straightforward ways. Further, if we follow the usual binary partition algorithm,
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an iteration has to have up to O (|V |) trials for finding a vertex whose addition to
the current solution yields a k-degenerate induced subgraph. Thus, an iteration
has to spend O (|V |(|V | + |E|)) time or more in this way. Instead of that, we
developed a reverse search algorithm [1]. We define a parent-child relationship
that defines a tree shaped traversal route spanning all k-degenerate induced sub-
graphs. By generating the child solutions of the current visiting solution recur-
sively, we can traverse the tree in a depth-first manner whilst using polynomial
time and polynomial space. We further developed a data structure that enables
us to check the degeneracy in short time, that can be updated quickly along the
movement on the traversal tree.

The organization of this paper is as follows: In Sect. 2, we give the basic
notations and terminologies that are used in this paper. Section 3 shows the
reverse search strategy, and Sect. 4 describes the data structure for checking the
degeneracy. In Sect. 5, we conclude this paper.

2 Preliminaries

Let G = (V,E) be an undirected graph with vertex set V = {1, . . . , n} and edge
set E ⊆ V × V . Let u, v ∈ V be two distinct vertices in G. Vertices u and v
are mutually adjacent if (u, v) ∈ E. N(u) denotes the set of vertices that are
adjacent to u. We call d(u) = |N(u)| the degree of u. Let Δ(G) = maxu∈V d(u)
and δ(G) = minu∈V d(u). For a vertex set S, let dS(u) = |N(u) ∩ S| be the
number of neighbors of u that are in S. For any edge e = (u, v) ∈ E, we say that
u and v are the endpoints of e. G is connected if any pair of vertices u and v, there
is a path between them. For any vertex subset S of V , the subgraph induced
by S is the graph whose vertex set is S and edge set is the edges connecting
two vertices in S, i.e., {(u, v) ∈ E | u, v ∈ S}. For conciseness, for a set S and an
element v, we denote S ∪ {v} by S ∪ v and S \ {v} by S \ v. In what follows, we
assume that G is connected and G has no self loops and multi edges.

2.1 k-degenerate Graphs

A graph is k-degenerate [10] if any of its induced subgraphs has a vertex of
degree at most k, and the degeneracy of G is the smallest k such that G is k-

5 2 13746

1

2
3

4

5

6

7G1

Fig. 1. G1 is a 2-degenerate graph. A degeneracy ordering of G1 is shown in the right
part of the figure. In the figure, the leftmost vertex 6 is the smallest and the rightmost
vertex 1 is the largest. For any vertex v in G1, the number of larger adjacent vertices
of v is at two.
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degenerate. We call a vertex set S ⊆ V a k-degenerate vertex set if G[S] is an
induced subgraph whose degeneracy is k. It is known that G is k-degenerate if
and only if it admits a vertex ordering >∗, called a degeneracy ordering, such
that for any vertex v in G, |{u ∈ N(v) | u >∗ v}| ≤ k (See Fig. 1). That is, for
each vertex, the number of larger neighbors is at most k. A degeneracy ordering
of a graph can be obtained in linear time in the size of a graph [11], by recursively
removing the smallest degree vertex from the graph. It is also known that graphs
in some graph classes have a constant degeneracy. For example, the degeneracy
of trees, grid graphs, outerplanar graphs [3], and planar graphs are respectively
at most 1, 2, 2, and 5 [10]. In what follows, we assume the vertices of G are
labeled according to some degeneracy ordering of G, and we write > for >∗ if
no confusion can arise.

We here describe the k-degenerate induced subgraphs enumeration problem.

Problem 1. Given a graph G = (V,E) and positive integer k, enumerate all
k-degenerate vertex subsets of G.

Note that those vertex sets may induce disconnected graphs, and are allowed to
be solutions.

3 Reverse Search Algorithm

Our algorithm enumerates the solutions by traversing on a tree structure on
the solution space, called a family tree, in a DFS manner. The basic idea of
this strategy is proposed by Avis and Fukuda [1]. In this section, we give an
algorithm for k-degenerate induced subgraphs. We first define the tree structure
mentioned above. Let R = (∅, ∅) be the empty graph, that is a k-degenerate
graph. We call R the root. The parent vertex pv(S) of a k-degenerate vertex set
S is defined as the smallest vertex v in S such that v is adjacent to at most k
vertices of S. We define the parent of k-degenerate induced subgraphs of G as
follows:

Definition 1 (The parent). Let G be a graph and k be a positive integer.
We define the parent P (S) of a non-empty k-degenerate vertex set S ⊆ V as
S \ pv(S).

For any k-degenerate vertex set S′, we say that S′ is a child of S if P (S′) = S.
Let Ck(S) be the set of children of S. In what follows, we omit the subscript k
of Ck if no confusion arises. A vertex u is called a child generator of S if S ∪ u
is a child of S. It holds that |P (S)| = |S| − 1, thus by repeatedly applying the
parent function, we can reach the root R from any k-degenerate vertex set S
since every k-degenerate vertex set has a parent vertex pv(S).

The family tree is a tree whose node set is all the k-degenerate vertex sets
of G, and an edge connect two nodes if one is the parent of the other. From
the above, we can see that the family tree contains no cycle and spans all k-
degenerate vertex subsets, thereby is a tree rooted at R. The algorithm traverses
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Algorithm 1. Reverse search algorithm
1 Procedure Main(G = (V, E), k)
2 R ← (∅, ∅);
3 Rec(G, R, k);

4 Subprocedure Rec(G, S, k)
5 Output S;
6 foreach S′ ∈ C(S) do
7 Rec(G, S′, k);

the tree by recursively moving to the children of the current visiting k-degenerate
vertex subset. We can then see the correctness of the algorithm; the algorithm
completely outputs the k-degenerate vertex sets without duplication. The algo-
rithm is described in Algorithm1.

4 Generating Children

The bottle neck part of Algorithm1 is the computation of the children a current
solution in line 6. A näıve way to generate all the children of a k-degenerate vertex
set S is as follows: For every vertex u /∈ S, check whether S ∪ u is k-degenerate
or not, and P (S ∪ u) is S or not; if the answers of the both checking are yes,
then add u to the set of child generators. This actually needs O (|V |(|V | + |E|))
time. In this section, we propose an efficient method that avoids the above trial-
and-error approach. We first consider the sufficient and necessary condition for
a vertex u to be a child generator of S. Let k′ be the degeneracy of G. In what
follows, we assume k < k′. Otherwise, our problem can be solved in O (1) time
per solution outputting all subgraphs in G. Let N>(u) be the set of vertices that
are adjacent to u and larger than u. We assume that the graph is stored in the
memory by the adjacency lists of its vertices, and the adjacency list is sorted in
the degeneracy ordering. N>(u) is also stored in the memory and sorted in the
degeneracy ordering.

4.1 Characterization of a Child Generator

We say that v is black if dS(v) > k, v is gray if dS(v) = k, and v is white
otherwise. We also say that v is non-black if v is not black, that is, v is gray or
white. Note that pv(S) is the smallest non-black vertex in S. Let sw∗(S) be the
smallest white vertex in S, and GS(S) be the set of the gray vertices in S that
are smaller than sw∗(S). Let hS(u) be the number of vertices in GS(S) that are
smaller than u, and h′

S(u) be the number of vertices in GS(S) ∩ N(u) that are
smaller than u. A vertex u is a child generator of S if and only if u = pv(S ∪ u)
holds. This condition is characterized as follows.

Lemma 1. A vertex u /∈ S is a child generator of a k-degenerate vertex subset
S, i.e., u = pv(S ∪ u) if and only if u is non-black in S ∪ {u} and either one of
the followings holds.
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(1) u < pv(S)
(2) pv(S) < u < sw∗(S) and u is connected to all vertices in

{v ∈ GS(S) | v < u}, i.e., hS(u) = h′
S(u).

Proof. Suppose that S is a k-degenerate vertex subset and u /∈ S is a non-black
vertex. Note that S ∪ u is k-degenerate. We consider the following three cases.

Case (A): Suppose that (1) holds. We observe that (i) any black vertex in
S is also black in S ∪ u, and (ii) u < u′ holds for any non-black vertex u′ ∈ S
because u < pv(S). It implies that u = pv(S ∪ {u}).

Case (B): Suppose that (2) holds. Any non-black vertex u′ of S ∪ u is either
gray or white in S. If u′ is white in S, then u < u′ holds from the condition of
(2). If u′ is gray in S, then u′ is not connected to u. Thus, from the condition of
(2), u < u′ holds. Therefore, u < u′ always holds, and u = pv(S ∪ {u}).

Case (C): Both (1) and (2) do not hold implies that (i) u > pv(S) and (ii)
u > sw∗(S) or u is not connected to a gray vertex v ∈ GS(S) such that v < u. If
u > sw∗(S) holds, then pv(S ∪ {u}) ≤ sw∗(S) < u holds since sw∗(S) increases
its degree by at most one in S ∪ u, and thereby it is non-black. If u is not
connected to a gray vertex v ∈ S smaller than u, then pv(S ∪{u}) ≤ v < u holds
since v is a non-black vertex of S ∪ {u}. Hence, the statement holds. �	

4.2 Data Structure for Finding Child Generators

Lemma 1 shows that we can find child generators by finding the non-black ver-
tices satisfying the condition (1) or (2). Let L(S) (resp., L′(S)) be the list of all
the non-black vertices not in S (resp., in S) that are sorted by the degeneracy
ordering. The non-black vertices satisfying (1) are efficiently found by tracing
L(S) from the head. All vertices u in L(S) that satisfy u < pv(S) are actually
child generators of S. Hence, it takes O (1) time for each child generator. From
above discussion, we can immediately obtain the following lema:

Lemma 2. For any k-degenerate vertex subset S, the child generators smaller
than pv(S) are found in O (|C(S)| + 1) time by using L(S).

For finding those satisfying (2), we construct the list A composed of the
first k vertices of GS(S) by tracing the first k elements of L′(S). By using
A, we compute hS(u) and h′

S(u). We observe that any vertex larger than the
(k + 1)st vertex of GS(S) cannot satisfy (2) since to satisfy (2) the vertex has
to be adjacent to at least k + 1 vertices of S that means the vertex is not a
child generator. We then trace N>(v) for all vertices v in A. While tracing these
larger neighbors, for all such neighbors u, we compute h′

S(u). We first initialize
h′
S(u) to zero, and then increase the value by one while tracing. Since the total

number of the neighbors is at most kk′, this takes O (kk′) time. For any v ∈ A,
the computation of h′

S(u) for all vertices u in N>(v) can be done in O (kk′)
time in total by tracing N>(v) and A, simultaneously. Thus, the computation of
hS(u) and h′

S(u) for all vertices u that are adjacent to at least one vertex of A
is done in O (kk′) time. Therefore, child generators satisfying (2) can be found
in O (kk′) time.
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Lemma 3. For any k-degenerate vertex subset S, the child generators larger
than pv(S) are found in O (kk′) time by using L′(S).

4.3 Efficiently Updating the Data Structure

The key to efficient computation in a recursive call, called an iteration, is the
efficiency of the update process of the data structure described above. Suppose
that u is a child generator of S and we are going to compute L(S ∪ u) and
L′(S ∪ u) from L(S) and L′(S).

Lemma 4. For any k-degenerate vertex subset S, L′(S ∪ {u}) is obtained from
L′(S) in O (k) time, where S ∪ {u} is a child of S.

Proof. Let denote by S′ = S ∪ {u}. To obtain L′(S′), we compute dS′(v) from
dS(v) for each v in L′(S) that is adjacent to u. Since pv(S′) = u, all vertices in
L′(S′)\{u} is larger than u. Hence, if a vertex v in L′(S) is still in L′(S′), u < v
and dS′(v) ≤ k. Thus, we first remove all vertices v from L′(S) that satisfies
dS∪u(v) > k. Since the number of such vertices v is at most k, this needs O (k)
time. Finally, we insert u to the head of L′(S), and then we obtain L′(S ∪ u).
Hence, the statement holds. �	

The computation of L(S ∪u) is done in the same way as the above, in O (Δ)
time.

Lemma 5. For any k-degenerate vertex subset S, L(S ∪ u) is obtained from
L(S) in O (Δ) time.

From Lemmas 4 and 5, the computation of L′(S) and L(S) needs O (Δ) time
since k < Δ. By recording the operations of these update, we can easily restore
L′(S′) and L(S′) from L′(S) and L(S) in O (Δ) time.

When Δ is large and k′ is small, the following algorithm for updating L(S) is
more efficient. The algorithm deals with the former and latter parts of L(S ∪u),
where the former part is of vertices smaller than u and the latter part is of the
other.

Lemma 6. For any k-degenerate vertex subset S, the part of L(S ∪u) composed
of vertices larger than u is obtained from L(S) in O (k′) time.

Proof. Removed vertices from the latter part are adjacent to u. Since G is k′-
degenerate, the number of removed vertices is at most k′. Hence, by checking k′

larger neighbors of u, the latter part is updated in O (k′) time. �	
For the update of the former part, we prepare another data structure called

an island. An island of a vertex w is a maximal segment of L(S) composed only
of gray vertices v such that w ∈ N>(v) and v /∈ S. An island is stored in the
memory by a doubly linked cyclic list of the segment in that the head and the
tail of the list are linked (See Fig. 2).

Lemma 7. For any k-degenerate vertex subset S, the accumulated size of the
islands of all vertices in G is O (|V | + |E|).
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Fig. 2. Example of islands used in the update algorithm. Suppose that |S ∩ N(u1)| < k
and |S ∩ N(ui)| = k for i = 2, . . . , 8. Dotted arrows and dashed arrows imply the island
of z1 and z2, respectively. The island of z2 consists of two connected doubly linked lists.

Proof. Since each vertex u belongs to at most |N(u)| islands, the sum of the
members of islands of all vertices in G is at most |E|. Since the doubly cyclic
linked list representing an island requires memory linear in the number of its
members, the statement holds. �	

We remove the vertices from L(S) that are not in L(S ∪ u) by tracing L(S)
from its head. When we encounter a vertex to be removed, that is, gray in S
and adjacent to u, the vertex is the head of an island of u. We then go to its tail
by using the cyclic link, and remove the island from the list by cutting off its
head and tail from L(S). We can find the tail of a head in constant time by an
array of at most k′ pointers. That is, we can remove the island from the list in
constant time. Note that the vertices in the island are all adjacent to u, and thus
become black by S ∪ u. In this way, we can update the former part of L(S) in
time linear in the number of vertices of L(S ∪ u) that are smaller than u. Since
u = pv(S ∪ u), the computation time is O (|C(S ∪ u)| + 1). Hence, the following
lema holds.

Lemma 8. For any k-degenerate vertex subset S, the part of L(S ∪u) composed
of vertices smaller than u is obtained from L(S) in O (|C(S ∪ u)| + 1) time.

The computation of dS∪u(v) for each vertex v of the former part of L(S ∪ u)
is done by tracing N>(v) to check whether u is adjacent to v or not. This is done
in O (k′) time per vertex, and thus computation for all the vertices in former
part is done in O (k′(|C(S ∪ u)| + 1)) time.

Lemma 9. For any k-degenerate vertex subset S, dS∪u(v) for all vertices v in
L(S ∪ u) are obtained from N(v) ∩ S in O (k + k′(|C(S ∪ u)| + 1)) time.

Lemma 10. For any k-degenerate vertex subset S, all the islands in the
part of L(S ∪ u) composed of vertices smaller than u are constructed in
O (k′(|C(S ∪ u)| + 1)) time by using L(S ∪ u).

Proof. All the islands in the part of L(S ∪ u) composed of vertices smaller than
u are built from the scratch by tracing L(S ∪ u). This is done by tracing all
vertices in N>(v) for all vertices in L(S∪u), thus is done in O (k′(|C(S ∪ u)| + 1))
time. �	
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Algorithm 2. Island update algorithm
1 Procedure UpdateIsland(S, u)
2 foreach v ∈ N(u) ∩ L(S ∪ u) do
3 if dS∪u(v) = k then
4 foreach Island I including the smaller neighbor of v on L(S ∪ u)

do
5 Put together I and v into a new island I ′ = I + v ;
6 Link the head of I and v;

7 foreach Island J including the larger neighbor of v on L(S ∪u) do
8 Put together v and J into a new island J ′ = v + J ;
9 Link v and the tail of I;

10 foreach Pair of islands I ′ and J ′ including v of the same vertex
do

11 Put together I ′ and J ′ into a new island I ′′ = I ′ + J ′;
12 Link the head of I ′ and the tail of J ′;
13 return island(S ∪ u);

Lemma 11. For any k-degenerate vertex subset S, all the islands in the part
of L(S ∪ u) composed of vertices larger than u are obtained from the islands of
L(S) in O (

(k′)2
)
time.

Proof. An island will change by the addition of u to S when a vertex of the
island or a vertex neighboring to its head or its tail becomes gray, or becomes
black. We observe that at most k′ vertices larger than u become gray or black
by adding u to S. By the change of a vertex v, at most 3k′ islands, that include
v or a vertex neighboring to v in L(S), will change. Concatenating two islands,
splitting an island and appending a vertex to an island are all done in O (1)
time, thus the update of the islands in the part of L(S ∪u) composed of vertices
larger than u are obtained from the islands of L(S) in O (

(k′)2
)

time. �	
Algorithm 2 shows the pseudo code for concatenating islands or appending

a vertex to an island. We can also implement splitting an island in a similar
way. We consider that the update of data structure is done in the iteration with
respect to S ∪ u, as an initialization. Then, an iteration of the algorithm takes
O (

min
{
Δ + kk′, (k′)2

}
+ k′|C(S ∪ u)|) time.

Theorem 1. The vertex subsets of a graph G = (V,E) inducing k-degenerate
graphs can be enumerated in O (

min
{
Δ + kk′, (k′)2

})
time for each solution

with O (|V | + |E|) space and O (|V | + |E|) preprocessing time, where Δ and k′

denote the maximum degree and the degeneracy of G.

Proof. An iteration of our algorithm takes O (
min

{
Δ + kk′, (k′)2

}
+ k′|C(S)|)

time. By assigning O (k′) to each child, it will be O (
min

{
Δ + kk′, (k′)2

})
. Our

algorithm outputs a solution in each iteration. It implies that the computa-
tion time is O (

min
{
Δ + kk′, (k′)2

})
time for each solution. In the preprocess-

ing phase, the algorithm needs to sort the vertices in the degeneracy ordering.
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This takes O (|E| + |V |) time. We also sort the adjacency list of each vertex in
O (|V | + |E|) time by using bucket sort. The sizes of L(S), L′(S) and the mem-
ory for remembering dS(·) are all O (|V |). Since the total size of all islands is
O (|E|), the statement holds. �	
Corollary 1. Let G = (V,E) be a graph with constant degeneracy and k be a
positive integer. Then, all k-degenerate induced subgraphs in G can be enumer-
ated in constant time for each solution with O (|V | + |E|) space and O (|V | + |E|)
preprocessing time.

5 Conclusion

In this paper, we addressed the k-degenerate induced subgraph enumeration
problem. As the main result, we proposed an efficient enumeration algorithm
that runs in O (

min
{
Δ + kk′, (k′)2

})
time per solution with polynomial prepro-

cessing time and linear space. In this paper, we did not consider the connectivity
since when we consider it, the parent-child relation in this paper does not work.
Investigating other efficient enumeration strategies for connected k-degenerate
subgraph is an interesting future research. The variant of the problem, in some
graph classes, non-induced version and fixed size are also interesting.
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Abstract. A tree t-spanner of a graph G is a spanning subtree T in
which the distance between any two adjacent vertices of G is at most t.
The smallest t for which G has a tree t-spanner is the tree stretch index.
The problem of determining the tree stretch index has been studied by:
establishing lower and upper bounds, based, for instance, on the girth
value and on the minimum diameter spanning tree problem, respectively;
and presenting some classes for which t is a tight value. Moreover, in
1995, the computational complexities of determining whether t = 2 or
t ≥ 4 were settled to be polynomially time solvable and NP-complete,
respectively, while deciding if t = 3 still remains an open problem.

With respect to the computational complexity aspect of this problem,
we present an inconsistence on the sufficient condition of tree 2-spanner
admissible graphs. Moreover, while dealing with operations in graphs, we
provide optimum tree t-spanners for 2 cycle-power graphs and for prism
graphs, which are obtained from 2 cycle-power graphs after removing a
perfect matching. Specifically, the stretch indexes for both classes are far
from their girth’s natural lower bounds, and surprisingly, the parameter
does not change after such a matching removal. We also present effi-
cient strategies to obtain optimum tree t-spanners considering threshold
graphs, split graphs, and generalized octahedral graphs. With this last
result in addition to vertices addition operations and the tree decompo-
sition of a cograph, we are able to present the stretch index for cographs.

Keywords: Tree t-spanner · Stretch index · Lower bounds
Generalized octahedral graph · Cycle-power graph · Prism graph
Threshold graph · Split graph · Cograph

1 Introduction

The problems of obtaining subgraphs with special restrictions have been consid-
ered in several papers, with many motivations and applications in different fields,
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as message routing, computational geometry, and phylogenetic analysis [1–3]. In
addition to the inherent difficulty of these problems, another challenge arises
when we look for a spanning tree with constraints on the vertices’ distances.

A tree t-spanner of a graph G is defined as a spanning subtree T of G in which
the distance between every pair of vertices is at most t times their distance in G
or, equivalently, as the subtree T in which the distance between two adjacent
vertices of G is at most t (cf. [4]). If a graph has a tree t-spanner, then it is called
a tree t-spanner admissible graph. The parameter t of a tree t-spanner is called
the tree stretch factor, and the smallest t for which a graph G is tree t-spanner
admissible is called the tree stretch index of G, denoted by σT (G).

Note that the problem of determining the tree stretch index of G, called
the minimum stretch spanning tree problem (MSST), is one of the interesting
min-max problems, which are studied not only in graphs, but in several other
combinatorial problems, in such a way that bounds, algorithms and computa-
tional complexity studies are widely developed [5,6].

An intriguing aspect comes when we want to determine if a graph is tree
3-spanner admissible. In terms of the computational complexity, this task is still
the greatest breakthrough we aim to solve, since deciding if σT (G) ≥ 4 is NP-
complete, whereas for σT (G) = 2 it is polynomially time solvable [4]. There are
also some classes for which this problem was settled to be NP-complete, as planar
and chordal graphs [7,8], or classes for which the stretch index was proved to
be bounded by specific values, as split and cographs (cf. [9]). Hence, it is also a
great challenge to determine the stretch index even restricted to graph classes.
Still in the computational complexity approach, in this work, we can observe
that Cai and Corneil’s characterization for tree 2-spanner admissible graphs [4],
which deals with triconnected components of a graph, is not consistent with
the usual definition of k-connected graphs, considering, for instance, complete
graphs. In this sense, we present infinite families of split graphs that do not
admit tree 2-spanners, but satisfy their sufficient condition, considering either,
the convention for Kn graphs connectivity (see [10,11]) or that the connectivity
concept does not apply to complete graphs (see [12]).

Studying bounds is an ordinary kind of approach for MSST. A natural lower
bound arises when we consider the girth g(G) of a graph G, i.e. the length
of its minimum cycle. We have that, if G is a tree t-spanner admissible, then
t ≥ g(G)−1. Regarding this bound, it is possible to observe some optimum tree t-
spanners for some families or classes, for instance complete graphs, cycle graphs,
wheel graphs, or complete k-partite graphs, for k ≥ 2. However, establishing
lower bounds is challenging in general, and so it remains when we deal with the
MSST problem restricted to graph classes, since the results on it often present
tree t-admissible graphs (cf. [4]). Another kind of approach considers variant
problems, for instance the minimum diameter spanning tree. In this problem,
the solution tree minimizes the maximum distances between all pairs of vertices,
which is polynomially time solvable, and the solution parameter is an upper
bound for the MSST problem [13].
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We focus on obtaining the stretch index for some graph classes and, although
there are already known upper bounds for some of them, in this work we present
minimum t = σT (G) values considering these classes. We also present the stretch
index for 2 cycle-power graphs, which is far from the girth’s natural lower bound.
Furthermore, we are also interested in the stretch index after vertices/edges
operations, particularly for generalized octahedral graphs (complete graphs after
removing a perfect matching), generalized octahedral graphs after non-universal
vertices additions, and for prism graphs (2 cycle-power graphs after removing a
perfect matching). Surprisingly, in this last case, the matching removal does not
modify the stretch index of 2 cycle-power graphs.

This paper is organized as follows: In Sect. 2, we present basic definitions,
considerations about Cai and Corneil’s characterization for tree 2-spanner admis-
sible graphs, and previous results. In Sect. 3, we present optimum tree t-spanner
for some graph classes, such as 2 cycle-power graphs, prism graphs, general-
ized octahedral graphs, threshold graphs and their minimal superclasses, split
graphs and cographs; In Sect. 4, we present final remarks by considering further
investigation on other classes and their properties.

2 Preliminaries

Given a graph G = (V,E), dG(x, y) denotes the distance between x and y in G
and dG(v), the degree of v in G. We say that a non-edge of a spanning tree T is
an edge of G \ T . A p-path is a path of length p.

A tree t-spanner of a graph G is a spanning subtree T of G in which the
distance between every pair of vertices is at most t times their distance in G.
Cai and Corneil proved that this problem is equivalent to the one that considers
only adjacent vertices of G [4]. Moreover, they showed what follows.

Theorem 1. A spanning tree T is a tree t-spanner of G if and only if for every
edge xy ∈ E(G)\E(T ) we have dT (x, y) ≤ t.

The minimum stretch spanning tree of G (MSST) is an optimization problem
of finding a tree t-spanner of G with minimum t. In this case, we say that
σT (G) = t, and σT (G) is called the stretch index of G. Upper bounds for σT (G)
can be obtained considering, for instance, the minimum diameter spanning tree,
whose smallest parameter is DT (G), and some other problems [4,14]. In opposite,
a natural lower bound can be obtained accordingly to the girth of G, i.e., the
length of its minimum induced cycle. Therefore, Theorem 2 states the range of
the stretch index of a given graph G.

Theorem 2 [4,13]. Given g(G) the girth of G, we have that g(G)−1 ≤ σT (G) ≤
DT (G).

Consider, for instance, a tree (n − 1)-spanner of the cycle graph Cn, i.e. a
path Pn, and a tree 2-spanner of the complete graph Kn, i.e. a star Sn−1. Both
spanning trees are optimum, and their associated stretch factors are tight with
respect to Theorem 2.



Tree t-Spanners of a Graph: Minimizing Maximum Distances Efficiently 49

On Cai and Corneil Tree 2-Spanner Characterization. Cai and Corneil [4] pro-
posed a characterization to decide if σT (G) = 2, formulated as follows: a non-
separable graph G has a 2-spanner if and only if G contains a spanning tree T
such that for each triconnected component H of G, T ∩ H is a spanning star
of H.

Indeed, the statement above gives a necessary condition for a graph having
a 2-spanner. However, we show in Fig. 1 a nonseparable graph G and a spanning
tree T of G such that the intersection of T with the unique triconnected compo-
nent of G (H = K4) is a spanning star of H, but there is no tree 2-spanner for
the split graph in Fig. 1, as a consequence of Proposition 3. Observe that, since
the connectivity of a complete graph with n vertices is n − 1 [10,11], a K4 is
triconnected and, once this is the unique triconnected component of G, H = K4.
Thus, in order that G is tree 2-spanner admissible it must exist a spanning tree
T of G such that T ∩ H is a star. Figure 1(b) exhibits such a tree. This exam-
ple can be generalized, for instance, to a graph obtained from a K2k adding k
vertices adjacent to two vertices of K2k with no common adjacent vertex. k-sun
(see [15]) are also an example of split graphs that satisfy the sufficient condi-
tion mentioned above, and thus would be tree 2-spanner admissible graphs, but,
accordingly to Proposition 3, they do not admit a tree 2-spanner.

Thus, the Cai and Corneil’s sufficient condition for tree 2-spanner admissible
graphs is not consistent with the usual definition of the connectivity for complete
graphs. Even if we consider that the connectivity concept does not apply for such
graphs, the condition does not hold in these families of examples.

(a) (b)

Fig. 1. (a) A split graph G with only one triconnected component H = K4. (b) A span-
ning tree T of G such that T ∩H is a spanning star of H, but G is not a tree 2-spanner
admissible graph (see Proposition 3, since there is no vertex of the set {1, 2, 3, 4} adja-
cent to both vertices 5 and 6, then the stretch index of G is equal to 3).

3 Stretch Index for Graph Classes

Next we consider some related graph classes, for which we are able to obtain
optimum tree t-spanners even when, in some cases, the lower bound of Theo-
rem 2 is far from the stretch index we obtain. Moreover, seeing whether and how
vertices/edges operations affect the stretch index is another goal of this section.

3.1 Cycle-Power Graphs

Any graph is a tree (n − 1)-spanner admissible, but, in general, such a bound is
far from the stretch index. However, for cycle graphs, n−1 is a tight value, since
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it reaches the lower bound of Theorem 2. Next, we present classes with extremal
bounds, in such a way that σT (G) is large and far from the lower bound given
by Theorem 2.

A cycle-power graph [16], Ck
n, is obtained from a Cn by adding edges between

two vertices with distance at most k in Cn. We call external edges the edges of
the external cycle Cn, and internal edges the added edges. Since g(Ck

n) = 3,
then σT (Ck

n) ≥ 2. We restrict ourselves to k = 2 and show an optimum tree
�n
2 �-spanner.

Given a graph G = C2
n, we define an �-come-go path with respect to a pair

of vertices ui, ui+j , for j ∈ {1, 2}, by a path of length � from ui to ui+j , for � ∈
{2, · · · , n−1}, following one of two directions, either: clockwise/counterclockwise
direction; or counterclockwise/clockwise direction. When we are not interested
in the length, we suppress such a value and refer an �-come-go path by a come-go
path.

A spot edge of a come-go path is an external edge that either: changes the
way of the path, i.e. from clockwise to counterclockwise or from counterclockwise
to clockwise; or immediately precedes an internal edge that changes the way of
the path. Figure 2 illustrates the two 7-come-go paths with respect to u1 and u2.

(a) (b)

Fig. 2. Bold edges belong to 7-come-go paths with respect to u1 and u2, such that: (a)
path using the counterclockwise/clockwise direction, where u7u8 is the spot edge; (b)
path using the clockwise/counterclockwise direction, where u5u6 is the spot edge.

Lemma 1. Given a graph G = C2
n and a come-go path P with respect to uiui+j,

for j ∈ {1, 2}, then P contains a unique spot edge.

Proof. Once P is a come-go path, P must contain a spot edge. Suppose there
are more than one of such edges. Following the path P from ui to ui+j , consider
ufuf+1 as the first reachable spot edge of P . After reaching the last spot edge
of P , the unique way to achieve ui+j is by crossing again uf or uf+1, once it is
not possible to bypass two consecutive vertices of the external cycle. Since uf

and uf+1 already belong to P , then there is a cycle in the come-go path P . �	
A path between ui, ui+j , for j ∈ {1, 2}, of length greater than 2 which is not

a come-go is called a turn around path, which is depicted in Fig. 3(a). If j = 1,
then the length of a turn around path is at least �n

2 �. If j = 2, then the length is
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(a) (b)

Fig. 3. (a) Bold edges belong to a turn around path with respect to u1 and u2. (b) An
example of vertices ux and uy.

at least �n
2 � for n odd, and at least n

2 − 1 for n even. Note that, when j = 2, we
have between ui and ui+j either a turn around path or the 2-path uiui+1ui+2.

For any non-edge of a spanning tree T of a graph G, there is a path which
is either: a come-go path, or a turn around path, or the 2-path uiui+1ui+2, for
the non-edge uiui+2.

Proposition 1. Given an �-come-go path with respect to ui and ui+j, for j ∈
{1, 2}, if j = 1, then there is a unique external edge, otherwise there are exactly
two external edge.

Proof. Considering j = 1, since the spot edge is external, let us suppose that
there is at least one more external edge ufuf+1, for i+1 < f < � in an �-come-go
path P . In this case, following the path from ui to ui+1, at least one of uf and
uf+1 will be reached, and after crossing the spot edge, it is necessary to reach uf

or uf+1 again, which implies that P is not a path. Similarly, considering j = 2,
the unique external edges are uiui+1 and the spot edge. �	
Lemma 2. Given a graph G = C2

n and an �-come-go path P , with respect to
uiui+j, for j ∈ {1, 2}, then P is the unique �-come-go path with respect to uiui+j

following the same direction of P .

Proof. Suppose there are at least two �-come-go paths P1 and P2 following, w.l.g.,
the counterclockwise/clockwise direction with respect to uiui+j , for j ∈ {1, 2}.
In this case, there is a non-edge in P1 which is external edge of P2, and then it
is a spot edge of P2, by Proposition 1. Hence, the length of P2 is distinct of �. �	
Lemma 3. For any spanning tree T of G = C2

n, there is at least a non-edge
uiui+j, for j ∈ {1, 2}, such that the unique path between ui and ui+j in T is a
turn around path.

Proof. Suppose the path between any pair of vertices of a non-edge of T is not a
turn around path. Hence, if the non-edge is external, then the path is a come-go
path. If the non-edge is internal, then the path between them is either a 2-path,
or it is a come-go path.

Since T must contain an external non-edge, let uiui+1 be such an external
non-edge of T and thus, by hypothesis, there is a come-go path P1 between ui
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and ui+1, in which uf uf+1 is the spot edge. The paths between all pairs of
vertices in P1 consisting of non-edges in T are induced paths of P1, hence, let us
analyze the neighbors of uf and uf+1 outside P1.

If there is a vertex of G outside of P1, at least one of the vertices uf and
uf+1 has a neighbor outside P1 consisting of a non-edge in T , because if there
were all edges from uf and uf+1 to their neighbors outside P1, it would have
in T the cycle uf uf+1 uy, uf , for uy ∈ {N(uf )\P1, N(uf+1)\P1}. Let uxuy be
a non-edge of T , for x ∈ {f, f + 1}, Fig. 3(b).

If uxuy is an internal non-edge, then we have two options of a path between
ux and uy in T :

i. by the 2-path uxux+1uy. In this case, go to a non-edge where one of the
vertices belongs to the 2-path. This non-edge belongs to: a 2-path, and in
this case, we go to a non-edge and the analysis continues; a come-go path
with respect to its extremities, and in this case, as it was done with P1, go to
its spot edge and continue the analysis; or ux+1uy is the spot edge of a come-
go path, P2, following the opposite direction of P1, with respect to vertices
that do not belong to P1, nor to the 2-path, either. Hence, go to the extremity
vertices of P2 and analyze a non-edge whose vertices are an extremity vertex
of P2 and a vertex that does not belong to P2 nor to P1;

ii. by a come-go path with respect to uxuy, which we call P3. Note that P3 must
have the same direction of P1, otherwise, we would visit vertices already in
P1, implying in a cycle. Hence, go to the spot edge of P3 and consider it
similarly as done considering P1.

If uxuy is an external non-edge, then ux and uy must be connected by come-
go path in T . In this case, proceed as in the previous case ii.

Note that the procedures considered in i and ii. must be finished when
we reach either the vertex ui−1 (whenever P1 follows anticlockwise/clockwise
direction), or the vertex ui+j+1, for j ∈ {1, 2} (whenever P1 follows clock-
wise/anticlockwise direction). Let uw be the last visited vertex, which is neighbor
of ui or ui+j . In T , we have three possible paths between uw and ui or ui+j :
there is an edge; there is a come and go path; there is a 2-path. For any of such
cases, we have created a cycle, because, by P1, there is a path between ui and
ui+j , which does not include uw. Therefore, there is path, distinct of P1, starting
from either ui or ui+j passing through uw. Thus, there is a turn around path
between ui and ui+j . �	
Lemma 4. For any cycle-power graph C2

n, σT (C2
n) ≥ �n

2 �.
Proof. Since there is at least a turn around path in any spanning tree T of
G = C2

n (Lemma 3), and if n is odd, then there is a non-edge in T whose
corresponding vertices’ distance is at least �n

2 �. Therefore, σT (C2
n) ≥ �n

2 �, for n
odd.

Since when n is even, a turn around path has length at least: n
2 − 1, for an

internal non-edge ui ui+2; or n
2 , for an external non-edge. Hence, it remains to

analyze the former case. Note that G contains two disjoint internal cycles I1 and
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I2, each one of length n
2 . Consider that ui and ui+2 belong to I1 and the distance

between them in T is n
2 − 1. Since the unique turn around path of length n

2 − 1
between ui and ui+2 in G includes each edge of the cycle I1, all internal edges of
I1 must belong to T , except ui ui+2. On the other hand, at least one of ui ui+1

and ui+1 ui+2 must be non-edge of T . Otherwise, if both edges belong to T ,
then there would be the 2-path ui ui+1 ui+2 in T , contradicting the assumption
of the path between ui ui+2 is turn around.

1. If ui ui+1 is non-edge of T and ui+1 ui+2 is edge of T (which is similar to
the case of ui ui+1 being edge of T and ui+1 ui+2 non-edge of T ), then the
path between ui and ui+1 has length at least n

2 considering the path between
ui and ui+2, and the edge ui+2 ui+1. Otherwise, if there is a distinct path P
between ui and ui+1, we would have another path between ui and ui+2, say
P ∪ {ui+1ui+2}.

2. If ui ui+1 and ui+1 ui+2 are both non-edges of T , then at least one of the
edges ui−1 ui+1 and ui+1 ui+3 must belong to T , otherwise ui+1 would be
isolated of T . Hence, we analyze the two cases:

– ui−1 ui+1 is an edge of T and ui+1 ui+3 is a non-edge of T . In this case,
note that the path between ui+1 and ui+2 must be a turn around, because
ui+1 ui+2 and ui+1 ui+3 are non-edges of T , Fig. 4(a). Since ui+1 ui+2 is
an external non-edge of T , then, the distance between ui+1 and ui+2 is
at least n

2 .
– ui−1 ui+1 and ui+1 ui+3 are edges of T . Let us consider the distance

between ui+1 and ui+2 in T . If it is given by a turn around path, then its
length is at least n

2 . Otherwise, it is an come-go path P 1. If P 1 follows
the clockwise/anticlockwise direction, then the edge ui ui+2 must exist
in T , but it contradicts the hypothesis. Hence, P 1 follows the anticlock-
wise/clockwise direction. Similarly, the path between ui and ui+1 is a
turn around path, implying that the distance between ui and ui+1 is at
least n

2 , or it is a come-go path P 2 following the clockwise/anticlockwise
direction. In this case, we have that:

• if there is any path in T between the spot edges of the two come-go
paths without passing through ui+1, then we have created a cycle,
since ui+1 belongs to the two come-go paths just settled;

• Suppose there is no path in T between the spot edges of the two
come-go paths without passing through ui+1, and let P be the path
composed by external edges in G that links the P 1 spot edge to the P 2

spot edge following the anticlockwise direction, Fig. 4(b). Note that
P has at least one edge, because, otherwise, T would have a cycle.
Clearly, there is an edge in P which is a non-edge in T . Thus, there
is a path of length at least n

2 .

Hence, we have that there is a pair of neighbors in G whose distance is at
least �n

2 � in T . �	

Lemma 5. For any cycle-power graph C2
n, σT (C2

n) ≤ �n
2 �.
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(a) (b)

Fig. 4. (a) Turn around path between ui+1, ui+2 in T . Note that uiui+2, ui+1ui+2 and
ui+1ui+3 are non-edges of T . (b) Bold edges compose two come-go paths P 1 and P 2,
where the bold external edges are their spot edges. The path P is inside the dotted
diagram.

Proof. We obtain a spanning tree T of C2
n with vertex set {u1, u2, . . . , un} as

follows: add to T the vertex u1 and its neighbors u2, u3, un and un−1. Now,
follow the direction in which the next vertex is u2, set i = 3, and: (i) take the
vertex ui; (ii) Add to T the vertices adjacent to ui which are not in T yet,
following the same direction as established initially, i.e., u4, u5 in the first step.
Increment i+1 and return to step (i) until reaching the last vertices not in T yet.
It is easy to see that, between two adjacent vertices of C2

n, the distance between
them in T is either 1, 2, 3 or n

2 . Hence, σT (C2
n) ≤ �n

2 �. �	
Figure 5 depicts a tree �n

2 �-spanner for C2
10.

Fig. 5. Bold edges form the tree �n
2
�-spanner T for C2

10. There are: three turn around
paths in T , with respect to the internal non-edges u7u9 and u8u10, and the external
non-edge u8u9; a 2-path between the internal non-edge u2u10; 3-come-go paths with
respect to the internal non-edges u2u4, u4u6, u6u8 and u8u10; and 2-come-go paths with
respect to the external non-edges u2u3, u4u5, u6u7 and u9u10.

Theorem 3 follows from Lemmas 4 and 5.

Theorem 3. For any cycle-power C2
n with n > 5, σT (C2

n) = �n
2 �.

3.2 Stretch Index After Edges Removal

For several graph classes, we are able to determine the stretch index. But obtain-
ing the stretch index after we consider operations on the vertex/edge sets regard-
ing those classes is a challenge. In this section, we are particularly interested on a
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perfect matching removal considering 2 cycle-power and complete graphs, which
are prism and generalized octahedral graphs, respectively. With this last result,
in Sect. 3.3 we obtain the stretch index for cographs.

Removing a Perfect Matching of Cycle-Power Graphs. Considering 2
cycle-power graphs of even order after removing a perfect matching M with
respect to external edges, one can note that a C2

2p\M is the prism graph with
bases Cp. Lemma 6 presents a lower bound which is far from its girth’s lower
bound. Moreover, in Lemma 7 we prove that the stretch index is not affected by
a perfect matching removal, differently from what happens with the complete
graph and the octahedral graph, as proved in Theorem 5.

As in 2 cycle-power graphs, in prism graphs, we also have come-go and turn
around paths.

Lemma 6. Given G = C2
2p\M , a cycle-power graph C2

2p after removing a perfect
matching M with respect to the external edges, we have that σT (G) ≥ n

2 .

Proof. Considering any tree t-spanner of G, we analyze two cases: all external
edges belong to T ; and there is at least an external non-edge in T .

1. All external edges belong to T : In this case, between two consecutive external
edges ui ui+1 and ui+2 ui+3 it is not possible to exist both internal edges
ui ui+2 and ui+1 ui+3 in T , otherwise the C4, ui, ui+1, ui+3, ui+2, ui, would
belong to T . Next, we analyze two possible subcases: ui ui+2 and ui+1 ui+3

are both non-edges of T ; only one of such edges belongs to T .
1.1. ui ui+2 and ui+1 ui+3 are both non-edges of T : Considering the edge

ui+4 ui+5, it must exist in T either ui+2 ui+4, or ui+3 ui+5, because
otherwise, the edge ui+2 ui+3 would be isolated in T .
Consider, w.l.g., ui+2 ui+4 is in T (and so, ui+3 ui+5 is a non-edge).
Although a turn around for an internal non-edge is at least n

2 − 1, the
distance between ui+1 and ui+3 is at least n

2 + 1 by a turn around path
with respect such an internal non-edge. Note that the length of the turn
around path between ui+1 and ui+3 is equal to n

2 − 1 only when all edges
of I1\{ui+1ui+3} are in T , where I1 is the internal cycle of G that contains
vertices ui+1, ui+3 and ui+5. However, ui+3 ui+5 is a non-edge in T , which
implies in a exchange of ui+3 ui+5 by the path ui+5, ui+4, ui+2, ui+3 in
T . Hence, the length of the turn around path is at least n

2 + 1 after the
edges’ exchange.

1.2. Suppose, w.l.g., ui ui+2 is an edge of T and ui+1 ui+3 is a non-edge
of T . Now, we prove that in T it must exist a pair of non-edges uj uj+2

and uj+1 uj+3 for some j, similarly to Case 1.1. Assume that one of
such edges is in T and belongs to the internal cycle I2 of G. Hence, we
create a path starting by the edge ui ui+2, and after that we choose one
of the two ways of reaching the external edge ui+4 ui+5, by ui+2 ui+4

or ui+3 ui+5. If ui+2 ui+4 is an edge of T , then we are making a path
through I2, otherwise, the path is ui, ui+2, ui+3, ui+5. Therefore, it is
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always possible to reach two consecutive external edges by using I1 or I2
edges. So, if there is not a pair of non-edges similar to Case 1.1, we can
continue this path through external edges of I1 and I2, creating then a
cycle. Once it is necessary to have non-edges of Case 1.1, then we have
the existence of vertices with distance at least n

2 + 1 in T .
2. There is at least an external non-edge in T : Suppose ui ui+1 is a non-edge

of T . If the path between ui and ui+1 in T is a turn around, then its length
is at least n

2 + 1, because ui belongs to I2 and ui+1 belongs to I1. Hence,
assume that the path in T between ui and ui+1 is a come-go.
Note that we have at least one non-edge of I1 and of I2 in T , and similarly
to Lemma 3 and Case 1.2 above, there is a turn around path between the
corresponding vertices of an internal non-edge of I1 and I2.
So, each turn around has length at least n

2 −1, and such a path with respect to
an internal non-edge in T is unique in G. Moreover, in T , a turn around with
respect to a non-edge of I2 (or I1) has length n

2 − 1 or any greater value with
the same parity, because the path between such vertices does not go through
all edges of the corresponding internal cycle, and then we must move to the
other internal cycle and return, increasing the path in at least two edges.
Hence, in order to keep in T the distances equal to n

2 −1 between the vertices
of non-edges e2 of I2 and e1 of I1, all other edges of both internal cycles of G
must belong to T . Let P 2 be the path I2\e2 and P 1 be the path I1\e1.
Now, P 1 must be linked to P 2. The unique way to do that is by using only
one external edge, otherwise, there would be a cycle in T by at least two ways
to go through P 2 to P 1, each one using a distinct external edge. Therefore,
in T , there is only one external edge of G.
Since there is a come-go path between ui, ui+1, as well between all other
n
2 − 2 external non-edges, all come-go paths between corresponding vertices
of external non-edges must be composed by the same spot edge, say, the
external edge we have used to link P 1 and P 2.
Furthermore, the unique way to exist only come-go paths between corre-
sponding vertices of external non-edges in T is by considering uk−1uk+1 and
uk−2uk internal non-edges of T . Otherwise, if the non-edges of T were ujuj+2

and uj+2s+1 uj+2s+3, there would be a turn around path with respect to the
external edges uj uj+1 and uj+2s+1 uj+2s+2.
In this way, we have that the distances between the vertices of the non-edge
uk−1 and uk, and between the vertices of the non-edge uk+1 and uk+2 are
n
2 −x and n

2 +x, respectively, according to the place we have chosen the spot
edge. Therefore, when x = 0, we have that σT (G) ≥ n

2 . �	
Accordingly to the arguments of Lemma 6, we are able to build a tree n

2 -
spanner as follows.

Lemma 7. Given G = C2
2p\M , a cycle-power graph C2

2p after removing a perfect
matching with respect to the external edges M , we have that σT (G) ≤ n

2 .
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Proof. Consider I1 and I2 the internal cycles of G, in such a way
that I1 = u1, u3, u5, . . . , un−1, u1, I2 = u2, u4, u6, . . . , un, u2 and M =
{{u2u3}, {u4u5}, {u6u7}, . . . , {unu1}}. We create the spanning tree T by the
edge set {{u3u5}, {u5u7}, . . . , {un−3un−1} ∪{u2u4}, {u4u6}, . . . , {un−2un}∪
{un

2
un

2 +1}}. Note that the unique external edge of G in T is {un
2
un

2 +1}. The
paths between the external non-edges of T have length at most n

2 , which is equal
to this value for the non-edges u1 u2 and un−1 un. Furthermore, there are only
two internal non-edges in T , which are unu2 and un−1u1, with distances equal
to n

2 − 1, because all other edges of I2 and I2 belong to T . �	
Theorem 4 follows from Lemmas 6 and 7.

Theorem 4. Given G = C2
2p\M , a cycle-power graph C2

2p after removing a
perfect matching with respect to the external edges M , we have that σT (G) = n

2 .

Generalized Octahedral Graphs. Generalized octahedral graphs figure in
several well studied problems [17] because of their regularity and symmetry. A
generalized octahedral graph, or simply octahedral graph Ok, is the (2k − 2)-
regular graph, which is exactly a complete graph K2k after removing a perfect
matching. This class sounds interesting in here when we deal with cographs in
Sect. 3.3, even considering Ok after vertices addition, in Lemma 10.

Theorem 5. Given an octahedral graph Ok, then σT (Ok) = 3, for k > 2.

Proof. Consider the vertex set {u1, v1, . . . , uk, vk} in such a way that ui and vi
are not neighbors, but they are adjacent to all other vertices of Ok. A tree T can
be built by first considering two stars, with centers in u1 and v2, such that u1

is adjacent to all ui’s and v2 is adjacent to all vi’s. Now, we add to T the
edge u1v2. The distances in T of two vertices of ui’s or of vi’s are equal to 2,
and from distinct side are equal to 3, hence σT (Ok) ≤ 3. In order to prove
that σT (Ok) = 3, suppose we have an optimum tree spanner T for Ok that can
be partitioned into two rooted trees, T1 and T2, each one with more than two
vertices, such that at least one of them is not a star. Suppose, w.l.g., that T1

is not a star. Let l ∈ T1 and c be two vertices of T such that lc /∈ E(Ok). If
c ∈ T1, then l and c are adjacent to each vertex of T2. Since T1 is linked to
T2, there is an edge with one extreme in T1 and another in T2. If l is such an
extreme, then dT (c, v) ≥ 3,∀v ∈ T2. Otherwise, there is a vertex v ∈ T2 such
that dT (l, v) ≥ 3. �	

3.3 Threshold Graphs and Their Superclasses

Next, we establish the stretch index for three classes whose graphs are tree 3-
spanner admissible (cf. [4]).
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Threshold Graphs. Threshold graphs [18] can be defined as the intersection
of two very well studied classes: split graphs and cographs. Thus, threshold
graphs are {2K2, P4, C4}-free graphs. Moreover, G is a threshold graph if G
can constructed from the empty graph by repeatedly adding either an isolated
vertex or a universal vertex.

Since to obtain spanning trees we only consider connected graphs, the last
vertex of a threshold graph construction must be universal. Hence, a tree can
be built as a star whose center is such a universal vertex. Thus we can state the
following proposition.

Proposition 2. If G is a threshold graph, then σT (G) = 2.

Split Graphs. As just mentioned, split graphs are a superclass of threshold
graphs. Formally, a graph G = (X,Y ) is a split graph, also called a (1, 1)-graph,
if and only if it can be partitioned into a clique X and a stable set Y . In terms
of forbidden subgraphs, they are {2K2, C4, C5}-free graphs.

Lemma 8. If G is a split graph, then σT (G) ≤ 3.

Proof. We obtain a spanning tree T for a split graph G = (X,Y ) as follows. Set
any vertex x in X to be the center of a star which includes each other vertex
of X. Next, for each vertex y ∈ Y , choose an edge incident to y, arbitrarily,
and make y a pendant in T . It remains to show that the distance between two
adjacent vertices v, w in G is at most 3 in T . (i) v, w ∈ X: since we have a star
in T with respect to X, then d(v, w) = 2. (ii) v ∈ X, w ∈ Y : the worst case
occurs when dG(w) ≥ 2 and v is a leaf of the star in T . In this case, d(v, w) = 3
by the path vxx′w, where x′w belongs to T . �	

Now, we characterize split graphs whose stretch indexes are 2 or 3.

Proposition 3. Let G = (X,Y ) be a split graph which is not a tree. Thus,
σT (G)=2 iff either: (i) dG(y) = 1,∀ y ∈ Y , or (ii) ∃ x ∈ ⋂

y∈Y NG(y), x ∈ X
such that dG(y) ≥ 2.

Proof. If G satisfies (i) or (ii), then G contains a tree 2-spanner which can be
constructed following Lemma 8, and, particularly in case (ii), consider any vertex
x satisfying conditions required in (ii) to be center of the star. Conversely, by
contradiction, since σT (G) = 2, for each pair of vertices in X there is in T either
an edge or a P3 centered in a vertex v of G. If v ∈ X, then the minimum stretch
spanning subtree with respect to X is a star. Otherwise, v ∈ Y and each vertex
of the clique would be a leaf of the star centered in v. Once there are two vertices
in Y with degree at least 2 without an adjacent vertex in common, in the first
case, for any center of the star we have chosen regarding the clique’s vertices,
there is a vertex of the stable set such that all its neighbors are leaves of the
star, which implies σT (G) ≥ 3. In the second case, σT (G) ≥ 3 anyway, because,
by hypothesis, there exist at least two more vertices in Y with degree at least 2,
and they will be adjacent only to the leaves of the star centered in v. �	
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Figure 1 exhibits a split graph G with σT (G) = 3. Another example of split
graphs that have stretch index equal to 3 are the k-sun. Such graphs do not
satisfy conditions of Proposition 3 either.

Cograph. A cograph is a P4-free graph. A trivial graph is a cograph, and any
other can be obtained by disjoint union or join operations of cographs. We can
represent the union and join operations of a cograph by a tree decomposition,
called cotree [19].

Theorem 6. If G is a cograph, then σT (G) ≤ 3.

Proof. Since G must be connected, its cotree root’s label is 1, implying that
any vertex of G represented as a leaf node of a root’s subtree is adjacent to all
vertices of the other root’s subtrees. We build a spanning tree T of G as follows.
Let f be a leaf node of the leftmost root’s subtree, F1. Since f is adjacent to all
vertices of the other root’s subtrees, set T as a star with center f and make f
adjacent to each vertex of all root’s subtrees on F1’s right. Let lf be an edge of
the star just obtained. Once the vertex l in G is adjacent to all vertices of F1,
hence we add to T each edge corresponding to a neighbor of l in F1, except to
the edge lf . Therefore, σT (G) ≤ 3. �	
Lemma 9. Given a graph G, let k be the number of its cotree root’s subtrees.
If G does not contain a universal vertex, then G contains an octahedral Ok as
an induced subgraph.

Proof. Since G does not contain a universal vertex, then each root’s son of its
cotree has label 0. Hence, in each subtree there are at least two leaves corre-
sponding to non-adjacent vertices in G, but these two vertices are adjacent to
all vertices of the other cotree root’s subtrees. So, the union of each two non-
adjacent vertices per subtree induces an Ok in G. �	

If a cograph G contains a universal vertex and there exist k′ subtrees of the
root with more than one leaf each, then there is an octahedral Ok′ as an induced
subgraph of G. Moreover, if there were a universal vertex u with respect to Ok′ ,
then σT (Ok′ ∪ {u}) = 2. However, such a vertex does not exist in a cograph
without a universal vertex, because, in this case, all root’s subtrees have label 0,
and considering two Ok′ non-adjacent vertices, it does not exist a vertex of a
same subtree adjacent to both vertices, otherwise their lowest common ancestor
would be 1.

Lemma 10. Let H be a cograph obtained from Ok by non-isolated vertices addi-
tion. If there is not a universal vertex in H with respect to Ok, then σT (H) = 3.

Proof. Since Ok is an induced subgraph of H, by construction H is a triconnected
component. If σT (H) = 2, then the tree 2-spanner of H would be a star. However,
it is not possible since H does not have a universal vertex. �	
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Since a cograph without universal vertex does not contain a universal vertex
with respect to some octahedral, then we have that, for cographs, containing a
universal vertex is also a necessary condition so that σT (G) = 2.

Theorem 7. Let G be a cograph. σT (G) = 2 iff G has a universal vertex.

Proof. If G contains a universal vertex, then σT (G) = 2. Let us prove the con-
verse by contrapositive. If there is no universal vertex in G, then by Lemma 9 we
have that G contains an octahedral Ok as induced subgraph, and by Lemma 10
we have that the unique case for decreasing σT from 3 to 2 is when there is a
universal vertex with respect to Ok, but in a cograph with no universal vertex,
there is no universal vertex with respect to an Ok. �	

4 Concluding Remarks and Further Work

In this work, we present an inconsistence on a well known sufficient condition
for tree 2-spanner admissible graphs. Moreover, we establish optimum tree t-
spanners for some graph classes by considering their characteristics, decomposi-
tions and by vertex/edges operations. Following the strategies proposed in this
work, we intend to obtain optimum tree t-spanners for generalized split graphs,
say (k, �)-graphs, and also for graphs obtained by vertex/edges operations.
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Abstract. We introduce the combinatorial optimization problem Time
Disjoint Walks. This problem takes as input a digraph G with positive
integer arc lengths, and k pairs of vertices that each represent a trip
demand from a source to a destination. The goal is to find a path and
delay for each demand so that no two trips occupy the same vertex at the
same time, and so that the sum of trip times is minimized. We show that
even for DAGs with max degree Δ ≤ 3, Time Disjoint Walks is APX-
hard. We also present a natural approximation algorithm, and provide a
tight analysis. In particular, we prove that it achieves an approximation
ratio of Θ(k/ log k) on bounded-degree DAGs, and Θ(k) on DAGs and
bounded-degree digraphs.

Keywords: Hardness of approximation
Approximation algorithms · Disjoint Paths problem

1 Introduction

1.1 Related Work

Disjoint Paths is a classic problem in combinatorial optimization that asks: given
an undirected graph G, and k pairs of vertices, do there exist vertex-disjoint
paths that connect each pair? This problem captures the general notion of con-
nection without interference, and has subsequently received much attention due
to its applicability in areas like VLSI design [9,12] and communication net-
works [14,15].

These applications have motivated many variants of this basic problem. For
example, one may choose the underlying graph to be undirected or directed,
and the disjointness constraint to be over vertices or edges. As an optimization
problem, one may consider the maximum number of pairs that can be connected
with disjoint paths, the minimum number of rounds necessary to connect all pairs
(where all paths in a round must be disjoint) [7], or the shortest set of disjoint
paths to connect all pairs (if all pairs can, in fact, be disjointly connected) [8].

A few flavors of Disjoint Paths are tractable: for example, if k is fixed or
G has bounded tree-width, then there exists a poly-time algorithm for finding
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vertex-disjoint paths on undirected graphs [10,11]. Many interesting variants of
Disjoint Paths are, however, extremely difficult. Indeed, finding vertex-disjoint
paths on undirected graphs is one of Karp’s NP-complete problems [6]. Further-
more, nearly-tight hardness results are known for finding the maximum set of
edge-disjoint paths in a directed graph with m edges: there exists an O(

√
m)-

approximation algorithm [7], and it is NP-hard to approximate within a factor
of m1/2−ε, for any ε > 0 [5]. For detailed surveys on the complexity landscape
of Disjoint Paths variants, see [7,8].

1.2 Contributions

Despite the great variety of Disjoint Paths problems that have been considered in
the literature, it appears that little attention has been given to variants that relax
the disjointness constraint, even though many natural applications do not always
require paths to be completely disjoint. Consider, for example, the application of
safely routing a collection of fully autonomous (and obedient) vehicles through
an otherwise empty road network. In such a situation, we can certainly prevent
collisions by routing all vehicles on disjoint paths. However, it is not difficult to
see that if we have full control over the vehicles, using disjoint paths is rarely
necessary (and, in fact, can be highly suboptimal).

Applications of this flavor motivate a new variant of Disjoint Paths, which
roughly asks: given a graph G and k pairs of vertices that each represent a trip
demand, how should we assign a delay and a path to each trip so that (1) trips
are completed as quickly as possible, and (2) no two trips collide (i.e., occupy the
same location at the same time). While there are problems in the literature (that
do not wield the name “Disjoint Paths”) that seemingly come close to capturing
this goal, they exhibit some key differences. In particular, multicommodity flows
over time [4,13] and job shop scheduling [3] seem, at first glance, very related
to our problem. However, the former does not enforce unsplittable flows (as
we require), and the latter does not capture the flexibility of scheduling job
operations over any appropriate walk in a network.

As such, we are motivated to formalize and study this new variant of Disjoint
Paths that relaxes the classical disjointness constraint to a “time disjointness”
constraint. In particular, our contributions are threefold:

• We introduce a natural variant of Disjoint Paths, which we call Time Disjoint
Walks (TDW). To the best of our knowledge, this is the first simple model that
captures the notion of collision-free routing of discrete objects (i.e., instead of
flows) over a shared network.

• We prove that Time Disjoint Walks is APX-hard, by providing an L-reduction
from a variant of SAT. In fact, our reduction shows that this result holds even
for directed acyclic graphs (DAGs) of max degree three (Δ ≤ 3).

• We describe an intuitive approximation algorithm for our problem, and pro-
vide a tight analysis: we show that it achieves an approximation ratio of
Θ(k/ log k) on bounded-degree DAGs, and Θ(k) on DAGs and bounded-
degree digraphs.
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We formally introduce Time Disjoint Walks in Sect. 2. In Sect. 3 we provide
some useful definitions regarding approximation. In Sect. 4 we prove our APX-
hardness result. In Sect. 5 we describe our approximation algorithm, and provide
bounds on its performance for the input classes mentioned above. In Sect. 6 we
state our conclusions and present some open problems.
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Fig. 1. (Unlabeled arcs have length 1): (i) A TDW instance with an optimal solution
that contains cycles and intersecting walks, even though disjoint paths exist. (ii) A
TDW instance with an obvious optimal solution, or a Shortest Disjoint Paths instance
with no solution.

2 Time Disjoint Walks

We must first mention a few preliminaries: given a, b ∈ Z, define [a, b] := {x ∈
Z | a ≤ x ≤ b}, and for b ∈ Z, we write [b] := [1, b]. Note that for b < 1, [b] = ∅.
Given a directed graph (digraph) G := (V,E), and u, v ∈ V , we define a walk W
from u to v in G as a tuple (w1, w2, . . . , wl) of vertices such that w1 = u,wl = v,
and (wi, wi+1) ∈ E for each i ∈ [l − 1]. Note that a vertex can be repeated.

Given a digraph G with arc lengths λ : E → Z≥1, and a walk W =
(w1, w2, . . . , wl) in G, we let |W | := l denote the cardinality of the walk, and we
define for every j ∈ [l] the length of the walk up to its jth vertex as

λ(W, j) :=
∑

i∈[j−1]

λ(wi, wi+1).

For convenience, we let λ(W ) := λ(W, l) denote the total length of the walk.
Finally, given delays d1, d2 ∈ Z≥0 and walks W1,W2 in G, we say that (d1,W1)
and (d2,W2) are time disjoint if, intuitively, a small object traversing W1 at
constant speed after waiting d1 units of time does not collide/interfere with a
small object traversing W2 at the same speed after waiting d2 units of time. We
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consider walks that have not departed, and walks that have already ended, to
no longer exist on the network (and thereby not occupy any vertices). Formally,
we have: for every j1 ∈ [|W1|], j2 ∈ [|W2|] such that the jth1 vertex of W1 is equal
to the jth2 vertex of W2,

d1 + λ(W1, j1) �= d2 + λ(W2, j2).

We are now ready to formally define the problem examined in this paper:

Definition 1 (Time Disjoint Walks). Let G := (V,E) be a digraph, let λ :
E → Z≥1 define arc lengths, and let T := {(s1, t1), (s2, t2), . . . , (sk, tk)} ⊆ V 2

define a set of demands across unique vertices. For each i ∈ [k], find a delay
di ∈ Z≥0 and walk Wi from si to ti such that the tuples in {(di,Wi) | i ∈ [k]}
are pairwise time disjoint, and

∑
i∈[k](di + λ(Wi)) is minimized.

We note that one can construct analogous problems by considering undirected
graphs as input, edge lengths and delays that are real-valued, or a definition of
time disjoint that requires large gaps between arrival times at common vertices
(whereas the definition above simply requires a nonzero gap). Additionally, one
may wish to consider a min-max objective instead of our min-sum objective.

We leave these variants to future work, noting that our primary goal in this
paper is to study a basic flavor of this new combinatorial problem. Further-
more, our selection of this variant is well-motivated by our original application
of routing a collection of identical autonomous vehicles over an empty road net-
work (which, for the sake of this futuristic application, we may assume was built
specifically for these vehicles). In particular, we may (1) model the road network
as a directed graph, (2) assume that all routed vehicles traverse their walk at the
same constant velocity, (3) measure road lengths as the time necessary to tra-
verse it at that velocity, and (4) assume that road lengths are integer multiples
of the time length of each vehicle. Additionally, we may motivate our min-sum
objective by the desire to find a socially optimal solution.

Finally, we emphasize the novelty of our time disjoint constraint by compar-
ing it to the standard disjoint constraint used in classical variants of Disjoint
Paths. In particular, observe that if we modify the definition of Time Disjoint
Walks to use the latter constraint instead of the former, we arrive at the (Min-
Sum) Shortest Disjoint Paths problem [8]. However, this constraint makes all
the difference: given an instance of Time Disjoint Walks, it is often the case
that a solution under the standard disjoint constraint is suboptimal if examined
under the time disjoint constraint. Indeed, the optimal solution under the latter
constraint may even include paths that repeat vertices - hence the name Time
Disjoint Walks; see (i) in Fig. (1). On the other hand, it is easy to construct
an instance of Shortest Disjoint Paths that admits an obvious optimal solution
under the time disjoint constraint, but does not yield any solution at all under
the classical disjoint constraint; see (ii) in Fig. (1).

These observations strongly suggest that there is no simple reduction, in
either direction, between Time Disjoint Walks and Disjoint Paths. Furthermore,
using time-expanded networks [13] to reduce Time Disjoint Walks into Disjoint
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Paths appears to offer little hope: such reductions will approximately square
the size of the original graph, and many variants of Disjoint Paths are hard to
approximate within m1/2−ε, for any ε > 0 [5]. Thus, an approximation algorithm
for Disjoint Paths, applied to a transformed Time Disjoint Walks instance, would
likely fail to perform better than a trivial approximation algorithm for Time
Disjoint Walks. These observations highlight the novelty of our problem and
(in)approximability results.

3 Approximation Preliminaries

Given an optimization problem P, we let IP denote the instances of P, SOLP
map each x ∈ IP to a set of feasible solutions, and let cP assign a real
cost to each pair (x, y) where x ∈ IP and y ∈ SOLP(x). For x ∈ IP , we
let OPTP(x) := miny∗∈SOLP(x) cP(x, y∗) if P is a minimization problem, and
OPTP(x) :=maxy∗∈SOLP(x) cP(x, y∗) otherwise.

If A is a polynomial time algorithm with input x ∈ IP and output y ∈
SOLP(x), we say that A is a ρ-approximation algorithm, or has approximation
ratio ρ, if P is a minimization problem and cP(x,A(x))/OPTP(x) ≤ ρ, or P is
a maximization problem and OPTP(x)/cP(x,A(x)) ≤ ρ, for all x ∈ IP . Note
that ρ ≥ 1.

The class APX contains all optimization problems that admit a
ρ-approximation algorithm, for some constant ρ > 1. An optimization prob-
lem is said to be APX-hard if every problem in APX can be reduced to it
through an approximation-preserving reduction. One reduction of this type is the
L-reduction:

Definition 2 (L-Reduction). An L-reduction from an optimization problem
P to an optimization problem Q, denoted P ≤L Q, is a tuple (f, g, α, β), where:

• For each x ∈ IP , f(x) ∈ IQ and can be computed in polynomial time.
• For each y ∈ SOLQ(f(x)), g(x, y) ∈ SOLP(x) and can be computed in poly-
nomial time.

• α is a positive real constant such that for each x ∈ IP ,

OPTQ(f(x)) ≤ α · OPTP(x).

• β is a positive real constant such that for each x ∈ IP , y ∈ SOLQ(f(x)),
∣∣OPTP(x) − cP(x, g(x, y))

∣∣ ≤ β ·
∣∣OPTQ(f(x)) − cQ(f(x), y)

∣∣.

If a problem is APX-hard, it is NP-hard to ρ-approximate for some constant ρ >
1; thus, showing APX-hardness is strictly stronger than showing NP-hardness. To
show APX-hardness, one can simply L-reduce from a known APX-hard problem.
We refer the reader to [1] for a good reference on approximation.
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4 Hardness of Approximation

To show the hardness of our problem, we show an L-reduction from MAX-
E2SAT(3), which is known to be APX-hard [2]. We remind the reader of the
definition, below, and then proceed with our proof.

Definition 3 (MAX-E2SAT(3)). Let φ be a CNF formula in which (i) each
clause contains exactly two literals on distinct variables, and (ii) each variable
appears in at most three clauses. Find a truth assignment to the variables in φ
that maximizes the number of satisfied clauses.

Theorem 1. Time Disjoint Walks is APX-hard, even for DAGs with Δ ≤ 3.

Proof. We let P := MAX-E2SAT(3), Q := TDW with instances restricted to
those containing DAGs with Δ ≤ 3, and show that P ≤L Q. Below, we describe
our L-reduction (f, g, α, β).

Description of f : Given an instance φ ∈ IP with n variables and m clauses,
we let X := {x1, . . . , xn} refer to its variables and C := {C1, . . . , Cm} refer to its
clauses. We let L := {x1, . . . , xn, x1, . . . , xn} refer to its literals. For convenience,
we define e : L → X that extracts the variable from a given literal; i.e., e(xi) =
e(xi) = xi. We label the literals in clause Cj as l1j , l

2
j . For each l ∈ L, we let

Sl := {laj | a ∈ [2], j ∈ [m], laj = l} capture all occurrences of literal l in φ.
Finally, for each l ∈ L, we define an arbitrary bijection πl : Sl → [|Sl|] to induce
an ordering on Sl. We will let π−1

l denote its inverse: i.e., π−1
l (1) is the first

element in Sl in the order induced by πl.
We may now describe f , which constructs an instance (G,λ, T ) ∈ IQ from

φ. We start with the construction of G (see Fig. (2)), which closely follows the
standard proof of NP-hardness for Disjoint Paths: for each clause Cj = (l1j ∨ l2j )
in φ, we create a new clause gadget and add it to G. That is, for each clause Cj ,
we add the following vertex and arc set to our construction:

VCj
:= {cs

j , l
1
j , l

2
j , l

1′
j , l2

′
j , ct

j}
ECj

:= {(cs
j , l

1
j ), (c

s
j , l

2
j ), (l

1
j , l

1′
j ), (l2j , l

2′
j ), (l1

′
j , ct

j), (l
2′
j , ct

j)}

Next, for each xi ∈ X, we add an interleaving variable gadget as follows:
first, we add two vertices xs

i , x
t
i to V (G). Then, we wish to create exactly two

directed paths (walks), W+
xi

,W−
xi

, from xs
i to xt

i: we want W+
xi

to travel through
all vertices corresponding to positive literals of xi, and W−

xi
to travel through all

vertices corresponding to negative literals of xi. Formally, for each l ∈ {xi, xi},
we create a path from xs

i to xt
i as follows. First, if |Sl| = 0, we add arc (xs

i , x
t
i) to

E(G). Otherwise, we add arcs (xs
i , π

−1
l (1)) and ((π−1

l (|Sl|))′, xt
i) to E(G), and

then for each j ∈ [|Sl| − 1], we add arc ((π−1
l (j))′, π−1

l (j + 1)). Note that the
prime symbols are merely labels, and are used in our construction to ensure that
the max degree of G remains at most three. This completes our construction of
G. We now define a set of n+m demands, where each corresponds to a variable
or a clause:
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Fig. 2. An interleaving variable gadget (and its affiliated clause gadgets) corresponding
to a variable with one negative occurrence (red path) and two positive occurrences
(green path). (Color figure online)

T := {(xs
i , x

t
i) | i ∈ [n]} ∪ {(cs

j , c
t
j) | j ∈ [m]}

Finally, we must define arc lengths λ : E → Z≥1. We will do this in a way
that for each j ∈ [m], a ∈ [2], we have λ(Wcsj

, laj ) = λ(Wxs
i
, laj ), where Wcsj

is the
unique walk in G from cs

j to laj , and Wxs
i

is the unique walk in G from xs
i = e(laj )s

to laj . Call this property (∗). To facilitate our analysis, we will also want every
demand-satisfying path in G to have the same length.

Since φ is an instance of MAX-E2SAT(3), we know that for each i ∈ [n], each
of the two paths between xs

i and xt
i passes through at most 3 clause gadgets.

Thus, by our construction, each such path includes at most 7 arcs, and any path
from a variable xs

i to some literal laj with xi = e(laj ) can use at most 5 arcs.
Thus, we can successfully force each demand-satisfying path in G to have length
7 while maintaining property (∗) by defining λ : E → Z≥1 as follows, completing
our construction of (G,λ, T ) ∈ IQ:

λ(u, v) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if (u, v) = (laj , la
′

j ), j ∈ [m], a ∈ [2]; or
if (u, v) = (xs

i , l
a
j ), i ∈ [n], j ∈ [m], a ∈ [2]; or

if (u, v) = (la
′

h , lbj), h, j ∈ [m], a, b ∈ [2];
7, if (u, v) = (xs

i , x
t
i), i ∈ [n]

7 − 2|Sl|, if (u, v) = (la
′

j , xt
i), j ∈ [m], a ∈ [2], i ∈ [n], laj = l

2πl(laj ) − 1, if (u, v) = (cs
j , l

a
j ), j ∈ [m], a ∈ [2], laj = l

7 − 1 − λ(cs
j , l

a
j ), if (u, v) = (la

′
j , ct

j), j ∈ [m], a ∈ [2]

Description of g: Given a solution y ∈ SOLQ(f(φ)), we construct a solution
g(φ, y) ∈ SOLP(φ) through two consecutive transformations: z, followed by q.
That is, we will define transformations z and q such that g is the composition
g(φ, y) := q(φ, z(y)).

We define z to transform solution y into another solution y′ ∈ SOLQ(f(φ))
such that cQ(f(φ), y′) ≤ cQ(f(φ), y) and such that y′ assigns 0 delay to demands
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associated with interleaving variable gadgets. To accomplish this, recall that
y = {(d1,W1), . . . , (dn+m,Wn+m)}, by definition of SOLQ. Without loss of gen-
erality, we may assume tuples indexed with [n] correspond to demands on inter-
leaving variable gadgets, and tuples indexed with [n + m]\ [n] correspond to
demands on clause gadgets.

Now, while there exists some i ∈ [n] such that di > 0 (and thus di ≥ 1),
we perform the following modification on y: first, we reset Wi to be the path
traveling through at most one clause gadget - the positive or negative path must
have this property, because each variable appears in φ at most three times, by
definition of MAX-E2SAT(3). Now, reset di to 0. If Wi shares a vertex with
another walk Wj , we know j ∈ [n + m]\[n], by construction of G. In this case,
reset dj to 1 if and only if dj is currently 0. By construction of λ, the walks
remain time disjoint and the cost of the solution does not increase.

In the second transformation, q, we transform modified solution y′ into an
assignment (A : X → {T, F}) ∈ SOLP(φ) as follows: for each i ∈ [n], set
A(xi) = T if and only if Wxi

, the walk from xs
i to xt

i, takes the negative literal
path.

Valid value for α: We will show that for α = 29, OPTQ(f(φ)) ≤ α ·OPTP(φ).
To see this, we make two observations. First observation: if A : X → {T, F} is a
truth assignment for φ, then we can construct a solution to f(φ) as follows: for
each i ∈ [n], connect demand (xs

i , x
t
i) using the negative literal path if A(xi) = T ,

and the positive literal path if A(xi) = F . Either way, assign a delay of 0. Then,
for each j ∈ [m] where clause Cj is satisfied by assignment A, connect demand
(cs

j , c
t
j) using a walk that goes through a literal that evaluates to true under A.

Assign a delay of 0 to this demand. For each clause Cj that isn’t satisfied by A,
select an arbitrary walk to complete the corresponding demand (cs

j , c
t
j). Assign

a delay of 1 to this demand. It is clear that this is a valid solution to f(φ).
Furthermore, the cost of our solution is 7(n + m) + U(A,φ), where U(A,φ) is
the number of clauses in φ unsatisfied by A. Second observation: by linearity
of expectation, if φ is an instance of MAX-E2SAT(3), then there must exist an
assignment A : X(φ) → {T, F} that satisfies at least 3/4 of the clauses.

We may now prove the desired inequality for α = 29. From our first obser-
vation and the fact that n ≤ 2m (since each of the m clauses has 2 literals),

OPTQ(f(φ)) ≤ 7(n + m) + (m − OPTP(φ)) ≤ 22m − OPTP(φ). (1)

Now, by our second observation, we know OPTP(φ) ≥ 3m/4. Thus, we have:

OPTQ(f(φ)) ≤ 22 · (4/3) · OPTP(φ) − OPTP(φ) ≤ 29 · OPTP(φ).

Valid value for β: We will show that for β = 1 and any y ∈ SOLQ(f(φ)),(
OPTP(φ) − cP(φ, g(φ, y))

)
≤ β ·

(
cQ(f(φ), y) − OPTQ(f(φ))

)
, as required. As

a first step, we recall that transformations z, q define g, and let γ denote the
number of clause gadget demands assigned a delay of 0 by solution z(y) to f(φ).
We make the following crucial claim:

cP(φ, g(φ, y)) := cP(φ, q(φ, z(y))) ≥ γ. (2)
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To see this, note the following: by construction, z(y) is a valid solution to f(φ).
Thus, if z(y) assigns clause gadget demand (cs

j , c
t
j) a delay dj = 0 and walk Wj

that passes through literal l, then l is a positive literal if and only if the walk
selected for the interleaving variable gadget demand (xs

i , x
t
i) (where xi = e(l))

does not travel through the positive literals of xi. By definition of q, this occurs
if and only if g(φ, y) assigns true to xi. Thus, a clause gadget demand given 0
delay by z(y) corresponds to a clause in φ satisfied by g(φ, y), thus proving (2).

Next, by definition of γ and z, we have:

7(n + m) + (m − γ) ≤ cQ(f(φ), z(y)) ≤ cQ(f(φ), y). (3)

Combining inequalities (2) and (3), we get:

cP(φ, g(φ, y)) ≥ γ ≥ 7n + 8m − cQ(f(φ), y). (4)

Finally, using the leftmost inequality in (1) along with inequality (4) gives us:

OPTP(φ) − cP(φ, g(φ, y)) ≤
(
7n + 8m − OPTQ(f(φ))

)
−

(
7n + 8m − cQ(f(φ), y)

)

= β ·
(
cQ(f(φ), y) − OPTQ(f(φ))

)
,

for β = 1, as desired. This completes the proof that (f, g, α, β) is a valid
L-reduction, and subsequently that TDW on DAGs with Δ ≤ 3 is APX-hard.

�

5 Approximation Algorithm

5.1 Algorithm

We present Algorithm 1, which approximates TDW by finding shortest paths
to satisfy each demand, and then greedily assigning delays to each trip (with
priority given to shorter trips). To simplify notation, we assume that the inputted
terminal pairs are ordered by nondecreasing shortest path length (if not, we may
simply sort the indices after finding the shortest demand-satisfying paths). The
algorithm clearly runs in poly(|V |, |E|, k) time, and the bad delay variables ensure
its correctness. Next, we briefly note the following easy bound:

Proposition 1. Algorithm 1 has an approximation ratio of O(k) on general
digraphs.

Proof. Let x := (G,λ, T ) ∈ ITDW , and let A(x) ∈ SOLTDW be the output of
Algorithm 1 on x. First, we show by induction that for each i ∈ [k],

di ≤ 2
∑

h∈[i−1]

λ(Wh).
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Algorithm 1. Shortest paths & greedy delays, with priority to shorter paths.
Input: x := (G := (V, E), λ : E → Z≥1, T := {(s1, t1), . . . , (sk, tk)}) ∈ ITDW

Output: y ∈ SOLTDW (x)
1: y ← {}
2: � Get shortest paths and dummy delays:
3: for i ∈ [k] do
4: Wi ← Dijkstra(G, λ, si, ti)
5: di ← 0
6: y ← y ∪ (di, Wi)
7: end for
8: � Greedily assign delays, with priority given to shorter paths:
9: for i ∈ [k] do

10: bad delaysi ← {}
11: for h ∈ [i − 1] do
12: bad delaysi,h ← {}
13: for v ∈ Wh ∩ Wi do
14: bad delay ← (dh + λ(Wh, v) − λ(Wi, v))
15: bad delaysi,h ← bad delaysi,h ∪ {bad delay}
16: end for
17: bad delaysi ← bad delaysi ∪ bad delaysi,h
18: end for
19: di ← min(Z≥0 \ bad delaysi)
20: end for
21: return y

For the base case i = 1, note that bad delays1 = ∅ and so d1 = 0. For i > 1, first
observe that by definition of bad delay, we have di ≤ 1+maxh∈[i−1](dh+λ(Wh)).
Thus,

di ≤ 1 + max
h∈[i−1]

(
2

∑

h′∈[h−1]

λ(Wh′) + λ(Wh)
)

(induction hypothesis)

≤ 1 + 2
∑

h′∈[i−2]

λ(Wh′) + λ(Wi−1) (pick h = i − 1)

≤ 2
∑

h′∈[i−1]

λ(Wh′), (trips have length ≥ 1)

completing the induction. Now, recallling that our algorithm uses the shortest
paths to satisfy each demand, and that it assigns delays to shorter paths first,
we can bound the approximation ratio as follows:

ρ ≤ cTDW (x,A(x))
OPTTDW (x)

≤
∑

i∈[k](di + λ(Wi))∑
i∈[k] λ(Wi)

≤ 1 +
2
∑

i∈[k]

∑
h∈[i−1] λ(Wh)

∑
i∈[k] λ(Wi)

≤ 1 +
2k

∑
i∈[k] λ(Wi)∑

i∈[k] λ(Wi)
= O(k). �
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5.2 Analysis on Bounded-Degree DAGs

We now show that our algorithm is able to achieve a better approximation ratio
on bounded-degree DAGs. In what follows, we call a directed graph a “(2, l)-in-
tree” if it is a perfect binary tree of depth l, in which every arc points toward
the root. Analogously, a “(2, l)-out-tree” is a perfect binary tree of depth l, in
which every arc points away from the root.

Theorem 2. Algorithm 1 achieves an approximation ratio of Θ(k/ log k) on
bounded-degree DAGs.

Proof. Upper bound: Let x := (G,λ, T ) ∈ ITDW such that G is a DAG. Let
A(x) ∈ SOLTDW be the output of Algorithm 1 on x. In what follows, we will
justify the following string of inequalities that proves the upper bound:

ρ ≤ cTDW (x,A(x))
OPTTDW (x)

≤(1)

∑
i∈[k]

(
di + λ(Wi)

)
∑

i∈[k] λ(Wi)

≤(2) 1 +
di∗

λ(Wi∗)
, i∗ := max

i∈[k]

(
di

λ(Wi)

)

≤(3) 1 + O(1) · di∗

log di∗

≤(4) 1 + O(1) · k

log k
= O(k/ log k).

Inequality (1) is clear, because our algorithm takes the shortest path to satisfy
each demand. Inequality (2) follows (by induction) from the following general
observation: given d1, d2 ∈ Z≥0 and λ1, λ2 ∈ Z≥1, observe d1/λ1 ≤ d2/λ2 =⇒
(d1 + d2)/(λ1 +λ2) ≤ d2/λ2, and thus (d1 + d2)/(λ1 +λ2) ≤ max(d1/λ1, d2/λ2).

To show inequality (3), we need two observations. We first observe that for
each i ∈ [k]:

di ≤ |bad delaysi| ≤ |{h ∈ [i − 1] | Wh ∩ Wi �= ∅}| =: μi

To see this, suppose for contradiction that there exists some h ∈ [i − 1] with
Wh ∩ Wi �= ∅ and |bad delaysi,h| > 1. Then, by definition of bad delay, there
exist vertices u, v ∈ Wh ∩ Wi and delays δu �= δv ∈ Z≥0 such that:

δu + λ(Wi, u) = dh + λ(Wh, u),
δv + λ(Wi, v) = dh + λ(Wh, v),

λ(Wh, u) − λ(Wh, v) = λ(Wi, u) − λ(Wi, v) + (δu − δv),

where the last equality follows from the first two. But because δu �= δv, this
implies that the length of the path that Wh and Wi use to travel between u
and v is not the same. Because G is a DAG, Wh and Wi must visit u and v
in the same order, implying that one of these walks is not taking the shortest
path from u to v, which contradicts the definition of the algorithm. Because
|bad delaysi,h| = 0 if Wh ∩ Wi = ∅, we have di ≤ μi.
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Next, we observe that:

μi ≤ min(Δ4λ(Wi), k).

Showing μi ≤ k is trivial, by definition of μi and because i ∈ [k]. To show
μi ≤ Δ4λ(Wi), first note that in a digraph with max degree Δ, the number of
paths that (i) have z arcs, (ii) start at distinct vertices, and (iii) all end at a
common vertex, is upper bounded by Δz (this is easy to show by induction on
z). Thus, the number of paths with ≤ z arcs, in addition to properties (ii) and
(iii), is upper bounded by

∑z
l=0 Δl ≤ Δz+1, for Δ > 1. Call this lemma (∗).

Now, note that for each h ∈ [i−1] we may consider each Wh to terminate once
it first hits a vertex in Wi (i.e., cut off all vertices that are hit afterwards) without
changing the value of μi. Now, recall the following facts about our problem and
algorithm: (I) each inputted demand has a unique source; (II) each edge in our
digraph has length ≥ 1; (III) for all h ∈ [i − 1], λ(Wh) ≤ λ(Wi). Thus, by (III)
and lemma (∗), each vertex in Wi can be hit by at most Δλ(Wi)+1 walks in
{W1, . . . ,Wi−1}. Furthermore, (II) tells us that the number of vertices in Wi is
no more than λ(Wi) + 1. Thus, recalling that our problem statement ensures
Δ > 1, no demands have the same source and destination, and (II), we see that

μi ≤ (λ(Wi) + 1)Δλ(Wi)+1 ≤ Δ2(λ(Wi)+1) ≤ Δ4λ(Wi),

as desired. We now note that we may assume di is greater than any constant
(otherwise, inequality (2) automatically proves a constant approximation ratio,
completing the proof). Thus, from this and the above observations, we have
log(di) ≤ 4λ(Wi) log(Δ). This proves inequality (3), because our graph has
bounded degree.

Inequality (4) is not difficult: as stated above, we will always have di ≤ k,
and we may always assume di ≥ 3. Basic calculus shows the function x/ log x
increases over x ≥ 3.

Lower bound: We show ∀l ∈ N≥1, k := 2l, ∃(Gk, λk, Tk) ∈ ITDW such that
Gk is a bounded-degree DAG and Algorithm 1 achieves an approximation ratio
of Ω(k/ log k). Construct Gk by taking a (2, l)-in-tree AS and a (2, l)-out-tree
AT . Draw an arc from the root of the former to the root of the latter. Then,
arbitrarily pair each leaf (source) in AS with a unique leaf (destination) in AT .
For each such pair, draw an arc from source to destination (called a “bypass
arc”), and add a demand to Tk. Finally, define λk to assign length 1+2l to each
“bypass” arc, and length 1 to all other arcs. We refer the reader to Fig. (3)(i).

We may assume our algorithm does not satisfy demands using the bypass arcs
(as all demand-satisfying paths have length 2l+1, and no tie-breaking scheme is
specified). Thus, each demand-satisfying path uses the root of AS , which incurs
a total delay of 0+1+ . . .+(k − 1) = Ω(k2) and total path length of k · (1+2l).
Had the bypass arcs been used, no delay would have been required, and the total
path length would have still been k · (1 + 2l). Thus, our algorithm achieves an
approximation ratio of (Ω(k2) + k · (1 + 2l))/(k · (1 + 2l)) = Ω(k/ log k). �
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5.3 Analysis on DAGs

We show that if we no longer require the graph family in Theorem (2) to have
bounded degree, our algorithm loses its improved approximation ratio.

Theorem 3. Algorithm 1 has an approximation ratio of Θ(k) on DAGs.

Proof. By Proposition (1), it suffices to construct a family of TDW instances on
DAGs, defined over all k ∈ N≥1, for which our algorithm achieves an approxima-
tion ratio of Ω(k). Construct Gk by fixing a “root” vertex and directly attaching
2k leaves. Orient half of these arcs towards the root, and half of the arcs away
from the root. Call each vertex with out-degree 1 a source, and each vertex with
in-degree 1 a destination. Then, arbitrarily pair each source with a unique des-
tination. For each pair, add an arc from the source to the destination (called a

..
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. . .

. . .
AS

..
.

. . .

. . .

AT

(i)

..
.

..
.

(ii)

. . .
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. . . . .

. AT

. . .

. . . . .
.

BT

. . .

. . .. .
.

BS

. . .

. . .. .
.

(iii)

Fig. 3. (i): A bounded-degree DAG Gk upon which Algorithm 1 achieves an approx-
imation ratio of Ω(k/ log k); (ii): A DAG Gk upon which Algorithm 1 achieves an
approximation ratio of Ω(k); (iii): A bounded-degree digraph Gk upon which Algo-
rithm 1 achieves an approximation ratio of Ω(k).



On the Approximability of Time Disjoint Walks 75

“bypass arc”), and add a demand to Tk. Finally, let λk assign length 2 to each
bypass arc, and length 1 to all other arcs. We refer the reader to Figure (3)(ii).

We may assume our algorithm does not satisfy demands using the bypass
arcs (as all demand-satisfying paths have length 2, and no tie-breaking scheme
is specified). Thus, each demand-satisfying path uses the root vertex, which
incurs a total delay of 0 + 1 + . . . + (k − 1) = Ω(k2) and total path length of
2k. Had the bypass arcs been used, no delay would have been required, and
the total path length would have still been 2k. Thus, our algorithm achieves an
approximation ratio of (Ω(k2) + 2k)/(2k) = Ω(k). �

5.4 Analysis on Bounded-Degree Digraphs

In this section, we show that if we no longer require the graph family in Theorem
(2) to be acyclic, our algorithm loses its improved approximation ratio.

Theorem 4. Algorithm 1 has an approximation ratio of Θ(k) on bounded-degree
digraphs.

Proof. By Proposition (1), it suffices to construct a family of TDW instances
on bounded-degree digraphs, defined over all l ∈ N≥2 with k̂ := 2l, k := 2k̂, for
which our algorithm achieves an approximation ratio of Ω(k). Construct Gk by
taking two (2, l)-in-trees AS and BS , and two (2, l)-out-trees AT and BT . Call
their roots rAS

, rBS
, rAT

, and rBT
, respectively. Then, add a “central path” C

consisting of vertices {c1, c2, . . . , ck̂}, “forward” arcs {(ci, ci+1) | i ∈ [k̂−1]}, and
“backward” arcs {(cj , cj−3) | j ∈ [4, k̂], j mod 2 = 0}. Attach the directed trees
to the central path with arcs {(rAS

, c1), (rBS
, ck̂−1), (ck̂, rAT

), (c2, rBT
)}. Next,

pair each leaf (source) in AS with an arbitrary, but unique, leaf (destination) in
AT . Do the same for BS and BT . For each such pair, add an arc from the source
to destination (called a “bypass arc”), and add a demand to Tk. Finally, let λk

assign length 2k̂ +2l − 1 to each bypass arc, length k̂ − 1 to arcs (rBS
, ck̂−1) and

(ck̂, rAT
), and length 1 to all other arcs. We refer the reader to Figure (3)(iii).

Observe that for each demand, there exist two shortest demand-satisfying
paths, each of length 2k̂ + 2l − 1. In particular, observe that a demand between
leaves of AS and AT may be satisfied by a bypass arc, or by a path that travels
from the source in AS , towards the root of AS , onto the central path vertex c1,
along all forward arcs of C, onto the root of AT , and towards the destination
in AT . Similarly, a demand between leaves of BS and BT may be satisfied by a
bypass arc, or by a path that travels from the source in BS , towards the root
of BS , onto the central vertex ck̂−1, across C by alternating between forward
and backward arcs (until arriving at c2), onto the root of BT , and towards
the destination in BT . We call the paths that do not use the bypass arcs the
“meandering paths.”

Because our algorithm specifies no tie-breaking scheme, we may assume that
it satisfies demands using the meandering paths, and that it alternates between
assigning delays to demands from AS and assigning delays to demands from BS

every four iterations. In other words, out of the 2k̂ demands created above and
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fed as input to our algorithm, we may assume that those from AS to AT are
labeled with indices IA := {i ∈ [2k̂] | �(i−1)/4� ≡ 0 (mod 2)}, while those from
BS to BT are labeled with IB := {i ∈ [2k̂] | �(i − 1)/4� ≡ 1 (mod 2)}.

To understand the suboptimality of this situation, we make several observa-
tions that help us determine the values our algorithm assigns to each di. First,
note that for each i ∈ [2k̂], z ∈ [k̂], the length of walk Wi up to vertex cz on the
central path is:

λk(Wi, cz) =

{
l + z, if i ∈ IA

l + 2k̂ − z − 2 · (z mod 2), if i ∈ IB

Using this, we see that the details of Algorithm 1 give us the following relation,
which is defined over i ∈ [k], h ∈ [i − 1]:

bad delaysi,h =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{dh}, if i, h ∈ IA or
if i, h ∈ IB

{dh − 2k̂ + 2z + 2 · (z mod 2) | z ∈ [k̂]}, if i ∈ IB , h ∈ IA

{dh + 2k̂ − 2z − 2 · (z mod 2) | z ∈ [k̂]}, if i ∈ IA, h ∈ IB

Because our algorithm defines bad delaysi :=
⋃

h∈[i−1] bad delaysi,h and di :=
min(Z≥0 \bad delaysi), observe that the above relation is in fact a recurrence
relation. As such, after noting that d1 = 0, it is straightforward to use the above
relation to show by induction that for all i ∈ [2k̂],

di = i − 1 + � i − 1
8

�(2k̂ − 4).

Thus, our algorithm incurs a total delay of
∑

i∈[2k̂](i − 1 + �(i − 1)/8�(2k̂ −
4)) = Ω(k̂3) = Ω(k3) and total walk length of 2k̂ · (2k̂ + 2l − 1)) = Θ(k̂2) =
Θ(k2). Had the algorithm opted to use the bypass arcs, no delay would have
been required, and the total walk length would have been the same. Thus, our
algorithm achieves an approximation ratio of Ω(k). �

6 Conclusions

In this paper, we introduce Time Disjoint Walks, a new variant of (shortest)
Disjoint Paths that also seeks to connect k demands in a network, but relaxes
the disjointness constraint by permitting vertices to be shared across multiple
walks, as long as no two walks arrive at the same vertex at the same time. We
show that Time Disjoint Walks is APX-hard, even for DAGs of max degree three.
On the other hand, we provide a natural Θ(k/ log k)-approximation algorithm
for directed acyclic graphs of bounded degree. Interestingly, we also show that
for general digraphs with just one of these two properties, the approximation
ratio of our algorithm is bumped up to Θ(k).
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An interesting future work is to tighten the gap between these inapprox-
imability and approximability results for TDW on bounded-degree DAGs. We
conjecture that our approximation algorithm is almost optimal, but that our
hardness of approximation result can be strengthened to nearly match our algo-
rithm’s approximation ratio of Θ(k/ log k). This belief is based on the observa-
tion that TDW is a complex problem that involves both routing and scheduling,
and many problems of the latter variety (of size n) are NP-hard to approximate
within a factor of n1−ε, for any ε > 0 [16]. One may also wish to explore similar
complexity questions for the many variants of Time Disjoint Walks discussed in
Sect. 2.
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Abstract. Computing the directed path-width of a digraph is NP-hard
even for digraphs of maximum semi-degree 3. In this paper we consider
a family of graph classes called sequence digraphs, such that for each
of these classes the directed path-width can be computed in polynomial
time. For this purpose we define the graph classes Sk,� as the set of
all digraphs G = (V, A) which can be defined by k sequences with at
most � entries from V , such that (u, v) ∈ A if and only if in one of
the sequences u occurs before v. We characterize digraphs which can be
defined by k = 1 sequence by four forbidden subdigraphs and also as a
subclass of semicomplete digraphs. Given a decomposition of a digraph
G into k sequences, we show an algorithm which computes the directed
path-width of G in time O(k · (1 + N)k), where N denotes the maxi-
mum sequence length. This leads to an XP-algorithm w.r.t. k for the
directed path-width problem. As most known parameterized algorithms
for directed path-width consider the standard parameter, our algorithm
improves significantly the known results for a high amount of digraphs
of large directed path-width.

Keywords: Directed path-width · Transitive tournament
Semicomplete digraph · XP-algorithm

1 Introduction

A sequence digraph is defined by a set Q = {q1, . . . , qk} of k sequences qi =
(bi,1, . . . , bi,ni

), 1 ≤ i ≤ k. Further there is a function t which assigns to every
item bi,j a type t(bi,j). The sequence digraph g(Q) = (V,A) for the set Q has a
vertex for every type and an arc (u, v) ∈ A if and only if there is some sequence
qi in Q where an item of type u is on the left of some item of type v. The set
of all sequence digraphs which can be defined by sets Q on at most k sequences
that together contain at most � items of each type is denoted by Sk,�.
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We show in Theorem 1 that S1,1 is equal to the well known class of transitive
tournaments. Since only the first and the last item of each type in every qi ∈ Q
are important for the arcs in the corresponding digraph all classes S1,�, � ≥ 2
are equal. We show in Theorem 2 that S1,2 is equal to the set of semicomplete
{co-(2

−→
P2),

−→
C3,D4}-free digraphs (cf. Fig. 3 for the digraphs). By our Proposition

2 set Sk,1 can be characterized by only three forbidden subdigraphs. It is also
the class of disjoint unions of k transitive tournaments.

Considering the directed path-width problem on sequence digraphs, we get
some remarkable results. We show that for digraphs defined by k = 1 sequence the
directed path-width can be computed in polynomial time. Further we show that
for sets Q of sequences of bounded length, of bounded distribution of the items of
every type onto the sequences, or bounded number of items of every type comput-
ing the directed path-width of g(Q) is NP-hard. We show that for a fixed number k
of sequences the directed path-width is computable in polynomial time. Therefore
in Theorem 3 we introduce an algorithm which computes the directed path-width
of a digraph which is given by a set of k sequences in time O(k·(1+max1≤i≤k ni)k).
The main idea is to discover an optimal directed path-decomposition by scanning
the k sequences left-to-right and keeping in a state the numbers of scanned items
of every sequence and a certain number of active types.

From a parameterized point of view our solution leads to an XP-algorithm
w.r.t. parameter k. While the existence of FPT-algorithms for computing
directed path-width is open up to now, there are further XP-algorithms for
the directed path-width problem for some digraph G = (V,A). The directed
path-width can be computed in time O(|A|·|V |2d-pw(G)

/(d-pw(G)−1)!) by [7] and in
time O(d-pw(G) · |A| · |V |2d-pw(G)) by [11]. Further in [8] it is shown how to
decide whether the directed path-width of an �-semicomplete digraph is at most
w in time (� + 2w + 1)2w · |V |O(1). All these algorithms are exponential in the
directed path-width of the input digraph while our algorithm is exponential
within the number of sequences. Thus our result improves theses algorithms
for digraphs of large directed path-width which can be decomposed by a small
number of sequences (see Table 1 for examples). Furthermore the directed path-
width can be computed in time 3τ(und(G)) · |V |O(1), where τ(und(G)) denotes
the vertex cover number of the underlying undirected graph of G, by [9]. Thus
our result also improves this algorithm for digraphs of large τ(und(G)) which
can be decomposed by a small number of sequences (see Table 1 for examples).

Table 1. Values of parameters within XP-algorithms for directed path-width.

Digraphs G = (V, A), n = |V | d-pw(G) τ(und(G)) k �

Transitive tournaments 0 n − 1 1 1

Union of k′ transitive tournaments 0 (
∑k′

i=1 ni) − k′ k′ 1

Bidirectional complete digraphs
←→
Kn n − 1 n − 1 1 2

Semicomplete {−→
C3, D0, D4}-free [0, n − 1] n − 1 1 2

Semicomplete {co-(2−→
P2),

−→
C3, D4}-free [0, n − 1] n − 1 1 2

Union of k′ semicomplete {co-(2−→
P2),

−→
C3, D4}-Free [0, n − 1] (

∑k′
i=1 ni) − k′ k′ 2k′
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2 Preliminaries

We use the notations of Bang-Jensen and Gutin [1] for graphs and digraphs.

2.1 From Sequences to Digraphs

Let Q = {q1, . . . , qk} be a set of k sequences. Every sequence qi = (bi,1, . . . , bi,ni
)

consists of a number ni of items, such that all n =
∑k

i=1 ni items are pairwise
distinct. Further there is a function t which assigns to every item bi,j a type
t(bi,j). The set of all types of the items in some sequence qi is denoted by
types(qi) = {t(b) | b ∈ qi}. For a set of sequences Q = {q1, . . . , qk} we denote
types(Q) = types(q1) ∪ · · · ∪ types(qk). For some sequence q� = (b�,1, . . . , b�,n�

)
we say item b�,i is on the left of item b�,j in sequence q� if i < j. Item b�,i is
on the position i in sequence q�, since there are i − 1 items on the left of b�,i in
sequence q�.

In order to insert a new item b on a position j in sequence qi we first move
all items on positions j′ ≥ j to position j′ + 1 starting at the rightmost position
ni and then we insert b at position j. In order to remove an existing item b at a
position j in sequence qi we move all items from positions j′ ≥ j + 1 to position
j′ − 1 starting at position j + 1.

We consider the distribution of the items of a type t onto the sequences by

dQ(t) = |{q ∈ Q | t ∈ types(q)}| and dQ = max
t∈types(Q)

dQ(t).

For the number of items for type t within the sequences we define

cQ(t) =
∑

q∈Q

|{b ∈ q | t(b) = t}| and cQ = max
t∈types(Q)

cQ(t).

Obviously it holds dQ ≤ k and 1 ≤ dQ ≤ cQ ≤ n.
The sequence digraph g(Q) = (V,A) for a set Q = {q1, . . . , qk} has a vertex

for every type, i.e. V = types(Q) and an arc (u, v) ∈ A if and only if there is
some sequence qi in Q where an item of type u is on the left of an item of type v.
More formally, there is an arc (u, v) ∈ A if and only if there is some sequence qi

in Q, such that there are two items bi,j and bi,j′ such that (1) 1 ≤ j < j′ ≤ ni,
(2) t(bi,j) = u, (3) t(bi,j′) = v, and (4) u �= v.

Sequence digraphs have successfully been applied in order to model the stack-
ing process of bins from conveyor belts onto pallets with respect to customer
orders, which is an important task in palletizing systems used in centralized dis-
tribution centers [5]. In our examples we will use type identifications instead of
item identifications to represent a sequence qi ∈ Q. For r not necessarily distinct
types t1, . . . , tr let [t1, . . . , tr] denote some sequence qi = (bi,1, . . . , bi,r) of r pair-
wise distinct items, such that t(bi,j) = tj for j = 1, . . . , r. We use this notation
for sets of sequences as well.

Example 1. Figure 1 shows the sequence digraph g(Q) for Q = {q1, q2, q3} with
sequences q1 = [a, a, d, e, d], q2 = [c, b, b, d], and q3 = [c, c, d, e, d].
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Fig. 1. Sequence digraph g(Q) of
Example 1.
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Fig. 2. Digraph G of Example 2.

Next we give results in order to compute the sequence digraph g(Q) and
also its complement digraph co-(g(Q)). Therefore we define the position of the
first item in some sequence qi ∈ Q of some type t ∈ types(Q) by first(qi, t) and
the position of the last item of type t in sequence qi by last(qi, t). For technical
reasons, if there is no item for type t contained in sequence qi, then we define
first(qi, t) = ni + 1 and last(qi, t) = 0.

Lemma 1 (�1). Let Q = {q1} be a set of one sequence, g(Q) = (V,A) the
sequence digraph, co-(g(Q)) = (V,Ac) its complement digraph, and u �= v, u, v ∈
V .

1. There is an arc (u, v) ∈ A, if and only if first(q1, u) < last(q1, v).
2. There is an arc (u, v) ∈ Ac, if and only if last(q1, v) < first(q1, u).
3. If (u, v) ∈ Ac, then (v, u) ∈ A.
4. There is an arc (u, v) ∈ A and an arc (v, u) ∈ Ac, if and only if last(q1, u) <

first(q1, v).

Lemma 2 (�). Let Q = {q1, . . . , qk} be a set of k sequences, g(Q) = (V,A)
the sequence digraph, co-(g(Q)) = (V,Ac) its complement digraph, and u �= v,
u, v ∈ V .

1. There is an arc (u, v) ∈ A, if and only if there is some qi ∈ Q such that
first(qi, u) < last(qi, v).

2. There is an arc (u, v) ∈ Ac, if and only if for every qi ∈ Q we have
last(qi, v) < first(qi, u).

By Lemma 2(1) only the first and the last item of each type in every qi ∈
Q are important for the arcs in the corresponding digraph. Let M(qi) be the
subsequence of qi which is obtained from qi by removing all except the first and
last item for each type and M(Q) = {M(q1), . . . , M(qk)}.

Observation 1. Let Q = {q1, . . . , qk} be a set of k sequences, then g(Q) =
g(M(Q)).

1 The proofs of the results marked with a � are omitted due to space restrictions.
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2.2 From Digraphs to Sequences

Let G = (V,A) be some digraph and A = {a1, . . . , a�} its arc set. The sequence
system q(G) = {q1, . . . , q�} for G is defined as follows. (1) There are 2� items
b1,1, b1,2, . . . , b�,1, b�,2. (2) Sequence qi = (bi,1, bi,2) for 1 ≤ i ≤ �. (3) The type of
item bi,1 is the first vertex of arc ai and the type of item bi,2 is the second vertex
of arc ai for 1 ≤ i ≤ �. Thus types(q(G)) = V .

Example 2 (Sequence System). For the digraph G of Fig. 2 the corresponding
sequence system is q(G) = {q1, q2, q3, q4, q5, q6, q7}, where q1 = [a, b], q2 = [b, c],
q3 = [c, d], q4 = [d, e], q5 = [e, a], q6 = [e, f ], q7 = [f, a].

By the definition of sequence systems and sequence digraphs we obtain the
following result.

Observation 2. For every digraph G it holds G = g(q(G)).

Lemma 3 (�). For every digraph G = (V,A) with underlying undirected graph
und(G) = (V,E) there is a set Q of at most |E| sequences such that G = g(Q).

There are digraphs which even can be defined by one sequence (see Theorem
2 for a complete characterization) and there are digraphs for which |E| sequences
are really necessary (see Lemma 7). For digraphs of bounded vertex degree the
sequence system Q = q(G) leads to sets whose distribution and number of items
of each type can be bounded as follows.

Lemma 4. For every digraph G = (V,A) where max(Δ−(G),Δ+(G)) ≤ d there
is a set Q with dQ ≤ 2d and cQ ≤ 2d such that G = g(Q).

In case of complete bioriented digraphs, i.e. we have none or both arcs
between any pair of vertices, we can improve the latter bounds.

Lemma 5 (�). For every complete bioriented digraph G = (V,A) such that
max(Δ−(G),Δ+(G)) ≤ d there is a set Q with dQ ≤ d and cQ ≤ 2d (for d ≥ 2
even cQ ≤ 2d − 1) such that G = g(Q).

3 Properties of Sequence Digraphs

3.1 Graph Classes and Their Relations

We define Sk,� to be the set of all sequence digraphs defined by sets Q on at
most k sequences that contain at most � items of each type in types(Q). By
Observation 1 and Lemma 3 we obtain the following bounds.

Corollary 1. Let Q be a set on k sequences and g(Q) = (V,A) ∈ Sk,� the
defined graph with und(g(Q)) = (V,E). Then we can assume that 1 ≤ � ≤ 2k
and 1 ≤ k ≤ |E|.
Lemma 6 (�). Let � ≥ 1 and G ∈ S1,� be defined by Q = {q1}, then g(Q) is
semicomplete and graph und(g(Q)) is the complete graph on |types(Q)| vertices.
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Next we consider the relations of the defined classes for k = 1 sequence. Since
S1,1 contains only digraphs with exactly one arc between every pair of vertices
(cf. Theorem 1) and S1,� for � ≥ 2 contains all bidirectional complete digraphs
we know that S1,1 � S1,� for � ≥ 2. Further by Sk,� ⊆ Sk,�+1 and Observation 1
it follows that all classes S1,� for � ≥ 2 are equal.

Corollary 2. For � ≥ 2 the following inclusions hold true.

S1,1 � S1,2 = . . . = S1,�

For a set of digraphs F we denote by F-free digraphs the set of all digraphs
G such that no induced subdigraph of G is isomorphic to a member of F . If
F = {F}, we write F -free instead of {F}-free. For undirected graphs we use this
notation as well.

Lemma 7 (�). Let G = (V,E) be a triangle free graph, i.e. a C3-free graph,
with |E| ≥ 2, such that Δ(G) = � and let G′ = (V,A) be an orientation of G.
Then for k = |E| it holds that G′ ∈ Sk,� but for k′ < k or �′ < � it holds that
G′ �∈ Sk′,�′ .

Since for every k ≥ 2 and every � = 2, . . . , k there is a tree T on k edges
and Δ(T ) = � we know by Lemma 7 that for k ≥ 2 and � = 2, . . . , k it holds
Sk,�−1 � Sk,�. Further by Observation 1 we know that for k ≥ 2 and � ≥ 2k it
holds Sk,� = Sk,�+1.

Corollary 3. For k ≥ 2 the following inclusions hold true.

Sk,1 � Sk,2 � . . . � Sk,k ⊆ Sk,k+1 ⊆ . . . ⊆ Sk,2k = Sk,2k+1 = . . .

Lemma 8 (�). Let G ∈ Sk,�, then for every induced subdigraph H of G it holds
H ∈ Sk,�.

Graph classes which are closed under taking induced subgraphs are called
hereditary. Hereditary graph classes are exactly those classes which can be
defined by forbidden induced subgraphs.

3.2 Characterizations of Sequence Digraphs for k = 1 or � = 1

In this section we show a finite set of forbidden induced subgraphs for all classes
Sk,� where � = 1 and for all classes where k = 1. These characterizations lead
to polynomial time recognition algorithms for the corresponding graph classes.
Furthermore we give characterizations in terms of special tournaments and con-
ditions for the complement digraph.

Sequence Digraphs for k = 1 and � = 1. A digraph G = (V,A) is called
transitive if for every pair (u, v) ∈ A and (v, w) ∈ A of arcs with u �= w the arc
(u,w) also belongs to A.
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Fig. 3. Special digraphs.

Lemma 9 (�). Every digraph in S1,1 is transitive.

For a digraph G and an integer d let dG be the disjoint union of d copies of G.

Theorem 1. For every digraph G the following statements are equivalent.

1. G ∈ S1,1

2. G is a transitive tournament.
3. G is an acyclic tournament.
4. G is a

−→
C3-free tournament.

5. G is a tournament with exactly one Hamiltonian path.
6. G is a tournament and every vertex in G has a different outdegree.
7. G is {2

←→
K1,

←→
K2,

−→
C3}-free.

8. G ∈ {({v}, ∅)}∪{(
−→
Pn)n−1 | n ≥ 2}, i.e. G is the (n−1)-th power of a directed

path
−→
Pn.

Proof. The equivalence of (2)–(6) is known from [4, Chapter 9]. (1) ⇒ (2) By
Lemma 9 every digraph G ∈ S1,1 is transitive and by definition of S1,1 digraph
G is a tournament. (3) ⇒ (1) Every acyclic digraph G has a source, i.e. a vertex
v1 of indegree 0, see [1]. Since G is a tournament there is an arc (v1, v) for every
vertex v of G, i.e. v1 is an out-dominating vertex. By removing v1 from G, we
obtain a transitive tournament G1 which leads to an out-dominating vertex v2.
By removing v2 from G1, we obtain a transitive tournament G2 which leads to
an out-dominating vertex v3 and so on. The sequence [v1, v2, . . . , vn] shows that
G ∈ S1,1. (4)⇔ (7) and (1)⇔ (8) can be easily verified. �

By part (3)⇒ (1) of the proof of Theorem 1 we have shown the next result.

Proposition 1. Let G = (V,A) ∈ S1,1, then a sequence q, such that G = g({q})
can be found in time O(|V | + |A|).

Sequence Digraphs for � = 1. The sequence digraph g(Q) = (V,A) for a set
Q = {q1, . . . , qk} can be obtained by the union of g({qi}) = (Vi, Ai), 1 ≤ i ≤ k
by V = ∪k

i=1Vi and A = ∪k
i=1Ai. Since for digraphs in Sk,1 the vertex sets

Vi = types(qi) are disjoint, all properties of Theorem 1 can be generalized to
k ≥ 1 sequences. Some of them are given next.

Proposition 2. For every digraph G and every integer k ≥ 1 the following
statements are equivalent.
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1. G ∈ Sk,1.
2. G is the disjoint union of k digraphs from S1,1.
3. G is {(k + 1)

←→
K1,

←→
K2,

−→
C3}-free.

By Propositions 1 and 2 we have shown the next result.

Proposition 3. Let G = (V,A) ∈ Sk,1, then a set Q on k sequences, such that
G = g(Q) can be found in time O(|V | + |A|).

Sequence Digraphs for k = 1. The digraph D0 in Fig. 3 is not transitive,
since it has among others the arcs (b, c) and (c, a) but not the arc (b, a). Further
D0 belongs to the set S1,2, since it can be defined by set Q = {q1} of one sequence
q1 = [c, a, b, c]. Thus for � ≥ 2 items for each type even one sequence can define
digraphs which are not transitive. A digraph G = (V,A) is called quasi transitive
if for every pair (u, v) ∈ A and (v, w) ∈ A of arcs with u �= w there is at least one
arc between u and w in A. Since every semicomplete digraph is quasi transitive,
by Lemma 6 every digraph in S1,�, � ≥ 1, is quasi transitive.

To show characterizations for the class S1,2 we next give some lemmas.

Lemma 10 (�). Let � ≥ 1 and G ∈ S1,�, then its complement digraph co-G is
transitive.

Lemma 11 (�). Let � ≥ 1 and G ∈ S1,�, then its complement digraph co-G is
2
−→
P2-free.

Lemma 12 (�). Let G be a semicomplete {−→C3,D4}-free digraph on n vertices,
then G has a vertex v such that outdegree(v) = n − 1 and a vertex v′ such that
indegree(v′) = n − 1.

Lemma 13 (�). Let G be a semicomplete {−→C3,D4}-free digraph, then its com-
plement digraph co-G is transitive.

Lemma 14 (�). Every semicomplete {−→C3,D4}-free digraph has a spanning
transitive tournament subdigraph.

These results allow us to show the following characterizations. Since we use
several forbidden induced subdigraphs the semicompleteness is expressed by
excluding 2

←→
K1 (see Fig. 3 for the special digraphs).

Theorem 2. For every digraph G the following statements are equivalent.

1. G ∈ S1,2

2. G ∈ S1,� for some � ≥ 2
3. co-G is transitive, co-G is 2

−→
P2-free, and G has a spanning transitive tourna-

ment subdigraph.
4. G is {co-(2−→

P2), 2
←→
K1,

−→
C3,D4}-free.
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Proof. (2) ⇒ (1) By Corollary 2. (1) ⇒ (4) co-(2
−→
P2), 2

←→
K1,

−→
C3,D4 �∈ S1,2. (4) ⇒

(3) By Lemmas 13 and 14. (3) ⇒ (2) Let G′ = (V,A′) be a subdigraph of G =
(V,A) which is a transitive tournament. By Theorem 1 we know that G′ ∈ S1,1

and thus there is some sequence q′ = [v1, . . . , vn] such that g({q′}) = G′. If A′ =
A we know that G ∈ S1,1 ⊆ S1,� for every � ≥ 2. So we can assume that A′ � A.
Obviously for every arc (vi, vj) ∈ A − A′ there are two positions j < i in q′ =
[v1, . . . , vj , . . . , vi, . . . , vn]. In order to define a subdigraph of G which contains all
arcs of G′ and arc (vi, vj) we can insert (cf. Sect. 2.1 for the definition of inserting
an item) an additional item for type vi on position k ≤ j, or an additional item
for type vj on position k > i, or first an additional item for type vj and then an
additional item for type vi on a position k, j < k ≤ i, into q′ without creating
an arc which is not in A. This is possible if and only if there is some position k,
j ≤ k ≤ i, in q′ = [v1, . . . , vj , . . . , vm′ , . . . , vk, . . . , vm′′ , . . . , vi, . . . , vn] such that
for every m′, j < m′ ≤ k, it holds (vm′ , vj) ∈ A and for every m′′, k ≤ m′′ < i,
it holds (vi, vm′′) ∈ A.

If it is possible to insert all arcs of A−A′ by adding a set of additional items
into sequence q′ resulting in a sequence q such that G = g(q), then it obviously
holds G ∈ S1,� for some � ≥ 2. Next we show a condition using the new items of
every single arc of A − A′ independently from each other.

Claim (�). If for every arc (vi, vj) ∈ A − A′ there is a position k, j < k ≤ i
such that first inserting an additional item for type vj and then an additional
item for type vi at position k into q′ defines a subdigraph of G which contains
all arcs of G′ and arc (vi, vj), then G ∈ S1,� for some � ≥ 2.

Assume that G �∈ S1,� for every � ≥ 2. By the Claim there is some arc
(vi, vj) ∈ A−A′ such that for every position k, j < k ≤ i inserting an additional
item for type vi and an additional item for type vj at position k defines an arc
which is not in A. That is, for every position k, j < k ≤ i, in q′ there exists
some m′, j < m′ ≤ k, such that it holds (vm′ , vj) �∈ A or there exists some
m′′, k ≤ m′′ < i, such that it holds (vi, vm′′) �∈ A. By the transitivity of co-G
it follows that there is one position k, j < k ≤ i, in q′ such that there exists
some m′, j < m′ ≤ k, such that it holds (vm′ , vj) �∈ A and there exists some m′′,
k ≤ m′′ < i, such that it holds (vi, vm′′) �∈ A.

If co-G = (V,Ac) is the complement digraph of G we know that

(vm′ , vj) ∈ Ac and (vi, vm′′) ∈ Ac. (1)

Since m′ ≤ m′′ we know that (vm′ , vm′′) ∈ A. We also know that (vm′′ , vm′) ∈
A, since otherwise (vm′′ , vm′) ∈ Ac, property (1), and the transitivity of co-G
would imply that (vi, vj) ∈ Ac which is not possible. Thus we know that

(vm′ , vm′′) �∈ Ac and (vm′′ , vm′) �∈ Ac. (2)

Further the arcs (vj , vm′), (vj , vm′′), (vm′ , vi), (vm′′ , vi) belong to A′ ⊆ A and
thus

(vj , vm′) �∈ Ac, (vj , vm′′) �∈ Ac, (vm′ , vi) �∈ Ac and (vm′′ , vi) �∈ Ac. (3)
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If (vi, vm′) ∈ Ac or (vm′′ , vj) ∈ Ac then (1) and the transitivity of co-G would
imply that (vi, vj) ∈ Ac, thus we know

(vi, vm′) �∈ Ac and (vm′′ , vj) �∈ Ac. (4)

Properties (1)–(4) imply that ({vi, vj , vm′ , vm′′}, {(vi, vm′′), (vm′ , vj)}) indu-
ces a 2

−→
P2 in co-G, which implies that G contains a co-(2

−→
P2). �

Corollary 4. Every digraph in Sk,� can be obtained by the union of at most k

many {co-(2−→
P2), 2

←→
K1,

−→
C3,D4}-free digraphs.

Proposition 4. Let G = (V,A) ∈ S1,2, then a sequence q, such that G = g({q})
can be found in time O(|V | + |A|).
Proof. Let G = (V,A) ∈ S1,2 and q = []. We perform the following steps until
G = (∅, ∅).

– Choose v ∈ V such that (v, u) ∈ A for all u ∈ V − {v} and append v to q.
– Remove all arcs (v, u) from A.
– If indegree(v) = outdegree(v) = 0, remove v from V .
– If there are vertices u such that indegree(u) = outdegree(u) = 0, remove u

from V and append u to q.

In order to perform the algorithm there has to be an ordering v1, . . . , vn

of V such that for 1 ≤ i < n vertex vi has maximum possible outdegree in
subdigraph obtained by removing the outgoing arcs of v1, . . . , vi−1 and thereby
created isolated vertices from G. Since G ∈ S1,2 there is a sequence q′ such that
G = g({q′}). The order in which the types corresponding to the vertices of V
appear in subsequence F (q′), defined in the proof of Theorem 2, ensures the
existence of such an ordering.

Finally it holds G = g({q}) by the definition of sequence digraphs and since
every vertex which has only outgoing or only incoming arcs will be inserted once
into q and every vertex which has outgoing and incoming arcs will be inserted
at most twice into q this sequence fulfils the properties stated in the theorem. �

4 Directed Path-Width of Sequence Digraphs

According to Barát [2], the notion of directed path-width was introduced by
Reed, Seymour, and Thomas around 1995 and relates to directed tree-width
introduced by Johnson, Robertson, Seymour, and Thomas in [6]. A directed path-
decomposition of a digraph G = (V,A) is a sequence (X1, . . . , Xr) of subsets of
V , called bags, such that the following three conditions hold true.

(dpw-1) X1 ∪ . . . ∪ Xr = V .
(dpw-2) For each (u, v) ∈ A there is a pair i ≤ j such that u ∈ Xi and v ∈ Xj .
(dpw-3) If u ∈ Xi and u ∈ Xj for some u ∈ V and two indices i, j with i ≤ j,

then u ∈ X� for all indices � with i ≤ � ≤ j.
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The width of a directed path-decomposition X = (X1, . . . , Xr) is

max
1≤i≤r

|Xi| − 1.

The directed path-width of G, d-pw(G) for short, is the smallest integer w such
that there is a directed path-decomposition for G of width w.

Determining whether the (undirected) path-width of some given (undirected)
planar graph with maximum vertex degree 3 is at most some given value w is
NP-complete [10]. Since for complete bioriented digraphs the directed path-width
(d-pw) is equal to the (undirected) path-width (pw) of the underlying undirected
graph it follows that determining whether the directed path-width of some given
digraph with maximum semi-degree Δ0(G) = max{Δ−(D),Δ+(D)} ≤ 3 is at
most some given value w is NP-complete, which will be useful to show Proposi-
tion 6.

4.1 Hardness of Directed Path-Width on Sequence Digraphs

Next we give some conditions on the sequences in Q such that for the corre-
sponding digraph g(Q) computing its directed path-width is NP-hard.

Proposition 5. Given a set Q on k sequences such that ni = 2 for 1 ≤ i ≤ k
and an integer p, then the problem of deciding whether d-pw(g(Q)) ≤ p is NP-
complete.

Proof. The stated problem is in NP. To show the NP-hardness by a reduction
from the directed path-width problem we transform instance (G, p) in linear
time into instance (q(G), p) for the stated problem. The correctness follows by
Observation 2. �
Proposition 6. Given a set Q with dQ = 3 or cQ = 5 and an integer p, then
the problem of deciding whether d-pw(g(Q)) ≤ p is NP-complete.

Proof. To show the NP-hardness by a reduction from the directed path-width
problem for digraphs G with max(Δ−(G),Δ+(G)) ≤ 3, we transform instance
(G, p) in linear time into instance (q(G), p) for the stated problem. The correct-
ness follows by Lemma 5. �

4.2 Polynomial Cases of Directed Path-Width on Sequence
Digraphs

We consider the directed path-width of sequence digraphs for k = 1 or � = 1.

Proposition 7. Let G ∈ Sk,1, then d-pw(G) = 0.

Proof. By Proposition 2 every digraph in Sk,1 is the disjoint union of k digraphs
in S1,1. By Theorem 1 every digraph in S1,1 is acyclic and thus has directed
path-width 0. �
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For digraphs in S1,2 the directed path-width can be arbitrary large, since this
class includes all bidirectional complete digraphs. We can compute this value as
follows. Let Q = {q}. For type t ∈ types(q) let It = [first(q, t), last(q, t)] be the
interval representing t, and let Iq = {It | t ∈ types(q)} be the set of all intervals
for sequence q. Let I(q) = (V,E) be the interval graph where V = types(q) and
E = {{u, v} | u �= v, Iu ∩ Iv �= ∅, Iu, Iv ∈ Iq}.

Proposition 8. Let G ∈ S1,2 defined by a set Q = {q1} of one sequence, then
d-pw(G) = ω(I(q)) − 1 = pw(I(q)).

Proof. We obtain d-pw(G) ≤ ω(I(q))− 1 by an obvious directed path-decompo-
sition along I(q). Further for every integer r the set I(r) = {It | r ∈ It} defines a
complete subgraph K|I(r)| in I(q) and also a bidirectional complete subdigraph←−−→
K|I(r)| in G. Thus it holds d-pw(G) ≥ ω(I(q)) − 1. The second equality holds
since the (undirected) path-width of an interval graph is equal to the size of a
maximum clique [3]. �

Sets Q where dQ = 1 can be handled in polynomial time.

Proposition 9. Given a set Q with dQ = 1 and an integer p, then the problem
of deciding whether d-pw(g(Q)) ≤ p can be solved in time O(|types(Q)|2 + n).

Proof. Let Q = {q1, . . . , qk}. If dQ = 1 the vertex sets Vi = types(qi) are disjoint.
That is, g(Q) is the disjoint union of digraphs in S1,2 for which the directed path-
width can be computed in time O(

∑k
i=1 |types({qi})|2+ni) ⊆ O(|types(Q)|2+n)

by Proposition 8. �

4.3 An XP-Algorithm for Directed Path-Width

We next give an XP-algorithm for directed path-width w.r.t. the parameter
k, which implies that for every constant k for a given set Q on at most k
sequences the value d-pw(g(Q)) can be computed in polynomial time. The main
idea is to discover an optimal directed path-decomposition by scanning the k
sequences left-to-right and keeping in a state the numbers of scanned items of
every sequence and a certain number of active types.

Let Q = {q1, . . . , qk} be a set of k sequences. Every k-tuple (i1, . . . , ik) where
0 ≤ ij ≤ nj for 1 ≤ j ≤ k is a state of Q. State (0, 0, . . . , 0) is the initial state and
(n1, . . . , nk) is the final state. The state digraph s(Q) for a set Q has a vertex
for each possible state. There is an arc from vertex u labeled by (u1, . . . , uk)
to vertex v labeled by (v1, . . . , vk) if and only if ui = vi − 1 for exactly one
element of the vector and for all other elements of the vector uj = vj . Let
(i1, . . . , ik) be a state of Q. We define L(i1, . . . , ik) to be the set of all items on
the positions 1, . . . , ij for 1 ≤ j ≤ k and R(i1, . . . , ik) is the set of all items on
the remaining positions ij +1, . . . , nj for 1 ≤ j ≤ k. Further let M(i1, . . . , ik) be
the set of all items on the positions ij for 1 ≤ j ≤ k such that there is exactly
one type of these items in Q. Obviously, for every state (i1, . . . , ik) it holds that
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L(i1, . . . , ik) ∪ R(i1, . . . , ik) leads to a disjoint partition of the items in Q and
M(i1, . . . , ik) ⊆ L(i1, . . . , ik).

Further each vertex v of the state digraph is labeled by the value f(v). This
value is the number of types t such that either there is at least one item of type
t in L(v) and at least one item of type t in R(v) or there is one item of type t
in M(v). Formally we define active(v) = {t ∈ types(Q) | b ∈ L(v), t(b) = t, b′ ∈
R(v), t(b′) = t} ∪ {t ∈ types(Q) | b ∈ M(v), t(b) = t} and f(v) = |active(v)|.
Obviously for the initial state v it holds |active(v)| = 0. Since the state digraph
s(Q) is a directed acyclic graph we can compute all values |active(v)| using a
topological ordering topol of the vertices. Every arc (u, v) in s(Q) represents one
item bi,j if item bi,j−1 �∈ M(v) and two items bi,j and bi,j−1 if item bi,j−1 ∈ M(v)
of some types t(bi,j) = t and t(bi,j−1) = t′ from some sequence qj , thus

|active((i1, . . . , ij−1, ij + 1, ij+1, . . . , ik))|
= |active((i1, . . . , ij−1, ij , ij+1, . . . , ik))| + cj

where

cj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if first(qj , t) = ij + 1 and first(q�, t) > i� ∀ � �= j and
not(first(qj , t

′) = last(qj , t
′) = ij and last(q�, t

′) = 0 ∀ � �= j)
0, if first(qj , t) = ij + 1 and first(q�, t) > i� ∀ � �= j and

first(qj , t
′) = last(qj , t

′) = ij and last(q�, t
′) = 0 ∀ � �= j

−1, if last(qj , t) = ij + 1 and last(q�, t) ≤ i� ∀ � �= j and
not(first(qj , t

′) = last(qj , t
′) = ij and last(q�, t

′) = 0 ∀ � �= j)
−2, if last(qj , t) = ij + 1 and last(q�, t) ≤ i� ∀ � �= j and

first(qj , t
′) = last(qj , t

′) = ij and last(q�, t
′) = 0 ∀ � �= j

0, otherwise.

Thus, the calculation of value |active(i1, . . . , ik)| for the vertex labeled (i1, . . . , ik)
depends only on already calculated values, which is necessary in order to use
dynamic programming2.

Let P(Q) the set of all paths from the initial state to the final state in s(Q).
Every P ∈ P(Q) has r = 1 +

∑k
i=1 ni vertices, i.e. P = (v0, . . . , vr). First we

show that every path in P(Q) leads to a directed path-decomposition for g(Q).

Lemma 15 (�). Let Q be a set of k sequences and (v0, . . . , vr) ∈ P(Q). Then
(active(v1), . . . , active(vr−1)) is a directed path-decomposition for g(Q).

Lemma 15 leads to an upper bound on the directed path-width of g(Q) using
the state graph. The reverse direction is more involved and considered next. The
main idea is to use a nice path-decomposition in which the introduce nodes are
ordered w.r.t. the existing common order of the types within the sequences.
2 For sets Q such that the number of items for which there is no further item of the
same type in Q is small, we suggest to modify Q by inserting a dummy item of
the same type at the position after such items. This does not change the sequence
digraph and allows to make a case distinct within three instead of five cases when
defining cj . But this modification increases the size of the sequence digraph.
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Lemma 16 (�). Let Q be a set of k sequences. If there is a directed path-
decomposition of width p − 1 for g(Q), then there is a path (v0, . . . , vr) ∈ P(Q)
such that for every 1 ≤ i ≤ r it holds |active(vi)| ≤ p.

By Lemmas 15 and 16 we obtain the following result.

Corollary 5. Given a set Q of k sequences, then

d-pw(g(Q)) = min
(v0,...,vr)∈P(Q)

max
1≤i≤r−1

|active(vi)| − 1.

In order to apply Corollary 5 we consider some general digraph problem. Let
G = (V,A, f) be a directed acyclic vertex-labeled graph. Function f : V → Z

assigns to every vertex v ∈ V a value f(v). Let s ∈ V and t ∈ V be two vertices.
For some vertex v ∈ V and some path P = (v1, . . . , v�) with v1 = s, v� = v and
(vi, vi+1) ∈ A we define valP (v) := maxu∈P (f(u)). Let Ps(v) denote the set of
all paths from vertex s to vertex v. We define val(v) := minP∈Ps(v)(valP (v)).
Then it holds:

val(v) = max{f(v), min
u∈N−(v)

(val(u))}.

By dynamic programming it is possible to compute all the values of val(v),
v ∈ V , in time O(|V | + |A|). This is possible, since G is acyclic.

Theorem 3. Given a set Q, such that g(Q) ∈ Sk,� for some � ≥ 1, then the
directed path-width of g(Q) and also a directed path-decomposition can be com-
puted in time O(k · (1 + max1≤i≤k ni)k).

Proof. Let Q be a set, such that g(Q) ∈ Sk,�. The state digraph s(Q) has at most
(1 + max1≤i≤k ni)k vertices and can be found in time O(k · (1 + max1≤i≤k ni)k)
from Q. By Corollary 5 the directed path-width of g(Q) can be computed by
considering all paths from the initial state to the final state in s(Q). This can be
done by any algorithm for the above general digraph problem on s(Q) = (V,A)
using f(v) = |active(v)|, v ∈ V , s as the initial state, and t as the final state.
Since every vertex of the state digraph has at most k outgoing arcs we have
O(|V |+ |A|) ⊆ O(k · (1+max1≤i≤k ni)k). Thus we can compute an optimal path
in s(Q) in time O(k · (1 + max1≤i≤k ni)k). �

5 Conclusions

In this paper, we have considered digraphs which can be defined by a set of k
sequences. We have shown an XP-algorithm for directed path-width w.r.t. num-
ber of sequences k needed to define the input graph. For special digraphs our
solution improves known solution w.r.t. the standard parameter as shown in
Table 1. This implies that for each constant k, it is decidable in polynomial time
whether for a given set Q on at most k sequences the digraph g(Q) has directed
path-width at most w. If we know that some digraph can be defined by one
sequence, we can find this in linear time (Proposition 4). This implies that for
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each constant k, it is decidable in polynomial time whether for a digraph G,
which is given by the union of at most k many semicomplete {co-(2

−→
P2),

−→
C3,D4}-

free digraphs, digraph G has directed path-width at most w.
There are several interesting open questions. (a) Is there is an FPT-algorithm

for the directed path-width problem w.r.t. parameter k? (b) Does the hardness
of Proposition 6 also hold for cQ ∈ {2, 3, 4} and for dQ = 2? (c) By Theorem
1, Proposition 2 and Theorem 2 one can decide in polynomial time whether a
given digraph belongs to the class Sk,� for � = 1, for k = 1, or both. It remains
to consider this problem for the classes Sk,� for k ≥ 2 and 2 ≤ � ≤ 2k. (d) Can
we find for a given digraph G a set Q with a smallest number of sequences such
that g(Q) = G in polynomial time?
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Abstract. Solutions to genome scaffolding problems can be represented
as paths and cycles in a “solution graph”. However, when working with
repetitions, such solution graphs may contain branchings and, thus, they
may not be uniquely convertible into sequences. Having introduced vari-
ous ways of extracting the unique parts of such solutions, we extend pre-
viously known NP-hardness results to the case that the solution graph is
planar, bipartite, and subcubic, and show that there is no PTAS in this
case.

1 Introduction

Extracting information from genomes has become a very largely spread task, at
numerous levels, and most of these need to consider their nucleotidic sequence.
Large databases contain genomic sequences of a very large range of organisms,
or various individuals of a same species. However, difficulties arise when it comes
to extract nucleotidic sequences from the DNA molecule. Technical limitations
induce a complex inference process, beginning with the sequencing step, where
a large amount of overlapping, short sequences are produced, going on with
the assembly step, which takes those short sequences called reads, and exploits
overlaps to output longer sequences called contigs. Those contigs are usually the
final product of most of genomes, called drafted genomes. NGS data are going to
evolve towards longer and longer sequences, but most of the available sequencing
data in public databases are huge collections of billions of short reads (i.e. words
of between fifteen and hundreds of characters) [12]. Those genomes are often
sufficient to extract useful information, for instance detect and compare genic
content. However, the global structure of the genome may be lacking, depending
on how these genomes stay fragmented. Intending to cure this fragmentation,
and improve the assembly process, it is possible to perform a scaffolding of
the contigs, that is the inference of relative order and orientation of contigs,
using additional information. Most of scaffolding tools are using information
from paired-end sequencing, and using various models and methods (see [7,9]
for surveys).

c© Springer Nature Switzerland AG 2018
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Few of them are considering genomic repeats, which are often disturbing
both assembly and scaffolding. In numerous organisms, a significant part of the
genome is repeated. Such repeats may be of various sizes and present variable
copy numbers, according to the species and individuals [3]. Due to the conser-
vatism of some assembly methods, a repeat may cover an entire contig which is
separated from the other genomic side fragments [13] i.e.

In the Jungle of Problems. We focus in this paper on models, graphs and prob-
lems aiming to participate to scaffolding with repeated contigs. To this purpose,
we essentially manipulate two kinds of graphs, both modeling contigs and their
interactions, the scaffold graph and the solution graph. We denote by E(G) and
V (G) the set of edges and vertices, respectively, of a graph G (or E and V if
no ambiguity occurs). A solution graph is a special kind of scaffold graph, the
latter being defined the following way:

Definition 1 (scaffold graph). A graph (G,M∗, ω,m) is a scaffold graph if V
corresponds to a set of contig extremities, and E is composed of two subsets: M∗

is the set of edges between extremities belonging to a same contig (thus defining
a perfect matching in G), and E \ M∗ is the set of interactions between contigs.
A scaffold graph comes with two functions ω,m : E → N, defining respectively
the confidence level of inter-contigs interactions, and the multiplicity of contigs
(their copy number). If m is not provided, then all multiplicities are equal to one.

An example of scaffold graph, and inference of solutions on this graph, can
be found in Fig. 1.

Given a set of contigs, it is possible to infer their multiplicities using various
techniques involving for instance the cover depth in a mapping of reads on contigs
(using for instance tools like CRAC [11]), or directly infer multiple contigs from
kmer counting [8]. Getting links between contigs necessits additional information,
for instance mapping of paired-end reads on contigs [4].

Inferring scaffolds, i.e. sequences of contigs at the chromosome scale, is mod-
eled by an optimisation problem in the scaffold graph, similar to Traveling Sales-
man Problem, but taking into account the chromosomal structure (numbers of
linear and circular chromosomes). In the simplified case where every contig is
supposed to appear just once, this problem is stated as:

Scaffolding (SCA)
Input: a scaffold graph (G,M∗, ω) and integers σp, σc, k ∈ N

Question: Is there some S ⊆ E \ M∗ such that S ∪ M∗ is
a collection of ≤ σp alternating paths and ≤ σc alternating cycles
and

∑
e∈S ω(e) ≥ k?

For a vertex v, we define M∗(v) as the unique vertex u with uv ∈ M∗. A
path (or a cycle) p is called alternating with respect to M∗ if, for all vertices u
of p, also M∗(u) is a vertex of p.

Scaffolding has been studied in the framework of complexity and approx-
imation [4,14,15]. In this case, the produced solution is a collection of disjoint
paths alternating between edges from M∗ (contigs) and edges from E\M∗ (links
between contigs), from which it is easy to infer without any ambiguity a set of
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nucleotidic sequences by reading contig sequences, and for inter-contig links,
either detecting possible overlaps missed by the assembly process, or completing
with N’s.

To improve the realism of the model, it is convenient to take the multiplicities
of contigs into account. The main difference induced by allowing a contig to
appear several times in the solution, is that the set of edges which are selected
in an optimal solution does not necessarily lead to a unique interpretation as a set
of scaffolds. The scaffolding problem with multiplicities thus involves a solution
which is a graph, corresponding to the fusion of the right number of walks in
the original scaffold graph. For each non-contig edge uv, its multiplicity m(uv)
equals the smaller of the multiplicities of the contig edges incident to u and
v. A walk W is a sequence (u1, u2, . . . , u�) of vertices such that, for each two
consecutive vertices ui and ui+1, we have uiui+1 ∈ E. Then, W is called closed
if u1 = u� and W is called alternating with respect to M∗ if � is even and, for
each odd i, we have uiui+1 ∈ M∗.

Observation 1. For each vertex u of a solution graph, the sum of multiplicities
of its incident non-matching edges is at most the multiplicity of its incident
matching edge.

The scaffolding problem with multiplicities is thus stated as follows:

Scaffolding with Multiplicities (MSCA)
Input: a scaffold graph (G,M∗, ω,m) and σp, σc, k ∈ N

Question: Is there a multiset S of ≤ σc closed and ≤ σp non-closed
alternating walks in G such that each e ∈ M∗ occurs at most m(e)
times in accross all walks of S and

∑
e∈E(S)\M∗ ω(e) ≥ k?

In this setting, a scaffold graph (G∗,M∗, ω∗,m∗) is called solution graph for
(G,M∗, ω,m) if (a) G∗ is a subgraph of G, (b) ω∗ is the restriction of ω to G∗,
(c) m∗(uv) ≤ m(uv) for all uv ∈ E(G), (d) G∗ can be decomposed into ≤ σc

closed and ≤ σp non-closed walks. Such a decomposition into walks is called a
linearization of the solution graph and, in general, it is not necessarily unique
(see Fig. 1). Note that decomposability also implies that no vertex can have
more incident non-matching multiplicities than the multiplicity of its incident
matching edge.

It turns out that, in presence of repeated contigs, a solution graph implies
a unique set of sequences if and only if it does not contain so called ambiguous
paths [16].

Definition 2 (Ambiguous path). Let p be an alternating u-v-path in a solu-
tion graph. If all edges of p have the same multiplicity μ (that is, m(e) = μ
for all e ∈ p), then p is called μ-uniform (or simply uniform if μ is unknown).
Further, if p is μ-uniform and each of u and v is incident with a non-matching
edge of multiplicity strictly less than μ, then p is called “ambiguous”.

Thus, the task above can be achieved by destroying all ambiguous paths in
the solution graph. A brutal way to do this is to cut the non-contig edges incident
to both extremities of each ambiguous path. However, this solution may erase
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potentially important information. Indeed, to destroy an ambiguous path, it
is sufficient to remove the non-contig edges incident to one of its extremities.
Further, let v be an extremity of an uniform path, we sometimes say “to cut v”,
by which we mean removing all non-contig edges incident with v, and in that
case v is denoted as a vertex-cut. The problem of finding a most parsimonious
(with respect to some cost function ω′) set X of vertex-cuts which destroys all
ambiguous paths is called Semi-Brutal Cut. Several cost-functions ω′ make
sense in this setting.

Definition 3. A weight-function ω′ : 2V → N is called

1. cut-score, if ω′ counts one per vertex-cut (that is, ω′(X) = |X|),
2. path-score, if ω′ counts one per removed edge (that is,

ω′(X) :=
∑{m(uv) | uv ∈ E \ M∗ ∧ uv ∩ X 
= ∅}), and

3. weight-score, if ω′ counts the total weight of the removed edges (that is,
ω′(X) :=

∑{m(uv) · ω(uv) | uv ∈ E \ M∗ ∧ uv ∩ X 
= ∅}).
Note that, from the perspective of computational complexity, the path-score is
a special case of the weight score, since we can just set ω′(e) = 1 for all edges e.
Thus, when saying “both scores” we refer to cut- and weight-score. Formally,
the Semi-Brutal Cut problem on which we focus here, is defined the following
way:

Semi-Brutal Cut (SBC)
Input: a solution graph (G,M∗, ω,m) and some k ∈ N

Question: Is there a set X of vertex-cuts of G which destroys all ambigu-
ous paths and the score of X is at most k?

We consider the functions defined in Definition 3 as scores for X. In context of
approximation, Semi-Brutal Cut refers to its optimization variant, minimizing
the score of X.

A summary of the different problems involved and their input/output is
presented in Table 1.

Table 1. Problems around genome scaffolding.

Problem Scaffolding Scaffolding with Multiplicities Semi-Brutal Cut

Input Scaffold graph Scaffold graph Solution graph

Output Scaffolds Solution graph Scaffolds

Related Works. In previous work [5,16], we proposed the first results concern-
ing the complexity and approximation of Semi-Brutal Cut according to the
scoring functions mentioned in Definition 3. Some questions remain open con-
cerning the complexity and (Non)-approximation for the cut and weight-score.
In this article, we conclude the study of linearization in the framework of com-
plexity and approximation. We prove that Semi-Brutal Cut according to the
cut-score is APX-complete.
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Fig. 1. Example of scaffold graph (a), a solution graph (b), scaffolds after solving
Semi-Brutal Cut (c) and a direct linearization leading to chimeric solution (d).
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Table 2. Overview of results for Semi-Brutal Cut.

Topologies Type of cut Complexity Lower and upper bound

General All NP-hard [16]

Trees All Linear [16]

Planar, Δ ≤ 4 Cut-score NP-hard [16] Approx: 1.37 (P �= NP) [16],
Approx: 2 − ε (UGC) [16],
Exact: 2o(n)(ETH) [16]

Bip. plan., Δ ≤ 3 Cut-score NP-hard [5] APX-Hard [5]
Exact: 2o(

√
n+m)nO(1) (ETH)

[5]
4-approximation Theorem 3

Bip., planar Δ ≤ 3 Weight-score NP-hard Theorem 1 2-approximation [5]
APX-Complete 1

Δ ≤ 3 1.108 Theorem 2

Organization of the Article. The Sect. 2 is devoted to the complexity result, we
push this hardness result to bipartite, planar, subcubic graphs whereas Sect. 3
propose some lowers bounds according to complexity hypothesis. In the last
section, we develop a polynomial-time approximation algorithm which conclude
Semi-Brutal Cut. Table 2 summarizes the overall results.

2 Computational Hardness

We consider in this section a very restricted class of graphs, which are planar,
bipartite, subcubic graphs. The choice of this class is simultaneously led by
biological and theoretical reasons. Biologically, we noticed that solution graphs
are really sparse, and once reduced the non-ambiguous paths, are often equivalent
to planar graphs with small degrees. However, this is only empirical observation
and to our knowledge there are no general properties on real solution graphs
that could be directly exploited. The theoretical reason is a wide literature on
those classical classes of graphs, and we know hardness and non-approximation
results that could be exploited through classical reductions. We mean then to
show that, though not capturing the essential of solution graph properties, the
results below give a good indication on how hard the problem is to solve, even
under structural constraints.

Although it is know that Semi-Brutal Cut is NP-hard under both cut- and
weight-score [16], we extend this hardness for the weight-score to planar, bipar-
tite, subcubic graphs. To this end, we reduce the classic NP-complete problem
3-SAT to Semi-Brutal Cut.

Monotone 3-Satisfiability (3-SAT)
Input: A boolean formula ϕ in conjunctive normal form where each clause

contains exactly three positive literals or three negative literals.
Question: Is there a satisfying assignment β for ϕ?
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Fig. 2. Matching edges are bold. Left: variable gadget cxi linked to the clause gadgets
q1, q3 and qm, where xi occurs positively in C1 and C3 and negatively in Cm. Right:
clause gadget corresponding to the clause C� =(x1 ∨ x2 ∨ x3).

Construction 1. Let ϕ be an instance of 3-SAT with n variables x1, x2, . . .
and m clauses C1, C2, . . .. For each variable xi, let ψi be the list of indices �
such that C� contains xi and |ψi| is the number of occurrences of xi in ϕ. We
construct the following solution graph (G∗,M∗, ω,m) along with a 2-coloring of
G∗ (see Fig. 2).

– For each xi, we construct a cycle ci on the vertex set
⋃

j≤|ψi|{ui
j , u

i
j , v

i
j , v

i
j}

such that, for all j ≤ |ψi|,
• {ui

j , u
i
j}, {vi

j , v
i
j} ∈ M∗, and

• the vertices ui
j and vi

j are blue and the vertices ui
j and vi

j are red.
– For each clause C�, we construct an alternating 6-cycle q� on the vertex set⋃

j≤3{r�
j , b

�
j} such that, for all j ≤ 3, {r�

j , b
�
j} ∈ M∗, and r�

j is red and b�
j is

blue.
– For each variable xi and each j ≤ |ψi|, let C� be the jth clause of ψi and let

t be such that liti is the tth literal of C�. Then,
• create a single matching edge {c�

j , c
�
j}, where c�

j is blue and c�
j is red,

• if xi occurs positively in C�, introduce the edges {r�
t , u

i
j} and {c�

j , u
i
j}, and

• if xi occurs negatively in C�, introduce the edges {b�
t, u

i
j} and {c�

j , u
i
j}.

– Each non matching edge has multiplicity 1 and weight 1 and all matching
edges have multiplicity 2 (thus, each matching edge except the {c�

i , c
�
i} is an

ambiguous path).

Clearly, Construction 1 can be carried out in polynomial time. Further, the
resulting graph G∗ is bipartite and the maximum degree Δ(G∗) = 3. In the
following, we call a matching edge clean if one of its endpoints has degree one.
Note that a scaffold graph whose every matching edge is clean does not contain
ambiguous paths.

Theorem 1. Semi-Brutal Cut is NP-complete for the weight-score, even if
the graph is planar, bipartite, subcubic.
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In order to prove Theorem 1, we use the following properties of Construction 1,
yielding a “canonical” set of cuts.

Lemma 1. Let S ⊆ V (G∗) be a set of vertex-cuts destroying all ambiguous
paths in (G∗,M∗, ω,m), let ci be a variable gadget and let q� be a clause gadget.
We suppose that we start by cutting the vertices in the variable gadget and then
we cut the vertices in the clause gadget. There is a set S′ of vertex-cuts with
|S′| ≤ |S| that also destroys all ambiguous paths and

(a) ω′(S∩V (ci)) = ω′(S′∩V (ci)) ≥ 2×|ψi| and ω′(S∩V (q�)) = ω′(S′∩V (q�)) ≥
2 (S and S′ have the same score in variable gadgets and clause gadgets),

(b) if ω′(S′ ∩ V (ci)) = 2 × |ψi|, then S′ ∩ V (ci) is either
⋃

j≤|ψi|{ui
j} or

⋃
j≤|ψi|{ui

j} (if S′ is optimal on a variable gadget, cuts are only on posi-
tive sides or only on negative sides),

(c) ω′(S′ ∩ V (q�)) = 2 if and only if S′ contains a vertex adjacent to q� (only
two cuts are needed in a clause gadget iff it has been isolated by a cut in an
adjacent variable gadget, meaning that the variable satisfies the clause).

Proof. (a): For each j ≤ |ψi|, we need to remove two edges to linearize the
ambiguous paths {ui

j , u
i
j}. Then we need to remove at least 2 × |ψi| edges in ci.

In the clause q�, we need to remove at least two edges in the inner cycle.

b�
1

r�
1

b�
2 r�

2

b�
3

r�
3

Fig. 3. A cut of size 2 in q� when
one incident edge to q� is cut. Dashed
edges and vertices are part of the cut.

(b): Note that cutting all vertices in
either

⋃
j≤|ψi|{ui

j} or
⋃

j≤|ψi|{ui
j} suffices

to remove all ambiguous path in xi and in
that case ω(S ∩ V (ci)) = 2 × |ψi|. If S con-
tains some ui

j and does not contain ui
j+1

for some j, then we need a cut to linearize
{vi

j , v
i
j} which will increase by one the score

of the solution (and analogously for ui
j).

Hence if ω′(S ∩ V (ci)) = 2 × |ψi|, we can
suppose that S contains either

⋃
j≤|ψi|{ui

j}
or

⋃
j≤|ψi|{ui

j}. If S contains a cut in some
vi

j or some vi
j then, since the path {vi

j , v
i
j}

is already linearized by a cut in {ui
j , u

i
j+1},

we can remove the cut in S′.
(c): We need to remove at least two edges from the inner cycle of C�. Suppose

that all literals of C� occur positively. Suppose by symmetry that {b�
1, b

�
2} ⊆ S′.

Then if the leaving edge incident to r�
3 is not cut, then we need to remove one

more edge from q� and in that case ω′(S′ ∩ V (q�)) ≥ 2 (see Fig. 3). ��
Proof (Proof of Theorem 1). Recall that 3-SAT remains NP-complete if the
input formula is planar [1] and, in this case, the graph produced by Construc-
tion 1 is also planar. Clearly, Semi-Brutal Cut is in NP. We show that Con-
struction 1 is correct, that is, ϕ is satisfyable if and only if the scaffold graph
(G∗,M∗, ω,m) resulting from Construction 1 can be linearized with a score of
8m.
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“⇒”: Let β be a satisfying assignment for ϕ. Then, for each variable xi and
for all j ≤ |ψi|, we cut the vertices ui

j if β(xi) = 1 and the vertices ui
j otherwise.

As β is satisfying, this removes at least one edge adjacent to each clause gadget.
Thus, according to Lemma 1(c), we can cut two vertices in each clause gadget qj

to turn every matching edge in qj clean. Since we also cut either the vertices ui
j

or the vertices ui
j for each vertex gadget, we conclude that all matching edges of

the result are clean and we remove exactly 2m +
∑

i 2 × |ψi| = 8m edges.
“⇐”: Let S ⊆ V be the set of vertices such that cutting each vertex of

S destroys all ambiguous paths in (G∗,M∗, ω,m) and ω′(S) = 8m. According
to Lemma 1(a), each variable gadget remove |ψi| edges and each clause gadget
remove two edges. Moreover, by Lemma 1(b), for each variable gadget ci, we can
suppose that S ∩ V (ci) equals

⋃
j≤|ψi|{ui

j} or
⋃

j≤|ψi|{ui
j}. In the former case,

we set β(xi) = 1 and, in the latter, we set β(xi) = 0. To show that β satisfies
ϕ, assume that there is a clause C� that is not satisfied by β. Then, none of the
edges incident to q� is cut which, by Lemma 1(c), contradicts the fact that there
are two removed edges in q�. ��

3 Non-approximability

In this section, we prove approximation lower bounds for Semi-Brutal Cut.
First recall the definition of L-reduction between two hard problems Π and
Π ′, described by Papadimitriou [10]. This reduction consists of polynomial-time
computable functions f and g such that, for each instance x of Π, f(x) is an
instance of Π ′ and for each feasible solution y′ for f(x), g(y′) is a feasible solution
for x. Moreover there are constants α, β > 0 such that:

1. OPTΠ′(f(x)) ≤ αOPTΠ(x) and
2. |valΠ(g(y′)) − OPTΠ(x)| ≤ β|valΠ′(y′) − OPTΠ′(f(x))|.
In the following, we present an L-reduction from the classical problem Max

3-SAT(4) to Semi-Brutal Cut.

Max 3-SAT(4)

Input: A boolean formula ϕ in exact 3-CNF where every variable occurs
in 4 clauses

Task: Find an assignment that satisfies a maximum number of clauses.

Construction 2. We reuse Construction 1 and change some variable gadgets
and the way we link the variable gadgets to the clause gadgets. First, we change
the links between the gadgets: let C� be a clause and xi be the jth literal of C�.
Then, attach ci to r�

j. The difference with Construction 1 is that we attach the
variable gadgets to the red vertices of the clause gadget, no matter if the variable
occurs positively or negatively in the clause.

Now we change some variable gadgets. Let xi be a variable which occurs
positively in the clauses Cp and Cp′ and negatively in the clauses Cn and Cn′ .
We replace the variable gadget associated to xi by the following gadget ri:
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– Construct a cycle ci on the vertex set
⋃

j≤2{ui
j , u

i
j , v

i
j , v

i
j} such that, for all

j ≤ 2, {ui
j , u

i
j}, {vi

j , v
i
j} ∈ M∗, the vertices ui

j and vi
j are blue and ui

j and vi
j

are red.
– Give multiplicity 1 and weight 1 to all non-matching edges and multiplicity 2

to all matching edges.
– Link the clause gadgets qp, qp′ , qn and qn′ to vertices ui

1, u
i
2, u

i
1 and ui

2 respec-
tively in the same way as previously described.

Note that all matching edges are ambiguous paths in the variable gadget. The
clause gadgets and the other variable gadgets remain unchanged.

ui
1

vi
1

ui
1 ui

2

vi
2

ui
2

vi
2

vi
1

qp qp′ qn′qn

Fig. 4. Matching edges are bold. Example of variable gadget rxi linked to the clause
gadgets qp, qp′ , qn and qn′ , where xi occurs positively in Cp and Cp′ and negatively in
Cn and Cn′ .

The resulting graph G∗ is bipartite and Δ(G∗) = 3. In the following, when
we want to differentiate the variable gadgets, we designate by rectangle variable
gadget those defined in Construction 2 and by cycle variable gadget those defined
in Construction 1. An example of a rectangle variable gadget is given in Fig. 4.
Notice that the properties (a) and (c) of Lemma 1 hold. We can add the following
property:

Lemma 2. Let S ⊆ V (G∗) be an optimal set of vertex-cuts destroying all
ambiguous paths in (G∗,M∗, ω,m), let ci be a cycle variable gadget and ri′ be a
rectangle variable gadget. There is a set S′ of cuts with ω(S′) = ω(S) that also
destroys all ambiguous paths, and

(a) S′ ∩ V (ci) is either
⋃

j≤|ψi|{ui
j} or

⋃
j≤|ψi|{ui

j}, and

(b) S′ ∩ V (ri′) is either {ui′
1 , ui′

2 } or {ui′
1 , ui′

2 }.
Proof. Recall that, by Lemma 1(a), ω(S ∩ V (ci)) ≥ |ψi|.

“(a)”: By symmetry, suppose that xi occurs mostly positively in ϕ. If xi

occurs four times positively, then replacing S ∩V (ci) by
⋃

j≤|ψi|{ui
j} in S yields

a solution S′ as sought. Thus, suppose that xi occurs three times positively. Let
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C� be the clause where xi occurs negatively and let z denote the neighbor of ui
j

in c�. If |S ∩ V (ci)| > |ψi|, then replacing S ∩ ci by
⋃

j≤|ψi|{ui
j} plus z yields a

solution S′ as sought. Finally, if |S ∩ V (ci)| = |ψi|, then S already corresponds
to (a) as, otherwise, some ambiguous path {vi

j , v
i
j} is not destroyed.

“(b)”: Note that one cut in ri′ is not enough to destroy all ambiguous paths
and cutting either the vertices {ui′

1 , ui′
2 } or the vertices {ui′

1 , ui′
2 } destroys all

ambiguous paths in the rectangle variable gadget. By symmetry, suppose that S
contains vi′

1 , if S contains ui′
1 , then we can remove vi′

1 from S. Otherwise, since S

is optimal, S∩V (ri′){ui′
1 , ui′

2 , vi′
1 }. Let z /∈ ri′ be the vertex adjacent to ui′

1 . Then,
z is clean, since otherwise we can replace S ∩ V (ri′) by {ui′

1 , ui′
2 }, contradicting

the fact that S is optimal. We can then add z in S′ and swap ui′
1 by ui′

1 . Further
if S does not contains any vertices in {vi′

1 , vi′
1 , vi′

2 , vi′
2 }, then suppose without loss

of generality that S contains {ui′
1 , ui′

2 }. Let zj /∈ ri′ be the vertex incident to
ui′

j . If S contains ui′
j , then it only serve to remove the leaving edge incident to

ui′
j and it also removes the edge {ui′

j , vi′
1+(j+1 mod 2)}, which contradicts the fact

that S is optimal. Thus, S ∩ V (ri′) = {ui′
1 , ui′

2 }.

Theorem 2. There is a constant ε′
4 > 0 (the value ε′

4 > 0 is defined in [2])
for which Semi-Brutal Cut cannot be approximated to any factor better than
(1 + 7ε′

4/65), even on graphs of maximum degree three, unless P=NP.

Proof. Recall that, unless P=NP, Max 3-SAT(4) cannot be approximated to
a factor better than ε′

4 = 1, 00052 [2] and that, in an optimal solution of Max

3-SAT(4), at least 7/8 of the clauses are satisfied [6], yielding

OPT (ϕ) ≥ 7m/8. (1)

To show that Construction 2 constitutes an L-reduction, let f be a function
transforming any instance ϕ of Max 3-SAT(4) into an instance I of Semi-

Brutal Cut as above, let S be a feasible solution for I corresponding to the
properties of Lemma 1(a), Lemma 1(c) and Lemma 2, and let g be the function
that transforms S into an assignment β as constructed in the proof of Theorem1:
each variable xi is set to true if S cuts ui

j for all j, and false, otherwise. By
Lemma 2, for each clause gadget q� without an adjacent vertex in S, the “extra”
cut occurs in q�. Hence, for each of the at most m/8 unsatisfied clauses in ϕ, we
have to remove an other edge to linearize I. Thus,

OPT (I) ≤ 8m + m/8
(1)

≤ 65/7OPT (ϕ) (2)

An important obstacle to overcome (and reason why Construction 1 is not
enough for Theorem 2) is that an approximate solution to SBC might spend
extra cuts in variable gadgets in order to “change the assignment” of a variable
xi mid-way. However, since each variable occurs at most four times, this only
happens for variables that occur two times positively and two times negatively.
Now, with our modification to Construction 1, we can observe that each extra
cut in any of the variable gadgets allows such a misuse only for a single clause



New Results About the Linearization of Scaffolds Sharing Repeated Contigs 105

gadget. Thus, the number of satisfied clauses of ϕ and the clause gadgets in
which we have to spend extra cuts adds up to m. Hence,

9m = val(g(S)) + val(S) = OPT (I) + OPT (ϕ) (3)

Thus, we constructed an L-reduction with α = 65/7, β = 1 and, since val(g(S)) <
(1 − ε′

4) · OPT (ϕ), we conclude

val(S)
(3)
= OPT (I) + OPT (ϕ) − val(g(S))
> OPT (I) + ε′

4OPT (ϕ)
(2)

≥ (1 + 7ε′
4/65) · OPT (I)

This is conclude the proof. ��

4 Linear-Time Approximation Algorithm

In the following, we present a polynomial-time 4-approximation for Semi-

Brutal Cut with cut-score. To this end, we use the following reduction rule
introduced by Weller et al. [16].

Rule 1. Let μ ∈ N and let uvwx be a μ-uniform, alternating path in G. Then,
replace uvwx by a matching edge ux with multiplicity μ.

Rule 1 merges pairs of non-ambiguous contigs into one. Thus, each ambiguous
path will consist of a single contig edge. In this sense, we call a contig edge
ambiguous if it is an ambiguous path and clean, otherwise.

u v
x

y u v
x

y

Fig. 5. A forbidden path xuvy (left) and the result of cutting all its vertices (right).

Our approximation algorithm works similarly to the well-known classical 2-
approximation for Vertex Cover that just returns the extremities of any max-
imal matching. Contrary to Vertex Cover, our forbidden structures are not
edges, but ambiguous edges. Thus, we have to consider length-four paths con-
taining an ambiguous edge, and we will cut all four of their vertices. In the
following, we call a path xuvy forbidden if xu and vy are inter-contig edges and
uv is an ambiguous edge such that m(xu) < m(uv) > m(vy) (see Fig. 5).
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Lemma 3. Let Q be a maximal packing of vertex-disjoint forbidden paths in
(G∗,M∗, ω,m), let X be any solution for SBC with cut-score on (G∗,M∗, ω,m).
Then, (a) cutting all vertices of Q destroys all ambiguous edges in G∗ and (b)
X ∩ p 
= ∅ for all p ∈ Q.

Proof. (a): Let H be the result of cutting all vertices of Q in G∗. Towards a
contradiction, assume that H contains an ambiguous edge uv. By definition,
there are inter-contig edges xu and vy in H such that m(xu) < m(uv) > m(vy).
But then, the path xuvy is a forbidden path, contradicting the maximality of Q.

(b): Let H be the result of cutting all vertices of X in G∗. Let xuvy ∈ Q
be a forbidden path in (G∗,M∗, ω,m) and assume towards a contradiction that
X ∩ xuvy = ∅. Then, none of the edges of xuvy are removed when cutting the
vertices of X, that is, xuvy survives in H. Then, however, uv is an ambiguous
path in H, contradicting X being a solution for (G∗,M∗, ω,m). ��
With Lemma 3, we can show that any maximal packing of forbidden paths con-
stitutes a 4-approximation for Semi-Brutal Cut with cut-score.
Theorem 3. A 4-approximate solution to Semi-Brutal Cut with cut-score
can be computed in linear time. This ratio is tight.
Proof. First, Lemma 1 can be exhaustively applied to (G∗,M∗, ω,m) in linear
time since the inner vertices of any μ-uniform alternating path have degree two.
Second, a packing of forbidden paths in (G∗,M∗, ω,m) can be computed by
scanning all contig edges uv and, if uv is ambiguous, then xuvy is a forbidden
path for any inter-contig edges xu and vy. By removing x, u, v, and y from G∗,
we make sure that the resulting packing is vertex-disjoint. Thus, such a packing
can be produced in linear time.

Let Q be any maximal vertex-disjoint packing of forbidden paths in (G∗,M∗,
ω,m). By Lemma 3(a), the vertices of Q form a solution for SBC. To show
that this solution is 4-approximate, consider any optimal solution X for
(G∗,M∗, ω,m). By Lemma 3(b), X intersects each path in Q. Since the paths in
Q are mutually vertex disjoint and each of them contains exactly four vertices,
we conclude that Q contains at most four times as many vertices as X. Apply-
ing this algorithm on a solution graph with a single ambiguous path provides a
solution with four vertex-cuts instead of one. Thus, the ratio is tight. ��
Corollary 1. Semi-Brutal Cut with cut-score is APX-complete.

5 Conclusion

We developed results concerning the complexity, lower bounds and approxima-
bility of the linearization problem for genome scaffolds sharing repeated contigs
with two possible scoring functions. We managed to strengthen previously known
NP-hardness to the very restricted class of planar bipartite subcubic graphs with
only two multiplicities for the cut-score. We also provided a simple, linear-time 4-
approximation of for cut-scores. Natural perspectives of this work are to extend
this result to the weight-score, explore the possibility of FPT algorithms and
approximations in the difficult cases, and examine the practical performance of
the presented approximation algorithm on larger real-world instances.
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Abstract. Modifying the topology of a network to mitigate the spread
of an epidemic with epidemiological constant λ amounts to the NP-hard
problem of finding a partial subgraph with maximum number of edges
and spectral radius bounded above by λ. A software-defined network
(SDN) capable of real-time topology reconfiguration can then use an
algorithm for finding such subgraph to quickly remove spreading mal-
ware threats without deploying specific security countermeasures.

In this paper, we propose a novel randomized approximation algo-
rithm based on the relaxation and rounding framework that achieves
a O(log n) approximation in the case of finding a subgraph with spec-
tral radius bounded by λ ∈ (log n, λ1(G)) where λ1(G) is the spectral
radius of the input graph and n its number of nodes. We combine this
algorithm with a maximum matching algorithm to obtain a O(log2 n)
approximation algorithm for all values of λ. We also describe how the
mathematical programming formulation we give has several advantages
over previous approaches which attempted at finding a subgraph with
minimum spectral radius given an edge removal budget.

Keywords: Approximation algorithm · Relaxation and rounding
Semidefinite programming · Spectral graph theory · Random graphs

1 Introduction

In recent years, a sequence of results [2,4,25,28] have established a relationship
between the convergence of Markovian models representing an epidemic spread-
ing over a network and the spectral characteristics of the underlying graph. The
generalization of these theorems by Prakash et al. [16] states that in the case
of a graph G and an epidemic model with epidemiological characteristic λ, fast
convergence of the Markovian model to its absorbing state is guaranteed if the
spectral radius of the graph λ1(G) < λ. This has led the mathematical epidemi-
ology community to look for algorithms that modify the topology of a network
to ensure that a given epidemic converges rapidly to extinction.
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At the same time, the software-defined networking (SDN) paradigm has
transformed network administration by allowing real-time statistics [20] and
topology reconfiguration [27]. This new paradigm has deep consequences for
the management of network security as it is now possible for a SDN controller to
automatically detect malware spreading over its network via machine learning
[10] and react to such threat by deploying adequate security countermeasures. In
this work we are following epidemiological practice and propose to use topology
modification as a disease-agnostic countermeasure to the spread of malware in
networks.

We are looking to preserve as much as possible the existing network topology
by keeping the largest number of edges in the graph while guaranteeing that a
given epidemic of epidemiological characteristic λ would rapidly disappear. For
this purpose, we introduce the maximum spectral subgraph problem (MSSP)
defined formally as follows. Denoting by λ1(G) the spectral radius of G, i.e. the
largest eigenvalue of its adjacency matrix A, we have:

Definition 1. Maximum spectral subgraph problem (MSSP)

Input: G = (V,E) an undirected graph and 1 ≤ λ < λ1(G).
Output: H = (V,E′) with E′ ⊆ E such that |E′| is maximum and λ1(H) ≤ λ.

1.1 Related Work

Spectral graph theory has often been a decisive tool in the design and analysis
of algorithms. However, to the best of our knowledge, surprisingly few compu-
tational problems have been defined in terms of finding graphs with appropriate
spectrum. The mathematical epidemiology community has proposed and ana-
lyzed several problems related to the spectrum of the adjacency matrix [19,26]
while systems and control researchers have considered optimization problems
related to the spectrum of the Laplacian matrix [5]. In a separate effort, the
theoretical computer science community has focused on problems related to the
design of expander graphs and graphs with high algebraic connectivity i.e. the
second smallest eigenvalue of the Laplacian matrix [7,11]. In this line of research,
all problems are NP-hard and the algorithms proposed in the literature are often
simple to state. We contrast this with the fact that their analysis can be involved
and yet, to the best of our knowledge, only amount to conditional approximation
guarantees. Throughout this paper we qualify approximation algorithms by their
performance guarantee r > 1 which corresponds to returning a solution whose
value is at least a fraction 1/r of the optimal value for maximization problems
or at most a factor r of the optimal value for minimization problems.

A minimization version of MSSP has been studied by Saha et al. [19] where
the task is to remove the minimum amount of edges from a graph G such that
the resulting subgraph H satisfies λ1(H) ≤ λ. They give a (1 + ε, ε−1 log n)
bi-criteria approximation algorithm which guarantees that if an optimal solu-
tion is to remove k edges to achieve a spectral radius less than or equal to λ
then the algorithm will remove O(ε−1 log n) times more edges (with n = |V |
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the number of nodes in G) and returns a graph with spectral radius less than
or equal to (1 + ε)λ. Zhang et al. [29] study the problem of maximizing the
drop in spectral radius λ1(G) − λ1(H) where H is a subgraph of G obtained
by deleting at most k edges. Their randomized algorithm, inspired by the relax-
ation and rounding framework, has the following conditional guarantees: if the
weighted graph obtained from the solution of the relaxed semidefinite program-
ming problem has maximum weighted degree Δ∗ = Ω(log4 n), then the returned
subgraph satisfies the constraint on the number of edge deletions in expectation
and, with high probability, the remaining graph has a spectral radius within an
additive O(

√
Δ∗) factor of the optimal solution. If the condition on the maximum

weighted degree is not satisfied, they do not obtain any performance guarantee.
In this article we introduce the maximum spectral subgraph problem (MSSP)

and our main contribution is the design of a O(log2 n)-approximation algorithm
for MSSP obtained by combining a randomized algorithm based on the relax-
ation and rounding framework with a maximum matching algorithm. We also
describe some shortcomings of existing mathematical programming formulation
for variants of MSSP that attempt at minimizing the spectral radius of a given
graph within a prescribed edge deletion budget.

The rest of this paper is organized as follows. In Sect. 2 we recall some sim-
ple facts from spectral graph theory and introduce appropriate notations and
known results. In Sect. 3 we describe our relaxation and rounding algorithm and
illustrate its usage on star graphs. Then, in Sect. 4, we prove its approximation
ratio for the range λ ∈ (log n, λ1(G)) in general graphs. In Sect. 5 we show that
a maximum matching is a O(λ2)-approximation algorithm for MSSP. Finally,
perspectives and concluding remarks are provided in Sect. 6.

2 Preliminaries

We review here useful facts about the spectrum of adjacency matrices of graphs.
Unless specified, all graphs are assumed to be undirected. Recall that the adja-
cency matrix A of a graph G = (V,E) is a symmetric matrix defined as follows:

Aij =

{
1 if ij ∈ E

0 otherwise

Property 1. [24] (General bounds) Given a graph G = (V,E), we denote by
Δ(G) its largest degree. The spectral radius of the graph, defined as the largest
eigenvalue of its adjacency matrix, lies between the following quantities:

max
(√

Δ(G),
2|E|
|V |

)
≤ λ1(G) ≤ Δ(G) (1)

2.1 Computational Complexity

The problem of deciding whether there exists a subgraph with at least k edges
and spectral radius at most λ was studied by van Mieghem et al. [26]. We can
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see that it is the decision problem associated with both MSSP and the problem
of minimum edge removal introduced by Saha et al. [19] that was mentioned in
Sect. 1. Van Mieghem et al. proved that the decision problem is NP-complete by
reduction from the Hamiltonian path problem. It follows from this result that
MSSP is NP-hard.

The reduction uses a fact from extremal spectral graph theory: the path
graph on |V | nodes is the graph with minimum spectral radius among all
connected graphs with |V | nodes and |V | − 1 edges. Setting λ = λ1(P|V |) =
2 cos (π/(|V | + 1)) and k = |V | − 1 completes the reduction. Recall that while
the spectral radius of a graph might be a real number, verifying a candidate solu-
tion amounts to checking whether the eigenvalues of a given adjacency matrix
are bounded above by a given value which can be done in polynomial time to
any precision [14].

Note that if the bound on the spectral radius λ = 1, then MSSP becomes the
maximum matching problem which can be solved in polynomial time. Indeed,
from Property 1, it is easy to see that the problem consists in finding a subgraph
of degree at most 1 with maximum number of edges. Furthermore, note that all
undirected graphs that are not matchings have a spectral radius larger than or
equal to

√
2 which is the spectral radius of the path graph on 3 nodes. From this

consideration, we will study the range where the bound on the spectral radius
is meaningful, that is

√
2 ≤ λ < λ1(G).

We now present our algorithm based on the relaxation and randomized
rounding framework.

3 Relaxation and Matrix Randomized Rounding

The relaxation and randomized rounding framework [17] is a general algorith-
mic technique composed of two steps: first, solving a continuous relaxation of
the original combinatorial programming and then, sampling a discrete solution
based on an optimal solution of the relaxed problem. This technique has resulted
in the design of a large number of approximation algorithms for a broad range of
combinatorial problems and has been the cornerstone of the application of the
sum of squares hierarchy developed by Lasserre [8] and Parrilo [15] in combina-
torial optimization. There are often two steps in the analysis of a relaxation and
randomized rounding algorithm: finding a tight relaxation of the original prob-
lem that is solvable in polynomial time and proving that the random discrete
solution is feasible with high probability.

Here we propose a mathematical programming formulation of MSSP that
uses semidefinite programming (SDP) to model the constraint on the spectral
radius. While linear programming allows to define optimization problems with
non-negative vector variables written x ≥ 0, SDP extends to the larger class
of problems with positive semidefinite matrix variables written X � 0 i.e. all
eigenvalues of X are non-negative: ∀ i ∈ [1, n], λi(X) ≥ 0. Given an input graph
G = (V,E) and a bound on the spectral radius λ, we write the following semidef-
inite programming problem with binary variables:
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max
∑
ij∈E

yij

s.t.
∑
ij∈E

yijAij 	 λI

∑
j∈Γ(i)

yij ≤ λ2, ∀i ∈ V (SDP0,1)

yij ∈ {0, 1}, ∀ ij ∈ E

where Aij is the adjacency matrix of the graph Gij = (V, {ij}) with a single edge
ij and I is the identity matrix of size |V |. The decision variables yij represent
whether an edge ij belongs to the subgraph when yij = 1 or not when yij = 0.
Recall that for a n by n square matrix, M 	 tI ⇐⇒ ∀ i ∈ [1, n], λi(M) ≤ t.
This means that the semidefinite constraint ensures that the adjacency matrix
of the subgraph defined by yij has its spectral radius bounded above by λ. The
linear constraint ensures that the degree of each node i ∈ V in the subgraph
is bounded above by λ2. Note that this constraint is redundant given that the
general bounds (1) state that the maximum degree of a graph is bounded above
by the square of its spectral radius i.e. Δ ≤ λ2

1. However this is in general not
the case with weighted graphs, which will be discussed in Sect. 3.3.

The continuous relaxation of Problem (SDP0,1) is obtained by relaxing inte-
ger constraints into box constraints. We underline that the semidefinite con-
straint does not originate from the relaxation as is the case for some problems
which relax vector variables with quadratic constraints into a SDP problem e.g.
the one used in the algorithm given by Goemans and Williamson for the maxi-
mum cut problem [6]. Our relaxation is limited to the binary variables.

max
∑
ij∈E

yij

s.t.
∑
ij∈E

yijAij 	 λI

∑
j∈Γ(i)

yij ≤ λ2, ∀i ∈ V (SDPλΔ)

yij ∈ [0, 1], ∀ ij ∈ E

As semidefinite programming is in P, we can solve Problem (SDPλΔ) in
polynomial time. This allows us to state our relaxation and randomized round-
ing algorithm. In the rest of this article, we denote scalar random variables by
lowercase bold letters e.g. x and matrix random variables by uppercase bold let-
ters e.g. X. Furthermore, we denote by x ∼ Ber(μ) the fact that x is a random
variable following a Bernoulli distribution of mean μ.
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Algorithm 1. Relaxation & Randomized Rounding

Input: G = (V,E),
√

2 ≤ λ < λ1(G), and r > 1.
Output: H = (V,E′) such that λ1(H) ≤ λ with probability pr.
y∗ ← arg Problem (SDPλΔ)
Sample ∀ ij ∈ E, xij ∼ Ber(y∗

ij/r)
return H = (V, { ij ∈ E : xij = 1 })

We will now turn to a simple application of Algorithm1 to the case of star
graphs and determine the adequate sampling factor r that results in a feasible
solution with high probability i.e. pr = 1 − 1/n where n = |V |.

3.1 The Case of Star Graphs

Before giving the complete analysis of our relaxation and randomized rounding
algorithm we focus on a specific class of input graphs to illustrate the methodol-
ogy of relaxation and randomized rounding but also to highlight the importance
of the degree constraint in our proposed mathematical formulation.

Recall that a star graph Sn = K1,n is a graph with V = {0, . . . , n} and
E = {(0, 1), . . . , (0, n)}. It is a well-known fact from spectral graph theory that
the spectral radius of a star equals the square root of its number of edges i.e.
λ1(Sn) =

√
n. More generally, it is easy to see that a weighted star graph Sw,

where each edge ij is associated with weight wij , has spectral radius λ1(Sw) =

||w||2 =
√∑

ij∈E w2
ij . Notice that we recover the non-weighted case by setting

every weight to be 1. Using this property, we determine that the number of edges
in an optimal solution of Problem (SDP0,1) is exactly �λ2� edges. We denote the
optimal value of MSSP on a star graph Sn and parameter λ by opt(Sn, λ) = �λ2�.

To analyze the gap between the combinatorial problem and our relaxation,
we now compute the value of an optimal solution of Problem (SDPλΔ). First,
we can use the above definition of the spectral radius of a star graph to replace
the semidefinite constraint by ||y||2 ≤ λ. Second, we interpret the degree con-
straint as a constraint on the �1-norm of y. This means that we can compute
an optimal solution of Problem (SDPλΔ) by solving the following second-order
cone programming problem:

max
y∈[0,1]|E|

||y||1
s.t. ||y||2 ≤ λ (SOCPλΔ)

||y||1 ≤ λ2

It is now easy to see that an optimal solution of this problem has value at most
λ2 and that can be achieved by any y such that ||y||2 ≤ λ e.g. the uniform
solution where ∀ij ∈ E, y∗

ij = λ2/n has �2-norm ||y∗||2 = λ/
√

n. We denote by
optrel(Sn, λ) = λ2 the optimal value of the relaxation.

We now have a complete description of the integrality gap gSn
of our relax-

ation for star graphs. The gap is the largest ratio between the optimal value of
the relaxation and the optimal value of the original problem:
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gSn

def= max
Sn,λ

optrel(Sn, λ)
opt(Sn, λ)

=
λ2

�λ2� ≤ 4
3

(2)

where the last inequality comes from the fact that λ ≥ √
2.

3.2 Erdös-Rényi Stars

Now that we have solved our relaxation of MSSP, we will use the computed
optimal solution y∗ to sample a discrete solution, here a random subgraph Sx

of the original star graph Sn. For this purpose we introduce for each edge ij
an independent random variable xij ∼ Ber(y∗

ij/r). By definition the random
number of edges x of the random subgraph Sx is a sum of independent Bernoulli
random variables with mean Ex =

∑
ij y∗

ij/r = λ2/r.
If for some r > 1 the random subgraph Sx satisfies the spectral radius con-

straint with high probability, i.e. pr = 1 − O(1/n), then we would have a poly-
nomial time randomized r-approximation algorithm. We obtain the following
approximation algorithm in the case of star graphs:

Theorem 1. (Feasible with constant probability) Given a star graph Sn, a bound
on the spectral radius λ ≥ √

2, and an optimal solution y∗ of Problem (SOCPλΔ),
the random partial subgraph Sx obtained by keeping edges according to indepen-
dent random variables xij ∼ Ber(y∗

ij/r) is a feasible solution of MSSP with
probability pr ≥ 2/3 for r = 4.

Proof. As is common practice in the analysis of randomized algorithms [12], we
use the Chernoff bound to get an estimate of the probability that our sampled
solution is feasible. Recall that the Chernoff bound gives an upper bound on the
probability that a sum of independent random variables exceeds a certain value.

Theorem. [12] (Chernoff bound) Let x =
∑n

i=1 xi where each xi is an indepen-
dent random variable. We have for a given value a > 0 the following estimate:

Pr (x ≥ a) ≤ min
t>0

e−ta
n∏

i=1

E etxi .

We directly apply the Chernoff bound on the random number of edges x =∑
ij∈E xij for the value a = λ2. After using the fact that E etxij ≤ e

y∗
ij
r (et−1),

we obtain the following:

Pr(x ≥ λ2) ≤ min
t>0

e−tλ2
exp

⎛
⎝ ∑

ij∈E

y∗
ij

r
(et − 1)

⎞
⎠

Pr(x ≥ λ2) ≤ min
t>0

exp
(

λ2

r
(et − 1) − tλ2

)
.
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The minimum of the r.h.s. is attained at t = log r under the condition that t > 0
from which we deduce that r = 1 + h for some h > 0. The bound then simplifies
into:

Pr(x ≥ λ2) ≤ exp
(

λ2

(
h

1 + h
− log(1 + h)

))
.

We choose r = 1+h = 4 to produce the following readable bound which remains
valid for any λ ≥ √

2:

Pr(x ≥ λ2) ≤ exp(−0.64λ2) ≤ 1
3

which concludes the proof of Theorem1. Recall indeed that the event λ1(Sx) ≥ λ
is equivalent to the event x ≥ λ2. ��

Since our success probability for a single sample pr ≥ 2/3 we can amplify
it by repetition in polynomial time to obtain a solution of expected value λ2/4
and such that the solution is feasible with high probability pr = 1 − O(1/n).

To summarize the case of star graphs, our relaxation and randomized round-
ing algorithm is a polynomial time algorithm which returns with high probability
a feasible star graph of expected size λ2/4.

3.3 Without the Degree Constraint

It is important to notice that the degree constraint played a significant role in the
tightness of the relaxation in the case of star graphs. Reusing the same analysis
as in Sect. 3.1 we can see that Problem (SDPλΔ) without the degree constrained
is equivalent to the following problem:

max
y∈[0,1]|E|

||y||1
s.t. ||y||2 ≤ λ (SOCPλ)

By a geometrical argument, we notice that the uniform solution ∀ij ∈ E, yij =
λ/

√
n is the unique optimal solution of Problem (SOCPλ). It follows that the

associated optimal value optrel′(Sn, λ) = λ
√

n.
In that case, the integrality gap of the relaxation given by Problem (SOCPλ)

is

g′
Sn

def= max
Sn,λ

optrel′(Sn, λ)
opt(Sn, λ)

=
λ
√

n

�λ2� = O

(√
n

λ

)
(3)

which translates into a much higher r = O(g′
Sn

) than the constant obtained
in Sect. 3.1. Problem formulations focusing on minimizing the spectral radius
given an edge deletion budget cannot a priori bound the maximum degree of the
resulting weighted graph. This additional information is a key advantage over
problems that optimize the spectral parameter.

We are now ready to describe our matrix randomized rounding whose analysis
follows a similar structure to the one for star graphs. However we need to use
more powerful concentration inequalities than the Chernoff bound to obtain
bounds on the spectral radius of the random matrix we sample. This sampling
can be seen as a special case of inhomogeneous Erdös-Rényi random graphs.
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4 Spectral Subgraphs in General Graphs

In order to extend the analysis of Algorithm1 to arbitrary graphs we turn to
more advanced concentration inequalities that describe the behavior of random
matrices and in particular their spectrum. Fortunately, recent results in the
analysis of random matrices (cf. the survey by Tropp [22]) provide tail bounds for
the largest eigenvalue of random matrices. These results are directly applicable
to the analysis of Algorithm1 for finding the sampling factor r that guarantees
that the returned solution is feasible with high probability pr = 1 − 1/n.

We start by presenting the generic matrix Bernstein bound and its applica-
tion to adjacency matrices following the work of Radcliffe and Chung [3]. Finally
we give the proof that Algorithm 1 is a randomized O(log n)-approximation algo-
rithm with the following property:

Theorem 2. (Feasible with constant probability) Given a graph G = (V,E) with
|V | = n, a bound on the spectral radius λ ≥ log n, and an optimal solution y∗

of Problem (SDPλΔ), the random subgraph H obtained by keeping edges ij ∈ E
according to independent random variables xij ∼ Ber(y∗

ij/r) is a feasible solution
of MSSP with probability pr ≥ 2/3 for r = O(log n).

4.1 Following the Matrix Bernstein Bound

The matrix Bernstein bound is a generalization of the classical Bernstein bound
to the setting of independent random matrices. The theorem states the following:

Theorem. [3] (Matrix Bernstein) Let X =
∑

i Xi where each Xi is an inde-
pendent symmetric random matrix of size n which is centered EXi = 0 and
bounded in spectral norm λ1(Xi) ≤ L. We define the matrix variance of X by
v(X) = λ1(

∑
i EX2

i ). The following tail inequality holds:

Pr(λ1(X) ≥ a) ≤ n exp
(

− a2

2v(X) + 2La/3

)
. (4)

The output of Algorithm1 corresponds to a random adjacency matrix A
which is the sum of independent random adjacency matrices each corresponding
to an edge in the random graph. Let Aij = (Eij + Eji) where the Eij form the
canonical basis for Mn,n and denote by xij a Bernoulli random variable of mean
y∗

ij/r. We have the following:

A =
∑
ij∈E

xijAij (5)

Note that our random adjacency edges have non-zero mean ExijAij =
(y∗

ij/r)Aij . Fortunately, applying Weyl’s inequalities on A and EA will give
us control over the spectral radius of A by proxy.

Theorem. [1] (Weyl’s inequalities) Let X and Y be two symmetric matrices,

λ1(X − Y ) ≤ ε =⇒ |λ1(X) − λ1(Y )| ≤ ε (6)
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This theorem implies that bounding the spectral radius of our centered random
adjacency matrix by (1 − 1/r)λ will give us the adequate bound on the spectral
radius of A. Since we only consider the event where A has greater spectral radius
than EA, we drop the absolute value:

λ1(A − EA) <

(
1 − 1

r

)
λ =⇒ λ1(A) − λ1(EA) <

(
1 − 1

r

)
λ

and by feasibility of an optimal solution of the relaxed SDP, i.e. Problem
(SDPλΔ), we have λ1(EA) ≤ λ/r which gives:

λ1(A − EA) <

(
1 − 1

r

)
λ =⇒ λ1(A) < λ.

From the general bounds of (1) we know that the spectral radius of the
centered adjacency matrix of a random edge ij is either y∗

ij/r (no edge) or
1 − y∗

ij/r (one edge) which lets us bound the spectrum of each summand. In the
worst case we have, for each edge ij:

λ1

((
xij − y∗

ij

r

)
Aij

)
≤ 1 (7)

4.2 Proof of Theorem2

We start by computing the matrix variance:

v(A − EA) = λ1

⎛
⎝ ∑

ij∈E

Var(xijAij)

⎞
⎠ .

Since Var(xijAij) = Var(xij)A2
ij and A2

ij = Di + Dj where Dv = Evv, we
obtain a clean expression for the variance of the centered adjacency matrix as
the spectral radius of the matrix of degree variances:

v(A − EA) = λ1

⎛
⎝ ∑

ij∈E

Var(xij)(Di + Dj)

⎞
⎠

= max
i∈V

∑
j∈Γ(i)

y∗
ij

r

(
1 − y∗

ij

r

)

≤ max
i∈V

∑
j∈Γ(i)

y∗
ij

r

and by feasibility of an optimal solution of the relaxation, the degree constraint
holds which means that maxi∈V

∑
j∈Γ(i) y∗

ij ≤ λ2 and gives:

v(A − EA) ≤ λ2

r
.
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We now fulfill all the prerequisites to apply the matrix Bernstein bound on
A−EA and L = 1. To explicitly describe the fact that the approximation ratio
r > 1 we introduce as earlier h > 0 such that r = 1 + h. We apply the Bernstein
bound for the value a = (h/(1 + h))λ:

Pr
(

λ1(A − EA) ≥ h

1 + h
λ

)
≤ n exp

(
−1

2
a2

v(A − EA) + a
3

)

= n exp

(
−1

2
a2

λ2

1+h + 1
3

h
1+hλ

)

≤ n exp

(
−1

2
h2

(1 + h)2
λ2

λ2

1+h + 1
3

h
1+hλ

)
.

We simplify the above expression to obtain:

Pr
(

λ1(A − EA) ≥ h

1 + h
λ

)
≤ n exp

(
−1

2
h2

(1 + h)2
λ2

λ
1+h (λ + h/3)

)

= n exp
(

−1
2

h2

1 + h

λ

λ + h/3

)
.

As in the case of star graphs, we will derive possible values for r (resp. for h)
such that the probability of our subgraph H being infeasible is less than 1/3. For
this, we attempt to derive an upper bound for the argument of the exponential
as n exp(−x) ≤ 1

3 implies that x ≥ log 3n.
We are looking for values of h and λ such that the following inequality holds:

1
2

h2

1 + h

λ

λ + h/3
≥ log 3n

We start by deriving a lower bound on λ function of h. In the above inequality,
λ/(λ+h/3) can be arbitrarily small if h is unbounded. To prevent this, we impose
that, for a certain constant c > 0:

1
2

λ

λ + h/3
≥ c

which implies that

λ ≥ 2c

3 − 6c
h.

Choosing c = 1/4 gives us the condition that λ ≥ h/3.
Now we are left with finding the value of h such that:

1
4

h2

1 + h
≥ log 3n.
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For all values of n, it is sufficient to take h = 3 log n which completes the proof.
��

Algorithm 1 is a randomized algorithm which returns a feasible solution with
probability greater than 2/3 and of expected value within 1+3 log n of the value
of an optimal solution whenever λ ≥ log n. Recall that the success probability of
such an algorithm can be amplified to high probability in polynomial time. We
now turn to a different algorithm to handle the range λ ∈ [

√
2, log n).

5 Maximum Matching

After designing an approximation algorithm for MSSP for the range of the spec-
tral bound λ ∈ (log n, λ1(G)), we turn to the well-studied maximum matching
problem: finding a subgraph M consisting of the maximum number of non-
adjacent edges in a given graph G. The number of edges in M is often called
the matching number ν(G) of the graph. We use a spectral generalization of
a classical lower bound on the matching number due to Stevanović [21] which
states the following:

Theorem. [21] (Spectral lower bound on the matching number) Given a graph
G = (V,E) we have the following lower bound:

ν(G) ≥ |E|
λ2

1(G) − 1
.

This static lower bound can be immediately turned into an approximation
algorithm since computing a maximum matching can be done in polynomial
time.
Algorithm 2. Maximum matching

Input: G = (V,E),
√

2 ≤ λ ≤ λ1(G)
Output: H = (V,E′) such that λ1(H) ≤ λ
return H = arg ν(G)

Theorem 3. (Approximation by maximum matching) Given G = (V,E) and a
spectral bound λ > 0, a maximum matching of G is a (λ2 −1)-approximation for
MSSP.

Proof. Denoting by H∗ an optimal solution of MSSP for a graph G and spectral
bound λ, we know that H∗ is a partial subgraph of G which implies ν(G) ≥
ν(H∗). We also know that H∗ is feasible i.e. λ1(H∗) ≤ λ. Combining these two
statements together with the lower bound of Stevanović, we obtain the following
inequality:

ν(G) ≥ ν(H∗) ≥ opt(G,λ)
λ2 − 1

which shows that the size of a maximum matching is within a factor of λ2 − 1
of an optimal solution of MSSP. Furthermore any matching has spectral radius
equal to 1 i.e. is trivially feasible. ��
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Used in the range λ ∈ [
√

2, log n) a maximum matching is a O(log2 n)-
approximation algorithm in the worst-case. We then combine Algorithm1 with
Algorithm 2 to obtain a O(log2 n)-approximation algorithm for all values of λ.

6 Conclusion and Perspectives

We have introduced the maximum spectral subgraph problem and designed
a randomized O(log2 n)-approximation algorithm based on the relaxation and
rounding framework to solve it.

In terms of lower bounds, we currently do not have any result regarding
hardness of approximation, but we are actively exploring this direction. To the
best of our knowledge, no inapproximability results have been established for
problems related to the spectrum of a graph. Indeed, NP-hardness results found
in the literature [11,26] are based on reductions which relate extremal values
in spectral graph theory to classical computational problems. These reductions
cannot be directly extended to obtain an approximation gap.

Without a better lower bound than NP-hardness, we are compelled to find
new techniques to improve our current upper bound. First, the continuous relax-
ation used in Algorithm1 is rather natural aside from the redundant degree con-
straints. It would be interesting to see if stronger relaxations could be used to
obtain more information about the random graph e.g. strong bounds on the vari-
ance of the random degrees. For this purpose we would like to consider a sum-of-
squares relaxation for the binary semidefinite programming problem. Indeed, Nie
[13] has given an extension of the classical sum-of-squares hierarchy to include
positivity certificates for matrix variables. This relates to the question of gen-
eralizing the results of Raghavendra [18] on maximum constraint satisfaction
problems where constraints apply to at most k variables to maximum constraint
satisfaction problems with spectral constraints which, by definition, involve all
variables at once. Aside from strengthening the relaxation, there is opportunity
for improvement in developing more precise tail bounds on the spectrum of ran-
dom adjacency matrices following recent results by van Handel [23] as well as by
Le, Levina, and Vershynin [9]. On a separate note, we are currently working on
applying the method of conditional probabilities to derandomize Algorithm1 in
order to obtain a deterministic approximation algorithm. The analysis of Sect. 5
focuses on the maximum matching problem as a way of computing a feasible
solution for the range λ ∈ [

√
2, log n). It is natural to wonder whether the degree

constrained subgraph problem with Δ ≤ λ (also known as the simple λ-matching
problem) could be proven to return a better solution, and possibly match the
O(log n) ratio obtained by Algorithm1.

Finally, we are also interested in applying a similar strategy to the problem of
adding the smallest number of edges to reach a given algebraic connectivity i.e.
a lower bound on the second smallest eigenvalue of the Laplacian matrix of the
graph. This problem, proven NP-hard by Mosk-Aoyama [11], is a variant of the
problem of finding the maximum algebraic connectivity given an edge addition
budget proposed by Ghosh and Boyd [5]. While Kolla et al. have designed an
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approximation algorithm with conditional guarantees [7] for the original prob-
lem, we hope that our methodology could apply to the variant and lead to an
unconditional approximation ratio.
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Abstract. In this paper we are interested in finding communities with
bipartite structure. A bipartite community is a pair of disjoint vertex
sets S, S′ such that the number of edges with one endpoint in S and the
other endpoint in S′ is “significantly more than expected.” This addi-
tional structure is natural to some applications of community detection.
In fact, using other terminology, they have already been used to study
correlation networks, social networks, and two distinct biological net-
works.

In 2012 two groups independently ((1) Lee, Oveis Gharan, and Tre-
visan and (2) Louis, Raghavendra, Tetali, and Vempala) used higher
eigenvalues of the normalized Laplacian to find an approximate solution
to the k-sparse-cuts problem. In 2015 Liu generalized spectral methods
for finding k communities to find k bipartite communities. Our approach
improves the bounds on bipartite conductance (measure of strength of a
bipartite community) found by Liu and also implies improvements to the
original spectral methods by Lee et al. and Louis et al. We also highlight
experimental results found when applying our algorithm to three distinct
real-world networks.

Keywords: Community detection · Spectral graph theory
Network analysis

1 Introduction

For a weighted graph G = (V,E), the problem of finding sets of vertices with
small conductance is a well studied problem. The conductance of a set S ⊂
V is given by φG(S) = w(S,S)

w(S,V ) where w(S, T ) is the sum of weights of edges
between vertex sets S and T . A vertex set with small conductance is called a
community and the sparsest cut problem is to find the optimal community, that
is find φ(G) = min2w(S,V )≤w(V,V ) φG(S). In 2012 two groups [11,17] used higher
eigenvalues of the normalized Laplacian to find an approximate solution to the
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k-sparse-cuts problem, which is to find φk(G) and the optimal communities,
where φk(G) = minS1,...,Sk

maxi φG(Si).
This paper is interested in finding vertex sets T1, . . . , Tk such that each Ti is

a community and induces a graph that is roughly bipartite. Define the bipartite
conductance of disjoint vertex sets S, S′, with T = S ∪ S′, to be

φ̃G(S, S′) =
w(T, T ) + w(S, S) + w(S′, S′)

w(T, V )
= φG(T ) +

w(S, S) + w(S′, S′)
w(T, V )

.

A vertex subset with small bipartite conductance is called a bipartite community.
Our problem is then

φ̃k(G) = min
S1,S′

1,...,Sk,S′
k

max
i

φ̃G(Si, S
′
i).

This is different than searching for communities when G is bipartite, which is
known as biclustering.

We motivate this definition with a hypothetical example. Consider a co-
purchasing network: each vertex represents an item for sale and each edge rep-
resents a pair of items purchased by the same consumer in a single order. For
example, we do not expect a consumer to purchase two televisions or two audio
systems in a single purchase, however televisions and audio systems are fre-
quently purchased in tandem. Thus, the set of televisions S and the set of audio
systems S′ form a bipartite community (S, S′). In this case, the more specific
structure of a bipartite community is of greater aid to targeted advertisers than
classical communities; when a consumer purchases a television, it is smarter to
advertise products that accompany televisions rather than more televisions.

Finding bipartite communities within a graph is an important problem as
indicated by several researchers searching for this structure in practice and study-
ing this problem as a dual to classical community detection. Trevisan [21], Bauer
and Jost [2], and Liu [15] studied the theory behind bipartite communities, while
bipartite communities have been used in several biological networks, such as pro-
tein interaction networks [13] and double mutant combination networks [3]. They
are also used to describe antagonistic behavior [16] in online social settings. The
study of correlation clustering [7] is the special case where an edge may represent
similarity or dissimilarity, and a recent approach by Atay and Liu [14] involved
bipartite communities. Kleinberg considered a related problem [9] for directed
graphs when he developed the famous Hyperlink Induced Topic Search (HITS)
algorithm to find results for a web search query.

In this paper we present two spectral algorithms for finding many bipartite
communities; the first has strong quality guarantees and the second is practical.
The quality guarantees are stronger than the analogous results for classical com-
munities in ways that have consequences for k-sparse-partition (see Theorem 4)
and small set expansion (see Corollary 1). The practical algorithm replaces ran-
domized steps with respected but non-rigorous methods like k-means clustering.
We applied the practical algorithm to real-world data sets, which revealed new
scenarios where bipartite community detection is appropriate. Moreover, similar
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to how the classes of interchangeable products are grouped in our hypotheti-
cal example, the bipartite partition of the communities revealed structure in the
overall graph that would not be identified by classical community detection. The
full version [24] of this extended abstract, which includes complete proofs to all
statements (including additional details to the proof of Theorem7), an expanded
introduction, and detailed experiments is available on the arXiv.

1.1 Results

Let L be the normalized Laplacian of graph G, with eigenvalues (with multi-
plicity) λ1 ≤ λ2 ≤ · · · ≤ λn. It is well known that if G has k components, k′

of which are bipartite, then 0 = λk < λk+1 and λn−k′ < λn−k′+1 = 2 (unless
k′ = 0, where we just have λn < 2). In what follows, we assume that G is con-
nected, which implies that the eigenvector associated to λ1 is constant-valued.

The spectral sweep method accepts any non-constant eigenvector as input
and produces a community whose conductance is bounded by some function of
the associated eigenvalue. It is a common method to prove Cheeger’s Inequal-
ity (see [6]). Given multiple eigenvectors, it is then trivial to produce multiple
communities in parallel. Producing multiple disjoint communities using multi-
ple eigenvectors is difficult. In what follows, all communities are considered to
be disjoint. There exist a large number of heuristic approaches to this problem
([18,22]). The three current best rigorous results for eigenvectors with eigenval-
ues λ1 ≤ · · · ≤ λk are:

(A) k communities, each with conductance at most O(k2
√

λk) by [11]1,
(B) Θ(k) communities, each with conductance at most O(

√
log(k)λk) by [17],

(C) k/2 communities, each with conductance at most O(
√

log(k)λk) by [11].

All three proofs are constructive, each giving a polynomial time and space
randomized algorithm.

Independently, Trevisan [21], and Bauer and Jost [2] showed that a modi-
fied spectral sweep algorithm can be used to find bipartite communities from
eigenvectors, and produces a quality guarantee based on 2 minus the associated
eigenvalue. Liu [15] presented an algorithm to turn eigenvectors with eigenval-
ues λn ≥ λn−1 ≥ · · · ≥ λn−k+1 into k bipartite communities with bipartite
conductance at most O(k3

√
2 − λn−k+1). Our theoretical algorithm efficiently

constructs bipartite communities that prove the following bounds:

Theorem 1. Fix a value for k. For a given graph G

(1) φ̃k(G) ≤ O(k2
√

2 − λn+1−k)
(2) φ̃k/4(G) ≤ O(

√
log(k)(2 − λn+1−k)).

Theorem 1 is a corollary to the following constructive theorem:

1 See Theorem 4.9 in [11].



126 K. B. Yancey and M. P. Yancey

Theorem 2. Fix a value for k. There exists disjoint sets S1, S
′
1, S2, S

′
2,

. . . , Sr, S
′
r such that for any graph G and each 1 ≤ i ≤ r,

(1) r = k and φ̃G(Si, S
′
i) ≤ 2(8k+1)(4k−1)

k+1−i

√∑
1≤i≤k(2−λn+1−i)

k

(2) r ≤ k/2 and φ̃G(Si, S
′
i) ≤ 101.5(1280

√
3 ln(200k2)+4)k

9( k
2+1−i)

√∑
1≤i≤k(2−λn+1−i)

k .

Theorem 1 states bounds that match the analogous results for classical com-
munities. A closer inspection of Theorem 2 shows that our results are stronger,
which we explain in the following two remarks. Section 3 of [15] implies that
these strengthenings for the bipartite conductance are also enjoyed by the clas-
sical communities.

Remark 1 (No-Separate-But-Equal Principle). Algorithm (A) has a uniform
bound for all communities, but Theorem2 (1) has a bound for community i
that depends on i. One effect of this is that for any function f(k) → ∞ there
are k − f(k) “super” communities that perform Ω(f(k)) better than the worst-
case bound. In particular, half of the communities have bipartite conductance
at most O(k

√
2 − λn−k+1).

Remark 2 (Complete Spectrum Principle). Our result uses the average of the
eigenvalues rather than the worst in the bound, which to our knowledge is the
first evidence to devalue the lauded spectral gap between consecutive eigenvalues
[8,10,19,20] in favor of the overall spectral sequence. So while prevailing wisdom
is to choose k such that λk 	 λk+1, our bounds are k−1/2 better when 2 −
λn−k+2 	 2−λn−k+1 (the analogue for classical community detection would be
λk−1 	 λk).

It has been communicated to us that the strengthenings of both remarks
could be obtained with simple modifications to [11]. While that is true, these
remarks are novel to this paper. As evidence, observe that the “No Separate But
Equal Principle” was not applied to prior versions of Theorem4 (see below),
and we repeat that the “Complete Spectrum Principle” contradicts the frame
of reference provided in [8], which contains some of the same authors as [11].
On a technical level, the “No Separate But Equal Principle” is much harder
to establish in bipartite communities, which is a point that we elaborate on in
Sect. 1.3.

The bounds on bipartite conductance are strong indicators of the quality of
the bipartite communities, as indicated by Liu [15] when he showed that φ̃k(G) ≥
(2−λn+1−k)/2. It is known for cycles and grids [11] that φk(G) ≥ Ω(

√
λk). It is

also known that when G is bipartite [15], φk(G) = φ̃k(G) and λk = 2−λn+1−k. So
there exists an infinite family of graphs such that φ̃k(G) ≥ Ω(

√
2 − λn+1−k). We

construct a family of graphs demonstrating that the
√

log(k) term is necessary
in Theorem 1 (2). We call this example the Bipartite Noisy Hypercube; it is
inspired by the Noisy Hypercube construction found in [11].

Theorem 3. There exists a family of graphs Gi such that 2−λn−k ≤ O
(

1
log(k)

)

and for any set T, T ′ ⊂ V with |T ∪ T ′| ≤ 2
k |V | we have that φ̃(T, T ′) ≥ 1/2.
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Our improvements to classical community detection extend beyond what we
can do with bipartite communities. The k-sparse-partition problem is the k-
sparse-cuts problem with the additional condition that V = ∪iSi. See [4] for a
survey on applications of k-sparse-partition, including route planning, bioinfor-
matics, and image processing. Formally, define

ψk(G) = min
Si∩Sj=∅,V =∪iSi,Si �=∅

max
1≤i≤k

φG(Si).

Note that φk(G) ≤ ψk(G). Folklore says that ψk(G) ≤ kφk(G), which is
accomplished by placing V \ ∪iSi into the largest community in the solution to
φk(G) and bounding the conductance of the disturbed community by the sum
of the conductance of the other communities. This is the basis for the O(k3

√
λk)

algorithm in [11] and the O(k
√

log(k)λO(k)) algorithm in [17]. Remark “No-
Separate-But-Equal Principle” improves the former to O(k2 log(k)

√
λk) for the

k-sparse-partition problem. However, we can accomplish more:

Theorem 4.
ψk(G) ≤ O

(
k2

√
λk

)

Theorem 4 is a corollary to Theorem 5; see Sect. 2.3 for details.

Theorem 5. Fix a value for k. For any graph G, there exists disjoint sets
S1, S

′
1, S2, S

′
2, . . . , Sk, S′

k such that

∑

i

φ̃G(Si, S
′
i) ≤ O

⎛

⎝k2

√∑
1≤i≤k(2 − λn+1−i)

k

⎞

⎠ .

Louis, Raghavendra, Tetali, and Vempala [17] constructed a family of graphs
J with the property ψk(J) ≥ Ω

(√
λk min(k2n−1/2, n1/12)

)
for every J ∈ J .

Using a similar construction, we give a sharper bound that is independent of n.

Theorem 6. For each k ≥ 2, there exists a family of unweighted graphs H� such
that ψk(H�) ≥ Ω(

√
kλk(H�)).

Small set expansion is the problem

φ(k)(G) = min
kw(A,V )≤w(V,V )

φG(A).

Note that φ(G) = φ(2)(G). Li and Peng [12] prove mink1−εw(A,V )≤w(V,V ) φ̃G(A) ≤√
(2 − λn−k) logk(n), which is the bipartite analogue of small set expansion.

Small set expansion is intimately tied to complexity theory [1]. It is obvi-
ous that φ(k)(G) ≤ φk(G), and so algorithms (B) and (C) give φ(k)(G) ≤
O(

√
log(k)λO(k)), and algorithm (A) gives φ(k)(G) ≤ O(k2

√
λk). Remarks “No-

Separate-But-Equal Principle” and“Complete Spectrum Principle” allow us to
establish a result between these two bounds.
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Corollary 1. For any function w satisfying 1 	 w(k) 	 k (such as w(k) = kd

for 0 < d < 1), we have that

φ(k)(G) ≤ O

⎛

⎝kw(k)

√
∑k(1+w(k)−1)

i=1 λi

k

⎞

⎠ ≤ O
(
kw(k)

√
λk(1+w(k)−1)

)
.

1.2 Related Work

Both Liu’s result [15] and ours are constructive in a manner similar to the first
three algorithms described below. Moreover, our result is a single algorithm
(Theorem 7) that gives both bounds when run with different parameters and an
optional projection R

k → R
O(log(k)). To better explain the new ideas in our work

and contrast them with previous methods, we review previous methods below.
Algorithm (B) [17]. In this algorithm k rays beginning at the origin are cho-
sen at random, and the space R

k is partitioned into k cones, where cone i is
centered around ray i. Each point representing a vertex is projected onto the
ray corresponding to the cone containing the point, and the spectral sweep is
performed on each ray. A positive proportion of the communities found from the
set of spectral sweeps satisfy the desired bound.
Algorithm (A) [11]. The number of ray/cone pairs constructed varies but is
always at least k. Every point representing a vertex is in at least one cone.
Sets (corresponding to communities) are formed from the union of small cones
and partition the set of points representing vertices, where ambiguity of a point
contained in multiple cones is resolved through an ordering of the ray/cone pairs.
The cones are of variable size and each ray contains some point representing a
vertex. The map F : V → R

k is transformed into maps F1, . . . , Fk : V → R
k with

disjoint support, each with a Rayleigh quotient bounded by k and the Rayleigh
quotient of F . A spectral sweep is applied to each Fi.
Algorithm (C) [11]. This algorithm differs from the previous one (Algorithm
A) in the cone size and spectral sweep. Cones of fixed size are used and each ray
contains a point near a point representing a vertex. A single spectral sweep is
performed to F to form a set T of selected vertices; community i is the intersec-
tion of T with set i formed from the union of cones.
Pairs of Cones [15]. To find bipartite communities, the space R

k is partitioned
into pairs of cones C,C ′, where C ′ is the reflection of C about the origin. To
avoid the problem of C and C ′ possibly being nondistinct when several pairs
of cones are unioned to form one set, k-dimensional projective space is used.
In this paradime C and C ′ are identified. Essentially the same method as (A)
is used from there where Fi is projected linearly into different one-dimensional
subspaces. While the process of unioning cones into a single set destroys the ini-
tial set of central rays, Liu argues that a new central line representing the whole
set can be found. The bipartite spectral sweep is preformed on each subspace.
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1.3 Theoretical Algorithm

A first look at our approach would summarize it as Liu’s method (Pairs of
Cones) with Algorithm (C) replacing Algorithm (A), but this is not sufficient
to explain the improved bounds or Remarks “No-Separate-But-Equal Principle”
and“Complete Spectrum Principle.” This simple explanation also masks a deep
technical problem about the ordering of the steps: the bipartite spectral sweep is
done before the partitioning in Algorithm (C); the projection into a one dimen-
sional space must be done before the bipartite spectral sweep to distinguish S
from S′; and the partitioning of the vertices must be done before the projection,
as the selected line the points are projected onto depends on the points in the
part of the partition. In other words, α must come before β, β must come before
γ, and γ must come before α.

One of our contributions is to provide the technical framework for how Algo-
rithm (C) can be altered so that the partitioning of the vertices comes before the
spectral sweep, thus eliminating the above contradiction. In Algorithms (A), (B),
and (C) the costs incurred from partitioning the vertices and from the spectral
sweep are kept distinct and are accumulated at the end; this is not possible with
our modification to Algorithm (C). To solve this, we develop a novel method to
quantify the cost of the partition as an expression that can be incorporated into
the evaluation of the performance of the spectral sweep without modifying the
underlying procedure.

Recall, ambiguities that arise from the overlap of small cones are resolved
through an ordering of the ray/cone pairs. This may imply that some cones (those
earlier in the ordering) perform better than the overall expectation. However,
this ordering is lost when the r sets are formed as a union of several cones. A
second novel contribution is that some ordering of the sets can be established—
with a superior bound for the earlier sets—when Liu re-establishes the central
ray for the sets, which results in the improvement mentioned in Remark “No-
Separate-But-Equal Principle.”

Finally, let us note that despite all of the technicalities posed in this section,
our proof is shorter and simpler than the proofs in [11,17].

1.4 Practical Algorithm and Experimental Results

The distinctions between our algorithm and those before it are subtle, but those
distinctions are exactly what allow us to achieve better results. In particular, we
do the following four things, each of which is different than at least one of (A),
(B), and (C): (I) select r lines through the origin that will be the centers of the
different communities, (II) each community consists of points in a cone centered
around one of the two rays that form the central line, (III) the lines are chosen
dependent on the location of the points representing a vertex in the graph, and
(IV) each point is projected onto the line corresponding to the cone containing
it, and a (bipartite) spectral sweep is performed on that line.

Some of the following notation will be defined in Sect. 2. Our algorithm
accepts a map F : V → R

k with small signless Rayleigh quotient and returns r
bipartite communities. The outline of our algorithm is:
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(1) Run weighted r-means using the mirror radial projection distance and
weight of a vertex equal to its mass.

(2) For sets C1, . . . , Cr from the r-means run for each i: for each v ∈ Ci with
center ci, calculate xv = F (v) · ci, and then run (a novel unbalanced version
of the) bipartite spectral sweep on the xv.

We applied this algorithm to three real-world networks (a biological net-
work, political blogs, and a telecommunication network), and we found success
two times (in all but the biological network). By examining the eigenvalues, we
determined that the issue with the biological network was with the network and
not the algorithm. This emphasizes the importance of algorithms with qual-
ity guarantees. When successful, the algorithm was competitive with all other
attempted methods numerically.

On political blogs, our algorithm found the Authority/Hub framework first
described by Kleinberg [9]. On telecommunication networks, our algorithm found
a community local to a regional network (Korea) rather than the dense forma-
tion at the logical center. Furthermore, the two sets of the community provided
information about the peering relationship. This can be used to infer the level of
a telecommunications company, which approximates how close it is to the logical
center of the Internet. Information about levels can be used to efficiently route
traffic by idealizing the network as a hyperbolic space. Hence our results do not
just score well; they have qualitative significance too.

Moreover, we exclusively worked with networks where the vertices were
labeled based on their real-world source, which allowed us to apply an “eyeball
test” to the results. In each case the communities found qualitative structure
previously unknown to these networks. See the full version [24] of this extended
abstract for a thorough description of our algorithm and a detailed analysis of
the outcomes.

2 Constructing Bipartite Communities

Let G be a connected graph with adjacency matrix A and degree matrix D. We
use E< = {(u, v) : uv ∈ E, u < v} to simplify equations.

Let L̃ = 2I − L = I + D−1/2AD−1/2 be the signless Laplacian. Eigenvalue
λ with eigenvector v of L is eigenvalue λ̃ := 2 − λ with eigenvector v of L̃. Let
H : V → R

k be a map, and let ‖x − y‖ be the standard Euclidean distance
between points x, y ∈ R

k. We define the signless Rayleigh quotient of H to be
R̃G(H) =

∑
uv∈E< wuv‖H(u)+H(v)‖2

∑
u∈V ‖H(u)‖2d(u) .

Let e1, e2, . . . , ek be orthonormal eigenvectors of L̃ that correspond to
the smallest eigenvalues, and for each i, let ei = D1/2fi. A direct calcula-
tion gives that

∑
u∈V d(u)fi(u)2 = 1 and R̃G(fi) = λ̃i. We choose F (u) =

(f1(u), f2(u), . . . , fk(u)). The mass is M(S) =
∑

u∈S d(u)‖F (u)‖2. A vertex at
the origin has no mass, and therefore our algorithm will not be disturbed by
discarding vertices mapped to the origin.
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Define the mirror radial projection dM (x, y) to be

min {‖F (x)/‖F (x)‖ − F (y)/‖F (y)‖‖ , ‖F (x)/‖F (x)‖ + F (y)/‖F (y)‖‖} .

If θ is the angle formed from F (u) and F (v) through the origin and θ∗ =
min{θ, π − θ}, then dM (x, y) = 2 sin(θ∗/2). For u ∈ V define the ball Bt(u) ⊆ V
to be Bt(u) = {w ∈ V : dM (u,w) < t} (because of the nature of dM , this is a
pair of cones in R

k). We will use P to denote a partition of the vertex set, and
P (u) to denote the part of the partition that contains vertex u.

2.1 Essential Lemmas

We partition our points by the following algorithm.

Lemma 1 ([5]). There exists a randomized algorithm to generate a partition P
such that each part of the partition has diameter at most Δ (with respect to dM )
and

P[P (u) = P (v)] ≤ 2
√

kdM (u, v)
Δ

where k is the dimension of the underlying space.

The output of Lemma 1 is a set of cones. The process in the Pair of Cones
Algorithm of unioning small cones into sets is described by the following lemma.
It uses the fact that the ei are orthonormal.

Lemma 2 ([15]). Let k be the dimension of the underlying space. There exists
a randomized algorithm to generate a partition P such that P[P (u) = P (v)] ≤
2
√

kdM (u,v)
Δ where

(1) Δ = (2k)−0.5 implies there are k parts, each satisfying M(P (u)) ≥ M(V )
2(k−0.25)

(2) Δ = 0.27 implies there are k/2 parts, each satisfying M(P (u)) ≥ M(V )/k.

The following is a novel method to show that edges uv with P (u) =
P (v) contribute very little to the term

∑
uv∈E< wuv‖F (u) + F (v)‖2. It fol-

lows from the Cauchy-Schwartz formula and a direct calculation showing that
dM (u, v)‖F (u)‖ ≤ 2‖F (u) + F (v)‖.

Lemma 3.
∑

u∈V

∑

v∈N(u)

wuvdM (u, v)‖F (u)‖2 ≤
√

8R̃(F )−1
∑

uv∈E<

wuv‖F (u) + F (v)‖2.

The following can be proved by expanding all terms and switching the order
of summation. In the following lemma, k refers to the number of eigenvectors
used to define the function F .

Lemma 4.

R̃G(F ) =
∑

i λ̃i

k
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2.2 General Approach

Theorem 7. If we have a randomized method to generate a partition P with
r parts such that P[P (u) = P (v)] ≤ C1dM (u, v) and each part has mass at
least C2M(V (G)), then there exists vertex sets S1, . . . , Sr, S

′
1, S

′
2, . . . , S

′
r where

φ̃(Si, S
′
i) ≤ 8C1+4

C2(r−i+1)

√
R̃(F ).

Proof. Let χ denote an indicator variable. Choose a partition P that performs
at least as well as the expectation in the sense that

∑

u∈V

∑

v∈N(u)

wuvχ(P (u) = P (v))‖F (u)‖2 ≤
∑

u∈V

∑

v∈N(u)

wuvC1dM (u, v)‖F (u)‖2.

(1)
In the following, we assume that P is now fixed.

Fix some i; we will find the communities Si, S
′
i independently. Project F

onto one of its coordinates j(i), and use fj instead of F . When there is no
chance for confusion, we will use j as shorthand for j(i). If we choose a j at
random then the terms fj(u)2 and (fj(u) + fj(v))2 have expectation ‖F (u)‖2/k
and ‖F (u)+F (v)‖2/k. We wish to pick a j where the first term shrinks no more
than the second term shrinks. We use the coefficient αi to denote the shrinkage
of the first term.

Formally, define αi for our chosen j such that

0 =
∑

u∈Pi

d(u)fj(u)2 = αi

∑

u∈Pi

d(u)‖F (u)‖2,

and our choice of j then implies

α−1
i

∑

u∈Pi

∑

v∈N(u)

wuv

(
C1R̃(F )−1/2(fj(u) + fj(v))

2 + χ(P (u) �= P (v))fj(u)
2
)

(2)

≤
∑

u∈Pi

∑

v∈N(u)

wuv

(
C1R̃(F )−1/2‖F (u) + F (v)‖2 + χ(P (u) �= P (v))‖F (u)‖2

)
.

We have chosen j(i) independently for each fixed i, but (1) is for all i at once.
So we bound the sum of the right hand side of (2) for all i using Lemma 3 and
(1) with the expression

C1R̃(F )−1/22(1 +
√

2)
∑

uv∈E<

wuv‖F (u) + F (v)‖2.

The two terms in the left hand side of (2) are positive so they are independently
bounded by the right hand side. The two independent bounds are

∑

i

∑

u∈Pi

∑

v∈N(u)

wuvχ(P (u) = P (v))fj(i)(u)2α−1
i (3)

≤ 2C1R̃(F )−1/2(1 +
√

2)
∑

uv∈E<

wuv‖F (u) + F (v)‖2
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and
∑

i

∑

u∈Pi

∑

v∈N(u)

(fj(i)(u) + fj(i)(v))2α−1
i ≤ 2(1 +

√
2)

∑

uv∈E

wuv‖F (u) + F (v)‖2.

(4)
Let α̂ = maxi α−1

i f2
j(i)(u). Choose t ∈ (0, α̂) uniformly and randomly and

define two sets Si,t = {u ∈ Pi : fj(u) ≥ √
tαi}, S′

i,t = {u ∈ Pi : fj(u) < −√
tαi}.

The expectation for the denominator of φ̃(Si,t, S
′
i,t) is the mass of Pi:

Et[w(Si,t ∪ S′
i,t, V )] = α̂−1

∑

u∈Pi

‖F (u)‖2d(u) ≥ α̂−1C2

∑

u∈V

‖F (u)‖2d(u). (5)

As shorthand, let Bi,t = w(Si,t∪S′
i,t, Si,t ∪ S′

i,t)+w(Si,t, Si,t)+w(S′
i,t, S

′
i,t) be

the numerator of φ̃(Si,t, S
′
i,t). Using (3) and the bipartite spectral sweep method

[21] (which involves the Cauchy-Schwartz theorem and (4)),
∑

i

Et [Bi,t] ≤
∑

i

∑

u∈Pi

∑

v∈N(u)

wuvP[v /∈ Pi, u ∈ St ∪ S′
t]

+
∑

i

Et[w(Si,t, Pi \ S′
i,t) + w(S′

i,t, Pi \ Si,t)]

≤ 2α̂−1C1(1 +
√

2)R̃(F )−1/2
∑

uv∈E<

wuv‖F (u) + F (v)‖2

+α̂−1
∑

i

∑

u∈Pi

∑

v∈N(u)

wuv (|fj(u)| + |fj(v)|) |fj(u) + fj(v)| α−1
i

≤ 2α̂−1

√
1 +

√
2

R̃(F )

(
C1

√
1 +

√
2 + 1

) ∑

uv∈E<

wuv‖F (u) + F (v)‖2. (6)

We have not yet imposed an order on the Pi, and we do so now. Define
γi ∈ (0, 1) to be such that Et[Bi,t] = γiEt[

∑
i′ Bi′,t]. Permute the indices such

that γ1 ≤ γ2 ≤ · · · ≤ γr. Theorem 4 will depend on the fact that
∑

i γi = 1, but
for now we use the weaker γi ≤ (r + 1 − i)−1. Combining (5) and (6) we have
that

Et

[
w(Si,t ∪ S′

i,t, V )
C2

√
R̃(F ) − (r + 1 − i)Bi,t

8C1 + 4

]
> 0. (7)

If w(Si,t ∪ S′
i,t, V ) = 0, then Bi,t = 0 and so the term inside the expectation of

(7) is zero. So we may choose t separately for each i that performs at least as
well as the expectation and satisfies w(Si,t ∪ S′

i,t, V ) = 0.

2.3 Polished Results

The application of Theorem 7 is direct.
Proof of Theorem 2 (1). Apply Theorem 7 with Lemma 2 and Δ = (2

√
k)−1,

C1 = 4k, r = k, and C2 = 1
2(k−0.25) .
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Proof of Theorem 2 (2). Use the dimension reduction arguments of [11] to project
down into 1200(2 ln(k) + ln(200)) dimensions. Apply Theorem7 with Lemma 2

and Δ = 0.27, C1 = 2
√

1200 ln(200k2)

0.27 , r = k
2 , and C2 = 1

k .

Proof of Theorems 4 and 5. We repeat the parameter choices from the proof of
Theorem 2 (1) so that C1 = 4k and C2 = 1

2(k−0.25) . Let us revisit (7) in slightly
modified form. There exists an absolute constant C such that

E

[
Ckw(Si,t ∪ S′

i,t, V )
√

R̃(F ) − Bi,t

γik

]
> 0,

and so φ̃(Si, S
′
i) < Cγik

2

√
R̃(F ). If we use the fact that

∑
i γi = 1 (which was

not used in the proof to Theorem7), we get that

∑

i

φ̃(Si, S
′
i) ≤ O

⎛

⎝k2

√∑
1≤i≤k(2 − λn+1−i)

k

⎞

⎠ . (8)

It is straightforward to convert Theorem 2 into a statement about clas-
sical communities. Simply replace mirror radial projection distance dM with
radial projection distance dF , convert each signless object into the original
form, replace Lemma 3 with the obvious analogue (Lemma 3 relies on the
statement dM (u, v)‖F (u)‖ ≤ 2‖F (u) + F (v)‖; Lemma 3.1 in [11] states that
dF (u, v)‖F (u)‖ ≤ 2‖F (u) − F (v)‖), and use standard spectral sweep instead of
bipartite spectral sweep. The two methods strongly parallel each other, and the
method for classical communities is the easier of the two. We leave the details
of the conversion to the reader.

Let T = V \ ∪i<kSi. We use the standard trick of transforming communities
S1, S2, . . . , Sk into S1, S2, . . . , Sk−1, T , where w(Sk, V ) ≥ w(Si, V ) for all i < k.
Clearly, E(T, T ) ≤ ∑

i<k E(Si, Si), and therefore φ(T ) ≤ ∑
i<k φ(Si). And by

(8), we see that φ(T ) ≤ O

(
k2

√∑
1≤i≤k λi

k

)
.

3 Constructing Sharp Examples

3.1 Bipartite Noisy Hypercube: Theorem3

Let k and c be fixed, with 1 ≤ c ≤ 10k
22 , and let ε = 1

log2.2(k/c) . Let Gk,c be the
weighted complete graph on vertex set V = {0, 1}k, and the weight of edge xy is
ε‖x−y‖1 . Gk,c is called the noisy hypercube. Lee, Oveis Gharan, and Trevisan [11]
demonstrated a separation between the eigenvalues of Gk,c and the conductance
of small sets in the graph. We define G

(o)
k,c to be a complete bipartite spanning

subgraph of Gk,c such that xy ∈ E(G(o)) (and keeps the same weight) if and
only if ‖x − y‖1 is odd. We will show that G

(o)
k,c satisfies 2 − λn−k ≤ 3ε and for

any set T, T ′ ⊂ V with |T ∪ T ′| ≤ c
k |V | we have that φ̃(T, T ′) ≥ 1/2.
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Our proofs will make use of the rich field of study on maps whose domain
is {0, 1}k with inner product 〈f, g〉 = 2−k

∑
x∈V f(x)g(x) and p-norm ‖f‖p =

(
2−k

∑
x∈V |f(x)|p)1/p; our notation follows that of [23]. The Walsh functions

defined by WS(x) = (−1)
∑

i∈S xi for S ⊆ [k] form an orthonormal basis.
Thus, for any f there exist coefficients f̂(S) = 〈WS , f〉 such that f(x) =∑

S⊆[k] f̂(S)WS(x).

Parseval’s Identity states that ‖f‖22 =
∑

S⊆[k] f̂(S)2. The Bonami-Beckner

operator is Nηf(x) =
∑

S⊆[k] f̂(S)η|S|WS(x), and the Bonami-Beckner inequal-
ity is: if 1 ≤ p ≤ q and 0 ≤ η ≤ √

(p − 1)/(q − 1), then ‖Nηf‖q ≤ ‖f‖p. We
will not need the full generality of this statement, just that if 0 ≤ η ≤ 1, then∑

S⊆[k] f̂(S)2η2|S| ≤ ‖f‖21+η2 .

Let do
k be the degree of a vertex in G

(o)
k,c, so that do

k = 1
2

(
(1 + ε)k − (1 − ε)k

)
=

ck(1 + ε)k when ck ∈ [1/2.2, 1/2]. For S ⊆ V , let ρS =
(1+ε)k−|S|(1−ε)|S|−(1−ε)k−|S|(1+ε)|S|

2 . Our first lemma states that WS is an eigen-
function of the Laplacian with eigenvalue 1 − ρS/do

k.

Lemma 5. If S ⊆ [k] and A is the adjacency matrix for G
(o)
k,c, then AWS =

ρSWS.

By considering the k + 1 options for S such that |S| ≥ k − 1, we arrive at

the conclusion 2 − λn−k ≤ 3ε. Lemma 6 will use the bound ρS ≤ do
k
11
10

(
1−ε
1+ε

)|S|
,

which is stronger for smaller values of |S| (when |S| > k/2, we have ρS < 0).
We will prove that φ(T ) ≥ 1

2 for any T ⊂ V with |T | < c
k |V | = c

kn. Recall
that φ̃(T ′, T ′′) = φ(T ′ ∪T ′′)+ w(T ′,T ′)+w(T ′′,T ′′)

w(T ′∪T ′′,V ) , so this will conclude the details
of Example 3. Using the Walsh functions as an orthonormal basis, we bound
from above w(T, T ) for any vertex set T .

Lemma 6. Let T ⊆ V and define 1T to be the characteristic function of T .
Under these conditions,

2−kw(T, T ) = 〈1T , A1T 〉 ≤ do
k

11
10

∑

S⊆[k]

(
1 − ε

1 + ε

)|S| (
1̂T (S)

)2

.

It now follows that small vertex sets have large conductance.

Theorem 8. The conductance φ(T ) ≥ 1
2 for any T ⊂ V with |T | < c

k |V | = c
kn.

Proof. Let T ⊆ V be such that |T | ≤ c
kn. Note that φ(T ) = 1 − w(T,T )

w(T,V ) =

1 − w(T,T )
|T |do

k
. By Lemma 6 and the Bonami-Beckner inequality (with η =

√
1−ε
1+ε ),

we have that
w(T, T )
|T |do

k

≤ 1.1
2k

|T | ‖1T ‖21+η2 = 1.1
( |T |

n

)ε

.

By choice of ε, the theorem follows.



136 K. B. Yancey and M. P. Yancey

3.2 Expanders and a Universal Vertex: Theorem6

We assume k is fixed and allow � to grow asymptotically. Let J� be a k-regular
expander graph on � vertices. Let H� = kJ� ∨ K1, which is k disjoint copies of
J� plus one universal vertex. Clearly, φk(H�) ≤ 1/(k + 1), and thus λk(H�) ≤
2/(k + 1). We will show that ψk(H�) ≥ Ω(1), which will prove Theorem 6.

Proof of Theorem 6. Let v be the unique vertex of H� with degree �k. Suppose
S1, . . . , Sk is an optimal partition of H� and that v ∈ Sk. If Si for i < k contains
vertices in multiple copies of J�, then it induces a disconnected graph. The
conductance of Si is bounded from below by the smallest conductance of its
components. It follows that Si must have a component with at least (1 − o(1))�
vertices, or else the expansion of J� implies φ(Si) ≥ Ω(1) and we are done.

So each of S1, . . . , Sk−1 has (1 − o(1))� vertices of a copy of J�. This implies
that Sk has at most � vertices in one of the copies of J� and o(�) vertices in each
of the others. So φ(Sk) ≥ (k−1−o(1))�

(2k+1+o(1))� .
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4. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in
graph partitioning. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering.
LNCS, vol. 9220, pp. 117–158. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49487-6 4

5. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a finite
metric by a small number of tree metrics. In: Proceedings of the 39th Annual
Symposium on Foundations of Computer Science. FOCS 1998, p. 379. IEEE Com-
puter Society, Washington, DC (1998). http://dl.acm.org/citation.cfm?id=795664.
796406

6. Chung, F.: Four Cheeger-type inequalities for graph partitioning algorithms. In:
Proceedings of ICCM, pp. 751–772 (2007)

7. Gallier, J.: Spectral theory of unsigned and signed graphs. Applications to graph
clustering: a survey. ArXiv e-prints, January 2016

8. Gharan, S.O., Trevisan, L.: Partitioning into expanders. In: Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1256–
1266. ACM, New York (2014). https://doi.org/10.1137/1.9781611973402.93

9. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
46(5), 604–632 (1999). https://doi.org/10.1145/324133.324140

10. Kolev, P., Mehlhorn, K.: A note on spectral clustering. In: 24th Annual Euro-
pean Symposium on Algorithms. Leibniz International Proceedings in Informatics,
LIPIcs, vol. 57, p. 14, Art. No. 57. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern
(2016)

https://doi.org/10.1145/2775105
https://doi.org/10.4310/CAG.2013.v21.n4.a2
https://doi.org/10.1101/gr.117176.110
https://doi.org/10.1101/gr.117176.110
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
http://dl.acm.org/citation.cfm?id=795664.796406
http://dl.acm.org/citation.cfm?id=795664.796406
https://doi.org/10.1137/1.9781611973402.93
https://doi.org/10.1145/324133.324140


Bipartite Communities via Spectral Partitioning 137

11. Lee, J.R., Oveis Gharan, S., Trevisan, L.: Multi-way spectral partitioning and
higher-order Cheeger inequalities. In: Proceedings of the 2012 ACM Symposium
on Theory of Computing, STOC 2012, pp. 1117–1130. ACM, New York (2012).
https://doi.org/10.1145/2213977.2214078

12. Li, A., Peng, P.: Detecting and characterizing small dense bipartite-like subgraphs
by the bipartiteness ratio measure. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.)
ISAAC 2013. LNCS, vol. 8283, pp. 655–665. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-45030-3 61

13. Li, J., Liu, G., Li, H., Wong, L.: Maximal biclique subgraphs and closed pat-
tern pairs of the adjacency matrix: a one-to-one correspondence and mining algo-
rithms. IEEE Trans. Knowl. Data Eng. 19(12), 1625–1637 (2007). https://doi.org/
10.1109/TKDE.2007.190660

14. Liu, F.M.A.S.: Cheeger constants, structural balance, and spectral clustering
analysis for signed graphs. Max Planck Institute for Mathematics in the Sci-
ences (2014, Preprint). http://www.mis.mpg.de/de/publications/preprints/2014/
prepr2014-111.html

15. Liu, S.: Multi-way dual Cheeger constants and spectral bounds of graphs. Adv.
Math. 268, 306–338 (2015). https://doi.org/10.1016/j.aim.2014.09.023

16. Lo, D., Surian, D., Prasetyo, P.K., Zhang, K., Lim, E.P.: Mining direct antagonistic
communities in signed social networks. Inf. Process. Manag. 49(4), 773–791 (2013).
https://doi.org/10.1016/j.ipm.2012.12.009

17. Louis, A., Raghavendra, P., Tetali, P., Vempala, S.: Many sparse cuts via higher
eigenvalues. In: Proceedings of the 2012 ACM Symposium on Theory of Comput-
ing, STOC 2012, pp. 1131–1140. ACM, New York (2012). https://doi.org/10.1145/
2213977.2214079

18. Nascimento, M.C.V., de Carvalho, A.C.P.L.F.: Spectral methods for graph clus-
tering – a survey. Eur. J. Oper. Res. 211(2), 221–231 (2011). https://doi.org/10.
1016/j.ejor.2010.08.012

19. Peng, R., Sun, H., Zanetti, L.: Partitioning well-clustered graphs: spectral clus-
tering works!. SIAM J. Comput. 46(2), 710–743 (2017). https://doi.org/10.1137/
15M1047209

20. Rohe, K., Chatterjee, S., Yu, B.: Spectral clustering and the high-dimensional
stochastic blockmodel. Ann. Stat. 39(4), 1878–1915 (2011). https://doi.org/10.
1214/11-AOS887

21. Trevisan, L.: Max cut and the smallest eigenvalue. SIAM J. Comput. 41(6), 1769–
1786 (2012). https://doi.org/10.1137/090773714

22. Verma, D., Meila, M.: A comparison of spectral clustering algorithms. Technical
report, University of Washington CSE (2003)

23. Wolf, R.D.: A brief introduction to Fourier analysis on the Boolean cube. Theory
of Computing Library Graduate Surveys (2008)

24. Yancey, K., Yancey, M.: Bipartite Communities. ArXiv e-prints, December 2014

https://doi.org/10.1145/2213977.2214078
https://doi.org/10.1007/978-3-642-45030-3_61
https://doi.org/10.1007/978-3-642-45030-3_61
https://doi.org/10.1109/TKDE.2007.190660
https://doi.org/10.1109/TKDE.2007.190660
http://www.mis.mpg.de/de/publications/preprints/2014/prepr2014-111.html
http://www.mis.mpg.de/de/publications/preprints/2014/prepr2014-111.html
https://doi.org/10.1016/j.aim.2014.09.023
https://doi.org/10.1016/j.ipm.2012.12.009
https://doi.org/10.1145/2213977.2214079
https://doi.org/10.1145/2213977.2214079
https://doi.org/10.1016/j.ejor.2010.08.012
https://doi.org/10.1016/j.ejor.2010.08.012
https://doi.org/10.1137/15M1047209
https://doi.org/10.1137/15M1047209
https://doi.org/10.1214/11-AOS887
https://doi.org/10.1214/11-AOS887
https://doi.org/10.1137/090773714


Generating Algebraic Expressions for
Labeled Grid Graphs

Mark Korenblit(B)

Holon Institute of Technology, Holon, Israel
korenblit@hit.ac.il

Abstract. The paper investigates relationship between algebraic
expressions and labeled graphs. We consider directed grid graphs hav-
ing m rows and n columns. Our intent is to simplify the expressions of
these graphs. With that end in view, we describe two methods which
generate expressions for directed grid graphs. For both methods, lengths
of the expressions grow polynomially with n while m is determined as a
constant parameter. Besides, we apply these methods to a square grid
graph in which the number of rows is equal to the number of columns.
We prove that the lengths of the expressions derived by the methods
depend exponentially and quasi-polynomially, respectively, on the size of
the graph.

1 Introduction

A two-terminal directed acyclic graph (st-dag in [4]) has only one source and
only one sink. We consider a labeled graph in which each edge has a unique
label. Each path between the source and the sink (a spanning path) in an st-dag
can be represented by a product of all edge labels of the path. We define the
sum of edge-label products corresponding to all possible spanning paths of an
st-dag G as the canonical expression of G. The order of labels in every product
(from the left to the right) is identical to the order of corresponding edges in the
path (from the source to the sink). An algebraic expression is called an st-dag
expression (a factoring of an st-dag in [4]) if it is algebraically equivalent to the
canonical expression of an st-dag. An st-dag expression consists of literals (edge
labels), and the operators + (disjoint union) and · (concatenation, also denoted
by juxtaposition). We denote an expression of an st-dag G by Ex(G).

We define the total number of literals in an algebraic expression as its com-
plexity. An optimal representation of the algebraic expression F is an expression
of minimum complexity algebraically equivalent to F .

A series-parallel graph is defined recursively so that a single edge is a
series-parallel graph and a graph obtained by a parallel or a series com-
position of series-parallel graphs is series-parallel [4]. A series-parallel graph
expression has a representation in which each literal appears only once [4,17].
This representation is optimal for a series-parallel graph expression. For exam-
ple, the canonical expression of the series-parallel graph presented in Fig. 1 is
abd + abe + acd + ace + fe + fd and it can be reduced to (a(b + c) + f)(d + e).
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Fig. 1. A series-parallel graph.

A Fibonacci graph [9] has vertices {1, 2, 3, . . . , n} and edges {(v, v + 1) | v =
1, 2, . . . , n − 1} ∪ {(v, v + 2) | v = 1, 2, . . . , n − 2}. As shown in [5], an st-dag is
series-parallel if and only if it does not contain a subgraph which is a home-
omorph of the forbidden subgraph positioned between vertices 1 and 4 of the
Fibonacci graph illustrated in Fig. 2. Thus a Fibonacci graph gives a generic
example of non-series-parallel graphs.

1 2 3 4 n-3 n-2 n-1 n

a1 a2 a3 an-3 an-2 an-1

b1 b2 bn-3 bn-2

Fig. 2. A Fibonacci graph.

Interrelations between graphs and expressions are discussed in a number of
works. In particular, [22,26] consider the correspondence between series-parallel
graphs and read-once functions. A Boolean function is defined as read-once if it
may be computed by some formula in which no variable occurs more than once
(read-once formula). On the other hand, a series-parallel graph expression can
be reduced to the representation in which each literal appears only once. Hence,
such a representation of a series-parallel graph expression can be considered as
variety of a read-once formula.

Problems related to computations on graphs have applications in various
areas. Specifically, many network problems, which are either intractable or have
complicated solutions in the general case are solvable for series-parallel graphs.
For example, some efficient algorithms for flow problems on series-parallel net-
works are presented in [3,29]. Papers [6,21] consider sequencing and scheduling
in relation to precedence series-parallel constraints. Linear algorithms for relia-
bility problems on series-parallel networks are presented in [25,30].

An expression of a homeomorph of the forbidden subgraph belonging to any
non-series-parallel st-dag has no representation in which each literal appears
once. For example, consider the subgraph positioned between vertices 1 and 4
of the Fibonacci graph shown in Fig. 2. Possible optimal representations of its
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expression are a1 (a2a3 + b2) + b1a3 or (a1a2 + b1) a3 + a1b2. For this reason, an
expression of a non-series-parallel st-dag can not be represented as a read-once
formula. However, for arbitrary functions, which are not read-once, generating
the optimum factored form is NP-complete [31].

The problem of factoring Boolean functions into shorter, more compact for-
mulae is one of the basic operations in the early stages of algorithmic logic
synthesis since the complexity of a logic circuit and computation time depend
on the number of literals. Some algorithms developed in order to obtain good
factored forms are described in [8,20].

A symbolic approach to scheduling of a robotic line is considered in [19].
The method uses the max-algebra tools and allows the shortest-path problem
to be interpreted as the computation of the st-dag expression. The complexity
of this problem is determined by the complexity of the st-dag expression. For a
robotic line simulated by a Fibonacci graph, the proposed algorithm generates
the processing sequence in polynomial time.

A method for automated composition of algebraic expressions in complex
business process modeling based on acyclic directed graph reductions is intro-
duced in [24]. The method transforms business step dependencies described by
users into digraphs and finally generates algebraic expressions. If a graph is not
series-parallel, the algorithm checks potential structural conflicts whose presence
complicates certain aspects, such as execution control and system scalability. In
this case, the expression generation may require exponential time.

In the last analysis, our research comes down to establishing the relation-
ship between distributed systems and algebraic expressions. Expressions with a
minimum (or, at least, a polynomial) complexity may be considered as a key to
generating efficient algorithms on the systems.

In [17] we presented an algorithm, which generates the expression of O
(
n2

)

complexity for an n-vertex Fibonacci graph. More complicated, rhomboidal
graphs are considered in [16]. The total numbers of literals in expressions derived
for these n-size graphs are O

(
nlog2 6

)
.

In this paper we investigate a directed grid graph Gm,n [32] having m × n
vertices and m(n−1) + n(m−1) edges. Each vertex in this graph corresponds to a
unique pair of integers (i, j) (1 ≤ i ≤ m, 1 ≤ j ≤ n) which are vertex coordinates.
It has edges {((i, j), (i + 1, j)) | 1 ≤ i < m, 1 ≤ j ≤ n} ∪ {((i, j), (i, j + 1)) |
1 ≤ i ≤ m, 1 ≤ j < n}. Each edge ((i, j), (i, j + 1)) is labeled by aij . Each edge
((i, j), (i + 1, j)) is labeled by bij . In Sects. 2 and 3 we consider m as a constant
which determines the depth of a grid graph (specifically, a grid graph of depth 1
is a path graph and a grid graph of depth 2 is called a ladder graph [1,11,23]),
while n characterizes the size of the graph. Section 4 analyses a square grid graph,
Gn,n. For example, a graph G5,6 is presented in Fig. 3.

Grid graphs are widely studied in the literature and have many applications.
Specifically, routing problems on grid graphs are considered in [10,13,14]. A
coloring problem for grids and some other families of grid-like graphs is discussed
in [2]. In [27], directed grid graphs are used to model the string edit problem.
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Fig. 3. A directed grid graph.

Our intent is to generate and to simplify the expressions of directed grid
graphs. With that end in view, we present two methods one of which we call a
backtracking method and the second one is named a decomposition method.

2 Generating Expressions for Directed Grid Graphs by a
Backtracking Method

The method is universal and is appropriate for generating expressions of any
st-dag. An expression is derived by using intermediate subexpressions which
are accumulated in graph’s vertices. Specifically, in our case a subexpression
which is accumulated in vertex (i, j) of Gm,n corresponds to its subgraph which
is positioned between vertices (i, j) and (m,n) and is denoted by F(i,j). The
following recursive procedure is used:

1. F(i,n) ← bi,nbi+1,n . . . bm−1,n

2. F(m,j) ← am,jam,j+1 . . . am,n−1

3. F(i,j) ← ai,jF(i,j+1) + bi,jF(i+1,j) (i < m, j < n)

The subexpression accumulated in vertex (1, 1) is the resulting expression.

Proposition 1. The total number of literals Tm(n) in the expression Ex(Gm,n)
derived by the backtracking method is defined recursively as follows:

Tm(1) = m − 1 (1)
T1(n) = n − 1 (2)
Tm(n) = Tm(n − 1) + Tm−1(n) + 2 (m > 1, n > 1).
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Proof. Initial statements (1) and (2) follow directly from lines 1, 2 of the recursive
procedure. The resulting expression Ex(Gm,n) is equal to a1,1F(1,2) + b1,1F(2,1).
F(1,2) is Ex(Gm,n−1) and F(2,1) is Ex(Gm−1,n). Terms a11 and b11 are two addi-
tional terms in Ex(Gm,n). Hence, the proof of the theorem is complete. ��
Theorem 1. The total number of literals Tm(n) in the expression Ex(Gm,n)
(m is considered as a constant) derived by the backtracking method is O (nm).

Proof. The proof is obtained by induction on m. T1(n) = n − 1 = O(n). There-
fore, the theorem holds for m = 1. We will prove it for any m > 1 on condition
that it is correct for m − 1. According to Proposition 1,

Tm(n) = Tm(n − 1) + Tm−1(n) + 2
= Tm(n − 2) + Tm−1(n − 1) + 2 + Tm−1(n) + 2
= Tm(n − 2) + Tm−1(n − 1) + Tm−1(n) + 2 · 2
= Tm(n − 3) + Tm−1(n − 2) + Tm−1(n − 1) + Tm−1(n) + 2 · 3

= . . . = Tm(1) +
n∑

k=2

Tm−1(k) + 2(n − 1)

=
n∑

k=2

Tm−1(k) + 2(n − 1) + m − 1.

Hence, by the induction hypothesis, there exists a positive constant c such that

Tm(n) ≤ c

n∑

k=2

km−1 + 2(n − 1) + m − 1.

In accordance to Faulhaber’s formula for the sum of the p-th powers of the first
n positive integers

n∑

k=1

kp =
1

p + 1

p∑

k=0

(−1)k

(
p + 1

k

)
Bknp+1−k, (3)

where Bk are Bernoulli numbers
(
B1 = − 1

2

)
. The most significant term in the

right part of (3) is 1
p+1np+1. That is,

n∑

k=1

kp = O
(
np+1

)
and, therefore, Tm(n) =

O (nm) + 2(n − 1) + m − 1 = O (nm). ��
Specifically,

T2(n) =
n2

2
+

3
2
n − 1, T3(n) =

1
6
n3 + n2 +

11
6

n − 1.

For example, Ex(G3,4) derived by the backtracking method is

a11(a12(a13b14b24 + b13(a23b24 + b23a33)) +
b12(a22(a23b24 + b23a33) + b22a32a33)) +
b11(a21(a22(a23b24 + b23a33) + b22a32a33) + b21a31a32a33).
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It contains 33 literals.
Hence, the proposed algorithm optimizes prefix parts of all subexpressions.

In principle, the backtracking method can be applied by traversing the st-dag in
the opposite direction. In this case suffix parts of subexpressions are optimized.
The complexity of the derived expression will be the same.

The total numbers of literals Tm(n) in the expressions Ex(Gm,n) (m =
1, . . . , 10; n = 1, . . . , 10) derived by the backtracking method are presented in
Table 1.

Table 1. Complexities of Ex(Gm,n) derived by the backtracking method.

m\n 1 2 3 4 5 6 7 8 9 10

1 0 1 2 3 4 5 6 7 8 9

2 1 4 8 13 19 26 34 43 53 64

3 2 8 18 33 54 82 118 163 218 284

4 3 13 33 68 124 208 328 493 713 999

5 4 19 54 124 250 460 790 1285 2000 3001

6 5 26 82 208 460 922 1714 3001 5003 8006

7 6 34 118 328 790 1714 3430 6433 11438 19446

8 7 43 163 493 1285 3001 6433 12868 24308 43756

9 8 53 218 713 2000 5003 11438 24308 48618 92376

10 9 64 284 999 3001 8006 19446 43756 92376 184754

One can see that Tm(n) = Tn(m). That is, we have the following claim.

Claim. The total numbers of literals in the expressions Ex(Gm,n) and Ex(Gn,m)
derived by the backtracking method are equal.

Proof. The proof is obtained by induction on m and n. The claim holds for any
n = m, including n = 1. We will prove it for any m > 1 or n > 1 on condition
that it is correct for m−1 and n−1. According to Proposition 1 and the induction
hypothesis, Tm(n) = Tm(n−1)+Tm−1(n)+2 = Tn−1(m)+Tn(m−1)+2 = Tn(m).

��
Thus the length of Ex(Gm,n) derived by the backtracking method grows

polynomially with n. However, for sufficiently large constant m the problems
based on Ex(Gm,n) can turn out to be intractable.

3 Generating Expressions for Directed Grid Graphs by a
Decomposition Method

The method is known as very efficient and is based on recursive revealing sub-
graphs in the graph of a regular structure. The resulting expression is produced
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by a special composition of subexpressions describing these subgraphs. The exis-
tence of a decomposition method for a graph G is a sufficient condition for the
existence of an expression with polynomial complexity for G if the graph is split
into the constant number of subgraphs in each recursive step.

The graph Gm,n is conditionally split into left and right parts connected by
edges ai,j (i = 1, 2, . . . ,m) so that j is chosen in the middle of a row (edges
a13, a23, a33, a43, a53 in Fig. 3). Each of these edges leaves a sink of a subgraph
belonging to the left part (its source is a source of the graph) and enters a source
of a subgraph of the right part (its sink is a sink of the graph). Any path from
the source to the sink of the graph passes through one of the connecting edges.
This decomposition is repeated recursively for every revealed subgraph.

We denote by F ((p1, p2), (q1, q2)) a subexpression related to a subgraph
with a source (p1, p2) and a sink (q1, q2) (it has depth q1− p1 + 1 and size
q2− p2 + 1). Therefore,

1. F ((p1, p2), (q1, q2)) ← bp1,p2bp1+1,p2 . . . bq1−1,p2 (q2 = p2)
2. F ((p1, p2), (q1, q2)) ← F ((p1, p2), (p1, j))ap1,jF ((p1, j + 1), (q1, q2))+

F ((p1, p2), (p1 + 1, j))ap1+1,jF ((p1 + 1, j + 1), (q1, q2)) + . . . +
F ((p1, p2), (q1, j))aq1,jF ((q1, j + 1), (q1, q2)) (q2 > p2)
j =

⌊
q2+p2

2

⌋
for even size,

j =
⌈

q2+p2−1
2

⌉
or

⌊
q2+p2−1

2

⌋
for odd size.

In the general case (q2 > p2) a current subgraph is decomposed into 2(q1−
p1 + 1) new subgraphs

Proposition 2. The total number of literals Tm(n) in the expression Ex(Gm,n)
derived by the decomposition method is defined recursively as follows:

Tm(1) = m − 1 (4)

Tm(n) = T1

(⌈n

2

⌉)
+ T1

(⌊n

2

⌋)
+ T2

(⌈n

2

⌉)
+ T2

(⌊n

2

⌋)
+ (5)

. . . + Tm

(⌈n

2

⌉)
+ Tm

(⌊n

2

⌋)
+ m (n > 1).

Proof. Initial statement (4) follows directly from line 1 of the decomposition
procedure. General formula (5) is based on the structure of expression (2) of the
same procedure. The graph of size n is decomposed into 2m subgraphs (m from
the left and m from the right). Every subgraph of depth m1 = 1, . . . ,m from
the left has a complementary subgraph of depth m2 = m − m1 + 1 from the
right. Since location of the split is in the middle of a row, sizes of all revealed
subgraphs are

⌈
n
2

⌉
or

⌊
n
2

⌋
. Additionally, we have m literals corresponding to m

connecting edges. ��
Theorem 2. The total number of literals Tm(n) in the expression Ex(Gm,n)
(m is considered as a constant) derived by the decomposition method is
O

(
n logm−1 n

)
.
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Proof. The proof is obtained by induction on m. As follows from Proposition 2,
T1(n) = T1

(⌈
n
2

⌉)
+T1

(⌊
n
2

⌋)
+1 = O(n). Therefore, the theorem holds for m = 1.

We will prove it for any m > 1 on condition that it is correct for 1, 2, . . . , m − 1.
According to Proposition 2,

Tm(n) ≤ 2Tm

(⌈n

2

⌉)
+ 2Tm−1

(⌈n

2

⌉)
+ . . . + 2T2

(⌈n

2

⌉)
+ 2T1

(⌈n

2

⌉)
+ m.

By the induction hypothesis, for r = 1, . . . ,m − 1 there exists a positive con-
stant cr such that 2Tr

(⌈
n
2

⌉) ≤ 2cr

⌈
n
2

⌉
logr−1

2

⌈
n
2

⌉ ≤ cr(n + 1) logr−1
2 n =

O
(
n logr−1 n

)
. Therefore,

Tm(n) ≤ 2Tm

(⌈n

2

⌉)
+ O

(
n logm−2 n

)
+ O

(
n logm−3 n

)
+ . . .

+O (n log n) + O(n) + O(1)

= 2Tm

(⌈n

2

⌉)
+ O

(
n logm−2 n

)
.

In accordance to the master theorem, given constants α ≥ 1 , β > 1, k ≥ 0
and the recurrence Φ(n) = αΦ

(
n
β

)
+ f(n) (n

β is interpreted as
⌊

n
β

⌋
or

⌈
n
β

⌉
) if

f(n) = O
(
nlogβ α logk n

)
then Φ(n) = O

(
nlogβ α logk+1 n

)
. For this reason,

Tm(n) ≤ 2Tm

(⌈n

2

⌉)
+ O

(
n logm−2 n

)
= O

(
n logm−1 n

)
. ��

In particular, for the ladder graph we have the following finding that follows
directly from Theorem 2.

Corollary 1. The total number of literals T2(n) in the expression Ex(G2,n)
derived by the decomposition method is O (n log n).

Specifically, for n that is a power of two (n = 2p for some positive integer
p ≥ 1) we obtained the following explicit formulae:

T2(n) = n log2 n + n, T3(n) =
1
2
n log22 n +

3
2
n log2 n + 3n − 1.

For example, Ex(G3,4) derived by the decomposition method is

a11a12(a13b14b24 + b13a23b24 + b13b23a33) +
(a11b12 + b11a21)a22(a23b24 + b23a33) +
(a11b12b22 + b11a21b22 + b11b21a31)a32a33.

It contains 31 literals.
Thus for a graph Gm,n of any depth (m) the total number of literals in

Ex(Gm,n) derived by the decomposition method grows quasi-linearly with the
size of the graph (n).

The total numbers of literals Tm(n) in the expressions Ex(Gm,n) (m =
1, . . . , 10; n = 1, . . . , 10) derived by the decomposition method are presented
in Table 2.
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Table 2. Complexities of Ex(Gm,n) derived by the decomposition method.

m\n 1 2 3 4 5 6 7 8 9 10

1 0 1 2 3 4 5 6 7 8 9

2 1 4 8 12 17 22 27 32 38 44

3 2 9 20 31 47 63 79 95 117 139

4 3 16 40 64 104 144 184 224 286 348

5 4 25 70 115 200 285 370 455 602 749

6 5 36 112 188 349 510 671 832 1140 1448

7 6 49 168 287 567 847 1127 1407 1995 2583

8 7 64 240 416 872 1328 1784 2240 3284 4328

9 8 81 330 579 1284 1989 2694 3399 5148 6897

10 9 100 440 780 1825 2870 3915 4960 7754 10548

One can see that asymptotically complexities in Table 2 are significantly
less than corresponding complexities in Table 1. However, for small values of
n (n = 2, 3), the backtracking method gives shorter representations than for the
decomposition method.

In addition, Table 2 shows that Tm(n) < Tn(m) for m < n (m > 1, n > 1).
It is clear that graphs Gm,n and Gn,m are isomorphic and if m > n in a graph
Gm,n, the graph may be decomposed horizontally into upper and lower parts.
That is, the decomposition method may be modified so that to split any subgraph
through the longer side and not always vertically.

For example, Ex(G4,3) derived by the decomposition method can look like
this

a11(a12b13b23b33 + b12a22b23b33 + b12b22a32b33 + b12b22b32a42) +
b11a21(a22b23b33 + b22a32b33 + b22b32a42) +
b11b21a31(a32b33 + b32a42) + b11b21b31a41a42.

It contains 40 literals.
Using the modified decomposition method for G4,3 we obtain the following

expression which contains only 29 literals:

b11b21(a31(a32b33 + b32a42) + b31a41a42) +
(a11b12 + b11a21)b22(a32b33 + b32a42) +
(a11(a12b13 + b12a22) + b11a21a22)b23b33.

The complexity of the last expression is even less than for Ex(G3,4) derived by
the regular decomposition method because subgraphs G3,2 (m > n) are revealed
in the course of dividing G3,4.

The total numbers of literals Tm(n) in the expressions Ex(Gm,n) (m =
1, . . . , 10; n = 1, . . . , 10) derived by the modified decomposition method are
presented in Table 3.



Generating Algebraic Expressions for Labeled Grid Graphs 147

Table 3. Complexities of Ex(Gm,n) derived by the modified decomposition method.

m\n 1 2 3 4 5 6 7 8 9 10

1 0 1 2 3 4 5 6 7 8 9

2 1 4 8 12 17 22 27 32 38 44

3 2 8 19 29 45 61 76 91 113 135

4 3 12 29 54 87 120 160 200 255 310

5 4 17 45 87 150 211 293 375 493 611

6 5 22 61 120 211 334 475 616 825 1034

7 6 27 76 160 293 475 712 937 1279 1621

8 7 32 91 200 375 616 937 1338 1855 2372

9 8 38 113 255 493 825 1279 1855 2604 3359

10 9 44 135 310 611 1034 1621 2372 3359 4582

As expected, now Tm(n) = Tn(m). One can see that this way provides more
compact expressions than the decomposition method.

4 Generating Expressions for Square Grid Graphs

Consider the case when both m and n characterize the size of Gm,n (m is not
considered as a constant). Specifically, if m grows together with n (m = n) we
have a square grid graph of size n, Gn,n.

4.1 Generating Expressions for Square Grid Graphs by the
Backtracking Method

Firstly, we apply the backtracking method to a graph Gm,n in which n and m
are not equal in the general case. The following proposition determines the lower
bound for complexity of Ex(Gm,n).

Proposition 3. The total number of literals T (m,n) in the expression
Ex(Gm,n) derived by the backtracking method is Ω

(
nm

m!

)
.

Proof. The proof is obtained by induction on m. T (1, n) = n − 1 = Ω
(

n1

1!

)
.

Therefore, the proposition holds for m = 1. We will prove it for any m > 1 on
condition that it is correct for m − 1. As shown in the course of the proof of
Proposition 1,

T (m,n) =
n∑

k=2

T (m − 1, k) + 2(n − 1) + m − 1.

Hence, by the induction hypothesis, there exists a positive constant c such that

T (m,n) ≥
n∑

k=2

ckm−1

(m − 1)!
+2(n−1)+m−1 =

c

(m − 1)!

n∑

k=2

km−1+2(n−1)+m−1.
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That is, by formula (3),

T (m,n) ≥ c

(m − 1)!m

m−1∑

k=0

(−1)k

(
m

k

)
Bknm−k + 2(n − 1) + m − 1 − c

(m − 1)!

=
c

m!
nm +

c

m!

m−1∑

k=1

(−1)k

(
m

k

)
Bknm−k + 2(n − 1) + m − 1 − c

(m − 1)!
.

Although there are negative summands in the sum obtained, ultimately, T (m,n)
is positive and thus there exists a positive constant c1 ≤ 1 such that T (m,n) ≥
cc1
m! n

m = Ω
(

nm

m!

)
. ��

The following theorem for a square grid graph of size n follows directly from
Proposition 3.

Theorem 3. The total number of literals T (n) in the expression Ex(Gn,n)
derived by the backtracking method is Ω

(
nn

n!

)
.

In accordance to Stirling’s approximation, as n → ∞ ,

n!˜
(n

e

)n √
2πn.

Hence, the lower bound of T (n) may be estimated as

nn

n!
˜

nn

(
n
e

)n √
2πn

=
en

√
2πn

.

Therefore, T (n) = Ω
(

en√
n

)
.

Thus the total number of literals in Ex(Gn,n) derived by the backtracking
method grows exponentially with n.

4.2 Generating Expressions for Square Grid Graphs by the
Decomposition Method

We denote by Tm(n) the total number of literals in the expression Ex(Gm,n)
(both m and n are not constants) derived by the decomposition method.

Theorem 4. The total number of literals in the expression Ex(Gn,n) derived
by the decomposition method is O

(
n�log2 n�+2

)
.
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Proof. Interpret n
2 as

⌈
n
2

⌉
and denote z = �log2 n�. In accordance to Proposi-

tion 2,

Tn(n) ≤ 2Tn

(n

2

)
+ 2Tn−1

(n

2

)
+ 2Tn−2

(n

2

)
+ . . . + 2T1

(n

2

)
+ n

≤ 2
[
2Tn

(n

4

)
+ 2Tn−1

(n

4

)
+ 2Tn−2

(n

4

)
+ . . . + 2T1

(n

4

)
+ n

+ 2Tn−1

(n

4

)
+ 2Tn−2

(n

4

)
+ . . . + 2T1

(n

4

)
+ n − 1

+ 2Tn−2

(n

4

)
+ . . . + 2T1

(n

4

)
+ n − 2

. . . . . . . . .

+2T1

(n

4

)
+ 1

]
+ n

< 4
[
Tn

(n

4

)
+ 2Tn−1

(n

4

)
+ 3Tn−2

(n

4

)
+ . . . + nT1

(n

4

)]

+2n2 + n

≤ 4
[
2Tn

(n

8

)
+ 2Tn−1

(n

8

)
+ 2Tn−2

(n

8

)
+ . . . + 2T1

(n

8

)
+ n

+ 2
(
2Tn−1

(n

8

)
+ 2Tn−2

(n

8

)
+ . . . + 2T1

(n

8

)
+ n − 1

)

+ 3
(
2Tn−2

(n

8

)
+ . . . + 2T1

(n

8

)
+ n − 2

)

. . . . . . . . .

+n
(
2T1

(n

8

)
+ 1

)]

+2n2 + n

= 8
[
Tn

(n

8

)
+ (1 + 2)Tn−1

(n

8

)
+ (1 + 2 + 3)Tn−2

(n

8

)
+

. . . +
n∑

i=1

i · T1

(n

8

)
]

+4 (n + 2(n − 1) + 3(n − 2) + . . . + n) + 2n2 + n

< 8
[
Tn

(n

8

)
+ 22Tn−1

(n

8

)
+ 32Tn−2

(n

8

)
+ . . . + n2T1

(n

8

)]

+4n3 + 2n2 + n

≤ 8
[
2Tn

( n

16

)
+ 2Tn−1

( n

16

)
+ 2Tn−2

( n

16

)
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( n

16

)
+ n

+ 22
(
2Tn−1

( n

16

)
+ 2Tn−2

( n

16

)
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( n

16

)
+ n − 1

)

+ 32
(
2Tn−2

( n

16

)
+ . . . + 2T1

( n

16

)
+ n − 2

)

. . . . . . . . .

+n2
(
2T1

( n

16

)
+ 1

)]
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+4n3 + 2n2 + n

= 16

[

Tn

( n

16

)
+

2∑

i=1

i2Tn−1

( n

16

)
+

3∑

i=1

i2Tn−2

( n

16

)
+

. . . +
n∑

i=1

i2 · T1

( n

16

)
]

+8
(
n + 22(n − 1) + 32(n − 2) + . . . + n2

)
+ 4n3 + 2n2 + n

< 16
[
Tn

( n

16

)
+ 23Tn−1

( n

16

)
+ 33Tn−2

( n

16

)
+ . . . + n3T1

( n

16

)]

+8n4 + 4n3 + 2n2 + n

. . . . . . . . .

≤ 2z
[
Tn (1) + 2z−1Tn−1 (1) + 3z−1Tn−2 (1) + . . . + (n − 1)z−1T2 (1)

]

+
z∑

i=1

2i−1ni

= 2z
[
n − 1 + 2z−1(n − 2) + 3z−1(n − 3) + . . . + (n − 1)z−1

]
+

z∑

i=1

2i−1ni

< 2z(n − 1)(n − 1)z−1(n − 1) + O (2znz)

= 2�log2 n�(n − 1)(n − 1)�log2 n�−1(n − 1) + O
(
2�log2 n�n�log2 n�

)

= O
(
nn�log2 n�+1

)
+ O

(
nn�log2 n�

)

= O
(
n�log2 n�+2 + n�log2 n�+1

)
= O

(
n�log2 n�+2

)
.

��
Thus for a square grid graph the decomposition method provides expressions

with quasi-polynomial complexity with respect to the size of the graph.
Sometimes it is convenient to present a complexity of an st-dag expres-

sion as a function of the number of vertices in the graph. This unified
way allows to compare expressions’ complexities of different graphs, specifi-
cally, when their vertices are linearly ordered by means of a topological sort.
Denote the number of vertices in a square grid graph by N . It is clear that
n =

√
N . Hence, by Theorem 4, the total number of literals in the expres-

sion of an N -vertex square grid graph derived by the decomposition method

is O

(√
N

�log2

√
N�+2

)
= O

(
N

1
2� 1

2 log2 N�+2
)

= O
(
N

1
2 ( 1

2 log2 N+1)+2
)

=

O
(
N0.25 log2 N+2.5

)
. The obtained upper bound is not always a tight bound.

5 Conclusion and Future Work

Two methods for generating algebraic expressions of directed grid graphs (having
m rows and n columns) have been presented. Both methods give expressions
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whose complexities polynomially depend on n which characterizes the size of
the graph (m is considered as a constant). The first, the backtracking method,
derives expressions with complexity O (nm), while the second, the decomposition
method provides expressions of quasi-linear, O

(
n logm−1 n

)
complexity. Thus

the decomposition method is significantly more efficient than the backtracking
one. Moreover, since every edge label of a graph appears in its expression at least
once, the total number of literals in the expression complexity for any st-dag of
size n is Ω (n). Therefore, even if expressions generated by the decomposition
method for directed grid graphs are not optimal (this is an open problem) their
complexities are close to the lower bound.

Additionally, we have shown that the decomposition method being applied
to a square grid graph of size n × n, is able to generate expressions of quasi-
polynomial complexity, namely, O

(
n�log2 n�+2

)
, whereas the lengths of the same

expressions produced by the backtracking method increase exponentially.
We are going to develop the improved version of the decomposition method

which is supposed to yield more compact expressions (specifically, by reducing
the number of connecting edges and revealing grid subgraphs which adjoin one
another at the corners). Eventually we plan to find in this way the expression of
a minimum length.

The next object of prospective research is a directed grid graph with diago-
nal edges. The question is how these additional edges complicate the resulting
expression.

It seems interesting to extend the decomposition method to more general
classes of graphs of a regular structure (recursively constructible graphs [23]).

An undirected graph in which every subgraph has a vertex of degree at most
k is called k-inductive [12]. The linkage of a graph is the smallest value of k for
which it is k-inductive [15]. For instance, trees are 1-inductive graphs, underlying
graphs of Fibonacci graphs and undirected grid graphs are k-inductive graphs
with linkage 2, undirected grid graphs with diagonal edges are k-inductive graphs
with linkage 3. Our intent is to extend the decomposition technique to a class of
st-dags whose underlying graphs are k-inductive.

The class of bounded treewidth graphs [18,28], for which many NP-complete
problems can be solved efficiently is based on the concept of a tree decomposition.
Specifically, series-parallel graphs and grids belong to this class. Extending the
decomposition method to bounded treewidth graphs is also well worth for further
investigation.
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23. Noy, M., Ribó, A.: Recursively constructible families of graphs. Adv. Appl. Math.
32, 350–363 (2004)

https://doi.org/10.1007/3-540-58325-4_199
https://doi.org/10.1007/3-540-58325-4_199
https://doi.org/10.1007/3-540-45066-1_17
https://doi.org/10.1007/3-540-45066-1_17
http://wwwmayr.in.tum.de/konferenzen/Jass03/presentations/krause.pdf
http://wwwmayr.in.tum.de/konferenzen/Jass03/presentations/krause.pdf


Generating Algebraic Expressions for Labeled Grid Graphs 153

24. Oikawa, M.K., Ferreira, J.E., Malkowski, S., Pu, C.: Towards algorithmic gener-
ation of business processes: from business step dependencies to process algebra
expressions. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009.
LNCS, vol. 5701, pp. 80–96. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03848-8 7

25. Satyanarayana, A., Wood, R.K.: A linear time algorithm for computing K-terminal
reliability in series-parallel networks. SIAM J. Comput. 14(4), 818–832 (1985)

26. Savicky, P., Woods, A.R.: The number of Boolean functions computed by formulas
of a given size. Rand. Struct. Algorithms 13, 349–382 (1998)

27. Schmidt, J.P.: All highest scoring paths in weighted grid graphs and their applica-
tion to finding all approximate repeats in strings. SIAM J. Comput. 27(4), 972–992
(1998)

28. Sesh Kumar, K.S.: Convex relaxations for learning bounded-treewidth decompos-
able graphs. In: Proceedings of 30th International Conference on Machine Learning
(ICML2013), JMLR: W&CP, vol. 28 (2013)

29. Tamir, A.: A strongly polynomial algorithm for minimum convex separable
quadratic cost flow problems on two-terminal series-parallel networks. Math. Pro-
gram. 59, 117–132 (1993)

30. Wald, J.A., Colbourn, C.J.: Steiner trees in probabilistic networks. Microelectron.
Reliabil. 23(5), 837–840 (1983)

31. Wang, A.R.R.: Algorithms for multilevel logic optimization. Ph.D. thesis, Univer-
sity of California, Berkeley (1989)

32. Weisstein, E.W.: Grid Graph From MathWorld - A Wolfram Web Resource. http://
mathworld.wolfram.com/GridGraph.html

https://doi.org/10.1007/978-3-642-03848-8_7
https://doi.org/10.1007/978-3-642-03848-8_7
http://mathworld.wolfram.com/GridGraph.html
http://mathworld.wolfram.com/GridGraph.html


Editing Graphs to Satisfy Diversity
Requirements

Huda Chuangpishit1, Manuel Lafond2(B), and Lata Narayanan3

1 Department of Mathematics, Ryerson University, Toronto, Canada
hoda.chuang@gmail.com

2 Department of Computer Science, Université de Sherbrooke,
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Abstract. Let G be a graph where every vertex has a colour and has
specified diversity constraints, that is, a minimum number of neighbours
of every colour. Every vertex also has a max-degree constraint: an upper
bound on the total number of neighbours. In the Min-Edit-Cost prob-
lem, we wish to transform G using edge additions and/or deletions into a
graph G′ where every vertex satisfies all diversity as well as max-degree
constraints. We show an O(n5 logn) algorithm for the Min-Edit-Cost
problem, and an O(n3 logn log log n) algorithm for the bipartite case.
Given a specified number of edge operations, the Max-Satisfied-Nodes
problem is to find the maximum number of vertices whose diversity con-
straints can be satisfied while ensuring that all max-degree constraints
are satisfied. We show that the Max-Satisfied-Nodes problem is W [1]-
hard, in parameter r + �, where r is the number of edge operations and
� is the number of vertices to be satisfied. We also show that it is inap-
proximable to within a factor of n1/2−ε. For certain relaxations of the
max-degree constraints, we are able to show constant-factor approxima-
tion algorithms for the problem.

1 Introduction

The ruler of a certain planet is alarmed by the increasing polarization between
the red and blue inhabitants of the planet. The two groups disagree on every
policy issue, and ascribe the worst motivations to each other. Convinced that
increasing the diversity of friendships will help reduce the bitter divisiveness in
political debate, the ruler has decreed that everyone needs to have a minimum
number of friends from the other group. Each person from the red group has
been assigned a certain minimum threshold for the number of blue friends and
vice versa. However, everyone also has a natural limit on the maximum number
of friendships they can have. To satisfy the royal decree, it may be necessary
to break off some friendships and initiate new ones. Is it possible to meet the
c© Springer Nature Switzerland AG 2018
D. Kim et al. (Eds.): COCOA 2018, LNCS 11346, pp. 154–168, 2018.
https://doi.org/10.1007/978-3-030-04651-4_11
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new royal requirements, and if so, what is the minimum number of disruptive
changes (i.e. making and breaking friendships) needed?

The problem above can be modelled as a graph editing problem. Let V be a
set of entities, and c a colour function c : V → {1, . . . , k}, mapping entities to
colours. Let G = (V,E, c) be a graph defined on the set V . Note that there may
be edges between vertices of the same colour. The degree of a vertex v in G is
denoted dG(v) and the number of its neighbors of colour i is denoted d i

G(v). For
every vertex v, a certain minimum number δi(v) of desired neighbors of colour i
is specified. At the same time, there is a maximum allowable degree δ(v) specified
for every vertex v.

We say a vertex v is satisfied in G if and only if it has the desired number of
neighbours of every colour, and its degree in G is at most the maximum allowable
degree. That is, v is satisfied if and only if it meets the following constraints:

1. Diversity constraints: d i
G(v) ≥ δi(v) for all i with 1 ≤ i ≤ k, and

2. Max-degree constraint: dG(v) ≤ δ(v).

Given a graph G, we wish to transform G into a new graph G′ in which every
vertex v is satisfied. The edit distance between graphs G and G′ is the number
of graph edit operations needed to transform the graph G to the graph G′. In
this paper, we consider only the graph edit operations of edge deletion, and edge
addition. In particular, vertices may not be inserted, deleted, or relabelled.

The problem of transforming a graph to a different graph that has a cer-
tain desired property has a long history as described in Sect. 1.2, and has many
applications such as in pattern matching, and degree anonymization for privacy.
In particular, several variants of the problem of editing a graph to satisfy con-
straints on vertex degrees have been studied in [2,5,11–13,20,25]. However, to
the best of our knowledge, there is no known work on editing a graph to satisfy
bounds on number of neighbors of particular colours or types.

In this paper, we study the following two problems:

Problem 1 (Min-Edit-Cost (MEC)). Given a graph G = (V,E, c) and a set S
of allowable edit operations, find a graph G′ = (V,E′, c) with minimum edit
distance (with respect to S) from G, such that every vertex in G′ is satisfied.

Next we consider a fixed edge distance, and maximize the number of vertices
whose diversity constraints can be satisfied while respecting the max-degree
constraints of all vertices.

Problem 2 (Max-Satisfied-Nodes (MSN)). Given a graph G = (V,E, c), find a
graph G′ = (V,E′, c) with edit distance at most k from G, that maximizes the
number of satisfied vertices in G′, while ensuring that all max-degree constraints
are respected.

We denote the set of allowable operations by the set S, a non-empty sub-
set of {a, d}, where a denotes edge addition, and d denotes edge deletion, the
corresponding Min-Edit-Cost problem by MECS , and the corresponding Max-
Satisfied-Nodes problem by MSNS .
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1.1 Our Results

We prove that for any S ⊆ {a, d}, the MECS problem can be solved in poly-
nomial time. In particular, we give an O(n5 log n) algorithm that, given a graph
G, finds a graph G′ which satisfies all diversity and max-degree constraints,
and is at minimum possible edit distance from G. In particular when k = 1,
our result implies a polynomial-time algorithm for adding/deleting a minimum
number of edges so that each vertex has its degree within a specified range.
This generalizes a result of Mathieson and Szeider [20, Sect. 5] that it is pos-
sible in polynomial time, to minimize the number of edge additions/deletions
needed so that every vertex v has a specified degree d(v). If G is bipartite, we
present an O(n3 log n log log n) algorithm for MECS . We then show that for
any S ⊆ {a, d}, the MSNS problem is W [1]-hard in parameter r + � where r is
the maximum edit distance and � is the number of vertices to be satisfied. This
hardness result holds even if there are two colour classes and no upper bound on
the degrees. In fact, the problem is inapproximable to within a factor of n1/2−ε.
If no upper bounds are specified, MSNS admits an O(n2) time algorithm that
satisfies at least �OPT/2� vertices, where OPT is the maximum number of sat-
isfiable vertices. Finally, we show that a variant of the MSN problem, in which
unsatisfied nodes do not have to obey their max-degree constraints, admits a
1
9k -approximation where k is the number of colour classes in the input graph G.

1.2 Related Work

Graph editing problems have a long history; the goal is to edit a given graph to
achieve a certain graph property. The editing operations that have been studied
are vertex and edge deletions and additions, edge contractions, and edge flipping.
Problems such as max-clique, vertex cover, independent set, etc. can be seen as
graph editing problems. Lewis and Yannakakkis [15] showed that the problem
of deleting a given number of vertices to achieve any non-trivial and hereditary
graph property is NP-complete. Many edge deletion problems are also NP-hard,
for example, deleting edges to achieve a bipartite graph, an outerplanar graph or
a cograph [6,18,26]. One particularly well-studied graph editing problem consists
in computing the edit distance between two given graphs G1 and G2, where the
objective is to find the minimum number of vertex and/or edge modifications to
perform on G1 to obtain a graph isomorphic to G2 (see e.g. [22–24] and [9] for
a survey). Computing the similarity between two graphs is especially relevant
for pattern recognition in machine learning, where a given graph needs to be
matched with its closest graph in a set of known samples. Concrete applications
include handwriting recognition [8], fingerprint recognition [21] and comparison
of biological protein networks [14]. While computing the edit distance between
two graphs is known to be APX-hard [27], the parameterized complexity of the
problem does not appear to have been studied.

The problem of editing a graph to satisfy given constraints on the degrees of
vertices has also attracted significant attention. Clearly, the NP-complete prob-
lem of finding an r-regular subgraph (see [3,4]) can be seen as a graph editing
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problem with degree constraints. In [19], Lovász introduced the general factor
problem, where each vertex v is given a list of possible degrees. Cornuéjols [5]
showed that if only edge deletions are allowed, then general factor problem is
solvable in polynomial time, provided there no given degree set has a gap of
length > 1. Otherwise, the problem is shown to be NP-complete. Mathieson and
Szeider [20] generalized this problem by allowing the graph editing operations of
edge addition, edge deletion, and vertex deletion. They also consider weighted
nodes and edges, where the weight of a node/edge specifies the cost of an opera-
tion involving the node or edge. Their main result is to show that for any subset
of allowable edit operations, the problem of graph editing is fixed-parameter
tractable for parameter k + r where k is the maximum edit cost, and r is an
upper bound on the degree of any vertex, and W[1]-hard for parameter k. If
vertex deletion is allowed, then the problem remains W[1]-hard for parameter k
even for unweighted graphs where all vertices are to achieve degree exactly r.
If only edge addition and deletion are permitted, the problem can be solved in
polynomial time if all vertices are to achieve degree exactly d(v), where d(v) is
given for each vertex v. Golovach [11] showed that if each vertex is given one
desired degree, the problem of inserting/deleting (unweighted) edges to obtain a
connected graph of given degrees is FPT when parameterized by k+r in general.
They also showed that if a connected r-regular graph is desired, the problem is
FPT in parameter k. Recently, Subramanya [25] showed that the problem of
graph editing to a given neighborhood degree list is also FPT in k + r.

The degree anonymization problem, introduced in [17], is a variant of graph
editing with degree constraints motivated by the protection of privacy in social
networks. In this problem, an integer h is given, and we ask if the graph can be
modified in k operations so that the graph becomes h-anonymous, i.e. for each
vertex v, there are at least h other vertices with the same degree as v. The degree
anonymization problem was recently shown to be W[1]-hard for parameter k, the
number of necessary edge insertion/deletions, but is FPT in Δ, the maximum
degree of the input graph [13]. If k is the number of vertex-deletions required
to attain h-anonymity, the problem is W[1]-hard for parameter h + k but FPT
in Δ + min{h, k} [2]. A similar problem is considered in [12], where the authors
propose the problem of editing a graph to a given degree sequence. The problem
is shown to be W[1]-hard for any combination of allowable edit operations, but
is FPT in parameter k + D, where here D is the maximum desired degree.

2 The Min-Edit-Cost Problem

We give a polynomial time algorithm for MEC when the allowed opera-
tions are edge additions and deletions (i.e. MEC{a,d}). We will assume that∑

1≤i≤k δi(v) ≤ δ(v) for all v ∈ V (G), as otherwise there is no way of satisfying
every vertex.

We reduce MEC to the minimum weight perfect matching problem. Given
an instance G = (V,E, c) of the MEC problem, we construct a new graph H
from G such that � edit operations are enough in G to satisfy every vertex if and
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only if H has a perfect matching of cost at most �. The reduction is somewhat
technical, but builds upon a relatively intuitive idea initiated in [20].

For each u ∈ V (G), we will have in H a set W1(u) of vertices containing
δ(u) “copies” of u, each one representing a potential neighbor of u in a solution
G′ for G. Suppose for simplicity that in G, there is no “slack” in the degree
requirements, meaning that for each u ∈ V (G), we have

∑
i∈[k] δi(u) = δ(u).

Then for each i ∈ [k], we make it so that exactly δi(u) of the W1(u) copies
represent a desired neighbor of u of colour i. We build H so that in a perfect
matching, each copy u′ of u will be “paired” with a vertex v′, which is a copy of
some v ∈ V (G) such that c(v) is the colour that u′ wants (note the symmetry: v′

must also want colour c(u)). This pairing of u′ and v′ represents the presence of
edge uv in the solution G′. The precise way that u′ and v′ are “paired” depends
on whether uv ∈ E(G) or not. If uv /∈ E(G), then u′ and v′ must use an addition
gadget (represented in Fig. 1), which enforces taking an edge of cost 1 in a perfect
matching. If uv ∈ E(G), then u′ and v′ can be paired using only 0 cost edges of
H — see the deletion gadget of Fig. 1. This deletion gadget also ensures that if
uv ∈ E(G) but u and v have no paired copies, then we must add a cost 1 edge
in a perfect matching of H.

u′ v′cost = 1 cost = 1

. . . . . .

u copies v copies

Addition gadget Deletion gadget

Fig. 1. Addition and deletion gadgets. Heavy edges have cost 1, the others have cost
0. On the left is a gadget used when uv /∈ E(G). We say that u′ and v′ are “paired” in
a perfect matching M if the edge incident to u′ or the edge incident to v′ is in M . This
enforces having the heavy edge in M . On the right, a gadget used when uv ∈ E(G).
This allows “pairing” a copy u′ and v′ at 0 cost. If no such copies are paired, we will
be forced to add the heavy edge of cost 1 to M .

This would be sufficient in the case that no slack in the requirements is
present. Otherwise, we need to introduce a partner to each vertex of H to deal
with this technicality. That is, we have in H another set W2(u) of vertices in 1-to-
1 correspondence with W1(u). To see why this is useful, when there is some slack,
H has δ(u) copies of u, but only

∑
i∈[k] δi(u) < δ(u) that are used to enforce

the lower bounds. The extra slack copies of u represent possible neighbors of u,
which may or may not be present in G′. In terms of H, these copies desire no
particular colour and may or may not be “paired” as described above. To ensure
that a slack copy u′ always has a neighbor available for a perfect matching, we
have its partner û′ that shares an edge of cost 0 with u′. If u′ is not paired, it
can use the u′û′ edge in a perfect matching. If u′ is paired however, û′ must find
a neighbor in a perfect matching. For this reason, every vertex of H will have
a partner, and all partners of copies from distinct vertices share an edge. This
makes it possible to have a perfect matching in H that represents a solution G′

for G. We now proceed with the technical details.
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W1(u)
t = 1

t = 2

t = 0

Wdel(u, v) Wdel(v, u)

v′

W ′
add(u,w) Wadd(u,w) Wadd(w, u) W ′

add(w, u)

w′

c(w) = 2

c(v) = 1

W2(u)

W (u)

Fig. 2. An illustration of the main elements used in the construction of H. Here, u
would have δ1(u) = 1, δ2(u) = 2 and δ(u) = 4. This shows uv ∈ E(G) and uw /∈ E(G).
The vertices of W (u) are displayed in two columns: the first column is the set of
partners W2(u), the second is W1(u).

Construct the edge-weighted graph H from G = (V,E, c) as follows.

1. For each v ∈ V (G), do the following:
(a) Add to H a set of vertices W (v) = W1(v) ∪ W2(v), where W1(v) and

W2(v) are two disjoint sets each of cardinality δ(v).
(b) Assign a colour t(v) ∈ {0, 1, . . . , k} to each vertex of W1(v) so that there

are exactly δi(v) vertices coloured by i for each i ∈ {1, . . . , k}. Notice that
we introduced a new colour 0, and there are δ(v) − ∑

i∈[k] δi(v) vertices
coloured by 0 in W1(v). For v′ ∈ W1(v), we may call t(v′) the target colour
of v′, and 0 is interpreted as “target any”.

(c) Assign each v′ ∈ W1(v) to a distinct v̂′ ∈ W2(v), and call v̂′ the partner
of v′. Then for each v′ ∈ W1(v) such that t(v′) = 0, add an edge between
v′ and its partner v̂′. This partner will serve in the event that a vertex
with target colour 0 cannot be matched.

2. For each distinct u, v ∈ V (G), add to H the edges {û′v̂′ : û′ ∈ W2(u), v̂′ ∈
W2(v)}. Thus the set of all partners induce a complete n-partite graph.

3. For each edge uv ∈ E(G), add two new vertices Wdel(u, v) and Wdel(v, u),
and add an edge between them. Then for each u′ ∈ W1(u) such that t(u′) = 0
or t(u′) = c(v), add the edge {u′,Wdel(u, v)} to H. Do the same for v and
Wdel(v, u): for each v′ ∈ W1(v) such that t(v′) = 0 or t(v′) = c(u), add the
edge {v′,Wdel(v, u)} to H.

4. For each non-edge uv /∈ E(G), add the four vertices W ′
add(u, v),Wadd(u, v),

Wadd(v, u),W ′
add(v, u) that form a path of length 3 - the vertices appear in

this order on this path. Then for each u′ ∈ W1(u) such that t(u′) = 0 or
t(u′) = c(v), add the edge {u′,W ′

add(u, v)}. Then for each v′ ∈ W1(v) such
that t(v′) = 0 or t(v′) = c(u), add the edge {v′,W ′

add(v, u)}.
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Finally, set the weights of H as follows: each edge of the form
{Wdel(u, v),Wdel(v, u)} or {Wadd(u, v),Wadd(v, u)} has weight 1, every other
edge has weight 0 (see the heavy edges in Fig. 2).

The equivalence between the two instances can be shown (the proof is omitted
due to space constraints).

Lemma 1. The degree constraints on G can be satisfied using at most � edit
operations if and only if H has a perfect matching of weight at most �.

The main result of this section now follows from the recent results of [7],
where the authors present an algorithm that can solve our particular perfect
matching instances in time O(

√|V ||E| log |V |).
Theorem 1. The MECS problem can be solved in time O(n5 log n) for all S ⊆
{a, d}, where n is the number of vertices of the input graph G.

2.1 A Faster Algorithm for Bipartite Graphs

We now give a more efficient algorithm for bipartite graphs, by reducing the
problem to a min-cost network flow problem. Consider a bipartite graph G =
(V,E, c) such that c : V → {1, 2}. Let Vj denote the set of vertices v with
c(v) = j. For v ∈ Vj we assume that δi(v) = 0 when i = j. This means that
there is no lower bound on the number of the same-coloured neighbours. In
other words, we consider the problem of editing a bipartite graph G to another
bipartite graph G′ that satisfies degree requirements. More precisely a vertex
v ∈ Vi, i ∈ {1, 2} is satisfied whenever dj

G(v) ≥ δj(v) for j 
= i, and dG(v) ≤ δ(v).
We now give the reduction to the min-cost flow problem defined below.

Assume S = {a, d}.

Minimum-Cost Flow Problem. Let D = (V,E) be a directed graph with
a cost ce, a capacity μe, and a lower bound �(e) associated with every edge
e = (u, v) ∈ E. Let f : E → R define a real-valued flow on the graph G
satisfying:

∀v ∈ V f+(v) = f−(v) (1)
∀e ∈ E �e ≤ f(e) ≤ μe (2)

where f+(v) and f−(v) are the outgoing and incoming flows respectively from
vertex v. The cost of a flow f is

∑
e∈E cef(e). The minimum-cost flow problem

is to find a flow f that minimizes
∑

e∈E cef(e).
Given a bipartite instance of the Min-Edit-Cost problem G = (V,E, c),

we build a corresponding (directed) flow network DG, as described below (see
Fig. 3): we have V (DG) = V ∪{s, t} and E(DG) = E1 ∪E2 ∪E3 ∪E4 ∪E5 where
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E1 = {(u, v)|u ∈ V1, v ∈ V2, {u, v} ∈ E}, and ∀e ∈ E1 ce = 0, μe = 1, �e = 1
E2 = {(s, u)|u ∈ V1}, and ∀e ∈ E2 ce = 0, μe = δ(u), �e = δ2(u)
E3 = {(v, t)|v ∈ V2}, and ∀e ∈ E3 ce = 0, μe = δ(v), �e = δ1(v)
E4 = {(u, v)|u ∈ V1, v ∈ V2, {u, v} /∈ E}, and ∀e ∈ E4 ce = 1, μe = 1, �e = 0
E5 = {(v, u)|u ∈ V1, v ∈ V2, {u, v} ∈ E}, and ∀e ∈ E5 ce = 1, μe = 1, �e = 0

Note that E1 ∪ E4 = V1 × V2. However the edges in E1, which are directed
from V1 to V2, and correspond to the original undirected edges in E, all have
zero cost, but must all have flow 1, since �e = μe for all e ∈ E1. Meanwhile, the
edges in E4 have cost 1, and can have flow between 0 and 1. These correspond
to the edge additions. Also, for each edge (u, v) ∈ E1, there is a corresponding
directed edge (v, u) ∈ E5, which has cost 1, and can have flow between 0 and 1.
The edges in E5 correspond to edge deletions. Finally, the edges in E2 and E3

have zero cost, but their capacity constraints take care of the degree constraints
on the vertices in V1 and V2 respectively.

Fig. 3. (left) Graph G, each vertex v s labelled with the pair (δj(v), δ(v)); (middle)
the corresponding flow network. Solid edges have zero cost, while dashed edges have
cost 1. The arcs incident to the source and sink are annotated with their �e and μe

values; (right) A flow that satisfies all constraints (only arcs that have a flow of ≥1 are
drawn). This solution of cost 2 corresponds to adding one edge (left-to-right dashed
arc) and deleting one edge (right-to-left dashed arc).

Lemma 2 establishes the relationship between the Min-Edit-Cost problem
and network flow.

Lemma 2. There exists a bipartite graph G′ at edit distance � from G that
satisfies all degree constraints if and only if DG admits a valid flow of cost �.

Theorem 2. For any S ⊆ {a, d}, the MECS problem can be solved in
O(n3 log n log log n) time for bipartite graphs.

Proof. Fix S = {a, b}. Given a graph G, we construct the corresponding flow
network DG, and solve the min-cost network flow problem. The complexity then
follows from that of min cost flow since our maximum cost is 1, and the capacities
are O(n) [1]. For S = {a}, and S = {d}, we build a similar flow network, but
omitting edges in E4 and E5 respectively. �
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3 The Max-Satisfied-Nodes Problem

We consider the decision version of the MSN problem, which asks the following:
given a graph G = (V,E, c), and integers r, �, is there a graph G′ = (V,E′, c)
with edit distance at most r from G such that at least � vertices are satisfied in
G′, while ensuring that all max-degree constraints are satisfied? We first show
that the Max-Satisfied-Nodes problem is not only NP-hard, but also W[1]-hard
with respect to r + �. This holds even for a restricted set of instances.

Theorem 3. The MSN{a,d} and MSN{a} problems are W[1]-hard and NP-
hard with respect to parameter r + �, even if all vertices belong to one of two
colour classes and δ(v) = ∞ for all vertices v.

Proof. We give a reduction from the Balanced biclique problem for bipartite
graphs: Given a bipartite graph G = (V1 ∪ V2, E), and an integer q, are there
subsets A ⊆ V1 and B ⊆ V2, such that |A| = |B| = q and the subgraph of G
induced by A ∪ B is a complete bipartite graph? The balanced biclique problem
is a classic NP-hard problem [10] and was shown to be W[1]-hard with respect to
q in [16]. Given an instance (G, q) of Balanced Biclique, we construct the degree-
constrained graph Ĝ = (V̂ , Ê, c) as follows: V̂ = V1 ∪ V2, and Ê = {(u, v) | u ∈
V1, v ∈ V2, (u, v) /∈ E}. For every vertex v of colour i ∈ {1, 2}, we define

– δ(v) = ∞.
– δi(v) = 0: No edges are required between vertices of the same colour.
– δj(v) = d(v) + q for j 
= i: Every vertex requires at least q new neighbours of

the other colour.

Finally, we set � = 2q and the maximum edit distance r = q2. We show that
G has a balanced biclique (A,B) of size 2q if and only if 2q vertices of Ĝ can
be satisfied using q2 edge editions. Since � + r = 2q + q2 if a function of q, our
W[1]-hardness result follows. Observe that since all max-degree constraints can
be met trivially, there is no reason to delete an edge and therefore, only additions
are necessary.

If there is a balanced biclique (A,B) of size 2q in G, then there are no edges
between vertices in A and B in Ĝ, and therefore, by adding all q2 edges in A×B,
all 2q vertices in A ∪ B can be satisfied. Conversely, suppose that 2q vertices in
Ĝ can be satisfied with q2 edge additions. Since every vertex needs exactly q new
edges to vertices of the other colour to be satisfied, there cannot be more than q
satisfied vertices of colour 1, as this would require at least (q+1)q edge additions.
The same holds for the satisfied vertices of colour 2. It follows that the satisfied
vertices constitute a pair of sets (A,B) with A ⊆ V1, B ⊆ V2, |A| = |B| = q,
such that (u, v) /∈ Ê for any pair (u, v) ∈ A × B. This implies that (A,B) is a
balanced biclique of size 2q in G. �

3.1 Inapproximability of Max-Satisfied-Nodes

We establish an approximation hardness result for all versions of MSNS .
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Theorem 4. For all S ⊆ {a, d}, MSNS, it is NP-hard to approximate within
a factor n1/2−ε for any ε > 0, where n is the number of vertices.

Proof. We give one reduction for the case S = {a}, and another for the cases
S ∈ {{d}, {a, d}}. Both reductions are from the Independent Set problem, which
consists in finding a set of vertices of maximum size that share no edge in a
graph G. The problem is NP-hard to approximate within a factor n1−ε for all
ε > 0 [28]. The first reduction is presented here, the other is similar and omitted.
Let G = (V,E) be an instance of Independent Set, letting n = |V | and m = |E|.
Let H = (V ∪ E,F, c) with c(v) = 1 for each v ∈ V and c(e) = 2 for each e ∈ E.
The edge set F of H has an edge for each v ∈ V and each e ∈ E such that v is
not an endpoint of e. That is, F = {{v, e} : v ∈ V, e ∈ E and v /∈ e}. Observe
that in H, each element of E has exactly n − 2 neighbors. For each v ∈ V , put
δ2(v) = m and δ(v) = ∞. Then for each e ∈ E, put δ1(e) = n and δ(e) = n − 1.
Thus any e ∈ E cannot possibly be satisfied, and can receive at most one more
neighbor. Allow any number of edge additions by putting r = ∞.

We show that for any t ≥ 1, any independent set of size t in G corresponds
to a set of t nodes that can be satisfied in H, and vice versa. Suppose that G has
an independent set I = {v1, . . . , vt} of size t. Note that there are no two vertices
of I that are incident to a common edge. In H, we can satisfy every vertex of I
by adding, for each vi ∈ I, every edge from vi to E that is not already present.
Such an edge {vi, e} is added only if vi ∈ e. Therefore, each e ∈ E receives at
most one new edge. It follows that no vertex of H has a degree above its upper
bound, showing that we can satisfy t vertices.

Conversely, suppose that we can satisfy t vertices T = {v1, . . . , vt} of H. Each
vi ∈ T must be in V , as all other vertices cannot be satisfied. In H, we must also
have inserted each possible edge from vi ∈ T to E that was not already present.
Since each e ∈ H can receive at most one new neighbor, no two elements of T
can share an edge. Therefore, T is an independent set in G.

To argue the inapproximability, note that the graph H has p = |V |+|E| ≤ n2

vertices. For any ε > 0, it is NP-hard to decide if α(G) ≤ t, or if α(G) ≥ n1−εt,
where α(G) is the maximum size of an independent set of G and t is a given
integer. Suppose there is a p1/2−ε approximation algorithm for the Max-Satisfied-
Nodes problem, and let APP (H) be the value returned by this algorithm on H.
By the above, if α(G) ≤ t, then APP (H) ≤ t. Moreover, if α(G) ≥ n1−εt, then
APP (H) ≥ 1/p1/2−εn1−εt ≥ nεt > t. Hence, the approximation algorithm can
distinguish whether G has α(G) ≤ t or α(G) ≥ n1−εt. �

3.2 Approximation Algorithms with Loose Max-Degree Constraints

In this section, we relax the max-degree constraints in two ways. First, we con-
sider the case when there are no max-degree constraints, that is, δ(v) = ∞ for
all vertices v. In the second case, the modified graph is not required to satisfy all
the max-degree constraints, but all satisfied nodes in the modified graph must
obey both diversity and max-degree constraints.
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For a node v ∈ V (G), let rG(v) be the minimum number of edges to modify
so that v is satisfied (regardless of the other nodes). Define rG(v) = 0 if v
is already satisfied in G, and rG(v) = ∞ if v cannot be satisfied in any way.
We call rG(v) the requirement of v, and may write r(v) if G is clear from the
context. Observe that r(v) can easily be computed in linear time. For the rest
of this section, we suppose that we ordered V (G) so that the vertices appear in
non-decreasing order of requirement. That is, we have V (G) = {v1, . . . , vn} so
that r(vi) ≤ r(vi+1) for all i ∈ [n − 1]. We assume that r(v1) ≤ r, as otherwise
no one can be satisfied.

Our approximation algorithms rely on the following idea. One can derive an
integer p from r such that at best, we can satisfy the first p vertices v1, . . . , vp of
the above ordering. We show that can we always satisfy at least �p/2� vertices
of this list if there are no upper bounds, and at least p/9k vertices in the general
case. For the remainder of this section, denote by OPT the maximum number
of vertices that can be satisfied using r edit operations.

Let A = (e1, e2, . . . , et) be a sequence of pairs of vertices of G, i.e. ei ∈(
V
2

)
for each i ∈ [t]. We call A an edit sequence. Denote by G(A, i) the graph

obtained after modifying the first i edges of A (adding or deleting, depending on
whether the edge is present or not). Define G(A, 0) = G. We start with a useful
observation.

Proposition 1. Let X ⊆ V (G) and h ∈ N such that
∑

x∈X rG(x) ≤ h. More-
over let A = (e1, . . . , et) be an edit sequence such that

∑
x∈X rG(A,i)(x) <∑

x∈X rG(A,i−1)(x), for each 1 < i ≤ t. Then t ≤ h.

Proof. Each time we apply a modification in A, we lower the sum of requirements
by at least 1. This sum is always non-negative and starts at most h, and so A
must contain at most h elements. �

We now obtain our upper bound p on OPT , which is defined as:

p = max{i ∈ [n] :
i∑

j=1

r(vj) ≤ 2r}

Lemma 3. At most p vertices can be satisfied by using r edit operations.

Proof. If p = n, then this is obvious, so assume p < n. Inserting or removing
an edge can lower the requirement of at most two vertices. Therefore, r edit
operations can lower the total requirement by at most 2r. Since the vi’s are
ordered by requirement, for any subset W ⊆ V (G) of p + 1 vertices or more,
we have

∑
vi∈W r(vi) ≥ ∑p+1

i=1 r(vi) > 2r. Therefore, it is not possible to satisfy
every vertex of W with r edit operations. �

We can already show that if δ(v) ≥ n−1 for every vertex v, there is a simple
approximation algorithm.

Theorem 5. Suppose that δ(v) ≥ n − 1 for every v ∈ V (G). Then there is an
O(n2) time algorithm that satisfies at least �OPT/2� vertices.
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Proof. The algorithm does the following: first, compute rG(v) for every vertex
v ∈ V (G), and then sort V (G) so that {v1, . . . vn} is sorted in nondecreasing
order of requirement. We then identify the upper bound p as above. Let X =
{v1, . . . , v�p/2�}, observing that

∑
vi∈X r(vi) ≤ r. Note that if x ∈ X is not

satisfied, only edge additions are needed since δ(x) ≥ n−1. Perform the following
sequence of edge additions: while there is x ∈ X and y ∈ V (G) such that
adding xy reduces r(x) by 1, we add xy. Each edge addition xy decreases the
requirement of x ∈ X, and cannot increase the requirement of y (since δ(y) ≥
n − 1). After the above loop is finished, each vertex x ∈ X is satisfied, and as
each operation reduces the sum of the X requirements, we know by Proposition 1
that we have used at most r edge operations to do so. We have satisfied �p/2� ≥
�OPT/2� vertices. The O(n2) time complexity of the algorithm is easy to see -
it is dominated by the computation of rG(v). �

Observe that the algorithm of Theorem 5 yields a 1
2 -approximation for even

values of p and a 1
3 -approximation for odd values.

We now show how to extend the above idea to the case where nodes have
a max-degree constraint that must be met for satisfied vertices. We present the
S = {a, d} case, the other cases being similar. The main problem that arises
when applying the above algorithm is that lowering the requirement of a vertex
might increase the requirement of another. Hence, we need to find a set of vertices
that do not interfere with each other. We do this by restricting our attention to
only a subset of vertices of the same colour.

Lemma 4. Suppose that all vertices of V (G) have the same colour c and that
only edge additions, or only edge deletions, are allowed. Let X ⊆ V (G) and
h ∈ N such that

∑
x∈X rG(x) ≤ h. Then at least �|X|/2� of the elements of X

can be satisfied using at most h edit operations.
Moreover, if both additions and deletions are allowed, then at least �|X|/4�

of the elements of X can be satisfied using at most h edit operations.

Proof. First observe that each vertex of X must be satisfiable. We give the proof
for additions-only first (deletions are similar). In this case, when rG(vi) > 0 and
rG(vi) 
= ∞, it must be that vi requires more neighbors. Start by applying the
following edit sequence on G: While there exist x, y ∈ X such that xy /∈ E(G) and
r(x), r(y) > 0, add an edge between x and y. Note that each edge modification
reduces the sum of requirements of the X vertices (by 2). Also note that no
vertex x of X can have a degree above δ(x) after these additions (otherwise, it
would not be satisfiable). Call G′ the graph resulting from these operations.

Now, partition X into two sets X1 and X2 as follows: X1 = {x ∈ X : rG′(x) =
0} and X2 = X \ X. If |X1| ≥ �|X|/2�, then we are done as every member of
X1 is satisfied, so assume otherwise. Then |X2| ≥ �|X|/2�. It is not hard to see
that in G′, X2 must be a clique: if x, y ∈ X2 do not share an edge, then the xy
edge would have been added in the above loop.

Now apply the following edit sequence on G′: for each x ∈ X2, add a neighbor
y ∈ V (G′)\X2 to x until x is satisfied. Call the resulting graph G′′. Observe that
since each x ∈ X2 is adjacent to every vertex in X2, then x must be satisfied
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in G′′ (as x can be made neighbor with every vertex if needed). Moreover, each
edge modification from G′ to G′′ reduces the requirement of one vertex of X2,
and does not increase the requirement of any other vertex of X2. Therefore, each
modification from G to G′′ reduces the sum of requirements of the X2 vertices.
By Proposition 1, we have made at most h modifications.

For edge deletions only, the proof is essentially the same. In G′, we remove
edges between unsatisfied members of X instead of adding them. Then X2 must
be an independent set and its vertices can be satisfied by removing edges with
an endpoint outside of X2. We omit the details.

Finally, let us prove the second statement for the additions and deletions
case. Partition X into the sets X1 = {x ∈ X : dc(x) ≤ δc(x)} and X2 =
{x ∈ X : d(x) > δ(x)}. Note that an x cannot be in both sets, as otherwise it
cannot be satisfied. Let X ′ = arg maxX1,X2{|X1|, |X2|}. Then |X ′| ≥ �|X|/2�.
Moreover, if we only want to satisfy vertices of X ′, we either need additions only
(if X ′ = X1), or deletions only (if X ′ = X2). Clearly,

∑
x∈X′ rG(x) ≤ h, and as

we have just shown, we can satisfy at least �|X ′|/2� vertices of X ′, which is at
least ��|X|/2�/2� ≥ �|X|/4�. �

We can now extend the above ideas to any number k of colours.

Theorem 6. The problem of finding a graph G′ within edit distance r from a
given graph G that maximizes the number of vertices for whom both diversity and
max-degree constraints are satisfied admits a factor 1

9k approximation algorithm,
where the set of allowable edit operations is S ⊆ {a, d}.
Proof. Let X = {v1, . . . , v�p/2�}, observing that

∑
vi∈X r(vi) ≤ r. For each

colour j ∈ [k], let Xj = {vi ∈ X : c(vi) = j}. Let j∗ be the colour that is the
most present in X, i.e. j∗ = arg maxj∈[k]{|Xj |}. We must have |Xj∗ | ≥ � �p/2�

k �.
Our approximation algorithm ensures that a constant fraction of Xj∗ is satisfied.

Apply the following edit sequence: while there exists an unsatisfied x ∈ Xj∗

and a y ∈ V (G) \ Xj∗ such that inserting (deleting) xy reduces r(x), then we
insert (delete) xy. Let G′ be the graph obtained after the above modifications.
Suppose that l edges get edited in this manner, and let r′ = r − l. Clearly, we
have

∑
x∈Xj∗ rG′(x) ≤ r′. Moreover, if we want to reduce the requirement of a

vertex of Xj∗ , only the edges with two endpoints in Xj∗ can be used to do so
(as all other edges that can reduce the requirements of the Xj∗ vertices have
been edited from G to G′). By Lemma 4, at least �|Xj∗ |/4� vertices of Xj∗ can
be satisfied using at most r′ edit operations, resulting in at least �� �p/2�

k �/4�
satisfied vertices. If p < 9k, this does provide a 1

9k approximation algorithm. If
p ≥ 9k, then this is at least p−1

8k ≥ p
9k . �

Conclusion. In this work, we imposed a single max-degree for every node, but it
would be interesting to consider the variant of MEC and MSN were each vertex
can have a different upper bound for the number of neighbours of every colour.
We believe that the MEC algorithm described above can be adapted to this case.
Another variant would have both an overall max-degree, and an upper bound on
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each colour. As for the MSN problem, we have a W[1]-hardness result for param-
eter r + �, but the existence of an intuitively interesting parameter for which the
problem is FPT is open. One possible parameter that is worth investigating is
n−k, the number of unsatisfied people in the resulting graph. Finally, it remains
to check whether the “loose” MSN variant admits a constant factor approxima-
tion that does not depend on k. We also have not considered vertex addition
and deletion operations. Although NP-hardness results do not seem difficult to
obtain, the approximation and parameterized complexity remains unexplored.

Acknowledgement. We thank Jaroslav Opatrny for useful discussions.
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Abstract. We reduce the problem of computing a rectilinear shortest
path between two given points s and t in the given splinegonal domain
S to the problem of computing a rectilinear shortest path between two
points in the polygonal domain. Our reduction algorithm defines a polyg-
onal domain P from S by identifying a coreset of points on the bound-
aries of splinegons in S. Further, it transforms a shortest path between
s and t amid polygonal obstacles in P to a shortest path between s and
t amid splinegonal obstacles in S. When S is comprised of h pairwise
disjoint splinegons defined with a total of n vertices, excluding the time
to compute a rectilinear shortest path amid polygons in P, our reduction
algorithm takes O(n + h lg n + (lg h)1+ε) time. Here, ε is a small positive
constant (resulting from the triangulation of the free space using [2]). For
the special case of S comprising concave-in splinegons, we have devised
another reduction algorithm which does not rely on the structures used
in the algorithm (Inkulu and Kapoor [14]) to compute a rectilinear short-
est path in the polygonal domain. Further, we have characterized few of
the properties of rectilinear shortest paths amid splinegons which could
be of independent interest.

1 Introduction

Computing obstacle avoiding shortest path between two points is both funda-
mental and well-known in computational geometry. The case of polygonal obsta-
cles has been well studied (Ghosh and Mount [11], Kapoor and Maheshwari [18],
Hershberger and Suri [12], Kapoor and Maheshwari [17], Kapoor et al. [19],
Mitchell [21], Rohnert [22], Storer and Reif [23], and Inkulu et al. [16]). Algo-
rithms for visibility on which many Euclidean shortest path algorithms rely are
detailed in Ghosh [10]. Clarkson et al. [7], Inkulu and Kapoor [14], and Chen
et al. [3] devised algorithms to compute a rectilinear shortest path amid polyg-
onal obstacles. In this paper, we devise an algorithm to compute a rectilinear
shortest path amid planar curved obstacles. In specific, as in Dobkin and Sou-
vaine [8], Dobkin et al. [9], and Melissaratos and Souvaine [20], we use splinegons
to model planar curved objects. Chen and Wang [5], and Hershberger et al. [13]
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devised algorithms to compute a Euclidean shortest path amid curved obstacles
in the plane. To our knowledge, this paper is the first work to compute an optimal
rectilinear shortest path amid splinegons in the plane, especially, the reduction
algorithms. Since splinegons model the real-world obstacles more closely than
the simple polygons, all the applications of computing shortest paths amid sim-
ple polygonal obstacles extend to computing shortest paths amid splinegons as
well.

We first introduce terminology from [8,9,20]. A (simple) splinegon S is a
simple region formed by replacing each edge ei of a simple polygon P by a
curved edge si joining the endpoints of ei such that the region S-segi bounded
by the curve si and the line segment ei is convex [9]. The new edge need not be
smooth; a sufficient condition is that there exists a left-hand and a right-hand
derivative at each point on the splinegon. The vertices of S are the vertices of P .
The polygon P is called the carrier polygon of the splinegon S. If S-segi ⊆ P ,
then we say that the edge ei is concave-in. Otherwise, ei is concave-out. We call
a splinegon concave-in whenever each of its edges is concave-in.

We assume that the combinatorial complexity of each splinegon edge is O(1).
We also assume that each of the primitive operations on a splinegon edge can be
performed in O(1) time. These operations include the following: computing the
points of intersections of a splinegon edge with a line, computing the tangents
(if any) between two given splinegon edges, computing the tangents between a
point and a splinegon edge, computing the distance between two points along
a splinegon edge, and finding a point on an edge that has a horizontal or ver-
tical tangent to that edge at that point. We assume no two carrier polygons of
splinegons in S intersect, and the carrier polygon of any splinegon S ∈ S does
not intersect with any other splinegon S′ �= S and S′ ∈ S.

The input splinegonal domain S is comprised of h pairwise disjoint splinegons,
together defined with n vertices in R

2. The free space F(S) of a splinegonal
domain S is defined as the closure of R

2 excluding the union of the interior
of splinegon obstacles in S. Given a splinegonal domain S and two given points
s, t ∈ F(S), our algorithm computes a shortest path in rectilinear metric, termed
rectilinear shortest path, between s and t that lie in F(S). We reduce the problem
of computing a rectilinear shortest path between s and t amid splinegon obstacles
in S to the problem of computing a rectilinear shortest path between two points
amid polygonal obstacles in a polygonal domain P. Here, P is computed from
S. We assume points s and t are exterior to the carrier polygons of splinegons
in S. In specific, we prove that this path is a shortest one with respect to the
rectilinear metric in F(S) between s and t. Analogous to F(S), the free space
F(P) of a polygonal domain P is defined as the closure of R

2 excluding the
union of the interior of polygonal obstacles in P.

Chen and Wang [6] extended the corridor structures defined for polygonal
domains in [17,19] to splinegonal domains. In computing corridors, this result
used bounded degree decomposition of F(S) which is analogous to the trian-
gulation of the free space of the polygonal domain [2]. Similar to [14], using
a corridor decomposition of F(S), we characterize rectilinear shortest paths in
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splinegonal domains. These properties facilitate in computing a connected undi-
rected graph GS that contains a rectilinear shortest path between s and t. We
compute a set P of pairwise disjoint simple polygons in R

2 such that each poly-
gon P ∈ P corresponds to a unique splinegon S ∈ S and the vertices of P lie on
the boundary of S while ensuring s, t ∈ F(P). The vertices of P are essentially
the coreset of points on the boundaries of splinegons in S. Further, we introduce
s and t points in F(P) at the same respective coordinate locations as they are
in F(S). [7,14] gave a constructive proof showing that there exists a connected
undirected graph GP that contains a rectilinear shortest path between s and t
amid polygons in P. We extended this proof to splinegons and shown that there
exists a connected undirected graph GS that contains a rectilinear shortest path
between s and t amid splinegons in S. The coreset of each S ∈ S is determined
so that it ensures the graph GS is same as GP . In the context of computing
shortest paths, coresets for polygonal obstacles were defined in [1,4,15]. How-
ever, the purpose and the definitions of coresets in our context are different. We
use the algorithm given in [14] to compute a rectilinear shortest path R between
s and t in F(P). Further, we modify R to a rectilinear shortest path between s
and t in F(S). Hence, the reduction of the problem of computing a rectilinear
shortest path between s and t amid splinegon obstacles in S to the problem of
computing a rectilinear shortest path between two points located in F(P) amid
polygonal obstacles in P. Excluding the time to triangulate F(S), our reduction
algorithm takes O(n + h lg n) time.

Since the above reduction algorithm assumes that a rectilinear shortest path
in F(P) is computed using the algorithm from [14], we devise another algorithm
which works independent of the structures used in the algorithm to compute a
rectilinear shortest path in the polygonal domain. This algorithm is applicable
only when S is comprised of concave-in splinegon obstacles. For every concave-
in simple splinegon S, we partition the boundary of S into xy-monotone pieces
first. The endpoints of these monotone chains together with the points on the
boundary of S that have vertical or horizontal tangents are defined as the coreset
of S. These vertices are used in defining a simple polygon P corresponding
to S. We show the rectilinear shortest path between s and t in the polygonal
domain P comprising of all such polygons can be efficiently transformed to a
rectilinear shortest path between s and t amid splinegons in S. In specific, this
reduction algorithm works whenever the shortest path computed in the polygonal
domain is polygonal. Our reduction algorithm takes O(n+(h+k) lg n+(h+k+
k′) lg (h + k)) time (while excluding the time to compute a rectilinear shortest
path amid polygonal obstacles in P). Let R be the polygonal rectilinear shortest
path between s and t amid polygonal obstacles in P that was output by the
algorithm used. Then k is the number of line segments in R and k′ is the number
of points of intersections of that path with splinegons in S.

We call the vertices of a graph as nodes and the vertices of a polygo-
nal/splinegonal domain as vertices. For any splinegon S (resp. polygon P ), the
boundary of S (resp. P ) is denoted with bd(S) (resp. bd(P )). A shortest path
between s and t amid splinegons (resp. polygons) in S (resp. P) is denoted with
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SPS(s, t) (resp. SPP(s, t)). The rectilinear distance between s and t amid spline-
gons in S (resp. P) is denoted with distS(s, t) (resp. distP(s, t)). Unless specified
otherwise, a shortest path is shortest with respect to rectilinear metric and the
distance is the shortest distance in rectilinear metric.

Section 2 extends the staircase structures for the polygonal domain from [14]
to splinegonal domain. The reduction algorithm for the case of concave-in spline-
gon obstacles is given in Sect. 3. For the case of arbitrary splinegon obstacles,
the reduction algorithm is given in Sect. 4. Conclusions are in Sect. 5.

2 Staircase Structures for Splinegonal Domain

In the context of polygonal domains, corridor and hourglass structures were first
described by Kapoor et al., in [17,19]. Chen and Wang in [6] extended them
to the splinegonal domain. First, we detail these structures. Later, analogous to
[14], we define staircase structures for the splinegonal domain and use them in
computing a visibility graph that contains a rectilinear shortest path between s
and t.

For convenience, we assume that no splinegon in S has an edge that is parallel
to either of the coordinate axes. In decomposing F(S) into corridors, points s and
t are considered as two special (degenerate) splinegons in S. [6] first decomposes
F(S) into O(n) bounded degree regions by introducing O(n) non-intersecting
diagonals. This decomposition of F(S) is termed bounded degree decomposition,
denoted with BDD(F(S)). In BDD(F(S)), two regions are neighboring if they
share a diagonal on their boundaries. Each such region has at most four sides,
and each side is either a diagonal or (part of) a splinegon edge and has at most
three neighboring regions. In addition to the splinegon vertices, the endpoints
of the diagonals of BDD(F(S)) are also treated as the vertices of BDD(F(S)).
Let G(F(S)) denote the planar dual graph of BDD(F(S)). Since each region
of BDD(F(S)) has at most three neighbors, G(F(S)) is a planar graph whose
vertex degrees are at most three.

Fig. 1. Illustrating an open
hourglass (blue). (Color figure
online)

Based on G(F(S)), [6] computes a planar
3-regular graph, denoted by G3 (the degree of
each node in it is three), possibly with loops
and multi-edges, as follows. First, it removes
every degree-one node from G(F(S)) along with
its incident edge; repeats this process until no
degree-one node exists. Second, the algorithm
removes every degree-two node from G(F(S))
and replaces its two incident edges by a single
edge; it repeats this process until no degree-two
node exists. The number of faces, nodes, and
edges in the resulting graph G3 is proved to be
O(h). Each node of G3 corresponds to a region
of BDD(F(S)), which is called a junction. Removal of all junctions from G3

results in O(h) corridors, each of which corresponds to one edge of G3.
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The boundary of each corridor C consists of four parts (refer Figs. 1, 2): (1)
A boundary portion of a splinegon obstacle Si ∈ S, from a point a to a point b,
(2) a diagonal of a junction triangle from b to a point e on an obstacle Sj ∈ S
(Si = Sj is possible), (3) a boundary portion of the obstacle Sj from e to a point
f , and (4) a diagonal of a junction triangle from f to a.

Let π(a, b) (resp., π(e, f)) be the Euclidean shortest path from a to b (resp.,
e to f) in C. The region HC bounded by π(a, b), π(e, f), be, and fa is called
an hourglass, which is open if π(a, b) ∩ π(e, f) = ∅ and closed otherwise. If
HC is open (refer Fig. 1.), then both π(a, b) and π(e, f) are convex chains and
are called the sides of HC . Otherwise, HC consists of two funnels and a path
πC = π(a, b) ∩ π(e, f) joining the two apices of the two funnels, and πC is called
the corridor path of C (refer Fig. 2). The paths π(b, x), π(e, x), π(a, y), and π(f, y)
are termed the sides of funnels of hourglass HC . The sides of the funnels are
convex chains.

Fig. 2. Illustrating a closed hour-
glass (blue). (Color figure online)

Following [14], we define the staircase
structures for the given splinegonal domain S
next. The set of vertices Vortho is defined such
that v ∈ Vortho if and only if either of the fol-
lowing is true: (i) v is an endpoint of a corridor
convex chain; (ii) v is a point on some corridor
convex chain CC, with the property that there
exists either a horizontal or a vertical tangent
to CC at v.

Let O(p) be the orthogonal coordinate sys-
tem defined with p ∈ Vortho as the origin, and horizontal x-axis and vertical
y-axis passing through p. We next adopt and redefine the staircase structures
from [7,14]. For i ∈ {1, 2, 3, 4}, we define a set of points πi(p) as follows: a point
r ∈ πi(p) if and only if r ∈ Vortho and r is located in the ith quadrant of O(p).

Fig. 3. Illustrating staircase structure with S1(p) =
p1, p2, p3.

Further, we define a set of
points Si(p) as follows: a point
q is in the set Si(p) (refer
Fig. 3) if and only if (i) q ∈
πi(p); (ii) there is no p′ (dis-
tinct from p) such that p′ is
in πi(p) and q is in πi(p′);
and (iii) q is visible from p.
We assume that the points in
Si(p) are sorted in increasing
x-order.

The proofs of the lemmas
and theorems stated in this
section are similar to the ones
provided for the polygonal domain in [14].

Lemma 1. Sorting the set of points in S1(p) in increasing x-order results in the
same set of points being sorted in decreasing y-order (or, vice versa).
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We term two points {pu, pv} ⊆ Si(p) as adjacent in Si(p) if no point pl ∈ Si(p)
occurs between pu and pv when the points in Si(p) are ordered by either the x- or
y-coordinates. Let p1, p2, . . . , pk be the points in S1(p) in increasing x-order. Let
hj be the rightward horizontal ray from pj . And, let vj be the upward vertical
ray from pj . The ray hj intersects either a corridor convex chain or vj+1. Let this
point of intersection be hp

j . The ray vj first intersects either a corridor convex
chain or hj−1. Let this point of intersection be vp

j . If the ray does not intersect
any other line or line segment then the point hp

j or vp
j could be at infinity. Let

Rj (j ∈ {1, . . . , k}) denote the unique sequence of sections of corridor convex
chains/bounding edges that join hp

j and vp
j+1. As will be proved, Rj is continuous.

Note that for the case in which hp
j = vp

j+1, Rj is empty. The elements in the
set

⋃
∀j∈{1,2,...,k}(vj ∪hj ∪Rj) form a contiguous sequence, termed as the S1(p)-

staircase (refer Fig. 3). Analogously, Si(p) for i ∈ {2, 3, 4} are defined. Note that
the convex chains which may intersect the coordinate axes and do not contain
a point in Si(p) are not defined to be part of the staircases in the i-th quadrant
of O(p).

We next characterize the structure of a staircase in the splinegonal domain.
This is detailed in the following theorem (whose proof is detailed in full version).

Lemma 2. Along the S1(p)-staircase, any two adjacent points in S1(p) are
joined by at most three geometric entities. These entities ordered by increas-
ing x-coordinates are: (i) a horizontal line segment, (ii) a section of a convex
chain where the tangent to each point in that section of splinegon has a negative
slope, and (iii) a vertical line segment.

We now define the weighted restricted visibility graph Gvistmp(Vvistmp =
Vortho ∪ V1, Evistmp = Eocc ∪ E1 ∪ Etmp):

– For each v ∈ Vortho, let vL (resp. vR) be the horizontal projection of v onto
the first corridor convex chain in leftward (resp. rightward) direction. Simi-
larly, let vU (resp. vD) be the vertical projection of v onto the first corridor
convex chain in upward (resp. downward) direction. If no such corridor chain
is encountered then the projection occurs at infinity. Similarly, let the vertical
projections of v in increasing and decreasing direction of y-coordinates be vU

and vD respectively. For each point p ∈ {vL, vR, vD, vU}, if the distance of p
from v is finite then p is added to V1 and the edge pv is added to E1. The
weight of edge e ∈ E1 is the rectilinear distance between its two endpoints.

– An edge e = (p, q) belongs to Eocc if and only if the following conditions hold
(i) {p, q} ⊆ Vvistmp, (ii) both p and q belong to the same corridor convex
chain, and (iii) no point in Vvistmp lies between p and q along the chain. The
weight of edge e is the rectilinear distance along the section of convex chain
between p and q.

– An edge e′ = (p′, q′) with p′ ∈ Vortho belongs to Etmp if and only if q′ ∈ Si(p′).
The weight of e′ is the rectilinear distance along e′.

Theorem 1. Let {p, q} ⊆ Vvistmp. Then a shortest path from p to q in Gvistmp

defines a shortest path in L1 metric from p to q that does not intersect any of
the splinegon obstacles in S.
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3 Reduction for Concave-In Splinegons

In this section, we devise an algorithm to find a shortest path in rectilinear
metric when S is comprised of concave-in splinegons. Our algorithm reduces
this problem to the problem of computing a shortest path in rectilinear metric
amid simple polygonal obstacles. This is accomplished by computing a polygonal
domain P comprising of h simple polygonal obstacles from h simple concave-in
splinegonal obstacles in S.

Fig. 4. Illustrating carrier poly-
gon (dashed) and the poly-
gon constructed (brown). (Color
figure online)

For each splinegon S ∈ S that has n′ vertices,
we compute its corresponding simple polygonal
obstacle P ∈ P with O(n′) vertices. Further, we
introduce points s and t in F(P) at the same
respective coordinate locations as they are in
F(S).

As mentioned, for computing shortest paths,
coresets for polygonal obstacles were defined in
[1,4,15]. Here for every splinegon S ∈ S, we
define the coreset of points on the bd(S), suiting
to our reduction. These points define the ver-
tices of a simple polygon P ∈ P that correspond
to S ∈ S. First, we define the coreset for every
splinegon S as described herewith: every vertex of S is a vertex of P ; for every
point p ∈ bd(S), if tangent to S at p is either horizontal or vertical then p is
a vertex of P . Apart from these two sets of points, no additional point is a
vertex of P . Let VP be the coreset of vertices of P . For every two successive
vertices v′, v′′ ∈ VP that occur successively while traversing bd(S), we add an
edge between v′ and v′′ to obtain polygon P (refer Fig. 4). Since every S ∈ S is
a simple concave-in splinegon and from the way the coreset of every S ∈ S is
defined, it is immediate that every P ∈ P is a simple polygon.

Lemma 3. If Q ∈ F(S) is a shortest path between s and t in F(P), then Q is
a shortest path between s and t in F(S).

Proof: Suppose there exists a path Q′ ∈ F(S) between s and t whose length is
less than the distance along Q. Since Q′ belongs to F(S) and since F(P) ⊆ F(S),
Q′ belongs to F(P) as well. �	
Lemma 4. There exists a rectilinear shortest path Q between s and t amid polyg-
onal obstacles in P such that no point of Q belongs to any of the open S-seg
regions of splinegons in S.
Proof: Let Q be a shortest path that enters S-segi region at a point p1 and
exits it at p2. (Refer to Fig. 5). Let si be the section of spline to which p1 and p2
belong. Also, let si bounds a side of S-segi. Since we have introduced vertices
of P at every point on the boundary of splinegon where there is a horizontal
and/or vertical tangent to splinegon, si is guaranteed to be xy-monotone. Hence,
replacing the simple path Q from p1 to p2 with the section of si from p1 to p2
does not increase the length of Q. �	
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Fig. 5. Illustrating the case of a path entering S-segi region.

Lemma 5. The distP(s, t) is equal to the distS(s, t).

Proof: There are two cases to consider. Suppose SPP(s, t) does not intersect
with any of the open S-seg regions. In this case, since F(S) ⊆ F(P), SPP(s, t) is
a shortest path amid splinegons in S. On the other hand, suppose that SPP(s, t)
does intersect with an open S-segi region. From the proof of Lemma4, we know
that there exists a path between s and t that avoids the open S-segi region. Let
Q be the path between s and t resultant of all such sub-path replacements in
SPP(s, t). The rectilinear distance along Q is same as the rectilinear distance
along SPP(s, t). Further, Q belongs to F(S). Hence, due to Lemma 3, Q is a
shortest path between s and t amid splinegons in S. �	
Lemma 6. Computing P from S takes O(n) time.

Proof: To find a set T comprising of points on the boundary of a spline S
such that every point p ∈ T has either a horizontal or a vertical tangent to the
spline on which p resides, considering our model of computation, it takes O(|T |)
time. Since there are n edges in S and each edge has O(1) points that belong
to T , there are O(n) vertices that define P. Including the cost of traversal of
each spline to compute polygons in P, reduction algorithm takes O(n) time to
compute P. �	

To transform SPP(s, t) to SPS(s, t), a plane sweep algorithm is used to find
the points of intersection of the SPP(s, t) with the splinegons in S. We sort the
endpoints of the line segments in SPP(s, t) with respect to their y-coordinates.
For every splinegon Si ∈ S, let Smax

i (resp. Smin
i ) be a point on the bd(Si)

that has the largest (resp. smallest) y-coordinate among all the points of Si.
We sort all the points in the set T comprising of

⋃
i(S

max
i ∪ Smin

i ). We use
balanced binary search trees to respectively implement the event queue and
the status structure needed for the plane sweep. The left to right order of the
segments along the sweep line corresponds to the left to right order of the leaves
in the balanced binary search tree (status structure). We sweep the plane with
a horizontal line from the point that has the maximum coordinate in T to the
point that has the minimum coordinate in T . Let p be an endpoint of the line
segment e ∈ SPP(s, t). When p is encountered by the sweep line, we check if
there is a splinegon, say S, immediately to the right or left of the edge e in the
status structure; if S exists, we find the points of intersection of e with the S
using the algorithm given in [9].



Computing a Rectilinear Shortest Path amid Splinegons in Plane 177

Lemma 7. The plane sweep algorithm involved in transforming a polygonal path
in F(P) to F(S) takes O((h + k) lg n + (h + k + k′) lg (h + k)) time. Here, h is
the number of obstacles, k is the number of line segments in SPP(s, t), and k′ is
the number of intersection points of SPP(s, t) with the boundaries of splinegons
in S.
Proof: If there is a splinegon S immediately to the left or right of a line segment
l of SPP(s, t), then we can find the intersection of l with S in O(lg n′) time using
the algorithm given in [9], where n′ is the number of vertices of S. Computing
and sorting the event points take O((h + k) lg (h + k)) time. We check whether
a line segment of SPP(s, t) intersects a splinegon when the sweep line reaches
endpoints of segments of SPP(s, t) or when it encounters points that belong to
T ; and the number of these event points is O(h + k). Since to check the points
of intersection at each event point requires O(lg n) time, the total time needed
to find the points of intersection at event points take O((h + k) lg n) time. We
update the status structure whenever the sweep line encounters either of these
points: intersection points of line segments of SPP(s, t) with splinegons in S;
points belonging to T ; endpoints of line segments of SPP(s, t). Considering that
updating the status structure per one such event takes O(lg (h + k)) time, the
time required for all updates together is O((h+k) lg n+(h+k+k′) lg (h + k)). �	
Theorem 2. Given a splinegonal domain S comprising of h pairwise disjoint
simple concave-in splinegons together defined with n vertices and two points s, t ∈
F(S), the reduction procedure to compute a rectilinear shortest path between s
and t amid splinegons in S, excluding the time to compute a rectilinear shortest
path amid polygons in P, takes O(n + (h + k) lg n + (h + k + k′) lg (h + k))
time. Here, P is the computed polygonal domain from S, k is the number of line
segments in the polygonal shortest path SPP(s, t) between s and t amid polygonal
obstacles in P, and k′ is the number of points of intersections of SPP(s, t) with
the boundaries of splinegons in S.
Proof: Immediate from Lemmas 5, 6 and 7. �	

4 Reduction for Simple Splinegons

We first describe the algorithm when the decomposition of F(S) has only open
corridors. Later we extend this algorithm to handle closed corridors.

In the following, similar to Sect. 3, we define a coreset VP of points on the
boundaries of splinegons in S; these are used in defining the polygonal domain
P. For every edge s of a splinegon S ∈ S, the endpoints of s belong to VP ; further
if a tangent to s at a point p ∈ S is either horizontal or vertical and p does not
lie inside the convex hull of the carrier polygon of S, then p is included into VP .
Also, for every side s′ of every open hourglass HC in the splinegonal domain S,
the endpoints of s belong to VP . Further, for every vertex v ∈ Vortho in S (see
Sect. 2 for the definition of Vortho), the horizontal and vertical projections of v
onto sides of hourglasses are added to P. For every splinegon S ∈ S, for any
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Fig. 6. Illustrating two splinegons whose sections of boundary belong to an open corri-
dor: splinegons are in black, carrier polygon is red (left), hourglass in blue, and polygons
belonging to P are in brown (right). (Color figure online)

two vertices v′, v′′ ∈ VP that occur successively while traversing the bd(S), we
add an edge between v′ and v′′ to obtain P ∈ P corresponding to S. We also
introduce points s and t in F(P) at the same coordinate locations as they are
in F(S).

Let S ′ be the set comprising of convex hulls corresponding to each of the
carrier polygons of splinegons in S. Since carrier polygons are simple polygons
and since no point in VP belongs to the interior of any of the convex hulls in S ′,
every polygon in P is guaranteed to be a simple polygon. (Refer to Fig. 6.)

Lemma 8. If Q ∈ F(P) is a rectilinear shortest path between s and t amid
polygons in P computed using the algorithm given in [14], then Q is a shortest
path between s and t amid splinegons in S.
Proof: Consider the graph GP from which a rectilinear shortest path amid
simple polygons in P between s and t is computed in [14]. Let GS be the graph
corresponding to S, as defined in Sect. 2. We prove that GP is same as GS .

Analogous to Vortho and V1 defined for the splinegonal domain (Sect. 2), as
in [14], we define V ′

ortho and V ′
1 for the polygonal domain P. Let V = Vortho ∪V1

be the vertex set of GS and V ′ = V ′
ortho ∪ V ′

1 be the vertex set of GP . We prove
that a vertex belongs to V if and only if it belongs to V ′. Suppose v ∈ V ′

ortho

but v does not belong to Vortho. Then it must be the case that v is hidden by
a convex chain ab in the splinegonal domain. Since a and b are endpoints of an
hourglass side in the decomposition of F(S), these two are vertices of polygons
in P. Suppose v is an endpoint of an hourglass side in P. Then this would lead
to a contradiction as we could extend the convex chain to a or b in P. Suppose
v is residing on an hourglass side ab in P but not an endpoint of the hourglass.
Since the hourglass side is the shortest path between a and b in P and since
every vertex of the chain lies on the boundary of a splinegon, v being hidden by
the convex chain ab would contradict the fact that the chain from a to b is the
shortest path between a and b in P. Thus v lies on a convex chain in S, and
v does not lie inside the convex hull of the carrier polygon as v is part of the
shortest path between a and b. Since there is a horizontal (resp. vertical) tangent
to v in P, there exists a horizontal (resp. vertical) tangent at v to a splinegon in
S. This contradicts our assumption that v does not belong to Vortho, therefore if
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v ∈ V ′
ortho then v ∈ Vortho. Analogously we can prove the converse. By the way

we defined V ′
1 , it is immediate to note that a vertex v ∈ V1 if and only if v ∈ V ′

1 .
Now we show that for every edge e′ ∈ GP we introduce a corresponding edge

e ∈ GS such that the weights of the corresponding edges are same. Let e be an
edge in Gs of length l. Also let p and q be the endpoints of e. We prove that
there is a path of length l between p and q amid polygonal obstacles in P as
well. The definitions of E1, Eocc and Etmp are given in Sect. 2.

– Suppose e ∈ E1. Here l is the rectilinear distance between p ∈ Vortho and
q ∈ V1. Since we had proven that if a vertex belongs to Vortho (resp. V1) in
S then the vertex also belongs to V ′

ortho (resp. V ′
1) in P. Thus the rectilinear

distance between p and q will be same in both F(P) as well as in F(S).
– Suppose e ∈ Eocc. Here l is the rectilinear distance along the (splinegonal)

convex chain between p and q, where p and q are the consecutive points on
the side of an hourglass obtained due to the decomposition of F(S). Since
every section of convex chain in the splinegon domain is xy monotone, the
rectilinear distance between p and q in F(P) equals to the rectilinear distance
between p and q in F(S).

– Suppose e ∈ Etmp. Here l is the rectilinear distance between p ∈ Vortho and
let q ∈ S1(p). We prove that if q ∈ S1(p) in the splinegonal domain then
q ∈ S′

1(p) in the polygonal domain as well. Suppose q does not belong to
S′
1(p). Then q is not visible from p amid polygons in P. This means that a

convex chain of an open hourglass of the decomposition of F(S) intersects
the line segment pq. However, since the convex chain in the polygonal domain
is always bounded by a convex chain in S, this would imply pq is intersected
by a convex chain in the splinegonal domain as well.

Therefore, if Q is a shortest s-t path obtained from GP then it is also the
shortest path from s to t in GS . This together with Theorem 1 leads to conclude
that Q is also a shortest path amid splinegons in S. �	

To find the horizontal and vertical projections of points in Vortho, we extend
the plane sweep algorithm from [14] to splinegons. Essentially, we sweep a vertical
line from left to right to find the horizontal rightward projections of every v ∈
Vortho. The status of the vertical sweep line is maintained as a set of points in
Vortho that lie on the sweep line, sorted by their y-coordinates. Let p be the first
point of a convex chain CC struck by sweep line and let r be a point in the
sweep-line status structure at the time the sweep line encounters p. If p projects
onto CC at p′ then p′ is a projection of p. After finding p′, we remove p from
the sweep-line status structure. Analogously, projections of points in Vortho are
determined.

Lemma 9. Given the open corridor decomposition of F(S), computing a polyg-
onal domain P from S, so that the distP(s, t) is equal to the distS(s, t) for two
given points s, t ∈ F(S), takes O(n + h lg n) time.

Proof: Since there are n edges in S and we are adding a constant number of
points to each edge, computing P from S takes O(n) time. Each vertex in Vortho is
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inserted into (resp. deleted from) sweep line data structures’ only once, together
taking O(h lg h) time. With binary search, the intersection of a horizontal (resp.
vertical) line from a point with a convex chain can be found in O(lg n) time.
Hence all the points of projections can be computed as stated. �	

Fig. 7. Illustrating sections of boundaries of two splinegons participating in a closed
corridor and their carrier polygon (red) and sections of polygons computed (brown).
The point v′ is introduced into the coreset as it belongs to Vortho. The point v′′ is
introduced into the coreset as it is an endpoint of a contiguous maximal section S′ of a
spline that belongs to the shortest path between apieces of the closed corridor shown.
(Color figure online)

Now we extend this algorithm to handle closed corridors. For each side of
every funnel, very similar to sides of open hourglasses, we introduce points into
VP ; these include projections of points Vortho onto sides of funnels. Let Q be
the rectilinear shortest path between apices of a closed corridor in S. For every
contiguous maximal section S′ of every spline that belongs to Q, we add the
endpoints of S′ to VP . Further, any point in Vortho that belongs to S′ is also
included into VP . For every two vertices v′, v′′ ∈ VP that occur successively along
the boundary of a splinegon, v′v′′ is introduced as an edge of a polygon in P.
(Refer to Fig. 7). Note that for any two splinegons that participate in a closed
corridor, their corresponding polygons in P are guaranteed to be disjoint.

Lemma 10. If a and b are the apices of a closed corridor and the shortest
distance between them is d in F(S) then the shortest distance between a and b
in F(P) is d.

Proof: Suppose there is a path Q in F(P) whose length is less than d. Now
Q must intersect with a splinegon S. Let v′ and v′′ be the successive points of
intersection of Q with S. But Q can only intersect with an edge of splinegon
which is outside the convex hull of its corresponding carrier polygon. Since each
of these edges is partitioned into xy-monotone pieces, we can replace the section
of path Q between v′ and v′′ with the section of spline edge between v′ and v′′.
The modified path has length less than d as well. �	
Lemma 11. If a path Q in F(S) is a shortest path between s and t amid poly-
gons in F(P) then Q is a shortest path between s and t amid splinegons in S.
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Proof: The edges that occur in GS due to any closed corridor C are those
that join two apices corresponding to C. Let R be the sequence of edges of GS
that connect the apieces of C.A The length of R equals the rectilinear distance
between apices of C in C. This together with the Lemma 10 and the proof of
Lemma 8 proves that the graph GS corresponding to S is same as the graph GP
corresponding to P. �	
Lemma 12. Computing a polygonal domain P from the given splinegonal
domain S takes O(n+h lg n+(lg h)1+ε) time. Here, ε is a small positive constant.

Proof: Triangulating F(S) and partitioning the same into hourglasses takes
O(n + h((lg n) + (lg h)1+ε) time. For the triangulation of F(S), we use the algo-
rithm from [2]. Since funnels are processed analogous to open hourglasses and
because of Lemma 9, computing polygonal chains corresponding to sides of open
corridors and funnels together take O(n + h lg n) time. Computing a shortest
path between apices of any closed corridor C in F(S) takes O(k) time [8,20],
where k is the number of vertices that belong to that closed corridor. Further,
traversing along a shortest path Q between two apices of C and introducing
vertices of P along Q takes O(k) time. �	
Theorem 3. Given a splinegonal domain S comprising of h pairwise disjoint
simple splinegons together defined with n vertices and two points s, t ∈ F(S),
the reduction procedure to compute a rectilinear shortest path between s and t
amid splinegons in S, excluding the time to compute a rectilinear shortest path
amid polygons in P, takes O(n+h lg n+(lg h)1+ε) time. Here, P is the polygonal
domain computed from S and ε is a small positive constant (resulting from the
triangulation of F(S) using [2]).

Proof: Immediate from Lemmas 8, 11 and 12. �	

5 Conclusions

We have devised an algorithm to reduce the problem of computing a rectilin-
ear shortest path between two points in the splinegonal domain to the problem
of computing a rectilinear shortest path between two points in the polygonal
domain. The reduction algorithm given for the case of concave-in simple spline-
gon obstacles does not rely on the details of the algorithm to compute a rectilin-
ear shortest path between two points amid polygonal obstacles. Further, as part
of this, we have generalized few of the properties given for rectilinear shortest
paths in the polygonal domain to the case of rectilinear shortest paths amid
splinegons. It would be interesting to devise rectilinear shortest path algorithms
when the obstacles in the plane are more generic.
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Abstract. In this paper we study variants of well-known graph prob-
lems: vertex cover, connected vertex cover, dominating set, total dominat-
ing set, independent dominating set, spanning tree, connected minimum
weighted spanning graph, matching and hamiltonian path. Given a graph
G = (V, E), we add a partition ΠV (resp. ΠE) of its vertices (resp. of
its edges). Now, any solution S containing an element (vertex or edge)
of a part of this partition must also contain all the others ones. In other
words, elements can only be added set by set, instead of one by one as in
the classical situation (corresponding to obligations that are singletons).
A motivation is to give a general framework and to study the complex-
ity of combinatorial problems coming from systems where elements are
interdependent. We propose hardness and approximation results.

Keywords: Graph problems · Approximation algorithms · Hardness

1 Obligations

Systems (production, distribution, network,...) are composed of elements (facto-
ries, vehicles, softwares, nodes, links, people...) and must supply outputs (services
or goods). These elements are linked (to communicate, to exchange materials,...)
and these links form a network modeled as a graph G = (V,E). For the pro-
duction of outputs or to manage the network, elements must work to complete
a task and must be organized. For example, a spanning tree can be useful (to
broadcast pieces of information), or a vertex cover (to monitor the links of G) or
a dominating set (to monitor the elements). But, in some situations, some sets of
these elements must be simultaneously active. This is the case for example when
the treatment of a task involves a tool that is distributed on several nodes and
to use one of these nodes, all the other ones must also be active. Another case
is when nodes are people that are member of teams: if one member of a given
team is mobilized for the task then all the other members are also mobilized.

We can model this interdependence between two elements a and b as follows:
element a is active (or selected for the task) if and only if element b is active (or
selected). We write this dependence <a, b>, or equivalently <b, a>. However,
by its nature, this relation <., .> is transitive (if <a, b> and <b, c> then we
necessarily get <a, c>) and reflexive (we have <a, a> for any element a). <., .>

c© Springer Nature Switzerland AG 2018
D. Kim et al. (Eds.): COCOA 2018, LNCS 11346, pp. 183–197, 2018.
https://doi.org/10.1007/978-3-030-04651-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04651-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-04651-4_13


184 A. Cornet and C. Laforest

is then an equivalence relation and it creates a partition of the elements, where
all the parts are called obligations in this article. This means that when an
element x is involved, all the elements in relation with x in the transitive closure
of <., .> are also involved. Note that if an element y is involved in no <., .>
relation (except with itself), then it is alone in its obligation (singleton {y}).

We do not address here any specific practical problem but we give a general
framework and we treat the underlying combinatorial optimisation problems.
Hence, in this paper we deal with classical graph problems with additional con-
straints. Let G = (V,E) be any undirected graph. We call system of obligations
on vertices of G a partition ΠV = V1, . . . , Vk of V and a system of obligations
on edges of G a partition ΠE = E1, . . . , Ek of E. Each element Vi (resp. Ei) is
called a part (or obligation) of ΠV (resp. ΠE). Now, given G and an associated
system ΠV (resp. ΠE) of obligations on vertices (resp. edges), any solution S to
a problem on G must respect (or satisfy) the (constraints on) obligations, that
is must have the following property: if u ∈ S (resp. e ∈ S) and u ∈ Vi (resp.
e ∈ Ei) then Vi (resp. Ei) must be entirely included in S, that is Vi ⊆ S (resp.
Ei ⊆ S). In other words, once an “object” x (vertex or edge), element of a
part X, is in a solution, all the others elements of X must also be included in
the solution. As mentioned at the beginning, obligations can be useful to model
situations in which some set of elements (captors, computers, softwares, people,
etc.) are interdependent and the presence of one element induces the presence of
all the other ones. From an algorithmic point of view, it is clear that introduc-
ing obligations constraints in a classical graph problem PROB leads to a direct
generalization of PROB (where obligations are all singletons). But we will see
that in most cases the problems with obligations become much harder than the
original ones.

In addition to the motivations mentioned above, this study comes to complete
many recent works on a sort of opposite problem, implying what is called conflit
which is a pair {x, y} of edges or vertices of a graph that cannot be both in a
solution (x and y are incompatible). Here an instance is then a graph G and a
set of conflicts. Obtaining a solution without conflict is hard in general for many
graph problems, as it is shown in these papers [4–6,9–15,17].

In what follows we give useful notations for the rest of the paper (undefined
terms can be found in [7] for example). Let G = (V,E) be any non directed
graph, with V its set of vertices and E its set of edges. Two vertices u and v
are neighbors if G contains the edge uv. The degree of a vertex u is its number
of neighbors. We call graph induced by a set of edges Ei ⊆ E, the graph whose
set of edges is Ei and whose vertices are the ones that are at the extremity of
at least an edge of Ei. The graph induced by a set S of vertices of G, noted
G[S], is the graph whose set of vertices is S and whose edges are the ones of G
connecting two vertices of S. A stable (or independent) S of G is a subset of its
vertices having the property that G[S] contains no edge. In our paper we reduce
some of our problems to well-known NP-complete problems like set cover, X3C
(exact cover by 3 sets), minimum size stable,... whose strict description can be
found for example in the classical textbook [8].
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2 Vertex Cover with Obligations on Vertices

Let G = (V,E) be any graph and ΠV = V1, . . . , Vk a partition of V , a system of
obligations on vertices of G. A vertex cover with obligations (VCO) S, of (G,ΠV )
is: a vertex cover of G (each edge e = uv ∈ E is covered by S (u ∈ S or v ∈ S
(both can be in S))) and ∀u ∈ S, if u ∈ Vi, then Vi ⊆ S (i.e. S respects the
constraints on obligations).

It is easy to see that any instance (G = (V,E),ΠV ) always contains at least
a VCO, namely S = V . A VCO S∗ of the instance (G,ΠV ) is said optimal, and
noted VCOOPT , if it is of minimum size. Constructing a VCOOPT is hard since
even in the very particular case where each part of ΠV is a singleton, this is
the classical NP-complete vertex cover problem [8]. In what follows we propose
an approximation algorithm for the VCOOPT problem. But first we can easily
simplify the instance in some cases. Indeed, we can remark that if e = uv ∈ E
and u and v are in the same part Vi of the partition ΠV (u ∈ Vi and v ∈ Vi) then
any VCO (thus any VCOOPT ) must contain Vi since the edge e = uv must be
covered and u or v must be in any solution and thus also Vi. Before running any
algorithm, we can include in any solution, all the parts Vi of ΠV such that G
contains an edge e with both extremities in Vi. This can be done in polynomial
time. We suppose now that this pre-treatment has been done and that G does not
contain these vertices anymore and ΠV does not contain these parts anymore.

We describe now a 2-approximation algorithm for the VCOOPT problem. At
this point we can suppose that an instance is now (G = (V,E),ΠV = V1, . . . , Vk)
where each Vi is a stable of G.

1. Construct as follows a new weighted graph Gc = (Vc, Ec) called contracted
graph: each stable Vi of ΠV is associated to a vertex vi of Gc. The weight of
vi is the number of vertices of Vi (|Vi|). Add an edge between vi and vj in Gc

iff G contains (at least) an edge having an extremity in Vi and the other in
Vj .

2. Construct a 2-approximated weight vertex cover Sc in Gc (i.e. a vertex cover of
Gc whose total weight is at most twice the minimum one. This approximation
can be done in polynomial time, see [1]).

3. Return S =
⋃

i:vi∈Sc

Vi (for each vi of Sc, put the corresponding Vi in S).

Theorem 1. The algorithm described above is a 2-approximation algorithm for
the VCOOPT problem.

Proof. This algorithm is polynomial. It constructs a vertex cover of G that sat-
isfies the constraints on obligations.

Note that to respect the conditions on obligations, any VCO of (G,ΠV )
is a union of some parts of ΠV . We construct now a one-to-one correspon-
dance respecting the weights and the sizes between the VCO of (G,ΠV ) and the
weighted vertex covers of Gc.

Let S be any VCO of (G,ΠV ). The set Sc = {vi : i : Vi ⊆ S} associated to S
is a vertex cover of Gc, of weight |S|.
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Conversely, let Sc = {v1, . . . , vl} be any weighted vertex cover of Gc. In this
case, S = {Vi : i : vi ∈ Sc} is a VCO of (G,ΠV ) whose size is equal to the weight
of Sc.

A 2-approximation of an optimal weighted vertex cover of Gc corresponds
to a 2-approximated VCOOPT of (G,ΠV ). Hence the proposed algorithm is a
2-approximation algorithm for the VCOOPT problem. ��

Connected Vertex Cover with Obligations on Vertices
In this part, G = (V,E) is a connected graph. As previously, the obligations are
given by a partition ΠV = V1, . . . , Vk of V . A CVCO, connected vertex cover
with obligations, S of the instance (G,ΠV ) is: a vertex cover of G (for any edge
uv ∈ E, u ∈ S or v ∈ S (both can be in S)), a connected set of vertices: G[S]
(the induced graph of S in G) is connected, and S respects the constraints of
obligations of ΠV . It is easy to see that any instance (G = (V,E),ΠV ) always
contains at least a VCO, namely S = V since G is connected. A CVCOOPT is
a CVCO of minimum size. Constructing a CVCOOPT is a hard problem, even
if ΠV is a partition of singletons (in this case this is the classical NP-complete
connected vertex cover problem [8]).

Theorem 2. Any α-approximation algorithm for the CVCOOPT problem can be
transformed into a 2α-approximation algorithm for the minimum size set cover
problem.

Proof. Let (A,X) be any instance of the set cover problem: A = {a1, . . . , an} is
a set of n elements and X = X1, . . . , Xk is a family of subsets of A (Xi ⊆ A)
covering A: A = ∪k

i=1Xi. An optimal set cover is a sub-family of X, of minimum
size, covering A. We note t∗ the size of such an optimal solution of (A,X).

From (A,X) let us construct an instance of our problem. Each element ai

is associated to a vertex, also noted ai. Each set Xi of X is associated to a set
noted Vi of n+1 new vertices, forming a stable. Each of the n+1 vertices of the
set Vi is connected to a vertex aj iff the set Xi contains the element aj . Create
now a new vertex r and connect it to all the vertices of the k sets Vi. The degree
of r is then k(n + 1). We note G = (V,E) the final graph that is bipartite.

The obligations are the following. Each Vi is an obligation containing exactly
n+1 independent vertices. Add the obligation V0 containing r and the n vertices
of A. V0 is then also a stable of G composed of n+1 vertices. ΠV = V0, V1 . . . , Vk

is a partition of the set V of vertices of G and is the system of obligations that
we consider here; each Vi is a stable of n+1 vertices of G. The instance (G,ΠV )
can be constructed in polynomial time from the instance (A,X). Consider now
the following one-to-one mapping between the CVCO of (G,ΠV ) and the set
covers of (A,X).

Let SX = Xi1 , . . . , Xit be any set cover of size t of (A,X). Consider now
the following set S of vertices of G: S = V0 ∪

⋃t
j=1 Vij . S is a vertex cover

of G (all the edges of G are covered by the vertices of V0), G[S] is connected
(because the vertices of Vij are interconnected via r and each ai is connected to
at least all the vertices of a set Vij because SX is a covering) and satisfies the
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obligations of ΠV (S is composed of a union of obligations of ΠV ). The size of
S is: |S| = n + 1 + t(n + 1) = (n + 1)(t + 1).

Consider now any CVCO S of (G,ΠV ). As S satisfies the constraints on
obligations, it is composed of a union of obligations. As G[S] is connected and
G is bipartite, it must contain some of the obligations Vi, i ≥ 1. But as S must
contain r or a vertex ai to ensure the connectivity it must contain the obligation
V0. Note V0, Vi1 , . . . , Vit the obligations composing S: S = V0 ∪ Vi1 ∪ · · · ∪ Vit .
Let SX = Xi1 , . . . , Xit be the sub-family associated to this CVCO S. As V0 ⊆ S,
each vertex ai is connected to the other vertices of S via the vertices of at least a
Vij . Thus SX is a set cover of (A,X). We get: |SX | = t and |S| = (t + 1)(n + 1).

This one-to-one mapping associates to each set cover of size t a CVCO of size
(t+1)(n+1) and reciprocally. The transformations in one direction or the other
can be done in polynomial time.

Suppose that a CVCOOPT can be approximated with a ratio α in polynomial
time. Then, for any instance (A,X) one can: construct the associated instance
(G,ΠV ), then use this approximation algorithm to construct a α-approximated
CVCO S: (t+1)(n+1) = |S| ≤ α|S∗|. Then with the one-to-one transformation,
one can construct the associated set cover SX , of size t. This chain of construc-
tions is polynomial. Let S∗

X be an optimal set cover, of size t∗. By the one-to-one
transformation, this corresponds to a CVCO of size (t∗ + 1)(n + 1). This CVCO
is optimal (otherwise it would be possible to construct a smaller one with the
one-to-one transformation). Hence, |S| = (t+1)(n+1) ≤ α(t∗ +1)(n+1), then,
t + 1 ≤ α(t∗ + 1) and t ≤ αt∗ + (α − 1) ≤ α(t∗ + 1) ≤ 2αt∗ (because 1 ≤ t∗).
The algorithm described above is then a 2α-approximation algorithm for the set
cover problem. ��

Corollary 1. The CVCOOPT problem cannot be approximated by a ratio better
than c log(n)/2 unless P = NP .

Proof. Theorem 2 shows that the CVCOOPT problem cannot be approximated
by a ratio better than c log(n)/2 since the optimal set cover problem cannot be
approximated within c log(n) for some c > 0, unless P = NP , see [1]. ��

3 Dominating Set with Obligations on Vertices

In this section, we study the complexity of 3 domination problems with obliga-
tions: Dominating set with obligations, Total Dominating set with obligations
and Independant dominating set with obligations.

Dominating Set with Obligations on Vertices
In this part, an instance is (G = (V,E),ΠV = V1, . . . , Vk) where G is a graph
and ΠV is a partition of V . A dominating set with obligations S (DO) of (G,ΠV )
satisfies: S dominates G (for any u ∈ V −S, u has at least a neighbor in S), and
S respects the constraints of obligations of ΠV .

We can remark that there is always a DO: V , the set of vertices of G. The
minimization problem is NP-complete and cannot be approximated with a better
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ratio than c·log |V | for some c > 0 (unless P = NP ): indeed when the obligations
are all singletons, we get the classical dominating set problem having this bound
on approximation ratio, see [16].

Let us show now that it is possible to construct a O(log(|V |))-approximation
for our problem of dominating set with obligations. For that purpose we reduce
it to the weighted set cover for which there is such an approximation ratio
O(log(|V |)), see [3].

Theorem 3. Given (G,ΠV ), it is possible to approximate an optimal DO with
ratio O(log(|V |)).

Proof. From instance (G = (V,E),ΠV ), we construct (U, S,w) an instance of
the weighted set cover. Let U = V . For any obligation Vi ∈ ΠV , we construct
a set Si composed of the union of the closed neighborhoods of vertices of Vi

(the closed neighborhood of x is the set of neighbors of x plus x itself). We can
remark that a set Si contains exactly the vertices dominated by Vi. The weight
of this set is the size of the obligation (which is, in general, different from the
size of Si) i.e. w(Si) = |Vi|. The family S of sets of the instance (U, S,w) is
composed of all these Si. Figure 1 shows an example of construction of S1 from
V1. Here, the set constructed has weight 3 (the size of V1) and dominates V1 and
its neighbors. We construct now a one-to-one mapping between the dominating
sets with obligations of (G,ΠV ) and the set covers of (U, S,w).

Fig. 1. Construction of S1 from V1.

Let D be any dominating set with obligations of (G,ΠV ). As D respects the
obligations, D is a union of obligations Vi1 , . . . , Vit . Construct C =

⋃t
j=1 Sij . As

D is a dominating set of G, each vertex u of V is dominated by a vertex in a set
Vij and, hence, each element u of U = V is covered by Sij , i.e. by C. We also
have |D| =

∑t
j=1 |Vij | =

∑t
j=1 w(Sij ) = w(C).

Reciprocally, let C = Si1 , . . . , Sil be a set cover of (U, S,w). Construct D =⋃l
i=1 Vil . As C is a set cover, each element v is covered by at least a Sij , and

then each corresponding vertex v is dominated by itself if it is in Vij , or by one of
its neighbors in Vij , D is then a dominating set of G. Moreover, by construction,
D respects the obligations. As previously, w(C) =

∑l
j=1 w(Sij ) =

∑l
j=1 |Vij | =

|D|.
The final result follows from this polynomial transformation and one-to-one

mapping, preserving size/weight and the result of [3]. ��
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Total Dominating Set with Obligations on Vertices
In this part, an instance is (G = (V,E),ΠV = V1, . . . , Vk) where G is a graph
and ΠV is a partition of V . A total dominating set with obligations S (T DO)
of (G,ΠV ) satisfies: S totally dominates G (for any u ∈ V , u has at least a
neighbor in S) and S respects the constraints of obligations of ΠV .

We can remark that (G = (V,E),ΠV ) contains a T DO (the set V ) iff G has
no isolated vertices. An optimal T DO is a T DO of minimum size.

The minimization problem is NP-complete and cannot be approximated with
a better ratio than c · log |V | for some c > 0: indeed when the obligations are all
singletons, we get the classical total dominating set problem having this bound
on approximation ratio, see [2].

Theorem 4. Given (G,ΠV ), it is possible to approximate an optimal T DO with
ratio O(log(|V |)).

Proof. The proof of Theorem4 is very similar to the one of Theorem 3, hence
we only give a sketch of proof. The reduction and mapping are the same as in
Theorem 3, except that sets Si are composed of the union of the open neighbor-
hoods of vertices of Vi (the open neighborhood of x is the set of neighbors of x,
x exluded), to ensure that each vertex of Si is dominated by an other vertex of
Vi. ��

Independent Dominating Set with Obligations on Vertices
In this part, an instance is (G = (V,E),ΠV = V1, . . . , Vk) where G is a graph
and ΠV is a partition of V . An independent dominating set with obligations S
(IDO) of (G,ΠV ) satisfies: S dominates G (for any u ∈ V − S, u has at least a
neighbor in S), S is a stable of G (no edges between vertices of S) and S respects
the constraints of obligations of ΠV . In this particular variant of domination, a
solution is not always guaranteed.

Theorem 5. Determining if (G,ΠV ) contains an IDO is NP-complete.

Proof. The problem is clearly in NP. Let (X,Z) be a X3C instance (exact cover
by 3 sets) where X is a set of 3q elements and each Zi is a subset of 3 elements of
X (Zi ⊆ X and |Zi| = 3) with the property: X =

⋃k
i=1 Zi (the sets Zi cover X).

The X3C problem consists in deciding if this instance contains an exact cover of
X (each element of X is in exactly one subset of the solution). This problem is
NP-complete, see [8].

Let us construct an instance of our problem from (X,Z). For each element
x of X, a P3 (a path with 3 vertices) is created and one extremity is called the
vertex representing the element. For each subset z of Z, a path P2 is created and
one extremity is called the vertex representing the subset. Additional edges are
added between: each vertex representing a subset and each vertex representing
an element inside this subset; each pair of vertices representing subsets whose
associated subsets have non-empty intersection.

For each element x, an obligation containing the vertex representing x and
its neighbor in its P3 is created. They are called obligations of elements. All
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the other obligations are singletons. An exemple of result of this (polynomial)
construction is given in Fig. 2.

Fig. 2. Construction of (G, ΠV ) from (X, Z).

Let D be an independent dominating set respecting the obligations of
(G,ΠV ). D contains no obligation of elements because these obligations are
between two vertices linked by an edge. Hence, each vertex representing an ele-
ment can only be dominated by vertices representing subsets. Let S be the family
of subsets corresponding to the vertices representing subsets of D. Then as each
vertex representing an element is dominated by D, each element is covered by
S. Moreover, as only subsets with non-empty intersection are neighbors, D is an
independent set, and the subsets of S are pairwise disjoint: S is then an exact
cover of (X,Z).

Now, let S be an exact cover of (X,Z). Let us construct D. For each Zi, the
corresponding vertex is added to D iff Zi is in S. Otherwise, the neighbor of Zi

in the P2 is added to D. Also add to D all the vertices that are the opposite
extremities of the vertices representing an element in each P3. It is easy to see
that D is an independent set. Moreover, D respects the obligations (since each
vertex of D is in a singleton obligation). Finally, each element is covered by S:
each vertex representing an element is then dominated by a vertex representing a
subset. The paths P2 are dominated either by the vertex representing the subset
or by the other extremity. For each path P3 the vertex, opposite extremity of
the vertex representing the element, is in D and covers itself and its unique
neighbor. D is then an independent dominating set, respecting the obligations
of (G,ΠV ). ��

4 Spanning Graph with Obligations on Edges

Spanning Tree with Obligations on Edges
In this part, an instance is (G = (V,E),ΠE = E1, . . . , Ek) where G is any
connected graph and ΠE , the obligations, is a partition of E. The objective is,
given an instance, (G = (V,E),ΠE = E1, . . . , Ek), to decide if there is a tree
spanning G with obligations (T SO) T = (V,ET ) which is a tree spanning G and
such that for any e ∈ ET , if e ∈ Ei then all the edges of Ei must also be in T .
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Theorem 6. Deciding if (G = (V,E),ΠE = E1, . . . , Ek) contains a T SO is
NP-complete, even if: G is bipartite, of maximum degree 4 and each Ei induces
a star (that is a tree with a vertex directly connected to all the others) with exactly
3 edges (|Ei| = 3).

Proof. The problem is in NP. Let (X = {x1, . . . , x3q}, Z1, . . . , Zk) be any
instance of the X3C problem (exact cover by 3 sets) where X is a set of 3q
elements and each Zi is a subset of 3 elements of X (Zi ⊆ X and |Zi| = 3)
with the property: X =

⋃k
i=1 Zi (the sets Zi cover X). The X3C problem con-

sists in deciding if this instance contains an exact cover of X, i.e., if there exist
Zi1 , . . . , Ziq pairwise disjoint sets such that X =

⋃q
j=1 Zij . This is a well-known

NP-complete problem, even if each element xi is in at most 3 sets, see [8]. It is
this restricted formulation that we consider here.

From this instance, let us construct a graph G. For each element xi of X
create a new vertex, also noted xi. For each set Zi create a new vertex, also
noted Zi. Add an edge between each vertex Zi and the 3 vertices that are in
the set Zi. Now, create a tree Tr to connect the k vertices Zi that will become
leaves of Tr. The Zi are connected two-by-two by new vertices. Then these 
k/2�
new vertices are connected two-by-two by new vertices, and so on until there is
only one final new vertex that we call r (as “root” of Tr). Each vertex u, except
the leaves Zi, have one or two children. For each such u we add a new vertex lu
(or two if necessary) that is only connected to u (lu is a leave). These 3 vertices
are called the 3 children of u. We get now the final tree. All of these vertices
and edges form the final graph G = (V,E) that is bipartite and, thanks to the
restriction on X3C instances, the maximum degree of G is 4. An illustration of
the construction is given in Fig. 3: the bottom vertices are elements of X, squared
vertices are the Zi, black ones are the additional children and colored vertices
are the internal ones of tree Tr. The dashed ellipses represent the obligations
that are described now.

Fig. 3. Construction of G from a X3C instance.

For each vertex Zi we group in a same obligation noted Ei the 3 edges
connecting Zi to the 3 vertices representing the 3 elements that are in set Zi.
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We group in a same obligation the 3 edges connecting any internal vertex u to
its 3 children. All these obligations are called tree obligations. Each edge of G
is now in exactly one obligation (tree one or in a Ei) and the set of all these
obligations is ΠE , composed of stars of exactly 3 edges. This construction is
polynomial.

Suppose that the X3C instance has a solution Zi1 , . . . , Ziq . In this case, we
can select the following obligations: all the tree obligations and all the edges in
the obligations Ei1 , . . . , Eiq . This gives a tree spanning G (each vertex xi is a leaf
because it is a neighbor of exactly one vertex Zij and each vertex Zl is connected
to the other vertices via the tree Tr). This tree respects the obligations of ΠE

and is then a T SO of (G,ΠE).
Conversely, suppose that the instance (G,ΠE) has a T SO noted T . As T

respects the obligations, it necessarily contains all the tree obligations, this is
mandatory to include the leaves of the form lu. It also contains other obligations.
But each vertex xi is a leaf of T . Otherwise, if it is neighbor of 2 vertices, Za

and Zb then we would have a cycle with some edges of the tree obligations, that
is not allowed because T is a tree. As T covers all the 3q vertices/leaves xi it
must contain exactly q vertices of type Zi, noted Zi1 , . . . , Ziq , and their 3 edges
incident from the associated obligations Ei1 , . . . , Eiq . The sets Zi1 , . . . , Ziq cover
X and are pairwise disjoint and is then a solution for the X3C instance. ��

Connected Spanning Graph of Minimum Weight with Obligations on Edges
In this part G = (V,E) is a weighted connected graph: each edge e ∈ E has a
weight w(e) > 0. The obligations form a partition ΠE = E1, . . . , Ek of E. The
objective is to extract from G a subset S of edges, inducing a connected graph
spanning all the vertices of V , having a minimum weight and respecting the
obligations. Such an object is called a CSGOOPT (Minimum Weight Connected
Spanning Graph with obligations). We call CSGO a Connected spanning Graph
with obligations (a CSGOOPT is a minimum weight CSGO).

We can note that, because of the obligations, a CSGO is not necessarily a
tree. Indeed, if each obligation induced a cycle for example, no spanning tree
is possible. We can remark that since G is connected, G itself is a CSGO of
(G,ΠE) (the problem always has a solution) and that if ΠE only contains sin-
gletons, this is the traditional minimum weight spanning tree problem that can
be polynomially solved with the classical Prim algorithm for example.

Theorem 7. Let (G = (V,E),ΠE = E1, . . . , Ek) be an instance with G a
weighted connected graph. Determining if there is a CSGO of weight at most
|V | − 1 is NP-complete, even if: G is bipartite, of maximum degree 4, all the
weights are 1 and each obligation induces a star with 3 edges.

Proof. This problem is clearly in NP. Any spanning graph contains at least n−1
edges, with n = |V |. Hence, in the case where each edge has weight 1, there is
no CSGO with weight strictly less than n−1. Deciding if there exists a CSGO of
weight at most n − 1 is then strictly equivalent to decide if there exists a T SO
in this instance, which is NP-complete, even if G verifies the hypotheses, thanks
to Theorem 6. ��
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Theorem 7 shows that deciding whether an instance contains a CSGO is NP-
complete, even if all the weights are equal. The next result shows that there is
no constant approximation algorithm for the weighted case (unless P �= NP).

Theorem 8. Any α-approximation algorithm for the CSGO problem in bipartite
graphs where obligations induce stars can be transformed into a α-approximation
algorithm for the minimum size set cover problem.

Proof. Let (X = {x1, ...xn}, F = {F1, ...Fk}) be any instance of the set cover
problem. Let us construct an instance of CSGO. Put in V the n vertices corre-
sponding to x1, ...xn, k vertices corresponding to sets F1, ...Fk and an additional
new vertex r. Link r to each vertex Fi and link each vertex Fi to all the xj such
that xj ∈ Fi. Clearly the graph obtained is bipartite. Put in a same obligation,
noted O0, all the incident edges of r and assign a weight ε/k on each edge of O0

(where ε can be as small as desired). For each Fi, put all incident edges to Fi,
except the one between Fi and r, in an obligation noted Oi and assign to each
such edge of Oi a weight 1/|Fi|. Hence, the total weight of each obligation is 1,
except O0 with weight ε. Each obligation induces a star.

We show now that each solution of the set cover problem can polynomialy
be transformed in a solution of equivalent weight for the CSGO problem, and
reciprocally.

Let S be a solution of the set cover, of size t. We construct C the set of edges
as follows: put O0 in C, and for each 0 < i ≤ k, put Oi in C iff Fi is in S. The
vertices r and Fi are connected in C (via O0). Each element xj is covered by a
set Fi of the set cover: the corresponding vertex xj is connected to the vertex Fi

via the obligation Oi, hence C is a CSGO. C contains O0 and t other obligations,
its weight is then t + ε.

Let now C be a CSGO. C contains O0 (to connect r) and t other obligations.
Its weight is then t + ε. Let us construct a solution S of the set cover. For each
0 < i ≤ k, put Fi in S iff Oi ∈ C. Let xj be an element of X. The corresponding
vertex is connected by an edge which is an element of an obligation Oi. Hence,
the corresponding set Fi belongs to S and the element is covered, S is then a
set cover. Moreover, the size of S is t.

As ε can be arbitrary small, using these transformations, one can use a α-
approximation algorithm for our CSGO to create a α-approximation algorithm
for the set cover problem. ��

Corollary 2. The minimum weight CSGO cannot be approximated with a con-
stant approximation ratio (unless P = NP ), even if G is a bipartite graph and
if each obligation induces a star.

Proof. Theorem 8 shows that it is not possible to approximate the CSGO prob-
lem with a better ratio than the one of the minimum size set cover, even in
bipartite graphs where each obligation induces a star. But this last problem
cannot be approximated within c log(c) for some c, unless P = NP , see [1]. ��
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5 Matchings with Obligations on Edges

In this section, an instance is (G,ΠE) where G = (V,E) is any graph and
ΠE = E1, . . . , Ek is a partition of E, the set of edges of G.

A matching with obligations (MO) M of the instance (G,ΠE) is a matching
of G (set of pairwise non incident edges of G) respecting the obligations.

It is polynomial to determine if (G,ΠE) contains a MO. Indeed, there is
a non empty MO iff at least an obligation Ei induces a matching. From this
we can simplify an instance (G,ΠE): if a part Ei of ΠE induces a graph in
which a vertex has more than one neighbor then Ei can be deleted from ΠE

and the edges of Ei can be deleted from G. This pretreatment can be done in
polynomial time. From now we suppose that (G = (V,E),ΠE = E1, . . . , Ek) is
an instance where each Ei induces a matching of G and thus contains a MO
(possibly empty). A MO of maximum size is noted MOOPT .

Theorem 9. Let (G = (V,E),ΠE = E1, . . . , Ek) be an instance where each
Ei induced a matching of G. Any α-approximation algorithm for the MOOPT
problem can be transformed into a α-approximation algorithm for the maximum
size stable problem.

Proof. Let H = (VH , EH) be any graph, instance of the maximum size stable
problem. Note VH = {h1, . . . , hn} the n vertices of H. We construct an instance
of our problem from H.

For each edge hihj of H, we create a new P3 (path with 3 vertices) associated
to this edge. The union of these |EH | pairwise disjoint paths form a graph noted
Q (not yet the final graph G). Now, for each i, 1 ≤ i ≤ n, we create Di a subset
of edges of Q as follows. For each edge hihj of H, put an edge of the associated
P3 path in Di and the other one in Dj . These n sets D1, . . . , Dn form a partition
of the edges of Q and each Di is a matching. Figure 4 gives an example of this
construction.

Fig. 4. Construction of Q (right) from H (left). Sets Di are in dashed boxes.

The sets Di can have different sizes. Let Da be the one of maximum size (this
corresponds to the maximum degree of H). The next steps consist in adding new
independent edges, between new vertices, to each Di such that the n sets all have
the same size |Da|.
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Note G = (V,E) the graph obtained from Q by the addition of these new
vertices and edges. We note ΠE = E1, . . . , En obtained by the previous operation
of homogenization of size. We now have the following properties: all the sets Ei

have the same size noted t, E1, . . . , En is a partition of the set E of edges of G,
each Ei induces a matching in G, Ei ∪ Ej is a matching of G iff hihj �∈ E. This
instance (G,ΠE) can be constructed in polynomial time from the instance H of
the maximum size stable problem.

Let S = {hi1 , . . . , hiq} be any stable, of size q, in H. Let us consider the
associated obligations to S: Ei1 , . . . , Eiq . As S is a stable, MS =

⋃q
j=1 Eij is a

matching of G of size qt.
Conversely, let M be any matching of G, composed of the Ei1 , . . . , Eiq . As

M is a matching of G of size qt, S = {hi1 , . . . , hiq} is a stable of size q in H.
There is a one-to-one mapping between the MO of (G,ΠE) and the stables

of H. The sizes are all the same, up to a factor t. Hence, if an approximation
algorithm of ratio α exists for the MOOPT problem then it would be possi-
ble to approximate the maximum size stable problem with a ratio α via the
previously described transformations: transform H into the instance (G,ΠE),
then apply the approximation algorithm on this instance and then transform its
result into a stable of H. The conservation of the sizes (up to a factor t) by these
transformations insures the approximation ratio. ��

With this result and the fact that the maximum size stable problem cannot
be approximated within |V |1/2−ε for any ε > 0, unless P = NP , see [1] we get:

Corollary 3. The MOOPT problem cannot be approximated with a ratio better
than |V |1/2−ε unless P = NP .

6 Hamiltonian Path in Complete Graphs
with Obligations on Edges

Here an instance is (G = (V,E),ΠE = E1, . . . , Ek) where G is any connected
graph and ΠE a partition of E. A hamiltonian path with obligation (HPO)
of (G,ΠE) is a hamiltonian path of G (a path of |V | − 1 edges, spanning V )
satisfying all the constraints of obligations of ΠE (if an edge e is in the path
then all the edges belonging to the same obligation must also be in the path).

Theorem 10. Deciding if (G,ΠE) contains a HPO is NP-complete, even if G
is a complete graph.

Proof. The problem is in NP. Let H = (V,E) be any connected graph, instance
of the hamiltonian path problem, which is an NP-complete problem, see [8]. Let
n = |V |. We suppose here that n ≥ 4 (if n is smaller then the problem can easily
be solved in constant time). The graph for our problem is Kn, the complete
graph on the n vertices V of H. The obligations are the following. For each edge
uv of H, the edge uv of Kn is the only element (singleton) of this part. All the
edges uv outside H (uv �∈ E) are grouped in a single obligation E0. This instance
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(Kn,ΠE) can be constructed in polynomial time. We divide our study in two
cases. Case 1: E0 induces a graph of maximum degree greater than or equal to
3. In this case, the edges of E0 cannot be in a HPO of Kn. Hence, H contains
a hamiltonian path iff (Kn,ΠE) contains a HPO.

Case 2: E0 induces a graph of maximum degree at most 2. In this case, each
vertex u has degree at least n − 2 in H. But, by hypothesis n ≥ 4, this implies
that the degree in H of each vertex is at least n/2. This is the well-known (see
[7] for example) Dirac sufficient condition for H to have a hamiltonian cycle, i.e.
also a hamiltonian path. Hence, H has a hamiltonian path and (Kn,ΠE) has a
HPO. In all cases, H has a hamiltonian path iff (Kn,ΠE) has a HPO. ��

7 Conclusion

In this paper we shown that adding obligations drastically increases the approx-
imation ratio of classical graph problems. This is the case for the connected
vertex cover with obligations that has no constant approximation ratio algo-
rithm (while there is a 2-approximation algorithm for the original problem), the
minimum connected weighted spanning graph and the maximum size matching.
For the last two problems, the classical versions are polynomial but the version
with obligations are as hard as set cover or maximum stable problems. For some
other problems, the situation is even worst: it becomes NP-complete to know
whether there is a solution, regardless of its size (while it is trivial or polynomial
in the original problem). This is the case for the following problems: indepen-
dent dominating set, spanning tree and hamiltonian path in complete graphs.
For the dominating and total dominating set problem, the approximation ratios
are almost the same with or without obligations constraints (but these ratios are
not constant). Only the vertex cover problem keeps the same constant approxi-
mation ratio 2.

One might imagine that a perspective could be to refine our results by study-
ing more specific/restricted instances. Unfortunately in some cases, the problem
is “equivalent” to another hard problem (minimum set cover, maximum size
stable problem) that already received a lot of attention and improving them is
known as a hard challenge in itself since a long time. In other cases, the instances
for which our problem is hard are basic in a sense: bipartite graphs of maximum
degree 4 and very small obligation sizes for the spanning tree problem, complete
graph for the hamiltonian path problem.

Other combinatorial problems can be studied with our framework. But our
results show that dealing with obligations can lead to very complex problems
that could be unsolvable. Organizing practical systems with obligations should
be done with a lot of attention.
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11. Kanté, M.M., Moataz, F.Z., Momège, B., Nisse, N.: Finding paths in grids with
forbidden transitions. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 154–
168. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7 12
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Abstract. We study the problem of determining whether a given graph G =
(V,E) admits a matching M whose removal destroys all odd cycles of G (or
equivalently whether G−M is bipartite). This problem is equivalent to deter-
mine whether G admits a (2,1)-coloring, which is a 2-coloring of V (G) in which
each color class induces a graph of maximum degree at most 1. We determine a
dichotomy related to the NP-completeness of such a decision problem, where it
is NP-complete even for 3-colorable planar graphs of maximum degree 4, while
it is linear-time solvable for graphs of maximum degree at most 3. In addition,
we present polynomial-time algorithms for many graph classes including those
in which every odd-cycle subgraph is a triangle, graphs having bounded domi-
nating sets, and P5-free graphs. Additionally, we show that this problem is fixed-
parameter tractable when parameterized by the clique-width, which implies that it
is polynomial-time solvable for many interesting graph classes, such as distance-
hereditary, outerplanar, and chordal graphs.

Keywords: Graph modification problems · Edge bipartization
Defective coloring · Planar graphs

1 Introduction

Given a graph G = (V,E), an integer k ≥ 0, and a graph property Π , the Π edge-
deletion problem asks for a set F ⊆ E(G) with |F | ≤ k, such that the graph obtained by
the removal of F satisfies Π . This problem and its optimization version have received
wide attention on the study of their complexity, where we can cite [11,27]. When the
obtained graph is required to be bipartite, the corresponding edge- (vertex-) deletion
problem is called edge (vertex) bipartization [14,21].
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Choi, Nakajima, and Rim [14] showed that edge bipartization is NP-complete even
for cubic graphs. Furmańczyk, Kubale, and Radziszowski [21] considered vertex bipar-
tization of cubic graphs by removing an independent set. Vertex bipartization by remov-
ing an independent set has also been considered from a computational perspective [5],
where it is called INDEPENDENT ODD CYCLE TRANSVERSAL. Considering a dis-
tributed system, such a problem addresses situations in which we need to solve a dis-
tributed computation that is in deadlock, so that we need to remove elements of the
network that do not conflict with each other, in order to release the computation [13].

In this paper we study the analogous edge-deletion decision problem, that is, the
problem of determining whether a finite, simple, and undirected graph G admits a
removal of a matching in order to obtain a bipartite graph. Formally, for a set S⊆ E(G),
let G−S be the graph with vertex set V (G) and edge set E(G)\S. We say that a match-
ing M ⊆ E(G) is a bipartizing matching of G if G−M is bipartite. Denoting by BM
the set of all graphs admitting a bipartizing matching, we deal with the complexity of
the following decision problem.

BIPARTIZING MATCHING (BM)
Input: A finite, simple, and undirected graph G.
Question: Is G ∈ BM ?

A more restricted version was considered by Schaefer [32], where he asked whether a
given graph G admits a 2-coloring of the vertices such that each vertex has exactly one
neighbor with same color as itself. We can see that the removal of the set of edges whose
endvertices have same color, which is a perfect matching of G, generates a bipartite
graph. He proved that such a problem is NP-complete even for planar cubic graphs.

BM can also be seen as a defective coloring. A (k,d)-coloring of a graph G is a
k-coloring of V (G) such that each vertex has at most d neighbors with same color as
itself. Such colorings were introduced independently by Andrews and Jacobson [1],
Harary and Jones [23], and Cowen, Cowen and Woodall [17] and have received wide
attention in the literature [2,3,7,16,19]. We can see that a graph belongs to BM if and
only if it admits a (2,1)-coloring.

Lovász [28] proved that if a graph G satisfies (d1 +1)+(d2 +1)+ · · ·+(dk+1) ≥
Δ(G) + 1, then V (G) can be partitioned into V1, . . . ,Vk, such that each induced sub-
graph G[Vi] has maximum degree at most di, 1 ≤ i ≤ k, where Δ(G) is the maximum
degree of G. Hence subcubic graphs G, those where Δ(G) ≤ 3, are (2,1)-colorable.

Angelini et al. [2] present a linear-time algorithm which determines that par-
tial 2-trees, a subclass of planar graphs, are (2,1)-colorable. We emphasize that k-
tree graphs have treewidth at most k, for any k ≥ 1. Eaton and Hull [19] proved
that all triangle-free outerplanar graphs are (2,1)-colorable. Borodin, Kostochka, and
Yancey [7] studied (2,1)-colorable graphs with respect to the maximum average degree,

mad(G) = max
{

2|E(H)|
|V (H)| , for all H ⊆ G

}
. They proved that every graph G of mad(G)≤

14
5 is (2,1)-colorable, where this bound is sharp. By Euler’s formula, a planar graph G

with girth g, the size of a smallest cycle, has mad(G) < 2g
g−2 . Hence if G has girth at

least 7, then it is (2,1)-colorable. Differently to the previous results, we consider the
study of bipartizing matchings instead of trying to improperly color the graph, which
can inspire future works as those in [26,30] and improvements on defective coloring
studies.
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Our Results. Cowen, Goddard, and Jesurum [16] proved that it is NP-complete to
determine whether a given graph is (2,1)-colorable, even for graphs of maximum
degree 4 and for planar graphs of maximum degree 5, however they were unable to
tell if this holds for planar graphs of maximum degree 4. Here we solve this.

Theorem 1. BM is NP-complete for 3-colorable planar graphs of maximum degree 4.

On the positive side, we present polynomial-time algorithms for several graph classes.

Theorem 2. Every graph with maximum degree at most 3 is in BM . In addition, a
bipartizing matching for such graphs can be found in linear time.

As previously observed, the result of Lovász [28] implies that all subcubic graphs are
in BM. However no algorithm to find a bipartizing matching has been given. The next
result comprises some other graph classes.

Theorem 3. BM can be solved in polynomial time for the following graph classes:

(a) graphs having bounded dominating set;
(b) P5-free graphs.
(c) graphs in which every odd-cycle subgraph is a triangle;

We also study parameterized complexity aspects. In particular, we consider the com-
plexity of BM parameterized by the clique-width.

Theorem 4. BM is FPT when parameterized by the clique-width.

From Theorem 4 we can solve several interesting graph classes in polynomial time,
as for example distance-hereditary, series-parallel, control-flow, and some subclasses
of planar graphs such as outerplanar, Halin, and Apollonian networks [4,8,22,33]. The
same follows for (P6, claw)-free and (claw, co-claw)-free graphs [9,10]. Moreover, since
clique-width generalizes several graph parameters [25], it follows that BM is in FPT
when parameterized by the following parameters: neighborhood diversity; treewidth;
pathwidth; feedback vertex set; and vertex cover. In addition, it also follows that

Corollary 5. BM is polynomial-time solvable for chordal graphs.

Organization of the Paper. In Sect. 2 we present some definitions and notation used
throughout the paper and some initial properties of graphs in BM . In Sect. 3 we prove
that BM is NP-complete. In Sect. 4 we present the positive results, where we give a
linear-time algorithm for subcubic graphs and show that graphs with only triangles as
odd-cycles admits a polynomial-time algorithm, as well as graphs of bounded domi-
nating set. In Sect. 5 we show that BM is FPT when parameterized by clique-width,
presenting a Monadic Second Order Logic (MSOL1) formulation.

2 Preliminaries and Additional Concepts

We use standard notation and definitions of graph theory, where we consider only sim-
ple undirected graphs. For any undefined terminology and notation, see [18].
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(a) W5. (b) W6.
(c) Two diamonds sharing a

3-degree vertex. (d) 3-pool. (e) 5-pool.

Fig. 1. Some examples of forbidden subgraphs.

Given a graph G= (V,E), we denote by n(G) and m(G) the number of vertices and
edges of G, respectively. For a vertex v∈V (G), let NG(v) be the neighborhood of v in G
and NG[v] = {v}∪NG(v) its closed neighborhood in G. The degree of v∈V (G), |NG(v)|,
is denoted as dG(v). The subscripts can change for a subgraph H of G when necessary.

Given a set S ∈ V (G), let H = G[S] be the induced subgraph of G by S, such
that V (H) = S and uv ∈ E(H) if and only if uv ∈ E(G) and u,v ∈ S. We also say that S
induces H and that H is the graph induced by S.

Let Pn = v1v2 . . .vn and Cn = v1v2 . . .vnv1 be the induced path and induced cycle of
order n, respectively. Furthermore, we denote by Kn and Kn,m the complete graph of
order n and the complete bipartite graph with parts of order n and m, respectively. A
diamond is the graph obtained by removing one edge from the K4.

Let Wk be the wheel graph of order k+1, that is, the graph obtained by connecting
a universal vertex v, called central, to all the vertices of an induced cycle Ck.

We say that a graph G is a k-pool if it is formed by k edge-disjoint triangles whose
the union of all the vertices of their bases induce a Ck. Formally, a k-pool is obtained
from a cycle C2k = v1v2 . . .v2kv1, k ≥ 3, such that the odd-indexed vertices induce the
internal cycle p1p2 . . . pk p1 of the k-pool, where pi = v2i−1, 1 ≤ i≤ k. The even-indexed
vertex bi = v2i, 1 ≤ i ≤ k, is called the i-th-border of the k-pool.

Figure 1 depicts some examples of forbidden subgraphs, that is, graphs that are not
in BM , while Lemma 6 collects some properties of graphs in BM .

Lemma 6. For a graph G ∈ BM and a bipartizing matching M of G,

(i) For every diamond D of G, M matches both vertices of degree 3 of D.
(ii) For every v ∈V (G), G[NG(v)] cannot contain two vertex-disjoint P3.
(iii) G cannot contain a Wk as a subgraph, for all k ≥ 5.
(iv) G cannot contain a k-pool as a subgraph, for all odd k ≥ 3.

Proof. (i) Let D a subgraph of G that is a diamond and such thatV (D)= {u,v1,v2,v3}
and dD(u) = dD(v2) = 3. We can see that M∩E(D) must be one of the following
sets: {uv1,v2v3}, {v1v2,uv3}, {uv2}. In each one, u and v2 are matched by M.

(ii) Suppose for a contradiction that v ∈ V (G) is such that G[NG(v)] contains two
vertex-disjoint P3: P and P′. This implies that G[{v}∪P] and G[{v}∪P′] are dia-
monds sharing a vertex of degree three in each one. Then, by Statement (i) it
follows that M contains two incident edges, one for each diamond, a contradic-
tion.
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(iii) Suppose for a contradiction that G contains a subgraph H isomorphic toWk, k ≥ 5,
where u is universal in H. If k ≥ 7, it follows that u has two vertex-disjoint P3 in
its neighborhood, which contradicts Statement (ii). Then k ≤ 6 and it can be easily
verified that W5 and W6 are not in BM .

(iv) Suppose for a contradiction that G contains a subgraph H isomorphic to a k-
pool, for some odd k ≥ 3. Let C = p1p2 . . . pk p1 be its internal cycle and let B =
{b1,b2, . . . ,bk} be the vertices of the borders of H, such that {pibi, pi+1bi} ⊂
E(H), for all 1 ≤ i ≤ k modulo k. Clearly M must contain some edge of C
and one edge of every triangle pibi pi+1pi. W.l.o.g., consider p1p2 ∈ M ∩
E(C). This implies that M contains no edge in {p2b2, p2p3, p1bk, p1pk}. There-
fore, pkbk and p3b2 must be in M, which forbids two more edges from the
triangles pk−1bk−1pk pk−1 and p3b3p4p3. Continuing this process, it follows
that c
 k+3

2 �, which is at the same distance of p1 and p2 in C, must contain two

incident edges in M, a contradiction. �
Clearly every graph in BM admits a proper 4-coloring. Hence every graph in BM

is K5-free. More precisely, every graph in BM is W5-free, as in Lemma 6, which
implies that even some properly 3-colorable graphs do not have a decycling matching.

3 NP-Completeness for BM

In order to prove Theorem 1, we first show a polynomial-time reduction from the well
known problem POSITIVE PLANAR 1-IN-3-SAT [29] to PLANAR 1-IN-3-SAT3 – a
variant of PLANAR 1-IN-3-SAT where each clause has either 2 or 3 literals and each
variable occurs at most 3 times. Moreover, each positive literal occurs at most twice,
while every negative literal occurs at most once in the given instance.

Let F be a Boolean formula in 3-CNF such that X= {X1,X2, . . . ,Xn} is the variable
set and C = {C1,C2, . . . ,Cm} is the clause set of F . The associated graph GF = (V,E)
of F is the bipartite graph such that there exists a vertex for every variable and clause
of F , where (X,C) is the bipartition ofV (GF), and there exists an edge XiCj ∈ E(GF) if
and only if Cj contains either xi or xi. We say that F is a planar formula if GF is planar.

Theorem 7. PLANAR 1-IN-3-SAT3 is NP-complete.

Proof. Let F be a Boolean planar formula in 3-CNF such that X = {X1,X2, . . . ,Xn} is
the variable set and C= {C1,C2, . . . ,Cm} is the clause set of F . Since verifying whether
a graph is planar can be done in linear time [24], as well as whether a formula in 3-CNF
has a truth assignment, the problem is in NP.

We construct a formula F ′ from F as follows. If Xi is such that dGF (Xi) = k ≥ 3,
then we create k new variables Xz

i replacing the jth (1 ≤ j ≤ k) occurrence of Xi by a

variable X j
i , where a literal xi (resp. xi) is replaced by a literal x ji (resp.x ji ). In addition,

we create k new clauses C j
i =

(
x ji ,x

j+1
i

)
, for j ∈ {1, . . . ,k−1}, and Ck

i =
(
xki ,x

1
i

)
.

Let S be the set of all vertices Xi ∈ V (GF [X]) with dGF (Xi) = k ≥ 3. For such a
vertex Xi ∈ S, let X ′

i = {X1
i , . . . ,Xk

i } and C′
i = {C1

i , . . . ,C
k
i }.
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(a) The head graph H. (b) The bipartizing matching of H.

Fig. 2. The head graph and its unique bipartizing matching.

Note that, the associated graph GF ′ can be obtained from GF by replacing the cor-
responding vertex of Xi ∈ S by a cycle of length 2dGF (Xi) induced by the corresponding
vertices of the new clauses inC′

i and the new variables in X ′
i . In addition, for each Xi ∈ S

andCj ∈ NGF (Xi), an edge Xt
i Cj is added in E(GF ′), such that every corresponding ver-

tex Xt
i ∈ X ′

i has exactly one neighbor Cj /∈C′
i .

As we can see, every variable X occurs at most 3 times in the clauses of F ′, since
every variable Xi with dGF (Xi) ≥ 3 is replaced by dGF (Xi) new variables that are in
exactly 3 clauses of F ′. By the construction, each literal occurs at most twice. Moreover,
if F has no negative literals, then only the new variables have a negated literal and each
one occurs exactly once in F ′.

Consider a planar embedding Ψ of GF . We construct GF ′ replacing each corre-
sponding vertex Xi ∈ S by a cycle of length 2dGF (Xi), as described above. After that, in
order to preserve the planarity, we can follow the planar embedding Ψ to add a matching
between vertices corresponding to variables in such a cycle and vertices corresponding
to clausesCj /∈C′

i and that Xi ∈Cj. This matching indicates in which clause ofC′
i a given

new variable will replace Xi in F ′. Thus, without loss of generality, if GF is planar, then
we can assume that F ′ is planar as well.

As we can observe, for any truth assignment of F ′, all Xt
i ∈Xi (for a given variable Xi

of F) have the same value. Hence, any clause of F ′ with exactly two literals has true
and false values. At this point, it is easy to see that F has an 1-in-3 truth assignment if
and only if F ′ has an 1-in-3 truth assignment. �

Now we show the NP-completeness of BM. Let us call the graph depicted in Fig. 2a
by head. We also call vertex v as the neck of the head. The next lemmas are used in the
correctness of our reduction.

Lemma 8. An induced head H with neck v admits exactly one bipartizing matching M.
Moreover v is matched by M.

Proof. We can see that the thicker edges in Fig. 2b composes a bipartizing matching M
of H, where the color of the vertices indicates the part of each one in G−M. More-
over M satisfies the lemma.

Now let us suppose that H admits another bipartizing matching M′ which does not
match v. In this case, we get that vh1 and vh4 does not belong to M′, which implies
that h1h4 ∈ M′. By the triangle h1h2h5, it follows that h2h5 must be in M′. Hence the
cycle vh1h2h3h4v remains in G−M′, a contradiction.



204 C. V. G. C. Lima et al.

(a) For clauses of size
two. (b) For clauses of size three. (c) Variable gadget.

Fig. 3. a and b are the clause gadgets and c is the variable gadget in Theorem 10. Each pair of
arrow edges connects GXi to one clause gadget GC such that Xi ∈C.

Let M′′ be a bipartizing matching that contains vh4. In this case, the edge h1h2

cannot be in M′′, otherwise the cycle h1h4h3h2h5h1 survives in G−M′′. In the same
way, the edge h1h5 /∈ M′′, otherwise the cycle h1h2h5h3h4h1 is not destroyed by M′′.
Therefore we get that h2h5 must be in M′′, which implies that the cycle h1h4h3h2h5h1

belongs to G−M′′, a contradiction. �
Lemma 9. Let G be an odd k-pool with internal cycle C = p1p2 . . . pk p1. Let b be a
border of G, where NG(b) = {p1, pk}. Then every bipartizing matching M of G− b
contains exactly one edge of C. Moreover, c1ck /∈ M for such bipartizing matchings.

Proof. Let bi be the i-th-border of G, such that NG(bi) = {pi, pi+1}, 1 ≤ i ≤ k− 1.
Since k is odd, every bipartizing matching of G−b must contain at least one edge ofC.

First, suppose that G−b has a bipartizing matching M containing p1pk. In this case,
we get that the edges in {p1p2, p1b1, pk pk−1, pkbk−1} cannot be in M. Thus M must
contain edges b1p2 and bk−1pk−1. In the same way, we can see that M cannot contain the
edges {p2p3, p2b2, pk−1pk−2, pk−1bk−2}. Hence, it can be seen that all edges incident
to p k+1

2
are forbidden to be in M, which implies that the triangles containing p k+1

2
have

no edge in M, a contradiction by the choice of M.
Let pipi+1 be an edge of C in a bipartizing matching M of G− b, with i �= k. In

a same fashion, the edges in {pipi−1, pibi−1, pi+1pi+2, pi+1bi+1} cannot be in M. Fol-
lowing this pattern, we can see that every edge b j p j+1 must be in M, for every j ∈
{1, . . . ,k} \ {i}. Since M contains only one edge of C and one edge of every triangle
of G−b, it follows that M is unique, for each edge pipi+1, i �= k. �

NP-Completeness for Planar Graphs of Maximum Degree 4.
We prove the NP-completeness by a reduction from PLANAR 1-IN-3-SAT3. We

first prove it for 3-colorable planar graphs of maximum degree 5. The circles with an H
in the figures are induced head graphs, whose neck is the vertex touching the circle.

Theorem 10. BM is NP-complete for 3-colorable planar graphs G of Δ(G) = 5.

Proof. Let F be an instance of PLANAR 1-IN-3-SAT3, with X = {X1,X2, . . . ,Xn} and
C= {C1,C2, . . . ,Cm} be the sets of variables and clauses of F , respectively. We construct
a planar graph G= (V,E) of maximum degree 5 as follows:



Bipartizing with a Matching 205

– For each clauseCj ∈C, we construct a gadget GCj as depicted in Fig. 3a and b. Such
gadgets are just a 5-pool and a 7-pool that we remove a border vertex, for clauses of
size 2 and 3, respectively. Moreover, for the alternate edges of the internal cycle we
subdivide them twice and append a head to each such a new vertex. Finally, we add
two vertices � j(k,w) and � j(k,b), such that b2k−1

j � j(k,w) ∈ E(G) and b2k
j � j(k,b) ∈

E(G), for k ∈ {1,2,3}. We append a head to all such new vertices.
– For each variable Xi ∈ X , we construct a gadget GXi as depicted in Fig. 3c. This

gadget is a 7-pool that we remove a border vertex. Moreover, we subdivide twice the
edges p2

i p
3
i , p3

i p
4
i , p4

i p
5
i , and p6

i p
7
i , appending a head to each new vertex. We rename

each border vertex b2k−1
i as di(k,b), k ∈ {1,3}, and b2k

i as di(k,w), k ∈ {1,2,3}.
Finally, a vertex di(2,b) with a pendant head and adjacent to p4

i is added.
– The connection between clause and variable gadgets is as in Fig. 3. Each pair of

arrow edges in a variable gadget GXi corresponds to the same pair in a clause gad-
get GCj , where Xi ∈Cj. Precisely, if xi ∈Cj, then we add the edges � j(k,b)di(k′,b)
and � j(k,w)di(k′,w), for some k ∈ {1,2,3} and some k′ ∈ {1,2}. Note that each
� j(k,b) (and � j(k,w)) represents precisely one variable and it is connected to only
one of di(k′,b) (and di(k′,w)) in GXi . However, if xi ∈ Cj, then we add the edges
� j(k,b)di(3,b) and � j(k,w)di(3,w), for some k ∈ {1,2,3}. Note that di(3,b) and
di(3,w) represent xi.

– For a variable occurring exactly twice in F , just consider those connections corre-
sponding to literals of Xi in the clauses of F , i.e., the pair di(3,b), di(3,w) (resp.
di(2,b), di(2,w)) will be used to connect to a clause gadget only if xi occurs (resp.
does not occur) in F .

Let G be the graph obtained from F by the above construction. We can see that G has
maximum degree 5, where the only vertices with degree 5 are those p4

i , for each variable
gadget. Furthermore, it is clear that G is 3-colorable.

It remains to show that if GF is planar, then G is planar. Consider a planar embed-
ding ψ of GF . We replace each vertex vXi of GF by a variable gadget GXi , as well
as every vertex vCj of GF by a clause gadget GCj . The clause gadgets correspond
to clauses of length two or three, which depends on the degree of vCj in GF . Since
the clause and variable gadgets are planar, we just need to show that the connections
among them keep the planarity. Given an edge vXivCj ∈ E(GF), we connect GXi and GCj

by duplicating such an edge as parallel edges � j(k,w)di(k′,w) and � j(k,b)di(k′,b), for
some k ∈ {1,2,3} and some k′ ∈ {1,2}, or � j(k,b)di(3,b) and � j(k,w)di(3,w), for
some k ∈ {1,2,3}, as previously discussed. Hence G is also planar.

In order to prove that F is satisfiable if and only if G ∈ BM , we discuss some
considerations related to bipartizing matchings of the clause and variable gadgets. By
Lemma 9, we know that the graph obtained by removing a border from an odd k-pool
admits a unique bipartizing matching for each edge of the internal cycle, except that
whose endvertices are adjacent to the removed border. Furthermore, Lemma 8 implies
that each external edge incident to the neck of an induced head cannot be in any bipartiz-
ing matching of G. Figure 4 shows the possible bipartizing matchings M, stressed edges,
for the clause gadget GCj of clauses of size three. The black and white vertex assignment
represents the bipartition of GCj −M. Exactly one pair of vertices � j(k,w) and � j(k,b)
(k ∈ {1,2,3}) is such that they have the same color, while the others pairs have
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(a) p1
j p

2
j ∈ M (b) p3

j p
4
j ∈ M (c) p5

j p
6
j ∈ M

Fig. 4. Configurations by removing a bipartizing matching clause gadget of size three.

opposite colors. Precisely, we can see that � j(k,w) has the same color for each pair with
opposite color vertices as well as � j(k,b), for each bipartizing matching of GCj . Hence,
we can associate one literal x1

j , x
2
j , and x3

j to each pair of vertices � j(k,w) and � j(k,b),
k ∈ {1,2,3}. A similar analysis can be done for clause gadgets of clauses of size two.

In the same way, each variable gadget GXi admits two possible bipartizing match-
ings M, as depicted in Fig. 5. We can see that the pair di(3,b) and di(3,w) has a differ-
ent assignment for the other two pairs di(k,b) and di(k,w), k ∈ {1,2}. Moreover, the
last two pairs have the same assignment, as depicted in Fig. 5a and b. One more detail
is that the unique possibilities for such pairs is that di(3,b) and di(3,w) have oppo-
site assignments if and only if the vertices di(k,b) and di(k,w) have the same assign-
ment, k ∈ {1,2}. Therefore we can associate the positive literal xi to the pairs di(k,b)
and di(k,w), k ∈ {1,2}, while xi can be represented by di(3,b) and di(3,w).

As observed above for clause gadgets, we can associate true value to the pair of
vertices � j(k,w) and � j(k,b) with same color, k ∈ {1,2,3}. Hence exactly one of them
is true, that is, exactly one literal of Cj is true. Moreover, each variable gadget has two
positive literals and one negative. Hence, if G ∈ BM , then every clause gadget has
exactly one true literal and every variable has a correct truth assignment, which implies
that F is satisfiable.

Conversely, if F is satisfiable, then each clause has exactly one true literal. Thus, for
each clause gadget GCj we associate a same color to the pair of vertices corresponding
to its true literal. By Fig. 4, there is an appropriate choice of a bipartizing matching for
each true literal of Cj. The same holds for each variable gadget. �

Proof of Theorem 1. Let G be the graph obtained by the construction in Theorem 10.
Since the only vertices of degree 5 are those p4

i in the variable gadgets, we slightly
modify the variable gadget as in Fig. 6a. In Fig. 2 we can see that vertex h6 has degree 3,
which allows us to use it to connect the variable gadget to the clause one. Figure 6b
and c show the possible bipartizing matchings of the new variable gadget. Since such
configurations are analogous to those of the original variable gadget, with respect to the
vertex that connect to clause gadgets, the theorem follows. �
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(a) p1
i p

2
i ∈ M. (b) p5

i p
6
i ∈ M.

Fig. 5. All configurations by removing a bipartizing matching M of a variable gadget.

(a) Modified variable gadget. (b) p1
i p

2
i ∈ M. (c) p5

i p
6
i ∈ M.

Fig. 6. The modified variable gadget and its all configurations given by removing a bipartizing
matching M.

4 Polynomial Time Results

Subcubic Graphs. Bondy and Locke [6] presented the following lemma, which was
also obtained by Erdős [20] by induction on n(G).

Lemma 11 (Bondy and Locke [6]). Let G be a graph and let B be a largest bipartite
subgraph of G. Then dB(v) ≥ 1

2dG(v), for every v ∈V (G).

Lemma 11 shows that every subcubic graph G admits a bipartizing matching, since
every vertex has at most one incident edge not in a largest bipartite subgraph of G. This
result was also obtained by Lovász [28] with respect to 1-improper 2-coloring of graphs
with maximum degree at most 3. Although we know that every subcubic graph admits
a bipartizing matching, to the best of our knowledge, there is no algorithm able to give
such a matching in polynomial time. Therefore, one of our contributions is to provide a
linear-time algorithm that returns such a matching for a subcubic graph G.

Given an initial bipartition ofV (G) into sets A and B, Algorithm 1 consists on swap-
ping a vertex from one part X ∈ {A,B} to the other whenever it has at least two neigh-
bors in X . This procedure is based on the observation that the number of edges whose
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endvertices are in different parts, that is, an edge cut, increases by at least one after the
swapping, and in every bipartition of a subcubic graph G, a maximal edge cut M of G
is such that E(G) \M is a bipartizing matching of G. The algorithm then follows by
constructing a maximal edge cut.

Let us consider a bipartition of V (G) into sets A and B. For every vertex v, we say
that v is of type (a,b) if dV (G)\X (v) = a and dX (v) = b, where X is the part (either A
or B) which contains v.

Proof of Theorem 2. Algorithm 1 finds a bipartizing matching of a subcubic graph G.

Algorithm 1. A linear-time algorithm for BM on subcubic graphs.
Data: A subcubic graph G= (V,E).
Result: A bipartizing matching of G.

1 A ← A maximal independent set of G;
2 B ←V (G)\A;
3 while exists a vertex v ∈ B of type (1,2), with respect to A and B, do
4 u ← NG[A](v);
5 if u is of type (2,0) or (3,0) then
6 B ← B\{v};
7 A ← A∪{v};
8 else
9 B ← {B\{v}}∪{u};

10 A ← {A\{u}}∪{v};
11 if z ∈ NG[B](v) is of type (0,2) or (0,3) then
12 B ← B\{z};
13 A ← A∪{z};

14 return E (G[A]∪G[B]);

Correctness of the Algorithm. Lines 1–2 initialize set A as a maximal independent set
and B=V (G)\A. Then every vertex of A is of type (k,0) and there is no vertex in B of
type (0,k), k ∈ {1,2,3}. Therefore, if there exists a vertex v of type (a,b) with a < b,
then it must be in B and it is of type (1,2). In order to prove the correctness, it suffices
to show that the operations within the loop never add a vertex of type (a,b) with a < b
in part A and whenever increase the number of edges from A towards B, which means
that such edges are a maximal edge cut at some time step.

For a vertex v ∈ B of type (1,2), let NG[A](v) = {u}. If u is of type (2,0) or (3,0),
then v is moved from B to A by lines 6–7. When u is of type (2,0) it is of type (1,1)
after swapping, otherwise it is of type (2,1) after swapping. Moreover, in both cases v
modifies to type (2,1) and the number of edges from A towards B increases by exactly
one. Otherwise, lines 9–10 modify the type of v to (3,0) and the type of u as follows.

– If u is of type (1,0), then u continues of type (1,0);
– If u is of type (1,1), then u is modified to type (2,0);
– If u is of type (2,1), then u is modified to type (2,1).
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Since each swapping modifies only the types of u and v and of their neighbors, all the
remaining vertices do not change their types. More specifically, if u is of type (2,0)
or (3,0), then no other vertex in A changes its type besides u, and the two neighbors
of v in B lose one neighbor in B. This implies that each vertex of A has at most one
neighbor in A and the number of vertices of type (1,2) in B decreases after the swap-
ping. On the other hand, if u has a neighbor z �= v in A (which must be unique), then
the swapping turns u into a vertex with one neighbor in B. Moreover, the number of
edges from A towards B increases by at least one in each case and no vertex of A has
two neighbors in A after the swapping. The unique problem occurs when z is either
of type (1,1) or (1,2) before the swapping, when it turns into a vertex of type (0,2)
and (0,3), respectively. These cases are considered in lines 12–13, where z is moved
from B to A, modifying its type for (2,0) or (3,0).

We can easily observe that after the swapping, in any case, part A induces a subgraph
of maximum degree at most one and the number of edges from A towards B whenever
increases. This implies that the only vertex with two neighbors in itself part must be
in B and they are of type (1,2). Hence the algorithm finishes when it reaches a maximal
edge cut with edges not in G[A] or G[B] and no vertex of type (1,2) exists in B. Finally
the algorithm returns the set of edges in G[A] and G[B] in line 14. �
Graphs Having Bounded Dominating Sets. Now, consider that the domination num-
ber of the input graph G is bounded by a constant k.

Proof (Theorem 3(a)). A dominating set of order at most k can be found in
time O(nk+2), by enumerating each vertex subset of size k and checking in
time O(n(G) +m(G)) whether it is a dominating set or not. Let D be such a domi-
nating set of G of order at most k. Let PD be the set of all bipartitions PD of D into
sets AD and BD, such that G[AD] and G[BD] do not have any vertex of degree 2. Note
that |PD | = O(2k).

Let PD ∈PD be a bipartition of D. We partition all the other vertices ofV (G)\V (D)
in such a way that PD defines a bipartition of G−MD, if one exists, where MD is a
matching that will be removed, given the choice of D. We do the following tests and
operations for each vertex v ∈V (G)\V (D):
– If dG[AD∪{v}](v) ≥ 2 and dG[BD](v) ≥ 2, then PD is not a valid partition;
– If dG[AD∪{v}](v) ≥ 2, then BD ← BD ∪{v};
– If dG[BD∪{v}](v) ≥ 2, then AD ← AD ∪{v}.

Iteratively we allocate the vertices of V (G) \V (D) as described above into the
respective sets AD e BD, or we stop if it is not possible to acquire a valid bipartition.
After these operations, set V ′ =V (G)\{AD ∪BD} can be partitioned into three sets:

– X = {u ∈V ′ : dG[AD∪{u}](u) = 1 and dG[BD∪{u}](u) = 0};
– Y = {u ∈V ′ : dG[AD∪{u}](u) = 0 and dG[BD∪{u}](u) = 1};
– Z = {u ∈V ′ : dG[AD∪{u}](u) = 1 and dG[BD∪{u}](u) = 1};

Since every vertex inV (G)\V (D) has a neighbor in D, it follows that the neighbor-
hood of all the vertices of V ′′ = X ∪Y ∪Z in AD ∪BD is in D. In this way, we can make
a choice of a matching MD to be removed, where the vertices of V ′′ are allocated either
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in AD or in BD, and G−MD is bipartite. Since each vertex of D can be matched to at
most one vertex of V ′′, there are O

(
(n− k)k

)
possibilities of choices for MD.

Hence we obtain the following complexity:

O

(
k

∑
i=1

ni+2 ·2i · (n− i)i
)

= O
(
k ·2k ·nk+2 · (n− k)k

)
= O

(
n2k+2

)
.

�
Theorem 3(a) allows us to prove Theorem 3(b).

Proof (Theorem 3(b)). Every connected P5-free graph has a dominating clique or a
dominating P3 [12], and graphs in BM do not admit K5 as a subgraph. Thus, P5-free
graphs in BM have domination number at most four. �

Graphs with Only Triangles as Odd Cycles. Consider now a slightly general version
of BM, where some edges are forbidden to be in any bipartizing matching.

ALLOWED BIPARTIZING MATCHING (ABM)
Instance: A graph G and a set F of edges of G.
Task: Decide whether G has a bipartizing matching M that does not intersect F ,
and determine such a matching if it exists.

A matching M as in ABM is called an allowed bipartizing matching of (G,F).
We may clearly assume G as connected and bridge-free. Moreover, note that

if (G,F) has an allowed bipartizing matching, then G ∈ BM .

Proof (Theorem 3(c)). Let G be a graph having no C2k+1, for k > 1, and let F ⊆ E(G).
First, consider G a non-bipartite graph with no cut vertex, and let v1v2v3v1 be an

triangle of G. Without loss of generality, we can assume that there is a vertex, say v1,
such that {v1v2,v1v3} is not an edge cut, otherwise G would be a triangle. Then G−
{v1v2,v1v3} has a path P from v1 to {v2,v3}. Consider P as a longest one of length at
least 2, and let v2 be the first vertex reached by P between v2 and v3. Thus P must be
of the form v1uv2, otherwise either G[V (P)∪{v3}] or G[V (P)] contains an odd cycle of
length at least 5, when P has either an even or odd number of vertices, respectively.

If w ∈ V (G) has exactly one neighbor z ∈ {v1,v2,v3,u}, then w is in a path P′ of
length at least two between z and z′ ∈ {v1,v2,v3,u}, z �= z′. Hence P′ ∪ {v1,v2,v3,u}
contains an odd cycle of length at least 5. Hence consider that w has at least two
neighbors in {v1,v2,v3,u}. If uv3 ∈ E(G), then G[{v1,v2,v3,u}] is a K4, which implies
that V (G) = {v1,v2,v3,u}, since {w,v1,v2,v3,u} induces an odd cycle. Thus G has an
allowed bipartizing matching if and only if a maximal matching of G no intersecting F .

Otherwise if uv3 /∈ E(G), then w must be adjacent to either u and v3 or to v1 and v2,
and no other vertex in {v1,v2,v3,u}. Moreover, the vertices adjacent to both u and v3

induce an independent set of G, as well as the vertices adjacent to both v1 and v2. In this
case we can see that G has an allowed bipartizing matching if and only if v1v2 /∈ F .

Now, we consider a block decomposition of G with block-cut tree T . Let B be a
block containing exactly one cut-vertex v, that is, B is a leaf in T . If (B,F) has an
allowed bipartizing matching which is not incident to v, then (G,F) has an allowed
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bipartizing matching if and only if (G
′
,F) admits an allowed bipartizing matching,

where G
′
= ((V (G)\V (B))∪{v},E(G)\E(B)). Otherwise, (G,F) has an allowed

bipartizing matching if and only if (B,F) and (G
′′
,F

′′
) admit allowed bipartizing match-

ings, where G
′′
= ((V (G)\V (B))∪{v},E(G)\E(B)) and F

′′
= F ∪{uv | u ∈ NG′′ (v)}.

As in a block the desired matchings can be found, if any exists, in polynomial time,
it is easy to see that we can solve ABM in polynomial time. �

5 Taking the Clique-Width as Parameter

Definition 12. The clique-width of a graph G, denoted by cwd(G), is the minimum
number of labels needed to construct G, using the following operations [8]:

1. Create a single vertex v with an integer label � (denoted by �(v));
2. Disjoint union of two graphs (i.e. co-join) (denoted by ⊕);
3. Join by an edge every vertex labeled i to every vertex labeled j for i �= j (denoted

by η(i, j));
4. Relabeling all vertices with label i by label j (denoted by ρ(i, j)).

Some graph classes with bounded clique-width include cographs [8], graphs with
bounded tree-width, and distance-hereditary graphs [22].

For any graph G with clique-width bounded by a constant k and for each graph
property Π that can be formulated in a monadic second order logic (MSOL1), we can
use the result of Courcelle, Makowsky, and Rotics [15] which establishes that there exits
an algorithm running in time f (cwd(G)) · n(G) that decides whether G satisfies Π .
In MSOL1, we obtain a graph that is described by a set of vertices V and a binary
adjacency relation edge(., .), and the graph property in question may be defined in terms
of vertex sets, but not in terms of edge sets.

Proof (Theorem 4). Recall that BM is equivalent to determining whether G admits
a (2,1)-coloring. Thus, using Courcelle, Makowsky and Rotics’s meta-theorem based
on monadic second order logic for graphs G with bounded clique-width [15], it is
enough to observe that the property “G has a (2,1)-coloring” is MSOL1-expressible.
We construct a formula ϕ(G) such that G ∈ BM ⇔ ϕ(G) as follows:

∃S1,S2 ⊆V (G) :(S1 ∩S2 = /0)∧ (S1 ∪S2 =V (G))∧
(∀v1 ∈ S1[� u1,w1 ∈ S1 : (u1 �= w1)∧ edge(u1,v1)∧ edge(w1,v1)])∧
(∀v2 ∈ S2[� u2,w2 ∈ S2 : (u2 �= w2)∧ edge(u2,v2)∧ edge(w2,v2)]).

�
Since K5 is a forbidden subgraph, chordal graphs in BM have bounded treewidth [31],
and thus, BM is polynomial-time solvable for such a class, proving Corollary 5.
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Abstract. Consider mitigating the effects of denial of service or of mali-
cious traffic in networks by deleting edges. Edge deletion reduces the
DoS or the number of the malicious flows, but it also inadvertently
removes some of the desired flows. To model this important problem,
we formulate two problems: (1) remove all the undesirable flows while
minimizing the damage to the desirable ones and (2) balance remov-
ing the undesirable flows and not removing too many of the desirable
flows. We prove these problems are equivalent to important theoretical
problems, thereby being important not only practically but also theoret-
ically, and very hard to approximate in a general network. We employ
reductions to nonetheless approximate the problem and also provide a
greedy approximation. When the network is a tree, the problems are
still MAX SNP-hard, but we provide a greedy-based 2l-approximation
algorithm, where l is the longest desirable flow. We also provide an algo-
rithm, approximating the first and the second problem within 2

√
2 |E|

and 2
√

2(|E| + |undesirable flows|), respectively, where E is the set of
the edges of the network. We also provide a fixed-parameter tractable
(FPT) algorithm. Finally, if the tree has a root such that every flow in
the tree flows on the path from the root to a leaf, we solve the problem
exactly using dynamic programming.

1 Introduction

Attacks such as the (distributed) Denial of Service (DDoS) [14] are
widespread [19] and heavily impede the functionality, especially when the system
is required to be quick (soft real time, for example) [13]. One of the options to
fight the problem is deleting network edges or disabling them (anyway, deleting
from the network graph) [11]. Another practically important problem is having
malicious connections, like Trojans. The danger is not only the bandwidth these
connections take but primarily the information they transfer.

We define a flow as a path from the source to the sink and we model DoS
or merely malicious communication as a set of undesirable (name them bad)
flows. The system has also desirable (call them good) flows. We aim to remove
the undesirable flows by deleting some edges on their paths, while minimizing
the resulting damage to the desirable flows. The model assumes no rerouting of
c© Springer Nature Switzerland AG 2018
D. Kim et al. (Eds.): COCOA 2018, LNCS 11346, pp. 217–232, 2018.
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flows. If we delete an edge on the path of a bad flow, we consider that flow to be
removed, but we also inadvertently remove all the good flows that pass through
the deleted edge.

We can identify the DoS flows by frequent access trials from the same IP
group, and the malicious flows can be identified by information leaks. Therefore,
we assume we know which flows are good and which are bad.

Judicious deletion is crucial, as Example 1 shows. We need to autonomously
decide which edges to delete as suggested in [11]. This calls for an algorithm to
find which edges to delete. In order to cope with large instances in real time, the
algorithm has to be polynomial.

Example 1. In Fig. 1, removing all the bad flows by deleting their only common
edge e would remove no good flows. This is infinitely better than removing each
bad flow bi by deleting any of its edges other than e, because that would also
remove gi.

b1
g1

b2
g2

bp
gp

e

Fig. 1. The bad flows are denoted by b with an index, while the good ones are denoted
by g with an index. The paths of flow bi and gi coincide, besides edge e, belonging only
to the bad flows.

Consider this example of using an algorithm that finds which edges to delete.

Example 2. In a (for example, software-defined) network, assume that the intru-
sion detection system discovers a DDoS attack, and determines which flows are
attacking. We need to respond quickly and efficiently by removing certain links
from the network. Assuming we know which flows are desirable and which are
attacking, we first estimate how important it is not to remove each desirable
flow by deleting a link. Now, we run our algorithm to obtain an (approximately)
easiest set of the edges to delete, such that all the attacking flows are removed
(disconnected) while the minimum damage is inflicted on the desirable flows.

We present the necessary background in Sect. 1.1. To solve the problem, in
Sect. 2 we model the situation as two possible problems. First, we show in Sect. 3
that our problems are equivalent w.r.t. approximation to notorious hard prob-
lems. Those hard and important problems admit polynomial approximations,
but those are extremely loose. We then reduce the problems to submodular set
cover to use approximation known for that problem and also suggest a greedy
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approximation in Sect. 4. We approximate the important particular case when
the network is a tree in Sect. 5, which is still MAX SNP-hard. We assume in
Sect. 5.3 that the tree has a root such that every flow is on the path from the
root to a leaf, as often happens when communicating through service providers to
the backbones, and solve this case exactly using dynamic programming. Finally,
we provide a fixed parameter tractable (FPT) algorithm for trees in Sect. 5.4.
These results suggest determining the kind of network we have at hand and sub-
sequently applying the best applicable algorithm. We summarize our approach
and suggest further research directions in Sect. 6.

We approximate the problem in general and provide additional approxima-
tion and exact algorithms for special cases such as trees.

1.1 Related Work

We study edge deletion that removes the bad flows and does not remove too many
good ones, which is a new problem in the realm of edge deletion problems. The
simpler problem of deleting the minimum number of edges that can disconnect all
the flows from a source to a sink is a famous problem, and Menger’s theorem [2,
Chap. 3.2] characterizes the minimum number of edges one has to remove in order
to disconnect the source from the sink. Finding a minimum cut in a graph [4,
Chap. 26] and disconnecting it is optimal for this problem.

There are many other problems of edge deletion, such as deleting the min-
imum number of edges to obtain certain properties like no cycles of various
lengths [18], or removing forbidden graphs [17]. Similar network design studies
include other problems, such as edge addition [10]. In practice, edge deletion can
be especially easily implemented in a software-defined network. See [11] for a
practical example.

There are many important vertex deletion problems as well, such as the
famous vertex cover problem [7]. Other vertex deletion problems include the
feedback vertex set, where we aim to break all the cycles in a graph [1], and the
problem of breaking all the cycles of a given length or at most a given length [18].

2 Model

Let the flow network be a directed graph G = (N,E). A flow f from node a to
node z in this network is a path from source a to sink z, each of which edges
carries the flow. Formally, f = (P (f)), where P (f) is the set of the edges of
the path that the flow takes from a to z. Flow in this paper are not splittable,
meaning that a flow takes a single path. This can also model a splitting flow as
separate flows with partially overlapping paths. We do not model the capacities
of the edges and the values of the flows, because these notions are irrelevant
to the problem. Of course, real flows have values and real edges (say, wires or
roads) have capacities, and the total flow value on an edge cannot exceed the
capacity of the edge.

We model removal of undesirable flow as two problems. The first one follows:
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Definition 1. The Bad Flow Removing (BFR) problem receives the input
(G = (N,E), F,GF,BF,w : GF → R+). Here, G = (N,E) is a network with
flows F = {fi}, where some flows, denoted GF = {gi} ⊆ F , are marked as good
(desirable), and the rest, denoted BF = {bi} Δ= F\GF , are bad (undesirable).
Every good flow f is endowed with a weight w(f), designating how important the
good flow is.

A solution S ⊆ E is a subset of edges to delete.

Flow f is removed by S if S ∩ P (f) �= ∅; otherwise, it is remaining. A feasible
solution is a solution such that all the bad flows are removed.

We aim to find a feasible solution with the minimum total weight of the removed
good flows. Intuitively, we aim to remove all the bad flows while minimizing the
weight of the removed good flows.

BFR assumes we have to get rid of all the bad flows. For instance, when
flows can spread malicious content or steal information, leaving even few flows
can harm the network. Since sometimes bad flows are mostly taking resources
and are not so dangerous, we may merely want to remove most of bad flows
while still not losing too many good ones, so we relax the requirement to remove
all the bad flows and allow leaving them for a cost:

Definition 2. The Balanced Bad Flow Removing (BBFR) problem receives
(G = (N,E), F,GF,BF,w : F → R+); the difference from the BFR is that all
the flows are weighted.

Here, a solution is the same as in BFR, but any solution is feasible here.

We aim to find a feasible solution such that the total weight of the remaining bad
flows plus the total weight of the removed good flows is minimized. Intuitively,
we aim to balance removing the bad flows and not removing too many good ones.

Denote by D(S) the flows removed from the set of flows D by deleting the
edges S. We define the weight of a set of flows D ⊂ F as

∑
f∈D w(f), which

we denote as w(D), abusing the notation w. Therefore, BFR removes all the
bad flows (BF (S) = BF ) while aiming to minimize w(GF (S)), while BBFR
targets to minimize the w(BF\BF (S))+w(GF (S)). We do not add a balancing
parameter such as in w(BF\BF (S)) + αw(GF (S)), because the weights can be
defined already with balancing in mind, modeling such a balancing.

This formalism allows to prune all the edges that do not belong to good
flows, so we can assume that all edges belong to at least one good flow. On the
other hand, if one wants to avoid deleting edges lightly, one can model this by
introducing dummy good flows of length 1 through all the edges.

3 Equivalence Resulting in Hardness and Approximation

We prove that Problems BFR and BBFR, are equivalent w.r.t. approximation to
the classical Red-Blue Set Cover [3] and to the Partial Set Cover [12] problems,
respectively. This immediately implies strong inapproximability and provides
some approximation algorithms.
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3.1 BFR

We first formally define the RBSC problem.

Definition 3. The Red-Blue Set Cover (RBSC) problem [3] receives the input
(R,B,S, w : R → R+), where R and B are two disjoint sets of red and blue
elements and S ⊆ 2R∪B, i.e. every set S in the collection S is a subset of
R ∪ B. These subsets can cover all the blue elements, i.e. B ⊆ ∪S∈SS. Finally,
w denotes the weight of the red elements.

A solution is a subcollection C of S.

A feasible solution is a solution C that covers all the blue elements, i.e. B ⊆
∪S∈CS. The aim is to find a feasible solution with the minimum total weight of
the covered red elements, w(C) Δ=

∑
r∈R∩{∪S∈CS} w(r).

Theorem 1. BFR is equivalent w.r.t. approximation to RBSC. Reducing from
RBSC to BFR, we can ensure that |E| = 2 |S|, |GF | = |R| + 1 and |BF | = |B|.
Reducing from BFR to RBSC, |S| = |E| , |R| = |GF | and |B| = |BF |.
Proof. We first reduce RBSC to BFR. For each set S ∈ S, define edge eS and
let all the edges have a common node. Define good flow gi for each red element
ri ∈ R, with the same weight, and bad flow bj for each blue element bj ∈ B,
such that the path of a flow contains edge sS if and only if the element from
which the flow has been created is included in S. To be able to route flows
through the required edges from E(S) Δ= {eS |S ∈ S}, we add edges, called E′,
that connect the non-common nodes of the edges from E(S), as illustrated in
Fig. 2. To prevent choosing the edges from E′, we define an additional good flow
that contains every edge from E′, and we give this good flow a prohibitively high
weight, say 2

∑
g∈GF w(s). The solutions to the constructed BFR are directly

transformed to solutions for RBSC, besides the case when a solution for BFR
contains an edge from E′. Such solutions are transformed to the trivial solution
for RBSC that contains all the sets. Unless edges from E′ are selected for the
solution for BFR, the weight of the covered red elements is equal to the weights
of the removed good flows. If edges from E′ are selected, then the cost of that
solution is at least twice higher than the cost of the corresponding solution for
RBSC. Therefore, the reduction preserves approximation.

We now reduce BFR to RBSC. Make a red element from a good flow, a blue
element from a bad flow and a set from an edge, such that the set contains exactly
the flows that have the edge on their paths. The weights are transferred as they
are. The solution to the obtained RBSC instance is mapped to a solution for the
original BFR in the reverse manner. This mapping preserves being a solution,
feasibility and the weights. �

This theorem immediately implies that all the hardness and all the positive
results for RBSC transfer to BFR. In particular, Theorems 3.1 and 3.2 from
Sect. 3 of [3] imply the following.
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RBSC BFR

S1

S3

b1 r1

b3

b2

S2

eS1 eS2

eS3

b1

b2

b3 g1

Fig. 2. On the right, the bad flows are denoted by b with an index, while the good
ones are denoted by g with an index. The dashed lines are the E′ edges.

Corollary 1. 1. Unless NP ⊆ DTIME(npolylog(n)), it is impossible to approxi-
mate BFR within O(2log1−δ|E|), for any δ > 0.

2. Unless P = NP, it is impossible to approximate BFR within O(2log1−δ|E|),
where δ = 1/ log logc |E|, for any constant c < 0.5.

Proof. The existing hardness results state the impossibility to approximate
within O(2log1−δ|S|), for certain values of δ. If BFR could be approximated within
O(2log1−δ|E|), reducing RBSC to BFR would allow approximating RBSC within
O(2log1−δ 2|S|), contrary to the impossibility. �

On the approximation side, Theorems 3.5 and 3.6 from [15] imply that.

Corollary 2. BFR can be approximated within 2
√|E| log |BF |.

Proof. The approximation follows by reducing the given instance of BFR to
an RBSC, employing Algorithm Low Deg2 from Sect. 3 of [15] on the obtained
instance of RBSC, and then translating the obtained cover to a set of the corre-
sponding edges. The transformations from BFR to RBSC and back preserve the
approximation ratio, and the approximation of the algorithm, 2

√|S| log |B|, is
equal to 2

√|E| log |BF |, since each edge defines a set in the reduction of BFR
to RBSC. �

3.2 BBFR

For the sake of handling the BBFR problem, we define a problem we will reduce
to and from, namely the Positive-Negative Partial Set Cover problem, which
generalizes the unweighted definition from Sect. 1.1 from [12].

Definition 4. The Positive-Negative Partial Set Cover (±PSC) problem
receives the input (R,B,S, w : R ∪ B → R+), where R and B are two disjoint
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sets of red and blue elements and every set S in the collection S is a subset of
R ∪ B. Finally, we denote by w the weight of the elements.

A solution is a subcollection C of S.

Any solution is feasible here. The aim is to find a feasible solution with the min-
imum total weight of the uncovered blue elements plus the covered red elements,
w(C) Δ=

∑
b∈B\∪S∈CS w(b) +

∑
r∈R∩{∪S∈CS} w(r).

We now reduce BBFR to and from ±PSC, omitting the proofs to save space.

Theorem 2. BBFR is approximation-equivalent to ±PSC. Reducing from
±PSC to BBFR, we can ensure that |E| = 2 |S|, |GF | = |R|+1 and |BF | = |B|.
Reducing from BBFR to ±PSC, |S| = |E| , |R| = |GF | and |B| = |BF |.

This theorem implies that the hardness results and the approximation results
transfer from ±PSC to BBFR. In particular, the following holds:

Corollary 3. 1. Unless NP ⊆ DTIME(npolylog(n)), it is impossible to approxi-
mate BBFR within O(2log1−δ|E|), for any δ > 0.

2. Unless P = NP, it is impossible to approximate BBFR within O(2log1−δ|E|),
where δ = 1/ log logc |E|, for any constant c < 0.5.

3. Unless P = NP, there is no approximation to BBFR within O(2log1−δ|BF |),
for any δ > 0.

As for approximation, Corollary 3 from [12] implies.

Corollary 4. BBFR is approximable within 2
√

(|E| + |BF |) log(|BF |).

4 Approximation

First, consider the approximation for submodular cost set cover within the max-
imal frequency of an element from [9, Sect. 4.4]. Since the total weight of the
removed good flows is a submodular function of the chosen edge subset, that
approximation applies to BFR. The maximal frequency of an element becomes
the maximal number of edges a bad flow contains, i.e. l′, which is the approxima-
tion ratio for BFR. We can also approximate BBFR using the following theorem.

Theorem 3. BBFR can be reduced to BFR while preserving approximation by
extending the path of each bad flow at its end by an edge with a new second node
and defining a new good flow with the path that consists solely of this new edge
and with the weight w(bi).

Proof. Miettinen [12, Sect. 2.2] reduces ±PSC to RBSC, inspiring us to
the following reduction of BBFR to BFR. Given a BBFR instance
(G = (N,E), F,GF,BF,w : F → R), construct the following BFR instance
(G = (N ′, E′), F ′, GF ′, BF ′, w′ : GF → R). We extend the path of each bad flow
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bi at its end by an edge with a new second node and we also define a new good
flow with the path that consists solely of this new edge. The weight of the new
good flow is defined to be w(bi), and the function w is restricted to GF , to obtain
a BFR. We transform a solution S to this BFR to the solution S ∩ E for the
original BBFR.

Similarly to [12, Sect. 2.2], the approximation S ∩ E provides for the original
BBFR is at least as good as the approximation S provides for BFR. �

This reduction increases the maximum length of a bad flow by 1, and thus,
allows approximating BBFR withing (l′ + 1).

We also propose the following greedy algorithm, inspired by the famous
greedy algorithm for set cover [16, Algorithm 2.2] and the greedy algorithm
from [15, Sect. 3.1].

ALGORITHM 1. GreedyBFR(G = (N,E), F,GF,BF,w)

1. Given a BFR instance, define the following weighted set cover instance.
(a) the elements are the bad flows with all edges intersecting good flows;
(b) the sets are the good flows, a good flow covering all the bad flows it

intersects.
2. Approximately solve this set cover instance, obtaining the output S ⊆ GF .
3. Return the edge set of S, i.e. ∪g∈SP (g), augmented with edges of bad flows

intersecting no good flows.

Proposition 1. Algorithm1 approximates BFR within factor k · (ln(|BF |)+1).

Proof. Algorithm 1 returns a feasible solution, since all the bad flows intersecting
at least one good flow can be covered by the edges of the good flows.

As for the approximation ratio, call the original problem I and let I ′ denote
the problem we construct in line 1. Problem I ′ models directly removing the
bad flows by removing the good ones that intersect them, ignoring the fact that
removing occurs through deleting edges, which can remove several intersecting
good flows simultaneously. Therefore, opt(I ′) ≤ opt(I), and so the ln(|BF |)+1-
approximation to I ′ costs at most ln(|BF |) + 1 times opt(I). We do have to
add the intersecting good flows to ensure feasibility. This action can require the
k factor, implying the proposition. �

Theorem 3 implies we can approximate BBFR within the same factor.
Theorems 1 and 2 imply that this algorithm allows approximating the Red-Blue
Set Cover and the Positive-Negative Partial Set Cover within k · (ln(|B|) + 1), k
being the maximum number of the red elements that a red elements can have a
common set with.

Remark 1. Using the 2-approximation for set cover on trees [8, Sect. 7] instead
of the general approximation for set cover, we can adopt Algorithm1 to approx-
imate BFR on trees within 2k. As before, Theorem 3 implies the same approxi-
mation factor for BBFR as well.
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Similarly to Peleg [15, Sect. 3.2], we could continue with dividing the good
flows to those intersecting many other good flows and not, approximating the
problem with the good flows intersecting not too many other good flows and
bounding the number of good flows that intersect many others. We omit the
details, because this approach would yield the same approximation ratios as
Peleg receives for Red-Blue Set Cover.

5 Trees

We showed that the problems BFR and BBFR are extremely hard to approx-
imate, though we still provided approximations. Given the proven hardness of
the general case, we now concentrate on trees, often found in communication
networks. Trees subsume star networks, for instance. For trees, we can do more.

5.1 Hardness

We will show that BFR and BBFR problems are MAX SNP-hard even for trees.
First, we prove an important result, connecting the two problems.

Theorem 4. BFR is reducible to BBFR with an approximation-preserving
reduction that preserves the problem instance, besides assigning weights to the
bad flows.

Proof. Consider the following reduction. Given an instance x of BFR, con-
struct an instance x′ of BBFR by defining the weight of each bad flow to be
2
∑

g∈GF w(g). Then, a solution y′ of x′ is directly transformed to a solution y of
x, unless y′ does not cover all the bad flows. In the latter case, y′ is transformed
to the trivial solution for x that simply contains all the edges. Now, the weights
of the solutions y and y′ are equal, unless y′ does not cover all the bad flows. In
the latter case, however, the weight of y′ is at least twice larger than that of y,
by the definition of the weights of the bad flows. �

We are now set to prove the following hardness result.

Proposition 2. Even on trees of height 1 and good flows of unit weights,
the problems BFR and BBFR are MAX SNP-hard and not approximable
within 1.166.

The proof reduces BFR to the tree set cover and is omitted for lack of space.

5.2 Approximation

Having shown the hardness, we design two approximation algorithms for BFR.
Later, we show that similar results hold for BBFR as well.

We now suggest other algorithms for BFR on trees that approximate it
within 2l and 2

√
2 |E|. These algorithms refine the Greedy RB and Low Deg2

algorithms, respectively, for RBSC from [15]. Recall that l is defined as
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max {|P (g) : g ∈ GF |}, the maximum length of a good flow. We first assume
a non-weighted BFR; the extension for the weighted case is straight-forward.

First, in a tree Set Cover can be approximated within the factor of
2 [8, Sect. 7]. This allows, extending [15, Sect. 3.1], to reduce BFR to Set
Cover on trees and obtain the approximation ratio of 2l. Call this algorithm
SCTreeGreedy. This is a useful algorithm on its own right, and we continue
now to obtain a 2

√
2 |E|- approximation.

In order to present the final approximation, we first present Algorithm2,
inspired by Low Deg from [15].

ALGORITHM 2. Low Deg TreeBFR(G = (N,E), F,GF,BF,w, x)

1. Remove the edges in E that belong to more than x good flows, creating E′ and

defining a new problem instance (G′ = G[E′], F ′, GF ′, BF ′, w, x), where G[E′] is
the subgraph induced by E′, and so are the flows F ′, GF ′ and BF ′.

2. If the new instance is infeasible, return E (the trivially feasible solution).

3. Let the long good flows be GF ′
l

Δ
=

{
g ∈ GF ′ : |P (g)| >

√
|E| /2

}
.

4. Leave only the not long good flows, i.e. GF ′
s

Δ
= GF ′ \ GF ′

l .

5. Return SCTreeGreedy(G′ = G[E′], F ′, GF ′
s, BF ′, w, x).

Similarly to Lemma 3.3 from [15], we prove Lemma 1.

Lemma 1. Let x be the last input to Algorithm2 and let the long good flows of
GF ′ be GF ′

l
Δ=

{
g ∈ GF ′ : |P (g)| >

√|E| /2
}
. Then, |GF ′

l | <
√

2 |E|x.

Proof. Since every edge in E′ belongs to at most x good flows, we have

∣
∣GF ′

l

∣
∣
√

|E| /2 <
∑

g∈GF ′
l

|P (g)| ≤
∑

g∈GF ′
|P (g)| =

∑

e∈E′
|{g ∈ G|e ∈ P (g)}| ≤ ∣

∣E′∣∣x ≤ |E|x,

the first inequality stemming from the definition of GF ′
l , and the equality

being a reversal of the summation order. Therefore, |GF ′
l | < |E|x/

√|E| /2 =√
2 |E|x. �
And we can now prove.

Lemma 2. Let S∗ be an optimal solution for the BFR instance at hand (if we
knew it). If we activate Algorithm2 with x̂

Δ= max |{g : GF |e ∈ P (g) ∩ S∗}|, then
it returns a 2

√
2 |E|-approximation.

Proof. By definition of x̂, the algorithm returns a feasible solution in line 5.
Since SCTreeGreedy yields an 2l-approximation and its input has l ≤√|E| /2, then its solution, say S, fulfills |GF ′

s(S)| ≤ √
2 |E| |GF ′

s(S
∗)|. Lemma 1

applies that |GF ′
l | <

√
2 |E|x̂. Therefore, the total number of removed good

flows is |GF (S)| <
√

2 |E| |GF ′
s(S

∗)| +
√

2 |E|x̂. Since x̂ ≤ |GF (S∗)|, we can
bound |GF (S)| by 2

√
2 |E| |GF (S∗)|. �
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We are now ready to present the full algorithm for approximating the actual
problem, where we do not know the x̂ in advance.

ALGORITHM 3. Low Deg TreeBFR2(G = (N,E), F,GF,BF,w)

1. min sol ← E
2. for x = 1 . . . |GF | do:

(a) S ← Low Deg TreeBFR (G = (N,E), F,GF,BF,w, x)
(b) if w(GF (S)) < w(GF (min sol)) :

min sol ← S
3. return min sol

Lemma 2 implies the following.

Theorem 5. Algorithm3 approximates the solution to BFR within 2
√

2 |E|.
This has been proven for the non-weighted case, but is straight-forward to extend
the result to the weighted case.

Having found approximations for BFR within 2l and 2
√

2 |E|, we approxi-
mate BBFR:

Theorem 6. BBFR can be approximated within 2l and within
2
√

2(|E| + |BF |).
Proof. We employ the approximation preserving reduction from Theorem3. The
new graph is still a tree, because we have added connected edges and created no
cycles. We can, therefore, solve it using an algorithm for BFR on trees.

If we employ the 2l approximation, we obtain the same approximation ratio
for BBFR, since only the length of the bad flows has increases when reducing
from BBFR to BFR. Alternatively, if we employ the 2

√
2 |E|-approximation, we

obtain a 2
√

2(|E| + |BF |)-approximation, since the reduction introduces |BF |
new edges. �

5.3 Trees with Root-to-Leaf Flows

Since communication often goes from the clients to the Internet Service Providers
(ISPs) and then to the backbone, we assume that the network is a tree, and there
exists a fixed node r called root, such that every flow is on a path from the root
to a leaf.

This assumption allows us to solve both BFR and BBFR exactly using
Dynamic Programming (DP). We define a subproblem of our DP to be a sub-
tree and the flows that strictly flow through its root after possible edge deletions
outside this subtree. Let v ∈ N be a node and let P (v) be the set of the edges on
the (only) path from v to the root of the tree. Let F (v) Δ= {f ∈ F : v is on P (f)}
be the set of the originally given flows that pass through v. Denote by T (v) the
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subtree rooted on v. The possible subsets of flows that enter T (v) after deleting
some edges outside of T (v) are F(v) = {F (v)\F (v)({e}) : e ∈ P (v)}1. We do
not consider deleting a subset of edges on P (v), because for F(v) it would be
equivalent to deleting the edge of this subset that is closest to v.

The DP Algorithm 4 receives a root r such that every flow is on a path from
r to a leaf and solves BFR and BBFR exactly.

ALGORITHM 4. DPAlg TreeRoottoLeaf(G = (N,E), F,GF,BF,w, r)

1. The algorithm maintains the DP-table indexed by {v,F(v) : v ∈ N \ {r}}.
2. For each node v ∈ N \ {r} in a post-order traversal (i.e. its subtree has been

handled):

(a) For each S ∈ F(v):

i. Delete the edge from v to its parent ⇐⇒ it maximizes the total objective

function in T (v). This uses the optimal solutions that we have

memoized for the children of v.

ii. Memoize the resulting edge deletion and the resulting objective function

for the current entry (v, S) ∈ {v,F(v) : v ∈ N \ {r}}.
3. The completed DP-table contains an optimal set of edge deletions.

Theorem 7. Algorithm4 optimally solves the problem on trees when all the
flows are from the root to leaves in O(|N |3 |F |).
Proof. The algorithm is correct, since all the flows go from the root to a leaf,
thereby making such a traversal consider all the relevant edge deletions.

For each entry in the DP-table, the algorithm looks at all the children of the
current node. There are at most |N |2 entries, because each F(v) contains |P (v)|
elements, as defined and explained above. Each entry requires looking at all the
flows that pass through the node, providing the factor of |F |. In addition, a node
has at most |N | − 1 children, implying the theorem. �

In the rest of the section, when a flow from a to z does not flow from the
root r to leaves, we may split it to two parts that do by looking at the first node
on the (only) path from a to r that is also on the (only) path from r to z.

Approximation when All the Bad Flows are Root-to-Leaf. If we find a
root such that the bad flows can be guaranteed to be from that root to leaves,
we can 2-approximate the problem as follows. Given such an instance I and a
root r we define another instance I ′ by splitting each good flow g that does not
flow from r to a leaf to two good flows that do. Define the weight of each one of
the obtained good flows to be w(g). Denote the weight of the optimal solution
to an instance by opt(instance). Then, opt(I ′) ≤ 2opt(I). Therefore, we can
solve I ′ using Algorithm 4 and this will constitute a 2-approximation for I.
1 We remind that for a set of flows D and a set of edges S, we denote by D(S) the

flows from D removed by deleting S.
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FPT when All the Good Flows are Root-to-Leaf. If we actually find a
root such that the good flows are from the root to leaves, we can split each bad
flow that does not go from the given root to a leaf by splitting each bad flow b
that does not flow from r to a leaf to two bad flows that do. Remove one of
the parts and leave the other part. If we are given a BBFR instance, assign the
remaining part of the bad flow the weight of the original bad flow. We solve each
of the obtained problems for each such a split of the bad flows and output the
best solution. This constitutes an optimal algorithm that runs in O(2|BF |) times
a polynomial time.

5.4 FPT for Trees

Section 5.3 assumes some of the flows are from the root to leaves. We now advance
and prove that when the flows follow any simple paths, meaning that a flow does
not intersect itself, then the problem is fixed-parameter tractable, parametrized
by the number of the bad and the number of the good flows.

We first present the definition of a parametrized optimization problem and
fixed-parameter tractability with several parameters, adapted from [5,6].

Definition 5. A parametrized optimization problem with t ∈ N parameters is
a set of instances Σ∗ × N

t, where Σ is a finite alphabet, encoding the object at
hand, and the t natural numbers are called the parameters.

For example, set cover parametrized by the total number of the elements is a
parametrized optimization problem. Tractability is defined as follows.

Definition 6. A parametrized optimization problem with t parameters, consist-
ing of the instances Σ∗ × N

t, is called fixed-parameter tractable (FPT) if there
exists an algorithm A, a computable function f : Nt → N, and a constant c such
that if A receives instance (x, k1, . . . , kt) ∈ Σ∗ × N

t, it computes an optimal
solution to it within at most f(k1, . . . , kt)(|x| + k1 + . . . + kt)c time.

Intuitively speaking, only the parameters may contribute more than a polyno-
mial to the run time. We are now ready to prove that BFR and BBFR, when the
network is a tree and the flows have simple paths, is FPT. Consider Algorithm5.

Notice that step 2 follows the approach of Sect. 5.3, only that now there is
no assumption about flowing from the root to the leaves.

We summarize Algorithm 5 in the following theorem.

Theorem 8. Algorithm5 runs in time O(2|BF |4|GF | |BF | |GF | |N |3 |F |).
Proof. The algorithm is correct, because it goes over all the possibilities to
remove bad flows and good flows. A bad flow can be removed be deleting either
edge on its path, so we just choose the best option. A good flow has to be paid
for only once, if it is removed at all, and so we nullify the weight of a good flow
if the other split part has been removed.

As for the time complexity, maintaining the splits of the bad and of the
good flows takes the factor of |BF | |GF |. The algorithm first goes over O(2|BF |)
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ALGORITHM 5. DPAlg Tree(G = (N,E), F,GF,BF,w)

1. Arbitrarily pick a node to be the root. Call it r.

2. Split each bad flow that does not flow from the root to a leaf to two parts that do.

3. Delete one part, and if this is a BBFR instance, define the weight of the remaining part

to be the weight of the original flows. For each bad flow that does

not flow from r to a leaf, there are 2 options as to which part to delete. For each

set of options, do:

(a) For each good flow that has a path not from r to a leaf, split it to two parts

that do, and assign each part the weight of the original good flow.

(b) Solve the obtained instance using Algorithm 4 with the following adjustment.

If the dynamic programming decides to delete an edge from a split part of a

good flow,

then it has to assign the second part of that flow zero weight (in its subtree).

Accounting for 2 options per a split good flow each time requires 2 attempts

per each split good flow that enters the subtree.

4. Return the best solution from all the solutions in the above tried combinations.

splitting options for bad flows (i.e. which part of each split bad flow to delete).
For each such an option, it splits the good flows and runs Algorithm4, while
trying all the options for the weights of each split good flow, i.e. O(22|GF |).
Employing Theorem 7, the total resulting time is

O(|BF | |GF | · 2|BF | · 22|GF | |N |3 |F |) = O(2|BF |4|GF | |BF | |GF | |N |3 |F |).

�

This immediately implies the following.

Corollary 5. BFR and BBFR parametrized by |BF | and |GF | are FPT.

6 Conclusion

We study two problems that model fighting DoS and malicious communication:
BFR and BBFR. We need to delete edges so that the bad (undesirable) flows are
disconnected. Unlike the usual network design problems [18], we do not merely
minimize the number of the deleted edges, but rather the resulting number of the
disconnected good (desirable) flows. We prove that in the general setting, these
problems are extremely hard to approximate, being approximation equivalent
to hard problems. We reduce our problems to submodular set cover to provide
a approximation and provide a greedy approximation as well. In the important
case when the network is a tree, the problems are still MAX SNP-hard, and
we provide an approximation algorithm. Furthermore, if the tree can be rooted
such that every flow is on the path from the root to a leaf, we solve the problems
exactly using dynamic programming (DP). This also inspires us to 2-approximate
the case where just the bad flows are known to be from the root to leaves and to
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provide fixed parameter tractable algorithms for the case of just the good flows
being from the root to leaves and for the general case of a tree network.

These results suggest removing all the edges that do not pass through a
good flow, being free, and then checking for every connected component of the
resulting graph whether it is a tree. If yes, we can employ the designed algorithm
for trees. Furthermore, if a root can be chosen such that every flow in such a
tree flows on the path from that root to a leaf, then the suggested DP solves
the problem exactly. In case the number of the bad and the good flows are
small, we can also employ the suggested fixed parameter algorithms. We can
also postprocess and delete only the edges that uniquely remove a bad flow.

We have a continuous ranking of the bad flows by weight, but the distinction
between the bad and the good is binary. In the future, exploring other rankings
would allow modeling other domains of congestion problems. Another possibility
one can model is rerouting the disconnected flows, when the tree contains cycles.
We would then need to consider the edge capacities, which were not needed so
far. Another challenge is also avoiding disconnecting the network or at least
minimizing the number of the connected components in the resulting network.

To conclude, we have modeled and approximated two important NP-complete
problems at various topology-dependent complexity levels, providing the basis
for future research.
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Abstract. Recently, emergency evacuation management, which is a
social work around the world, has been getting lots of attentions due to
its importance and necessity. The primary task of emergency evacuation
management is evacuation route planning. Considering the particularity
of restrict space scenarios, it is more important to guarantee the security
and promptness of evacuation routes than that in open space scenarios.
In this paper, we introduce a new evacuation route planning problem in
restricted spaces, namely Congestion-Avoidable Evacuation Route Net-
work Planning (CA-ERNP) problem. Based on the minimum cost max-
imum flow (Min-Max Flow) problem, we propose a batch scheduling
algorithm based on node-slitting transformation. In addition, we eval-
uate the average performance of the algorithms via simulation and the
results indicate the proposed algorithm outperforms the existing alter-
natives in terms of efficiency and time cost.

Keywords: Evacuation route planning · Restrict space
Min-max flow · Batch scheduling

1 Introduction

The primary mission of emergency evacuation is the planning of evacuation
route/path, which can be modeled as a multi-source to multi-destination route
network. In restricted space scenarios, the emergency evacuation planning has
more difficulties and complexity because of the properties of structure and envi-
ronment. For example, there are strict access limitations of the entrance and
exit, and the emergency will cause the trapped subspaces and obstacles eas-
ily, e.g., urban underground tunnels, factory workshop. Thus we focus on the
evacuation network planning problem in restricted spaces. The existing research
mostly considered one-to-one or many-to-one route planning problem. And in
these research, handling of congestion in evacuation adopted the way of queue-
ing or buffering, which cannot be applied to restricted spaces. Therefore, it is
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necessary and crucial to design a route network planning strategy with avoiding
congestion for restricted space evacuation.

Motivated by our observations, we study a congestion-avoidable route net-
work planning problem in restricted spaces in this paper. Our motivation is to
construct the maximum population route network and schedule the evacuees,
which provides a guidance of emergency management. According to the guid-
ance, the evacuees can be scheduled in batches based on the maximum popu-
lation route network. Thus to avoid the evacuation congestion happened in the
corners in only one batch, the goal of the problem is to plan a maximum evacu-
ation in each batch and minimize the total number of batches. In this paper, we
introduce a new router network planning problem in restricted space evacuation.
The contribution of this paper is as follows.

(i) We introduce the congestion-avoidable evacuation route network planning
problem. The goal is to compute a maximum population route network
from multi-source to multi-destination and schedule the evacuee to evacuate
based on the route network in batches.

(ii) We propose an algorithms based on the minimum cost maximum flow (Min-
Max Flow) problem. The algorithm consists of three phases: The first one
is computing an auxiliary graph based on the properties of space structure
and environment; the second one is scheduling in batches to construct a
minimum cost maximum flow in the auxiliary graph; and the last one is
restoring the evacuation route network of the original space in each round.

(iii) We finally conduct simulations to evaluate the average performance of the
proposed algorithm in terms of the scheduling cost and the evacuation time
consumption.

The rest of this paper is organized as follows. Section 2 introduces the related
work. The restricted space model and the problem definition are given in Sect. 3.
The description of the min-max-flow based algorithm for the problem is pre-
sented in Sect. 4. Our simulation results and corresponding analysis are in Sect. 5.
Section 6 concludes this paper and presents future works.

2 Related Work

Due to the importance of evacuation planning, a large number of researches
focused on the evacuation path planning problems. Most existing researches
solved the problems based on the classical algorithms like Dijkstra algo-
rithm [1,2], Floyd-Warshall algorithm [3], K shortest paths algorithm [4–6],
Dynamic programming [7], and Maximum flow algorithm. And in recent years,
some research works solved the planning problems based on the Minimum
Weighted Set Cover problem [8,9]. Furthermore, some research works focused on
the evacuation model in evacuation management: [10] studied a large-scale opti-
mization problem and proposed a clustering technique via divide-and-conquer
method; [11] and [12] considered the evacuation betweenness centrality and
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evacuation centrality and proposed algorithms to make the evacuation routes
sufficiently safe.

The evacuation paths from multi-source to multi-destination can be gener-
ally modeled as a path network and evacuees’ traffic capacity can be reviewed as
the flow quantity in the network. Thus a certain amount of the exiting solutions
for evacuation planning problems were based on the classical algorithms for the
network flow problem, which has been largely and deeply studied for several
year [13]. Among the algorithms for the maximum flow problem, the cycle can-
celing is a general primal method [14] and the minimum mean cycle canceling
has strongly polynomial running time [15]. And based on the Ford-Fulkerson
algorithm, [16] proposed two dual algorithm, the successive shortest path and
the capacity scaling; based on the linear programming simplex method, [17] pro-
posed the network simplex algorithm. In the evacuation planning studies based
on the network flow problem, [18] summerized a systematic collection of net-
work flow models applied to emergency evacuation and their applications, e.g.,
max flows and min cost flows, lexicographic flows, quickest flows, and earliest
arrival flows and so on; [19] proposed greedy algorithms for building evacuation
problems which were modeled as the maximum flow, minimum cost flow, and
minimax flow problems; [20] proposed a corridor-based emergency evacuation
system based on contraflow design.

Most exiting research paid attentions on the evacuation path planning for
open space scenarios. And although the flow algorithms treated the evacuees’
traffic situation via the flow quantity, the congestion handling cannot be consid-
ered or directly implemented. Thus we consider the evacuation path planning in
restricted space and design the scheduling without congestion and with minimum
evacuation time consumption.

3 Restricted Space Model and Problem Definition

3.1 Hierarchical Space Model

In the evacuation planning problem in a restricted space, the restricted space
can be modeled as a three-dimensional (3D) undirected graph G = (V,E). The
node set V = {v1, · · · , vn} is composed of the observation points, corners, and
other critical positions, and the edge set E = {(vi, vj)|1 ≤ i < j ≤ n} includes
all the available path segments connecting the nodes.

In most application scenarios, the restricted space has a system structure with
several relatively independent components, which are relevant to each neighbor-
ing one via stair edges. Such a component of the space is deployed based on
the division requirement of structure function, e.g., in certain range of height,
(−300m, −200m), (−200m, −100m), (−100m, 0m). Thus a 3D undirected graph
G can be regarded as an equivalent multi-layer 3D model via the transformation,
which can be reformulated into G = {G1, G2, ..., GL−1, GL}. Note that the value
of L is predetermined and decided by the structure of the restricted space.
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3.2 Node Capacity and Edge Weight

Since the restricted space cannot allow longstanding stay on edges, the evacuees
can be assumed to maintain moving state until they reach the exits. Thus the
potential congestions are prone to occur on the nodes rather than the edges,
which is the reason for the consideration of the capacities of nodes. Here we
assign each node a capacity as capacity(vi) (1 ≤ i ≤ n) and denote the capacity
set as C = {capacity(vi)|∀vi ∈ V }.

Considering the influence of the emergency environment and the disaster
spreading on evacuation, it is necessary to assign an equivalent length to each
edge in G, and the assignment measure for each edge ek ∈ E (1 ≤ k ≤ |E|) is
according to the following influence factors. a. Euclidean distance: length(ek).
length(ek) is the geometric length of the edge; b. Environmental factor: EF (ek).
When the disaster or accident happens, the spread characteristic of disaster will
effect evacuation. Note that the spreading patten can be modeled as a statistical
model depending on the disaster itself, which is denoted as EF (ek); c. Exit
priority factor: EP (ek). In the restricted space, each edge has the nearest exit
based on the layered structure. We use the layer difference between the edge and
its nearest exit to represent the escaping priority of the evacuees through the
edge, EP (ek) = |layer(ek) − layer(nearest(ek,D))|, where layer(ek) = l if ek ∈
E(Gl), layer(vi) = l if vi ∈ V (Gl) and nearest(ek,D) = vd∗ if dist(ek, vd∗) =
min{dist(ek, vd)|∀vd ∈ D}.

Based on these influence factors, the equivalent length of edge can be
expressed in terms of weight(ek) = length(ek)·w1+EF (ek)·w2+EP (ek)·w3, 1 ≤
k ≤ |E| and we denote the weight set as W = {weight(ek)|∀ek ∈ E}. Thus G
can be further modeled as an 3D edge-weighted graph G = (V,E,C,W ).

3.3 Problem Formulation

Based on the space model, we consider the evacuation route network planning
problem in restricted space scenarios. Given the following conditions: (i) A
restricted space modeled as a 3D undirected graph G = (V,E,C,W ), where
locates sou evacuation beginning positions (denoted as source set S) and des
evacuation exits (denoted as destinations set D); (ii) The relevant measures are
known or predefined: the number of evacuees on each source es (1 ≤ s ≤ sou)
and the flow quantity on each destination per unit timeslot cd (1 ≤ d ≤ des),
which can be regarded as their capacities. We aim to construct the evacuation
route network from S to D and the scheduling strategy for the objective that
the total time consumption of entire evacuation can be minimized. We give the
formal definiation of the problem as follows.

Definition 1 (Congestion-Avoidable Evacuation Route Network Plan-
ning (CA-ERNP) problem). Given a 3D undirected graph G = (V,E,C,W ),
source set S and destination set D in V , with the constraints of V ’s capacities,
the CA-ERNP problem is to find a evacuation planning scheduling from S to D
with the goal of evacuating all the evacuees and the minimum time consumption.
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4 Min-Max-Flow-Based Algorithm for CA-ERNP
Problem

To solve the CA-ERNP problem, we adopt the idea of batch scheduling under
iteration form and the objectives of the scheduling are as follows: (i) The time
consumption can be minimized and the population flow can be maximized for
each evacuation batch; (ii) The total number of batches in evacuation scheduling
can be minimized. Here we assume the maximum allowable time consumption
Tmax of a security evacuation can be separated into unit timeslot 1, which is
for the convenience of measuring the flow quantity of nodes in G. Based on the
model transformation, the main idea of the scheduling algorithm is as follows.

– Phase 1: We construct an auxiliary graph G∗ via node slitting. Based on the
node weights of three sets S, D and V \ {S ⋃

D}, we transform the 3D undi-
rected graph G = (V,E,C,W ) into a directed graph G∗ = (V ∗, E∗, C∗,W ∗)
via adding virtual source, virtual destination, and node slitting. The proce-
dure is denoted as Transform(G).

– Phase 2: We perform a batch scheduling on G∗ via iterations. In each iteration
i, based on the current remaining evacuation requirements Srem of the source
set S, we compute the minimum cost maximum flow in G∗. In the auxiliary
directed graph G∗, the flow quantity and original node capacity, C∗, can
be viewed as the edge capacity and the edge weights, W ∗, are regarded as
the edge cost. Thus constructing the maximum population evacuation route
network can be transformed to finding a minimum cost maximum flow Flowi

in G∗, which is denoted as Min Max F low(G∗, Srem).
– Phase 3: We restore the batch scheduling on G. The flow in G∗ in each

iteration i should be restored into the actual feasible route network in G,
which is denoted as Restore(G∗, F lowi).

Before presenting the whole scheduling algorithm, we introduce the pivotal
procedures in the following subsections.

4.1 Transform(G): Construct an Auxiliary Graph G∗ via Node
Slitting

We construct G∗ based on the assumption that the 3D undirected graph G is
connected. It is because that a restricted space has a connected structure or it is
composed of several independent and connected components in practice, and we
consider the connected space or subspace for the evacuation plan. By relying on
this assumption, the details of auxiliary graph constructing are as follows and
V ∗, E∗, C∗,W ∗ are all set to be ∅ originally.

(i) Adding virtual source and destination: We logically set two virtual nodes
s0 and d0, i.e., they may not exist in the actual restricted space. And the
virtual source s0 has sou directed edge pointing to all the actual sources in
S, respectively. Similarly, each actual destination in D has a directed edge
pointing to the virtual destination d0. The updates are as follows and shown
in Fig. 1(i):
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Fig. 1. The illustration of Transform(G)

(a) V ∗ ← V
⋃{s0, t0},

(b) E∗ ← {< s0, vs > |∀vs ∈ S}⋃{< vd, d0 > |∀vd ∈ D},
(c) C∗ = {capacity(ek) = ∞|∀ek ∈ E∗},
(d) W ∗ = {weight(ek) = 0|∀ek ∈ E∗}.

(ii) Slitting nodes: For each node in V , we slit it into an directed edge with the
same capacity of the original node, which is also an equivalent transforma-
tion. And G∗ is updated as follows and shown in Fig. 1(ii):

(a) V ∗ ← V ∗ ⋃{v′
i|∀vi ∈ V },

(b) E∗ ← E∗ ⋃{< vi, v
′
i > |∀vi ∈ V }}. Since each slit node vi corresponds

two nodes vi and v′
i in the new V ∗, for vi’s associated edges in the old

V ∗, we appoint vi associated with all the incident edges and v′
i associated

with all the reflected edges in the new V ∗, e.g., edge < s0, vs > is changed
to < s0, vs > and < vs, v

′
s > and edge < vd, d0 > is replaced by < vd, v

′
d >

and < v′
d, d0 >,

(c) C∗ = {capacity(< vi, v
′
i >) = capacity(vi)|∀vi ∈ V }. Note that for each

actual source in S, capacity(< vs, v
′
s >) = es (1 ≤ s ≤ sou); and for each

actual destination in D, capacity(< vd, v
′
d >) = cd (1 ≤ d ≤ des),

(d) W ∗ = {weight(< vi, v
′
i >) = 0|∀vi ∈ V }.

(iii) Adding edges’ directions: For each undirected edge in E, it can be converted
into a pair of directed edges with the original weight without damaging its
property. And this transformation is as follows and shown in Fig. 1(iii):

(a) E∗ ← E∗ ⋃{< v′
i, vj >,< v′

j , vi > |∀ek = (vi, vj) ∈ E},
(b) C∗ ← C∗ ⋃{capacity(< v′

i, vj >) = capacity(< v′
j , vi >) = ∞|∀ek =

(vi, vj) ∈ E},
(c) W ∗ ← W ∗ ⋃{weight(< v′

i, vj >) = weight(< v′
j , vi >) = weight(ek)|

∀ek = (vi, vj) ∈ E}.

Based on above rules, we obtain a 3D directed graph G∗ = (V ∗, E∗, C∗,W ∗)
which is a structure-equivalent auxiliary graph of G for three reasons: i. The
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virtual source and destination are both logical nodes without weight cost
(= 0) and capacity limitation (= ∞); ii. The node slitting is for converting node
capacity to edge capacity without breaking the relevance relationship with the
edges in original graph; iii. The edge directing is bidirectional, which maintains
the original weight and capacity.

4.2 Min Max F low(G∗, Srem ): Compute a Min-Max Flow in G∗

To efficiently schedule the whole evacuation scheduling, we adopt evacuation
in batches as the scheduling way and construct a maximum population route
network in each batch to reduce the whole time consumption, i.e., the number
of batches. The construction basis of each batch is the remaining evacuation
requirement Srem: If there are e′

s unscheduled evacuees on vs, the capacity of edge
< vs, v

′
s > is updated as e′

s in G∗(0 ≤ s ≤ sou). Here we regard maximizing the
evacuation population in each iteration as an important subproblem and it can
be modeled as: Given a 3D directed graph G∗ = (V ∗, E∗, C∗,W ∗), source s0 and
destination d0 in V ∗, the subproblem is to find a flow Flowi = {f(e′)|∀e′ ∈ E∗}
from s0 to d0 such that

Minimize:
∑

∀e′∈E∗
(
weight(e′) · f(e′)

)
;

Maximize:
∑

∀vs∈S f(< s0, vs >) (/
∑

∀vd∈D f(< vd, d0 >));
Subject to:

(i)
∑

1≤j≤|V ∗| f(< v′
i, vj >) − ∑

1≤j≤|V ∗| f(< v′
j , vi >) = 0 (1 ≤ i ≤ |V ∗|),

(ii) 0 ≤ f(e′) ≤ capacity(e′) (∀e′ ∈ E∗).

The first objectives is to minimize the edge weight of the flow Flowi and the
second is to maximize the flow quantity of Flowi. Note that the total outflow
quantity of source s0 is equivalent to the total inflow quantity of destination d0.
The constraints are to conserve the equality between inflow and outflow on each
intermediate node and to satisfy the edges’ capacities, i.e., the flow quantity
cannot exceed the capacity on each edge. And note that f(e′) stands for the
number of the evacuees on edge e′ thus it is an integer.

To solve the subproblem, we design an algorithm based on the classical prob-
lem, the minimum cost maximum flow (Min-Max Flow). Referring the minimum
cost flow problem, it can be solved by Linear Programming, Ford-Fulkerson algo-
rithm based on augmenting path or Shortest Path Faster Algorithm.

4.3 Restore(G∗, F lowi): Restore the Evacuation Flow in G

In the batch scheduling on G∗, we obtain a set of flows in iterations and they are
needed to restore the actual path set in G. The restoring procedure is to map
the paths in each Flowi on G∗ to the paths on G for each scheduling Schi. As
shown in Fig. 2, the details are as follows.

(i) Deleting virtual source and destination: We delete the virtual nodes s0, d0
and their associated edges as follows:
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Fig. 2. The illustration of Restore(G∗, F lowi)

(a) V [Flowi] ← V [Flowi] \ {s0, t0},
(b) E[Flowi] ← E[Flowi] \ ({< s0, vs > |∀vs ∈ S}⋃{< vd, d0 > |∀vd ∈ D}),

and the deleted edges’ capacities and weights are removed correspond-
ingly.

(ii) Shrinking edge < vi, v
′
i >s: We return all the directed edges in node slitting

to these slitted nodes in V as follows:
(a) V [Flowi] ← V [Flowi] \ {v′

i|∀vi ∈ V },
(b) f [Flowi] = {f(vi) = f(< vi, v

′
i >)|∀vi ∈ V },

(c) E[Flowi] ← E[Flowi] \ {< vi, v
′
i > |∀vi ∈ V }. And the edges from all

the v′
is change the endpoint v′

i as vi, and the deleted edges’ weights are
removed correspondingly.
Note that for each pair of directed edges < v′

i, vj > and < v′
j , vi > in

Flowi, they are changed to < vi, vj > and < vj , vi >.
(iii) Removing edges’ direction: For each pair of directed edges < vi, vj > and

< vj , vi > in Flowi, we convert them into an undirected edge (vi, vj) with
the same weight of their as follows:

(a) E[Flowi] ← E[Flowi] \ {< vi, vj >,< vj , vi > |∀vi, vj ∈ V [Flowi]}, and
the deleted edges’ capacities and weights are removed correspondingly,

(b) E[Flowi] ← E[Flowi]
⋃{(vi, vj)|∀vi, vj ∈ V [Flowi]},

(c) W [Flowi] = {weight((vi, vj))|∀(vi, vj) ∈ E[Flowi]}.

The variant of Flowi based on the above rules is the scheduling scheme Schi

in the i-th iteration. f [Flowi] is composed of each node’s flow quantity/evacuee
number and W [Flowi] stands for the edge weights in the current scheduling.
And we can calculate the evacuation time of Schi based on W [Flowi].

4.4 Min-Max-Flow Based Algorithm Description

Based on the three pivotal procedures, we proposed the min-max-flow based
algorithm for evacuation network planning in restricted spaces in Algorithm1.

Initialization: We set the global measures and that of the local measures.
The former kind (step 1) is composed of the whole scheduling (SCH), time
consumption (T ), and the round number of the flow planning (round). The
later kind (steps 2–5) includes the temporal set of the unscheduled/remaining
evacuees (Srem), the constructed flow (Flowi), the time consumption (ti) and
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Algorithm 1. Min-Max-Flow based Evacuation Network Planning
Algorithm (G = (V,E,C,W ), S,D)
1: round = 0, T = 0, SCH ← ∅.//Initialization 1 - Global measures: step 1
2: Srem ← S
3: for i = 1 to Tmax do
4: Flowi ← ∅, ti = 0, Schi ← ∅
5: end for//Initialization 2 - Local measures: steps 2-5
6: G∗ = (V ∗, E∗, C∗,W ∗) ← Transform(G).//Phase 1: step 6
7: i = 0
8: while Srem �= ∅ do
9: Flowi ← Min Max F low(G∗), ti is calculated by W [Flowi]

10: Si ← {f(< vs, v
′
s >)|∀ < vs, v

′
s >∈ Flowi and 1 ≤ s ≤ sou}

11: for s = 1 to sou do
12: capacity(< vs, v

′
s >) = capacity(< vs, v

′
s >) − f(< vs, v

′
s >)

13: if capacity(< vs, v
′
s >) ≤ 0 then

14: Srem ← Srem \ {vs}
15: end if
16: end for
17: T = ti + i
18: i + +
19: end while//Phase 2: steps 7-19
20: round = i.
21: for i = 1 to round do
22: Schi ← Restore(G∗, F lowi), SCH ← SCH

⋃{Schi}
23: end for//Phase 3: steps 20-23
24: return SCH and T .

the scheduling (Schi) in each i-th iteration, which is the preparation of flow
planning with iteration form.

Phase 1 (Step 6): We obtain an auxiliary directed graph G∗ by
Transform(G).

Phase 2 (Steps 7–19): We perform the batch scheduling on G∗ through a
WHILE loop until all the evacuees on S have been scheduled (i.e., Srem = ∅). In
each iteration i: i. We apply Ford-Fulkerson algorithm based on augmenting path
to compute a min-max flow in the current G∗ to maximum the evacuee number
in the current schedule; ii. Based on the constructed flow Flowi, we obtain the
flow’s time consumption ti and update the capacities of edge < vs, v

′
s > (steps

10–16) and the remaining evacuation requirement Srem (step 14); iii. To avoid
the congestion, the scheduling is implemented timeslot by timeslot, i.e., Flowi+1

begins in the second timeslot of Flowi. Thus the current whole time consumption
is the sum of the previous round number and the current flow’s time (step 17).

Phase 3 (Steps 20–23): In each round, we restore the flow scheduling Flowi

on G∗ to the network planning Schi on G based on Restore(G∗, F lowi).
Finally, the algorithm outputs the evacuation network planning SCH and

the evacuation time consumption T .
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5 Simulation Results and Analysis

In this section, we conduct a series of simulations to compare the average perfor-
mance of our algorithm (MMF Algorithm) for the CA-ERNP problem with the
classical algorithm, the shortest path algorithm (SP Algorithm). We apply SP
Algorithm for each source nodes for the CA-ERNP problem. And when multi-
evacuee choose the same shortest path, they should queue in the evacuation
with the constraint of the traffic capacity, which is calculated as the waiting
time consumption.

Based on the main idea of batch scheduling, it can be found that the schedul-
ing duration mostly depends on the round number, which can be regarded as
an average performance of the algorithms. Furthermore, the whole evacuation
time consumption can be measured as the evacuation length of the longest path,
which is a global performance indicator. Thus we adopt the scheduling round
number and the evacuation length as the performance evaluation criteria.
We evaluate these performance of the two algorithms under the changes of three
influence parameters, the number of space nodes n, the number of source
nodes sou and the number of destination nodes des.

Fig. 3. The scheduling round number vs. the parameters

To perform simulation experiments, we randomly generate a connected 3D
graph G = (V,E), source set S and destination set D in a 500 ∗ 500 ∗ 500 space,
in which each node has a capacity in range of [5, 10] and each edge has a weight
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decided by its length. And each node in S has an evacuation requirement in
range of [5, 15]. The parameter settings are as follows:

(a) n varies from 150 to 450 by the step of 50 and sou = 20, des = 5;
(b) sou varies from 8 to 32 by the step of 4 and n = 300, des = 5;
(c) des varies from 2 to 8 by the step of 1 and n = 300, sou = 20.

For each parameter setting, we run 100 instances and compute their average.
We firstly observe the scheduling round numbers of the algorithms with the

changes of n, sou and des. As shown in Fig. 3, MMF Algorithm has signifi-
cant advantage on the round number and the round number differences between
MMF Algorithm and SP Algorithm present less fluctuate when n and des change
in Fig. 3(a) and (c). But with the increasing of sou, such difference grows in
Fig. 3(b). It is because that the increasing of evacuee number will increase the
possibility of congestion, and it is necessary to scheduling more round for avoid-
ing congestion. In this case, the advantage of MMF Algorithm is more prominent,
i.e. it schedules more evacuees’ evacuation in each round and the round number
is less than that of SP Algorithm.

Fig. 4. The evacuation length vs. the parameters

Secondly, we investigate the evacuation length of the algorithms under the
parameters variation. Since SP Algorithm gives priority to minimizing the path
length for a certain evacuee in one round and ignores avoiding congestion, the
global evacuation lengths obtained by it are larger than that of MMF Algorithm
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as shown in each subfigures in Fig. 4. With the growth of the space scale, n, the
evacuation lengths in the algorithms are increased in Fig. 4(a) and the oppos-
ing results happen when sou and des increases in Fig. 4(b) and (c). It can be
explained that with the enlarge of the space scale, the number of the candidate
paths becomes large, which is followed by the increasing of capacity limitations
on the intermediate nodes on these paths. To meet the capacity limitations and
avoid congestion, the whole evacuation lengths are increased.

Based on the above two groups of simulation results, we can find that MMF
Algorithm outperforms SP Algorithm in terms of the scheduling round number
and the evacuation length.

6 Conclusion

In this paper, we investigate the evacuation path planning problem with the
consideration of avoiding congestion. To solve the problem with the goal of min-
imizing the evacuation time consumption, we propose a 3-phase algorithm based
on the Min-Max Flow problem. In the performance evaluation, the simulation
results indicate our algorithm outperforms the existing alternatives in terms of
efficiency and time cost. For future work, we will improve the scheduling strategy
for the evacuation problem in restricted spaces and design new algorithms for
difference evacuation requirement together with more practical applications.
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Abstract. Yao’s millionaire protocol enables Alice and Bob to know
whether or not Bob is richer than Alice by using a public-key cryptosys-
tem without revealing the actual amounts of their properties. In this
paper, we present a simple and practical implementation of Yao’s million-
aire protocol using a deck of playing cards; we straightforwardly imple-
ment the idea behind Yao’s millionaire protocol so that even non-experts
can easily understand its correctness and secrecy. Our implementation is
based partially on the previous card-based scheme proposed by Nakai,
Tokushige, Misawa, Iwamoto, and Ohta; their scheme admits players’
private actions on a sequence of cards called Private Permutation (PP),
implying that a malicious player could make an active attack (for exam-
ple, he/she could exchange some of the cards stealthily when doing such
a private action). In contrast, our implementation relies on a familiar
shuffling operation called a random cut, and hence, it can be conducted
completely publicly so as to avoid any active attack.

Keywords: Card-based protocols · Real-life hands-on cryptography
Secure multi-party computations · Yao’s millionaire protocol
Deck of cards

1 Introduction

Assume that Alice and Bob have a and b dollars, respectively, such that
a, b ∈ {1, 2, . . . , m} for some natural number m. They want to know who is
richer without revealing any information about their values (more than that is
necessary), i.e., they want to determine only whether a < b or not. This is the
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famous millionaires’ problem proposed by Yao [21] in 1982, and he designed a
protocol, which we call Yao’s millionaire protocol, to solve the problem based on
a public-key cryptosystem. The fundamental principle behind Yao’s millionaire
protocol could be interpreted as follows. If Alice arranges m symbols consisting
of a number a of ♠s and a number (m−a) of ♦ s as

1
♠

2
♠· · · a

♠
a+1
♦

a+2
♦ · · · m

♦,

and Bob points at the b − th symbol, then the b − th symbol being ♦ implies
a < b, and the b − th symbol being ♠implies a ≥ b :

1
♠

2
♠· · · a

♠
a+1
♦

a+2
♦ · · · b

♦
↑

b−th

· · · m

♦ ⇐⇒ a < b,

1
♠

2
♠· · · b

♠
↑

b−th

· · · a

♠
a+1
♦

a+2
♦ · · · m

♦ ⇐⇒ a ≥ b.

While Yao’s millionaire protocol relies on the public-key cryptosystem to
implement the above principle without leaking actual values a and b, Nakai,
Tokushige, Misawa, Iwamoto, and Ohta [15] considered the use of a deck of
physical cards in 2016. That is, following the fundamental principle above, they
constructed a card-based scheme using cards of two types such as

♣ ♣ · · · ♣ ♥ ♥ · · · ♥

whose backs are all identical ? . Roughly speaking, in their scheme, Alice first
encodes her secret value a with a sequence of face-down cards, and then Bob
“privately” changes the positions of cards according to his secret value b. We
will describe the details in Sect. 2. Since many people on earth are familiar with
playing cards, their card-based scheme is human-friendly and useful. Its only
drawback is that it requires a player’s “private” action, called Private Permuta-
tion (PP) [15], which permits Bob to rearrange the sequence of cards privately
(for example, he is allowed to manipulate the cards behind his back). Private
Permutation is considered to be such a strong assumption that a malicious player
may do an active attack. Hereinafter, we refer to their scheme as the NTMIO
protocol with PP.

Thus, it is preferable to construct a card-based easy-to-understand scheme
which does not rely on Private Permutation, in order to avoid possible mali-
cious actions. To this end, in this paper, we present a “PP-free” scheme, which
implements the fundamental principle behind Yao’s millionaire protocol; instead
of using Private Permutation, we use a familiar shuffling operation called the
random cut (RC). A random cut is a cyclic shuffle, which can be easily imple-
mented by humans as in the case of usual card games (e.g. [2,6,20]). There-
fore, our scheme, named the PP-free protocol with RC, can be conducted com-
pletely publicly, and hence, any malicious action can be detected. As will be seen
in Sect. 3, we straightforwardly implement the above principle. Therefore, we
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believe that even non-experts can easily understand the correctness and secrecy
of our scheme, and can practically use it in everyday life.

It should be noted that Nakai et al. [15] proposed a PP-free protocol as well;
they presented a card-based scheme, which follows not the above-mentioned
fundamental principle but a logical circuit representing the comparison a < b.
This PP-free circuit-based protocol relies on a shuffling operation called the
random bisection cut [13] (instead of Private Permutation). In this paper, we
also improve upon this existing protocol; we will reduce the number of required
random bisection cuts to around 1/3. We will explain the details in Sects. 4
and 5.

Table 1 summarizes the performance of the PP-free protocols.

Table 1. The PP-free millionaire protocols.

#Cards #Shuffles Section
Our implementation with RC 3m+1 1 Section 3
The previous circuit-based [15] 4�logm�+4 6�logm�−5 Section 4
Our improved circuit-based 4�logm�+2 2�logm�−1 Section 5

The remainder of this paper is organized as follows. In Sect. 2, we introduce
the NTMIO protocol with PP [15]. In Sect. 3, we present our implementation, the
PP-free protocol with RC. As for circuit-based protocols, we introduce the pre-
vious protocol in Sect. 4, and give an improved protocol in Sect. 5. We conclude
this paper in Sect. 6.

2 The Previous Scheme: The NTMIO Protocol with PP

In this section, we introduce the NTMIO protocol with PP [15].
Recall the fundamental principle behind Yao’s millionaire protocol; Alice

arranges m symbols:
1
♠

2
♠· · · a

♠
a+1
♦

a+2
♦ · · · m

♦ .

Using a pair of physical cards ♣ and ♥ , let us encode each symbol as follows:

♣ ♥ = ♠, ♥ ♣ = ♦ .

Thus, Alice can encode her private value a using m pairs of ♣ ♥ , and put the
cards with their faces down such that Bob does not see the order of the cards.
For such a sequence of m pairs encoding Alice’s secret value a, Bob needs to
point at the b-th pair without leaking any information about his secret value
b; to this end, Bob is permitted to use Private Permutation. Specifically, the
NTMIO protocol with PP proceeds as follows.
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1. Alice holding m ♣ s and m ♥ s places a number a of ♣ ♥ s on a table with
their faces down, and then puts (m−a) ♥ ♣ s next to them:

1
?
♣

?
♥

2
?
♣

?
♥

· · ·
a

?
♣

?
♥

a+1
?
♥

?
♣

a+2
?
♥

?
♣

· · ·
m

?
♥

?
♣

,

while Bob does not see the order of each pair.
2. Bob uses Private Permutation; he takes the sequence of cards and move them

behind his back. Then, he moves the b-th pair to the first without Alice seeing
which pair comes first:

1
? ? · · ·

b−1
? ?

b

? ?
b+1
? ? · · ·

m

? ?

→
b

? ?
1

? ? · · ·
b−1
? ?

b+1
? ? · · ·

m

? ? .

3. The first pair of cards is revealed.
– If the revealed cards are ♥ ♣ , a < b .
– If the revealed cards are ♣ ♥ , a ≥ b .

This is the existing card-based solution to the millionaires’ problem using
Private Permutation1. Let us stress that Bob needs to use Private Permutation
in Step 2.

The use of Private Permutation is so powerful as to contribute to improving
the efficiency of card-based protocols [14,15], and also it is used in other physical
secure protocols [1,9]; however, it might lead to some issues. To implement Step 2
of this protocol, the following issues are considered. (1) If Bob were malicious, he
could make an active attack; for instance, he could replace the sequence of cards
with another prepared one so that he would be able to peep the exact value
of a later. (2) Alice and/or audience watching the execution of the protocol
could learn Bob’s secret value b by observing his tiny shoulder movement. (3)
Permuting some cards behind one’s back might be challenging because one only
has to rely on the sense of hands; the case of b = 1 or b = m might be no
problem, but if b = m/2, Bob might have difficulty in searching the desired pair
of cards.

In the next section, we design a simple PP-free protocol.

3 Our Implementation Using a Random Cut

In this section, we present our card-based implementation of Yao’s millionaire
protocol; instead of relying on Private Permutation, we use
– a random cut (RC), which is a well-known and easy-to-perform shuffle, and
– cards whose backs are # , which is a different pattern from ? .
1 It should be noted that Fagin, Naor, and Winkler proposed a similar idea to solve

the socialist millionaires’ problem [5] where Alice and Bob want to know whether
they think the same person in mind or not (see Solution 11 in [3]). In addition,
Nakai et al. [15] presented another card-based scheme with Private Permutation,
which compares a and b bit by bit with the help of “storage” cards.
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3.1 How to Proceed

Our PP-free protocol with RC proceeds as follows.

1. Alice holds m ♣ s and (m−1) ♥ s. Depending on her secret value a, she
places a number a of ♣ s on a table with their faces down, and then puts a
number (m−a) of ♥ s next to them. The resulting sequence is Alice’s input:

1
?
♣

2
?
♣

· · ·
a

?
♣

a+1
?
♥

a+2
?
♥

· · ·
m

?
♥

.

On the other hand, Bob holds (m−1) cards of ♣ whose backs are # and a
card of ♥ whose back is also # . Then, he places these m cards with their
faces down on the table such that only the b-th card is ♥ . The resulting
sequence is Bob’s input:

1
#
♣

2
#
♣

· · ·
b−1
#
♣

b

#
♥

b+1
#
♣

· · ·
m

#
♣

.

2. Take every card from Alice’s input sequence and Bob’s input sequence from
the left alternately one by one, and put it to the right of the previous card:

1
? #

2
? # · · ·

m

? # .

We further add two cards to the sequence:
1

? #
2

? # · · ·
m

? #
m+1
?
♥

#
♣

;

these two cards are put for handling the case of a = b = m. Note that recalling
the fundamental principle behind Yao’s millionaire protocol, the left card of
Bob’s ♥-card determines whether a < b or not:

1
?
♣

#
♣

· · ·
a

?
♣

#
♣

a+1
?
♥

#
♣

· · ·
b

?
♥

#
♥

· · ·
m+1
?
♥

#
♣

⇐⇒ a < b,

1
?
♣

#
♣

· · ·
b

?
♣

#
♥

· · ·
a

?
♣

#
♣

a+1
?
♥

#
♣

· · ·
m+1
?
♥

#
♣

⇐⇒ a ≥ b.

Note, furthermore, that when a ≥ b , the (b+1)-st pair determines whether
a = b or a > b : if the (b+1)-st pair is ♥ ♣ then a = b ; if it is ♣ ♣ then
a > b . Of course, we cannot open Bob’s cards # now; hence, we add a
randomization in the next step.

3. Apply a random cut to the sequence of (2m+2) cards, which means shuffling
the card sequence cyclically (we denote this operation by < ·>):

< ? # ? # · · · ? # > .
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The random cut can be securely implemented by the shuffle operation called
the “Hindu cut” [20]; the shuffle may be repeated by Alice and Bob, or even
other people until they are all satisfied with the result. Note that the random
cut can be done completely publicly [20], and hence, each player can notice
any illegal action if any.

4. Reveal all the cards whose backs are # (namely, the m cards placed by Bob
and the additional card); then, one card of ♥ appears. Reveal the card on its
left.

– If the revealed card is ♥ , a < b .
– If the revealed card is ♣ , we have a ≥ b . To see whether equality holds

or not, open the card to the right of Bob’s ♥-card (apart from cyclic
rotation). If the opened card is ♥ , a=b . If it is ♣ , a > b .

This is our PP-free protocol with RC. It uses (3m+1) cards in total and uses
one shuffle. In Step 1, Alice places a ♣ s; if Alice has only a ♣ s at first, the
value a might be leaked from the number of cards that Alice holds. Therefore,
Alice needs to have m ♣ s at first (the number of ♥ is similar). Since we apply
a random cut in Step 3, revealing Bob’s cards in Step 4 does not expose where
Bob placed the ♥-card. If a = b, Alice and Bob will learn the exact value; note
that their values are not leaked to any other people watching the execution of
the protocol.

As for the use of a different back # , we were inspired by the technique called
the “Chosen Cut” that Koch and Walzer proposed [6]2. If the back-side symbol
of the cards is vertically asymmetric, we do not need cards of different backs like
# : It suffices that Bob puts his cards upside down as follows:

?
?

?
? · · · ?

?
.

Our protocol can be executed completely publicly. Any malicious action will
be noticed. Moreover, we can automatically confirm that Bob put his input in
a correct format when we reveal all Bob’s cards in Step 4. We can even confirm
that Alice put her input in a correct format by applying the idea in [11] with
some additional cards.

3.2 A Pseudocode

In this subsection, we present a more formal description of our protocol, that
is, we show a pseudocode that follows the computational model of card-based
protocols, which was formalized in [7,10,12].

First, let us describe an input card sequence. Remember that, for example,
if a = b = 1, then Alice and Bob will arrange their inputs with two additional
cards as:

Γ (1,1) = (

m cards
︷ ︸︸ ︷

?
♣ ,

?
♥ , . . . ,

?
♥ ,

m cards
︷ ︸︸ ︷

#
♥ ,

#
♣ , . . . ,

#
♣ ,

?
♥ ,

#
♣ ).

2 Koch and Walzer [6] showed that one can securely “choose” a permutation from a
specific set using helping cards with a different color.
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Generally, for a, b ∈ {1, 2, . . . , m}, we define

Γ (a,b) = (
1
?
♣ , . . . ,

a−1
?
♣ ,

a

?
♣ ,

a+1
?
♥ , . . . ,

m

?
♥ ,

m+1
#
♣ , . . . ,

m+b−1
#
♣ ,

m+b
#
♥ ,

m+b+1
#
♣ , . . . ,

2m
#
♣ ,

2m+1
?
♥ ,

2m+2
#
♣ ).

Next, we need to define the following operations applied to a card sequence
Γ = (α1, α2, . . . , αd):

– (turn, T ) for T ⊆ {1, 2, . . . , d}, i.e., turning over the cards is denoted by a set
T , which specifies the turned positions of cards;

– (perm, π) for π ∈ Sd, where Si denotes the symmetric group of degree i, i.e.,
a rearranging operation is denoted by permutation π;

– (shuf, Π, F) for Π ⊆ Sd and a probability distribution F on Π, i.e., a shuffling
operation is denoted by a permutation set Π and a probability distribution
F . If F is uniform, we simply write it as (shuf, Π);

– (result, e) for some expression e. This indicates that the protocol terminates
with the output e.

Based on the above formalization, a pseudocode of our PP-free protocol with
RC is shown as follows, where “visible seq.” denotes what we can look at for a
card sequence on the table, and we define

π
def=

⎛

⎝

1 2 3 · · · m m+1 m+2 · · · 2m 2m+1 2m+2

1 3 5 · · · 2m−1 2 4 · · · 2m 2m+1 2m+2

⎞

⎠ ,

and

RC2m+2
def= {(1 2 3 · · · 2m+2)j | 1 ≤ j ≤ 2m+2}.

The PP-free protocol with RC
input set:

{

Γ (a,b) | 1 ≤ a, b ≤ m
}

(perm, π)
(shuf,RC2m+2)
if visible seq. = (#, ?, #, ?, . . . , #, ?) then

(perm, (2m+2 2m+1 · · · 1))
(turn, {2, 4, . . . , 2m+2})

let r s.t. visible seq. = (
1st

︷︸︸︷

?, ♣, . . . ,

(r−1)-st
︷︸︸︷

?, ♣ ,

r-th
︷︸︸︷

?, ♥,

(r+1)-st
︷︸︸︷

?, ♣ , . . . ,

(m+1)-st
︷︸︸︷

?, ♣ )
(turn, {2r−1})

if visible seq. = (?, ♣, . . . ,

r-th
︷︸︸︷

♥, ♥, . . . , ?, ♣) then (result, “a < b”)

else if visible seq. = (?, ♣, . . . ,

r-th
︷︸︸︷

♣, ♥, . . . , ?, ♣) then
(turn, {2r+1 (mod 2m+2)})



Practical and Easy-to-Understand Card-Based Implementation 253

if visible seq. = (?, ♣, . . . ,

r-th
︷︸︸︷

♣, ♥,

(r+1)-st
︷︸︸︷

♥, ♣ , . . . , ?, ♣) then (result, “a = b”)

else if visible seq. = (?, ♣, . . . ,

r-th
︷︸︸︷

♣, ♥,

(r+1)-st
︷︸︸︷

♣, ♣ , . . . , ?, ♣) then (result, “a > b”)

3.3 Example of Real Execution

Our protocol is quite simple and easy-to-implement. For example, two colleagues,
Alice and Bob, in a company are easily able to compare their bonuses by using
our protocol, where Alice’s bonus is 10a dollars and Bob’s bonus is 10b dollars.
The protocol falls into real world cryptography; Fig. 1 shows a real execution of
our protocol for m = 4, i.e., 10a, 10b ∈ {$10, $100, $1000, $10000}. Card-based
protocols are far more practical than might be imagined.

Fig. 1. An implementation of our PP-free protocol with RC when m = 4.

4 The Existing Circuit-Based Protocol

In this section, we introduce the existing circuit-based protocol [15] for solving
the millionaires’ problem.

Consider the following encoding:

♣ ♥ = 0, ♥ ♣ = 1. (1)

Then, Alice and Bob can place sequences of cards corresponding to the binary
representations of a = (an, . . . , a1)2 and b = (bn, . . . , b1)2, respectively, where
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n=log2 m� :
? ?
︸ ︷︷ ︸

an

· · · ? ?
︸ ︷︷ ︸

a1

? ?
︸ ︷︷ ︸

bn

· · · ? ?
︸ ︷︷ ︸

b1

.

Such a pair of face-down cards

? ?
︸ ︷︷ ︸

x

corresponding to a bit x ∈ {0, 1} is called a commitment to x. Given the above
card sequence along with some additional cards, the existing circuit-based pro-
tocol given by Nakai et al. [15] determines whether a < b or not:

? ?
︸ ︷︷ ︸

an

· · · ? ?
︸ ︷︷ ︸

a1

? ?
︸ ︷︷ ︸

bn

· · · ? ?
︸ ︷︷ ︸

b1

♣ ♥ ♣ ♥ → · · · → ? ?
︸ ︷︷ ︸

bool(a<b)

,

where bool (a < b) represents

bool (a < b) def=

⎧

⎨

⎩

0 if a ≥ b,

1 if a < b.

Their protocol proceeds based on the following logical circuit.

The circuit-based protocol [15]
input : a = (an, . . . , a1)2, b = (bn, . . . , b1)2;
f1 = ā1 ∧ b1 ;
for (i : 2 to n) {

fi =(āi ∧ bi)∨((āi ∨ bi)∧fi−1);
}
output : fn ( = bool (a < b)).

To implement this circuit, one needs AND (OR) and COPY protocols; Nakai et
al. [15] used the six-card AND protocol [13] (shown in Appendix A), producing
a commitment to x ∧ y from the input commitments to x and y:

? ?
︸ ︷︷ ︸

x

♣ ♥ ? ?
︸ ︷︷ ︸

y

→ · · · → ? ?
︸ ︷︷ ︸

x∧y

,

and the six-card COPY protocol [13] (shown in Appendix B), producing two
commitments to x from an input commitment to x:

? ?
︸ ︷︷ ︸

x

♣ ♥ ♣ ♥ → · · · → ? ?
︸ ︷︷ ︸

x

? ?
︸ ︷︷ ︸

x

.

Therefore, their circuit-based protocol uses the AND (OR) protocol [13]
(4log m�−3) times and the COPY protocol [13] (2log m�−2) times for dupli-
cating the commitments to āi and bi . Thus, the number of required shuffles is
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(6log m�−5) in total (because each of the AND and COPY protocols [13] uses
one shuffle; see Appendices A and B for the details). Regarding the number of
cards, six additional cards are required to duplicate the commitments to a2 and
b2 in order to compute f2 =(ā2 ∧ b2)∨ ((ā2 ∨ b2)∧f1). Thus, six cards need to
be left directly after the AND computation of f1 = ā1 ∧ b1, and hence, four
additional cards are required before the computation of f1. Consequently, the
total number of required cards is (4log m�+4).

5 Our Improved Circuit-Based Protocol

In this section, we improve upon the circuit-based protocol introduced in Sect. 4,
i.e., we present an improved circuit-based protocol that uses a less number of
shuffles and cards. We first show the idea behind our improved circuit-based
protocol in Sect. 5.1, and then show the procedure of our improved circuit-based
protocol in Sect. 5.2.

5.1 The Idea

We borrow the idea behind the storage protocol [15]; it uses Private Permutation
and regards fi shown in Sect. 4 as:

fi =

⎧

⎨

⎩

fi−1 if ai = bi,

bi if ai �= bi.
(2)

That is, the storage protocol is supposed to choose fi−1 or bi depending on
whether ai = bi or not. More specifically,

– fi−1 is equal to bool ((ai−1, . . . , a1) < (bi−1, . . . , b1));
– ai = bi implies fi = fi−1;
– ai = 0 and bi = 1 imply (ai, . . . , a1)<(bi, . . . , b1), and hence fi = 1 = bi while

ai = 1 and bi = 0 imply (ai, . . . , a1)>(bi, . . . , b1), and hence fi = 0 = bi.

Such a choice can be made without Private Permutation; if we can let a six-card
sequence be either

? ?
︸ ︷︷ ︸

ai⊕bi

? ?
︸ ︷︷ ︸

fi−1

? ?
︸ ︷︷ ︸

bi

or ? ?
︸ ︷︷ ︸

ai⊕bi

? ?
︸ ︷︷ ︸

bi

? ?
︸ ︷︷ ︸

fi−1

,

then, we can obtain a commitment to fi by revealing the first two cards as
follows:

♣ ♥ ? ?
︸ ︷︷ ︸

fi

? ? or ♥ ♣ ? ? ? ?
︸ ︷︷ ︸

fi

.

The above flow can be accomplished by using the procedure of the six-card AND
protocol [13] shown in Appendix A.
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Moreover, we can easily obtain commitments to ai ⊕ bi and bi by using the
six-card COPY protocol [13] shown in Appendix B. That is, from the following
sequence where r is a uniform random bit:

? ?
︸ ︷︷ ︸

bi⊕r

? ?
︸ ︷︷ ︸

ai⊕r

? ?
︸ ︷︷ ︸

r

,

it is determined whether r = bi or r = b̄i by revealing the first two cards, and
then we obtain commitments to ai ⊕ bi and bi as:

♣ ♥ ? ?
︸ ︷︷ ︸

ai⊕bi

? ?
︸ ︷︷ ︸

bi

or ♥ ♣ ? ?
︸ ︷︷ ︸

ai⊕bi

? ?
︸ ︷︷ ︸

b̄i

.

Note that revealing the first two cards leaks no information about bi because r
is a random bit.

As described above, by using the procedure of the COPY and AND proto-
cols [13], we can obtain a commitment to fi according to Eq. 2 without revealing
the values of ai, bi, and fi−1. It should be noted that fi in Eq. 2 is the three-
input majority function of ai, bi, and fi−1 . An efficient card-based protocol for
the three-input majority function was proposed by Nishida et al. [16] in 2013,
which was based on the same idea mentioned above.

5.2 The Description of Our Protocol

Based on the idea presented in Sect. 5.1, we construct an improved circuit-based
protocol. Given the input card sequence

? ?
︸ ︷︷ ︸

an

· · · ? ?
︸ ︷︷ ︸

a1

? ?
︸ ︷︷ ︸

bn

· · · ? ?
︸ ︷︷ ︸

b1

and two additional cards, our protocol proceeds as follows.

1. Compute f1 = ā1 ∧ b1 by using the six-card AND protocol [13]:

? ?
︸ ︷︷ ︸

ā1

? ?
︸ ︷︷ ︸

b1

♣ ♥ → · · · → ? ?
︸ ︷︷ ︸

f1

.

Now, four reusable cards remain.
2. Repeat the following computation from i = 2 to i = n.

(a) Obtain commitments to ai ⊕ bi and bi from the commitments to ai and bi
by using the six-card COPY protocol [13] (and the NOT computation):

? ?
︸ ︷︷ ︸

bi

? ?
︸ ︷︷ ︸

ai

? ?
︸ ︷︷ ︸

0

→ ? ?
︸ ︷︷ ︸

ai⊕bi

? ?
︸ ︷︷ ︸

bi

.
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(b) Obtain a commitment to fi from the commitments to ai ⊕bi, bi, and fi−1
by using the six-card AND protocol:

? ?
︸ ︷︷ ︸

ai⊕bi

? ?
︸ ︷︷ ︸

fi−1

? ?
︸ ︷︷ ︸

bi

→ ? ?
︸ ︷︷ ︸

fi

.

3. Then, a commitment to fn = bool (a < b) can be obtained:

? ?
︸ ︷︷ ︸

bool(a<b)

.

Due to the use of two additional cards, this protocol uses (4log m�+2) cards
in total. The number of required shuffles is (2log m�−1) in total, because this
protocol repeats each procedure of the AND protocol and the COPY protocol
from i = 2 to i = n after AND computation for f1, as shown in Table 1.

This improved circuit-based protocol is a combination of the existing
information-theoretically secure card-based protocols, and hence, it is guaran-
teed to be secure.

6 Conclusion

In this paper, we proposed two card-based protocols to solve the millionaires’
problem without using Private Permutation. See Table 1 again for the perfor-
mance of the PP-free millionaire protocols. In particular, the PP-free protocol
with RC proposed in Sect. 3 uses only one random cut, and its correctness and
secrecy are clear. Therefore, we believe that even non-experts such as high school
students can easily understand and use it practically. Note that a random cut
can be easily and securely implemented by using the Hindu cut [20].

Moreover, we can use our protocols in didactic contexts in order to invite
young people and students to cryptography; they would be an ideal tool to
exhibit the concept of secure multiparty computations, as often pointed out,
e.g., [4,8].

Regarding the number of required cards in the improved circuit-based proto-
col, it will be best to use the four-card AND protocol [7], because four cards are
necessary (and hence minimal) to represent two inputs based on the encoding
rule (1). Moreover, there is the five-card COPY protocol [18], and hence we can
theoretically reduce the number of required cards in the improved circuit-based
protocol. However, the four-card AND protocol requires an average of eight shuf-
fling operations, and the five-card COPY protocol requires ideal cases [17,19] for
execution. Therefore, for practicality, we considered only the six-card AND pro-
tocol [13] and the six-card COPY protocol [13].

Acknowledgments. We thank the anonymous referees, whose comments have helped
us to improve the presentation of the paper. This work was supported by JSPS KAK-
ENHI Grant Number JP17K00001.
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A The Six-Card and Protocol
In 2009, Mizuki and Sone [13] invented the following six-card AND protocol,
which securely outputs a commitment to x ∧ y from the commitments to x and
y (and two additional cards).
1. Place input commitments and additional cards of black and red, and then

turn over the two cards in the center:

? ?
︸ ︷︷ ︸

x

♣ ♥ ? ?
︸ ︷︷ ︸

y

→ ? ?
︸ ︷︷ ︸

x

? ?
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

y

.

2. Rearrange the sequence:
? ? ? ? ? ?

�
������ ���

? ? ? ? ? ? .

3. Apply a random bisection cut, which means bisecting the sequence and switch-
ing the two halves randomly:

[

? ? ?
∣

∣

∣ ? ? ?
]

→ ? ? ? ? ? ? .

After applying this shuffling operation, the six-card sequence results in either
the same sequence as the original one or a sequence whose left and right
halves are switched; each case occurs with a probability of 1/2.

4. Rearrange the sequence:
? ? ? ? ? ?

������
�

��	
? ? ? ? ? ? .

After this rearranging operation, the six-card sequence will be as follows:

? ?
︸ ︷︷ ︸

x

? ?
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

y

or ? ?
︸ ︷︷ ︸

x̄

? ?
︸ ︷︷ ︸

y

? ?
︸ ︷︷ ︸

0

.

5. Reveal the first two cards. Then, a commitment to x ∧ y can be obtained as:
♣ ♥ ? ?

︸ ︷︷ ︸

x∧y

? ? or ♥ ♣ ? ? ? ?
︸ ︷︷ ︸

x∧y

.

Note that we can reuse the two revealed two cards, and moreover, the other
two cards not being a commitment to x ∧ y can be reused by revealing them
after shuffling.

As mentioned above, we can obtain a commitment to x ∧ y (keeping its value
secret). It is well known that in the literature [20], a random bisection cut can
be implemented by humans securely so that nobody knows the resulting card
sequence.

An OR protocol can be obtained in a similar way.
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B The Six-Card COPY Protocol

The following six-card COPY protocol proposed by Mizuki and Sone [13] pro-
duces two commitments to x from a commitment to x and four additional cards.

1. Place an input commitment and black and red additional cards, and then
turn over the additional cards:

? ?
︸ ︷︷ ︸

x

♣ ♥ ♣ ♥ → ? ?
︸ ︷︷ ︸

x

? ?
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

0

.

2. Rearrange the sequence:

1
?

2
?

3
?

4
?

5
?

6
? →

1
?

3
?

5
?

2
?

4
?

6
? .

3. Apply a random bisection cut:
[

? ? ?
∣

∣

∣ ? ? ?
]

→ ? ? ? ? ? ? .

4. Rearrange the sequence:

1
?

2
?

3
?

4
?

5
?

6
? →

1
?

4
?

2
?

5
?

3
?

6
? .

5. Reveal the first two cards. Then, two commitments to x can be obtained as
follows (two revealed cards can be reused in the next protocol):

♣ ♥ ? ?
︸ ︷︷ ︸

x

? ?
︸ ︷︷ ︸

x

or ♥ ♣ ? ?
︸ ︷︷ ︸

x̄

? ?
︸ ︷︷ ︸

x̄

.

In the latter case, we can easily get two commitments to x (from commit-
ments to x̄) by using the NOT protocol (swapping the two cards of each
commitment).
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Abstract. Clique, as the most compact cohesive component in a graph,
has been employed to identify cohesive subgroups of entities and explore
the sensitive information in the online social network, crowdsourcing net-
work, and cyber physical network, etc. In this study, we focus on the
defense of clique-based attack and target at reducing the risk of entities
security/privacy issues in clique structure. Since the ultimate resolution
for defending the clique-based attack and risk is wrecking the clique
with minimum cost, we establish the problem of clique-destroying (CD)
in the network from a fundamental algorithm aspect. Interestingly, we
notice that the clique-destroying problem in the directed graph is still an
unsolved problem, and complexity analysis also does not exist. There-
fore, we propose an innovative formal clique-destroying problem and
proof the NP-complete problem complexity with solid theoretical anal-
ysis, then present effective and efficient algorithms for both undirected
and directed graph. Furthermore, we show how to extend our algorithm
to data privacy protection applications with controllable parameter k,
which could adjust the size of a clique we wish to destroy. By compar-
ing our algorithm with the up-to-date anonymization approaches, the
real data experiment demonstrates that our resolution could efficaciously
defend the clique-based security and privacy attacks.

1 Introduction

The capabilities of smartphone, smart home [1], and smart earth [2], coupled
with the almost ubiquitous availability of internet connectivity promoted the
ever increasing number of exponential data generation. The report [3] shows,
by 2020, about 50–100 billion devices are going to be connected to internet and
generating a huge number of data for analysis and knowledge discovery. The vol-
ume, variety, and velocity of big data are further amplified by the popularity of
social networks, especially by mobile social networks, crowdsourcing networks,
and cyber physical networks, etc. When the data above is released for justified
mining and analytical purposes, truly beneficial consequences will be available
in sociology, economics, and advertisers, etc. However, benefits of these data also
c© Springer Nature Switzerland AG 2018
D. Kim et al. (Eds.): COCOA 2018, LNCS 11346, pp. 262–280, 2018.
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give rise to potentially significant privacy issues in the sense that, for deleterious
purposes, the malicious entities may violate the privacy of the data usage by
analyzing and deliberately conducting these privacy violations [4–6]. The sensi-
tive information such as the user’s physical identity, location history, individual
behavior patterns, and personal social connections are elementary to be used for
illegal purposes.

Clique, in networks represents a complete subgraph C such that every two
vertices are the two endpoints of an edge in C. The interior connectivity makes
the vertex in clique be strongly connected to other vertices. In social networks,
undirected graph like Facebook1, LinkedIn2, or directed graph like Twitter3,
Instagram4, the users with similar properties, interests, and background are com-
monly linked together and construct cliques; many topic groups also cluster the
crowdsourcing network with strong connectivity; the devices within one WIFI
system or under one uniform platform are commonly linked together as well.
All correlations mentioned above within one clique will potentially exhibit the
sensitive information or expose the anonymization of identifiable data. Recently,
the clique-based techniques were used to attack the data privacy in multiple sce-
narios [7–9]. Although many privacy preserving approaches such as differential
privacy [10], k-anonymity [11], and deep learning [12], etc. have been developed
in the past couple of years, most of the privacy-preserving techniques are still
only focusing on the data content itself instead of the structure or the unit
correlation of data.

Take the famous and popular differential privacy mechanism as an exam-
ple; we now give a concrete example to illustrate the violation of individual’s
privacy in a social network setting with clique structure. Differential privacy
addresses the question that given the total number of particular information,
whether or not an adversary can learn if an individual has the specific informa-
tion. Differential privacy requires that when one particular user’s data is added
or removed from the database, the output of the database only changes slightly
with a specific notion of closeness ε. Suppose the same political bias is commonly
based on social class, then similar political directives are always within the same
community. Consider a group of people in the social network construct a clique
community with the average size of 200. In each clique, either at most 20% of
the people are Republicans, or at most 20% are Democrats. We assume that
on average the population of Republicans and Democrats are roughly same. To
protect the privacy of political preference, we add the Laplacian noise to make
the data satisfy the differential privacy for parameter ε = 0.1. Let function
Lap(λ) be the Laplace distribution that follows the probability density function
fλ(x) = 1

2λe|x|/λ . Any individual who changes her or his political preference’s
proportion would be 1/200 in this situation. To achieve ε-differential privacy,
the Lab(1/200ε) noise needs to be added to the clique in the social network

1 https://www.facebook.com/.
2 https://www.linkedin.com/.
3 https://twitter.com/.
4 https://www.instagram.com.

https://www.facebook.com/
https://www.linkedin.com/
https://twitter.com/
https://www.instagram.com
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independently. Although the setting above satisfies the ε-differential privacy for
the small parameter ε, releasing such information will still violate the privacy of
the particular person.

According to the privacy definition of Dalenius [13] and the demonstration
of [14], even though we cannot achieve the most desirable notion of privacy that
“anything about an individual that can be learned from the data can also be
learned without access to the data”, the privacy protection in our example should
ensure that the released data will not allow the adversary to guess correctly
with the probability greater than 1/2 apparently, no matter what a particular
individual is a Republican or a Democrat. However, under differential privacy
mechanism, with ε = 0.1, the Lap(1/200ε) is a small amount of noise. If releasing
the data by the protection above, according to the main political preference of
the corresponding clique, an adversary could easily guess the political preference
for particular individuals with probability approximate 80% in any clique.

However, adding the noise by differential privacy, or use k−1 anonymities to
the related client essentially are still changing the data itself. Because the privacy
is still under the deduction of the group or implicit structural information, a
straightforward idea would be collecting the affiliation between the individual
and the group, then inferring the sensitive information from the affiliation and
the collective attribution.

Besides the differential privacy, many other privacy protection mechanisms
are also interfered by the correlations in the relational data and the connections
in graph data. Many techniques are developed to preserve the privacy, but sur-
prisingly ignore the important clique structure altogether. One main reason is
that the privacy preserving is still mainly developed for services, and the loss of
privacy is the price of services somehow. In fact, in most situations, the services
quality is mainly based on the individual’s data but not the structural informa-
tion. Therefore, from the structure aspect, to take care the correlation between
individual and the group would be an exceptional choice to protect the privacy
while preserving the services quality.

Therefore, the key point is how to hide the information between an individual
and their closely related group. A näıve way would be hiding the information of a
specific attribute, height in the above example. But the utility cost is too high to
accept in most of the applications, then what would be the resolution to hide the
subordinated relationship and preserving the cost of the utility? We proposed to
build an adjacent graph to organize the information and break the relationship
between the individual and the implicit group. Since the relationship between
each could still hold as a chain, the redundancy can help the data publishing.

Based on the above observations, we believe destroying the implicit compact
structure, clique, in a graph could help to protect the data privacy to a great
extent. However, cutting off the connection between different units in a graph
or separating the correlation in the structure of a network is not a trivial job;
therefore, in this study, we concentrate on destroying the clique in a graph. Even
working for the simplified graph model, wrecking the clique in a graph is still a
very challenge task.
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Since the public networks include two types: directed and undirected, both
undirected networks like Facebook, LinkedIn as well as directed networks like
Twitter, Instagram are all typical target of our attention. Surprisingly, when we
look at the clique-destroying problems, we find that although the edge-deletion
problems in the undirected graph have been investigated previously [15], the
clique destroy problems in the directed graph unexpectedly have never been
addressed yet. We neither know the problem hardness nor the resolution at all.
We further show the finding that the problem of clique destroying in directed
graph dominate the problem of the undirected graph version. Therefore, we theo-
retical analyze the unresolved problem hardness first; then propose the algorithm
for both directed and undirected clique destroying problems. We summarize our
contributions in this work as follows:

– We proposed the problem of defending the implicit clique-based attacks and
modelled the challenges of the clique destroying problem.

– Surprisingly, we noticed an unsolved fundamental problem of destroying
clique in the directed graph, which has not been investigated in graph theory
yet.

– We first modeled the clique-destroying problem in a directed graph, and
proved the NPcomplete hardness of the problem by reducing it to the
SATthree problem.

– Also, we showed the relationship between the clique-destroying problem in
both undirected and directed graph, and illustrated that our proof dominates
the conclusion in undirected graph previously.

– We proposed integer linear programming algorithm and the relax version
algorithm to linear programming, then rounded the solutions to solve our
proposed problem very deftly.

– The approximate ratio of our proposed algorithm has been proved, and we
extended our algorithm to a generalized version with a controllable parame-
ter k.

– By conducting the experiments on six real-life datasets and the up-to-date
comparable algorithms, we demonstrated that our approach could be a very
efficient and effective algorithm to improve the data privacy protection tech-
niques further.

In this study, we worked on the defense of clique-based attack and proposed a
couple of fundamental results in theoretical complexity analysis, then introduced
the efficient and effective algorithms to solve the proposed problem. Firstly,
we illustrated the motivation and the background with examples of the typical
problems as an introduction in Sect. 1. Secondly, we summarized the up-to-date
related works in Sect. 2. Thirdly, some preliminary knowledge regarding the novel
problem and the detailed algorithm complexity analysis are presented in Sect. 3.
In Sect. 4, the detailed algorithm complexity analysis is introduced. Then, we
pointed out some new challenges and opportunities based on our proposed prob-
lems. We also showed the comprehensive evaluation of our proposed resolution
for the novel problem in Sect. 5. Finally, Sect. 6 concludes this paper.
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2 Related Works

A large amount of online social networks and diverse information from many
cyber physical aspects pose an unparalleled data privacy threat to users. Regard-
ing data privacy, along with Dalenius’s desirable privacy goal that database
doesn’t provide any extra knowledge to reveal the sensitive information [13],
Johannes, Edward, et al. also developed a zero-knowledge definition of privacy.
Although the general impossibility of the ideal privacy goal has been demon-
strated in [14], the challenges and the goals of data privacy protection still
attracted a lot of efforts from both academia [16–18] and industry [19–21].

2.1 Privacy Attacks and Defences

A common way to handle the unwelcome intrusion on the data privacy is some-
how anonymizing the data by removing most potentially identifying attributes,
or adding noise to hide the sensitive information. Early works on data security
privacy learning were done in the secure function evaluation (SFE) framework
[22] and secure multi-party computations (MPC) [23], which tried to split the
input between two or more parties, and target at minimizing the information
leaked during the joint computation. Our study is working for the situation that
data is stored centrally, and we are concerned with the leakage of data knowl-
edge. Besides, with the social networks come to our life, privacy concerns with
social networking services is an essential subset of data privacy problems [24,25].
There are many researchers focus on finding an efficient mechanism to defenses
the cyber system attack [26–28]. And some are paying more attentions to specific
threats, such as location privacy [4,29,30], IoT security [31–33], transportation
cyber systems [34], blockchain privacy [35], and other society problems [36,37].

In recent years, k-anonymity and differential privacy have become two of the
most popular tools with strong theoretical and empirical limitations [38]. By
generalizing and suppressing identifying attributes, k-anonymity seeks to offer a
degree of protection to underlying data [16].

But hiding information to k − 1 dummy instances cannot apply to
deanonymization of high-dimensional, diverse input datasets. In the situation of
clique-based attack, k-anonymity may not provide any satisfying privacy even if
all k isomorphic neighborhoods have the same value of some sensitive attributes.
Differential privacy constitutes a reliable standard for privacy guarantees for an
aggregate algorithm on databases [17,39]. Applications of differential privacy had
been extended to boosting for learning [40], linear and logistic regression [41],
principal component analysis [42], continuous data processing [43], and many
location-based privacy protections [44–46], etc. However, as we demonstrated
earlier in Sect. 1, differential privacy doesn’t work well on the clique structure.

On another hand, the clique is a very densely-connected group of nodes in a
network. It applies to social, biological, crowdsourcing, and cyber physical net-
work. Yildiz particularly investigates the social cliques and Kruegel [47] to con-
trol the privacy. Many clique-based attack methods had been proposed [7,8,48]
also. The authors of [8] used the 3-clique to find the most vulnerable member
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of a targeted community. The attack algorithm in [7] is one of the most typical
passive attack work, which executed in seed identification and propagation two
phases: (1) the attacker tries to find in the anonymized graph the counterpart of
a unique 4-clique presented in the source graph. Within a 4-clique in the source
graph, the degree of each vertex and the number of common neighbors for each
pair of nodes are computed by the attacker; the attacker will look for similar 4-
cliques with similar values in the target graph. (2) the algorithm iteratively adds
nodes to the mapping until there are unmapped vertices with proper mappings.
The second phase will never run if the attacker fails in the first phase. Further,
this attack does not allow any structural modifications within the cliques; and
the identification will fail if one or more edges erase from the clique. Later,
Narayanan et al. introduced a similar attack with a less rigid, non-pattern-based
seed identification phase [49]. But they still followed the same propagation phase
and with same unchangeable structural limitation. Srivatsa and Hicks [50] pro-
posed a re-identified approach by matching the location traces to a social network
on small datasets. Ji et al. [51] also confirmed the result on the same datasets.
Then, [9] argued that the similarity function used to re-identify nodes is a key
component of the de-anonymization attack, and they designed a measure tailored
for the social network to process their attack. However, the main novelty of this
work is the similarity measurement but not change the situation that structure
can still explore the privacy of the data. Gulyás and Imre [52] analyzed the pro-
tective strength of identity separation again the clique-based de-anonymization
attack by introducing a statistical user behavior model. However, this work is
only based on the statistical result and can adapt to the specific distribution
which is not practical in real application. The clique structure in findings above
actually provided the vulnerability of data and the attackers’ opportunities to
complete their attack. This is what our work addresses to fundamentally update
the structure to protect the data from the attack.

2.2 Destroying Clique in Graph

Since we figured that destroying clique was a fundamental way to protect the
data privacy from the structure aspect, we researched the existing technologies
of destroying cliques. Apparently, to destroy clique, we can directly go to the
problem of destroying 3-clique, the smallest clique, since there is no k-clique
exists in a graph if no k − 1-clique exist. In the undirected graph, the NPcom-
plete hardness of deleting the 3-clique was investigated decades ago [15]. Even
restricting the graph to planar of maximum degree seven, the problem is still
NPcomplete [53]. The latest progress of this problem was proved by [54], which
provided polynomial-time data reduction rules for 3-clique and obtained prob-
lem kernels consisting of 6k vertices for general graphs and 11k/ three vertices
for planar graphs.

Surprisingly, as far as we know, there was still no result about the theoretical
analysis of clique destroying in the directed graph. The very first reason might
be that it was not very common to use a clique in directed graph since clique
asked any nodes in a subgraph could reach out to any other nodes directly.
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Another possible reason was the directed graph actually could be a superset of
the undirected graph if added the two side direction to the undirected graph.
Then the reduction of clique-destroying in the directed graph would be much
harder than the problem in the undirected graph.

In this work, we employed a full step to prove the hardness of clique-
destroying problem in the directed graph and showed that our problem actually
could dominate the problem in undirected graph version. Besides, we proposed
the corresponding algorithms to solve the problem in both types graph and
demonstrated the effectiveness and efficiency of our resolutions in the data pri-
vacy protection application.

3 Preliminaries and Complexity Analysis

3.1 Preliminaries

We provide a generalized definition to model the clique destroying problem in the
directed graph so that we can give a complete study on the computational com-
plexity of this problem. Below, we introduce some necessary notations followed
by the problem definition.

Definition 1 (clique). Given a graph G(V,E) where G is a graph, V and E
are the vertices and edges set. A clique C in G is a complete subgraph of G. That
is, it is a subset C of the vertices such that every two vertices in C are the two
endpoints of an edge in G.

In the above definition, clique C can be adapted to both undirected and
directed graph. With specific size of C, we have the definition of k-clique.

Definition 2 (k-clique). Given a graph G and a specific number k, which rep-
resents the size of clique C. k-clique is a complete subgraph in G with size k.

To destroy all cliques with a size larger than or equal to k in a graph G,
means destroy all k-cliques in G, because it is impossible for a graph G has
(k + i)-clique without the desistance of k-clique, for i > 0. The atomic clique in
a graph G in this study, is required to be 3-clique.

Let �uvw be a 3-clique consisting of edges (u, v), (v, w), (w, u) where u, v, w
are different vertices.

Definition 3 (k-Clique Destroying Problem). Given a graph G(V,E), a
fixed constant k, find a minimum edge set D such that there is no k-clique
existing in G(V,E \ D)

The decision problem of k-clique destroying problem is stated as follow,

Definition 4 (Decision problem of k-Clique Destroying). Given a graph
G(V,E), a fixed k, and an input number h, decide if there a edge set D with a
size |D| < h such that there is no k-clique existing in G(V,E \ D)

If k = 3, k-clique destroying problem is the triangle removing problem, and
it’s one of 21 well-known NPcomplete problems [55] if the given graph is an
undirected graph.
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Fig. 1. A 6 vertices section of the component Gi in the hardness proof for Δq: A
minimum edge set chooses either all the solid lines marked ei, or all the solid lines
marked ei. All dotted lines are crossed because each of them is only part of one single
3-clique, say rgb clique, thus they are never chosen.

3.2 Computational Complexity Analysis

We’ve already known that the k-clique destroying problem is NPcomplete for
a fixed k ≥ 3, since triangle removing is NPcomplete. However, we surprisingly
found that 3-clique destroying problem in the directed graph is also NPhard.
This is non-trivial because the solution space is different so that the hardness
result of k-clique destroying problem in the undirected graph could not imply
its counterpart in the directed graph.
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Fig. 2. Each component Gi in the proof is a 2 m 6-vertices section and a total of 12 m
rgb cliques. By removing the 6 m edges marked xi or 6 m edges marked xi can be
eliminated all of them. The crossed sign on all even numbered sections is because they
are never used for connecting different components; they only separate the odd ones,
then preventing the spurious 3-cliques.

Theorem 1. k-clique destroying problem in directed graph is NPcomplete.

Proof. Observe that for a fixed k > 0, k-clique checking could be carried out
polynomially, even in textitdirected graph, therefore this problem is in NP.

Now, we reduce every instance f of SATthree to corresponding instance (G,h)
of 3-clique destroying problem in directed graph.
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Let f be a CNFthree formula with n variables x1, . . . , xn and m clauses
c0, . . . , cm−1. The reduction build a directed graph Gf containing 3-cliques, and
set a number hf for any f , such that

f is satisfiable ⇔ ∃D such that |D| < hf and any �uvw ∈ Gf , it follows
�uvw /∈ G′(Vf , Ef \ D)

In our construction, if f is satisfiable, then there is an edge set of size hf =
6mn that destroying all 3-cliques in Gf , whereas if f is unsatisfiable, then every
edge set destroying all 3-cliques in Gf is of a size larger than hf .

As shown in Figs. 1, 2, and 3, we build each 3-clique in Gf by a red edge, a
green edge and a blue edge, one can check that there is no any other combinations
could form a clique in Gf . The directed edges u → v, v → w, w → u are shown
in the figures. The idea of an edge set is to remove all rgb cliques.

Gf contains a ring-like component ri for each variable xi. The ring consists of
12m solid edges, as shown in Figs. 1 and 2, half of them marked xi and the other
half marked xi. Note that there are 12m rgb cliques and they can be minimally
broken by choosing the 6m xi edges or the 6m xi edges.

Any other way requires more edges removed. Intuitively, each minimum edge
set for Gf corresponds to a truth assignment to the variables of f . There will be
an edge set of size hf = 6mn + 1 destroying all 3 cliques iff f is satisfiable.

We complete the construction of Gf by adding one rgb clique for each clause
cj . Suppose cj is x1+x2+x3, the rgb clique we add consists of a red edge marked
x1, a green edge marked x2, and a blue edge marked x3 as shown in Fig. 3. If
the chosen assignment satisfies cj , then all x1 edges are removed, or all x2 edges
are removed, or all x3 edges are removed. Thus the cj clique is subsequently
removed.

To create cj ’s rgb clique, as we have chosen ri to contain 2 sections for each
clause, we use section 2j + 1 of ri to produce the xi or xi used in cj ’s clique.
The even numbered sections are not used since they served as buffers to prevent
spurious rgb clique from being created. As shown in Fig. 2, we mark these even
segments with the “cross” mark because they are never used.

More precisely, the red edge x1 from r1 is (u1
4j+1, v

1
4j+1), the green edge x2

from r2 is (v2
4j+1, w

2
4j+1), and the blue edge x3 from r3 is (w3

4j+1, u
3
4j+2) as shown

in Fig. 3.
Observe that, in order to make this no rgb clique in Gf , we identify the

two u-vertices, the two v-vertices, and the two w-vertices. That is, r1’s u-vertex
u1
4j+1 is equal to r3’s u-vertex u3

4j+2. Then, we construct cj ’s rgb clique.
Because there is no other way to get back to r1 from r2 in two steps, the key

idea is that these identifications can only create this single new rgb clique. All
other identifications will involve different sections and are at least 6 steps away.

One can verify the correctness of the reduction, i.e., f is satisfiable iff there
is a D, |D| < hf , any �uvw of Gf , is no longer in G′(Vf , Ef \ D).



Defend the Clique-based Attack for Data Privacy 271

Fig. 3. For an example clause cj = (x + y + z) in f , we identify vertices v1
4j+1 ∈ r1

with y2
4j+1 ∈ r2; z2

4j+1 ∈ r2 with z3
4j+1 ∈ r3; and x3

4j+2 ∈ r3 with x1
4j+1 ∈ r1. The

3-clique will be deleted iff the chosen variable assignment satisfies Cj .

3.3 k-Clique Destroying in Directed Graph

The solutions of the directed graph case and undirected graph case are very
different. It is interesting that we show the directed graph will also make this
problem harder. Surprisingly, we find that the clique destroying in the directed
graph is NPcomplete, while all previous results only tell the NPhardness of the
undirected graph and planar graph.

3.4 Brief Summary

In the above proof, we have demonstrated the interesting clique destroying prob-
lem in the directed graph. Practically, the clique destroying will not go directly
to destroy all 3-clique in a graph, we usually only want to protect the sensi-
tive information from the data and preserve the privacy from the referring of
individual’s affiliation. Our analysis proof the hardness of 3-clique, which could
be easily extended to k-clique, since 3-clique is the hardest case of the clique
destroying. Later in the next section, we will show the approximate algorithm
for both 3-clique and k-clique.

4 LP-Based Approximation Algorithm

Due to the NPhardness, algorithm is too expensive, this section conducts the
algorithm development for optimal clique destroying, and results in the experi-
ment section will show the effectiveness. We extend the clique destroying problem
in directed graph one step by adding weight w one each edge e, and solve the
problem via an integer linear programming (ILP) relaxation. Then, we relax it
to get linear programming (LP), and then we round the solution.
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First, the ILP is defined as follow, with variables {xe| e ∈ E}, one for each
edge:

minimize
∑

e∈E

we · xe

subject to:
xeu

+ xev
+ xew

≥ 1,∀(xeu
, xev

, xew
) is clique

xe ≥ 0,∀e ∈ E

xe ≤ 1,∀e ∈ E

xe ∈ {0, 1},∀e ∈ E

(1)

It worth to mention that we could formulate the ILP equations polynomially
since if there are m edges, we can enumerate all triples of edges in O(m3) time
and check if they form a 3-clique. Thus this is a polynomial number of variable
and constraints in ILP. It is obvious that any solution to this ILP results in a
3-clique free graph, and conversely that the optimal edge set of S is a feasible
solution to this ILP. Simply relax the ILP to an LP by allowing the variable xe

to be an arbitrary real number between 0 and 1. Therefore, we can solve the LP
using any polynomial-time LP solver. Finally, we round the solution as follow:
if xe ≥ 1

3 , then we add edge e to the set S.

Theorem 2 (Correctness of rounding). Any rounded Solution of LP algo-
rithm guarantees no 3-clique remaining.

Proof. First, we argue that the resulting graph is 3-clique-free. Notice that in
any 3-clique (eu, ev, ew), the three variables xeu

+xev
+xew

must sum to at least
1, according to the LP’s constraints, and hence at least one of the three variables
must be at least 1

3 . Thus, no 3-clique remains after removing edge set S.

Practically, it is not heavily necessary to destroy all atomic cliques in a graph;
this constraint is too harsh, it’s not necessary to hide structural information com-
pletely just to strengthen protection to some degree. Therefore, we extend the
LP algorithm above to destroy k-clique, prove a general case of the approxima-
tion ratio analysis, so that we can adjust the k to trade off the publication and
protection.

The idea of algorithm is straightforward, that we extend the set of edge
(eu, ev, ew) to set (e1, . . . , ek) by enumerating k-cliques within a O(mk) time,
then the number of variable extend from 3 to k correspondingly, which is shown
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as follows,

minimize
∑

e∈E

we · xe

subject to:
∑

1≤i≤k

xei
≥ 1,∀(xe1 , xe2 , . . . , xek

) is a clique

xe ≥ 0,∀e ∈ E

xe ≤ 1,∀e ∈ E

xe ∈ {0, 1},∀e ∈ E

(2)

Theorem 3. LP algorithm based on Eq. 3 has an approximation ratio of k for
destroying k-clique.

Proof. We argue that the result is a k-approximation of the optimal solution.
Let OPT be the cost of the optimal edge set to produce a k-clique-free graph.
i.e., OPT is the cost of the solution found by the ILP. Let L be the cost of the
solution found by the LP. Because LP is a relaxation of the ILP, then we know
that L ≤ OPT . Because we have effectively increased some variables xe from the
value of at least 1

k to 1, by rounding the solution of LP, we have only increased
the cost by a factor of k. That is, if xe is the variable from the LP, and if ye is
the rounded variable, we know that ye ≤ k · xe. We can calculate the total cost
of our solution as shown in Eq. 3:

cost(S) =
∑

e∈E

ye · w(e)

≤
∑

e∈E

k · xew(e)

≤k · L

≤k · OPT

(3)

Our solution is a k-approximation.

Above all, the lightweight method we applied has been detailed. With k approx-
imation ratio, it is easy to implement, and any existing fast LP-solver can be
utilized to solve it.

5 Experiment

In this section, we evaluate the clique destroying algorithm as a framework upon
other algorithm and as an individual algorithm to defend the clique-based attack
also. All the experiments are performed on a PC running Windows 10 with
Intel(R) Core(TM) i3-2120 CPU 3.30 GHz and 12GB memory. The six real life
datasets are used to evaluate our algorithm and approach. The basic statistic
information of the large scale dataset is listed as shown in Table 1.
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Table 1. Statistic of real life data sets

Name Type # of vertices # of edges Average degree d # of 3-clique Fraction of 3-clique

com-Amazon Undirected 334,863 925,872 21.85 1612,010 0.2647

email-Enron Undirected 36,692 183,831 5.01 727,044 0.0302

social-Facebook Undirected 4,039 88,234 21.84 1612,010 0.2647

Epinions Directed 75,879 508,837 6.71 1624,481 0.0229

wiki-Vote Directed 7,115 103,689 14.57 608,389 0.0456

wiki-Talk Directed 1234,385 5021,410 2.09 9203,519 0.0011

– com-Amazon(AM) is a dataset collected by crawling Amazon website5.
The links among vertices are based on the “Customers Who Bought This
Item Also Bought” feature that an undirected edge will be established if a
product is frequently co-purchased with another product [56].

– email-Enron(EN) is a dataset of email communication network covers
about half million emails. The data was originally posted to the web pub-
licly by the Federal Energy Regulatory Commission6 during its investigation.
Each vertex is an email address, and the connection is based on their com-
munication record without direction [57].

– Facebook(FA) is dataset collected from survey participants Facebook app7.
The original data include the node profiles, circles, and ego networks. We only
use the combined ego-network main structure in our evaluation. [58].

– Epinions(EP) is a who-trust-who online social network of a general con-
sumer review site from Epinions.com8. The members of Epinions could decide
whether to “trust” or “not trust” others. The trust relationships interact and
form the network of trust which is combined with review rating to decide
which reviews are shown up [59].

– wiki-Vote(WV) is a network extracted by Wikipedia9 page edit history.
Wikipedia community via a public discussion or a vote decides who to pro-
mote to adminship. In this data set, above half of the votes are raised by
existing admins, while the remaining comes from ordinary Wikipedia users
[60].

– wiki-Talk(WT) is a network contains all the users and discussion from the
inception of Wikipedia. The nodes in the network represent Wikipedia users
and a directed edge from node i to node j represents that i edited a talk page
of user j at least once [61].

We conduct our experiment based on the open source software SecGraph10.
SecGraph [62] provides a recent selection and comparison of structural social net-
work de-anonymization attacks. With the sampling based perturbation method

5 https://www.amazon.com/.
6 https://www.ferc.gov/.
7 https://www.facebook.com/apps/application.php?id=201704403232744.
8 http://www.epinions.com/.
9 https://www.wikipedia.org/.

10 http://cap.ece.gatech.edu/.

https://www.amazon.com/
https://www.ferc.gov/
https://www.facebook.com/apps/application.php?id=201704403232744
http://www.epinions.com/
https://www.wikipedia.org/
http://cap.ece.gatech.edu/
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implemented in SecGraph, we recreated the datasets source and target graph Gs

and Gt as well as [62] by randomly sampling edges with probability s. We add our
clique-destroying (CD) algorithm upon the previous anonymization algorithms
and take CD as an own algorithm to anonymize the graph also. For comparison,
we use Switch[63], k-DA [64], and DP [65] as baselines.

For the de-anonymization algorithm, we select Narayanan-Shmatikov (Nar)
attack [7] and Yartseva-Grossglauser attack (Yar) [66] to test the effectiveness
of our CD algorithm (Table 2).

Table 2. Robustness of attacks against different anonymization schemes

s Switch(k) k-DA(k) DP(ε) CD(k)

5 10 50 300 50 300 3 5 10

Re Pr Re Pr Re Pr Re Pr Re Pr Re Pr Re Pr Re Pr Re Pr

Nar 0.85 31.2 94.1 15.8 89.3 39.6 97.8 11.2 93.2 38.1 97.9 0.45 96.5 25.2 45.5 33.1 56.3 27.8 83.2

0.9 33.5 95.5 16.3 91.7 40.5 98.2 35.5 94.6 38.9 98.6 0.54 97.2 27.8 51.2 36.2 58.4 29.4 86.5

0.95 37.6 96 30.1 93.9 42.2 99 37.1 96.5 39.4 99.2 0.66 98.3 28.6 58.6 37.9 62.9 30.9 90.1

Yar 0.85 13.2 90.2 12.2 85.6 15.6 93.7 1.54 23.2 15.1 90.9 9.6 76.2 16.8 38.9 22.5 46 28.7 79.2

0.9 15.1 91.6 12.9 87.9 16.6 95.2 2.65 35.5 16.8 92.6 10.1 77.0 18.3 41.1 24.8 57.2 28.9 85.1

0.95 16.8 94.3 14.1 92.4 17.1 95.4 4.37 48.2 18.2 94.2 9.5 74.5 19.1 46.8 29.6 59.7 32.1 88.9

Due to space limitation, we do not show the evaluation results of all the net-
work, particularly, we take the network Enron as a typical example to demon-
strate the performance of our algorithm. As shown in Table 3, compare to other
anonymization algorithms, our algorithm significantly improve the protection of
data. We reduce the recall and precision more than 30% for both Nar and Yar
two algorithms.

It worth to mention that the average degree of the email network Enron is
5.01, which means not a lot of nodes could construct a very large clique. That is
the reason why the performance of our anodization approach doesn’t work that
well compare to the situation k equals to 5, or 3 when we increase the destroying
clique size k to 10. But if we destroy the clique with size 3, means if we destroy
all cliques in the graph, then only the circle or chain remain. It will be a very
exacting term which may not very applicable to some situation.

Besides, we take our CD algorithm as a framework adding to previous
anonymization schemes to test the improvement of our protection. Adding CD
to other approaches could significantly improve their performance since the CD
algorithm is also a good anonymization strategy independently. The idea we’d
like to show is the clique structure is a very important key which inherently
affect the performance and the result of anonymization, then the light algorithm
CD with controllable k could reduce the risk of group reference easily.

By attacking Nar algorithm, we evaluate the precision of the six real life
datasets as shown in Table 4. For different datasets, the performance is entirely
different. Especially for the data like FA and WV, the results under the CD
column are quite effective for 92.1 and 91.6. The main reason for that difference
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Table 3. Improved robustness of attacks against different anonymization schemes add
the CD as a framework

s Switch(k)+CD(k = 15) k-DA(k)+CD(k = 15) DP(ε)+CD(k = 15)

5 10 50 300 50 300

Re Pr Re Pr Re Pr Re Pr Re Pr Re Pr

Nar 0.85 28.6 90.0 13.4 65.2 36.3 89.6 10.1 89.3 35.7 95.1 0.38 92.2

0.90 31.2 93.3 14.1 88.5 38.4 90.0 31.9 92.3 35.7 94.2 0.49 92.7

0.95 30.9 91.0 28.7 87.4 35.2 91.3 32.5 92.1 33.6 92.7 0.51 94.2

Yar 0.85 11.5 86.1 9.8 81.2 13.2 90.5 1.19 19.8 13.2 88.1 8.9 70.5

0.90 12.6 87.4 11.5 84.2 13.5 90.9 2.31 31.2 14.2 88.4 9.2 77.0

0.95 10.3 94.3 12.4 88.1 15.7 89.6 3.89 42.9 16.1 86.8 8.1 69.7

is both graphs are very locally compacted, then the number of the clique is
relatively high. However, the performance of AM is not that well even with a
very high degree and a large number of the clique. We believe the behind reason
is that Amazon is a co-purchased network, while the clique existing in small size
is pretty high, but the large size cliques are relatively small. Since we set our
DC algorithm with k equals to 10, which is not a quite fit to destroy the main
part of cliques in that network.

Table 4. Precision of the attack algorithm nar with different schemes.

Switch(5) k-DA(25) DP(200) CD(10)

AM 90.5 96.8 98.1 75.5

EN 94.5 94.6 96.1 90.2

FA 97.2 92.2 97.3 52.1

EP 92.6 90.5 94.6 92.1

WV 94.1 86.3 92.5 65.5

WT 93.7 87.7 91.4 91.6

6 Conclusion

In this work, we tackled the problem of destroying the clique in the graph for
cutting off the connection between individual to their affiliation. Surprisingly, we
noticed a new fundamental algorithm problem, clique destroying in a directed
graph, had not been investigated yet. Then we demonstrated the problem hard-
ness by reducing the instance to SATthree problem. We showed that the clique
destroying in directed graph is NPcomplete, while all previous results only dis-
played the NPhardness of the undirected graph and planar graph. We provided
solid theoretical problem complexity analysis and showed the complete proof of
the problem hardness in multiple situations. Furthermore, we demonstrated the
effectiveness and efficiency by testing our algorithms on six real life networks.
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Abstract. Network reliability is the probability that a network system
can perform a desired operation, such as communication between facili-
ties, against stochastic equipment failures. On analyzing network systems
that are represented by undirected graphs, the all-terminal reliability
(ATR) is commonly used as one of the network reliability. As a natu-
ral extension of the ATR for the directed version, the strongly connected
reliability (SCR) is known. The SCR should be computed on various net-
work systems, such as ad-hoc network, that demand the property called
strongly connected. Unfortunately, computing the SCR is known to be
#P-complete, and little studies challenge the computation of the exact
or an approximate SCR on limited graph classes. In this study, we pro-
pose the first practically efficient algorithm to compute the exact SCR
in general. The algorithm constructs a binary decision diagram (BDD)
representing all the strongly connected spanning subgraphs (SCSSs) in a
given directed graph. Subsequently, the algorithm computes the exact
SCR by a dynamic programming on the BDD. To efficiently construct
BDDs, we designed a new variant of the frontier based search (FBS). We
conducted computational experiments to evaluate the proposed algo-
rithm. The results demonstrated that the proposed algorithm succeeded
in computing the SCR in real-world networks with a few hundred edges
within a reasonable time, which was previously impossible.

Keywords: Network reliability · All-terminal reliability
Strongly connected reliability · Binary decision diagram
Dynamic programming

1 Introduction

Network reliability is the probability that a network system can perform a desired
operation, such as communication between facilities, against stochastic equip-
ment failures. A network system is often represented by a graph; the vertices
c© Springer Nature Switzerland AG 2018
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represent facilities such as servers, and the edges represent connections between
facilities such as cables. On undirected graphs, connectivity-based network relia-
bility called the all-terminal reliability (ATR) is commonly used [1,2]. The ATR
is the probability that all the vertices are connected (i.e., they can communicate
with each other) after some of the edges stochastically dropped from the graph.
As a natural extension of the ATR, the directed version can be considered. A
directed graph is said to be strongly connected if any pair of vertices has bidirec-
tional paths. The directed version of the ATR is the probability that the graph
maintains strongly connected, and called the strongly connected reliability (SCR)
[3]. Because strongly connected is demanded in various network systems such as
ad-hoc network, computing the SCR is important to manage network systems.

Unfortunately, the exact computations of the ATR and the SCR are #P-
complete [4]. For the ATR, there exist an efficient approximation algorithm [5]
and a mildly exponential exact algorithm [6], and both algorithms have been
applied to various practical network systems. On the other hand, to the best of
our knowledge, no research paper computes the exact SCRs of practical networks
whereas only a few studies compute the SCRs of limited graphs: Polynomial time
exact algorithms are known for double-loop directed graphs [7] and complete
directed graphs [3]. An approximation algorithm is known for Eulerian directed
graphs [5].

A mildly exponential exact algorithm for the ATR [6] uses a property of the
ATR: the ATR is the sum of the probabilities of all the spanning trees in a
given graph, i.e, the ATR can be computed by the spanning tree enumeration.
Because the number of the spanning trees is exponential in the size of the graph,
the explicit enumeration is unrealistic. The algorithm conducts an implicit enu-
meration by constructing the binary decision diagram (BDD) [8] representing all
the spanning trees compactly. Subsequently, the algorithm computes the ATR
by a dynamic programming on the BDD. Similarly, the SCR can be computed
by the enumeration of all the strongly connected spanning subgraphs (SCSSs) in
a given directed graph [3]. However, it is NOT trivial generalizing the above
algorithm to the SCR because it utilizes the property of the undirected graph.

In this paper, we propose the first nontrivial algorithm to compute the exact
SCR in general. The proposed algorithm is to construct the BDD representing
all the SCSSs in a given directed graph. The algorithm is based on a new variant
of the frontier-based search (FBS), which is known to be an efficient way to
construct several types of BDDs. Once a BDD for the SCSSs is obtained, we can
efficiently compute the exact SCR by a dynamic programming on the BDD. As
a secondary application of our algorithm, we can also easily obtain the minimum
SCSS. Obtaining the minimum SCSS is NP-hard [9], and has applications for the
visualization of network structures such as social networks [10], robotic networks
[11], and biological networks [12,13]. Particularly, because the BDD has several
functions to search solutions under various conditions, it can be flexibly utilized.
We conducted computational experiments to evaluate our algorithm. We used
several real-world and synthetic networks with a few hundred edges, and showed
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that our algorithm can construct the BDDs for the SCSSs in a few minutes. We
also computed the SCR on each instance using the constructed BDDs.

2 Preliminaries

In this section, we describe the formal definition of the SCR. We also introduce
the BDD that is a data structure used in our algorithm.

2.1 Strongly Connected Reliability

Let G = (V,E) be a directed graph with vertices V and directed edges E ⊆
V 2, where E = {e1, . . . , em}. For any edge subset X ⊆ E, V [X] denotes the
induced vertices that is the set of endpoints of each edge in X, i.e., V [X] :=⋃

(u,v)∈X{u, v}. Similarly, G[X] denotes the edge induced subgraph such that
G[X] := (V [X],X).

For any u, v ∈ V , v is reachable from u on G, which is denoted by u �G v, if
G contains a directed path from u to v. Similarly, u ��G v denotes that v is not
reachable from u on G. A directed graph G is said to be strongly connected if
u �G v for all (u, v) ∈ V 2. Given a strongly connected graph G, G[X] (X ⊆ E)
is an SCSS if V [X] = V and G[X] is strongly connected. If G[X] is an SCSS, X
is called a strongly connected edge subset (SCES).

The SCR of G is the probability that G remains strongly connected after
stochastic edge dropping. Let σ(G) be the SCR of G, and let SG ⊆ 2E be the set
of all the SCESs on G. In this paper, we assume that each edge ei independently
drops with probability p(ei). Then σ(G) is defined as:

σ(G) :=
∑

X∈SG

p(X) (1)

where

p(X) :=
∏

ei∈X

(1 − p(ei))
∏

ej∈E\X

p(ej). (2)

The most naive method for the exact computation of the SCR is to explic-
itly enumerate SG; however, this requires an exponential amount of time in m
because the number of possible edge subsets is also exponential in m. Therefore,
we avoid the explicit enumeration of SG.

2.2 Binary Decision Diagrams

For enumerating SG implicitly, we use the BDD [8] that is a compact graph
representation of Boolean functions based on the Shannon decomposition. Note
that a Boolean function can be used to represent a set family as an indicator
function: We use each edge in E as a variable such that, for an edge subset
X ⊆ E, ei /∈ X (ej ∈ X) is assigned to False (True).
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A BDD is a rooted directed acyclic graph B = (N,A) with a node set N , and
an arc set A. 1 It has exactly one root node ρ and exactly two terminal nodes
⊥ and �. Each non-terminal node α ∈ N has a label �(α) ∈ {1, . . . , m} (i.e.,
α is associated with a variable e�(α) ∈ E), and has exactly two outgoing arcs
called the 0-arc and the 1-arc. The node pointed by the x-arc of α is called the
x-child for each x ∈ {0, 1}, and denoted by αx where �(α) < �(αx) if αx is not a
terminal.

A BDD represents a Boolean function as follows: A directed path from ρ to
� represents a (possibly partial) variable assignment for which the represented
Boolean function is True. If the path descends a 0-arc (1-arc) of a node α, the
variable e�(α) is assigned to False (True).

Any BDD has the unique reduced form. A BDD is reduced if the following
two rules are applied as long as possible:

– Delete α if α0 = α1.
– Share any two nodes β, β′ where if �(β) = �(β′), β0 = β′

0 and β1 = β′
1.

These rules eliminate the redundant nodes in the BDD.
Figure 1 shows an example of a reduced BDD, which represents the set fam-

ily {{e1, e2, e3, e4, e5, e6}, {e1, e2, e3, e4, e5}, {e1, e3, e4, e5, e6}, {e2, e3, e4, e5, e6},
{e2, e3, e4, e5}}. Its indicator function is f(e1, e2, e3, e4, e5, e6) = e2e3e4e5 ∨
e1ē2e3e4e5e6. The size of a BDD B is the number of nodes |N |. For convenience,
in the following sections, we write the size of B as |B|.

Fig. 1. Sample graph and the BDD representing SCESs of the graph. The 0-arcs and
the 1-arcs are denoted by the dotted lines and the solid lines, respectively. The arcs to
⊥ are omitted.

1 To avoid the confusion, we use the terms “vertex” and“edge” for a vertex and edge
in the graph G, and “node” and“arc” for a vertex and edge in the BDD B. Vertices
and nodes are denoted using Roman letters (u, v, . . .) and Greek letters (α, β, . . .),
respectively.
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3 Proposed Algorithm

In this section, we present an algorithm to compute the SCR exactly. Firstly, the
algorithm constructs a BDD for SG using a new variant of the FBS. Secondly,
it computes σ(G) by a dynamic programming on the BDD.

3.1 SCR Computation

Once a BDD B for SG is obtained, we can compute σ(G) by a bottom-up dynamic
programming as follows: Each node α ∈ N stores a value ψ(α) which is the sum
of the probability of each edge subset represented by the descendants of α. The
value of ⊥ and � are initialized to ψ(⊥) = 0 and ψ(�) = 1, respectively. For
each non-terminal node α ∈ N , its value ψ(α) is computed by

ψ(α) = ψ(α0)p(e�(α)) + ψ(α1)(1 − p(e�(α))). (3)

By the definition, σ(G) is equal to ψ(ρ). This yields a dynamic programming
algorithm (Algorithm1) that requires the computation time of O(|B|).

Algorithm 1. Computing SCR
1: Construct BDD B for SG

2: ψ(⊥) ← 0, ψ(�) ← 1
3: for α ∈ N \ {⊥,�} in the reversal topological order do
4: ψ(α) ← ψ(α0)p(e�(α)) + ψ(α1)(1 − p(e�(α)))
5: end for
6: return ψ(ρ)

3.2 Existing Framework of Frontier-Based Search

For constructing a BDD for SG, we design an FBS [14], which is a general pro-
cedure for enumerating all constrained edge subsets implicitly. Here, we describe
the general framework of the FBS.

Given a function C : 2E → {0, 1}, if C(X) = 1 for an edge subset X ⊆ E,
then we say that X has the property C. Let P = 〈G,C〉 be a problem to obtain
all the possible edge subsets of E having the property C. The solution of P is a
set of edges subsets defined as:

EP := {X ∈ 2E | C(X) = 1}. (4)

Given a problem P , the algorithm constructs a BDD for EP by processing the
edges individually as the exhaustive search; the algorithm constructs the node
set Ni := {α | �(α) = i} for i = 1, . . . ,m, and the x-arc set Ax := {(α, αx) | α ∈
N \ {⊥,�}} for each x ∈ {0, 1}.

The processed edges at the i-th step is denoted by E≤i−1 := {e1, . . . , ei−1},
and the unprocessed edges at the i-th step is denoted by E≥i := {ei, . . . , em}.
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Let E(α) ⊆ 2E≤i−1
be a set of edge subsets corresponding to the paths from the

root to a node α ∈ Ni. Each node α ∈ Ni is associated with a subproblem of P
denoted by Pα := 〈G[E≥i], Cα〉 where the property Cα is defined as

Cα(X) = 1 ⇐⇒ ∀Y ∈ E(α), C(X ∪ Y ) = 1. (5)

For any pair of nodes β, β′ ∈ Ni, β and β′ are equivalent if Cβ(X) = 1 ⇐⇒
Cβ′(X) = 1 for any X ∈ 2E≥i

. The algorithm merges some equivalent nodes into
one node.

The primary process of the algorithm is as follows. Initially, the algorithm
generates the node set N1 = {ρ}. At the i-th step, the algorithm constructs Ni+1

using Ni as follows. For each node α ∈ Ni, the algorithm generates its children;
E(α0) (resp. E(α1)) is the set of the edge subsets that ei is excluded from (resp.
included in) the edge subsets of E(α). On generating a new child, the algorithm
conducts the following procedures to reduce the number of nodes:

– ⊥-pruning: Let ⊥-prune(α, ei, x) be the functions defined as follows:

⊥-prune(α, ei, x) :=

{
True EPαx

= ∅,

False otherwise.
(6)

If ⊥-prune(α, ei, x) outputs True, the x-child of α is ⊥. Then the algorithm
adds the x-arc (α,⊥) to Ax.

– �-pruning: Let �-prune(α, ei, x) be the functions defined as follows:

�-prune(α, ei, x) :=

{
True EPαx

= 2E≥i+1
,

False otherwise.
(7)

If �-prune(α, ei, x) outputs True, the x-child of α is �. Then the algorithm
adds the x-arc (α,�) to Ax.

– merging: Let β be a child of α. If β and a node β′ ∈ Ni+1 are equivalent, the
algorithm sets β′ to β.

To apply these procedures efficiently, each node β maintains an additional infor-
mation φ(β), referred to as a configuration that satisfies the condition that if
φ(β) = φ(β′), then β and β′ are equivalent. Note that the inverse is not required,
which causes redundant node expansions.

Essentially, the FBS is a dynamic programming using the configuration as
the state. It constructs a BDD as the structure derived from the table of the
dynamic programming.

The general framework of the FBS is shown in Algorithm2. The function
generateNode(α, ei, x) generates the x-child of α. The constructed BDD is not
necessarily reduced because redundant node expansions can be caused. We apply
the reduction rules until the reduced BDD is obtained if necessary.
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Algorithm 2. Frontier-based Search
1: N1 ← {ρ}, Ni ← ∅ for i = 2, . . . , m
2: Generate the terminals ⊥ and �
3: Ax ← ∅ for each x ∈ {0, 1}
4: for i = 1, . . . ,m do
5: for α ∈ Ni do
6: for x ∈ {0, 1} do
7: if ⊥-prune(α, ei, x) then
8: Ax ← Ax ∪ {(α,⊥)}
9: else if �-prune(α, ei, x) then

10: Ax ← Ax ∪ {(α,�)}
11: else
12: β ← generateNode(α, ei, x)
13: if ∃β′ ∈ Ni+1, φ(β) = φ(β′) then
14: β ← β′

15: else
16: Ni+1 ← Ni+1 ∪ {β}
17: end if
18: Ax ← Ax ∪ {(α, β)}
19: end if
20: end for
21: end for
22: end for
23: N ← (

⋃
i=1,...,m Ni) ∪ {⊥,�}, A ← A0 ∪ A1

24: return B = (N,A)

3.3 Proposed Frontier-Based Search for SCSSs

We adapt the FBS to our problem by designing four primary components:
configuration, ⊥-prune function, �-prune function, and generateNode function.
Because our aim is to enumerate SG, the property C is defined as

C(X) = 1 ⇐⇒ X is an SCES of G. (8)

Configuration. Here, we design the configuration for enumerating SG by the
FBS. We first explain the basic idea of our configuration. Subsequently, we show
that our configuration satisfies the condition above. In the following, we assume
that ei = (si, ti) for each i = 1, . . . ,m to simplify the notation.

For each i = 1, . . . ,m, the i-th frontier is the vertex subset defined as

Fi := V [E≤i−1] ∩ V [E≥i] (9)

that has both processed and unprocessed edges. We use the reachability on the
frontier vertices as the configuration: for any node α ∈ Ni, φ(α) is defined as
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a reachability matrix indexed by F 2
i , which represents the reachability on G[Y ]

(Y ∈ E(α)):

φ(α)u,v :=

{
1 ∀Y ∈ E(α), u �G[Y ] v,

0 otherwise.
(10)

We assume that the proposed algorithm must perform ⊥-pruning if possible.
This assumption deduces that each vertex excluded from the past frontier is
reachable from (resp. to) the new frontier on G[Y ] (Y ∈ E(α)). Based on this
assumption, we can obtain the equivalent definition of the (5) as follows.

For any node α ∈ Ni, let Eα be a contracted edge set of G, which is derived
from the configuration φ(α), defined as

Eα := {(u, v) ∈ F 2
i | φ(α)u,v = 1}. (11)

Similarly, let Gα be a contracted graph of G defined as

Gα := (V [E≥i], E≥i ∪ Eα). (12)

According to the assumption above, each edge subset X ∈ EPα
satisfies that

X ∪Eα is an SCES of Gα. Therefore, we obtained an equivalent definition of (5)
that depends on only the configuration as follows:

Cα(X) = 1 ⇐⇒ X ∪ Eα is an SCES of Gα. (13)

Thus, under the assumption above, our configuration satisfies the condition that:
for any pair of nodes β, β′ ∈ Ni, if φ(β) = φ(β′), then β and β′ are equivalent.

⊥-prune(α, ei, x). Here, we design a ⊥-prune function that does not contradict
the assumption above. We use the following properties of Cα:

– Cα(X) = 1 implies Cα(X ∪ {ei}) = 1 for any X ⊆ E≥i, because an edge
subset that contains an SCES is also an SCES.

– If φ(α)si,ti
= 1, then Cα(X) = 1 implies Cα(X \ {ei}) = 1 for any X ⊆ E≥i,

because ei = (si, ti) ∈ Eα.

Thus, we have a chance to conduct ⊥-pruning for the case that exclude ei and
φ(α)si,ti

= 0.
Let G − e := (V,E \ {e}) be a graph that is obtained by removing an edge e

from G. A graph Gα − ei has no SCES if and only if {ei} forms a cut set from
si to ti. Therefore, we design ⊥-prune(α, ei, x) as:

⊥-prune(α, ei, x) =

{
True x = 0, φ(α)si,ti

= 0, and si ��Gα−ei
ti,

False otherwise.
(14)

To evaluate ⊥-prune(α, ei, x) efficiently, we precompute the transitive closure
of G[E≥i+1]. Using the transitive closure of G[E≥i+1], the reachability from si

to ti on Gα − ei is verified in O(|Fi|2) time by the BFS/DFS on the frontier.
The precomputation of the transitive closures can be efficiently performed in



Exact Computation of Strongly Connected Reliability 289

decreasing order i = m, . . . , 1; We compute the transitive closure of G[E≥i] as
the extension of the transitive closure of G[E≥i+1] by the BFS/DFS on the
V [E≥i]. Although the precomputation requires O(

∑m
i=1 |V [E≥i]|2) time, it is

typically much faster than the FBS.

�-prune(α, ei, x). Similarly, we have a chance to conduct �-pruning for the
case that include ei. The following property is observed: Cα({ei}) = 1 implies
Cα({ei} ∪ X) = 1 for any X ⊆ E≥i+1. Therefore, we design �-prune(α, ei, x) as

�-prune(α, ei, x) =

{
True x = 1, and Eα ∪ {ei} is an SCES of Gα,

False otherwise.
(15)

To evaluate �-prune(α, ei, x) efficiently, we precompute an integer

r := min{i ∈ {1, . . . , m} | V [E≤i] = V }. (16)

Subsequently, i < r implies �-prune(α, ei, 1) = False as V [X ∪ {ei}] �= V
for any X ∈ E(α). If i ≥ r, �-prune(α, ei, 1) is evaluated by the BFS/DFS on
the frontier with computation time O(|Fi|2).
generateNode(α, ei, x). The primary role of generateNode(α, ei, x) is to com-
pute the configuration of the new node. The function first generates a new node
β labeled with i + 1 and copies configuration φ(α) to φ(β). Subsequently, the
configuration φ(β) is updated as follows:

1. Remove (resp. Insert) the rows and columns corresponding to the vertices
excluded from the frontier, i.e, Fi \ Fi+1 (resp. included in the frontier, i.e,
Fi+1 \ Fi).

2. If x = 0, end the update. Otherwise, including a new edge changes the reach-
ability; thus, we update φ(β) as the transitive closure of the frontier.

The number of removed (resp. Insert) rows and columns is constant because
|Fi \Fi+1| (resp. |Fi+1 \Fi|) is 0, 1, or 2. Updating φ(β) is performed in O(|Fi|2)
time by the BFS/DFS on the frontier. Thus, our generateNode function can be
processed in O(|Fi|2) time.

3.4 Edge Ordering

Finally, we introduce a technique of edge ordering to accelerate the FBS. The
time complexity of the FBS depends on the size of the frontier, because |Ni| is
equal to the number of the types of the configuration φ, which is at most 2|Fi|2 .
Since the functions ⊥-prune, �-prune, and generateNode take O(|Fi|2) time per
node as mentioned above, the time complexity of our FBS is O(

∑m
i=1 |Fi|22|Fi|2).

Thus, it is important to optimize the edge ordering for reducing the frontier size.
It is known that the frontier size is closely related to the graph parame-

ter named pathwidth [15]. In this paper, we use the path-decomposition-based
ordering proposed in [16]. The algorithm first conducts optimization with beam
search-based heuristics to compute a path decomposition with a small path-
width. Subsequently, it computes an edge ordering using the path decomposition
information.
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4 Other Applications

In the previous section, we present an algorithm that constructs a BDD for
SG to compute the exact SCR. The constructed BDD also allows us to solve
SCSS-related problems efficiently.

4.1 Finding Minimum SCSS

Given a weight function w : E → N, let w(X) :=
∑

e∈X w(e). An SCSS that has
the smallest total weight of edges is called the minimum SCSS. The SCES of the
minimum SCSS is defined as follows:

X∗ ∈ arg min
X∈SG

w(X). (17)

Once a BDD B for SG is obtained, we can obtain X∗ by an algorithm that is
similar to the Algorithm 1 as follows: Each node α ∈ N stores a value θ(α) that
is the minimum weight of the edge subsets represented by the descendants of α.
The value of ⊥ and � are initialized to θ(⊥) = ∞ and θ(�) = 0, respectively.
For each non-terminal node α ∈ N , its value θ(α) is computed by

θ(α) = min{θ(α0), θ(α1) + w(e�(α))}. (18)

Subsequently, w(X∗) = θ(ρ). This yields a dynamic programming algorithm
that requires computation time O(|B|). The shortest path from ρ to � represents
X∗: Starting with ρ, we descend x-arc such that θ(α) = θ(αx) + x × w(e�(α))
where α is the current node. Then X∗ has the edges assigned to True.

4.2 Obtaining SCSSs with Constraints

An important function of the BDD is that it allows the efficient manipulation
of set families. In particular, when two set families are represented by B1 and
B2 with the same variable ordering, the union and intersection operations of
these BDDs are performed in O(|B1||B2|) time [17]. Moreover, we can obtain the
BDDs for various logical constraints for example:

– Transforming a B to represent the subgraphs including the specified edges
requires O(|B|) time [8].

– A BDD for the subgraphs with a bounded weight ŵ ∈ N (i.e., {X ⊆ E |
w(X) ≤ ŵ}) can be constructed in O(ŵ|E|) time [18].

Using these functions, we can obtain SCSSs with various constraints.

5 Experiments

We conducted computational experiments to evaluate the proposed algorithm.
All the codes were implemented in C++ (g++4.8.4 with the -O3 option) using
the TdZdd library (https://github.com/kunisura/TdZdd), which is a highly
optimized implementation for the FBS framework. All experiments were con-
ducted on a 64-bit Ubuntu 16.04 LTS with an Intel Core i7-3930K 3.2 GHz CPU
and 64 GB RAM.

https://github.com/kunisura/TdZdd
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5.1 Scalability on Synthetic Networks

First, to observe the performance of the proposed algorithm, we applied our
method to two classes of synthetic networks. The first class was 5 × w gird
graphs that had 5w vertices, 18w − 10 directed edges (undirected edges were
replaced with two directed edges in both directions), and a pathwidth of 5. The
second class was random graphs that had the same number of vertices of 5 × w
grid, 9w − 5 directed edges, and a pathwidth of Θ(n). We used the algorithm
proposed in [19] to generate the strongly connected random graphs. For each
w ∈ {5, . . . , 20}, one hundred random graphs were generated, and we evaluated
the average performance on the random graphs.

The results of the synthetic networks are shown in Fig. 2. The grid graphs
shows that the computation time increased slowly; our algorithm executed in 16
seconds for n = 100. However, for the random networks, the computation time
increased rapidly for networks with 80 ≤ |V | vertices. These results show that
the large pathwidth affected the computation time of our algorithm.

The size of the constructed BDDs had a similar tendency with the computa-
tion times. The BDD size was increased slowly for the grid graphs and rapidly
for the random networks with 80 ≤ |V | vertices. Meanwhile, the sizes of the
reduced BDDs were sufficiently small.

Fig. 2. Computational results on 5 × w grid graphs and random graphs.

5.2 Scalability on Real-World Networks

Next, to evaluate the practical performance of the proposed algorithm, we
applied our method to real-world networks. The real-world graphs were obtained
from SNDlib (http://sndlib.zib.de/home.action). All the self-loops and multiple
edges are deleted. Because all the graphs were undirected, we replaced each edge
with two directed edges in both directions.

The results are shown in Table 1. The algorithm succeeded in constructing
the BDDs for SG on almost all the networks, however failed on three networks

http://sndlib.zib.de/home.action
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Table 1. Computational results on real-world networks. Time denotes the time to
construct the BDDs, BDD Size 1 denotes the size of the constructed BDDs, BDD Size
2 denotes the size of the reduced BDDs, and Cardinality denotes the number of SCESs.
For the last three networks, the algorithm failed due to the memory limit.

Network |V | |E| Time (sec) BDD Size 1 BDD Size 2 Cardinality

abilene 12 30 0.00 284 94 1.2e+06
atlanta 15 44 0.01 4,964 630 5.9e+10
brain 161 332 2.31 9,095 2,990 1.6e+07
cost266 37 114 0.46 382,680 22,221 5.3e+28
france 25 90 0.05 45,715 5,420 2.2e+23
geant 22 72 0.07 81,391 5,611 1.3e+18
germany50 50 176 138.56 124,052,168 3,454,355 1.3e+47
giul39 39 172 972.38 781,882,756 15,878,463 2.2e+49
india35 35 160 90.05 83,212,903 2,422,816 4.8e+45
janos-us-ca 39 122 0.37 416,769 29,749 7.4e+30
janos-us 26 84 0.08 59,486 5,320 3.4e+21
newyork 16 98 12.70 12,178,145 607,550 9.8e+28
nobel-eu 28 82 0.03 35,481 2,822 9.1e+19
nobel-germany 17 52 0.00 2,790 458 6.3e+12
nobel-us 14 42 0.01 15,526 2,285 6.1e+10
norway 27 102 0.28 325,280 19,543 1.2e+28
pdh 11 68 4.73 4,555,544 551,065 1.9e+20
pioro40 40 178 198.94 182,362,754 1,415,844 3.6e+51
polska 12 36 0.00 4,525 794 1.4e+09
sun 27 102 0.37 325,355 19,543 1.2e+28
ta1 24 102 0.08 52,991 4,489 2.5e+28
ta2 65 216 2.56 2,573,009 98,115 2.3e+54
zib54 54 160 0.18 158,979 13,571 1.2e+37
dfn-bwin 10 90 - - - -
dfn-gwin 11 94 - - - -
di-yuan 11 84 - - - -

due to the memory limit. Although each succeeded instance might have a few
hundred edges, the algorithm executed in a few seconds or a few minutes. By
comparing a brain network and the failed ones, we found that the computational
cost of the algorithm depends on the network structure.
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As shown in the cardinality column, the numbers of SCESs are enormous.
This implies that the naive exhaustive search is unrealistic. Particularly, the ta2
network has

2, 320, 225, 475, 355, 945, 207, 334, 621, 674, 664, 990, 580, 848, 170, 679, 757, 701, 120

(� 2.3 × 1054) SCESs. This shows the advantage of our approach; the BDD
representation of the SCESs is efficient.

5.3 SCR Computation

We also conducted the experiments to compute the exact SCR using the con-
structed BDDs for analyzing the reliability of each network used in the exper-
iments above. Once the BDDs are obtained, we can easily compute the exact
SRC iteratively for various settings of the edge dropping probability. Therefore,
we used the probability of the edge dropping that was moved from 1.0 to 0.0
and decreased by 0.01. The results are shown in Fig. 3.

For the synthetic networks, the grid graphs have relatively high reliability
until the edge dropping probability is less than 0.1, whereas the reliability of
the random graphs was much lower. We consider that it is attributable to the

Fig. 3. The results of the SCRs computation.
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sparsity of the random graphs; the number of edges is 9w − 5 in contrast with
the number of vertices 5w.

The real-world networks brain, ta2, and zib54 have low reliability; meanwhile,
the newyork and pdh networks have much higher reliability. By comparing these
networks, each of the networks with high reliability tends to have relatively many
edges in contrast with the number of vertices. Although this may be a natural
consequence, its practical verification was impossible previously.

6 Discussion and Conclusion

In this study, we proposed an algorithm to compute the SCR exactly. The pro-
posed algorithm first constructs a BDD representing all SCSSs using a new vari-
ant of the FBS. Subsequently, it computes the SCR by a bottom-up dynamic
programming over the constructed BDD. The experimental results showed that
the proposed algorithm can compute the SCR of the real-world networks with
a few hundred edges, even though they have a large number of SCSSs such
as 2.3 × 1054. As a secondary application, our algorithm can also compute the
minimum SCSS.

Our algorithm implicitly solved the enumeration problem of SCSSs. Regard-
ing the explicit enumeration, only the algorithm to enumerate the minimal SCSSs
is known [20]. Hence, we first tackled the enumeration problem of general SCSSs.

On computing the SCR exactly, although enumerating the minimal SCSSs
is sufficient practically, it is not obvious how our algorithm can be extended
for enumerating the minimal SCSSs. However, the enumeration algorithm in
[20] requires the computation time depending on the number of minimal SCSSs,
whereas our algorithm requires the computation time depending on the path-
width of the given graph. This is an advantage of our algorithm in several graph
classes having a small pathwidth and many minimal SCSSs.

An important future work is to compute the exact SCR in networks with
large path-width. This may require new techniques such as the approximation
of BDDs and the reduction of the networks.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number
15H05711.
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Abstract. In this paper, we consider the (n,3)-MAXSAT problem. The
problem is a special case of the Maximum Satisfiability problem with
an additional requirement that in input formula each variable appears
at most three times. Here, we improve previous upper bounds for (n,3)-
MAXSAT in terms of n (number of variables) and in terms of k (number
of clauses that we are required to satisfy). Moreover, we prove that sat-
isfying more clauses than the simple all true assignment is an NP-hard
problem.

Keywords: Maximum satisfiability
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1 Introduction

Satisfiability problem (SAT for short) is probably the most known NP-complete
problem with enormous importance in computer science and with lots of appli-
cations. Its optimization version Maximum Satisfiability also has a lot of appli-
cations [5,18,24]. There is a special conference SAT dedicated to the problem
and there is a special contest for determining the best SAT-solver (SAT-solver
is a program that tries to solve instances of the SAT problem). Many heuristics,
approximation and exact algorithms [4,6,8–10,22] were constructed for Maxi-
mum Satisfiability problem.

Here, we consider only a special case of Maximum Satisfiability defined in
the following way:

(n,3)-MAXSAT
Input: A formula F in which each variable appears at most three

times.
Question: Find an assignment that simultaneously satisfies a maxi-

mum number of clauses.

It is well-known that even with this restrictions Maximum Satisfiability is
NP-hard [23]. The (n,3)-MAXSAT problem has a chain of improvements and is
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well-studied. The details can be found in Table 1. We would like to emphasize
that such special cases are very important in understanding Maximum Satisfia-
bility and constructing efficient algorithms for it. For example, in 2012 Bliznets
and Golovnev [6] improved the best-known algorithm for Maximum Satisfiabil-
ity in terms of k (number of clauses that one is asked to satisfy) and it was
achieved by careful analysis of variables that appear at most three times. The
currently best-known algorithm for Maximum Satisfiability in terms of k was
developed by Chen, Xu and Wang [9] and is based on analysis of variables which
appears at most four times in the formula. We note that even more restricted
special cases attract attention. For example, (n, 3)-MAX-2-SAT (a special case of
(n,3)-MAXSAT with an additional requirement that all clauses in input formula
have length at most 2) was considered in papers [15,16].

We note that lower bounds or intractability results are harder to prove for
more restricted input formulas. So such results are more preferable for (n, 3)-
MAXSAT than just Maximum Satisfiability. Moreover, such results have more
potential to be suitable for further reductions and proof of intractability. And
this is an additional reason to study (n,3)-MAXSAT.

Our Results: All our results are for (n,3)-MAXSAT problem but for different
parameterizations. In the work, we improve previous upper bound O∗(1.194n) in
terms of n (number of variables in input formula) down to O∗(1.191n). In order
to obtain the improvement we employ new reduction rule 7 that automatically
leads to a situation where we need to consider only two cases of how literal x̄
appears in the formula. The fact might be useful in future works of case analysis
simplification.

In terms of k we achieve improvement from O∗(1.175k) to O∗(1.168k) with-
out any case analysis by a very simple algorithm and establish a useful connec-
tion with the problem of maximum satisfiability parameterized above maximum
matching in a variable-clause graph. Moreover, we show that any improvement
of upper bound for (n,3)-MAXSAT in terms of n leads to an improvement of
upper bound in terms of k.

Also, we show that parameterization above assignment that assigns true val-
ues to each variable is intractable. To be specific: to check that there is an assign-
ment satisfying more clauses than the trivial all true assignment is already an
NP-hard problem.

2 Preliminaries

A clause C is a disjunction of literals, for example, C = x1 ∨ x2 ∨ x3. A CNF
formula F is a conjunction of clauses. Let V be the set of variables in formula
F . An assignment is a function f : V → {0, 1}. A clause C is satisfied by f if
there is a literal x ∈ C such that f(x) = 1, or a literal x̄ ∈ C such that f(x) = 0.
Maximum Satisfiability is a problem in which one is given a CNF formula and
is asked to find assignment that simultaneously satisfies a maximum possible
number of clauses. In (n,3)-MAXSAT problem we restrict input only to formulas
that contain each variable at most three times.
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Table 1. Known results. Here, n denotes the number of variables in input formula and
k denotes the number of clauses that one is asked to satisfy.

Bound w.r.t k Bound w.r.t n Reference Year

O∗(1.732n) Raman, Ravikumar, Rao [23] 1998

O∗(1.3248n) Bansal, Raman [2] 1999

O∗(1.3247k) Chen, Kanj [8] 2002

O∗(1.27203n) Kulikov [16] 2005

O∗(1.2721k) Bliznets, Golovnev [6] 2012

O∗(1.2600n) Bliznets [7] 2013

O∗(1.194k) O∗(1.237n) Xu, Chen, Wang [9] 2016

O∗(1.175k) O∗(1.194n) Li, Xu, Wang, Yang [17] 2017

O∗(1.168k) O∗(1.191n) This paper 2018

We call x and x̄ literals of the boolean variable x. We denote by v(a) the
boolean variable corresponding to literal a, so for example v(x) = v(x̄). We call
literal x positive and we call literal x̄ negative. Clause is called unit clause if
it contains only one literal. If a clause contains at least one positive literal we
call such a clause positive. Without loss of generality we can assume that all
negative literals appear at most once. Since otherwise, we can always replace
variable x with a variable y such that the positive literal x corresponds to the
negative literal ȳ and the literal x̄ corresponds to y i.e. x = ȳ. We denote literals
by letters x, y, z, t if we know that the literals are positive. If we need to denote
some literal and we do not know that it is positive or negative then such literal
we denote by letters a, b, c, d. A literal a is an (i,j)-literal if a and ā occur exactly
i and j times in F , respectively. Fa=1 and Fa=0 are the formulas obtained from
F by assigning a = 1 and a = 0, respectively. By ã we denote a literal which
corresponds to the same variable as the literal a does, i.e. ã may stand for either
a or ā.

Algorithm for (n,3)-MAXSAT in this paper is based on branching technique.
Such algorithms are described by reduction rules, that are used to simplify a
problem instance, and branching rules, that are used to solve an instance by
recursively solving smaller instances. Generally, branches are just subproblems
in which instead of original formula F we work with formulas Fx=0 and Fx=1,
i.e. substitute value of x. If a branching rule branches an instance of size n into r
instances of size n− t1, n− t2, . . . , n− tr, we call (t1, t2, ..., tr) a branching vector
of this branching rule. By a branching factor of a branching rule we understand
a constant c that is a solution of a linear reccurence corresponding to some
branching vector of this rule; such constants are used to bound the running time
of an algorithm by O∗(cn). By the worst branching factor of branching rules we
understand the largest c among such constants. We refer the reader to [12] for
the detailed explanation of these aspects.
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3 Reduction Rules

In this section, we introduce several reduction rules. A reduction rule is a poly-
nomial algorithm which transforms the original problem into an equivalent and
somewhat simpler problem. The following five reduction rules 1–5 are well-known
and were used in papers [2,8,17,21]. That is why we omit their proof here.

Reduction rule 1. Let x be literal. If there is a clause (x∨x∨C), then replace
it with (x ∨ C), i.e. F = F ′ ∧ (x ∨ x ∨ C) → F = F ′ ∧ (x ∨ C).

Reduction rule 2. Let x be literal. If there is a clause (x∨ x̄∨C), then remove
the clause, since it is always satisfied, i.e., F = F ′ ∧ (x ∨ x̄ ∨ C) → F = F ′.

Reduction rule 3. If there is an (i, 0)-literal x, then replace F with the formula
Fx=1.

Reduction rule 4. If there is a (1, 1)-literal x, then replace F = F ′ ∧(x∨C1)∧
(x̄∨C2) with the formula F = F ′ ∧ (C1 ∨C2), i.e. replace the two clauses x∨C1,
x̄ ∨ C2 with the clause C1 ∨ C2.

Proposition 1. If variable x appears in F at most two times then we can con-
struct an equivalent formula without x. Moreover, such construction takes poly-
nomial time (proof follows from Reduction rules 1–4).

Reduction rule 5. If there is a (2, 1)-literal x and there is at least one unit
clause x in F , then replace F with Fx=1.

If none of Reduction rules 1–5 is applicable, each variable occurs exactly three
times. So, every literal a is either a (1, 2)-literal or a (2, 1)-literal. In addition,
for each (2, 1)-literal x, there is no unit clause x.

Reduction rule 6 [17]. If there are three clauses (x∨y), (x̄), (ȳ) in the formula
F , then replace these three clauses with the clause (x̄ ∨ ȳ), i.e. F = (x ∨ y) ∧
(x̄) ∧ (ȳ) ∧ F ′ → F = (x̄ ∨ ȳ) ∧ F ′.

We use the following definition introduced in [25].

Definition 1. A CNF formula F is called linear if no two variables appear in
more than one clause together.

The following proposition was shown in [25].

Proposition 2. Given formula F as an instance of (n,3)-MAXSAT, it is pos-
sible to construct a simplified equivalent instance with formula F ′ such that F ′:

– is linear
– depends on at most the same number of variables
– each variable occurs at most three times.

Moreover, careful analysis of the simplification shows that if initially formula was
non-linear then after such simplification the number of variables in the formula
decrease at least by one.
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Reduction rule 7. If F = (x̄1∨x2∨A1)∧(x̄2∨x3∨A2)∧· · ·∧(x̄k∨x1∨Ak)∧F ′,
where all xi are (2, 1)-literals, then assignment x1 = x2 = · · · = xk = 1 satisfies
all clauses containing variables x1, x2, . . . , xk.

For a given formula F we construct the following graph GF . For each variable
we introduce a vertex. We will refer to a vertex by the name of the corresponding
variable. If there is a clause (x̄∨ y ∨A) in F we add an oriented edge going from
x to y into GF . The existence of the pattern considered in the previous rule
is equivalent to the existence of a cycle in the graph GF . So, if the graph GF

contains a cycle then we can reduce our formula by reduction rule 7. Hence,
without loss of generality, we can assume that GF does not contain cycles. It
means that one of the following situations take place (as otherwise each vertex
have an outgoing edge and this leads to the existence of a cycle):

1. All negative literals appear as singletons, i.e. as clauses containing only one
literal.

2. F can be represented as (x̄ ∨ ȳ ∨ C ′
x) ∧ F ′, where C ′

x contains only negative
literals.

3. F can be represented as (x̄ ∨ y ∨ C ′
x) ∧ ȳ ∧ F ′ and in graph GF there is no

path of length two starting from vertex corresponding to variable x.

Indeed, if our formula does not fit to the above stated situations 1–2 then
we pick an arbitrary vertex v1 ∈ GF with at least one outgoing edge(if there are
no edges then we are in situation 1 or 2). Let us consider the longest directed
path v1, v2, . . . vq in GF starting from vertex v1. We take variable corresponding
to vq−1 as x and variable corresponding to vq as y. Note that from definition
of GF follows that F has the following representation (x̄ ∨ y ∨ C ′

x) ∧ F1. As F
does not fit in the case 2 and v1, v2, . . . vq was the longest path starting from v1
we conclude that F = (x̄ ∨ y ∨ C ′

x) ∧ ȳ ∧ F2. Moreover, in graph GF there is no
path of length two starting from vertex corresponding to variable x as the path
v1, v2, . . . vq was the longest path starting from v1.

In [7] it was shown that in the first situation the problem admits a polynomial
time solution. Hence, we have the following reduction rule:

Reduction rule 8. If all negative literals appear as singletons then solve the
problem by polynomial time algorithm from [7].

Note, that the two remaining situations can be rewritten in the following way

1′. F = (x̄ ∨ ȳ ∨ C ′
x) ∧ F ′

2′. F = (x̄ ∨ y ∨ C ′
x) ∧ ȳ ∧ F ′ where C ′

x contains only positive literals and each
z ∈ C ′

x has a unit clause (z̄).

Clearly, situation 2 is included in situation 1′. In situation 3 if there exists
negative literal z̄ ∈ C ′

x then it fits to situation 1′. So, we can assume that all
literals in C ′

x are positive. Moreover, we can require that its negation literals
occurs as unit clauses because if there is a clause (z̄ ∨ t̄) then this is situation 1′.
Moreover, z̄ cannot be in a clause with positive literals, since otherwise, in graph
GF there is a path of length at least two starting at vertex x which contradict
to situation 3.
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4 Branching Rules

Lemma 1. For any formula F there is an optimal assignment that satisfies all
positive clauses.

Proof. Consider an optimal assignment τ that satisfies the maximum number of
positive clauses. If the assignment satisfies all positive clauses then the lemma
statement is true. Otherwise, assume that there is a clause x ∨ C, which is not
satisfied by an assignment τ . It means that τ(x) = 0. If we flip value of x i.e.
put x = 1, we will satisfy at least the same number of clauses (since we lose at
most one clause containing literal x̄ and satisfy clause x ∨ C) but the number of
satisfied positive clauses will increase which contradict choice of τ . Hence, there
was no unsatisfied positive clause in the formula. ��
Corollary 1. In branch x = 0 it is enough to consider only assignments that
satisfy clauses containing literal x.

Proof. The result immediately follows from Lemma 1. ��
Let F be a formula and x be a variable such that one of the cases 1’ or 2’

take place. In this case we may assume that x appears in clauses x ∨ C1, x ∨
C2, x̄∨C3. Note that |C3| > 0 and if no reduction rules are applicable to F then
all variables in C1, C2, C3 are different. We emphasize that in future we treat
C1 and C2 interchangeably, so there is no reason simultaneously consider case
|C1| = 1, |C2| = 2 and case |C1| = 2, |C2| = 1.

First of all, we present nine branching rules that consider different cases of
sizes of sets C1, C2, C3. First three branching rules without any changes are taken
from paper [17] so we do not present its proof here. Other six branching rules
are an adaptation of some rules from [17] and its proofs are omitted here due to
space constraints. All proofs can be found in full version.

Branching rule 1 [17]. If |C1| = 1, |C2| = 2, |C3| = 2 then there is (4, 4)-
branching on x.

Branching rule 2 [17]. If |C1| = 2, |C2| = 2, |C3| = 1 then there is (7, 2)-
branching on x.

Branching rule 3 [17]. If |C1| ≥ 3, |C2| ≥ 2, |C3| = 1 then there is a (7, 2)-
branching on x.

Branching rule 4. If |C1| ≥ 3, |C2| ≥ 2, |C3| ≥ 2 there is a (6, 3)-branching.

Branching rule 5. If |C1| ≥ 3, |C2| = 1, |C3| = 1 there is a (6, 3)-branching.

Branching rule 6. If |C1| = 1, |C2| = 1, |C3| ≥ 3 then there is a (3, 6)-
branching.

Branching rule 7. In case |C1| ≥ 2, |C2| = 1, |C3| ≥ 3 there is a (4, 5)-
branching.
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Branching rule 8. In case |C1| = 2, |C2| = 2, |C3| ≥ 3 there is a (5, 4)-
branching.

Branching rule 9. In case |C1| ≥ 3, |C2| = 1, |C3| = 2 there is a (5, 4)-
branching.

From now on we assume that none of the branching rules 1–9 is applicable to
our formula. In Table 2 we summarize achieved branching factors and considered
subcases.

Table 2. Branching factors of rules

|C1| |C2| |C3| Branching vector Branching factor Branching rule

1 2 2 (4, 4) 1.190 Branching rule 1

2 2 1 (7, 2) 1.191 Branching rule 2

≥3 ≥2 1 (7, 2) 1.191 Branching rule 3

≥3 ≥2 ≥2 (6, 3) 1.174 Branching rule 4

≥3 1 1 (6, 3) 1.174 Branching rule 5

1 1 ≥3 (3, 6) 1.174 Branching rule 6

≥2 1 ≥3 (4, 5) 1.168 Branching rule 7

2 2 ≥3 (5, 4) 1.168 Branching rule 8

≥3 1 2 (5, 4) 1.168 Branching rule 9

Note that only the following values {(1, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2, 2)} of
(|C1|, |C2|, |C3|) have not been considered.

As was noted before our formula F has one of the following representations:

1. F = (x̄ ∨ ȳ ∨ C ′
x) ∧ F ′

2. F = (x̄ ∨ y ∨ C ′
x) ∧ ȳ ∧ F ′ where C ′

x contains only positive literals and each
z ∈ C ′

x has a unit clause (z̄).

Now, we consider these two cases and in each of them show how to branch.
We organize these branching rules in a different style as they contain new ideas
while branching rules 1–9 more-or-less was taken or inspired by work [17].

Case 1. F = (x̄ ∨ ȳ ∨ C ′
x) ∧ F ′

If C ′
x consists of more than 1 literal then using Branching rules 6, 7, 8 we

can get a good branching. So there are only two remaining subcases: (i) C ′
x = ∅;

(ii) C ′
x = d (recall that d can be positive or negative literal).

Without loss of generality F = (x̄∨ ȳ ∨C ′
x)∧ (x∨Ax)∧ (x∨Bx)∧ (y ∨Ay)∧

(y ∨ By) ∧ F ′. We will omit F ′ in further cases writing down only some clauses
of F .

Case 1.1. C ′
x = ∅

(x̄ ∨ ȳ) ∧ (x ∨ Ax) ∧ (x ∨ Bx) ∧ (y ∨ Ay) ∧ (y ∨ By)
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Due to space constraints we omit the analysis of this case The whole analysis
can be found in full version of the paper.

Case 1.2. C ′
x = d

(x̄∨ ȳ ∨d)∧ (x∨Ax)∧ (x∨Bx)∧ (y ∨Ay)∧ (y ∨By) Because of the branching
rules 1–9 and the fact that x̄ share clause with two other literals we have that
either |Ax| = |Bx| = 1 or |Ax| = |Bx| = 2. Similar situation take place with
Ay, By. We consider two subcases: (i) |Ax| = |Bx| = |Ay| = |By| = 1; (ii) at
least two numbers from |Ax|, |Bx|, |Ay|, |By| are greater than 1.

Case 1.2.1. |Ax| = |Bx| = |Ay| = |By| = 1
(x̄ ∨ ȳ ∨ d) ∧ (x ∨ a1) ∧ (x ∨ b1) ∧ (y ∨ a2) ∧ (y ∨ b2)
We branch on x. In branch x = 1 by Proposition 1 we can remove a1 and b1.

So we remove at least 3 variables.
In branch x = 0 by Corollary 1 a1 = b1 = 1 and by reduction rule 5 we

can assign y = 1. Moreover, from Proposition 1 follows that we can remove d, a2

and b2. So we remove x, y, d, a1, b1, a2, b2. However, some of the variables may
coincide. So we consider several cases depending on these literals.

Case 1.2.1.1. If {a1, b1, a2, b2} contains at least 3 different variables then
we have a (3, 6)-branching.

Since we assume that the formula is linear we have that variables a1, b1 are
different as well as variables a2, b2. So if {a1, b1, a2, b2} consists only of 2 variables
(note that it cannot be only one variable as each variable occur at most three
times) then WLOG we can assume that a2 = ã1, b2 = ˜b1.

Case 1.2.1.2. a2 = ã1, b2 = ˜b1
(x̄ ∨ ȳ ∨ d) ∧ (x ∨ a1) ∧ (x ∨ b1) ∧ (y ∨ ã1) ∧ (y ∨˜b1)
There is no reason to assign x = y = 0 because in this case we can reassign

one of them to 1 and we satisfy at least the same number of clauses.
It means we may consider two branches: x = y = 1 and x 
= y.
In branch x = y = 1 by Proposition 1 we remove a1 and b1. So we remove at

least 4 variables.
Consider a branch with x 
= y, i.e. y = x̄. Then F will become (x∨a1)∧ (x∨

b1) ∧ (x̄ ∨ ã1) ∧ (x̄ ∨˜b1) and d will disappear.
There are two subcases here.
Case 1.2.1.2.1. ã1 = a1 or ˜b1 = b1
WLOG we assume that ã1 = a1, then our formula contains clauses (x ∨

a1) ∧ (x ∨ b1) ∧ (x̄ ∨ a1) ∧ (x̄ ∨ ˜b1). There is an optimum assignment τ such that
τ(a1) = 1. Assume that τ(a1) = 0, then consider τ ′ such that for any variable z
except a1 we have τ ′(z) = τ(z) and τ ′(a1) = 1. Note that τ satisfy exactly one
clause among clauses (x∨a1) and (x̄∨a1). Hence, if we flip the value of variable
a1 we satisfy at least one additional clause and lose at most one clause since a1

is positive literal (as literal a1 appears two times in the formula). So τ ′ satisfies
at least the same number of clauses as τ . It means that we can assume that in an
optimal solution a1 = 1 and we can remove clauses (x∨ a1) and (x̄∨ a1). Hence,
x occurs now only in two clauses (x∨ b1) and (x̄∨ ˜b1). So, by reduction rule 4 we
replace these two clauses with one clause (b1∨ ˜b1). And now using reduction rules
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we can remove b1 as well. It means we remove at least 5 variables: x, y, d, a1, b1.
So we achieve a (4, 5)-branching.

Case 1.2.1.2.2. ã1 = ā1 and ˜b1 = b̄1
So the part of our formula can be rewritten as (x ∨ a1) ∧ (x ∨ b1) ∧ (x̄ ∨ ā1) ∧

(x̄ ∨ b̄1).
Let us show that there is an optimum assignment τ such that τ(a1) = τ(b1).

Any assignment τ ′ such that τ ′(a1) 
= τ ′(b1) satisfies exactly three clauses from
(x∨ a1)∧ (x∨ b1)∧ (x̄∨ ā1)∧ (x̄∨ b̄1). Note that if we flip value of variable a1 or
b1(depending on the situation) such that the fourth clause becomes satisfied we
will satisfy one more clause and at most one clause previously satisfied becomes
unsatisfied since both a1 and b1 have one more occurrence. So we obtain an
assignment that satisfies at least the same number of clauses and the values of
literals a1 and b1 are equal. Hence we may consider only assignments τ such that
τ(a1) = τ(b1). So we can rewrite our formula as (x∨a1)∧(x∨a1)∧(x̄∨ā1)∧(x̄∨ā1).
Note that there are at most two occurrences of the variable corresponding to
literal a1. It is easy to see that it is always beneficial to assign the value of x
equal to ā1 as otherwise variable x is not satisfying any additional clauses. So
our four clauses can be rewritten as: (ā1 ∨ a1) ∧ (ā1 ∨ a1) ∧ (a1 ∨ ā1) ∧ (a1 ∨ ā1).
We can simply omit these clauses as they are always satisfied. So we already
removed variables x, d, y, b1. Moreover, a1 now appears at most twice, so using
Proposition 1 we can remove it too. So we remove at least 5 variables. And we
have (5, 5)-branching.

Case 1.2.2. This case can be described as |Ax| = |Bx| = 2, |Ay| = |By| ≥ 1
(x̄ ∨ ȳ ∨ d) ∧ (x ∨ a1 ∨ a2) ∧ (x ∨ b1 ∨ b2) ∧ (y ∨ a3 ∨ A′

y) ∧ (y ∨ b3 ∨ B′
y)

We branch on the value of x. In branch x = 1 by Proposition 1 we remove
a1, a2, b1, b2, so we remove at least 5 variables.

In branch x = 0 by reduction rule 3 we can assign y = 1. After this by
Proposition 1 we remove d, a3, b3, so we remove at least 5 variables. So we have
(4, 5)-branching in this situation.

Case 2. F = (x̄ ∨ y ∨ C ′
x) ∧ ȳ ∧ F ′ where C ′

x contains only positive literals
and each z ∈ C ′

x has a unit clause (z̄).
Note that if |C ′

x| has two or more variables than we can apply one of branching
rules 6, 7, 8. So it is enough to consider two cases C ′

x = z and C ′
x = ∅.

Case 2.1. C ′
x = z

(x̄ ∨ y ∨ z) ∧ ȳ ∧ z̄ ∧ (x ∨ Ax) ∧ (x ∨ Bx) ∧ (y ∨ Ay) ∧ (z ∨ C)
Since none of branching rules 1, 4 is applicable we have that either |Ax| =

|Bx| = 1 or |Ax| = |Bx| = 2. Consider two subcases.
Case 2.1.1. |Ax| = |Bx| = 1
(x̄ ∨ y ∨ z) ∧ ȳ ∧ z̄ ∧ (x ∨ a) ∧ (x ∨ b) ∧ (y ∨ Ay) ∧ (z ∨ C)
Branch on the value of x. In branch x = 1 by Proposition 1 we remove

a and b. After this by reduction rule 6 we simplify the formula and then apply
Proposition 1 which removes variables y and z. So we remove at least 5 variables.

In branch x = 0 by Corollary 1 we may assign a = b = 1 and using Propo-
sition 1 we will remove y and z. So we will remove at least 5 variables. So, we
have (5, 5)-branching.
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Case 2.1.2. |Ax| = |Bx| = 2
(x̄ ∨ y ∨ z) ∧ ȳ ∧ z̄ ∧ (x ∨ a1 ∨ a2) ∧ (x ∨ b1 ∨ b2) ∧ (y ∨ Ay) ∧ (z ∨ C)
Branch on the value of x. In branch x = 1 by Proposition 1 we remove

a1, a2, b1, b2. Moreover, using reduction rule 6 and again Proposition 1 we remove
y and z. So we remove at least 7 variables.

In branch x = 0 by Proposition 1 we remove y and z. So we remove at least
3 variables. So we have (7, 3)-branching.

Case 2.2. C ′
x = ∅

(x̄ ∨ y) ∧ ȳ ∧ (x ∨ Ax) ∧ (x ∨ Bx) ∧ (y ∨ C)
Since branching rules 5, 3, 2 are not applicable we can assume that one clause

with literal x has exactly two literals. So the part of the formula has the following
structure:

(x̄ ∨ y) ∧ ȳ ∧ (x ∨ a) ∧ (x ∨ Bx) ∧ (y ∨ C)
Again since branching rules 5, 3, 2 are not applicable |Bx| can take only

values 1 or 2. We consider these situations in Case 2.2.1 and Case 2.2.2.
Case 2.2.1. |Bx| = 1
(x̄ ∨ y) ∧ ȳ ∧ (x ∨ a) ∧ (x ∨ b) ∧ (y ∨ C)
Branch on variable x. In branch x = 1 by Proposition 1 we remove a and

b. Moreover, using reduction rule 5 we assign y = 1. So we remove at least 4
variables in this branch.

In branch x = 0 by Proposition 1 we remove y and by Corollary 1 we assign
a = b = 1. So we remove at least 4 variables which leads to (4, 4)-branching.

Case 2.2.2. |Bx| = 2
(x̄ ∨ y) ∧ ȳ ∧ (x ∨ a) ∧ (x ∨ b1 ∨ b2) ∧ (y ∨ C)
Branch on variable y. In branch y = 1 by reduction rule 3 we assign x = 1.

Now we can use Proposition 1 and remove a, b1, b2, C. So we remove at least 5
variables plus all new variables in C.

In branch y = 0 by Corollary 1 we assign x = 0 and a = 1. It means we
remove at least 3 variables. So far we achieve (5, 3)-branching. However, we aim
for a smaller branching factor, so we consider several subcases depending on the
structure of |C|.

Case 2.2.2.1. c ∈ C, where c is a new variable, i.e. a variable different from
a, b1, b2. In such case, we already have (6, 3)-branching.

So it is left to consider cases when C consists only of variables v(a), v(b1)
and v(b2). C cannot be empty since reduction rule 5 is not applicable. Moreover,
from Proposition 2 follows that C does not contain ˜b1 and ˜b2 simultaneously.

Case 2.2.2.2. C = ˜b1
In branch y = 0 by Corollary 1 we additionally remove b1 which leads to

(5, 4)-branching. (Similar result holds for b2 instead of b1, i.e. C = ˜b2.)
Case 2.2.2.3. C = a ∨˜b1
In branch y = 0 we have a = 1 so by Proposition 1 we remove b1 which leads

to (5, 4)-branching. (Similar result holds for b2 instead of b1, i.e. C = a ∨˜b2.)
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Case 2.2.2.4. C = ā ∨˜b1
Again in branch y = 0 we have a = 1 and now by Corollary 1 we can assign

b1 = 1. So we have (5, 4)-branching in this situation. (Similar result holds for b2
instead of b1.)

Case 2.2.2.5. C = ā
Our formula contains clauses (x̄ ∨ y), (x ∨ a), (y ∨ ā). All these clauses are

positive and, as was observed before, there is an optimum assignment that sat-
isfies all positive clauses. And we are looking only for such assignments. Note
that if y = 0 then we cannot satisfy all three clauses. It means that there is an
optimal solution with y = 1 and the branching with y = 0 is redundant. So we
reduce formula without any branching in this case.

Case 2.2.2.6. C = a
(x̄ ∨ y) ∧ ȳ ∧ (x ∨ a) ∧ (x ∨ b1 ∨ b2) ∧ (y ∨ a) ∧ (ā ∨ D)
Case 2.2.2.6.1. c ∈ D, where c is a new variable.
In this situation, we do not branch on the variable y instead we branch on

the value of a. In branch a = 1 using reduction rule 4 two times we remove y
and x. So we remove at least 3 variables.

In branch a = 0 by Corollary 1 we assign x = y = 1. Moreover, by Proposi-
tion 1 we remove b1, b2, c. So we remove at least 6 variables and we have (3, 6)-
branching.

From now on we can assume that D consists only of ˜b1 and ˜b2. Since the
formula is linear D does not contain both ˜b1 and ˜b2.

Without loss of generality it is enough to consider cases D = ∅ and D = ˜b1.
Case 2.2.2.6.2. D = b1
(x̄ ∨ y) ∧ ȳ ∧ (x ∨ a) ∧ (x ∨ b1 ∨ b2) ∧ (y ∨ a) ∧ (ā ∨ b1)
We branch in the same way as in the previous subcase 2.2.2.6.1. Note that

we do not remove any new variables. However, in branch a = 1 by reduction rule
5 we assign b1 = 1 which leads to (4, 5)-branching.

Case 2.2.2.6.3. D = b̄1
(x̄ ∨ y) ∧ ȳ ∧ (x ∨ a) ∧ (x ∨ b1 ∨ b2) ∧ (y ∨ a) ∧ (ā ∨ b̄1)
Variable b1 appears with two variables in one clause and with one in another.

Since branching rules 1, 2, 3 are not applicable the third occurrence of variable
b1 is in a clause of length 2.

We consider two subcases whether the third appearance of variable b1 is
literal b1 or literal b̄1. Note that this third appearance shares clause with a
literal c which corresponds to a new variable that is different from variables
x, y, a, b1, b2.

Case 2.2.2.6.3.1. (x̄∨y)∧ ȳ∧(x∨a)∧(x∨b1∨b2)∧(y∨a)∧(ā∨ b̄1)∧(b1∨c)
Branch on value of b1. In branch b1 = 1 by Proposition 1 we remove x, b2, c.

So remove at least 4 variables.
In branch b1 = 0 by reduction rule 3 we assign a = 1. Now we can use

Proposition 1 and remove x, y. Moreover, by Corollary 1 we assign c = 1(since
literal b1 occur two times we conclude that clause b1∨c is positive). So we remove
at least 5 variables which leads to (4, 5)-branching.

Case 2.2.2.6.3.2. (x̄∨y)∧ ȳ∧(x∨a)∧(x∨b1∨b2)∧(y∨a)∧(ā∨ b̄1)∧(b̄1∨c)
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Branch on the value of b1. In branch b1 = 1 by Corollary 1 we assign c =
1(since clause b̄1 ∨ c is positive as b̄1 occurs twice in formula). After this using
Proposition 1 we remove x and b2. So we remove at least 4 variables.

In branch b1 = 0 by reduction rule 3 we assign a = 1. After this by Propo-
sition 1 we can remove x, y, c. So we remove at least 5 variables which leads to
(4, 5)-branching.

Case 2.2.2.6.4. D = ∅
(x̄ ∨ y) ∧ ȳ ∧ (x ∨ a) ∧ (x ∨ b1 ∨ b2) ∧ (y ∨ a) ∧ ā
It is impossible to satisfy all 6 clauses because there are three clauses ȳ, (y∨a)

and ā that cannot be satisfied together. However we note that variables x, y, a
occur only in these clauses and by assignment a = 0, y = 1, x = 1 we satisfy 5
clauses. So the assignment a = 0, y = 1, x = 1 is the best possible and we do not
need any branching here.

We considered all possible cases and the worst branching is (7, 2)-branching.
Hence, we prove the following theorem:

Theorem 1. There is a O∗(1.191n)-time algorithm for (n, 3)-MAXSAT.

5 Parameterization by Number of Satisfied Clauses

In this section we consider the following problem:

k-(n,3)-MAXSAT
Input: A formula F in which each variable appears at most three

times and integer k
Question: Is there an assignment that satisfies at least k clauses in

formula F?

We show that the problem can be solved in O∗(1.168k) time, while the pre-
vious best upper bound was O∗(1.175k) [17]. We note that the result is obtained
not by careful and tedious case analysis but by a combination of two algorithms.
We note that speed up of any of the used algorithms will lead to an improvement
of our upper bound. One of the algorithms is the algorithm from the previous
section which running time is bounded in terms of the number of variables. And
the second algorithm is an algorithm for maximum satisfiability parameterized
beyond the number of variables [3,10].

Before we proceed with the upper bound we present some reduction rules that
simplify the input formula. First of all, we construct a bipartite variable-clause
graph HF corresponding to input formula F in the following way:

– For each variable x of F introduce a new vertex vx.
– For each clause C of F create a new vertex vC .
– If a variable x is in clause C then connect vertex vx with vertex vC by an

edge.

Let us denote the set of all vertices corresponding to the variables by A and
the set of all vertices corresponding to the clauses by B. We use the following
well-known lemma.
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Lemma 2. For a given bipartite graph (A,B,E) in polynomial time we can
either find a matching that saturates left side A or we can find a minimal
inclusion-wise subset A′ ⊆ A such that |N(A′)| < |A′|.

For formula F , we denote by ν(F ) the size of a maximum matching in the
clause-variables graph. We consider the following auxiliary problem:

(ν(F ) + k′)-Maximum Satisfiability
Input: A formula F and integer k′

Question: Is there an assignment that satisfies at least ν(F ) + k′

clauses?

Theorem 2. If (ν(F ) + k′)-MAXSAT can be solved in O∗(ck
′

1 ) time and (n, 3)-
MAXSAT can be solved in O∗(cn2 ) time then k-(n,3)-MAXSAT can be solved in

O∗(ck) time where c = c2
log c1

log c1+log c2 .

Proof. Applying Lemma 2 to graph HF we find a set A′ ⊆ A such that |N(A′)| <
|A′| or find a matching that saturates all vertices corresponding to the variables.
Let us consider the first case, i.e. there is A′ ⊆ A such that |N(A′)| < |A′|. It
means that there is some set of variables of size |A′| such that these variables
occur less than in |A′| clauses. Since A′ is an inclusion-wise minimal subset with
such properties we can delete an arbitrary vertex v from A′ and then construct
a perfect matching between A′ \ v and N(A′). It means that for each clause
corresponding to the vertices from N(A′) we can assign a variable such that
this variable appears only in clauses corresponding to the vertices from N(A′).
Hence, we can assign values to the variables from set A′ in such a way that all
clauses containing them will be satisfied. So we reduce our problem to a smaller
one by deleting variables corresponding to the vertices from A′ and deleting
clauses corresponding to the vertices from N(A′).

We perform this reduction until we obtain formula F ′ such that corresponding
graph HF ′ contains a bipartite matching between the set of all variables and the
set of all clauses. In the beginning, we wanted to satisfy at least k clauses in
formula F , after reductions we will want to satisfy at least k′ clauses in formula
F ′ where k′ ≤ k and |F ′| ≤ |F |. So, if we solve this problem in O∗(ck

′
) time

then we solve the original problem in at most O∗(ck) time. Hence, from now
on without loss of generality, we assume that F is a formula such that in graph
HF there is a matching between variables and clauses that saturates vertices
corresponding to variables i.e. ν(F ) = n.

Now we pick the fastest algorithm among algorithms solving (ν(F ) + (k −
ν(F )))-MAXSAT and the algorithm from Sect. 4. Recall that here ν(F ) = n.

Let k = αn, then the first algorithm runs in O∗(ck
′

1 ) = O∗(c(1− 1
α )k

1 ) time

and the second runs in O∗(cn2 ) = O∗(c
1
αk
2 ) time. Since the running time of one

of the algorithms is increasing in terms of α and the other is decreasing, then
the maximum running time of the combined algorithm in terms of k is achieved
when c = c

(1− 1
α )

1 = c
1
α
2 . Hence, c = c2

log c1
log c1+log c2 and the running time of the

algorithm is at most O∗(ck). ��
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Corollary 2. k-(n,3)-MAXSAT can be solved in O∗(1.168k) time.

Proof. Taking into account that (ν(F ) + k′)-MAXSAT can be solved in O∗(4k
′
)

time [3] and (n,3)-MAXSAT can be solved in O∗(1.191n) time we have that
k-(n,3)-MAXSAT can be solved in O∗(1.168k) time. ��

6 Parameterization Above All True Assignment

It is easy to see that it is possible to satisfy all clauses containing at least one
positive literal. In order to do this, it is enough to assign all variables to true.
It is natural to ask whether it is possible to satisfy at least k clauses more than
this trivial lower bound. Such parameterization by k is called parameterization
above guarantee, as we want to satisfy k clauses more than some guaranteed
lower bound. Parameterization above guarantee is a natural question that was
studied in [11,13,14,19]. Maximum satisfiability problem from this point of view
was studied in papers [1,10,20]. Here, we show that parameterization above all
true assignment is intractable. We prove that even to satisfy one more clause
above all true assignment is an NP-hard problem. Hence, unless P = NP, we have
that (n,3)-MAXSAT problem does not admit FPT or XP algorithm parametrized
above considered lower bound.

Theorem 3. Let F be a CNF formula in which each variable appears at most
three times. Let � be the number of positive clauses in F . It is NP-hard to figure
out whether it is possible to satisfy simultaneously at least � + 1 clauses in F .

Due to space constraints we omit proof here. It can be found in full version
of the paper.
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erdős bound. Algorithmica 72(3), 734–757 (2015)

12. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16533-7

13. Gutin, G., Kim, E.J., Lampis, M., Mitsou, V.: Vertex cover problem parameterized
above and below tight bounds. Theory Comput. Syst. 48(2), 402–410 (2011)

14. Gutin, G., Rafiey, A., Szeider, S., Yeo, A.: The linear arrangement problem param-
eterized above guaranteed value. Theory Comput. Syst. 41(3), 521–538 (2007)

15. Kojevnikov, A., Kulikov, A.S.: A new approach to proving upper bounds for MAX-
2-SAT. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithm, pp. 11–17. Society for Industrial and Applied Mathematics
(2006)

16. Kulikov, A.S., Kutskov, K.: New upper bounds for the problem of maximal satis-
fiability. Discrete Math. Appl. 19(2), 155–172 (2009)

17. Li, W., Xu, C., Wang, J., Yang, Y.: An improved branching algorithm for (n, 3)-
MaxSAT based on refined observations. In: Gao, X., Du, H., Han, M. (eds.)
COCOA 2017 Part II. LNCS, vol. 10628, pp. 94–108. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71147-8 7

18. Lin, P.C.K., Khatri, S.P.: Application of MAX-SAT-based atpg to optimal cancer
therapy design. BMC Genomics 13(6), S5 (2012)

19. Madathil, J., Saurabh, S., Zehavi, M.: Max-Cut Above Spanning Tree is fixed-
parameter tractable. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR 2018. LNCS, vol.
10846, pp. 244–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
90530-3 21

20. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31(2), 335–354 (1999)

21. Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability. J.
Algorithms 36(1), 63–88 (2000)

22. Poloczek, M., Schnitger, G., Williamson, D.P., Van Zuylen, A.: Greedy algorithms
for the maximum satisfiability problem: simple algorithms and inapproximability
bounds. SIAM J. Comput. 46(3), 1029–1061 (2017)

23. Raman, V., Ravikumar, B., Rao, S.S.: A simplified NP-complete MAXSAT prob-
lem. Inf. Processing Letters 65(1), 1–6 (1998)
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Abstract. We propose a related machine scheduling problem in which
the speeds of machines are variables and must satisfy a system of linear
constraints, and the processing times of jobs are given and known. The
objective is to decide the speeds of machines and minimize the makespan
of the schedule among all the feasible choices. The problem is motivated
by some practical application scenarios. This problem is strongly NP-
hard in general, and we discuss various cases of it. In particular, we obtain
a polynomial time algorithm when there is one linear constraint. If the
number of constraints is more than one and the number of machines is a
fixed constant, then we give a (2 + ε)-approximation algorithm. For the
case where the number of machines is an input of the problem instance,
we propose several approximation algorithms, and obtain a PTAS when
the number of distinct machine speeds is a fixed constant.

Keywords: Related machine scheduling · Linear programming
Approximation algorithm

1 Introduction

The scheduling problem is a fundamental combinatorial optimization problem.
The parallel machine scheduling problem is one of the most basic and widely-
studied scheduling model. Depending on the relation between the machines and
the processing times of jobs, the classic parallel machine scheduling environment
is usually classified as the identical parallel machines, the (uniformly) related
parallel machines, and the unrelated parallel machines. The related machine
scheduling problem is described as follows: given a set of n jobs with processing
times pi for job i and m machines with speeds xj for machine j, the actual
execution time tij of job i on machine j satisfies that pi = xjtij , and the goal is to
find a schedule of jobs minimizing a specific objective, e.g., the makespan or the
total completion time. The identical parallel machine scheduling is a special case
of this problem in which all the machines have the same speeds (and are usually
assumed to be 1), and thus the actual execution time of job i is pi throughout
all the machines. The unrelated parallel machine scheduling is a generalization
c© Springer Nature Switzerland AG 2018
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of these problems, where the actual execution time of job i depends arbitrarily
on the machine j that it is assigned to, and is usually expressed by its processing
time pij .

In the classic model of scheduling problems, the parameters such as the pro-
cessing times of jobs or the speeds of machines are usually deterministic and
given in advance. However, it is possibly in practice that people do not have
exact or enough information on the values of the processing times or machine
speeds when they are facing a decision, e.g., in the stochastic scheduling problem
[1] or the robust scheduling problem [2]. In some cases, these values could also
be a part of the decision, which is studied in this current work.

In this paper, we investigate a related machine scheduling problem under
linear constraints (RSLC for short) in which the machine speeds are a part of
the decision and must satisfy a system of linear constraints, and the processing
times of the jobs are known and given in advance. The goal of the problem
is to determine the speed of each machine, and minimize the makespan of the
schedule among all the feasible choices. The problem can be seen as a variant
of the generalization of the identical parallel machine scheduling problem (SLC)
studied in [3]. In the SLC problem, the processing times of jobs are decision
variables satisfying several given linear inequalities, and its goal is to determine
the processing time for each job, and to schedule the jobs to the machines such
that the makespan is minimized. It is shown in [3] that when there is only one
machine or there are at most two constraints, or the numbers of machines and
constraints are fixed constants, the SLC problem is polynomially solvable. If
the number of machines is a fixed constant and the number of constraints are
arbitrary, then the SLC problem is NP-hard and has a PTAS. If the numbers
of machines and constraints are arbitrary, then the SLC problem is strongly
NP-hard and several approximation algorithms are proposed in [3]. There have
also been some studies on several combinatorial optimization problems in which
certain values are not given in advance and should be determined, such as the
bin packing under linear constraints [4] and knapsack under linear constraints
[5].

Here we give a real-world application scenario that motivates our research of
the RSLC problem. Consider a manufacturer which has m machines and n jobs to
be processed. The speeds of machines depend on the resources such as electricity
and labor force allocated to each machine. Commonly, the larger amount of
resources is allocated to one machine, the faster speed it gains. The quantities
of available resources are usually limited. In many cases, these constraints can
be formulated as some linear constraints of machine speeds. A concrete example
is given in Table 1.

Let xi be the speed of machine i. In the example shown in Table 1, the
total speed of all machines should be at most 100, which leads to the constraint
x1 + x2 + · · · + xm ≤ 100. It is often that the higher speed of a machine leads
to higher costs, for example, machine 1 costs 200 per speed in the example.
The decision maker has a total budget no more than 25000, thus we have a
constraint 200x1 + 100x2 + 300x3 + · · · + 400xm ≤ 25000. The restrictions of
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Table 1. An example in industrial production

Machines

1 2 3 · · · m

Total speed 1 1 1 · · · 1 ≤100

Total budget 200 100 300 · · · 400 ≤25000

...
...

...
...

...
...

...

Resource A 1 2 0 · · · 10 ≤300

Resource B 0 3 4 · · · 0 ≤100

...
...

...
...

...
...

...

Maximum speed for machine 1 1 0 0 · · · 0 ≤20

Minimum speed for machine 1 1 0 0 · · · 0 ≥10

...
...

...
...

...
...

...

resources A, B and so on can be similarly formulated as some linear constraints,
e.g., x1 + 2x2 + · · · + 10xm ≤ 300 for resource A. Due to different restrictions
of the facilities, the speed of each machine has its lower and upper bounds, e.g.
10 ≤ x1 ≤ 20. The manufacturer has to decide the speeds of all machines, which
satisfy the above linear constraints, and to schedule the jobs such that they can
be completed as early as possible. The whole decision can be regarded as the
RSLC problem.

In this research, we discuss the computational complexity of the RSLC prob-
lem, and design polynomial time or approximation algorithms for various cases.
We point out that the problem is strongly NP-hard in general. If the number of
machines or the number of constraints is one, then we find an optimal solution
in polynomial time. Then we give a (2+ ε)-approximation algorithm for the case
where the number of machines is fixed, which is based on the binary search and
the linear programming rounding technique proposed in [6]. For the general case
when the number of machines is an input of the problem, we propose an O(m)-
approximation algorithm. Furthermore, let h be the number of different machine
speeds, which is assumed to be known for the problem. For the case where h
is a fixed constant, we propose an O(h)-approximation algorithm for some spe-
cial case, and a PTAS which combines the techniques of guessing the optimal
machine speeds and the PTAS of the related machine scheduling problem [7].

The rest of the paper is organized as follows: In Sect. 2, we give a formal
definition of the problem studied in the paper, and discuss its computational
complexity. In Sect. 3, we study some simple cases which can be solved in poly-
nomial time. In Sect. 4, we study the case where the number of machines is fixed.
We investigate several cases where the number of machines is an input of the
instance in Sect. 5. Finally, we conclude our work in Sect. 6.
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2 Problem Description and Complexity

First, we formally define the related machine scheduling problem under linear
constraints.

Definition 1. There are m uniformly related machines and n available jobs.
Each job i has a positive processing time pi, and each machine j has a nonnega-
tive speed xj. The speeds of machines are determined by k linear constraints. The
goal of the related machine scheduling problem under linear constraints (RSLC)
is to determine the speeds of the machines such that they satisfy the linear con-
straints and to assign the jobs to the machines to minimize the makespan.

In other words, the machine speeds x = (x1, ..., xm)T should satisfy

Ax ≤ b, x ≥ 0, (1)

where A ∈ R
k×m and b ∈ R

k. Let the actual execution time of job i on machine
j be tij , and then pi = xjtij . The makespan Cmax is the completion time of
the last job, i.e. let Jj be the set of jobs assigned to machine j in a schedule,
the makespan of the schedule is Cmax = maxj=1,...,m

∑
i∈Jj

tij . Note that we
would not assign jobs on the machines whose speeds are zero as otherwise the
execution time on this machine could be arbitrarily large. Therefore, if a machine
always has zero speed among all the feasible solutions, then it is without loss
of generality to remove such machine. The problem can be formulated as the
following mathematical program:

min t

s.t.
n∑

i=1

piyij ≤ xjt ∀j = 1, . . . , m

m∑

j=1

yij = 1 ∀i = 1, . . . , n

Ax ≤ b
yij ∈ {0, 1} ∀i = 1, . . . , n, j = 1, . . . , m
x ≥ 0,

where yij = 1 means that job i is assigned to machine j. This is a mixed integer
quadratic programming [8,9], and is very hard to solve and approximate in
general.

It is known that the related machine scheduling problem (Q||Cmax) is NP-
hard even if there are only two machines and it is strongly NP-hard in general
[10]. It can be seen that the Q||Cmax problem is a special case of the RSLC
problem, since we can set A to be

(
Im

−Im

)
where Im is an m × m identity matrix

and b to be
(

c
−c

)
where c denotes the vector of predetermined processing times of

the jobs in Q||Cmax. Therefore, the hardness result of the Q||Cmax problem also
holds for the RSLC problem, which implies that the RSLC problem is strongly
NP-hard in general, and is NP-hard even if there are only two machines and four
inequality constraints.
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The Q||Cmax problem has been extensively studied in the literature. Since
the problem is strongly NP-hard, it is unlikely that there is a polynomial time
algorithm or a fully polynomial time approximation scheme (FPTAS) unless
P = NP. List scheduling algorithm and longest processing time algorithm are
classic algorithms for the identical parallel machine scheduling P ||Cmax, and
their performance ratios for the Q||Cmax problem have also been analyzed in
[11–15]. Moreover, MULTIFIT algorithm has a better approximation ratio than
LPT for Q||Cmax [16]. Based on the PTAS of P ||Cmax [17], a PTAS of Q||Cmax

is proposed in [7]. The special case of the Q||Cmax problem where there is at
most one machine and its speed is different from the others has also been studied
[12,13,18], and the algorithms often have better approximation ratios than the
general case. For the more general unrelated parallel machine scheduling problem
R||Cmax, the authors in [6] proposed a 2-approximation algorithm, which is based
on the linear programming rounding technique that will be subsequently used in
our research. Readers can refer to [19] for a more detailed review of the parallel
machine scheduling and related problems.

3 Several Polynomially Solvable Cases

In this section, we discuss several simple cases of the RSLC problem, where the
number of machines or jobs or constraints is one. We show that all of them can
be solved in polynomial time, and thus we will assume that m ≥ 2, n ≥ 2 and
k ≥ 2 in the subsequent sections for convenience of exposition. Note that the
RSLC problem is NP-hard even if there are two machines and four inequality
constraints.

3.1 Single Machine or Single Job

If there is only one machine or one job, then it is straightforward that an optimal
solution must assign all the jobs to exactly one machine. Consequently, the
optimal solution is to first find the largest possible speed by solving the linear
programs:

max xj

s.t. Ax ≤ b
x ≥ 0,

for j = 1, ...,m (m = 1 when there is only one machine), and then schedule all
the jobs on the machine which has the maximum speed. This can be done in a
polynomial time of k and m.

3.2 Single Constraint

In this case, the linear constraint can be written as
m∑

j=1

ajxj ≤ b, x ≥ 0, (2)
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where x = (x1, ..., xm)T . Note that it is without loss of generality to assume
that all aj > 0, j = 1, ...,m, b > 0. To see this, suppose that there is an aj ≤ 0
for some j ∈ {1, . . . , m}. It is clear that (2) must have feasible solution x =
(x1, . . . , xm)T to be machine speeds. Then we can set the speed of machine j to
be a sufficiently large value and the speeds of other machines keep unchanged.
The resulted machine speeds still satisfy (2). Assign all the jobs to machine j,
and the makespan can be arbitrarily close to zero. Thus we can assume that
aj > 0 for all j = 1, . . . ,m. Thus

∑m
j=1 ajxj ≥ 0, which leads to that b ≥ 0.

If b = 0, then
∑m

j=1 ajxj = 0. This means that x = 0 is the unique feasible
solution to (2), which contradicts to the assumption that each machine could
have nonzero speed. For the RSLC problem with single constraint, we have the
following theorem.

Theorem 1. The optimal schedule is given by assigning all the jobs in the
machine l with al = min1≤j≤m aj, the optimal speeds are xl = b/al and xj = 0
otherwise, and the makespan of the optimal schedule is al

∑n
i=1 pi/b.

Proof. First we show that there exists a schedule to the RSLC problem, which
has makespan exactly al

∑n
i=1 pi/b. It can be seen by simply setting xl = b/al

and xj = 0 otherwise, and assigning all the jobs to machine l.

Now, we prove that any feasible schedule must have makespan at least
al

∑n
i=1 pi/b. Suppose not, there must be a schedule whose makespan is less

than al

∑n
i=1 pi/b. Let Jj be the set of jobs assigned to machine j in the

schedule and P (Jj) be the total processing time of jobs assigned to machine
j. For each machine j with positive speed xj > 0, its completion time satis-
fies P (Jj)/xj < al

∑n
i=1 pi/b, or equivalently, P (Jj) < xjal

∑n
i=1 pi/b. For each

machine j with zero speed xj = 0, since no jobs would be assigned to such
machine, it follows that P (Jj) = 0 = xjal

∑n
i=1 pi/b. Note that the makespan

of the schedule is finite, there must be at least one machine whose speed is pos-
itive, as otherwise the makespan would be infinite. Summing up all the total
processing times of assigned jobs on all the machines, we obtain

n∑

i=1

pi =
m∑

j=1

P (Jj) <

al

n∑

i=1

pi

b

m∑

j=1

xj ≤

n∑

i=1

pi

b

m∑

j=1

ajxj ≤
n∑

i=1

pi,

where the second last inequality holds since al = min1≤j≤m aj , and the last
inequality holds from the constraint (2). This leads to a contradiction. Therefore,
the schedule described above with makespan al

∑n
i=1 pi/b is best possible. �

Theorem 1 shows that although the RSLC problem is strongly NP-hard in
general, it can be solved in polynomial time when the number of constraint is
one.
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4 Fixed Number of Machines

In this section, we consider the case where the number of machines is a fixed
constant, and the number of constraints is at least two and is an input of instance.
As mentioned in Sect. 2, this case is NP-hard.

Suppose that the value of makespan T of a schedule is fixed. We denote Ij as
the set of jobs that can be processed on machine j with execution time at most
T , i.e. Ij = {i ∈ {1, ..., n}|pi ≤ xjT} for each machine j = 1, ...,m. Consider the
following linear program:

(LP1)

∑
i∈Ij

piyij ≤ xjT ∀j = 1, . . . ,m
∑

j∈Ki
yij = 1 ∀i = 1, . . . , n

Ax ≤ b
pi ≤ xjT ∀i ∈ Ij , j = 1, . . . ,m
x, yij ≥ 0 ∀i ∈ Ij , j = 1, . . . ,m

in which Ki = {j|i ∈ Ij} is the set of machines that job i can be processed by
with execution time at most T . Note that for any fixed xj and T , if i ∈ Ij , then
all the jobs with processing times no more than pi must belong to Ij . Therefore,
each Ij has n + 1 possible job sets. We can determine all the Ijs in O(nm)
enumerations, which is a polynomial to n if the number of machines m is a fixed
number.

We design an algorithm based on the binary search of T . The algorithm is
summarized as Algorithm 1. Before describing our algorithm, we define X0 as
the optimal value of the following linear program:

(LP2)
max

m∑

i=1

xi

s.t. Ax ≤ b
x ≥ 0.

It can be seen that the range of the minimal makespan C∗
max is that C∗

max ∈[∑n
i=1 pi

X0
,m

∑n
i=1 pi

X0

]
.

The following theorem indicates that Algorithm 1 can always return a solu-
tion if the RSLC problem is feasible.

Lemma 1. If (LP1) is feasible, then (LP3) in Step 9 of Algorithm1 must be
feasible.

Proof. Suppose (LP1) is feasible fixing T, I1, . . . , Im. One of its solutions is
x, yij , i ∈ Ij , j = 1, . . . , m. Then it can be seen that x, yij , i ∈ Ij , j = 1, . . . , m′

is also a feasible solution to the following linear program (LP4):

(LP4)

∑
i∈Ij

piyij ≤ xjT ∀j = 1, . . . ,m′
∑

j∈Ki
yij = 1 ∀i = 1, . . . , n

yij ≥ 0 ∀i ∈ Ij , j = 1, . . . ,m′.
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Algorithm 1. Approximation algorithm for fixed m

1: Set L =
∑n

i=1 pi

X0
, U = m

∑n
i=1 pi

X0
.

2: q = 0.
3: while q < log 2(m−1)

ε
do

4: T = 1
2
(L + U).

5: for each possible I1, . . . , Im do
6: Find a feasible solution to (LP1).
7: if (LP1) is feasible then
8: Let x be the solution found in Step 6, and remove the machines whose

speeds are 0. Let m′ be the total number of the remaining machines. Sup-
pose the remaining machines is machine 1 to m′ for simplicity.

9: Find a basic feasible solution to the following (LP3):

(LP3)

∑
i∈I′

j
piyij ≤ xjT ∀j = 1, . . . , m′

∑
j∈K′

i
yij = 1 ∀i = 1, . . . , n

yij ≥ 0 ∀i ∈ I ′
j , j = 1, . . . , m′

in which I ′
j = {i|pi ≤ xjT} and K′

i = {j|pi ≤ xjT}.
10: Use the rounding technique proposed in [6] to find a feasible schedule, and

record its makespan.
11: Set U = T , and break from “for” loop.
12: if U �= T then
13: Set L = T .
14: Set q = q + 1, and move to the next iteration.
15: If there is no feasible schedule returned by the previous iterations, then set T = U ,

and run Step 5-11 again to obtain a feasible schedule.
16: return the schedule with minimum makespan obtained among all the iterations.

Since Ij ⊂ I ′
j and Ki ⊂ K ′

i, we can set

y′
ij =

{
yij , i ∈ Ij , j = 1, . . . ,m′

0, otherwise,

and it is clear that y′
ij , i ∈ I ′

j , j = 1, . . . , m′ is the feasible solution of (LP3). This
completes the proof. �

Although the value of L could be changed in Step 13, the following lemma
shows that it always provides a lower bound of the problem.

Lemma 2. The value L is always the lower bound of C∗
max during the execution

of Algorithm1. Moreover, the value (m
∑n

i=1 pi) /X0 is an upper bound of C∗
max.

Proof. Let x∗ be the optimal machine speed vector, and x∗ = (x∗
1, . . . , x

∗
m)T .

Then C∗
max ≥

∑n
i=1 pi∑m
i=1 x∗

i
≥

∑n
i=1 pi

X0
, which means the initial L is a lower bound of

C∗
max.

If L is changed during the execution of Algorithm1, then for all possible
I1, . . . , Im, (LP1) is infeasible. This means that there cannot be any schedule with
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makespan no more than L. If so, suppose x̃ and ỹij , i = 1, . . . , n, j = 1, . . . , m is
such schedule. Thus the following equations hold:

∑n
i=1 piỹij ≤ x̃jL ∀j = 1, . . . , m∑m
j=1 ỹij = 1 ∀i = 1, . . . , n

Ax̃ ≤ b
x̃ ≥ 0, ỹij ≥ 0 ∀i = 1, . . . , n, j = 1, . . . ,m.

Set Ĩj = {i|pi ≤ x̃jL} and K̃i = {j|pi ≤ x̃jL}. It is clear that ỹij = 0 for
i /∈ Ĩj , j = 1, . . . , m. Thus

∑
i∈Ĩj

piỹij ≤ x̃jL and
∑

j∈K̃i
ỹij = 1. Furthermore,

the following linear program is feasible:

∑
i∈Ĩj

piyij ≤ xjL ∀j = 1, . . . ,m
∑

j∈K̃i
yij = 1 ∀i = 1, . . . , n

Ax ≤ b

pi ≤ xjL ∀i ∈ Ĩj , j = 1, . . . ,m

x ≥ 0, yij ≥ 0 ∀i ∈ Ĩj , j = 1, . . . ,m.

It contradicts to the fact that for all possible I1, . . . , Im, (LP1) is infeasible.
Hence, L is always the lower bound of C∗

max.
For the upper bound, let the optimal solution x̄ = (x̄1, . . . , x̄m) to (LP2) be

the machine speeds, and C̄max be the makespan of the schedule—assigning all
jobs to the fastest machine whose speed is denoted by x̄max. Since x̄max ≥ X0

m ,
we have C∗

max ≤ C̄max =
∑n

i=1 pi

x̄max
≤ m

∑n
i=1 pi

X0
. �

Applying the lemmas above, we have the following property:

Theorem 2. Given 0 < ε < 1, Algorithm1 is a (2+ε)-approximation algorithm
for the RSLC problem with fixed number of machines.

Proof. First we discuss the computational complexity of Algorithm 1. Solving
the linear program (LP2) requires O((k + m)3N) operations, where N is the
length of data. Fixing ε, Step 3 requires �log 2(m−1)

ε � iterations. Note that there
are n+1 possible Ijs for each machine j, and then Step 5 requires at most O(nm)
enumerations. Determining the feasibility of (LP1), finding its feasible solution
and finding a basic feasible solution of (LP3) all require polynomial time. And
the rounding process in Step 10 also requires polynomial time [6]. By the fact
that m and ε are fixed, the running time of Algorithm1 is a polynomial on the
input instance.

Next we prove that the returned schedule has a makespan no more than 2+ε
of the optimal makespan. If U is changed during the execution of the algorithm,
then the makespan of the returned schedule is no larger than 2Û by [6], where
Û denotes the final value of U . If U is not changed, which means Û = m

∑n
i=1 pi

X0
,

then there exists a schedule whose makespan is no more than Û because m
∑n

i=1 pi

X0
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is an upper bound of C∗
max by Lemma 2. There must exist some I1, . . . , Im such

that (LP1) is feasible, and so the makespan of the returned schedule is also no
larger than 2Û by [6].

Let Cmax be the returned makespan. Since m ≥ 2 and 0 < ε < 1, then
log 2(m−1)

ε ≥ 1. Therefore, the while loop in Step 3 must be done at least once.
Thus

Û − L̂ ≤ 2− log
2(m−1)

ε

(

m

∑n
i=1 pi

X0
−

∑n
i=1 pi

X0

)

=
ε

2

∑n
i=1 pi

X0
≤ ε

2
C∗

max,

the last inequality holds since L is a lower bound of C∗
max by Lemma 2. Therefore,

we have

Cmax ≤ 2Û = 2(Û − L̂ + L̂) ≤ 2
( ε

2
C∗

max + C∗
max

)
= (2 + ε)C∗

max.

Hence Theorem 2 holds. �

5 Arbitrary Number of Machines

In this section, we discuss the case where the number of machines m is an input
of the instance. Assume we know that there are at most h different types of
machines for the problem, where the speeds of machines within each group are
identical, as well as which type each machine belongs to (if h = m, then we do not
have any additional information and this leads to the normal RSLC problem).
Each type consists of mi(i = 1, ..., h) machines. In other words, the number of
distinct values of machine speeds of the problem is at most h. Let si be the
speed of machines in group i, and s = (s1, ..., sh). The linear constraints (1) can
be reformulated as As ≤ b, where A ∈ R

k×h, b ∈ R
k (we use the same notations

A and b for simplicity). Let s∗ = (s∗
1, ..., s

∗
h) denote the optimal solution, and

C∗
max denote the optimal makespan.

5.1 Approximation Algorithm for Arbitrary h

We first propose an approximation algorithm for the general case of the RSLC
problem, i.e., when the number of different machine types h is arbitrary. Let
mmin = min1≤i≤h{mi} be the minimum number of machines in a type. The
algorithm can be shown in Algorithm2.

Theorem 3. Algorithm2 is a
(
1 + m

mmin
− 1

mmin

)
-approximation algorithm for

arbitrary m and h.

Proof. First we consider the computational complexity. Solving (LP6) requires
O((k + h)3N). The computational complexity of scheduling is O(mn). Hence,
Algorithm 2 is a polynomial time algorithm.
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Algorithm 2. Approximation algorithm for arbitrary m and h

1: Solve the linear program:

(LP6)
max

h∑

i=1

misi

s.t. As ≤ b
s ≥ 0.

2: Let machine speeds be the solution obtained by the above linear program, and
schedule by list scheduling algorithm [12].

Let ŝ = (ŝ1, . . . , ŝh) be the optimal solution to (LP6), and Cmax be the
makespan returned by the algorithm. Note that

∑h
i=1 miŝi ≥ ∑h

i=1 mis
∗
i . Denote

job q as the last finished job in the schedule returned by the algorithm. By the
property of list scheduling algorithm, we have

Cmax ≤
n∑

i=1
pi

∑h
i=1 miŝi

+ m−1∑h
i=1 miŝi

pq

≤
n∑

i=1
pi

∑h
i=1 mis∗

i

+ m−1∑h
i=1 mis∗

i

pq

≤
n∑

i=1
pi

∑h
i=1 mis∗

i

+ m−1
mmin

∑h
i=1 s∗

i

pq.

Let s∗
max = max1≤i≤h{s∗

i }. It is clear that
∑n

i=1 pi/
∑h

i=1 mis
∗
i ≤ C∗

max and
pq/

∑h
i=1 s∗

i ≤ pq/s∗
max ≤ C∗

max. Therefore,

Cmax ≤
(

1 +
m

mmin
− 1

mmin

)

C∗
max.

�
Note that mmin = 1 in the worst case or h = m, thus Algorithm 2 is an

m-approximation algorithm for the RSLC problem in general.

5.2 Approximation Algorithms for Fixed h

In this section, we consider the case when h is a fixed constant. If m1 = · · · = mh,
then we have mmin = m

h , and Algorithm 2 is an
(
h + 1 − h

m

)
-approximation

algorithm. Below we show that we can obtain an approximation algorithm with
better approximation ratio (h + ε). The detail of the algorithm is summarized
as Algorithm 3.

Theorem 4. Given any ε > 0, Algorithm3 is an (h + ε)-approximation algo-
rithm for arbitrary m with fixed h and m1 = · · · = mh.
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Algorithm 3. Approximation algorithm for arbitrary m with fixed h and m1 =
· · · = mh

1: Solve a series of linear programs for i = 1, ..., h:

(LP7)
max si

s.t. As ≤ b
s ≥ 0.

Let the optimal values are s̃i, i = 1, ..., h. Set s̃max = max1≤i≤h s̃i, and suppose
that s̃max is obtained by the j0th linear program, i.e. s̃max = s̃j0 .

2: Schedule all the jobs on the j0th type of machines by the PTAS of identical machine
scheduling problem P ||Cmax [17].

Proof. First we consider the computational complexity of the algorithm. Solv-
ing linear programs in Step 1 requires O(h(k + h)3N) = O(k3N) operations.
Obtaining the schedule in Step 2 needs polynomial time. Thus the total running
time of the algorithm is polynomial time.

Let Cmax be the makespan of the schedule returned by the algorithm, and
C

(1)
max be the minimum makespan among the schedules where jobs are only

scheduled on the j0th type machines, i.e., the group of machines which has
speed s̃max in Step 1. Since we apply a PTAS of P ||Cmax in Step 2, we have
Cmax ≤ (1 + ε/h)C(1)

max for any ε > 0.
Let C∗

max be the makespan of the optimal schedule. Consider the schedule
that we move the jobs from the machines of all other types to the machine
of type j0 with the same order, that is, we move the jobs scheduled in the
kth machine of any other types on the optimal solution to the kth machine
of type j0, for each k = 1, . . . ,m/h. Moreover, the speed of type j0 machines
in this schedule is set to be s̃max obtained in Step 1. It can be seen that the
makespan of this schedule is at most hC∗

max, since m1 = · · · = mh = m/h and
the machines in type j0 have the maximum speed, i.e., s̃max ≥ s̃i ≥ s∗

i for all
i = 1, . . . , h. By definition, C

(1)
max is no more than the makespan of this schedule,

hence Cmax ≤ (1 + ε/h)C(1)
max ≤ h(1 + ε/h)C∗

max = (h + ε)C∗
max. �

Next we propose a PTAS for fixed h. Let Mi denote the set of machines with
speed si. First we show that if the machines in Mi are not all empty(here empty
means no jobs are assigned to that machine) in the optimal schedule, then s∗

i

has a positive lower bound.
The optimal values s̃i, i = 1, ..., h of the linear programs (LP7) are the largest

possible values for si, i = 1, ..., h. We assume w.l.o.g. that s̃i > 0 for all i = 1, ..., h
as otherwise we can remove such machine.

Lemma 3. If the machines in Mi are not all empty in the optimal schedule,
then s∗

i ≥ s̃iPmin/
∑n

j=1 pj, where Pmin = min1≤i≤n pi.

Proof. The makespan of assigning all jobs on the machine having speed s̃i is∑n
j=1 pj/s̃i. Thus

∑n
j=1 pj/s̃i ≥ C∗

max. Since there is at least one machine in
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Mi that is not empty, we have Pmin/s∗
i ≤ C∗

max. It follows that Pmin/s∗
i ≤∑n

j=1 pj/s̃i, and hence s∗
i ≥ s̃iPmin/

∑n
j=1 pj . �

Lemma 3 implies that as long as a machine is used in the optimal schedule,
its optimal speed has an explicit lower bound. Based on this fact, we design a
PTAS and describe it in Algorithm 4.

Theorem 5. Algorithm 4 is a PTAS for the RSLC problem with arbitrary m
and fixed h.

Algorithm 4. Approximation algorithm for arbitrary m and fixed h

1: Solve the linear programs (LP7) (i = 1, ..., h), whose optimal solutions are denoted
by s̃i, i = 1, ..., h.

2: Set Ui = s̃i, Li = s̃iPmin/
∑n

j=1 pj(i = 1, ..., h). Let r =

�log(
n∑

j=1

pj/Pmin)/ log(1 + ε
3
)�, and divide [Li, Ui] into Bi

r =
[
Li,

Ui
(1+ ε

3 )r−1

]
,

Bi
r−1 =

[
Ui

(1+ ε
3 )r−1 , Ui

(1+ ε
3 )r−2

]
,...,Bi

1 =
[

Ui
1+ ε

3
, Ui

]
.

3: for each subset Sd of {1, ..., h} do
4: for each possible combination of li ∈ {1, ..., r}, ∀i ∈ Sd do
5: Find a feasible solution of the following linear program:

(LP8)
As ≤ b
s ≥ 0

si ∈ Bi
li

, ∀i ∈ Sd.

6: if (LP8) is feasible then
7: Let the machine speed vector s be the solution found in (LP8). Use the

PTAS for scheduling on uniform processors in [7] to find a schedule.
8: return the schedule with the smallest makespan among all generated results and

its corresponding machine speeds.

Proof. First we consider the running time of Algorithm 4. Solving the linear
programs in Step 1 requires O(h(h+ k)3N) = O(k3N) time. Set |Sd| = hd. Step
3 requires 2h − 1 iterations, while Step 4 requires rhd iterations. Since hd ≤ h,
there are totally less than 2hrh = O(rh) iterations. Determining the feasibility of
(LP8), solving (LP8) and scheduling can be done in polynomial time. Since h is
a constant and r is polynomial, the total computational complexity of Algorithm
4 is a polynomial of the input instance.

Then we prove that Algorithm 4 returns a solution whose makespan is no
more than 1 + ε of the minimum makespan C∗

max. There must be an iteration in
which s∗ satisfies (LP8). Among these iterations, we consider the iteration that
Sd is exactly the set of nonempty machine types (which have nonzero speeds
by Lemma 3) in this optimal solution. Let s be the solution obtained by that
iteration, and Cmax be the makespan obtained by that iteration.



Related Machine Scheduling under Linear Constraints 327

Note that n ≥ 2, we must have r ≥ 1. For each i ∈ Sd, if li = r, where r is
defined in Step 2, then si ≥ Li. Since

r ≥ log

(
n∑

i=1

pi/Pmin

)
/

log
(
1 +

ε

3

)
= log1+ ε

3

(
n∑

i=1

pi/Pmin

)

,

we get

(
1 +

ε

3

)li ≥
(
1 +

ε

3

)log1+ ε
3

(
n∑

i=1
pi/Pmin

)

=
n∑

i=1

pi/Pmin = Ui/Li.

Thus Li ≥ Ui/(1 + ε
3 )li , which means si ≥ Ui/(1 + ε

3 )li . If li < r, then si ≥
Ui/(1 + ε

3 )li . Therefore,

si ≥ Ui
(
1 + ε

3

)li
=

Ui
(
1 + ε

3

)li−1

1
(
1 + ε

3

) ≥ s∗
i(

1 + ε
3

) ,∀i ∈ Sd.

Let C̃max be the makespan of the schedule where jobs are scheduled exactly
the same as the optimal schedule under machine speed vector s. It can be
observed that C̃max ≤ (

1 + ε
3

)
C∗

max, since we assume that Sd is the same as
the optimal solution. Let C̃∗

max be the minimum makespan of the schedule under
speed s. Since Step 7 returns a solution by the PTAS algorithm, we have

Cmax ≤
(
1 +

ε

3

)
C̃∗

max ≤
(
1 +

ε

3

)
C̃max ≤

(
1 +

ε

3

)2

C∗
max.

Note that the makespan returned by Algorithm 4 is no larger than Cmax.
By adjusting an appropriate value, we can find an ε′ > 0 such that Cmax ≤
(1 + ε′/3)2 C∗

max < (1+ε)C∗
max. Therefore, the algorithm is a PTAS and Theorem

5 holds. �

6 Conclusion

In this paper, we propose a related machine scheduling problem where machine
speeds satisfy a series of linear constraints. We discuss the computational com-
plexity of the problem, and propose different polynomial time algorithms and
approximation algorithms for various cases of the problem. A further direction
of this work is to improve the approximation algorithms for different cases, e.g.
to propose approximation algorithm with performance ratio better than 2 + ε
for the case where the number of machines is fixed, or to consider whether there
are approximation algorithms with constant factor for the general case with
arbitrary number of machines. Moreover, other forms of constraints of the prob-
lem, such as convex constraints, quadratic constraints, or other combinatorial
optimization problems under constraints are also worth considering.
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Abstract. We study open-shop scheduling for unit jobs under prece-
dence constraints, where if one job precedes another job then it has
to be finished before the other job can start to be processed. For the
three-machine open-shop to minimize the makespan, we first present
a simple 5/3-approximation based on a partition of the job set into
agreeable layers using the natural layered representation of the prece-
dence graph. We then show a greedy algorithm to reduce the number of
singleton-job layers, resulting in an improved partition, which leads to a
4/3-approximation. Both approximation algorithms apply to the general
m-machine open-shops too.

Keywords: Open-shop scheduling · Precedence constraint
Directed acyclic graph · Approximation algorithm

1 Introduction

Machine scheduling with precedence constraints on the jobs has received much
attention in the past few decades, and several algorithmic techniques such as
the critical path method and the project evaluation and review technique [9] have
been developed from the line of research. Job precedence constraints are common
in construction and manufacturing industries, for example, the bicycle assembly
problem is an earliest precedence constrained scheduling application introduced
by Graham [7].

Precedence constraints describe the job processing order in a way that one or
more jobs have to be finished before another job is allowed to start its processing.
Such relationships together are usually represented as a directed acyclic graph
(DAG) G = (V,E), called the precedence graph, where V is the set of jobs and
an edge (vi, vj) ∈ E states that the job vi precedes the job vj , that is, vi needs
to be finished before vj can start to be processed.

In this paper, we discuss the open-shop scheduling environment and use Om
to denote the m-machine open-shop for some constant m, and O to denote the
open-shop in which the number of machines is part of the input. In either Om
or O, every job needs to be processed non-preemptively by each machine, in any
c© Springer Nature Switzerland AG 2018
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machine order, and it is finished (or said completed) when it has been processed
by all the machines. Note that the usual scheduling rules apply to a feasible
schedule, that is, at any time point, a job can be processed by at most one
machine and each machine can be processing at most one job. The makespan
of the schedule is the maximum job completion time. The open-shop scheduling
to minimize the makespan is denoted as Om || Cmax or O || Cmax, which has
received much study [6,9,11,12,15]. In particular, O2 || Cmax is solvable in O(n)-
time, where n denotes the number of jobs [6,9]; Om || Cmax becomes weakly
NP-hard when m ≥ 3 [6] but admits a polynomial-time approximation scheme
(PTAS) [11,12]; O || Cmax is strongly NP-hard and cannot be approximated
within 1.25 [15].

Open-shop scheduling with precedence constraints, denoted as Om | prec |
Cmax or O | prec | Cmax, is more difficult than its classical counterparts, which
can be considered as scheduling without precedence constraints. Several special
classes of precedence graphs have been investigated in the literature. If every job
has at most one predecessor and at most one successor, the precedence graph
is referred to as chains. If every job has at most one successor (one predeces-
sor, respectively), the precedence graph is referred to as an intree (an outtree,
respectively). The fact that the precedence graph belongs to a particular class
may change the computational complexity of the scheduling problem. In general,
one can expect that the precedence constraints increase the problem complexity.
For example, O2 | chains | Cmax becomes NP-hard [13]. For more complexity
results on precedence constrained scheduling, the interested readers can refer to
Lenstra and Rinnooy Kan [8], or Prot and Bellenguez-Morinea [10].

Unlike most past results which are on computational complexity, in this paper
we aim to develop algorithmic positive results for open-shop scheduling with
precedence constraints, from the approximation algorithm perspective. We focus
on the problems restricted to unit jobs, that is, the jobs have the same processing
times on all the machines (i.e., pij = 1); most of these problems remain NP-hard,
or their complexity are still open. To name a few, for an arbitrary precedence
graph, the problem O | pij = 1, prec | Cmax was shown to be strongly NP-
hard by Timkovsky [14]; when the precedence graph is an out-tree, then the
problem O | pij = 1, outtree | Cmax becomes polynomially solvable [1]; for a
more general objective of minimizing the maximum lateness, Timkovsky proved
that O | pij = 1, outtree | Lmax is weakly NP-hard [14], while the problem
O | pij = 1, intree | Lmax is polynomial solvable [2,3]. We note that, however,
there are polynomial time algorithms for O2 | pij = 1, prec | Lmax, even if the
jobs have different release times [2,3].

The problem we study in this paper is the m-machine open-shop for unit
jobs under arbitrary precedence constraints, Om | pij = 1, prec | Cmax, where
m ≥ 3. For this fundamental problem in scheduling theory, there is no known
computational complexity result in the literature. In fact, even when m = 3,
whether or not O3 | pij = 1, prec | Cmax is NP-hard is an open question explicitly
listed in the websites maintained by Brucker and Knust [4] and Dürr [5], and in
the survey paper by Prot and Bellenguez-Morinea [10].
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We first introduce a natural layered representation for the precedence graph
in Sect. 2, based on which we can construct a partition of the job set into agree-
able subsets. We then construct a schedule using the partition and show that
it is a 5/3-approximation for the problem O3 | pij = 1, prec | Cmax. In Sect. 3,
we propose a greedy algorithm to reduce the number of singleton-job subsets in
the earlier partition, resulting in an improved partition, which leads to a 4/3-
approximation. We also show that both approximation algorithms apply to the
general m-machine open-shops.

2 Preliminaries

We study the problem O3 | pij = 1, prec | Cmax, in which the unit jobs should be
processed under the given precedence constraints. These precedence constraints
are described as a directed acyclic graph (DAG), the precedence graph, in which
a vertex corresponds to a job and a directed edge represents a precedence rela-
tionship between a pair of jobs. In the rest of the paper, we use a job and a
vertex interchangeably. Due to all jobs having unit processing times, we assume
without loss of generality that in any feasible schedule the starting processing
time of every job is an integer.

Let V = {v1, v2, . . . , vn} be the given set of unit jobs. If vi precedes vj ,
that is, we can start processing the job vj only if the job vi is finished by the
three-machine openshop O3, then there is a directed path beginning from vi and
ending at vj . Such a directed path is a directed edge (vi, vj) in the simplest case,
in the DAG G = (V,E).

A subset X ⊆ V of jobs is agreeable if none of the jobs of X precedes another.
In particular, two jobs are agreeable if none of them precedes the other, and thus
they can be processed concurrently on different machines in a feasible schedule.

Lemma 1. An agreeable subset X ⊆ V of jobs can be processed by the three-
machine openshop O3 in |X| units of time if |X| ≥ 3, or in 3 units of time if
|X| = 1, 2.

Proof. Let the jobs of X be v1, v2, . . . , vk. When k = 1, at any time point T ,
v1 can be processed on the first machine M1 (the second machine M2, the third
machine M3, respectively) starting at T (T + 1, T + 2, respectively), and thus
finished within 3 units of time.

When k = 2, at any time point T , v1 can be processed on the first machine
M1 (the second machine M2, the third machine M3, respectively) starting at T
(T + 1, T + 2, respectively); v2 can be processed on the third machine M3 (the
first machine M1, the second machine M2, respectively) starting at T (T + 1,
T + 2, respectively). Thus both of them are finished within 3 units of time.

When k ≥ 3, at any time point T , for j = 1, 2, . . . , k − 2, vj can be pro-
cessed on the first machine M1 (the second machine M2, the third machine M3,
respectively) starting at T + j − 1 (T + j, T + j + 1, respectively); vk−1 can be
processed on the third machine M3 (the first machine M1, the second machine
M2, respectively) starting at T (T + k − 2, T + k − 1, respectively); vk can be
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processed on the second machine M2 (the third machine M3, the first machine
M1, respectively) starting at T (T + 1, T + k − 1, respectively). See Fig. 1 for an
illustration. Thus all of them are finished within k units of time. ��

v1M1

M2

M3

T +T k

vk

vk−1

v2

v1

vk

vk−2

v2

v1

vk−1

vk−2

v2
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T + 1

· · ·
· · ·

· · ·

Fig. 1. An sub-schedule to process an agreeable subset X ⊆ V of jobs in |X| units of
time when k = |X| ≥ 3.

Given two disjoint agreeable subsets X1 and X2, if a job of X1 precedes a
job of X2, then we say X1 precedes X2. A collection of mutual disjoint agreeable
subsets is acyclic if the precedence relations among the subsets do not contain
any cycle. A subset of k jobs is called a k-subset, for k = 1, 2, . . .. For simplicity,
a 1-subset is also called a singleton.

Corollary 1. Let C be an acyclic partition of V into agreeable subsets, in which
there are b 2-subsets and c singletons. Then a schedule π can be constructed to
achieve the makespan Cπ

max = n + b + 2c, where n = |V |.
Proof. Using Lemma 1, all the n − 2b − c jobs outside of those 2-subsets and
singletons can be finished in n−2b− c units of time, and each 2-subset and each
singleton can be finished in 3 units of time, respectively. Putting them together,
we have a schedule π of makespan Cπ

max = (n − 2b − c) + 3b + 3c = n + b + 2c. ��
By Corollary 1, we wish to solve the problem O3 | pij = 1, prec | Cmax by

partitioning the jobs into acyclic agreeable subsets such that the quantity b+2c
is minimized. Our main contribution is an algorithm that produces an acyclic
partition achieving a number of singletons no more than the number of isolated
jobs (to be defined) in the optimal schedule.

In the rest of the section, we introduce a representation for the DAGs which
is used in our algorithm design and analysis.

2.1 A DAG Representation

Let G = (V,E) be the precedence graph describing all the given precedence
constraints, where a directed path from vi to vj suggests that the job vi precedes
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the job vj (that is, vj cannot be processed unless vi is finished by the three-
machine openshop). Through out the paper, we let n = |V | and m = |E|.

If (vi, vj) ∈ E and there exists a path from vi to vj not involving the edge
(vi, vj), then we call (vi, vj) a redundant edge, in the sense that the precedence
constraint between every pair of jobs is still there after we remove the edge
(vi, vj) from the graph. We may thus simplify the graph G by removing all
redundant edges, which can be executed in O(m) time by a breadth-first-search
(BFS). Afterwards, for each edge (vi, vj) ∈ E, we call vi a parent of vj and vj a
child of vi. Note that a job can have multiple parents, and multiple children as
well.

In the following layered representation of the graph G = (V,E), each job
will be associated with a level (a positive integer). The first layer consists of all
the jobs with in-degree 0, and these are the level-1 jobs. Iteratively, after the
level-� jobs are determined, they and the edges (these are out-edges) incident
at them are removed from the graph; then the (� + 1)-st layer consists of all
the jobs with in-degree 0 in the remainder graph, and these are the level-(� + 1)
jobs. The process terminates when all the jobs of the original graph G have been
partitioned into their respective layers. We assume that there are �max layers
in total. The entire layer partitioning process is executed in O(m) time. In the
sequel, without loss of generality, a DAG G = (V,E) is always represented in
this way, in which every job is associated with a level and Li denotes the subset
of all the level-i jobs, for i = 1, 2, . . . , �max. See Fig. 2 for an illustration.

R

L1

S = (U, F )

L2

L3

L�max

U1

U2

U3

U�max

Fig. 2. A layered representation of the precedence graph G = (V, E), in which there
are �max layers (each as a dashed rectangle) in total, L1, L2, . . . , L�max . U denotes the
subset of all the vertices on the longest paths in G, Ui = Li ∩ U , for i = 1, 2, . . . , �max

(each as a dashed oval), and S = (U, F ) denotes the induced subgraph on U .
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Lemma 2. Given a DAG G = (V,E), Li is agreeable for every i, and a level-i
job has at least one level-(i − 1) parent (i ≥ 2).

Proof. By how the layers are constructed. ��
Lemma 3. Given a DAG G = (V,E), the partition C = {L1, L2, . . . , L�max} is
an acyclic collection of agreeable subsets.

Proof. By how the layers are constructed and Lemma 2, Li precedes Lj if and
only if i < j. ��
Lemma 4. Given a DAG G = (V,E), the minimum makespan C∗

max ≥
max{n, 3�max}.
Proof. Since we are dealing with unit jobs, C∗

max ≥ n. Select one job vi from
Li, for every i, such that vi is a child of the job vi−1. One clearly sees that in
any feasible schedule, the job vi starts processing after the job vi−1 is finished
by the three-machine openshop; the makespan of the schedule is thus at least
3�max. This proves the lemma. ��
Theorem 1. A schedule π can be constructed from the partition C =
{L1, L2, . . . , L�max} to achieve the makespan Cπ

max ≤ 5
3C∗

max.

Proof. Let b and c denote the number of 2-subsets and the number of singletons
among L1, L2, . . . , L�max . By Corollary 1 a schedule π can be constructed from C
to achieve the makespan Cπ

max = n + b + 2c.
Using the trivial bound �max ≥ b + c in Lemma 4, we have C∗

max ≥
max{n, 3(b + c)}. It follows that

Cπ
max = n + b + 2c ≤ C∗

max +
2
3
C∗

max =
5
3
C∗

max.

This proves the theorem. ��
Clearly, from the layered representation of the graph G = (V,E), we see that

every longest path begins with a level-1 job and ends at a level-�max job, and
it passes through every intermediate layer. That is, every longest path contains
exactly �max jobs (and �max − 1 edges). Let U denote the subset of all the jobs
on the longest paths and F denote the subset of edges inherited by U (i.e.,
F = E[U ]). We call S = (U,F ) the spine of the graph G = (V,E), and let
H = G[V −U ] denote the subgraph of G induced on the remaining subset V −U
of jobs. See Fig. 2 for an illustration.

We define a connected component in a DAG in the usual way by ignoring
the direction of the edges. If the spine S = (U,F ) has more than one connected
component, then we can safely conclude that every layer of the graph G = (V,E)
contains at least two jobs, that is, |Li| ≥ 2 for i = 1, 2, . . . , �max. Recall that our
goal is to partition all the jobs into acyclic agreeable subsets to minimize the
number of singletons. We call such partitions the optimal partitions or optimal
collections of acyclic agreeable subsets. We assume in the rest of the paper that
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the spine S = (U,F ) of the input graph G = (V,E) is connected and there
are singleton layers in S = (U,F ), as otherwise we trivially achieve an optimal
partition without any singletons. Let Ui denote the subset of level-i jobs of U ,
for i = 1, 2, . . . , �max. If |Ui| = 1, then the job of Ui, denoted as si, is called a
singleton job of U .

Lemma 5. Given a DAG G = (V,E) and its spine S = (U,F ), any acyclic
partition of agreeable subsets contains at least �max subsets.

Proof. Select one job ui from Ui, for every i, such that ui is a child of the job
ui−1. (For example, these can be the jobs on a single longest path.) One clearly
sees that in acyclic partition of agreeable subsets, the jobs ui and uj do not
belong to a common subset when i �= j. This suggests there are at least �max

subsets in the partition. This proves the lemma. ��
Lemma 6. Given a DAG G = (V,E) and its spine S = (U,F ), a singleton job
of U cannot be processed concurrently with any other job of U in any feasible
schedule.

Proof. Because the singleton job is not agreeable with any other job of U . ��
Assume there are in total k singleton jobs in U , which are si1 , si2 , . . . , sik ,

where sij ∈ Uij (that is, |Uij | = 1) and 1 ≤ i1 < i2 < . . . < ik ≤ �max. Let vi be
a level-i job outside of U , i.e., vi ∈ Li −Ui. If i > ij and vi is agreeable with sij ,
then none of the jobs of Ui−1 can be a parent of vi; it follows from Lemma 2 that
vi has a parent vi−1 ∈ Li−1 −Ui−1. When i−1 > ij , vi−1 must also be agreeable
with sij , and we may repeat the above argument to conclude that there is a job
vij of Lij − sij which is a predecessor of vi. Since both sij and vij are in Lij ,
they are agreeable (Lemma 2). We thus have proved the following lemma.

Lemma 7. Given a DAG G = (V,E) and its spine S = (U,F ), for a singleton
job sij ∈ U if there is a job of V − U agreeable with sij , then there is a level-i
job of Li − Ui with i ≥ ij which is agreeable with sij .

3 A 4/3-Approximation for O3 | prec, pij = 1 | Cmax

We have shown in Theorem 1 that we can construct a schedule π from the
partition C = {L1, L2, . . . , L�max} to achieve the makespan Cπ

max ≤ 5
3C∗

max,
suggesting that the O3 | prec, pij = 1 | Cmax problem admits a linear time
5/3-approximation. In this section, we present an improved 4/3-approximation
algorithm.

3.1 Algorithm Description

Our algorithm is mostly based on the above Lemma7, for each singleton job sij

of U , to find a job of V − U which is agreeable with sij such that they can be
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processed concurrently. The algorithm is greedy and iterative, and is denoted as
Approx.

Recall that there are in total k singleton jobs in U , which are si1 , si2 , . . . , sik

(that is, Uij = {sij}), with 1 ≤ i1 < i2 < . . . < ik ≤ �max. There are k + 1 iter-
ations in the algorithm Approx, which together construct an acyclic partition
D = {D�max ,D�max−1, . . . , D2,D1}. We initialize R = V − U .

In the first iteration, sequentially for i = �max, �max −1, . . . , ik +1, we simply
let Di = Li and remove the jobs of Li − Ui from R. If |Lik | ≥ 2, then we let
Dik = Lik and remove the jobs of Lik − sik from R. Otherwise, among all the
jobs of R, we pick one job that is agreeable with sik (i.e., not a predecessor of
sik) and has the maximum level. Assume this job is vi ∈ Li −Ui such that i > ik.
We let Dik = {sik , vi} and remove the job vi from R. If no job of R is agreeable
with sik , then we let Dik = {sik} and say that sik remains as a singleton job in
the partition D. This ends the iteration.

In general, in the j-th iteration (j = 2, 3, . . . , k), sequentially for i = ik+2−j −
1, ik+2−j −2, . . . , ik+1−j +1, we simply let Di = Li and remove the jobs of Li−Ui

from R. We remark that here the set Li might not be the original Li, since some
of its jobs might be picked in earlier iterations and thus have been removed.
Nevertheless, since |Ui| ≥ 2, we conclude that |Di| ≥ 2 too. If |Lik+1−j

| ≥ 2,
then we let Dik+1−j

= Lik+1−j
and remove the jobs of Lik+1−j

− sik+1−j
from

R. Otherwise, among all the jobs of R, we pick one job that is agreeable with
sik+1−j

(i.e., not a predecessor of sik+1−j
) and has the maximum level. Assume

this job is vi ∈ Li − Ui such that i > ik+1−j . We let Dik+1−j
= {sik+1−j

, vi}
and remove the job vi from R. If no job of R is agreeable with sik+1−j

, then we
let Dik+1−j

= {sik+1−j
} and say that sik+1−j

remains as a singleton job in the
partition D. This ends the iteration. A high-level description of such a typical
iteration of the algorithm Approx is depicted in Fig. 3.

The j-th iteration of the algorithm Approx (j = 2, 3, . . . , k):

1. for i = ik+2−j − 1, ik+2−j − 2, . . . , ik+1−j + 1,
1.1. set Di = Li;
1.2. remove the jobs of Li − Ui from R;

2. if |Lik+1−j | ≥ 2,
2.1. set Dik+1−j = Lik+1−j ;
2.2. remove the jobs of Lik+1−j − sik+1−j from R;
2.3. end the iteration.

3. if exists vi ∈ R (maximum level possible) agreeable with sik+1−j ,
3.1. set Dik+1−j = {sik+1−j , vi};
3.3. remove the job vi from R;
3.3. end the iteration.

4. 4.1. set Dik+1−j = {sik+1−j};
4.2. end the iteration.

Fig. 3. A high-level description of a typical iteration of the algorithm Approx.



Open-Shop Scheduling for Unit Jobs Under Precedence Constraints 337

In the last (the (k+1)-st) iteration, sequentially for i = i1−1, i1−2, . . . , 2, 1,
we simply let Di = Li and remove the jobs of Li − Ui from R. Again, we know
that here the set Li might not be the original Li, since some of its jobs might
be picked in earlier iterations. Nevertheless, since |Ui| ≥ 2, we conclude that
|Di| ≥ 2 too. This ends the last iteration and the construction of D is complete.
See Fig. 4 for an illustration on D achieved on the graph G = (V,E) shown in
Fig. 2.

R

L1

S = (U, F )

L2

L3

L�max

D1

D2

D3

D�max

Fig. 4. An illustration on the acyclic partition D = {D�max , D�max−1, . . . , D2, D1}
achieved on the precedence graph G = (V, E) shown in Fig. 2. The �max layers
L1, L2, . . . , L�max are shown as dashed rectangles and each subset Di is shown as a
dashed oval.

3.2 Performance Analysis

The main result in this section is the following theorem.

Theorem 2. The schedule π constructed from the partition D = {D1,D2,
. . . , D�max} has a makespan Cπ

max ≤ 4
3C∗

max.

Proof. We prove first that the partition D is acyclic, in a way that Di precedes
Di+1 for i = 1, 2, . . . , �max − 1. Suppose to the contrary Di precedes Dj but
i > j; then Di precedes Di−1. Note that Di (Di−1, respectively) consists of a
subset of jobs of Li (Li−1, respectively) and possibly a job vr with a smaller
level r ≤ i − 1. It follows that i = ij for some j (that is, sij is a singleton job
of U), and vr precedes a job of Di−1, denoted as vt of level t. Thus we have
r < t ≤ i − 1. If vt is agreeable with sij , then by the algorithm description vt

should be picked into Dij , a contradiction. Hence vt precedes sij , which implies
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that vr precedes sij too, again a contradiction. These contradictions together
prove that for any i > j, Di doesn’t precede Dj .

Next consider an optimal schedule π∗ that achieves the minimum makespan
C∗

max, and assume without loss of generality that the makespan is achieved at
the first machine M1. For a singleton job sij of U , Lemma 6 states that it cannot
be processed concurrently with any other job of U in π∗. Therefore, there are at
most two distinct jobs of V − U , such that for each of them, when the machine
M1 is processing it, one of the other machines M2 and M3 is processing sij . We
say that these two jobs of V − U are associated with the singleton job sij . It is
important to note that a job of V −U associated with a singleton job cannot be
associated with another singleton job, for otherwise the two singleton jobs were
processed concurrently in π∗ (contradicting Lemma 6).

Either there is one or two jobs of V − U associated with the singleton job
sij , we pick one randomly. If the picked job has a level less than or equal to ij ,
then we use tij to denote it. If the picked job has a level greater than ij , then
we apply Lemma 7 to locate one of its predecessor jobs with level ij and use tij
to denote this predecessor. One sees that all these tij ’s, if exist, are distinct.

If there is no job of V − U associated with the singleton job sij , we say sij

is isolated in π∗.
Recall that in the partition D, when i /∈ {i1, i2, . . . , ik}, |Di| ≥ 2. If |Dij | = 1,

that is, Dij = {sij}, then we say sij is isolated in the schedule π constructed
from D. We prove in the following the most important property that the number
of isolated jobs in π is not greater than the number of isolated jobs in π∗ (though
the two meanings of “isolated” are different).

Assume sij is isolated in π. We find a path from sij to an isolated job in
π∗ as follows: If sij is isolated in π∗, then the path has length 0. If sij is not
isolated in π∗, that is, we have a job tij associated with sij , then tij should have
been picked by the algorithm Approx in an earlier iteration, since otherwise in
this (k + 1 − j)-th iteration the singleton job sij wouldn’t be left alone in the
set Dij . Therefore, we identify another singleton job sij′ , where j′ > j, which is
not isolated in π because in the (k + 1 − j′)-th iteration the algorithm Approx
picked up tij to accompany the singleton job sij′ . Our path extends from sij

to sij′ . If sij′ happens to be isolated in π∗, then our path ends; otherwise, we
continue to use its associated job tij′ to locate a third singleton job sij′′ , where
j′′ > j too, which is not isolated in π, and our path extends to sij′′ . Due to
the finitely many singleton jobs, our path ends at a singleton job sij∗ , which is
isolated in π∗.

One sees that we have used the associated jobs tij ’s, which are distinct from
each other, to locate an isolated job in π∗ for each isolated job in π. Therefore,
an isolated job in π∗ wouldn’t be discovered by multiple isolated jobs in π. In
other words, the number of isolated jobs in π is not greater than the number of
isolated jobs in π∗, denoted as c∗. Suppose there are b 2-subsets and c singletons
in the partition D; then there are c isolated jobs in π. We have

c ≤ c∗. (1)
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In the optimal schedule π∗, the machine M1 processes nothing while each of
the other two machines is processing an isolated job. That is, the machine M1

idles for at least 2c∗ units of time before the makespan. Since the load of M1 is
n, we have

C∗
max ≥ n + 2c∗. (2)

On the other hand, we still have �max ≥ b + c and C∗
max ≥ 3�max; therefore,

C∗
max ≥ max{n + 2c∗, 3(b + c)}, (3)

which is a better lower bound than the one in Lemma4. It follows that

Cπ
max = n + b + 2c = (n + 2c) + b ≤ C∗

max +
1
3
C∗

max =
4
3
C∗

max.

This proves that the performance ratio for the algorithm Approx is 4/3.
For the running time, the algorithm Approx maintains the precedence rela-

tionships and updates the subsets Li’s for constructing the partition D. The
most time is spent for locating an agreeable job for accompanying a singleton
job of U , which might take O(n) time. Therefore, it is safe to conclude that the
total running time of the algorithm Approx is O(n2). This finishes the proof of
the theorem. ��
Corollary 2. The problem Om | pij = 1, prec | Cmax admits an O(n2)-time
(2 − 2

m )-approximation algorithm.

Proof. Basically we can construct from the acyclic partition D a schedule with
makespan Cmax ≤ n + (m − 2)b + (m − 1)c. While the lower bounds in Eq. (3)
are updated as C∗

max ≥ max{n+(m− 1)c∗,m(b+ c)}. Since we still have c ≤ c∗,
these two inequalities imply that Cmax ≤ (1 + (m − 2)/m)C∗

max = (2 − 2
m )C∗

max.
��

4 Concluding Remarks

We studied the open-shop scheduling problem for unit jobs under precedence
constraints. The problem has been shown to be strongly NP-hard when the
number of machines is part of the input [14], but left as an open problem when
the number m of machines is a fixed constant greater than 2, since 1978 [8].
We approached this problem by proposing a (2 − 2

m )-approximation algorithm,
for m ≥ 3. Addressing the complexity and designing better approximations are
both challenging and exciting.
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Abstract. Let there be a set J of n jobs and a set M of m parallel
machines, where each job j takes pi,j ∈ Z

+ time units on machine i and
assume pi,j = ∞ implies job j cannot be scheduled on machine i. In
makespan minimization on unrelated parallel machines (R||Cmax), the
goal is to schedule each job non-preemptively on a machine so as to
minimize the makespan. A job-intersection graph GJ = (J, EJ) is an
unweighted undirected graph where there is an edge {j, j′} ∈ EJ if there
is a machine i such that both pi,j �= ∞ and pi,j′ �= ∞. In this paper
we consider two variants of R||Cmax where there are a small number of
eligible jobs per machine. First, we prove that there is no approxima-
tion algorithm with approximation ratio better than 3/2 for R||Cmax

when restricted to instances where the job-intersection graph contains
no diamonds, unless P = NP. Second, we match this lower bound by pre-
senting a 3/2-approximation algorithm for this special case of R||Cmax,
and furthermore show that when GJ is triangle free R||Cmax is solv-
able in polynomial time. For R||Cmax restricted to instances when every
machine can process at most � jobs, we give approximation algorithms
with approximation ratios 3/2 and 5/3 for � = 3 and � = 4 respectively,
a polynomial-time algorithm when � = 2, and prove that it is NP-hard
to approximate the optimum solution within a factor less than 3/2 when
� ≥ 3. In the special case where every pi,j ∈ {pj , ∞}, called the restricted
assignment problem, and there are only two job lengths pj ∈ {α, β} we
present a (2 − 1/(� − 1))-approximation algorithm when � ≥ 3.
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1 Introduction

Let J be a set of n jobs and M a set of m parallel machines, where a job j
takes pi,j ∈ Z

+ time units on machine i. The goal in makespan minimization on
unrelated parallel machines is to produce a schedule where each job is scheduled
non-preemptively on a machine so as to minimize the length of the schedule or
makespan. Makespan minimization on unrelated parallel machines is a classic
NP-hard scheduling problem, and is denoted as R||Cmax in Graham’s notation
(see [12]). Note that when the processing time pi,j = ∞, we say that job j
cannot be scheduled on machine i, and assume the processing times are given as
an m×n processing matrix P = (pi,j). In this paper we investigate two versions
of R||Cmax:

Instance: m = 3, n = 4

P =

j1 j2 j3 j4
1 2 1 ∞ M1

3 5 1 ∞ M2

∞ ∞ 1 4 M3

j1

j2 j3 j4

Fig. 1. An instance of R||Cmax (left), and its job-intersection graph GJ (right).

– R||Cmax with simple job-intersection structure. A job-intersection graph GJ =
(J,EJ ) has a job vertex for each job j ∈ J , and for any two jobs j, j′ ∈ J ,
there is an edge {j, j′} ∈ EJ if there is a machine i such that pi,j �= ∞ and
pi,j′ �= ∞. A set of restrictions on which machines can process a job can
be represented as a job-intersection graph. We study R||Cmax restricted to
particular classes of job-intersection graphs. We give an example of a job-
intersection graph in Fig. 1.

– R||Cmax with bounded job assignments. Let Ji be the set of jobs that can be
processed by machine i, i.e., Ji = {j ∈ J | pi,j �= ∞}. Let � > 0. We consider
R||Cmax restricted to instances when, for each machine i, |Ji| ≤ �. Clearly
when � = n, it is R||Cmax.

Currently the best-known approximation algorithms for R||Cmax have
approximation ratio 2 [10,18,24], and there is no approximation algorithm for
R||Cmax with approximation ratio less than 3/2, unless P = NP [18]. Despite
much intensive study, finding an approximation algorithm with approximation
ratio strictly less than 2 still remains an open problem and is regarded as one of
the most challenging open problems in the study of approximation algorithms
today [25]. A natural question is whether there are any “well-structured” and effi-
cient to recognize classes of job-intersection graphs, for which the corresponding
instances of R||Cmax can be efficiently solved or for which there are approxima-
tion algorithms with approximation ratio less than 2. As we show, both problems
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given above are closely related from a hardness of approximation standpoint
and we present algorithms for both. Furthermore, we establish that there is no
approximation algorithm with approximation ratio less than 3/2 for R||Cmax

restricted to diamondless job-intersection graphs or for R||Cmax when every
machine can process at most � = 3 jobs, unless P = NP. However, in both of
these cases we can formulate a relatively simple combinatorial algorithm that
has the approximation ratio 3/2, matching the lower bound.

2 Preliminaries

One NP-hard special case of R||Cmax of recent interest in the literature is the
graph balancing problem. In the graph balancing problem, every job takes pi,j =
pj time units and can only be scheduled on one of at most two possible machines.
This problem can be described as an edge orientation problem: given a weighted
multigraph G = (V,E) with weights pe for each edge e ∈ E, orient all the edges
in G such that the maximum load of the vertices is minimized, where the load
of a vertex is the sum of all the weights of edges oriented toward that vertex. In
this formulation the edges are the jobs, and the vertices are the machines. We
would like to remark that another well-known and intensely studied special case
of R||Cmax is the restricted assignment problem, which is a general case of the
graph balancing problem where every job has a subset of machines on which it
can be scheduled.

A graph is triangle free if it does not contain any simple cycles of length 3—
triangles. Note that all bipartite graphs contain no odd-length cycles, thus all
bipartite graphs are triangle free. The diamond graph consists of four vertices
and five edges, so it is K4 less one edge. We call a graph diamondless if it
does not contain the diamond graph as a subgraph. In contrast, a diamond-free
graph is defined as not having the diamond graph as an induced subgraph. An
induced subgraph H = (V ′, E′) of a graph G = (V,E) is such that V ′ ⊆ V
and an edge e = {u, v} ∈ E′ if both u, v ∈ V ′ and e ∈ E; all diamondless
graphs are diamond-free, but not all diamond-free graphs are diamondless. For
example, the graph K4 is diamond free but is not diamondless. In Fig. 2 we give
an instance of the graph balancing problem where its job-intersection graph is
both diamondless and diamond free.

3 Related Work

The best-known approximation algorithms for R||Cmax and the restricted assign-
ment problem have approximation ratio 2 [10,18,24]. However, for the restricted
assignment problem with two job lengths, α < β, Chakrabarty et al. [5] gave a
(2 − δ)-approximation algorithm for some small value δ > 0 and a (2 − α/β)-
approximation algorithm. Ebenlendr et al. [8] presented a 7/4-approximation
algorithm for the graph balancing problem, and in [13,22] 3/2-approximation
algorithms are presented for the problem when there are only two job lengths.
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j1 j2 j3

j4 j5 j6 j7

j8 j9 j10

j1 j2 j3

j4 j5 j6 j7

j8 j9 j10

Fig. 2. An instance of the graph balancing problem (left) and its job-intersection graph
(right).

The concept of the job-intersection graph goes back to at least Glass and
Kellerer [11] with the study of so-called nested-structures and the restricted
assignment problem. Research on the restricted assignment problem when
instances satisfy certain structural properties is extensive and has grown in inter-
est in recent years [19]. In addition, there has been investigation of scheduling
problems on machine-intersection graphs where the machines are the vertices
and an edge exists between two vertices when a job can be scheduled on the
two corresponding machines [3,14,17]. Jansen et al. [14]1 proved that R||Cmax

is fixed-parameter tractable (FPT) in the treewidth tw of the job-intersection
graph. That is, if the job-intersection graph GJ has constant treewidth, R||Cmax

can be solved in polynomial time. So when the job-intersection graph belongs to
graph classes such as trees (tw = 1), cactus graphs (tw ≤ 2), outerplanar graphs
(tw ≤ 2), and series-parallel graphs (tw ≤ 2), R||Cmax is solvable in polynomial
time. In this paper we study R||Cmax restricted to classes of job-intersection
graphs that do not have constant treewidth. In Fig. 3 we summarize both com-
putational complexity results found in this paper and presently in the literature
for R||Cmax on job-intersection graphs.

To the best of our knowledge R||Cmax with bounded job assignments has
not been previously studied. Bounded job assignments have been considered
in other types of scheduling problems, such as in batch scheduling where a
batch size bounds the number of jobs simultaneously processed by a batching
machine [6,20]. A generalization of R||Cmax where every machine has a positive
integer called a machine capacity that bounds the maximum number of jobs
each machine can process has also been studied. For this generalization there is
a 2-approximation algorithm [23], and there exists an efficient polynomial-time
approximation scheme when the machines are identical [7].

It is important to discuss recognition of the instances for which we design
algorithms. For any 0 ≤ � ≤ n, it is trivial to determine if the set Ji of jobs that
every machine i can process has size at most �. Alon et al. [1] gave an algorithm
that can test if a graph (V,E) is triangle free in O(|E|1.41) time. We note that
diamondless graphs can be recognized in O(|V |3) time by a simple algorithm

1 In this paper the authors refer to the job-intersection graph as the primal graph.
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tree [14]

cactus [14]

general graphs [9,18]

triangle free [*]

diamond free [*]
outerplanar [14]

series-parallel [14]

constant treewidth [14]

Unbounded Treewidth

Bounded Treewidth

bipartite [*]complete [*]

threshold [*]

split [*]

cograph [*]

interval [*]

house free [*]

diamondless [*]

Fig. 3. Summary of results for R||Cmax with simple job-intersection structure. The
job-intersection graphs restricting the machine assignments are grouped by graph class.
For two graph classes A and B, “A → B” in the diagram means that any graph in A
is in graph class B. Problems boxed with dashed lines are polynomial-time solvable,
and problems with boxed solid lines are strongly NP-hard. The number(s) in brackets
are reference numbers, and graph classes with [*] beside them refer to computational
complexity results found in this paper.

that looks for a pair of triangles with a common edge. Kloks et al. [16] showed
that one can recognize if a graph is diamond-free (and give a diamond in the
graph if it is not) in O(|V |c + |E|3/2) time, where O(|V |c) is the time complexity
to compute the square of a |V | × |V | 0-1 adjacency matrix.

4 Our Results

First, we establish that once one admits triangles but forbids diamonds in the
job-intersection graph, there is no k-approximation algorithm for R||Cmax with
k <3/2, unless P �= NP. This matches the same inapproximability bounds as
those that exist for the restricted assignment problem with two job lengths [18]
and the graph balancing problem with two job lengths [2,9], both special
cases of R||Cmax. To do this, we strengthen the inapproximability result of
Ebenlendr et al. [9] for the graph balancing problem with two job lengths.
Employing this result we can also prove that for R||Cmax when every machine i
satisfies |Ji| ≤ 3, the inapproximability lower bound of 3/2 holds. In Sect. 8, we
show that R||Cmax restricted to job-intersection graphs belonging to several well-
studied graph classes such as complete graphs, threshold graphs, interval graphs,
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cographs, split graphs, and house-free graphs do not have any k-approximation
algorithm with k <3/2, unless P = NP.

To complement our inapproximability results, we present a flow-based 3/2-
approximation algorithm for R||Cmax when every machine can process at most
three jobs. As we will later justify, this problem contains as special cases R||Cmax

when GJ is triangle free and R||Cmax when GJ is diamondless. Our algorithm
can also be used to exactly solve in polynomial time R||Cmax when every machine
can process at most two jobs, as well as R||Cmax when restricted to triangle-free
job-intersection graphs. In addition, the same algorithm is a 5/3-approximation
algorithm for R||Cmax when every machine can process at most four jobs. Finally,
in Sect. 7 we give a (2 − 1/(� − 1))-approximation algorithm for the restricted
assignment problem with two job lengths when every machine can process at
most � ≥ 3 jobs.

5 Hardness of Approximation on Diamondless Graphs

In this section we prove under the assumption that P �= NP that R||Cmax has
the inapproximability bound 3/2 even in the case when instances have job-
intersection graphs that are diamondless. To do this, we employ a similar reduc-
tion as that used by Ebenlendr et al. [9]. Since Ebenlendr et al. showed this
reduction yields the inapproximability bound we desire, we must show that the
job-intersection graphs from graph-balancing instances produced by the reduc-
tion are diamondless.

The reduction by Ebenlendr et al. [9] uses a variant of the satisfiability
problem we will denote as At-most-3-SAT(2L). Let there be n′ boolean vari-
ables x1, . . . , xn′ , and m′ clauses α1, . . . , αm′ . Given a propositional logic for-
mula φ in conjunctive normal form (CNF) where there are at most three literals
per clause, each variable appears at most three times in φ, and each literal (a
variable or its negation) appears at most twice in φ, the problem is to decide
whether there is an assignment of values to the variables x1, . . . , xn′ so that φ
is satisfied. At-most-3-SAT(2L) is known to be NP-complete [2]. Without loss
of generality we assume that no clause contains a tautology, and that no clause
contains duplicate literals.

Now we describe how to construct the graph balancing instance I ′ from At-
most-3-SAT(2L) instance I = (φ, n′,m′). Introduce two types of vertices: literal
vertices, and clause vertices. Given a variable xi, a literal vertex corresponds to a
literal xi or ¬xi. For each clause αj , a clause vertex is created that corresponds
to clause αj . There will be two types of edges: tautologous edges, and clause
edges. For each variable xi, a tautologous edge {xi,¬xi} has weight 2. For each
clause αj and literal λ that appears in αj , a clause edge {λ, αj} has weight 1.
Finally, for clause αj add 3 − |αj | self-loops with weight 1 on its clause vertex,
where |αj | is the number of literals in clause αj . The idea is that the orientation
of the tautologous edges will determine the assignment of values to the variables
of φ. Instance I ′ can be built from I in polynomial time.

To illustrate the reduction, we give an example. Let the propositional logic
formula φ = (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3), where n′ = 3 and m′ = 2. Then
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x1

¬x1

x2

x3

¬x2

¬x3

α1

α2

1
2

1

2 1

1

2
1

1

x1

¬x1

x2

x3

¬x2

¬x3

α1

α2

1
2

1

2 1

1

2
1

1

Fig. 4. Given the formula φ = (x1 ∨¬x2)∧ (¬x1 ∨¬x2 ∨¬x3), the resulting graph bal-
ancing instance applying the construction is shown on the left. Its optimal orientation
is given on the right.

α1 = (x1 ∨ ¬x2) and α2 = (¬x1 ∨ ¬x2 ∨ ¬x3). Applying the reduction we obtain
the graph-balancing instance shown in Fig. 4. The formula φ can be satisfied,
and the resulting instance has an optimal orientation with makespan 2.

Ebenlendr et al. [9] proved that I ′ has a schedule with makespan at most
two if φ is satisfied, but the makespan is at least three otherwise. Hence, if
there were a k-approximation algorithm with k <3/2, one could apply the above
reduction, apply said k-approximation algorithm, then correctly decide whether
φ is satisfiable or not in polynomial time: if the makespan is less than three
return “yes”; and if the makespan is at least three, return “no”.

Lemma 1. The job-intersection graph GJ of the weighted multigraph G pro-
duced by the above reduction contains no diamonds.

Proof. Assume that GJ has at least one diamond. Observe that every vertex in
G has at most three incident edges, so GJ can only be comprised of isolated job
vertices, paths, or triangles. Then, there must be two triangles that share two
job vertices to form a diamond.

First, consider the edges incident on literal vertices in G. Recall that each
variable appears in at most three clauses in formula φ and each literal for that
variable appears at most twice. So the job vertex corresponding to the tautolo-
gous edge {xi,¬xi} has degree at most three in GJ . Furthermore, this job vertex
is only adjacent to job vertices that are clause edges in G, and at most two clause
edges may have the same literal vertex as an endpoint in G. Thus, any job ver-
tex {xi,¬xi} along with its adjacent job vertices for clause edges form in GJ
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either a path with one edge, a path with two edges, a triangle, or a path with
an edge plus a triangle, but not two triangles i.e. a bowtie or a diamond.

Next consider the edges incident on clause vertices in G. As no two clause
vertices have edges in common in G and every clause vertex has three edges
incident on it, the edges incident on the clause vertex form a triangle in GJ .
Thus, the diamond must be comprised of job vertices of two clause edges that
are adjacent to the job vertices of a tautologous edge and another clause edge.
There is no diamond when these two clause edges are incident on two literal
vertices of different variables, hence, there are two possibilities:

1. A diamond formed by two clause edges that are incident on the same literal
vertex in G. This cannot happen as no clause in formula φ has duplicate
literals.

2. A diamond formed by two clause edges that are incident on two literal vertices
for the same variable in G. No clause contains tautologies, thus this situation
cannot occur.

Therefore, by contradiction, GJ contains no diamonds. 
�
Theorem 1. There is no k-approximation algorithm with k <3/2 for the graph
balancing problem with two job lengths when the job-intersection graph GJ con-
tains no diamonds, unless P = NP.

Corollary 1. There is no k-approximation algorithm with k <3/2 for R||Cmax

restricted to diamondless job-intersection graphs, unless P = NP.

If |Ji| > 3 for some machine i, then there are at least four jobs j1, j2, j3,
j4 such that pi,j1 �= ∞, pi,j2 �= ∞, pi,j3 �= ∞, and pi,j4 �= ∞. This would
imply GJ contains a diamond; thus, for any machine i, |Ji| ≤ 3 is satisfied if
GJ is diamondless. Hence, the diamondless case is a special case of when, for
each machine i, |Ji| ≤ 3. Thus our inapproximability results carry over to the
special case where every machine can process at most three jobs. Do note that
proving this special case has the inapproximability bound stated in the corollary
can also be made trivially by simply observing that every vertex has at most
three incident edges in the graph-balancing instance constructed in the above
reduction.

Corollary 2. There is no k-approximation algorithm for the graph balancing
problem with two job lengths when every machine can process at most three jobs
where k <3/2, unless P = NP.

6 Approximation Results for Unrelated Scheduling with
Bounded Job Assignments

As we stated at the end of the previous section, R||Cmax restricted to diamond-
less job-intersection graphs is a special case of R||Cmax when every machine i
satisfies |Ji| ≤ 3. We present a 5/3-approximation algorithm for R||Cmax when
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every machine can process at most four jobs. In our analysis we show the same
approximation algorithm has approximation ratio 3/2 in the case when every
machine can process at most three jobs. Note that for R||Cmax restricted to
triangle-free job-intersection graphs, no machine can process three jobs as doing
so implies three jobs share a common machine where they can be scheduled, so
every machine i satisfies |Ji| ≤ 2 in this particular situation.

Let OPT be the value of an optimal solution for R||Cmax when every
machine i satisfies |Ji| ≤ 4. Similar to [18], we perform a binary search proce-
dure to find the smallest value T over the interval [0,

∑
i∈M,j∈J (pi,j)] such that

the algorithm given below produces a schedule with makespan at most (5/3)T .
If a schedule is produced then we decrease the value of T in the binary search,
and if REJECT is reported, then there is no schedule with makespan at most T
and thus T is increased in the binary search. At the end of the binary search the
smallest value for T is found, so it must be the case that T ≤ OPT and so the
approximation ratio is 5/3. We say a job j is small on machine i if its processing
time is pi,j ≤ T/2, and is big on machine i if T/2 < pi,j ≤ T . Observe that if
OPT ≤ T , at most one big job can be scheduled on a machine. Note that by our
definitions, there can be a job j that is neither big nor small with respect to its
processing time on some machine i, if pi,j > T .

1. First, there may be machines for which some jobs are neither big nor small.
For each machine i, if any job j has a processing time pi,j > T on machine i,
we remove job j from job set Ji. As a result, every job j in each job set Ji

has processing time pi,j ≤ T .
2. Build a single-source single-sink flow network N with source s∗ and sink t∗.

In this network, create a job node for each job, and add arcs from s∗ to each
job node with capacity 1. Now, for each machine i, we create a machine node
and a buffer node with arcs according to the Machine Plans given in Fig. 5,
which we describe now. Let disjoint sets Si,Bi ⊆ Ji, where by default it is
assumed that Si and Bi are the small jobs and big jobs in Ji, respectively.
Consider the following cases in the order provided:
(a) If |Ji| = 0, no arcs are added for machine node i.
(b) If

∑
j∈Ji

pi,j ≤ T , then every job j ∈ Ji can be scheduled on machine i, so
we add arcs according to the Machine Plan with d = |Ji| and set Si = Ji

and Bi = ∅.
(c) If |Ji| ≤ 3, then use the Machine Plan with d = |Ji| − 1.
In the last set of cases |Ji| = 4. Sort the jobs of each Ji in non-increasing
order by processing time; let these jobs be denoted as j

(i)
1 , j

(i)
2 , j

(i)
3 , j

(i)
4 .

(d) If
∑4

k=2 p
i,j

(i)
k

> T , add arcs according to the Machine Plan with d = 2.

(e) If
∑4

k=2 p
i,j

(i)
k

≤ T and p
i,j

(i)
1

+ p
i,j

(i)
2

> T , put j
(i)
1 and j

(i)
2 (if either is

not already) into Bi and use the Machine Plan with d = 3.
(f) If

∑4
k=2 p

i,j
(i)
k

≤ T and p
i,j

(i)
1

+ p
i,j

(i)
2

≤ T , use the Machine Plan with
d = 3.

3. Now that N is constructed, the algorithm computes an integral maximum
flow f on N . If any arc leaving the source does not send one unit of flow then
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there is a job node that receives no flow, report REJECT if this is the case. If
all the job nodes receive one unit of flow, we build the schedule as follows:
for each job node j, if machine node i receives 1 unit of flow from j, schedule
job j on machine i.

t∗

1

d

1

1...

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

j ∈ Bi

Mi

1

...

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

j ∈ Si

1

1

Fig. 5. Flow network N is built in part by determining the appropriate machine plan
for each machine. Assume an integer value d is provided along with each plan, and
unless otherwise stated, let Si, Bi ⊆ Ji be the set of small jobs and set of big jobs,
respectively. The machine plan for machine node i shows the arcs and capacities of the
arcs included. Unlabelled white nodes are job nodes, the black node is a buffer node
of machine i that only allows one unit of flow to be sent from job nodes in Bi, and t∗

is the sink of N .

By the way we designed the flow network, it is not hard to see that if OPT ≤
T , all the arcs leaving the source are saturated, and as a result, a schedule is
produced.

Now we analyze the load of each machine. First, it is trivial to observe that
the load of any machine i is at most T if either

∑
j∈Ji

pi,j ≤ T (case (b)) or all
the jobs in Ji are big (case (c) if |Ji| ≤ 3, case (d) if |Ji| = 4). Thus, we consider
each machine i when there is at least one small job and

∑
j∈J pi,j > T based on

the number of jobs in job set Ji:

– |Ji| ≤ 2. If |Ji| ≤ 1, then either case (a) or case (b) occurs, which we already
considered above. If |Ji| = 2 and all the jobs are small, then

∑
j∈Ji

pi,j ≤
T/2 + T/2 = T and falls under case (b). If |Ji| = 2 and

∑
j∈Ji

pi,j > T , then
the only remaining case is when there is one big job and one small job that
cannot be scheduled together. The algorithm applies case (c), which permits
only |Ji| − 1 = 1 job to be scheduled on machine i, and the load of machine i
is at most T . Therefore, the load of any machine with |Ji| ≤ 2 is at most T .
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– |Ji| = 3. Since
∑

j∈Ji
pi,j > T , at most two jobs can be scheduled on

machine i; case (c) is applied here, and the Machine Plan will allow at most
|Ji| − 1 = 2 jobs to be scheduled on machine i. If all three jobs in Ji are
small, then at most two jobs are scheduled on machine i and the load is at
most T . Otherwise at least one job is big and at most two jobs are small in
Ji, and at most one big job will be scheduled with a small job and so the
load is at most T + T/2 = (3/2)T . Therefore, the load of any machine with
|Ji| = 3 is at most (3/2)T .

– |Ji| = 4. First, we identify a few key observations that will simplify our
analysis. First, if ever case (d) is applied, d = 2 in the Machine Plan, so at
most one big job is scheduled with one small job and the load is at most T +
T/2 = (3/2)T . Thus we only need to consider the algorithm in situations
when it applies case (e) or case (f). In either of these two cases, d = 3, so at
most one big job is scheduled with two small jobs, as when three small jobs
are scheduled on machine i the load is at most (3/2)T . Recall that the jobs in
Ji are sorted in non-increasing order j

(i)
1 , j

(i)
2 , j

(i)
3 , j

(i)
4 . If there are at least

three big jobs and at most one small job, then
∑4

k=2 p
i,j

(i)
k

> T and this falls
under case (d); thus we only need to consider below when there are at most
two big jobs and at least one small job in Ji.

• If all four jobs are small, then only case (f) applies as the sum of any two
small jobs on machine i cannot exceed T . Again, at most three small jobs
can be scheduled on machine i and the load is at most (3/2)T .

• If three jobs are small and one job is big, then either case (e) or case (f) is
applied by the algorithm. In case (e), if p

i,j
(i)
2

≤ T/3 then the sorting of the
jobs implies that the load is at most T +2(T/3) = (5/3)T . Then, observe
that if p

i,j
(i)
2

> T/3 and
∑4

k=2 p
i,j

(i)
k

≤ T , then
∑4

k=3 p
i,j

(i)
k

< T − T/3 =
(2/3)T , and the load on machine i is at most p

i,j
(i)
1

+ p
i,j

(i)
3

+ p
i,j

(i)
4

≤
T + (2/3)T = (5/3)T . Next if case (f) is applied, then p

i,j
(i)
1

+ p
i,j

(i)
2

≤ T

implies the load of machine i is at most p
i,j

(i)
1

+p
i,j

(i)
2

+p
i,j

(i)
3

≤ T +T/2 =
(3/2)T .

• If two jobs are small and two jobs are big, only case (e) applies as the sum
of any two big jobs exceeds T . Job j

(i)
2 is big, so observe that

∑4
k=2 p

i,j
(i)
k

≤
T ⇒ ∑4

k=3 p
i,j

(i)
k

< T − (T/2) = T/2. Thus, the load of machine i is at
most T + T/2 = (3/2)T .

Hence, the maximum load of a machine with |Ji| = 4 is at most (5/3)T .

Therefore, we obtain the following results that match the inapproximability
bounds given by Corollary 1 and Corollary 2.

Theorem 2. There is a polynomial-time algorithm for R||Cmax when every
machine can process at most two, three, or four jobs with approximation ratio 1,
3/2, or 5/3, respectively.
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Corollary 3. There is a polynomial-time algorithm for R||Cmax restricted to
job-intersection graphs that are either triangle free or diamondless with approx-
imation ratio 1 or 3/2, respectively. Furthermore, there is a polynomial-time
algorithm for R||Cmax restricted to bipartite job-intersection graphs.

7 A (2 − 1/(� − 1))-Approximation Algorithm
for Restricted Assignment with Two Job Lengths
and Bounded Job Assignments

Let α, β ∈ Z
+, where α < β. Recall that the restricted assignment prob-

lem with two job lengths is a special case of R||Cmax where every processing
time pi,j ∈ {pj ,∞} and job length pj ∈ {α, β}. Note that if every job has the
same job length, this is equivalent to the restricted assignment problem with
unit job lengths and can be solved in polynomial time [21]. So below we con-
sider instances where at least one job differs in length, and every machine can
process at most � ≥ 3 jobs. By modifying the algorithm we gave in Sect. 6
along with using some known results, we obtain an approximation algorithm
with approximation ratio 2 − 1/(� − 1). Like in Sect. 6, there is an estimate T
of the optimal makespan where binary search is performed to find the smallest
value for T such that the algorithm below produces a schedule with makespan
at most (2 − 1/(� − 1))T . Below we assume if not all of the jobs are scheduled,
the algorithm reports REJECT. Given estimate T , consider the following cases in
the order provided.

1. If there is a job j ∈ J with no machine i where pi,j = pj ≤ T , report REJECT.
2. α > T/(� − 1) and β ≤ T . Apply the (2 − α/β)-approximation algorithm of

Chakrabarty et al. [5] for estimate T . If a schedule exists with makespan T ,
this algorithm will compute a schedule with makespan at most

(
2 − α

β

)
T <

(

2 −
T

�−1

T

)

T =
(
2 − 1

� − 1

)
T.

3. α ≤ T/(� − 1) and β ≤ T/2. Use the algorithm of Lenstra et al. [18]. In this
algorithm a fractional solution is computed using linear programming, and
then a rounding is performed to integrally assign the remaining fractionally
assigned jobs. If OPT ≤ T , then solving the linear program guarantees the
load of each machine is at most T , and the rounding step schedules at most one
additional job per machine. Thus, the makespan is at most T + max{α, β} ≤
T + T/2 = (3/2)T .

4. α ≤ T/(� − 1) and T/2 < β ≤ T . Use the algorithm given in Sect. 6 except
than in Step 2, for every machine i proceed as follows:

– If every job in Ji is small, it is possible for every job in Ji to be scheduled
on machine i, so use the Machine Plan with d = |Ji|. The load of the
machine i is at most |Ji|α ≤ |Ji|(T/(� − 1)) ≤ �(T/(� − 1)) ≤ (2 − 1/(� −
1))T as � ≥ 3.
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– There is at least one big job in job set Ji. If β +
∑

j∈Si
pj ≤ T , use the

Machine Plan with d = |Si| + 1, where Si is the set of small jobs of job
set Ji. At most one big job can be scheduled with every job in Si, so the
load of a machine i is at most β +

∑
j∈Si

pj ≤ T .
If β+

∑
j∈Si

pj > T , then either at most one big job can be scheduled with
|Si| − 1 small jobs or at most all |Si| small jobs are scheduled together.
Add arcs according to the Machine Plan with d = max{|Si|, 1}. Since at
least one job in job set Ji is big, |Si| ≤ |Ji| − 1 ≤ � − 1. If every job
that is scheduled on machine i is small, then the load is at most |Si|α ≤
(� − 1)(T/(� − 1)) = T . Otherwise, at most one big job can be scheduled
with |Si| − 1 small jobs and the load of machine i is at most

β + (|Si| − 1)α ≤ T + ((� − 1) − 1)
( T

� − 1

)
=

(
2 − 1

� − 1

)
T.

Theorem 3. There is a (2−1/(�−1))-approximation algorithm for the restricted
assignment problem with two job lengths when every machine can process at
most � ≥ 3 jobs.

8 Inapproximability Results for Job-Intersection Graphs
with Cliques

For any instance I = (P = (pi,j),m, n) of R||Cmax with some pi,j = ∞, there
is another instance I ′ = (P ′ = (p′

i,j),m, n) of R||Cmax with the same optimal
solution but every p′

i,j �= ∞: set p′
i,j = pi,j for any pi,j �= ∞; and if pi,j = ∞,

set p′
i,j to some prohibitively large number, for example, p′

i,j = npmax +1 where
pmax is the largest processing time that is not ∞ in P . For T ≤ npmax, there is
a schedule for instance I with makespan T if and only if there is a schedule for
instance I ′ with makespan T . Every job in instance I ′ can be scheduled on any of
the machines, so the job-intersection graph GJ for I ′ is the complete graph Kn.
We note that an alternate construction to arrive at the complete job-intersection
graph is given at the start of Section 4 in [15]. Therefore, we can carry forward
the inapproximability lower bound 3/2 from the graph balancing problem with
two job lengths given in Sect. 5.

Corollary 4. There is no k-approximation algorithm with k < 3/2 for R||Cmax

restricted to instances where the job-intersection graph is the complete graph Kn,
unless P = NP.

From Corollary 4, R||Cmax restricted to any superclass2 of the complete job-
intersection graphs inherits the 3/2-inapproximability lower bound of R||Cmax.
We name some of these graph classes as they are of interest from a graph-
theoretic standpoint. To begin, define a job-intersection graph as a threshold

2 For a comprehensive list of superclasses, we recommend the Java application at
http://www.graphclasses.org.

http://www.graphclasses.org
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graph if it can be constructed by repeatedly performing the following two opera-
tions: insert an isolated vertex; or insert a vertex and add edges from this vertex
to every other vertex presently in the graph, this vertex is called a dominat-
ing vertex. All complete graphs are threshold graphs, and three superclasses of
threshold graphs are interval graphs, cographs, and split graphs [4, Corollary
7.1.1]. Note that all these graphs belong to the house-free graphs. A graph is
called house free if the graph does not contain as an induced subgraph the house
graph, shown in Fig. 6.

Fig. 6. The house graph.

Corollary 5. There is no k-approximation algorithm with k < 3/2 for R||Cmax

restricted to instances where the job-intersection graphs belong to either the
threshold graphs, interval graphs, cographs, split graphs, or house-free graphs,
unless P = NP.

9 Conclusion

In this paper we have established several graph classes where R||Cmax with
simple job-intersection structure is either polynomial-time solvable or 3/2-
inapproximable. For R||Cmax with bounded job assignments we have shown
that there are polynomial-time algorithms with approximation ratios less than
two when the bounds are small. As we have demonstrated, the structure of a
job-intersection graph presents another way of investigating the complexity of
R||Cmax. However, our work does not address planar job-intersection graphs.
R||Cmax restricted to planar job-intersection graphs seems like it might not be
polynomial-time solvable nor 3/2-inapproximable, we would be interested in its
complexity.
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Abstract. The Student-Project Allocation problem with lecturer prefer-
ences over Students (SPA-S) involves assigning students to projects based
on student preferences over projects, lecturer preferences over students,
and the maximum number of students that each project and lecturer
can accommodate. This classical model assumes that preference lists are
strictly ordered. Here, we study a generalisation of SPA-S where ties are
allowed in the preference lists of students and lecturers, which we refer to
as the Student-Project Allocation problem with lecturer preferences over
Students with Ties (SPA-ST). We investigate stable matchings under the
most robust definition of stability in this context, namely super-stability .
We describe the first polynomial-time algorithm to find a super-stable
matching or to report that no such matching exists, given an instance
of SPA-ST. Our algorithm runs in O(L) time, where L is the total length
of all the preference lists. Finally, we present results obtained from an
empirical evaluation of the linear-time algorithm based on randomly-
generated SPA-ST instances. Our main finding is that, whilst super-stable
matchings can be elusive, the probability of such a matching existing is
significantly higher if ties are restricted to the lecturers’ preference lists.

1 Introduction

The Student-Project Allocation problem (SPA) [4,15] involves sets of students,
projects and lecturers, where students are to be assigned to projects offered by
lecturers. Applications of SPA can be found in many university departments, for
example, the School of Computing Science, University of Glasgow [14], the Fac-
ulty of Science, University of Southern Denmark [5], the Department of Com-
puting Science, University of York [13], and elsewhere [3,4,7]. In this setting,
lecturers provide a list of projects, and students are required to rank a subset of
these projects that they find acceptable, in order of preference. Typically there
may be upper bounds on the number of students that each project and lecturer
can accommodate. Considering the preferences and the capacities of projects
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and lecturers, the problem then is to find a matching (i.e., an assignment of
students to projects such that each student is assigned at most one project, and
the capacity constraints on projects and lecturers are not violated), which is
optimal in some sense according to the stated preferences.

In this work, we will concern ourselves with a variant of SPA that involves
lecturer preferences over students, which is known as the Student-Project Allo-
cation problem with lecturer preferences over Students (SPA-S). In this context, it
has been argued [21] that a natural property for a matching to satisfy is that of
stability. Informally, a stable matching ensures that no student and lecturer who
are not matched together would rather be assigned to each other than remain
with their current assignees. Such a pair would have an incentive to form a
private arrangement outside of the matching, undermining its integrity. Other
variants of SPA in the literature involve lecturer preferences over their proposed
projects [12,17,18], lecturer preferences over (student, project) pairs [2], and no
lecturer preferences at all [14]. See [5] for a recent survey.

The classical SPA-S model assumes that preferences are strictly ordered. How-
ever, this might not be achievable in practice. For instance, a lecturer may be
unable or unwilling to provide a strict ordering of all the students who find her
projects acceptable. Such a lecturer may be happier to rank two or more stu-
dents equally in a tie, which indicates that the lecturer is indifferent between
the students concerned. This leads to a generalisation of SPA-S which we refer to
as the Student-Project Allocation problem with lecture preferences over Students
with Ties (SPA-ST). If we allow ties in the preference lists of students and lec-
turers, different stability definitions naturally arise. Suppose M is a matching in
an instance of SPA-ST. Informally, we say M is weakly stable, strongly stable or
super-stable if there is no student and lecturer such that if they decide to form
an arrangement outside the matching, respectively,

(i) both of them would be better off,
(ii) one of them would be better off and the other no worse off,
(iii) neither of them would be worse off.

With respect to this informal definition, clearly a super-stable matching is
strongly stable, and a strongly stable matching is weakly stable. These concepts
were first defined and studied by Irving [8] in the context of the Stable Marriage
problem with Ties, and subsequently extended to the Hospitals/Residents prob-
lem with Ties (HRT) [9,10] (where HRT is the special case of SPA-ST in which each
lecturer offers only one project, and the capacity of each project is the same as
the capacity of the lecturer offering the project).

Considering the weakest of the three stability concepts mentioned above,
every instance of SPA-ST admits a weakly stable matching (this follows by break-
ing the ties in an arbitrary fashion and applying the stable matching algorithm
described in [1] to the resulting SPA-S instance). However, such matchings could
be of different sizes [16]. Thus opting for weak stability leads to the problem of
finding a weakly stable matching that matches as many students to projects as
possible – a problem that is known to be NP-hard [11,16], even for the so-
called Stable Marriage problem with Ties and Incomplete lists, which is the
special case of hrt in which each project (hospital) has capacity 1. Further,
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a 3
2 -approximation algorithm was described in [6] for the problem of finding a

maximum weakly stable matching in an instance of SPA-ST.
Choosing super-stability avoids the problem of finding a weakly stable match-

ing with optimal cardinality, because (i) analogous to the HRT case, all super-
stable matchings have the same size [9], (ii) finding one or reporting that none
exists can be accomplished in linear-time (as we will see in this paper), and (iii)
if a super-stable matching M exists then all weakly stable matchings are of the
same size (equal to the size of M), and match exactly the same set of students
(see [19] for proof). Furthermore, Irving et al. argued in [9] that super-stability
is a very natural solution concept in cases where agents have incomplete infor-
mation. Central to their argument is the following proposition, stated for hrt
in [9, Proposition 2], which extends naturally to spa-st as follows (see [19] for
proof).

Proposition 1. Let I be an instance of SPA-ST, and let M be a matching in I.
Then M is super-stable in I if and only if M is stable in every instance of SPA-S

obtained from I by breaking the ties in some way.

In a practical setting, suppose that a student si has incomplete information
about two or more projects and decides to rank them equally in a tie T , and a
super-stable matching M exists in the corresponding SPA-ST instance I, where
si is assigned to a project in T . Then M is stable in every instance of spa-s
(obtained from I by breaking the ties) that represents the true preferences of
si. Consequently, we will focus on the concept of super-stability in the SPA-ST

context.
Unfortunately not every instance of SPA-ST admits a super-stable matching.

This is true, for example, in the case where there are two students, two projects
and one lecturer, where the capacity of each project is 1, capacity of the lecturer
is 2, and every preference list is a single tie of length 2. Nonetheless, it should be
clear from the discussion above that a super-stable matching should be preferred
in practical applications when one does exist.

Irving et al. [9] described an algorithm to find a super-stable matching given
an instance of HRT, or to report that no such matching exists. However, merely
reducing an instance of SPA-ST to an instance of HRT and applying the algorithm
described in [9] to the resulting HRT instance does not work in general (see [19]
for a further explanation).

Our Contribution. In this paper, we describe the first polynomial-time algo-
rithm to find a super-stable matching or to report that no such matching exists,
given an instance of SPA-ST – thus solving an open problem given in [1,15]. Our
algorithm runs in time linear in the size of the problem instance. The remaining
sections of this paper are structured as follows. We give a formal definition of the
SPA-S problem, the SPA-ST variant, and the super-stability concept in Sect. 2. We
describe our algorithm for SPA-ST under super-stability in Sect. 3. Further, Sect. 3
also presents our algorithm’s correctness results and some structural properties
satisfied by the set of super-stable matchings in an instance of SPA-ST. In Sect. 4,
we present results arising from an empirical evaluation that investigates how



360 S. Olaosebikan and D. Manlove

the nature of the preference lists would affect the likelihood of a super-stable
matching existing, with respect to randomly-generated SPA-ST instances. Our
main finding is that the probability of a super-stable matching existing is sig-
nificantly higher if ties are restricted to the lecturers’ preference lists. Finally,
Sect. 5 presents some concluding remarks and potential direction for future work.

2 Preliminary Definitions

2.1 Formal Definition of SPA-S

An instance I of SPA-S involves a set S = {s1, s2, . . . , sn1} of students, a set
P = {p1, p2, . . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers. Each
student si ranks a subset of P in strict order. We denote by Ai the ranked set of
projects that si finds acceptable. We say that si finds pj acceptable if pj ∈ Ai.

Each lecturer lk ∈ L offers a non-empty set of projects Pk, where P1, P2, . . . ,
Pn3 partitions P, and lk provides a preference list, denoted by Lk, ranking in
strict order of preference those students who find at least one project in Pk

acceptable. Also lk has a capacity dk ∈ Z
+, indicating the maximum number of

students she is willing to supervise. Similarly each project pj ∈ P has a capacity
cj ∈ Z

+ indicating the maximum number of students that it can accommodate.
We assume that for any lecturer lk, max{cj : pj ∈ Pk} ≤ dk ≤ ∑{cj : pj ∈

Pk} (i.e., the capacity of lk is (i) at least the highest capacity of the projects
offered by lk, and (ii) at most the sum of the capacities of all the projects lk
is offering). We denote by Lj

k, the projected preference list of lecturer lk for pj ,
which can be obtained from Lk by removing those students that do not find pj
acceptable (thereby retaining the order of the remaining students from Lk).

An assignment M is a subset of S × P such that (si, pj) ∈ M implies that
si finds pj acceptable. If (si, pj) ∈ M , we say that si is assigned to pj , and pj is
assigned si. For convenience, if si is assigned in M to pj , where pj is offered by
lk, we may also say that si is assigned to lk, and lk is assigned si.

For any student si ∈ S, we let M(si) denote the set of projects assigned to si
in M . For any project pj ∈ P, we denote by M(pj) the set of students assigned
to pj in M . Project pj is undersubscribed, full or oversubscribed according as
|M(pj)| is less than, equal to, or greater than cj , respectively. Similarly, for any
lecturer lk ∈ L, we denote by M(lk) the set of students assigned to lk in M .
Lecturer lk is undersubscribed, full or oversubscribed according as |M(lk)| is less
than, equal to, or greater than dk, respectively.

A matching M is an assignment such that each student is assigned to at most
one project in M , each project is assigned at most cj students in M , and each
lecturer is assigned at most dk students in M . If si is assigned to some project
in M , for convenience we let M(si) denote that project.
In what follows, lk is the lecturer who offers project pj .

Definition 1 (stability). Let I′ be an instance of spa-s, and let M be a
matching in I′. We say M is stable if it admits no blocking pair, where a blocking
pair is an acceptable pair (si, pj) ∈ (S × P) \ M such that (a) si is either
unassigned in M or prefers pj to M(si), and (b) either
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(i) pj is undersubscribed and lk is undersubscribed, or
(ii) pj is undersubscribed, lk is full and either si ∈ M(lk), or lk prefers si to

the worst student in M(lk), or
(iii) pj is full and lk prefers si to the worst student in M(pj).

For a full description of an algorithm to find a stable matching in this setting,
we refer the interested reader to [1,15].

2.2 Ties in the Preference Lists

We now define formally the generalisation of SPA-S in which preference lists can
include ties. In the preference list of lecturer lk ∈ L, a set T of r students forms a
tie of length r if, for any si, si′ ∈ T , lk does not prefer si to si′ (i.e., lk is indifferent
between si and si′). A tie in a student’s preference list is defined similarly. For
convenience, in what follows we consider a non-tied entry in a preference list as
a tie of length one. We denote by SPA-ST the generalisation of SPA-S in which the
preference list of each student (respectively lecturer) comprises a strict ranking
of ties, each comprising one or more projects (respectively students).

An example SPA-ST instance I1 is given in Fig. 1, which involves the set of
students S = {s1, s2, s3, s4, s5}, the set of projects P = {p1, p2, p3} and the
set of lecturers L = {l1, l2}. Ties in the preference lists are indicated by round
brackets.

Fig. 1. An example instance I1 of SPA-ST.

In the context of SPA-ST, we assume that all notation and terminology carries
over from Sect. 2.1 as defined for SPA-S with the exception of stability, which
we now define. When ties appear in the preference lists, three levels of stability
arise (as in the HRT context [9,10]), namely weak stability, strong stability and
super-stability. The formal definition for weak stability in SPA-ST follows from
the definition for stability in SPA-S (see Definition 1). Moreover, the existence of
a weakly stable matching in an instance I of SPA-ST is guaranteed by breaking
the ties in I arbitrarily, thus giving rise to an instance I′ of spa-s. Clearly, a
stable matching in I′ is weakly stable in I. Indeed a converse of sorts holds,
which gives rise to the following proposition (see [19] for proof).

Proposition 2. Let I be an instance of SPA-ST, and let M be a matching in I.
Then M is weakly stable in I if and only if M is stable in some instance I′ of
SPA-S obtained from I by breaking the ties in some way.
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As mentioned earlier, super-stability is the most robust concept to seek in a prac-
tical setting. Only if no super-stable matching exists in the underlying problem
instance should other forms of stability be sought.

Definition 2 (super-stability). Let I be an instance of spa-st, and let M be
a matching in I. We say M is super-stable if it admits no blocking pair, where
a blocking pair is an acceptable pair (si, pj) ∈ (S × P) \ M such that (a) either
si is unassigned in M or si prefers pj to M(si) or is indifferent between them;
and (b) either

(i) pj is undersubscribed and lk is undersubscribed, or
(ii) pj is undersubscribed, lk is full, and either si ∈ M(lk) or lk prefers si to

the worst student in M(lk) or is indifferent between them, or
(iii) pj is full and lk prefers si to the worst student in M(pj) or is indifferent

between them.

It may be verified that the matching M = {(s3, p2), (s4, p3), (s5, p1)} is super-
stable in the SPA-ST instance shown in Fig. 1. Clearly, a super-stable matching is
weakly stable.

3 An Algorithm for spa-st Under Super-stability

In this section we present our algorithm for SPA-ST under super-stability, which
we will refer to as Algorithm SPA-ST-super. First, we note that our algorithm is
a non-trivial extension of Algorithm SPA-student for spa-s from [1] and Algo-
rithm HRT-Super-Res for hrt from [9]. Due to the more general setting of SPA-ST,
Algorithm SPA-ST-super requires some new ideas, and the proofs of the correct-
ness results are more complex than for the aforementioned algorithms for spa-s
and hrt. In Sect. 3.1, we give a description of our algorithm, before presenting it
in pseudocode form. We present the algorithm’s correctness results in Sect. 3.2.

3.1 Description of the Algorithm

First, we present some definitions relating to the algorithm. In what follows, I is
an instance of SPA-ST, (si, pj) is an acceptable pair in I and lk is the lecturer who
offers pj . Further, if (si, pj) belongs to some super-stable matching in I, we call
(si, pj) a super-stable pair and si a super-stable partner of pj (and vice-versa).

During the execution of the algorithm, students become provisionally
assigned to projects. It is possible for a project to be provisionally assigned
a number of students that exceed its capacity. This holds analogously for a
lecturer. The algorithm proceeds by deleting from the preference lists certain
(si, pj) pairs that cannot be super-stable. By the term delete (si, pj), we mean
the removal of pj from si’s preference list and the removal of si from Lj

k (the
projected preference list of lecturer lk for pj). In addition, if si is provisionally
assigned to pj at this point, we break the assignment. By the head of a student’s
preference list at a given point, we mean the set of one or more projects, tied in



Super-Stability in the Student-Project Allocation Problem with Ties 363

her preference list after any deletions might have occurred, that she prefers to
all other projects in her list.

For project pj , we define the tail of Lj
k as the least-preferred tie in Lj

k after
any deletions might have occurred (recalling that a tie can be of length one).
In the same fashion, we define the tail of Lk (preference list of lecturer lk)
as the least-preferred tie in Lk after any deletions might have occurred. If si is
provisionally assigned to pj , we define the successors of si in Lj

k as those students
that are worse than si in Lj

k. An analogous definition holds for the successors of
si in Lk.

We now describe our algorithm. Algorithm SPA-ST-super begins by initialis-
ing an empty set M which will contain the provisional assignments of students
to projects (and intuitively to lecturers). We remark that such assignments can
subsequently be broken during the algorithm’s execution. Also, each project is
initially assigned to be empty (i.e., not assigned to any student).

The while loop of the algorithm involves each student si who is not provi-
sionally assigned to any project in M and who has a non-empty list applying in
turn to each project pj at the head of her list. Immediately, si becomes provi-
sionally assigned to pj in M (and to lk). If, by gaining a new student, pj becomes
oversubscribed, it turns out that none of the students st at the tail of Lj

k can
be assigned to pj in any super-stable matching – such pairs (st, pj) are deleted.
Similarly, if by gaining a new student, lk becomes oversubscribed, none of the
students st at the tail of Lk can be assigned to any project offered by lk in any
super-stable matching – such pairs (st, pu), for each project pu ∈ Pk that st finds
acceptable, are deleted.

Regardless of whether any deletions occurred as a result of the two con-
ditionals described in the previous paragraph, we have two further (possibly
non-disjoint) cases in which deletions may occur. If pj becomes full, we let sr be
any worst student provisionally assigned to pj (according to Lj

k), and we delete
(st, pj) for each successor st of sr in Lj

k. Similarly if lk becomes full, we let sr be
any worst student provisionally assigned to lk, and we delete (st, pu), for each
successor st of sr in Lk and for each project pu ∈ Pk that st finds acceptable. As
we will prove later, none of the (student, project) pairs deleted when a project
or a lecturer becomes full can be a super-stable pair.

At the point where the while loop terminates (i.e., when every student is
provisionally assigned to one or more projects or has an empty list), if some
project pj that was previously full ends up undersubscribed, we let sr be any one
of the most preferred students (according to Lj

k) who was provisionally assigned
to pj during some iteration of the algorithm but is not assigned to pj at this point
(for convenience, we henceforth refer to such sr as the most preferred student
rejected from pj according to Lj

k). If the students at the tail of Lk (recalling
that the tail of Lk is the least-preferred tie in Lk after any deletions might have
occurred) are no better than sr, it turns out that none of these students st can
be assigned to any project offered by lk in any super-stable matching – such
pairs (st, pu), for each project pu ∈ Pk that st finds acceptable, are deleted. The
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while loop is then potentially reactivated, and the entire process continues until
every student is provisionally assigned to a project or has an empty list.

At the termination of the repeat-until loop, if the set M , containing the
provisional assignments of students to projects, is super-stable relative to the
given instance I then M is output as a super-stable matching in I. Otherwise,
the algorithm reports that no super-stable matching exists in I. We present
Algorithm SPA-ST-super in pseudocode form in Algorithm 1.

3.2 Correctness of Algorithm SPA-ST-super

We now present the following results regarding the correctness of Algorithm
SPA-ST-super. For several lemmas in this section, we either omit the proof or
provide a sketch proof; see [19] for the full proofs. The first of these results deals
with the fact that no super-stable pair is ever deleted during the execution of the
algorithm. In what follows, I is an instance of SPA-ST, (si, pj) is an acceptable
pair in I and lk is the lecturer who offers pj .

Lemma 1. If a pair (si, pj) is deleted during the execution of Algorithm
SPA-ST-super, then (si, pj) does not belong to any super-stable matching in I.

Proof. (Sketch). Suppose (si, pj) is the first super-stable pair to be deleted during
some execution of the algorithm, which belongs to some super-stable matching,
say M∗. Let lk be the lecturer who offers pj . We consider five points in the
algorithm at which (si, pj) could be deleted. If (si, pj) is deleted because si
is in the tail of Lj

k when pj became oversubscribed, we show that one of the
students provisionally assigned to pj at this point must form a blocking pair
for M∗ with pj , a contradiction. Similarly, if (si, pj) is deleted because si is
in the tail of Lk when lk became oversubscribed, we show that there is some
project pj′ ∈ Pk and some student sr, with sr provisionally assigned to pj′

in M∗ at this point, such that (sr, pj′) must form a blocking pair for M∗, a
contradiction. Further, if (si, pj) is deleted because si is a successor of a worst
student provisionally assigned to pj when pj became full, we show that one of
the students provisionally assigned to pj at this point must form a blocking
pair for M∗ with pj , a contradiction. Similarly, if (si, pj) is deleted because si
is a successor of a worst student provisionally assigned to lk when lk became
full, we show that there is some project pj′ ∈ Pk and some student sr, with sr
provisionally assigned to pj′ in M∗ at this point, such that (sr, pj′) must form a
blocking pair for M∗, a contradiction. Finally, suppose (si, pj) is deleted at line
33 of the algorithm, suppose pj′ is a project offered by lk which was previously
full but ended up undersubcribed in line 27 of the algorithm, and suppose sr is
the most preferred student rejected from pj′ according to Lj′

k . We show that, in
order to avoid the pair (si′ , pj′) from blocking M∗, we can construct an infinite
sequence of distinct students, a contradiction to the finite size of the instance. ��
The next three lemmas deal with the case that Algorithm SPA-ST-super reports
the non-existence of a super-stable matching in I.
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Algorithm 1. Algorithm SPA-ST-super
Input: SPA-ST instance I
Output: a super-stable matching M in I or “no super-stable matching exists in I”
1: M ← ∅
2: for each pj ∈ P do
3: full(pj) = false
4: repeat
5: while some student si is unassigned and has a non-empty list do
6: for each project pj at the head of si’s list do
7: lk ← lecturer who offers pj
8: /* si applies to pj */
9: M ← M ∪ {(si, pj)} / *provisionally assign si to pj (and to lk) */

10: if pj is oversubscribed then
11: for each student st at the tail of Lj

k do
12: delete (st, pj)
13: else if lk is oversubscribed then
14: for each student st at the tail of Lk do
15: for each project pu ∈ Pk ∩ At do
16: delete (st, pu)
17: if pj is full then
18: full(pj) = true
19: sr ← worst student assigned to pj according to Lj

k {any if > 1}
20: for each successor st of sr on Lj

k do
21: delete (st, pj)
22: if lk is full then
23: sr ← worst student assigned to lk according to Lk {any if > 1}
24: for each successor st of sr on Lk do
25: for each project pu ∈ Pk ∩ At do
26: delete (st, pu)
27: if some project pj is undersubscribed and full(pj) is true then
28: lk ← lecturer who offers pj

29: sr ← most preferred student rejected from pj according to Lj
k {any if > 1}

30: if the students at the tail of Lk are no better than sr then
31: for each student st at the tail of Lk do
32: for each project pu ∈ Pk ∩ At do
33: delete (st, pu)
34: until every unassigned student has an empty list
35: if M is a super-stable matching in I then
36: return M

37: else
38: return “no super-stable matching exists in I”

Lemma 2. If any student is multiply assigned at the termination of
Algorithm SPA-ST-super, then I admits no super-stable matching.

Lemma 3. If some lecturer lk becomes full during some execution of
Algorithm SPA-ST-super and lk subsequently ends up undersubscribed at the ter-
mination of the algorithm, then I admits no super-stable matching.

Lemma 4. If the pair (si, pj) was deleted during some execution of
Algorithm SPA-ST-super, and at the termination of the algorithm si is not
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assigned to a project better than pj, and each of pj and lk is undersubscribed,
then I admits no super-stable matching.

The next lemma shows that the final assignment may be used to determine the
existence, or otherwise, of a super-stable matching in I.

Lemma 5. If at the termination of Algorithm SPA-ST-super, the assignment M
is not super-stable in I, then no super-stable matching exists in I.

Proof. Suppose M is not super-stable in I. If some student si is multiply assigned
in M , then I admits no super-stable matching, by Lemma 2. Hence suppose no
student is multiply assigned in M . Then M is a matching, since no project or
lecturer is oversubscribed in M . Let (si, pj) be a blocking pair of M in I, then si
is either unassigned in M or prefers pj to M(si) or is indifferent between them.
Whichever of these is the case, (si, pj) has been deleted and therefore does not
belong to any super-stable matching, by Lemma 1. Let lk be the lecturer who
offers pj . If (si, pj) was deleted as a result of lk being full or oversubscribed,
(si, pj) could only block M if lk ends up undersubscribed in M . If this is the
case, then I admits no super-stable matching, by Lemma 3.

Now suppose (si, pj) was deleted as a result of pj being full or oversubscribed.
Suppose firstly that pj ends up full in M . Then (si, pj) cannot block M irre-
spective of whether lk is undersubscribed or full in M , since lk prefers the worst
assigned student(s) in M(pj) to si. Hence suppose pj ended up undersubscribed
in M . As pj was previously full, each pair (st, pu), for each st that is no better
than si at the tail of Lk and each pu ∈ Pk∩At, would have been deleted in line 33
of the algorithm. Thus if lk is full in M , then (si, pj) does not block M . Suppose
lk is undersubscribed in M . If lk was full at some point during the execution of
the algorithm, then I admits no super-stable matching, by Lemma 3. Suppose lk
was never full during the algorithm’s execution. As (si, pj) is a blocking pair of
M , si cannot be assigned in M a project that she prefers to pj . Hence I admits
no super-stable matching, by Lemma 4.

Finally suppose (si, pj) was deleted (at line 33) because some other project
pj′ offered by lk was previously full and ended up undersubscribed at line 27.
Then lk must have identified her most preferred student, say sr, rejected from
pj′ such that si is at the tail of Lk and si is no better than sr in Lk. Moreover,
every project offered by lk that si finds acceptable would have been deleted from
si’s preference list at the for loop iteration in line 33. If pj ends up full in M ,
then (si, pj) does not block M . Suppose pj ends up undersubscribed in M . If
lk is full in M , then (si, pj) does not block M , since si /∈ M(lk) and lk prefers
the worst student in M(lk) to si. Suppose lk is undersubscribed in M , again by
Lemma 4, I admits no super-stable matching. ��
The next lemma shows that Algorithm SPA-ST-super may be implemented to
run in linear time.

Lemma 6. Algorithm SPA-ST-super may be implemented to run in O(L) time
and O(n1n2) space, where n1, n2, and L are the number of students, number of
projects, and the total length of the preference lists, respectively, in I.
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Lemma 1 shows that there is an optimality property for each assigned student
in any super-stable matching found by the algorithm, whilst Lemma 5 estab-
lishes the correctness of Algorithm SPA-ST-super. The following theorem collects
together Lemmas 1, 5 and 6.

Theorem 1. For a given instance I of SPA-ST, Algorithm SPA-ST-super deter-
mines, in O(L) time and O(n1n2) space, whether or not a super-stable matching
exists in I. If such a matching does exist, all possible executions of the algo-
rithm find one in which each assigned student is assigned to the best project that
she could obtain in any super-stable matching, and each unassigned student is
unassigned in all super-stable matchings.

3.3 Properties of Super-Stable Matchings in SPA-ST

The following theorem, which we will refer to as the Unpopular Projects Theorem,
gives some properties of super-stable matchings in an instance of SPA-ST that are
analogous to those satisfied by stable matchings in SPA-S [1, Theorem 4.1].

Theorem 1. For a given instance I of SPA-ST, the following holds.

1. Each lecturer is assigned the same number of students in all super-stable
matchings.

2. Exactly the same students are unassigned in all super-stable matchings.
3. A project offered by an undersubscribed lecturer has the same number of stu-

dents in all super-stable matchings.

4 Empirical Evaluation

In this section, we evaluate an implementation of Algorithm SPA-ST-super. We
implemented our algorithm in Python1, and performed our experiments on a
system with dual Intel Xeon CPU E5-2640 processors with 64GB of RAM, run-
ning Ubuntu 14.04. For our experiment, we were primarily concerned with the
following question: how does the nature of the preference lists in a given SPA-ST

instance affect the existence of a super-stable matching?

4.1 Datasets

For datasets, there are clearly several parameters that can be varied, such as the
number of students, projects and lecturers; the lengths of the students’ preference
list as well as a measure of the density of ties present in the preference lists. We
denote by td, the measure of the density of ties present in the preference lists. In
each student’s preference list, the tie density tds

(0 ≤ tds
≤ 1) is the probability

that some project is tied to its successor. The tie density tdl
in each lecturer’s

preference list is defined similarly. At tds
= tdl

= 1, each preference lists would
be contained in a single tie while at tds

= tdl
= 0, no tie would exist in the

preference lists, thus reducing the problem to an instance of SPA.
1 https://github.com/sofiatolaosebikan/spa-st-super-stability.

https://github.com/sofiatolaosebikan/spa-st-super-stability
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4.2 Experimental Setup

For each range of values for the aforementioned parameters, we randomly-
generated a set of SPA-ST instances, involving n1 students (which we will hence-
forth refer to as the size of the instance), 0.5n1 projects, 0.2n1 lecturers and 1.5n1

total project capacity which was randomly distributed amongst the projects.
The capacity for each lecturer lk was chosen randomly to lie between the high-
est capacity of the projects offered by lk and the sum of the capacities of the
projects that lk offers. In each set, we measured the proportion of instances that
admit a super-stable matching. It is worth mentioning that when we varied the
tie density on both the students’ and lecturers’ preference lists between 0.1 and
0.5, super-stable matchings were very elusive, even with an instance size of 100
students. Thus, for the purpose of our experiment, we decided to choose a low
tie density.

Experiment 1. In the first experiment, we increased the number of students n1

while maintaining a constant ratio of projects, lecturers, project capacities and
lecturer capacities as described above. For various values of n1 (100 ≤ n1 ≤ 1000)
in increments of 100, we created 1000 randomly-generated instances. The length
of each student’s preference list was fixed at 50. For all the preference lists,
we set tds

= tdl
= 0.005 (on average, 1 out of 5 students has a single tie of

length 2 in their preference list, and this holds similarly for the lecturers). The
result displayed in Fig. 2 shows that the proportion of instances that admit a
super-stable matching decreases as the number of students increases.

Experiment 2. In our second experiment, we varied the length of each student’s
preference list while maintaining the number of students, projects, lecturers,
project capacities and lecturer capacities, and tie density in the students’ and
lecturers’ preference lists, as in Experiment 1. For various values of n1 (100 ≤
n1 ≤ 1000) in increments of 100, we created 1000 randomly-generated instances.
In the first part of this experiment, the length of each student’s preference list
was set to 10, and in the second part, the length of each student’s preference list
was chosen randomly to lie between 0.25n1 and 0.5n1. The result is displayed in
Fig. 3. Although this result shows that more instances admitted a super-stable
matching when the preference list was longer compared to when the preference
list was fixed at 10, but this difference is not very significant.

Experiment 3. In our last experiment, we investigated how the variation in
tie density in both the students’ and lecturers’ preference lists affects the exis-
tence of a super-stable matching. To achieve this, we varied the tie density in
the students’ preference lists tds

(0 ≤ td ≤ 0.05) and the tie density in the lec-
turers’ preference lists tdl

(0 ≤ td ≤ 0.05), both in increments of 0.005. For each
pair of tie densities in tds

× tdl
we randomly-generated 1000 SPA-ST instances for

various values of n1 (100 ≤ n1 ≤ 1000) in increments of 100. For each of these
instances, we maintained the same ratio of projects, lecturers, project capacities
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and lecturer capacities as in Experiment 1. We also fixed the length of each stu-
dent’s preference list at 50. The result displayed in Fig. 4 shows that increasing
the tie density in both the students’ and lecturers’ preference lists reduces the
proportion of instances that admit a super-stable matching. In fact, this pro-
portion reduces further as the size of the instance increases. However, it was
interesting to see that when we fixed the tie density in the students’ preference
lists at 0 and varied the tie density in the lecturers’ preference lists, about 75%
of the randomly-generated SPA-ST instances involving 1000 students admitted a
super-stable matching.

Fig. 2. Result for Experiment 1. Fig. 3. Result for Experiment 2.

Fig. 4. Each of the coloured square boxes represent the proportion of the 1000
randomly-generated SPA-ST instances that admits a super-stable matching, with
respect to the tie density in the students’ and lecturers’ preference lists. See the colour
bar transition, as this proportion ranges from dark (100%) to light (0%).

5 Discussions and Concluding Remarks

Based on the instances we generated randomly, the experimental results suggest
that as we increase the size of the instance and the density of ties in the preference
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lists, the likelihood of a super-stable matching existing decreases. There was
no significant uplift in this likelihood even as we increased the lengths of the
students’ preference lists. Moreover, when the ties occur only in the lecturers’
preference lists, we found that a significantly higher proportion of instances
admit a super-stable matching. Given that there are typically more students than
lecturers in practical applications, it could be that only lecturers are permitted
to have some form of indifference over the students that they find acceptable,
whilst each student might be able to provide a strict ordering over what may be
a small number of projects that she finds acceptable. On the other hand we did
not find the same uplift for the case where ties belong to the students’ preference
lists only.

Further evaluation of our algorithm could investigate how other parameters
(e.g., the popularity of some projects, or the position of the ties in the preference
lists) affect the existence of a super-stable matching. It would also be interesting
to examine the existence of super-stable matchings in real SPA-ST datasets. From
a theoretical perspective, an interesting question would be: what is the probabil-
ity of a super-stable matching existing, given an arbitrary SPA-ST instance? This
question has been explored for the Stable Roommates problem (a non-bipartite
generalisation of the Stable Marriage problem) [20].

To cope with the possible non-existence of a super-stable matching, a natural
strategy would be to seek a strongly stable matching if one exists, and if not,
settle for a weakly stable matching. As noted in Sect. 1, every instance of SPA-ST

admits a weakly stable matching. We leave open the problem of constructing an
algorithm for SPA-ST under the strong stability criterion.

Acknowledgements. The authors would like to thank Frances Cooper and Kitty
Meeks for valuable comments that helped to improve the presentation of this paper.
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Abstract. In a minimum partial set multi-cover problem (MinPSMC),
given an element set E, a collection of subsets S ⊆ 2E , a cost wS on each
set S ∈ S, a covering requirement re for each element e ∈ E, and an inte-
ger k, the goal is to find a sub-collection F ⊆ S to fully cover at least k
elements such that the cost of F is as small as possible, where element e
is fully covered by F if it belongs to at least re sets of F . On the applica-
tion side, the problem has its background in the seed selection problem
in a social network. On the theoretical side, it is a natural combination of
the minimum partial (single) set cover problem (MinPSC) and the min-
imum set multi-cover problem (MinSMC). Although both MinPSC and
MinSMC admit good approximations whose performance ratios match
those lower bounds for the classic set cover problem, previous studies
show that theoretical study on MinPSMC is quite challenging. In this
paper, we prove that MinPSMC cannot be approximated within factor

O(n
1

2(log log n)c ) under the ETH assumption. A primal dual algorithm
for MinPSMC is presented with a guaranteed performance ratio O(

√
n)

when rmax and f are constants, where rmax = maxe∈E re is the maximum
covering requirement and f is the maximum frequency of elements (that
is the maximum number of sets containing a common element). We also
improve the ratio for a restricted version of MinPSMC which possesses
a graph-type structure.

Keywords: Positive influence seeding problem
Partial set multi-cover problem · Densest l-subgraph problem
Approximation algorithm

1 Introduction

The study of this paper is motivated by a seed selection problem in a social
network. Social network is an important medium for the spread of information
and opinions. How information is spread depends on the structure of the network
and how opinions are spread depends on the mechanism of influence. One of the
most important topics people concern about is to which extent an opinion can
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be accepted. Following the seminal work of Kempe et al. [1] on the influence
maximization problem, there are a huge body of studies in this field. Most studies
are on probabilistic spreading models such as the linear threshold model or the
independent cascade model. Good performance ratios were achieved by exploring
the submodularity of the influence function [1,2]. On the other hand, study on
a deterministic model is extremely hard, in which the influence mechanism is
such that a node is activated only when at least a predetermined fraction of its
neighbors are in the seed set. In fact, Chen proved in [3] that for this model, the
minimum seeding problem does not admit an O(2log

1−ε n)-approximation unless
NP ⊆ DTIME(npolylog(n)), where n is the number of nodes in the network.
However, if one only considers one-step of influence (the goal of which is to select
the minimum number of seeds to influence all people in one time slot), then the
problem is a special case of the minimum set multi-cover problem (which will be
explained in the related work section), and thus admits good approximation.

In the real world, because of economic reasons, it is often more cost-effective
to influence only a fraction of people. Such a consideration leads to the minimum
partial seeding problem, which is a special case of the minimum partial set multi-
cover problem (MinPSMC): given an element set E consisting of n elements, a
collection of subsets S : 2E �→ R

+, a nonnegative weight wS for each subset
S ∈ S, a covering requirement re for each element e ∈ E, and an integer k ≤ n,
the MinPSMC problem is to find a minimum weight sub-collection F ⊆ S such
that at least k elements are fully covered by F , where an element e is fully
covered by F means that e is contained in at least re sets of F , and the weight
of sub-collection F is w(F) =

∑
S∈F wS . An instance of MinPSMC is denoted

as (E,S, w, r, k). The minimum partial (single) set cover problem (MinPSC)
and the minimum set multi-cover problem (MinSMC) are special cases of the
MinPSMC problem, with re ≡ 1 for MinPSC and k = n for MinSMC.

There are a lot of studies on MinPSC and MinSMC, achieving tight per-
formance ratios matching those lower bounds for the classic set cover problem.
However, the study on MinPSMC is very rare. According to recent studies [4,5],
this problem is quite challenging, and it is guessed that MinPSMC cannot be
approximated within a factor of O(nc) for some constant c.

1.1 Related Works

In a one-step minimum seeding problem, the goal is to select the minimum num-
ber of seeds to influence all people in one time slot. This problem is also known as
minimum positive dominating set problem (MinPDS) in [6] which can be defined
as follows: given a graph G = (V,E), a constant 0 < ρ ≤ 1, the goal is to find
a node set D ⊆ V with the minimum size such that every vertex v in V has at
least �ρd(v)	 neighbors in D, where d(v) is the degree of node v in G. It can be
viewed as a special case of MinSMC by setting E = V (G), S = {NG(v) : v ∈ V }
where NG(v) is the set of neighbors of v in G, and rv = �ρd(v)	. Wang et al. [7,8]
proved that the MinPDS problem is APX-hard and proposed a greedy algorithm
with performance ratio H(Δ), where Δ is the maximum degree of the graph and
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H(Δ) =
∑Δ

i=1 1/i is the Harmonic number. The same ratio was obtained by
Dinh et al. [6] by observing the relation between MinPDS and MinSMC.

The minimum set cover problem (MinSC) was one of the 21 problems shown
to be NP-hard in Karp’s seminal paper [9]. In [10], Feige et al. proved that unless
NP ⊆ DTIME

(
nO(log log n)

)
, MinSC does not admit performance ratio ρ ln n

for any 0 < ρ < 1, where n is the number of elements. Dinur and Steurer proved
in [11] that this lower bound holds if P 
= NP . For the cardinality version of
MinSC, Johnson [12] and Lovász [13] obtained a greedy H(Δ)-approximation
algorithm, where Δ is the maximum cardinality of a set and H(Δ) =

∑Δ
i=1 1/i

is the Harmonic number. The same performance ratio was obtained for the
weighted version of MinSC by Chvatal et al. [14]. Another well-known perfor-
mance ratio for MinSC is f , the maximum number of sets containing a common
element [15], which can be achieved by either an LP rounding algorithm [16] or
a local ratio method [17]. By [18], ratio f is also best possible.

For MinSMC, Vazirani et al. [15] showed that a greedy algorithm achieves
performance ratio H(n) using dual fitting analysis. The same performance ratio
was obtained by a primal-dual algorithm presented by Rajagopalan et al. [19].

The MinPSC problem was first studied by Kearns [20], and a greedy algo-
rithm was presented with performance ratio at most 2H(n) + 3. Slav́ık et al.
[21] improved the algorithm, obtaining performance ratio min{H(Δ),H(�pn	)}.
Using primal-dual method, Gandhi et al. [22] gave an approximation algorithm
with performance ratio f . The same performance ratio f was also obtained by
Bar-Yehuda [23] using local ratio method.

It can be seen from the above related work that both MinSMC and MinPSC
have approximation algorithms with the best possible performance ratios, match-
ing those for the classic set cover problem. On the contrary, study on MinPSMC
seems very difficult. Ran et al. [4] were the first to obtain a guaranteed per-
formance ratio for the MinPSMC problem. However, their ratio is meaningful
only when the covering percentage p = k/n is very close to 1. Afterwards, in
[5], Ran et al. presented a simple greedy algorithm for MinPSMC achieving per-
formance ratio Δ. Notice that Δ can be as large as n, and in terms of Δ, the
performance ratio for MinSMC and MinPSC is of order lnΔ. In [5], the authors
presented a local ratio algorithm for MinPSMC, which reveals a “shock wave”
phenomenon: their performance ratio is f for both MinPSC and MinSMC (which
is best possible), but for MinPSMC, the ratio jumps abruptly to O(n) even when
the covering percentage p is smaller than 1 by a very small constant. In view of
these results, the study of MinPSMC seems to be very challenging.

1.2 Our Contribution

In this paper, we study MinPSMC obtaining the following results.

(i) We prove a lower bound for MinPSMC. The proof makes use of the densest
l-subgraph problem (DlS), the goal of which is to find a subgraph on l vertices
which has the maximum number of edges among all subgraphs on l vertices.
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We show that if MinPSMC has a γ-approximation, then DlS has a 2γ2-
approximation. It is shown in [24] that under the ETH assumption, DlS
can not be approximated within factor O(n

1
(log log n)c ) for some constant c.

So, the same lower bound holds for MinPSMC.
(ii) Under the assumption that the maximum covering requirement rmax =

max{re : e ∈ E} is upper bounded by a constant, we present a primal dual
algorithm for MinPSMC, obtaining performance ratio B +

√
B · n, where

B = max{(fe

re

)
: e ∈ E} and fe is the number of sets containing element e.

To use the primal-dual method, how to design a linear program based on
which a good approximation can be achieved is a crucial step. We propose
a novel integer program the relaxation of which (using Lovász extension
[25]) is a convex program. Using the fact that for a submodular function, its
Lovász extension coincides with its convex closure, we modify it into a linear
program. Although the linear program has exponential number of variables,
we show that our primal-dual algorithm can be executed in polynomial time,
making use of an efficient algorithm for minimizing a submodular function
divided by a modular function [26]. Our algorithm consists of two stages.
The first stage is a primal dual algorithm. After the first stage, the sub-
collection of sets selected by the last iteration may fully cover much more
elements than required by the remaining covering requirement. Hence the
second stage refines the solution by iteratively implementing submodular
minimization algorithms [26].

(iii) We improve the performance ratio for a restricted version of MinPSMC, in
which wS ≡ 1, re ≡ 2, and fe ≡ 2, where fe = |{S ∈ S : e ∈ S}| is the
frequency of element e. Denote such a restricted problem as MinRPSMC.
This restricted version looks more like an optimization problem on a graph.
Making use of structural properties of graphs, the performance ratio can be
improved to 1 +

√
2n1/4.

For limited space, detailed proofs will be contained in a full version.

2 Lower Bound for MinPSMC

A lower bound for MinPSMC can be proved by a reduction from the densest l-
subgraph problem (DlS). Given a graph G = (V,E) with |V | = n and an integer
l ≤ n, the DlS problem asks for a vertex subset C on l vertices such that the
subgraph of G induced by C, denoted as G[C], has the maximum number of
edges among all subgraphs of G on l vertices.

Theorem 1. If MinPSMC has a polynomial-time γ-approximation, then DlS
has a polynomial-time 2γ2-approximation.

Sketch of the Proof. First, it can be shown that for any vertex set C, we can
construct in polynomial time a vertex set C ′ ⊆ C on |C|/γ vertices such that
G[C ′] has at least |E(G[C ′])|/(2γ2) edges. Second, for any DlS instance (G, l),
we can construct a restricted instance of MinPSMC in which wS ≡ 1, re ≡ 2,
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and fe ≡ 2, and there is a one-to-one correspondence between a vertex set C of
G and a subcollection of sets F in the restricted MinPSMC instance, such that
the number of edges in G[C] equals the number of elements fully covered by F .
Making use of such a relation, it can be proved that if we know the optimal value
optD of the DlS instance (which is the number of edges in a densest subgraph
of G on l vertices), then a γ-approximation algorithm for MinPSMC can be
implemented to yield a 2γ2-approximation for the DlS instance. As to optD, it
can be guessed by executing the above process for |E| rounds. �

Up to now, the best known performance ratio for DlS is O(n
1
4+ε), where ε > 0

is an arbitrary real number [27]. Very recently, Manurangsi [24] showed that
DlS has no n

1
(log log n)c -approximation assuming the exponential time hypothesis

(ETH), where c > 0 is a constant independent of n. Hence we have the following
corollary.

Corollary 1. MinPSMC cannot be approximated within factor O(n
1

2(log log n)c )
under the ETH assumption.

3 Primal Dual Algorithm

The following notations and assumptions will be used in this paper. For a sub-
collection F ⊆ S, denote by C(F) the set of elements fully covered by F . For
an element e ∈ E, let fe be the number of sets containing e, and let f =
max{fe : e ∈ E}. We assume that re ≤ fe holds for every e ∈ E, since an
element e with re > fe can be removed from consideration. Denote by

B = max{
(

fe

re

)

: e ∈ E}. (1)

Notice that B ≤ (
f

rmax

)
. This paper studies the MinPSMC problem under the

assumption that rmax is a constant.

3.1 Linear Program for MinPSMC

Before we give the integer program formulation for MinPSMC, we introduce
some notations. For an element e ∈ E, an re-cover set is a sub-collection A ⊆ S
with |A| = re such that e ∈ S for every S ∈ A. Denote by Ωe the family
of all re-cover sets and Ω = ∪e∈EΩe. The following example illustrates theses
concepts.

Example 1. Let E = {e1, e2, e3}, S = {S1, S2, S3} with S1 = {e1, e2}, S2 =
{e1, e3}, S3 = {e1, e2, e3}, r(ei) = 2 for i = 1, 2, 3. For this example, Ωe1 =
{A1,A2,A3} with A1 = {S1, S2}e1 ,A2 = {S1, S3}e1 ,A3 = {S2, S3}e1 , Ωe2 =
{A4} with A4 = {S1, S3}e2 , Ωe3 = {A5} with A5 = {S2, S3}e3 , and Ω =
{A1, . . . ,A5}.
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Remark 1. Notice that different elements may have a same collection of sets as
an re-cover set. For the above example, {S1, S3} is an re1 -cover set as well as
an re2 -cover set. In this case, this collection of sets should be viewed as different
re-cover sets. We use superscript in the above example to distinguish them. The
idea behind this definition is that if an re-cover set A ∈ Ω is taken, then e is
fully covered by those sets in A.

For a sub-family Ω′ ⊆ Ω, let

SΩ′ =
⋃

A∈Ω′
A

be the sub-collection of S consisting of those sets which belong to some cover
set of Ω′. For an instance, in the above example, if Ω′ = {A3,A5}, then SΩ′ =
{S2, S3} (the superscripts are ignored while taking the union).

Let ρ : 2Ω �→ R be a function on sub-families of Ω defined by

ρ(Ω′) =
∑

S∈SΩ′

wS (2)

for Ω′ ⊆ Ω. It can be proved that ρ is submodular.
The MinPSMC problem can be formulated as an integer program in which

a binary variable xA ∈ {0, 1} is used to indicate whether cover set A ∈ Ω is
selected, and a binary variable ye ∈ {0, 1} is used to indicate whether element
e ∈ E is not fully covered. By relaxing it into a convex program using Lovász
extension of ρ, and linearizing it using the fact that the Lovász extension of a
submodular function coincides with its convex closure, we have the following
relaxed linear program for MinPSMC:

min
∑

Ω′ : Ω′⊆Ω

ρ(Ω′)ξΩ′

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

Ω′ : A∈Ω′
ξΩ′ = xA, ∀A ∈ Ω,

∑

A : A∈Ωe

xA + ye ≥ 1, ∀e ∈ E,

∑

e∈E

ye ≤ n − k

ξΩ′ ≥ 0, ∀Ω′ ⊆ Ω,

xA ≥ 0, ∀A ∈ Ω,

ye ≥ 0, ∀e ∈ E.

(3)
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The dual program of (3) is:

max
∑

e∈E

ue − (n − k)t

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

A : A∈Ω′
zA ≤ ρ(Ω′), ∀Ω′ ⊆ Ω,

∑

e : A∈Ωe

ue ≤ zA, ∀A ∈ Ω,

ue ≤ t, ∀e ∈ E,

ue ≥ 0, ∀e ∈ E,

t ≥ 0

(4)

3.2 Primal-Dual Algorithm

The algorithm is formally described in Algorithm 1. The first step is a standard
primal-dual step. Suppose the while loop is executed g rounds. One problem
is that the last sub-family might fully cover too many elements the number of
which is much more than required by the remaining covering requirement after
the (g − 1)-th iteration. Then the second step uses a submodular minimization
algorithm to prune it.

Algorithm 1. PD(E,Ω, ρ, r, k)
Input: An instance (E, Ω, ρ, r, k) of MinPSMC.
Output: A sub-collection T fully covering at least k elements.

1: j ← 0, Ω0 ← Ω, E0 ← E, Γ0 ← ∅.
t ← 0, zA ← 0 for every A ∈ Ω0 and ue ← 0 for every e ∈ E.

2: while |C(Γj)| < k do
3: j ← j + 1.

4: αj ← min{ ρ(Ω′)−z(Ω′)
|Ω′| : |Ω′| ≥ 1, Ω′ ⊆ Ωj−1}.

5: Ω(j) ← arg min{ ρ(Ω′)−z(Ω′)
|Ω′| : |Ω′| ≥ 1, Ω′ ⊆ Ωj−1}.

6: t ← t + αj

7: For each A ∈ Ωj−1, zA ← zA + αj

8: For each e ∈ Ej−1, ue ← ue + αj .
9: Γj ← Γj−1 ∪ Ω(j).

10: Ej ← Ej−1 \ {e : e is newly fully covered}
11: Ωj ← Ωj−1 \ {Ωe : e is newly fully covered}
12: end while
13: ˜Ω ← ∅.
14: while |C(Γj−1 ∪ ˜Ω)| < k do
15: A ← arg minA∈Ωj−1 ρ(A)

16: ˜Ω ← ˜Ω ∪ A
17: Ωj−1 ← Ωj−1 \ {Ωe : e is newly fully covered}
18: end while
19: Λ ← arg min{ρ(Γj−1 ∪ Ω(j)), ρ(Γj−1 ∪ ˜Ω)}
20: Output T ← SΛ
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Lemma 1. The running time of the above algorithm is polynomial.

Proof. Notice that both |Ω|, |E| and the number of dual variables are polynomial.
So, to prove the lemma, it suffices to show that line 4 and line 5 of Algorithm 1
can be accomplished in polynomial time (notice that the number of Ω′ ⊆ Ω is
exponential). Notice that the objective to be minimized is a submodular function
divided by a modular function. Such an objective can be minimized in polynomial
time [26].

The following is an important observation.

Remark 2. For a sub-family Ω, denote by E(Ω′) the set of elements indexing
those cover sets of Ω′. Notice that |C(Ω′)| might be larger than |E(Ω′)|. For
example, in Example 1, if Ω′ = {A3}, then E(Ω′) = {e1} while C(Ω′) = {e1, e3}.
However, the sub-family Ω(j) found in line 5 of Algorithm 1 always satisfies

|C(Ω(j))| = |E(Ω(j))|. (5)

In fact, notice that for any cover set A ∈ Ωj−1, the dual variable zA is active.
Hence zA = t for any A ∈ Ωj−1. It follows that

ρ(Ω′) − z(Ω′)
|Ω′| =

ρ(Ω′)
|Ω′| − t. (6)

So, for two sub-families Ω′ and Ω′′ with ρ(Ω′) = ρ(Ω′′), the one with larger
cardinality will be preferred (since line 5 chooses the one with the minimum
ratio). Hence

Ω(j) must include all cover sets which are subsets of SΩ(j) . (7)

In order words, if e is newly covered by SΩ(j) , then there is an re-cover
set which is a subset of SΩ(j) , adding such an re-cover set into Ω(j) will not
change the value of ρ(Ω(j)) while the cardinality of |Ω(j)| will be larger. Consider
Example 1, if we choose Ω′ = {A3}, then SΩ′ = {S2, S3}, which can fully cover
e1 and e3. In this case, adding A5 = {S2, S3}e3 into Ω′ will lead to a smaller
ratio. Then claim (5) follows from (7).

3.3 Performance Analysis

The following lemma shows that throughout the algorithm, a dual feasible solu-
tion is maintained.

Lemma 2. Algorithm 1 maintains the feasibility of (4).

Proof. Notice that when a sub-family Ω′ becomes z-tight, for every A ∈ Ω′, zA
is deactivated. Hence

a z-tight set will remain to be z-tight to the end of the algorithm. (8)
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For those sub-families which are not z-tight, the choice of α in line 4 guarantees
that the first constraint of (4) is not violated.

Since all active dual variables increase at the same rate, and for any element
e which is fully covered in some iteration, ue and every A ∈ Ωe are deactivated
at the same time (namely, the time when e is newly fully covered), hence

ue = zA holds for every A ∈ Ωe throughout of the algorithm. (9)

Then the second constraint of (4) holds.
Since ue increases at the same rate as t until it is deactivated, hence ue ≤ t

holds for every element e, and

ue = t for every e which is not fully covered yet. (10)

The third constraint of (4) is maintained. The lemma is proved.

Denote by
(
{u

(j)
e }e∈E , {z

(j)
A }A∈Ω , t(j)

)
the dual feasible solution after the

j-th iteration. Using the submodularity of ρ and the modularity of z, the next
lemma can be proved by induction on the number of iterations.

Lemma 3. For any index j, the sub-family Γj satisfies z(j)(Γj) = ρ(Γj).

Proof. We prove the lemma by induction on j. This is obvious for j = 0 since
Γ0 = ∅ and ρ(∅) = z(0)(∅) = 0. Assume that j ≥ 1 and the lemma is true
for j − 1. In the j-th iteration, a sub-family Ω(j) is found, and Γj is set to be
Γj−1 ∪ Ω(j). Notice that Γj−1 ∩ Ω(j) = ∅. By the choice of αj in line 4 and the
update of z in line 7, we have

ρ(Ω(j)) = z(j−1)(Ω(j)) + αj |Ω(j)| =
∑

A∈Ω(j)

(

z
(j−1)
A + αj

)

=
∑

A∈Ω(j)

z
(j)
A = z(j)(Ω(j)).

Since zA is deactivated when A is chosen into Γj−1, we have z
(j)
A = z

(j−1)
A for

every A ∈ Γj−1. Hence

z(j)(Γj−1) = z(j−1)(Γj−1) = ρ(Γj−1),

where the second equality comes from induction hypothesis. It follows that

ρ(Γj−1) + ρ(Ω(j)) = z(j)(Γj−1) + z(j)(Ω(j)) = z(j)(Γj). (11)

By the feasibility of z(j), we have

z(j)(Γj) ≤ ρ(Γj). (12)

By the submodularity of ρ and the observation that Γj−1 ∩ Ω(j) = ∅ (and thus
ρ(Γj−1 ∩ Ω(j)) = 0), we have

ρ(Γj) = ρ(Γj−1 ∪ Ω(j)) + ρ(Γj−1 ∩ Ω(j)) ≤ ρ(Γj−1) + ρ(Ω(j)). (13)

Combining (11), (12), and (13), we have z(j)(Γj) = ρ(Γj). The induction step is
finished and the lemma is proved.
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In order to compare an optimal solution with the output of the algorithm,
we have the following observation.

Remark 3. For any sub-collection of sets F ⊆ S, we can rewrite F as a
family ΨF of cover sets. The following example illustrates how this can be
done. Let E = {e1, e2, e3, e4}, S = {S1, S2, S3, S4} with S1 = {e1, e2, e4},
S2 = {e2, e3}, S3 = {e1, e2, e3}, S4 = {e3, e4}, and r(ei) = 2 for i = 1, 2, 3, 4.
For this example, A1 = {S1, S3}e1 ,A2 = {S1, S2}e2 ,A3 = {S1, S3}e2 ,A4 =
{S2, S3}e2 ,A5 = {S2, S3}e3 ,A6 = {S2, S4}e3 ,A7 = {S3, S4}e3 ,A8 = {S1, S4}e4 .
If F = {S2, S3, S4}, then ΨF = {A4,A5,A6,A7}. In general, ΨF consists of all
those cover sets which are subsets of F .

Now, we present the main theorem of this paper.

Theorem 2. Algorithm 1 has performance ratio at most B +
√

n · B. In partic-
ular, if f is a constant, then the performance ratio is O(

√
n).

Proof. Let Ω(1), . . . , Ω(g) be the sequence of sub-families of cover sets found by
Algorithm 1. Then Γj = ∪j

l=1Ω
(l) for j = 1, . . . , g. Denote by U(Γj) the set of

elements which are not fully covered by SΓj
. Denote by opt the optimal value of

the MinPSMC instance. By a standard primal dual analysis and Lemma 3, we
can prove the following claim.

Claim 1. ρ(Γg−1) ≤ B · opt.

For any index j, it can be calculated that

ρ(Γj) = z(j)(Γj) =
∑

A∈Γj

z
(j)
A

=
∑

A∈Γj

∑

e : A�e

u(j)
e

=
∑

e : e∈C(Γj)

u(j)
e · |{A ∈ Γj : A � e}|

≤ B
∑

e : e∈C(Γj)

u(j)
e

= B

⎛

⎝
∑

e : e∈E

u(j)
e −

∑

e : e∈U(Γj)

u(j)
e

⎞

⎠

= B

(
∑

e : e∈E

u(j)
e − |U(Γj)|t(j)

)

, (14)

where the first equality comes from Lemma 3; the third equality comes property
(9); the inequality holds because the number of sets belonging to e is at most
B; the last equality comes from (10).
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In particular, taking j = g − 1 in inequality (14),

ρ(Γg−1) ≤ B

(
∑

e : e∈E

u(g−1)
e − |U(Γg−1)|t(g−1)

)

. (15)

Since the algorithm does not jump out of the while loop at the (g−1)-th iteration,
|C(Γg−1)| < k and thus |U(Γg−1)| > n − k. Combining this with inequality (15)
and the weak duality theorem for linear programs, we have

ρ(Γg−1) ≤ B

(
∑

e : e∈E

u(g−1)
e − (n − k)t(g−1)

)

= B · obj
(g−1)
D ≤ B · opt,

where obj
(g−1)
D is the objective value of dual program (4) for those dual variables

after the (g − 1)-th iteration. Claim 1 is proved.

Claim 2. ρ(Ω(g)) ≤ (n − |C(Γg−1)|)
k − |C(Γg−1)| · B · opt.

Let Ψ be the family of cover sets constructed from an optimal solution by the
method described in Remark 3. Let

Ψg−1 = Ψ \ Γg−1. (16)

Notice that Ψg−1 
= ∅, since otherwise Ψ ⊆ Γg−1 which contradicts |C(Γg−1)| < k.
In the g-th iteration, Ω(g) is chosen, which means that

ρ(Ω(g)) − z(g−1)(Ω(g))
|Ω(g)| ≤ ρ(Ψg−1) − z(g−1)(Ψg−1)

|Ψg−1| . (17)

By an inequality in the proof of Remark 2, we have

ρ(Ω(g)) ≤ |Ω(g)|
|Ψg−1|ρ(Ψg−1). (18)

Then Claim 2 follows from the observation that

|Ω(g)| ≤ B · (n − |C(Γg−1)|),
|Ψg−1| ≥ k − |C(Γg−1)|, (19)
ρ(Ψg−1) ≤ ρ(Ψ) = opt,

where the first inequality holds because there are n − |C(Γg−1)| elements which
are not fully covered by Γg−1, and each element is contained in at most B cover
sets; the second inequality holds because Ψg−1 fully covers at least k −|C(Ωg−1)|
elements and each element has at least one cover set in Ψg−1.
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Claim 3. ρ(Ω̃) ≤ (k − |C(Γg−1)|) · opt.

This claim is obvious by observing that the second while loop picks at most
k − |C(Γg−1)| cover sets and every cover set picked has cost upper bounded by
opt.

Combining Claims 2 and 3, the last sub-family has cost at most

min
{

(n − |C(Γg−1)|)
k − |C(Γg−1)| · B · opt, (k − |C(Γg−1)|) · opt

}

≤
√

n · B · opt. (20)

Then the theorem follows from combination of inequality (20) and Claim 1.

4 Improvement on Restricted MinPSMC

In the restricted problem MinRPSMC, fe ≡ 2 and re ≡ 2, so B = 1 by the
definition of B in (1). Then it follows from Theorem 2 that Algorithm 1 has
performance ratio 1+

√
n for MinRPSMC. By the proof of Theorem 1, one may

have seen a similarity between the restricted version and a graph. Exploring
such a similarity and making use of properties of a graph, we can improved the
performance ratio for MinRPSMC to 1 +

√
2n1/4.

The algorithm for MinRPSMC is modified from Algorithm 1 with the fol-
lowing difference. Instead of outputting the better solution of Γg−1 ∪ Ω(g) and
Γg−1 ∪ Ω̃, the modified algorithm outputs the better one of Γg−1 ∪ Ω̂ and
Γg−1 ∪ Ω̃, where Ω̂ is constructed as follows. If |C(Ω(g))| ≤ 2(k − |C(Γg−1)|),
let Ω̂ be Ω(g). Otherwise, find a sub-family Ω̂ ⊆ Ω(g) with ρ(Ω̂) ≤ ρ(Ω(g))/γ

and |C(Ω̂)| ≥ k − |C(Γj−1)|, where

γ =

√
|C(Ω(g))|

2(k − |C(Γg−1)|) . (21)

We can prove the following lemma showing the existence of Ω̂ when
|C(Ω(g))| ≥ 2(k − |C(Γg−1)|).
Lemma 4. In the case |C(Ω(g))| > 2(k − |C(Γg−1)|), one can find a sub-family
of cover sets Ω̂ in polynomial time with ρ(Ω̂) ≤ ρ(Ω(g))/γ and |C(Ω̂)| ≥ k −
|C(Γg−1)|.

Making use of the relation between a graph and MinRPSMC, and by prop-
erties of a graph, the claimed performance ratio can be proved.

Theorem 3. MinRPSMC problem has performance ratio at most 1 +
√

2n1/4.

5 Conclusion and Discussion

This paper proves a lower bound for the minimum partial set multi-cover problem
MinPSMC by a reduction from the densest l-subgraph problem. Then, under the
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assumption that the maximum covering requirement rmax is upper bounded by a
constant, this paper gives a B +

√
n · B-approximation algorithm for MinPSMC,

where B ≤ (
f

rmax

)
and f is the maximum number of sets containing a common

element. So, the ratio is O(
√

n) if f is a constant. For a restricted version of Min-
RPSMC, the performance ratio can be improved to 1+

√
2n1/4. From Theorem 1

and the fact that the current best known performance ratio for DlS is O(n
1
4+ε),

where ε > 0 is an arbitrary real number [27], it is natural to ask whether the
performance ratio for the restricted version can be improved to O(n

1
8+ε)? Our

algorithm depends on the assumption that rmax is upper bounded by a constant.
How to obtain an approximation algorithm for the problem without assuming a
constant upper bound on rmax is a topic deserving further exploration.
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Abstract. Predicate abstraction technique makes boolean programs a
simple and popular model for program verification, of which the state
reachability problem is decidable. However, the existing approach to
reachability analysis of a concurrent boolean program, by applying the
backward search (BWS) algorithm to the thread transition diagram
(TTD) of the program, is of high complexity. To accelerate this app-
roach, a method that expands the TTD with a kind of expansion edges
and summarizes each path in the expanded TTD into a set of Presburger
formulas has been proposed, so that the reachability problem is reduced
to the satisfiability of the summary formulas. In this paper, we present a
method for reachability analysis of concurrent boolean programs which
improves the existing work in two aspects. First, with refined constraints
on edge expansion, only a small number of expansion edges are required
to be added to the TTD, which reduces the space consumption. Second,
with optimized algorithm of path summarization using counter abstrac-
tion, less local state counters are dealt with and less summary formulas
are generated. We have implemented the method and evaluated it on
a large set of benchmark concurrent boolean programs. Experimental
results show its efficiency on summarization and verification.

Keywords: Concurrent programs · Thread transition diagram
Reachability · Boolean programs · Backward search

1 Introduction

With the rapid development of multi-core hardware and concurrent techniques,
multi-thread programming has become one of the prevailing paradigms for soft-
ware development. Interleaved execution among threads may produce lots of
subtle bugs, which are hard to be found with manual inspection. Therefore, it
is crucial to verify properties of concurrent programs. However, straightforward
implementation of formal verification techniques [12], such as model checking
[7], for verifying concurrent programs usually suffer from the problem of state
space explosion: the number of reachable states grows tremendously fast when
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the number of concurrent threads increases. As a result of excessive usage of
memory and computation resources, the verification efficiency for concurrent
programs is impractical in practice.

Abstraction techniques [8] can effectively alleviate the state explosion prob-
lem. It only focuses on information related to the attributes which need to be
verified and obtains a smaller model, so as to improve the efficiency of formal ver-
ification. As one of the most successful abstraction techniques, predicate abstrac-
tion [5,11] transforms a standard concurrent program into a boolean program
that contains only boolean variables. With boolean variables, the state space of
a concurrent program is relatively small, and the reachability question is decid-
able. Further, boolean programs are the same as standard programs in that they
can explicitly capture the relationship between the data and the control flow.
Successful application of predicate abstraction involves the SLAM project [3]
developed by Microsoft Research and the SATABS tool [6,9] supported by Engi-
neering and Physical Sciences Research Council (EPSRC). It is worth pointing
out that, although predicate abstraction reduces the state space, the problem
of state explosion still exists. In fact, the efficiency in verifying multi-thread
boolean programs has become the bottleneck in the verification of concurrent
programs and systems.

In a concurrent system that contains many identical threads, we can use
counter abstraction [10] to reduce the verification complexity. The idea is to
introduce a counter ci for each local state li to record the number of threads at
the state li, so that the global state of a system is represented by a vector of
counters 〈c1, ..., ck〉, where k is the number of possible local states. In this way, the
size of the state space is greatly reduced. However, even with counter abstraction,
the number of local states k is still very large. Specifically, k grows exponentially
with respect to the number of local variables. As a result, introducing counters for
local states is only suitable for programs with a small quantity of local variables.

A sound and complete method for reachability analysis for well-quasi-ordered
transition system (WQOS) is the backward search (BWS) algorithm proposed
by Abdulla [2]. Starting from a target state whose reachability is under inves-
tigation, the algorithm proceeds backwardly by computing the minimal cover
predecessors of the currently visited state, until either an initial state or a fix-
point is reached. However, the BWS algorithm only works for simple programs
with few variables in practice, since the number of states in a WQOS is extremely
large with the increase of the program variables.

Using BWS, the work in [14] first propose a method that analyzes the reach-
ability of a boolean program with unbounded number of threads based on the
control flow graph of the program. It also introduces local-state counters to
record the number of threads at different local states, which can reduce the size
of the state space. Then, it provides a more efficient version of the method that
operates on a model of thread transition diagram (TTD) [13] of boolean pro-
grams, and develop a tool CUTR [15] as its implementation. Specifically, the
method consists of two phases. The first phase constructs an expanded TTD
D+, which is a WQOS, by adding a set of expansion edges to the TTD D, and
then execute BWS on D+. The second phase summarizes the effect of thread
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transitions on local-state counters along paths from initial states to a given tar-
get state in D+, obtaining a set of Presburger formulas such that the target
state is reachable if and only if these formulas are satisfiable. However, (1) there
are too many unreachable states and thus unreachable state transitions in the
original TTD; and (2) the number of expansion edges that need to be added
grows rapidly when the number of states increases. As a result, the number of
paths from an initial state to the target state is likely to be very large, which
makes it inefficient to summarize the effect of each path in the second phase.

In this paper, we propose an improved method of verifying concurrent boolean
programs with multi threads based on predicate abstraction and counter abstrac-
tion. On the one hand, we add constraints to the generation of expansion edges,
so that the number of expansion edges, as well as the scale of the TTS, is greatly
reduced. On the other hand, we optimize the approach of path summarization by
maintaining counters only for local states where expansion edges are added. In
this way, less summary formulas need to be generated and checked. Experiments
are carried out which investigate the performance of our method. The results show
that the method reduces the overall computational cost significantly.

The rest of the paper is organized as follows. The next section briefly presents
preliminaries, including thread transition diagrams of concurrent Boolean pro-
grams and backward search algorithm. Section 3 presents the improved expanded
TTD, and Sect. 4 discusses presburger summary of loop-free paths in expanded
TTD. Section 5 shows the empirical evaluation results. Finally, the paper is con-
cluded in Sect. 6.

2 Preliminaries

2.1 Concurrent Boolean Programs and Thread Transition Diagrams

This paper focuses on concurrent boolean programs where all variables are
boolean, which can be obtained from a standard concurrent program by predi-
cate abstraction. Such a program may contain the following four statements for
concurrency [4]:

– start thread label: creates a new thread that starts execution at the pro-
gram location label. It gets a copy of the local variables of the current thread,
which continues execution at the proceeding statement.

– end thread: terminates the current thread.
– atomic begin: begins an atomic section that does not allow a context switch

to another thread.
– atomic end: ends an atomic section.

We assume a concurrent program with multi-threads is given in the form of
an abstract state machine called thread transition diagram (TTD). Specifically,
a TTD is a tuple D = (S,L, Ts, Tt, I), where

– S is a finite set of shared states, an elements of which is a valuation of the
shared variables of the boolean program;
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– L is a finite set of local states, an elements of which is a valuation of the local
variables and the program counter pc;

– Ts, Tt ⊆ (S × L) × (S × L) are two sets of edges, called standard transitions
and thread transitions, respectively; and

– I ⊆ (S × L) is a set of initial states.

An element of S × L is called a thread state. It records the valuation of
shared and local variables of an executing thread. We write (s1, l1) → (s2, l2) for
a standard transition ((s1, l1),(s2, l2)) ∈ Ts, and (s1, l1) � (s2, l2) for a thread
transition ((s1, l1),(s2, l2)) ∈ Tt. TTD of the boolean program P shown in the
left hand side of Fig. 2 is depicted in the right hand side of Fig. 2 where each
of the initial states {((0, 0), 0), ((0, 1), 0)} is presented as �. In this example, an
extra boolean variable b is considered which indicates whether a new thread is
just created, so a shared state s is a pair which is the value of (b, t). The assertion
failure state ((0, 1), 4) is represented as ⊗ and we are concerned with whether it
is reachable (Fig. 1).

l(pc)

s(b, t)

0 1 2 3 4

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Fig. 1. TTD of program P

A TTD D gives rise to a well-quasi-ordered transition system (WQOS) D∞.
A state in D∞ is of the form (s | l1, . . . , ln) (n ∈ N) representing a global system
state consisting of a shared state s and n threads at local states l1, . . . , ln, which
are not necessarily distinct. The number n of local states is unbounded and
their order is irrelevant. For n ∈ N, s ∈ S and l1, . . . , ln, ln+1 ∈ L, the global
state g = (s | l1, . . . , ln, ln+1) is called a unit expansion of the global state
h = (s | l1, . . . , ln), denoted as g �1 h. The quasi-order � of the WQOS, called
the expansion relation, is defined as the smallest quasi-order including �1. The
WQOS has two kinds of transitions:

(i) (s | l1, . . . , ln, l) → (s′ | l1, . . . , ln, l′), if (s, l) → (s′, l′) is a standard transi-
tion of D, and
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decl  t := * ;
main(){
      0:  goto  1, 2 ;
      1:  start_thread  3 ;
      2:  t  :=  1 ;
      3:  t  :=  !t ;
      4:  assert ( !t ) ; 
}

0

4

3

21

goto 2goto 1

  start_thread 3 t := 1       

t := !t

Skip

Fig. 2. A boolean program P and its Control flow graph

(ii) (s | l1, . . . , ln) → (s′ | l1, . . . , ln, l′), if (s, l) � (s′, l′) is a thread transition of
D.

A thread state (s, l) is called reachable in D, if there is a path in D∞ starting
from (si | li), where (si, li) is an initial state of D, and ending at some global
state g that is an expansion of (s | l), i.e. g � (s | l).

In this paper, we are tackling the thread state reachability problem: given a
TTD D, is a target thread state (s, l) reachable in D?

2.2 Backward Search Algorithm

To verify whether a target state q is reachable in D, we need to check whether
there is an expansion of q reachable in the WQOS D∞. A sound and complete
algorithm to decide the reachability in a general WQOS is the backward search
(BWS) algorithm proposed by Abdulla [1,2]. A concise version of the BWS
algorithm is shown below, whose input involves a WQOS M , a set of initial states
I, and a target state q. The algorithm maintains a work set W of unprocessed
states and a set U of minimal encountered states. Initially, W is assigned by {q}.
The algorithm iteratively computes the minimal cover predecessors (MCP):

MCP (w) = min{p : ∃w′ � w : p → w′} (1)

of each state w ∈ W and updates W accordingly. If an initial state is reached, q
is reachable. Otherwise, if a fix point of W is reached without any initial state,
q is unreachable.

If a WQOS is finite, the BWS algorithm can be executed directly to decide
the reachability of a given target state. However, the state space of the WQOS
D∞ derived from a TTD D may be infinite, since a global state of D∞ may
contain an arbitrary number of threads. To solve the thread state reachability
problem in a TTD D, we do not actually generate the whole D∞, which is of
course impossible. Instead, we simulate the execution of the BWS algorithm on
D∞, based on information of D only.
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Algorithm 1. BWS(M, I, q)
Input: WQOS M , initial states I, final state q �∈ I
1: W := {q};U := {q}
2: while ∃w ∈ W do
3: W := W \ {w}
4: for p ∈ MCP (w)\ ↑ U do
5: // ↑ Ustands for the upward closure of U : ↑ U = {u′ : ∃u ∈ U : u′ � u}
6: if p ∈ I then
7: “q is reachable”
8: end if
9: W := min(W ∪ {p})

10: U := min(U ∪ {p})
11: end for
12: end while
13: “q is unreachable”

Consider a TTD D = (S,L, Ts, Tt, I). For each global state w = (s |
l1, . . . , ln), i ∈ {1, . . . , n}, we simulate the computation of the MCPs of w in
two steps:

(i) compute the set W of direct predecessors of w, i.e., W = {(s′ |
l1, . . . , ln−1, l

′
n) | (s′, l′n) → (s, ln) ∈ Ts} or W = {(s′ | l1, . . . , ln−1) |

(s′, ln−1) � (s, ln) ∈ Tt},
(ii) if W is non-empty, return W ; otherwise, compute the set W of direct pre-

decessors of unit expansions of w, i.e., return W = {(s′ | l1, . . . , ln, l′) | ∃l ∈
L : (s′, l′) → (s, l) ∈ Ts)}.

We explain it with an example. Consider the boolean program P in the left
hand side of Fig. 2 whose TTD D is shown in the right hand side of Fig. 2. We
are concerned with whether the target state ((0, 1), 4) is reachable in D, i.e.,
whether ((0, 1) | 4) is reachable from initial states {((0, 0) | 0), ((0, 1) | 0)} in
D∞. The simulation of the BWS algorithm is visualized in Fig. 3.

((0, 1) 4) ((0, 0) 3) ((0, 0) 3, 4) ((0, 1) 3, 3)

((0, 0) 2, 3)((1, 0) 1, 3)((0, 0) 1)((0, 0) 0)

Fig. 3. Reachability analysis using BWS, applied to the TTD in Fig. 2.

Starting from the target global state g0 = ((0, 1) | 4), we compute an MCP
of g0. Since ((0, 1), 4) has exactly one direct predecessor ((0, 0), 3) in D, g0 has
exactly one MCP g1 = ((0, 0) | 3). Then we compute an MCP of the global
state g1. Since ((0, 0), 3) has no predecessor in D, we need to search for direct
predecessors of unit expansions of g1. For the same reason, the unit expansion
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((0, 0) | 3, 3) has no predecessor. We only need to consider unit expansions
((0, 0) | 3, l) of g1 with l = 1, 2, 4. Notice that ((0, 0), 4) has a direct predeces-
sor ((0, 1), 3) in D, thus g2 = ((0, 1) | 3, 3) is a direct predecessor of the unit
expansion ((0, 0) | 3, 4) of g1. We repeat the step of MCP calculation, arriving
at an initial global state g6 = ((0, 0) | 0). As a result, the target state ((0, 1), 4)
is reachable in D.

3 Improved Expanded TTD

3.1 Constraints on Expanded TTD

There is an alternative approach to simulating the BWS algorithm. Notice that a
key operation during BWS is the generation of unit expansions of a global state.
Recall that in the previous example, a unit expansion ((0, 0) | 3, 4) of ((0, 0) | 3)
is generated. It is pointed out that this operation can be simulated in the TTD
by adding an expansion edge ((0, 0), 4) → ((0, 0), 3). Specifically, they add a
set of expansion edges into a TTD D according to the following constraints,
obtaining an expanded TTD (ETTD) D+. They show that if a target state (s, l)
is reachable in D∞, it is also reachable in D+.

According to the existing work, given a TTD D, an expansion edge of D is
of the form (s, l) ��� (s, l′) (l 
= l′) such that:

– there exists a transition ending at (s, l) in D, and
– either there exists a transition starting from (s, l′) in D, or (s, l′) is the target

state.

Intuitively, expansion edges fill the gap between two original transitions
whose target and source, respectively, differ only in the local state. Figure 4
shows the ETTD generated from the TTD in Fig. 2. According to the above
constraints, this ETTD contains as much as 22 expansion edges.

l

s(b,t)

0 1 2 3 4

(0,0

(0,1)

(1,0)

(1,1)

Fig. 4. ETTD generated by the original constraints
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The number of expansion edges increases extremely fast with the increase
of the number of local states, which consumes massive space and requires large
computational effort. Therefore, a smaller ETTD with less expansion edges is
vital for efficient verification of concurrent boolean programs.

By investigating the above constraints carefully, we find out that a lot of
expansion edges added to the ETTD are redundant, having no effect on the
result of BWS.

– For thread states (s, l) with direct predecessors in the TTD, the calculation of
MCPs of them does not need to consider their unit expansions. Correspond-
ingly, expansion edges of the form . . . ��� (s, l) are not necessary.

– For all s ∈ S thread states (s, l) have no direct predecessor in the TTD, they
are actually unreachable from other states. Therefore, expansion edges of the
form . . . ��� (s, l) are not necessary.

According to the above concern, we add constraints on edge expansion and
give a modified definition of expansion edges as follows.

Definition 1. Given a TTD D, an expansion edge is an edge of the form
(s, l) ��� (s, l′) (l 
= l′) such that:

– there exists a transition ending at (s, l) in D,
– there is no transition ending at (s, l′) in D, and
– there exists a transition ending at (s′, l′) in D for some shared state s′.

The second constraint makes sure that we only add expansion edges for
those states with no predecessor transition states, and the last constraint guar-
antees that the expansion edges added would not contain thread states which are
actually unreachable. The modified ETTD generated satisfying our constraints
is shown in Fig. 5. Compared with the original ETTD presented in Fig. 4, the
modified ETTD is much simpler with a smaller number of expansion edges.

l

s(b,t)

0 1 2 3 4

(0,0)

(0,1)

(1,0)

(1,1)

Fig. 5. ETTD generated by the new constraints
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3.2 Optimization

A transition (s, l) → (s′, l′) in a TTD means that if a thread is at the state
(s, l), it will reach the state (s′, l′) in finite time. And it is possible that a non-
initial state (s, l) has no direct predecessor in a TTD, e.g. ((1, 0), 1) or (0, 0), 3)
in Fig. 2, due to the modification of the shared variables by other threads.

If a thread state (s′, l1) has no direct predecessor, the corresponding global
state g = (s′ | l1) has no direct predecessor, either. The unit expansions (s′ | l1, l′)
of g during the simulation aim to find a new thread at local state l′ 
= l1 such
that the shared state can be modified followed by this thread backwardly. If
there exists a transition (s, l) → (s′, l′) in the TTD, we add an expansion edge
(s′, l′) ��� (s′, l1) and get an MCP g′ = (s | l1, l), i.e. a direct predecessor of a
unit expansion, of g.

The constraints of expansion edges can be further optimized. Consider again
the example TTD D presented in Fig. 2. The global state g0 = ((0, 0) | 3) has
no direct predecessor and 3 unit expansions gl = ((0, 0) | 3, l) with an additional
thread at local state l = 1, 2, 4, respectively. Notice that g1 = ((0, 0) | 3, 1) has
(exactly) one direct predecessor ((0, 0) | 3, 0), which is an MCP of g0. However,
since there is no transition in D ending at the thread state ((0, 0), 1) that modifies
the shared state (0, 0), the local state 3 of g1 cannot transform into a different
local state during the BWS, including an initial local state 0. As a result, g0
is not reachable from an initial global state via its unit expansion g1 and we
only need to consider the other unit expansions g2 and g4. In another word,
the expansion edge ((0, 0), 1) ��� ((0, 0), 3) is not necessary. By contrast, g2
has a direct predecessor ((1, 0) | 3, 1) with a different shared state (1, 0), and g4
has a direct predecessor ((0, 1) | 3, 3) with a different shared state (0, 1). From
these MCPs of g0, the execution of BWS is possible to reach an initial global
state. Therefore, the expansion edges ((0, 0), 2) ��� ((0, 0), 3) and ((0, 0), 4) ���
((0, 0), 3) are necessary.

Inspired by the above idea, we provide an optimized definition of expansion
edges as follows.

Definition 2. Given a TTD D, an expansion edge is an edge of the form
(s, l) ��� (s, l′) (l 
= l′) such that:

– there is no transition ending at (s, l′) in D,
– there exists a transition ending at (s′, l′) in D for some shared state s′, and
– there exists a transition starting from (s′′, l′′) and ending at (s, l) in D for

some shared state s′′ 
= s and local state l′′.

Compared with Definition 1, the third constraint is optimized. The ETTD
of the example TTD presented in Fig. 2 generated by Definition 2 is shown in
Fig. 6, and it is even simpler than Fig. 5. The optimization is more effective for
TTDs with a larger number of local states during our experiments.

So far, we finish the definition of expansion edges together with the ETTD.
In the next section, we will discuss how to summarize the effect of executing the
BWS algorithm in the ETTD with local-state counters recording the number of
threads in certain local states.
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l

s(b,t)

0 1 2 3 4

(0,0)

(0,1)

(1,0)

(1,1)

Fig. 6. Optimized ETTD

4 Presburger Summary of Loop-Free Paths in ETTD

We have shown that edges of an ETTD simulate operations of the BWS algo-
rithm. More precisely, an original transition corresponds to a state change for a
single thread, while an expansion edge corresponds to a unit expansion of the
current global state. By counter abstraction, these operations can be expressed
in terms of updates to local-state counters, which record the numbers of threads
executing in different local states. The idea is that a transition from a local state
A to a local state B can be expressed as decreasing the A counter by 1 while
increasing the B counter by 1.

Consider an edge e = ((s, l), (s′, l′)) of an ETTD:

– Suppose e = (s, l) → (s′, l′) ∈ Ts. If the current global state g = (s′ |
l′1, . . . , l

′
n) contains a thread at the local state l′, i.e. l′n = l′, firing e backwardly

amounts to decreasing the counter cl′ of l′ by 1 and increasing the counter cl
of the local state l by 1.

– Suppose e = (s, l) ��� (s′, l′) ∈ Tt. If the current global state g = (s′ |
l′1, . . . , l

′
n) contains a thread at the local state l′, i.e. l′n = l′, firing e backwardly

amounts to decreasing the counter cl′ of l′ by 1.
– Otherwise, if the current global state g does not contain a thread at l′, we first

generate a unit expansion (s′ | l′1, . . . , l′n, l′) of g, and then fire e backwardly.
Together, the steps amount to an increment of cl by 1.

The detailed summary of loop-free path segment according to above is shown in
Algorithm 2.

A local state l that no expansion edge starts from must be in a path segment
of the form (s1, l1) → (s, l) → (s2, l2). The backward execution of (s, l) →
(s2, l2) would increase the counter cl of l by 1, while the backward execution of
(s1, l1) → (s, l) would decrease cl by 1. Therefore, the value of the counter cl
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Algorithm 2. Pathwise summary of a loop-free path with local-state counters in ETTD

Input: ETTD D+, path σ = t1, . . . , tk, i.e. (ti, ti+1) in D+ for 1 ≤ i ¡ k ; local state l.
1: ei := (ti, ti+1) for 1 ≤ i ¡ k, (si, li) := ti for 1 ≤ i ¡ k

2: sum := “cl” // sum is a string recording the summary
3: for i := k − 1 downto 1 do

4: if ei ∈ Ts and li = l then

5: sum := sum“+1” // “.” means string concatenation
6: end if

7: if ei ∈ Ts and li+1 = l then

8: sum := sum.“-1”

9: end if
10: if ei ∈ Tt and li+1 = l then

11: sum := sum.“-1”
12: end if
13: if ei is an expansion edge and li = l then

14: sum := sum.“
⊕

(-1)+1” // x
⊕

b y = max{x+y, b}, subscript omitted when b = 0

15: end if

16: end for
17: return sum

would remain the same. According to the technique of on-the-fly, we only keep
counters for those local states that expansion edges start from, as well as the
initial local state. In this way, the state space is reduced while the result of the
summarization is not affected.

Example. We show how the reachability of the thread state ((0, 1), 4) for the
ETTD in Fig. 5 is established. For each local state l ∈ {0, . . . , 4}, the following
formulas are obtained by summarizing the loop-free path segment from the target
state ((0,1),4) to the initial state ((0,0),0) in Fig. 7 with constraints, respectively.
The constraints is that, when backward-reaching the initial state tI along that
path, no thread resides in any local state other than lI .

c0 : 0 + 1 ≥ 1

c3 : 0 + 1
⊕

(−1) + 1 − 1 = 0

c4 : 1 − 1
⊕

(−1) + 1 − 1 = 0

Since the formulas for all local states can be satisfied, we conclude that the
target state tF = ((0, 1), 4) is reachable. Notice that the summarization of local
states l = 1, 2 shown below has no effect on the result.

c1 : 0 + 1 − 1 = 0

c2 : 0 + 1 − 1 = 0
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l

s(b,t)

0 1 2 3 4

(0,0)

(0,1)

(1,0)

(1,1)

Fig. 7. A path from (0,0) to (4,4) in Fig. 6

5 Empirical Evaluation

We have implemented our method and made experiments on benchmark pro-
grams. The experiments aim at measuring the space consumption and per-
formance impact of our implementation compared with the most relative tool
CUTR.

We collect an extensive set of benchmarks, 97 TTDs [13] in total obtained
from boolean programs, which are in turn obtained from C source programs by
SATABS. All experiments are performed on a 64-bit Linux virtual machine with
2 GB memory, and the execution time is limited to 30 min. We use Z3 [16] as
the Presburger formula solver. Details of the experimental results on part of the
benchmarks are provided in Table 1. The runtime comparison results are shown
in Figs. 8 and 9.

The results demonstrate that our method performs much better than CUTR
in that the average time of verification is greatly reduced. Especially, the time
is reduced by an order of magnitude in certain cases, such as TTDs of 02 inc c
and 09 Stack-L. There are only 4 examples that CUTR performs better than
our method. The main reason is that with more constraints on edge expansion
we need more time to check whether the expansion edges satisfy the constraints.
In another word, more time is needed to preprocess the TTD, especially when
the TTD is large. Nevertheless, the time spent for summarization is much less
than CUTR.

In addition, the average number of expansion edges drops from 7746 to 92,
which greatly reduces the state space and thus the memory consumption. It is
also beneficial to the summarization in that less paths from the target state to
an initial state need to be summarized.
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Table 1. Summary of our experimental results compared with CUTR

Boolean program Target state CUTR Our method

Expansion edges Time (ms) Expansion edges Time (ms)

01 inc l (4,23) 231 18.766 5 6.222

(32,70) 16598 331657.000 688 311323.000

02 inc c (4,20) 182 13.590 3 5.411

(4,46) 956 67.403 12 25.681

(4,448) 101864 1144390.000 480 11809.500

(4,448) 96562 1027860.000 528 10524.600

03 PrngSimp-C (8,20) 335 18.938 13 38.179

04 PrngSimp-L (4,46) 1048 89.463 12 27.839

05 maxsim l (4,20) 186 17.451 4 5.632

(8,24) 475 79.235 18 74.759

06 maxsim c (4,24) 301 11.688 3 6.404

(4,58) 1901 63.764 10 32.891

07 max opt l (4,54) 1542 193.348 16 34.952

(8,62) 3802 3537.420 60 1563.020

08 maxopt c (4,62) 2212 65.827 12 35.277

(4,136) 10782 585.001 40 167.347

09 Stack-L (8,33) 887 1056.640 16 165.285

(8,72) 4332 312586.000 45 2298.380

10 Stack-C (8,31) 754 257.490 19 134.480

15 Boop (4,31) 659 11.960 10 10.907

18 Unverif (4,16) 128 5.660 3 4.066

(64,23) 4197 669.417 132 605.202

(64,23) 4205 666.829 132 599.595

19 spin (8,19) 269 69.279 18 28.180

(32,24) 1647 3483.500 151 8611.470

(8,19) 269 77.098 18 58.840

(32,24) 1647 3536.520 151 8590.500

20 BS loop (4,3968) 0 106.246 0 106.671

21 cond (4,44) 0 3.482 0 3.537

25 tas l (16,30) 1829 85.957 66 1762.560

(32,70) 18618 94279.800 508 372880.000

29 ticket hc (8,35) 1331 799.005 32 257.595

30 ticket lo (8.27) 715 294.867 26 88.239

dekker (16,23) 1425 87.767 19 203.169

lu-fig2 fixed (4,33) 434 37.672 1 6.463

(16,43) 2535 1606.960 56 1750.870

peterson (16,13) 303 50.961 42 62.683

pthread5 (32,46) 21244 308310.000 226 76474.300

rand cas (4,42) 814 42.801 16 23.965

rand lock p0 (8,19) 277 21.700 18 64.848

(8,100) 10096 40440.700 150 11545.300

Average 7746 79933.103 92 20049.215
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6 Conclusion

In this paper, we present an approach to accelerating the verification of reach-
ability properties for concurrent systems with unbounded numbers of threads.
A key ingredient is the constraints on edge expansion according to the BWS
algorithm, which can prune redundant expansion edges and in turn reduce the
scale of the ETTD effectively. In addition, we optimize the summarization of
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loop-free paths with the technique of on-the-fly, so that we only need to keep
counters for initial local states and other local states that expansion edges start
from, but not all local states, which further reduces the state space. We have
implemented our method and demonstrated its efficiency through experiments
on a set of TTDs obtained from benchmark boolean programs.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: Proceedings of the Eleventh IEEE Symposium on
Logic in Computer Science, pp. 313–321 (1996)

2. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. Bull. Symb.
Log. 16(4), 457–515 (2010)

3. Ball, T., Rajamani, S.K.: Boolean programs: a model and process for software
analysis. Microsoft Research Technical report 2000–14 (2000)

4. Ball, T., Rajamani, S.K.: Bebop: a symbolic model checker for Boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113–130. Springer, Heidelberg (2000). https://doi.org/10.1007/10722468 7

5. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI-
C programs using SAT. Form. Methods Syst. Des. (FMSD) 25, 105–127 (2004)

6. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31980-1 40

7. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: The Workshop on Logic of Programs, pp.
52–71 (1981)

8. Cousot, P.: The role of abstract interpretation in formal methods. In: Proceedings
of the 5th IEEE International Conference on Software Engineering and Formal
Methods, pp. 135–137 (2007)

9. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate
abstraction for shared-variable concurrent programs. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22110-1 28

10. Emerson, E.A.: From asymmetry to full symmetry: new techniques for symme-
try reduction in model checking. In: Advanced Research Working Conference on
Correct Hardware Design and Verification Methods, pp. 142–157 (1999)

11. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 10

12. Hoare, C.A.R., He, J.: Unifying theories of programming. In: Participants Copies
for Relational Methods in Logic, Algebra and Computer Science, International
Seminar Relmics, Warsaw, Poland, Septermber, pp. 97–99 (1998)

13. Kaiser, A., Kroening, D., Wahl, T.: A widening approach to multithreaded program
verification. ACM Trans. Program. Lang. Syst. 36(4), 1–29 (2014)

https://doi.org/10.1007/10722468_7
https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1007/978-3-642-22110-1_28
https://doi.org/10.1007/3-540-63166-6_10


Reducing Extension Edges of Concurrent Programs for Reachability Analysis 401

14. Liu, P., Wahl, T.: Infinite-state backward exploration of Boolean broadcast pro-
grams. In: Formal Methods in Computer-Aided Design, pp. 155–162 (2014)

15. Liu, P., Wahl, T.: Concolic unbounded-thread reachability via loop summaries. In:
International Conference on Formal Engineering Methods, pp. 346–362 (2016)

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1007/978-3-540-78800-3_24


Robustly Assigning Unstable Items

Ananya Christman1(B), Christine Chung2(B), Nicholas Jaczko1,
Scott Westvold1, and David S. Yuen3

1 Department of Computer Science, Middlebury College, Middlebury, VT, USA
{achristman,njaczko,swestvold}@middlebury.edu

2 Department of Computer Science, Connecticut College, New London, CT, USA
cchung@conncoll.edu

3 Department of Mathematics, University of Hawaii, Honolulu, HI, USA
yuen@math.hawaii.edu

Abstract. We study the Robust Assignment Problem where the goal
is to assign items of various types to containers without exceeding con-
tainer capacity. We seek an assignment that uses the fewest number of
containers and is robust, that is, if any item of type ti becomes corrupt
causing the containers with type ti to become unstable, every other item
type tj �= ti is still assigned to a stable container. We begin by present-
ing an optimal polynomial-time algorithm that finds a robust assignment
using the minimum number of containers for the case when the contain-
ers have infinite capacity. Then we consider the case where all containers
have some fixed capacity and give an optimal polynomial-time algorithm
for the special case where each type of item has the same size. When the
sizes of the item types are nonuniform, we provide a polynomial-time
2-approximation for the problem. We also prove that the approxima-
tion ratio of our algorithm is no lower than 1.813. We conclude with an
experimental evaluation of our algorithm.

1 Introduction

We study the Robust Assignment Problem (rap) where we are given various
types of items, each with a weight, where items of the same type have the same
weight. We must assign the items to a set of containers with the constraint that
if an item is found to be corrupt (we assume that there may be at most one such
item), then every container containing an item of that type becomes unstable.
Therefore, we would like at least one item of every other type to remain in
at least one stable container. Such an assignment is considered robust and we
would like a robust assignment that uses the fewest number of containers while
satisfying their weight limit.

More formally, the input is n item types t1, . . . , tn with sizes (or weights)
w1, . . . , wn, respectively, and container capacity C. The output is an assignment
of types to subsets of containers, which uses the lowest number of containers
and satisfies the following constraints: (1) Each type is assigned to k containers,
for some k ≥ 1 (2) Each container is assigned at most C total weight (3) The
c© Springer Nature Switzerland AG 2018
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assignment is robust, that is, for any type ti, if all containers having an item of
type ti become unstable, for all other types tj �= ti, there is a stable container
that contains tj . Formally, let Si = {si,1, si,2, . . . , si,k} for 1 ≤ i ≤ n denote the
set of k containers to which an item of type ti was assigned. Then for every type
tj �= ti such that an item of type tj is also assigned to any container of Si, an
item of type tj will exist on some container that is not in Si. The goal is to find
a robust assignment that uses the fewest containers.

rap has many practical applications. For example, in distributed systems,
multiple applications, including instances of the same app, are hosted on a cluster
of servers. If a failure occurs in an app (and may therefore possibly occur in
the other instances of the faulty app), then the app, all of its hosting servers,
and hence all other app instances on those servers, are temporarily suspended.
Therefore, the system would like an assignment of app instances to the minimal
number of servers such that if a failure occurs in an app and therefore all its
hosting servers are temporarily suspended, there is still a running instance of
every other app hosted on some unaffected server in the system. rap can be used
to find such an assignment - the apps correspond to the items and the servers
correspond to the containers. The goals of our work were in fact motivated by
a conversation with industry colleagues who encountered this problem in their
company’s hosting platforms.

Ad placement on webpages is another application of the Robust Assign-
ment Problem. Ad companies often have ads from multiple clients that must be
displayed throughout various webpages of a website. If an ad crashes or slows
down, it may affect the entire webpage and hence, the other ads displayed on
that webpage as well. Other webpages displaying the faulty ad may need to be
temporarily suspended to repair or check the faulty ad. Therefore ad companies
would like an assignment of ads to webpages such that if a faulty ad temporarily
suspends all of the webpages it is displayed on, there is still a running instance
of every other ad on some webpage on the website. Here, the ads and webpages
correspond to the items and containers, respectively.

rap can also be presented as an application to gardening/agriculture. Avid
gardeners often grow multiple plants of different varieties in several garden beds.
Suppose that during the growing season, it becomes known that a particular
plant variety has become disease prone. Therefore, all plants that are planted
in the same bed as a disease-prone plant may become infected with the disease.
Therefore, gardeners would like to find a way to plan their garden such that if
a plant variety becomes prone to disease, then at least one plant of each variety
still grows.

Our Results. For rap we first give an optimal polynomial-time algorithm for
finding the minimum number of containers needed to robustly assign the given
set of item types, ignoring capacity constraints on the containers (Sect. 3.1).
We then introduce the constraint of capacitated containers and give an opti-
mal polynomial-time algorithm for the special case where each type of item has
the same size (Sect. 4). For the general case of nonuniform sizes, we provide a
polynomial-time 2-approximation for the problem (Sect. 4.2). I.e., our algorithm
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uses no more than twice the number of containers of the optimal robust assign-
ment. We also prove that the approximation ratio of our algorithm is at least
1.813. We conclude with an experimental evaluation of our algorithm (Sect. 5).

2 Related Work

To the best of our knowledge, our specific model for a robust assignment has not
been previously studied. However, our solution ideas draw on those used for the
bin-packing problem and some assignment problems, so we first discuss literature
related to both problems. As mentioned above, in the context of distributed
computing, our work applies to the problem of assigning replicas of applications
to servers on a hosting platform, so we also discuss some literature on variations
of this problem.

Our problem model has similarities to the problem of bin-packing with con-
flicts (or constraints) [2,5,6]. In the most general form of this problem, there
are conflicts among the items to be packed and these conflicts are captured by a
conflict graph, where the nodes represent the items and an edge exists between
two items that are in a conflict [5]. The goal is to pack the items in the fewest
number of bins while satisfying the capacity constraints on the bins and ensur-
ing that no two items in a conflict are packed in the same bin. Jansen proposed
an asymptotic approximation scheme for this problem for d-inductive graphs
(i.e. where the vertices can be assigned distinct numbers 1 . . . n in such a way
that each vertex is adjacent to at most d lower numbered vertices) including
trees, grid graphs, planar graphs and graphs with constant treewidth [5]. For all
ε > 0, Jansen and Öhring [6] presented a (2 + ε)-approximation algorithm for
the problem on cographs and partial K-trees, and a 2-approximation algorithm
for bipartite graphs. Epstein and Levin [2] improved on the 2.7-approximation
of [6] on perfect graphs by presenting a 2.5-approximation. They also presented
a 7/3-approximation for a sub-class of perfect graphs and a 1.75-approximation
for bipartite graphs.

Our problem differs from these previous problems in at least two important
ways. First, the conflicts among our items cannot be easily captured by a conflict
graph as they do not pertain to specific pairs of items, but rather to all pairs of
items. Second, for our problem, the total number of items that are packed into
bins is not predefined, so an algorithm may create more or less if doing so yields
fewer bins.

The wide variety of problems that address the task of assigning items to
containers while satisfying constraints and minimizing or maximizing some
optimization objective are typically classified as Generalized Assignment Prob-
lems [1,11]. While (to our knowledge) no previous works have considered the
requirement of a robust assignment as in our model, a few works have had some
similarities to ours. Fleischer et al. [3] studied a general class of maximizing
assignment problems with packing constraints. In particular, they studied the
Separable Assignment Problems (SAP), where the input is a set of n bins, a
set of m items, values fi,j for assigning item j to bin i; and a separate packing
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constraint for each bin – i.e. for bin i, a family of subsets of items that fit in
bin i. The goal is to find an assignment of items to bins with the maximum
aggregate value. For all examples of SAP that admit an approximation scheme
for the single-bin problem, they present an LP-based algorithm with approxima-
tion ratio (1 − 1

e − ε) and a local search algorithm with ratio (12 − ε). Korupolu
et al. [8] studied the Coupled Placement problem, in which jobs must be assigned
to computation and storage nodes with capacity constraints. Each job may prefer
some computation-storage node pairs more than others, and may also consume
different resources at different nodes. The goal is to find an assignment of jobs to
computation nodes and storage nodes that minimizes placement cost and incurs
a minimum blowup in the capacity of the individual nodes. The authors present
a 3-approximation algorithm for the problem.

One application of our work is the problem of assigning replicas of applica-
tions to servers on a hosting platform so that the system is fault-tolerant to a
single application failure. There have been a wide variety of studies on related
problems and here we discuss a few. Rahman et al. [10] considered the related
Replica Placement Problem where copies of data are stored in different locations
on the grid such that if one instance at one location becomes unavailable due to
failure, the data can be quickly recovered. They present extensive experimental
results for this problem. Mills et al. [9] also studied a variation of this prob-
lem in the setting where dependencies exist among the failures and the general
goal is to find a placement of instances that does not induce a large number of
failures. They give two exact algorithms for dependency models represented by
trees. Urgaonkar et al. [15] also studied the problem of placing apps on servers,
but do not consider fault tolerance and focus instead on satisfying each appli-
cation’s resource requirement. The authors study the usefulness of traditional
bin-packing heuristics such as First-Fit and present several approximation algo-
rithms for variations of the problem.

More recently, Korupolu and Rajaraman [7] studied the problem of placing
tasks of a parallel job on servers with the goal of increasing availability under
two models of failures: adversarial and probabilistic. In the adversarial model,
each server has a weight and the adversary can remove any subset of servers of
total weight at most a given bound; the goal is to find a placement that incurs
the least disruption against such an adversary. For this problem they present
a PTAS. In the probabilistic model, each node has a probability of failure and
the goal is to find a placement that maximizes the probability that at least a
certain minimum number of tasks survive at any time. For the most basic version
of the problem they study they give an algorithm that achieves an additive ε-
approximation. Stein and Zhong [13] studied a related problem of processing jobs
on machines to minimize makespan. The jobs must be grouped into sets before
the number of machines is known and these sets must then be scheduled on
machines without being separated. They present an algorithm that is guaranteed
to return a schedule on any number of machines that is within a factor of (53 + ε)
of the optimal schedule, where the optimum is not subject to the restriction that
the sets cannot be separated.
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3 Preliminaries

As a concrete example, Figs. 1 and 2 show two assignments and the corresponding
states of the containers for n = 6 item types. In Fig. 1, the assignment is not
robust – if type 2 is found to be corrupt, then no items of type 5 will exist in
any other containers since all items of type 5 are in the same set of containers as
items of type 2 (a similar problem occurs with types 3 and 4). Figure 2 depicts
one robust assignment using the optimal number of containers: 4. Note that if
an item of type 2 fails, then all item types contained in B and D exist in some
other container. Further note that in this assignment if any of the item types
are found to be corrupt, this robustness property holds.

Fig. 1. Example of a non-robust assignment. If type 2 is corrupt, no items of type 5
exist.

Fig. 2. An optimal robust assignment. If any type is corrupt, all other types still exist.

A robust assignment is characterized by whether each type is assigned to a
set of containers that is not a subset of the set of containers assigned to any
other type. We present this characterization formally as our first Lemma.
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Lemma 1. Let Si = {si,1, si,2, . . . , si,k} for 1 ≤ i ≤ n denote the set of k
containers to which an item of type ti was assigned. An assignment of item
types to containers is robust if and only if there is no pair of item types ti, tj
such that Si ⊆ Sj

1.

Proof. First we show that a robust assignment implies no pair of types ti, tj
will be such that Si ⊆ Sj . Suppose by way of contradiction that there is some
pair of types ti, tj where Si ⊆ Sj . This means if type tj is found to be corrupt,
and all the containers in Sj become unstable, then all the containers in Si also
become unstable. In this case there are no items of type ti in stable containers
so the assignment was not robust. We now prove the other direction of the
lemma. Suppose for contradiction we have no pair of types ti, tj such that Si ⊆
Sj , but the assignment is not robust. If it is not robust, there is some type
k such that removing the containers in Sk will leave another type k′ in no
remaining containers. But for this to be true, it must be that Sk′ ⊆ Sk which is
a contradiction.

3.1 Uncapacitated Robust Assignment Problem

In this section we begin by considering the special case of the rap where the con-
tainers have infinite capacity. To tackle the Uncapacitated Robust Assignment
Problem we first consider the inverse problem: given m containers, what is the
maximum number of item types we can assign robustly? Due to Lemma 1 this
problem can be modeled as the combinatorics problem of finding the maximum
cardinality antichain of a set. Specifically, let P denote the set of subsets of m
elements {1, 2, . . . ,m}. An antichain of P is a set P̄ = {s1, s2, . . . , sk} ⊆ P such
that for any pair of subsets si, sj in P̄ , si �⊆ sj . For a table of all antichains for
m = 1, 2, and 3, please refer to the full version of the paper.

Sperner’s Theorem [12] states that the maximum cardinality of an antichain
P̄ of an m-sized set is

(
m

�m/2�
)

and each subset of P̄ has size m/2. (If m is odd
then there will be two maximum cardinality antichains whose subsets will have
size �m/2� and �m/2	, respectively.) Therefore, Sperner’s Theorem yields the
maximum number of item types that can be assigned to m containers as well as
the number of containers to which each type is assigned. The values in Table 1
were derived from Sperner’s Theorem.

We can thus use this theorem in conjunction with Lemma 1 to solve our
original assignment problem – that is, given n types, find the minimum number
of containers required to assign these types. Specifically, given n types, we would
like to find the smallest m such that

(
m

�m/2�
) ≥ n. See Algorithm 1 for further

details.

Theorem 1. The Uncapacitated Robust Assignment Problem is solvable in time
polynomial in n, the number of item types.

1 Note that Si ⊆ Sj is the general condition for nonuniform k; for uniform k the
condition is Si = Sj .
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Table 1. The maximum number of types that can be robustly assigned to 1 ≤ m ≤ 10
containers.

m (# of containers) Maximum number of item types
that can be robustly assigned

1 1

2 2

3 3

4 6

5 10

6 20

7 35

8 70

9 126

10 252

Algorithm 1. Input is n item types.
1: Use Sperner’s Theorem to find the minimum integer m such that

(
m

�m/2�
) ≥ n.

2: Set up m empty containers.
3: Generate all

(
m

�m/2�
)

of the �m/2�-combinations of the m containers.

4: Assign each item type one of the �m/2�-combinations, i.e. for each type,
assign an item of that type to each of the �m/2� containers in the
�m/2�-combination that this type was assigned to.

Proof. Due to Sperner’s Theorem and Lemma 1, Algorithm 1 correctly returns
the minimum number of containers required. Steps 1 and 2 take no more than
time linear in the number of types as n serves as a trivial upperbound on the
value of m that satisfies the Sperner’s Theorem condition. (Furthermore, we
can potentially find the solution more quickly by computing upper and lower
bounds on m using Stirling’s approximation which states that

(
m

�m/2�
) ≈ m +

1
2 − 1

2 log2(mπ) [14].) Steps 3 and 4 of the algorithm require enumeration of the(
m

�m/2�
)

combinations; the number of combinations is exponential in m, but since
the chosen m will be O(log(n)), the composite run time is still polynomial in n.

4 The Robust Assignment Problem with Capacity
Constraints

In Sect. 3.1, we implicitly assumed that any number of items can be assigned
to any one container. However, in practical settings, constraints such as storage
space, memory, or other demands will impose limits on the number of items a
container may hold. We therefore consider a model where there is one such con-
straint. We will use the example of a storage constraint for expository purposes.
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The problem now becomes: given n types t1, t2, . . . , tn with integer-valued
sizes, w1, w2, . . . , wn, respectively, where items of type ti have size wi; and an
integer-valued container capacity C, where 1 ≤ wi ≤ C, find an assignment of
items to the minimal number of containers such that the assignment is both
(1) robust and (2) satisfies the following capacity constraint : if Aj is the set of
items assigned to container sj , then for all containers j = 1 . . . m, where m is the
number of containers used in the assignment,

∑
a∈Aj

w(a) ≤ C, where w(a) is
the size of item a. We refer to this variant as the Capacitated Robust Assignment
Problem.

As a small example, suppose in Fig. 2, types 1, 2, . . . , 6 have sizes 1, 2, . . . 6,
respectively. Then if C = 12, the assignment shown in the figure would not
satisfy the capacity constraint since both containers D and E currently use 13
units of size. Figure 3 shows an assignment that satisfies both the robustness and
capacity constraints.

Fig. 3. An assignment that satisfies both the robustness and capacity constraints for
capacity equal to 12.

4.1 Uniform Sizes

We first consider the special case where each type, and therefore each item, has
the same size w. Given n such types and containers of capacity C ≥ w, the
problem is to find an assignment of types to the minimal number of containers
such that the assignment is robust and also satisfies the capacity constraints.
In this case the capacity constraint is that if |Aj | denotes the number of items
assigned to container sj , and m is the number of containers in the assignment,
then for all j = 1 . . . m, |Aj |w ≤ C.

Theorem 2. The Capacitated Robust Assignment Problem with uniform sizes
is solvable in time polynomial in n, the number of item types.

Proof. Algorithm 2 solves this problem optimally. Recall that k denotes the num-
ber of items of each type. The algorithm effectively performs an exhaustive search
to find the minimum m over all possible k for which the robustness and capacity
constraints are satisfied. Specifically, the algorithm starts with the lower bound
for m (given by Sperner’s Theorem) and searches every possible integral value
of k given this m (i.e. starting from k = �m/2� down to k = 1) that will satisfy
both the robustness and capacity constraints. Robustness is satisfied if

(
m
k

) ≥ n

and the capacity constraint is satisfied if �C
w � ≥ nk

m . If no value for k for the
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given m satisfies both constraints, the algorithm increments m and repeats the
search for k.

Note that the algorithm will eventually terminate: if eventually m is incre-
mented to n and k is decremented to 1 both conditions of the while loop will
be true. There will be O(n2) iterations of the while loop. Each iteration takes
constant time so the runtime of the loop is O(n2). The polynomial run-time and
correctness of step 11 is addressed in the full version of the paper. So the overall
run time of Algorithm2 is polynomial in n.

The procedure for assigning the n types robustly to the m containers com-
puted by Algorithm 2 is rather technical, so we refer the reader to the full version
of the paper for the details on this procedure. We also note that while there are
ways to optimize the run-time of our algorithm, the exhaustive-search version
we present here is for the sake of simplicity and clarity.

Algorithm 2. Input is the container capacity C, n item types, and item
size w ≤ C.

1: Use Sperner’s Theorem to find minimum m such that
(

m
� m

2 �
) ≥ n. Note that

m is a lower bound on the number of containers required to assign the types.
2: k = �m

2
�

3: while not (
(
m
k

) ≥ n and �C
w

� ≥ nk
m

) do
4: if k > 1 then
5: k − − //decrease the number of items per type
6: else
7: m + + //add another container
8: k = �m

2
� //re-initialize k for the new m

9: end if
10: end while
11: For details on how to assign k items of each type to a distinct subset of the m

containers, refer to the full version of the paper.

We note that if the problem is simply to find the minimum number of contain-
ers needed for the robust assignment, without also requiring the robust assign-
ment itself, one can do so in polylog(n) time by formulating the problem as
a fixed-dimension integer program. Namely, given inputs (n,C) where for sim-
plicity we assume w = 1, then we want to solve the system 1 ≤ k ≤ m/2,
kn ≤ mC,

(
m
k

) ≥ n for k and m with m minimal. The key observation is
that for any fixed m, the k satisfying the first two equations that yield the
largest

(
m
k

)
is k = �min(m/2,mC/n)�. Thus whether or not an m has a cor-

responding k that satisfies the three equations is equivalent to whether or not(
m

�min(m/2,mC/n)�
) ≥ n. Because we can show

(
m

�min(m/2,mC/n)�
)

is an increasing
function in m, then we can do a binary search for the minimal m that satisfies(

m
�min(m/2,mC/n)�

) ≥ n in the interval [1, n]. This would be far more efficient than
the brute force while-loop that we give for simplicity in Algorithm2.
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4.2 Nonuniform Sizes

In this section we consider the variant of the problem where there may be a
different size 1 ≤ wi ≤ C for each type ti. In this case, if we ignore the robust-
ness constraint, the problem would be NP-hard due to its equivalence to bin-
packing [4]. We first present our algorithm, Robust First Fit (rff), for this
problem and prove that its approximation ratio is at most 2. We then show that
the approximation ratio of rff is not lower than 1.813.

4.2.1 The Robust First Fit Algorithm
rff begins by sorting the types in descending order by size. When finding an
assignment for type ti the algorithm first finds the set S of all the containers
that have enough empty space to fit an item of type ti. It then assigns an item of
type ti to the (lexicographically) first container assignment that can be created
from the containers in S that has not already been used by a previous type.

Algorithm 3. Robust First Fit (rff). Input is the container capacity
C and a set T of n types where all items of type ti have size wi ≤ C for
1 ≤ i ≤ n.

1: Sort the types in descending size order.
2: Use Sperner’s Theorem to find minimum m such that

(
m

� m
2 �

) ≥ n. Note that

m is a lower bound on the number of containers required to hold the items.
3: for k = �m

2
� to 1 do

4: Set up m′ = m empty containers.
5: for each type ti in T do
6: Let S denote the subset of the m′ containers that still have sufficient

space to fit an item of type ti
7: Assign k items of type ti to the lexicographically first k-combination of

containers in S that is still available (i.e. no type has already been
assigned to it)

8: if ti is still unassigned then {there were no available k-combinations in S}
9: Add a new container to S, maintaining lexicographic order and

increment m′. (Note that k does not change.)
10: Go back to Step 7.
11: end if
12: end for
13: Store m′ along with the corresponding assignment.
14: end for
15: Return the assignment from the iteration of the outer-most for-loop (Step 3)

that used the fewest containers.

Whenever no suitable assignment can be created for type ti with the existing
containers, a new empty container is created. An assignment with a storage
constraint will never require fewer containers than an assignment without a
storage constraint, so the number of containers (m) and number of items of each
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type (k) are initialized to the values given by Sperner’s Theorem. The for-loop
in step 3 accounts for the fact that decreasing the number of items of each
type might decrease the number of containers required. Therefore, we start with
k = �m/2�, as given by Sperner’s Theorem, and try decreasing the number of
items from there.

rff runs in polynomial time. Since the initial value of m from step 2 can be at
most n, the for-loop in Step 3 will run for at most O(n) iterations. Each iteration
of the loop finds an assignment for n types. To find an assignment for each type
ti, the algorithm searches for an available k-combination whose containers have
sufficient space for an item of type ti. This can be done in poly-time as there
will never be more than O(n) k-combinations to check before finding one that
is available. Since the number of containers will be no more than n · n

2 = O(n2)
(i.e. if one item of each type was assigned to its own dedicated container), the
algorithm may reach Step 10 (which causes a new iteration from Step 7) O(n2)
times. Hence the overall run-time of rff is polynomial.

We note that there are clearly ways to optimize the run-time of our algorithm
if one wishes to implement it on a real-world system (for example, using binary
search instead of linear search). The version we present here is for the sake of
simplicity and clarity.

4.2.2 Upper Bound
We now show that rff has an approximation ratio of no worse than 2.

Theorem 3. rff is a 2-approximation for the Capacitated Robust Assignment
Problem with nonuniform sizes. I.e., rff will use at most 2m∗ containers to
robustly assign all n types, where m∗ is the number of containers that an optimal
solution uses.

Proof. Consider any input instance. Let n denote the number of item types
to be assigned, let opt be an optimal robust assignment for them, and let k
be the number of items assigned per type in opt. It suffices to show that for
the optimal k rff uses at most 2m∗ number of containers since rff tries each
potential value of k and chooses the value of k that minimizes the number of
containers required. Hence, if rff uses no more than 2m∗ containers when it
assigns k items per type, it must ultimately not use more than 2m∗ containers.
We also assume k ≥ 2, since in the case of k = 1 rff and opt will both use a
dedicated assignment (one item of each type per container) so rff will return
an optimal assignment, using m = m∗ containers.

Suppose for contradiction that opt uses m∗ containers while rff uses strictly
more than 2m∗ containers when assigning the n types. Consider the moment
during the execution of the rff algorithm that container number 2m∗ + 1 was
opened and added to S. Let ti be the type that was being assigned when rff
opened this (2m∗ + 1)th container. Let wi be the size of type ti. Let S−i be the
set of 2m∗ containers already in use by the algorithm when it tried to assign ti,
but before it added container number 2m∗ + 1. Note that rff has sorted and
re-indexed the types in descending size order.
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Case 1: 2 ≤ k ≤ �m∗/2�, wi > C/3. Let B denote the set of all types tj for
whom wj > C/3. Note that type ti ∈ B. Due to their size, no more than two
items of types in B can fit on a single container, so there can be no more than
2m∗ such items in total, i.e., k|B| ≤ 2m∗. Note however, that rff must be
able to assign the k|B| ≤ 2m∗ items to at most 2m∗ containers because 2m∗

containers would indeed be sufficient for even a dedicated assignment: one item
of each type per container. This contradicts the assumption that type ti required
rff to open a (2m∗ + 1)th container.

Case 2: 2 ≤ k ≤ �m∗/2�, wi ≤ C/3. In this case, we consider two sub-cases.
Subcase 1: there are at least m∗ containers in S−i with available space at least
wi (i.e. enough space for an item of type ti). In this case, we would then have a
robust assignment from the set S−i for ti because opt needed only m∗ containers
total to assign all n types, so having m∗ containers must provide enough k-
combinations to have at least one left for ti.

Subcase 2: there are fewer than m∗ containers in S−i with available space at least
wi. So, in this case there must be m∗ + x containers Sf ⊆ S−i, where x > 0,
that have less than wi available space. We can say that each of these containers
in Sf already has filled capacity Cf > C − wi. So if w(Sf ) is the total size of all
of the items in the containers in Sf , then w(Sf ) > (m∗ + x)(C − wi). Since opt
used m∗ containers of capacity C to assign all k items of each of the n types
robustly, we have (m∗ + x)(C − wi) < m∗C. Recalling that we are in the case
where wi ≤ C/3, we then have

(m∗ + x)
(

C − C

3

)
= (m∗ + x)

(
2C

3

)
< m∗C.

This implies 2xC/3 < m∗C/3, which implies

x < m∗/2. (1)

Let Sg = S−i − Sf be the set of containers in S−i that still have enough
remaining capacity to store an item of type ti. For type ti to be unable to
be assigned to these |Sg| = |S−i| − |Sf | = m∗ − x containers, it must be due
to robustness: they must have no remaining available unique combinations of
containers. We will show however, that if this were true, it would also lead to a
contradiction.

If there are no unique combinations of containers remaining in Sg to assign
ti to, there must be at least

(
m∗−x

k

)
distinct types that are already assigned to

those containers. In other words, if

Tg = {tj ∈ T : an item of type tj is assigned to some container in Sg},

then |Tg| ≥ (
m∗−x

k

)
. This is true because if |Tg| <

(
m∗−x

k

)
then there would be

at least one remaining available k-combination of the containers in Sg on which
to assign ti.
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rff considers types in descending order by size so each item of the |Tg| ≥(
m∗−x

k

)
types must take up at least as much space as wi. Thus, w(Sg) ≥

(
m∗−x

k

)
kwi, where w(Sg) is the total size of all the items on the m∗−x containers

of Sg.
The size of all the items which are assigned to the 2m∗ containers of S−i is

w(S−i) = w(Sf ) + w(Sg) ≥ (m∗ + x)(C − wi) +
(
m∗−x

k

)
kwi. Again, opt used

m∗ containers of capacity C so we know the total size of all the items cannot be
more than m∗C. Thus,

(m∗ + x)(C − wi) +
(

m∗ − x

k

)
kwi ≤ m∗C (2)

By expanding the left hand side of (2) we get

m∗C − m∗wi + xC − xwi +
(

m∗ − x

k

)
kwi ≤ m∗C

and rearranging terms gives us:

xC +
(

m∗ − x

k

)
kwi ≤ m∗wi + xwi (3)

By combining Eqs. 3 and 1 with wi ≤ C/3 we get

3xwi +
(

m∗ − x

k

)
kwi ≤ m∗wi +

m∗

2
wi

which implies
(
m∗−x

k

)
2k + 6x ≤ 3m∗. Using the fact that 2 ≤ k ≤ �m∗

2 � yields
(

m∗ − x

k

)
4 + 6x ≤ 3m∗. (4)

It is a fact for any integers a, b > 0, where b < a, that
(
a
b

) ≥ a; and we know
m∗ − x ≥ k (since by Eq. (1) we know x < m∗/2 and we are currently in the
case where k ≤ m∗/2). Hence we can say from Eq. 4 that 4(m∗ −x)+6x ≤ 3m∗,
which is a contradiction.

Both cases resulted in contradiction. So, rff will never use more than 2m∗

containers.

4.2.3 Lower Bound
We now provide a family of examples that give a lower bound on the approxima-
tion ratio of rff. The family of examples is parameterized by a positive integer
d ≥ 3. We refer to the following instance as I(d). There are n =

(
2d+3

d

)
types, of

which � = 2d − 1 are “large” types and s = n − � are “small” types. The small
types have size 1, while the large types have size L = s. Suppose the containers
each have capacity C = dL. We first give an optimal assignment for this family.
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Proposition 1. For instance I(d), an optimal assignment uses m∗ = 2d + 3
containers.

Proof. First we note that since d ≥ 2, we have 1
d+1 < 2d+3

(d+3)(d+2) . Then

(2d + 2)!
(d + 1)d!(d + 1)!

<
(2d + 3)(2d + 2)!

d!(d + 1)!(d + 3)(d + 2)
,

from which we get (
2d + 2
d + 1

)
<

(
2d + 3

d

)
= n.

By Sperner’s Theorem, this says that instance I(d) requires at least m = 2d + 3
containers and this number of containers is possible when k = d. Now, letting
k = d, since

k� = d(2d − 1) = 2d2 − d ≤ 2d2 + d − 3 = (d − 1)(2d + 3) = (d − 1)m,

we can store k items of each of the � large types on the m containers with at
most d− 1 items on each container (the full version of the paper describes how).
Since the capacity of each container is C = dL, each container will have at least
capacity L remaining. We will then use the remaining

(
2d+3

d

) − � combinations,
which is exactly s, the number of small types, to assign the small items. By
design, Lm ≥ ds and so there is enough remaining capacity to do this. Therefore
2d + 3 is the optimal number of containers for the instance I(d).

Given an instance I(d), we now establish the number of containers returned
by rff.

Proposition 2. For an instance I(d), for each integer 1 ≤ k ≤ d+1, we define

J(k) = min{j :
(

j + 2d − 2k + 4
j

)
≥ d − 1}

z(k) = min{j :
(

j

k

)
≥ s}

While using k items of each type, rff will return the number of containers equal
to:

m(k) = 2k − 1 − J(k) + z(k).

Then rff will return the number of containers such that m(k) is minimal over
1 ≤ k ≤ d + 1.

Proof. (Please refer to Table 2 for example values of J(k) and z(k)). rff begins
by calculating that at least 2d + 3 containers are needed, and so rff will loop
from k = d + 1 down to k = 1 in search of the minimum number of containers
needed. In what follows, we index both the containers and item types starting
from 0. Consider a fixed k for 1 ≤ k ≤ d + 1. rff will assign each large item
type tj , for each j = 0, . . . , d−1, to containers {0, . . . , k−2, k−1+ j}. Then the
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other remaining d−1 large types are assigned to containers k −1, . . . , 2k −2−J
and some order J subset of {2k − 1 − J, . . . , 2d + 2}, which has cardinality
J + 2d − 2k + 4. We need

(
J+2d−2k+4

J

) ≥ d − 1. For any such J , the containers
numbered 0 through 2k − 2 − J would be filled to capacity with large types.
Thus taking the minimum such J , calling it J(k), exactly the first 2k − 1−J(k)
containers are filled; the other containers have at least capacity L remaining.

Let z(k) be the smallest positive integer such that
(
z(k)
k

) ≥ s. To assign the s
small types, it is clear we need at least z(k) containers beyond the 2k−1−J(k).
For d ≥ 3, we can prove by induction that

s =
(

2d + 3
d

)
− (2d − 1) >

(
2d + 2
d + 1

)
. (5)

This is true for d = 3, and assuming it is true for a particular d, then we multiply
the lefthand side by (2d+4)(2d+5)

(d+1)(d+4) and the righthand side by (2d+3)(2d+4)
(d+2)2 , the latter

of which we can prove is smaller by cross-multiplying. We then get
(

2d + 5
d + 1

)
− (2d − 1)

(2d + 4)(2d + 5)
(d + 1)(d + 4)

>

(
2d + 4
d + 2

)
.

Now we can check by cross-multiplication that

(2d − 1)
(2d + 4)(2d + 5)
(d + 1)(d + 4)

> (2d + 1).

Then
(
2d+5
d+1

) − (2d + 1) >
(
2d+4
d+2

)
, which is Eq. 5 with d replaced by d + 1,

completing the induction. Finally,
(

z(k)
k

)
≥

(
2d + 3

d

)
− (2d − 1) >

(
2d + 2
d + 1

)

implies z(k) ≥ 2d + 3.
Now note that by definition of z(k) that

(
z(k) − 1

k

)
< s.

Because z(k) ≥ 2d + 3 and k ≤ d + 1 < z(k)/2, then
(

z(k) − 1
k − 1

)
<

(
z(k) − 1

k

)
< s = L.

Thus

Lz(k) ≥ k

(
z(k)
k

)
.

We can robustly assign each of
(
z(k)
k

)
small types to k out of z(k) containers each

with capacity at least L (the full version describes how) and in particular rff
would naturally do this because every combination of k out of z(k) containers
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Table 2. The number of containers output by rff and opt for different values of d.
rff outputs the minimal m(k) over 1 ≤ k ≤ d + 1 while opt outputs m∗ = 2d + 3

d k J(k) z(k) rff output opt output rff/opt

5 5 1 13 21 13 1.615

8 8 2 19 32 19 1.684

9 8 2 22 35 21 1.666

15000 10611 2 33185 54404 30003 1.81328

25000 17663 2 55348 90671 50003 1.81331

35000 24710 2 77521 126938 70003 1.81332

is used. Since s ≤ (
z(k)
k

)
, then rff would successfully use z(k) containers to

robustly assign the s small types. Thus we have shown that rff with k ≤ d + 1
items of each type uses 2k−1−J(k)+z(k) containers. Thus rff uses the number
of containers equal to the minimum of 2k − 1 − J(k) + z(k) for 1 ≤ k ≤ d + 1.

Theorem 4. The approximation ratio of rff is no better (lower) than 1.813.

Proof. Let d = 15000, and consider the instance I(d) as defined above. By
Proposition 2, rff ends up using k = 10611 and J = 2, z = 33185 and m = 54404
for this instance, while (by Proposition 1) an optimal assignment requires only
m∗ = 2d + 3 = 30003. (Please see Table 2.)

5 Experimental Results

As described in Sect. 1, rap can be applied to assigning app instances to the
minimal number of servers on a hosting platform while ensuring that if a failure
occurs in an app and therefore all its hosting servers are temporarily suspended,
there is still a running instance of every other app hosted on some unaffected
server. Formally, we are given n apps where app i has size di and server capacity
C. We would like to find an assignment of app instances to the minimal num-
ber of servers m, such that the assignment is robust and satisfies the capacity
constraint.

To evaluate the performance of the rff algorithm, we simulated a hosting
platform and measured the number of servers used by the algorithm. Specifically,
we tested four values for server capacity C (64 GB, 128 GB, 256 GB, and 512 GB),
varied the number of apps from n = 25 to n = 250 apps (at increments of 25)
and set app sizes di to be normally distributed between 4 GB and 16 GB. We
compared rff to a dedicated system (i.e. where the number of servers is simply
the number of apps) and an “ideal” assignment, which does not correspond to any
feasible robust assignment, but serves as a lower bound on the minimally required
number of servers. (Recall that it even without the robustness constraint, it
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Table 3. Number of servers used when server capacity is 64 GB, 128GB, 256 GB, and
512 GB.

is NP-hard to compute opt so we did not compute it for the experiments.)
We computed the “ideal” assignment by determining the minimum number of
servers needed to satisfy robustness alone and the minimum number of servers
to satisfy the storage constraints alone and taking the maximum of these two
values. I.e., the “ideal” number of servers is defined as: mink max{mr,mc} where
mc = min{m : mC ≥ k

∑n
i=1 di} and mr = min{m :

(
m
k

) ≥ n}.
We tested each setting for 10 iterations and took the average of the results.

The graphs in Table 3 show the results. The graphs show that for all settings,
rff performs significantly better than the dedicated system and almost as well
as the ideal assignment. Specifically, the worst (minimum) ratio (over all values
of n) of servers used by the dedicated system and rff is 2.40, 3.25, 3.57, and
3.57 for 64 GB, 128 GB, 256 GB, and 512 GB, so rff always assigned apps more
than twice as efficiently as a dedicated system. Note that as the server capacity
increases, these ratios either increase or stay the same. The average ratio of
servers used by the dedicated system and rff always increase: 2.64, 4.72, 7.34,
and 9.89 for 64 GB, 128 GB, 256 GB, and 512 GB, respectively, so rff on average
performed as much as 9 times as efficiently as a dedicated hosting.
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Comparing rff with the lower bound on optimal, we find that the worst
(maximum) ratio (over all values of n) of servers used by rff and the ideal
assignment is 1.17, 1.21, 1.13, and 1.20 for 64 GB, 128 GB, 256 GB, and 512 GB,
respectively. So rff always used close to the same number of servers as an opti-
mal solution. (The average ratios are similar to these values.) The results indi-
cate that when apps sizes are more realistic than those described in Theorem 4
of Sect. 4.2.3, rff performs close to optimally.

6 Discussion and Conclusions

We proposed a new model for assigning items of various types to containers
such that the system is robust. We presented an optimal poly-time algorithm in
the setting without capacity constraints on the containers. We also presented an
optimal poly-time algorithm when item sizes are uniform. Our main algorithm
rff is a poly-time 2-approximation algorithm for the setting where item sizes
are nonuniform. Our experimental results suggest that when run on a simulated
hosting platform, rff performs well not only in the worst-case, but even more
so on average.

In the lower bound instance, as d increases, it is not clear whether the cor-
responding ratio is converging (very slowly) to 2 or to a number less than 2, or
whether the ratio converges at all; if the ratio does not converge, one can still
ask for the limit supremum of the sequence of ratios. If the limit supremum is
2, then the upper bound of 2 is tight.

One direction for future work is to determine whether there is an algorithm
with an approximation ratio better than 2. Also, our problem model assumes
that the number of items is uniform over all types. A natural extension of this
work would be to consider the case where this number is not required to be
uniform.
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Abstract. The Maximum Independent Set (MIS) and Minimum
Dominating Set (MDS) problems are well-known problems in com-
puter science. In this paper, we consider discrete versions of both
of these problems - Maximum Discrete Independent Set (MDIS) and
Minimum Discrete Dominating Set (MDDS). For both problems, the
input is a set of geometric objects O and a set of points P in the plane.
In the MDIS problem, the objective is to find a maximum size subset
O′ ⊆ O of objects such that no two objects in O′ have a point in common
from P. On the other hand, in the MDDS problem, the objective is to
find a minimum size subset O′ ⊆ O such that for every object O ∈ O\O′

there exists at least one object O′ ∈ O′ such that O ∩ O′ contains a point
from P.

In this paper, we present PTASes based on local search technique for
both MDIS and MDDS problems, where the objects are arbitrary radii
disks and arbitrary side length axis-parallel squares. Further, we show
that theMDDS problem is APX-hard for axis-parallel rectangles, ellipses,
axis-parallel strips, downward shadows of line segments, etc. in R

2 and
for cubes and spheres in R

3. Finally, we prove that both MDIS and
MDDS problems are NP-hard for unit disks intersecting a horizontal
line and for axis-parallel unit squares intersecting a straight line with
slope −1.

Keywords: Discrete Independent Set · Discrete Dominating Set
Local search · PTAS · NP-hard · APX-hard · Disks
Axis-parallel squares · Axis-parallel rectangles

1 Introduction

The Maximum Independent Set (MIS) and the Minimum Dominating Set
(MDS) problems attract researchers due to their numerous applications in vari-
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ous fields of computer science like VLSI design, network routing, etc. The input
to both problems consists of a set of geometric objects O in the plane. In the
MIS problem, we need to find a maximum size sub-collection of objects O′ ⊆ O
such that no two objects in O′ intersect. In the MDS problem, we need to find
a minimum size sub-collection of objects O′ ⊆ O such that for every object
O ∈ (O \ O′) there exists at least one object O′ ∈ O′ such that O and O′

intersect.
The problems considered in this paper are discrete variants of the MIS and

MDS problems. We formally define these problems as follows.

Maximum Discrete Independent Set (MDIS). Let O be a set of
objects and P be a set of points in the plane. Find a maximum size subset
O′ ⊆ O such that no two objects in O′ cover the same point from P.

Minimum Discrete Dominating Set (MDDS). Let O be a set of
objects and P be a set of points in the plane. Find a minimum size subset
O′ ⊆ O such that for every object O ∈ O \ O′, O ∩ O′ ∩ P �= ∅ for some
O′ ∈ O′.

In this paper, we study the hardness results and polynomial time approxi-
mation schemes of the MDIS and MDDS problems for various geometric objects
such as disks, axis-parallel squares, axis-parallel rectangles, etc.

We note that the MDIS and MDDS problems are at least as hard as MIS and
MDS problems respectively. This can be established by placing a point in each
of the intersection regions formed by the given objects in the corresponding
instances of the MIS and MDS problems.

1.1 Previous Work

The MIS problem is known to be NP-hard for several classes of objects like
unit disks [9], unit squares [12], etc. Further, PTASes are also known for unit
squares and unit disks [10,18,21]. On the other hand, Chan and Har-Peled [7]
gave a PTAS for the MIS problem with pseudo-disks based on the local search
algorithm. For axis-parallel rectangles, Adamaszek and Wiese [1] gave a break-
through by providing a QPTAS. Very recently, Chuzhoy and Ene [8] also have
provided a QPTAS with improved running time. However, a PTAS or a constant
factor approximation algorithm is still open.

The MDIS problem was first studied by Chan and Har-Peled [7]. They show
that an LP-based algorithm gives an O(1)-approximation for pseudo-disks. To
the best of our knowledge, this is the best approximation factor known till now
for the MDIS problem even for special classes of pseudo-disks like disks, squares,
etc. On the other hand, Chan and Grant [6] have shown that the MDIS problem
is APX-hard for various classes of objects like axis-parallel rectangles containing
a common point, axis-parallel strips, ellipses sharing a common point, downward
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shadows of line segments, unit balls in R
3 containing the origin, etc. (see Theorem

1.5 in [6]).
The MDS problem is NP-complete for unit disk graphs [9] and a PTAS is

known for the same [18]. Recently, Gibson and Pirwani [16] obtained a PTAS for
MDS problem for arbitrary radii disks by local search method first used in [7] and
[23]. However, Erlebach and van Leeuwen [11] have shown that the MDS prob-
lem is APX-hard for several intersection graphs of objects like axis-parallel rect-
angles, ellipses, etc. Recently, by using local search method, Bandyapadhyay
et al. [5] gave a (2 + ε) approximation algorithm for the MDS problem with
diagonal-anchored axis-parallel rectangles1, for any ε > 0. Actually, they stud-
ied L-types of objects which are essentially rectangles when the L-shapes are
diagonal-anchored. They gave a local search based PTAS for a special case where
the rectangles are anchored from the same side of the diagonal.

1.2 Our Contributions

In [7], Chan and Har-Peled noted that, “Unlike in the original independent set
(MIS) problem, it is not clear if local search yields a good approximation for
MDIS problem, even in the unweighted case”. In this paper, we first answer this
partially affirmatively by providing PTASes for the MDIS problem with disks
and axis-parallel squares. More specifically, we prove the following theorems.

Theorem 1. There exists a PTAS for the MDIS problem with arbitrary radii
disks.

Theorem 2. There exists a PTAS for the MDIS problem with arbitrary side
length axis-parallel squares.

The above PTASes are obtained by extending the local search algorithm given
in [7]. In addition to the above results, for disks and axis-parallel squares, we
present PTASes for the MDDS problem by extending the local search method
of Gibson and Pirwani [16].

Theorem 3. There exists a PTAS for the MDDS problem with arbitrary radii
disks.

Theorem 4. There exists a PTAS for the MDDS problem with arbitrary side
length axis-parallel squares.

To prove the hardness results for the MDDS problem, we first define a special
case of the MDS problem with set systems, the SPECIAL-3DS problem (see Def-
inition 2) and show that it is APX-hard. The proof is inspired from the definition
and APX-hardness of the SPECIAL-3SC problem studied by Chan and Grant [6].
Next, by using the SPECIAL-3DS problem, we prove that the following theorem
(the classes of objects in this theorem are essentially given in [6]).
1 A set of axis-parallel rectangles is said to be diagonal-anchored, if given a diagonal
with slope −1 then either the lower-left or the upper-right corner of each rectangle
is on the diagonal.
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Theorem 5. The MDDS problem is APX-hard for the following classes of
objects.

A1. Axis-parallel rectangles in R
2, even when all rectangles have upper-left cor-

ner inside a square with side length ε and lower-right corner inside a square
with side length ε for an arbitrary small ε > 0.

A2. Axis-parallel ellipses in R
2, even when all the ellipses contain the origin.

A3. Axis-parallel strips in R
2.

A4. Axis-parallel rectangles in R
2, even when every pair of rectangles intersect

either zero or four times.
A5. Downward shadows of line segments in R

2.
A6. Downward shadows of cubic polynomials in R

2.
A7. Unit ball in R

3, even when the origin is inside every unit ball.
A8. Axis-parallel cubes of similar size in R

3 sharing a common point.
A9. Half-spaces in R

4.
A10. Fat semi-infinite wedges in R

2 with apices near the origin.

We note that for classes A1-A10, the MDIS problem is known to be APX-
hard [6]. Further, in [6], authors also have proved that the set cover problem is
APX-hard for all classes of objects A1-A10 and hitting set is APX-hard for four
classes of objects A3, A4, A7, and A9. Recently, in [20], the authors have shown
that the hitting set problem is APX-hard for the remaining classes of objects.

We also show that both MDIS and MDDS problems are NP-hard for unit
disks intersecting a horizontal line and axis-parallel unit squares intersecting
a straight line of slope −1. Our NP-hardness results are inspired by results of
Fraser and López-Ortiz [13] and Mudgal and Pandit [22]. We note that in these
restricted cases, MIS problem can be solved in polynomial time for unit disks
[24] and unit squares [22]. Further, the MDS problem can also be solved in
polynomial-time for unit squares [25]. Our NP-hardness results show the grada-
tion of the complexity between continuous and discrete versions of the problems.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Sect. 2, we present PTASes for
the MDIS problem with arbitrary radii disks and arbitrary side length squares.
For the same set of objects, we give PTASes for the MDDS problem in Sect. 3.
The APX-hardness results (proof of Theorem 5 and other related problems) are
presented in Sect. 4. Finally, we give a proof sketch of the NP-hardness results
for both MDIS and MDDS problems in Sect. 5.

2 PTAS: Maximum Discrete Independent Set Problem

In this section, we present PTASes for the MDIS problem with arbitrary radii
disks and arbitrary side length squares. These PTASes are obtained by extending
the local search technique of Chan and Har-Peled [7] for the MIS problem with
pseudo-disks.
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Let (P,O) be the input to the MDIS problem where P is a set of points and
O is a set of objects in the plane. Further, let m = |O| and n = |P|. Without
loss of generality, we assume that no object completely covers another object
in O. A set L ⊆ O is said to be a feasible solution to the MDIS problem, if no
two objects in L cover the same point from P. For a given integer t > 1, we say
that a feasible solution L is t-locally optimal if we cannot obtain another feasible
solution L′ ⊆ O of larger size, by replacing at most t objects from L with at most
t + 1 objects from O.

We now describe the procedure to obtain a t-locally optimal solution to the
MDIS problem in Algorithm 1. Note that, in every local exchange (step 5), the
size of L is increased by at least one. Hence, the local exchange can be possible
at most m times. However, every such step needs to go over all possible sets
O′ and L′. Since |O′| ≤ t + 1, there will be at most O(mt+1) possibilities for
O′ and for every such O′ at most O(mt) number of different L′ are possible.
Further, to check whether (L \ L′) ∪ O′ is a feasible solution or not, one needs
O(nm)-time. Hence, Algorithm 1 returns a t-locally optimal solution L ⊆ O in
O(nm2t+3)-time.

Algorithm 1. t-level local search for MDIS problem
1: Let L ← ∅.
2: for O′ ⊆ O \ L of size at most t + 1 do
3: for L′ ⊆ L of size at most t do
4: if (L \ L′) ∪ O′ is a feasible solution and |(L \ L′) ∪ O′| ≥ |L| + 1 then
5: L ← (L \ L′) ∪ O′ � local exchange step
6: end if
7: end for
8: end for

In the following, we first show that Algorithm1 returns a t-locally optimal
solution which has size at least (1 − O( 1√

t
)) times of the size of the optimal

solution to MDIS problem when the objects are arbitrary radii disks and later
we show that the same is also true for arbitrary side length axis-parallel squares.

Consider that O is a set of arbitrary radii disks. Without loss of generality,
we assume that no three disk centers are collinear, and no more than three
disks are tangent to a circle [16,27]. For a disk D, let cen(D) and radius(D)
denote the center and radius of D respectively. Let dist(x, y) denote the euclidean
distance between points x and y in the plane. For a disk D and a point p in the
plane, let Φ(D, p) be the distance between boundary of D and point p i.e.,
Φ(D, p) = dist(cen(D), p) − radius(D).

For the given instance (P,O) of the MDIS problem, let L ⊆ O be the t-
locally optimal solution return by Algorithm1 and let OPT ⊆ O be an optimal
solution. For a disk D ∈ L ∪ OPT, let cell(D) be the set of points in the plane
which are closer to the boundary of D with respect to all other disks in L ∪ OPT
i.e., cell(D) = {p | Φ(D, p) ≤ Φ(D′, p) ∀D′ ∈ L ∪ OPT}. The collection of
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all cells of disks in L ∪ OPT defines the Weighed Voronoi Diagram (WVD) i.e.,
WVD =

⋃
D∈L∪OPT cell(D). We now mention two properties of cells in the WVD.

Lemma 1 ([16]). For each disk D ∈ L ∪ OPT, the following two properties are
true.

1. cell(D) is non-empty. In particular, cell(D) contains cen(D).
2. cell(D) is star-shaped i.e., for any point p ∈ cell(D), every point on the line

segment p cen(D) is in cell(D).

Lemma 2 ([27]). Let D1 and D2 be two disks in L ∪ OPT. Let x be a point in
the plane such that Φ(D1, x) ≤ Φ(D2, x). If D2 covers x, then D1 also covers x.

Let G = (V,E) be a given graph. For a vertex v ∈ V , let NBH(v) be the set
of adjacent vertices of v in V . For a subset V ′ ⊆ V of vertices, let NBH(V ′) be
the set of all adjacent vertices of vertices in V ′ i.e., NBH(V ′) =

⋃
v∈V ′ NBH(v).

Further, let NBH(V ′)c = NBH(V ′) ∪ V ′. We now note a planar separator theo-
rem from [14] which is required in proving the performance of the local search
algorithm.

Lemma 3 ([14]). For any given planar graph G = (V,E) and a parameter r ≥
1, there exists a subset X ⊆ V of size at most c1|V |/√r, and a partition of V \X
into |V |/r sets V1, V2, . . . , V|V |/r such that (i) |Vi| ≤ c2r, (ii) NBH(Vi) ∩ Vj = ∅
for i �= j, and (iii) |NBH(Vi) ∩ X| ≤ c3

√
r for some constants c1, c2, and c3.

Proof of Theorem 1. We first define a graph G = (V,E) which can be viewed
as the dual of WVD of disks in L ∪ OPT.

1. For every disk D ∈ L ∪ OPT, we place a vertex in G at cen(D).
2. For every L ∈ L and O ∈ OPT, we place an edge between cen(L) and cen(O)

if and only if there exists a point x in the plane such that Φ(L, x) = Φ(O, x).

By using the star-shaped property of cells, one can draw G such that no two
edges intersect [4]. Thus, graph G = (V,E) is planar bipartite.

As in [7], we apply Lemma 3 on graph G = (V,E) with r = t/(c2 +c3). Then,
|NBH(Vi)

c| ≤ |Vi| + |NBH(Vi)| ≤ c2r + c3
√

r ≤ (c2 + c3)r ≤ t. Let OPTi =
Vi ∩ OPT, Li = Vi ∩ L, and Xi = NBH(Vi) ∩ X.

We now prove that (L\ (L ∩ NBH(Vi)
c)) ∪ OPTi is a feasible solution for the

MDIS problem. We note that any subset of a feasible solution is also a feasible
solution of the MDIS problem. Hence, (L \ (L ∩ NBH(Vi)

c)) and OPTi are also
feasible solutions of the MDIS problem. For the sake of contradiction, assume
that (L \ (L ∩ NBH(Vi)

c)) ∪ OPTi is not a feasible solution. Hence, there exists
two disks O ∈ OPTi and L ∈ (L \ (L ∩ NBH(Vi)

c)) such that both O and L
cover the same point p ∈ P. One can note that, O and L are the unique disks
in OPTi and L \ (L ∩ NBH(Vi)

c) respectively, which cover the point p. Without
loss of generality, assume that p ∈ cell(O). Hence, Φ(O, p) ≤ Φ(L, p). There are
two possible cases. (The arguments in the two cases are on the same lines of the
proof of Lemma 3 in [16].)
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Case 1: Suppose Φ(O, p) = Φ(L, p). Then p ∈ cell(L). Hence, cell(O) and cell(L)
share a common boundary in WVD and further, O ∈ OPT and L ∈ L.
Thus, there exists an edge between cen(O) and cen(L) in graph G. Hence
L ∈ NBH(O) which implies L /∈ L \ (L ∩ NBH(Vi)

c).
Case 2: Suppose Φ(O, p) < Φ(L, p). Take a walk from p to cen(L) along line

segment p cen(L). Note that we may go through several cells along the walk.
Let q be the point at which we enter into cell(L) along this walk. Therefore,
Φ(D, q) = Φ(L, q) for some D ∈ L ∪ OPT and D �= O. We now prove that D
covers p. Consider, dist(cen(D), p) < dist(p, q)+dist(cen(D), q) which implies
Φ(D, p) < dist(p, q)+Φ(D, q) = dist(p, q)+Φ(L, q) = Φ(L, p). Since Φ(D, p) <
Φ(L, p) and L covers p, by Lemma 2 disk D also covers p. Suppose D ∈ OPT.
Then, p is covered by two disks O and D in OPT, which is not true. Suppose
D ∈ L. In this case also, p is covered by two disks D and L in L, which is not
true.

Thus, (L\(L ∩ NBH(Vi)
c)) ∪ OPTi is a feasible solution for the MDIS problem.

We now proceed as in [7]. If |OPTi| > |Li| + |Xi|, then by replacing disks of
L ∩ NBH(Vi)

c in L with disks in OPTi, we get a better solution. It contradicts
the fact that L is t-locally optimal. Hence, |OPTi| ≤ |Li| + |Xi|. Thus,

|OPT| ≤ Σi|OPTi| + |X| ≤ Σi|Li| + Σi|Xi| + |X|
≤ |L| + c3

√
r
|V |
r

+ c1
|V |√

r
≤ |L| + (c1 + c3)

|V |√
r
= |L| + (c1 + c3)

|OPT| + |L|√
r

This implies that |OPT| ≤ (1 + O( 1√
t
))|L|. Hence, the theorem is proved. �

Proof sketch of Theorem 2. Let O be the set of axis-parallel squares with
arbitrary side lengths. Apply t-level local search given in Algorithm 1 with t =
O(1/ε2). The analysis is similar to the analysis of arbitrary radii disks, except
that for any two points p and q in the plane, dist(p, q) is defined under infinity
norm L∞ instead of L2-norm as in [3]. �

3 PTAS: Minimum Discrete Dominating Set Problem

In this section, we first give a PTAS for the MDDS problem with arbitrary radii
disks by using a local search algorithm similar in [16]. Further, we show that
the same local search algorithm will give a PTAS for the MDDS problem with
arbitrary side length axis-parallel squares.

Let P be a set of n points and O be a set of m disks in the plane. As in
Sect. 2, we assume that no three disk centers are collinear and no more than
three disks are tangent to a circle [16,27]. Further, assume that no point in P
lies on the boundary of a disk in O. Also, no three points in P are collinear.

Let D and D′ be two disks in O such that both D and D′ cover a point
p ∈ P, then we say that D is a dominator of D′ and vice verse. A set O′ ⊆ O
of disks is said to be a feasible solution to the MDDS problem, if for every disk
O ∈ (O \ O′), there exists at least one dominator in O′. For a given integer
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t > 1, we say a feasible solution L ⊆ O is t-locally optimal if one cannot obtain
a smaller size feasible solution L′ ⊆ O by replacing at most t disks from L
with at most t − 1 disks from O. One can obtain a t-locally optimal solution to
the MDDS problem by using a similar local search method in Algorithm 1. Set
L ← O. For L′ ⊆ L of size at most t and for every O′ ⊆ O\L of size at most t−1,
verify whether (L \ L′) ∪ O′ is a feasible solution and |(L \ L′) ∪ O′| ≤ |L| − 1. If
yes, replace L with (L \ L′) ∪ O′ (local exchange). Repeat this procedure till no
further local exchange is possible. Further, we note that the procedure returns
t-locally optimal solution in O(nm2t+3)-time.

Let L ⊆ O be a t-locally optimal solution returned by the local search algo-
rithm and let OPT ⊆ O be the optimal solution for the MDDS problem. Without
loss of generality, assume that L ∩ OPT = ∅ (see [23] for the details). Fur-
ther, as in [16], we assume that no disk in L ∪ OPT is fully contained in other
disk in O.

Definition 1 (locality condition) [16]. There exists a planar-bipartite graph
G = (L∪OPT, E) such that for every object X ∈ O, there exists an edge between
L ∈ L and O ∈ OPT where both L and O are dominators of X. (Note that the
definition of dominator is essentially different in [16]).

Lemma 4 ([16]). If the set of disks L∪OPT satisfies the locality condition then
|OPT| ≤ (1 + ε)|L| for ε = O( 1√

t
).

In the following, we construct a graph G = (V,E) which satisfies the locality
condition given in Definition 1. Our construction of G is inspired by the results
in [19]. Partition the set O into two sets O1 and O2 as follows:

1. O1 is the collection of disks in O such that for every disk D ∈ O1 there exists
at least one point p ∈ P that is covered by D and is also covered by at least
one disk in L as well as at least one disk in OPT.

2. O2 = O \ O1.

For every disk D ∈ L∪OPT, we consider a vertex in graph G at cen(D). The
edge set E is constructed in two phases, i.e., E = E1 ∪ E2. The edge set Ei (for
i = 1 and 2) make sure that the locality condition is satisfied for the disks in Oi.

Phase I (Construction of the edge set E1): We first construct the WVD
(weighted Voronoi diagram) of disks in L∪OPT as in Sect. 2. Then for every disk
L ∈ L and every disk O ∈ OPT, we place an edge in E1 with end points cen(L)
and cen(O) if and only if there exists a point q in the plane such that q is on the
boundary of both cell(L) and cell(O). In particular, the edge is cen(L)q∪cen(O)q.

Lemma 5. The graph G = (V,E1) satisfies locality condition for disks in O1.

(We omit the proof as one can prove this by using the arguments given in
Lemma 3 in [16].)

Phase II (Construction of the edge set E2): For every disk D ∈ O2, let
PD ⊆ P be the set of points which are covered by disk D. Further, let PD

L ⊆ PD
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be the set of points covered by at least one disk in L and PD
OPT ⊆ PD be the set

of points covered by at least one disk in OPT. Note that sets PD
L and PD

OPT are
non-empty. Further, PD

L ∩ PD
OPT = ∅.

Lemma 6. Let p1 ∈ PD
L and p2 ∈ PD

OPT be two points for some D ∈ O2. Further,
let p′

1 ∈ PD′
L and p′

2 ∈ PD′
OPT be two points such that p1 �= p′

1 and p2 �= p′
2 for

some D′ ∈ O2. If line segments p1p2 and p′
1p

′
2 intersect then at least one of the

following is true: (i) p1 or p2 is covered by disk D′ and (ii) p′
1 or p′

2 is covered
by disk D.

Proof. We note that segment p1p2 is completely inside D and p′
1p

′
2 is completely

inside D′. If both p1 and p2 are not covered by D′, then p1p2 intersects twice
the boundary of disk D′. Similarly, if both p′

1 and p′
2 are not covered by disk D,

then p′
1p

′
2 intersects the boundary of the disk D twice. Thus, if the claim is not

true then boundary of the both disks D and D′ intersect four times, which is
not true. �

Let p1p2 be a line segment such that p1 ∈ PD
L and p2 ∈ PD

OPT for some disk
D ∈ O2. We say p1p2 is a dominator crossing segment, if there exists a dominator
X ∈ L ∪ OPT of D such that p1p2 intersect the boundary of X twice.

We construct a set S of non-intersecting line segments, except possibly at
endpoints. For every disk D ∈ O2, we do the following: add line segment p1p2 in
S for each p1 ∈ PD

L , p2 ∈ PD
OPT only if the following two conditions are satisfied.

1. p1p2 is a non-dominator crossing segment.
2. p1p2 does not intersect any other non-dominator crossing segment p′

1p
′
2 where

p′
1 ∈ PD′

L and p′
2 ∈ PD′

OPT for some D′ ∈ O2. Note that D and D′ need not be
distinct.

Hence, we have the following lemma.

Lemma 7. For every disk D ∈ O2, the set S contains at least one line segment
which is completely covered by D.

We now place an edge in E2 for every segment in S as follows.

Step 1. Let p1p2 be segment in S such that p1 ∈ PD
L and p2 ∈ PD

OPT for some
disk D ∈ O2.

Step 2. Let OPTD ⊆ OPT and LD ⊆ L be the set of dominators of D. Let x1x2

be the minimal portion of p1p2 such that x1 ∈ cell(L) and x2 ∈ cell(O) for
some L ∈ LD and O ∈ OPTD. We further note that, x1 �= p1 and x2 �= p2
since we assume that no point in P is on the boundary of any disks in O.

Step 3. Place an edge cen(L)x1 ∪ x1x2 ∪ cen(O)x2 in edge set E2. Note that
cen(L)x1 is completely inside cell(L), cen(O)x2 is completely inside cell(O),
and x1x2 is completely inside disk D.

We can note that in graph G = (V,E1 ∪ E2), for every disk D ∈ O, there
exists an edge between a dominator of D in L and a dominator of D in OPT.
However, the graph G = (V,E1 ∪ E2) need not be planar. In the following,
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we show that one can obtain a planar graph by either edge perturbation (slight
bend) of some edges or edge removal without violating the above property.

Let e1 = cen(L1)x1 ∪ x1x′
1 ∪ cen(O1)x′

1 and e2 = cen(L2)x2 ∪ x2x′
2 ∪

cen(O2)x′
2 be two edges in E1 ∪ E2 for some L1, L2 ∈ L and O1, O2 ∈ OPT.

Assume that L1 and O1 dominate disk D1 ∈ O2 and disks L2 and O2 dominate
disk D2 ∈ O2. Further, assume that p1 ∈ L1 ∩ D1, p′

1 ∈ O1 ∩ D1, p2 ∈ L2 ∩ D2,
and p′

2 ∈ D2 ∩ O2 for some p1, p2, p
′
1, p

′
2 ∈ P such that x1x′

1 is a portion of
p1p′

1 and x2x′
2 is a portion of p2p′

2. In particular, if ei ∈ E1 for i = 1, 2, the
line segment xix′

i is just a point and it is on the boundary of both cell(Li) and
cell(Oi).

We note that both x1x′
1 and x2x′

2 also do not intersect since no two segments
in S intersect.

Lemma 8. The following pairs of segments do not intersect: (i) cen(L1)x1 and
cen(L2)x2, (ii) cen(L1)x1 and cen(O2)x′

2, (iii) cen(O1)x′
1 and cen(L2)x2, and

(iv) cen(O1)x′
1 and cen(O2)x′

2.

Proof. Suppose cen(L1)x1 and cen(L2)x2 intersect at point x. Since cen(L1)x1

is completely inside cell(L1) and cen(L2)x2 is completely inside cell(L2), point
x cannot be an interior point to both cell(L1) and cell(L2). Hence, x = x1 =
x2. Thus, both line segments p1p′

1 and p2p′
2 intersect at x which is not the

common endpoint of the both segments. This is a contradiction to the fact, no
two segments in S intersect, except possibly at endpoints.

The other three cases are similar. Hence the lemma. �
Thus, if both edges e1 and e2 intersect then it must be the case that exactly

one of the following four pairs of segments intersect. (i) cen(L1)x1 and x2x′
2, (ii)

cen(O1)x′
1 and x2x′

2, (iii) cen(L2)x2 and x1x′
1, and (iv) cen(O2)x′

2 and x1x′
1.

We now describe the edge perturbation and removal step for the first case and
other cases are similar.

Suppose cen(L1)x1 and x2x′
2 intersect at point x in the plane. There are two

possible cases:

Case (a): Suppose p2p′
2 intersect disk L1 twice. In this case, L1 cannot be a

dominator of D2, otherwise p2p′
2 is a dominator crossing segment. Partition

the disk L1 into two connected regions which are on the both sides of p2p′
2. In

particular, one region contains point p1 and other region contains no point
from P. Further, the latter region is completely covered by disk D2 and
contains cen(L1). We now slightly bend (Edge Perturbation) p2p′

2 as follows:
let t1t2 be the maximal portion of x2x′

2 such that t1t2 is completely in cell(L1).
We replace t1t2 with an arc arc(t1, t2) such all points on this arc are inside
cell(L1) and goes from outside cen(L1) such it will not intersect cen(L1)x1.
One can observe that such bend will not intersect any other edge in graph G.

Case (b): Suppose p2p′
2 intersect disk L1 exactly once. We note that p′

2 cannot
be inside L1 otherwise L1 ∈ OPT which is a contradiction to assumption that
L ∩ OPT = ∅. Thus, p2 is inside L1 and hence L1 is also a dominator of D2.
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Then, segment p1p′
2 is in S and there exists an edge in E2 corresponding to

segment p1p′
2. Hence, we remove edge e2 from E2 (Edge Removal). One can

note that, removal of e2 will not violate the locality condition for D2.

Thus, after applying edge perturbation and removal step on every pair of
intersecting edges in G, the resultant graph G becomes planar. Hence, we con-
clude the following lemma.

Lemma 9. The disks in L ∪ OPT satisfy the locality condition.

Proof of Theorem 3. The Lemma 4 together with Lemma 9 completes the proof
of the theorem. �
Proof Sketch of Theorem 4. A similar argument of the Lemma 9 shows that
the locality condition can also be satisfied for the arbitrary side length squares.
However, here the distance function is defined with respect to infinity norm
instead of the Euclidean norm. �

4 APX-Hardness Results

In this section, we present APX-hardness results for the MDIS and MDDS prob-
lems. First, we define a restricted version of the MDS problem with set systems,
the SPECIAL-3DS problem and show that it is APX-hard. We use the SPECIAL-
3DS to prove Theorem 5. The work is inspired by the results in [6].

Definition 2 (SPECIAL-3DS). Let (U ,S) be a range space where U = A ∪ B,
A = {a1, a2, . . . , an}, B = B1 ∪ B2 ∪ · · · ∪ B6, and Bi = {bi1, b

i
2, . . . , b

i
m} for

1 ≤ i ≤ 6 such that 3m = 2n. Further, S is a collection of 7m subsets of U such
that

1. Every element in U is in exactly two sets in S.
2. For every t, (1 ≤ t ≤ m), there exists three integers 1 ≤ i < j < k ≤ n

such that the sets {ai, b
1
t}, {b1t , b

2
t}, {b2t , b

3
t}, {b3t , b

4
t , aj}, {b4t , b

5
t}, {b5t , b

6
t},

and {b6t , ak} are in the collection S.

The objective is to find a minimum size sub-collection S ′ ⊆ S such that for
every S ∈ S either S ∈ S ′ or there exists a set S′ ∈ S ′ such that S ∩ S′ �= ∅.

We use the L-reduction [26] to prove that the SPECIAL-3DS is APX-hard. Let
X and Y be two optimization problems. A polynomial-time computable function
f from X to Y is an L-reduction if there exist two positive constants α and β
(usually 1) such that for each instance x of X the following two conditions hold:

C1: OPT (f(x)) ≤ α · OPT (x) where OPT (x) and OPT (f(x)) are the size of
the optimal solutions of x and f(x) respectively.

C2: For any given solution of f(x) with cost Cf(x), there exists a polynomial-
time algorithm which finds a feasible solution of x with cost Cx such that
|Cx − OPT (x)| ≤ β · |Cf(x) − OPT (f(x))|.
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Lemma 10. SPECIAL-3DS is APX-hard.

Proof. We prove the lemma by giving an L-reduction from an APX-hard prob-
lem, dominating set on cubic graphs [2]. Let I1 be an instance of dominat-
ing set problem on a graph G = (V,E) with V = {v1, v2, . . . , vm} and
E = {e1, e2, . . . , en} such that the degree of every vertex in V is exactly three.
We now generate an instance I2 of SPECIAL-3DS from I1 as follows:

1. Let A = {a1, a2, . . . , an} and B = B1 ∪ B2 ∪ · · · ∪ B6 where Bi =
{bi1, b

i
2, . . . , b

i
m} for i = 1, 2, . . . , 6.

2. For a vertex vt in V (1 ≤ t ≤ m), let ei, ej , and ek (1 ≤ i < j < k ≤ n)
be the edges incident on vt. Then add seven sets {ai, b

1
t}, {b1t , b

2
t}, {b2t , b

3
t},

{b3t , b
4
t , aj}, {b4t , b

5
t}, {b5t , b

6
t}, and {b6t , ak} into S. Do the same for every vertex

in V .

Let OPT(I1) ⊆ V be an optimal dominating set for the instance I1. We
now give a polynomial time algorithm to find an optimal solution OPT(I2) for
instance I2 of the SPECIAL-3DS problem from OPT(I1). For every vertex vt ∈
V (G), do the following:

1. If vt is in OPT(I1) then take sets {ai, b
1
t}, {b3t , aj , b

4
t}, {b6t , ak} in OPT(I2).

2. If vt is not in OPT(I1) then take sets {b2t , b
3
t}, {b4t , b

5
t} in OPT(I2).

One can easily see that OPT(I2) is an optimal dominating set for I2 and
|OPT(I2)| = |OPT(I1)| + 2m. Since |OPT(I1)| ≥ m/4 we get |OPT(I2)| ≤ 9 ·
|OPT(I1)|. Similarly, for any given feasible solution F2 ⊆ S of I2, one can obtain
a feasible solution F1 ⊆ V (G) of I1 such that |F1| ≤ |F2| − 2m.

Thus, we conclude that the above reduction is an L-reduction [26] with α = 9
and β = 1. Therefore, the SPECIAL-3DS problem is APX-hard. �

Proof of Theorem 5. The proof is essentially similar to the results in [6]. Similar
to the SPECIAL-3SC problem, in the SPECIAL-3DS problem we can order the
elements in B such that every set in S contains either two consecutive elements
from B, one element from A and one element from B, or one element from A
and two consecutive elements from B. In particular, (b1t , b

2
t , b

3
t , b

4
t , b

5
t , b

6
t ) must be

in the same order for every t (1 ≤ t ≤ m). One can easily encode the instance
of the SPECIAL-3DS problem into the MDDS problem instances for classes of
objects A1-A10 by following the procedure for obtaining set cover from the
SPECIAL-3SC problem given in [6]. In Fig. 1, we depict the encoding of classes
A1, A3, and A4. �

We now sketch some additional APX-hardness results.

Theorem 6. Both MDIS and MDDS problems are APX-hard for the classes of
objects (i) triangles of similar size and (ii) similar circles.

Proof. The proof is on the similar lines to the results of Har-Peled [17], who show
that set cover problem is APX-hard for rectangles of similar size and similar size
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Fig. 1. Encoding of SPECIAL-3DS instance into the MDDS problem instances with
various classes of geometric objects.

circles by giving a reduction from a known APX-hard problem, vertex cover
problem on cubic graphs [2].

We note that one can extend these reductions for our problems. For the
MDIS problem, a reduction can be given from an APX-hard problem, maximum
independent set on cubic graphs [2] and for the MDDS problem, the reduction
is from minimum dominating set problem on cubic graphs which is known to be
APX-hard [2]. The rest of the proofs are same as in [17]. �

5 NP-Hardness Results

In this section, we show that both MDIS and MDDS problems are NP-hard for
the following two classes of geometric objects:

B1: Unit disks intersecting a horizontal line.
B2: Axis-parallel unit squares intersecting a straight line with slope −1.

For B1, the reduction is similar to the reduction of covering points by unit
disks where the points and disk centers are constrained to be inside a horizon-
tal strip (the within strip discrete unit disk cover (WSDUDC) problem) [13]. On
the other hand, for B2, the reduction is similar to the reduction of the set cover
problem with unit squares where the squares intersect a line with slope −1 [22].
However, for our MDIS problem, we give a reduction from a known NP-hard
problem maximum independent set on planar graphs where the degree of each
vertex of the graph is at most 3 [15] and for the MDDS problem we give a reduc-
tion from the NP-hard problem minimum dominating set on planar graphs such
that every vertex is of degree at most 3 [15]. The correctness of the reductions
depend on the following lemma.

Lemma 11. Let G be a graph and e be an edge of G, then

1. adding 2k dummy vertices on e increases the size of any maximum indepen-
dent set in G by exactly k.
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2. adding 3k dummy vertices on e increases the size of any minimum dominating
set in G by exactly k.

We omit the constructions and proofs of the hardness results since those can
be borrowed from the respective papers as mentioned above. Finally, with the
help of Lemma 11, we conclude the following theorem.

Theorem 7. Both the MDIS and MDDS problems are NP-hard for both B1 and
B2 classes of objects.

6 Conclusion

In this paper, for both MDIS and MDDS problems we design local search based
PTASes when the given objects are arbitrary radii disks and arbitrary side length
axis-parallel squares. These results partially address the question posed by Chan
and Har-Peled [7] about designing a PTAS for the MDIS problem with pseudo-
disks. Further, we show that the MDDS problem is APX-hard for various types of
geometric objects in R

2 as well as in R
3. Finally, we prove that both MDIS and

MDDS problems are NP-hard for unit disks intersecting a horizontal line and for
axis-parallel unit squares intersecting a straight line with slope −1. A natural
open question is the existence of PTASes for the MDIS and MDDS problems
with pseudo-disks.
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Abstract. In COCOA 2015, Korman et al. studied the following geo-
metric covering problem: given a set S of n line segments in the plane,
find a minimum number of line segments such that every cell in the
arrangement of the line segments is covered. Here, a line segment s cov-
ers a cell f if s is incident to f . The problem was shown to be NP-hard,
even if the line segments in S are axis-parallel, and it remains NP-hard
when the goal is cover the “rectangular” cells (i.e., cells that are defined
by exactly four axis-parallel line segments).

In this paper, we consider the approximability of the problem. We
first give a PTAS for the problem when the line segments in S are in
any orientation, but we can only select the covering line segments from
one orientation. Then, we show that when the goal is to cover the rect-
angular cells using line segments from both horizontal and vertical line
segments, then the problem is APX-hard. We also consider the param-
eterized complexity of the problem and prove that the problem is FPT
when parameterized by the size of an optimal solution. Our FPT algo-
rithm works when the line segments in S have two orientations and the
goal is to cover all cells, complementing that of Korman et al. [9] in
which the goal is to cover the “rectangular” cells.

1 Introduction

Set Cover is a well-studied problem in computer science. The input to the prob-
lem is a ground set G of n elements and a set S of m subsets of G; that is,
S = {S1, S2, . . . , Sm} such that Si ⊆ G for all 1 ≤ i ≤ m. The objective is to
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find a minimum-cardinality subset of S whose union is G. Set Cover is known to
be NP-hard [5] and even hard to approximate [8].

In this paper, we consider a geometric variant of the set cover problem that
was first studied by Korman et al. [9]. A set of line segments in the plane is said
to be non-overlapping if any two line segments from the set intersect in at most
one point. Given a set S of n non-overlapping line segments in the plane, a cell
in the arrangement of S is a maximally connected region that is not intersected
by any line segment in S [9]. Then, the objective of the Line Segment Covering
(LSC) problem is to select a minimum number of line segments such that every
cell in the arrangement of the line segments is covered. Here, a cell is covered by
a line segment if it is incident to the line segment (i.e., the line segment is in the
set of line segments defining the boundary of the cell). We assume that at most
two line segments may share a fixed point in the plane.

Related Work. Korman et al. [9] proved that when the line segments are only
horizontal and vertical, the LSC problem is NP-hard and it remains NP-hard
when the goal is to cover the “rectangular” cells. By a closer look at their hard-
ness proof, one can see that the problem is NP-hard even if we are only allowed
to select the line segments from one orientation (they only select vertical line
segments when constructing a solution from a given truth assignment for the
corresponding 3SAT problem). Moreover, the authors gave an O(n log n)-time
FPT algorithm for covering the rectangular cells when parameterized by k, the
size of an optimal solution. However, the algorithm does not work when the goal
is to cover all cells of the arrangement. The authors leave open studying the
approximability of the problem.

The LSC problem is closely related to a guarding problem studied by Bose et
al. [3]. Given a set of lines in the plane, they studied the problems of guarding
cells of the arrangement by selecting a minimum number of lines, or guarding
the lines by selecting a minimum number of cells. Here, “guarding” has the same
meaning as “covering” in the LSC problem. However, their results do not extend
to the LSC problem, because (as also noted by Korman et al. [9]) they use some
properties of lines that are not true for the case of line segments.

Our Results. In this paper, we prove the following results.

• We give a PTAS for the LSC problem when the line segments in S can have
any arbitrarily orientations, but we are allowed to select the covering line
segments from only one orientation. Given the NP-hardness of the problem [9],
this settles the complexity of this variant of the problem.

• When we allow selecting the covering line segments from more than one direc-
tion, we show that the LSC problem is APX-hard when the line segments in
S have two orientations and the goal is to cover the rectangular cells.

• We give an FPT algorithm for the LSC problem when the line segments in S
have only two orientations and the goal is to cover all cells of the arrangement.
This complements the FPT algorithm of Korman et al. [9] as we do not restrict
the covering only to rectangular cells.
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Organization. In Sect. 2, we give some definitions and revisit some necessary
background. We show our PTAS in Sect. 3 and the APX-hardness result in Sect. 4.
Finally, the FPT algorithm is given in Sect. 5 and we conclude the paper in
Sect. 6.

2 Preliminaries

In the following, we revisit some techniques and background that are used
throughout this paper.

Local Search. Our PTAS for the LSC problem is based on the local search tech-
nique, which was introduced independently by Mustafa and Ray [11], and Chan
and Har-Peled [4]. Consider an optimization problem in which the objective is
to compute a feasible subset S′ of a ground set S whose cardinality is minimum
over all such feasible subsets of S. Moreover, it is assumed that computing some
initial feasible solution and determining whether a subset S′ ⊆ S is a feasible
solution can be done in polynomial time. The local search algorithm for a mini-
mization problem is as follows. Fix some fixed parameter k, and let A be some
initial feasible solution for the problem. In each iteration, if there are A′ ⊆ A
and M ⊆ S \ A such that |A′| ≤ k, |M | < |A′| and (A \ A′) ∪ M is a feasible
solution, then set A = (A \A′)∪M and re-iterate. The algorithm returns A and
terminates when no such local improvement is possible.

Clearly, the local search algorithm runs in polynomial time. Let B and R be
the solutions returned by the algorithm and an optimal solution, respectively.
The following result establishes the connection between local search technique
and obtaining a PTAS.

Theorem 1 ([4,11]). Consider the solutions B and R for a minimization prob-
lem, and suppose that there exists a planar bipartite graph H = (B ∪ R, E) that
satisfies the local exchange property: for any subset B′ ⊆ B, (B \ B′) ∪ NH(B′)
is a feasible solution, where NH(B′) denotes the set of neighbours of B′ in H.
Then, the local search algorithm yields a PTAS for the problem.

The local search was used by Mustafa and Ray [11] to obtain a PTAS for geo-
metric hitting set problem and by Chan and Har-Peled [4] to obtain a PTAS for
geometric independent set problem. Since then, the technique has been used to
get a PTAS for several other geometric problems, such as geometric dominating
set [2] and unique covering [1].

Fixed-Parameter Tractability. The theory of parameterized complexity was
developed by Downey and Fellows [6]. Let Σ be a finite alphabet. Then, a param-
eterized problem is a language L ⊆ Σ∗ × Σ∗ in which the second component is
called the parameter of the problem. A parameterized problem L is said to be
fixed-parameter tractable or FPT, if the question “(x1, x2) ∈ L?” can be decided
in time f(|x2|) · |x1|O(1), where f is an arbitrary function. We call an algorithm
with such running time f(|x2|) · |x1|O(1), an FPT algorithm.

For the rest of this paper, we denote a set of n line segments in the plane by
S (i.e., |S| = n) and the resulting arrangement by A(S).
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3 PTAS

In this section, we show that the LSC problem admits a PTAS when the line
segments in S are in any orientations, but we can select line segments from only
one orientation to cover the cells. To this end, we run the local search algorithm
with parameter k = c/ε2 for some ε > 0, where c is a constant. Let B be the
solution returned by the algorithm and let R be an optimal solution. We can
assume that B ∩ R = ∅. This is because if B ∩ R �= ∅, then we can consider
the sets B′ = B \ (B ∩ R) and R′ = R \ (B ∩ R), and analyze the algorithm
with B′ and R′. Here, we mark the faces covered by a line segment in B ∩ R as
“covered” so as we do not need to cover then in the new variant of the problem.
This guarantees that the approximation factor of the original instance is upper
bounded by that of the new instance with these two new sets B′ and R′.

r b

r′

v(b)

(a) (b)

e

Fig. 1. (a) An example of three edges of graph H ′. Here, b ∈ B and r, r′ ∈ R. (b) Two
edges of graph H by contracting the edge e and obtaining one vertex v(b) corresponding
to line segment b.

We now construct a planar bipartite graph H = (B ∪ R, E) that satisfies
the local exchange property, hence proving that the problem admits a PTAS by
Theorem 1. To this end, we first construct an auxiliary planar graph H ′ and then
show how to obtain H from H ′ by edge contraction. For each cell f ∈ A(S), let
b ∈ B and r ∈ R be two line segments that cover f ; we select a point p ∈ b ∩ f
and q ∈ r∩f and connect them by a curve c that lies in the interior of f (except
its endpoints p and q). Notice that since both B and R are feasible solutions, we
know that B contains at least one line segment that covers f and R also contains
at least one line segment that covers f , for all f ∈ A(S). We add p and q to
V (H ′) and c to E(H ′). We complete the definition of H ′ by connecting every
pair of consecutive points in s ∩ V (H ′), for all s ∈ S, by an edge that is exactly
the portion of s that lies between the pair of points. See Fig. 1(a) for an example.
Clearly, H ′ is planar because the first set of edges are drawn in the interior of
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cells and each cell contains at most one edge. Moreover, the second set of edges
are aligned with the line segments in B ∪ R. Since the line segments in B ∪ R
are non-overlapping and all have the same orientation, the second set of edges
are also non-crossing. To obtain the graph H, for each segment s ∈ B ∪ R, we
contract the edges of H ′ that are contained in s such that we get a single point
v(s) corresponding to s; see Fig. 1(b). So, V (H) = {v(s)|s ∈ B ∪ R}. Graph H
is planar since H ′ remains planar after this edge contraction. Moreover, H is
a bipartite graph as the edges of H ′ with both endpoints belonging to a line
segment in B or both endpoints belonging to a line segment in R are collapsed
into a single point (i.e., v(s)).

Lemma 1. Graph H is planar and bipartite.

We next show that H satisfies the exchange property.

Lemma 2. Graph H satisfies the local exchange property.

Proof. It is sufficient to show that for every cell f ∈ A(S), there are vertices
b ∈ B and r ∈ R such that both segments corresponding to these vertices cover
f and (b, r) ∈ E(H). Take any cell f ∈ A(S) and let M ⊆ B ∪R be the set of all
line segments that cover f . Notice that M ∩B �= ∅ and M ∩R �= ∅ because B and
R are each a feasible solution. Then, by definition, there must be a b ∈ M ∩ B
and r ∈ M ∩ R for which (b, r) ∈ E(H). This completes the proof of the lemma.

	

Putting everything together, we have the main result of this section.

Theorem 2. There exists a PTAS for the line segment covering (LSC) problem
when the line segments in S can have any orientation and we are allowed to
select the covering line segments from only one orientation.

4 APX-Hardness

In this section, we show that the LSC problem is APX-hard when the line seg-
ments in S have only two orientations and the goal is to cover the rectangu-
lar cells. To this end, we give an L-reduction from the Minimum Vertex Cover
(MVC) problem on graphs with maximum-degree three to this variant of the
LSC problem. Our reduction is inspired by the construction of Mehrabi [10]. As
a reminder, we first give a formal definition of L-reduction [12], which is one of
the gap-preserving reductions. Let Π and Π ′ be two optimization problems with
the cost functions cΠ(.) and cΠ′(.), respectively. We say that Π L-reduces to Π ′

if there are two polynomial-time computable functions f and g such that the
followings hold.

1. For any instance x of Π, f(x) is an instance of Π ′.
2. If y is a solution to f(x), then g(y) is a solution to x.
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3. There exists a constant α > 0 such that

OPTΠ′(f(x)) ≤ αOPTΠ(x),

where OPTY (x) denotes the cost of an optimal solution for problem Y on its
instance x.

4. There exists a constant β > 0 such that for every solution y for f(x),

|OPTΠ(x) − cΠ(g(y))| ≤ β|OPTΠ′(f(x)) − cΠ(y)|,

where |x| denotes the absolute value of x.

Lemma 3. The minimum vertex cover (MVC) problem on graphs with
maximum-degree three is L-reducible to the LSC problem, where S is a set of
horizontal and vertical line segments and the goal is to cover the rectangular
cells of A(S).

Proof. Let I be an instance of MVC on graphs of maximum-degree three; let
G = (V,E) be the graph corresponding to I and let k be the size of the smallest
vertex cover in G. First, let u1, . . . , un be an arbitrary ordering of the vertices
of G, where n = |V |. In the following, we give a polynomial-time computable
function f that takes I as input and outputs an instance f(I) of the LSC problem.

We first describe the vertex gadgets. For each vertex ui, 1 ≤ i ≤ n, construct
a horizontal line segment Hi and a vertical line segment Vi, and connect them as
shown in Fig. 2. We call the (blue) horizontal line segment used in the connection
of Hi and Vi the horizontal connector Ci of i. Moreover, there are four (small,
dashed) line segments used in the connection of Hi and Vi that we call the small
connectors of i. Notice that these five “connectors” along with Hi and Vi form
exactly two rectangular cells. For each edge (ui, uj) ∈ E, where i < j, we add two
small line segments, one horizontal and one vertical, at the intersection point of
Vi and Hj such that they intersect each other as well as each intersects one of Vi

and Hj , hence forming a rectangular cell; see the two (red, dashed) line segments
at the intersection of V1 and H2 in Fig. 2 for an example. We call such a pair
edge line segments and denote them by Ei,j . Finally, for every rectangular cell
whose four sides are all defined by the line segments corresponding to a 4-subset
of {Hi, Vi|1 ≤ i ≤ n} (i.e., the cell is not covered by a horizontal connector or
edge line segments), we insert a vertical line segment into the cell so as to make
it non-rectangular; see the vertical (red) line segment in Fig. 2. This ensures that
every rectangular cell is incident either to a horizontal connector or to edge line
segments Ei,j for some i and j. This gives the instance f(I) of the LSC problem.
Notice that f is a polynomial-time computable function. In the following, we
denote an optimal solution for the instance X of a problem by s∗(X). We now
prove that all the four conditions of L-reduction hold.

First, let M be a vertex cover of G of size k. Denote by H[M ] = {Hi|ui ∈ M}
the set of horizontal line segments induced by M and define V [M ] analogously.
Moreover, let C[M ] = {Ci|ui /∈ M} be the set of horizontal connectors whose
corresponding vertex is not in M . We show that F = H[M ] ∪ V [M ] ∪ C[M ]



442 P. Carmi et al.

is a feasible solution for covering all the rectangular cells of f(I). Let f be a
rectangular cell. Then, f must be incident either to a horizontal connector or to
edge line segments Ei,j for some i and j. First, if f is incident to a horizontal
connector Ci, then either Ci ∈ F or Hi ∈ F and Vi ∈ F by the construction of
F and so f is covered either way. Next, if f is incident to edge line segments Ei,j

for some i and j, where w.l.o.g. i < j, then either Vi ∈ F or Hj ∈ F because we
know that ui ∈ M or uj ∈ M . So, f is again covered in this case. Therefore, F
is a feasible solution.

H1

H2

H3

H4

Hn

V1 V2 V3 V4 Vn

Fig. 2. An illustration in support of the construction in the proof of Lemma 3. (Color
figure online)

Second, let F be any feasible solution for f(I). Notice that we can construct
a feasible solution F ′ for f(I) such that |F ′| ≤ |F | and F ′ consists of only Hi

and Vi for some i, or a horizontal connector. This is because (i) any rectangular
cell covered by a small connector is also covered by a horizontal connector, and
(ii) any cell covered by a pair of edge line segments Ei,j (for some i and j) is also
covered by Vi and Hj . For (ii), if exactly one of the line segments in Ei,j is in F ,
then we replace it with exactly one of Vi or Hj . Otherwise, if both line segments
of Ei,j are in F , then we replace both of them with Vi and Hj . So, |F ′| ≤ |F |
and F ′ is a feasible solution for f(I). Now, let M = {ui|Hi ∈ F ′ or Vi ∈ F ′}.
To show that M is a vertex cover for G, consider any edge (ui, uj) ∈ E, where
i < j. Then, we know that there exists a rectangular cell at the intersection of Vi

and Hj that must be covered by F ′. Since none of the two edge line segments of
Ei,j are in F ′, we conclude that at least one of Vi and Hj is in F ′, which means
that ui ∈ M or uj ∈ M . Hence, M is a vertex cover.
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Third, observe that |H[M ]| = |V [M ]| = |M | = k and also |C[M ]| = n − k.
Given that G has degree three, k ≥ n/4 and so |s∗(f(I))| ≤ n − k + k + k ≤
5k ≤ 5|s∗(I)|.

We now prove the last condition of L-reduction. First, define Both[F ′] =
{Hi, Vi|Hi, Vi ∈ F ′}; that is, the paths of a vertex ui, where both its horizontal
and vertical line segments appear in F ′. Also, define One[F ′] to be the remaining
line segments corresponding to either Hi or Vi for some i; i.e., those of ui, where
only one of its line segments appears in F ′. Take any vertex i. To cover the
two rectangular cells incident to the horizontal connector of i, we must have
Ci ∈ F ′ or Hi, Vi ∈ F ′; this is true for all i. Then, |C[F ′]| + |Both[F ′]|/2 ≥ n.
Moreover, |One[F ′]|+ |Both[F ′]|/2 ≥ k since M is a vertex cover of G. Therefore,
|F ′| ≥ |Both[F ′]|+ |One[F ′]|+ |C[F ′]| ≥ |One[F ′]|+ |Both[F ′]|/2+n ≥ k +n. By
this and our earlier inequality |s∗(f(I))| ≤ n−k+k+k, we have |s∗(f(I))| = n+k.
Now, suppose that |F | = |s∗(f(I))| + c for some c ≥ 0. Then,

|F | − |s∗(f(I))| = c

⇒ |F | − (n + k) = c

⇒ |F ′| − (n + k) ≤ c

⇒ |One[F ′]| + |Both[F ′]|/2 + n − (n + k) ≤ c

⇒ |One[F ′]| + |Both[F ′]|/2 − k ≤ c

⇒ |M | − |s∗(I)| ≤ c.

That is, |M | − |s∗(I)| ≤ |F | − |s∗(f(I))|. This concludes our L-reduction from
MVC on graphs of maximum-degree three to LSC with α = 5 and β = 1. 	

Theorem 3. The line segment covering (LSC) problem is APX-hard when the
line segments in S are either horizontal or vertical and the goal is to cover the
rectangular cells of A(S).

5 FPT

In this section, we show that the LSC problem is fixed-parameter tractable
(parametrized by the size of an optimal solution) when the line segments in
S are either horizontal or vertical, and the goal is to cover all the cells in A(S).
This complements the FPT result of Korman et al. [9], where the goal is to cover
the rectangular cells. Throughout this section, let k be the size of an optimal
solution.

Our FPT follows the framework of Korman et al. [9]. That is, we formulate
the LSC problem as a hitting set problem and argue that we only need to hit an
O(k3) number of sets; hence, obtaining a kernel of size O(k3) for the problem.
The FPT of Korman et al. [9] is based on the fact that any three orthogonal line
segments can cover at most two “rectangular” cells (i.e., at most two rectangular
cells can be incident to all the three line segments). As an analogous result, we
prove in Lemma 4 that the number of such cells can be at most six when the
goal is to cover all cells, including non-rectangular ones. We will then apply this
result to obtain the desired kernel.
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Lemma 4. Let S be a set of n axis-parallel line segments in the plane. Then,
for any three line segments s1, s2, s3 ∈ S, there are at most six cells in A(S) that
can be covered by all three line segments s1, s2 and s3.

v(si)v(si) v(si)v(si)

si si si si

Fig. 3. Placing a new vertex v(si) close to si and connecting it to the vertices corre-
sponding to the incident cells. The arrows indicate the side on which the cell lies.

Proof. Take any three line segments s1, s2 and s3 in A(S) and let F be the
set of all cells in A(S) that are covered by all three line segments s1, s2 and
s3. We need to show that |F | ≤ 6. To this end, we construct a planar graph
H corresponding to s1, s2, s3 and the cells in F and will then argue that this
graph must contain a subdivision of K3,3 if |F | > 6. We next give the details.
Let f be a cell in F . Consider a point p(f) in the interior of f as well as a
distinct point p(si, f) in si ∩ f , for all i = 1, 2, 3 (notice that p(si, f) is on the
boundary of f). These points together form the set of vertices of H; that is,
V (H) = {p(f) : f ∈ F} ∪ {p(si, f) : i = 1, 2, 3, f ∈ F}. Now, for each i = 1, 2, 3,
consider an ordering of the points p(si, f) on si, f ∈ F , and connect every
two consecutive points by an edge, which is exactly the portion of si that lies
between the two points. Moreover, for each cell f , we connect p(f) to p(si, f)
by a curve that lies strictly in the interior of f (except at its endpoints) for
all i = 1, 2, 3. Then, the edge set E(H) of H consists of the set of all edges
connecting the consecutive points as we as the curves (p(f), p(si, f)), for all
f ∈ F and i = 1, 2, 3. Clearly, H is a planar graph. In the following, we consider
several cases depending on whether the line segments s1, s2 and s3 intersect each
other; observe that there can be at most two intersection points between them.

Case 1. There is no intersection point; that is, the line segments s1, s2 and s3 are
pairwise disjoint. In this case, we show that in fact |F | ≤ 2. To this end, suppose
for a contradiction that |F | > 2. Take any three cells f1, f2, f3 ∈ F and consider
the subgraph H ′ of H induced by {p(fi) : i = 1, 2, 3} ∪ {p(si, fj) : i, j = 1, 2, 3}.
Now, consider the graph G constructed from H ′ as follows. For each si, i = 1, 2, 3,
we place a new vertex v(si) close to si and connect it to the three vertices p(si, fj)
for all j = 1, 2, 3 such that the resulting graph remains planar. One can easily
verify that this is doable since the three line segments are disjoint and so there
are a few cases for where to place v(si) depending on which side of si the three
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cells lie; see Fig. 3. Observe that the resulting graph G is a planar drawing of a
subdivision of K3,3, which is not possible. So, |F | ≤ 2.

Case 2. There is exactly one intersection point; assume w.o.l.g. that s1 is hori-
zontal, s2 and s3 are vertical and s1 intersects s2. Here, we show that |F | ≤ 4.
Again, suppose for a contradiction that |F | > 4. Then, considering the graph
H, there must be at least three vertices in {p(s1, f) : f ∈ F} that lie w.l.o.g. to
the right of s2. Take any three such vertices and denote the corresponding cells
by f1, f2, f3. We can now construct the graph G analogous to the one in Case 1
with these three cells and so obtain a planar drawing of a subdivision of K3,3,
which is a contradiction.

Case 3. There are two intersection points. Here, we show that |F | ≤ 6 and we
use a similar argument to those in the previous cases. Denote the endpoints of
s1 by a and b, and let p and q be the intersection points of s1 with s2 and s3;
assume w.l.o.g. that a is the left endpoint of s1 and that p lies to the left of q. If
|F | > 7, then at least one of the line segments ap, pq and qb must contain three
vertices of {p(s1, f) : f ∈ F}; assume w.l.o.g. that it is pq. Then, take any three
such vertices on pq and consider the three cells f1, f2 and f3 corresponding to
these vertices. We can now construct the graph G analogous to the one in Case 1
and so obtain a planar drawing of a subdivision of K3,3, which is a contradiction.
As such, |F | ≤ 6.

By the three cases described above, we conclude that |F | ≤ 6. 	

We note that the upper bound in Lemma 4 is tight as Fig. 4 shows an example

with three line segments that cover six cell. We now apply Lemma 4 to obtain
our FPT. We first formulate the LSC problem as a hitting set problem as follows.
The ground set is S and for each cell in A(S), there exists a set that contains
the line segments that cover the cell. Let C be the resulting set of subsets of S.
Then, the LSC problem is equivalent to selecting a minimum number of elements
from S such that each set in C is hit by at least one selected element.

We first reduce the set C to a set C1 as follows. For every pair of line segments
{si, sj} ∈ S, if they appear in more than 6k sets C, then we remove all such sets
form C and add the set {si, sj} to C. Let C1 be the resulting set.

Lemma 5. A set S′ ⊆ S with |S′| ≤ k is a minimum-size cover of C if and only
if it is a minimum-size cover of C1.

Proof. We prove the lemma by an argument similar to the one by Korman et
al. [9]. The lemma clearly follows if C = C1. So, assume that X = C1 \ C and
Y = C \C1 are two non-empty sets. Let S′ with |S′| ≤ k be a minimum-size cover
for C1. First, S′ is also a cover for C because for every set M ∈ Y there exists a
pair of line segment si and sj such that both si and sj are in M and we have
{si, sj} ∈ X. We now prove that S′ is also a cover of minimum size for C.

Suppose for a contradiction that there exists a cover S′′ for C such that
|S′′| < |S′|. Then, S′′ cannot be a cover C1 because S′ is a cover of minimum size
for C1. Since S′′ covers C ∩ C1, there must exist {si, sj} ∈ X such that neither si
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s1

s2

s3

Fig. 4. Three line segments s1, s2 and s3 cover six cells.

nor sj is in S′′. But, we introduced the set {si, sj} into C1 because there were
more than 6k sets containing both si and sj . If neither si nor sj is in S′′, then
every other line segment can cover at most six of such subsets by Lemma 4.
Therefore, |S′′| > k — a contradiction. By a similar argument, we can show that
a minimum-size cover of C is also a minimum-size cover for C1. This completes
the proof of the lemma. 	


Next, we reduce C1 to a new set C2 as follows. For each line segment s ∈ S,
we count how many sets in C1 contain s. If s appears in more than 6k2, then we
remove all those sets and add the set {s} to C1. Let C2 denote the resulting set.

Lemma 6. A set S′ ⊆ S with |S′| ≤ k is a minimum-size cover for C1 if and
only if it is a minimum-size cover for C2.

Proof. The lemma follows if C1 = C2. So, assume that X ′ = C2 \ C1 and Y ′ =
C1 \ C2 are two non-empty sets. Let S′ with |S′| ≤ k be a minimum-size cover
for C2. For any set M ∈ Y ′, there exists a singleton set in X ′ whose member is
in M . This means that S′ is also a cover for C1. We next show that S′ is also a
minimum-size cover for C1.

Suppose for a contradiction that there exists a cover S′′ for C1 such that
|S′′| < |S′|. Therefore, S′′ is not a cover of C2. Since S′′ covers C1 ∩ C2, there
must exist a set in X ′ that is not covered by S′′. Notice that this set must be
of size 1 from the construction of C2; let {s} be such a set, where s ∈ S. The
reason we have the set {s} in C2 is that because there were more than 6k2 sets
in C1 containing s. If s is not in S′′, then all such sets of S1 must be covered
by other line segments. But, from the construction of C1, every pair of line
segments can appear in at most 6k sets. So, |S′′| must be greater than k, which
is a contradiction. A similar argument can be used to show that a minimum-size
cover for C1 is also is minimum-size cover for C2. This completes the proof of the
lemma. 	


Consider the set C2. By Lemma 6, no line segment of S appears in more than
6k2 sets in C2. Therefore, if |C2| > 6k3, then the problem does not have a cover
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of size at most k. Since the construction of C2 can be done in polynomial time,
we have the following result.

Lemma 7. For the LSC problem on a set of axis-parallel line segments, in poly-
nomial time, we can either obtain a kernel of size O(k3) or conclude that the
problem does not have a cover of size at most k, where k is the size of an optimal
cover.

Since having a kernel of size O(k3) implies that the problem is FPT [7], we
have the main result of this section.

Theorem 4. The line segment covering (LSC) problem on a set of axis-parallel
line segments is FPT with respect to the size of an optimal cover.

6 Conclusion

In this paper, we considered the problem of covering the cells in the arrangement
of a set of line segments in the plane. We proved that the problem admits a PTAS
when the covering line segments can be selected from only one orientation. We
then showed that if we allow selecting the covering line segments from more than
one orientation, then the problem is APX-hard when we are interested in covering
the rectangular cells. Finally, we gave an FPT algorithm for the problem when the
line segments have only two orientations, but the goal is to cover all the cells. Our
APX-hardness rules out the possibility of a PTAS for “covering rectangular faces”
variant of the problem, but is there a 2-approximation algorithm for the problem?
For the more general variant, where the line segments are in any orientation,
covering line segments can be selected from any orientation and the goal is to
cover all the cells, can we obtain a c-approximation algorithm for some small
constant c?
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Abstract. This paper investigates the Score-Constrained Strip-Packing
Problem (SCSPP), a combinatorial optimisation problem that gener-
alises the one-dimensional bin-packing problem. In the construction of
cardboard boxes, rectangular items are packed onto strips to be scored
by knives prior to being folded. The order and orientation of the items
on the strips determine whether the knives are able to score the items
correctly. Initially, we detail an exact polynomial-time algorithm for find-
ing a feasible alignment of items on a single strip. We then integrate this
algorithm with a packing heuristic to address the multi-strip problem and
compare with two other greedy heuristics, discussing the circumstances
in which each method is superior.

Keywords: Strip-packing · Heuristics · Graphs and networks

1 Introduction

The Constrained Ordering Problem (COP) is defined as follows:

Definition 1. Let M be a multiset of unordered pairs of positive integers M =
{{a1, b1}, {a2, b2}, ..., {an, bn}}, and let T be an ordering of the elements of M
such that each element is a tuple. The Constrained Ordering Problem (COP)
consists of finding a solution T such that, given a fixed value τ ∈ Z

+,

rhs(i) + lhs(i + 1) ≥ τ ∀ i ∈ {1, 2, ..., n − 1}, (1)

where lhs(i) and rhs(i) denote the left- and right-hand values of the ith tuple.
The inequality is referred to as the vicinal sum constraint.

For example, given M = {{1, 2}, {1, 7}, {2, 4}, {3, 5}, {3, 6}, {4, 4}} and τ = 7,
one possible solution is T = 〈(1, 2), (6, 3), (5, 3), (4, 4), (4, 2), (7, 1)〉.

A prominent application of the COP is in a strip-packing problem brought
to light as an open-combinatorial problem by Goulimis [4]. Here, a set I of
rectangular items (where |I| = n) of equal height H made from cardboard are
to be packed onto a strip of height H from left to right. Each item i ∈ I has
width wi ∈ Z

+ and possesses two vertical score lines, marked in predetermined

c© Springer Nature Switzerland AG 2018
D. Kim et al. (Eds.): COCOA 2018, LNCS 11346, pp. 449–462, 2018.
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places. A pair of knives mounted onto a bar cuts along the score lines of two
adjacent items simultaneously, which allows the items to be folded with ease
(see Fig. 1). However, by design, the scoring knives cannot be placed too close
to one another and, as such, have a “minimum scoring distance” (around 70 mm
in industry). The distances between each score line and the nearest edge on an
item i ∈ I are the score widths, ai, bi ∈ Z

+ where ai + bi < wi, assigned such
that ai ≤ bi. Since these score widths are not necessarily equal, an item i can be
positioned in one of two orientations: “regular”, denoted (ai, bi), or “rotated”,
denoted (bi, ai), where the smaller of the two score widths ai is on the left- and
right- hand side respectively.

wi

ai bi

Hi

≥ τ

Fig. 1. Dimensions of an item i ∈ I in a regular orientation (ai, bi), and a feasible
alignment of two items whose adjacent score lines can be scored simultaneously.

Clearly, for two items to be feasibly placed alongside one another on a strip,
the distance between the two score lines must be equal to or exceed the min-
imum scoring distance, else the knives will not be able to score the items in
the correct locations. Thus, the problem consists of finding a suitable ordering
and orientation of the items such that the sum of every pair of adjacent score
widths is greater than or equal to the minimum scoring distance.1 It follows that
there are n!

2 2n distinct arrangements, making complete enumeration infeasible
for non-trivial values of n.

It can be seen that, when using a single strip, this packing problem is equiva-
lent to the COP, where each unordered pair in an instance M contains the score
widths of an item and τ is the minimum scoring distance. It then follows that the
vicinal sum constraint (1) corresponds to the requirement for the sum of adja-
cent score widths to exceed τ . Figure 2 shows the same instance M mentioned
earlier depicted as a packing problem.

Observe that in this particular strip-packing problem the widths of the individ-
ual items are disregarded, since the aim is to arrange the items onto a single strip
of seemingly infinite width. However, in industrial applications, strips of material
will often be provided in fixed finite widths. Given a large problem instance, mul-
tiple strips may therefore be required to feasibly accommodate all of the items.
For this reason, a more generalised problem can also be formulated as follows:
1 Note that the left-hand score width of the first item and the right-hand score width

of the last item on the strip are not adjacent to any other item, and can therefore
be ignored.
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3 5
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1 2
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1 7

B

2 4
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1 2 6 3 5 3 4 4 4 2 7 1

A E D F C B

Fig. 2. Example of a single strip-packing problem and a corresponding solution with
τ = 7.

Definition 2. Let I be a set of n rectangular items of height H with varying
widths wi ∈ Z

+ and score widths ai, bi ∈ Z
+ for each item i ∈ I. Given a

minimum scoring distance τ ∈ Z
+, the Score-Constrained Strip-Packing Problem

(SCSPP) consists of finding the minimum number of strips of height H and width
W required to pack all items in I such that the sum of every pair of adjacent
score widths is greater than or equal to τ and no strip is overfilled.

Note that in the special case of τ = 0, the SCSPP is equivalent to the classical
one-dimensional bin-packing problem (BPP). When τ > 0, the problem also
involves deciding the order in which the items are packed from left to right, and
whether each item should be placed in a regular or rotated orientation. Thus,
we define the following sub-problem associated with the SCSPP.

Definition 3. Let I ′ ⊆ I be a set of items whose total width is less than or
equal to the capacity of a strip, (i.e.

∑
i∈I′ wi ≤ W ). Given a minimum scoring

distance τ , the Score-Constrained Packing Sub-Problem (SCPSP) involves find-
ing an arrangement of the items in I ′ such that the sum of every pair of adjacent
score widths is greater than or equal to τ .

The remainder of this article is structured as follows: In Sect. 2, we will detail
an exact polynomial-time algorithm for the COP and show how it is applicable
to the SCPSP. Section 3 then introduces three heuristics that can be used to
find feasible solutions to the SCSPP, one of which makes particular use of the
exact algorithm from the previous section, and their associated advantages and
disadvantages. An analysis of results gained from extensive experiments and a
comparison of the heuristics is provided in Sect. 4, and finally Sect. 5 concludes
the paper and proposes some potential directions for future work.

2 Solving the COP

We now present an exact polynomial-time algorithm for the COP. The underly-
ing algorithm was originally proposed by Becker in [1], and is used to determine
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whether or not a solution exists for a given instance. Here, we extend this algo-
rithm so that, if a solution does indeed exist, it is also able to formulate and
present us with this final solution. This is especially useful for problems such as
the strip-packing problem.

Let M be an instance of the COP of cardinality n. It is useful to model M
as a graph G in which each vertex is associated with a single value in M in non-
decreasing order. A pair of vertices, called “dominating vertices” are also added
to the graph, both of which are assigned values equal to τ . These dominating
vertices aid the solution process and are removed at the end. Thus, the graph G
has 2n + 2 vertices.

As seen in Definition 1, the values in M are arranged in pairs. This is rep-
resented in G by adding a set of “blue” edges, B, between vertices that are
“partners”, i.e. whose values make up a pair in M. By introducing a bijective
function p : V → V that associates each vertex with its partner, p(vi) = vj ,
we can denote this set of edges as B = {(vi, p(vi)) : vi ∈ V }. Note that B is
a perfect matching in G, with |B| = n + 1. Next, a set of “red” edges R is
added to G that consists of edges between vertices whose sum equals or exceeds
τ , provided they are not partners. It can be seen that the edges in R represent
all possible orderings of values from different pairs in M that fulfil the vicinal
sum constraint (1). Thus, we have a simple, undirected graph G with vertex set
V = {v1, ..., v2n+2} and two distinct edge sets B and R such that B ∩ R = ∅.
Figure 3 illustrates an example construction of G.

v1
(1)

v2
(1)

v3 (2)

v4 (2)

v5
(3)

v6
(3)v7

(4)

v8
(4)

v9
(4)

v10(5)

v11(6)

v12
(7)

v13
(7) v14

(7)

Fig. 3. G = (V, B ∪ R) using M = {{1, 2}, {1, 7}, {2, 4}, {3, 5}, {3, 6}, {4, 4}} and τ =
7, where the thinner red edges are in R, and the thicker blue edges are in B. The
corresponding values of each vertex are show in parentheses. (Color figure online)
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Recall that a Hamiltonian cycle in a graph G is a cycle that visits every vertex
exactly once. Now, consider the following definition describing a variant of the
Hamiltonian cycle problem involving two edge sets.

Definition 4. Let G = (V,B∪R) be a simple, undirected graph where each edge
is a member of one of two sets, B or R. G contains an alternating Hamiltonian
cycle if there exists a Hamiltonian cycle such that successive edges alternate
between sets B and R.

It is clear that an alternating Hamiltonian cycle in G, if one exists, corresponds
to a feasible solution T , as each “blue” edge from B represents a pair of values
in M, and each “red” edge from R indicates the values that meet the vicinal
sum constraint, and thus can be placed alongside one another feasibly. Also, note
that every edge in B must be present in the alternating Hamiltonian cycle. Con-
sequently, the task can also be seen as finding a matching R′ ⊆ R of cardinality
n + 1 such that the edge sets B and R′ form an alternating Hamiltonian cycle
as described in Definition 4.

The problem of finding an alternating Hamiltonian cycle in general graphs is
NP-hard as it generalises the classical Hamiltonian cycle problem [5]. However,
the special structure of graphs derived from instances of the COP allows them
to be solved in polynomial-time using the following method.

To find a suitable matching R′ ⊆ R, a Maximum Cardinality Matching
(MCM) algorithm is executed, which is based on [1] and also the earlier work
of Mahadev and Peled [10]. First, take each vertex v1, v2, ..., v2n+2 in turn and
select the edge in R connecting vi to the highest-indexed vertex vj that is not
already incident to an edge in R′. Now, add this edge (vi, vj) to R′ and proceed
to the next vertex until all the vertices have been assessed. The two vertices
incident to each matching edge in R′ are now referred to as being “matched”.
Similarly to partners, let m : V → V be a bijective function that assigns each
vertex with its match, m(vi) = vj . Then, we can denote this matching set as
R′ = {(vi,m(vi)) : vi ∈ V }.

During MCM, if a vertex vi is not adjacent to any other unmatched ver-
tex except its partner p(vi) via a blue edge, the preceding vertex vi−1 can be
“rematched”, provided that (a) vi is not the first vertex; (b) the previous vertex
vi−1 has been matched; and (c) vi−1 and p(vi) are adjacent via a red edge in R.
Then, vi is matched with the vertex that is currently matched with vi−1, and
vi−1 is rematched with p(vi). Due to the initial order of the vertices, MCM is
guaranteed to produce a maximum cardinality matching.

Clearly, if |R′| < n + 1 after MCM has completed, there are an insufficient
number of red edges to form an alternating Hamiltonian cycle, and therefore
no feasible solution exists for the given instance M. Otherwise, R′ is a perfect
matching of cardinality n + 1, and the spanning subgraph G′ = (V,B ∪ R′) is a
2-regular graph where each vertex vi ∈ V is incident to one blue edge and one
red edge, as can be seen in Fig. 4. G′ therefore consists of one or more cyclic
components C1, C2, ..., Cl.
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Fig. 4. Subgraph G′ = (V, B ∪R′) created after MCM. When in planar form, it is clear
that l = 2. (Color figure online)

In the case where G′ comprises one component, i.e. l = 1, then this alternat-
ing cycle is in fact Hamiltonian and therefore specifies a solution to the COP.
However, if l > 1, the components of G′ must be combined to form a single alter-
nating Hamiltonian cycle. To do this, a Bridge Recognition (BR) procedure is
executed that selects suitable edges from R\R′ to replace edges in R′ to connect
the components of G′.

BR operates by first ordering the edges in R′ such that the lower-indexed
vertices of each edge are in increasing order and the higher-indexed vertices are
in decreasing order. Any edges that cannot be placed in such an order are then
removed from this list. For instance, in the example in Fig. 4, the edges would
be sorted as follows: (v1, v14), (v2, v13), (v3, v12), (v4, v11), (v6, v10), (v7, v8). Note
that, since v5 was not matched with the highest-indexed vertex possible during
MCM, the edge (v5, v9) does not adhere to the required structure of the list and
is therefore omitted.

Starting from the first edge in the list, BR then searches through the list to
find an edge that meets the following conditions: (a) the lower-indexed vertex
of the current edge and the higher-indexed vertex of the next edge in the list
are adjacent via an edge in R; and (b) the current edge and the next edge are
members of different components of G′. If these conditions are met, BR adds the
current edge to a set R1, and continues to add all succeeding edges in the list to
R1 provided that, for each edge, both conditions hold and the succeeding edge is
not a member of a component of G′ that already has an edge in R1. Once there
are no more valid edges available to add to R1, BR resumes its search through
the remaining edges in the list to find another edge that meets the conditions,
and can begin a new set R2. The procedure terminates once the penultimate
edge in the list has been assessed.
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Now, one of the following three cases occurs:

1. In the event that BR has produced no sets, there are no suitable edges that
can combine the components of G′, and therefore an alternating Hamiltonian
cycle in G cannot be created. Consequently, no feasible solution exists for the
corresponding COP.

2. If there exists a set Ri such that |Ri| = l, then all components of G′ can
be merged together to form a single alternating Hamiltonian cycle. This is
achieved by adding the red edge from R\R′ connecting the lower-indexed
vertex of each edge in Ri to the higher-indexed vertex of the next edge to R′

(for the final edge in Ri, add the red edge connecting its lower-indexed vertex
to the higher-indexed vertex of the first edge). Edges that appear in both Ri

and R′ are then removed from R′ so that R′ remains a perfect matching and
Ri ∩R′ = ∅. G′ then consists of a single alternating Hamiltonian cycle; hence
a solution has been found.

3. It may be that multiple sets need to be used to connect the components of
G′. For two edge sets Ri and Rj to “overlap”, each set must have exactly
one edge from the same component in G′, with the other edges in each set
being from different components. A collection of sets R∗ therefore needs to
be found such that each set in R∗ overlaps with at least one other set, and
each component of G′ has at least one edge in one of the sets.

In the final case above, a Modified Bridge Recognition (MBR) algorithm is used
to find suitable overlapping sets. Firstly, a copy of the set Ri with the highest
cardinality2 generated by BR is created, called R∗

1, and added to R∗. Then, MBR
takes the sorted list used in BR and removes edges from the list that are in R∗.
Similarly to BR, MBR proceeds through the list to find an edge that meets the
following conditions: (a) the lower-indexed vertex of the current edge and the
higher-indexed vertex of the next edge in the list are adjacent via an edge in R;
and (b) the current edge and an edge in R∗ are members of the same component
of G′ and the next edge is a member of a component that does not have an edge
in R∗, or vice versa. If both conditions hold, the current edge is added to a new
set R∗

2 which is then added to R∗. MBR continues to add succeeding edges to
R∗

2, provided (a) holds and the succeeding edge is a member of a component
that does not have an edge in R∗. Then, if every component of G′ has an edge
in one of the sets in R∗, these sets are able to connect all the components of G′

together, and so MBR terminates. Otherwise, the edges in R∗
2 are removed from

the sorted list, and MBR repeats the search for suitable edges to start a new
set R∗

3. This procedure continues until either R∗ contains overlapping sets that
cover all components of G′, or until there are no more suitable edges in the list
to start a new set. If MBR has produced a feasible collection of sets then the
components of G′ can be merged to create an alternating Hamiltonian cycle by
applying the connecting procedure above to every set in R∗.

Using the instance illustrated in Fig. 5 as an example, the edges (v3, v12) and
(v4, v11) are in the set R1 formed by BR, as (a) (v3, v11) ∈ R, i.e. the lower-
indexed vertex of the first edge is adjacent to the higher-indexed vertex of the
2 In the event of a tie, MBR selects the set with the lowest index.
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next edge; and (b) the edges are members of different components ((v3, v12) ∈
C1 and (v4, v11) ∈ C2). Note that since v4 and v11 are adjacent, v4 must also
be adjacent to v12, i.e. (v4, v12) ∈ R, since the value associated with v12 is
greater than or equal to the value associated with v11. Then, because |R1| =
l, the edges (v3, v12) and (v4, v11) are removed from R′ and replaced by the
edges (v3, v11) and (v4, v12) from R1. Removing the dominating vertices and any
incident edges results in an alternating Hamiltonian path, which corresponds to
a feasible solution T .
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Fig. 5. Specific edges found using BR merge the components of G′ together, forming
an alternating Hamiltonian cycle which corresponds to a solution.

This entire algorithm that has been described will be referred to as the Alternat-
ing Hamiltonian Construction (AHC) algorithm. The time complexity of AHC
is quadratic, as stated in the following theorem:

Theorem 1. Let G = (V,B ∪ R) be a graph created from an instance M of
cardinality n of the COP. Then, AHC terminates in at most O(n2) time.

Proof. We assess each subprocedure of AHC in turn. Firstly, MCM produces a
matching set R′ ⊆ R in at most O(n lg n) time due to the sorting of the vertices
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in lexicographical order. In BR, sorting the n + 1 edges of R′ and removing
unsuitable edges also requires O(n lg n) time. The sets Ri can be created in
O(n) time, as each edge in the list is considered once. As each set Ri contains
at least two edges, BR can produce up to n+1

2 sets. Thus, examining each set to
find one such that |Ri| = l takes at most O(n) time. The same method is also
used to find the set with the highest cardinality in MBR. Since G′ comprises
a maximum of n+1

2 components, it follows that the number of edge sets in R∗

needed to connect all the components is bounded by n+1
2 − 1. The initial sorted

list consists of at most n−1 edges, and therefore MBR is of quadratic complexity
O(n2). Finally, the connecting procedure replaces up to n+1 edges, and so can be
executed in O(n) time. Consequently, AHC has an overall worst case complexity
of O(n2). �

3 Heuristics for the SCSPP

In this section, we now turn our attention to the multi-strip version of the prob-
lem. As mentioned in the introduction, the SCSPP is a generalisation of the
one-dimensional BPP in that we also require the sum of every pair of adjacent
score widths to be greater than or equal to a minimum scoring distance τ . It
follows that the SCSPP is at least as hard as the BPP, which is known to be
NP-hard [3], and so (under the assumption that P �= NP ) there is no known
algorithm that is able to find an optimal solution for every instance of the SCSPP
in polynomial time. Instead, heuristics can be used to find near-optimal solutions
in a shorter amount of time.

For an instance of the SCSPP, a feasible solution is represented by the set
S = {S1, S2, ..., Sk} such that

⋃|S|
i=1

Si = I, (2a)

Si ∩ Sj = ∅ ∀ i, j ∈ {1, 2, ..., |S|}, i �= j, (2b)
∑|Sj |

i=1
wi ≤ W ∀ Sj ∈ S, (2c)

rhs(i) + lhs(i + 1) ≥ τ ∀ i ∈ {1, 2, ..., |Sj | − 1}, ∀ Sj ∈ S. (2d)

That is, all items must be packed onto a strip (2a), each item can only be placed
on one strip (2b), the strips cannot be overfilled (2c), and the items on each
strip Sj in the solution must be arranged such that the vicinal sum constraint
is fulfilled (2d). Note that constraints (2a)–(2c) are the necessary conditions
for the BPP. An optimal solution S for the SCSPP is a solution that consists
of the fewest number of strips k needed to feasibly contain the n items in the
given problem instance. A simple lower bound for k is the theoretical minimum
t = �

∑n
i=1 wi/W � which can be computed in O(n) time [12].

Perhaps the simplest and most well-known heuristic for one-dimensional bin
packing problems is First-Fit (FF), a greedy online algorithm that places each
item, presented in some arbitrary order, onto the lowest-indexed strip such that
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the capacity of the strip is not exceeded. It is known that there always exists
at least one ordering of the items such that FF produces an optimal solution
[8]. A minor modification to FF yields the First-Fit Decreasing (FFD) heuristic,
which sorts the items in non-increasing order of size prior to performing FF. In
1973, Johnson [7] showed that FFD is guaranteed to return a solution that uses
no more than 11

9 k + 4 strips. More recently, Dosa [2] has proven that the worst
case for FFD is in fact 11

9 k + 6
9 , and that this bound is tight. Due to the initial

sorting of the items in non-increasing order of sizes, the time complexity of FFD
is O(n log n).

As mentioned in the introduction, the SCSPP shares many similarities with
the BPP, however the addition of (2d) brings complications. One obvious differ-
ence is the order in which the items appear on the strips. The order of the items
in the BPP is unimportant; however in the SCSPP the items must be ordered
in a way that meets the vicinal sum constraint. In addition, removing an item
from a bin in the BPP retains the feasibility of the bin, whereas in the SCSPP
this is not guaranteed, as it may leave a subset of items for which the vicinal
sum constraint is not satisfied. Furthermore, the theoretical minimum t has the
potential to be less accurate for the SCSPP, as the minimum scoring distance
τ is not considered. For example, if the minimum scoring distance is greater
than twice the largest score width, then it is clear that n strips will be required,
regardless of the items’ widths.

To gain an understanding of this problem, three heuristics for the SCSPP
have been developed: a basic FFD heuristic with a simple modification; a
heuristic that packs strips individually and prioritises score widths; and a more
advanced version of FFD that incorporates the polynomial-time AHC algorithm.

The first heuristic is the Modified First-Fit Decreasing (MFFD) heuristic
which acts in the same manner as the original FFD, attempting to place each
item onto the end of the lowest-indexed strip. If an item is able to be packed
onto a strip without exceeding the strip’s capacity, MFFD then checks to see
if the vicinal sum constraint is met between the right-most score on the strip
and one of the score widths on the current item. If the constraint is met, MFFD
places the item on the end of the strip in the appropriate orientation, otherwise
the next strip is considered. The most prominent issue with this heuristic is
due to the items being placed on the end of the strips. Although an item could
potentially be packed in a different location on the strip other than the end, it
may end up being placed on another strip, or perhaps even begin a new strip,
thus increasing the number of strips in the final solution.

The next heuristic is the Pair-Smallest (PS) heuristic, which is an extension
of an inexact procedure defined by Lewis et al. [9]. Unlike MFFD, which packs
each item in turn, PS focusses on packing one strip at a time, only starting a new
strip once the current strip is unable to accommodate any further items. Each
strip is initialised by choosing the item from I with the smallest score width, and
packing it in a regular orientation. PS then continues to fill the strip by selecting
the item with the smallest score width that meets the vicinal sum constraint
with the right-most score width on the strip, and whose width will not cause
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the strip to be overfilled. This heuristic aligns the smallest score widths with the
largest ones, eliminating the possibility of placing larger score widths together
unnecessarily. Note that PS therefore prioritises the vicinal sum constraint over
the item widths, choosing to fulfil this constraint first before considering whether
the item can actually be accommodated. Consequently, there is no use for a
procedure such as AHC to find a feasible arrangement of the items.

The last heuristic, Modified First-Fit Decreasing with AHC (MFFD+), incor-
porates the AHC algorithm from Sect. 2. It operates in a similar fashion to the
MFFD, placing items sorted in decreasing order onto the lowest-indexed strip.
However, rather than attempting to place the item onto the right-most side of
the strip, MFFD+ executes AHC on all items on the strip. If AHC finds a feasi-
ble solution, the items are placed on the strip in the order of the solution, which
includes the current item, else MFFD+ attempts to pack the current item on
the next strip. Using AHC means that if a feasible alignment of the items exists,
there is a guarantee that it will be found. Unlike MFFD, where the current
item can only be placed on the end of the strip, MFFD+ allows the items to be
entirely rearranged (see Fig. 6). This reduces the possibility of having to start
a new strip for an item, thus preventing increasing the number of strips in the
final solution.

3 57 13 36 41 53 21 48 34 8

3 3 5 4 2MFFD+

41 53 21 48 36 13 57 3 8 34

5 4 3 3 2MFFD

Fig. 6. Example instance of the sub-problem, with W = 20 and τ = 70. In MFFD the
constraint is not fulfilled in either orientation, however MFFD+ is able find a feasible
arrangement.

4 Experimental Results

Benchmark instances currently do not exist for the SCSPP, and so artificial prob-
lem instances were produced to compare the performance of the three heuristics.
For our experiments, we generated 1000 problem instances for |I| ∈ {500, 1000}.
In each problem instance the items have varying widths wi ∈ [150, 1000] and
score widths ai, bi ∈ [1, 70] to ensure that each item has exactly two score lines,
all selected randomly from a uniform distribution. Strips of widths W = 5000,
2500 and 1250 were used to influence the number of items per strip. As the
width of the strips decrease, the average number of items per strip also decreases,
making the problem more constrained. Both the items and the strips have equal
height of H = 1. Similarly to experiments performed in [9], we also introduced
a parameter δ to denote the proportion of pairs of score widths from different
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items that meet the vicinal sum constraint, i.e. whose sum is greater than or
equal to τ . Values of δ from 0.0 to 1.0 were created by changing the value of τ .
Clearly, when δ = 0.0, there are no items that can be packed together feasibly,
and so n strips will be required (one for each item), whereas if δ = 1.0 all pairs
of score widths meet the constraint, and the problem is equivalent to the BPP.

The heuristics were implemented in C++ and executed on a computer with
an Intel Core i3-2120 3.30 GHz processor. Our source code and all data is pro-
vided at [6]. Since optimal solutions are not available, in our case solution quality
q is estimated by comparing each solution to the theoretical minimum, q = |S|/t.
For each heuristic, we calculated the average solution quality for every combi-
nation of n, δ, and W from 1000 instances. All individual trials were seen to
complete in under 160 ms.

Table 1. Average solution quality q for n = 500.

W = 5000, t = 58.039 W = 2500, t = 115.571 W = 1250, t = 230.648

δ MFFD PS MFFD+ MFFD PS MFFD+ MFFD PS MFFD+

0.0 8.618 8.618 8.618 4.328 4.328 4.327 2.169 2.169 2.169

0.1 5.214 4.842 5.161 2.659 2.477 2.657 1.515 1.479 1.515

0.2 4.031 3.459 3.976 2.121 1.847 2.118 1.326 1.318 1.326

0.3 3.111 2.348 3.038 1.730 1.397 1.708 1.195 1.229 1.194

0.4 2.436 1.529 2.297 1.460 1.128 1.410 1.110 1.181 1.108

0.5 1.911 1.041 1.691 1.263 1.033 1.196 1.058 1.154 1.053

0.6 1.491 1.013 1.246 1.124 1.030 1.069 1.029 1.135 1.024

0.7 1.196 1.013 1.045 1.049 1.028 1.019 1.017 1.114 1.014

0.8 1.050 1.012 1.008 1.016 1.027 1.008 1.013 1.091 1.012

0.9 1.009 1.012 1.005 1.007 1.026 1.006 1.012 1.073 1.011

1.0 1.004 1.012 1.004 1.006 1.026 1.006 1.011 1.065 1.011

Tables 1 and 2 compare the results obtained from the three heuristics using the
different values of δ and W , for n = 500 and 1000 respectively. Figures in bold
indicate the best average solution quality for the given combination of parame-
ters. We see that q tends towards 1 as δ increases since the proportion of score
widths meeting the vicinal sum constraint increases, consequently permissing
more items to be packed on each individual strip3, thus reducing the number
of strips required. Note that when δ = 1.0 MFFD and MFFD+ have identical
solution qualities, as the instances are equivalent to the original BPP (τ = 0);
hence they operate in the same fashion as the original FFD heuristic.

3 The average number of items per strip when n = 500 for W = 5000, 2500 and 1250
are 8.475, 4.310, and 2.165 respectively, and the average number of items per strip
when n = 1000 for W = 5000, 2500 and 1250 are 8.621, 4.329, and 2.169 respectively.
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Table 2. Average solution quality q for n = 1000.

W = 5000, t = 115.534 W = 2500, t = 230.563 W = 1250, t = 460.623

δ MFFD PS MFFD+ MFFD PS MFFD+ MFFD PS MFFD+

0.0 8.657 8.657 8.657 4.338 4.338 4.338 2.171 2.171 2.171

0.1 5.173 4.842 5.140 2.636 2.481 2.643 1.511 1.467 1.511

0.2 3.976 3.462 3.952 2.093 1.858 2.102 1.318 1.311 1.319

0.3 3.047 2.350 3.013 1.698 1.409 1.688 1.183 1.221 1.183

0.4 2.374 1.520 2.266 1.426 1.131 1.384 1.097 1.171 1.096

0.5 1.847 1.026 1.642 1.230 1.030 1.170 1.044 1.144 1.040

0.6 1.433 1.012 1.203 1.099 1.027 1.050 1.020 1.124 1.015

0.7 1.155 1.012 1.026 1.034 1.026 1.012 1.012 1.102 1.009

0.8 1.032 1.012 1.006 1.011 1.025 1.007 1.009 1.078 1.008

0.9 1.007 1.012 1.004 1.007 1.024 1.006 1.008 1.059 1.008

1.0 1.004 1.012 1.004 1.006 1.024 1.006 1.008 1.054 1.008

Looking at results for both n = 500 and 1000, we see there is a clear pattern
with respect to q across all widths and proportion levels. PS has the best solution
quality for a wider range of δ when the strips are wider, and a much smaller range
when the strip width decreases. Conversely, MFFD+ obtains better solution
qualities for a wider range of δ when W = 1250. Although PS does have the best
solution quality of the three heuristics for δ = 0.1 and 0.2 using the smallest strip
width, we can see that it only marginally superior to MFFD+. For example, take
δ = 0.2 in Table 1 for W = 1250. The difference between q for PS and MFFD+

is 0.008, which translates to fewer than 2 strips difference between the average
number of strips generated by each heuristic. In this particular instance, PS and
MFFD+ produced 303 and 305 strips on average, respectively.

Although using the average solution quality from 1000 instances provides a
useful overview of the efficiency of a heuristic, there are other characteristics that
we can consider. Take, for example, the results obtained with parameters δ = 0.7
and W = 5000 in Table 2. Clearly PS obtains solutions with the fewest strips on
average, however, we noted that out of the 1000 instances, PS did not produce a
single solution containing t strips. On the other hand, there were 152 instances
in which MFFD+ was able to generate a solution S such that |S| = t, thus
implying that there are at least 152 instances that can be solved to optimality.
Despite this, MFFD+ has a higher average solution quality than PS, suggesting
that the variance in the number of strips required is higher.

5 Conclusions and Further Work

This paper has investigated the Score-Constrained Strip-Packing Problem
(SCSPP), a packing problem in which the order and orientation of the items
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is crucial to the feasibility of the solution. We begun by introducing the Con-
strained Ordering Problem (COP), and described the Alternating Hamiltonian
Construction (AHC) algorithm, an exact polynomial-time algorithm that oper-
ates by modelling the problem graphically and using the concept of Hamilto-
nian cycles. We then showed how AHC can be used to find a solution for the
Score-Constrained Packing Sub-Problem (SCPSP), the single-strip version of the
SCSPP. Thus, the main problem was to tackle the multi-strip problem. Three
heuristics, one of which included the exact AHC algorithm, were described, and
thorough experiments using a variety of parameters were executed.

A potential avenue for further research would be to produce an evolutionary
algorithm (EA) for the SCSPP which incorporates AHC during local search.
One possible addition would be to introduce an approach similar to one used in
[11]. During each iteration of the evolutionary algorithm, high quality strips are
chosen from each offspring solution and stored in separate set. On completion
of the EA, a postoptimisation procedure based on the exact cover problem is
executed. The procedure aims to find the fewest number of strips from the set
of high quality strips that contains every item exactly once.
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Abstract. This paper proposes a new algorithm for reducing Approxi-
mate Nearest Neighbor problem to Approximate Near Neighbor problem.
The advantage of this algorithm is that it achieves O(log n) query time.
As a reduction problem, the query time complexity is the times of invok-
ing the algorithm for Approximate Near Neighbor problem. All former
algorithms for the same reduction need polylog(n) query time. A box
split method proposed by Vaidya is used in our paper to achieve the
O(log n) query time complexity.

Keywords: Computation geometry · Approximate nearest neighbor
Reduction

1 Introduction

The approximate nearest neighbor problem, ε-NN for short, can be defined as fol-
lows: given a set P of points in a metric space S equipped with a distance function
D, and a query point q ∈ S, find a point p ∈ P such that D(p, q) ≤ (1+ε)D(p∗, q),
where p∗ has the minimal distance to q in P . ε-NN is one of the most impor-
tant proximity problems in computation geometry. Many proximity problems in
computation geometry can be reduced to ε-NN [11], such as approximate diam-
eter, approximate furthest neighbor, and so on. ε-NN is also important in many
other areas, such as databases, data mining, information retrieval and machine
learning.

Due to its importance, ε-NN has been the subject of substantial research
efforts. Many algorithms for solving ε-NN have been discovered. These works
can be summarized into four classes.

The first class of the algorithms tries to build data structures that support
solving ε-NN efficiently. Arya et al. [4] give a such algorithm with query time
1/εO(d) · log n, space 1/εO(d) ·n and preprocessing time 1/εO(d) ·n log n. Another
work [5] gives an algorithm requiring O(dn) space and O(dn log n) preprocessing
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time but query time as high as (d/ε)O(d) · log n. Kleinberg proposes two algo-
rithms in [15]. The first algorithm is deterministic and achieves query time of
O(d log2 d(d + log n)), using a data structure that requires O((n log d)2d) space
and O((n log d)2d) preprocessing time. The second algorithm is a randomized ver-
sion of the first one. By a preprocessing procedure that takes O(d2 log2 d·n log2 n)
time, it reduces the storage requirement to O(dn · log3 n), but raises the query
time up to O(n + d log3 n).

The second class of the algorithms considers the situation of ε = dO(1). One
such algorithm is given in [6]. It can answer O(

√
d)-NN in O(2d log n) time with

O(d8dn log n) preprocessing time and O(d2dn) space. Chan [8] improves this
result by giving an algorithm that can answer O(d3/2)-NN in O(d2 log n) query
time with O(d2n log n) preprocessing time and O(dn log n) space.

The third interesting class of work tries to solve ε-NN by inspecting some
intrinsic dimension of the input point set P . An exemplar work is in [16]. The
paper gives an algorithm whose query time is bounded by 2O(dim(P )) log Δ +
(1/ε)O(dim(P )), where dim(P ) is the intrinsic dimension of the input point set
P , and Δ is the diameter of P .

Besides these algorithms mentioned above, Indyk et al. [14] initiate the work
on the fourth class of algorithms. The key idea is to define an Approximate Near
Neighbor problem, denoted as (c, r)-NN, and reduce ε-NN to it. The (c, r)-NN
problem can be viewed as a decisive version of ε-NN. The formal definition of
(c, r)-NN is give in Definition 2 in the next section.

To use this method to solve ε-NN, two parts of problem must be considered.
One is how to solve (c, r)-NN, and the other is how to reduce ε-NN to (c, r)-NN.
Some works about the two parts of problem are discussed below. Our study
focuses on the latter part.

Algorithms to Solve (c,r)-NN. The existing algorithms for (c, r)-NN mainly
consider the specific situation of d-dimensional Euclidean space with 1-order and
2-order Minkowski distance metrics. Each input point x is given in the form of
(x1, · · · , xd). And q-order Minkowski Lq distance between points x and y is given

by D(x, y) =
(

d∑
i=1

|xi − yi|q
) 1

q

. The 1-order and 2-order Minkowski distance are

well-known Manhattan distance and Euclidean distance, respectively. Another
simpler situation, which is the (c, r)-NN problem under Hamming cube {0, 1}d

equipped with Hamming distance, is usually considered in theoretical studies.
Table 1 summarizes the complexities of the existing algorithms for (c, r)-

NN under Euclidean space and L1 distance. These papers also give solutions
under L2 distance, but we omit these results due to space limitation. Usually
the complexities under L2 distance is higher than that under L1 distance. It is a
key characteristic of the existing algorithms for (c, r)-NN that they usually have
different complexities for problems under different order of Minkowski distance
metrics.

The listed solutions in Table 1 can be divided into three groups. The first
group includes the one given in [14], which is deterministic, and the other
groups are randomized. The advantage of randomization is that the exponential
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Table 1. Solutions to (c, r)-NN under Euclidean space and L1 distance.

Source Data structure building Query Space Update
timeTime

Failure
probability Time

Failure
probability

[14]
(ε = c − 1) O(n · 1

εd ) 0 O(1) 0 O(n · 1
εd ) O( 1

εd )

[17]
(ε = c − 1) O

(
nd3

ε2 (n log d)O( 1
ε2

)
)

O(1) O
(

d
ε2 polylog(dn) · log 1

f

)
f O

(
d3

ε2 (n log d)O( 1
ε2

)
)

O(nO( 1
ε2

))

[19] O(n( c
c−1 )

2
log n) 0 O(dno(1)) O(1) O(n( c

c−1 )
2
) O(n( c

c−1 )
2
)

[9,3] O(dn1+ 1
2c−1 log n) 0 O(dn

1
2c−1 ) O(1) O(dn + n1+ 1

2c−1 ) O(dn
1

2c−1+o(1))
[1] O(dn1+o(1) log n) 0 O(n

2c−1
c2 ) O(1) O(dn1+o(1)) O(dno(1))

complexity about d is freed. The second group includes the one given in [17],
which is based on a random projection method proposed in [15]. One distin-
guished characteristic of the method is that the data structure building stage is
also randomized. The last group includes a long line of research work based on
Locality Sensitive Hashing (LSH), which is first proposed in [14]. These works are
summarized into three terms in Table 1, which can be viewed as the space-time
trade-off under LSH framework.

Finally, comparing the five results in Table 1, it can be seen that the query
time grows and the space requirement drops from the first one to the last. The
five results form a general space-time trade-off about the solution to (c, r)-NN.

Reducing ε-NN to (c,r)-NN. So far there are three different algorithms for
such a reduction. Two of the three algorithms are deterministic [12,14], and the
other one is randomized [13]. The complexities of the three reduction algorithms
are summarized in Table 2. Note that query time in Table 2 is the number of
invocations of (c, r)-NN algorithm. And the preprocessing time about [14] is not
given because there is no such analysis in that paper.

Table 2. Comparison of three reductions.

Source Approximation
factor

Preprocessing Query Space
Time

Failure
probability

Time
(# of (c, r)-NN invoked)

Failure
probability

[13]
c(1 + γ)2

(γ ∈ ( 1n , 1
2 ))

(c = 1 + ε)
O

(
T (n,c,f)
γ log2 n

+ n log n[Q(n, c, f) + D(n, c, f)]
)

f log n O(logO(1) n) f log n O(S(n,c,f)
γ log2 n

)

[14] 1 + ε - - O(log2 n) 0 O(n · polylog(n))
[12] 1 + ε O(d · n log n

ε log n
ε ) 0 O(log n

ε ) 0 O(d · n log n
ε log n

ε )

Among the three reduction algorithms, the one proposed in [13] need to
be explained in detail. First, the algorithm outputs a point p′ such that
D(q, p′) ≤ c(1 + γ)2D(q, p∗), where c = 1 + ε and p∗ is the exact NN of q. Sec-
ond, the T (n, c, f), Q(n, c, f), D(n, c, f) and S(n, c, f) functions represent the
complexity functions of the data structure building time, query time, update
time and storage usage for (c, r)-NN, respectively. Third, the parameter f is the
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failure probability of one (c, r)-NN invocation, and is selected so that f log n is
a constant less that 1.

The fourth and the most important point about [13] is the O(logO(1) n) query
time. The algorithm given in [13] explicitly invokes O(log n) times of (c, r)-NN,
and each invocation needs T (n, c, f) time. As explained above, the parameter f ,
which is the failure probability of one (c, r)-NN invocation, is set to O( 1

log n ). Note
that the algorithms for (c, r)-NN given in Table 1 all have constant failure prob-
ability1. In order to satisfy the requirement of O( 1

log n ) failure probability of one
(c, r)-NN invocation, each time the algorithm in [13] invokes (c, r)-NN, the algo-
rithms for (c, r)-NN with constant failure probability must be executed multiple
times, which is O(logO(1) n) times in expectation. Multiplying O(log n) invoca-
tions of (c, r)-NN and O(logO(1) n) executions of (c, r)-NN algorithm for each
invocation, we obtain that the algorithm in [13] actually invokes O(logO(1) n)
times of (c, r)-NN algorithm. This observation is confirmed in [2].

Our Method. We propose a new algorithm in this paper for reducing ε-NN
to (c, r)-NN. Comparing with the former works [12–14], our algorithm has the
following characteristics:

(1) It achieves O(log n) query time, counted in the number of invocations of
(c, r)-NN algorithm. It is superior to all the other three works. This is the
most distinguished contribution of this paper.

(2) Its preprocessing time is O((d
ε )d·n log n), and the space complexity is O((d

ε )d·
n). Our method has better complexity than the other three works in terms
of n, so that it is much suitable to big data with low or fixed dimensionality.
This situation is plausible in many applications like road-networks and so
on.

(3) In terms of the parameterized complexity treating d as a constant, our result
is the closest to the well recognized optimal complexity claimed in [5], which
requires O(n log n) preprocessing time, O(n) space and O(log n) query time.

Note that there is an O((d/ε)d) factor in our preprocessing and space com-
plexity. This factor originates from a lemma we used in [20]. We point out that
the upper bound O((d/ε)d) is actually very loose. There really is possibility to
reduce the upper bound, and thus make our result more close to optimal. In
this sense, our work is more promising than all the other three works. However,
reducing the upper bound O((d/ε)d) is out of this paper’s scope, and is left as
our future work.

2 Problem Definitions and Mathematical Preparations

2.1 Problem Definitions

We focus on ε-NN in euclidean space Rd. The input is a set P of n points
extracted from Rd and a distance metric Lq. Each point x is given as the form
1 The deterministic one has exponential dependence on d, so it it rarely used in theory

and practice.
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(x1, · · · , xd). Lq distance metric between points x and y is given by D(x, y) =(
d∑

i=1

|xi − yi|q
) 1

q

.

Denote B(p, r) to be the d-dimensional ball centered at p and with radius r.
And let p′ ∈ B(p, r) be equivalent to D(p′, p) ≤ r. We first give the definitions
of ε-NN and (c, r)-NN problems.

Definition 1 (ε-NN). Given a set P of points extracted from Rd, a query point
q ∈ Rd, and an approximation factor ε, find a point p′ ∈ P such that D(p′, q) ≤
(1 + ε)D(p∗, q) where D(p∗, q) = min

p∈P
{D(p, q)}.

Remark 1. p∗ is called the nearest neighbor (NN), or exact NN to q, and p′ is
called an ε-NN to q.

Definition 2 ((c, r)-NN). Given a set P of points extracted from Rd, a query
point q ∈ Rd, a query range r, and an approximation factor c > 1, (c, r)-NN
problem is to design an algorithm satisfying these:

1. if there is a point p0 ∈ P satisfying p0 ∈ B(q, r), then return a point p′ ∈ P
such that p′ ∈ B(q, c · r);

2. if D(p, q) > c · r for ∀p ∈ P , then return No.

Remark 2. There are multiple names referring to the same problem defined
above. In the papers related to LSH, it is referred as (c, r)-NN. In [14], it is
called approximate Point Location in Equal Balls, which is denoted as ε-PLEB
where ε = c − 1. In more recent papers like [12], it is called Approximate Near
Neighbor problem.

Next we give the definition of the reduction problem to be solved in this
paper, i.e., the problem of reducing ε-NN to (c, r)-NN.

Definition 3 (Reduction Problem). Given a set P of points extracted from
Rd, a query point q ∈ Rd, an approximation factor ε, and an algorithm A for
(c, r)-NN, the reduction problem is to find an ε-NN to q by invoking the algorithm
A as an oracle.

Remark 3. To solve the reduction problem, a preprocessing phase is usually
needed, which is to devise a data structure D based on P . Thus the problem of
reducing ε-NN to (c, r)-NN is divided into two phases. The first is data structure
building phase, or preprocessing phase. The second is ε-NN searching phase, or
query phase. The (c, r)-NN algorithm A is invoked in query phase as an oracle,
which characterizes the algorithm as a Turing reduction from ε-NN to (c, r)-NN.

The time complexity of the algorithm for the reduction problem consists of
two parts, namely, preprocessing time complexity and query time complexity. An
important note is that the query time complexity is the number of invocations of
(c, r)-NN algorithm A. This is the well recognized method for analyze the time
complexity of a Turing reduction.
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2.2 Mathematical Preparations

In this section we introduce some denotations and lemmas to support the idea
of our algorithm for reducing ε-NN to (c, r)-NN.

Denotations. Define a box b in Rd to be the product of d intervals, i.e., I1 ×
I2 × · · · × Id where Ii is either open, closed or semi-closed interval, 1 ≤ i ≤ m.
A box is cubical iff all the d intervals defining the box are of the same length.
The side length a cubical box, which is the length of any interval defining the
cubical box, is denoted as len(b). A minimal cubical box (MCB) for a point set
P , denoted as MCB(P ), is a cubical box containing all the points in P and has
the minimal side length. Note that MCB(P ) may not be unique.

Given a point set P and a box b, let p ∈ b denote that a point p ∈ P falls
inside box b, and let |b ∩ P | denote the number of points in P that falls inside
b. We will use |b| for short, if not causing ambiguity.

Given a collection of MCBs B = {b1, · · · , bm}, define Dmax(b), Dmin(b, b′),
Dmax(b, b′) as follows:

Dmax(b) = max
p1,p2∈b

D(p1, p2),∀b ∈ B

Dmin(b, b′) = min
p∈b,p′∈b′

{D(p, p′)},∀b, b′ ∈ B

Dmax(b, b′) = max
p∈b,p′∈b′

{D(p, p′)},∀b, b′ ∈ B

With the above denotations, define Est(b) as follows:

Est(b) =

{
Dmax(b), if |b ∩ P | ≥ 2

min
b′∈Nbr(b)

{Dmax(b, b′)}, otherwise (1)

where Nbr(b) = {b′ | Dmin(b, b′) ≤ r}, and the parameter r should satisfy r ≥
Est(b).2

For an MCB b, we associate a ball with it. Pick an arbitrary point cb ∈ b,
and let rb = Est(b), then we have a ball B(cb, rb). It is easily verified that every
point in b is within a distance of Est(b) from cb, in another way to say, the ball
B(cb, rb) encloses every point in b. We call B(cb, rb) the enclosing ball for box
b.

Next we start to introduce the lemmas while discussing different situations of
ε-NN search. In the following discussion, we will assume that we have an MCB b
of the input point set P , an enclosing ball B(cb, rb) of the MCB b, and a query
point q.

2 It can be verified that, as long as r ≥ Est(b) is satisfied, the value of r doesn’t
influence the value of Est(b). The specific value of r will be shown latter.
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Situation 1. The first and an easy situation is that, if q is far enough from cb
then every point in b is an ε-NN to q. The following value T1(b) explains the
threshold for far enough, and Lemma 1 depicts the situation discussed above.

Definition 4. For an MCB of a point set P , define T1(b) = (1 + 2/ε)rb.

Lemma 1. If D(q, cb) ≥ T1(b), then every point in b is an ε-NN to q.

Proof. See the full paper [18] for the proof. �	

Situation 2. If q is not as far from cb as a distance of T1(b), i.e., D(q, cb) <
T1(b), then we split b into a set of sub-boxes {b1, · · · , bm}, and calculate the
enclosing balls B(cbi

, rbi
) for each box bi, 1 ≤ i ≤ m. The next situation is

that if q is still far enough from each point in {cb1 , · · · , cbm
}, i.e., the centers of

the enclosing balls, then we can still tell that every point in b is an ε-NN to q.
We give another threshold T2(b) based on this idea, and formalize the idea into
Lemma 2. This lemma also discusses the quantitative relationship between T2(b)
and T1(b).

Definition 5. For an MCB of a point set P , split b into a set of sub-boxes
{b1, · · · , bm}. Each of these sub-boxes is an MCB of a point set P ′ ⊂ P . Then
let B(cbi

, rbi
) be the enclosing ball of sub-box bi, 1 ≤ i ≤ m. Define rmaxb =

max
i

{rbi
}. In case of |b| = 1, let rmaxb = 0.

Definition 6. Define T2(b) = rb + (1 + 2/ε)rmaxb.

Lemma 2. We have the following statements:

1. if D(q, cb) ≥ T2(b), then every point in b is ε-NN to q;
2. if rmaxb < 2

2+εrb, then T2(b) < T1(b).

Proof. See the full paper [18] for the proof. �	

Situation 3. If q is still not as far from cb as a distance of T2(b), it is time
to ask the algorithm of (c, r)-NN for help. Let A(Q, q, c, r) be any algorithm
for solving (c, r)-NN, where Q is the input point set, q is the query point, r is
the query range, and c is the approximation factor. The meanings of these four
parameters are already given in Definition 2. The goal of invoking A is that, if
A answers No then still every point in b is an ε-NN to q. The following lemma
shows how to set the four input parameters to fulfill the goal.

Lemma 3. Let A(Q, q, c, r) be any algorithm for (c, r)-NN. We have the follow-
ing statements:

1. if we set Q = {cb1 , · · · cbm
}, q = q, r = max

i
{T2(bi)}, and let c satisfy c · r =

max
i

{T1(bi)}, and invoke A(Q, q, c, r), then if A returns No, we can pick any

point in b as the answer of ε-NN to q;
2. if rmaxbi

< 2
2+εrbi

holds for each bi, 1 ≤ i ≤ m, then our settings for c and
r satisfy the requirement of (c, r)-NN problem definition. i.e. c > 1.

Proof. See the full paper [18] for the proof. �	
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Situation 4. As what is said in Lemma 3, if the algorithm A returns No then
the search of ε-NN terminates with returning an arbitrary point in b. According
to Definition 2, A can also return some point cbi

∈ Q other than No. In that
case the search must continues. At first glance, the same procedure should be
recursively carried out, by applying Lemmas 1, 2, 3 one by one on box bi, where
the point cbi

returned by A is the center of the enclosing ball of box bi. However,
to guarantee that the algorithm returns a correct ε-NN, the box considered by
the algorithm must encloses the exact NN p∗. But the box bi may not enclose p∗,
which would ruin the correctness of the algorithm. Thus, we need to expand the
search range to the boxes near to bi. The following Lemma 4 gives the bounds
of the search range and ensures that p∗ lies in the range.

Definition 7. For a collection of MCBs B = {b1, · · · , bm}, let rmaxbi
be

defined as Definition 5 for each bi, 1 ≤ i ≤ m. Then define rmaxB =
max
bi∈B

{rmaxbi
}.

Definition 8. Define Nbr(b) as
{
b′ ∈ B | D(cb′ , cb) ≤ (3 + 4ε)rmaxBbs

}

where Bbs = Nbr(bs) and bs is the super box of b.

Remark 4. The definition of Nbr sets is a recursive definition. For a box b, its
Nbr(b) set is defined based on the Nbr(bs) set of its super box bs. It requires
that the boxes are recursively split, which can be represented as a tree structure.
The formal description of the tree structure is given in Sect. 3.1.

Lemma 4. Given the query point q, and a collection of boxes {b1, · · · , bm}, if
we find a box bi satisfying D(q, cbi

) ≤ max
i

{T1(bi)}, then the nearest neighbor

of q lies in and can only lie in Nbr(bi), i.e., p∗ ∈ Nbr(bi).

Proof. See the full paper [18] for the proof. �	
We are done introducing the mathematical preparations. In the next section

we will propose our algorithm based on the lemmas given above.

3 Algorithms

In this section we propose our algorithm for reducing ε-NN to (c, r)-NN, including
the preprocessing and query algorithm.

3.1 Preprocessing

Our preprocessing algorithm mainly consists of two sub-procedures. One is to
build the box split tree T , and the other is to construct the Nbr sets.
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Building the Box Split Tree. We first give the definition of the box split
tree.

Definition 9 (Box split tree). Given a point set P and its MCB bP , a tree
T is a box split tree iff:

1. the root of T is bP ;
2. each non-root node of T is an MCB of a point set P ′ ⊂ P ;
3. if box b′ is a sub-box of b, then there is an edge between the node for b and

the node for b′ in T ;
4. each node has at least 2 child nodes, and at most |P | child nodes;
5. rmaxb < 2

2+εrb holds for each box b in T .

Further, T is fully built iff each box at the leaf nodes of T contains only one
point.

Remark 5. The fifth term is required by the second statement of Lemma 3.

We use a box split method to build the box split tree. This method is origi-
nally proposed in [20], and also used in several other papers [7,10]. It starts from
the MCB bP of the point set P , then continuously splits bP into a collection B of
cubical boxes until each box in B contains only one point. The method proceeds
in a series of split steps. In each split step, the box bL with the largest side length
in the current collection B is chosen and split. Define hi(b) to be the hyperplane
orthogonal to the i-th coordinate axis and passing through the center of b. One
split step will split bL into at most 2d sub-boxes using all hi(bL), each of which
is an MCB. The set of non-empty sub-boxes generated by conducting one split
step on b is denoted as Succ(b). The details of the box splitting method can be
found in [20].

Next we describe how to use this method to build the box split tree T . The
main obstacle is to satisfy the fifth term in Definition 9, i.e., rmaxb < 2

2+εrb for
each box b in T . We use the following techniques to solve this problem.

When a split step is executed and a box b is split, we temporarily store the
sub-boxes of b in a max-heap Hb, which is ordered on the side length of the
boxes in the heap. Recall the definitions in Sect. 2.2, the side length of a box b
is denoted as len(b). When box b is split fine enough so that rmaxb < 2

2+εrb is
satisfied, the algorithm will create a node for each b′ ∈ Hb, and hang it under
the node for box b in the box split tree T . Then for each b′ at these newly
created leaf nodes, a max-heap is created to store its sub-boxes. In an overview,
a max-heap is maintained for each box at the leaf nodes of the box split tree.

In each split step, the box with the largest volume is split. To efficiently
pick out this box, a secondary heap H2 is maintained. The heaps for the leaf
nodes are called the primary heaps in contrast. The elements in H2 is just the
top elements in each primary heap, together with a pointer to its corresponding
primary heap. Apparently the top element btop in H2 is the box with largest
volume. When btop is picked, the primary and secondary heap will pop it out
simultaneously. Then btop is split by conducting one split step on it, generating
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Algorithm 1. Preprocessing

Input: a point set P , and an approximation factor ε
Output: a box split tree T

// Initialization

1 Compute b0 = MCB(P );
2 Compute the enclosing ball B(cb0 , rb0) of b0;
3 Set b0 to be the root of T ;
4 Initialize the primary heap for b0 with one key-value pair (len(b0), b0);
5 Initialize the secondary heap H2 with one key-value pair (len(b0), b0);

// Main loop

6 while |B| < n do
7 Pop out the top element btop from H2 and the corresponding primary

heap Hbs ;
8 Split btop by conducting one split step on b, generating Succ(btop);
9 foreach b ∈ Succ(btop) do

10 Add b into Hbs , and maintain the heap;
11 end
12 Let the current top element of Hbs to be bt;
13 Let Flag = false;
14 if len(bt) < 2

(2+ε)d
len(bs) then // Applying Lemma 6

15 Let Flag = true;
16 foreach b ∈ Hbs do
17 Create a node and hang it under the node of bs;
18 Initialize the primary heap for b with one key-value pair (len(b), b);

19 end

20 else
21 Add bt into H2.
22 end
23 Invoke Algorithm 2, taking b, Succ(b), rmaxBbs

, and the boolean value

Flag as the input of this invocation;

24 end

Succ(btop). These sub-boxes in Succ(btop) will be added into the primary heap
where btop formerly resides. When this primary heap finishes maintaining, its top
element is inserted into the secondary heap. And then the iteration continues.

We point out the last problem to solve in order to satisfy the fifth term in
Definition 9. The heaps, including the primary heaps and the secondary heap, are
organized according to the len value of the boxes, in order to retrieve the box with
the largest volume. On the other hand, the condition of rmaxb < 2

2+εrb is based
on the Est value of the boxes, because here we have rmaxb = max

b′∈Hb

{Est(b′)}.

Notice that the top element btop in the primary heap have the largest len value,
but may not has the largest Est value. So we can not directly check rbtop

< 2
2+εrb

to decide whether b is split fine enough. Fortunately, the len and Est value of
a box have certain quantity relationships, which is formalized into the following
lemma.
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Lemma 5. For the MCB b of any point set P where |b| ≥ 2, we have len(b) ≤
Est(b) ≤ d · len(b). In the situation that |b| = 1, we redefine len(b) as len(b) =
Est(b) to make this inequality consistent.

Proof. See the full paper [18] for the proof. �	
With the help of Lemma5, we have the following Lemma 6 about the criteria

for deciding whether a box is split fine enough.

Lemma 6. For box b and its primary heap Hb, if the top element btop satisfies
len(btop) < 2

(2+ε)d len(b), then rmaxb < 2
2+εrb.

Proof. See the full paper [18] for the proof. �	
The pseudo codes for building the box split tree are given in Algorithm1.

The algorithm also includes the invocation of Algorithm2 aimed to maintain the
Nbr sets, which will be introduced in the next section.

Nbr Sets Maintaining. Algorithm 2 for maintaining Nbr(b) is given below. It
is invoked each time the main loop of Algorithm1 is executed, as shown above.

Algorithm 2. Maintaining Nbr(b)

Input: box b, Succ(b), the neighbor range parameter rmaxBbs
, and a

boolean value Flag.
1 foreach b′ ∈ Succ(b) do
2 Nbr(b′) ← Nbr(b) ∪ Succ(b) − {b};
3 Set Est(b′) according to Equation 1;
4 Update rmaxbs ;

5 end
6 foreach b′ ∈ Nbr(b) do
7 if Flag = ture and b′ is in a higher level that b then
8 Nbr(b′) ← Nbr(b′) ∪ Succ(b)
9 else

10 Nbr(b′) ← Nbr(b′) ∪ Succ(b) − {b}
11 end

12 end
13 foreach b′ ∈ Succ(b) do
14 foreach b′′ ∈ Nbr(b′) do
15 if D(cb′′ , cb′) > (3 + 4/ε)rmaxBbs

then
16 Delete b′′ from Nbr(b′);
17 Delete b′ from Nbr(b′′);
18 end

19 end

20 end

There are two parts of Algorithm 2 that need to be explained in detail.
The first is Line 4. From Definition 8 for Nbr(b), we can see that the main-

taining of Nbr(b) is based on the value rmaxBbs
passed down by its super-box bs.

In Algorithm 2, Line 4 is aimed for updating rmaxbs when the set of sub-boxes
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of bs is changed. If Nbr(b) is implemented as a heap, then whenever any sub-box
of bs needs rmaxBbs

, this value can be retrieved from the heap in constant time.
The other part is the second foreach loop in Algorithm 2. The functionality

of the loop is explained in the following Lemma7.

Lemma 7. The second foreach loop ensures that for all box b in the box split
tree T , each b′ ∈ Nbr(b) is either in the same level with b, or a degenerated box
containing only one point.

Proof. See the full paper [18] for the proof. �	

3.2 Query

The query algorithm goes down the tree T returned by Algorithm1 level by level.
At each level of T , the algorithm A for (c, r)-NN will be invoked, and the input
parameters of A are set according to Lemma 3. The pseudo codes are given in
Algorithm 3.

Algorithm 3. Query

Input: query point q, data set P , box split tree T , and algorithm A for
(c, r)-NN

Output: ε-NN of q in P
1 set bc = root(T );
2 if D(q, cbc) ≥ T2(b) then
3 pick any point p′ ∈ bc ∩ P ;
4 return p′;
5 end
6 while |bc| > 1 do
7 Bc ← Nbr(bc);
8 Pc ← ⋃

b∈Bc

b ∩ P ;

9 invoke A, where the input of A is set according to Lemma 3;
10 if the query returns NO then
11 pick any point p′ ∈ Pc;
12 return p′;
13 else // the query returns the center cb′ of box b′

14 set bc = b′;
15 continue;

16 end

17 end
18 Pc ← Nbr(bc) ∩ P ;
19 Conduct brute-force search in Pc to find the exact NN;

We should spend some efforts to explain the termination condition in Algo-
rithm3. We introduce a lemma about Nbr(b) when |b| = 1.
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Lemma 8. For a box b satisfying |b| = 1, all the boxes b′ ∈ Nbr(b) contain
only one point, i.e., |b′| = 1.

Proof. See the full paper [18] for the proof. �	
According to the above lemma, when the WHILE loop breaks, all boxes in

Nbr(bc) contains only one point. Thus the brute-force search takes O(|Nbr(bc)|)
time. We will bound this complexity in the next section.

4 Analysis

4.1 Correctness

We prove the correctness of our algorithm by introducing the following lemma.

Lemma 9. In every execution of the loop body, Algorithm3 ensures that the
exact nearest neighbor p∗ ∈ Pc after the assignment of Pc (Line 8).

Proof. See the full paper [18] for the proof. �	
Theorem 1 (Correctness). The point p′ returned by Algorithm3 is an ε-NN
to q in P , i.e., if p∗ is the exact NN to q in P , then D(q, p′) ≤ (1 + ε)D(q, p∗).

Proof. See the full paper [18] for the proof. �	

4.2 Complexities

Before we bound the complexity of our algorithm, we should first bound the size
of Nbr(b) for any box b by introducing a lemma from [20].

Lemma 10 ([20]). Let r be a positive number. During the execution of the split
method described in Sect. 3.1, at each time before splitting a box, let B be the
current box collection, and let bL be the box with the largest volume in B. For
any box b ∈ B, the size of the set {b′ ∈ B | Dmin(b, b′) ≤ r · Est(bL)} is at most
2d(2d�r� + 3)d.

Based on the lemma above, we can bound the size of Nbr(b) for any box b
in the box split tree T constructed in Algorithm1.

Lemma 11. The size of Nbr(b) defined in Definition 8 and constructed in Algo-
rithm2 is O((d

ε )d).

Proof. See the full paper [18] for the proof. �	
We introduce and prove another lemma which is about the property of the

box split tree T constructed in preprocessing phase.

Lemma 12. For a point set P where |P | = n, the fully built split tree T con-
structed based on P has the following properties:
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1. There are at most 2n nodes in T .
2. The total time to build T is O(dn log n).

Proof. See the full paper [18] for the proof. �	
Now we start to prove the complexities of our algorithm, including prepro-

cessing time, space and query time complexities.

Theorem 2 (Preprocessing Time Complexity). The complexity of Algo-
rithm1 for preprocessing is O(O((d

ε )d · n log n)).

Proof. See the full paper [18] for the proof. �	
Theorem 3 (Space Complexity). The space complexity of Algorithm1 is
O((d

ε )d · n).

Proof. See the full paper [18] for the proof. �	
Theorem 4 (Query Time Complexity). Algorithm3 invokes O(log n) times
of the algorithm A for (c, r)-NN problem.

Proof. See the full paper [18] for the proof. �	

5 Conclusion

In this paper we proposed a new algorithm for reducing ε-NN problem to (c, r)-
NN problem. Compared to the former works for the same reduction problem, our
algorithm achieves the lowest query time complexity, which is O(log n) times of
invocations of the algorithm for (c, r)-NN problem. We elaborately designed the
input parameters of each of the invocation, and built a dedicated data structure
in preprocessing phase to support the query procedure. A box split method pro-
posed in [20] is used as a building block for the algorithm of preprocessing phase.
Our paper also raises a problem which is to reduce the exponential complexity
on d introduced by the box split method. This is left as our future work.
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Abstract. Given a set of points P in the Euclidean plane, the classic
problem of convex hull in computational geometry asks to compute the
smallest convex polygon C with the vertex set X ⊆ P , such that every
point in P belongs to C.

In our knowledge, only two map-reduce convex hull algorithms have
been designed so far. The exact map-reduce algorithm designed by
Goodrich et al. (2011) is intricate and runs in constant number of rounds
when the mappers and reducers have a memory of Θ(|P |ε), for a small
constant ε > 0. Otherwise, their algorithm runs in logarithmic number of
rounds with high probability. In Big Data, easy-to-implement constant-
round map-reduce algorithms are highly preferred. The other exact map-
reduce algorithm, designed by Eldawy et al. (2011), does not perform
efficiently when X contains sufficiently high number of points from P .

In this paper, we design two new simple constant-round map-reduce
algorithms along with map-reduce implementable pruning heuristics to
address the above shortcomings. Our first algorithm CH-MR is exact
and outperforms Eldawy et al.’s algorithm when reasonable computing
resources are available, and the heuristics are able to prune away suffi-
cient number of points. The second algorithm, named APXCH-MR, can
run efficiently on any point set to return an approximate convex hull,
when the input parameters are sub-linear in |P |.

The designed algorithms are theoretically analyzed in the light of the
popular MRC model. Our algorithms are easy to implement and do not
use any complicated data structure.

Keywords: Convex hull · Parallel computing · Map-reduce

1 Introduction

Given a set P of n points p1, . . . , pn in the Euclidean plane, the convex hull of P
is defined to be the smallest convex polygon C containing P . Clearly, the vertex
set of C ⊆ P . If P is convex, then P itself is the vertex set of C. A popular
analogy is to imagine the points as nails on a wall, then the convex hull consists
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of the nails touched by a rubber band when put around them. Mathematically,
convex hull of P , denoted by CH(P ), is given by the following expression:

CH(P ) =
{ |P |∑

i=1

λipi such that ∀i λi ≥ 0 and
|P |∑
i=1

λi = 1
}

.

In computational geometry, convex hull algorithms are used extensively.
These algorithms have innumerable applications in image processing, robotics,
geographic information systems, pattern matching and several others. The con-
vex hull of a given point set P consists of the extreme points in P . Indeed, in the
era of Big Data, convex hull of a point set has turned out to be an important
tool from data analytic point of view.

Convex hull is a well-researched problem. Several sequential algorithms have
been obtained till date. Some of them are even output-sensitive, i.e. the asymp-
totic runtime is a function of n and the size of the convex hull, h := |CH(P )|.
Refer to [4,6,7,9,14,16,18,21] for a list of well-known exact sequential convex
hull algorithms.

In modern times, data sizes are in gigabytes, terabytes and even in petabytes.
Naturally, we have taken recourse to parallel computing to process the massive
data sets. The map-reduce framework [8] has become a de-facto standard in
parallel computing for Big Data. Hadoop [15] is a popular software framework
for map-reduce. First, let us understand the computational model of map-reduce
algorithms.

A map-reduce algorithm consists of multiple rounds where each round is
composed of three sequential stages: map (M), shuffle (S) and reduce (R). The
map function is commonly known as the mapper , the shuffle function as the
shuffler , and the reduce function as the reducer . Mappers and reducers can
be deterministic as well as randomized.

An algorithm in this framework can be represented as a sequence of rounds
[M1, S1, R1], . . . , [Mr, Sr, Rr], where r is the number of rounds and the round i is
denoted by [Mi, Si, Ri], 1 ≤ i ≤ r. In a certain round of execution, depending on
the environment, there can be many mappers and reducers running in parallel.
Given a cluster setup, many mappers/reducers can be allocated to a machine.
However, it must be noted that the three steps cannot be run in parallel. In other
words, in every round, first the mapping phase must complete, then the shuffling,
and finally the reduction. Moreover, although the mappers and reducers run in
parallel, a particular mapper or reducer is sequential in nature.

The basic unit of information in a map-reduce computation is a <key,value>
pair. The input to round j, or specifically the map phase, is a set of <key,value>
pairs which we denote by Ij . Clearly, I1 is the input to the algorithm. Note
that the input to a round can be the output from the previous round. Now, to
understand the idea of a map-reduce computation, consider the round j.

1. The mapper takes one ordered <key,value> pair from Ij and outputs a
finite multiset of new <key,value> pairs. This means, if the input to a map-
per is 〈k; v〉 ∈ Ij , then the output from the mapper is a multiset of pairs
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U(k, v) := {〈k1; v1〉, 〈k2; v2〉, . . .}. Hence, the output from the map phase is
U := ∪<k,v>∈Ij

U(k, v). Since a mapper works with one <key,value> pair at
a time, the map phase can be parallelized. In other words, many mappers
can run in parallel to generate the pool of <key,value> pairs U . The pool U
is then fed to the shuffler which in turn does the job of sending the pairs to
appropriate reducers, as explained next.

2. The shuffler sends all of the values that are associated with an individual
key to a particular reducer. To understand this better, let K denote the set
of distinct keys in U . For every k ∈ K, let P(k) denote the pairs in U with
the key k. Then, all the values in P(k) are sent to a single reducer since they
all share the same key k. In particular, the reducer receives 〈k;V〉 where V is
the multiset of values which have k as the corresponding key. The underlying
system that implements map-reduce does this task of shuffling by itself, and
is seamless to the algorithm designer/programmer. This implies that we do
not need to supply a shuffler function. Henceforth, in our discussion we will
not consider shufflers anymore.

3. The reducer takes an ordered pair 〈k,V〉 as input, where V is a multiset of
values associated with the key k and outputs an another multiset X (k,V) of
<key,value> pairs. Hence, the output from this round j is X := ∪k∈KX (k,V).
The pairs in X may be the final output of the algorithm or an intermediate
result which can be fed as an input to round j + 1 of the algorithm.

A great advantage of map-reduce is that we do not need to worry about the
various low level aspects such as, inter-system communication, data transfer,
task scheduling, fault tolerance etc., unlike other models of parallel computing.
The underlying system which implements map-reduce takes care of the above
low-level issues. Here, the only task of the programmer is to specify the map and
reduce functions for every round of map-reduce. But it is not a silver bullet. There
are several non-traditional challenges of efficiency in map-reduce algorithms.
These are addressed by the following widely accepted model.

The MRC Model. The first theoretical model for map-reduce was introduced by
Karloff et al. [17]. Following is a description of their model. For a given problem,
consider a r-round map-reduce algorithm A := {[M1, R1], . . . , [Mr, Rr]}. Let n
denote the size of the input. Then A ∈ MRC if the following are true:

1. A outputs the correct answer with probability at least 0.75.
2. Runtime of any mapper or reducer is O(nk), for some fixed k.
3. Memory used by any mapper or reducer is o(n).
4. Total space required by A is o(n2). This implies that the number of distinct

keys |K| can also be o(n2).
5. The number of rounds r = O(logj n), for some fixed j ≥ 0.

For some popular MRC algorithms in the literature, refer to [11,12,17,19,26].
In our knowledge, there are exactly two map-reduce convex hull algorithms

in the literature. One of these is designed by Eldawy et al. [10], and the other
by Goodrich et al. [13]. We start with a brief description of the Eldawy et al.’s
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algorithm. First, a grid of a certain size is overlayed on P . After this step, we
obtain a cell partition of P where every cell is either empty or contains at least
one point. Next, the points in the innermost cells are discarded since those do not
belong to the convex hull. Finally, the points in the outermost cells are sent to a
single reducer where the final exact convex hull is computed using a traditional
sequential algorithm. We recommend the reader to refer to their paper [10] for
further details. The algorithm has the following limitations:

1. The grid-based approach used in their algorithm may not be able to prune
sufficient number of points for certain point sets. For instance, one may con-
sider point sets where |h| = Θ(n). Eventually, it may happen that Θ(n) points
are sent to the single reducer. This clearly shows that their algorithm does
not belong to the MRC class.

2. There is no load-balancing in the reduce phase since only one reducer is always
used. If there are m machines, only one among them will be used and the
remaining m − 1 machines will stay idle. Certainly, this is not desirable in
map-reduce algorithms.

The other algorithm designed by Goodrich et al. [13] is intricate for imple-
mentation and runs in logarithmic rounds with high probability. However, the
authors pointed out that their algorithm runs in constant number of rounds
when the mappers and reducers have memory size of Θ(nε), for a small constant
ε > 0.

Our Results. In this paper, we design new simple map-reduce convex hull algo-
rithms to address the above concerns. In Sect. 2, we present a naive exact algo-
rithm. Next, we design and analyze the following two new algorithms in the light
of the MRC model.

1. An exact map-reduce algorithm, named CH-MR, which runs in constant
number of rounds on any point set. CH-MR ∈ MRC when the designed
map-reduce heuristic pruners succeeds in pruning away sufficient number of
points, leaving o(n) points for the main round of convex hull computation.
We show that CH-MR asymptotically outperforms Eldawy et al.’s algorithm
when the points in P are chosen uniformly and independently from a disk or
a polygon, and sufficient number of mappers/reducers are allowed to run in
parallel. See Sect. 3.

2. An approximate constant-round map-reduce algorithm, named APXCH-
MR, which returns an approximate convex hull of P depending on two input
parameters k1, k2. When k1, k2 = o(n) (which is quite reasonable in practice),
APXCH-MR ∈ MRC. See Sect. 4 for the definition of approximate convex
hull and the algorithm. APXCH-MR runs efficiently on any type of point set,
as long as k1, k2 are sub-linear.

Related Works. For some recent map-reduce algorithms in computational geom-
etry refer to [1,2,5,27].
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Notation. We denote generation of a <key,value> pair using emit〈key, value〉.
The notation is used uniformly both in the map and reduce phases of our algo-
rithms.

It must be noted that our algorithms do not output the points in convex
hull in particular order (clockwise or anticlockwise). If required, a map-reduce
sorting algorithm can be run on the output to obtain an ordered sequence.

2 A Naive Exact Algorithm

In this section, we present an exact map-reduce algorithm. Let p ∈ P . Then,
p ∈ CH(P ), if and only if, for every triplet {q, r, s} ∈ P \ p, p /∈ Δqrs. Clearly,
the number of such triplets is

(
n−1
3

)
. Refer to Algorithm 1 for a map-reduce

implementation of this idea.

Algorithm 1. A naive exact algorithm

Map 1: input 〈p; ∅〉
1: for each triplet {q, r, s} ∈ P \ p do
2: if p /∈ Δqrs then
3: emit 〈p; 1〉;
4: end if
5: end for

Reduce 1: input 〈p; V = {1, 1, . . . , 1}〉
1: if |V| =

(
n−1
3

)
then

2: emit 〈p; ∅〉;
3: end if

It is not hard to see that this algorithm is practically unusable for massive
data sets which follows from Theorem 1 (stated without proof on account of its
straightforwardness).

Theorem 1. The following observations are made in order for the Algorithm1.

1. The number of mappers is n.
2. Each mapper takes O(n3) time since there are

(
n−1
3

)
triplets.

3. Total work done by the map stage is O(n4).
4. Total number of pairs emitted by a single mapper is O(n3).
5. Total number of pairs generated after the map stage is O(n4).
6. The number of reducers is at most n.
7. Each reducer takes O(n3) time since |V| ≤ (

n−1
3

)
.

8. Total work done by the reduce stage is O(n4).

Remark. Since the total number of pairs generated after the map stage is O(n4),
the Algorithm 1 is not in MRC.
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3 An Improved Exact Algorithm: CH-MR

Parallel heuristics play a vital role in Big Data. This motivates us to design a
number of practical parallel heuristics, which will be used in our algorithms for
pruning away points not in CH(P ).

Akl-Toussaint+. The classic Akl-Toussaint heuristic was proposed in 1979 [3].
Given a point set P , find out N,W,S,E, where N is the point in P with the
largest y-coordinate, W is the point with the smallest x-coordinate, S is the
point with the smallest y-coordinate, and E is the point with the largest x-
coordinate. In the case of ties, choose arbitrarily. Clearly, any point lying inside
the quadrilateral NWSE is not in CH(P ), and hence can be pruned right away.
See Fig. 1 (Left) for an illustration of the heuristic. The notations N,W,S,E
correspond to the cardinal directions.

Fig. 1. Left: Points in the quadrilateral NWSE (shown in gray) do not belong to the
convex hull and hence can be pruned away. Convex hull of the point set is shown using
the dashed polygon. Right: The 16-gon used for the Akl-Toussaint+ heuristic using the
sixteen cardinal points. Here, the 16-gon prunes more points than the quadrilateral
NWSE.

The four cardinal points N,W,S,E belong to the convex hull of P . While
the heuristic works effectively for most regular data sets, but may fail to prune
sufficient number of points for massive data sets. The heuristic does not prune
a point p /∈ CH(P ) if it lies outside the quadrilateral. So, we extend it and
propose the following Akl-Toussaint+ heuristic. We also show in this section
how to efficiently implement the heuristic in map-reduce.

Earlier, we were interested in the quadrilateral NWSE for pruning points,
but here, we extend this idea to a 16-gon. Refer to Fig. 1 (Right) for the sixteen
cardinal points. These sixteen points belong to the convex hull of the given point
set. Furthermore, observe that it is still possible that this heuristic like before,
fails to eliminate any point if every point in P lies outside the aforesaid 16-gon.
For instance, if P is convex, this heuristic will not prune away any point.

After the application of this heuristic, we obtain sixteen disjoint subsets
having the form P (α, β) where α 
= β and (α, β) ∈ {(E,ENE), (ENE,
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NE), (NE,NNE), (NNE,N), (N,NNW ), (NNW,NW ), (NW,WNW ),
(WNW,W ), (W,WSW ), (WSW,SW ), (SW,SSW ), (SSW,S), (S, SSE),
(SSE, SE), (SE,ESE), (ESE,E)}. For a pair (α, β), let γ denote a direc-
tion which is absent in these two where γ ∈ {N,W,S,E}. For instance, for
(E,ENE), γ can be either W or S. We define P (α, β) as follows: P (α, β) :=
{p | p ∈ P ∧ p lies to that half-plane of 	α,β which does not contain γ}. This
general definition of P (α, β) will be used later in our algorithms.

For certain point sets, there does not exist such sixteen distinct points. For
example, the point set where n − 3 points are enclosed inside a triangle defined
by three points.

Polyline Pruner – PLP. Now, we propose another heuristic which is applied inde-
pendently for every P (α, β). In the following, we show how the pruning works for
one set. Application of the heuristic to other sets work in a similar way. Consider
the set P (E,ENE). Partition it arbitrarily into t := �|P (E,ENE)|/k2 disjoint
subsets S1, . . . , St, where k2 is a fixed constant. For every Si, we compute the
convex hull Ci of {Si ∪ (α = E) ∪ (β = ENE)} and prune away the points not
in Ci. The exact value of k2 depends on the implementation. Observe that for
every Si, we are constructing a polyline with the endpoints α, β and some points
in Si.

Randomized Polyline Pruner – RPLP. It is quite common in map-reduce algo-
rithms to shuffle the ordering of input items in order to obtain more information
about the input. In RPLP, we do the same. Then, we apply the PLP on the
shuffled point set.

Description of CH-MR. Using the heuristics defined above, we are ready to
design the algorithm CH-MR; refer to Algorithm 2.

In round 1, we divide the input point set P into t := �n/k1 parts P1, . . . , Pt,
each of constant size k1 and possibly |Pt| < k1. For every Pi, we compute its
convex hull Ci independently using an optimal sequential convex hull algorithm
and eliminate the points which do not belong Ci. Clearly, if p ∈ Pi and p /∈ Ci,
then p /∈ CH(P ).

Next, we apply the Akl-Touissant+ heuristic on the point set obtained after
round 1. This gives us sixteen disjoint subsets (possibly empty) of the form
P (α, β), as explained next. Using a constant number of rounds and restricting
the input size to any reducer or mapper to o(n), this can be achieved. Note that√

n = o(n).
Refer to Algorithm 3. Here, it is shown how to obtain the extreme points

N,W,S,E in round A. From Map A, for each of N,W,S,E,
√

n local extremes
are emitted which goes as input to a single reducer. This reducer then computes
the corresponding global extreme. Hence in round A, four reducers are used. In
round B, we can easily separate out the points emitted from the round 1 into
P (E,N), P (N,W ), P (W,S), P (S,E). This technique of finding global extremes
can be applied repeatedly to obtain the sixteen required extremes and the cor-
responding sixteen subsets of P .
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Algorithm 2. CH-MR(P )
Map 1: input 〈Q := {pi1, . . . , pik1}; ∅〉
1: C ← Convex-Hull(Q);
2: for each x ∈ C do
3: emit 〈x; 1〉;
4: end for

Reduce 1: input 〈p; 1〉
1: emit 〈p; ∅〉;

Apply the Akl-Touissant+ heuristic to obtain the sixteen disjoint subsets of the form
P (α, β). On these sixteen sets, execute the following rounds:

Map 2: input 〈Q := {pi1, . . . , pik2} ⊆ P (α, β); ∅〉
1: C ← Convex-Hull(Q ∪ {α, β});
2: for each x ∈ C \ {α, β} do
3: emit 〈x; 1〉;
4: end for

Reduce 2: input 〈p; 1〉
1: emit 〈p; ∅〉;
Map 3: input 〈p ∈ P ′(α, β); ∅〉
1: τ ← Random(1,

√|P ′(α, β)|);
2: emit 〈τ ; p〉;

Reduce 3: input 〈key; Q〉
1: Divide Q into subsets Q1, Q2, . . . each of constant size k2;
2: for each Qi do
3: C ← Convex-Hull(Qi ∪ {α, β};
4: for each p ∈ C \ {α, β} do
5: emit 〈p; ∅〉;
6: end for
7: end for

Map 4: input 〈p ∈ P ′′(α, β); ∅〉
1: for each q ∈ P ′′(α, β) \ p do
2: if p ∈ Δαβq then
3: return;
4: end if
5: end for
6: emit 〈p; 1〉;

Reduce 4: input 〈p; 1〉
1: emit 〈p; ∅〉;

The final output of the algorithm includes the sixteen cardinal points computed using
the Akl-Touissant+ heuristic.
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Algorithm 3. Find-Extremes

Map A: input 〈Q := {pi1, . . . , pi
√

n}; ∅〉
1: localW ← FindMin-x(Q);
2: localE ← FindMax-x(Q);
3: localS ← FindMin-y(Q);
4: localN ← FindMax-y(Q);
5: emit 〈$W ; localW 〉;
6: emit 〈$E; localE〉;
7: emit 〈$S; localS〉;
8: emit 〈$N ; localN〉;

Reduce A: input 〈k ∈ {N, E, W, S}; V〉
1: if k = $W then
2: globalW ← FindMin-X(V);
3: else if k = $E then
4: globalE ← FindMax-X(V);
5: else if k = $S then
6: globalS ← FindMin-Y(V);
7: else
8: globalN ← FindMax-Y(V);
9: end if

Map B: input 〈p; ∅〉
1: if p ∈ P (E, N) then
2: emit 〈[p, $EN ]; ∅〉;
3: else if p ∈ P (N, W ) then
4: emit 〈[p, $NW ]; ∅〉;
5: else if p ∈ P (W, S) then
6: emit 〈[p, $WS]; ∅〉;
7: else
8: emit 〈[p, $SE]; ∅〉;
9: end if

Reduce B: input 〈[p, x]; ∅〉
1: if x = $EN then
2: add p to globalP (E, N);
3: else if x = $NW then
4: add p to globalP (N, W );
5: else if k = $WS then
6: add p to globalP (W, S);
7: else
8: add p to globalP (S, E);
9: end if

Now, for the sixteen subsets, we execute the following three rounds. Round
2 implements the PLP heuristic and acts somewhat similar to round 1 but with
a difference; in this round for each partition we compute its convex hull by the
inclusion of α and β.

In round 3, we implement the RPLP heuristic. We denote the output from
round 2 using P ′(α, β). Here, we use

√|P ′(α, β) reducers in order to shuffle
P ′(α, β), and load balance the reducers simultaneously.

Next, we show in Lemma 1 that with high probability a reducer does not
get overloaded using the following version of the well-known Chernoff bound. In
our analysis, we say that a reducer Ri, 1 ≤ i ≤ √|P ′(α, β)| in the round 2 is
overloaded if it receives at least 6|√P ′(α, β)| points.

Chernoff Bound. Let X1, . . . , Xn be independent Bernoulli random variables,
and X =

∑n
i=1 Xi, such that Pr(Xi = 1) = p, then for R ≥ 6μ, Pr(X ≥ R) ≤

2−R where μ denotes the mean. Refer to [20, Chap. 4] for a proof of this bound.

Lemma 1. Consider a particular P ′(α, β) and round 3. Then, the probability
that a reducer in round 3 gets overloaded is at most 2−6

√
|P ′(α,β)|. Moreover, the

probability that there exists an overloaded reducer is ≤ √|P ′(α, β)|2−6
√

|P ′(α,β)|.

Proof. Fix a reducer Ri, 1 ≤ i ≤ √|P ′(α, β)|. Define 0–1 random variables
X1, . . . , X|P ′(α,β)| such that Xj = 1 if point pj ∈ P ′(α, β) is sent to Ri,
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Xj = 0, otherwise. Let X =
∑|P ′(α,β)|

j=0 Xj . Clearly, Pr(pj is received by Ri)
= 1/

√|P ′(α, β)|. Also, in this case, μ =
√|P ′(α, β)|. By the application of the

above version of Chernoff bound, the required probability can be concluded.
By the union bound, we conclude that the probability that there exists a over-

loaded reducer is at most
√|P ′(α, β)|2−6

√
|P ′(α,β)|. This completes the proof.

Remark. It can be checked that,

lim
|P ′(α,β)|→∞

√|P ′(α, β)|
26

√
|P ′(α,β)|

= 0.

This implies that for large |P ′(α, β)|, it is very unlikely that a reducer will get
overloaded.

Let us denote the output of round 3 by P ′′(α, β). In round 4, for every point
p in P ′′(α, β), we check that if there exists a point q 
= p ∈ P ′′(α, β) such that
p ∈ Δαβq. If yes, we do not emit p, else we emit p since p ∈ CH(P ). This also
shows that CH-MR computes the exact convex hull of P . As a part of the final
output, the sixteen cardinal points are included.

CH-MR is Better than Algorithm 1. Every reducer and mapper in CH-MR runs
in O(n) time. In each round, there are at most n mappers and n reducers. Thus,
in each round, the total work done by the map or the reduce phase is O(n2).
Also, in every round at most n pairs are generated and the sum of length of the
pairs is O(n). This shows that CH-MR is asymptotically better than the naive
version since the later generates O(n4) pairs after the map phase.

Now, we come to an important question. Is CH-MR a MRC algorithm? Our
next theorem gives the answer.

Theorem 2. If the size of every P ′′(α, β) is o(n), CH-MR performs as an exact
constant-round MRC algorithm with probability ≥ 1 − √

P ′(α, β)2−6
√

P ′(α,β).

Proof. It can be checked easily from our previous discussion that CH-MR has
constant number of rounds. Runtime of every mapper and reducer in CH-MR
is polynomial in n. Also, as stated earlier, at each round at most n pairs are
generated and the sum of length of those pairs is O(n).

If the size of every P ′′(α, β) is o(n), it follows from our previous discussion
that the mappers in every round always receive o(n) amount of input. The same
is true of the reducers except the ones in round 3. Now, it follows from Lemma 1
that the probability that no reducer in round 3 gets overloaded i.e. every reducer
receives less than 6

√
P ′(α, β) points is at least 1 − √

P ′(α, β)2−6
√

P ′(α,β). To
this end, observe that 6

√
P ′(α, β) is o(P ′(α, β)). This completes the proof.

Remark. It is important to note that

lim
|P ′(α,β)|→∞

1 −
√|P ′(α, β)|
26

√
|P ′(α,β)|

= 1.
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This implies for large data sets, when every |P ′′(α, β)| = o(n), CH-MR performs
like a MRC algorithm with high probability (in fact, close to 1). However, if in
the algorithm CH-MR we do not include the RPLP heuristic, then the algorithm
is indeed a MRC algorithm for such a class of data sets. Hence, we state the
following without a proof.

Corollary 1. If the size of every P ′′(α, β) is o(n), CH-MR without the RPLP
heuristic, is an exact constant-round MRC algorithm.

Comparison with Eldawy et al.’s Algorithm. In the following, we refer to their
algorithm as E-MR. Now, we will observe the difference in asymptotic runtime
between CH-MR and E-MR on random point sets. Assume that at most m =
o(n) (as advised by the authors of MRC) mappers or reducers can run in parallel.
Let t be the number of points remaining after the execution of the heuristics in
both the algorithms. In the following, we focus on the main round where the
hull points are computed.

It is shown in [22–24] that the expected number of vertices of the convex
hull of n points, chosen uniformly and independently from a disk is O(n1/3).
Consider the situation when this many points are sent to the main rounds of
both the algorithms where the convex hull points are computed. When m =
t = O(n1/3), the map phase of E-MR can complete in O(1) time and the single
reducer in O(n1/3 log n) time. Thus, the total runtime of the round amounts
to O(n1/3 log n). For CH-MR, it is O(n1/3) since the map phase completes in
O(n1/3) time, and the reduce phase in O(1) time. In this case, CH-MR is faster
by a factor of O(log n).

It is also shown in [22–24] that the expected number of vertices of the convex
hull of n points, chosen uniformly and independently from a polygon having a
constant number of sides is O(log n). Arguing similarly as above, when m = t =
O(log n), E-MR takes O(log n log log n) time and CH-MR takes O(log n). Once
again, CH-MR is faster by a O(log log n) factor.

Thus, we can conclude that when sufficient number of mappers and reducers
are allowed to run in parallel, CH-MR performs better than E-MR on random
point sets. The load-balanced aspect of CH-MR gives us this advantage.

4 An Approximate Algorithm: APXCH-MR

In this section, we design an approximate map-reduce algorithm (named
APXCH-MR) by adapting the sequential approximate algorithm designed by
Soisalon-Soininen [25]. The definition of approximate convex hull is conveyed
through Theorem3. Our objective is to design a MRC algorithm which is load-
balanced and at the same time runs fast for all point sets (including the ones
where h = Θ(n)). Note that CH-MR does not perform as a MRC algorithm for
point sets where h = Θ(n). In the following, we present the original sequential
algorithm by Soisalon-Soininen [25].
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Description of Soisalon-Soininen’s Algorithm. Given two integer constants k1, k2
as input, the following algorithm returns an approximate convex hull of P having
size O(k1 + k2).

Calculate the points E,W and then divide the area between these two points
into k1 equal-sized vertical strips. For each of these strips, compute the point with
largest y-coordinate and the point with smallest y-coordinate. In a strip, if there
are multiple points with a minimum or maximum y-coordinate, then two points
among these with the maximum and minimum x-coordinates, respectively, are
considered. Thus, from this step we obtain at most 2k1 points. Denote this set
by S1.

Similarly, we calculate N,S of P and then divide the region between them
into k2 horizontal strips. For each of these strips, compute the point with smallest
x-coordinate and the point with largest x-coordinate. Once again from this step,
we obtain at most 2k2 points. Denote this set by S2. Return the convex hull of
S = S1 ∪ S2 ∪ {N,W,S,E}. Observe that |S| = O(k1 + k2).

Description of APXCH-MR. Refer to Algorithm 4. In the algorithm by px and
py, we refer to the x-coordinate and y-coordinate of p, respectively. In the begin-
ning, using round A of Algorithm 3, we find out the points N,W,S,E. In round
1, each mapper gets

√
n points and for each point its vertical and horizontal

strip numbers are calculated. The reducer sends all the points in a particular
strip (vertical/horizontal) into a single file.

Next, in round 2, from each file obtained from round 1, we send at most
√

n
points to a mapper where depending on the strip alignment (vertical/horizontal),
we find out the required two extreme points. A single reducer in this round
accepts at most

√
n candidate points for a particular strip and computes the

final two extreme points for that strip.
Let P ′ be the output from round 2. Then the convex hull for the set

S = P ′ ∪ {N,W,S,E} is found using the idea of Algorithm2. But here, we
consider the four subsets P (E,N), P (N,W ), P (W,S), P (S,E), instead of six-
teen. Furthermore, we do not use the PLP and RPLP heuristics to reduce the
number of rounds, although one may use them, if required.

Now, we are ready to present our theorem regarding APXCH-MR.

Theorem 3. Given k1 = o(n), k2 = o(n), APXCH-MR is a constant-round
MRC algorithm which returns a set of points C ⊆ P , such that if p /∈ C, then
the distance between p and the approximate convex hull polygon is

ρ :=
d(E,W )d(N,S)√

(d(E,W )k1)2 + (d(N,S)k2)2
,

where d(p, q) denotes the Euclidean distance between p, q. Furthermore, if k :=
min(k1, k2) and D := max(d(E,W ), d(N,S)), then ρ ≤ D/

√
2k.

Proof. The proof of the approximation can be found in [25]. Next, it can be
checked that APXCH-MR is a constant-round MRC algorithm when both k1
and k2 are both o(n).
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Algorithm 4. APXCH-MR(P, k1, k2)
Find N, W, S, E using round A of Algorithm 3;

Map 1: input 〈Q := {pi1, . . . , pi
√

n} ⊆ P \ {N, E, W, S}; ∅〉
1: for each p ∈ Q do
2: v(p) ← 	(px − Wx)k1/(Ex − Wx)
;
3: h(p) ← 	(py − Sy)k2/(Ny − Sy)
;
4: emit 〈p; $v(p)〉;
5: emit 〈p; $$h(p)〉;
6: end for

Reduce 1: input 〈p; V = {$v(p), $$h(p)}〉
1: emit 〈$v(p); p〉; {Points in a vertical strip go to a single file}
2: emit 〈$$h(p); p〉; {Points in a horizontal strip go to a single file}
Map 2: input 〈Q := {pi1, . . . , pit}, t ≤ √

n; ∅〉
1: if Q contains points from vertical strip v then
2: vT ← FindMax-Y(Q);
3: vB ← FindMin-Y(Q);
4: emit 〈[v, $Y ]; vT 〉;
5: emit 〈[v, $Y ]; vB〉;
6: else
7: hL ← FindMin-X(Q);
8: hR ← FindMax-X(Q);
9: emit 〈[h, $X]; hL〉;

10: emit 〈[h, $X]; hR〉;
11: end if

Reduce 2: input 〈k; V〉
1: if $Y ∈ k then
2: T ← FindMax-Y(V);
3: B ← FindMin-Y(V);
4: emit 〈T ; ∅〉;
5: emit 〈B; ∅〉;
6: else
7: L ← FindMin-X(V);
8: R ← FindMax-X(V);
9: emit 〈L; ∅〉;

10: emit 〈R; ∅〉;
11: end if

Let P ′ denote the output of the above round. Find P (E, N), P (N, W ), P (W, S), P (S, E)
using round B of Algorithm 3 based on P ′. Using Algorithm 2 without the PLP and
RPLP heuristics and considering the sets P (E, N), P (N, W ), P (W, S), P (S, E), com-
pute the convex hull C of S = P ′ ∪ {N, W, S, E};

APXCH-MR is Efficient. In Theorem 3, we have assumed generous upper
bounds for k1, k2. In practice, k1, k2 are much smaller than n. If they are fixed
constants, then computation of the approximate hull in the final round takes
constant time. Thus, our algorithm is not only load-balanced but also fast for
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fixed k1, k2. In comparison, for point sets where h = Θ(n), the map phase of
round 4 in CH-MR does O(n2) amount of work, and the reduce phase does O(n).
This heavy work is avoided in APXCH-MR when k1, k2 are small compared to
n. Furthermore, APXCH-MR is a MRC algorithm when k1, k2 are sub-linear in
n, irrespective of the geometry of P .

Acknowledgment. We are thankful to the anonymous reviewers for their insightful
comments that helped us to improve the presentation of the paper.
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Abstract. In this paper, we introduce the problem of transmitting par-
ticles to a target point by the effect of a repulsion actuator (RA). In
this problem, we are given a polygonal domain P and a target point t
inside it. Also, there is a particle at each point of P . The question is
which particles can get to the target point t by activating a RA in P .
We present the first polynomial time algorithm to solve this problem.

Keywords: Geometric algorithm · Polygonal domain
Repulsion actuator · Polynomial time algorithm

1 Introduction

Studying the behaviour of a set of objects in a polygonal region when they
interact each other is an important class of problems in computational geometry
and industry such as sensor networks. A natural way that objects can interact
each other is by attraction and repulsion forces. The most investigated problems
in this context concern the behaviour of objects when they interact each other
under the attraction force. The beacon attraction problem [1,2,4] can be consid-
ered as an example of such problems. In this problem, we are given a polygonal
region P full of point particles (there is a particle at each point in P ) and a
beacon point inside it. The beacon is an object that can attract particles. So,
when we activate the beacon, particles start to move toward the beacon. In [4],
Biro et al. gave an O(n) time algorithm to find the attraction region of P with
respect to a given beacon point. The attraction region is the subset of P that the
particles in it get to the beacon after activating it. In [7], Kouhestani et al. inves-
tigated the inverse beacon attraction problem and gave an O(n3) algorithm to
compute the inverse attraction region of a given point in a simple polygon. The
inverse attraction region of a point p is subset of the polygon that if we activate
a beacon in it, p gets to the beacon. In contrast to the problems raising from
interaction of objects by attraction, problems raising from interaction of objects
under the repulsion force have been rarely investigated. In [5], Bose and Shermer
studied the effect of putting a repulsion actuator (RA) in a convex polygon full
of point particles. They gave an O(n2) algorithm to compute all RA locations
that can gather particles into a point. They also gave an O(n) time algorithms
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to determine whether such a location exists for a given convex polygon. In this
paper, we consider another problem regarding the behaviour of objects under
the repulsion force called transmitting particles to a target point by activating a
repulsion actuator. In this problem, we have a polygonal domain (polygons with
holes inside it) P and a target point t in the interior of P . Suppose that initially
we have a particle at each point of P . When we activate a repulsion actuator
(RA) at a point r inside P , all particles move away from it until either stop at
a corner of P or they hit the target point t. Precisely, each particle traverses
a path such that at each time it goes in a direction that takes itself farthest
from r while it remains inside the polygon. Figure 1 shows the behaviour of two
particles when we activate a RA at point r in P .

Fig. 1. The behavior of two particles p1 and p2 when we activate a RA at r in a
polygonal domain P . In this example p1 can get to the target point t while p2 stops at
the vertex v2.

A natural question here asks which particles can get to t by activating only
one RA in P . Precisely, we say that a point x ∈ P is acceptable if there exists
a point rx ∈ P such that if we put a RA at rx, the particle at x gets to the
target point t. According to this definition the problem becomes computing all
acceptable points of P with respect to a given target point t in its interior.

In Sect. 2, we give some basic definitions and essential properties. In Sect. 3,
we present a polynomial time algorithm for the problem and in Sect. 4 we discuss
the complexity of the algorithm.

2 Preliminaries and Definitions

Let x, y and r be three points inside a polygonal domain P . We say that r can
send x to y if activating a RA at r can cause the particle at x get to the point
y. Note that the path that the particle traverses to take itself farthest from r
at each time, may not be unique: when the particle hits ∂P (boundary of P ), it
might get farther from r by moving clockwise or counter-clockwise around the
component (a connected part of ∂P ) that it has hit. So, r can send x to y if there
exist such a path that ends up at y. Henceforth, instead of saying the particle
at x traverses a path we simply say x traverses a path.
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We say that r is a repulsion point for x if r can send x to the target point
t. We denote the set of all repulsion points for x by R(x). By this notation, the
set A of all acceptable points of P can be written as follows:

A = {x ∈ P | R(x) �= ∅} (1)

Let V = {v1, . . . , vn} be the set of vertices of P . In order to compute A, we first
compute a subset A′ of A which is the set of all points of P that can get to t
by a direct path (a line segment). For example, in Fig. 1, the vertex v3 can get
to t by a direct path. Then, we compute subsets A1, . . . , An of A in which, Ai

is the set of all points x ∈ P for which there exist a point rx ∈ P such that rx
can send x to t by a path having vit as its last segment. For example, in Fig. 1,
p1 belongs A3 because v3 is the last bend point of the path that p1 traverses to
move away from the RA in r and get to t. It is clear that:

A = A′ ∪ A1 ∪ · · · ∪ An (2)

An immediate observation is that if vi is not visible from t then Ai = ∅. For a
boundary points x and y we say that a path p from x to y has j jumps if p \ ∂P
has j components.

3 The Algorithm

Let L = {l1, . . . , ln} where li (1 ≤ i ≤ n) is the half line starting from t and
passing through vi. We assume that there is no line that passes t and two other
vertices (we can have this condition by slightly perturbing the vertices). So,
|L| = n. In order to compute A′, we first partition the plane into a set of cones
having common tip at t obtained by radially adjacent half lines of L. Figure 2
shows an example of such cones:

Fig. 2. Partitioning the plane by the set of cones according to L

Let CN be the set of all these cones. Each c ∈ CN consists of a tip at the
point t, two half lines as its boundaries and a set of line segments each of which
has an endpoint on each of the boundary half lines of c. Within a cone, these
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segments are internally disjoint so we can have an order on them according to
their closeness to t. Similarly, they partition the cone into a sequence of regions
starting with a triangle having t as its vertex and the first segment as its base.
Lets call this triangle as the first triangle of the cone. It can be easily seen that
A′ is the union of all first triangles of the cones in CN that have more than one
segment. So, in order to compute A′, we only need to compute the subdivision
of the plane induced by ∂P and the half lines in L using well-known algorithms
[6,8] and then consider the cones with more than one segment.

It remains to compute all acceptable points that follow a path that bends
in order to get t. Let x ∈ Ai and so there must be a point rx ∈ R(x) that vi
is the last bend point of a path that rx sends x to t along. Note that t lies on
the interior of P and hence, rx should lie on li otherwise, x can never reach t
after leaving vi. Also, note that we can compute each Ai individually and then
consider their union to specify A\A′. Henceforth, we fix the index i and assume
that the vertex vi is visible by t (otherwise Ai = ∅) and discuss how to compute
Ai.

Let ̂li = li ∩ P . To compute Ai, we first consider a sequence of functions
T 0, . . . , Tn on V such that for a vertex v ∈ V , T j(v) (1 ≤ j ≤ n) is defined as
the set of all points r on ̂li that can send v to vi (and therefore from vi to t)
using at most j jumps.

Lemma 1: For a boundary point x and a point r ∈ P , by activating a RA at
r, x can have at most n jumps before it stops.

This is because if x jumps from an edge of ∂P , it can never back to that edge
again. According to the above lemma, Tn is a function that for a vertex v,
returns all of its repulsion points on ̂li. In order to build this sequence, we use
a procedure called expand. This procedure gets T j−1 as its input and builds
T j . Running this procedure n times starting from T 0 gives us Tn. In the next
sections, we discuss how to compute T0 and the procedure expand.

3.1 Computing T 0

Lets e1 and e2 be the two neighbor edges of vi. We can consider that e1 and e2
lie on a same side of li otherwise it is impossible for vi to be the last bend point
when we have a repulsion point on li. So, if e1 and e2 are on different sides of
li, we have Ai = ∅. Let e1 be the closer edge to t (closer in the sense that if
we consider a half-line from t that passes both e1 and e2, its intersection point
with e1 is closer to t than its intersection point with e2). For a point x on the
component of vi, we denote the part of the component between vi and x starting
from e2 by [vi, x]. We chose this direction because it is impossible for a repulsion
point on ̂li to send a point to t along e1. Figure 3 shows an example of [vi, x].

Let e be an edge of ∂P , then the interior of P should lie on one side of e. We
call this side as the P -side of e. Also, the supporting line of e divides the plane
into two half planes. Denote the half plane not in the P -side of e by He. For a
point x ∈ ∂P , we define J(x) ⊆ ̂li as the set of points r ∈ ̂li such that when we
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Fig. 3. [vi, x], ue(y) and the pushing region of y.

activate a RA at r, x immediately jumps off from the boundary. Figure 3 shows
an example of J(y) for a point y on the interior of an edge of ∂P . The following
lemma shows the connection between J(x) and the edge(s) containing it:

Lemma 2: For any point x ∈ ∂P , we have:

1. If x lies on the interior of an edge e we have J(x) = He ∩ ̂li.
2. If x is a reflex vertex of two edges e′ and e′′, we have J(x) = (He′ ∪He′′)∩ ̂li.
3. If x is a convex vertex of two edges e′ and e′′, we have J(x) = He′ ∩ He′′ ∩ ̂li.

Lemma 2 says that if x is a reflex vertex, putting a RA at a point in ̂li makes x
jump if and only if the RA makes it jump from one of the supporting lines of e′

and e′′. Similarly, if x is a convex vertex, x jumps if and only if a RA make it
jump from both supporting lines of e′ and e′′. Figure 4 shows an example:

Fig. 4. When we activate a RA on J(x), x jumps immediately into the interior of P .

Let sp(li) be the supporting line of li (the line that contains li). For a point x
on an edge e of ∂P , consider the half line from x perpendicular to e towards the
P -side of e. If this half line intersects sp(li), we denote this intersection point by
ue(x) otherwise ue(x) is undefined. Note that if e does not intersect sp(li), then
ue is defined for either all or none of the points of e. In the first case, we simply
say that ue is defined and in the second case we say ue is undefined. For a point
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x on the component of vi, we say that a point r ∈ ̂li pushes x into [vi, x] if by
activating a RA at r, x moves along the component toward the inside of [vi, x]
(x does not jump off from the boundary and enters to the interior of [vi, x]). We
define the pushing region of x as the set of points that push x into [vi, x] and
denote it by Push(x). For vi, we define Push(vi) = ̂li \ tvi. Figure 3 shows the
pushing region of the point y.

Let (f0, f1, f2, . . . ) be the sequence of intersection points of the component
of vi and sp(li) when we traverse it from vi starting along e2 (so, f0 = vi). These
fi points break each edge of the component of vi passing through sp(li) into two
parts. So, for simplicity in computing T 0, we can consider each of these parts
as a separate edge. By this modification, we have the sequence (e2, e3, . . . , e1)
of edges of the component of vi and the order on this sequence is the order as
we traverse the component starting from e2. Also, each edge lies in one side of
sp(li). Let x be a point of the component of vi and e be the edge containing x
(if x is a vertex consider the edge in [vi, x]). Then, we have the following lemma:

Lemma 3: If ue is undefined, then there exists a point y ∈ [vi, x] such that
Push(y) = ∅.

Proof. If the angle between e2 and li (the angle that doesn’t contain e1) is
greater than π/2, it is trivial that the pushing region of any point on the interior
of e2 is empty. So, consider the case that the angle between e2 and li is less than
π/2. In this case for any point y on the interior of e2, ue2(y) intersects sp(li).
Let λ be the one third of the length of smallest edge in P . Now, consider the
sequence Pk of shapes in which Pk is obtained from P by replacing each vertex
v with a circular arc tangent to the incident edges of v such that the distance
between the contact points of the arc to v is λ/k. Now, as k goes to infinity, Pk

tends to P . Now, If x ∈ [vi, f1] (the definition of f1 is similar to its definition
for P ), as we move x along [vi, x] to vi, the angle between the half line from x
perpendicular to Pk and li, changes from a negative value to a positive value and
because Pk is smooth, in some point x0, this angle should be zero which means
that the perpendicular line from x0 is parallel to li. In this case it is impossible
that putting some RA on li makes x0 move toward sp(li). So, for this point
the pushing region is empty. Now suppose that x is outside [vi, f1]. In this case,
if the angle between the tangent line at point f1 and li is less than π/2, then
obviously Push(f1) = ∅ and otherwise the angle with the perpendicular half line
from f1 and li is negative and thus there should be a point x0 ∈ [vi, f1] that
Push(x0) = ∅. Because this fact is true for all Pk, this should also be true for P .

�

Let e(fk) be the incident edge of fk on [vi, fk] (consider e(f0) as e1). So,
(e2, e3, . . . , e(f1)) is the sequence of edges in [vi, f1]. Orient the polygonal domain
so that

−→
vit is directing leftward. For any edge ek ∈ (e2, . . . , e(f1)), we denote its

right vertex by a(ek) and its left vertex by b(ek). Then we have:

Lemma 4: uek is defined if and only if traversing the boundary starting from
any point in ek in the direction

−−−−−−−→
a(ek)b(ek) goes to vi via e2.
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Proof. We proceed by induction on k. Trivially the lemma is true for e2 (this
is because e2 is that farther incident edge of vi to t). Suppose that the above
statements is true up to the edge ek−1. Now, for the connection of ek−1 and ek
four cases may occur: a(ek) = a(ek−1), a(ek) = b(ek−1), b(ek) = a(ek−1) and
b(ek) = b(ek−1). Also, each of uek−1 and ue may be defined or undefined which
gives us 16 cases. But, because ek−1 and ek are neighbour edges, it is impossible
that a(ek) = a(ek−1) or b(ek) = b(ek−1) and both uek−1 and ue are defined or
undefined. Similarly, it is impossible that a(ek) = b(ek−1) or b(ek) = a(ek−1) and
one of ek or ek−1 is defined and another isn’t. So, eight cases left. Note that in
these eight cases, four of them are exactly the mirror of others which exchanges
left and right vertices. So, four cases left which is shown in Fig. 5:

Fig. 5. Consistency of directions to vi in ek−1 and ek according to the Lemma 4.

In (a) of Fig. 5, both uek−1 and uek are defined and in (d) they are undefined.
Also, in (b) and (c) uek (resp. uek−1) is defined (resp. undefined). As we can see,
for all of these cases, the direction that the lemma gives for ek is consistent with
the direction the Lemma gives for ek−1 and so this direction should go toward
vi along e2 which proves the lemma. �

Corollary 1: We can extend the above lemma for each part [fm, fm+1] of the
component of vi as follows:

1. If m is even, for ek ∈ (e(fm) + 1, . . . , e(fm+1)), uek is defined if and only if
the direction

−−−−−−−→
a(ek)b(ek) goes to vi via e2.

2. If m is odd, for ek ∈ (e(fm)+1, . . . , e(fm+1)), uek is defined if and only if the
direction

−−−−−−−→
b(ek)a(ek) goes to vi via e2.

The proof of the above corollary is obtained from the proof of Lemma4 by simply
replacing e2 by e(fm) + 1.

For a given point z ∈ li, we introduce notations ż and z̈ as follows: z divides
li into two parts each in one side of z. We denote the intersection of tz with P
by ż, and the intersection of the side that does not contain t with P by z̈.

Corollary 2: Let x be a point of an edge e ∈ [fm, fm+1] (if x is a vertex,
consider the edge in [vi, x]) such that ue is defined. Then:

1. If m is even:
(a) If ue(x) ∈ sp(li) \ li then Push(x) = ̂li \ J(x).
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(b) If ue(x) ∈ li, we have Push(x) = ü(x) \ J(x).
2. If m is odd:

(a) If ue(x) ∈ sp(li) \ li then Push(x) = ∅.
(b) If ue(x) ∈ li, we have Push(x) = u̇(x) \ J(x).

Proof. Suppose that r is a point of ̂li. Note that if r ∈ J(x), then it can not
push x into the interior of [vi, x] so suppose that r /∈ J(x). According to the
Corollary 1, if e lies on the same side of e2 with respect to sp(li), in order that
x goes to the interior of [vi, x], r should push x to the left. This can happen if
and only if r lies on the right side of ue(x). Similarly, if e lies on the opposite
side of e2 with respect to sp(li), r should push x to the right side to sent it into
the interior of [vi, x] and this happens only if r lies on the left side ue(x). Note
that if m is even (resp. odd), e must lie on the same side (resp. opposite side)
of e2 with respect to sp(li) which proves the corollary. �
For a vertex v on the component of vi, we define T 0(v) as the intersection of all
pushing regions of points in [vi, v]. According to this definition and Lemma3,
if for a point x ∈ [vi, v] and its containing edge e (consider the edge in [vi, x]
if x is a vertex), ue(x) is undefined, we have T 0(v) = ∅ so, we can simply set
Push(x) = ∅ for all points x of the component of vi that ue(x) is undefined
and this assignment does not change the result of T 0 for the vertices of the
component of vi.

Observation 1: T 0(v) is exactly the set of repulsion points of v that sends the
particle at v along [vi, v] to the vertex vi and then, make the particle jump from
vi to t.

Note that T 0(v) is a set of intervals because it is an intersection of regions each
of which consists of a set of disjoint intervals on li. According to the above
definition, in order to obtain T 0(v) for a given vertex v, we need to have the
pushing region of infinitely many points but if we consider the inclusion relation
on these pushing regions as a partial order on them, it would be enough to only
consider the minimal pushing regions.

Observation 2: For a given vertex v, the minimal pushing regions of points in
[vi, v] are among the following candidate regions:

Candidate regions for v = {Push(v′) | v′ is a vertex in [vi, v]}
To see that why the above observation is correct, first note that for any edge e,
J(x) is same for all x ∈ e. So, for any point x on the interior of e, by slightly
moving x on e we can get a pushing region not greater than the pushing region
of x. So, in order to compute T 0(v) for a given vertex v, we compute these
candidate regions according to the Corollary 2 and Lemma 3 then intersect them
to obtain T 0(v). Because T 0(v) is a set of disjoint intervals, we can represent it
with a sequence of points with even length according to their closeness to t. In
this representation, the first and the second elements of the sequence represent
the first interval and similarly, the third and forth elements represent the second
interval and so on. Also, because all points are on li, we can represent each point
by its distance to t.
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3.2 The Expand Procedure

To explain the procedure expand, we assume that we have computed T j−1(v)
for all vertices in V and discuss how to compute T j(v) for a given vertex v ∈ V .
Because each point can have at most n jumps when we put a RA in P , we can
say v ∈ Ai if and only if Tn(v) �= ∅. For a fixed vertex v ∈ V , we have:

T j(v) =
(

T j(v) ∩ J(v)
)

∪
(

T j(v) ∩ J(v)
)

(3)

where J(v) is the complement of J(v) with respect to ̂li. In the above equation,
lets call the first intersection by N1(v) and the second intersection by N2(v). We
first compute N1(v) for all vertices and then compute N2(v) for each vertex in
V using our information about N1(v) for the vertices of P . By computing the
union of N1(v) and N2(v) for each vertex, we can obtain T j(v).

Computing N 1(v). In order to compute N1(v), we need a map of J(v) denoted
by M1

v . For each vertex v′ ∈ V , there is a corresponding region in M1
v denoted

by M1
v (v′) such that for all z ∈ M1

v (v′), z makes v jump off from the boundary
and then sends it to v′ as its first visiting vertex (v′ is the first vertex that the
v reaches after jumping). Note that some regions of M1

v might be empty. To
construct this partition, we build the visible triangle decomposition of P with
respect to v denoted by V TD(v). This decomposition partitions the region of P
visible from v by the set of line segments from v passing all vertices visible from
v. Figure 6 shows an example of V TD(v).

Fig. 6. Visible triangle decomposition of P according to v.

Let vab be a triangle in V TD(v) with base edge e = ab and sides va and vb.
Note that a and b may not be vertices of P . Also, let cvab be the opposite cone of
the triangle (the cone with vertex v and half line sides along va and vb from v in
the directions of −→av and

−→
bv respectively). Also, let ˜vab be the intersection of cvab

with ̂li. ˜vab becomes empty if there is no such intersection. In this case, no point
on ̂li that can make v jump into the triangle and thus, we don’t consider this
triangle in computation of N1(v). So, we assume that ˜vab �= ∅. The property
of ˜vab is that any point in this region makes v jump into triangle vab. If we
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denote the vertices of P next to a and b by a′ and b′ respectively, we can find
the partition of ˜vab into subsets ˜vaba and ˜vabb such that the points in ˜vaba send
v to a′ and the points in ˜vabb sends v to b′ (it is possible that one of these part
becomes empty). Figure 7 shows this configuration:

Fig. 7. Obtaining ˜vaba and ˜vabb.

In order to compute ˜vaba and ˜vabb, consider the line h perpendicular to the
supporting line of e passing through v. The intersection point h0 of h and sp(li),
divides sp(li) into two parts. The intersection of these parts with ˜vab becomes
˜vaba and ˜vabb. In fact, points in the b-side (resp. a-side) of h in ˜vab, sends v to
a′ (resp. b′). We apply the above method to all triangles in V TD(v) and put all
regions on J(v) that send v to v′ in M1

v (v′). Having the map M1
v , we have:

N1(v) =
⋃

v′∈V

(

M1
v (v′) ∩ T j−1(v′)

)

(4)

This is because if for a vertex v′, a point r is in M1
v (v′) ∩ T j−1(v′), r sends v to

v′ and because r is also in T j−1(v′), r can send it from v′ to vi using at most
j − 1 jumps. So, in total r can send v to vi by at most j jumps.

Computing N 2(v). In order to obtain N2(v), again we need a map of J(v)
denoted by M2

v . In this map, for each vertex v′ ∈ V , there is a corresponding
region in M2

v denoted by M2
v (v′) which is the subset of J(v) such that each

z ∈ M2
v (v′) sends v to v′ without jumping (v′ is not necessarily the first vertex

that v reaches). According to this definition, the regions of M2
v may overlap

each other and some regions may become a subset of another. Instead of directly
computing M2

v , we compute two maps M21
v and M22

v separately such that each
z ∈ M21

v (v′) (resp. z ∈ M22
v (v′)) sends v to v′ without jumping on the clockwise

(resp. counter clockwise) path on the component of v. It is clear that:

M2
v (v′) = M21

v (v′) ∪ M22
v (v′) (5)

We describe how to compute M21
v and computing M22

v is similar. We assume
that M21

v (v) = J(v). It is trivial that if v′ is not in the component of v we have
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M21
v (v′) = ∅. Let e = ab be an edge of the component of v. The perpendicular line

on the supporting line of e passing from a divides the plane into two half planes.
Denote the half plane doesn’t include b by Ha

e . Note that any r ∈ Ha
e ∩ J(a)

sends a to b without jumping. So, we have:

Lemma 5: If M21
v (v′) �= ∅ and v′′ is the neighbour of v′ not in the clockwise

path vv′ on the component. Then we have:

M21
v (v′′) = M21

v (v′) ∩ Hv′
v′v′′ ∩ J(v′) (6)

According to above lemma, we can start from v and traverse the component of
v clockwise and build the regions of M21

v (note that there must be a vertex v′

on the component with M21
v (v′) = ∅). After computing M2

v , we can construct
N2(v) as follows:

N2(v) =
⋃

v′∈V

(

M2
v (v′) ∩ N1(v′)

)

(7)

Note that if r ∈ M2
v (v′) ∩ N1(v′) for a vertex v′ ∈ V , r can send v to v′ without

jumping and because r ∈ N1(v′), r can send it from v′ to vi using at most j
jumps. This means that r can send v to vi with at most j jumps.

3.3 Building Ai

After computing N2(v), we have T j(v) = N1(v) ∪ N2(v) and we go for the next
iteration until computing Tn(v) for all vertices v ∈ V . We include all vertices
with Tn(v) �= ∅ in Ai. Now, a point x ∈ P is in Ai if there exist r ∈ ̂li that sends
x to a vertex v as its first visiting vertex and r ∈ Tn(v). To obtain all points in
Ai, we consider each pair (v, e) individually where v is a vertex in V and e is an
incident edge of v and compute a set A

(v,e)
i which is the subset of Ai that can

be sent to vi by reaching v as their first vertex via e. So, we have:

Ai =
⋃

All pairs (v,e)

A
(v,e)
i (8)

Here, suppose that a pair (v, e) is given and we discuss how to compute A
(v,e)
i .

Let I1, . . . , Iq be the set of intervals of Tn(v). We denote by Av
i (k) as the set of

all points of P that can be sent to v as their first visiting vertex via e by some
point in Ik (1 ≤ k ≤ q). So,

A
(v,e)
i =

⋃

k∈{1,...,q}
A

(v,e)
i (k) (9)

Again we just need to compute each A
(v,e)
i (k) independently. Let Ik = [rk1 , rk2 ]

where rk1 and rk2 are two endpoints of Ik. For two points r ∈ [rk1 , rk2 ] and y on e,
the segment ry might have some intersections with ∂P and so, these intersection
points divide ry into a set of segments. We call the segment incident to e as the
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first segment of ry and denote it by FS(ry). Note that it is impossible for the
points on ry \ FS(ry) to reach v as their first visiting vertex. Also, let p(r) be
the intersection point of sp(e) and the line perpendicular to sp(e) passing from
r. Now, FS(ry) ⊆ A

(v,e)
i (k) if and only if y ∈ e ∩ vp(r). So, for a given point

r ∈ Ik, we can compute the set of all such FS(ry) as follows: we consider the set
of lines passing through r and every vertex inside the triangle obtained by r and
the endpoints of e ∩ vp(r). These lines and ∂P partition the triangle. The union
of parts incident with e are exactly the set of all FS(ry) with y ∈ e ∩ vp(r).
Figure 8 shows such configuration:

Fig. 8. An example of Region(r).

Lets denote this union by Region(r). So, we have:

A
(v,e)
i (k) =

⋃

r∈Ik

Region(r) (10)

In order to compute the union of infinitely many regions, let (α0, α1, α2, . . . , αdk
)

be the sequence of points on Ik such that α0 = rk1 , αdk
= rk2 and for each

0 < w < dk, αwp(αw) or αwv passes a vertex of ∂P as we traverse Ik from
rk1 to rk2 . Now, as r moves from αw to αw+1, the segments of the boundary
of Region(r) changes uniformly. So, to see that which points are covered by
Region(r) when r ranges in [αw, αw+1], it is enough to check these segments at
r = αw and r = αw+1. So, A

(v,e)
i (k) is computed by considering all intervals

[αw, αw+1].

4 Complexity of the Algorithm

The first part of the algorithm is computing A′. It costs O(n log n) to obtain the
subdivision and build the cones. Because the total number of segments in each
cone is linear, we can check in linear time if a cone has more than one segment
and store its first triangle. Since there are a linear number of cones, computing
A′ costs O(n2). We can also compute the fm sequence for each vertex vi using
this subdivision.

Computing Ai takes three independent steps: computing T 0, computing Tn

using the expand procedure and building Ai having Tn. In computing T 0, first
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we use linear time (using the map we obtained to build cones) to check which
vertices are visible from t and find the neighbor edges of the vertices that lie on
the same side of the line connecting them to t. Computing the J(v) for a vertex
v ∈ V takes linear time. Also, the intersection and union operations can be done
linearly. In order to compute T 0(v) for a given vertex v, we should compute
u̇(v′) \ J(v′) or ü(v′) \ J(v′) for O(n) vertices which costs O(n2). So, building
T 0 costs O(n3).

In the procedure expand, we need to compute T j(v) for all v ∈ V having
T j−1. For a given v ∈ V , the maps M1

v and M2
v are independent of j and so,

we can build them once and use them whenever they are needed in the expand
procedure. In order to compute these maps, we spend O(n log n) time to build
V TD(v). Next, we have O(n) triangles and it take constant time for each triangle
to obtain ˜vaba and ˜vabb. So, building M1

v costs O(n log n). Computing each of
M21

v and M22
v costs O(n2) because we need to traverse the component of v and

in each step, we should compute an intersection. So, M2
v can be computed in

O(n2) and thus, building these maps for all vertices costs O(n3).
Note that each T 0(v) has at most O(n) endpoints and thus we have at most

O(n2) endpoints in the intervals of T 0(v) for all v ∈ V . On the other hand, the
regions of both M1

v and M2
v have at most O(n) endpoints and so, we have at

most O(n2) endpoints for all maps. Now, because we don’t introduce any new
endpoint in the expand procedure, Tn(v) should have at most O(n2) endpoints.
For a fixed vertex v, T j−1(v) ⊆ T j(v). So, in the expand procedure, we can
compute the Eqs. (4) and (7) for T j−1(v′)\T j−2(v′) instead of T j−1(v′) and add
the results to the N1(v) and N2(v) in the previous iteration to obtain new N1(v)
and N2(v). So, by this modification in obtaining N1(v) and N2(v), computing
T 1(v), . . . , Tn(v) costs O(n2) and because we have n vertices, computing Tn

takes O(n3).
In order to build Ai, for each pair (v, e), we have at most O(n) αw points

in total (for all Ik). We need to spend O(n log n) time to have these points sorted
on each Ik. Now, for each interval [αw, αw+1], in a constant time we can obtain
which points are covered by Region(r) for some r in this interval. Because we
have at most O(n) pairs (v, e), Building Ai having Tn costs O(n2 log n). So,
in total building Ai costs O(n3 + n3 + n2 log n) = O(n3) and because i varies
between 1 and n, the total complexity of the algorithm is O(n4).

5 Conclusion

In this paper, we studied the problem of transmitting particles in a polygonal
domain to a target point by activating a repulsion actuator and presented an
algorithm with O(n4) time complexity to determine which points of the polygon
can be sent to the target point by activating only one repulsion actuator. A
natural question here asks is it possible to improve this running time to solve the
problem? Another interesting problem is, given an integer k ≥ 1, to determine
which points of the polygonal domain can get to the target point by activating
at most k repulsion actuators. One can think of activating repulsion actuators
one after the other, or all at the same time.
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Abstract. Most path planning problems among polygonal obstacles ask
to find a path that avoids the obstacles and is optimal with respect to
some measure or a combination of measures, for example an u-to-v short-
est path of clearance at least c, where u and v are points in the free space
and c is a positive constant. In practical applications, such as emergency
interventions/evacuations and medical treatment planning, a number of
u-to-v paths are suggested by experts and the question is whether such
paths satisfy specific requirements, such as a given clearance from the
obstacles. We address the following path query problem: Given a set S
of m disjoint simple polygons in the plane, with a total of n vertices,
preprocess them so that for a query consisting of a positive constant
c and a simple polygonal path π with k vertices, from a point u to a
point v in free space, where k is much smaller than n, one can quickly
decide whether π has clearance at least c (that is, there is no polygonal
obstacle within distance c of π). To do so, we show how to solve the
following related problem: Given a set S of m simple polygons in �2,
preprocess S into a data structure so that the polygon in S closest to a
query line segment s can be reported quickly. We present an O(t log n)
time, O(t) space preprocessing, O((n/

√
t) log7/2 n) query time solution

for this problem, for any n1+ε ≤ t ≤ n2. For a path with k segments, this
results in O((nk/

√
t) log7/2 n) query time, which is a significant improve-

ment over algorithms that can be derived from existing computational
geometry methods when k is small.

Keywords: Path query · Polygonal obstacles · Clearance
Proximity queries

1 Introduction

Path planning problems among polygonal obstacles in the plane usually ask to
find a path that avoids the obstacles and is optimal with respect to some measure
or a combination of measures, for example a shortest u-to-v path [12,13,18] or
an u-to-v shortest path of clearance at least c [19,20], where u and v are points
in the free space and c is a positive constant. In some practical applications
however, such as emergency interventions/evacuations and medical treatment
planning, a number of u-to-v (polygonal or circular arc) paths are suggested
by experts and the question is whether such paths satisfy specific requirements,

c© Springer Nature Switzerland AG 2018
D. Kim et al. (Eds.): COCOA 2018, LNCS 11346, pp. 509–521, 2018.
https://doi.org/10.1007/978-3-030-04651-4_34
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Fig. 1. California fire evacuation map, with a 4 feet clearance demand (drone acquired
image). The shortest path (in blue) does not have good clearance. The proposed path
(in red), should be checked (queried) for the desired clearance. (Color figure online)

such as a given clearance from the polygonal obstacles. This is illustrated in
Fig. 1. In this paper we address the following path query problem:

Path-Obstacles Proximity Queries: Given a set S of m disjoint simple poly-
gons in the plane, with a total of n vertices, preprocess it to quickly answer
queries of the following type: for a positive constant c and a simple polygonal
path π, from a point u to a point v in free space, decide whether π has clearance
at least c, that is, there is no polygonal obstacle within distance c of π.

Somehow surprisingly, it seems this problem has not been addressed in com-
putational geometry. To solve it, we show how to solve the following related
problem:

Object-Obstacles Proximity Queries: Given a set S of m polygonal obsta-
cles with a total of n vertices, preprocess S into a data structure so that the
obstacle in S closest to a query object ρ can be reported quickly.

In this paper we consider the set S as a collection of disjoint simple polygons
and the query object corresponds to a line segment (or line).

Once the segment-polygon proximity problem is solved, one can check for
each of the segments of the given path π whether the segment has a clearance
of c or not, and also report the minimum clearance of the path, defined as the
minimum of the clearances of the line segments along the path.
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1.1 Related Work

A simple, brute force solution to the path clearance problem would be to take
each line segment along the path and find its distance (zero in case of inter-
sections) to each of the line segments defining the boundary of the polygonal
obstacles, which can be done in constant time per pair of segments. The clear-
ance of the path would be reported as the minimum clearance over its line
segments. For a path π with k line segments, among a set of polygonal obstacles
with a total of n vertices, this leads to an O(nk) time, O(n + k) space solu-
tion that requires no preprocessing. This is linear in n and thus inefficient for
a query type problem. It is good however to contrast this with results that can
be extracted from using complex data structures, such as the Visibility-Voronoi
Complex (VVC) [19]. The Visibility-Voronoi diagram for clearance c, V V (c),
introduced in [19], encodes the visibility graph of the obstacles dilated with a
disc of radius c and can be used to compute paths of clearance c and other
desired properties between two points u and v by a search in this graph. The
Visibility-Voronoi complex is a generalization of V V (c), that allows to find u-to-v
paths for any given clearance value c without having to first construct the V V (c),
by performing a Dijkstra like search on the graph encoding the VVC. V V (c) and
the VVC require O(n log n + n1) preprocessing time and can report an u-to-v
path of clearance at least c in O(n log n + n2) time, where n1 is the number of
visibility edges and n2 is the number of edges of the diagram encountered during
the search; both n1 and n2 are O(n2) in the worst case. However, neither V V (c)

or VVC can be used directly to check whether a given path has clearance at
least c, since the edges of the path are in general not encoded by the underlying
graphs.

For finding a closest point to a query line, Cole and Yap [6] and Lee and
Ching [9] reported a solution with preprocessing time and space in O(n2) and
query time in O(log n). Mitra and Chaudhuri [14] presented an algorithm with
O(n log n) preprocessing time, O(n) space, and O(n0.695) query time. Mukhopad-
hyay [16], used the simplicial partition technique of Matousek [10] to improve
the query time to O(n1/2+ε)) for arbitrary ε > 0, with O(n1+ε)) preprocessing
time and O(n log n) space.

The problem of locating the nearest point to a query line segment among a
set P of n points in the plane was addressed in [4]. If the query line segment
is known to lie outside the convex hull of P , an O(n) size data structure can
be constructed in O(n log n) time, which can answer the nearest neighbor of a
line segment in O(log n) time. If k non-intersecting line segments are given at
a time, then the nearest neighbors of all these line segments can be reported
in O(k log3 n + n log2 n + k log k) time using divide and conquer and the data
structure for queries outside the convex hull. Later on, in [3], the time was
reduced to O(n log2 n) when n = k. Moreover, given n disjoint red segments and
k disjoint blue segments in the plane, the algorithm in [3] can be used to find the
closest pair of segments of a different color in O((n+ k) log2(n+ k)) time. Thus,
with the red segments the edges of polygons in S and the blue segments the
segments along the query path, the path-polygon proximity problem we study
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can be solved within O((n + k) log2(n + k)) time, without any preprocessing.
Our goal is to obtain a query time that is sublinear in n, and thus more efficient
for small values of k.

Goswami et al. [7] reported an algorithm for closest point to line segment
queries with O(log2 n) query time and O(n2) preprocessing time and space, based
on simplex range searching. Segal and Zeitlin [17] provided an algorithm which
takes O(log2 n log log n) query time, using O(n2/ log n) space and O(n2) pre-
processing time. However, these algorithms do not answer the segment-polygon
proximity query problem as described here, as it is not enough to consider only
the vertices of the polygons in S.

1.2 Results

For a set S of m disjoint simple polygonal obstacles in the plane, with a total
of n vertices, the goal is to preprocess S so that given a positive constant c and
an u-to-v polygonal path with k edges, where k is much smaller than n (i.e.,
k = o(n)) one can quickly answer whether the path has clearance at least c. We
have the following results.

– We present an O(t log n) time, O(t) space preprocessing, O((n/
√

t) log7/2 n)
query time solution, for any n1+ε ≤ t ≤ n2, to report the closest polygon in
S to a query line segment.

– For a path π with k segments, we obtain O((nk/
√

t) log7/2 n) query time, with
O(t log n) time, O(t) space preprocessing, using segment-polygon proximity
queries. When t = n this gives O(

√
nk log7/2 n) query time with linear space

and O(n log n) time preprocessing, improving over previous methods when-
ever k is small (i.e. k = o(

√
n)). When t = Θ(n2) it gives a query time of

O(k log7/2 n), which is an O(n) time improvement in query time over applying
the solution derived from [3,4], when k is small. Moreover, unlike [3,4], our
result is easily parallelizable, since queries with line segments along the query
path are independent of each other. Thus, with k processors available, a query
with a k segment path would take time proportional to the time to answer a
line segment query. Assuming k is small, this can be easily implemented by
multithreading (JAVA, C++) on modern laptop and desktop computers.

Our solutions differ from algorithms that could possibly be derived from
existing visibility graph or Voronoi diagram based methods. They offer a
preprocessing-query time trade-off and result in significant improvements when
k is much smaller than n.

2 Line Segment Proximity Queries

In a nearest neighbor query problem a set S of n geometric objects in �d, d a
positive integer constant, is preprocessed into a data structure so that the object
of S closest to a query object (point, line, line segment, etc.) can be reported
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quickly. In this section we address nearest-neighbor queries in the plane, where
the input S corresponds to a set of disjoint simple polygons and the query object
corresponds to a line segment. This is illustrated in Fig. 2.

Fig. 2. A set S of polygons, to be preprocessed for closest polygon to a query line
segment (or line).

Obviously, if the query object intersects a polygon in S then that polygon
is a closest polygon and the closest distance from the query object to S is zero.
Following this observation, a query can be divided into two parts, executed in
this order:

1. Emptiness Query: Query if any polygon of S is intersected by the query
object. If there is such polygon, then report it as the answer, with a distance
of zero.

2. Proximity Query: (No polygon in S intersect the query object) Query for
the closest polygon in S.

Thus, one can separately develop data structures for the two steps above,
aiming for the best trade-offs on preprocessing-space-query on both structures.

Emptiness queries have been addressed in the context of ray shooting among
polygonal obstacles in the plane. Chazelle et al. [5] gave an algorithm for ray
shooting queries among m disjoint simple polygons with a total of n edges, with
O(n

√
m + m3/2 log m + n log n) preprocessing time, O(

√
m log n) query time,

and O(n) space. Obviously, ray shooting queries can be used to answer emptiness
queries for both lines and line segments, within the same time and space bounds,
by replacing each such query with two, respectively one, ray shooting queries.

Agarwal and Sharir [2] develop data structures for ray shooting queries by
first building data structures for line and line segment intersection queries. They
first address line intersection queries and show that a set of m simple polygons
with a total of n vertices can be preprocessed in time O((m2 + n log m) log n)
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into a data structure of size O(m2 + n) so that an intersection between a
query line and the polygons can be detected on O(log n) time. Alternately,
they give a data structure with O(n log n) preprocessing time, O(n) space,
and O(�m/

√
n�1+ε log n) query time. When m ≤ √

n the query time becomes
O(log n) while when m ≥ √

n a query can be answered in time O(�m/
√

t�1+ε)
with space t such that n ≤ t ≤ m2. For line segment intersection queries for dis-
joint simple polygons they give a data structure of size O((m2 + n) log m), that
can be constructed in O((m2 + n) log n log m) time and can answer whether a
query segment intersects any of the polygons in O(log m log n) time. Alternately,
they gave a data structure with O(n log2 m) preprocessing time, O(n log m)
space, and O(�m/

√
n�1+ε log2 n) query time. For ray shooting among pairwise

disjoint polygons, they give a data structure with O(n log n log m) preprocessing
time, O(n) space, and O(�m/

√
n�1+ε log5 n) query time.

We first warm up by providing a simple solution to finding the closest polygon
to a query line in the following subsection. We then extend this approach to find
the closest polygon to a query line segment.

2.1 Closest Polygon to a Query Line

Given a set S of m disjoint simple polygons, with a total of n vertices, to find
the closest polygon to a query line l we first perform an emptiness query with
l, as described earlier. Using the result in [2], this can be done with O(n log n)
preprocessing time, O(n) space, and O(�m/

√
n�1+ε log n) query time.

Observation 1. Given a simple polygon P and a line l such that l does not
intersect P, the closest point of P from l is a vertex of P.

Assume that none of the polygons in S intersect the query line l. Based on
Observation 1 to find the closest polygon in S to the query line l reduces to
finding the closest point to a query line problem, where points corresponds to
the vertices of the polygons in S. We further preprocess S by computing the
convex hull of each polygon in S and taking the vertices of the convex hulls
as the set of points. This requires only an additional O(n) time and storage.
Thus, we have a set of n′ ≤ n points, where n′ could be much smaller than n in
practice.

We can then use the results in [14,16] for closest point to line queries. Putting
things together we obtain the following result.

Lemma 1. A set S of m polygons, with a total of n vertices, can be prepro-
cessed in O(n1+ε) time into a data structure of size O(n log n), that can report
the closest polygon to a query line in O(n(1/2)+ε + �m/

√
n�1+ε log n) time, for

arbitrary ε > 0. Alternately, with O(n log n) time preprocessing one can construct
a data structure of size O(n) that can report the closest polygon to a query line
in O(n0.695) time.
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2.2 Closest Polygon to a Query Line Segment

Given a set S of m polygons, with a total of n vertices, to find the closest
polygon to a query line segment s we first perform an emptiness query with s.
To facilitate that, we preprocess S into a data structure for planar point location
queries, which requires O(n log n) time and O(n) space [8]. Given a segment s,
we locate the endpoints of s in this data structure, in O(log n) query time; if
any of the two endpoints is inside a polygon in S then we are done.

If both endpoints of s are in free space we proceed with a segment intersection
query. As described earlier, this can be done with O((m2 + n) log m) space,
O((m2 + n) log n log m) preprocessing time, and O(log m log n) query time or,
alternately, with O(�m/

√
n�1+ε log2 n) query time, O(n log2 m) preprocessing

time and O(n log m) space.
Assume that the line segment s does not intersect any polygon in S. Obvi-

ously, the closest distance from s to S is attained by a point on s and a point
on a line segment on the boundary of some polygon in S.

Observation 2. Consider a line segment e on the boundary of some polygon in
S. The closest distance between s and e is either along:

1. A line perpendicular to s and passing through an endpoint of e, or
2. A line perpendicular to e and passing through an endpoint of s, or
3. A line joining an endpoint of s and an endpoint of e.

Fig. 3. Illustrating the closest distance between query line segment AB and some other
line segments.

This is illustrated in Fig. 3 where AB is the query segment s and s1, s2, s3,
s4 and s5 are five line segments (see also [19]). Lines l1 and l2 are perpendicular
to segment AB and passing through points A and B, respectively.
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Thus, we can focus on the n line segments on the boundaries of the polygons
in S. Given a set M of n non-intersecting line segments, we want to build a data
structure so that, for a query segment s with endpoints A and B, the closest
segment of M can be quickly determined. From Observation 2, it is clear that the
minimum distance involves an end point of at least one line segment. Therefore
we can decompose this problem into the following two subproblems:

1. Find the line segment of set M closest to point A or point B.
2. Let l1 and l2 be the lines perpendicular to s at its endpoints and consider the

endpoints of the line segments in M which lie between l1 and l2. Find the
closest such endpoint to s.

Notice that for our purpose we could relax the second subproblem, and ask
instead for finding the closest endpoint of M to the query segment s.

Subproblem 1: Given a set M of n line segments, preprocess M so that we
can efficiently find the closest line segment to a query point q.

To answer Subproblem1 we construct the Voronoi diagram of the line seg-
ments in M and preprocess it for point location queries. Yap [21] provided an
O(n log n) time algorithm to construct the Voronoi diagram of non intersecting
line segments. After constructing the Voronoi diagram, preprocessing for point
location takes O(n log n) time with O(n) storage, and a point location query can
be answered in O(log n) time [8].

Lemma 2. A set M of n non-intersecting line segments can be preprocessed in
O(n log n) time into a data structure of size O(n) that can report the closest line
segment to a query point in O(log n) time.

For a given line segment s, slab(s) is defined as the region bounded by the
lines l1 and l2 perpendicular to the endpoints of s and containing s (see [4]).

Subproblem 2: Given a set P of n points, preprocess P into a data structure
so that one can efficiently answer the following query: For a line segment s, find
the closest point in P ∩ slab(s) to s. This is illustrated in Fig. 4.

To solve this problem, we use a multilevel data structure based on
Matousek’s [11] decomposition scheme. Refer to Fig. 4. Specifically, the first level
is for halfplane range queries, to separates the points that are on the side of l1
that contains s, and the second level is for halfplane range queries on the result-
ing points to separate those that are on the side of l2 and contain s. These two
levels are used to isolate the points in P ∩ slab(s). The third level is for half-
plane range queries bounded by the line supporting s, to isolate the subsets of
P ∩ slab(s) that are on either side of s. The subsets on this level are further
processed for closest point to line segment queries, when the query segment is
outside the convex hull of the points, as in [4].

Using Theorem 6.1 from [11], we obtain the following trade-off.
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Fig. 4. Slab(s) and the points in P ∈ slab(s).

Lemma 3. A set P of n points in the plane can be preprocessed in O(t log n)
time and O(t) space into a data structure that can answer the query in Subprob-
lem 2 in O((n/

√
t) log7/2 n) time, for any n1+ε ≤ t ≤ n2 and ε > 0.

Summing up, we have the following result.

Lemma 4. Given a set S of m disjoint simple polygons, it can be preprocessed
in O(t log n) time into a data structure of size O(t) that can report the closest
polygon in S to a query line segment in O((n/

√
t) log7/2 n + �m/

√
n�1+ε log2 n)

time, for any n1+ε ≤ t ≤ n2 and ε > 0.

3 Closest Polygon to Path Queries

We now turn our attention to finding the closest polygon to a query path. Given
a set S of m disjoint simple polygons in the plane, with a total of n vertices, we
want to preprocess S into a data structure so that for a query consisting of a
positive constant c and a simple polygonal path π with k vertices, from a point
u to a point v in free space, one can quickly decide whether there is no polygonal
obstacle within distance c of π.

Our solution actually works even if π has self intersections, however we do
not see the practical aspect of such paths.

To solve the path-polygons proximity query problem we proceed as follows.

Preprocessing. We build the following data structures.

1. A point location data structure D1 for the polygons is S. It can be built with
O(n) space and O(n log n) time, and can answer point location queries in
O(log n) time.
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2. A segment intersection data structure D2 for the polygons of S. As
described earlier, this can be done with O((m2 + n) log m) space, O((m2 +
n) log n log m) preprocessing time, and O(log m log n) query time or, alter-
nately, with O(�m/

√
n�1+ε log2 n) query time, O(n log2 m) preprocessing time

and O(n log m) space.
3. The Voronoi diagram of the polygons in S, enhanced with a point location

data structure, D3. It can be built with O(n) space and O(n log n) time, and
can answer point location and closest polygon to point queries in O(log n)
time.

4. With P the set of vertices of the polygons in S, a data structure D4 to find
the closest point of P ∩ slab(s) to s, for a query segment s, as described in
the previous section. It can be built with O(t) space and O(t log n) time, and
can answer a query in O((n/

√
t) log7/2 n) time, for any n1+ε ≤ t ≤ n2 and

ε > 0.

Query. Given a simple polygonal path π with k vertices, to answer a query we
proceed as follows.

1. Query D1 with the vertices of π. If any such vertex is inside some polygon
of S we stop and report it as the closest polygon to π, with a zero distance
(or an intersection flag). Otherwise, all vertices of π are in free space and we
proceed with the next step. This step takes O(log n) time per query and thus
O(k log n) time overall.

2. Query D2 with the line segments on π. If it is found that a line segment
intersects a polygon in S then stop and report it as the closest polygon to π,
with a zero distance (or an intersection flag).

3. Query D3 with the vertices of π and keep tract of the closest distance found.
That distance gives the closest polygon of S to the vertices of π. This step
takes O(log n) time per query and thus O(k log n) time overall.

4. Query D4 to find the closest obstacle vertex in slab(s), for each segment s

of π. This takes O((n/
√

t) log7/2 n) time per query and O((kn/
√

t) log7/2 n)
time overall, for any n1+ε ≤ t ≤ n2 and ε > 0.

Theorem 1. A set S of m disjoint simple polygons in the plane, with a total
of n vertices, can be preprocessed in O(t log n) time into a data structure of
size O(t) so that given a query consisting of a positive value c and a simple
polygonal path π with k vertices one can answer if π has clearance at least c
in O(k((n/

√
t) log7/2 n + �m/

√
n�1+ε log2 n)) time, for any n1+ε ≤ t ≤ n2 and

ε > 0.

When t = n2 and m = o(
√

n) the query time becomes o(k log7/2 n), which is a
linear time faster than what can be obtained from previous algorithms [3,4] when
k is much smaller than n. When t = n1+ε the query time is O(k(

√
n log7/2 n +

�m/
√

n�1+ε log2 n)), which is asymptotically faster than what can be obtained
from previous algorithms [3,4] when k = o(

√
n).
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4 Conclusion and Extensions

In this paper, we studied the problem of finding the closest polygon of a set S
of disjoint simple polygons to a query line segment or simple polygonal path.
We proposed solutions that are significantly better in query time, when k is
small relative to n, than what could be obtained from existing, non-query based
approaches. Since queries with line segments along the query path are indepen-
dent of each other, our result is easily parallelizable: with k processors available,
a query with a k segment path would take time proportional to the time to
answer a line segment query. When k is small, this can be easily implemented
by multithreading (JAVA, C++) on modern laptop and desktop computers.

A possible extension of our work, that we leave as an open problem, is
to query with paths that are not polygonal, but formed of, or including, cir-
cular arcs. This version has direct applications in minimally invasive surgery,
for instruments formed of circular tubes [15]. This problem seems significantly
harder, even when the clearance c (diameter of the tube) is known in advance.
We sketch a possible approach here and underline the missing data structures
needed to address this version.

It is easy to see that the minimum distance between a circular arc σ and a
line segment s could be achieved by a point p ∈ σ and a point q ∈ s neither of
which is an endpoint of σ or s.

For the general version, with clearance given at query time one would need
data structures for the following two types of queries: (1) circular arc inter-
section queries for disjoint polygons and (2) circular arc proximity queries for
disjoint polygons. So far, neither of these data structures have been described
in the computational geometry literature. There are however data structures
for ray shooting queries among circular arcs [1], so if k is comparable to n one
could instead answer ray shooting queries against π at query time. Such method
however seems inefficient.

Consider now the case when the clearance c is known at preprocessing time.
As before, we have a set S of m disjoint simple polygons in the plane, with a
total of n vertices. In addition, we also know the clearance c, given as a positive
real value. A query consists of a path π with k circular arcs and asks whether π
has clearance at least c. To solve it, one can proceed as follows.

Preprocessing. Build the following data structures.

1. Find the Minkowski sum of the obstacles in S with a disk of radius c and
compute the union Γ of the resulting objects, which can be done with O(n)
space and O(n log2 n) time [19]. The boundary of Γ consists of both line
segments and circular arcs. Further process Γ for point location queries, for
an additional O(n) space and O(n log n) time. A point location query in the
resulting data structure D1 can be answered in O(log n) time.

2. Preporcess Γ for circular ray shooting queries: given a circular arc σ determine
the first line segment or arc on the boundary of Γ hit by σ. Notice that the
radius for the query circular arc is known in advance.
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Thus, in this case, we are dealing only with a special case of circular ray
shooting queries among disjoint line segments and circular arcs, where the radius
of all circular arcs given at preprocessing time is the same. Still, we are not aware
of any data structure that can efficiently handle such queries.
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Abstract. We consider an optimization problem posed by an actual
newspaper company, which consists of computing a minimum length
route for a delivery truck, such that the driver only stops at street cross-
ings, each time delivering copies to all customers adjacent to the crossing.
This can be modeled as an abstract problem that takes an unweighted
simple graph G = (V, E) and a subset of edges X and asks for a shortest
cycle, not necessarily simple, such that every edge of X has an endpoint
in the cycle.

We show that the decision version of the problem is strongly NP-
complete, even if G is a grid graph. Regarding approximate solutions,
we show that the general case of the problem is APX-hard, and thus no
PTAS is possible unless P = NP. Despite the hardness of approximation,
we show that given any α-approximation algorithm for metric TSP, we
can build a 3α-approximation algorithm for our optimization problem,
yielding a concrete 9/2-approximation algorithm.

The grid case is of particular importance, because it models a city
map or some part of it. A usual scenario is having some neighbor-
hood full of customers, which translates as an instance of the abstract
problem where almost every edge of G is in X. We model this prop-
erty as |E − X| = o(|E|), and for these instances we give a (3/2 + ε)-
approximation algorithm, for any ε > 0, provided that the grid is suffi-
ciently big.

Keywords: Vehicle routing · Vertex cover
Approximation algorithms · Computational complexity

1 Introduction

Every morning, a well-known newspaper1 in Buenos Aires needs to deliver a copy
to each subscriber by trucks. For now, assume there is only one truck. Tradi-
tionally, the truck stops in front of each customer’s house, every time delivering

1 Unfortunately, for confidentiality reasons, we cannot disclose their identity.
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a single copy of the paper. But now, the company thinks there could be a better
(that is, cheaper) way to do it: instead of stopping to make a single delivery, the
truck will only stop at street crossings, and each time the driver will pick up a
pile of copies and deliver them to all customers located on any of the (typically
four) adjacent streets. The goal is to minimize the number of blocks traveled by
the truck.

We model the city topology as a simple graph, and the set of customers as
a subset of edges. In other words, we distinguish blocks that have at least one
customer, but we don’t care if there is more than one customer in a single block.
If C is a cycle and X is a subset of edges of a simple graph, we say that C
covers X if every edge of X has an endpoint in C. The formal description of the
problem is the following:

STAR ROUTING
INSTANCE: A simple graph G = (V,E), a non-empty subset of edges X ⊆ E,
and a positive integer K.
QUESTION: Does G have a cycle, not necessarily simple, of length at most
K that covers X?

Since all edges can be traversed in both directions, STAR ROUTING (or simply
STAR) models all streets as two-way streets. Also, note that STAR doesn’t ask
about which (or how many) road crossings the truck should stop at and deliver
during its journey.

Fig. 1. (a) A possible set of customers, marked as red dots, on a small part of Boedo
neighborhood in Buenos Aires. The light blue area is an arbitrary boundary for the
truck. (b) A STAR instance that models the problem. Red edges are blocks that contain
customers. (Color figure online)

Consider the example of Fig. 1a, which represents a real-life setting with
subscribers shown as red dots. This is mapped to the STAR instance shown in
Fig. 1b. Each block that contains at least one customer is mapped as a red edge,
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Fig. 2. Cleaned-up version of the STAR instance of Fig. 1b. The arrows show a feasible
solution.

and X is the set of red edges. A feasible solution is presented in Fig. 2. Indeed,
this cycle of length 12 given by the arrows is a feasible solution because every red
edge has one endpoint in the cycle. In contrast, if we wanted to stop precisely
at every customer’s address, we would need to go through at least 16 edges: one
per red edge, plus 4 more edges to move between the two connected components
induced by the red edges. Thus, STAR’s solution is at least 40% better, in terms
of number of blocks traversed. This improvement may (or may not) be at the
cost of greater overall time to perform the delivery, since now the driver has to
walk from street crossings, carrying the newspapers. Clearly, the more packed
the customers are, the better this alternative delivery model works, since a single
vertex can cover many edges.

Keep in mind that a rigorous comparison between STAR and other delivery
models is beyond the scope of this paper, as there are several practical consid-
erations, like street orientation, speed limits or overall transit time, that we are
not taking into account. Our focus is on studying STAR’s theoretical properties.

Despite newspaper delivery was the original motivation for this problem, it
is worth noting that STAR may be applicable in other contexts as well, such as
police patrol planning. In general, STAR captures characteristics from situations
resembling covering problems but also involving vehicle routing features.

Related Work. A remarkable family of problems in combinatorial optimization
are those known as vehicle routing problems (VRP). The basic component of a
VRP are vehicles that move throughout a network, maybe starting and ending
at some depot point, and moving between customers located over the network
to deliver some sort of merchandise. The goal is usually minimizing some metric
related to the total consumed time or the traveled distance. The origin of these
problems can be traced back to the 1954 paper of Dantzig, Fulkerson and Johnson
[6], in which they considered the TSP, which is a particular case of VRP. This
work was followed by several other papers about the TSP. Clarke and Wright
[4] added more than one vehicle to the problem, which led to the first proper
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formulation of VRP, though that name was not coined until the work of Golden,
Magnanti and Nguyan [11].

In 1974, Orloff [14] identified a class of routing problems of a single vehicle,
which he called GENERAL ROUTING PROBLEM (GRP). The GRP takes a
weighted graph G = (V,E), and two sets W ⊆ V and F ⊆ E, and asks to
find a shortest cycle of G that traverses every vertex in W and every edge in
F . This is a generalization of other well-known routing problems, like the CHI-
NESE POSTMAN PROBLEM (W = ∅ and F = E), the RURAL POSTMAN
PROBLEM (W = ∅), and the TSP (G complete, W = V and F = ∅). Notably,
the first can be solved in polynomial time, whereas the decision versions of the
latter two are NP-complete [13].

The STAR problem is a simple VRP with a single vehicle fleet, where we want
to minimize the delivery cost, which we model as the total distance traveled by
the vehicle. However, in contrast with traditional VRPs, the subset X of edges
containing customers can be covered just by visiting any of the two adjacent
endpoints, rather than traveling along it. There are some variants of TSP with
a similar flavor to that of STAR, in which the objective is to cover vertices with
a more relaxed criteria than standard TSP. One of them is the COVERING
SALESMAN PROBLEM (CSP) [5,16] that takes a directed weighted graph and
a positive integer D, and asks to find a minimum-length tour over a subset of
vertices of G such that every vertex not in the tour is within distance D of
some vertex in the tour. Current and Schilling [5] devised a simple heuristic
for this problem, but its performance guarantee cannot be bounded due to the
arbitrary weights. Interestingly, our approximation algorithm for the general
version of STAR is similar to theirs, but since we assume unit weights we are
able to derive a bound on the approximation ratio. Shaelaie et al. [16] presented
metaheuristics for the CSP but, once again, they do not provide any theoretical
guarantees. Another related problem is the TSP WITH NEIGHBORHOODS
(TSPN) [1,2,9], that takes a set of regions in the euclidean plane, and asks
for a shortest closed curve that visits each region. We should note that the grid
version of STAR, which we will discuss later on, can be reduced to the rectilinear
version of TSPN, in which each edge from X is a region, but unfortunately the
rectilinear TSPN has not been studied.

To the best of our knowledge, STAR hasn’t been considered before, existing
literature has little overlap with it, and it’s the first VRP based on the notion
of vertex cover.

Organization. In Sect. 2 we show that STAR is strongly NP-complete, even
when the input graph is a grid. In Sect. 3 we study how well it is possible to
approximate the general version of STAR. First, we give a lower bound by
showing that STAR is APX-hard. Second, we provide a factory of approximation
algorithms, which takes an α-approximation algorithm for metric TSP and pro-
duces a 3α-approximation algorithm for STAR. This yields a 9/2 approximation
factor for the general case, and a 3+ε factor when the graph is planar. In Sect. 4
we develop a (3/2+ ε)-approximation algorithm for grid graphs, assuming there
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are asymptotically more edges with customers than not and that the grid is large
enough. Finally, in Sect. 5 we state some open problems.

Notation. Let Π be an optimization problem. Let I be a valid input of Π. We
write Π∗(I) the value of an optimal solution of the problem Π for I.

If A is a finite set, |A| is the cardinality of A. We denote K(A) the complete
graph whose set of vertices is A.

All graphs we consider in this paper are simple. All cycles and paths we
consider are not necessarily simple. If G is a graph, τ(G) is the cardinality of
any minimum vertex cover of G. If X is a subset of edges of G, G[X] is the
subgraph of G induced by X. If S is a path of G, �(S) is the number of edges
of S (counting repetitions). If the edges of G have weights given by a function
w, �w(S) is the sum of the weights of the edges of S (counting repetitions). If T
is another path of G, that starts where S ends, S ◦ T is the path we get from
first traversing S and then T . If u and v are two vertices of G, dG(u, v) is the
minimum �(S) over every path S between u and v. If p and q are two points in
R

2, d1(p, q) is the Manhattan distance between them.
A grid graph with n rows and m columns is the cartesian product of graphs

Pn�Pm, where Pk is the path of k vertices. A star graph is a complete bipartite
graph K1,n, for some n ≥ 1.

2 STAR is Hard, Even for Grids

In this section we show that STAR is NP-complete when we restrict G to the class
of grid graphs. We call this version of the problem grid STAR. These instances
are of practical interest, since grids are the most simple way of modelling a city
layout. In particular, the problem is hard for planar graphs and for bipartite
graphs, among all superclasses of grid graphs.

To prove completeness, we will reduce from the rectilinear variant of TSP.
Recall the TSP takes a set of elements S equipped with weights between each pair
of elements, and a positive integer L, and asks if there exists a hamiltonian cycle
in K(S) with total weight L or less. In the rectilinear version, the input is a set of
points P in the plane, with positive integer coordinates, and a positive integer L,
and asks if K(P ) has a hamiltonian cycle with total Manhattan distance length
L or less.

The rectilinear TSP is NP-complete. In 1976, Garey et al. [10] proved this,
by reducing from EXACT COVER BY 3-SETS (X3C), which takes a family
F = {F1, . . . , Ft} of 3-element subsets of a set U of 3n elements, and asks if there
exists a subfamily F ′ ⊆ F of parwise disjoint subsets such that ∪F∈F ′ = U . Since
X3C has no numerical arguments, it is strongly NP-complete. The rectilinear
TSP instance they build is such that both coordinates of every point in the set
P , as well as the optimization bound L, are bounded by a polynomial on the
size of the X3C instance. Thus, rectilinear TSP is strongly NP-complete.

The transformation we will use has a similar flavor than the one devised by
Demaine and Rudoy [7] to show that solving a certain puzzle is NP-complete.
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Theorem 1. Grid STAR is strongly NP-complete.

Proof. Given a cycle of G it’s easy to check in polynomial time if it covers all
edges in X, and if it has length K or less. Thus, the problem is in NP.

Now we reduce from rectilinear TSP. Let P = {p1, . . . , pn} and the bound
L be an instance of rectilinear TSP. Let m be the maximum coordinate of any
point in P , so that all points lie in the rectangle [1,m]× [1,m]. Let c = 2(n+1).
We will build a grid graph G by taking the m × m rectangular grid of points
with lower left corner at (1, 1), and expanding it by a factor of c. Formally, if
G = (V,E), then V is the set of all integer coordinates points in [c, cm]× [c, cm],
and E is the natural set of edges we need to produce a grid out of V . Note that
cpi ∈ V for every i. That is, multiplying by c we map points from P to V .

Let ei be any adjacent edge to cpi in G, and let X = {e1, . . . , en}. Finally,
let K = cL.

Polynomial time. Since rectilinear TSP is strongly NP-complete, we can
assume m and L are polynomial. The grid G has size O((cm)2), which is poly-
nomial because both c and m are. The coordinates of every vertex are bounded
by O(cm). Computing X is obviously polynomial. Finally, computing K = cL
is also polynomial, since L is polynomial. Thus, the reduction takes polynomial
time, and every numerical value is bounded by a polynomial in the transforma-
tion’s input size.

Rectilinear TSP to grid STAR. Assume there is a hamiltonian cycle
with Manhattan distance length L or less, in K(P ). W.l.o.g., suppose T =
〈p1, . . . , pn, pn+1 = p1〉 is such a cycle. For each i, let Si be a shortest path in G
from cpi to cpi+1. Then S = S1 ◦ · · · ◦Sn is a cycle in G that goes through every
vertex cpi, and thus covers X. Its length is

�(S) =
n∑

i=1

�(Si) =
n∑

i=1

d1(cpi, cpi+1) = c
n∑

i=1

d1(pi, pi+1) = c�d1(T ) ≤ cL = K

Grid STAR to rectilinear TSP. Suppose there is a cycle S = 〈s1, . . . , sm,
sm+1 = s1〉 of length K or less that covers X in G. At some point while
we traverse S, we must get close to each cpi, since the cycle covers ei. More
specifically, there exists an index 1 ≤ ji ≤ m such that either sji is exactly
cpi, or ei = (cpi, sji). This implies that d1(cpi, sji) ≤ 1. Assume w.l.o.g. that
j1 ≤ · · · ≤ jn, since otherwise we can rearrange the indexes of the points cpi.
Consider the hamiltonian cycle T = 〈p1, . . . , pn, pn+1 = p1〉 of K(P ). (Define,
for convenience, jn+1 := j1.) We need to show that �d1(T ) ≤ L. Since �d1(T ) is
an integer, it suffices to prove �d1(T ) < L + 1. We start by rewriting

�d1(T ) =
n∑

i=1

d1(pi, pi+1) = (1/c)
n∑

i=1

d1(cpi, cpi+1)

Since d1 is a metric, we can decompose

d1(cpi, cpi+1) ≤ d1(cpi, sji) + d1(sji , sji+1) + d1(sji+1 , cpi+1) ≤ 2 + d1(sji , sji+1)
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Therefore

�d1(T ) ≤ (1/c)

(
2n +

n∑

i=1

d1(sji , sji+1)

)

Consider the subpaths Si := 〈sji , sji+1, . . . , sji+1〉 (here we are using the fact that
the indexes ji are ordered). Then d1(sji , sji+1) ≤ �d1(Si). Since these subpaths
are disjoint pieces of S, we have

∑n
i=1 �d1(Si) ≤ �d1(S) = �dG

(S), so

�d1(T ) ≤ (1/c) (2n + �dG
(S)) ≤ 2n/c + K/c = n/(n + 1) + L < 1 + L

as desired. ��
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Fig. 3. Mapping an instance of rectilinear TSP (on the left) to grid STAR (on the
right). The marked points on the first grid are pis, which are mapped to the second
grid as cpi. The light blue area denotes the graph G. The red edges make up the set
X. (Color figure online)

3 An Approximation Algorithm for the General Case

Since STAR is a hard problem in regards to finding exact solutions, we investigate
approximation algorithms. We start by showing that the general version of the
problem is hard to approximate within a constant factor arbitrarily close to 1.
For this, we reduce from approximating the VERTEX COVER (VC) problem,
which is known to be APX-hard [8]. Given a simple graph G, VC asks for a
minimum cardinality vertex cover of G.

Theorem 2. For every α-approximation algorithm for STAR there is an α-
approximation algorithm for VC.
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Proof. Let ASTAR be an α-approximation algorithm for STAR. Given an input
graph G = (V,E), the approximation algorithm for VC proceeds as follows. If
E = ∅, return an empty set. If G is a star graph, return the central vertex.
Otherwise, every feasible vertex cover has two or more vertices. Consider the
instance I = (K(V ), E) of STAR, that is, a complete graph where the set of
customers are the edges of G. The algorithm computes S = ASTAR(I) and
outputs S as a set.

The algorithm is polynomial, since we can construct I in polynomial time.
Note that every cycle in K(V ) that covers E induces a vertex cover of G, and
therefore S is a feasible vertex cover of G. Reciprocally, every vertex cover of G
induces a cycle in K(V ) that covers E (by fixing any order among the vertices in
the cover), which implies that STAR∗(I) ≤ τ(G). Since S is an α-approximation,
we have |S| ≤ �(S) ≤ α STAR∗(I) ≤ α τ(G). ��

Dinur and Safra showed that it’s hard to approximate VC within a factor
1.3606 of optimal [8]. Thus, STAR is hard to approximate as well.

Corollary 3. It’s NP-hard to approximate STAR within a factor 1.3606 of opti-
mal.

Therefore, STAR doesn’t admit a PTAS unless P = NP, and thus the best
we can hope for is some constant-factor approximation algorithm. Indeed, we
now show that STAR admits one.

During the rest of this paper, we denote (G,X) an instance of STAR, and
write OPT := STAR∗(G,X). Recall that X = ∅.

Lemma 4. If G[X] is not a star graph, then OPT ≥ τ(G[X]).

Proof. Let S be an optimal solution of STAR. Since S covers X, we can extract
a vertex cover C of G[X] from the set of vertices of S. Since G[X] is not a star,
it’s easy to see that S has two or more vertices, and thus �(S) ≥ |C|. Hence,
OPT = �(S) ≥ |C| ≥ τ(G[X]). ��

From now on, we assume G[X] is not a star. It’s easy to both recognize a
star graph and, in that case, return the optimal solution (the central vertex of
the star) in polynomial time.

Lemma 5. Let C be a vertex cover of G[X]. Starting from a feasible solution T
of TSP for (C, dG) we can build, in polynomial time in G, a feasible solution S
of STAR for (G,X), such that �(S) = �dG

(T ).

Proof. Let T = 〈t1, . . . , tn, tn+1 = t1〉. Let Si be any shortest path between ti
and ti+1, in G. Consider the path S = S1 ◦ · · · ◦ Sn of G, which covers X, since
it traverses every vertex in C. This path can be computed in polynomial time,
since it’s the union of a polynomial number of shortest paths of G. We have
�(S) =

∑n
i=1 �(Si) =

∑n
i=1 dG(ti, ti+1) = �dG

(T ). ��
Recall the classic 2-approximation for VC, shown in Algorithm 1. We will

refer to it as the approximation via matching.
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Algorithm 1. VC 2-approximation via matching
Input: A simple graph G.
1: Compute any maximal matching M of G. Let M = {(u1, v1), . . . , (um, vm)}.
2: return {u1, . . . , um, v1, . . . , vm}

Theorem 6. Let C be a vertex cover of G[X], built with the approximation via
matching. Then TSP∗(C, dG) ≤ 3 OPT.

Proof. Let C = {u1, . . . , um, v1, . . . , vm}, such that each ei := (ui, vi) is an edge
of the maximal matching. Let S = 〈s1, . . . , sn, sn+1 = s1〉 be an optimal solution
of STAR for (G,X). The key observation is that since ei ∈ X, and S covers X, at
least one of ui or vi is in S. W.l.o.g., assume ui is in S. Hence, for each ui, there
exists an index 1 ≤ ji ≤ n such that ui = sji (we define jm+1 := j1). W.l.o.g.,
assume that j1 ≤ · · · ≤ jm, since otherwise we can rearrange the elements of C to
satisfy it. Given this ordering, consider T = 〈u1, v1, u2, v2, . . . , um, vm, um+1 =
u1〉, which is a feasible solution of TSP for (C, dG). It suffices to show that
�dG

(T ) ≤ 3 OPT. Figure 4 shows the sets and cycles defined so far.

u1 = sj1

v1

u2 = sj2 u3 = sj3 um = sjm

v2 v3 vm

. . .

Fig. 4. Relation between C, S, and T . The curly blue arrows denote S, and the green
arrows denote T . We do not show the edges that close the cycle. Also, S may contain
vis, but we don’t illustrate this. (Color figure online)

We have that

�dG
(T ) =

m∑

i=1

(dG(ui, vi) + dG(vi, ui+1)) =
m∑

i=1

(1 + dG(vi, ui+1))

Since dG is a metric, dG(vi, ui+1) ≤ dG(vi, ui) + dG(ui, ui+1) = 1 + dG(ui, ui+1).
Hence,

�dG
(T ) ≤

m∑

i=1

(2 + dG(ui, ui+1)) = 2m +
m∑

i=1

dG(ui, ui+1)

Recall that ui = sji for each i. Consider the subpaths Si := 〈sji , sji+1, . . . , sji+1〉.
Then, dG(ui, ui+1) = dG(sji , sji+1) ≤ �(Si), and therefore

�dG
(T ) ≤ 2m +

m∑

i=1

�(Si) ≤ 2m + �(S) = 2m + OPT

Since C is a 2-approximation, 2m = |C| ≤ 2 τ(G[X]). Finally, we use Lemma 4
to get |C| ≤ 2 OPT, and we arrive to the desired bound. ��
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The proposed approximation algorithm for STAR is shown in Algorithm 2.
Note that the instance (C, dG) of TSP that ATSP approximates is, indeed, a
metric instance, because dG is a metric.

Algorithm 2. Approximation algorithm for STAR
Input: An instance (G, X) of STAR.
1: Let AVC be the approximation via matching algorithm. Let ATSP be an approxi-

mation algorithm for metric TSP.
2: Compute C = AVC(G[X]).
3: Compute T = ATSP(C, dG).
4: Using T , build S as in Lemma 5.
5: return S

Theorem 7. If ATSP is an α-approximation algorithm for metric TSP, then
Algorithm 2 is a 3α-approximation algorithm for STAR.

Proof. The algorithm is polynomial, because each step is polynomial. The answer
S is a feasible solution of STAR, as stated in Lemma 5. Regarding the perfor-
mance guarantee,

�(S) = �dG
(T ) (Lemma 5)

≤ α TSP∗(C, dG) (ATSP is an α-approximation)
≤ 3α OPT (Theorem 6)

��
Using Christofides’ 3/2-approximation algorithm for metric TSP [3], we get

the following concrete algorithm.

Corollary 8. There is a 9/2-approximation algorithm for STAR.

If G is restricted to some subclass of graphs, we could use a more specific
approximation algorithm ATSP (one that doesn’t work for all metric instances),
and get a better approximation guarantee. For example, if G is a planar graph
(for instance, if G is a grid graph), then we can use a PTAS [12].

Corollary 9. For every constant ε > 0, there is a (3 + ε)-approximation algo-
rithm for planar instances of STAR.

4 An Approximation Algorithm for Grids Full of
Customers

A typical and desired case in the newspaper delivery business is having neigh-
borhoods full of customers. We model such a dense neighborhood with a grid
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graph, where almost every edge is in X. In this section, we propose a method to
approximate the optimal solution, tailored for this dense setting.

The key idea is that since almost every edge is in X, any feasible solution
will cover almost every edge of E. What if instead of covering just X, we cover
the whole set E? We show that if |E − X| = o(|E|), then there is such a näıve
tour that is guaranteed to have length at most a factor 3/2 + ε of the optimal,
for sufficiently large grids.

A cycle that covers every edge in a graph is somewhat similar to the concept
of space-filling curve. Mathematically, a space-filling curve is a curve whose range
contains a certain 2-dimensional area, for example the unit square. Space-filling
curves have been used before to compute tours for the TSP. In 1989, Platzman
and Bartholdi [15] proved that if we visit the vertices in the order given by
a specific space-filling curve, we get an O(log n)-approximation algorithm. In
the graph-theoretical setting of STAR, filling means to cover edges, but not
necessarily to visit every vertex. Our dense-case approximation can be thought
of as a space-filling cycle.

Before constructing this particular cycle we prove some auxiliary results that
will help us to analyze its performance.

Lemma 10. Let e be an edge of a graph G. Then τ(G) ≤ τ(G − e) + 1.

Proof. If we take any vertex cover of G− e and add one of the endpoints of e (if
not already in the vertex cover), we get a vertex cover of G. ��

In what follows, we will write X := E − X.

Lemma 11. Let (G,X) be an instance of STAR, such that G[X] is not a star
graph. Then τ(G) ≤ OPT + |X|.
Proof. If we repeatedly apply the previous lemma, each time subtracting a new
vertex of X, we get τ(G) ≤ τ(G − X) + |X| = τ(G[X]) + |X|. Using Lemma 4
we arrive to the desired inequality. ��

The proof plan is to construct a space-filling cycle, compare its length with
τ(G) and then use Lemma 11 to bound its performance. It will come in handy
to know the exact value of τ(G) when G is a grid graph.

Lemma 12. Let G be a grid graph with n rows and m columns. Then τ(G) =
�nm/2�.
Proof. (≤) Note that G is bipartite. Consider any bipartition of its vertices.
Both subsets of the partition are vertex covers, and since there are nm vertices
in total, one of them must have size at most �nm/2�.

(≥) We use the fact that the size of any matching is always less than or equal
to the size of any vertex cover. It suffices to exhibit a matching of size �nm/2�.
To build such a matching, we go over every other row, and for each one we take
every other horizontal edge. If m is odd, we also take every other vertical edge
of the last column. It’s clear that this is a matching, and it’s a matter of simple
algebra to verify that it has �nm/2� edges. ��
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We are ready to exhibit and analyze our space-filling cycle.

Theorem 13. There is an approximation algorithm for grid STAR that com-
putes solutions with length at most (3/2 + O(1/n + 1/m))(OPT + |X|), where n
and m are the number of rows and columns, respectively, of the input grid graph.

Proof. We introduce some terminology to describe the cycle. Enumerate the
grid’s rows from 1 to n, being 1 the uppermost row and n the lowest one. We
divide the grid into horizontal stripes, such that the i-th stripe, i ≥ 1, consists
of rows 2i − 1 and 2i. If n is odd, the last stripe is formed only by the last row.

First we sketch a high-level description. Starting from the upper left corner,
we will visit the stripes in order. Initially we move right, until we get to the right
border of the grid, the end of the first stripe. Then we go down to the second
stripe, and now move left until we get to the left border. Next we go down to
the third stripe. The process continues until we finish visiting the last stripe. If
the last one is a single row, we move in a straight line. Finally, we go back to
the starting position.

More specifically, on stripe i, for some odd i, we move from left to right fol-
lowing a square wave pattern, which we call period. A period is a sequence of
the following single-edge moves: down, right, right, up, right, right. This is illus-
trated in Fig. 5a. We repeat this sequence of moves until it’s no longer possible,
at the right border of the grid. At this point, we could be anywhere between the
beginning and the end of a period. In any case, we stop, and move exactly two
edges down. On stripe i+1 we move in the opposite direction, from right to left,
repeating the steps we did on stripe i, but in reverse order. When we get to the
left border, we go down two edges again, and we are ready to repeat the process.
When we reach the end of the grid, we close the cycle by adding a shortest path
to the initial vertex. An example of this construction is shown in Fig. 5b.

Fig. 5. (a) A period. (b) The tour for a 5 × 7 grid. The blue arrows show how each
stripe is traversed. The gray arrows show how the cycle goes from one stripe to the next
one. The path between the lower right corner and the upper left corner, that closes the
cycle, is not drawn for clarity. (Color figure online)
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Let C be this cycle. It’s easy to see that C covers each edge of G, and that
it can be computed in polynomial time. Our approximation algorithm simply
outputs C. We now show that �(C) ≤ (3/2 + O(1/n + 1/m))τ(G). By Lemma
11, this implies the desired bound.

Each of the �n/2� two-rows stripes contains m − 1 horizontal and �m/2�
vertical edges of C. To move between two consecutive two-rows stripes, C uses
exactly 2 edges. Additionally, if n is odd, the last stripe is a single row, and we
account m − 1 edges for moving along that row, plus 2 edges to move from the
previous stripe. Finally, we have at most n + m − 2 extra moves to go from the
last stripe to the initial position. Summing everything,

�(C) ≤ �n/2� (m − 1 + �m/2�) + (�n/2� − 1) 2 + (m − 1 + 2) + (n + m − 2)

The first term accounts for intra-stripes moves, the second for inter-stripes
moves, the third for a potential single-row stripe, and the last one for the cost
to go back to the initial position. A sloppy bounding of the floor and ceiling
functions yields

�(C) ≤ (n/2)(m − 1 + m/2 + 1) + 2(n/2 − 1) + (m + 1) + (n + m − 2)
= (3/2)(nm/2) + 2n + 2m − 3
≤ (3/2)τ(G) + 2n + 2m − 9/4
= (3/2 + O(1/m + 1/n))τ(G)

��
Corollary 14. There is an approximation algorithm for grid STAR such that
for every ε > 0, there exist positive numbers nε and mε such that the algorithm
computes solutions with length at most (3/2 + ε)(OPT + |X|), for every input
grid with n ≥ nε rows and m ≥ mε columns.

Recall that we are interested in the case where almost all edges belong to X,
that is, |E − X| = |X| = o(|E|). As we can see, the smaller the |X|, the better
the approximation, showing that the space-filling cycle is a promising strategy
for the dense readership case.

Theorem 15. There is an approximation algorithm for grid STAR such that
for every ε > 0, there exist positive numbers nε and mε such that the algorithm is
(3/2+ ε)-approximated, for every input grid with n ≥ nε rows, m ≥ mε columns
and |X| = o(|E|).
Proof. If G is a grid graph, then τ(G[X]) ≥ |X|/4, because a single vertex can
cover up to 4 edges. Hence, OPT ≥ τ(G[X]) = Ω(|X|).

Since |X| = o(|E|), we have |X| = Θ(|E|), and thus OPT = Ω(|X|) =
Ω(|E|). This in turn implies that |X| = o(OPT), which means that for all ε > 0
there exist positive integers nε, mε such that |X| < ε OPT for every n ≥ nε and
m ≥ mε.

Fix any ε > 0. Let ε1, ε2 > 0 be any two positive reals such that ε1+(3/2)ε2+
ε1ε2 ≤ ε. Instantiate Corollary 14 with ε1, and let nε1 and mε1 be the minimum



Star Routing: Between Vehicle Routing and Vertex Cover 535

numbers of rows and columns, respectively. Let nε2 ,mε2 be such that if n ≥ nε2

and m ≥ mε2 , then |X| < ε OPT.
Under these choices, if n ≥ nε = max{nε1 , nε2} and m ≥ mε =

max{mε1 ,mε2}, the performance guarantee is

(3/2 + ε1)(OPT + |X|) < (3/2 + ε1)(OPT + ε2OPT)
≤ (3/2 + ε1)(1 + ε2)OPT
= (3/2 + ε1 + (3/2)ε2 + ε1ε2)OPT
≤ (3/2 + ε)OPT

��

5 Open Questions

In this paper we only considered the unweighted case of STAR. If the input
graph has weights, the problem obviously remains hard, in terms of finding both
exact and approximate solutions. Unfortunately, for that case, the approximation
strategy we proposed in Theorem 7 is no longer useful, because if the vertex cover
is agnostic of the weights, then the constructed cycle may be forced to use heavy
edges, and therefore the output can be made arbitrarily longer than an optimal
solution. Is it possible to adapt the algorithm for the weighted case, or to devise
a different constant-factor approximation algorithm?

On a separate note, we showed that there cannot be a PTAS for STAR unless
P = NP. However, this doesn’t rule out the possibility of a PTAS for the grid
case, for which the best we have achieved is a (3/2+ε)-approximation algorithm
that only works for a proper subset of instances. Since the grid case is of practical
interest, it would be worthwhile to investigate this possibility.

Finally, the problem may be extended in natural ways, like using multiple
trucks or considering the time it takes the driver to carry newspapers to the
households.

Acknowledgements. Thanks to Mart́ın Farach-Colton for useful discussions and sug-
gestions about the presentation.
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Abstract. This paper investigates the impact that task difficulty and
crowd composition have on the success of the Wisdom of Artificial
Crowds metaheuristic. The metaheuristic, which is inspired by the wis-
dom of crowds phenomenon, combines the intelligence from a group of
optimization searches to form a new solution. Unfortunately, the aggre-
gate formed by the metaheuristic is not always better than the best
individual solution within the crowd, and little is known about the vari-
ables which maximize the metaheuristic’s success. Our study offers new
insights into the influential factors of artificial crowds and the collec-
tive intelligence of multiple optimization searches performed on the same
problem. The results show that favoring the opinions of experts (i.e., the
better searches) improves the chances of the metaheuristic succeeding by
more than 15% when compared to the traditional means of equal weight-
ing. Furthermore, weighting expertise was found to require smaller crowd
sizes for the metaheuristic to reach its peak chances of success. Finally,
crowd size was discovered to be a critical factor, especially as problem
complexity grows or average crowd expertise declines. However, crowd
size matters only up to a point, after which the probability of success
plateaus.

Keywords: Wisdom of crowds · Combinatorial optimization
Collective intelligence · Metaheuristic optimization · Crowd factors

1 Introduction

The phrase ‘wisdom of crowds’ refers to an observation popularized by
Surowiecki [13] who found that groups of people tend to be collectively smarter
than individuals, even experts. As a result, crowds are increasingly being used
to solve complex problems. For instance, crowds have been leveraged to produce
and test software, update Wikipedia content, make stock market predictions,
and generate new ideas for organizations [2,7,9,15].

Wisdom of Artificial Crowds (WoAC) is a metaheuristic that is related to
the original wisdom of crowds concept [19]. However, instead of applying to
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people, WoAC extracts the collective intelligence from a group of stochastic
and independent searches (e.g., multiple genetic algorithm searches) performed
on the same optimization problem. Because searches on NP-hard problems are
incomplete and indeterminate, multiple attempts on the same problem will tend
to converge to different solutions [20]. Similar to the approach used in the wisdom
of crowds, the metaheuristic considers popular choices within the crowd as wiser
options which should be incorporated into the group’s aggregate solution. The
goal of WoAC is to combine the intelligence from the group of independent
searches into a new solution that outperforms the best individual within the
crowd.

In order to apply WoAC in the most effective manner, it is critical to under-
stand the elements that interplay in its success. Therefore, in this paper, we
control and analyze the effect of dominant variables including expertise, crowd
size, and task difficulty on the metaheuristic’s probability of success.

Crowds in our study consisted of multiple searches generated by a genetic
algorithm on a combinatorial optimization problem. The optimization problem
used in our study was the Traveling Salesman Problem (TSP) [19]. We selected
the TSP and the genetic algorithm for our means of crowd generation and testing
because of their familiarity within the research community. Our intent is to
abstract the details associated with the TSP and genetic algorithm so that the
paper can focus on the crowd variables that influence the success of the WoAC
metaheuristic. It is worth emphasizing that our goal is not about how to best
solve the TSP, nor trying to beat the best-known solutions to the TSP. The
metaheuristic is applicable to other types of hard combinatorial optimization
problems where searches are stochastic and incomplete due to complexity. Rather
than focusing on the application of WoAC to a particular problem, we narrowed
the scope of the paper to identifying and analyzing the factors that affect crowd
success so that the metaheuristic can be more effectively applied in a range of
combinatorial optimization problems.

2 Related Work

Wisdom of crowds (WoC) has been applied to a number of applications involving
humans, and the results of several studies suggest that the input from experts
should be weighted more strongly for best performance. For instance, Velic et
al. applied WoC to stock market prediction and discovered that less knowledge-
able contributors sometimes negatively impact the input from highly experienced
experts due to the so-called groupthink phenomenon [15]. Moore and Clayton
used crowds of computer users to report suspected phishing websites and dis-
covered that mistakes tend to be repeatedly made by novices [10]. Welsh studied
WoC for aggregating people’s reviews of entertainment films and found that
success depends upon crowd diversity and expertise [18]. Especially in smaller
crowds, Welsh reported that it is better to weight the advice of experts to avoid
bias from the majority.

Other WoC studies investigated the impact of crowd size, expertise, and
task difficulty on the success of aggregating people’s opinions. Wagner and Suh
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subjected people to tasks such as guessing the temperatures and weights of
substances [17]; they found that group success depends upon task difficulty, and
the chances of success were best for tasks of medium difficulty. Additionally,
they discovered that crowd size matters, but within limits due to the balance
between diversity and similarity. Robert and Romero studied the effect of WoC
on the WikiProject community, and they found that larger crowd sizes tend
to have better performance when there is more diversity [12]. In a study using
crowds to forecast financial and political outcomes, Gracht et al. discovered that
weighting the input from each individual equally produced the best results given
the difficulty of assessing and forecasting human expertise [16].

In addition to the social settings above, the concept of exploiting collective
wisdom has also been applied in computer science. For instance, the outputs from
multiple machine learning algorithms are sometimes aggregated to improve pre-
diction accuracy using so-called ensemble techniques [5]. In terms of optimization
search algorithms, the WoAC metaheuristic has been employed in a number of
NP-hard problems, including games [1,3,6,10,11] and combinatorial optimiza-
tions [4,8,14,19,20]. However, all of the work dealing with WoAC primarily has
been a function of applying the metaheuristic to new types of problems, instead
of investigating the factors that make the aggregation method successful. Pre-
liminary research related to weighting expertise and varying the crowd size by
Lowrance et al. [8] is expanded in this paper by conducting more experiments
over a wider range of crowd sizes, as well as considering the impact of diversity
and task complexity.

3 Procedure for Generating and Aggregating Artificial
Crowds

3.1 Forming Crowds with Different Compositions

The TSP is an NP-hard problem in combinatorial optimization where the objec-
tive is to find the shortest route that allows a person to visit a set of cities once
and then return to the origin city [19]. The complexity of the TSP is correlated
to the number of cities and generally increases as the city count grows. Although
the TSP was used in our experiments, the WoAC metaheuristic can be applied
to other types of hard problems in combinatorial optimization.

A total of five TSP datasets were used in the evaluation, and each dataset
consisted of one of the following numbers of cities: 50, 75, 100, 125, or 150. The
coordinates of our datasets, as well as the best-known solutions, were generated
using the Concorde program [21]. A total of 10,000 trials were conducted by
testing the metaheuristic 2,000 times on each of the five TSP datasets.

Multiple searches using the same genetic algorithm were conducted during
each of the 10,000 trials in order to form crowds of potential solutions. The num-
ber of searches (i.e., crowd size) was varied from 10 to 200 in increments of 10,
and for each crowd step size, a total of 100 independent trials were executed for
statistical purposes. To speed up the generation of each crowd, multiprocessing
was leveraged to spawn concurrent searches.
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Crowd size was a directly controlled variable in the experiments. The levels
of expertise and diversity within the crowds were also varied, but indirectly as
a result of the same genetic algorithm working on different datasets of ranging
complexities. The genetic algorithm generally converged to solutions that were
less wise and more diverse when faced with increasingly complex datasets as
indicated in Table 1. The table shows statistics related to the mean crowd exper-
tise and diversity for the 2,000 trials conducted at each city size. We quantified
crowd expertise as the percent difference in fitness scores between the crowd
mean and the best-known solution to the dataset. To quantify the amount of
diversity in each crowd, we used a statistic referred to as Jaccard distance, which
measures dissimilarity among sets.

Table 1. Crowd statistics for each dataset

Cities in the TSP Mean (μ) percent
difference in fitness
(crowd mean to best
known)

Std. Deviation (σ) of
percent difference in
fitness (crowd mean
to best known)

Mean Jaccard
distance

50 13.68 0.72 0.38

75 15.51 0.63 0.40

100 17.26 0.59 0.42

125 19.50 0.60 0.42

150 21.83 0.57 0.45

We adopted the following method for calculating the Jaccard distance of
individual crowds. First, we started by finding the Jaccard index (similarity)
between every combinational pair of generic searches. The intersection between
two combinatorial graphs was found by counting the number of edges they shared
in common and then dividing by their union or the total number of edges used
by the pair. For a pair of graphs, x and y from two genetic searches, or members
within the crowd, we defined their Jaccard index to be

Jx,y =
|x ∩ y|
|x ∪ y| (1)

where the numerator is the total number of matching edges in the graphs x and
y, and the denominator is the number of unique edge combinations found in
the pair of graphs. A single statistic that captures the crowd’s mean diversity
(D), or Jaccard distance, was obtained by repeating the process of (1) for every
possible pair of graphs, |Pc|, within the crowd, and then taking one minus the
average Jaccard similarity:

D = 1 − 1
|Pc|

∑

(x,y)ε(Pc)

Jx,y (2)
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3.2 Extracting and Combining Wisdom from a Crowd of Searches

The first step of each experimental trial was to launch multiple instances of our
genetic algorithm in parallel so that a crowd of varying solutions to a TSP could
be formed. Once the searches converged, the WoAC metaheuristic operated on
the resulting graphs as a post-processing optimization step; the procedure built
a new solution to the problem using the wisdom gained from the crowd by adopt-
ing common edge selections to be a part of the aggregate. Once the combined
solution was formed, its fitness score was compared to the best individual in the
crowd to determine whether the heuristic was successful in surpassing the top
expert.

The aggregation process of WoAC is fully explained in [8] and was followed
in our experiments. As a synopsis of the process, the metaheuristic involves
traversing the graphs of each search (i.e., each crowd member) and updating a
master matrix that stores the frequency (count) that each edge combination was
selected by the crowd. According to the WoAC metaheuristic, edges with higher
counts in the matrix are incorporated into the aggregate that forms the crowd’s
solution to the problem.

For the TSP, the metaheuristic builds a new solution by choosing a starting
node and then using the counts in the matrix to find the crowd’s most popular
edge choice for this particular node. This process is repeated for every adjacent
node until the Hamiltonian cycle is complete. If a node is already in the newly
constructed path, then the next highest occurrence is selected and so on. It is
worth noting that the objective function (e.g., spatial information in the case of
the TSP) is only referenced if all options in the histogram have been exhausted,
meaning that the crowd’s preferred choices have already been selected as part
of the newly constructed graph. In this case, a greedy heuristic is used to find
the nearest node as the next destination based on the objective function. Two
other optimization heuristics are employed to improve the chances of WoAC
success: (1) the metaheuristic tries every node as the starting point, and (2) a
new Hamiltonian path is built after each crowd member (i.e., genetic algorithm
solution) is added to the edge frequency matrix. The latter step effectively varies
the crowd size up to the maximum number of searches collected. Ultimately, the
WoAC attempt that yields the lowest cost is chosen as the best crowd’s solution.

The traditional means of updating the WoAC matrix is to update the counts
in the matrix by one for each edge occurrence noted in the crowd of graphs.
We refer to this approach as the equal weighting method because each search
within the crowd has the same voting power regardless of fitness scores. Other
weighting schemes introduced in [8] include the linear and exponential weighting
methods. The general idea of these latter two schemes is to increase the weight
carried by the better searches (i.e., those with better relative fitness scores within
the crowd) so that their opinions are more strongly favored in the aggregation
process.

The weight assigned to a search affects the WoAC aggregation process by
changing the value added to each cell of the edge occurrence matrix. We nor-
malized the weights of each crowd member between 0 and 1 using feature scaling
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in the form of min-max normalization. For instance, assume that we have a crowd
of candidate solutions to a particular combinatorial optimization problem

c = {c1, c2, . . . , cn} (3)

where c is the cost vector (array) that contains the fitness scores associated with
each search and n is the total number of searches performed. We can rescale the
search scores using

ĉi =
ci − min(c)

max(c) − min(c)
(4)

where ĉi is the normalized score of the ith search in the crowd. The normalized
fitness levels produced by (4) are used in the linear weighting scheme according
to

wli = 1 − ĉi (5)

where wli is the linear weight assigned to the ith member in the crowd. The
scheme assigns the best search a count value of 1 to all its edge choices and the
worst crowd member a 0. All other searches are given weights (i.e., values to be
added to the WoAC matrix) that are linearly distributed between 0 and 1.

In the exponential weighting scheme, the values added to cells of the WoAC
matrix for a given search are determined by

wei
= e−(ĉi∗m) (6)

where wei
is the exponential weight assigned to the ith search and m is the

exponential decay constant that facilitates the mapping of the wei
to a range of

values between 1 to 0. In our study, we let m = 5 because it leads to (6) assigning
a weight of roughly 0 to the worst-performing search in the crowd. On the other
hand, (6) gives the search with the best fitness a weight of 1. The weights of all
other searches decay exponentially from 1 to 0 based on their normalized fitness
score defined in (4). Due to its exponential nature, this scheme more rapidly
diminishes the input of less-fit crowd members than the linear weighting method,
but at the cost of accepting less diversity in the aggregate WoAC solution.

4 Experimental Results: Identifying the Factors of Crowd
Success

4.1 Impact of Crowd Composition and Problem Complexity

Time and computational power are required to form artificial crowds using mul-
tiple instances of an evolutionary search on a complex problem. Therefore, it
would be more efficient to apply the metaheuristic using the smallest crowd that
yields the maximum likelihood of success. But to achieve this objective, a deeper
understanding of the predominant factors that impact the metaheuristic’s suc-
cess is necessary. For this purpose, we analyzed the data from our experiments
and found that the optimal crowd size is mostly dependent upon the problem’s
complexity and the crowd’s expertise.
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Fig. 1. Comparing metaheuristic success as a function of crowd size and multiple
datasets of varying complexity.

Figure 1 is the first example that shows the interplay of these variables on
the probability of the metaheuristic succeeding when the input from each search
is given equal weight in forming the aggregate. For all of our plots, we defined
success to be when the WoAC metaheuristic formed a solution with a fitness
score superior to the best individual in the crowd. The left-half of the figure
(crowd sizes <100) indicates that more complex problems require larger crowds
in order to achieve commensurate levels of success. We attribute this observation
to the following two causes: (1) the average expertise within a given crowd size
decreased as problem complexity grew (see the second column in Table 1), and
(2) the average diversity within a given crowd increased as problem complexity
grew (see the last column in Table 1). As a result of these factors, larger crowd
sizes were required to mitigate the shortcomings of having less knowledgeable
populations and less consensus.

There are other noteworthy observations from Fig. 1. First, there appears
to be an optimal crowd size for the city sizes of 50 and 100. For both of these
datasets, the average success of the metaheuristic began to plateau and dete-
riorate slightly. This observation can be attributed to there being a limit to
the amount of wisdom that can be extracted from the crowd. Additionally, as
a crowd size grows, the novel ideas of the top-performing searches tend to be
suppressed by the lesser-fit majority when each member gets an equal vote. We
attribute this ‘crowding out ’ effect as the significant drawback associated with
the equal-weighting scheme.

Another observation in Fig. 1 is that the dataset of 150 cities eventually
trended to higher levels of success than the smaller, less complex datasets when
the crowd size was sufficiently large (>170). We attribute this result to the
nature of each crowd’s position relative to their respective best-known solutions.
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For example, according to Table 1, the crowd average fitness for the TSP with 150
cities was weaker (i.e., farther from the best-known solution) when compared to
the smaller TSPs. As a result, the trials operating on the 150 dataset had a some-
what easier task of succeeding because there generally existed more edge combi-
nations that could have led to success than those which worked on the smaller
datasets. However, the pool of searches performed on the 150 TSP typically pos-
sessed less collective wisdom than the crowds formed using the other datasets,
and consequently, the 150 TSP usually required larger crowd sizes to achieve a
commensurate or higher success rate. We refer to this crowd phenomenon as the
Crowd Fitness Effect (CFE), which can cause more complex problems to yield
higher levels of success than simpler problems counterintuitively. In other words,
the CFE implies that the success of the metaheuristic is a function of
the crowd’s fitness relative to the problem’s global optimum.
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Fig. 2. Comparing metaheuristic success as a function of crowd size and the mean
difference between the crowd’s average fitness score and the best-known solution. The
line plots are based on all dataset trials.

To analyze the CFE further, all 10,000 trials were divided into two groups
depending upon whether the crowd’s mean fitness level was less or greater than
15% from the best-known solution. Figure 2 shows that knowledgeable crowds
closer to the global optimum generally require a smaller crowd size before reach-
ing a peak rate of success and plateauing. For instance, the average success rate
of wiser crowds (those <= 15% from the best-known) is shown in the figure to
plateau at a crowd size of approximately 40. On the other hand, less knowl-
edgeable crowds (those >15% from best-known) required a larger crowd size of
roughly 130 before plateauing. Additionally, there is a crossover point in Fig. 2,
similar to the one in Fig. 1, where groups that were farther from the global opti-
mum began to achieve higher success rates at sufficiently large crowd sizes. In
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general, the plot shows that the metaheuristic requires larger crowds to
achieve peak success when the pool of searches are less fit.

4.2 Impact of Weighting Expertise

The effects of weighting individual solutions based on their fitness scores can
be seen graphically in Fig. 3. The plot shows the mean success rate for the
aforementioned weighting methods as a function of crowd size. The exponential
weighting method consistently achieved the highest levels of success, followed
by the linear method, and lastly by the equal voting method. In summary and
consistent with the findings in [8], weighting the input of better searches
more strongly increases the likelihood of metaheuristic succeeding, in
part because it mitigates the chances that the expertise from these standout
searches will be overshadowed or ‘crowded out’ by the majority that tends to be
less fit.
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Fig. 3. Comparing metaheuristic success as a function of crowd size and different means
of weighting expertise. The line plots are based on all dataset trials.

To statistically quantify the mean difference between the weighting methods,
paired t-tests were performed as summarized in Table 2. The statistics are based
on all 10,000 trials conducted at different crowd and city sizes. This table shows
the mean chances of success for the exponential method to be higher than 6%
when compared to the linear method and more than 15% when compared to the
equal vote method.

Another aspect affecting the metaheuristic is the cost difference between
the best individual in the crowd to the best-known solution, as opposed to the
crowd’s average fitness relative to the best-known. Intuitively, when the fitness of
the best individual in the crowd is near the global optimum, then the task of the
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Table 2. Paired t-tests comparing weighting techniques

Null hypothesis Test decision 95% Confidence p-value

μ1 − μ2 = 0 Rejected (0.063, 0.084) 3.55x10−43

μ1 − μ3 = 0 Rejected (0.151, 0.173) 4.37x10−174

μ1 = exponential μ2 = linear μ3 = equal

metaheuristic succeeding becomes more difficult. Figure 4 illustrates this effect,
as well as the impact of weighting expertise, on the chances of the metaheuristic
surpassing the best individual fitness score.
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Fig. 4. Comparing metaheuristic success as a function of crowd size and different means
of weighting expertise. The line plots are based on all dataset trials.

Both weighting methods shown in Fig. 4 indicate that there is a peak when
the metaheuristic is most effective. The chances of succeeding were highest when
the fitness of the best individual in the crowd was somewhat farther from the
best-known solution. However, away from this point, the probability of success
decreased either because the task of surpassing the best individual became more
challenging (left side of plot) or the crowd became less knowledgeable (right side
of plot).

In terms of the impact of weighting expertise, the following observations can
be made: (1) the exponential weighting method shows an earlier peak which
implies that it favors the presence of stronger expertise, whereas the equal
method works best when the strongest individual is of moderate expertise and
(2) the margin of difference between the weighting techniques is largest near
the extremes which implies that the exponential method is less sensitive to the
expertise level of the best individual.
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Fig. 5. Comparing metaheuristic success as a function of crowd size, weighting tech-
nique, and cost difference to the best-known solution. Both plots are based on all
dataset trials.

Figure 5 continues to investigate the impact that the top expert, as well as the
weighting technique, has on the metaheuristic’s success rate; however, in these
plots, crowd size was the independent variable. In the equal-weighting subplot of
5(a), the average success rate plateaued at a smaller crowd size (>40) when there
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existed an expert in the crowd which was near (within 5% of) the best-known
solution. On the other hand, for less knowledgeable crowds (i.e., best individual
>5% from best-known), the success rate went higher and then started to plateau
at a larger crowd size (>100) due to the aforementioned discussion about the
CFE.

Figure 5(b) shows a more rapid increase in success for the exponential method
before it plateaued at a higher level of success than the equal-weight method.
Additionally, this subplot reveals a less pronounced difference in the chances of
success between the crowd types. In other words, these results indicate that the
exponential weighting method does a better job leveraging the expertise from
wiser searches to achieve higher rates of success at smaller crowd sizes and on a
more consistent basis regardless of the best individual’s fitness.

5 Conclusions and Future Work

This paper investigated the variables that influence whether the WoAC meta-
heuristic is able to find a superior solution that outperforms the best expert in a
crowd of incomplete optimization searches. We found that the crowd’s expertise
level, which is dependent upon the problem’s complexity, to be a critical factor.
Additionally, we discovered the optimal crowd size that maximizes success to be
a function of the crowd’s expertise (i.e., search fitness levels). Less knowledge-
able crowds (less fit searches) require larger crowds for peak performance, but
eventually the probability of success plateaus a level that is dependent upon the
crowd’s fitness with respect to the global optimum. Finally, we investigated the
effectiveness of weighting the input of individual searches to the aggregate based
on their fitness. The results showed that biasing the voting power of searches
according to an exponential weighting function led to higher rates of success at
smaller crowd sizes when compared to the traditional means of equal weighting.

Future work related to improving the effectiveness of the metaheuristic could
further explore the impact of crowd diversity. For example, instead of using the
same genetic algorithm to form the crowd, properties associated with the algo-
rithm, such as its selection and mutation methods, could be modified between
each individual search in order to create more diversity within the crowd. Alter-
natively, different stochastic search methods could be used as well to produce
a broader assortment of search results. Either method should produce a wider
range of diversity that could be effectively controlled and analyzed for its impact
on the success of the metaheuristic.
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Abstract. Sorting is studied in this paper as an archetypal example to
explore the optimizing power of consensus. In conceptualizing the consen-
sus sort, the classical hill-climbing method of optimization is paired with
the modern notion that value and fitness can be judged by data mining.
Consensus sorting is a randomized sorting algorithm which is based on
randomly selecting pairs of elements within an unsorted list (expressed in
this paper as a permutation), and deciding whether to swap them based
on appeals to a database of other permutations. The permutations in
the database are all scored via some adaptive sorting metric, and the
decision to swap depends on whether the database consensus suggests
a better score as a result of swapping. This uninformed search process
does not require the definition of the concept of sorting, but rather a
depends on selecting a metric which does a good job of distinguishing a
good path to the goal, a sorted list. A previous paper has shown that
the ability of the algorithm to converge on the goal depends strongly on
the metric which is used, and analyzed the performance of the algorithm
when number of inversions was used as a metric. This paper continues by
analyzing the performance of a much more efficient metric, the number
of cycles in the permutation.

Keywords: Adaptive sorting · Randomized algorithms
Uninformed search · Combinatorics · Simulation and modeling

1 Introduction

Hill-climbing is a well-known, fundamental approach to solving optimization
problems. Likewise, a fundamental approach to solving search problems can be
realized if value can be expressed in terms of reachability or distance to the
goal. This paper studies sorting as a search problem, but sorting is only used
here as an archetypal example to explore the optimizing power of consensus.
The optimization used here advances the notion of hill-climbing by drawing its
fitness scores from comparisons against an external body of data, thus applying
the modern notion that data mining can be used to judge value and fitness.

Consensus sorting, introduced in [1], is a randomized sorting algorithm in
which pairs of elements are selected at random, and swapped if a certain condi-
tion is satisfied. The decision to swap is not based on the definition of sorting,
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but rather on an appeal to a consensus from a permutation database. Every
permutation in the database has an associated score, and depending whether
the scores are on average better when the chosen pair of elements is swapped or
remains the same (see Fig. 1), the decision is made. The process is repeated for as
long as reasonable progress towards the goal state (a sorted array) is being made.
Thus, the ability to sort depends on using a scoring metric which is effective in
guiding sorting decisions.

X Y

i j

X Y

X Y

X Y

µM

Y X

Y X

Y X

Y X

µR

Fig. 1. A consensus swapping decision. Elements X and Y at positions i and j are
selected at random. One group in the database is formed from all permutations match-
ing X and Y , and another group is formed from all permutations matching Y and X.
The mean scores of the two groups, µM and µR, are compared to find out whether to
swap.

It makes sense that metrics which incorporate some notion of “sortedness”
will be more likely to produce a sorted array. It turns out, however, that this
is not enough, and that out of a number of sensible scoring metrics taken from
the adaptive sorting literature [2], only a couple were found to make reasonable
progress towards producing a sorted array [1]. Table 1 shows a comparison of the
sorting effectiveness of various metrics, expressed in terms of the average percent
improvement in score over the array’s initial score. The meaning of each metric
in the table is briefly described below.

1. The cycle count subtracts the number of cycles from the total number of
elements.

2. The number of inversions metric counts the number of pairs of elements which
are out of order with respect to one another.

3. The minimum number of ascending subsequences is the smallest number of
subsequences of the sequence such that all subsequences are ascending.

4. The largest distance between element and correct slot is the largest magnitude
difference between an element’s index and it’s correct index.
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5. The size of the largest inversion measures the largest magnitude difference
between the indices of a pair of inverted elements.

6. The minimum number of removals for a sorted subsequence counts the small-
est number of removals it would take to procude a sorted subsequence.

7. The number of runs counts the number of elements which are out order
relative to the preceeding element in the array.

Table 1. A comparison of the performance of the consensus sorting algorithm under
a number of different adaptive sorting method. The score improvement data shown
here is taken from the original study [1]. It represents the amount of improvement on
average over the initial score, over 50 runs using a permutation length of 100 and a
database size of 1,000,000.

Metric Score improvement

Reverse cycle count 98.8%

Number of inversions 48.2%

Minimum number of ascending subsequences 12.6%

Largest distance between element and correct slot 7.26%

Size of the largest inversion 3.43%

Minimum number of removals for a sorted subsequence 1.41%

Number of runs −2.00%

At this point, one thing should be noted about the consensus sorting algo-
rithm. It is not by any means an efficient sorting algorithm, and it will require far
more iterations than a typical comparison-based sort before converging. Further-
more, as can be seen from the table, the result of sorting is typically not a fully
sorted array. The performance depends on several factors, including database
size, database quality, permutation size, and sorting metric. Only one of the
metrics shown in the list has any likelihood of producing a fully sorted result for
a reasonably sized array.

The reason that such an imperfect sorting algorithm may be of interest is
that it models a type of uninformed search. Consider a search problem in which
one is given a starting state based on currently known information, and a well-
defined goal state. One is also provided with a large set of data elements relevant
to the problem, which may be used in the search for the goal. However, assume
that the understanding of or ability to determine the goal state is limited, and
thus progress towards the goal must be inferred from the data. Thus, the steps
towards the goal are made through appeals to the data set.

Since the sense of position is derived from the database, it is of interest how
close one can come to the goal via this process. Alternatively, a negative phrasing
can be used: will successive appeals to the large data set bias the result towards
some particular set of values?
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As an example, consider the case where one has a photo, and wants to deter-
mine the location where the photo was taken. The state is a set of potential
location of the photo, which has a starting state that includes the entire world,
and a goal state which is the location where the photo was taken. Each move-
ment towards the goal is a refinement of the set of location, by comparing the
image for similarity against a large database of images from around the world.
This general approach was implemented in the Im2gps algorithm presented by
Hays and Efros [5].

The form of the search is evident in web and social media searches, where
where a particular user seeks a subset of the available data which is relevant
to their interests. They may not know in advance what their goal looks like,
but they have access to a large body of data to assist in their search. In gen-
eral, increased use of information sharing through Cloud computing has led to
increased volumes of available data [4]. Data available on the Cloud tend to have
decreasing informational value density but increasing overall value [6], and may
have restriction on the nature of access to the available data. Thus, a user may
find themselves in a position of seeking a method which best leverages the value
of the data available on the Cloud. The rapid growth of social media services has
made it more complex to retrieve desired data, and social media searches have
been studied intensively [8]. Personalized search is a concept which has been
introduced due to the fact that, within a broad search category, different users
may have differing specific goals [7].

The consensus sorting algorithm considered in this paper is an abstract ver-
sion of the problem. This is done for the sake of focusing on the mathematics
of the analysis of the behavior as the state approaches the goal state. The for-
mulation considered here is a randomized sorting algorithm, where the state
is a permutation, and the goal state is the identity permutation, representing
a sorted array. Each movement step involves the selection of elements and the
decision whether or not to swap by comparing against the database consensus.
As stated previously, the quality of the sort depends on the scoring metric used
to mediate swapping decisions.

The metrics of interest are the top two from Table 1, the reverse cycle count-
ing metric (which will be referred to simply as the cycle metric) and the number
of inversions metric, due to their relative effectiveness in sorting compared to
the others. The inversion metric is studied in detail in [1]. This paper will focus
on the cycle metric.

2 Consensus Sorting Algorithm

From the original paper [1], the consensus sorting algorithm is defined as follows.
Assume that the input array is a permutation π ∈ Sn with a length of n. Thus,
array and permutation may be used synonymously here. A permutation database
D is given as a collection of permutations of length n. Also given is a scoring
function

φ : Sn → N0.
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The function φ must satisfy the condition that a result of zero uniquely cor-
responds to a fully sorted array (an identity permutation), while lower scores
should generally correspond to greater degrees of “sortedness.”

A consensus swapping function is a function

Fφ,D : Z × Z × Sn → Sn.

The function takes as input indices i and j, as well as a permutation πa. The
output is the subsequent permutation πa+1, as given in (3) below.

Let CM be the collection of all permutations from D which match πa at
positions i and j, and let CR be the collection of all permutations from D which
have the same elements as πa in positions i and j, but in reverse order. Then
μM and μR are the mean scores of CM and CR, respectively. Thus,

μM =
1

|CM | ·
∑

π∈CM

φ(π) (1)

μR =
1

|CR| ·
∑

π∈CR

φ(π) (2)

Fφ,D(i, j, πa) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

πa if μM or μR is undefined,

or μM ≤ μR,

or i = j,

(i j) · πa otherwise.

(3)

The (i j) · πa in (3) denotes that the elements at indices i and j in πa are
swapped. Let π1 = π be the initial permutation. At each iteration a, a pair of
distinct indices i, j are selected from the array at random. And the consensus
swapping function is used to compute πa+1 from πa. The algorithm terminates
when it is deemed that progress is no longer being made.

3 Perfect Sorting

An ideal database is a database in which every permutation of length n is repre-
sented a nonzero equal number of times. For simplicity’s sake, one can assume
that an ideal database contains exactly one instance of every possible permuta-
tion of length n. An ideal database is denoted by DI .

When a sorting decision for a given database differs from that of an ideal
database, the decision is referred to as a sorting error, even if the error results
in an improvement in score.

A perfect sort is an execution of the consensus sort which reaches the goal
state of a fully sorted array. Typically, a perfect sort can only be assured in
cases in which an ideal database is used, otherwise sorting errors may arise and
prevent the achievement of the goal state. An observation can be made about
the sorting capability of a scoring metric, regardless of the nature of the metric.
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Theorem 1. Suppose that

φ (Fφ,D(i, j, π)) ≤ φ(π), (4)

for some scoring metric φ and database D, and for any legal values of i, j, and π.
In other words, the score is monotonically non-increasing as a result of iterating
the consensus sorting algorithm. If every non-sorted array has some legal choice
of i and j such that

φ (Fφ,D(i, j, π)) �= φ(π), (5)

then the algorithm will produce a fully sorted array with probability approaching
1 as the number of iterations of the algorithm increases without bound.

Proof. The set of possible scores produced by φ is finite, due to the finite number
of permutations of size n, and has a lower bound of 0, which is achieved only
when the array is fully sorted. Score is non-increasing, which means that once
the score has changed, it will never return to the same score again. Therefore,
there can be at most a finite number of score changes due to iteration of the
algorithm.

If the algorithm does not result in a fully sorted array, then it must eventually
yield a member of some subset M ⊂ Sn of permutations which each have the
same score s > 0, such that no amount of additional iterations will yield a
permutation with a score less than s.

However, regardless of the π ∈ M , it is a given that there must exist at least
one choice of i and j which will result in a reduction in score, and no choice of
elements which will increase the score. If 0 < p < 1 is the chance of picking one
particular i,j pair, it follows that the chance of selecting a score-reducing pair of
elements is at least p. Thus, k iterations of the algorithm would have a chance
of at least

p · 1 − (1 − p)k+1

1 − (1 − p)
= 1 − (1 − p)k+1

of selecting a score-reducing pair of elements. As k increases without bound, this
probability approaches 1, contradicting the supposition that a fully sorted array
will not be the eventual result. ��

The theoretical guarantee of a sorted array from Theorem 1 applies mostly
to situations when an ideal database is used, because if a randomly selected
database is used, it is unlikely that the conditions of Theorem 1 will hold. How-
ever, if an ideal database is used, the scoring function of the inversion and cycle
metrics will produce monotonically non-increasing results, and a score-reducing
selection always exists for arrays which are not fully sorted. Thus, both metrics
will theoretically produce sorted arrays in the ideal case.

4 Breakdown of Cyclical Cases

Assume that the metric used to score permutations is the reverse cycle metric
(which will simply be called the cycle metric), defined as follows. Let π be a
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permutation of length n containing c cycles. The reverse cycle metric is given by

φ(π) = n − c. (6)

Thus, when a permutation is in order, all cycles are 1-cycles, so its score is zero.
Higher scores correspond to lesser sortedness.

Lemma 1. If two distinct indices are part of the same cycle, then swapping
them will result in them being part of two different cycles, and if they are part
of different cycles, swapping them will merge their cycles.

Proof. Suppose that i and j are part of the same cycle of length k. And suppose
the indices that comprise the cycle can be represented in order as m0 → m1 →
· · · → mk, where m0 = mk = i. Thus, since i and j are distinct, there must be
some integer x, with 0 < x < k, such that mx = j. By swapping i and j, mx

would then point to m1, resulting in the cycle mx → m1 → · · · → mx ,which
does not include either m0 or mk. Index m0 would point to mx+1, resulting in
a cycle containing the remaining elements of the original cycle. Therefore the i
and j positions are no longer part of the same cycle, but rather two different
cycles.

Now suppose that i is part of a cycle of length k, and that m0, . . . mk are
defined as before, but that j is part of a different cycle of length l. Similarly,
let j’s cycle contain n0, . . . nl. Swapping i and j will cause m0 to point to n1

and n0 to point to m1, while keeping the remaining elements intact. Thus, after
swapping they form a single cycle. ��

A corollary to Lemma 1 is that any swap of elements will alter the score of
the permutation by 1, using the cycle metric. The change will be an improvement
if a cycle is broken in two, and a degradation if a pair of cycles are merged into
one.

The algorithm’s decision whether or not to swap is slightly more complex.
It shall be approached by analyzing cases. For a permutation π of length n, let
s = φ(π) be the score, c(π) (or simply c) be the number of cycles, and ck(π) (or
simply ck) be the number of cycles of length k in π. By (6), s = n − c, and thus
c = n − s. Given a pair of distinct indices i and j, the possible cases which they
may belong to are broken down in Table 2.

Proposition 1. The number of choices of i and j which result in a case (1/1)
selection is

c1(c1 − 1). (7)

Proof. Since both i and j must be 1-cycles, i must be selected among the c1
1-cycles, and j must be selected among the remaining c1 − 1 1-cycles. The total
is the product of the two. ��
Proposition 2. The number of choices of i and j which result in a case (1/2+)
selection is

2c1(n − c1). (8)
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Table 2. A breakdown of the ways to select a pair of distinct indices i and j from a
permutation. The set of cases shown here is exhaustive.

Case Description

Case (1/1) Both i and j are 1-cycles

Case (1/2+) Either i or j is a 1-cycle, while the other is part of a longer cycle

Case (2+/2+) i and j are members of different cycles of length greater than 1

Case (2) i and j share a 2-cycle

Case (3+) i and j are consecutive members of a cycle, but not a 2-cycle

Case (2+2+) Both i and j are members of the same cycle, but not consecutive

Proof. There are c1 elements which are 1-cycles, and n − c1 elements which are
not members of 1-cycles, and are thus members of longer cycles. Either i is the
1-cycle and j is a member of a longer cycle, or j is the 1-cycle and i is a member
of a longer cycle. In either case, one is selected from the first group of c1 elements,
and the other is selected from the second group of n − c1 elements. The total,
considering both roles of i and j, is

c1(n − c1) + (n − c1)c1 = 2c1(n − c1).

��
Proposition 3. The number of choices of i and j which result in a case (2+/2+)
selection is

n∑

k=2

(kck)(n − c1 − k). (9)

Proof. Begin by selecting i as a member of a cycle of length greater than 1. That
means that for every cycle length k ≥ 2, there are k elements from each of ck

cycles to select from. After i has been selected, j must be selected from one of
the remaining n elements, excluding the c1 elements which are 1-cycles and the
k elements which are members of the same cycle as i. Thus, the total comes
from summing the product of number of ways to select i, which is (kck), with
the number of ways to select j, which is (n − c1 − k), over all k ≥ 2. ��
Proposition 4. The number of choices of i and j which result in a case (2)
selection is

2c2. (10)

Proof. There are c2 2-cycles in a permutation. Since each 2-cycle contains two
elements, there are a total of 2c2 elements which are members of 2-cycles. i can
be selected as any of those 2c2 indices, but the selection of i uniquely determines
the selection of j as the other member of the selected cycle. ��
Proposition 5. The number of choices of i and j which result in a case (3+)
selection is

2(n − c1 − 2c2). (11)
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Proof. Select i as a member of a cycle of length greater than 2. Since there
are c1 elements in 1-cycles and 2c2 elements in 2-cycles, the number of possible
selections of i is n − c1 − 2c2. After i has been selected, j can be selected as the
index either before or after i in the cycle, resulting in 2 possible selections. The
total is the product of the two, 2(n − c1 − 2c2). ��
Proposition 6. The number of choices of i and j which result in a case (2+2+)
selection is

n∑

k=4

(kck)(k − 3). (12)

Proof. If i and j are members of the same cycle, but not consecutive members,
then the length of the cycle must be at least 4. Select i as a member of a cycle
whose length is at least 4. For every cycle length k ≥ 4, there are k elements from
each of ck which may be selected. Once i has been selected, j can be selected
as one of the k members of the same cycle, excluding i and the members which
immediately precede and succeed i in the cycle. Thus, the total comes from
summing the product of number of ways to select i, which is (kck), with the
number of ways to select j, which is (k − 3), over all k ≥ 4. ��

Case (1/1), case (1/2+), and case (2+/2+) shall be referred to as complements
of case (2), case (3+), and case (2+2+), respectively.

Remark 1. Swapping i and j will swap between a case and its complement case.

Remark 2. Since the set of elements in a permutation is partitioned into cycles,
and since each of the ck k-cycles contains k elements, it follows that

n∑

k=1

kck = n. (13)

Remark 3. Since there are n(n − 1) ways to select two distinct elements from a
permutation of length n, the sum of the number of selections from each of the
six cases as given by (7), (8), (9), (10), (11), and (12) will be

n(n − 1). (14)

Remark 4. The number of permutations of length n containing c cycles is given
by the unsigned Stirling number of the first kind. Since the score of a permutation
is defined as s = n − c, it follows that the number of permutations with a given
score s is: [

n
n − s

]
(15)

Proposition 7. The total number of k-cycles over all permutations of length n
with c cycles is given by

∑

π∈Cs,n

ck(π) =
n!

k(n − k)!

[
n − k
c − 1

]
(16)
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Proof. The proof shall be approached by using exponential generating functions
(EGFs)[3] to count the number of cycles of a given length over all permutations
of size n and total number of cycles c. For a given k, begin by defining a labeled
combinatorial class of permutations, Pc,k. Every object in class Pc,k is a permu-
tation which has c cycles, and has one particular cycle of length k selected. Thus,
the total number of cycles of length k among all permutations with c cycles and
n elements is equal to the total number of objects of size n in Pc,k.

Since every object in Pc,k has c cycles, the class can be constructed by first
selecting a cycle of length k, then selecting a set of c − 1 additional arbitrary-
sized cycles. The construction uses the atomic object A which has size 1, the
cycle construction CY C which constructs a cycle of arbitrary size, the m-cycle
construction CY Cm which constructs a cycle of length m, the m-set construction
SETm which constructs m sets, and the labeled product ∗ which convolves two
classes. See Table 3 for how each of these constructions translate into EGFs.

Table 3. Exponential generating functions for the required combinatorial class con-
structions

Name Construction Exponential generating function

Atom B = A B(z) = z

Cycle B = CY C(C) B(z) = ln 1
1−C(z)

m-Cycle B = CY Cm(C) B(z) = 1
m
C(z)m

m-Set B = SETm(C) B(z) = 1
m!

C(z)m

Labeled product B = C ∗ D B(z) = C(z) · D(z)

Thus, constructing the combinatorial class and using it to determine the
corresponding EGF gives

Pc,k
∼= CY Ck(A) ∗ SETc−1(CY C(A)) (17)

Pc,k(z) =
zk

k

1
(c − 1)!

(
ln

1
1 − z

)c−1

(18)

The EGF in (18) can then be used to sum ck over all permutations with a
given score.

∑

π∈Cs,n

ck(π) = n![zn]Pc,k(z)

= n![zn]
zk

k

1
(c − 1)!

(
ln

1
1 − z

)c−1

=
n!
k

[zn−k]
1

(c − 1)!

(
ln

1
1 − z

)c−1
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=
n!

k(n − k)!
[zn−k]

(n − k)!
(c − 1)!

(
ln

1
1 − z

)c−1

=
n!

k(n − k)!

[
n − k
c − 1

]
(19)

The final step in (19) uses the fact [3] that
[
m
r

]
=

m!
r!

[zm]
(

ln
1

1 − z

)r

. (20)

��

5 Perfect Sorting with the Cycle Metric

Lemma 2. If indices i and j in permutation π are fixed to give a case (1/1),
case (1/2+), case (2), or case (3+) selection, then any permutation π′ of the
same length, with π(i) = π′(i) and π(j) = π′(j), will be the same case.

Proof. The proof follows trivially from the fact that a 1-cycle at i or j is a 1-cycle
in both π and π′, and a cycle containing both i and j in consecutive order does
so in both π and π′. ��
Lemma 3. Suppose that indices i and j are selected to give a case (1/1), case
(1/2+), case (2), or case (3+) selection. Then the consensus sorting algorithm
with an ideal database and cycle metric will make the decision which leads to the
greatest improvement in score, which will be to swap in case (2) and case (3+),
and to do nothing in case (1/1) and (1/2+).

Proof. Consider a permutation π′ of length n, with π′(i) at index i and π′(j)
at j. Then the selection of i and j in π′ represents the same case as the same
selection in π, by Lemma 2. By Lemma 1, if π contains a 1-cycle at i or j, then
swapping i and j in π′ must degrade the score of π′ by 1. Likewise, if π does
not contain a 1-cycle at either i or j, then swapping i and j in π′ must create a
1-cycle, and thus improve the score by 1.

Thus, for case (2) and case (3+), every matching permutation (see Fig. 1)
πM ∈ DI has a corresponding permutation πR ∈ DI with i and j reversed,
where

φ(πM ) − 1 = φ(πR).

Likewise, for case (1/1) and case (1/2+), every matching permutation πM ∈ DI

has a corresponding permutation πR ∈ DI with i and j reversed, where

φ(πM ) + 1 = φ(πR).

Therefore, case (2) and case (3+) will result in a swap, whereas case (1/1)
and case (1/2+) will result in no swap. ��
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Lemma 4. Suppose that indices i and j are selected to give a case (2+/2+) or
a case (2+2+) selection. Then the consensus sorting algorithm with an ideal
database and cycle metric will make the decision not to swap, regardless of
whether a swap would improve the score.

Proof. Given any matching permutation πM ∈ DI , the members i and j are
followed by i′ and j′, respectively. Construct a permutation πR ∈ DI from πM as
follows. First, swap the elements at i and j, resulting in a reversed permutation,
and then swap the elements at i′ and j′, giving the result

πR = (i′j′) · (ij) · πM .

If i and j were originally part of the same cycle, then the first swap creates
a cycle, and the second swap re-merges the cycles. Likewise, if i and j were
originally part of different cycles, then the first swap merges the cycles and the
second swap creates a cycle.

Thus, there is a one-to-one correspondence between matching permutations
πM ∈ DI and reversed permutations πR ∈ DI , such that both permutations
in the pair have the same score. Therefore, the consensus sorting algorithm
would not be able to decide between swapping and not, and will not swap by
default. ��
Proposition 8. The cycle metric together with an ideal database will fully sort
an array with probability approaching 1, allowing for an unbounded number of
consensus sorting iterations.

Proof. Lemmas 3 and 4 demonstrate that only case (2) and case (3+) will take
part in a swap, if an ideal database is used, and in either of those two cases,
the score will be reduced. Furthermore, any array which is not fully sorted must
contain at least one cycle which is not a 1-cycle. Therefore, it is possible to
select a pair of indices i and j which are consecutive members of the same cycle,
making i and j a case (2) or case (3+) selection. Therefore there would exist a
score-reducing choice of elements.

Since both conditions of Theorem 1 are satisfied, the array is expected to be
fully sorted with probability approaching 1. ��
Remark 5. If an error occurs, there will be a relative degradation of score by 1
due to noise in case (1/1), case (1/2+), case (2+/2+), case (2), and case (3+).
If an error occurs in case (2+2+), the result will be an improvement in score by
1, because of Lemma 4.

6 Empirical Results

The consensus sort algorithm using the cycle metric was run over a range of
database sizes and database sizes. Figures 2 and 3 show the average level of score
improvement (measured by taking the final score at the point of convergence as
a percentage of the initial random permutation score) for fixed permutation sizes
over a range of database sizes. The plots show the average over an epoch of 500
runs with a 95% confidence interval.
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Fig. 2. The empirical equilibrium of a cycle metric consensus sort for an array size of
50 and a range of database sizes, averaged over an epoch of 500.

Fig. 3. The empirical equilibrium of a cycle metric consensus sort for an array size of
100 and a range of database sizes, averaged over an epoch of 500.

7 Conclusion

It has been shown that when the cycle metric is used in conjunction with the
consensus sort, a perfect sort is expected in the ideal case. However, the same
can be said of the inversion metric. Empirical results suggest that if a different
database is used, a certain database size is needed before the cycle metric will
perform well. Beyond that point, the cycle metric is far superior to the inversion
metric, in that it converges to zero far more quickly as database size increases,
meaning that it produces arrays which are closer to the fully sorted goal. The
inversion metric is far more likely than the cycle metric to produce a sorting
error which will result in a significant degradation in score, and thus impede
sorting.

Previous work [1] has analyzed score degradation in the inversion metric,
and concluded that the score of an array at the point of convergence could be
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predicted by heuristic. The heuristic used to predict the final score used the
theoretical mean rate of improvement in score in each sorting step, as well as
the mean rate of score degradation due to sorting errors from using a database
which was not ideal, and determined when the two were in steady-state.

The task becomes more complicated in the case of the cycle metric. Indeed,
the steady state of the mean rate of improvement and the mean rate of degrada-
tion due to error can be computed for the the cycle metric in order to determine
a steady-state, using the tools developed in this paper. This has been done, with
partial success. The difficulty lies in the fact that using mean rates makes an
assumption of a uniform distribution of permutations by score, which is unlikely
to hold during the actual sorting process while using the cycle metric. What is
needed to improve the analysis is a classification of permutations which is less
sensitive to the exact distribution of permutations within a class.

Regardless of the ability to predict convergence point, it is undeniable that
in the example studied in this paper, the fitness score derived from data mining
worked as an effective optimization tool in finding permutations with scores very
close to the goal.
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Pierre Bergé1(B), Julien Hemery2, Arpad Rimmel2, and Joanna Tomasik2
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Abstract. The k-Canadian Traveller Problem (k-CTP), proven
PSPACE-complete by Papadimitriou and Yannakakis, is a generalization
of the Shortest Path Problem which admits blocked edges. Its objective
is to determine the strategy that makes the traveller traverse graph G
between two given nodes s and t with the minimal distance, knowing
that at most k edges are blocked. The traveller discovers that an edge is
blocked when arriving at one of its endpoints.

We study the competitiveness of randomized memoryless strategies
to solve the k-CTP. Memoryless strategies are attractive in practice as
a decision made by the strategy for a traveller in node v of G does not
depend on his anterior moves. We establish that the competitive ratio of
any randomized memoryless strategy cannot be better than 2k + O (1).
This means that randomized memoryless strategies are asymptotically
as competitive as deterministic strategies which achieve a ratio 2k+1 at
best.

Keywords: Online algorithms · Competitive analysis
Canadian traveller problem

1 Introduction

The Canadian Traveller Problem (CTP), a generalization of the Shortest Path
Problem, was introduced in [6]. Given an undirected weighted graph G =
(V,E, ω) and two nodes s, t ∈ V, the objective is to design a strategy to make
a traveller walk from s to t through G on the shortest path possible. An addi-
tional strain comes from set E∗, E∗ ⊂ E of blocked edges. The traveller does
not know, however, which edges are blocked. He discovers a blocked edge, also
called blockage, when arriving at one of its endpoints. This implies that we solve
the CTP with online algorithms, called strategies. The k-Canadian Traveller
Problem (k-CTP) is the parameterized variant of CTP, where an upper bound
k for the number of blocked edges is given. Both CTP and k-CTP are PSPACE-
complete [2,6].
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State-of-the-Art. Strategies for the k-CTP are studied through the competi-
tive analysis, which evaluates their quality [4]. The competitive ratio of a strategy
is the maximum, over all satisfiable instances, of the ratio of the distance tra-
versed by the traveller following the strategy and the optimal offline cost, which
is the distance he would traverse if he knew blocked edges from the beginning.

There are two classes of strategies: deterministic and randomized. West-
phal [7] proved that there is no deterministic strategy that achieves a competitive
ratio better than 2k + 1. This ratio is reached by reposition and comparison

strategies [7,8]. The reposition strategy repeats an attempt to reach t through
the shortest (s, t)-path going back to s after the discovery of an obstacle. As in
practical cases, such as urban networks, it does not seem realistic, Xu et al. [8]
introduced the greedy algorithm. For grids, it achieves ratio O (1), regardless
of k. However, for any graph, this ratio is O

(
2k

)
.

We evaluate the competitiveness of the randomized strategies by calculating
the maximal ratio of the mean distance traversed by the traveller following the
strategy and the optimal offline cost. Westphal [7] proved that no randomized
algorithm can attain a ratio smaller than k + 1. However, unlike the determin-
istic case, no (αk + 1)-competitive randomized strategy, α < 2, was identified,
excepted two very particular cases for which randomized strategies have been
proposed. Demaine et al. [5] designed a strategy with a ratio

(
1 +

√
2
2

)
k + 1,

executed in time of O
(
kμ2 |E|2

)
, where parameter μ may be exponential. It

is dedicated to graphs that can be transformed into apex trees. Bender et al.
studied in [3] a restriction of k-CTP for graphs composed of node-disjoint (s, t)-
paths and proposed a polynomial-time strategy with ratio (k + 1).

Contributions and Paper Plan. We study the competitiveness of memoryless
strategies [1,4]. The choice that the strategy makes for the traveller at node
v (to decide where he should go next) depends only on the graph deprived of
edges already discovered and the current position of the traveller. Memoryless
strategies are easy to be implemented as they do not memorize the edges already
visited by the traveller to make a decision. The only information they use is the
graph G\E′

∗, which is the graph G deprived of the blocked edges discovered
E′

∗ ⊆ E∗. Given that deterministic strategies cannot achieve a ratio better than
2k + 1, our goal is to prove that randomized memoryless strategies are not
more competitive asymptotically and attain the ratio 2k + O(1). To do this,
we compute a lower bound ck = 2k + O (1) on the competitive ratio of any
randomized memoryless strategy for a certain set of instances of the k-CTP.

We remind, in Sect. 2, the definitions of k-CTP, memoryless strategies, and
the competitive ratio. In Sect. 3, we present sets Rk of road maps, i.e. pairs
(G,E∗), which are a means to study the performance of memoryless strategies.
We prove in Sect. 4 that randomized memoryless strategies cannot drop below
a ratio ck = 2k + O (1) on road maps in Rk, where expression O (1) is made
precise. Eventually, we draw conclusions and highlight the future work in Sect. 5.
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2 Definitions

We start by introducing the notation. For any graph G = (V,E, ω), let G\E′

denotes its subgraph (V,E\E′, ω).

2.1 Memoryless Strategies for the k-CTP

Let G = (V,E, ω) be an undirected graph with positive weights. The objective
is to make a traveller traverse the graph from a source node s to a target one t,
with s, t ∈ V and a set E∗ � E of blocked edges. The traveller does not know a
priori which edges are blocked. He discovers a blocked edge only when arriving
at one of its endpoints. The goal is to design a strategy A with the minimum
competitive ratio.

We focus on memoryless strategies (MS). Concretely, we suppose that the
traveller forgets the nodes which he has already visited. In other words, a deci-
sion of an MS is independent of the nodes already visited. Each time when he
starts to trace a path to target t, his map is refreshed. In the literature, the
term memoryless was used in the context of online algorithms (e.g. paging

problem [4], list update problem [1]) which make decisions according to
the current state, ignoring past events. An MS can be either deterministic or
randomized.

Definition 1 (Memoryless Strategies for the k-CTP). A deterministic
strategy A is an MS if and only if (iff) the next node w the traveller visits depends
only on graph G deprived of blocked edges already discovered E′

∗ and the current
traveller position v: w = A (G\E′

∗, v). Similarly, a randomized strategy A is an
MS iff node w is the realization of a discrete random variable X = A (G\E′

∗, v).

For example, the greedy strategy [8] is a deterministic MS. It consists in
choosing at each step the first edge of the shortest path between the current
node v and the target t. In contrast, the reposition strategy [7] is not an
MS as its decision refers to the past moves of the traveller. The polynomial-time
strategies proposed in the literature do not use much memory information in the
decision-making process. Either they are memoryless or they use a small amount
of memory. For example, reposition (deterministic [7], randomized [3]) can be
implemented with a one bit memory given that the only information to retain
is whether the traveller tries to reach t or returns to s.

The following process allows us to identify whether a deterministic strategy
A is an MS. Let us suppose that a traveller T1 follows strategy A: he has already
visited certain nodes of the graph, he is currently at node v but he has not
reached target t yet. Let us imagine a second traveller T2 who is airdropped on
node v of graph G\E′

∗ and is guided by strategy A. If the traveller T2 always
follows the same path as T1 until reaching t, A is a deterministic MS. If T1

and T2 may follow different paths, then A is not an MS. Formally, proving that
a strategy is a MS consists in finding the function which transforms the pair
(G\E′

∗, v) into node w = A (G\E′
∗, v).
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2.2 Competitive Ratio

Let (G,E∗) be a road map, i.e. a pair with graph G = (V,E, ω) and blocked
edges E∗ � E, such that there is an (s, t)-path in graph G\E∗ (nodes s and t
remain in the same connected component when all blocked edges are discovered).
We denote by ωA (G,E∗) the distance traversed by the traveller reaching t with
strategy A on graph G with blocked edges E∗ and ωmin (G,E∗) the cost of the
shortest (s, t)-path in graph G\E∗.

The ratio ωA (G,E∗) /ωmin (G,E∗) is abbreviated as cA (G,E∗). A strategy
A is cA-competitive [4,8] iff for any (G,E∗) , ωA (G,E∗) ≤ cAωmin (G,E∗). Oth-
erwise stated, for any (G,E∗), cA (G,E∗) ≤ cA. If strategy A is randomized,
ωA (G,E∗) is replaced by E (ωA (G,E∗)) which is the expected distance tra-
versed by the traveller to reach t with strategy A. The competitive ratio can
also be evaluated on a family R of road maps, put formally:

cA,R = max
(G,E∗)∈R

cA (G,E∗) . (1)

This “local” competitive ratio fulfils cA,R ≤ cA. The definition of the com-
petitive ratio can also be extended to families of strategies. We denote by cMS

the competitive ratio of MSes, which is the minimum over competitive ratios of
any MSes: cMS = min

A MS
cA.

3 Road Atlas Used to Study Randomized MSes

Before specifying road atlases Rk, i.e. families of road maps we construct to
evaluate the competitiveness of randomized MSes, we need to introduce the
concepts used in their definition.

We define recursively a sequence of graphs Gi for i ≥ 1 with weights from
{1, ε}, 0 < ε � 1. Graphs G1 and Gi+1 are represented in Fig. 1a and b, graphs
G2 and G3 are shown in Fig. 1c and d. Edges with weight 1 are thicker than
edges with weight ε (weights ε are omitted in Fig. 1c and d). For any graph Gi,
axis Δvert is its vertical axis of symmetry (Fig. 1c and d).

We focus on road maps (Gi, E∗) composed of graph Gi but also at most i
blocked edges which are on the right side of axis Δvert. Indeed, blocking edges
on the left side of Δvert in Gi would affect negligibly the total distance traversed
by a traveller. Let us suppose that a traveller traverses graph Gi and has already
discovered some blocked edges E′

∗ ⊆ E∗. Then, he considers graph Gi\E′
∗ and

tries to reach t, being ignorant of the identity of the undiscovered blocked edges.
We denote by G the set of all the subgraphs of Gi, i.e. graphs Gi\E′

∗ with at
most i edges in E′

∗ on the right side of Δvert, for any i ≥ 1. We call them diamond
graphs because of their appearance, diamonds joined together. Formally, we write
G =

⋃+∞
i=1 {Gi\E′

∗ : |E′
∗| ≤ i}. For any graph G ∈ G , we partition its edges,

denoted by EG, into two sets EG,left (on the left side of axis Δvert) and EG,right

(on the right side of axis Δvert).
To any diamond graph G of G , we associate a diamond binary tree (DBT),

denoted by TG. Tree TG, rooted in t, is obtained from the right half of graph G
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Fig. 1. Recursive construction of graphs Gi

(on the right side of axis Δvert) by successive contractions of edges: any node
with a single son is merged with its father (in Fig. 2a: edge (t, v2) is contracted, v2
merges with t). We denote by T∅ the empty tree. Any nonempty tree is a triplet
(v, Ta, Tb) with a root v ∈ V and trees Ta and Tb. Figures 2a and b illustrate the
construction of the DBT.

Fig. 2. An example of graph G ∈ G and its DBT TG.

To put the definition of DBTs, let L (v) denote the set of sons of node v
which is only defined for the nodes on the right side of Δvert. For all v ∈ Δvert,
we have L (v) = ∅. For graph G of Fig. 2a, L (t) = {v1, v2}, L (v2) = {v4}, for
example.
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Function bin-tree gives the construction of tree TG, which is bin-tree (t):

bin-tree (v) =

⎧
⎨

⎩

T∅ if L(v) = ∅,
bin-tree (vnext) if L(v) = {vnext} ,
(v,bin-tree(vup),bin-tree(vdown)) if L(v) = {vup, vdown} .

We say that the depth of a node v in a DBT T , denoted by d(v), is equal to the
number of edges separating it from the root. We denote by dmin(T ) the minimum
depth of all T leaves. For example, for DBT TG in Fig. 2b, dmin(TG) = 2.

The depth of an edge (u, v), D(u, v), is defined as D(u, v) = max {d(u), d(v)}.
We say that edge e′ is the mother of edge e if these two edges share one endpoint
and D(e′) = D(e) − 1, putting it shortly e′ = P (e). Conversely, we say e is the
daughter of P (e). Edge e∗ is the aunt of edge e if e∗ and P (e) share one endpoint
and D (P (e)) = D(e∗). We indicate this fact as e∗ = U(e). Observe that the aunt
of e and its mother share the same ancestor. For example, in Fig. 2b, edge (t, v4)
is the aunt of (v1, v3).

Now we define the graphs contained in the road maps of atlas Rk.

Definition 2 (Sets Dk). Infinite set Dk contains graphs of G such that their
DBT TG fulfils dmin (TG) ≥ k: Dk = {G ∈ G : dmin(TG) ≥ k}.

In other words, if graph G belongs to Dk, then its DBT TG induced on nodes
of depth less than k forms a complete binary tree. For example, the DBT TG on
Fig. 2b contains a complete binary tree of depth 2, so G ∈ D2. Finally, we define
road atlases Rk:

Definition 3 (Road atlas Rk). Road atlas Rk is composed of road maps
(G,E∗), where:

– Graph G belongs to Dk: G ∈ Dk,
– Set E∗ becomes

{
ê, U(ê), U2(ê), . . . , Uk−1(ê)

}
in the DBT TG, with D(ê) = k.

Fig. 3. An example of road map (G,E∗) ∈ R2, edges of E∗ are dashed and blue. (Color
figure online)
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In Fig. 3a, we give an example of road map (G,E∗) in R2 where G is the graph
initially drawn in Fig. 2a and edges of E∗ are dashed and in blue. In Fig. 3b, we
provide the corresponding DBT to see that the road map fulfils Definition 3 for
k = 2.

For road map (G,E∗) ∈ Rk, set E∗ � EG,right contains k edges and there is
no two of them with the same depth in TG. Moreover, there is a unique node
vk,j among all nodes of depth k such that there is an open (s, t)-path containing
vk,j in G\E∗. In brief, any traveller on road map (G,E∗) ∈ Rk must traverse
this node in order to reach t directly.

4 Competitiveness of Randomized MSes

We study the competitiveness of randomized MSes for road atlases Rk. The
MS performance is determined by properties of the corresponding DBTs TG.
These properties result from relations which exist between DBT edges.

The following theorem states that cutting one edge from G ∈ Dk produces a
graph G\ {e} ∈ Dk−1.

Theorem 1. For any G ∈ Dk and edge e ∈ EG,right, graph G\ {e} ∈ Dk−1.

Proof. Let G ∈ Dk and e be an edge in EG,right. There is an edge eT in TG for
which TG\{e} is obtained by removing eT and its descendants from TG and next
applying the edge contraction, if necessary. For example, if e = (t, v2) in Fig. 2b,
then eT = (t, v4). Let v be the “shallower” endpoint of edge eT = {u, v}, i.e.
d(v) < d(u). Edge eT and its mother have this node in common, v ∈ P (eT ). We
distinguish two cases:

– The depth of node u is greater or equal to dmin (TG): If u is the unique
leaf of depth dmin (TG), the depth of leaves of the DBT TG\{e} is dmin (TG) −
1 ≥ k − 1. Otherwise, in DBT TG\{e}, the depth of leaves is still equal to
dmin (TG) ≥ k. In both cases, G\ {e} ∈ Dk−1.

– The depth of node u is strictly inferior to dmin (TG): Let Tv be the
subtree of TG with root v. We denote by w the brother of node u, i.e. the
other son of node v (Fig. 4b). When edge e is removed from G, edge eT and
its descendants are withdrawn in the DBT (in the DBT in Fig. 4b, edge e
has not been contracted, so e = eT ). Consequently, after the contraction, Tv

becomes Tw, the subtree rooted in w. All the leaves of Tw have initially a
depth greater than k, so by removing e from G, all the leaves of Tw have a
depth greater than k − 1. All leaves outside Tv, preserve their depth which
is greater than k. Therefore, the depth of all leaves of TG\{e} is greater than
k − 1.

After examining these two cases, we conclude that G\ {e} belongs to Dk−1. 	
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Fig. 4. Illustration of the proof of Theorem 1 on a subgraph of G3.

Corollary 1. For any road map (G,E∗) ∈ Rk and edge e ∈ E∗, we have:

(G\ {e} , E∗\ {e}) ∈ Rk−1.

Proof. Let e = (u, v) and v be the shallowest endpoint of e. As e ∈ E∗, its depth
is less than k. We know that E∗ =

{
ê, U(ê), . . . , Uk−1(ê)

}
with D(ê) = k. We

denote edge e by U j(ê) with 0 ≤ j ≤ k − 1. As a consequence, the depth of edge
e is k − j: D(e) = k − j.

As G ∈ Dk, any edge of depth less than k − 1 has two daughters. In graph
G\ {e}, edge P (e) has only one daughter as edge e disappeared. Consequently,
nodes v and the sibling node of u are merged in the DBT of graph G\ {e}.

Now we prove that U j+1(ê) becomes the aunt of U j−1(ê) in the DBT TG\{e},
i.e. after the removal of e = U j(ê). Indeed, the daughters of the sibling edge
of e in TG are now the daughters of P (e) in TG\{e}. So, edge U j+1(ê) which
used to be the aunt of e is the aunt of U j−1(ê) in TG\{e}. Therefore, set E∗\ {e}
can be written

{
ê, U(ê), . . . , Uk−2(ê)

}
in G\ {e}. Thanks to Theorem 1, we have

G\ {e} ∈ Dk−1 which terminates the proof. 	

We denote by ck the competitive ratio of the best memoryless strategy for

road atlases Rk, k ≥ 1. Formally:

ck = min
A∈ MS

cA,Rk
. (2)
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Our objective is to show that ck = 2k + O(1). As value ck gives the compet-
itiveness of MSes over a specific set of instances, it is a lower bound of cMS.
If our objective is achieved, then we are sure that randomized MSes are not
asymptotically more competitive than deterministic strategies.

Theorem 2. Any randomized MS competitive ratio is at least 2k + O(1) over
road atlas Rk.

Proof. We prove by induction that ck = 2k + 1 − ψ(k − 1), where ψ(k − 1) =
∑k−1

j=0

cj + 1
2j+1

is a convergent series bounded by a constant. Let A be the best MS
over all road atlases Rk, k ≥ 1. We show that it achieves the same competitive
ratio for a given k over any road map (G,E∗) ∈ Rk: cA (G,E∗) = ck.

If k = 0, there is no blocked edge. The best MS for k = 0 consists in traversing
an (s, t)-path of cost 1. So, c0 = 1 and this competitive ratio is achieved for any
road map in R0.

We assume that the induction hypothesis holds for index k − 1. Let (G,E∗)
be a road map of Rk. As G ∈ Dk, all leaves of TG are at least at depth k. So,
TG is complete up to depth k and has 2k nodes of depth k. We suppose that
the traveller, guided by the most competitive MS A over atlas Rk, is standing
at source s and starts his walk on a road map (G,E∗) ∈ Rk. We focus on value
cA(G,E∗).

As strategy A is the most competitive, the traveller using it either reaches
t directly with distance 1 or meets a blocked edge and thus traverses a total
distance less than 2 + ck−1: distance 1 to reach the blockage, distance 1 to go
back to a node on the left-hand side of Δvert, and at most distance ck−1 to reach
t on the new road map which belongs to Rk−1 (Corollary 1).

Indeed, remember that when the traveller meets a blockage e∗ for the first
time, the only information taken into account by the MS A after this moment is
the position of the traveller and the current graph G\ {e∗}. This justifies the use
of the inductive term ck−1, as strategy A is not influenced by the past and guides
the traveller independently of its previous trips. The traveller, who necessarily
returns to s after being blocked in an instance from Rk, faces now an instance
of Rk−1.

For any 1 ≤ j ≤ 2k, let pAk,j signify the probability that the traveller visits
the jth node at depth k, denoted by vk,j (index j passes from left to right in the
DBT representation).

We denote by j∗ the index of the only node vk,j∗ such that there is an open
(s, t)-path containing it. Obviously, the traveller does not know the identity of
node vk,j∗ as he ignores E∗. If he chooses luckily to walk on a simple (s, t)-path
containing vk,j∗ , then he reaches t with distance 1. Otherwise, if he chooses an
(s, t)-path traversing node vk,j with j �= j∗, he meets a certain blocked edge ek,j .
We have:

cA(G,E∗) = pAk,j∗ +
∑

j �=j∗
pAk,j (2 + cA(G\ {ek,j} , E∗\ {ek,j})) . (3)
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According to Yao’s principle [9], probabilities pAk,j necessarily follow the uni-
form distribution and are all equal to 1

2k
. From the traveller point of view,

all nodes vk,j are indistinguishable. A strategy with a non-uniform distribution
necessarily puts some nodes vk,j at a disadvantage, with pAk,j < 1

2k
. Moreover,

strategy A has to be competitive on any instance of Rk. Applied on a road map
of Rk where one of these penalized nodes is vk,j∗ , such a strategy makes the
probability to reach t with distance 1 decrease and, therefore, the competitive
ratio increases. Consequently, the best MS A fulfils pAk,j = 1

2k
for any node vk,j .

According to the induction hypothesis, the best MS for road atlas Rk−1

performs ratio ck−1 for any road map in Rk−1. Thanks to this observation and
the previous remark on the probability values pk,j , we obtain from Equation (3)
that the competitive ratio of A is the same for all road maps of Rk:

cA (G,E∗) =
1
2k

+

(

1 − 1
2k

)

(2 + ck−1) = ck.

We observe that ck − ck−1 = 2 − 1
2k

− ck−1
2k

and we obtain the following
iterative formula thanks to the induction hypothesis:

ck = 2 − 1
2k

− ck−1

2k
+ 2(k − 1) + 1 −

k−2∑

j=0

cj + 1
2j+1

= 2k + 1 −
k−1∑

j=0

cj + 1
2j+1

.

As ck ≤ 2k + 1,
∑+∞

j=0

cj + 1
2j+1

converges and ck = 2k + O(1). For k = 104, the

numerical computations give ψ(104) =
∑104

j=0

cj + 1
2j+1

= 3.213, so value ck is larger
than 2k − 2.22. 	


As ck represents the competitive ratio of the best competitive MS over road
atlas Rk, no MS can go below 2k + O (1) in terms of competitiveness.

5 Conclusion and Further Work

We studied the competitiveness of the MSes for the k-CTP. An MS is a strategy
which does not make decisions referring to the anterior moves of the traveller,
in other words, the nodes the traveller visited until his current position.

Then, we constructed a series of k-CTP instances, called road atlases and
denoted by Rk. We foremost concluded that a randomized MS cannot reach a
competitive ratio better than 2k+O (1) on road atlas Rk. That is to say that we
identified an upper bound on the competitive ratio of randomized MSes which
is significantly higher than the existing one k + 1. In future research, if we aim
at designing a strategy with competitive ratio αk + O (1), α < 2, we shall focus
on strategies which are not only randomized but use memory as well.



576 P. Bergé et al.
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Abstract. In this paper, we extend the Rent Sharing problem to the
case that every room must be allocated to a group of agents. In the clas-
sic Rent Sharing problem, there are n agents and a house with n rooms.
The goal is to allocate one room to each agent and assign a rent to each
room in a way that no agent envies any other option. Our setting deviates
from the classic Rent Sharing problem in a sense that the rent charged
to each room must be divided among the members of the resident group.

We define three notions to evaluate fairness, namely, weak envy-
freeness, aggregate envy-freeness and strong envy-freeness. We also define
three different policies to divide the cost among the group members,
namely, equal, proportional, and free cost-sharing policies.

We present several positive and negative results for different combina-
tions of the fairness criteria and rent-division policies. Specifically, when
the groups are pre-determined, we propose a strong envy-free solution
that allocates the rooms to the agents, with free cost-sharing policy. In
addition, for the case that the groups are not pre-determined, we pro-
pose a strong envy-free allocation algorithm with equal cost-sharing pol-
icy. We leverage our results to obtain an algorithm that determines the
maximum total rent along with the proper allocation and rent-division
method.

Keywords: Fairness · Envy-freeness · Rent sharing · House allocation

1 Introduction

Envy-freeness is a famous notion and a central concept studied extensively since
1960’s in the literature of economics [1–8]. An allocation is envy-free, if every
agent prefers his allocated share to that of other players.

Envy-free resource allocation is studied for various types of resources. In the
setting we study, the resources are a set of indivisible goods (rooms) along with
one divisible bad (money). Although there are many different real-life applica-
tions that fit into this setting, here, we use the terminology of Rent Sharing.
In the well known Rent Sharing problem, n agents are willing to rent a house
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with n rooms, and one seeks to somehow allocate the rooms to the agents and
determine the rent of the rooms so that each agent prefers his own option. The
challenge in this problem is that the rooms are heterogeneous and the agents
have different valuations over the rooms. Thus, to maintain fairness, the rent
must be wisely divided.

Formally, let H be a house with n rooms and let vi,j be the value of room j for
agent ai. The utility of ai for renting room j at price rj is ui,j = vi,j − rj . Agent
ai (weakly) prefers room j to k, if ui,j ≥ ui,k. In the Rent Sharing problem, we
would like to charge a rent to each room and allocate one room to each agent,
such that the resulting allocation preserves envy-freeness, i.e., every agent prefers
his option. The most interesting aspect of the Rent Sharing problem is that with
mild assumptions, an envy-free solution is always guaranteed to exist.

The existence of an envy-free solution for the Rent Sharing problem is proved
by Su [8]. In addition, Aragones [9] proposed a polynomial time algorithm to
find an envy-free solution. The solution is not necessarily unique, and there may
be several envy-free allocations. Therewith, we can optimize other objectives
among the feasible solutions. For example, Gal, Mash, Procaccia, and Zick [6]
consider the problem of finding an envy-free solution that maximizes the value
of agent with the minimum utility to his room (maximin solution).

The basic assumption in the classic Rent Sharing problem is that every room
must be allocated to a single agent. However, there are situations that this
assumption is no longer applicable. For example in dormitories, each room is
allocated to a group of students. As another example (albeit, not in the termi-
nology of Rent Sharing) think of the following scenario: a set of n tasks that
must be performed by a set of workers having different skills and interests. In
order to perform each task, we must assign it to a group of workers. How can
we fairly assign the tasks to the groups and pay the agents? One can think of
tasks as rooms and workers as agents and their salary as their rent share.

In such situations, a new challenge arises: the agents within a group may have
diverse valuations, i.e., a room might be acceptable to some of the agents in a
group but not by the others. In this paper, our goal is to discuss such situations.

Many previous studies consider the fair division problem among groups of
agents [10–17]. The groups can be either pre-determined or be formed by the
algorithm. The majority of the article focuses on the case that the groups are
pre-determined. In this model, there is a set G of groups, with each group gi
consisting of mi agents and each agent having a value function over the rooms.
Our goal is to fairly allocate a room to each group and divide the rent among
the agents. We name this problem Group Rent Sharing.

In Sect. 2.1, we introduce three notions for evaluating fairness: aggregate envy-
freeness, weak envy-freeness, and strong envy-freeness. Recall that every solution
for the Group Rent Sharing problem must determine a method by which the rent
is divided among the residents of a room. We name this dividing method cost-
sharing policy. In Sect. 2.2, different possible policies and their relations to var-
ious fairness criteria are discussed. We define three policies: equal, proportional
and free and study the consistency of these policies and fairness notions.
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After all we consider the case where the groups are not pre-determined. In
this case, the allocation algorithm must also partition the agents into groups.
We propose a strong envy-free allocation with an equal cost-sharing policy in
Sect. 4.

As in the classic rent sharing problem, along with fairness, we can consider
optimizing other objectives. Here, we seek to maximize the total rent. Note that
the allocation must be individually rational, i.e., the utility of every agent in the
final solution must be non-negative. The summary of our results for different
fairness criteria and cost-sharing policies can be found in Table 2.

1.1 Related Works

Previous works that are related to ours fall into two categories: a stream of
studies on the Rent Sharing problem and the works that consider fair division
among groups.

Fair division of resources is widely studied in the context of economics and
mathematics where the problem mostly considers cases with either single divisi-
ble item (also known as cake-cutting) [4,5,7,18–21], or a set of indivisible items
[22–28]. In addition, a combination of these two settings is studied, where there
is a set of indivisible items together with a single divisible resource. The rent
division problem is, in fact, a combination of a divisible resource (money) and a
set of indivisible items (rooms).

The problem of fairly dividing indivisible items with money was firstly intro-
duced by Alkan, Demange, and Gale [22]. They show that for a sufficiently large
amount of money, an envy-free allocation exists. They also suggest optimizing
other objectives over myriad possible envy-free solutions. Specifically, they intro-
duce the money Rawlsian solution in which the goal is to maximize the minimum
money taken from every agent. Aragones [9], suggests an algorithm for comput-
ing a money Rawlsian envy-free solution in polynomial time. He also shows that
every envy-free solution preserves envy-freeness if we re-allocate the rooms by
the welfare-maximizing allocation.

Su [8] explains the Sperner’s Lemma and describes its applications to fair
division problems. Especially, he investigates the Rent Sharing problem and used
Sperner’s Lemma to show the existence of an envy-free allocation. Procaccia,
Velez, and Yu [29] extend the classic rent sharing problem by considering a
budget for each agent. They study the conditions under which an envy-free
allocation with given budget constraints is possible and propose an algorithm to
find one. Gal, Mash, Procaccia, and Zick [6] have recently conducted a study on
finding equitable and maximin envy-free allocations. The former is the envy-free
allocation that minimizes the disparity (the maximum difference) of the agents’
utilities and the latter aims to maximize the minimum utility of the agents.
They show that a maximin allocation is also equitable. Then, they propose an
LP-based method to compute these allocation in polynomial time.

Some works consider the fair allocation problem among groups or families,
for example Segal-Halevi and Nitzan [11] consider the proportional allocation
for the case that the resource must be divided among families. They introduce
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three notions to evaluate fairness for this case, namely, Average, Unanimous and
Democratic proportionality and show various results for these notions. Chan et
al. [10] consider the Rent Sharing problem for the case where every room must be
allocated to 2 agents. In their model, the groups are not known in advance. They
define various solution concepts and study the complexity of their corresponding
search problem. In contrast to our work, they do not consider any cost-sharing
policy.

From a practical point of view, there are a considerable number of empirical
studies that consider notion of fairness between groups rather than individuals
[12–15,30], mostly in the context of ultimatum games.

2 Model Definition and Preliminaries

We refer to the rooms by their indices and denote the set of Groups by G =
{g1, g2, . . . , gn}. Furthermore we suppose that each group gi consists of mi agents
and denote the j’th agent of gi by ai,j . The value of room k for agent ai,j is
denoted by vi,j,k. In this paper we suppose that the valuations are normalized,
so that for each agent ai,j ,

∑
k vi,j,k = 1

mi
. Hence, the total value of each group

for the house is 1. In the Group Rent Sharing problem, we seek to find a triple
S = (A,R,D) where:

– A : G → [n]1 is a bijection that allocates one room to each group.
– R : [n] → R≥0 is a rent division function that determines the rent of each

room.
– D : (N , [n]) → R

2, is a cost-sharing function where D(ai,j , k) determines the
cost assigned to agent ai,j for living in room k. Each cost-sharing function
must have the property that the total amount of cost assigned to each group
a room must be exactly equal to the rent determined for that room, i.e., for
all i,

∑mi

j=1 D(ai,j , k) = R(k) for every k. We use di,j,k to refer to the value
of D(ai,j , k).

We refer to such a triple as allocation-triple. Roughly, in every allocation-triple,
one should determine the room that must be allocated to each group (A), the
rent charged to each room (R) and the way that rent is divided among the agents
in each group for each room (D).

When the groups are not pre-determined, we suppose that N is the set
of agents and the allocation algorithm must determine a quadruple S =
(B,A,R,D), where B is a function that allocates a group to each agent. The
allocation function B has the restriction that each group must contain exactly
m agents. Functions A, R, and D are defined similar to the Group Rent Sharing
problem.

1 [n] refers to the set {1, 2, . . . , n}.
2 N =

⋃
i,j ai,j .
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2.1 Fairness Criteria

Our goal in this section is to extend the notion of envy-freeness to the case
that every room must be allocated to a group of agents. For this, we define
three notions to evaluate fairness: aggregate envy-freeness, weak envy-freeness,
and strong envy-freeness. Fix an allocation-triple S = (A,R,D) (or quadruple
S = (B,A,R,D) when the groups are not pre-determined). Denote by ui,j,k, the
utility of agent ai,j , if room k is allocated to group gi, regarding cost-sharing
function D, i.e., ui,j,k = vi,j,k − di,j,k. In this paper, we consider the allocation
triples which are individual rational, meaning that every agent receives a non-
negative utility.

Definition 1. S is weak envy-free, if for every k, there exists at least one agent
in room k that does not envy any other option.

In other words, S is weak envy-free if for each group gi, at least one agent
ai,j in gi does not envy any other room, which means for all k �= A(gi) we have
ui,j,A(gi) ≥ ui,j,k.

One shortcoming of this notion is that it does not consider the preferences
of everyone and hence, an allocation may be unfair to all the agents in a group
except one. Our next notion seeks to somehow resolve this issue.

Definition 2. S is aggregate envy-free, if the total utility of agents in each
room is at least as large as their total utility for any other room, i.e., for every
group gi, ∑

j

ui,j,A(gi) ≥
∑

j

ui,j,k ∀k.

To put it simply, if we consider each group gi as an agent ai with value∑
j vi,j,k for each room k, we want to find an envy-free solution for the classic

Rent Sharing problem with agents {a1, a2, . . . , an} and rooms in H. In fact, this
notion takes the aggregate utility of a group into account, instead of considering
only one agent from each group. However, the aggregate utility of a group does
not capture the utility of every individual, i.e., some of the agent may still be
unsatisfied. In the strong envy-free notion, we desire to satisfy all the agents.

Definition 3. S is strong envy-free, if for each agent ai,j and every k �= A(gi),

ui,j,A(gi) ≥ ui,j,k.

2.2 Cost-Sharing

Recall that in the classic Rent Sharing problem, we desire to charge a rent to
each room. For the Group Rent Sharing problem, in addition to a method for
dividing the rent, we need to formulate a policy to split the rent among the
agents in each room. As mentioned before, we denote such a policy by D. In this
section, we discuss on different possible polices for dividing the rent of a room
among the resident agents.
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The first and the easiest solution that immediately bears in mind, is to split
the rent equally among the agents in each group. We name such a cost-sharing
policy, equal cost-sharing.

Definition 4. A cost-sharing policy D is equal, if the cost assigned to each agent
for a room equals to his roommates, i.e., for each group gi and each room k and
agents aj , aj′ we have di,j,k = di,j′,k.

Even though this policy seems natural, considering the fact that the agents
in one group may have diverse interests in a room, rent discrimination would be
more reasonable. One idea is that each agent pays a price proportional to his
valuation for that room.

Definition 5. A cost-sharing policy D is proportional, if for each group gi, agent
ai,j pays the rent di,j,k = vi,j,k

Vi,k
R(k) for room k, where Vi,k =

∑
j′ vi,j′,k.3

As we discuss in Sect. 3, the proportional cost-sharing policy is inconsistent
to strong envy-freeness, i.e., there are cases that no strong envy-free allocation
exists with respect to proportional cost-sharing policy.

The final policy we introduce considers no restriction on the rent charged
to each agent for each room. We call such a method free cost-sharing policy.
The only criterion for a free cost-sharing policy is that the total payment of the
agents in each group for a specific room must sum up to the rent fixed for that
room. The main results of this paper are concerned with the strong envy-freeness
and free cost-sharing policy. Prior to explaining our main results, we will justify
the model and subsequently introduce some possible and impossible results in
pertaining to our model.

3 Pre-determined Groups

As elaborated earlier, our model comprises two essential ingredients: the fairness
criterion and the cost-sharing policy. In this section, we shed light on the relation
between these two components. To do so, we define the concept of consistency.

Definition 6. A fairness criterion F is consistent with cost-sharing function
D, if for every instance of the Group Rent Sharing problem, an allocation-triple
S with cost-sharing function D exists, such that S preserves F .

In Lemmas 1 and 2, we show, through counter-examples, that some fairness
criteria and some cost-sharing policies are inconsistent.

Lemma 1. For the case that the groups are pre-determined, the equal cost-
sharing policy and strong envy-freeness are inconsistent.

3 Note that if Vi,k = 0, by individual rationality, R(k) = 0 and no agent has to pay
any cost.
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Proof. Consider the following instance: let |G| = 2n, gi = {ai,1, ai,2} and there
are 2n rooms. Furthermore, suppose that the valuations of the agents in each
group gi are as follows:

vi,1,k =

{
1
3n k ≤ n
1
6n k > n

vi,2,k =

{
1
6n k ≤ n
1
3n k > n

Consider an arbitrary rent division function R. Due to the symmetric con-
struction of the valuations, we can observe w.l.o.g. that the room 1 is the one
with the maximum rent and is assigned to g1. Let p = R(1) be the maximum
rent. Considering the fact that the cost-sharing policy is equal, the utility of the
agents in g1 would be u1,1,1 = 1

3n − p
2 and u1,2,1 = 1

6n − p
2 . Note that the rent

assigned to room i ≤ n must exactly equal p. Otherwise, agent a1,1 envies that
room. Now, suppose that R(2n) = q. Thus, the utility of the agents in group g1,
when room 2n is allocated to g1 would be u1,1,2n = 1

6n − q
2 and u1,2,2n = 1

3n − q
2 .

Since we intend our allocation to be strong envy-free, we have:

u1,1,1 ≥ u1,1,2n ⇒ 1
3n

− p

2
≥ 1

6n
− q

2
(1)

u1,2,1 ≥ u1,2,2n ⇒ 1
6n

− p

2
≥ 1

3n
− q

2
(2)

(1), (2) ⇒ q ≥ p (3)

As p is the maximum rent:

⇒ q = p

(2), (4) ⇒ 1
n

≤ 0 (4)

Which contradicts n > 0.

The counter-example described in the proof of Lemma 1 is independent of R
which means even for a very large amount of rent, a strong envy-free allocation-
triple with the equal cost-sharing policy is impossible. In Lemma 2, we show that
the proportional cost-sharing policy and strong envy-freeness are also inconsis-
tent.

Lemma 2. For the case that the groups are pre-determined, the proportional
cost-sharing policy and strong envy-freeness are inconsistent.

Due to lack of space, we omit the proof of Lemma 24 but, to give an intuition,
take into account the following instance: let |G| = 3 and let gi = {ai,1, ai,2}.
Moreover, suppose that the valuation functions of the agents are as in Table 1.
As we illustrate in the proof of Lemma2, for this instance, no allocation of rooms
can guarantee strong envy-freeness with the proportional cost-sharing policy. To
show this, we consider different allocation possibilities and show that in each of
them, at least one agent envies another choice.
4 We refer the reader to the full version of the paper for this proof.
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Table 1. Valuation of the agents

1 2 3

a1,1 0 3/8 1/8

a1,2 3/8 0 1/8

a2,1 0 0 1/2

a2,2 1/2 0 0

a3,1 0 1/4 1/4

a3,2 0 1/4 1/4

Observation 1. Aggregate envy-freeness is implied by strong envy-freeness.
Furthermore, aggregate envy-freeness implies weak envy-freeness.

In Lemmas 3 and 4, we show that both equal and proportional cost-sharing
policies are consistent to aggregate envy-freeness. Moreover, Considering Obser-
vation 1, both the policies are consistent to weak envy-freeness as well.

Lemma 3. The equal cost-sharing policy and aggregate envy-freeness are con-
sistent.

Lemma 4. The proportional cost-sharing policy and aggregate envy-freeness are
consistent.

The general idea behind proving both Lemmas 3 and 4 is to build a classic
Rent Sharing problem by aggregating the valuations of the agents in each group
and then showing that dividing the rent by each of these two policies preserves
aggregate envy-freeness for every group.

3.1 Strong Envy-Freeness and Free Cost-Sharing

This section deals with the results surrounding the strong envy-free allocations
with the free cost-sharing policy. As described in Sect. 3, proportional and equal
cost-sharing policies are not consistent with strong envy-freeness. Here, we show
that with the free cost-sharing policy, one can find a strong envy-free allocation
(Lemma 3). Our assumption in this section is that the groups are known in
advance. However, the results can be trivially extended to the case that the
groups are not pre-determined.

We start this section with Observation 2, which indicates that increasing the
rent for all the agents preserves envy-freeness. We use Observation 2 as a basis
upon which the proof of Theorem3 is obtained.

Observation 2. Let S = (A,R,D) be a strong envy-free allocation-triple and
let c be a constant. Furthermore, let S∗ = (A,R∗,D∗) be an allocation-triple such
that for all k, R∗(k) = R(k) + c and for every agent ai,j, d∗

i,j,k = di,j,k + c
mi

.
Then, S∗ is also strong envy-free.
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Theorem 3. Strong envy-freeness is consistent with the free cost-sharing policy.

Proof. Consider a proxy agent ai for each group gi and set the valuation of ai
for room k as vi,k =

∑mi

j=1 vi,j,k. Now, consider the classic Rent Sharing problem
instance with agents a1, a2, . . . , an and house H. We know that the utility of ai
for room k is ui,k = vi,k − R(k). On the other hand, we know that an envy-free
allocation for this instance always exists [8]. Thus, we can find an allocation
A∗ and a rent division function R∗ such that for each proxy agent ai and any
k �= A∗(gi), ui,A∗(gi) ≥ ui,k, which means vi,A∗(gi) − R∗(A∗(gi)) ≥ vi,k − R∗(k).
By definition, for all k �= A∗(gi),

mi∑

j=1

vi,j,A∗(gi) − R∗(A∗(gi)) ≥
mi∑

j=1

vi,j,k − R∗(k). (5)

Now, consider the allocation-triple S∗ = (A∗,R∗,D∗), where the cost-sharing
function D∗ is determined as follows:

d∗
i,j,k = vi,j,k −

∑mi

t=1 vi,t,k − R∗(k)
mi

(6)

Note that
∑

j d
∗
i,j,k = R∗(k). We claim that S∗ is strong envy-free. To show this,

take an arbitrary agent ai,j . We have ui,j,k = vi,j,k − d∗
i,j,k, which means

ui,j,k = vi,j,k − (vi,j,k −
∑mi

t=1 vi,t,k − R∗(k)
mi

).

Notice that ui,j,A∗(gi) = vi,j,A∗(gi) − d∗
i,j,A∗(gi). Regarding Eq. (6),

ui,j,A∗(gi) = vi,j,A∗(gi) − (
vi,j,A∗(gi)

−
∑mi

t=1 vi,t,A∗(gi) − R∗(A∗(gi))
mi

)

=
∑mi

t=1 vi,t,A∗(gi) − R∗(A∗(gi))
mi

≥
∑mi

t=1 vi,t,k − R∗(k)
mi

≥ vi,j,k − (vi,j,k −
∑mi

t=1 vi,t,k − R∗(k)
mi

)

≥ vi,j,k − d∗
i,j,k = ui,j,k

Thus far, we’ve shown that S∗ is strong envy-free. However, in S∗, there may
be agents with negative utilities. Let umin = mini,j vi,j,A∗(gi) −d∗

i,j,A∗(gi) and let
Z = maxi |gi|. Note that if umin > 0, then the individual rationality constraint
has already fulfilled. Otherwise, let R∗∗ be the rent function such that for every
room k, r∗∗(k) = r∗(k) + umin · Z and let D∗∗ be a function such that for all
i, j, k, d∗∗

i,j,k = d∗
i,j,k+ Z·umin

|gi| . By Observation 2, D∗∗ is also strong envy-free with
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nonnegative utilities and hence guarantees individual rationality. In summary,
value of d∗∗

i,j,k would be

vi,j,k −
∑mi

t=1 vi,t,k − R∗(k)
mi

+
Z · (minw,t vw,t,A∗(gw) − d∗

w,t,A∗(gw))

|gi| .

In light of Theorem 3, we can present an algorithm for computing a strong
envy-free allocation-triple. We already know that a solution to the classic rent
sharing problem can be found in polynomial time. All the other steps described
in Theorem 3 can be easily implemented in polynomial time. Thus, a strong
envy-free solution with the free cost-sharing policy can be found in polynomial
time.

The idea to find a solution with maximum possible total rent is inspired by
[6]. Let A∗ be an allocation, which is welfare-maximizing. In [6], it is shown
that if an envy-free solution exists with arbitrary allocation function A and rent
sharing function R, then the pair A∗ and R is also envy-free. In Theorem 4, we
use a generalized form of this statement to obtain a strong envy-free allocation.
In fact, we show that if S = (A,R,D) is a strong envy-free allocation-triple,
then so is S ′ = (A∗,R,D).

Theorem 4. A strong envy-free allocation-triple with the free cost-sharing pol-
icy that maximizes total rent can be found in polynomial time.

Proof. Recall the definition of proxy agent from the proof of Theorem3. An allo-
cation A is welfare-maximizing, if it maximizes value of the following expression:

|G|∑

i=1

mi∑

j=1

vi,j,A(gi) =
|G|∑

i=1

vi,A(ai).

Such an allocation can be found in polynomial time by finding a maximum
weighted matching in the bipartite graph representing the tendency of the proxy
agents to the rooms, i.e. the weight of the edge between proxy agent i and room
k is

∑mi

j=1 vi,j,k. Now, consider the pseudo-code described in Algorithm 1. The
algorithm begins with computing a welfare-maximizing allocation of the rooms
to the proxy agents. Let A be the welfare-maximizing allocation. we find the
desired allocation-triple by solving a linear program described in Algorithm1,
which computes the envy-free allocation with the maximum possible price. In
this LP , the first set of constraints ensures that the sum of the costs assigned
to the agents in each group is equal to the room rent. The second set of con-
straints guarantee strong envy-freeness and the third set ensures the individual
rationality condition. Theorem3 ensures that the LP described in Algorithm 1
is feasible. However, we still must overcome a technical hurdle: we did not show
that the allocation-triple suggested by Algorithm1 is the one that maximizes
the total rent. In fact, by Algorithm1 we find a solution that maximizes the
total rent among the solutions with welfare-maximizing allocation functions.
But the allocation-triple with the maximum possible total rent may be obtained
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by some other allocation functions. Let S = (A,R,D) be the optimal strong
envy-free solution and let A∗ be the welfare-maximizing allocation. By strong
envy-freeness we know

ALGORITHM 1. Strong envy-free allocation with maximum rent
(1) Let A be a welfare-maximizing allocation

(2) Compute a rent division R and cost-sharing function D by the linear program

max

n∑

k=1

mk∑

j=1

dk,j,A(k)

s.t.

Rk =

mi∑

j=1

di,j,k ∀i, k

vi,j,A(gi)
− di,j,A(gi)

≥ vi,j,k − di,j,k ∀i, j, k
vi,j,A(gi)

− di,j,A(gi)
≥ 0 ∀i, j

vi,j,A(gi) − di,j,A(gi) ≥ vi,j,k − di,j,k ∀i, j, k. (7)

By summing over all agents in group gi, for all i, k we have:

mi∑

j=1

vi,j,A(gi) − R(A(gi)) ≥
mi∑

j=1

vi,j,k − R(hk). (8)

Since Eq. (7) holds for all k �= A(gi), it also holds for room A∗(gi). Therefore,
for all gi we have:

mi∑

j=1

vi,j,A(gi) − R(A(gi)) ≥
mi∑

j=1

vi,j,A∗(gi) − R(A∗(gi)). (9)

Summing Inequality (9) over all the groups yields:

|G|∑

i=1

mi∑

j=1

vi,j,A(gi) −
|G|∑

k=1

R(A(gi))

≥
|G|∑

i=1

mi∑

j=1

vi,j,A∗(gi) −
|G|∑

k=1

R(A∗(gi)).

Since both A and A∗ are bijections, we have

|G|∑

k=1

R(A(gi)) =
|G|∑

k=1

R(A∗(gi)). (10)
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Hence,

|G|∑

i=1

mi∑

j=1

vi,j,A(gi) ≥
|G|∑

i=1

mi∑

j=1

vi,j,A∗(gi). (11)

By definition of welfare-maximizing allocation,

|G|∑

i=1

mi∑

j=1

vi,j,A(gi) ≤
|G|∑

i=1

mi∑

j=1

vi,j,A∗(gi),

|G|∑

i=1

mi∑

j=1

vi,j,A(gi) =
|G|∑

i=1

mi∑

j=1

vi,j,A∗(gi). Inequality (11)

Regarding Eq. (10),

|G|∑

i=1

mi∑

j=1

vi,j,A(gi) −
|G|∑

i=1

R(A(gi))

=
|G|∑

i=1

mi∑

j=1

vi,j,A∗(gi) −
|G|∑

i=1

R(A∗(gi)). (12)

Equality (12) together with Inequality (9) results in the following expression for
all i:

mi∑

j=1

vi,j,A(gi) − R(A(gi)) =
mi∑

j=1

vi,j,A∗(gi) − R(A∗(gi)),

mi∑

j=1

vi,j,A(gi) −
mi∑

j=1

di,j,A(gi) =
mi∑

j=1

vi,j,A∗(gi) −
mi∑

j=1

di,j,A∗(gi). (13)

In addition, since Inequality (7) holds for every room k,

vi,j,A(gi) − di,j,A(gi) ≥ vi,j,A∗(gi) − di,j,A∗(gi) ∀i, j. (14)

Equation (13) together with Inequality (14) yield:

vi,j,A(gi) − di,j,A(gi) = vi,j,A∗(gi) − di,j,A∗(gi) ∀i, j.
Hence, for all i, j, k, we have

vi,j,A∗(gi) − di,j,A∗(gi) ≥ vi,j,k − di,j,k.

This shows that we can change the allocation of the optimal solution to the
welfare-maximizing allocation, without violating the strong envy-freeness con-
dition. Thus, the solution offered by LP maximizes the total rent amongst all
admissible allocation-triples.
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4 Not Pre-determined Groups

In this section, we consider the case that the groups are not known in advance.
As regards the dormitories, for instance, it is more realistic to assume that the
students request for a room individually.

For this case, we show that a strong envy-free allocation with the equal cost-
sharing policy always exists. Assume that we have a house with n rooms with
capacity of m agents per room. In addition, we further suppose that the set of
agents is N = {a1, a2, . . . , an} and value of i’th room for agent aj is vi,j . The
goal is to provide a strong envy free quadruple S = (B,A,R,D) as defined in
Sect. 2.

Theorem 5. For the case that the groups are not pre-determined, Strong envy-
freeness is consistent with equal cost-sharing.

Proof. First, we construct an instance of the classic Rent Sharing problem as
follows: let H′ = {r1,1, . . . , r1,m, r2,1, . . . , r2,m, . . . , rn,1, . . . , rn,m} be a house con-
sisting m copies of every room in H. Furthermore, let ri,j be the j’th copy of
the i’th room in H. Now, we solve the classic Rent Sharing problem instance
considering H and N . First note that for this case Observation 6 holds.

Observation 6. For every i, j, j′, the rent charged for room ri,j is the same as
ri,j′ .

Observation 6 is because of the fact that the agents in rooms ri,j and ri,j′

must not envy each other. Let A∗ be the allocation function that allocates a
room to each agent and let R∗ be the function that assigns a rent to each
room. Now, let S∗ = (B∗,A∗,R∗,D∗) be an allocation quadruple where the cost
sharing function D∗ is equal and the rent charged for i’th room of H is

∑m
j=1 ri,j .

Moreover, we define the i’th group of B∗ as the agents located in one of the copies
of i’th room and the allocation function A∗ allocates i’th room to gi.

By observation 6, every agent pays the same rent in S∗ as in the classic
rent sharing instance. Thus, envy-freeness of the classic instance implies strong
envy-freeness of S∗. In addition, the agents in the same group pay equal price
for their room. Hence, the allocation quadruple S∗ is strong envy-free with the
equal cost-sharing policy.

Table 2. Predetermined groups

Weak envy-free Aggregate envy-free Strong envy-free

Equal � Observation 1 � Lemma 3 × Lemma 1

Proportional � Observation 1 � Lemma 4 × Lemma 2

Free � Observation 1 � Observation 1 � Theorem 3

Recall that in Sect. 3 we proved that when the groups are pre-determined, no
allocation-triple can guarantee strong envy-freeness with the equal cost-sharing
policy.
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Table 3. Not pre-determined groups

Strong envy-free

Equal � Theorem 5

Free � Lemmas 3, 4

5 Conclusion and Future Works

In this paper, we considered the Group Rent Sharing problem, which is an exten-
sion of the classic Rent Sharing problem to the case where each room must be
allocated to a group of agents. We generalized the envy-freeness notion for such
situations. We also defined the cost-sharing policy, which adopts the method by
which the rent is divided among the resident agents of a room.

We defined three fairness criteria (weak, aggregate, and strong envy-free) and
three cost-sharing policies (equal, proportional, and free). Our results encompass
several positive and negative results regarding the consistency of different fair-
ness notions and cost-sharing policies. You can find a summary of these results
in Tables 2 and 3.

We proposed two positive results regarding strong envy-freeness: consistency
of this notion with the free cost-sharing policy in the case that the groups are pre-
determined and consistency with equal cost-sharing in the case that the groups
are not pre-determined. For both of these cases, we can find the allocation with
the maximum total rent. One interesting open question is to give an upper-bound
on the ratio of maximum total rent in these two cases. Another direction would
be the analysis of the problem in stochastic settings where the valuation of the
houses to the agents are drawn from a given distribution.
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Abstract. In this paper, we propose a new data structure sequence sen-
tential decision diagram (SSDD) that represents sets of strings. SSDD
is a generalized data structure of Sequence Binary Decision Diagram
(SeqBDD), that is a similar data structure to a deterministic finite
automaton, but the size can be exponentially smaller than the SeqBDD
for the same string set. We also provide algorithms to manipulate sets
of strings on SSDD. These algorithms allow operations such as intersec-
tion, union, and concatenation to be executed on SSDDs under their
compressed representations without expanding. We analyzed the size
complexity of SSDD and the time complexity of proposed algorithms.

Keywords: Data structure · Compression · Decision diagram
Set of strings

1 Introduction

Discrete structures are fundamental concepts in the field of computer science and
discrete mathematics. It is an important technique to represent various types
of discrete structures compactly on computers and processing them efficiently.
Therefore, improvement of compact representation of discrete structures and
efficient manipulation them will give a huge impact on modern society.

Nowadays, binary decision diagrams (BDDs) and its family have been rec-
ognized as an important data structure to manipulate discrete structures. Using
BDD, we can represent Boolean functions in compact and canonical form. In
addition, we can compute the BDD for the result of binary Boolean operations
of two BDDs directly without expanding them. There is a variant of a BDD,
Zero-suppressed BDD (ZDD) that is specialized for manipulating families of
sets. ZDD is proposed by Minato twenty years ago [9]. However, ZDD cannot
represent sets of strings efficiently. Loekito et al. proposed SeqBDD (SeqBDD)
in 2010 [8]. SeqBDD is almost the same data structure as ZDD, but its restric-
tion on the structure is modified to handle strings [5]. The basic operations of
SeqBDD are very similar to those of ZDD. SeqBDD is an efficient representation
especially for sets of strings having strings of various length. A SeqBDD is a
vertex-labeled graph structure, which resembles an acyclic DFA in binary form.
A SeqBDD can be more compact than an equivalent ADFA.

c© Springer Nature Switzerland AG 2018
D. Kim et al. (Eds.): COCOA 2018, LNCS 11346, pp. 592–606, 2018.
https://doi.org/10.1007/978-3-030-04651-4_40
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Compact string indexes for storing sets of strings are fundamental data struc-
tures in computer science, and have been extensively studied for decades [2,6].
Examples of compact string indexes include tries [1,2], finite automata and trans-
ducers [3,7]. Because of the rapid increase in the massive amounts of sequence
data, such as biological sequences, natural language texts, and event sequences,
these compact string indexes have attracted much attention and gained more
importance [2,6]. In such applications, an index is required not only to store
sets of strings compactly for searching but also to manipulate efficiently them
with various set operations.

Darwiche proposed sentential decision diagram (SDD) in 2011 [4]. SDD is a
generalization of BDD. SDD represents Boolean functions more compactly than
BDD in canonical form, and support Boolean operations in polynomial time.
Nishino et al. proposed zero-suppressed SDD (ZSDD) in 2016 [11]. ZSDD is a
variant of SDD, and a generalization of ZDD. ZSDD has almost the same features
as SDD and more effective for sparse families of sets. In this paper, we introduce a
new data structure called sequence sentential decision diagram (SSDD). Likewise
the relationship among ZDD, SDD, and ZSDD, SSDD is a variant of SDD, and
a generalization of SeqBDD. SDD and ZSDD represent Boolean functions or
families of sets on a fixed number of variables. SeqBDD requires a fixed size of
an alphabet, but it can represent variable length strings. We modified ZSDD
structure so as to deal with sets of strings without restriction on the length.
We also provide algorithms to compute string set operations on SSDD, such as
union and concatenation, without expanding them. We show that SSDD can
be exponentially smaller than SeqBDD, and can be polynomially larger than
SeqBDD in the worst case.

2 Preliminary

Let Σ = {a, b, . . .} be a countable alphabet of letters. We assume that the letters
of Σ are ordered by a precedence ≺Σ such as a ≺Σ b ≺Σ · · · in a standard way.

Let s = a1 · · · an, n ≥ 0, be a string over Σ. For every i = 1, . . . , n, we denote
by s[i] = ai the i-th letter and by |s| = n the length of s. The empty string of
length zero is denoted by ε. We denote by Σ∗ the set of all strings of length
n ≥ 0. For two strings s and t, we denote the concatenation of s and t by s · t or
st. If s = pqr for some possibly empty strings p, q, and r, we refer to p, q, and r
as a prefix , factor , and suffix of s, respectively.

A language on an alphabet Σ is a set L ⊆ Σ∗ of strings on Σ. A finite
language of size m ≥ 0 is just a finite set L = {s1, . . . , sm} of m strings on
Σ. A finite language L is referred to as a string set. We define the cardinality
of L by |L| = m, the total length of L by ||L|| =

∑m
i=1 |si|, and the maximal

string length of L by maxlen(L) = max{ |s| | s ∈ L }. The empty language of
cardinality 0 is denoted by ∅. The concatenation of languages L and M is defined
as L · M = { st | s ∈ L, t ∈ M }.

We define �-prefix decomposition (� > 0) of a language L by L = P1 · S1 ∪
· · · ∪ Pk · Sk ∪ R, k ≥ 0, where Pi ⊆ Σ�, 1 ≤ i ≤ k and maxlen(R) < l. If
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Pi ∩ Pj = ∅ for all i 
= j and
⋃k

i=1 Pi = Σ� and Pi 
= ∅ for all i, then we
say the decomposition is �-prefix partition of a language L. We denote it as
({(P1, S1), . . . , (Pk, Sk)}, R) ∈ 2Σ∗×Σ∗ × Σ∗.

3 Data Structure

In this section, we propose a new data structure to represent a set of strings
compactly. Our main idea is to decompose the string set recursively according
to a given binary tree and represent the decompositions as a directed acyclic
graph.

Before defining our data structure, we prepare prefix partitioning tree (ptree)
that determines how given languages are prefix partitioned. A ptree T =
(VT , ET ) is a rooted, ordered, full binary tree. We assume that a ptree has
at least 2 leaves. For an interior node q of a ptree, we refer to the left/right child
of q as p-child/s-child of v and denote it by p(q)/s(q), respectively. We call the
edges pointing p-child/s-child p-edge/s-edge, respectively. We denote the num-
ber of leaves that are contained in the subtree rooted by q by leaf (q), and denote
the preorder rank of q in left to right depth-first search by rank(q) where the
preorder rank of the root node is 0.

For a language L consisting of strings of length � and a ptree node of leaf (q) =
�, the recursive prefix partitioning of a language L with ptree node q is defined
as follows: (i) if leaf (q) > 1, do leaf (p(q))-prefix partition of L as P1 · S1 ∪ · · · ∪
Pk · Sk ∪ R, and execute recursive prefix partitioning of P1, . . . , Pk, R with p(q),
and S1, . . . , Sk with s(q). (ii) if leaf (q) = 1, stop partitioning. By this recursive
prefix partitioning, we can partition a language until each set of strings become
set of letters or a set of empty string. However, above partitioning can only deal
with languages of fixed length strings. To solve this problem, we make a change
of ptree so as to deal with variable length strings. We delete the rightmost node
qr of ptree, the leaf with the largest preorder rank, and make the s-child of the
parent of qr be one of the nodes in the rightmost path of the ptree including
root. That is, we make a cycle in the ptree consisting of only s-edges. The cycle
is not reachable after we traverse p-edges at least once. Obviously, this ptree is
not a tree, but an almost (1) tree. We refer to such a ptree as ptree+. We show
how to make a ptree+ from a ptree in Fig. 1. Now, we can define recursive prefix
partitioning for any finite languages.

Definition 1 (Recursive prefix partitioning). For a ptree+ T = (VT , ET )
and a finite language L that includes at least one string with length more than
1, recursive prefix partitioning of L with the node q of T is leaf (p(q))-prefix
partition is L = P1 · S1 ∪ · · · ∪ Pk · Sk ∪ R. And, recursive prefix partitioning of
P1, . . . , Pk with ptree+ node p(q) and S1, . . . , Sk with ptree+ node s(q).

We define the set of prefix partitions of a language L with ptree+ T as the set
consisting of all partitions that are obtained during the recursive prefix partition
of L with T . In Fig. 2, an example of recursive prefix partitioning is shown. Each
pair of string sets is denoted by a one-source two-destination edge where solid
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0

2

1 4

3

ptree

0

2

1

3

ptree+

Fig. 1. Examples of ptree and ptree+.

{ε, a, aa, aaa, aab, b, ba, baa, bab}

{a, b} {b} {a, b} {a} {a, b} {ε} {ε} {a, b} {ε} {ε}

{ab, bb} {aa, ba} {a, b} {a, b}

Partition at 0    

Partition
at 1

Skip partitioning
at 0

Fig. 2. Recursive prefix partitioning
of {ε, a, aa, aaa, aab, b, ba, baa, bab} by
ptree+ in Fig. 1.

line head of edge denotes the prefix set and dashed line head of edge denotes the
suffix set. Sets consisting of strings less than threshold � is pointed by dotted
line edges.

Based on prefix partitioning, we introduce a data structure sequence senten-
tial decision diagram (SSDD , SeqSDD) as graphical representation of a finite
language. A given language is converted into SSDD by recursive prefix parti-
tioning and merging the same languages occur during the partitioning.

Attribute Terminal Nonterminal
pt null pt(v)
part null parts(v)
rem null rem(v)
label label(v) null
val value(v) null

Fig. 3. The attribute values for a vertex v.

Definition 2 (Sequence Sentential Decision Diagram). A sequence sen-
tentical decision diagram (an SSDD or a SeqSDD) is a multi-rooted, directed
graph G = (V,E), with a ptree+ T = (VT , ET ), satisfying the following:

– V is a vertex set containing two types of vertices known as nonterminal and
terminal vertices. Each has certain attributes, id, pt, parts, rem, label , and
val . The respective attributes are shown in Fig. 3.

– There are three types of terminal vertices, called � (top), ⊥ (bottom) and
letter vertices, respectively. A letter vertex v has a subset of the alphabet as a
label label(v) ⊆ Σ. The top and bot have empty set as their label. An SSDD
may have at most one of � and ⊥. A terminal vertex v has as an attribute a
value value(v) ∈ {0, 1}, indicating whether it is a � or a ⊥, denoted by 1 or
0, respectively. A value of a letter vertex is null. A nonterminal vertex v has
as attributes a ptree+ node pt(v) ∈ VT , that is a branching node of T , called
the respecting ptree+ node of v, a set of paired SSDD vertices parts(v) called
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Fig. 4. Reduction rules of SSDD.

the ps-pair set, and a SSDD node rem(v) called the reminder. For an element
(u,w) ∈ parts(v), we call (u,w) ps-pair, and call u/w p-vertex/s-vertex of
the pair, respectively. We refer to the corresponding outgoing edges as the p-
edge and s-edge from v . We define the attribute triple for v by triple(v) =
〈pt(v), parts(v), rem(v)〉. For distinct vertices u and v, id(u) 
= id(v) holds.
A root is any vertex with no parent.

– We assume that the graph is acyclic. That is, there exists some partial order
≺V on vertices of V such that v ≺V u, v ≺V w and v ≺V rem(v) for any
nonterminal v and (u,w) ∈ parts(v).

We define the size of the graph, denoted by |G|, as the number of its edges.
By definition, the graph consisting of a single terminal vertex, ⊥ or �, is an
SSDD of size zero. For any vertex v in an SSDD G, the subgraph rooted by v
is defined as the graph consisting of v and all its descendants. A graph G is
called single-rooted if it has exactly one root, and multi-rooted otherwise. In this
paper, we identify a single-rooted SSDD and its root node name. When we want
to deal with multiple sets of strings at the same time, multi-rooted graphs are
useful. We call it the shared SSDD environment that is the same idea of shared
BDD [10].

We introduce three reduction rules of SSDD as follows: (i) merging: if there
are multiple SSDD vertices that have the same attributes except for id , these
vertices are merged into one vertex. (ii) trimming: if there is a nonterminal vertex
v such that parts(v) = ∅, the vertex is deleted, and the edges that point v are
changed so as to point rem(v). (iii) implicit partitioning: if a nonterminal vertex
v has a pair of vertices (P,⊥) in parts(v), remove the pair from parts(v). If
this change makes vertices referred from no vertices, delete such vertices and
their outgoing edges from G except for root vertices. Figure 4 shows the rules
trimming and implicit partitioning.

After we applying the reduction rules (i) and (ii), we can obtain a canonical
form for a given set of strings. Figure 5 shows an example of SSDD. For each
vertex v, rem(v) is denoted by a dotted arrow, and each (u, v) ∈ parts(v) is
denoted by a one-source two-destination arrow that the solid line head of edge
points u and the dashed line head of edge points v. We call such SSDD canonical
SSDD . We do not require implicit partitioning always. This rule can reduce size
of SSDD drastically, but we have to restore the deleted vertices when we want
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to compute the union of two given SSDDs. This problem will be discussed later.
Figure 6, shows an example of implicit partitioning.

Fig. 5. An SSDD that
represents the string set
in Fig. 2.

Fig. 6. The SSDD
obtained by applying
implicit partitioning to
the SSDD in Fig. 5

Fig. 7. The SSDD
obtained by introducing
ε-flag into the SSDD in
Fig. 6

3.1 Semantics

Clearly, we see that an SSDD for a language L simulates the recursive prefix
partitioning of L with ptree+ T by using two attributes, parts, and rem, of each
vertex. For a vertex v ∈ V , let LG(v) be the language that is represented by the
vertex. Note that the ptree+ node q determines the beginning position of strings
included in LG(x). That is, there can be multiple nodes that represent the same
language and respects different ptree+ nodes. Now, we give the first semantics
of a sequence BDD.

Definition 3 (The definition of the language). In an SSDD G, a vertex v
in G denotes a finite language LG(v) on Σ defined recursively as:

1. If v is a terminal vertex, LG(v) is the trivial language defined as: (i) if
value(v) = 1, LG(v) = {ε}, and (ii) if value(v) = 0, LG(v) = ∅. (ii) if
value(v) = null, LG(v) = label(v).

2. If x is a nonterminal vertex, LG(x) is the finite language
LG(x) = (

⋃
(u,v)∈parts(x) LG(u) · LG(v)) ∪ LG(rem(x)).

We write L(v) for LG(v) if the underlying graph G is clearly understood.
Moreover, if G is an SSDD with the single root r, we write L(G) for LG(r). We
say that G is an SSDD for L if L = L(G).

3.2 Size Reducing Techniques

In this subsection, we show techniques to reduce the size of SSDD.
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{b,c}{a,c} {a,b}{a,b,c}

c

b

a

c bc

a b aa a b a

c b c b

c

{b,c}{a,c} {a,b}{a,b,c}

c

b

a

a a

b

a

a b a

c b

Terminal Nonterminal

Fig. 8. Examples of list tail sharing. Cells of linked lists are denoted as dashed line
boxes.

Attribute Edges. Attribute edge is a technique originally proposed for BDD and
ZDD [10]. Using attribute edge, the size of BDD and ZDD can be reduced to
half. For SDD and ZSDD, techniques corresponding to attributed edge have not
been proposed yet. We show how to implement such a technique for SSDD.
The main idea of attribute edge is deleting the � from a decision diagram and
adding 1-bit flag to edges instead of the �. For SSDD, we call such flags ε-flags.
When we use ε-flags, we do not create SSDD vertices that represent languages
including ε. Since the terminal node � represents {ε}, the � is not used. Thus,
the number of vertices is reduced to half in the best case. For a given SSDD, we
can construct an SSDD with ε-flags by the following procedure: (i) Add 1-bit
flag to every s-edge of nonterminal vertices, and initialize it to 0. (ii) If an s-edge
is pointing vertex v such that ε ∈ L(v), create an SSDD vertex v′ that represents
L(v) − {ε} and change the destination of the s-edge to v′. Then we change the
ε-flag of the s-edge to 1 to indicate that the destination vertex do not include ε
but we deal with the vertex as if it includes ε. An example of SSDD with ε-flag
is shown in Fig. 7.

List Tail Sharing. SSDD vertices have to store set as their attributes. This
technique is to reduce the memory usage by such sets by using linked lists and
sharing the equivalent contents. The main idea is simple is simple. We sort the
set of paired vertices of a nonterminal vertex in increasing order by the id of the
p-side vertex of each pair. We also sort the set of letters of terminal vertices in
lexicographic order. Next, we store the elements of the sets in linked list. If there
are multiple vertices that their lists have the same sequence of elements in their
list, we merge the tail of lists into one. We can do this by using a hashtable whose
keys are a pair of a list content and pointer to the next list cell, and value is a
pointer to such list cell if it exists. Figure 8 shows examples of list tail sharing
between terminal vertices and nonterminal vertices.

4 Algorithm

In this section, we provide fundamental algorithms for SSDD. They are similar
to the algorithms for ZSDD, that represents families of sets, but not the same
because there are some differences between SSDD and ZSDD as shown below:
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1. SSDD terminal vertices have subsets of the alphabet as labels. Terminal ver-
tices of ZSDD are only � and ⊥.

2. SSDD nonterminal vertices have the attribute rem. ZSDD nonterminal ver-
tices only have an attribute corresponding to parts.

3. For (u, v) ∈ parts(v) of an SSDD vertex v, the strings in L(u) are the same
length more than 0. On the other hand, ZSDD does not have such a restriction
for sizes of sets in a family.

4. SSDD uses a ptree+ that has a cycle so as to deal with variable length strings.
ZSDD uses a tree like a ptree to partition sets because the size of the universal
set is fixed.

First, we discuss how to construct an SSDD for a string. During construction
of an SSDD, we create SSDD vertices. To avoid creating equivalent vertices, we
call the procedure Getnode that returns a vertex with given attributes. There
are two Getnode for nonterminal and terminal. These are called GetnodeN
and GetnodeT, respectively. They use hashtables to keep one-to-one correspon-
dence between languages and vertices. The reduction rule merging is realized by
these procedures. To construct an SSDD for a given string, we decompose it
according to recursive prefix partitioning, and create vertices in a bottom-up
manner.

Next, we discuss set operations such as intersection, difference, and union.
These are implemented as recursive algorithms. The pseudo code of union is
given in Algorithm 1. Intersection and difference can be computed in the same
manner as the algorithm of union. During set operations of nonterminal vertices
x1, x2, we compute the intersection of all combination of (u1, v1) ∈ parts(x1)
and (u2, v2) ∈ parts(x2) to keep the disjoint condition on p-side. Note that
{s1 ∩ s2|s1 ∈ D1, s2 ∈ D2} is a disjoint set for two disjoint sets D1 and
D2. After trying all combination, we get a set of paired vertices of size
|parts(x1)|×|parts(x2)|. It can contain multiple pairs that have the same vertex
as their second element. We use the procedure Compress to merge such vertices.
There is one important difference between union and intersection. If we apply
implicit partitioning, we have to restore the vertices deleted by implicit parti-
tioning when we compute union. Without the deleted vertices, we will miss some
strings that must be included in the resultant vertex. For example, imagine the
union of two nonterminal whose parts are {({a}, {a, b})} and {({b}, {a, b})},
respectively. To restore the deleted vertices, we use the All procedure that
returns the vertex r consisting of all possible strings respecting a given ptree+
node. By computing difference between r and all u of (u, v) ∈ parts(x), we can
get the implicit partitioned vertices. Note that the number of restored vertices
can be exponentially larger than the original SSDD.

Third, we show the algorithm for concatenation of two SSDD vertices. The
pseudo code is shown as Algorithm 2. Since concatenation is an operation for
string sets, ZSDD has no corresponding algorithm. An obvious way to realize
concatenation is expanding both SSDD, concatenate them explicitly and con-
struct the SSDD for the resultant string set. The difficulty of concatenation
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Algorithm 1. Union(y, z): Make an SSDD vertex that represents a language
L(y) ∪ L(z) for two given SSDD vertices y and z.
Input:Two SSDD vertices y and z
Output:The SSDD vertex x such that L(x) = L(y) ∪ L(z)
Global variable: A hash table memocache whose key is in 〈Op, V, V 〉 and value is in
V where Op is a set of operation names.

1: if y = ⊥ then
2: return z;
3: end if
4: if z = ⊥ then
5: return y;
6: end if
7: if y = z then
8: return y;
9: end if

10: if pt(y) > pt(z) or (pt(y) = pt(z) and id(y) > id(z)) then
11: swap(y, z);
12: end if
13: if (x ← memocache.search(〈∪, y, z〉)) �= null then
14: return x;
15: end if
16: if pt(y) = pt(z) = null then
17: x ← GetnodeT(label(y) ∪ label(z));
18: else if pt(y) < pt(z) then
19: x ← GetnodeN(pt(y), parts(y),Union(rem(y), z));
20: else
21: U ← ∅;
22: if we employ implicit partitioning then
23: uy, uz ← All(p(pt(y)));
24: for all (u, v) ∈ parts(y) do
25: uy ← Difference(uy, u);
26: end for
27: for all (u, v) ∈ parts(z) do
28: uz ← Difference(uz, u);
29: end for
30: temporarily add (uy, ⊥) and (uz, ⊥) to part(y) and part(z), respectively.
31: end if
32: for all (uy, vy) ∈ parts(y) do
33: for all (uz, vz) ∈ parts(z) do
34: U ← U ∪ {(Intersection(uy, uz),Union(vy, vz))};
35: end for
36: end for
37: U ′ ← Compress(U);
38: w ← Union(rem(y), rem(z));
39: x ← GetnodeN(pt(y), U ′, w);
40: end if
41: memocache.insert(〈∪, y , z 〉, x );
42: return x;
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Algorithm 2. Concatenation(q, y, z): Make an SSDD vertex that represents
a language L(y) · L(z) for two given SSDD vertices y and z.
Input:Two SSDD vertices y and z, and a ptree+ node q where pt(y) and pt(z) are
reachable from q by traversing only p-edges.
Output:The SSDD vertex x such that L(x) = L(y)·L(z) and pt(x) is a p-side descendant
of q.
Global variable: A hash table memocache whose key is in 〈Op, V, V 〉 and value is in
V where Op is a set of operation names.

1: if y = ⊥ or z = ⊥ then
2: return ⊥;
3: end if
4: if (x ← memocache.search(〈·, y, z〉)) �= null then
5: return x;
6: end if
7: x ← ⊥, U ← ∅;
8: if pt(y) = q then
9: for all (u, v) ∈ part(x) do

10: U ← U ∪ {(u,Concatenation(s(q), v, z))};
11: end for
12: x ← GetnodeN(q, U, ⊥);
13: Fp ← Convert0(rem(y), an empty list);
14: else
15: Fp ← Convert0(y, an empty list);
16: end if
17: for all Up ∈ Fp do
18: x ← Union(x,Convert(q, Up + + a list containing only z));
19: � “++” means list concatenation operation.
20: end for
21: memocache.insert(〈·, y , z 〉, x );
22: return x;

comes from that we need to convert a language represented by a vertex respect-
ing a qtree+ node into new vertex respecting other ptree+ nodes.

Our algorithm realizes this with less number of expanding of SSDD vertices.
The main idea is to delay expanding vertices until it is required like call-by-
need. During conversion for ptree+ node q, we want to know what languages
must be represented by vertices respecting p(q) and what languages must be
paired for each p-child. We can determine it only by the length of prefixes.
Therefore, we do not need to expanding all SSDD vertices. We just find sequences
of SSDD vertices u1, . . . , uk such that

∑
1≤i≤k maxlen(L(ui)) = leaf(p(q)) and

minlen(L(ui)) = maxlen(L(ui)) for all 1 ≤ i ≤ k. We divide such sequences into
prefix part and suffix part recursively, and construct corresponding new SSDD
vertices.
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Algorithm 3. Convert(q, Up): Make an SSDD vertex, respecting a given
ptree+ node, that represents the same language that a given sequence of SSDD
vertices represent.
Input:A ptree+ node q and a list of SSDD vertices Up = Up[1] · · · Up[i].
Output:The SSDD vertex x, that respecting ptree+ node q, such that L(x) = L(Up[1])×
· · · × L(Up[i])
Global variable: A hash table memocache whose key is in 〈VP , V ∗〉 and value is in
V .

1: if the size of Up is 1 and Us[1] = � then
2: return �;
3: end if
4: if leaf(q) = 1 then
5: return Up[1];
6: end if
7: if (x ← memocache.search(q, Up) �= null then
8: return x;
9: end if

10: F ← Convert1(q, an empty list, Up, 0);
11: U ← ∅, w ← ⊥;
12: for all (U ′

p, U
′
s) ∈ F do

13: if U ′
s is empty then

14: w ← Union(w,Convert(p(q), U ′
p));

15: else
16: U ← U ∪ {(Convert(p(q), U ′

p),Convert(s(q), U ′
s))};

17: end if
18: end for
19: U ′ ← Compress(U);
20: x ← GetnodeN(q, U, w);
21: memocache.insert(〈q ,Up ,Us〉, x );
22: return x;

5 Analysis

In this section, we show complexity analysis of SSDD.

Size Complexity: We show that the size of an SSDD can be exponentially smaller
than the SeqBDD for the same language. SeqBDD is a data structure to represent
sets of strings, and the size of a SeqBDD can be O(Σ) times smaller than the
equivalent deterministic finite automaton (DFA) [5]. The size of SeqBDD is at
most the same as the size of DFA.

Theorem 1. Size of an SSDD can be O(mΣ�/2) times smaller than the SeqBDD
that represents the same language where � is the number of leaves of ptree+ and
m is the length of the longest string.

Proof. Define a language Li and ptree Ti as follows: Ln+1 =
⋃

a∈Σ{a} ·Ln · {a},
and L1 = Σ. That is, Ln is the set of all palindrome of length 2n − 1. Tn+1 =
a ptree with root q such that p(q) is a leaf, s(s(p)) is a leaf, and p(s(q)) is
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Algorithm 4. Convert0(x,Up): Make sequences of SSDD vertices such that
the language represented by each sequence contains strings of the same length.
Input:An SSDD vertex x
Output:A set of sequences of SSDD vertices F such that L(u1) × · · · × L(uk) is a set of
string of the same length for u1, . . . , uk ∈ F , and

⋃
u1,...,uk∈F L(u1)×· · ·×L(uk) = L(x)

where × means concatenation of languages.

1: if minlen(x) = maxlen(x) then
2: � minlen and maxlen can be computed by simple recursive algorithms.
3: return { Up + + a list contains only x };
4: end if
5: F ← ∅;
6: if rem(x) �= null then
7: F ← F ∪ Convert0(rem(x), Up);
8: end if
9: for all (u, v) ∈ parts(x) do

10: F ← F ∪ Convert0(v, Up + +a list contains only u);
11: end for
12: return F ;

Tn. T1 is just a leaf. Figure 9 shows the graphical image of Tn+1. We show the
SeqBDD and SSDD that represent Ln+1 in Figs. 10 and 11. The size fn+1 of
SeqBDD for Ln+1 is |Σ| × fn + 2|Σ| and f1 = |Σ|. The size gn+1 of SSDD for
Ln+1 is gn + 2|Σ| and g1 = |Σ|. Thus, fn = (|Σ|+1)|Σ|n−2|Σ|

|Σ|−1 = O(|Σ|n) and
gn = (2n − 1)|Σ|. Next, we consider the language Lm

n with ptree+ in Fig. 12.
Then, the size of the SeqBDD for Lm

n is O(m|Σ|n) as shown in Fig. 13, and the
size of the SSDD for Lm

n is m + (2n + 1)|Σ| as shown in Fig. 14. As a result, the
SSDD for Lm

n is O(mΣ�/2) times smaller than the SeqBDD for Lm
n .

Fig. 9. The ptree Tn+1 Fig. 10. The SeqBDD
represents Ln+1

Fig. 11. The SSDD rep-
resents Ln+1
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Algorithm 5. Convert1(q, Up, Us, �): Make an SSDD vertex, respecting a given
ptree+ node, that represents the same language that a given sequence of SSDD
vertices represent.
Input:A ptree+ node q and two doubly linked lists of SSDD vertices Up and Us. And,
the length � of strings represented by Up.
Output:The set of two lists of SSDD vertices that are corresponding p(q) and s(q)
respectively.

1: if � = leaf(p(q)) or (� < leaf(p(q)) and Us is empty) then
2: return {(Up, Us)};
3: end if
4: if � < leaf(p(q)) then
5: while Us is not empty and leaf(pt(Us[1])) ≤ 1 and � < leaf(p(q)) do
6: Let the first element of Us be x and delete it from Us;
7: Append x to the tail of Up;
8: � ← � + leaf(pt(Us[1]));
9: end while

10: if � = leaf(p(q)) or Us is empty then
11: return {(Up, Us)};
12: end if
13: let the first element of Us be x and delete it from Us;
14: F ← ∅;
15: if rem(x) �= null then
16: append rem(x) to the head of Us;
17: F ← F ∪ Convert1(Up, Us, �);
18: delete rem(x) from the head of Us;
19: end if
20: for all (u, v) ∈ parts(x) do
21: append u to the tail of Up, and append v to the head of Us;
22: F ← F ∪ Convert1(Up, Us, � + leaf(p(pt(x))))
23: delete u from the tail of Up, and delete v from the head of Us;
24: end for
25: return F ;
26: end if
27: if � > leaf(p(q)) then
28: let the last element of Up be x and delete it from Up;
29: � ← � − leaf(pt(x));
30: for all (u, v) ∈ parts(x) do
31: append u to the tail of Up, and append v to the head of Us;
32: F ← F ∪ Convert1(Up, Us, � + leaf(p(pt(x))))
33: delete u from the tail of Up, and delete v from the head of Us;
34: end for
35: return F ;
36: end if

SeqBDD corresponds SSDD with ptree+ consisting of only one leaf. We show
the next theorem.
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Theorem 2. Size of an SSDD with ptree+ consisting of only one leaf is at most
O(|Σ|) times larger than the SeqBDD for the same language.

Proof. In the SSDD with such ptree+ T , every nonterminal vertices respect
the root node of T . There is no vertices representing the same language but
respects different ptree+ nodes. This structure is almost the same as a DFA.
The difference between DFA and this SSDD is that DFA’s labels are letters but
this SSDD’s labels are subsets of the alphabet. However, the number of vertices
is the same. The number of outgoing edges from this SSDD nonterminal vertices
is at most Σ. That is the same as the number of outgoing edges of DFA vertices.
Therefore, the size of SSDD is at most O(|Σ|) times larger than the equivalent
SeqBDD.

Theorem 3. Size of an SSDD with implicit partitioning is at most O(�m2)
times larger than the equivalent SeqBDD where � is the number of leaves of
ptree+ and m is the size of the SeqBDD.

Proof. Remember the algorithm of Convert. This situation is similar to con-
verting an SSDD with a ptree+ consisting of only one leaf into an SSDD with a
certain ptree+. For each vertex of SeqBDD, we may create SSDD vertices that
respect different ptree+ nodes. And, for ptree+ node q, we will create SSDD
vertices for sets of strings of length leaf(q) that connect two different SeqBDD
vertices, as a start vertex and a goal vertex. The number of outgoing edges
is at most m where m is the size of the original SeqBDD because we have to
choose halfway vertices that splits the strings existing between the start and
goal vertices. Therefore, the number of SSDD vertices is O(�m2 + �m3).

These above theorems say that size of an SSDD is polynomially larger than the
equivalent SeqBDD in the worst case and exponentially smaller than it in the
best case.

Fig. 12. The ptree+ for
Lm

n

Fig. 13. The SeqBDD
represents Lm

n

Fig. 14. The SSDD rep-
resents Lm

n

Time Complexity: The algorithms for operations such as Search, Intersection,
Difference, and Union are similar to algorithms on ZSDD. The time complex-
ity of these algorithms is proven in [11]. The Union algorithm for SSDD with
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implicit partitioning is not polytime algorithm because it takes to exponential
time to restore deleted vertices. Other above algorithms are polytime. The Con-
catenation algorithm is not polytime because we have to expand all vertices to
raw sets of strings in the worst case.

6 Conclusion

In this paper, we propose a sequence sentential decision diagram that is a new
data structure to represent and manipulate sets of strings. SSDD is a generalized
version of the sequence binary decision diagram and can be exponentially smaller
than SeqBDD. For future work, we will evaluate the performance of SSDD for
practical data sets and use SSDD for real-life applications. We also address the
question of the relationship between SSDD and grammar compression.
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Abstract. We revisit the online Unit Covering problem in higher
dimensions: Given a set of n points in R

d, that arrive one by one, cover
the points by balls of unit radius, so as to minimize the number of balls
used. In this paper, we work in R

d using Euclidean distance. The current
best competitive ratio of an online algorithm, O(2dd log d), is due to
Charikar et al. (2004); their algorithm is deterministic.
(I) We give an online deterministic algorithm with competitive ratio

O(1.321d), thereby improving on the earlier record by an exponen-
tial factor. In particular, the competitive ratios are 5 for the plane
and 12 for 3-space (the previous ratios were 7 and 21, respectively).
For d = 3, the ratio of our online algorithm matches the ratio
of the current best offline algorithm for the same problem due to
Biniaz et al. (2017), which is remarkable (and rather unusual).

(II) We show that the competitive ratio of every deterministic online
algorithm (with an adaptive deterministic adversary) for Unit

Covering in R
d under the L2 norm is at least d + 1 for every

d ≥ 1. This greatly improves upon the previous best lower bound,
Ω(log d/ log log log d), due to Charikar et al. (2004).

(III) We obtain lower bounds of 4 and 5 for the competitive ratio of
any deterministic algorithm for online Unit Covering in R

2 and
respectively R

3; the previous best lower bounds were both 3.
(IV) When the input points are taken from the square or hexagonal lat-

tices in R
2, we give deterministic online algorithms for Unit Cov-

ering with an optimal competitive ratio of 3.

Keywords: Online algorithm · Unit covering · Unit clustering
Competitive ratio · Lower bound · Newton number

1 Introduction

Covering and clustering are fundamental problems in the theory of algorithms,
computational geometry, optimization, and other areas. They arise in a wide
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range of applications, such as facility location, information retrieval, robotics,
and wireless networks. While these problems have been studied in an offline set-
ting for decades, they have been considered only recently in a more dynamic (and
thereby realistic) setting. Here we study such problems in a high-dimensional
Euclidean space and mostly in the L2 norm. We first formulate them in the
classic offline setting.

Problem 1. k-Center. Given a set of n points in R
d and a positive integer k,

cover the set by k congruent balls centered at the points so that the diameter of
the balls is minimized.

The following two problems are dual to Problem1.

Problem 2. Unit Covering. Given a set of n points in R
d, cover the set by

balls of unit diameter so that the number of balls is minimized.

Problem 3. Unit Clustering. Given a set of n points in R
d, partition the set

into clusters of diameter at most one so that the number of clusters is minimized.

Problems 1 and 2 are easily solved in polynomial time for points on the
line, i.e., for d = 1; but both problems become NP-hard already in Euclidean
plane [14,22]. Factor 2 approximations are known for k-Center in any met-
ric space (and so for any dimension) [13,15]; see also [25, Chap. 2], while
polynomial-time approximation schemes are known for Unit Covering for any
fixed dimension [17]. However, these algorithms are notoriously inefficient and
thereby impractical; see also [2] for a summary of such results and different time
vs. ratio trade-offs.

Problems 2 and 3 are identical in the offline setting: indeed, one can go from
clusters to balls in a straightforward way; and conversely, one can assign multiply
covered points in an arbitrary fashion to unique balls. In this paper we focus on
the second problem, namely online Unit Covering; we however point out key
differences between this problem and online Unit Clustering.

The performance of an online algorithm ALG is measured by comparing it
to an optimal offline algorithm OPT using the standard notion of competitive
ratio [3, Chap. 1]. The competitive ratio of ALG is defined as supσ

ALG(σ)
OPT(σ) , where

σ is an input sequence of points, OPT(σ) is the cost of an optimal offline algo-
rithm for σ and ALG(σ) denotes the cost of the solution produced by ALG for
this input. For randomized algorithms, ALG(σ) is replaced by the expectation
E[ALG(σ)], and the competitive ratio of ALG is supσ

E[ALG(σ)]
OPT(σ) . If there is no dan-

ger of confusion, we use ALG to refer to an algorithm or the cost of its solution,
as needed.

Charikar et al. [8, Sect. 6] studied the online version of Unit Covering

(under the name of “Dual Clustering”). The points arrive one by one and each
point needs to be assigned to a new or to an existing unit ball upon arrival; the
L2 norm is used in R

d, d ∈ N. The location of each new ball is fixed as soon as
it is placed. The authors provided a deterministic algorithm of competitive ratio
O(2dd log d) and gave a lower bound of Ω(log d/ log log log d) on the competitive
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ratio of any deterministic algorithm for this problem. For d = 1 a tight bound of
2 is folklore; for d = 2 the best known upper and lower bounds on the competitive
ratio are 7 and 3, respectively, as implied by the results in [8]1.

The online Unit Clustering problem was introduced by Chan and Zarrabi-
Zadeh [7] in 2006. While the input and the objective of this problem are identical
to those for Unit Covering, Unit Clustering is more flexible in that the
algorithm is not required to produce unit balls at any time, but rather the small-
est enclosing ball of each cluster should have diameter at most 1; furthermore,
a ball may change (grow or shift) in time. In regard to their online versions,
It is worth emphasizing two properties (shared with Unit Covering): (i) a
point assigned to a cluster must remain in that cluster; and (ii) two distinct
clusters cannot merge into one cluster, i.e., the clusters maintain their identities.
The authors showed that several standard approaches for Unit Clustering,
namely the deterministic algorithms Centered, Grid, and Greedy, all have com-
petitive ratio at most 2 for points on the line (d = 1). Moreover, the first two
algorithms are applicable for Unit Covering, with a competitive ratio at most
2 for d = 1, as well. These algorithms naturally extend to any higher dimension
(including Grid provided the L∞ norm is used).

Algorithm Centered. For each new point p, if p is covered by an existing
unit ball, do nothing; otherwise place a new unit ball centered at p.

Algorithm Grid. Build a uniform grid in R
d where cells are unit cubes of

the form
∏

[ij , ij + 1), where ij ∈ Z for j = 1, . . . , d. For each new point
p, if the grid cell containing p is nonempty, put p in the corresponding
cluster; otherwise open a new cluster for the grid cell and put p in it.

Since in R
d each cluster of OPT can be split into at most 2d grid-cell clusters

created by the algorithm, its competitive ratio is at most 2d, and this analysis
is tight for the L∞ norm. It is worth noting that there is no direct analogue of
this algorithm under the L2 norm.

Some (easy) remarks are in order. Any lower bound on the competitive ratio
of an online algorithm for Unit Clustering applies to the competitive ratio of
the same type of algorithm for Unit Covering. Conversely, any upper bound
on the competitive ratio of an online algorithm for Unit Covering yields an
upper bound on the competitive ratio of the same type of algorithm for Unit

Clustering.

Related Work. Unit Covering is a variant of Set Cover. Alon et al. [1]
gave a deterministic online algorithm of competitive ratio O(log m log n) for this
problem, where n is the size of the ground set and m is the number of sets in the

1 Charikar et al. [8] claim (on p. 1435) that a lower bound of 4 for d = 2 under the
L2 norm follows from their Theorem 6.2; but this claim appears unjustified; only
a lower bound of 3 is implied. Unfortunately, this misinformation has been carried
over also by [7,9].
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family. Buchbinder and Naor [6] obtained sharper results under the assumption
that every element appears in at most Δ sets.

Chan and Zarrabi-Zadeh [7] showed that no online algorithm (determinis-
tic or randomized) for Unit Covering can have a competitive ratio better
than 2 in one dimension (d = 1). They also showed that it is possible to get bet-
ter results for Unit Clustering than for Unit Covering. Specifically, they
developed the first algorithm with competitive ratio below 2 for d = 1, namely a
randomized algorithm with competitive ratio 15/8. This fact has been confirmed
by subsequent algorithms designed for this problem; the current best ratio 5/3,
for d = 1, is due to Ehmsen and Larsen [11], and this gives a ratio of 2d · 5

6 for
every d ≥ 2 (the L∞ norm is used); their algorithm is deterministic. The appro-
priate “lifting” technique has been layed out in [7,28]. From the other direction,
the lower bound for deterministic algorithms has evolved from 3/2 in [7] to 8/5
in [12], and then to 13/8 in [20].

Answering a question of Epstein and van Stee [12], Dumitrescu and Tóth [9]
showed that the competitive ratio of any algorithm (deterministic or random-
ized) for Unit Clustering in R

d under the L∞ norm must depend on the
dimension d; in particular, it is Ω(d) for every d ≥ 2.

Liao and Hu [21] gave a PTAS for a related disk cover problem (another
variant of Set Cover): given a set of m disks of arbitrary radii and a set P
of n points in R

2, find a minimum-size subset of disks that jointly cover P ; see
also [23, Corollary 1.1].

Our Results. (i) We show that the competitive ratio of Algorithm Centered
for online Unit Covering in R

d, d ∈ N, under the L2 norm is bounded by the
Newton number of the Euclidean ball in the same dimension. In particular, it
follows that this ratio is O(1.321d) (Theorem 1 in Sect. 2). This greatly improves
on the ratio of the previous best algorithm due to Charikar et al. [8]. The com-
petitive ratio of their algorithm is at most f(d) = O(2dd log d), where f(d) is
the number of unit balls needed to cover a ball of radius 2 (i.e., the doubling
constant). By a volume argument, f(d) is at least 2d. In particular f(2) = 7 and
f(3) = 21 [27]; see also [2]. The competitive ratios of our algorithm are 5 in the
plane and 12 in 3-space, improving the earlier ratios of 7 and 21, respectively.

(ii) We show that the competitive ratio of every deterministic online algorithm
(with an adaptive deterministic adversary2) for Unit Covering in R

d under
the L2 norm is at least d + 1 for every d ≥ 1 (Theorem 3 in Sect. 3). This
greatly improves the previous best lower bound, Ω(log d/ log log log d), due to
Charikar et al. [8].

(iii) We obtain lower bounds of 4 and 5 for the competitive ratio of any determin-
istic algorithm (with an adaptive deterministic adversary) for Unit Covering

2 An adaptive adversary is one that tries to force the algorithm perform extensive
work by observing each of its actions and constructing the input accordingly step
by step.
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in R
2 and respectively R

3 (Theorems 2 and 3 in Sect. 3). The previous best lower
bounds were both 3.

(iv) For input point sequences that are subsets of the infinite square or hexagonal
lattices, we give deterministic online algorithms for Unit Covering with an
optimal competitive ratio of 3 (Theorems 4 and 5 in Sect. 4).

Notation and Terminology. For two points p, q ∈ R
d, let d(p, q) denote the

Euclidean distance between them. Throughout this paper the L2-norm is
used. The closed ball of radius r in R

d centered at point z = (z1, . . . , zd) is
Bd(z, r) = {x ∈ R

d | d(z, x) ≤ r} = {(x1, . . . , xd) | ∑d
i=1(xi − zi)2 ≤ r2}. A unit

ball is a ball of unit radius in R
d. The Unit Covering problem is to cover a

set of points in R
d by a minimum number of unit balls.

The unit sphere is the surface of the d-dimensional unit ball centered at the
origin 0, namely, the set of points S

d−1 ⊂ Bd(0, 1) for which equality holds:
∑d

i=1 x2
i = 1. A spherical cap C(α) of angular radius α ≤ π and center P on

S
d−1 is the set of points Q in S

d−1 for which ∠P0Q ≤ α; see [24].

2 Analysis of Algorithm Centered for Online Unit
Covering in Euclidean d-Space

For a convex body C ⊂ R
d, the Newton number (a.k.a. kissing number) of

C is the maximum number of nonoverlapping congruent copies of C that can
be arranged around C so that each of them is touching C [5, Sect. 2.4]. Some
values N(Bd), where Bd = Bd(0, 1), are known exactly for small d, while for
most dimensions d we only have estimates. For instance, it is easy to see that
N(B2) = 6, and it is known that N(B3) = 12 and N(B4) = 24. The problem
of estimating N(Bd) in higher dimensions is closely related to the problem of
determining the densest sphere packing and the knowledge in this area is largely
incomplete with large gaps between lower and upper bounds; see [5, Sect. 2.4]
and the references therein; in particular, many upper and lower estimates up to
d = 128 are given in [4,10]. In this section, we prove the following theorem.

Theorem 1. Let �(d) be the competitive ratio of Algorithm Centered in R
d

(when using the L2 norm). Then �(2) = N(B2) − 1 = 5, �(3) = N(B3) = 12,
and �(d) ≤ N(Bd) for every d ≥ 4. In particular, �(d) = O(1.321d).

A key fact for proving the theorem is the following easy lemma.

Lemma 1. Let B be a unit ball centered at o, that is part of OPT. Let p, q ∈ B
be any two points in B presented to the online algorithm that forced the algorithm
to place new balls centered at p and q; refer to Fig. 1. Then ∠poq > π/3.
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o q

p

Fig. 1. Lemma 1.

Proof. Assume for contradiction that α = ∠poq ≤ π/3. Assume also, as we
may, that p arrives before q. Since q /∈ B(p), we have |pq| > 1. Consider the
triangle Δpoq; we may further assume that ∠opq ≥ ∠oqp (if we have the opposite
inequality, the argument is symmetric). In particular, we have ∠opq ≥ π/3. Since
∠poq ≤ π/3 and ∠opq ≥ π/3, the law of sines yields that |oq| ≥ |pq| > 1.
However, this contradicts the fact that q is contained in B, and the proof is
complete. ��
Corollary 1. Let B be a unit ball centered at o, that is part of OPT. For every
point p ∈ B presented to the online algorithm that forced the algorithm to place
a new ball centered at p, let Ψ(p) denote the cone with apex at o, axis −→op, and
angle π/6 around −→op. Then the cones Ψ(p) are pairwise disjoint in B; hence the
corresponding caps on the surface of B are also nonoverlapping.

Proof of Theorem 1. For every unit ball B of OPT we bound from above the
number of unit balls placed by Algorithm Centered whose center lies in B.
Suppose this number is at most A (for every ball in OPT). Since the center
of every unit ball placed by the algorithm is a point of the set and all points
in the set are covered by balls in OPT, it follows that the competitive ratio of
Algorithm Centered is at most A.

By Corollary 1 we are interested in the maximum number A(α) of nonover-
lapping caps C(α) that can be placed on S

d−1, for α = π/6. This is precisely
the maximum number of nonoverlapping balls that can touch a fixed unit ball
externally, which is the Newton number N(Bd) in dimension d.

For d = 2 we gain 1 in the bound due to the fact that the inequality in
Lemma 1 is strict and we are dealing with the unit circle; the five vertices of a
regular pentagon inscribed in a unit circle make a tight example with ratio 5;
note that the minimum pairwise distance between points is 2 sin(π/5) > 1, and
so the algorithm places a new ball for each point. For d = 3 the twelve vertices of
a regular icosahedron inscribed in a unit sphere make a tight example with ratio
12; since the minimum pairwise distance between points is (sin(2π/5))−1 > 1,
the same observation applies. ��
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Bounds on the Newton Number of the Ball. A classic formula established by
Rankin [24] yields that

N(Bd) ≤
√

π

8
d3/2 2d/2(1 + o(1)). (1)

More recently, Kabatiansky and Levenshtein [19] have established a sharper
upper bound

N(Bd) ≤ 20.401d(1+o(1)). (2)

In particular, N(Bd) = O(1.321d). It is worth noting that the best lower known
on the Newton number, due to Jenssen et al. [18] is far apart; see also [26].

N(Bd) = Ω

(

d3/2 ·
(

2√
3

)d
)

. (3)

In particular, N(Bd) = Ω(1.154d).

3 Lower Bounds on the Competitive Ratio for Online
Unit Covering in Euclidean d-Space

Theorem 3 that we prove in this section greatly improves the previous
best lower bound on the competitive ratio of a deterministic algorithm,
Ω(log d/ log log log d), due to Charikar et al. [8].
Previous lower bounds for d = 2, 3. To clarify matters, we briefly summarize the
calculation leading to the previous best lower bounds on the competitive ratio.
Charikar et al. [8] claim (on p. 1435) that a lower bound of 4 for d = 2 under
the L2 norm follows from their Theorem 6.2; but this claim appears unjustified;
only a lower bound of 3 is implied. The proof uses a volume argument. For a
given d, the parameters Rt are iteratively computed for t = 1, 2, . . . by using the
recurrence relation

Rt+1 =
Rt + t1/d

2
, where R1 = 0. (4)

The lower bound on the competitive ratio of any deterministic algorithm given
by the argument is the largest t for which Rt ≤ 1. The values obtained for Rt,
for t = 1, 2, . . . and d = 2, 3 are listed in Table 1; as such, both lower bounds are
equal to 3.

3.1 A New Lower Bound in the Plane

In this section, we deduce an improved lower bound of 4 (an alternative proof
will be provided by Theorem 3).

Theorem 2. The competitive ratio of any deterministic online algorithm for
Unit Covering in the plane (in the L2 norm) is at least 4.
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Table 1. Values Rt, for t = 1, 2, 3, 4.

d R1 R2 R3 R4

2 0 0.5 0.957 . . . 1.344 . . .

3 0 0.5 0.879 . . . 1.161 . . .

Proof. Consider a deterministic online algorithm ALG. We present an input
instance σ for ALG and show that the solution ALG(σ) is at least 4 times OPT(σ).
Our proof works like a two player game, played by Alice and Bob. Here, Alice
is presenting points to Bob, one at a time. Bob (who plays the role of the algo-
rithm) makes the decision whether to place a new disk or not. If a new disk is
required, Bob decides where to place it. Alice tries to force Bob to place as many
new disks as possible by presenting the points in a smart way. Bob tries to place
new disks in a way such that they may cover other points presented by Alice in
the future, thereby reducing the need of placing new disks quite often.

p2p1 c2

q
xc1

D1 D2

D3

y

r = (1 + ε, 1 + ε)p3

Fig. 2. A lower bound of 4 on the competitive ratio in the plane. The figure illustrates
the case p4 = r.

The center of a disk Di is denoted by ci, i = 1, 2, . . .; refer to Fig. 2. The
point coordinates will depend on a parameter ε > 0; a sufficiently small ε ≤ 0.01
is chosen so that the inequalities appearing in the proof hold. First, point p1
arrives and the algorithm places disk D1 to cover it. Without loss of generality,
it can be assumed that c1 = (0, 0) and p1 = (x, 0), where 0 ≤ x ≤ 1. The second
point presented is p2 = (1+ ε2, 0) and, since p2 /∈ D1, a second disk D2 is placed
to cover it. By symmetry, it can be assumed that y(c2) ≤ 0. The third point
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presented is p3 = (0, 1 + ε), and neither D1 nor D2 covers it; thus a new disk,
D3, is placed to cover p3.

Consider two other candidate points, q = (−1+ε,
√

2ε) and r = (1+ε, 1+ε).
Since

|qc1|2 = (−1 + ε)2 + 2ε = 1 + ε2 − 2ε + 2ε = 1 + ε2 > 1,

q is not covered by D1; and clearly r is not covered by D1. Since

|qc2|2 ≥ (1 − ε + ε2)2 + 2ε = 1 + 3ε2 + O(ε3) > 1,

q is not covered by D2; and clearly r is not covered by D2. Note also that the
D3 cannot cover both q and r, since their distance is close to

√
5 > 2. We now

specify p4, the fourth point presented to the algorithm. If q is covered by D3,
let p4 = r, otherwise let p4 = q. In either case, a fourth disk, D4, is required to
cover p4.

To conclude the proof, we verify that p1, p2, p3, p4 can be covered by a unit
disk.

Case 1: p4 = r. It is easily seen that p1, p2, p3, p4 can be covered by the unit
disk D centered at

(
1
2 , 1

2

)
; indeed, the four points are close to the boundary of

the unit square [0, 1]2.
Case 2: p4 = q. Consider the unit disk D centered at the midpoint c of qp2.

We have
|qp2|2 = (2 − ε + ε2)2 + 2ε = 4 − 2ε + O(ε2) < 4.

It follows that D covers p2 and p4. Note that

c =
(

ε + ε2

2
,

√
ε

2

)

.

We next check the containment of p1 and p3.

|cp1|2 ≤
(

1 − ε + ε2

2

)2

+
ε

2
= 1 − ε

2
+ O(ε2) < 1,

thus D also covers p1. Finally, we have

|cp3|2 ≤
(

ε + ε2

2

)2

+
(

1 + ε −
√

ε

2

)2

≤ 1 −
√

2ε + O(ε) < 1,

thus D also covers p3.
We have shown that ALG(σ)/OPT(σ) ≥ 4, and the proof is complete. ��

3.2 A New Lower Bound in d-Space

We introduce some additional terminology. For every integer k, 0 ≤ k < d, a
k-sphere of radius r centered at a point c ∈ R

d is the locus of points in R
d at

distance r from a center c, and lying in a (k + 1)-dimensional affine subspace
that contains c. In particular, a (d − 1)-sphere of radius r centered at c is the
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set of all points p ∈ R
d such that |cp| = r; a 1-sphere is a circle lying in a

2-dimensional affine plane; and a 0-sphere is a pair of points whose midpoint
is c. A k-hemisphere is a k-dimensional manifold with boundary, defined as the
intersection S ∩ H, where S is a k-sphere centered at some point c ∈ R

d and H
is a halfspace whose boundary ∂H contains c but does not contain S. For k ≥ 1,
the relative boundary of the k-hemisphere S ∩ H is the (k − 1)-sphere S ∩ (∂H)
concentric with S; and the pole of S ∩ H is the unique point p ∈ H such that −→cp
is orthogonal to the k-dimensional affine subspace that contains S ∩ (∂H). For
k = 0, a 0-hemisphere consists of a single point, and we define the pole to be
that point. We make use of the following observation.

Observation 1. Let S be a k-sphere of radius 1+ε, where 0 ≤ k < d and ε > 0;
and let B be a unit ball in R

d. Then S \ B contains a k-hemisphere.

Proof. Without loss of generality, S is centered at the origin, and lies in the
subspace spanned by the coordinate axes x1, . . . , xk+1. By symmetry, we may
also assume that the center of B is on the nonnegative x1-axis, say, at (b, 0, . . . , 0)
for some b ≥ 0. If b = 0, then S and B are concentric and B lies in the interior of
S, consequently, S \ B = S. Otherwise, S ∩ B lies in the open halfspace x1 > 0,
and S \ B contains the k-hemisphere S ∩ {(x1, . . . , xd) ∈ R

d : x1 ≤ 0}. ��
Theorem 3. The competitive ratio of every deterministic online algorithm (with
an adaptive deterministic adversary) for Unit Covering in R

d under the L2

norm is at least d + 1 for every d ≥ 1; and at least d + 2 for d = 2, 3.

Proof. Consider a deterministic online algorithm ALG. We present an input
instance σ for ALG and show that the solution ALG(σ) is at least d + 1 times
OPT(σ). In particular, σ consists of d + 1 points in R

d that fit in a unit ball,
hence OPT(σ) = 1, and we show that ALG is required to place a new unit ball
for each point in σ. Similarly to the proof of Theorem2, our proof works like a
two player game between Alice and Bob.

Let the first point p0 = o be the origin in R
d (we will use either notation as

convenient). For a constant ε ∈ (0, 1
2d ), let S0 be the (d − 1)-sphere of radius

1 + ε centered at the origin o. Refer to Fig. 3. Next, B0 is placed to cover p0.
The remaining points p1, . . . , pd in σ are chosen adaptively, depending on Bob’s
moves. We maintain the following two invariants: For i = 1, . . . , d, when Alice
has placed points p0, . . . , pi−1, and Bob placed unit balls B0, . . . Bi−1,

(I) the vectors −→opj , for j = 1, . . . , i − 1, are pairwise orthogonal and they each
have length 1 + ε;

(II) there exists a (d − i)-hemisphere Hi ⊂ S0 that lies in the (d − i + 1)-
dimensional subspace orthogonal to 〈−→opj : j = 1, . . . , i − 1〉 and is disjoint
from

⋃i−1
j=0 Bj .

Both invariants hold for i = 1: (I) is vacuously true, and (II) holds by Observa-
tion 1 (the first condition of (II) is vacuous in this case).

At the beginning of step i (for i = 1, . . . , d), assume that both invariants hold.
Alice chooses pi to be the pole of the (d − i)-hemisphere Hi. By Invariant (II),
pi is not covered by B0, . . . , Bi−1, and Bob has to choose a new unit ball Bi
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Fig. 3. The first three steps of the game between Alice and Bob in the proof of The-
orem 3 for d = 2. After the 3rd step, Alice can place a 4th point p3 ∈ S which is not
covered by the balls B0, B1, B2.

that contains pi. By Invariant (I), Hi ⊂ S0, so |opi| = 1 + ε. By Invariant (II),−→opi is orthogonal to the vectors −→opj , for j = 1, . . . , i − 1. Hence Invariant (I) is
maintained.

Let Si be the relative boundary of Hi, which is a (d−i−1)-sphere centered at
the origin. Since pi is the pole of Hi, −→opi is orthogonal to the (d− i)-dimensional
subspace spanned by Si. By Observation 1, Si contains a (d − i − 1)-hemisphere
that is disjoint from Bi. Denote such a (d − i − 1)-hemisphere by Hi+1 ⊂ Si.
Clearly, Hi+1 is disjoint from the balls B0, . . . , Bi−1, Bi; so Invariant (II) is also
maintained.

By construction, pi (i = 1, . . . , d) is not covered by the balls B0, . . . , Bi−1,
so Bob has to place a unit ball for each of the d + 1 points p0, p1, . . . , pd. By
Invariant (I), the points p1, . . . , pd span a regular (d− 1)-dimensional simplex of
side length (1 + ε)

√
2. By Jung’s Theorem [16, p. 46], the radius of the smallest

enclosing ball of p1, . . . , pd is

R = (1 + ε)
√

2 ·
√

d − 1
2d

<

(

1 +
1
2d

)√
d − 1

d
=

√
4d3 − 3d − 1

4d3
< 1,

and this ball contains the origin p0, as well.
We next show how to adjust the argument to derive a slightly better lower

bound of d + 2 for d = 2, 3. Let B be the smallest enclosing ball of the points
p0, p1, . . . , pd, and let c be the center of B. As noted above, the radius of B
is R = (1 + ε)

√
(d − 1)/d. Let S be the (d − 1)-sphere of radius 2 − R =

2 − (1 + ε)
√

(d − 1)/d centered at c. Then the smallest enclosing ball of B and
an arbitrary point pd+1 ∈ S has unit radius. That is, points p0, . . . , pd, pd+1 fit in
a unit ball. This raises the question whether Alice can choose yet another point
pd+1 ∈ S outside of the balls B0, . . . , Bd placed by Bob.

For d = 2, S has radius 2 − (1 + ε)
√

1/2 = 2 − (1 + ε)(
√

2/2) ≥ 1.2928
(provided that ε > 0 is sufficiently small). A unit disk can cover a circular arc
in S of diameter at most 2. If 3 unit disks can cover S, then S would be the
smallest enclosing circle of a triangle of diameter at most 2, and its radius would
be at most 2

3

√
3 ≤ 1.1548 by Jung’s Theorem. Consequently, Alice can place a

4th point p3 ∈ S outside of B0, B1, B2, and all four points p0, . . . , p3 fit in a unit
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disk; see Fig. 3(right) for an example. That is, ALG(σ) = 4 and OPT(σ) = 1;
and we thereby obtain an alternative proof of Theorem 2.

For d = 3, S has radius R1 = 2 − (1 + ε)(
√

2/3) ≥ 1.1835 (provided that
ε > 0 is sufficiently small). Let ci denote the center of Bi, for i = 0, 1, 2, 3; we
may assume that at least one of the balls Bi, say B0, is not concentric with S,
since otherwise

⋃3
i=0 Bi would cover zero area of S. We may also assume for

concreteness that cc0 is a vertical segment; let π0 denote the horizontal plane
incident to c. Then C = S ∩ π0 is the horizontal great circle (of radius R1)
of C, centered at c. Note that C ∩ B0 = ∅, and so if

⋃3
i=0 Bi covers S, then

⋃3
i=1(Bi ∩ π0) covers C. However, the analysis of the planar case (d = 2) shows

that this is impossible; indeed, we have R1 ≥ 1.1835 > 1.1548. Consequently,
Alice can place a 5th point p4 ∈ S outside of B0, B1, B2, B3, and all five points
p0, . . . , p4 fit in a unit ball. That is, ALG(σ) = 5 and OPT(σ) = 1 and a lower
bound of 5 on the competitive ratio is implied. ��

4 Unit Covering for Lattice Points in the Plane

In this section, we describe optimal deterministic algorithms for the online Unit

Covering of points from the infinite unit square and hexagonal lattices. We
start with integer lattice Z

2.

Theorem 4. There exists a deterministic online algorithm for online Unit

Covering of integer points (points in Z
2) with competitive ratio 3. This result is

tight: the competitive ratio of any deterministic online algorithm for this problem
is at least 3.

Proof. First, we prove the lower bound; refer to Fig. 4(left). First, point p1 arrives
and disk D1 covers it. Observe that D1 misses at least one point from {p2, p3},
since |p2p3| = 2

√
2 > 2. We may assume that D1 missed p2; and this further

implies that D1 covers neither p4 nor p5, otherwise it would also cover p2, which
is a contradiction. Now, p2 arrives and some disk D2 is placed to cover it. If D2

covers p4, then the next input point is p5, otherwise it is p4. In either case, a
third disk is needed. To finish the proof, observe that {p1, p2, p4} and {p1, p2, p5}
can each be covered by a single unit disk; hence the competitive ratio of any
deterministic algorithm is at least 3.

Next, we present an algorithm of competitive ratio 3. Refer to Fig. 4(right).
Partition the lattice points using unit disks as shown in the figure. When a point
arrives, cover it with the disk it belongs to in the partition. For the analysis,
consider a disk D from an optimal cover. As seen in the figure, D can cover
points that belong to at most three disks used for partitioning the lattice. Thus,
we conclude that the algorithm has competitive ratio 3. ��

In the following, we state our result for the infinite hexagonal lattice.

Theorem 5. There exists a deterministic online algorithm for online Unit

Covering of points of the hexagonal lattice with competitive ratio 3. This result
is tight: the competitive ratio of any deterministic online algorithm for this prob-
lem is at least 3.
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Fig. 4. Left: lower bound for Z
2. Right: illustration of the upper bound; the disk D is

shaded.

Proof. The proof is similar to that of Theorem4. We start by proving the lower
bound of 3; refer to Fig. 5(left). The first point, p1, arrives and D1 is placed to
cover it. D1 misses at least one of {p2, p3}, since |p2p3| = 2

√
3 > 2. By symmetry,

we may assume that D1 misses p3. Now, point p3 arrives and D2 is placed to
cover it. We distinguish two cases:

Fig. 5. Left: lower bound for the hexagonal lattice. Right: illustration of the upper
bound.

Case 1: D2 misses p4. Since D1 misses p3, D1 also misses p4. Otherwise, if
D1 covers p4, then D1 also covers p3, a contradiction. The algorithm uses D3 to
cover p4. Thus the ratio is 3 since {p1, p3, p4} can be covered by a single disk
centered at (p1+p4)/2, and the algorithm has used three disks: D1, D2, and D3.

Case 2: D2 covers p4. This means that D2 misses p5. Two cases may occur:

1. D1 misses p5 too. Then p5 is the next input point, and the algorithm uses
D3 to cover it. Here {p1, p3, p5} can be covered by a single disk centered at
(p1 + p3 + p5)/3, but the algorithm has used three disks: D1, D2, and D3.



622 A. Dumitrescu et al.

2. D1 covers p5. Since D1 does not cover p3, D1 cannot cover p6. If D2 misses
p6, let p6 be the third point presented; the algorithm uses D3 to cover p6.
Here {p1, p3, p6} can be covered by a single disk centered at (p1 + p6)/2, but
the algorithm has used three disks: D1, D2, and D3. If D2 covers p6, let p7
be the third point presented. Note that D1 cannot cover p7 since it covers p5;
also, D2 cannot cover p7 since it covers p6. The algorithm uses D3 to cover p7.
Here {p1, p3, p7} can be covered by a single disk centered at (p1 + p3 + p7)/3,
but the algorithm has used three disks: D1, D2, and D3.

In all cases a lower bound of 3 has been enforced by Alice, as required.
To prove the upper bound of 3 we partition the lattice points using disks as

shown in Fig. 5(right). It can be concluded that the algorithm has competitive
ratio 3 in this case. ��

5 Conclusion

Our results suggest several directions for future study. We summarize a few
specific questions of interest.

By Theorem 1 and a remark in the Introduction, Algorithm Centered has
a competitive ratio O(1.321d) also for Unit Clustering in R

d under the L2

norm. However, presently there is no online algorithm for Unit Clustering

in R
d under the L∞ norm with a competitive ratio o(2d). The best one known

under this norm (for large d) has ratio 2d · 5
6 for every d ≥ 2, which is only

marginally better than the trivial 2d ratio.

Problem 4. Is there an upper bound of o(2d) on the competitive ratio for Unit

Clustering in R
d under the L∞ norm?

Problem 5. Is there a lower bound on the competitive ratio for Unit Covering

that is exponential in d? Is there a superlinear lower bound?

Problem 6. Can the online algorithm for Unit Covering of integer points (with
ratio 3 in the plane) be extended to higher dimensions, i.e., for covering points
in Z

d? What ratio can be obtained for this variant?
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9. Dumitrescu, A., Tóth, C.D.: Online unit clustering in higher dimensions. In: Solis-
Oba, R., Fleischer, R. (eds.) WAOA 2017. LNCS, vol. 10787, pp. 238–252. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89441-6 18

10. Edel, Y., Rains, E.M., Sloane, N.J.A.: On kissing numbers in dimensions 32 to 128.
Electr. J. Comb. 5, R22 (1998)

11. Ehmsen, M.R., Larsen, K.S.: Better bounds on online unit clustering. Theor. Com-
put. Sci. 500, 1–24 (2013)

12. Epstein, L., van Stee, R.: On the online unit clustering problem. ACM Trans.
Algorithms 7(1), 7:1–7:18 (2010)

13. Feder, T., Greene, D.H.: Optimal algorithms for approximate clustering. In: Pro-
ceedings of 20th ACM Symposium on Theory of Computing (STOC), pp. 434–444
(1988)

14. Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal packing and covering in the
plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

15. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

16. Hadwiger, H., Debrunner, H.: Combinatorial Geometry in the Plane. Holt, Rine-
hart and Winston, New York (1964). (English translation by Victor Klee)

17. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)

18. Jenssen, M., Joos, F., Perkins, W.: On kissing numbers and spherical codes in high
dimensions. Adv. Math. 335, 307–321 (2018)

19. Kabatiansky, G.A., Levenshtein, V.I.: On bounds for packings on the sphere and
in space. Probl. Inform. Transm. 14(1), 1–17 (1978)

20. Kawahara, J., Kobayashi, K.M.: An improved lower bound for one-dimensional
online unit clustering. Theor. Comput. Sci. 600, 171–173 (2015)

21. Liao, C., Hu, S.: Polynomial time approximation schemes for minimum disk cover
problems. J. Comb. Optim. 20(4), 399–412 (2010)

22. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location
problems. SIAM J. Comput. 13(1), 182–196 (1984)

23. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Dis-
crete Comput. Geom. 44(4), 883–895 (2010)

24. Rankin, R.A.: The closest packing of spherical caps in n dimensions. Proc. Glasgow
Math. Assoc. 2(3), 139–144 (1955)

25. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press, Cambridge (2011)

26. Wyner, A.D.: Capabilities of bounded discrepancy decoding. Bell Syst. Tech. J.
44(6), 1061–1122 (1965)

27. Wynn, E.: Covering a unit ball with balls half the radius (2012). https://
mathoverflow.net/questions/98007/covering-a-unit-ball-with-balls-half-the-
radius

28. Zarrabi-Zadeh, H., Chan, T.M.: An improved algorithm for online unit clustering.
Algorithmica 54(4), 490–500 (2009)

https://doi.org/10.1007/978-3-319-89441-6_18
https://mathoverflow.net/questions/98007/covering-a-unit-ball-with-balls-half-the-radius
https://mathoverflow.net/questions/98007/covering-a-unit-ball-with-balls-half-the-radius
https://mathoverflow.net/questions/98007/covering-a-unit-ball-with-balls-half-the-radius


Isolation Branching: A Branch and Bound
Algorithm for the k-Terminal Cut

Problem

Mark Velednitsky(B) and Dorit S. Hochbaum

University of California, Berkeley, Berkeley, USA
{marvel,dhochbaum}@berkeley.edu

Abstract. In the k-terminal cut problem, we are given a graph with
edge weights and k distinct vertices called “terminals.” The goal is to
remove a minimum weight collection of edges from the graph such that
there is no path between any pair of terminals. The k-terminal cut

problem is NP-hard.
The k-terminal cut problem has been extensively studied and a

number of algorithms have been devised for it. Most of the algorithms
devised for the problem are approximation algorithms or heuristic algo-
rithms. There are also fixed-parameter tractable algorithms that solve
the problem optimally in time that is polynomial when the value of the
optimum is fixed, but none have been shown empirically practical. It is
possible to apply implicit enumeration using any integer programming
formulation of the problem and solve it with a branch-and-bound algo-
rithm.

Here, we present a branch-and-bound algorithm for the k-terminal

cut problem which does not rely on an integer programming formulation.
Our algorithm employs “isolating cuts” and, for this reason, we call our
branch-and-bound algorithm Isolation Branching.

In an empirical experiment, we compare the performance of the Isola-
tion Branching algorithm to that of a branch-and-bound applied to the
strongest known integer programming formulation of k-terminal cut.
The integer programming branch-and-bound procedure is implemented
with Gurobi, a commercial mixed-integer programming solver. We com-
pare the performance of the two approaches for real-world instances and
synthetic data. The results on real data indicate that Isolation Branch-
ing, coded in Python, runs an order of magnitude faster than Gurobi for
problems of sizes of up to tens of thousands of vertices and hundreds
of thousands of edges. Our results on synthetic data also indicate that
Isolation Branching scales more effectively.

Though we primarily focus on creating a practical tool for k-terminal
cut, as a byproduct of our algorithm we prove that the complexity of
Isolation Branching is also fixed-parameter tractable with respect to the
size of the optimal solution, thus providing an alternative, constructive,
and somewhat simpler, proof of this fact.
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1 Introduction

In the k-terminal cut problem, we are given an graph with edge weights and
k distinct vertices called “terminals.” The goal is to remove a minimum weight
collection of edges from the graph such that there is no path between any pair
of terminals. The k-terminal cut problem is NP-hard [5]. The problem has
been studied extensively in the literature and has also been referred to as the
multiterminal cut problem or the multiway cut or multicut problem with
k terminals.

The k-terminal cut problem has a number of applications. Specific applica-
tion areas include distributing computational jobs in a parallel computing system
[7], partitioning elements of a circuit into sub-circuits that will be put on different
chips [5], scheduling tasks [12], understanding transportation bottlenecks [12],
planning the “divide” step in divide-and-conquer algorithms [9], and even parti-
tioning Markov Random Fields for computer vision [1]. More generally, graph cut
problems, including k-terminal cut, have applications to graph clustering [6].
Minimizing the weight of edges between clusters is equivalent to maximizing the
weight within clusters. In a setting where the weights measure similarity between
vertices, the result is a graph clustering procedure. Thus, k-terminal cut gives
an explicit combinatorial objective function for supervised graph clustering.

The k-terminal cut problem has been extensively studied and a number of
algorithms have been devised for it. Most of the algorithms devised for the prob-
lem are approximation algorithms or heuristic algorithms which provide good
feasible, but typically non-optimal, solutions. There are also fixed-parameter
tractable algorithms that solve the problem optimally in time that is polynomial
when the value of the optimum is fixed, but none have been shown empirically
practical.

The first approximation algorithm for k-terminal cut gave an approxima-
tion ratio of 2.0 [5]. Improved approximation algorithms are based on the linear
programming relaxation of the integer programming formulation of the prob-
lem known in the literature as the geometric IP [3]. A sequence of improved
approximation algorithms delivered an approximation factor of 1.5 [3], followed
by 1.3438 [11], followed by 1.32388 [2]. The best-to-date approximation factor is
1.2965 [15].

The popular graph partitioning library METIS offers heuristics for
k-terminal cut which are used extensively in practice [12]. METIS uses a
“top-down” strategy. The procedure starts by finding a feasible solution for
k-terminal cut which is likely to have cut value close to the optimal cut value.
Then it refines the solution with various heuristics.

It is possible to apply implicit enumeration using any integer programming
(IP) formulation of the problem and solve it with a branch-and-bound algorithm.
Indeed, we compare the performance of our algorithm to a branch-and-bound
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procedure based on the geometric IP formulation. The geometric IP is the IP
that was proved to have the smallest integrality gap, assuming the Unique Games
Conjecture [13].

There are several fixed-parameter tractable optimization algorithms for
k-terminal cut. It was first proven in 2004 that k-terminal cut is fixed-
parameter tractable with respect to the value of the optimal solution [14]. That
proof was not constructive. A constructive proof in the form of an algorithm was
given in [4] with running time O(|OPT |4|OPT |n3), where |OPT | is the weight of
the optimal cut and n is the number of vertices in the graph. The algorithm of
[4] is of theoretical value and has never been implemented. A by-product of our
algorithm is an alternative, constructive proof of the fixed-parameter tractability
of k-terminal cut.

We note that k-terminal cut can be solved in polynomial time on graphs
which are (2−2/k)-stable [17]. A graph is (2−2/k)-stable if the optimal solution
remains optimal even when the weights of the edges in the solution are multiplied
by (2 − 2/k).

The algorithm devised here applies concepts used in the closely related k-cut
problem. In the k-cut problem, there are no terminals. The goal in the k-cut
problem is to remove a minimum weight collection of edges such that the result-
ing graph consists of k non-empty, disjoint connected components. The k-cut
problem was proved to be easier than k-terminal cut: in [8], the authors proved
that k-cut is polynomial for fixed k, whereas [5] showed that k-terminal cut
is NP-hard even for k = 3.

The polynomial-time algorithm for k-cut introduced in [8] relies on two
building blocks which we will also use here: seed sets and minimum isolating
cuts. A seed set is a set of vertices in the graph which we assume belong to the
same component in an optimal solution. Given a set of seed sets, a minimum
isolating cut is the smallest (s, t)-cut which separates one seed set from the rest.
For the k-cut problem, [8] shows that if the “correct” set of 2k vertices are
chosen as seeds, then the source set of the minimum isolating cut recovers one
of the components in the optimal k-cut. It is not possible to know in advance
which 2k vertices are the “correct” ones to choose, so all ∼ (

n
2k

)
possibilities

must be enumerated. Ultimately, for k-cut, the exponent of the running time
polynomial depends quadratically on k and is prohibitively large in practice even
for small values of k.

Isolating cuts have also been used in the 2-approximation algorithm for
k-terminal cut presented in [5]. For each of the k terminals, consider the min-
imum isolating cut which separates the chosen terminal from the rest of the
terminals. If we take the union of the edges which appear in all k of these mini-
mum isolating cuts, then the result is a feasible k-terminal cut. It is shown in [5]
that the value of this solution is at most twice the value of the optimal k-terminal
cut.

Our contributions in this paper are as follows:

1. We devise a branch-and-bound algorithm for the k-terminal cut problem,
which does not rely on an integer programming formulation, and is demon-
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strated to be practical and scalable. Our algorithm employs isolating cuts and,
for this reason, we call our branch-and-bound algorithm Isolation Branching.

2. We conduct an empirical study of optimization procedures for k-terminal
cut, in which the performance of Isolation Branching is compared to branch-
and-bound on the geometric IP formulation of k-terminal cut. The IP
branch-and-bound procedure is implemented with Gurobi, a commercial
mixed-integer programming solver. The performance is evaluated for real-
world instances and synthetic data. The results on real data indicate that
Isolation Branching, coded in Python, runs an order of magnitude faster
than Gurobi on graphs with up to tens of thousands of vertices and hundreds
of thousands of edges. The results on synthetic data indicate that Isolation
Branching scales more effectively.

3. Though our primary motivation is developing a practical branch-and-bound
algorithm for the k-terminal cut problem, we also prove that the running
time of our algorithm is fixed-parameter tractable with respect to the size of
the optimal solution. Thus, a byproduct of our algorithm is an alternative,
constructive, and somewhat simpler proof of an already-known result: that
the k-terminal cut problem is fixed-parameter tractable.

2 Preliminaries

The input to the k-terminal cut problem is an undirected graph G = (V,E,w)
with vertex set V , edge set E, weights w, and k terminals s1, . . . , sk ∈ V . The
graph G is assumed to have positive integer edge weights wij ∈ ZZ+ for (i, j) ∈ E.
Throughout our algorithm, we maintain k sets, one for each terminal, which we
call the seed sets. The ith seed set, Si, is a subset of V which contains the
terminal si and none of the other sj (j �= i).

A collection of k subsets of V is a k-terminal cut if and only if the k sets
partition the vertex set V : an edge is cut if and only if its endpoints are in
two different sets. Our algorithm initializes with the smallest possible seed sets,
Si = {si}, and adds vertices as seeds until the seed sets form a partition. The
tool needed to add new vertices to the seed sets is a minimum isolating cut.

Definition 1 (Isolating Cut). Given a collection of seed sets {S1, . . . , Sk}, an
isolating cut for Si is a cut which separates all the vertices in Si from all the
vertices in ∪j �=iSj.

To describe an isolating cut for seed set Si, we use the term source set to
denote the set of vertices which remain connected to Si and sink set to denote
the set of vertices which remain connected to ∪j �=iSj when the edges of the cut
are removed.

Definition 2 (Minimum Isolating Cut). Given a collection of seed sets
{S1, . . . , Sk}, the notation I(Si) denotes the source set of the isolating cut for
Si with minimum cut weight. If the minimum isolating cut for Si is not unique,
then I(Si) denotes the minimum isolating cut with maximal source set.
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In the definition above, maximal source set means that the source set of this
minimum isolating cut is not contained in the source set of another minimum
isolating cut. A minimum isolating cut with maximal source set can be computed
in polynomial time. First, connect all the vertices in Si to a single source vertex
s and all the vertices ∪j �=iSj to a single sink vertex t. Now, solve a 2-terminal cut
problem (an (s, t)-cut problem) using an algorithm which computes the residual
flow graph, such as Ford-Fulkerson. The set of vertices reachable from vertex t
via unsaturated edges is the sink set of the desired minimum isolating cut with
maximal source set.

Next, we develop an understanding of how these seed sets relate to the opti-
mal k-terminal cut:

Definition 3 (Containment Property). A collection of seed sets (S1, . . . , Sk)
is said to have the containment property if there exists an optimal k-terminal
cut (S�

1 , . . . , S�
k) such that Si ⊆ S�

i ∀i.

In [5], they prove the following lemma, which we have rephrased here:

Lemma 1 (Isolation Lemma). Consider the collection of seed sets Si = {si}.
For any i,

({s1}, . . . , {si−1}, I({si}), {si+1}, . . . , {sk})

has the containment property in G.

As an example, consider Fig. 1. The optimal k-terminal cut has weight 8
(cutting the four edges that form the central square) while the four minimum
isolating cuts for the terminals each have weight 3. The source sets of the four
minimum isolating cuts are subsets of the source sets of the optimal k-terminal
cut. The isolation lemma proves that this is always the case. In our analysis, we
rely on a simple generalization:

Lemma 2 (Seed Set Isolation Lemma). Consider a collection of seed sets
(S1, . . . , Sk) with the containment property in G. Then

(S1, . . . , Si−1, I(Si), Si+1, . . . , Sk)

has the containment property in G.

Proof. Let (S∗
1 , S∗

2 , . . . , S∗
k) be an optimal k-terminal cut in G and let EOPT

be the edges of that cut. Merge the vertices of each Si into their respective si

to create the new graph G′ with terminals s′
i. By the containment property,

Si ⊆ S∗
i , so none of the edges in EOPT have both endpoints in the same Si, so

all of the edges in EOPT still connect two distinct vertices in G′. Thus, EOPT is
still an optimal solution in G′ to the k-terminal cut problem.

We apply the isolation Lemma (1) in G′. The minimum isolating cut I(s′
i) in

G′ adds the same vertices as I(Si) in G. That is,

I(s′
i) \ s′

i = I(Si) \ Si.
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From the isolation lemma, we have that

(s′
1, . . . , I(s′

i), . . . , s
′
k)

has the containment property in G′.

I(s′
i) \ s′

i ⊆ S∗
i \ Si

=⇒ I(Si) \ Si ⊆ S∗
i \ Si

=⇒ I(Si) ⊆ S∗
i .

We conclude that
(S1, . . . , I(Si), . . . , Sk)

has the containment property in G. 	


s1 s2

s3 s4

4

4

4

4

3

3

3

3

2

2 2

2

Fig. 1. Isolation lemma in a small graph

3 Branch and Bound

In our algorithm for k-terminal cut, we take a “bottom-up” approach of assign-
ing vertices to seed sets until all the vertices have been assigned. When possible,
we try to use isolating cuts to add unassigned vertices to seed sets. Otherwise,
we “branch” by considering assigning a certain unassigned vertex to all possi-
ble seed sets. Following the branches where we make the “correct” assignment
(where the vertex is assigned to the seed set to which it belongs in the optimal
solution), we will reach the optimal solution. In branches where we make the
“wrong” assignment, we will eventually arrive at a sub-optimal solution. Using
a bound we derive for this purpose, based on the 2-approximation from [5], we
can ignore many of these branches by proving that they are sub-optimal before
arriving at a leaf node.
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3.1 Branching

Let T be the branch and bound tree. At each node of the tree, d ∈ T , we will
store a collection of pairwise disjoint seed sets Sd,i ⊂ V (i ∈ {1, . . . , k}, where k
is the number of terminals). For convenience, we will use nodes when referring
to the branch and bound tree T and vertices when referring to V in the original
graph G.

We will say that a vertex � ∈ V is unassigned in d ∈ T if it is not in any of
the Sd,i. In our branching step, we choose an unassigned vertex � in d and create
k children in T by assigning � to each of the Sd,i in turn and computing the
new isolating cuts (with maximal source sets). If d does not have any unassigned
vertices then it is a leaf node in T . Algorithm 1 is the pseudo-code of the Isolation
Branching algorithm. Figure 2 provides an illustration.

The following lemma shows that the containment property propagates down
the tree:

Lemma 3 (Inheritance). If d ∈ T has the containment property, then at least
one child of d has it.

Proof. Assume node d has the containment property. For all i, Sd,i ⊆ S∗
i . Let � be

the unassigned vertex chosen for branching. Assume � ∈ S∗
j . Then Sd,j∪{�} ⊆ S∗

j ,
so the collection of sets

(Sd,1, . . . , Sd,j ∪ {�}, . . . , Sd,k)

has the containment property. By the seed set isolation lemma (Lemma 2), the
collection of sets

(Sd,1, . . . , I(Sd,j ∪ {�}), . . . , Sd,k)

also has the containment property. These are the seed sets for the jth child of d.
	


3.2 Bounding

We would prefer to only expand nodes which have a chance of having the optimal
solution as one of their leaves. At each node d ∈ T , we will consider the value of
the function

L(d) =
1
2

k∑

i=1

w(Sd,i, ¯Sd,i).

In words, this is half the sum of the weights of the isolating cuts. If the collection
of seed sets at d has the containment property, then the sum of isolating cuts
is known to be a 2-approximation to the optimal solution, so L(d) must be less
than the value of the optimal cut. The next two lemmas show that L(d) can be
used to cull branches even when the collection of seed sets does not have the
containment property.
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Algorithm 1. Isolation Branching (IB)
# initialization loop
for i = 1 . . . k do

S0,i ← I({si}).
end for
d ← 0.
# main loop
while node d has unassigned vertices do

Choose vertex � unassigned in d (see Sect. 4.1).
D ← |T |.
for i = 1 . . . k do

SD+i,i ← I(Sd,i ∪ {�}).
For j �= i, SD+i,j ← Sd,j .

end for
d = argmind′∈T L(d′) (see Sect. 3.2).

end while
# output step
Return cut (Sd,1, . . . , Sd,k).

Fig. 2. Branch and bound tree for k = 3.

Lemma 4 (Leaf Nodes). If d ∈ T is a leaf node, then L(d) is the value of the
feasible k-terminal cut at node d.

Proof. Each edge in the feasible k-terminal cut is exactly double-counted
inside the sum L(d) since it appears in exactly two isolating cuts. Multiplying
by one-half returns the weight of the feasible k-terminal cut. 	

Lemma 5 (Lower Bound). If d2 ∈ T is a descendant of d1 ∈ T , then

L(d2) > L(d1).

Proof. It is sufficient to prove the inequality when d2 is a child of d1. Recall that
Sd1,i is required to be a maximal source set for all i. Assume that from d1 to d2
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we add our unassigned vertex � to Sd1,j (and then take an isolating cut). The
size of the new isolating cut must strictly increase, otherwise it contradicts the
maximality of the previous source set. Formally,

w(Sd2,j , ¯Sd2,j) > w(Sd1,j , ¯Sd1,j).

For the rest (i �= j),

w(Sd2,i, ¯Sd2,i) = w(Sd1,i, ¯Sd1,i).

In total, the value of the sum L(d2) strictly increases from L(d1). 	

Taken together, these two lemmas give us the desired restriction. If we know

that the weight of the optimal k-terminal cut is bounded above by B, then
we need not expand nodes where L(d) ≥ B since any leaf nodes which descend
from these nodes cannot be optimal. If we expand the nodes in order from lowest
lower bound, then the first leaf we encounter must be the leaf with the optimal
solution (because any leaf node we encounter later will have a larger value of
L(d)).

3.3 Running Time

The number of children of each tree node is k, because we consider adding the
selected unassigned vertex to each of the k possible terminals. Furthermore, the
value of

L(d) =
1
2

∑

i

w(Sd,i, ¯Sd,i)

is at least |OPT |
2 at the root node (d = 0) and is strictly increasing with depth

(Lemma 5). When the edge weights are integer, the increase must be at least 1
2 .

L(d) is exactly |OPT | at the leaf in T with optimal solution. Thus, |OPT | is a
bound on the depth of the tree. If we sum over the number of possible nodes at
depths 1, 2, . . . , |OPT |, we see that the number of nodes considered is at most

1 + k + k2 + . . . + k|OPT | < 2k|OPT |.

Let τ(n) be the complexity of evaluating a minimum s, t-cut on a graph with
n nodes. The complexity of our algorithm is thus O(2k|OPT |τ(n)). From this,
we have fixed-parameter tractability.

Corollary 1. When we can bound |OPT | by a factor that does not depend on
n (for example, graphs with terminals of bounded weighted degree), then the
algorithm Isolation Branching runs in polynomial time.
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4 Empirical Study

4.1 Isolation Branching (IB) Implementation

Our open-source implementation is available online at https://github.com/
marvel2010/k-terminal-cut and works as a Python package (ktcut). It repre-
sents graphs using NetworkX. We chose Python for ease of implementation and
portability, even though it is not the fastest language in terms of its practical
running time [16].

There are a number of hyper-parameters which affect the performance of our
branch-and-bound algorithm. The first is the Branching Node. That is, after
expanding a node in the tree, how do we decide which node to expand next? The
second is the Branching Vertex. At each tree node, how do we decide which
unassigned graph vertex to branch on to create the children nodes?

Branching Node: For choosing the branching node, it can be shown that the
strategy of choosing the node with the best bound will explore the fewest number
of nodes before reaching the optimal solution and having proof of optimality. The
reason to use other strategies would be to quickly reach feasible solutions without
optimality guarantees. Since that is a separate problem, here we only consider
the best bound strategy.

Branching Vertex: For choosing the branching vertex, we considered a few
options. The options included choosing a vertex randomly, choosing the ver-
tex farthest from an existing source set, or choosing the vertex of largest degree.
Initial experiments suggested that the last strategy was best (largest degree),
so our results use that strategy. The largest degree strategy makes some sense.
If a vertex is forced to be in a particular source set, then its neighbors must
either join the source set or the edge between them is cut. This means that,
when a high-degree node is added to a source set, either the source set grows
significantly in the next isolating cut or the weight of the cut grows significantly.
Either outcome is good, since it means that either the source sets grow quickly
or we create tree nodes that do not need to be explored (large values of L(d)).
In our implementation, we contract source sets into a single terminal vertex at
each node in the branch-and-bound tree. This allows subsequent minimum cuts
to be evaluated on a smaller graph.

4.2 Comparison to Integer Programming

To compare our Isolating Branching algorithm to integer programming branch-
and-bound, we used Gurobi, a popular commercial software package for inte-
ger programming. The formulation to which we applied integer programming
branch-and-bound is below. It is referred to in the literature as the geometric IP
formulation [3]. Assuming the Unique Games Conjecture, it was proved in [13]
that no other formulation can have a smaller integrality gap than this one.

https://github.com/marvel2010/k-terminal-cut
https://github.com/marvel2010/k-terminal-cut
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The variable xit is a binary variable: it is 1 if vertex i is assigned to terminal
t and 0 otherwise. The variable zij is forced to be 1 if edge (i, j) is cut and can
be 0 otherwise. To avoid double-counting edges, we assume i < j. In total, if
there are n nodes and m edges in G, the IP formulation has nk + m variables.

minimize
∑

(i,j)∈E

wijzij

s.t. zij ≥ xit − xjt ∀1 ≤ i < j ≤ n, 1 ≤ t ≤ k

zij ≥ xjt − xit ∀1 ≤ i < j ≤ n, 1 ≤ t ≤ k

k∑

t=1

xit = 1 ∀1 ≤ i ≤ n

xit ∈ {0, 1} ∀1 ≤ i ≤ n, 1 ≤ t ≤ k

zij ∈ {0, 1} ∀1 ≤ i < j ≤ n

xtt = 1 ∀1 ≤ t ≤ k

(IP)

4.3 Data Sets

Real Data Sets: The ten real-world data sets we used were part of the tenth
DIMACS Implementation Challenge, a graph clustering challenge that concluded
in 2012. According to the website, “These real-world graphs are often used as
benchmarks in the graph clustering and community detection communities.”
The data sets are available online at https://www.cc.gatech.edu/dimacs10/. In
most of the data sets, the graphs are already connected. In the rest, we only con-
sider the largest connected component, otherwise the k-terminal cut problem
decomposes into smaller problems on each component.

Synthetic Data Sets: To systematically study the running time scaling of our Iso-
lation Branching algorithm, we used synthetic graphs. It has been observed that
many real-world graphs, from social networks to computer networks to metabolic
networks, exhibit both a power-law degree distribution and high clustering [10].
The Power Cluster model, introduced in [10], generates random graphs which
exhibit both of these properties. NetworkX includes a tool for randomly generat-
ing graphs according to the Powerlaw Cluster model with three parameters:
the number of vertices, the number of random edges to add for each vertex, and
the probability of creating a triangle. In our scaling experiment, we vary the first
parameter (the number of nodes) while leaving the latter two at the fixed values
of 10 and 0.1, respectively.

Terminals: In the data sets, terminals are not specified. In order to find suggested
terminals, do the following: first, we perform spectral clustering on the graph to
get an approximate clustering (by performing k-means clustering on the spectral
embedding of the graph). Next, we choose the largest-degree vertex in each
approximate cluster and set those vertices to be our k terminals.

https://www.cc.gatech.edu/dimacs10/
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Typically, the true number of clusters is quite small. For example, in the
“political blogs” data set, there are really only two clusters. For that reason, our
experiments consider a small number of terminals: five terminals on all graphs
and ten terminals on larger graphs.

4.4 Results

We compare the running time of the Isolation Branching (IB) algorithm to the
time it takes Gurobi to solve the Integer Program (IP). We compare on ten
real-world test graphs (see Sect. 4.3). Details about the graphs are presented in
Table 1.

Table 1. Ten real-world graphs, from the tenth DIMACS challenge, in which we are
interested in solving k-terminal cut. The graphs are sorted by number of edges.

Graph Size Description

NumVertices NumEdges

netscience 1589 2742 Network science collaborations

celegans metabolic 453 2025 Metabolic network of an organism

jazz 198 2742 Jazz musicians

email 1133 5451 Email exchanges within university

power 4941 6594 US Western States Power Grid

hep-th 8361 15751 High-energy theory collaborations

polblogs 1490 16715 Links between political blogs

PGPgiantcompo 10680 24316 Network of PGP algorithm users

as-22july06 22963 48436 High-level snapshot of the internet

astro-ph 16706 121251 Astrophysics collaborations

First, we compare the running time of IB versus IP on all ten graphs, each
with five terminals (chosen as described in Sect. 4.3). The running time and
speed-up results can be found in Table 2. In all cases, IB outperforms IP. On
graphs with less than 104 edges, the performance improvement is modest, typ-
ically less than an order of magnitude. On graphs with more than 104 edges,
the difference is more pronounced and the improvement is at least an order of
magnitude. IB solves all instances to optimality in approximately ten seconds
or less. On the largest data sets, IP requires three minutes to reach an optimal
solution.

Next, we run experiments with ten terminals. For this experiment, we only
consider graphs with approximately 5000 vertices or more. The reason for this
restriction is that, for small real-world graphs, the 10-terminal-cut solution
tends to be uninteresting: several clusters contain only a singleton terminal. The
results can be found in Table 3. With the exception of the “power” graph, where



636 M. Velednitsky and D. S. Hochbaum

Table 2. The running time of Isolation Branching (IB) versus Gurobi Integer Pro-
gramming (IP), measured in CPU seconds, on graphs from Table 1 with 5 terminals.

Graph (5 terminals) Size Running time

NumVertices NumEdges IB IP SpeedUp

netscience 379 914 0.21 1.6 7.8

celegans metabolic 453 2025 0.59 3 5.1

jazz 198 2742 1.9 4.3 2.2

email 1133 5451 5.1 10 2.0

power 4941 6594 11 22 2.0

hep-th 5835 13815 0.8 24 28

polblogs 1222 16714 3.4 28 8.1

PGPgiantcompo 10680 24316 3.5 40 12

as-22july06 22963 48436 10 150 15

astro-ph 14845 119652 5.6 190 33

both algorithms took disproportionately long, IB outperformed IP by a factor
of at least twenty.

Table 3. The running time of Isolation Branching (IB) versus Gurobi Integer Program-
ming (IP), measured in CPU seconds, on large graphs from Table 1 with 10 terminals.

Graph (10 terminals) Size Running time

NumVertices NumEdges IB IP SpeedUp

power 4941 6594 380 723 1.9

hep-th 5835 13815 2.32 48.7 21

PGPgiantcompo 10680 24316 3.96 80.2 20

as-22july06 22963 48436 41.5 1560 38

astro-ph 14845 119652 15.9 387 24

To explore how the speed-up of IB versus IP scales, we next consider random
k-terminal cut instances generated according to the Powerlaw Cluster model
where we systematically increase the number of edges from 10000 to 90000 (see
Sect. 4.3). The results can be found in Table 4 and Fig. 3. The running time
reported is the average running time of each algorithm across fifty randomly
generated k-terminal cut instances. The error bars reflect the standard devi-
ation of running time across those instances.

As before, IB consistently outperforms IP. Furthermore, the improvement
of IB over IP increases with the size of the graph. With 10000 vertices, the
improvement is a factor of five. With 90000 vertices, the improvement is more
than an order of magnitude. These results are consistent with our observations in
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Table 4. The average running time of Isolation Branching (IB) versus Gurobi Integer
Programming (IP), measured in CPU seconds, on fifty synthetic data sets generated
according to the Powerlaw Cluster (PC) model with 10 new edges per node and prob-
ability 0.1 of creating a triangle.

Graph (5 terminals) Size Running time

NumVertices NumEdges IB IP SpeedUp

PC(1000, 10, 0.1) 1000 10000 2.8 16 5.5

PC(2000, 10, 0.1) 2000 20000 5.3 31 5.8

PC(3000, 10, 0.1) 3000 30000 7.2 47 6.5

PC(4000, 10, 0.1) 4000 40000 8.1 63 7.8

PC(5000, 10, 0.1) 5000 50000 10 79 7.9

PC(6000, 10, 0.1) 6000 60000 10 95 9.5

PC(7000, 10, 0.1) 7000 70000 7.7 110 14

PC(8000, 10, 0.1) 8000 80000 11 130 12

PC(9000, 10, 0.1) 9000 90000 10 140 14

the real-world data sets and suggest that the speed-up of IB versus IP increases
with the size of the data set.

Fig. 3. The average running time of our Isolation Branching (IB) versus Gurobi Integer
Programming (IP) on fifty random instances of k-terminal cut generated using the
PowerlawCluster model.

5 Conclusions

In this paper, we introduce Isolation Branching, a branch-and-bound algorithm
devised specifically for solving the k-terminal cut problem. In the empirical
study, we demonstrate that Isolation Branching offers improvements of an order
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of magnitude over solving the Integer Program with Gurobi, especially on large
graphs. Using synthetic data, we demonstrate that the Isolation Branching algo-
rithm scales better from small to large instances. Our open-source code is avail-
able online at https://github.com/marvel2010/k-terminal-cut.

An advantage of our algorithm is that it uses only minimum (s, t)-cuts, avoid-
ing linear programming. As a byproduct of our analysis of the running time of
Isolation Branching, we offer an alternative proof that k-terminal cut is fixed-
parameter tractable with respect to the size of the optimal solution.

In future work, we plan to explore additional tools that might be used to
speed up the Isolation Branching algorithm. We will also consider modifications
to the Isolation Branching algorithm to allow us to solve balanced cuts.
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Abstract. 2-ultrametrics are a generalization of the ultrametrics and it
is known that there is a one-to-one correspondence between the set of
2-ultrametrics and the set of indexed 2-hierarchies (which are a gener-
alization of indexed hierarchies). Cycle-complete dissimilarities, recently
introduced by Trudeau, are a generalization of ultrametrics and form a
subset of the 2-ultrametrics; therefore the set of cycle-complete dissimi-
larities corresponds to a subset of the indexed 2-hierarchies. In this study,
we characterize this subset as the set of indexed acyclic 2-hierarchies,
which in turn allows us to characterize the cycle-complete dissimilari-
ties. In addition, we present an O(n2 log n) time algorithm that, given
an arbitrary cycle-complete dissimilarities of order n, finds the corre-
sponding indexed acyclic 2-hierarchy.

Keywords: Hierarchical classification · Quasi-hierarchy
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1 Introduction

Ultrametrics appear in a wide variety of research fields, including phylogenet-
ics [10], cluster analysis [9], and cooperative game theory [2]. They have, among
others, two important properties: there is a one-to-one correspondence between
the set of ultrametrics and the set of indexed hierarchies [3,6,8], and every dis-
similarity has a corresponding subdominant ultrametric [7].

2-ultrametrics [7] are a generalization of the ultrametrics and maintain their
important properties: there is a one-to-one correspondence between the set of the
2-ultrametrics and the set of indexed 2-hierarchies [7] (which are a generalization
of indexed hierarchies), and every dissimilarity has a corresponding subdominant
2-ultrametric [7].
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Motivated by the work of Trudeau [11], Ando et al. [1] introduced the concept
of cycle-complete dissimilarities. These form a subset of the 2-ultrametrics, so
there is a corresponding subset of the indexed 2-hierarchies. In this study, we
characterize this subset as the set of indexed acyclic 2-hierarchies, which in
turn allows us to characterize the cycle-complete dissimilarities. In addition, we
present an O(n2 log n) time algorithm that, given an arbitrary cycle-complete
dissimilarity of order n, finds the corresponding indexed acyclic 2-hierarchy.

The rest of this paper is organized as follows. In Sect. 2, we review 2-
ultrametrics and 2-hierarchies and the one-to-one correspondence between them.
In Sect. 3, we characterize the cycle-complete dissimilarities in terms of indexed
2-hierarchies. In Sect. 4, we present an O(n2 log n) time algorithm for finding
the indexed 2-hierarchy corresponding to a given cycle-complete dissimilarities.
Finally, in Sect. 5, we conclude this paper.

2 2-Ultrametrics and Indexed 2-Hierarchies

Let X be a finite set. A mapping d : X × X → R+ is called a dissimilarity on X
if for all x, y ∈ X we have

d(x, y) = d(y, x) and d(x, x) = 0. (1)

A dissimilarity d on X is proper if d(x, y) = 0 implies x = y for all x, y ∈ X. In
addition, it is called a quasi-ultrametric [5] if for all x, y, z, t ∈ X we have

max{d(x, z), d(y, z)} ≤ d(x, y) =⇒ d(z, t) ≤ max{d(x, t), d(y, t), d(x, y)}. (2)

A family K of subsets of X is called a quasi-hierarchy on X if K satisfies the
following conditions.

(i) X ∈ K, ∅ �∈ K,
(ii) {x} ∈ K for all x ∈ X,
(iii) ∀A,B ∈ K : A ∩ B ∈ K ∪ {∅},
(iv) ∀A,B,C ∈ K : A ∩ B ∩ C ∈ {A ∩ B,B ∩ C,C ∩ A}.

For any quasi-hierarchy K on X, a mapping f : K → R+ satisfying the following
two conditions is called an index of K and the pair (K, f) is called an indexed
quasi-hierarchy on X.

(1) ∀x ∈ X : f({x}) = 0,
(2) ∀A,B ∈ K : A ⊂ B =⇒ f(A) < f(B).

A quasi-hierarchy (X,K) is said to be a 2-hierarchy if it also satisfies

(v) ∀A,B ∈ K : A ∩ B �∈ {A,B} =⇒ |A ∩ B| ≤ 1.

Likewise, a dissimilarity d on X is called a 2-ultrametric [7] if for all x, y, z, t ∈ X,
we have

d(x, y) ≤ max{d(x, z), d(y, z), d(x, t), d(y, t), d(z, t)}. (3)
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Let d be a dissimilarity on X and σ be a positive real number. Then, the
undirected graph Gσ

d = (X,Eσ
d ) defined by

Eσ
d = {{x, y} | x, y ∈ X,x �= y, d(x, y) ≤ σ} (4)

is called the threshold graph of d at the threshold σ. We denote the set of all the
maximal cliques of threshold graphs of d’s by Kd, i.e.,

Kd =
⋃

σ≥0

{K | K is a maximal clique of Gσ
d}. (5)

In addition, for each K ∈ Kd we define diamd(K) as

diamd(K) = max{d(x, y) | x, y ∈ K} (6)

and call it the diameter of K with respect to d.
With these definitions in place, we can now present the following useful

lemma, followed by two propositions that clarify the relationships between
quasi-ultrametrics and indexed quasi-hierarchies and between 2-ultrametrics and
indexed 2-hierarchies.

Lemma 1. Let d be a dissimilarity on X. If K ∈ Kd, then K is a maximal
clique of Gσ

d for σ = diamd(K).

Proof. Let K ∈ Kd be arbitrary and σ = diamd(K). Since d(x, y) ≤ diamd(K) =
σ for all x, y ∈ K, K is a clique of Gσ

d . Also, K is not a clique of Gσ′
d for any σ′

such that σ′ < σ since d(x, y) = σ for some x, y ∈ K. Therefore, K is a maximal
clique of Gσ′′

d for some σ′′ such that σ ≤ σ′′. However, since for such a σ′′, every
clique of Gσ

d is a clique of Gσ′′
d , it follows that K must be a maximal clique of

Gσ
d . �

Proposition 1 (Diatta and Fichet [5]). A proper dissimilarity d on X is a
quasi-ultrametric if and only if (Kd,diamd) is an indexed quasi-hierarchy on X.

Proposition 2 (Jardin and Sibson [7]). A proper dissimilarity d on X is a
2-ultrametric if and only if (Kd,diamd) is an indexed 2-hierarchy on X.

3 Characterizing Cycle-Complete Dissimilarities
in Terms of their Associated Indexed 2-Hierarchies

Let d be a dissimilarity on X. First, we introduce the complete weighted graph
KX , whose vertex set is X and whose edges {x, y} have weight d(x, y) = d(y, x).

We call a sequence
F : x0, x1, · · · , xl−1, xl (7)

of elements in X a cycle in KX if all the xi (i = 0, · · · , l − 1) are distinct and
x0 = xl. A dissimilarity d on X is called cycle-complete [1] if for each cycle (7)
in KX and each chord {xp, xq} of F , we have

d(xp, xq) ≤ l
max
i=1

d(xi−1, xi). (8)



Characterizing Cycle-Complete Dissimilarities 643

Proposition 3. Let d be a dissimilarity on X. If d is cycle-complete, then it is
also a 2-ultrametric.

Proof. Let x, y, z, t be arbitrary distinct elements of X. If d is cycle-complete,
then we have

d(x, y) ≤ max{d(x, z), d(z, y), d(y, t), d(t, x)} (9)
≤ max{d(x, z), d(z, y), d(x, t), d(y, t), d(z, t)}. (10)

�
If a dissimilarity d on X is not cycle-complete, then there must exist a cycle

F : x0, x1, · · · , xl−1, xl(= x0) of KX and a chord {xp, xq} of F such that (8)
does not hold. We call such a cycle an invalid cycle in KX .

Lemma 2. Let d be a dissimilarity on X that is not cycle-complete and

F : x0, x1, · · · , xl(= x0) (11)

be an invalid cycle in KX of minimum length l. If l ≥ 5, then for all 0 ≤ p ≤ l−3
and 2 ≤ q ≤ l − 1 such that 2 ≤ q − p ≤ l − 2, we have

l
max
i=1

d(xi−1, xi) < d(xp, xq) = const. (12)

Proof. Let F be an invalid cycle (11) of minimum length l, where l ≥ 5. Let

δ = max{d(xp, xq) | {xp, xq} is a chord of F} (13)

and δ = d(xp, xq) for some chord {xp, xq} of F . We can assume without loss of
generality that 0 ≤ p and p + 3 ≤ q ≤ l − 1. Let

Y = {p, p + 1, · · · , q},

W = {q, q + 1, · · · , l − 1, 0, · · · , p}.

Let {xi, xj} be a chord of F such that {i, j} ⊆ Y . If d(xi, xj) < δ, then

F ′ : x0, x1, · · · , xi−1, xi, xj , xj+1, · · · , xl−1, xl(= x0) (14)

is an invalid cycle with a length less than l, contradicting the initial choice of
F . Hence, we must have d(xi, xj) = δ. Similarly, for a chord {xi, xj} of F such
that {i, j} ⊆ W , we have d(xi, xj) = δ.

Next, let {xi, xj} be a chord of F such that i ∈ Y − W and j ∈ W − Y .
If i = p + 1, then, since d(xp+1, xq) = δ, we have d(xp+1, xj) = δ by the same
argument as above. If i > p + 1, then, since {xp, xp+2} is a chord of F such that
{p, p + 2} ⊆ Y , we have d(p, p + 2) = δ. Then, we again have that d(xi, xj) = δ
by the same argument as above. �

For a family K of subsets of X, a sequence

C0, C1, · · · , Cl−1, Cl (15)

of subsets in K is called a cycle in K if we have
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(i) Ci−1 ∩ Ci �∈ {Ci−1, Ci, ∅} for i = 1, · · · , l,
(ii) Ci ∩ Cj = ∅ for 0 ≤ i ≤ l − 3 and 2 ≤ j ≤ l − 1 with 2 ≤ j − i ≤ l − 2, and
(iii) C0 = Cl,

where l ≥ 3. If K has no cycle, we call it acyclic.

Theorem 1. A proper dissimilarity d on X is cycle-complete if and only if
(Kd,diamd) is an indexed acyclic 2-hierarchy on X.

Proof. Here, we treat the “if” and “only if” parts separately.
(The “only if”part:) If we assume d is cycle-complete, that means it is a

2-ultrametric (Proposition 3), and hence, (Kd,dimd) is an indexed 2-hierarchy
(Proposition 2). Thus, it only remains to show that Kd is acyclic.

Suppose, to the contrary, that there is a cycle

K0,K1, · · · ,Kl−1,Kl(= K0) (16)

in Kd. Then, let

δ = max{diamd(Ki) | i = 0, · · · , l − 1} (17)

and i∗ = 0, · · · , l − 1 such that diamd(Ki∗) = δ. If

d(x, y) ≤ δ for all x, y ∈
l−1⋃

i=0

Ki, (18)

then ∪l−1
i=0Ki would be a clique of Gδ

d. However, this is impossible since Ki∗ is a
maximal clique of Gδ

d (Lemma 1). Hence, there would have to exist x, y ∈ ∪l−1
i=0Ki

such that d(x, y) > δ. Without loss of generality, suppose that x ∈ Ka and y ∈ Kb

for 0 ≤ a < b ≤ l − 1 and choose xi ∈ Ki ∩ Ki+1 for i = 0, · · · , l − 1. For the
sake of simplicity, we assume that x, y �∈ Ki ∩ Ki+1 for i = 0, · · · , l − 1. Then,
we could construct an invalid cycle F in KX via

F : x0, · · · , xa−1, x, xa, · · · , xb−1, y, xb, · · · , xl−1, xl(= x0), (19)

contradicting the cycle-completeness of d.
(The “if” part:) Here, we assume (Kd,diamd) is an indexed acyclic 2-

hierarchy on X and show that the mapping d is cycle-complete. By Proposi-
tion 2, d is a 2-ultrametric. If d is not cycle-complete, then there would have to
exist an invalid cycle in KX . Let F : x0, x1, · · · , xl−1, xl(= x0) be such a cycle
of minimum length l.

First, we consider the case where l ≥ 5. By Lemma 2, we have

d(xp, xq) >
l

max
i=1

d(xi−1, xi) for all chord {xp, xq} of F . (20)

For each i = 0, · · · , l − 1, let us choose a maximal clique Ki of Gσ
d such that

{xi, xi+1} ⊆ Ki, where σ = maxl
i=1 d(xi−1, xi). By (20), we would have

Ki ∩ {x0, x1, · · · , xl−1} = {xi, xi+1} (i = 0, · · · , l − 1). (21)
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In particular, all Ki (i = 0, · · · , l − 1) would be pairwise distinct. Also, since
each Ki is a maximal clique of Gσ

d , we would have

Ki ∩ Ki+1 �∈ {Ki,Ki+1, ∅} (i = 0, · · · , l − 1). (22)

Let i and j be such that 0 ≤ i, j ≤ l − 1 and 2 ≤ j − i ≤ l − 2. We now show
that Ki ∩ Kj = ∅. To the contrary, suppose that x ∈ Ki ∩ Kj . Then, we would
have

d(xi, x) ≤ σ and d(x, xj+1) ≤ σ. (23)

From this, it would follow that

F ′ : x0, · · · , xi, x, xj+1, · · · , xl

is an invalid cycle of length less than l, contradicting the choice of F . Thus,
Ki ∩ Kj = ∅, so we would have shown that K0,K1, · · · ,Kl−1,Kl(= K0) is a
cycle in Kd, a contradiction.

Next, we consider the case where l = 4. Let

F : x0, x1, x2, x3, x4(= x0) (24)

be an invalid cycle in KX and σ = max{d(xi−1, xi) | i = 1, 2, 3, 4}. We assume,
without loss of generality, that d(x0, x2) > σ and show that d(x1, x3) > σ.
Suppose, to the contrary, that d(x1, x3) ≤ σ. Then, there would exist maximal
cliques K and K ′ of Gσ

d such that {x0, x1, x3} ⊆ K and {x1, x2, x3} ⊆ K ′,
and hence, {x1, x3} ⊆ K ∩ K ′. This contradicts the assumption that Kd is a
2-hierarchy since K �= K ′ by d(x0, x2) > σ. Then, by defining Ki as a maximal
clique of Gσ

d such that {xi, xi+1} ⊆ Ki for i = 0, 1, 2, 3, we would have (21) and
(22), similar to the l ≥ 5 case.

Now, suppose that for some x ∈ X − {x0, x1, x2, x3} we have x ∈ K0 ∩ K2.
Then, there would have to exist a maximal clique K of Gσ

d such that {x0, x, x3} ⊆
K. It would then follow that K ∩ K0 ⊇ {x0, x} and K �= K0, contradicting the
assumption that Kd is a 2-hierarchy. Therefore, we have that K0 ∩ K2 = ∅ and
similarly that K1 ∩ K3 = ∅. Then, K0,K1,K2,K3,K4(= K0) would be a cycle
in Kd, contradicting the assumption that Kd is acyclic. �
Corollary 1. The mapping d �→ (Kd,diamd) is a one-to-one correspondence
between the set of proper cycle-complete dissimilarities on X and the set of
indexed acyclic 2-hierarchies on X.

4 Algorithm

A vertex v of a connected graph G is called a cut vertex if G−v is not connected.
A graph is called 2-connected if it is connected and has no cut vertex. Note that
a graph with only one vertex is 2-connected. A maximal 2-connected subgraph
of a graph G is called a 2-connected component of G.
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Input : Proper cycle-complete dissimilarity d on X.
Output: Indexed acyclic 2-hierarchy (Kd, diamd).

1 Let
0 < σ1 < · · · < σl

be the distinct values of d(x, y) (x, y ∈ X, x �= y);

2 K ← K(0) ← {{x} | x ∈ X};
3 f({x}) ← 0 (x ∈ X);
4 for p = 1 to l do

5 Let K(p) be the vertex sets of the 2-connected components of G
σp

d ;

6 L ← K(p) − K(p−1);
7 diamd(K) ← σp (K ∈ L);
8 K ← K ∪ L;

9 end
10 return (K, f);

Algorithm 1: Outline of the algorithm for computing (Kd,diamd).

Lemma 3. Let d be a cycle-complete dissimilarity on X. Then, for all σ ≥ 0,
the vertex set of a 2-connected component of Gσ

d is a clique of Gσ
d .

Proof. Let Q ⊆ X be the vertex set of a 2-connected component of Gσ
d . If

|Q| ≤ 2, then Q is a clique of Gσ
d by the definition of a 2-connected component,

so we assume |Q| ≥ 3. Suppose, to the contrary, that there exist distinct vertices
x, y ∈ Q such that {x, y} �∈ Eσ

d . By the definition of Q, there are two openly
disjoint paths P1 and P2 in Gσ

d connecting x and y. By concatenating P1 and
P2, we can create a cycle in KX , where all the edges have weights of at most σ.
Since {x, y} is a chord of this cycle, it follows from the cycle-completeness of d
that d(x, y) ≤ σ, and hence {x, y} ∈ Eσ

d , a contradiction. �
The set of maximal cliques of the threshold graph of a cycle-complete dis-

similarity is characterized as follows.

Lemma 4. Let d be a cycle-complete dissimilarity on X and σ ≥ 0. Then,
K ⊆ X is a maximal clique of Gσ

d = (X,Eσ
d ) if and only if K is the vertex set

of some 2-connected component of Gσ
d .

Proof. Assume that K ⊆ X is a maximal clique of Gσ
d = (X,Eσ

d ). Since K
corresponds to a 2-connected subgraph of Gσ

d , it is a subset of the vertex set Q
of some 2-connected component of Gσ

d . However, since Q is a clique (Lemma 3),
we must have K = Q by the maximality of K. Conversely, if Q ⊆ X is the vertex
set of a 2-connected component of Gσ

d , then Q is a clique of Gσ
d (Lemma 3). If

this clique is not maximal, then there must exist a vertex x ∈ X − Q such that
{x, y} ∈ Eσ

d for all y ∈ Q, contradicting the assumption that Q is the vertex set
of a 2-connected component of Gσ

d . �
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Based on Lemma 4, we have designed an algorithm for constructing the
indexed acyclic 2-hierarchy (Kd,diamd) for a given proper cycle-complete dis-
similarity d, as outlined in Algorithm1. The validity of the algorithm follows
straightforwardly from the propositions presented above.

Input : Proper cycle-complete dissimilarity d on X.
Output: Indexed acyclic 2-hierarchy (Kd, diamd).

1 Let e1, . . . , em be the edges of KX ordered in nondecreasing order of d, where

m = n(n−1)
2

;
2 K ← {{x} | x ∈ X};
3 f({x}) ← 0 (x ∈ X);
4 L ← ∅;
5 for i = 1 to m do
6 {x, y} ← ei;
7 if x and y are in different 2-connected components of Gi−1 then
8 if x and y are in the same component then
9 Let P be a path connecting x and y in Gi−1;

10 Let Q1, . . . , Ql be the vertex sets of the 2-connected components of
Gi−1 which contain at least two vertices of P ;

11 Q ← ⋃l
k=1 Qk;

12 L ← L ∪ {Q} − {Q1, . . . , Ql};

13 else
14 Q ← {x, y};
15 L ← L ∪ {Q};

16 end

17 end
18 if d(ei) < d(ei+1) or i = m then
19 K ← K ∪ L;
20 f(K) ← d(ei) (K ∈ L);
21 L ← ∅;

22 end

23 end
24 return (K, f);

Algorithm 2: More detailed description of the algorithm for computing
(Kd,diamd).

It is not immediately clear how to implement Algorithm1 efficiently, how-
ever. To achieve this, we need to able to identify the 2-connected components of
a threshold graph efficiently. Let e1, . . . , em be the edges of KX arranged in non-
decreasing order of d, where m = n(n−1)

2 . Then, we construct the vertex sets of
the 2-connected components of the undirected graph Gi = (X,Ei) incrementally
for i = 0, 1 · · · ,m, where Ei is defined by Ei = {e1, · · · , ei}. A more detailed
description of the algorithm is given in Algorithm2.

Let G = (X,E) be an undirected graph whose vertex set is X. Let A and
Q be the set consisting of all the cut vertices and the set of the 2-connected
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components of G, respectively. The block forest (cf. [4]) of G is the bipartite
graph B = (A,Q;F ) defined by F = {(a,Q) | a ∈ A,Q ∈ Q, a ∈ Q}, as shown
in Fig. 1.

Theorem 2. Given a proper cycle-complete dissimilarity d on X, Algorithm2
correctly produces the indexed acyclic 2-hierarchy (Kd,diamd) and terminates in
O(n2 log n) time, where n = |X|.
Proof. First, we show that the algorithm is valid. In Lines 6–17, it finds the
vertex set Q of the 2-connected component of Gi formed by adding the edge
ei = {x, y} to Gi−1, if it exists. This set is either Q1 ∪ · · · ∪ Ql or ei = {x, y},
depending on whether or not x and y are in the same component. Then, the
algorithm adds Q to the list L, removing Q1, · · · , Ql in the first case. Then, the
collection L of vertex sets in Line 19 is exactly the same as K(p) − K(p−1) in
Line 6 of Algorithm 1, where d(ei) = σp.

(a)

Q1

Q2

Q3

Q4

Q5

Q6

Q7

x

y

(b)

Q1

Q2

Q3

Q4

Q5

Q6

Q7
P ′

Fig. 1. (a) All 2-connected components of a graph G. (b) Block forest of G, where
the cut vertices are indicated by rectangles, and the path P ′ between Q2 and Q4 is
indicated by a wavy line.

Next, we consider the algorithm’s time complexity. It takes O(n2 log n) time
to sort the edges of KX using any standard sorting algorithm, so the complexity
must be at least that. Here, we show that the other operations in Algorithm 2
only require O(n2) time. To achieve this bound, we represent the 2-connected
components of Gi as block forest Bi, and assume that each of the trees in the
forest Bi is rooted at some vertex for i = 0, 1 · · · ,m. In addition, we use a
mapping q : X − A → Q that associates each x ∈ X − A with the unique 2-
connected component q(x) of Gi−1 to which x belongs. With this, given arbitrary
x, y ∈ X, we can determine whether or not x and y are in the same 2-connected
component of Gi−1 in O(1) time. We can also find the 2-connected components
Q1, · · · , Ql (Line 10) in O(n) time by searching for the path P ′ in the forest Bi
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connecting the nodes corresponding to x and y, as shown in Fig. 1(b). The block
forest can be updated in O(n) time by reducing the 2-connected components
Q1, · · · , Ql on the path P ′ to a single 2-connected component Q. See Fig. 2(b).
The mapping q can also be updated in O(n) time. Since the number of i’s for
which x and y are in different 2-connected components is O(n) [1, Lemma 3.5],
it follows that the total time taken to compute Lines 8–16 is O(n2). �

(a)

Q1

Q5

Q6

Q7Q8

x

y

(b)

Q1 Q5

Q6

Q7Q8

Fig. 2. (a) All 2-connected components of the graph G + {x, y}, where G is the graph
in Fig. 1(a). (b) Block forest of G + {x, y}, where the cut vertices are indicated by
rectangles. Here, Q2, Q3 and Q4 in Fig. 1(b) have been reduced to form Q8.

5 Conclusions

It is known [5] that the mapping d �→ (Kd,diamd) gives a one-to-one corre-
spondence between the set of quasi-ultrametrics and the set of indexed quasi-
hierarchies on X, where Kd is the set of all the maximal cliques of threshold
graphs of d and the function diamd : Kd → R+ gives the diameter of each
clique in Kd. This leads to a similar one-to-one correspondence between the
set of 2-ultrametrics and the set of indexed 2-hierarchies on X [7]. The cycle-
complete dissimilarities [1] form a subset of the 2-ultrametrics, so the mapping
d �→ (Kd,diamd) gives a correspondence between these and a subset of the
indexed 2-hierarchies on X. In this paper, we have characterized this subset
as the set of indexed acyclic 2-hierarchies on X, which has then allowed us to
characterize the cycle-complete dissimilarities. In addition, we have presented
an algorithm for finding the indexed acyclic 2-hierarchy (Kd,diamd) on X cor-
responding to a cycle-complete dissimilarity d on X and shown that runs in
O(n2 log n) time, where n = |X|.

Acknowledgments. The authors are grateful to the anonymous referees for useful
comments which improved the presentation of the original version of this paper.
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Abstract. Multiple RNA interaction can be modeled as a problem in
combinatorial optimization, where the “optimal” structure is driven by
an energy-minimization-like algorithm. However, the actual structure
may not be optimal in this computational sense. Moreover, it is not nec-
essarily unique. Therefore, alternative sub-optimal solutions are needed
to cover the biological ground.

We extend a recent combinatorial formulation for the Multiple RNA
Interaction problem with approximation algorithms to handle more elab-
orate interaction patterns, which when combined with Gibbs sampling
and MCMC (Markov Chain Monte Carlo), can efficiently generate a
reasonable number of optimal and sub-optimal solutions. When viable
structures are far from an optimal solution, exploring dependence among
different parts of the interaction can increase their score and boost their
candidacy for the sampling algorithm. By clustering the solutions, we
identify few representatives that are distinct enough to suggest possible
alternative structures.

Keywords: Multiple RNA interaction · NP-hardness
Approximation algorithms · Gibbs sampling · MCMC · Clustering

1 Introduction

The role of interaction between two or more RNA molecules has been increasingly
recognized in biological mechanisms, including the regulation of gene expression,
methylation, and splicing. Pairwise interaction has been noted for regulating
gene expression whereby an anti-sense RNA blocks the ribosomal binding site
of the messenger RNA, e.g. [25]. Typical scenarios of multiple (more than two)
RNA interaction involve the interaction of small nucleolar RNAs (snoRNAs)
and ribosomal RNAs (rRNAs) in the process of methylation [29], small nuclear
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RNAs (snRNA) and messenger RNAs in the splicing of introns [40], and several
ribozyme complexes of small RNAs as catalytic RNA complexes [22,36,39].

The prediction of structures resulting from pairwise interactions is now some-
what understood; for instance, due to successful efforts in generalizing the par-
tition function of a single RNA to the case of two. Algorithms for pairwise
interaction of RNAs based on a generalized partition function and other meth-
ods appear in [3,4,6,10,11,15,19,26,29,30,33,35,37], but they do not scale when
carried over to multiple RNAs (more than two). The de facto treatment of mul-
tiple RNAs has been to account for their interaction by concatenating the RNAs
into a single long RNA, which is then folded in order to predict the structure
[5,13]. Most folding algorithms prevent the formation of pseudoknots due to their
increased computational complexity. While pseudoknots are rare in folded struc-
tures, they form legitimate patterns when spanning multiple RNAs, e.g. kissing
loops. There are a few attempts that introduce pseudoknots into the concatena-
tion model, e.g. [9], but advances in pairwise interaction algorithms based on a
generalized partition function suggest that the latter are more adequate, so they
remain the state-of-the-art for two RNAs.

Therefore, a promising approach is to exploit pairwise interaction in the
context of multiple RNAs. Indeed, we have recently proposed in a series of works
[1,2,31,32] a formulation where multiple RNAs interact along a chain driven
by the pairwise interactions of consecutive RNAs (Fig. 1b). This formulation
can produce optimal or near optimal solutions as it admits a Polynomial Time
Approximation Scheme PTAS. However, correct biological structures are not
necessarily “optimal” in any given computational framework and often are not
unique. Therefore, some realistic solutions ought to be sub-optimal. But it is
challenging to pick up the desired sub-optimal solutions, especially when far
from optimal. For instance, many artifact interactions can easily arise when
the RNAs are exact complement of each other (they bind perfectly). The CopA-
CopT complex represents such an example [25]. It is known as the perfect couple,
and has been problematic since the inception of pairwise interaction algorithms
in 2005. The correct solution must drop many of these artifacts and, therefore,
is typically very far from optimal.

In this paper, we extend our formulation for the Multiple RNA Interaction
problem to:

1. Handle more elaborate interaction patterns (not just a chain) guided by what
we call bipartite interaction graphs; we provide new approximation algorithms
for special cases of the bipartite graph

2. Conform to a sampling algorithm that uses Gibbs sampling and MCMC to
produce multiple (sub-optimal) solutions, which are then clustered to reveal
several candidate structures, and

3. Explore dependence among interactions to better score sub-optimal solutions
and boost their candidacy for sampling; this dependence renders the problem
hard to approximate (but remains useful and practical in sampling).
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2 The Model: Pegs and Rubber Bands

We describe a combinatorial optimization problem called Pegs and Rubber Bands
as a framework for multiple RNA interaction. The link between the two will be
made shortly following a formal description of Pegs and Rubber Bands.

Consider m levels numbered 1 to m with nl pegs in level l numbered 1 to
nl. We define n = maxm

l=1 nl. There is an infinite supply of rubber bands, and a
rubber band can be placed around pegs in two levels. For instance, we may choose
to place a rubber band around pegs [i1, i2] (i.e., the set of pegs from i1 to i2,
where i1 ≤ i2), in level l1, and pegs [j1, j2] in level l2, where l1 < l2. In this case,
the rubber band defines a window with a given weight w(l1, l2, i2, j2, u, v), where
u = i2 − i1 + 1 and v = j2 − j1 + 1 represent the lengths of the intervals covered
by the window in levels l1 and l2, respectively (as in Fig. 1a). For convenience,
we will use w(l1, l2, i, j, u, v) interchangeably to denote both the window and its
weight, depending on context. As such, each window w(l1, l2, i, j, u, v) defines
two intervals, [i − u + 1, i] in level l1 and [j − v + 1, j] in level l2.

(a) A rubber band around pegs defines a window.
The lengths u = i2 − i1 + 1 and v = j2 − j1 + 1
of the corresponding intervals may be different.

I1 3’ UGUAUG 5’

||||

U6 5’ AUAC...GAUU...GUGAAGCGU 3’

|||| |||||||||

U2 3’ UAUGAU...CUAG...CACUUCGCA 5’

|||||

I2 5’ UACUAAC 3’

(b) Multiple RNA interaction within the eukary-
otic spliceosome, showing the predicted structure
of spliceosomal U2-U6 snRNA and two introns I1
and I2, which is consistent with biological exper-
iments [40, 43].

Fig. 1. The Pegs and Rubber Bands formulation and an example of multiple RNA
interaction.

Assume window w defines interval [a, b] in level l and another w′ defines
interval [c, d] in the same level l. We say that w′ follows w if b < c. We require
two conditions:

1. [a, b] ∩ [c, d] = ∅ (disjoint base pairs)
2. follow can be extended by transitivity to a partial order relation (no pseu-

doknots).

We refer to the above two requirements as the no overlap condition. In particular,
there is overlap if some windows define overlapping intervals in the same level,
or if there is a sequence of windows (two or more) that follow one another in a
cycle.

The Pegs and Rubber Bands problem is to maximize the total weight by
placing rubber bands around pegs in such a way that none of their corresponding
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windows make an overlap. Therefore, the goal is to find a set of windows S (a
solution) that maximizes

∑
w(l1,l2,i,j,u,v)∈S w(l1, l2, i, j, u, v) subject to the no

overlap condition.

The Connection to Multiple RNA Interaction: RNAs are mapped as lev-
els, the ordered pegs in each level represent RNA bases {A,C,G,U} in the
order of occurrence in their sequence, a window w(l1, l2, i, j, u, v) is an interac-
tion between bases [i − u + 1, i] in RNA l1 and bases [j − v + 1, j] in RNA l2
(windows are then converted to base pairs), and the weight w(l1, l2, i, j, u, v) is
chosen based on the energy of that interaction. The energies are obtained using
a generalized partition function for pairwise interaction, and account for both
intra- and inter- molecular energies; for instance,

w(l1, l2, i, j, u, v) = RT ln
Pl1(free[i − u + 1, i])Pl2(free[j − v + 1, j])

ZI
l1,l2

(i − u + 1, i, j − v + 1, j)]

where R is the Boltzman constant and T is temperature, Pl(free[i, j]) is
the probability that subsequence [i, j] is free (does not fold) in RNA l, and
ZI

l1,l2
(i1, i2, j1, j2) is the generalized partition function of the interaction of sub-

sequences [i1, i2] in RNA l1 and [j1, j2] in RNA l2 (subject to no folding within
the subsequences) [33]. This reflects a two step process in which the RNAs are
first freed to interact, and then the interaction takes place. Therefore, RNA
folding is not ignored even if it’s not explicit in the resulting structure. The no
overlap condition reflects a typical nature of the secondary structure of RNA
interactions, which may be interpreted as the absence of pseudoknots (condition
2) in addition to the fact that each base can participate in at most one base pair
(condition 1). The maximization problem corresponds to energy minimization,
which leads to favorably stable structures.

Figure 1b shows an example of a structure predicted using the Pegs and
Rubber Bands formulation. In the figure, windows are replaced by base pairs in
their corresponding intervals. Observe that if the RNAs were handled pairwise, as
in [41] for instance, the best interacting pair of RNAs will dominate the solution,
and since the pair is required to fully interact before incorporating any further
interactions, this will “lock” the interaction pattern of the whole ensemble into
a sub-optimal state; thus preventing the correct structure from presenting itself
as a solution. Our formulation avoids this “locking” problem since the pairwise
interaction would have favored to include the binding of the 5’ end of U6 and
the 3’ end of U2 in Fig. 1b, leaving I1 and I2 detached.

3 RNA Interaction Pattern, Bipartite Graphs,
and Approximations

So far, we made an implicit assumption that every pair of RNAs can interact;
hence, w(l1, l2, i, j, u, v) represents a legitimate interaction for any pair (l1, l2).
However, for this interaction to take place, RNA l1 and RNA l2 have to act as
sense and anti-sense. Therefore, we envision the existence of a bipartite graph
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G = (V1, V2, E), called the interaction graph, where (u, v) ∈ E (with either
u ∈ V1 and v ∈ V2, or u ∈ V2 and v ∈ V1) iff RNA u and RNA v may
interact. For convenience, we say (u, v) ∈ G. The set V1 represents the sense
RNAs (5’ to 3’) and the set V2 represents the anti-sense RNAs (3’ to 5’). There-
fore, w(l1, l2, i, j, u, v) may be part of the solution for Pegs and Rubber Bands
if (l1, l2) ∈ G. This will prevent the formation of circular interactions with odd
cycles; the shortest cycle will have length four, e.g. RNA 1 interacts with RNA
2, RNA 2 interacts with RNA 3, RNA 3 interacts with RNA 4, and RNA 4 inter-
acts with RNA 1.1 An exponential time O((m+ |E|)nm) algorithm for Pegs and
Rubber Bands based on dynamic programming is described in Fig. 2; it consists
of decomposing the solution by successively adding windows that define disjoint
intervals and preserve follow as a partial order relation.

Fig. 2. Dynamic programming algorithm for Pegs and Rubber Bands and a bipartite
graph G. The maximum is given by W (n1, n2, . . . , nm) and the solution can be obtained
by standard DP backtracking. This algorithm stands behind the approximation results
when it is applied to sub-problems as presented in the following theorems.

3.1 Approximation Algorithms

Theorem 1 (Hardness). Pegs and Rubber Bands is NP-hard.

Proof: The NP-hardness was established in [2] for the special case when the
bipartite graph is a path (RNAs interact in a chain). Therefore, this result holds
for the cases of a cycle and a tree (even when bounded in degree), and for general
bipartite graphs. ��
Theorem 2 (Path and Cycle Interactions). Pegs and Rubber Bands admits
for every fixed ε > 0 a polynomial time algorithm that achieves a total weight
within (1 − ε)-factor of optimal if the bipartite interaction graph is a path or a
cycle.

Proof: The proof for the case of a path appears in [2]. We present the proof
for the case of a cycle. For simplicity of illustration, and since the bipartite
graph is a cycle, we assume that the levels are numbered 0 to m − 1 modulo
1 Circular interactions with odd cycles (where the interaction graph G is not restricted

to being bipartite) can be achieved by allowing inverted windows in which the inter-
action given by w(l1, l2, i, j, u, v) occurs between bases [i − u + 1, i] on RNA l1 and
bases [j, j−v+1] (inverted sequence) on RNA l2, but we do not explore this direction
here.
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m. Let OPT be the weight of the optimal solution and denote by W [i . . . j] the
weight of the optimal solution when the problem is a path restricted to levels
i, i+1, . . . , j mod m, i.e. a sub-problem with interaction graph containing edges
(l, l + 1) for l = i, i + 1, . . . , j − 1 mod m. Let k be an integer that is a function
of ε and suppose m = ka + b, where 0 ≤ b < k (a and b are the quotient and
remainder in the division of m by k, respectively). Consider the following m
solutions (weights) obtained by circular shifts, each a concatenation of �m/k	
optimal solutions for sub-problems consisting of at most k levels (a of them have
k levels and one has b levels).

W0 = W [0 . . . k − 1] + W [k . . . 2k − 1] + . . . + W [m − b . . . m − 1]

W1 = W [1 . . . k] + W [k + 1 . . . 2k] + . . . + W [m − b + 1 . . . m]

...

Wm−1 = W [m − 1 . . . m + k − 2] + W [m + k − 1 . . . m + 2k − 2] + . . .

+W [2m − b − 1 . . . 2m − 2]

While each Wi ≤ OPT , it is easy to verify that every pair of consecutive
levels (modulo m) is missing in exactly a of the above m sub-problems if b = 0,
and a + 1 otherwise; that’s �m/k	 in both cases. Therefore,

m−1∑

i=0

Wi ≥ (m − �m/k	)OPT ⇒ max
i

Wi ≥
(
1 − �m/k	

m

)
OPT

We can achieve the desired (1−ε) factor approximation by making �m/k	/m ≤ ε,
which when m is large enough, can be done if k = O(1ε ).

There are O(m) sub-problems of at most k levels each. A sub-problem
requires a time polynomial in n for a fixed k, O(knk), as shown in Fig. 2 using
dynamic programming. Furthermore, each of the m solutions has �m/k	 sub-
problems, so the additional running time required to find all Wi given the sub-
problems is O(m2/k). ��
Theorem 3 (Tree Interaction). Pegs and Rubber Bands admits for every
fixed ε > 0 a polynomial time algorithm that achieves a total weight within
(1 − ε)-factor of optimal if the bipartite interaction graph is a tree with bounded
degree.

Proof: Start with an arbitrary vertex (RNA) in G, say v0, and visit all vertices
of the tree using a Breadth First Search traversal. This assigns a “layer” for each
vertex, i.e. v0 will be in layer 0, all neighbors of v0 will be in layer 1, and so on.
Let Vi be the set of all vertices in layer i. Let Gi,j for i ≤ j be the induced graph
of G defined by vertices in Vi ∪ Vi+1, . . . ∪ Vj . Now for a given k, consider the
following partitioning (sub-problems), given by Gi,i+k−1:
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partition 0 : G0,0, G1,k, Gk+1,2k, G2k+1,3k, . . .

partition 1 : G0,1, G2,k+1, Gk+2,2k+1, G2k+2,3k+1, . . .

...

partition k − 1 : G0,k−1, Gk,2k−1, G2k,3k−1, . . .

where the first and last sub-problems have k or fewer layers. It is not hard to
see that each sub-problem Gi,i+k−1 consists of disjoint sub-trees with at most
1+d+d(d−1)+. . .+d(d−1)k−2 = O(dk) vertices each, where d is the maximum
degree. Using the algorithm of Fig. 2, the optimal solution given each sub-tree
can be found in polynomial time O(dkndk

), for the fixed k and d. The total
number of sub-trees after shifting the partition k − 1 times is O(m).

The k partitions give us k solutions. By observing that every edge in G
appears in exactly k−1 of the above k partitions, and using an argument similar
to the proof of Theorem 2, we can show that the best of the k solutions is a
(k − 1)/k-factor approximation. We choose k = O(1ε ). ��
Theorem 4 (Star Interaction). Peg and Rubber Bands is also NP-hard if the
bipartite graph is a star, and admits there a 1/2-factor approximation algorithm
if all windows have u = v = 1 and weight 1.

Proof: We can now think of a window w(1, l, i, j, 1, 1) as an edge connecting
peg i in level 1 and peg j in level l (all RNAs interact only with RNA 1). We
then need to maximize the number of edges with no crossings. A reduction from
3SAT (the special satisfiability problem where each clause in the conjunctive
normal form has exactly three variables) with variables x1, x2, . . . , xn and clauses
C1, C2, . . . , Ck to a star instance of Pegs and Rubber Bands with m = k+2 levels
(RNAs) is done as follows: Each variable is mapped to two sets (representing
True or False) of k edges between level 1 and level 2 such that every edge in
the first set crosses every edge in the second set. Each clause Cl is mapped to
three crossing edges between level 1 and level l + 2 representing the state of its
variables. Edges for clause Cl and clause Cl′ are node disjoint on level 1 (there
are enough pegs on level 1 for each variable to ensure that). Figure 3 illustrates
this construction.

Each variable can contribute at most k edges (depending on its setting of
True or False), and each clause at most one edge (indicating the variable that
satisfies it). The 3SAT instance is satisfiable iff we can find nk + k = k(n + 1)
edges with no crossings.

The 1/2-factor approximation: Given a peg j in level l, list all i in decreas-
ing order such that w(1, l, i, j, 1, 1) exists. By repeating this process for j =
1, 2, . . . , nl in order, we obtain a sequence Sl for level l. The optimal solution for
the star Pegs and Rubber Bands corresponds to m − 1 disjoint sub-sequences
A2, A3, . . . , Am each increasing in S2, S3, . . . , Sm, respectively, such that their
union2, a subset of X = {1, 2, . . . , n1}, is the largest possible. The increasing
2 For ease of notation, we are thinking of Al as a sequence and a set at the same time.
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Fig. 3. Reduction from 3SAT to star Pegs and Rubber Bands, showing the clause
(x1 ∨ x2 ∨ x3).

(and disjoint) sub-sequences ensure that no edges cross. This transformation
gives a special case of a coverage problem where the claimed approximation is
achieved by a greedy algorithm that repeats the following m−1 times [8]: choose
an l = 1 that has not yet been chosen and contributes the longest Al, add Al to
the solution, and update X to X − Al and each Si to Si − Al. ��

3.2 Finding the Bipartite Interaction Graph

We do not impose a specific bipartite graph to start with, but we infer it in
the following way: Given m RNAs, we start with a random permutation over
{0, 1, . . . ,m}. All indices to the left of 0 belong to V1, and all indices to the right of
0 belong to V2. We find the optimal solution for Pegs and Rubber Bands given the
complete bipartite interaction graph, i.e. G = K|V1|,|V2|, and using the algorithm
of Fig. 2, which is exponential in the number of RNAs m, but practical when m ≤
4 (when m > 4, one could explore the approximation algorithms presented above
with the corresponding appropriate bipartite graphs). Afterwards, a random
search generates some neighboring permutations, e.g. using a 2-opt strategy in
which the permutation (σ0, . . . , σi, . . . , σj , . . . , σm) produces neighbors of the
form (σ0, . . . , σi−1, σj , . . . , σi, σj+1, . . . , σm) for several values of i and j, and
the same is repeated. When a better solution is revealed, the permutation is
updated. When no better solution is found, we stop. The obtained solution
represents a locally optimal one, and possibly the global optimal given all possible
permutations. If RNA u and RNA v do not interact in this solution, (u, v)
is dropped from the complete bipartite graph. We then generate sub-optimal
solutions for the given bipartite graph by sampling (Sect. 5).

4 Weight Dependent Pegs and Rubber Bands

We extend the Pegs and Rubber Bands formulation by allowing windows to be
either single or dependent. Single windows contribute a weight w(l1, l2, i, j, u, v)
as before. Recall that each window w(l1, l2, i, j, u, v) defines two intervals, [i −
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u+1, i] in level l1 and [j −v +1, j] in level l2. If a solution contains two windows
that define intervals [a, b] and [c, d] in level l with b < c, then we may consider
them dependent in level l (windows can be dependent in one or two levels),
and thus add to their single weight contribution a new positive term for level
l given by Δ(l, a, b, c, d). To motivate this idea, imagine that in the folding of
RNA l, whenever [a, b] is free, it is energetically favorable that [c, d] is also free;
for instance, due to the breaking of a stem in the original folding. One could
then use

Δ(l, a, b, c, d) = RT ln Pl(free[c, d]|free[a, b]) − RT ln Pl(free[c, d])

when it’s positive as a possible term. Therefore, in addition to the single contri-
bution of windows, a solution where both [a, b] and [c, d] of RNA l interact will
acquire more weight, due to the net positive effect (since Δ(l, a, b, c, d) > 0) of
replacing the individual probabilities with the joint probability (conditioning).

Based on the above motivation, we also require that if Δ(l, a, b, c, d) and
Δ(l, e, f, g, h) both contribute to the total weight of a given solution, then either
[a, d] ∩ [e, h] = ∅ or one is contained in the other; thus mimicking the typical
nesting property of folding in RNA l.

Given a solution S, let Il(S) be the set of all intervals in level l defined by
windows in S, i.e. either l1 = l or l2 = l in w(l1, l2, i, j, u, v) ∈ S. Let Ml(S)
be the set of all no-overlap matchings in Il(S); in other words, if ([a, b], [c, d])
and ([e, f ], [g, h]) belong to a matching (with b < c and f < g), then either
[a, d]∩ [e, h] = ∅ or one is contained in the other. The modified weight of solution
S is defined as:

w(S) =
∑

w(l1,l2,i,j,u,v)∈S

w(l1, l2, i, j, u, v) +
∑

l

max
M∈Ml(S)

∑

([a,b],[c,d])∈M

Δ(l, a, b, c, d)

We then seek a solution that maximizes the above. We will call this variant
the Weight Dependent Pegs and Rubber Bands, which remains to be NP-hard.
However, this variant of the problem is even hard to approximate.

Theorem 5. The Weight Dependent Pegs and Rubber Bands has no constant
factor approximation unless P = NP , even when m = 2 (two RNAs).

Proof: We make a reduction from the Longest Common Subsequence problem,
which is known to be hard to approximate [23]. Given n strings s1, . . . , sn, let
LCS be the length of their longest common subsequence. We show how to con-
struct an instance of Weight Dependent Pegs and Rubber Bands with m = 2 that
has an optimal weight OPT = LCS[nx − (n + 1)], where x is chosen such that

n + 1
n

< x <
n

n − 1

Furthermore, we show that any approximation to OPT consists of an integer
multiple of [nx− (n+1)], say k, and reveals a common subsequence of length k.

We define s′
i to be string si reversed. If string si has length |si|, then we

call si[j] and s′
i[|si| − j + 1] duplicates (they represent two copies of the same
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character due to the reversal). We also define s0 = s1 and sn+1 = sn. We then
construct two levels of pegs, where each peg i in level l = 1, 2 is represented by
a character of some string. In the first level, we lay out the pegs given by the
concatenated string s1s

′
1s3s

′
3 . . .. In the second level, we lay out the pegs given

by the concatenated string s0s
′
2s2s

′
4s4 . . .. Figure 4 shows this construction for

s1 = 0010111, s2 = 01010, and s3 = 100101 (the choice of a binary alphabet is
made for ease of illustration).

Fig. 4. A construction of a Weight Dependent Pegs and Rubber Bands instance for
s1 = 0010111, s2 = 01010, and s3 = 100101, with LCS(s1, s2, s3) = 4 (showing one
possible solution).

Every window in this instance has the form w(1, 2, i, j, 1, 1) where peg i in
level 1 and peg j in level 2 represent characters of sk+1 and sk respectively for
even k (s′

k and s′
k+1 respectively for odd k) and the two characters are equal.

We set w(1, 2, i, j, 1, 1) = −1. In addition, we define Δ(l, a, a, b, b) = x if pegs a
and b of level l correspond to duplicate characters. If we represent windows as
edges going across between level 1 and level 2, and dependence among windows
(the Δ terms) as arcs connecting duplicate characters in level 1 and in level 2,
then every edge has weight −1 and every arc has weight x.

Since an arc (dependence) can only contribute to a solution when two cor-
responding edges (windows) touching its left and right are also included, the
solution must contain chains that alternate in arcs and edges by starting and
ending with an edge. Therefore, the only way to achieve a positive weight is by a
chain of length n+(n+1), consisting of an alternation of n arcs and n+1 edges,
for a weight of nx − (n + 1) > 0. By the choice of x, any shorter such chain will
have negative weight. Furthermore, this chain represents one character common
to all strings. The optimal solution will consist of LCS such chains that are
nested as shown in Fig. 4; this nesting guarantees that the common characters
occur in the same order in all strings. Any approximation must contain k chains,
for some integer k ≤ LCS. Therefore, any constant approximation to OPT , say
α, must score k[nx − (n + 1)] ≥ αLCS[nx − (n + 1)]; resulting in k/LCS ≥ α.
This in turn means that we have a constant factor approximation for the Longest
Common Subsequence problem, a contradiction unless P = NP. ��

While it is hard to even approximate the optimal solution, it is easy to
determine the weight of a given solution S as described by w(S) above using
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Δ(l, a, b, c, d). This is useful in the context of sampling (see following section),
when S has already been sampled, and can be done by computing a maximum
no-overlap matching in each level l. Nevertheless, we do not fully implement this
idea, instead we consider an easier approach.

To avoid the computation of conditional probabilities in Δ(l, a, b, c, d), we
adopt for a ≤ b < c ≤ d the following more practical definition (Theorem2 is no
longer true for this definition).

Δ(l, a, b, c, d) = RT ln Pl(free[a, d]) − RT ln Pl(free[a, b]) − RT ln Pl(free[c, d])

when it’s positive and no other intervals in level l lie between [a, b] and [c, d].
Thus we replace the individual free probabilities by one pertaining to the entire
range. This will still capture dependence of two regions that separate from the
stem of a hairpin loop of moderate size, as in the case of CopA-CopT with a
window split in Fig. 5a. In general, when Δ(l, a, b, c, d) becomes sufficiently posi-
tive, it prevents such window splits from being detrimental to the total weight of
the solution (the two windows of the split are no longer scored independently).

(i)
CopA 5’ CGGUUUAAGUGGG...UUUCGUACUCGCCAAAGUUGAAGA...UUUUGCUU 3’

||||||||||||| |||||||||||||||||||||||| ||||||||
CopT 3’ GCCAAAUUCACCC...AAAGCAUGAGCGGUUUCAACUUCU...AAAACGAA 5’

(ii)
CopA 5’ CGGUUUAAGUGGG...UUUCGUACUCGCCAAAGUUGAAGA...UUUUGCUU 3’

|||||||||||| ||||||||| ||||||
CopT 3’ GCCAAAUUCACCC...AAAGCAUGAGCGGUUUCAACUUCU...AAAACGAA 5’

(a) The pairwise interaction of CopA-CopT: (i) computational
prediction with artifact interactions due to the maximization
nature of the problem, and (ii) the actual biologically known
interaction [25], where the last window is dropped and the
middle window is split (reversible kissing loop).

(b) A circular 4-way junction construct of
a hairpin ribozyme complex [36].

Fig. 5. Some structures that are not “optimal” in the computational sense.

Assume solution S has n intervals in level l given by [ai, bi], sorted from left to
right for i = 1, . . . , n. The weight of the maximum no-overlap matching in level
l can now be computed in linear time as Wl(n) by dynamic programming, as
shown below. The matching itself can be obtained by standard DP backtracking.

Wl(i) = max
[
Wl(i − 1),Wl(i − 2) + Δ(l, ai−1, bi−1, ai, bi)

]

where Wl(0) = Wl(1) = 0, and Δ(l, ai−1, bi−1, ai, bi) = −∞ when not positive.

5 Realistic Biological Factors (The Need for Sampling)

Many biological factors affect the observed structure of interacting RNA
molecules. For instance, reversible kissing loops (where some hydrogen bonds
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(a)
I1 3’ UGUAUG

|||
U6 5’ ACAGAGAUGAUC--AGC

||||| |||
U2 3’ AUGA-UGUGAACUAGAUUCG

|||| ||||
I2 5’ UACUAACACC

(b)
I1 3’ UGUAUG

|||
U6 5’ ACAGAGAUGAUCAGC

|||||
U2 3’ AUGA-UGUGAACUAGAUUCG

|||| ||||
I2 5’ UACUAACACC

(c)
I1 3’ UGUAUG

U6 5’ ACAGAGAUGAUC--AGC
||||| |||

U2 3’ AUGA-UGUGAACUAGAUUCG
|||| ||||

I2 5’ UACUAACACC

(d)
I1 3’ UGUAUG

U6 5’ ACAGAGAUGAUCAGC
|||||

U2 3’ AUGA-UGUGAACUAGAUUCG
|||| ||||

I2 5’ UACUAACACC

Fig. 6. The yeast spliceosome with 4 RNAs (I1 and I2 are functionally independent
stretches of the same much longer messenger RNA). (a) Helix Ia and helix Ib with both
introns attached. (b) Helix Ia with both introns attached. (c) Helix Ia and helix Ib
with I1 detached. (d) Helix Ia with I1 detached. Both (a) and (b) represent biologically
correct structures. The actual folding within RNAs (thus the 3-way/4-way junction) is
not shown.

of the interaction between hairpins unwind) [24] are generally not captured by
energy minimization since a kissing loop is energetically more favorable than a
partial one. We observe such artifacts within the pairwise interaction of CopA-
CopT in E. Coli, as shown in Fig. 5a.

Figure 5b shows a circular 4-way junction construct of a hairpin ribozyme
complex that exhibits a similar unwinding of two hydrogen bonds (located
between H1 and H2), possibly due to higher order interactions with other parts of
the structure [36]. The U2-U6 snRNA complex is a classical example where there
is lack of consensus regarding whether the complex forms a 3-way or a 4-way
junction (it is reasonable to assume that both structures co-exist [7,34,38,43]).
Figure 6a and b show the two possibilities given by the formation of two helices
or one helix, respectively.

Therefore, correct biological structures are not always “optimal” (in the com-
putational sense), and often are not unique. Sub-optimal solutions are needed to
cover the biological ground. To that end, once the bipartite interaction graph has
been fixed, as described in Sect. 3.2, we generate alternative sub-optimal solu-
tions using a sampling approach, and then cluster similar structures to obtain
a set of distinct representative. Sampling has been successfully used for single
RNAs (folding) and pairs of RNAs, e.g. [12,20,28,42], and we have previously
explored it for multiple RNAs when the bipartite interaction graph is a path
[32]. We extend the ideas of our sampling techniques to the general case below.

5.1 Gibbs Sampling with Metropolis Hastings (MCMC)

Gibbs sampling has been described in [17]. As a random variable, let Sl1,l2 be
a set of non-overlapping windows of the form w(l1, l2, i, j, u, v), so Sl1,l2 rep-
resents a valid interaction between RNA l1 and RNA l2. A Gibbs sampler
works by sampling each random variable individually in order, conditioned
on the current values of the other variables. In other words, we work with
P (Sl1,l2 | ∪(l,l′)∈G−(l1,l2) Sl,l′). Given a total order on the pairs (l1, l2) ∈ G, a
new sample ∪(l,l′)∈GSl,l′ is declared every time Sl1,l2 has been sampled for all
pairs (l1, l2) ∈ G in order. The process repeats until we obtain the desired num-
ber of samples. We can assume that we start with Sl1,l2 = ∅ for all pairs (l1, l2).
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Under typical conditions of ergodicity [14], the Gibbs guarantee is that
∪(l,l′)∈GSl,l′ is a sample from P (∪(l,l′)∈GSl,l′), which is not necessarily a known
distribution, in contrast to P (Sl1,l2 | ∪(l,l′)∈G−(l1,l2) Sl,l′), which may be reason-
ably constructed.

This is convenient because, conditioned on ∪(l,l′)∈G−(l1,l2)Sl,l′ , the permissi-
ble windows of the form w(l1, l2, i, j, u, v) are exactly those which when added
will not make an overlap in ∪(l,l′)∈GSl,l′ . Therefore, we can assume that:

P (Sl1,l2 | ∪(l,l′)∈G−(l1,l2) Sl,l′) ∝
{

0 ∪(l,l′)∈GSl,l′ contains an overlap
ew(Sl1,l2 )/RT otherwise

where the exponential term is consistent with the standard Boltzman distribu-
tion for the interaction of RNAs l1 and l2, knowing that w(Sl1,l2) represents the
negative of the energy multiplied by RT . We now describe a method to sample
from P (Sl1,l2 |∪(l,l′)∈G−(l1,l2)Sl,l′) based the Metropolis-Hastings algorithm (also
known as Markov Chain Monte Carlo MCMC).

Metropolis-Hastings Procedure: To sample from P (Sl1,l2 | ∪(l,l′)∈G−(l1,l2)

Sl,l′), we first make Sl1,l2 = ∅ and drop all the windows of the form
w(l1, l2, i, j, u, v) that make an overlap when added to ∪(l,l′)∈G−(l1,l2)Sl,l′ . We
only work with the remaining windows of the form w(l1, l2, i, j, u, v). We then
construct a random sequence S0

l1,l2
, S1

l1,l2
, . . ., where St

l1,l2
is a set of non-

overlapping windows of the form w(l1, l2, i, j, u, v). This can be done with a
Metropolis-Hastings strategy [18,27]: Given St

l1,l2
, we randomly generate St+1

l1,l2

with some proposal probability Q(St+1
l1,l2

|St
l1,l2

), and either accept St+1
l1,l2

with prob-
ability

min
{

1,
Q(St

l1,l2
|St+1

l1,l2
)

Q(St+1
l1,l2

|St
l1,l2

)
× e

w(St+1
l1,l2

)/RT

ew(St
l1,l2

)/RT

}

or reject it and let St+1
l1,l2

= St
l1,l2

.
It is well known and easy to show that such a strategy results in a Markov

chain which converges to the desired probability distribution if the proposal chain
Q(St+1

l1,l2
|St

l1,l2
) satisfies Q(St+1

l1,l2
= y|St

l1,l2
= x) > 0 ⇔ Q(St+1

l1,l2
= x|St

l1,l2
= y) >

0; this also makes it irreducible [16].
A simple strategy is to make Q(St+1

l1,l2
|St

l1,l2
) uniform among all the neigh-

bors of St
l1,l2

(including St
l1,l2

itself), where a neighbor other than St
l1,l2

can be
obtained by one of the following three operations:

– a window w(l1, l2, i, j, u, v) ∈ St
l1,l2

is removed from St
l1,l2

– a window w(l1, l2, i, j, u, v) ∈ St
l1,l2

that does not overlap in St
l1,l2

is added to
St

l1,l2
– a window w(l1, l2, i, j, u, v) ∈ St

l1,l2
is replaced by a window w(l1, l2, i′,

j′, u′, v′) ∈ St
l1,l2

that only overlaps with w(l1, l2, i, j, u, v) in St
l1,l2

.

Therefore, for every St+1
l1,l2

that is a neighbor of St
l1,l2

, Q(St+1
l1,l2

|St
l1,l2

) is the inverse
of the number of neighbors of St

l1,l2
. This proposal probability defines an irre-

ducible Markov chain since every pair of solutions can be reached from one
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another through a sequence of neighbors. We do not allow two adjacent win-
dows w(l1, l2, i, j, u, v) and w(l1, l2, i − u, j − v, u′, v′) to co-exist (since together
they represent one bigger window).

We perform 20 iterations of the Metropolis-Hastings algorithm without
rejection. This allows us to start with some random solution. We then allow
50 iterations (with rejection) for the “burn-in” time of the Metropolis-Hastings
algorithm. Finally, we generate 50 samples in 50 iterations and select one uni-
formly at random. We generate 1000 solutions (Gibbs samples) by repeating the
entire procedure for each pair (l1, l2) in order.

5.2 Clustering the Samples

The sampled sub-optimal solutions are usually too many. In addition, many of
them will be similar. Therefore, we use clustering to reduce their number. To clus-
ter the samples, we first remove duplicates, so we only work with unique samples.
We then sort the solutions to make the output of the clustering deterministic.
Finally, we use hierarchical agglomerative clustering with complete linkage, and
obtain the clusters by “cutting” the tree where distance between clusters is 1
(largest); we used a distance function similar to the one reported in [31], which
was shown to be a metric. For completeness, we describe the distance function
in the Appendix.

6 Experimental Results

Given the clusters, the solution with the largest weight (the best) in each cluster
acts as a “representative” of the cluster. We sort the representatives of the clus-
ters by decreasing weight. We consider the first k representatives, for a given k.
To assess our approach, we repeat the experiment 200 times, which was verified
to be enough for the percentage hits (defined below) to converge within ±3%.
Given a set of candidate structures in mind; for instance, Fig. 6 shows four can-
didates for the yeast spliceosome, we then count for each candidate the number
of runs in which it is found among the first k representatives, as a percentage
hit. We also compute the “rank” of each candidate, which is the index of it’s
first3 representative (according to the sorted order) if found, averaged over the
number of runs with a hit. Finally, we compute for each candidate the F1-score
of its first representative when found, also averaged in the same way. After con-
verting windows to base pairs, the F1-score is given by 2×precision×recall

precision+recall , where
recall is defined as the number of base pairs in the representative that are also
in the biologically correct structure, divided by the total number of base pairs in
the latter, and precision is defined as the same but divided by the total number
of base pairs in the representative.

3 We use “first representative” because many solutions can represent the same candi-
date; for instance, a window can split in different ways, but we still refer to it as a
window split.
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We consider three settings with (a) all windows included (no filtering), (b)
only symmetric windows w(l1, l2, i, j, u, v) where u = v, and finally (c) the 500
windows w(l1, l2, i, j, u, v) with the highest ZI

l1,l2
(i − u + 1, i, j − v + 1, j) among

all bounded size windows satisfying max(u, v) ≤ 10. All tables show data
for k = 5, and each entry lists the percentage hit followed by the average rank
and the average F1-score.

6.1 Structural Variation

The interaction of the U2-U6 complex in the spliceosome of yeast (shown in
Fig. 6) has the pattern I1—U6—U2—I2 (the bipartite interaction graph is a
path). The complex has been reported to have two distinct experimental struc-
tures, e.g. [38]. In one conformation, U2 and U6 interact to form a helix known as
helix Ia. In another conformation, the interaction reveals a structure containing
an additional helix, known as helix Ib. Section 5 describes possible underlying
mechanisms that are responsible for this conformational switch.

We consider the set of four candidates in Fig. 6. The results are summarized
in Table 1; we did not consider bounded size windows here because all given
windows are already small in size.

Table 1. Results for the yeast spliceosome, percentage hit followed by rank and F1-
score.

Class All Symmetric

Helices Ia+Ib (as 2 symm. windows) 100 1 1 100 1 1

Helices Ia+Ib (as 1 window) 0.9 5 0.882 - - -

Helices Ia+Ib (as 2 symm. windows), I1 detached 100 2 0.914 100 2 0.914

Helices Ia+Ib (as 1 window), I1 detached 0 - - - - -

Helix Ia 100 3 1 100 3 1

Helix Ia, I1 detached 100 4 0.897 100 4 0.897

6.2 Artifact Interactions

The pairwise interaction of CopA-CopT (the bipartite interaction graph is simply
an edge) is shown in Fig. 5a. Due to the optimization nature of our problem,
it is sometimes possible to pick up interactions that are not biologically real;
dropping these interactions from the solution would make it sub-optimal, even
when preferred biologically, as described in Sect. 5. The last interaction window
of CopA-CopT in Fig. 5a is an example of such an artifact.

For each of the three interaction windows in Fig. 5a, we consider whether the
window is present, dropped, or split. We thus identify six classes of candidates
based on presence/absence of windows and window splits, as shown in Table 2.

A real interaction given by window w(l1, l2, i, j, u, v) is considered present if
the solution contains a window w(l1, l2, i′, j′, u′, v′) “in range” such that [i′−u′+
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1, i′] ⊆ [i−u+1−3, i+3] and [j′ −v′ +1, j′] ⊆ [j −v+1−3, j +3]. Furthermore,
if exactly two windows fall in that range, we consider them as a window split.4

Typically, though we do not enforce it, such a window split is declared when the
two windows happen to be treated as dependent (see Sect. 4).

The solution with the highest F1-score is characterized by a first window and
a middle window split, with the last window dropped (biologically correct). This
solution is revealed almost always with as few as two clusters (k = 2), and has
a relatively small rank (at most 2) when k ≥ 5. This is primarily attributed to
the use of bounded size windows. However, even with a less stringent filtering of
windows (“All” or “Symmetric”), the solution still shows up when the number
of clusters k is high enough (see also Footnote 4).

Table 2. Results for CopA-CopT, percentage hit followed by rank and F1-score.

Class All Symmetric Bounded size

First, middle, last 92.9 2 0.729 99.3 1 0.764 8.5 4.3 0.53

First, middle split, last 7.6 3.5 0.723 88 3.2 0.758 100 1.2 0.701

First, middle, last dropped 87.9 2.1 0.794 97.7 2.3 0.836 73.2 4.7 0.639

First, middle split, last dropped 7.1 2.9 0.838 37 4.8 0.832 100 1.9 0.816

First split, middle, last 2.7 2.8 0.797 61.7 3.6 0.732 0 - -

First split, middle, last dropped 1.8 4 0.708 20 4.9 0.795 0 - -

6.3 Circular Interaction

The 4-way junction construct of a hairpin ribozyme complex is shown in Fig. 5b.
This structure of four RNAs has a circular interaction Substrate—RzA—FW1—
FW2—Substrate (the bipartite interaction graph is a cycle). We distinguish
between three types of solutions: Type 1 is the “optimal” where H1 is predicted as
a non-symmetric windows, adding a C-G pair and a U-A pair (thus a bulge in H1
on the RzA side). These additional pairs unwind in the actual structure possibly
due to high order interactions with other parts of the structure [36]. Type 2 (the
second optimal) is when H1 and H2 are predicted as one symmetric window that
extends from the 5’ end of the Substrate (and the 3’ end of RzA) to the center
of the 4-way junction (thus with the same additional base pairs reported above).
Type 3 is the correct structure as shown in Fig. 5b. We used the same ±3 criteria
for window boundaries as described in Sect. 6.2. When symmetric windows are
considered, Type 3 will present itself as the second representative (sub-optimal).
The results are summarized in Table 3.

4 Since a single non-symmetric window may also represent a split, our percentage hit
for window splits is lower than it should be with the no filtering option.
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Table 3. Results for the 4-way junction construct in the hairpin ribozyme complex,
percentage hit followed by rank and F1-score. T3 is the correct structure.

Class All Symmetric Bounded size

T1 (H1 as non-symm. window) 100 1 0.974 0 - - 100 1 0.976

T2 (H1 & H2 as 1 symm. window) 15.6 2.8 0.965 100 1 0.976 0 - -

T3 (H1 & H2 as 2 symm. windows) 79.7 4.6 0.986 100 2 1 100 4 1

6.4 Star Interactions

We include three more examples of ribozyme complexes from [39] and [22] where
one RNA interacts with the rest of the RNAs, thus forming a star bipartite
interaction graph (also a path when m ≤ 3) as in Fig. 7. For the hammerhead
ribozyme complex, the correct solution always shows up in the first cluster (see
Table 4). For the HP-WT and HP-RJ ribozyme complexes, results are similar to
those of the 4-way junction construct, and are shown in Tables 5 and 6, respec-
tively.

JR-PHTW-PH
’BzRBzRTW-S S-WT

3’ UUUCUCCUGACACU 5’ 3’ AUGGUCCAUUAUAUCGUGCGC 5’ 3’ UGGUCCAUUAUAUGGUGC 5’ 3’ UUUCUCCUGACACU 5’
|||||| |||| ||||| |||||| ||||| |||| |||||| ||||

5’ AAAGCGAGAAGUGA---------ACCAGAGAAACA--CACGCG 3’ 5’ ACCAGAGAA-ACA-CACGAAAAAA--AAAGAGAGAAGUGAA 3’
H1 H2 RzA RzA’ H3 H4

Hammerhead

3’ GGUUUGGGCAGU 5’ 3’ AAGUUUAUUCCA 5’ Facilitators
|||||||||||| ||||||||||||

5’ CCAAACCCGUCAAUCAAGUC------UACACUGUUCAAAUAAGGU 3’ Substrate
||||||| |||||||

3’ UAGUUCAAA...UCAUGUGAC 5’ Ribozyme

Fig. 7. Three more examples of ribozyme complexes [22,39].

Table 4. Results for the hammerhead ribozyme complex, percentage hit followed by
rank and F1-score.

Class All Symmetric Bounded size

T1 (correct structure) 100 1 0.999 100 1 1 100 1 0.944

T2 (five windows) 63.8 2.3 0.954 98.7 2 0.959 0 - -

T3 (three windows) 9.4 5 0.892 0.4 5 0.882 0 - -
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Table 5. Results for the hairpin ribozyme HP-WT complex, percentage hit followed
by rank and F1-score. T3 is the correct structure.

Class All Symmetric Bounded size

T1 (H1 as non-symm. window) 100 1 0.955 0 - - 100 1 0.955

T2 (H1 & H2 as 1 symm. window) 0 - - 100 1 0.955 0 - -

T3 (H1 & H2 as 2 symm. windows) 96.4 5 1 100 2 1 100 4 1

Table 6. Results for the hairpin ribozyme HP-RJ complex, percentage hit followed by
rank and F1-score. T3 is the correct structure.

Class All Symmetric Bounded size

T1 (H3 as non-symm. window) 100 2 0.905 0 - - 100 1 0.905

T2 (H3 & H4 as 1 symm. window) 100 1 0.95 100 1 0.95 0 - -

T3 (H3 & H4 as 2 symm. windows) 0 - - 100 3 1 0 - -

7 Conclusion

We extend our previous work on multiple RNA interaction using the Pegs and
Rubber Bands formulation to incorporate dependence among different parts
of the interaction (Weight Dependent Pegs and Rubber Bands), and consider
more elaborate RNA interaction patterns given by bipartite graphs. We provide
approximation algorithms for the Pegs and Rubber Bands problem when the
bipartite graph is a path, a cycle, a tree with bounded degree, and a star. We
also prove that a constant approximation for the Weight Dependent Pegs and
Rubber Bands problem is not possible unless P = NP (even for just two RNAs).

In RNA interaction, the “optimal” structure may not be correct, and the
correct structure is not necessarily unique. A sampling approach for the above
formulations successfully computes optimal and sub-optimal solutions that are
truthful representations of the actual biological structures. For instance, it can
provide several candidate structures when they exist, e.g. for the U2-U6 complex
and its introns in the spliceosome of yeast; and identify structures that are
biologically correct, but are not necessarily optimal in the computational sense,
e.g. for CopA-CopT in E. Coli and several ribozyme complexes.

Appendix

Given a solution S, define |S| as the number of windows in S, and let

w(l1, l′1, i1, j1, u1, v1), . . . , w(l|S|, l′|S|, i|S|, j|S|, u|S|, v|S|)

be the |S| windows in the order defined by the partial order relation follow (from
Sect. 2) extended to a total order in a deterministic way.
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Each of these windows, say w(l, l′, i, j, u, v), defines the two intervals, [i−u+
1, i] in level l and [j −v +1, j] in level l′. Consider the set of interaction intervals
I(S) =

∑
l Il(S) to be ordered accordingly. Therefore,

I(S) = {I1, . . . , I2|S|} = ([i1 − u1 + 1, i1], [j1 − v1 + 1, j1], . . .

. . . , [i|S| − u|S| + 1, i|S|], [j|S| − v|S| + 1, j|S|])

is an ordered set of 2|S| intervals. Let L(S) = {(l1, l′1), . . . , (l|S|, l′|S|)} be an
ordered set of |S| pairs, where (li, l′i) is the pair defining the ith window. There-
fore, L(S) means that we have the following set of pairwise interactions (not
necessarily unique in terms of RNAs): RNA l1 with RNA l′1, RNA l2 with RNA
l′2, . . ., RNA l|S| with RNA l′|S|. Two solutions that do not agree on this set
are considered completely dissimilar; otherwise, their distance is given by the
amount of overlap in their interaction intervals (as in the Jaccard metric [21]),
hence the following definition of distance:

Given two solutions S1 with I(S1) = {I1, I2, . . .} and S2 with I(S2) =
{T1, T2, . . .}, the distance between S1 and S2 is

d(S1, S2) =

{
1 −

∑
i |Ii∩Ti|∑
i |Ii∪Ti| L(S1) = L(S2)
1 otherwise

where ∩ and ∪ represent the standard intersection and union operations on sets
respectively, and intervals are treated as sets of integers.

Recall that a symmetric window w(l1, l2, i, j, u, v) satisfies u = v (and typ-
ically consists of u base pairs). When applying the distance function, a non-
symmetric window is first converted to consecutive symmetric windows by max-
imizing the number of base pairs (but otherwise is still reported as a non-
symmetric window in a given solution).
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Abstract. Given a set P of n locations on which facilities can be placed
and an integer k, we want to place k facilities on some locations so that
a designated objective function is maximized. The problem is called the
k-dispersion problem.

In this paper we give a simple O(n) time algorithm to solve the max-
min version of the k-dispersion problem if P is a set of points on a line.
This is the first O(n) time algorithm to solve the max-min k-dispersion
problem for the set of “unsorted” points on a line.

If P is a set of sorted points on a line, and the input is given as an array
in which the coordinates of the points are stored in the sorted order, then
by slightly modifying the algorithm above one can solve the dispersion
problem in O(log n) time. This is the first sublinear time algorithm to
solve the max-min k-dispersion problem for the set of sorted points on a
line.

Keywords: Dispersion problem · Algorithm

1 Introduction

The facility location problem and many of its variants have been studied [9,10].
Typically, given a set of locations on which facilities can be placed and an integer
k, we want to place k facilities on some locations so that a designated objective
function is minimized. By contrast in the dispersion problem, we want to place
facilities so that a designated objective function is maximized.

The intuition of the problem is as follows. Assume that we are planning
to open several chain stores in a city. We wish to locate the stores mutually far
away from each other to avoid self-competition. So we wish to find k locations so
that the minimum distance between them is maximized. See more applications,
including result diversification, in [7,15,16].

Now we define the max-min k-dispersion problem. Given a set P of n possible
locations, and a distance function d for each pair of locations, (we assume that d
is a symmetric nonnegative function satisfying d(p, p) = 0 for all p ∈ P ) and an
integer k with k � n, we wish to find a subset S ⊂ P with |S| = k such that the
cost cost(S) = min{u,v}⊂S{d(u, v)} is maximized. For convenience if |S| = 1 we
regard cost(S) = ∞. This is the Max-Min version of the k-dispersion problem
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[15,18]. For the Max-Sum version see [4–8,12,14,15], and for a variety of related
problems see [4,8]. The max-min k-dispersion problem is NP-hard even when
the triangle inequality is satisfied [11,18]. An exponential time exact algorithm
for the max-min k-dispersion problem is known [3]. A geometric version of the
problem in d-dimensional space can be solved in O(kn) time for d = 1 (if the
order of vertices in P on the line is given) and is NP-hard for d = 2 [18]. If
the order of vertices in P on the line is given the running time for d = 1 was
improved to O(n log log n) [2] by the sorted matrix search method [13] (See a
good survey for the sorted matrix search method in [1, Sect. 3.3]), then O(n) [3]
by a reduction to the path partitioning problem [13], as explained in Sect. 2. Ravi
et al. [15] proved that the max-min k-dispersion problem cannot be approximated
within any constant factor in polynomial time, and cannot be approximated
within factor of two in polynomial time when the distance satisfies the triangle
inequality, unless P = NP. They also gave a polynomial-time algorithm with
approximation ratio two when the triangle inequality is satisfied.

In the paper we give a simple O(n) time algorithm to solve the max-min
k-dispersion problem if P is a set of unsorted points on a line. This is the first
O(n) time algorithm to solve the max-min k-dispersion problem for the set of
unsorted points on a line. Then we consider the case if P is a set of sorted
points on a line, and the input is given as an array in which the coordinates of
the points are stored in the sorted order. We show one can solve the dispersion
problem in O(log n) time, by slightly modifying the algorithm above. This is the
first sublinear time algorithm to solve the max-min k-dispersion problem for the
set of sorted points on a line.

The remainder of this paper is organized as follows. Section 2 gives an O(n)
time algorithm [3] to solve the dispersion problem where P is an ordered set of
points on a line, by a reduction to the path partitioning problem. In Sect. 3 we
design an O(n) time simple algorithm to solve the dispersion problem when P
is a set of “unsorted” points on a line. Section 4 gives an algorithm to solve the
dispersion problem when P is a set of sorted points on a line. Finally Sect. 5 is
a conclusion.

2 k-Dispersion for Sorted Points on a Line

In this section we show one can solve the k-dispersion problem in O(n) time [3]
if P is a set of points on a line and the order of the points on the line is given.
The algorithm uses a reduction to the path partitioning problem [13], which can
be solved in O(n) time.

Let T be a tree in which each vertex has a nonnegative weight w, and k
be an integer. The tree k-partitioning problem is to delete k − 1 edges in the
tree so as to maximize the lightest weight of the remaining subtree. The tree
k-partitioning problem can be solved in O(n) time [13], where n is the number
of vertices in the tree. If the input tree is a path then it is the path k-partitioning
problem, and one can solve the path k-partitioning problem in O(n) time using
the algorithm for the tree.
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e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

(a)

(b)

Fig. 1. (a) A 4-dispersion problem on a line, and (b) a path 3-partitioning problem on
a line.

Given an instance (P, k) of the max-min k-dispersion problem where P is
a set of points on a line, the order of the points in P on the line is given and
k ≥ 3, we can transform it to an instance (P

′
, k − 1) of the path (k − 1)-

partitioning problem as follows [3]. First we construct a path P
′

= (V
′
, E

′
).

Assume P = {p1, p2, · · · , pn} and the points appear in this order on the line.
Define V

′
= {p′

0, p
′
1, · · · , p

′
n}, E

′
= {ei = (p

′
i−1, p

′
i)|p

′
i ∈ V

′}, w(p
′
i) = d(pi, pi+1)

for each i = 1, 2, · · · , n − 1, and w(p
′
0) = w(p

′
n) = 0. See an example in Fig. 1.

If the order of the points on the line is given, one can construct the path P
′

in O(n) time. A solution of the max-min 4-dispersion problem in Fig. 1(a) is
{p1, p4, p8, p11} and its cost is 17. A solution of the path 3-partitioning problem
in Fig. 1(b) is {e4, e8} and its cost is 17. One can observe that a solution of a
max-min k-dispersion problem contains {p1, pn}, and if a solution of a max-min
k-dispersion problem is {p1, pn}∪{pi1 , pi2 , · · · , pik−2} then a solution of the path
k − 1-partitioning problem is {ei1 , ei2 , · · · , eik−2}.

One can solve the path k-partitioning problem in O(n) time [13] so one can
solve the max-min k-dispersion problem in O(n) time.

Thus one can solve the dispersion problem in O(n) time when all P are on a
line and the order of the points in P on the line is given. However the algorithm
in [13] is very complicated and hard to implement. In the next section we design
a simple O(n) time algorithm to solve the max-min k-dispersion problem even
if the points on a line are not sorted.

3 k-Dispersion for Unsorted Points on a Line

In this section we design a simple O(n) time algorithm to solve the k-dispersion
problem for a constant k if P is a set of points on a line. Note that we do not
assume that the order of the points on the line is given. The idea of our algorithm
is a simple divide and conquer algorithm as follows.

Let P be a set of points on a horizontal line and p� and pr are the leftmost
point and the rightmost point in P . One can find p� and pr in O(n) time.

If k = 1 then a solution S of the 1-dispersion problem is {p�}.
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If k = 2 then the solution S of the 2-dispersion problem is {p�, pr}.
If k = 3 then the solution S is {p�, ps, pr} where ps is the nearest point to

the midpoint between p� and pr. We can find ps as follows.

i0

I1 I2 I3 I4 I5 I6p

k=7

1 pn

i1 i2 i3 i4 i5 i6

Fig. 2. Illustration of ij and Ij for k = 7.

Let i0 = x(p�) be the coordinate of p� on the line, i2 = x(pr) the coordinate
of pr, and let i1 be the coordinate of the midpoint between p� and pr. Let I1
be the interval (x(i0), x(i1)], and I2 be the interval (x(i1), x(i2)). The solution
S consists of p� and pr and exactly one more point in either I1 or I2. So by
pigeonhole principle S has no point in either I1 or I2. Thus we have two cases.
Case 1: S has no point in I1.

In this case, S consists of p� and the solution of the 2-dispersion problem for
the points in (i1, i2], which consists of (1) the nearest point to i1 in I2 and (2)
pr.
Case 2: S has no point in I2.

In this case, S consists of pr and the solution of the 2-dispersion problem for
the points in [i0, i1], which consists of (1) the nearest point to i1 in I1 and (2)
p�.

We can generalize this method for a constant k > 3 as follows.
Let i0 = x(p�), ik−1 = x(pr) and let i1, i2, · · · , ik−2 be the coordinates which

evenly spaced on the line between p� and pr.
Let Ij be the interval (ij−1, ij ] for j = 1, 2, · · · , k−2, and Ik−1 be the interval

(ik−2, ik−1). See an example in Fig. 2. Clearly the cost of the solution is at most
|i1 − i0|.

The solution for the k-dispersion problem consists of p� and pr and exactly
k − 2 points in (i0, ik−1). So by pigeonhole principle, S has no point in one of
I1, I2, · · · , or Ik−1. Thus we have k − 1 cases as follows.
Case 1: S has no point in I1.

In this case, S consists of (1) p� and (2) the solution of (k − 1)-dispersion
problem for the points in (i1, ik−1].
Case 2: S has no point in I2.

In this case, S consists of (1) the solution of s-dispersion problem for the
points in [i0, i1] and (2) the solution of (k− s)-dispersion problem for the points
in (i2, ik−1] for some s with 1 ≤ s ≤ k − 1.

Note that the cost of the solution is at most |I2|.
Case 3: S has no point in I3.

Similar to Case 2.
· · ·
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Algorithm. Find-dispersion-on-a-line(P, k)
/* p� and pr are the leftmost point and the rightmost point in P */
if k = 1 then

S = {p�}
return S

end if
if k = 2 then

S = {p�, pr}
return S

end if
/* i0 = x(p�), ik−1 = x(pr) and let i1, i2, · · · , ik−2 be the coordinates which evenly
spaced on the line between p� and pr */
/* k ≥ 3 */
/* Case: S has no point in I1 = (i0, i1]) */
Let PR be the set of points of P in (i1, ik−1].
SL = {p�}
SR =Find-dispersion-on-a-line(PR, k − 1)
S = SL ∪ SR

/* Case: S has no point in Ij = (ij−1, ij ] for j = 2, 3, · · · , k − 2 */
for j = 2 to k − 2 do

Let PL be the points of P in [i0, ij−1].
Let PR be the points of P in (ij , ik−1].
for s = 1 to k − 1 do

SL =Find-dispersion-on-a-line(PL, s)
SR =Find-dispersion-on-a-line(PR, k − s)
if cost(SL ∪ SR) > cost(S) then

S = SL ∪ SR

end if
end for

end for
/* Case: S has no point in Ik−1 = (ik−2, ik−1) */
Let PL be the set of points of P in [i0, ik−2].
SL =Find-dispersion-on-a-line(PL, k − 1)
SR = {pr}
if cost(SL ∪ SR) > cost(S) then

S = SL ∪ SR

end if
return S

Case k − 2: S has no point in Ik−2.
Similar to Case 2.

Case k − 1: S has no point in Ik−1.
In this case, S consists of (1) the solution of (k − 1)-dispersion problem for

the points in [i0, ik−2) and (2) pr.
We (recursively) check all possible cases and choose the best one. See algo-

rithm Find-dispersion-on-a-line. (If |P | < k then clearly the subproblem has
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no solution so we just discard such cases. For simplicity in the algorithm we omit
such cases.)

Thus if we have the solution of at most 2k2 smaller child dispersion problems
then we can solve the original k-dispersion problem.

We have the following theorem.

Theorem 1. One can solve the max-min k-dispersion problem in O(n) time
when P is a set of unsorted n points on a line.

Proof. Consider the tree structure of the recursive calls. Each inner node has
at most 2k2 children and the height of the tree is at most k, so the number of
inner node is at most (2k2)k. Before calling the children one needs to compute
p�, pr, PL and PR by scanning the list of unsorted points with buckets PL and
PR. So it needs O(n) time, where n is the number of points in current P . Thus
each inner node needs O(n) time except for the calls for its children. Therefore
the total running time of the algorithm is O((2k2)kn). Since k is a constant it is
O(n). 	


4 k-Dispersion for Sorted Points on a Line

If P is a set of sorted points on a line, and the input is given as an array
in which the coordinates of the points are stored in the sorted order, then by
slightly modifying the algorithm we can solve the dispersion problem in O(log n)
time.

Before calling the children we need to compute p�, pr, PL and PR. If the array
is given we can compute the index of x(p�) and x(pr) in the array in O(log n)
time by binary search. Also instead of computing PL, we can compute the index
of the coordinates of the leftmost and the rightmost points in PL in the array
in O(log n) time by binary search. Similar for PR. Thus we can call each child
with those indices of the leftmost and the rightmost points in PL and PR as
arguments, instead of PL and PR. Now the running time is O((2k2)k log n),
which is O(log n) since k is a constant.

5 Conclusion

In this paper we have designed a simple algorithm to solve the k-dispersion
problem when P is a set of unsorted points on a line. This is the first O(n) time
algorithm to solve the max-min k-dispersion problem for the set of unsorted
points on a line.

Then we show when P is a set of sorted points on a line and their coordinates
are given in an array in the sorted order, a slightly modified version of the
algorithm above runs in O(log n) time. This is the first sublinear time algorithm
to solve the max-min k-dispersion problem for the set of sorted points on a line.

If P is a set of points on a circle and the order of the points on the circle is
given, an O(n) time algorithm to solve the k-dispersion problem is claimed [17].
Can we apply the method in this paper for the circle case?
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Can we solve the problem efficiently if P is a set of the corner vertices on a
convex polygon?
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Pebbling Numbers of Cartesian-Product

Graphs
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Abstract. Graph pebbling, as introduced by Chung, is a two-player
game on a graph G. Player one distributes “pebbles” to vertices and
designates a root vertex. Player two attempts to move a pebble to the
root vertex via a sequence of pebbling moves, in which two pebbles are
removed from one vertex in order to place a single pebble on an adjacent
vertex. The pebbling number of a simple graph G is the smallest number
πG such that if player one distributes πG pebbles in any configuration,
player two can always win. Computing πG is provably difficult, and recent
methods for bounding πG have proved computationally intractable, even
for moderately sized graphs.

Graham conjectured that the pebbling number of the Cartesian-
product of two graphs G and H, denoted G � H, is no greater than
πGπH . Graham’s conjecture has been verified for specific families of
graphs; however, in general, the problem remains open.

This study combines the focus of developing a computationally
tractable method for generating good bounds on πG � H , with the goal
of providing evidence for (or disproving) Graham’s conjecture. In partic-
ular, we present a novel integer-programming (IP) approach to bounding
πG � H that results in significantly smaller problem instances compared
with existing IP approaches to graph pebbling. Our approach leads to a
sizable improvement on the best known bound for πL � L, where L is
the Lemke graph. L � L is among the smallest known potential coun-
terexamples to Graham’s conjecture.

1 Introduction

Graph pebbling, first introduced by Chung [2] in 1989, can be described as a
two-person game. Given a connected graph, G, the adversary chooses a root
vertex r and an allocation of pebbles to vertices. In a pebbling move, player two
chooses two pebbles at the same vertex, moves one to an adjacent vertex, and
removes the other. Player two wins if she finds a sequence of pebbling moves
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that results in a pebble at the root vertex r. The pebbling number of graph G,
denoted πG, represents the fewest number of pebbles such that, regardless of the
initial configuration and root given by the adversary, player two has a winning
strategy.

The original motivation for graph pebbling was to solve the following number-
theoretic problem posed by Erdős and Lemke [13]: “For any set of n integers, is
there always a subset S whose sum is 0 mod n, and for which

∑
s∈S gcd(s, n) ≤

n?” Kleitman and Lemke [13] answered this question in the affirmative, and
Chung [2] translated their technique into graph pebbling. Since then, the study
of graph pebbling has proliferated in its own right, inspiring many applications
and variations; for an overview see [12]. The translation of the number-theoretic
problem to graph pebbling is nontrivial; the reader is referred to [6] for details.

Graham’s Conjecture: This study is strongly motivated by famous open ques-
tions in pebbling regarding the Cartesian-product (or simply, “product”) of two
graphs, G � H:

Conjecture 1 (Graham [2]). Given connected graphs G and H,

πG � H ≤ πGπH .

Over time, Graham’s conjecture has been resolved for specific families of graphs
including products of paths [2], products of cycles [9,15], products of trees [15],
and products of fan and wheel graphs [7]. It was also proved for specific products
in which one of the graphs has the so-called 2-pebbling property [2,15,17].

One of the major hurdles in tackling Graham’s conjecture is the lack of
tractable computational tools. Milans and Clark [14] showed that the decision
problem of determining whether πG < k is ΠP

2 -complete. Numerically verifying
Graham’s conjecture for specific graphs has been extremely difficult; as a result,
there does not appear to be a discussion, let alone a consensus, regarding whether
or not the conjecture is true.

A more practical intermediate goal is to improve the bounds on the peb-
bling numbers of product graphs in general, and in special cases. To this end,
Auspland, Hurlbert, and Kenter [1] proved that πG � H ≤ πG (πH + |VH |).
Since πH ≥ |VH | (the adversary wins by placing a single pebble on each ver-
tex in VH\r), this result gets within a factor of two of Graham’s conjecture:
πG � H ≤ 2πGπH .

When seeking a counterexample to Graham’s conjecture, it is natural to focus
on small graphs that do not possess the 2-pebbling property. The Lemke graph,
L, shown in Fig. 1, was the first graph of this kind to be discovered [2]. Since
then, infinite families of examples have been constructed [16], but the Lemke
graph, with |L| = πL = 8, is still among the smallest; it was verified in [5]
that every graph with seven or fewer vertices has the 2-pebbling property. As
suggested in [12], L � L is a potential counterexample to Graham’s conjecture,
and would be among the smallest.

Previous Work on Pebbling with IPs: In [11], Hurlbert introduces an
integer-programming (IP) technique that uses the weights of spanning trees to
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Fig. 1. The Lemke graph, L: a minimum-sized graph without the 2-pebbling property.

bound the pebbling number of a graph. By applying his technique to L � L,
Hurlbert provides strong evidence that πL � L ≤ 108, which is an improvement
on πL � L ≤ 2(πL)2 = 128, but is still quite far from Graham’s conjectured
bound of πL � L ≤ (πL)2 = 82 = 64. Hurlbert’s technique is theoretically
sound, but does not scale well to L � L, which has 64 vertices, 208 edges, and
more than 1050 spanning trees. In his full model, every subtree corresponds to
a unique constraint, so solving the full model is not an option. Still, Hurlbert
makes progress by carefully selecting a subset of constraints to include.

Another computational challenge is that, to fully vet a potential upper bound
on πG, the bound must be verified for all possible roots. For example, Hurlbert
restricted his search to root candidates that are the most likely to have large
root-specific pebbling numbers, but did not verify the bound by exhausting all
64 choices of r ∈ VL � L.

Further examples of IP applied to pebbling include [10], in which a targeted
IP finds the exact pebbling number of C5 � C5, and [4], which extends Hurl-
bert’s weight method to give bounds on edge counts in Class-0 graphs (in which
πG = |VG|).
Our Contribution: We present a novel, computationally scaleable, IP approach
to bounding πG � H . Our method improves the best known upper bound on
πL � L: from 108 to 91. We leverage the symmetry that is inherent in Cartesian-
product graphs via partial pebbling, which we introduce as a means of modeling at
the level of granularity of H, rather than at the full size of G � H. In addition to
requiring smaller, more computationally viable IP models, our method requires
verification by calculating the bound only for each vertex of H, rather for than
for all of the vertices of G � H.

Unlike previous IP approaches to pebbling, we incorporate “2-pebbling” (i.e.,
pebbling two or more pebbles at a time for a reduced cost). Intuitively, this
seems to be a critical ingredient for improving bounds on πG � H , considering
the importance of the “2-pebbling property” in previous results. In fact, the
inclusion of 2-pebbling greatly improved our bound on πL � L.

The IP solver that we use for our computations, Gurobi [8], solves all of our
models to integer optimality within a couple of seconds, so there is reason to hope
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that our approach may be scalable to even larger Cartesian-product graphs. It
is also likely that our modestly-sized models can be solved by an exact rational
IP solver such as [3].1

In Sect. 2, we give an overview of pebbling and introduce partial pebbling.
In Sect. 3, we develop a general model based on partial pebbling for bounding
πG � H . In Sect. 4, we describe the application of our model to L � L and
provide computational results. In Sect. 5, we make some closing observations
and discuss future directions.

2 Graph Pebbling

In this section, we set the stage by introducing the graph-theoretic notation that
we use, as well as concepts and notation from graph pebbling. For a more detailed
presentation of graph pebbling, see [12]. We also introduce partial pebbling,
which serves as the foundation for our IP model.

Throughout, we assume that our graphs are simple, undirected, and con-
nected. We use the notation G := (VG, EG), to indicate a graph with vertex set
VG and edge set EG. For simplicity, we use |G| := |VG| to denote the vertex-
count of G, and VG := {1, 2, . . . , |G|} to denote its vertex set. Further, i ∼G j
indicates that {i, j} ∈ EG, and DG(i, j) represents the graph theoretic distance
between vertices i and j in G. If the context is clear, we simply write i ∼ j or
D(i, j), respectively. The diameter of a graph is the maximum distance between
any pair of its vertices. We use ΔG to denote the maximum degree of G.

The Cartesian-product (also called the box-product, weak-product, or xor prod-
uct) graph of G and H, denoted G � H has vertex set VG � H := VG × VH =
{(i, j) : i ∈ {1, 2, . . . , |G|}, j ∈ {1, 2, . . . , |H|}}. For edges of G � H, we have
(g, h) ∼G � H (g′, h′) if g = g′ and h ∼H h′, or h = h′ and g ∼G g′. For
example, K2 � K2 = C4, the 4-cycle, and K2 � C4 = Q3, the cube. Although
there are other common graph products, in this document “graph product” and
“product of graphs” always refers to the Cartesian-product (until Sect. 5 where
other product graphs are briefly mentioned).

A natural way to conceptualize G � H is to think of it as the graph H
(which we call the frame graph), with a copy of G at each vertex. For j ∈ VH ,
Gj denotes the copy of G at vertex j, so that VGj

= VG×j. We say that Gj is the
G-slice of G � H, or if the context is understood, Gj is simply a slice. Similarly,
G � H has H-slices of the form Hi, for i ∈ VG. For i ∈ VG and j1 �= j2 ∈ H, we
have (i, j1) ∼G � H (i, j2) if and only if j1 ∼H j2. In this case, we say that slices
Gj1 and Gj2 are adjacent. Also, the distance between Gj1 and Gj2 is DH(j1, j2).

2.1 Pebbling G

A configuration (or pebbling configuration) on G is a vector of nonnegative inte-
gers c =

(
c1, c2, . . . , c|G|

)
, where ci represents the number of pebbles placed on

1 Our bound carries the caveat that it was obtained by a solver that employs floating
point arithmetic.
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vertex i ∈ VG. The support of c is the set of vertices assigned at least one pebble
by c, {i ∈ VG : ci > 0}. The size of c refers to ‖c‖1, the number of pebbles
allocated by c. The support-size of c is |{i ∈ VG : ci > 0}|.

A pebbling move consists of removing two pebbles from one vertex and adding
one pebble to an adjacent vertex. More generally, an α-pebbling move consists
of removing 2α pebbles from vertex v and adding one pebble to vertex w, where
D(v, w) = α. We say that a configuration c is solvable if, given any choice of root
r ∈ VG, there exists a (possibly empty) sequence of pebbling moves such that
the resulting configuration has at least one pebble at r. Otherwise, we say that
c is unsolvable. The pebbling number of G, denoted πG, is the lowest positive
integer k such that all configurations of size k (i.e., ‖c‖1 = k) are solvable.

One variant of the pebbling game is to require the second player to move two
pebbles to the root in order to win. A graph G has the 2-pebbling property if
any configuration c of size 2πG − s + 1 is 2-solvable (i.e., two pebbles can reach
the root), provided the support size of c is s. In essence, the 2-pebbling property
guarantees that each additional vertex of support provides a discount of one
pebble when pebbling twice. We use π2(G, s) to denote the minimum number
of pebbles such that if a configuration has support size s, the second player is
guaranteed to win.

2.2 Partial Pebbling G � H

The modest size of our IP formulation results from modeling at the level of partial
pebblings of box-product graphs. A partial configuration with respect to G on
G � H allocates pebbles to the slices Gj of G � H, rather than to individual
vertices. In a partial configuration c̃ = (c̃1, c̃2, . . . , c̃|H|), the nonnegative integer
c̃j represents the number of pebbles distributed to slice Gj . When a root (rG, rH)
of G � H is chosen, GrH

is known as the G-root slice, and HrG
the H-root slice.

There is a canonical map from full to partial configurations on G � H,
φ : Z|G||H|

≥0 → Z
|H|
≥0 . A partial configuration c̃ is unsolvable if there exists some c ∈

φ−1(c̃) that is unsolvable. To prove that πG � H ≤ k using partial configurations,
one must show that every partial configuration c̃ of size k is solvable.

Pebbling moves cannot always be assumed using the information in c̃ alone.
For instance, if c̃j = |G|, it could be that there is one pebble per vertex of Gj ,
so that no pebbling move is possible in Gj . On the other hand, if cj > |G|,
then at least one vertex in the slice has 2 or more pebbles, and a pebbling move
can be made. We say a slice is k-saturated, or has a saturation level of k, when
c̃i ≥ k|G|. If a slice is (k−1)-saturated, the pigeonhole principle guarantees that
even one “extra” pebble (beyond the first (k − 1)|G|) implies the existence of a
k-stack, a collection of k pebbles on a single vertex. This concept is formalized
in Lemma 2.

We take this nuance a step further when we capture the support size of each
slice (in level II of the model). In this case, we may assume the existence of a
k-stack on some vertex without necessarily having (k−1)-saturation on the slice.
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Finally, we call a collection of πG pebbles on the vertices of a slice Gj a set.
The number of sets within a slice is its set count ; the total set count of G � H
is the sum of the set counts over its G-slices.

3 IP Model for Bounding πG � H

3.1 Strategy

Let U be the set of all unsolvable partial configurations on G � H. We describe
a relaxation R of U (U ⊆ R ⊆ Z

|H|
≥0 ), so that

πG � H = 1 + max{‖c̃‖1 : c̃ ∈ U }
≤ 1 + max{‖c̃‖1 : c̃ ∈ R}.

So our partial pebbling IP takes the form of max{‖c̃‖1 : c̃ ∈ R}, where R ⊇ U is
the intersection of Z with a polytope described by our linear pebbling constraints.

Each of our pebbling constraints models a successful pebbling strategy. In
other words, any partial configuration that violates a given pebbling constraint
may be successfully solved via the strategy modeled by the constraint. In this
way, we know that every partial configuration not in R is solvable, resulting in
the relaxation of U that we require.

We classify each constraint as level I through level III based on how many
variables it requires. As we move down the levels, we obtain tighter relaxations
of U , and tighter bounds on πG � H . At a high level,

level I uses only partial configurations, set counts, and saturation levels;
level II introduces support sizes of slices and k-stacks;
level III introduces 2-pebbling discounts.

We use this classification system with an eye towards applying our model to
larger problem instances. The constraint levels are designed so that they build
on one another; e.g., the constraints of level II require all of the variables used
in level I, but not vice versa. Therefore, if the entire model does not scale well
to a particular problem instance, we may choose to exclude level III constraints
for a more manageable IP that is still self-consistent.

Our pebbling constraints model three high-level pebbling strategies, which
we label A, B, and C,

strategy A: πH pebbles reach the H-root slice, HrG
;

strategy B: πG pebbles reach the G-root slice, GrH
;

strategy C: a targeted attack on the root (rG, rH) results from accumulating
a 2k-stack on (rG, j) in Gj , where DH(j, rH) = k.

Pebbling constraints rely on counting the number of pebbles required at some
slice or vertex (to carry out a pebbling strategy), versus the number of pebbles
that are available there, resulting in the standard form,

available + 1 ≤ required,
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where available and required are restricted to integer values. A partial config-
uration c̃ violates the constraint (and c̃ is certifiably solvable by the modeled
strategy), only if available ≥ required, i.e., if there are enough pebbles to carry
out the strategy. In order to maintain a relaxation of U (and thus a valid upper-
bound on πG � H), when exact values are not possible, we use a lower bound
for available and an upper bound for required.

Pebbling constraints are labeled according to level and strategy. For example,
level I constraint I.A.2(α, β) is the second constraint that models strategy A, and
requires parameters α and β.

3.2 Parameters

The data required for our IP model are as follows.
Parameters:

|G| := vertex-count of G;
πG := pebbling number of G;
πH := pebbling number of H;
rH := the index (in VH) of the G-slice that contains the root;
D(i, j) := the distance in H between i and j, for all pairs i, j ∈ VH ;
diamH := the diameter of H;
MAX := 2πGπH , a “big” constant.

Index sets:
VH := {1, 2, . . . , |H|}, vertices of H;
S := {0, 1, . . . , πH − 1}, possible set counts of a G-slice;
T := {0, 1, . . . , �πGπH − 1

|G| �}, possible saturation levels of a G-slice;
L := {1, 2, . . . , diamH}, possible distances between vertices in H.

We require much more information about H, which we consider the “frame” of
G � H in our logic. Since we do not incorporate complete information about
G, we may not expect our model to obtain a tight bound on πG � H . We choose
this course of action intentionally in order to develop a computationally tractable
approach to improving the bound on πG � H .

We define MAX as the simple upper bound on πG � H from [1]. Many
of our constraints are enforced or relaxed based on the value of some binary
variable(s). In these constraints, MAX, or some small multiple of MAX, is
used as the standard “big M” (from integer programming).

The parameter rH , which is required for strategies B and C, is not introduced
until level II. Thereafter, one must run the model for all values of rH ∈ VH , taking
the maximum root-specific bound as the upper bound on πG � H .

3.3 Decision Variables

In this section, we list our decision variables, sorted by level and numeric type,
and discuss a few interesting cases. We manage the behavior of all decision
variables with linear constraints, which are not included in this document. In
the table below, the index j ranges over all j ∈ VH .
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Level I

Z≥0

c̃j := number of pebbles assigned to Gj

setj := set count of Gj :
⌊

c̃j

πG

⌋

extraj := number of extra pebbles on Gj : c̃j mod πG

satj := saturation level of Gj :
⌊

c̃j−extraj

|G|
⌋

pairj := number of pairs in extraj :
⌊

extraj

2

⌋

0/1
xt,j := 1 iff the saturation level of Gj is at least t, for t ∈ T
ys := 1 iff the total set count is at least s, for s ∈ S

Level II

Z≥0
supportj := support size of c̃ over Gj

stack�,j := number of 2�-stacks in Gj , for � ∈ L (lower bound)

Level III

Z≥0
n2pebj := π2(G, supportj)
nHrj := no. of pebbles that can reach HrG

in Gj (lower bound)

0/1
can2pebj := 1 iff Gj can be 2-pebbled (i.e., iff c̃j ≥ n2pebj)
*** (Problem-specific variables to model 2-pebbling in G � H)

It is important to note that the pebbles counted by extraj are “extra” in the
sense that they contribute neither to the set count nor the saturation level at
Gj .

We calculate the lower bounding stack�,j as

stack�,j =
⌈

cj − (2� − 1)supportj
2�

⌉

,

because the maximum possible number of surplus pebbles (that are not part of
a 2�-stack in Gj) is (2� − 1)supportj .

Our model is intended for products of graphs that do not have the 2-pebbling
property, so there will be problem-specific rules regarding the calculation of
n2pebj . For example, the Lemke graph has a special case for 2-pebbling when
the support is 5. We handle these special cases with problem-specific binary
variables, as described in Sect. 4.

The variable nHrj takes advantage of the 2-pebbling discount on the first two
pebbles. Within Gj , 2 pebbles reach HrG

with the first n2pebj pebbles assigned
to Gj ; beyond that, one pebble per set reaches HrG

(as a lower bound).

3.4 Pebbling Constraints

Level 1. Level I constraints model pebbling strategy A, which is based on
Lemma 1. The first constraint, I.A.1, is a direct consequence Lemma 1, while



Integer-Programming Bounds on Pebbling Numbers 689

the rest of the strategy A constraints model the accumulation of πH sets via
pebbling moves between slices.

Lemma 1. Any partial configuration that has a total set count of at least πH is
solvable.

Proof. We can use a set in Gj to move a pebble to any vertex of Gj , and in
particular to (rG, j), the vertex in the intersection of Gj and HrG

. If there are
πH sets across all slices, then we can move πH pebbles into HrG

in order to
pebble the root vertex (rG, rH) within HrG

�

Theorem 1. The inequality
∑

i∈VH

seti + 1 ≤ πH(I.A.1)

is valid for U .

The next lemma relates the number of pebbles on a slice to the distance of
between-slice moves that are possible from that slice and follows easily by the
pigeonhole principle.

Lemma 2. If there are at least (2� − 1)|G| + 1, pebbles on slice Gj (or equiva-
lently, Gj is (2� − 1)-saturated with at least one extra pebble), then it is possible
to make an �-pebbling move from Gj.

Constraints I.A.2(η, α1, α2) model the accumulation of one or more additional
sets by shifting pebbles from a single slice to α� slices a distance � away, for
� = 1, 2. In particular, for v ∈ H, this pebbling strategy uses extra pebbles in
Gv, along with pebbles from α1 + α2 − η sets in Gv, in order to accumulate
α1 + α2 new sets, increasing the total set count by η. These constraints could
be extended to include pebbling moves of greater distances, but in the setting
of G = H = L, our current focus, a 3-pebbling move from Gv would exhaust an
entire set.

Theorem 2. Fix η, α1, α2 ∈ Z≥0, with α1, α2 ≤ ΔH and 1 ≤ η ≤ α1 + α2 ≤
πH − 1. Let v ∈ VH . For � = 1, 2: let A� ⊂ VH with |A�| = α�, and D(v, j) = �,
for all j ∈ A�. Then, for χ = 2k − 1, where k = max{� ∈ {1, 2} : α� > 0},

(α1 + α2 − η)|G| + extrav + 1 ≤∑

�∈{1,2}
2�(α�πG −

∑

j∈A�

extraj)

+ MAX(1 − xχ+(α1+α2−η),v)
+ MAX(1 − yπH−η)

(I.A.2(η, α1, α2))

is valid for U .
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Proof. We may assume that the total set count is at least πH − η and that Gv

is at least (χ + α1 + α2 − η)-saturated; otherwise, the constraint is relaxed by
one of the MAX terms.

Due to the saturation level at Gv, by Lemma 2 there are at least ((α1 +α2 −
η)|G| + extrav) pebbles available in Gv to be used in k-pebbling moves. It costs
2� pebbles to make an �-pebbling move, so the number of pebbles required in Gv

to complete one set per Gj , for j ∈ A1∪A2, is
∑

�∈{1,2} 2�(α�πG−
∑

j∈A�
extraj).

If the constraint is violated, enough pebbles are available to carry out the
strategy: up to (α1 + α2 − η)|G| pebbles may used from Gv in order to create
α1 + α2 new sets, one in each of the Gj , for j ∈ A1 ∪ A2. Since |G| ≤ πG, no
more than (α1 +α2 −η) sets are disassembled at Gv. This strategy increases the
total set count by at least η. �

The next set of constraints require a Kα,β subgraph of H, with disjoint vertex
sets A and B. The constraints model the collection of one additional set at each
slice Gj , for j ∈ B, using only extra pebbles from the slices Gi, for i ∈ A. This
strategy increases the total set count by |B| = β.

Theorem 3. Fix positive integers α, β ≤ ΔH , with α+β ≤ |H|. Suppose A and
B are disjoint subsets of VH of sizes α and β, respectively, with i ∼H j for all
i ∈ A, j ∈ B. Then

∑
i∈A pairi + 1 ≤

∑
j∈B(πG − extraj)
+MAX · (α −

∑
i∈A x1,i)

+MAX · (1 − y(πH−β))
(I.A.3(α, β))

is valid for U .

Proof. If the constraint is enforced, the total set count is at least πH −β, and Gi

is at least 1-saturated, for each i ∈ A. The sum
∑

i∈A pairi counts the number of
pairs of pebbles in slices indexed by A that can used to 1-pebble to neighboring
slices indexed by B (while decreasing neither the saturation level nor the set
count at the slices indexed by A). The summation

∑
j∈B(πG − extraj) captures

the cumulative number of pebbles required at the slices indexed by B to build a
complete set in each. When the constraint is violated, there are enough pebbles
to increase the total set count by β. �

Level II. Starting in level II, we use partial-configuration support sizes to get
tighter lower bounds on k-stack counts in slices. For the first time, we include
constraints that employ strategy B, which require rH , the index of the G-root
slice. The first category B constraint is very straight-forward.

Theorem 4. The following equation is valid for U :

setrH
= 0.(II.B.1)
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The next strategy B constraint, II.B.2, models using stacks of pebbles at all
non-root slices to build a set in GrH

. Note that in strategy A, it is important
to keep track of the number of sets, and to carefully track the increase in total
set count that results from a violated A constraint. In strategy B, however, the
total set count does not matter, and we use as many pebbles as possible from
each slice to build a set in the G-root slice.

Theorem 5. For � ∈ L, let A� be the set of vertices that are a distance of �
away from rH in H. Then the inequality

⎛

⎝
∑

�∈L

∑

j∈A�

stack�,j

⎞

⎠ + 1 ≤ πG − extrarH
,(II.B.2)

is valid for U .

Proof. The variable stack�,j provides a lower bound on the number of �-pebbling
moves that are possible from Gj . If the constraint is violated, enough pebbles
can reach GrH

to complete a πG set. �

The previous constraint effectively requires that each stack can pebble to
the target slice independently and does not allow for the collection of “loose”
pebbles along the way. The next constraint, II.A.4, allows for this possibility
along a path (of slices) of length α terminating at GrH

. The proof follows by
induction on α and is omitted for brevity.

Theorem 6. Fix α ∈ L. Let P be a path of length α in H with rH = p0 ∼P

p1 · · · ∼P pα. Then, the inequality
(

α∑

i=1

2α−i(cpi
− |G|)

)

+ 1 ≤ 2α(πG − crH
) + 2αMAX(1 − x1,pα

)(II.A.4)

is valid for U .

Level III. Level III constraints incorporate 2-pebbling discounts. The definition
of n2pebj depends on the graph G. We will discuss the modeling of n2pebj for
the case when G = L in Sect. 4.

The first level III constraint employs strategy A with a 2-pebbling discount
“hidden” in nHrj . The simple proof is omitted for brevity.

Theorem 7. The inequality
∑

j∈VH

nHrj + 1 ≤ πH ,(III.A.4)

is valid for U .
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Our only strategy C constraint is also the only pebbling constraint that
requires modification for G = L. The strategy requires pebbling into a slice and
then applying a 2-pebbling discount there. Usually 2-pebbling is less expensive
with a larger support; however, π2(L, 5) = π2(L, 4)+1. When G = L, we include
the binary variable fourv, which adds a one-pebble penalty for 2-pebbling if
supportv = 4, to account for the possibility that the support increases to 5 when
pebbles move into Gv.

Theorem 8. Fix α ∈ L. Let v ∈ VH with D(v, rH) = α. Then

⎛

⎝
∑

�∈L

∑

j∈VH :Dv,j=�

stack�,j

⎞

⎠ + c̃v + 1 ≤ n2pebv + [fourv] + (2α − 2)πG,

(III.C.1(α))

is valid for U . (“fourv” is a binary variable that is required when G = L.)

Proof. If D(j, v) = �, stack�,j counts the number of pebbles that Gj can con-
tribute to Gv. Hence, the total number of pebbles available at Gv is the expres-
sion on the left side (without the “+1”). If the constraint is violated, enough peb-
bles are available at Gv to carry out the following strategy: Use n2pebv (+fourv,
if G = L) of the pebbles to move 2 pebbles to (rG, v), and use (2α −2)πG pebbles
to move an additional 2α − 2 pebbles to (rG, v). With 2α pebbles at (rG, v), an
α-pebbling move places one pebble at (rG, rH). �

We return to strategy A for our last set of constraints. The strategy requires
an α-star subgraph of H with central vertex v, and comes into play when Gv is
highly pebbled. It models pebbling from Gv to build sets in each of α neighboring
slices, then finishing out a collection or πH pebbles in HrG

by pebbling to (rG, v)
within Gv with a 2-pebbling discount.

Theorem 9. Fix α ≤ min{ΔH , πH − 2} in Z≥0. For any v ∈ VH , let A ⊂ VH ,
such that |A| = α, and D(v, j) = 1, for all j ∈ A. The following is valid for U :

c̃v + 1 ≤

⎛

⎝2
∑

j∈A

(πG − extraj)

⎞

⎠ + n2pebv + (πH − (2 + α))πG.(III.A.5(α))

Proof. If the constraint is violated, enough pebbles are available in Gv to carry
out the following strategy. Keep n2pebv + (πH − (2 + α))πG pebbles within Gv.
Note that n2pebv > πG ≥ |G|, so Gv is at least 1-saturated. Use 2(

∑
j∈A πG −

extraj) pebbles in Gv to transfer
∑

j∈A(πG − extraj) pebbles into the slices
indexed by A to complete an additional α sets. With a 2-pebbling discount
n2pebv + (πH − (2 + α))πG is equivalent to πH − α sets in Gv. �

4 Case Study: L � L

In this section, we describe the specialization of the 2-pebbling constraints to
L � L, and describe the exact collection of constraints that we apply to bound
πL � L. Finally, we provide the results of our model when applied to L � L.
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4.1 Model Refinements for L � L

If G is 2-pebblable, we have the simple formula n2pebj = 2πG − supportj + 1.
Otherwise, n2pebj must be handled on a case-by-case basis, depending on the
2-pebbling table for G. A straight-forward calculation generates the values of
π2(L, s), as in Table 1. Note that the 2-pebbling property holds for L, except
when s = 5 (see [12]). Even when s = 5, only 14 pebbles are required to pebble
any root twice (as opposed to 2πL = 16). In order to handle 2-pebbling in the
case of G = L, we include the following additional 0/1 variables in level III:

Table 1. 2-pebbling table for L

Support-size, s 8 7 6 5 4 3 2 1

π2(L, s) 9 10 11 14 13 14 15 16

fourj := 1 iff supportj = 4; fivej := 1 iff supportj = 5;
lfourj := 1 iff supportj ≤ 4; lfivej := 1 iff supportj ≤ 5;
gfourj := 1 iff supportj ≥ 4; gfivej := 1 iff supportj ≥ 5.

The variables fouri and fivei signal special cases of π2(L, s). The remaining
variables are necessary for encoding fouri and fivei using linear constraints.
For G = L, we have,

n2pebj = 2(πG) − supportj + 1 + 2(fivej),

to correct for the special case when the support size is 5. As noted in Sect. 3,
π2(L, 5) > π2(L, 4) is a special case that we must handle carefully in constraints
III.C.1(α), which is the only place where fourj is used in the model.

4.2 Bounding πL � L

Even for fixed parameter values, many of our constraints actually describe a class
of constraints, one for each subset of H with certain characteristics. Adding all
constraints for all possible parameter values seems to be an impractical choice.
Instead, we construct a much smaller model for πL � L by iteratively selecting
and adding constraints that target the current optimal partial configuration.

In Table 2, we list the constraints added, sorted by level. We also list the
results of the model after each level of constraints has been added. After level II
constraints have been added, there is a three-way tie for the largest root-specific
partial configuration. The results hint that the 2-pebbling constraints of level III
are very important in this context.

The level III bound arises as the maximum over all level III root-specific
bounds, listed in Table 3. We conclude that for the Lemke graph, L, πL � L ≤ 91.
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Table 2. IP constraints and bounds obtained by level

Constraints Maximal configuration(s) rH Bound

Level I I.A.1 (63, 4, 4, 6, 6, 6, 6, 7) N/A 104

I.A.2(1,1,0)

I.A.2(1,2,0)

I.A.2(1,1,1)

I.A.2(2,2,0)

I.A.2(2,2,1)

I.A.2(1,0,2)

I.A.3(2,3)

I.A.3(3, 2)

+ Level II II.B.1 (23, 23, 5, 5, 7, 23, 7, 7) 5 101

II.B.2. (15, 15, 5, 5, 23, 7, 23, 7) 6

II.B.3(3) (15, 15, 5, 5, 23, 23, 7, 7) 7

+ Level III III.A.4 (40, 13, 13, 5, 5, 5, 5, 4) 8 91

III.A.5(2)

III.C.1(1)

III.C.1(2)

Table 3. Level III root-specific bounds

rH 1 2 3 4 5 6 7 8

Bound 90 87 84 76 82 82 82 91

5 Conclusion

We have developed an integer-programming model for bounding the pebbling
numbers of Cartesian-product graphs. When applied to L � L our model sig-
nificantly improves upon the previous best bound on π(L � L). While this work
does not directly provide insight on the veracity of Graham’s Conjecture, it offers
both a new strategy and a new computational tool for addressing it.

We are encouraged by the computational lightness of our model when applied
to L � L. There may be computational headroom for incorporating more gran-
ularity in our model, resulting in better bounds on L � L and other Cartesian-
product graphs. Another improvement would be to automate constraint selec-
tion, so the model may be more easily applied to different box-product graphs.

The concepts introduced in this study may also be altered to provide bounds
on the pebbling numbers of different types of graph products, such as cross-
product and strong-product graphs [1].
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Abstract. Resilience, as an potential explanation of a specified query,
plays a fundamental and important role in query explanation, database
debugging and error tracing. Resilience decision problem is defined on a
database d, given a boolean query q where q(d) is initially true, and an
integer k, it is to determine if there exists a tuple set Δ such that size of Δ
is no more than k and query result q(d⊕Δ) becomes false, where ⊕ can
be deletion or insertion operation. Results of this problem on relational
algebraic queries have been showed in previous work. However, we revisit
this decision problem on aggregation queries in the light of the parametric
refinement of complexity theory, provide new results. We show that, this
problem is intractable on nested COUNT and SUM query both under
data complexity and parametric complexity.

Keywords: Resilience · Aggregation · Database
Parameterized complexity

1 Introduction

Resilience of a given query q with respect to a database d is defined as a set Δ
of facts in d, whose deletion will results in a boolean query getting false which
initially is true. Formally, its decision problem can be defined as follow,

RESILIENCE DECISION

INPUT Given database d, a natural number k > 0, a boolean
query q where q(d) is true.

OUTPUT yes, if there exists an subset Δ ⊆ d of size k such that
query result q(d ⊕ Δ) is false.

Note that, since the conjunctive query is of monotone, operation ⊕ can be
written as set minus ‘−’. This is a fundamental decision problem in the study
of database debugging, cleansing, error tracing, query result explanation and
many other applications, since the most important and common task in these
applications is to answer the question that given some partial result T of a query
c© Springer Nature Switzerland AG 2018
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q on a database d, why the result T happens here (why-provenance). Typically,
there are two ways to define the ‘why’, as identified in [3], way of source side
effect free (ssef) and way of view side effect free (vsef). Intuitively, given a source
database d, a query q, its materialized view q(d) and a testing result t ⊆ q(d),
the former is to find an r of size k such that q(d − r) ⊆ q(d) − t, while the later
is to find an r such that q(d − r) = q(d) − t. Nevertheless, previous work only
focus on the relational algebraic operations. In this paper, we intent to study the
complexity of this problem where query q is defined by aggregation operations
including COUNT, SUM, MAX, MIN.

Example 1. Suppose an example of resilience in influential author finding. Con-
sider an academic database of the research community including two rela-
tions, Author(aid) records the basic personal information of each user, and Co-
author(aid, cid) records his co-author cid for each person aid known in this
database. There is also a view V defined as an simple aggregation query (SQL-
like statement), to show that all the authors who has at least a coauthor.

SELECT aid
FROM Author,Co-author,Author
WHERE Author.aid = Co-author.aid AND Co-author.cid =
Author.aid
GROUP-BY aid HAVING COUNT(∗) > 0

Author:

aid

a1

a2

a3

a4

Co-author:

aid cid

a1 a2

a2 a1

a1 a3

a3 a1

a1 a4

a4 a1

V :

aid

a1

a2

a3

a4

First, we want to check if there are some tuples in the database whose absence
will result in the query result of V becoming false, that are two alternative set
of facts in source data d, (a) fact ‘(a1)’ in Author or (b) all the facts in Co-author.
In this case, either of the two facts is the Δ for V .

But if we also want to check if there is a single fact whose absence will make
it false, then we can simple adjust the requirement of the size of resilience.

As shown by Freire et al. [13], RES can be reduced polynomially to the
two above decision problems (ssef and vsef). This is to say that, RES is a more
fundamental part of the two problems, the lower bound of RES will also dominate
the lower bound of the two problems.

There is still lack of results on the cases with aggregation queries. Therefore,
we want to study the complexity of Aggr -RES in this paper.
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AGGREGATION RESILIENCE DECISION

INPUT Given database d, a natural number k > 0, a boolean
query q defined by aggregate operators COUNT, SUM,
MAX, MIN query q where q(d) is true.

OUTPUT yes, if there exists an subset Δ ⊆ d of size k such that
query result q(d − Δ) is false.

The previous studies provides the pictures of the classical complexity results
of these two ways, we summary them in the table above. In total, the previous
results is mainly on the classical computational complexity. In this case, the
complexity of query languages proposed by Chandra and Merlin has been next
to expressibility one of the main preoccupations of database theory ever since
two four decades ago. It has been noted rather early that, when considering
the complexity of evaluating a query on an instance, one has to distinguish
between two kinds of complexity metric: Data complexity is the complexity of
evaluating a query on a database instance, when the query is fixed, and we
express the complexity as a function of the size of the database. The other one is
called combined complexity, considers both the query and the database instance
as input variables; The combined complexity of a query language is typically
one exponential higher than data complexity. Of the two, data complexity is
somehow regarded as more meaningful and relevant to database if only consider
query evaluation.

Table 1. Different cases of view, source side effect free/resilience decision problem

Citations Complexity: query class

Buneman et al. [3] (vsef) NP-complete: CQ without selection

PTime: CQ without projection and self-join

Cong et al. [9] (vsef) NP-complete: Conjunctive query without
key-preserving

Freire et al. [13] (ssef/resilience) NP-complete: Conjunctive query containing
triad

PTime: sjf linear CQ

This paper (ssef/resilience) PTime: non-nested COUNT or SUM query,
nested MAX or MIN query

NP-complete: nested aggregation query without
join, projection and union under active domain

W[1]-hard: the same as queries above

There have been some complexity results on the view side effect free prob-
lem [3,8,9,21–23]. On the data complexity of deletion propagation, Kimelfeld
et al. [22] showed the dichotomy ‘head domination’ for every conjunctive
query without self-join, deletion propagation is either APX-hard or solvable (in
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polynomial time) by the unidimensional algorithm. For functional dependency
restricted version, it is radically different from the case without functional depen-
dency (FD), they also showed the dichotomy ‘fd-head domination’ [21]. For mul-
tiple or group deletion [23], they especially showed the trichotomy for group
deletion a more general case including level-k head domination and so on; On
the combined complexity of deletion propagation, [8,9] showed the variety results
for different combination of relational algebraic operators. At the same time, [26]
studied the functional dependency restricted version deletion propagation prob-
lem and showed the tractable and intractable results on both data and combined
complexity aspects.

Besides research on view side effect, there are previous work on source side
effect decision problem [3,8,9,13], they show some complexity results on the
source side-effect problem on both data and combined complexity. Basically,
Freire et al. [13] show that for RES when query is defined by conjunctive query
is PTime if q is a conjunctive query without structure of triad, NP-complete
otherwise. They also extend the dichotomy condition ‘triad ’ into a more general
one ‘fd-induced triad ’ for case with presence of functional dependencies. All the
previous results about view and source side effect free problem showed that, for
most cases, the deletion propagation is hard due to the huge searching space.

Additionally, a related topic the view update problem in database has been
extensively investigated for more than three decades in the database community,
which is stated as follows: given a desired update to a database view, what
update should be performed towards the source tables to reflect this update to
the view [1,2,10,11,20]. Generally, previous works mainly focus on identifying
the condition to make the update unique, and studying under the identified
condition how to carry out the update. These works are only effective for very
restricted circumstances where there is a unique update Δd to a source database
d that will cause a specified update to the view q(d). In practice, an update to
d is not always unique. Therefore, an alternative is to find a minimum update
to d resulting in the specified update to q(d), which is a more practical task of
view propagation. Our results can be applied in some related application, such as
complexity analysis in private protecting [5,17,28], reverse detection [14,19,25],
error tracing [4,6,7,29] in social network and influence study [15,16,18,24] in
wireless sensor networks.

Therefore, in this paper, we want to study the complexity of AGGREGATION

RESILIENCE DECISION problem, including data complexity and parametric aspect,
since the running time in which n is not raised to a power that depends on q,
that is the dependence on n is only permitted as a the nc where c is a constant
independent of the query, and this is the typical paradigm of the parameterized
complexity theory.
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2 Preparation

We first give a necessary introductions.

Database. A database schema is a finite set {R1, . . . , Rm} of distinct relations.
Each relation Ri has ri attributes, say {A1, . . . , Ari}, where ri is the arity of Ri.
Each attribute Aj has a corresponding domain dom(Aj) which is a set of valid
values. A domain dom(Ri) of a relation Ri is a set dom(A1) × · · · × dom(Ari).
Any element of dom(Ri) is called a fact. A database d can be written as
{D; R1, . . . , Rm}, representing a schema over certain domain D, where D is
a set dom(R1) × · · · × dom(Rm).

Boolean Database Queries. A boolean query q is a function mapping database d
to {true, false}. We limit our study inside the first order query language, so that
queries can be written by a certain fragment of the first order query language.
We follow the metric using in [27], where the two parameters are, separately, the
number of variables x appearing in the query q, and the size of query q which is
the number of atoms in the query. The relationship between both parameters is
that the query size is no more than the number variables.

Therefore, if the complexity class of the latter case should belong to the class
of the former case for our decision problem. However, both are between the data
and combined complexity.

W-hierarchy. In parameterized complexity theory, for the problems probably not
in f.p.t, W-hierarchy was introduced by Downey and Fellows, which is analogous
to the polynomial hierarchy in the classical complexity theory. It contains a series
of complexity classes of parametrized problems. They are jointly called the W-
hierarchy, which classifies the problems under the parameterized perspective [12].
Concretely, classes in W-hierarchy beyond FPT (in which, every problem can be
solved in time of f(k) · nc) are W[i] where i = 1, 2, . . . , and limits to two classes
W[P] and W[SAT]. It means that problem in W[i] is at least harder than W[j] if
i ≥ j.

Problems. In the following part, several hard problems necessary to build reduc-
tion from and should be introduced here.

VERTEX COVER

INPUT Given graph G(V,E), an natural number t.
OUTPUT Yes, if there exists an independent set C ⊆ V of size t
such that every vertex of C is not adjacent to any other one of C.

INDEPENDENT SET

INPUT Given graph G(V,E), an natural number t.
OUTPUT Yes, if there exists an independent set I ⊆ V of size t
such that every pair of vertices u, v ∈ I, (u, v) /∈ E.



On the Complexity of Resilience for Aggregation Queries 701

MULTICOLORED INDEPENDENT SET

INPUT Given graph G(V,E), an natural number t, and a
vertex coloring γ : V → {1, · · · ,m}.
OUTPUT Yes, if there exists an independent set I ⊆ V of
size t such that every pair of vertices u, v ∈ I, (u, v) /∈ E and
γ(u) �= γ(v).

As we know, VERTEX COVER problem is NP-complete, and so does
INDEPENDENT SET problem, while the MULTICOLORED INDEPENDENT SET prob-
lem is W[1]-hard.

3 Results of Aggregation Queries

In this section, we examine the parameterized complexity of different fragments
of first-order query on number of variables and query size.

We first show the simple cases, followed by the hard cases even for parame-
terized complexity.

Theorem 1. RES is PTime for non-nested COUNT and SUM queries, nested
MIN and MAX queries with selection and projection.

The proof for nested MAX and MIN queries is based on the observations that
(a) nested query can be transformed into a non-nested query with a conjunction
condition of MAX and MIN, (b) there are only unary operation in the transformed
query, and (c) sorting can be done in polynomial time.

Theorem 2. AGGREGATION RESILIENCE DECISION is NP-hard for non-nested
COUNT, SUM, MAX, MIN queries with join and union.

Proof. We build a simple reduction from VERTEX COVER to Aggr -RES. For given
instance 〈G(V,E), t〉. An corresponding instance 〈d, q, k〉 can be constructed for
Aggr -RES as follows.

Database d. We start with two relations V (x) and E(x, y) with respect to
V and E of G, denoting each vertex vi as a unary tuple (i) ∈ V , each edge
(vi, vj) ∈ E with two tuples (i, j) and (j, i) inside E(i, j);

Query q. We define a bi-levels nested aggregation query q as

SELECT x
FROM V (x), E(x, y), V (y)
GROUP-BY x HAVING COUNT(y) > 0

It is easy to verify that query q is true initially.
Integers k. At last, we set the integers as k = t.
It is easy to see that the correctness follows immediately.
To apply this result into other cases, we can perform a simple transformation.

Adding an additional attribute to V , say V (x, z), and set value on z of all tuples
as 1, then rewrite the query as
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SELECT x
FROM V (x, i), E(x, y), V (y, j)
GROUP-BY x HAVING MAX(j) > 0

It is easy to verify that query q is true initially.
In addition, condition of form “MIN ≤ c” equals to “MAX > c”, and vice

versa. Our theorem follows immediately.

In the following, to provide the proof, we first define the “aggregated aug-
ment”, a necessary relation transform which is a query in essentials.

Aggregated Augment. Given a relation r(x̄), an aggregated augment f(r, x) where
x ∈ x̄, is a query of the form defined as follow,

SELECT x̄, COUNT(∗) as x′

FROM r(x̄)
GROUP-BY x

The result of aggregated augment, say f(r, x), is a new relation which has one
more argument than the input.

Theorem 3. AGGREGATION RESILIENCE DECISION is NP-hard for nested
COUNT, SUM query without projection, join and union, where insertion is only
under active domain.

Proof. We build a reduction from INDEPENDENT SET which is NP-hard to Aggr -
RES. For given instance 〈G(V,E), t〉. An corresponding instance 〈d, q, k〉 can be
constructed for Aggr -RES as follows.

Database d. We start with a relation g(x, y) with respect to G, (i) Denoting
each vertex vi ∈ V with tuple (i, i) inside g; (ii) Denoting each edge (vi, vj) ∈ E
with two tuples (i, j) and (j, i) inside g; (iii) Let the maximum degree of G is
δ, then, for each vertex vi ∈ V , if it is of degree less than δ, we add δ − deg(v)
pairs of tuples (i, vij) and (vi

j , i) where 0 < j ≤ δ − deg(v), into relation g(x, y);
(iv) We add δ + t − 1 pairs of tuples (0, v0j ) and (v0

j , 0) where 0 < j < δ + t;
Query q. We define a nested aggregation query q over a single relation as

SELECT ∗
FROM

SELECT x, y, x′, y′, x′′, COUNT(∗) as y′′

FROM
SELECT x, y, x′, y′, COUNT(∗) as x′′

FROM
SELECT x, y, x′, COUNT(∗) as y′

FROM
SELECT x, y, COUNT(∗) as x′

FROM g
GROUP-BY x

GROUP-BY y
GROUP-BY x′

GROUP-BY y′

WHERE x = y and x′′ < s
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It is easy to verify that query q is true initially.
Integers k and s. At last, we set the integers as follow,

k = t(t − 1) and s = t + 1

This reduction can be built in polynomial time. Then we prove the cor-
rectness of the reduction by showing that it is yes for instance 〈G(V,E), t〉 of
INDEPENDENT SET if and only if it is yes for its corresponding instance 〈d, q, k〉
of Aggr -RES.

“⇒:” When G has an independent set I ∈ V of size t, then we can build
an tuple set Δ into d such that q(d ∪ Δ) become false. We show that add set
Δ = {(u, v), (v, u)|u �= v, u, v ∈ I〉 into d. It is easy to see that such tuple set
is a solution of size t(t − 1). None of tuples in Δ is contained in d. Moreover,
q(d∪Δ) is false: there are three kinds of value in the attribute COUNT (y) of d,
respectively, 1, δ, and δ + t − 1. Obviously, there are at least s = t + 1 count-one
and count-δ tuples. Furthermore, the value x with count δ + t − 1 are all in
I ∪ {v0}. Thus, there are |I| + 1 = k tuples with count δ + t − 1. Therefore,it
holds number of tuple pairs is

2
(|I|

2

)
= t(t − 1)

“⇐:” When we has a solution Δ to 〈d, q, k〉 of size k = t(t−1). The following
values on COUNT (y) occur in the nested sub-query result: 1, δ, and δ + t − 1.
Moreover, it is easy to see that there is only one value v0 on x with count-δ+t−1
in d. In d ∪ Δ, there must be at least s − 1 = t further count of degree up to at
least δ + t − 1 and, hence, each of them has to have at least t − 1 new tuples
added into δ for each distinct value of x. Thus there are exactly t such values on
x, each relates to exactly t − 1 tuples in δ. These t vertices form an set of size t
in δ and, by construction, the t corresponding vertices form an independent set
of size t in G.

This completes the proof of the correctness of the reduction.

For the SUM operator, we can modify the proof above by adding a column
of number, and filled by ‘1’ for SUM to mimic COUNT operation. At the same
time, rewrite the query by substituting keyword COUNT to SUM. Then the proof
accomplished and correctness holds obviously.

Theorem 4. The parametric complexity of AGGREGATION RESILIENCE

DECISION for queries stated in the theorem above is W[1]-hard, in cases with
parameter of the size of resilience.

Proof. Here, we build a reduction from MULTICOLORED INDEPENDENT SET to
Aggr -RES.

Given a MULTICOLORED INDEPENDENT SET instance 〈G(V,E), t, γ〉, we build
the corresponding instance 〈d, q, k〉 as follows,

Database d. We start with a relation g(x, y) with respect to G, (i) Denoting
each vertex vi ∈ V with tuple (i, i) inside g; (ii) Denoting each edge (vi, vj) ∈ E
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with two tuples (i, j) and (j, i) inside g; (iii) Let the maximum degree of G is
δ too, then, for each vertex vi ∈ V , we add pairs of tuples (i, vij) and (vi

j , i)
into relation g(x, y), where 0 < j ≤ t3 · γ(vi) + δ; (iV) At last, for each color
p ∈ {1, · · · ,m}, we add pairs of tuples (ωp, u

p
j ) and (up

j , ωp) into relation g(x, y),
where 0 < j < t3 · p + δ + t;

Query q. We define a nested aggregation query q as the same query above.
It is easy to verify that query q is true initially.
Integers k and s. At last, we set the integers as follow,

k = t(t − 1) and s = 2

Obviously, the reduction can be built polynomially. Then we prove the cor-
rectness by showing that it is yes for instance 〈G(V,E), t, γ〉 of MULTICOLORED

INDEPENDENT SET if and only if it is yes for its corresponding instance 〈d, q, k〉
of Aggr -RES.

“⇒:” When G has an independent set I ∈ V of size t, then we can build
an tuple set Δ into d such that q(d ∪ Δ) become false. We can also add tuple
set Δ = {(u, v), (v, u)|u �= v, u, v ∈ I〉 into d. Tuple set Δ is a solution of size
t(t − 1), there are at least 2 count-1 and count-(t3 · p + δ) tuples. Furthermore,
the value x with count t3 · p + δ + t − 1 are all in I ∪ {ωp}. Thus, there are 2
tuples with count-(t3 · p + δ + t − 1). Number of tuple pairs is 2

(
t
2

)
= t(t − 1).

“⇐:” When we has a solution Δ to 〈d, q, k〉 of size k = t(t−1). The following
values on COUNT (y) occur in the nested sub-query result: 1, t3 · p + δ, and
t3 · p + δ + t − 1, for p ∈ {1, · · · ,m}. Observe that only one value ωp on x has
COUNT (y) of (t3 · p + δ + t − 1), for each p. Then, size of |Δ| ≥ t due to s = 2.
Because there is no count of from (t3 · p + δ + t) to (t3 · p + δ + t2 + t − 1),
for each p, and k ≤ t(t − 1), there is no number of tuples up to t2. Then the
tuple set Δ must increase at least a distinct count to at least h − 1, so that
result can be absent w.r.t condition COUNT(∗) < s. Then, such value on x must
have count up to t3 · p + δ, there is one pair of new tuples for each p in Δ,
and each of them has a count of exactly t − 1 new tuples of Δ. Observe that
values in Δ is exactly t and already present in d, so that they are also the
corresponding vertices of G satisfying the coloring constraints, form a solution
of MULTICOLORED INDEPENDENT SET.

Therefore, due to the W[1]-hardness of MULTICOLORED INDEPENDENT SET

problem, the W[1]-hardness of Aggr -RES follows immediately.

We also have the following two results.

Theorem 5. AGGREGATION RESILIENCE DECISION is both NP-hard and W[1]-
hard for nested COUNT, SUM query without projection, join and union, where
insertion is only under finite domain.

4 Conclusion

We study the complexity of the RES problem by means of parameterized com-
plexity, and provide the results of conjunctive query, positive query and first-
order query. The results are summarized in Table 1. In the future work, We plan
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to investigate the tractable condition for nested COUNT queries and approxi-
mation algorithms for intractable cases. Furthermore, we plan to study another
objective of this problem which is the side effect on source database. The cases
considering other types of dependency constraints on database, such as indepen-
dent dependencies, also need to be further explored.
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tion (NSF) under grant NOs. 1252292, 1741277, 1704287, and 1829674.
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Abstract. Doodle polls allow people to schedule meetings or events
based on time preferences of participants. Each participant indicates on
a web-based poll form which time slots they find acceptable and a time
slot with the most votes is chosen. This is a social choice mechanism
known as approval voting, in which a standard assumption is that all
voters vote sincerely—no one votes “no” on a time slot they prefer to a
time slot they have voted “yes” on. We take a game-theoretic approach to
understanding what happens in Doodle polls assuming participants vote
sincerely. First we characterize Doodle poll instances where sincere pure
Nash Equilibria (NE) exist, both under lexicographic tie-breaking and
randomized tie-breaking. We then study the quality of such NE voting
profiles in Doodle polls, showing the price of anarchy and price of stability
are both unbounded, even when a time slot that many participants vote
yes for is selected. Finally, we find some reasonable conditions under
which the quality of the NE (and strong NE) is good.

Keywords: Doodle polls · Nash equilibria · Approval voting

1 Introduction

Online scheduling apps such as Doodle (www.doodle.com) are an increasingly
popular tool for scheduling meetings and other events. In a January 2018 per-
sonal communication, Doodle reported more than 27 million polls created per
year with total users numbering nearly 30 million. In a Doodle poll, the poll ini-
tiator posts a set of possible meeting times, then asks participants to check off
the times they are available to meet. The Doodle algorithm simply recommends
the time slot(s) with the most checked boxes.

This mechanism employed by Doodle for recommending the best time slot is a
social choice function equivalent to approval voting, where each voter in an election
must indicate approval or disapproval of each of the candidates. In a Doodle poll
(Fig. 1), the participants are the “voters” and the time slots are the “candidates.”

A 2-page extended abstract of an earlier version of this work was published in [2].
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There has been extensive research done in approval voting dating back to the
1970s. For surveys on approval voting from the voting theory literature see [3,
11,16].

Fig. 1. An example Doodle poll after three participants have indicated their availability.

However, in contrast to political elections where the voter-to-candidate ratio
is very high, Doodle polls are usually conducted on a relatively small scale1,
which allows strategic voting to more easily takes place. Researchers have studied
the effect of strategic voting behavior (e.g., [5,15]), even with respect to approval
voting in particular [7,8,12,13]. As in the work of [7], we are interested in how
the social welfare of the selected candidate compares with that of the optimal,
but we consider Nash Equilibrium (NE) voting outcomes, while they consider
randomized embeddings of utility functions into voting rules. The work of [15]
also considered voting outcomes that maximize social welfare in comparison with
equilibrium outcomes. While their work on plurality voting took a computational
approach to finding the NE (and Bayes NE) outcomes, we focus on theoretical
worst-case analysis for the approval voting mechanism used in Doodle polls,
which are the motivating real-world application of our work.

Similar to the work of [5], which asks ‘How bad is selfish voting?’, we compare
the worst-case NE outcome to the optimal outcome. However, we use social
welfare as our metric, while they use a candidate’s “honest score” as their metric.
They also consider NE that result after a sequence of best response defections
from the truthful voting profile, which is a unique voting profile in the three
voting systems they consider. In contrast, approval voting does not have a single
truthful voting profile, so in this work we study the space of all pure NE. The
work of [6] studies team-based coordinated voting in online scheduling polls,
giving results regarding computational complexity of finding payoff-improving
voter coalitions, and finding NE.

As in [1], we assume each voter has a privately-held, normalized, utility value
(or valuation) for each candidate time slot. To measure the quality of a time slot,
1 A sample of over 340,000 polls in a 3-month period in 2011 had a median of about

5 respondents and 12 time slots [17].
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we consider the social welfare, or total utility of all voters, for that slot. But while
the work of [1] studies the effect of more “protective” voting behavior compared
with more “generous” voting behavior on the social welfare of the winning time
slot, this work analyzes the price of anarchy and price of stability in Doodle
polls. The price of anarchy (POA) (resp., price of stability (POS)) is the worst
case ratio, over all possible instances of the game, of the social welfare of an
optimal slot to the social welfare of the winning slot(s) at the “worst” (resp.,
“best”) pure NE.

The work of [14] analyzes a Doodle game model similar to ours, with the
added component of a “social bonus” each voter gets for each time slot they
approve of. They also extensively study and compare the two tie-breaking rules:
randomized tie-breaking versus lexicographic tie-breaking. They conclude that
in the case of “uncapped” social bonus, most Doodle game instances in their
model do not admit pure NE under lexicographic tie-breaking. They go on to
focus on the case of “capped” social bonus where there are many NE profiles and
use a variant of trembling hand perfection to refine them. In our model we do
not have a “social bonus” for yes votes at all, and we find under this assumption
that most instances do seem to admit a pure NE. We also show randomized
tie-breaking also admits pure NE in most instances. As noted, Doodle allows the
option for hidden polls, where voters only see their individual responses; such
hidden polls negate the presence of a social bonus and thus further motivate the
payoff function as defined in our model.

To our knowledge our work is the first to bound the inefficiency of equilibria
in Doodle polls. Since Doodle polls are equivalent to approval voting, we note
that our results also apply to approval voting in general, but our context for
this work is Doodle polls, keeping in mind their idiosyncrasies (like the often low
ratio of voters to candidates) that are not commonly found in general approval
voting scenarios. First we investigate the space of Doodle poll instances where
pure NE exist when assuming voters vote sincerely (i.e., they never disapprove
of a time slot that they have higher utility for than a time slot they approved
of), both under lexicographic and randomized tie-breaking. Then we show that
when restricting to the space of instances that admit pure NE, both POA and
POS are unbounded. We show this remains the case even when restricted to
instances that have at least one time slot with high total valuation. We then give
some reasonable conditions under which the POA and POS are good. Finally
we present a constant bound on the strong price of anarchy when there are time
slots with sufficiently high total valuation.

2 Model and Definitions

We define a Doodle poll instance to be a triple I = (A, V, U), where A =
{a1, a2, . . . , am} is the set of time slots or alternatives, V = {v1, v2, . . . , vn}
is the set of voters, and U is the n × m matrix of utility values 0 ≤ uij ≤ 1 that
each voter i = 1 . . . n privately holds for each alternative j = 1 . . . m. We say
voter vi prefers alternative aj to ak when uij > uik.
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The utility can be thought of as quantifying how much the voter expects to
benefit from attending the meeting at that time (even if derived merely by satis-
fying some expectation of attendance) minus any inconvenience/cost of attend-
ing the meeting at that time. It also may be thought of as representative of how
much monetary value a voter would place on attending the event at a given time.

Notice that in Doodle polls, organizers and participants typically expect and
believe that participants are not only sincere, but that they are also generally
representing their “true” availability, allowing for the selection of a “good” meet-
ing time. Indeed, other studies often assume the most straightforward behavior
of a voter is simply to vote “yes” on those time slots for which she is available,
and “no” on those she is unavailable. However, we submit that availability is
not a binary value; in theory, a participant can make themselves available for
any time slot, albeit at varying, and potentially quite high, cost. Our model
of private cardinal utility values accounts for such a spectrum of “availability,”
while only requiring individual participants to make a yes/no determination.

Given an instance I, we use an n × m matrix denoted by R = [r1, r2, . . . , rn]
to represent the voting profile (or strategy profile), where ri is a binary vector
over the m alternatives in A, representing the vote or strategy of voter i, with
ri(j) = 1 (a yes vote) if voter vi approves alternative aj , and ri(j) = 0 (a no
vote) otherwise. When it is clear from the context, we use vote to either refer to
the full vector ri, or to the binary value the voter assigns to a specific alternative.
We consider only pure strategies in this work, so we assume voters will not be
randomizing among a set of possible votes.

Let s(aj) =
∑n

i=1 ri(aj), or the total count of votes of approval for alternative
aj , be the score for an alternative aj . The default Doodle mechanism (approval
voting) chooses the set of one or more winning alternatives, W , which maximize
the total score, that is W = arg maxaj∈A s(aj).

The most commonly-studied tie-breaking rules in the event of multiple alter-
natives with maximum score (|W | > 1) are lexicographic tie-breaking, in which
the single winning alternative w ∈ W that comes first in the established tie-
breaking order over A is chosen, and randomized tie-breaking, which chooses
w from the winning alternatives in W uniformly at random. Under lexico-
graphic tie-breaking, we assume without loss of generality that the tie-breaking
order on the alternatives proceeds from left to right a1 . . . am in the poll, and
each player i earns a payoff πi(I,R) of uij if the chosen alternative w = aj .
Under randomized tie-breaking, in the case of a tie, the expected payoff is
E[πi(I,R)] =

∑
aj∈W uij/|W |, the average utility of the winning alternatives.

Our model most accurately reflects hidden Doodle polls, in which players do
not see each others’ votes. This removes the motivation for a “social bonus” term
in the payoff function as used in [14]. Hidden polls also transform the setting
into a simple simultaneous move game.

A pure Nash equilibrium (NE) is a strategy profile where no player can uni-
laterally defect to an alternate strategy (i.e. flip some of their voting bits) and
strictly increase their payoff. I.e., at a NE no voter i can alter their vote vector
ri ∈ R to a new vote vector r′

i, s.t. πi(I,R′) > πi(I,R) (for lexicographic tie-
breaking), where R′ is R with ri replaced by r′

i. (For randomized tie-breaking
payoffs are taken in expectation.)
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We use OPT (I) to denote an optimal alternative, which maximizes the social
welfare in a given Doodle poll instance I, and u(a) to denote the total utility
(social welfare) of alternative a ∈ A. Hence OPT (I) = arg maxaj∈A

∑n
i=1 uij

and u(OPT (I)) = maxaj∈A

∑n
i=1 uij .

As justified in many classical and recent works, e.g., [3,4,9,14,17], we assume
all voters are sincere in their voting, i.e., if ri(aj) = 1 then ri(ak) = 1 for all
k �= j where uik > uij . Let sincere pure NE refer to a pure NE where all voters
are voting sincerely (and may defect only to sincere strategies) and let Ns(I)
denote the set of sincere pure NE for Doodle poll instance I.

Given a Doodle poll instance I, we define sincere price of anarchy POA(I)
for that instance to be u(OPT (I))

minR∈Ns(I) u(w(R)) and sincere price of stability to be
u(OPT (I))

maxR∈Ns(I) u(w(R)) , where u(w(R)) is the social welfare of the winning alternative
given profile R. Note that in the case of randomized tie-breaking, the expected
social welfare is used in the denominator. We can then define the sincere price of
anarchy (POA) of Doodle polls to be the worst-case POA(I): maxI∈I POA(I),
where I is the set of all Doodle poll instances. Respectively, we define the sincere
price of stability (POS) to be the worst-case POS(I): maxI∈I POS(I).

3 Existence of Sincere Pure Nash Equilibria

Since we analyze price of anarchy and price of stability only over the space of
instances that admit sincere pure Nash equilibria, we investigate in this section
what these types of instances look like, under both lexicographic and randomized
tie-breaking. To begin with, as noted in [10], “no voter can, by changing her vote
only, change the outcome of the game [under] Approval Voting [...when...] one
candidate is winning the election with a margin of more than two votes.” We
state this formally as the following lemma.

Lemma 1. A voting profile is a sincere pure NE if the two largest scores differ
by two or more, under either lexicographic or randomized tie-breaking.

We refer to an alternative aj ∈ A as a favorite of voter vi if uij ≥ uik for
all k �= j. And we say that an alternative aj ∈ A is a kth favorite of voter vi if
there are exactly k − 1 alternatives j′ for which uij′ > uij .

Corollary 1. If two or more voters have a favorite alternative in common, then
there is a sincere pure NE where the set of winning alternatives W is precisely
that favorite alternative, under both lexicograpic and randomized tie-breaking.

Corollary 2. If the number of voters exceeds the number of alternatives, that is,
n > m, then there is a sincere pure NE, under both lexicographic and randomized
tie-breaking.

These corollaries already describe a rather large space of instances where
a sincere pure NE always exists. However, sincere pure NE do not always
exist, under either lexicographic or randomized tie-breaking. We provide specific
instances for each tie-breaking rule, while characterizing further some situations
where sincere pure NE do exist.
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3.1 Lexicographic Tie-Breaking

Corollaries 1 and 2 collectively ensure the existence of a sincere pure NE under
lexicographic tie-breaking whenever two or more voters have the same favorite,
and whenever n > m. Furthermore, the following lemma ensures the existence
of a sincere pure NE when n = m. These conditions greatly limit the potential
instances without a sincere pure NE, and we provide a specific instance in Table 1
that does not have a sincere pure NE under lexicographic tie-breaking.

Lemma 2. If the number of voters equals the number of alternatives, that is,
n = m, then there is a sincere pure NE, under lexicographic tie-breaking.

Proof. By Corollary 1, assume each voter has a different favorite. Since n = m,
there must be a voter v whose favorite is alternative a1. The voting profile in
which all votes are no except a single yes vote to a1 from voter v is sincere.
Furthermore, under lexicographic tie-breaking, since the winning alternative is
leftmost, no voter has incentive to defect.

Note that Lemma 2 does not hold under randomized tie-breaking, as Table 2
will illustrate. The following lemma will help us to establish the fact that sincere
pure NE do not always exist under lexicographic tie-breaking.

Lemma 3. Given a Doodle poll instance, if there is a sincere pure NE profile
with winning alternative w under lexicographic tie-breaking, there is a sincere
pure NE where all voters vote yes for alternative w.

Proof. Suppose we have a NE with winning score s(w) on alternative w. If
s(w) = n, all voters are already voting yes for alternative w, so we may assume
s(w) < n. With lexicographic tie-breaking, the scores on all alternatives left of
w are strictly less than s(w), and all alternatives to the right of w have score at
most s(w). Suppose we take the existing NE profile, and then modify it so that
all voters vote yes to alternative w, and anything else required by sincerity. The
score for w is now s(w)+x = n. Since the yes votes required by sincerity add at
most x to the scores for other alternatives, updated scores to the left of w are
strictly less than s(w)+x, and those to the right are at most s(w)+x, with w still
the winning alternative. Furthermore, since the only yes votes that are added
in alternatives other than alternative w are due to sincerity, if any voter wishes
to defect now, they likewise would have prior to the addition, contradicting the
assumption that we started with a NE.

Theorem 1. Sincere pure NE do not always exist in Doodle polls under lexico-
graphic tie-breaking.

Proof. By Lemma 3, we need only exhibit an instance in which for each alterna-
tive, all voters voting yes for that alternative is not a sincere NE profile. Consider
the instance in Table 1. For alternatives j = 2, 3, 4, 5, observe that if all n votes
on alternative j are yes, then by sincerity there are n−1 yes votes on alternative
j − 1, and each of those n − 1 voters who voted yes on j − 1 wish to defect by
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Table 1. An instance in which no sincere pure NE exists under lexicographic tie-
breaking, for 0 < ε ≤ 1/4, as described in the proof of Theorem 1.

Voters 1 2 3 4 5

v1 3ε 2ε ε 0 4ε

v2 2ε ε 0 4ε 3ε

v3 ε 0 4ε 3ε 2ε

v4 0 4ε 3ε 2ε ε

saying no to alternative j. Likewise, if all n votes on alternative 1 are yes, then by
sincerity, all n votes on alternative 5 are yes; due to lexicographic tie-breaking,
alternative 1 would win, but since alternative 5 is preferred by all n voters, they
each wish to defect by saying no to alternative 1. Hence, in any sincere voting
profile where all voters say yes to a given alternative, at least one voter wishes
to defect.

3.2 Randomized Tie-Breaking

We now proceed comparably for randomized tie-breaking, providing a broad
categorization of instances which do have sincere pure NE, and again showing
that sincere pure NE do not always exist. Recall that we refer to an alternative
aj ∈ A as a favorite of a voter if that voter (weakly) prefers it to all other
alternatives. And we say that an alternative aj ∈ A is an ith favorite of a voter
if there are exactly i − 1 alternatives which they strictly prefer to aj . We say an
n × n instance does not have distinct ith favorites if for i ∈ 1, 2, . . . , n − 1, some
alternative is the ith favorite of two or more voters.

Lemma 4. Consider an n×n instance. If it does not have distinct ith favorites,
then it has a sincere pure NE under randomized tie-breaking.

Proof. We proceed by using strong induction. Base case: Corollary 1 ensures
that any instance where an alternative is the favorite (i.e. i = 1) of two or more
voters has a sincere pure NE.

Inductive step: Assume that no alternative is the 1, 2, 3, . . . , or kth favorite
of two or more voters, for k < n−1. We show if some alternative a′ is the k+1st
favorite of two or more voters, then there is a sincere pure NE.

Since no alternative is the ith favorite of two or more voters for i =
1, 2, 3, . . . , k, and the instance is n × n, each alternative must be the favorite
of exactly one voter, the 2nd favorite of exactly one voter, . . ., the kth favorite of
exactly one voter. Moreover, by assumption, alternative a′ is the k +1st favorite
of two or more voters. Consider the voting profile consisting of yes votes for all
of the 1st favorites, 2nd favorites, . . ., kth favorites, as well as any two of the
k + 1st favorites in alternative a′. Observe that this voting profile is consistent
with sincerity. The scores are thus k + 2 for alternative a′ and k for all of the
other n−1 alternatives. Lemma 1 thus guarantees the existence of a sincere pure
NE.
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Lemma 4 in combination with Corollary 2 indicates that the space of instances
that admit sincere pure NE seems quite general and large. For example, in the
case of n = m, only instances that meet the rather strict structural requirement
of distinct ith favorites do not have sincere pure NE. Note that Lemma 4 also
applies to lexicographic tie-breaking, but is subsumed by Lemma2.

Table 2. An instance with no sincere pure NE under randomized tie-breaking, for t
and ε with 1

2
< t < 1 and 0 < ε < 1

2
, as described in the proof of Theorem 2.

Voters 1 2 3

v1 = A 1 t 0

v2 = B 0 1 ε

v3 = C ε 0 1

Theorem 2. Sincere pure NE do not always exist in Doodle polls under ran-
domized tie-breaking.

Proof. Consider the instance in Table 2, where 1
2 < t < 1 and 0 < ε < 1

2 . We
consider the voting profiles and corresponding scores, and show by exhaustive
cases (of winning score s = 0, 1, 2, or 3) that no pure NE exists under randomized
tie-breaking. Observe that there are distinct favorites, which in this instance are
on the diagonal, and recall that sincerity must be maintained.

Clearly, there is no NE where the winning score is s = 0; that would require
all voters to vote no on all alternatives, and they would each have incentive to
defect.

Consider what happens when the winning score is s = 1. If one voter is voting
yes to all three alternatives and s = 1, since each voter has a single favorite
alternative in this instance, this voter will always have incentive to defect; they
prefer to say no to two of the alternatives, voting yes only for their favorite. If
one voter is voting yes to exactly two alternatives, and s = 1, then there must be
a voter who is not voting yes to their favorite alternative who would thus prefer
to defect and have their favorite alternative win with two yes votes. Thus, we are
left only with the case where each voter is voting yes to at most one alternative,
which, due to sincerity, must be their favorite alternative. If only one alternative
has a yes vote, then it can easily be verified that either of the other voters would
wish to defect and vote yes to their favorite. Likewise, if two of the alternatives
have yes votes, in all three such scenarios within this instance, the third voter
would prefer to defect to cause a three-way tie. Thus, the only possible NE with
s = 1 is a three-way tie for the favorites on the diagonal. But this is also not a
NE: since t > 1

2 , voter A would rather have t than their payoff in the tie (1+t)/3,
and thus prefers to defect by voting for alternative 2.

Now, consider the case where the winning score is s = 2. Suppose first that
there are two or more alternatives with a score of 2. Then some voter is voting
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yes to two or more of the winning alternatives and such a voter would wish
to defect so their favorite alternative alone wins. In the subcase that all three
alternatives have a score of 2, if one voter is voting yes for all three alternatives,
then that voter would wish to defect by saying no to all but their favorite. Thus,
with reported scores on the three alternatives of 2, 2, and 2, each voter must
be voting yes for their favorite and second favorite. In this case, voter B would
wish to defect since the payoff to voter B when alternatives 1 and 2 are tied,
1
2 (1 + 0) > 1

3 (1 + ε + 0), its payoff in the three-way tie.
We now consider the case with winning score s = 2 and other alternatives’

scores are 1 or 0. Due to the structure of the utility values and sincerity, the
winning alternative w with score 2 must have a yes vote from the player whose
utility is 1 for alternative w (otherwise two alternatives would have a score of
2). If the other yes vote for w is from a player with a utility of 0 or ε for w, that
voter would always prefer to defect to a vote of no on alternative w, so that their
favorite (for which they are already voting yes, due to sincerity) would now be
tied for winning; one can verify that with ε < 1/2, the (two-way or three-way)
tie is better than their current valuation. If the other yes vote for w is from the
player with a utility of t, so w = a2, then voter C currently getting 0 payoff
must also be voting no on alternative a1 (otherwise s(a1) = s(w) = 2). So voter
C would prefer to defect and vote yes to a1 to cause the tie between a1 and a2.

Finally, consider the case when the winning score is s = 3. Note that the
structure of the utilities is such that each alternative is the favorite for one
voter, the second favorite for another, and the least favorite for another. Thus,
unanimous approval of an alternative in conjunction with sincerity implies that
one of the other alternatives has at least one yes vote, and the other alternative
has at least two yes votes. There cannot be two alternatives with 3 yes votes,
since all voters have distinct favorites, and at least one voter would defect to
a no vote on their non-favorite so their preferred alternative would win (or be
in a tie with fewer winning alternatives). Thus, only the cases where the scores
(subject to permutation) are 3, 2, 2 and 3, 2, 1 remain. In both these remaining
sub cases, one of the three votes for the winning alternative w must come from
a voter for whom w is their least favorite. So that voter would prefer to defect
and vote no on w, allowing another alternative to win.

This 3×3 instance can be extended to a 3×x instance (for x > 3) by adding
alternatives with 0 valuation. Observe that Table 2 does have a sincere pure NE
under lexicographic tie-breaking: namely, the voting profile in which voter A
votes yes to alternative 1, and all other votes are no for all voters is sincere and
a NE.

4 Price of Stability (and POA) are Unbounded

In this section we exhibit instances that show both price of anarchy and price
of stability are unbounded, regardless of which tie-breaking mechanism is used.
We first show that POA is unbounded even when the score must be at least n

2
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and when the utility of OPT must be at least n
2 . We then provide instances in

which POS is likewise unbounded with large score/utility. For the remainder of
this work, we use the shortened term “NE” to refer to sincere pure NE. We let
ε > 0 be an arbitrarily small value.

Table 3. An instance in which POA is unbounded, for an arbitrary odd n, where OPT
has utility n

2
and score at least n

2
for the best NE.

Voters 1 2 3

v1 = A ε 1 0

v2 = B ε 0 1

v3 = C ε 1 0

v4 = D ε 0 1
...

...
...

...

vn ε 1 0

Theorem 3. The sincere price of anarchy is unbounded in Doodle polls, under
both lexicographic and randomized tie-breaking.

Proof. Consider the instance in Table 3 for an arbitrary odd n ≥ 5, and ε > 0
arbitrarily small. Alternative 2 is optimal with a utility of n+1

2 . Consider the
voting profile where all voters vote yes for all alternatives with non-zero utility,
and no to alternatives with zero utility. Clearly this is sincere. It is also a NE,
since alternative 1 will have a score of n, and the two other alternatives will have
scores of n+1

2 and n−1
2 . Since n ≥ 5, there is no incentive for any voter to defect.

Thus, the utility of this NE is nε. Thus, the price of anarchy is n+1
2 /(nε) =

1
2ε + 1

2nε which becomes arbitrarily large for ε arbitrarily small.

Notes: For randomized tie breaking, we need n ≥ 5 since if n was 3, then
the scores would be 3, 2, and 1, and a voter who voted yes to an ε in the first
column could defect. We could easily have an instance with an even number of
rows by adding in an additional row with ε, 0, 1.

Observe that in the Table 3 instance, POS is 1 since a voting profile where all
voters vote yes on alternatives with valuation 1 and no on all other alternatives
is sincere, gives the OPT, and can easily be verified to be a NE. Further, not
only is the score at least n/2 but the total utility of the optimal alternative is
also at least n/2.

We now provide an instance where OPT has utility of almost n−2, but POS
is still unbounded. Note that when the utility of OPT is high, it becomes more
likely that OPT itself is a NE, so it becomes harder to find an instance with
high POS. The following instance relies on a structure in which for many of the
alternatives, all but one voter likes another alternative more, so defections move
away from the optimal.
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Table 4. An instance with unbounded POS even when OPT has utility close to n− 2.

Voters a1 a2 a3 · · · am−3 am−2 am−1 am

v1 mε (m − 3)ε (m − 4)ε · · · 2ε ε 0 1

v2 mε (m − 3)ε (m − 4)ε
... 2ε 0 c + ε c

v3 mε (m − 3)ε (m − 4)ε
... 0 c + 2ε c + ε c

v4 mε (m − 3)ε (m − 4)ε . .
.

c + 3ε c + 2ε c + ε c
...

...
...

...
...

...
...

...
...

vm−3 mε (m − 3)ε 0
... c + 3ε c + 2ε c + ε c

vm−2 mε 0 c + (m − 3)ε
... c + 3ε c + 2ε c + ε c

vm−1 mε c + (m − 2)ε c + (m − 3)ε
... c + 3ε c + 2ε c + ε c

vm mε (m − 1)ε (m − 2)ε · · · 4ε 3ε 2ε ε
vn(= vm+1) mε (m − 1)ε (m − 2)ε · · · 4ε 3ε 2ε ε

Theorem 4. Sincere POS is unbounded in Doodle polls, even when |OPT | ≈
n − 2. Furthermore, the claim holds under both randomized and lexicographic
tie-breaking.

Proof. Consider the instance in Table 4 with m ≥ 2. Note that n = m+1, and c
can be arbitrarily close to 1 as long as (m − 1)ε < c < 1 − (m − 2)ε. OPT is the
final alternative, am, with a utility 1+(m−2)c+2ε. If we can show that the only
NE is one in which the alternative a1 wins, which has a utility of m(m + 1)ε,
then we have shown that POS is unbounded.

To verify that the first alternative is the winning alternative in a NE, consider
the voting profile that votes yes for all values in a1, and precisely the other values
required by sincerity, namely the valuations of 1 and c + xε (for any positive x).
This yields scores of m+1 for a1, and j−1 for all other alternatives j = 2, . . . , m.
Thus, since all alternatives other than the first have a score of at most m − 1,
Lemma 1 ensures this is a NE.

We now show that none of the alternatives 2 through m win in a NE. Observe
that for i = 1, 2, . . . , m − 1, all but voter i prefers am−i to am−i+1. Thus, for
i = m, . . . , 2, ai is not a winner in any NE, because if it were, then by sincerity
ai−1 must be within one vote of ai, since anyone other than voter m− i+1 must
be voting for ai−1 if they are voting for ai. Hence, one of the voters would prefer
to defect and either vote no on ai or vote yes on ai−1, so that ai−1 becomes
either tied for winning or the strict winner; with lexicographic tie-breaking from
left to right, ai−1 would be the strict winner. Hence, an outcome where ai is
winning is not a NE.

The instance can be extended. Additional rows identical to those below the
horizontal dashed line can be added: the utility remains arbitrarily close to m−1,
which is now n minus the number of rows below said dashed line. Additional
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columns identical to column 1, or with larger multiples of ε, can also be added
before the vertical dashed line, and POS likewise remains unbounded.

5 Bounds on POS and Strong POA

In this section we describe some situations where price of stability is good.
Since Corollary 1 guarantees that there is a NE which selects an optimal

alternative, the following corollaries identify situations in which POS is 1. We
then provide a characterization of the set of Doodle polls instances where the
expected social welfare in the best NE is optimal.

Corollary 3. In a Doodle poll instance I, if an optimal alternative is a favorite
of multiple voters, then POS(I) = 1.

Corollary 4. If there are two or more ‘indifferent’ voters with identical valua-
tions on all alternatives in a Doodle poll instance I, then POS(I) = 1.

Theorem 5. Given a Doodle poll instance I under randomized tie-breaking,
POS(I) = 1 if and only if there is no alternative that n − 1 voters prefer to
an optimal alternative. I.e., for each non-optimal alternative, at least 2 players
prefer an optimal alternative to it.

Proof. If POS(I) = 1, and hence an optimal alternative a∗ has the most votes at
a NE, we assume for the sake of contradiction that there is some other alternative
that n − 1 voters prefer to a∗. We call this more preferred alternative a′, and
the one voter who does not prefer it v∗. Then any voter v �= v∗ approving
the optimal a∗ would also be voting yes on a′ by sincerity, which would imply
s(a′) ≥ s(a∗) − 1. And in this case, any of those voters v �= v′ would prefer to
defect and say no to a∗ (if they were voting yes to a∗), or defect and say yes to
a′ (if they were voting no to it), contradicting the assumption that we are at a
NE. Note that if they were all voting no to a∗ and yes to a′ it would contradict
the fact that a∗ has the most votes.

We now proceed to show the converse: having no alternative that n−1 voters
prefer to an optimal implies POS(I) = 1. Let alternative as be optimal. Suppose
all voters vote yes for as, and vote yes for other alternatives as needed to enforce
sincerity. We claim this voting strategy is a NE.

Since all voters vote yes for as, it has n votes. Suppose voter vp believes
that she can improve her personal valuation by unilaterally changing her vote,
while maintaining sincerity. We consider all possible actions she could take, and
show that none of them in fact improve her personal valuation, showing that the
current solution is indeed a NE.

Action 1: She keeps her yes vote for as, but votes yes on another alterna-
tive ax, for which she had previously said no. For this to improve her personal
valuation, ax must now be selected, and upx > ups. But since as had n votes,
the maximum possible, ax must also now have n votes and be selected instead
of as by tie-breaking. For ax to now have n votes, all voters other than p must
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have voted yes to it, ensuring that ∀i�=p,i∈[n]uix ≥ uis, since votes for alternatives
other than as were based solely on sincerity. The social welfare of ax is

∑n
i=1 uix.

Thus, the social welfare of ax is also upx+
∑

i�=p,i∈[n] uix ≥ upx+
∑

i�=p,i∈[n] uis >

ups +
∑

i�=p,i∈[n] uis =
∑n

i=1 uis which is the social welfare of as. But this con-
tradicts the fact that as was the optimal solution.

Action 2: She keeps her yes vote for as, but votes no on another alternative
ax, for which she had previously said yes. This change keeps the vote count at n
for as, but only lowers the vote count on ax, so her personal valuation does not
improve.

Action 3: She votes no on as (and possibly changes her votes on other alter-
natives as well) and alternative ax is now selected, for which she is voting no.
Since as has n − 1 yes votes, and ax can have at most n − 1 votes, again, there
is at best a tie, so voter p will not switch. Why? For ax to now be selected as a
winning alternative with vp voting no to it, ax must have n−1 yes votes from all
other voters. But since all other voters are voting for ax based solely on sincerity,
then by the same argument as in Action 1, for this to occur, as must not in fact
be the optimal solution. Hence, the desired contradiction is again reached.

Action 4: She votes no on as (and possibly changes her votes on other alter-
natives as well) and alternative ax is now selected, for which she is voting yes.
For her personal situation to improve, upx > ups. But since she originally said
yes to as, then by sincerity, she had to originally say yes to ax as well. Alterna-
tive as still has n − 1 yes votes. If ax has n yes votes, then in the original voting
strategy, it also did, and thus by the same argument as in Action 1, for this to
occur, as must not in fact be an optimal solution. Thus, we must conclude that
ax has n − 1 yes votes, but this contradicts our assumption that no alternative
has n − 1 voters that prefer it to an optimal slot.

For a given instance I, we note that POA(I) (and hence POS(I)) is trivially
upper-bounded by maxa∈A u(a)

mina∈A u(a) . However, the alternative amin = arg mina∈A u(a)
can only be chosen in a NE if there is no other alternative n − 1 voters prefer to
it. If n − 1 voters prefer another alternative, then by sincerity that alternative
has a score within one of the chosen alternative, meaning some voter can defect
and improve their payoff. This observation gives the following bound on POA.

Proposition 1. Given a Doodle poll instance I, let alow be the lowest utility
alternative s.t. at least two voters prefer alow to a for all other alternatives
a ∈ A. Then we have: POS(I) ≤ POA(I) ≤ u(OPT (I))

u(alow) .

5.1 Strong NE

A strong NE is a voting profile where no subset (or “coalition”) of voters can
all simultaneously defect and improve their payoff. All strong NE are NE, and
strong NE may not always exist. The strong POA (resp, POS) is defined as
the ratio of the total utility of an optimal alternative to the total utility of the
alternative chosen in the worst (resp., best) strong NE, assuming one exists.
It has been established (in [4]) that strong NE coincide precisely with those
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voting profiles that select Condorcet winners. A weak Condorcet winner ac is a
candidate such that the number of voters who prefer ac to a for any other a ∈ A
is at least the number who prefer a to ac.

Lemma 5 (Adapted from [4]). Given a Doodle poll instance I = (A, V, U),
an alternative a ∈ A is a winning alternative in a strong NE if and only if a is
a weak Condorcet winner.

We can now show that strong POA is at most 4 when there is an alternative
with utility at least 3n

4 , or more generally:

Theorem 6. Given a Doodle poll instance I = (A, V, U) that admits a strong
NE, if u(aj) ≥ ρn for some aj ∈ A, 1 ≥ ρ > 1/2, then strong POA, and hence
strong POS, satisfy sPOS(I) ≤ sPOA(I) ≤ 1/(ρ − 1/2), which approaches 2 as
ρ approaches 1.

Proof. If I admits a strong NE, then there is some weak Condorcet winner
ac ∈ A, where ac is preferred to any other a ∈ A by at least half the voters
(by Lemma 5). If u(aj) ≥ ρn for some aj ∈ A, then more than ρ of the voters
have strictly positive utility for aj . If at least half the voters prefer ac to aj ,
then u(ac) ≥ ρn − n/2 = n(ρ − 1/2). Since u(OPT (I)) ≤ n, we thus have
sPOS = u(OPT (I))/u(ac) ≤ 1/(ρ − 1/2).

6 Conclusion

Our results have shown that there are many natural Doodle poll instances that
admit sincere pure Nash Equilibria. In particular, almost all instances where
the number of voters is at least the number of candidates (that is, n ≥ m)
admit sincere pure NE under both randomized and lexicographic tie-breaking.
It remains future work to determine when sincere pure NE exist in the case
where m > n (the number of candidates exceeds the number of voters), which
is not common in standard approval voting settings, but is not so unusual to
encounter in a Doodle poll.

Our results have also shown that while the price of anarchy and price of
stability are both unbounded, the conditions we found that give rise to these
cases seem rather particular and unlucky. We also show that there is also a large
set of realistic Doodle poll instances where POS = 1; for example, POS = 1
when the optimal time slot is the favorite of at least two voters. Finally, we also
show that strong POA is reasonable when there is at least one time slot with
total utility more than n/2. In future work, we hope to expand our understanding
of the set of Doodle poll instances where the POA or POS are good, possibly
by restricting ourselves to instances where voters cannot vote for all or none of
the time slots. We also hope to gather data, and using simulated utility values
see if such conditions are likely to be present in most real-life Doodle polls, and
also check how commonly the outcomes of the polls are at NE.
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Abstract. We introduce and study a variant of network cost-sharing
games with additional non-shareable costs (NCSG+), which is shown
to possess a pure Nash equilibrium (PNE). We extend polynomial-time
PNE computation results to a class of graphs that generalizes series-
parallel graphs when the non-shareable costs are player-independent.
Further, an election game model is presented based on an NCSG+ when
voter opinions form natural discrete clusters. This model captures several
variants of the classic Hotelling-Downs election model, including ones
with limited attraction, ability of candidates to enter, change stance
positions and exit any time during the campaign or abstain from the
race, the restriction on candidates to access certain stance positions,
and the operational costs of running a campaign. Finally, we provide
a polynomial-time PNE computation for an election game when stance
changes are restricted.

Keywords: Network cost-sharing game · Nash equilibrium
Hotelling-Downs

1 Introduction

Network cost-sharing games (NCSGs) are games on a directed graph where each
player selects a path from their source to sink, and players sharing an edge
divide the utility obtained from that edge. Even though these games are known
to possess a pure Nash equilibrium (PNE), computing one is PLS-hard except
for simple special cases, e.g., a restricted variant of series-parallel graphs [15].
We study a generalization of these games, NCSG+, where in addition to the
shareable utility, each edge incurs a non-shareable player-specific cost (such as
a fee or a toll), called the fixed cost of traversing that edge. The advantage of
studying NCSG+ is that they generalize election games, where a path in the
NCSG+ graph corresponds to a campaign strategy in an election. For NCSG+,
we show the existence of a PNE using a potential-function argument in any
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directed graph. Further, we extend polynomial-time PNE computability for a
class of graphs that generalizes series-parallel graphs with multiple source nodes.

In addition to the study of NCSG+, this paper presents a spatio-temporal
bi-objective model for an election game with discrete stances and analyzes its
PNE computation by utilizing the structural properties of NCSG+. Consider an
election where candidates compete to win as many voters as possible. In many
real-life elections, a voter has a stance on a range of issues that matters to them,
and the choice of their candidate is heavily influenced by the candidate’s stance
on those issues. In the classical Hotelling-Downs model [4], stances on each issue
are represented by continuous values in [0, 1], where 0 and 1 are extreme stances
on the issue, and a multi-issue hypercube can be constructed containing all the
voters’ stances. Based on the stance positions in this hypercube, each candidate’s
objective is to choose their stance to be close to the maximum number of voters.
When candidates’ stances are relatively close to each other, they split their vote
share giving rise to a game with spatial competition.

In certain elections, voters’ stance positions exhibit natural accumulations of
opinions forming clusters. As a candidate deciding what their ideal stance should
be, identifying such naturally occurring clusters provides vital information in
making a choice that leads to maximal electoral advantage. For example, a 2014
study conducted by Pew Research Center [9] found that 50% of US adults polled
believe that climate change is caused by human activity, while 23% believe that it
is due to natural patterns, and 25% believe that there is no solid evidence; there
are three mutually exclusive clusters of voter opinions. If an election is based only
on this one issue, and if there is only one candidate, choosing the stance “caused
by human activity” will be their winning strategy. However, if there are 3 other
candidates and all of them have picked that as their stance, the winning strategy
would then be to pick either of the two smaller clusters. As illustrated, there is
a need for election game modeling that extracts the combinatorial structure
exhibited by a finite and discrete stance space. Additionally, there is temporal
decision-making involved. Since campaigns often cost considerable time, money
and resources, the cost of campaigning influences the decisions of whether a
candidate should even enter the race, and if they do, when exactly they should
enter the race. Entering early enables them to gain voters from an earlier time,
but may incur a higher cost of campaigning given the longer time spent, and vice
versa. Hence, there is an inherent trade-off between the accumulation of voters
and cost considerations.

The election game presented allows for candidates to (1) decide whether to
enter the race or not, (2) decide when to enter and exit the race, (3) choose
their stance from a finite set of stances, (4) and also change stances during the
race. It also models the trade-off between voter and cost considerations. While
some of these modeling aspects have been independently studied in prior work,
the flexibility offered by the network-based model provides a unification of these
features. Finally, we derive a stronger polynomial-time PNE result for election
games with a restriction on stance changes.
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1.1 Related Literature

This paper makes contributions in two broad areas of research: PNE analysis in
NCSG+, and the spatio-temporal modeling and PNE analysis in election games.

NCSGs naturally model games on a network where the cost of traversing an
edge increases with the number of players sharing the edge, and has applications
in traffic and communication networks. Introduced by Rosenthal [15], a network
congestion game (NCG) is a related game with a general edge latency function
which always possesses a PNE. This spurred research in variants of NC[S]Gs and
their polynomial-time PNE computability. Syrgkanis [19] showed that PNE com-
putation for NCSGs in general directed graphs is PLS-Complete, while providing
polynomial-time algorithms for singleton cost-sharing games (with single-edge
paths) and matroid cost-sharing games. Recently, Feldotto et al. [7] considered
an extension with two types of costs: latency and bottleneck costs, while play-
ers have different preferences for the two. They showed that even though PNE
exists for singleton congestion games, deciding on existence is NP-Hard for gen-
eral matroid congestion games. Along the lines of investigating PNE in various
graphs, Fotakis [8] showed that a greedy best-response algorithm computes a
PNE for NCGs in series-parallel graphs. However, the question of which broader
class of NCG graphs possesses a polynomial-time PNE remains open. This paper
provides PNE computation results for a multi-source single-sink graph that gen-
eralizes series-parallel graphs.

Modeling election games has early roots in Hotelling’s [10] seminal model
for spatial competition in which two competing vendors located at two points
on a street must decide what prices to charge for their products. He derived
closed-form expressions for calculating these price points as a unique PNE. The
Hotelling model was brought into the political sphere by Downs [4] as a strate-
gic method for identifying the equilibrium positions which candidates take on an
issue. This model has influenced research in modeling electoral politics, includ-
ing spatial voting models with issue-based stances. Since then, several variations
of Hotelling-Downs have been explored [2,17]. However, the difficulty in prov-
ing existence and computation of a PNE in general multi-issue elections has led
to several specific adaptations of election models. A multidimensional spatial
model proposed by Duggan and Fey [5] considered a continuous utility function
to obtain equilibrium results under certain special conditions. They show that in
two dimensions, when the number of players is odd and when there is symmetry
in the utility function, a PNE exists. In elections with proportional represen-
tation (where voters submit a preference list of candidates), Ding and Lin [3]
formulated a zero-sum game model and show that for two parties (two types of
candidates), a PNE exists but computing one is NP-hard. The consequence of
choosing stances based on finite clusters is that candidates have influence only
within a finite window around their chosen stance. A similar idea has previously
been modeled by Feldman et al. [6], where voters randomly choose from can-
didates who are sufficiently close to them. This was generalized by Shen and
Wang [18] as a model with limited attraction. However, the strategy space in
these models is infinite in size due to the continuous nature of the stance space.
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Hence, even though a PNE exists in these models, it is unclear how to find one
efficiently.

Temporal extensions to Hotelling-Downs have been explored in recent work
in modeling election campaigns. Osborne [14] considered the entry of candi-
dates by using the associated campaign cost of doing so. Recently, Kallenbach
et al. [11] introduced an optimization problem to compute the optimal cost of
campaigning for each candidate, and can be used as a subroutine for equilib-
rium computations. Sengupta and Sengupta [17] extended Osborne’s model to
include the option of dropping out from the race. These models possess PNE but
only under specific assumptions. Abstention by candidates has been addressed
in election modeling from early work by McKelvey and Wendell [12]. In strategic
candidacy games (where the choice to enter the election or not is captured by
analyzing the incentives), Brill and Conitzer [1] consider a two-stage game: the
first stage where candidates decide whether to run or not, and the second where
voters decide who to vote for. They show the existence of a PNE when the voter
opinions on issues is single-peaked. However, opinion distributions in general are
not always single-peaked. This model has been extended by Obraztsova et al.
[13] who introduced the concept of lazy candidates who will drop out after a
certain time period if the campaign costs are too high. A strategy candidacy
game proposed by Sabato et al. [16] imposes restrictions on each candidate’s
stance space to within a defined interval and studies its effect using various vot-
ing rules. Our model includes the considerations of abstention and dropping out,
as well as restricted stance sets for the candidates. While these models individu-
ally capture different important aspects of election games, the question remains
whether all these can be captured simultaneously. Our model provides a partial
answer to this by particularly focusing on elections where voter opinions exhibit
natural clusters.

2 Network Cost Sharing Games with Non-sharable Costs

We begin with game theoretic preliminaries. Consider a game with k players,
and for each player j ∈ [k], let Pj be the set of pure strategies that j can
choose from. Further, let Pj ∈ Pj denote a strategy that j chooses and let
S = (P1, P2, . . . , Pk) ∈ (P1 × P2 × · · · × Pk) denote a strategy profile, a vector
of strategies chosen by all the players. Corresponding to a strategy profile and
player j, let P−j denote the vector of strategies chosen by all the players except
j. Further, let uj(Pj ,P−j) ∈ R denote the utility that j receives when j chooses
Pj and all the other players choose P−j . Each player tries to choose a strategy
that maximizes their utility. A PNE is a strategy profile such that no player can
unilaterally increase their utility by deviating from their strategy, i.e., a strategy
profile S = (P1, P2, . . . , Pk) is a PNE if for each player j, there exists no strategy
P ′
j ∈ Pj such that uj(P ′

j ,P−j) > uj(Pj ,P−j). The existence of a PNE is not
guaranteed in general, e.g., the game Rock-Paper-Scissors does not have a PNE.

An NCSG is a game on a directed graph G = (V,E) with k players, and
each player j has a source node sj and a sink node dj . Every edge e ∈ E has
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a sharable utility ue, which is equally divided among the players that traverse
e. We introduce an NCSG with non-shareable costs (NCSG+), where we also
consider a non-sharable player-dependent cost in each edge, called the fixed cost.
For a player j ∈ [k] and edge e ∈ E, let f j

e be the fixed cost for j on edge e.
Each player’s strategy is a path from their source to their sink. Let Pj be player
j’s path from sj to dj , let P−j be a vector containing the paths taken by players
[k]\{j}, and let (Pj ,P−j) be a vector of paths taken by all the players. Given
a strategy profile (Pj ,P−j), let ne be the number of players traversing edge e.
The net utility for j is then defined as uj(Pj ,P−j) =

∑
e∈Pj

(ue

ne
− f j

e ). Every
player’s objective is to choose a path that maximizes their net utility. For net-
work congestion games (with player-independent cost functions), Rosenthal [15]
showed that a PNE is guaranteed to exist using a potential function argument.
We extend this proof to an NCSG+. A potential game is one where there exists
a potential function φ : (P1 × . . . Pk) → R such that if any player deviates to a
better strategy, the change in potential function value is equal to the increase in
that player’s net utility. We now show that an NCSG+ possesses such a potential
function, implying the existence of a PNE.

Lemma 1. An NCSG+ is a potential game, with its potential function given by
φ(S) =

∑
e∈E

( ∑|Ne|
i=1

ue

i
− ∑

i∈Ne
f i
e

)
, where S is a strategy profile and Ne is

the set of players traversing edge e in S.

Proof. Let S = (Pj ,P−j) with respect to a player j. If j deviates its path from
Pj to P ′

j , let S ′ = (P ′
j ,P−j) be the new strategy profile. Then, the set of players

on an edge e ∈ Pj ∩ P ′
j will remain as Ne and hence considering the difference

φ(S ′) − φ(S) after the deviation, these edges will cancel each other. However,
the set of players on an edge e ∈ Pj\P ′

j will be Ne\{j}, and those on e ∈ P ′
j\Pj

will be Ne ∪ {j}. Hence,

φ(S ′) − φ(S) =
∑

e∈Pj\P ′
j

( |Ne|−1∑

i=1

ue

i
−

∑

i∈Ne\{j}
f i
e

)
+

∑

e∈P ′
j\Pj

( |Ne|+1∑

i=1

ue

i
−

∑

i∈Ne∪{j}
f i
e

)

−
∑

e∈Pj\P ′
j

( |Ne|∑

i=1

ue

i
−

∑

i∈Ne

f i
e

)
−

∑

e∈P ′
j\Pj

( |Ne|∑

i=1

ue

i
−

∑

i∈Ne

f i
e

)

=
∑

e∈P ′
j\Pj

( ue

|Ne| + 1
− f j

e

)
−

∑

e∈Pj\P ′
j

( ue

|Ne| − f j
e

)
= uj(S ′) − uj(S).

Hence, φ is a potential function for an NCSG+. ��
Having shown that a PNE exists in any NCSG+, we focus on polynomial-

time PNE computability. A natural question is: what settings of an NCSG+—
graphs, utility-cost functions, number of players—permits a polynomial-time
PNE computation?

A series-parallel (SP) graph is a single-source single-sink directed multi-
graph, whose recursive definition is as follows. An elemental SP graph consists of
a source s, a sink d and the single edge (s, d). Starting from them, any SP graph
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can be constructed from two other SP graphs G and H, using two composition
rules: (a) a series composition whose source-sink pair is (sG, dH) and dG is con-
nected to sH , and (b) a parallel composition whose source is sG and sH merged
into a single node, and whose sink is dG and dH merged into a single node.
In addition to their extensive applications in electrical networks, SP graphs are
of interest to research in computational complexity since many combinatorial
problems that are NP-Complete in general graphs are polynomial-time in SP
graphs [20].

We now consider a network congestion game (NCG) defined as follows. Given
a directed graph G = (V,E) with source s and sink d, a cost function le for all
edges e ∈ E, a NCG is a game where each player i ∈ [k] sends wi ∈ R

+ amount
of flow from s to d through G such that their total cost of sending that flow
is minimized. An NCSG+ whose fixed-cost values on all the edges are player-
independent (i.e. f i

e = f j
e for all i, j ∈ [k], e ∈ E) and the players have a common

source and sink (i.e. si = sj , di = dj∀i, j ∈ [k]) is a special case of an NCG. A
natural method to compute PNE in an NCG (and in an NCSG+) is using the
greedy best response (GBR) algorithm. Starting with an empty set of players,
GBR introduces one new player at a time to enter the game where the new player
selects their best (highest net utility) strategy that is available to them. This
best strategy is also called a best response by that player based on the previously
introduced players, and the algorithm iteratively finds the best response paths
of all the players. An NCG whose edge cost functions are in such a way that
the best response is symmetric (player-independent) about all the players is said
to possess the common best response property. Fotakis et al. [8] showed that
for NCGs on SP graphs that possess the common best response property, GBR
computes a PNE in O(km log m) time, where m = |E| (Theorem 1), even though
they produce a simple counter-example where GBR fails for a non-series parallel
graph.

Theorem 1 [8]. Given a series-parallel graph G = (V,E) with source and sink
nodes s, d, and a network congestion game that has the common best response
property, GBR succeeds and computes a PNE in time O(nm log m), where n =
|V |,m = |E|.

This result can be extended to a subclass of NCSG+ with player-independent
fixed-costs, since these games in SP graphs possess the common best response
property.

Corollary 1. Given a series-parallel graph G = (V,E), and a network cost-
sharing game with player-independent fixed-costs, GBR succeeds and computes
a pure Nash equilibrium in time O(km), where m = |E|.
Proof. The success of GBR in computing PNE in a SP graph follows from The-
orem 1, since an NCSG+ with player-independent fixed-costs in an SP graph is
a special case of an NCG with common best response property in an SP graph.
As for the computation time, every new player introduced solves a longest-path
problem to find their best response path. This problem takes O(m) computa-
tions on a directed acyclic multi-graph, such as an SP graph. Since there are k
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players introduced, it requires O(km) computations for GBR to find PNE for
all the players. ��

In this paper, we consider an NCSG+ with player-independent fixed-costs on
a class of graphs where the source nodes are unique for each player even though
they share a common sink. This class of graphs generalizes SP graphs and is
defined as follows.

Definition 1 (Multi-source Series-Parallel Graph). A Multi-Source
Series-Parallel Graph (MSSP Graph) is given by R = ({Gl}l∈[n],
{si}i∈[k], d, {Hi}i∈[k]), where G = {Gl}l∈[n] is a set of n disjoint series-parallel
(SP) graphs, {si}i∈[k] is a set of k source nodes, and d is a sink node. For each
i ∈ [k], let Hi ⊆ G be a subset of SP graphs that i has “access” to, i.e., from si,
let there be edges to the source nodes of all the SP graphs in Hi. Further, from
the sink node of each SP graph in G, let there be an edge to d.

Fig. 1. An MSSP graph with n = 3 sub-
graphs and k = 2 sources

Figure 1 depicts an MSSP graph with
n = 3, k = 2, H1 = {G1, G2} and H2 =
{G2, G3}. An MSSP graph is a multi-
source generalization of SP graphs with
a unique source node for each player.
Additionally, each player i has access to
only a subset of SP subgraphs defined by
the collection of sets Hi ⊆ G.

A game on an MSSP graph models the restricted access of players to n
resources (SP subgraphs). Even though Corollary 1 states that GBR computes
a PNE for an SP graph, it is unclear whether this approach can be extended
to an MSSP graph since the common best response property is violated if dif-
ferent players can only access certain graphs (unless Hi = G for all i ∈ [k]). To
do so, we introduce a generalization of GBR, called greedy best response with
reactionary movements (GBR-RM). In this algorithm, as a reaction to each new
player introduced into the game, the players who were introduced earlier may
change their previously chosen strategy (termed a reactionary movement) to
another strategy that gives them a better net utility, and this may trigger fur-
ther movements of players, and so on. The success of GBR-RM in computing
PNE relies on the eventual convergence of players to an equilibrium after every
new player introduced (i.e. there are no cycles in reactionary movements).

Theorem 2. Given a multi-source series-parallel graph R = ({Gl}l∈[n], {si}
i∈[k], d, {Hi}i∈[k]), and a network cost-sharing game with player-independent
fixed-costs with k players, GBR-RM computes a pure Nash equilibrium in time
O(km ∗ min{n, k}), where m is the number of edges in R.

Proof. The proof proceeds by induction considering the introduction of players
by the order of their labels from 1 through n. When player 1 is introduced, it
is trivially at equilibrium. Before player i > 1 is introduced, let the paths taken
by the i − 1 players be (p1, p2, . . . , pi−1), and let us assume that they are at
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equilibrium. Let player i’s best response path be pi, and the strategy profile of
the system is denoted by Pi = (p1, p2, . . . , pi). Further, after i’s introduction, for
any player j ≤ i, let the set of paths chosen by all the other players be denoted
by Pi

−j . Let u(pj ,Pi
−j) be the net utility for j to traverse pj given that the other

players chose paths in Pi
−j . More generally, let u(A,Pi

−j) be the net utility for
j to traverse the subset of edges A given that other players chose paths in Pi

−j ,
regardless of whether A is a valid path in the graph. We first show the following
claim.

Claim. Consider an NCSG with player-independent fixed-costs with k players.
During the GBR-RM, before a player i ∈ [k] is introduced, let the system be at
equilibrium. Let pi be the best response path chosen by i. Then, the net utility
for i will be no more than the net utility for any other player j < i in path pj ,
i.e., u(pi,Pi

−i) ≤ u(pj ,Pi
−j).

Proof. Since player j was at equilibrium before player i was introduced, the net
utility from pj was better than from pi. Hence, u(pj ,Pi−1

−j ) ≥ u(pi,Pi−1
−j ). Let

A = pj\pi and B = pi\pj . A and B are disjoint sets, and from the relation above,
we have u(A,Pi−1

−j ) ≥ u(B,Pi−1
−j ), where u(A,Pi−1

−j ) denotes the utility derived
specifically from the edges of A ⊆ pj . Now consider when player i enters the sys-
tem and picks a path pi so as to maximize u(pi,Pi

−i). Clearly u(pi,Pi
−i) ≥

u(pj ,Pi
−i) ⇒ u(B,Pi

−i) ≥ u(A,Pi
−i). However, A and pi are disjoint, so

u(A,Pi
−j) = u(A,Pi−1

−j ), and so are B and pj so u(B,Pi
−i) = u(B,Pi−1

−j ),
which gives us that u(A,Pi

−j) = u(A,Pi−1
−j ) ≥ u(B,Pi−1

−j ) = u(B,Pi
−i). Since

pi and pj derive the same net utility from the edges of pi ∩ pj , this implies that
u(pi,Pi

−i) ≤ u(pj ,Pi
−j). ��

We now show that after player i is introduced, the system reaches equilibrium
after at most O((i − 1) ∗ min{n, k}) reactionary movements.

In an MSSP graph R, since the series-parallel (SP) subgraphs are disjoint,
any path p in R almost entirely lies in exactly one of its SP subgraphs, denoted
by G(p). We say “almost” since p includes an additional edge from a source node
of R to the source node of G(p). For simplicity of notation, if another path q
also almost entirely lies in the subgraph G(p), we will denote this as “q ∈ G(p)”
instead of G(p) = G(q).

With the introduction of player i to pi, if a player j1 wishes to make a
reactionary movement, it must be that pj1 is in G(pi) since j1 was at equilibrium
before i’s introduction. Let the new path chosen by j1 be qj1 . Since we know
that GBR computes a PNE (without any reactionary movements) within an SP
graph, qj1 must traverse an SP subgraph G(qj1) �= G(pj1) such that G(qj1) ∈
Hj1\Hi. This is because if G(qj1) ∈ Hi, then it is already a path which player
i considered and rejected which is edge disjoint from pi, i.e., u(qj1 ,P

i
−j1

) =
u(qj1 ,P

i
−i) ≤ u(pi,Pi

−i) ≤ u(pj ,Pi
−j), where the final inequality comes from

Lemma 2. After j1 moves to qj1 , we set i to traverse pj1 , the path vacated by j1.
By Lemma 2, player i is willing to do so as player j1 was deriving more utility
from it than i currently derives from pi. The set of strategies chosen by players
inside G(pi) is now the same as it was prior to player i’s introduction, and with
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the exception of i no players have changed strategies. Because this state was a
pure equilibrium within G(pi), all players traversing G(pi) remain at equilibrium
and no new players not currently traversing G(pi) wish to change their paths to
do so. Two reactionary movements have occurred as a result of i’s introduction.
We continue to iterate this scheme for picking which players make reactionary
movements, and our next step is to bound the maximum number of reactionary
movements. To do so, we will first show that at each iteration the moving player
must switch to a path that none of the previous players who moved had access
to using an induction.

Similar to the base case, we next consider the consequences of player j1 mov-
ing to G(qj1). Suppose another player j2 on G(qj1) wishes to move in reaction to
j1. Then, j2 must wish to move to qj2 ∈ Hj2 \ (Hj1 ∪ Hi). This comes from the
same reasoning as above. So qj2 ∈ Hj2 \ (Hj1 ∪ Hi). We then move j1 from qj1
to pj2 , restoring the state of G(qj1) to what it was at equilibrium. For the induc-
tive step, assume that players M = {i, j1, j2, ..., jm} have all made reactionary
movements in that order so far, such that in each case, the new path chosen by
player l ∈ M is ql ∈ G(ql) ∈ Hl \ H−l, where H−l = (Hi ∪ Hj1 ∪ ... ∪ Hjl−1).
After player jm switches paths to qjm ∈ G(qjm), player jm+1 wishes to switch
to qjm+1 . We want to show that G(qjm+1) ∈ Hjm+1 \ H−(m+1). Assuming the
contrary, there exists some player l ∈ M such that G(qjm+1) ∈ Hl. Then

u(qjm+1 ,P
ijm+1

−(jm+1)
) = u(qjm+1 ,P

il
−l) where il is the set of paths chosen by all

players after l − 1 has moved to path ql−1 and l − 2 has moved to pl−1. This
is because of the inductive assumption that every player who has moved so
far has moved to a path in Hl \ H−l, and so the state of all players in H−l

remains unchanged from when l considered it. We then have u(qjm+1 ,P
il
−l) ≤

u(ql,Pil
−l) ≤ u(pl+1,P

il+1

−(l+1)) ≤ · · · ≤ u(pjm ,Pijm
−jm

) ≤ u(pjm+1 ,P
ijm+1
−jm+1

), where
the first inequality comes from the fact that l chose ql instead of qjm+1 , and all
other inequalities come from Lemma 2. Hence, G(qjm+1) ∈ Hjm+1 \ H−jm+1 .

Next, we bound the maximum number of reactionary movements. Trivially,
no player can move twice since for any player l, Hl \ (Hi ∪ Hj1 ∪ ... ∪ Hl ∪ ... ∪
Hjm) = ∅, and hence there can be at most i moves. Additionally, if |Hi ∪ Hj1 ∪
... ∪ Hjm | = n, then for any player l, we have Hl \ (Hi ∪ Hj1 ∪ ... ∪ Hjm) = ∅.
Since |Hi ∪ Hj1 ∪ ... ∪ Hjm | − |Hi ∪ Hj1 ∪ ... ∪ Hjm−1 | ≥ 1, there are at most
O(min{k, n}) movements.

Since k players are introduced, the number of movements that may occur is
at most O(k ∗ min{n, k}). Since each subgraph is a series-parallel DAG, we can
compute a maximum cost/profit path from si to d in O(m) time. Therefore, we
can compute a PNE on an MSSP graph in at most O(km ∗ min{k, n}) time. ��

3 Election Game

An election game is between k players (or candidates) competing to appease the
maximum number of voters with the least amount of expenditure. A candidate
can choose from a finite set of stances {1, 2, . . . , n}, where each stance s ∈ [n]



NCSGs: Equilibrium Computation and Applications to Election Modeling 731

corresponds to a cluster of voters. Let p(s) ∈ [0, 1] be the fraction of voters
contained in the cluster corresponding to stance s. Further, for each candidate
j ∈ [k], let Hj ⊆ [n] be the subset of stances that are available to candidate j.
Hj models the general condition that j can only choose a stance that is close to
their past record or political inclinations.

Single-Period Election Game. First, consider a game where candidates only
decide which stance to pick. Let cj ∈ Hj denote the stance picked by candidate
j, and let N(cj) be the set of all candidates who picked stance cj . Assume that
there is a certain cost associated with a candidate’s expenditure of resources
(monetary, personnel, etc.) for choosing a stance. For a candidate j, let Cj(c)
denote the cost incurred for j when choosing stance c.

Fig. 2. Stance distribution of vot-
ers on 2 issues with 3 clusters.

In order to compare the electoral compo-
nent of utility (p) and the cost component (C),
let β ∈ R

+ be a trade-off parameter between
the fraction of voters and the cost (in mone-
tary units). For simplicity, we assume that the
cost function C already includes this trade-off.

Then, the net utility obtained by candidate
j is given by uj(cj) = ( p(cj)

|N(cj)| − Cj(cj)). This
means that candidate j shares their electoral
utility with other candidates choosing the same
stance, in addition to incurring a non-shareable
cost.

Each candidate’s goal is to maximize their
net utility. Consider an example with the spa-

tial voter distribution in Fig. 2 with 3 clusters. Let there be 3 candidates who
will compete to pick 3 stances. Further, let candidate 1 pick stance 2 ∈ H1, and
let p(2) = 0.6 and C1(2) = C2(2) = C3(2) = 0.05. Then, candidate 1 receives a
net utility of 0.15 if all three candidates chose stance 2, 0.25 if only one other
candidate does so, and 0.55 if no other candidate does so.

Multi-period Election Game. Generalizing the single-period game, we study
the election game over T time periods, where each time period is an arbitrary
unit of time (a day/week/month or could even be aperiodic like the time between
successive state primaries as in US presidential elections). Each candidate must
first decide whether they should enter the game or not. If a candidate j decides to
enter the game, let the time period at which they enter be tj1 ∈ {0, 1, . . . , T −1},
the stance that they choose be cj,tj1

∈ Hj and the time period at which they exit

the game be tj2 ∈ {tj1 + 1, tj1 + 2, . . . , T}. Further, we assume that candidates are
allowed to change stances during the game.

Let cj,t ∈ Hj denote stance chosen by candidate j at the start of time period
t ∈ {tj1, tj1 + 1, . . . , tj2 − 1}. If a candidate j never exits the race and runs till the
end, then tj2 = T . Hence, if candidate j enters the game, their overall strategy

is represented by the tuple (tj1, t
j
2, {cj,t}t

j
2−1

t=tj1
), where tj2 > tj1.
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Extending the cost function in the single-period game, let Cj(c, t) ∈ R
+ be

the cost associated with candidate j for holding stance c at the start of time
period t. As a temporal extension to the voter distribution, let p(c, t) be the
fraction of voters with stance c who will affirm their stance at time t. This is
a general function that can model any pre-election scenario. For example, if
it is an election where most of the voters affirm their stances only just before
the election, then the candidates would not gain much utility in entering the
race early, as opposed to an election where the opposite trend could occur. Our
generic utility function captures either scenario.

Let J ⊆ [k] be the set of candidates who decide to enter the race at some time
period, and let Nt(c) ⊆ J be the subset of candidates who enter the race/chose
stance c at the start of time period t. On the other hand, if candidate j does not
enter the game at all, then let αj denote the utility obtained by j. This utility
is a measure of monetary or political savings when not entering the race. That
is, uj = αj for every j ∈ [k]\J . Then, the net utility uj for candidate j ∈ J is
defined as

uj(t
j
1, t

j
2, {cj,t}t

j
2−1

t=tj1
) =

⎧
⎨

⎩

∑tj2−1

t=tj1

( p(cj,t, t)
|Nt(cj,t)| − Cj(cj,t, t)

)
, if j ∈ J

αj , otherwise.
(1)

Each candidate’s goal is to maximize their net utility. The longer the candidate
stays in the race, the more is the electoral utility they will gain from staying in
the race. Hence, it is not just sufficient to pick a good sequence of stances, but
the length of the campaign (tj2−tj1) also influences the net utility. In other words,
even if tj2 = T (candidate j stayed till the end), the electoral utility is not just
defined by the last time period, but accumulates from the time they entered the
race. It is also possible that tj2 < T , wherein candidate j drops out before the
completion of the race (due to accumulated costs of campaigning dominating
electoral gain in utility). The net utility gained by an early drop-out models any
amount of political gain resulting from campaigning for the election, even if it
may not help them in that particular election.

3.1 Election Game Graph

We now show that an election game reduces to an NCSG+ through the con-
struction of a graph called the election game graph (EGG). This construction
transforms a strategy in the election game (to enter the race or not? when to
enter? what sequence of stances to choose while in the game? when to quit?) to
a path in EGG, constructed as follows.
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Fig. 3. An EGG with 3 candidates, 3 stances and 2 time
periods. Stance-choice, entry, sustain, exit and abstain
edges are dashed-black, dotted-black, solid black, solid
grey, and thinly dotted-block respectively, along with
their (ue, fe) values; (0, 0) if no label.

Nodes: Each candidate
j ∈ [k] has a source
node sj . A sink node
d is common to all the
candidates. A terminal
node dc is exists for each
stance c ∈ [n]. There
are intermediary nodes,
called stance nodes for
every stance and time
period. Let vct be the
stance node for stance
c ∈ [n] and time period
t ∈ {0, 1, . . . , T}.

Edges: There are six
types of edges as out-
lined below with respect
to candidate j ∈ [k].

1. Stance-choice edge: e = (sj , vc0) for all c ∈ Hj and represents candidate j’s
choice of stance c ∈ Hj . The (ue, f

j
e ) = (0, 0) of such an edge.

2. Entry edge: e = (vc0, vct) for all c ∈ Hj and t ∈ {1, . . . , T − 1} represents
candidate j having already chosen stance c ∈ Hj , entering the race at time
period t. The (ue, f

j
e ) = (0, 0) of such an edge for all j.

3. Sustain edge: e = (vc(t−1), vct) for each stance c ∈ [n] and time period t ∈
{1, . . . , T} represents sustaining in the race for time period t. The (ue, f

j
e ) =

(p(c, t), Cj(c, t)) of such an edge.
4. Stance-change edge: e = (vct, vc′t) for each pair of stances c, c′ ∈ [n], c �= c′

and time period t ∈ {1, 2, . . . , T − 1} represents changing stance from c to c′

between t and t + 1. The corresponding ue = 0, and f j
e = +∞ if c′ /∈ Hj .

5. Exit edge: e = (vct, dc) exists for each stance c and time period t ∈
{1, 2, . . . , T} to represent exiting the race immediately after t. An edge (dc, d)
also exists for each c ∈ [n] to represent the final exit. The (ue, f

j
e ) = (0, 0) of

such an edge.
6. Abstain edge: e = (sj , d) represents abstention, with (ue, f

j
e ) = (αj , 0).

Figure 3 illustrates an EGG without stance-change edges for simplicity. The
construction of the EGG reduces an election game to an instance of NCSG+,
thereby implying the existence of PNE in any election game using Lemma 1.

3.2 Computation of PNE

Consider election games under two restrictions: When candidates are not allowed
to change their stance (i.e. stance-change edges are removed), and when the
non-shareable costs are candidate-independent, denoted by f j

e = fe for edge
e ∈ E,∀ j ∈ [k]. We provide a greedy best-response algorithm with reactionary
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movements for this subclass of election games. First, note that when the entry
and exit edges are removed (i.e. candidates enter at time 0 and exit at time T ),
the corresponding EGG is a multi-source series-parallel (MSSP) graph. Using
Theorem 2, greedy best response with reactionary movements (GBR-RM) com-
putes a PNE in O(knT 2 min{n, k}) time since the number of edges is in the
order of O(nT 2), where k, n and T are the number of candidates, stances and
time periods respectively. However, this computation only utilizes the general
structure of each the series-parallel subgraphs of an MSSP graph with multiple
edges between a pair of nodes, whereas in an EGG, there can be at most 1 edge
between a pair of nodes. We show that even with the inclusion of the entry and
exit edges (candidates may enter or leave any time), PNE can be computed in
O((k+n)T 2+(n+T )k2) time using the greedy algorithm provided in Algorithm
1, with a two-order magnitude improvement compared to the same for MSSP
graphs.

Corresponding to a path from a source to sink, define a sustain path to be
a path that consists exclusively of sustain edges. For a stance c, and entering
and drop-out time periods t1 and t2(> t1), a sustain path is represented by
a sequence of nodes {vc,t1 , vc,t1+1, . . . , vc,t2}. Let P be the set of all sustain
paths in G. Further, let Aj = (sj , d) be the abstain path for candidate j. For
a path P ∈ P ∪k

j=1 Aj , let S(P ) denote the subset of candidates traversing P .
For illustration, consider an example with 3 candidates, 3 stances and 2 time
periods, and the corresponding EGG in Fig. 3. If candidate 1 enters the race at
time period 1 and stays until the end of time period 2 by choosing stance 2, and
suppose candidate 2 does the exact same, then S({v20, v21, v22}) = {1, 2}.

Starting with an arbitrary ordering of candidates, the algorithm assigns a
path for each candidate one at a time and ensures that the system settles down
to an equilibrium. At each stage, candidates also compare their current utility
with the utility in the abstain edge to decide whether they want to abstain or
not.

Algorithm 1 finds the best path for each new candidate in O(n) operations
by tracking the best sustain path in each stance. For each stance c ∈ [n],
let L(c) be the current best sustain path and its corresponding net utility.
In the example in Fig. 3 before any candidate has entered, it is easy to see
that L(1) = (0.08, {v10, v11, v12}), L(2) = (0.5, {v20, v21, v22}), and L(3) =
(0.28, {v30, v31, v32}). Once a new candidate has been assigned a path and the
system resettles into an equilibrium, we show that for at most one stance c ∈ [n],
L(c) needs to be updated. This can be done in O(T 2) operations since there are
T 2 +T

2 sustain paths on each stance.
In a general instance, it is possible that a new candidate entering may trigger

a chain of candidates to change their paths. We show using two nested loops that
the best response does converges to an equilibrium after a finite number of steps.
The outer loop is for every new candidate introduced into the game, while the
inner loop is for every best response move by an existing candidate in the game.

Theorem 3. If the system is at equilibrium with l − 1 candidates, and the lth

candidate is introduced, the sequence of best responses in Algorithm 1 leads to
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Input: An Election Game Graph G = (V, E) and (ue, fe), ∀e ∈ E
Output: A pure Nash equilibrium
P ←Set of all sustain paths; Aj ← Abstain path for candidate j;
S(P ) ← ∅, ∀ P ∈ {P ∪k

j=1 Aj }; // S(P ) contains the set of candidates
choosing P
L(c) ← The best sustain path in stance c for new candidate;

ne ← ∑
P :e∈P |S(P )|, ∀e ∈ E; U(P ) ← ∑

e∈P

ue

ne + 1
− fe;

for i = 1, 2, . . . , k do
Assign i to a path in arg maxc∈Hi U(L(c));
l ← i ; H ← Hl;
while system not at equilibrium do

Choose a candidate j currently not at equilibrium;
Pj ← Candidate j’s current path;
Move j to arg maxc∈Hj\H{U(L(c)), U(Aj)} ;
Move l to Pj ; l ← j; H ← Hl ∪ H; Update S(P ), ∀ P ∈ P ;

end
Update L(c), where c is the stance the last candidate moved to;

end
return S

Algorithm 1. Greedy PNE Computation in an Election Game

a PNE in the new game in at most O(min{l, n}) steps, provided that whenever
a candidate is indifferent between best response paths, it picks the longest one
(most sustain edges).

Define Pi to be the sustain path taken by a candidate i. We first prove Lemma 2.

Lemma 2. Suppose the system is at equilibrium after i − 1 candidates have
been introduced via Algorithm 1. When candidate i is introduced, then for every
candidate j �= i, either Pi ⊆ Pj or Pi ∩ Pj = ∅.
Proof. We prove this by contradiction: Assume that Pi \Pj �= ∅ and Pi ∩Pj �= ∅.
First, due to the latter condition, i must have picked the same stance as j did
since they have overlapping sustain edges. Second, the former condition implies
that there are sustain edges in i’s path that are not in j’s path. There are two
possible cases: i entered the race at an earlier time before j did, or i exited the
race after j did. Let ti1 (ti2) and tj1 (tj2) be the entering (exiting) time-periods of
candidates i and j, respectively.
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Fig. 4. Candidates i and j overlapping sus-
tain edges, nodes are labeled by corre-
sponding time-periods.

Consider the first case, i.e., ti1 < tj1,
as depicted in Fig. 4. We claim that the
sustain edges in Pi \ Pj must together
contribute to a net positive utility for
candidate i. This is true since other-
wise, i would rather not enter the race
as early as time period ti1, but rather
enter at tj1 for a higher net utility,
thereby violating the given condition
that Pi is the best stance path i has
chosen.

However, this claim implies that before i was introduced into the game by
the algorithm, j could have expanded its path to include all the sustain edges in
Pi \ Pj for a higher net utility, thereby violating the condition that the system
was in equilibrium. Hence, the assumption results in a contradiction. We can
make a similar argument for the other case where i exits the race at a later
time-period than j. ��
Proof (Theorem 3). Suppose a new candidate i is introduced when i − 1 can-
didates were previously at equilibrium. Candidate i will join the best (high-
est net utility) path that it has access to, Pi, which will be a stance path in
some stance in Hi. The only candidates who may wish to move are candidates
whose path intersects with candidate i’s. By Lemma 2, the stance path of such
a candidate includes all the edges in Pi. Let a candidate j1 currently on stance
path Pj1 wish to move to another stance path P ′

j1
for better net utility. Any

stance path in Hi cannot provide a greater net utility than Pi, since otherwise,
candidate i would have picked that path instead. But candidate i found that
u(P ′

j1
|P−i) ≤ u(Pi|P−i) ≤ u(Pj1 |P−j1 , Pi) where u(Pi|P−i) is the net utility of

path Pi for i given all other candidates. Therefore, it must be that if such a
path P ′

j1
exists, it is on a stance in Hj1 \ Hi. If such a P ′

j1
exists, the algorithm

moves j1 to it and sets Pi = Pj1 . Doing so restores the net utility of each of the
candidates on the stance path that j1 just left, to what it was before i joined.
Thus, no candidate on i’s stance can make a best response move away from it
or onto it due to the initial assumption of equilibrium prior to i’s introduction.
At this point, three movements have occurred (i to Pi, j1 to P ′

j1
, i to Pj1).

Suppose that candidates j1, ..., jl−1 have made best response movements and
been settled in at most 2i movements, and candidate jl has moved in response
(2l + 1). If candidate jl+1 wishes to move, then by the same reasoning as in the
base case, it will move to a path in a stance set in Hjl+1 \Hjl . However, any path
it would consider must also be on a stance set in Hjl+1 \ Hjl−1 , as candidate jl’s
current path provides a better net utility or equal utility and greater length than
any path in the set Hjl−1 while being inferior or equal to jl+1’s current path. We
extend this line of reasoning back to candidate i and jl+1 must choose a path
represented by a stance set in Hjl+1 \{Hjl ∪ ... ∪ Hj1 ∪ Hi}. Candidate jl+1 then
moves and candidate jl takes its place, bringing the total number of movements
up to 2(l + 1) + 1. However, this cannot continue indefinitely: once we have a jl
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such that |Hjl ∪ ... ∪ Hj1 ∪ Hi| = n, there will be no more movements as for any
jl+1, Hjl+1 ⊂ (Hjl ∪ ... ∪ Hj1 ∪ Hi). Similarly, if i is significantly smaller than
n such that |H1 ∪ ... ∪ Hi−1 ∪ Hi| < n, no candidate l moves stance sets twice,
as Hl ⊂ {Hi ∪ ... ∪ H1} for l ∈ {1, ..., i}. This proceeds at most min(l, n) times,
resulting in O(min{l, n}) total movements. ��
Theorem 4. Algorithm 1 computes a PNE in O((k + n)T 2 + (n + T )k2) time.

Proof. Corresponding to each stance, there are T 2 +T
2 sustain paths. In total,

n(T
2 +T
2 ) operations are needed to compute L. To assign candidate 1, L is

checked to find the best path it has access to, which takes O(n) compar-
isons. Candidate 1 is assigned to the best path and the net utilities of at
most T 2 +T

2 paths are updated, bringing the total number of path evalua-
tions to (n + 1)(T

2 +T
2 ). For 2 ≤ i ≤ k, suppose the first i − 1 candi-

dates have been assigned, the accumulated number of operations till then is
(n+i−1)T

2 +T
2 +

∑i−1
j=1 (j − 1)(T + n − 1). Candidate i is assigned its best path

by checking L, which requires |Hi| ≤ n comparisons. We then check if any other
candidate on candidate i’s chosen path wishes to move. There are at most i − 1
such candidates, each taking at most T computations to evaluate the new net
utility of their path, and each has to compare the utility of that path to at most
n− 1 entries of L, implying that at most (i− 1)(T + n − 1) operations are nec-
essary to evaluate if some candidate is leaving the stance path that i has joined.
Note that if a candidate moves and setting off a chain of movements, there are
still at most (i−1)(T + n − 1) operations in total, as there are only i−1 candi-
dates that were previously at equilibrium. As demonstrated in the proof of Theo-
rem 3, if a path was taken by m candidates before introducing a new candidate, it
is taken by either m or m+1 candidates after all the candidates have settled into
an equilibrium. Only for exactly one stance c, the net utilities on the stance-edges
of c need to be re-evaluated to update L(c), which takes at most T 2 +T

2 computa-
tions. Thus, adding candidate i requires at most |Hi|+ T 2 +T

2 +(i−1)(T +n−1)
additional evaluations, bringing the accumulated number of evaluations to
(n + i)T

2 +T
2 +

∑i
j=1 (j − 1)(T + n − 1) ⇒ O

(
(n + i)T 2 + i2(T + n)

)
. ��
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Abstract. Wireless sensor networks have been widely used in environ-
ment, climate, animal monitoring, surveillance, and also in the medi-
cal field. When deploying sensors to monitor boundaries of battlefields
or country borders, sensors are usually dispersed from an aircraft fol-
lowing a predetermined path. In such scenarios sensing gaps are usu-
ally unavoidable. We consider a wireless network consisting of randomly
deployed sensor nodes and directional border nodes deployed using a ran-
dom line-based deployment model. In this paper we propose an adaptive
distributed algorithm for weak-barrier coverage that allows border nodes
to dynamically compute their orientation based on notifications from the
sensor nodes, such that to increase the number of intruders detected by
the border nodes. We use simulations to analyze the performance of our
algorithm and to compare it with a non-adaptive gap mending algorithm.

Keywords: Adaptive algorithm · Directional border nodes
Distributed algorithm · Wireless sensor networks
Weak-barrier coverage

1 Introduction and Related Works

Wireless Sensor Networks (WSNs) have been widely used in event monitoring
applications such as environment, climate, animal monitoring, surveillance and
also in the medical field. For monitoring boundaries, researchers have used sensor
barriers that detect if an intruder trespasses the border.

Deploying a set of sensor nodes in a region of interest where sensors form
barriers for intruders is often referred to as the barrier coverage [10]. When
sensors are deployed to monitor boundaries of large regions such as country
borders, sensors are usually dispersed from an aircraft following a predetermined
path. Therefore sensing gaps can occur.

Two types of barrier coverage have been addressed in literature: weak-barrier
coverage and strong-barrier coverage. Weak-barrier coverage deals with detecting
intruders moving along vertical traversing paths, while strong-barrier coverage
detects intruders moving across the field with arbitrary paths. In this paper, we
deal with the weak-barrier coverage problem.
c© Springer Nature Switzerland AG 2018
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Paper [9,10] proposes a distributed algorithm which aims to minimize the
number of gaps for both weak and strong-barrier coverage. For the weak coverage
model, the length of the gaps is minimized as well. One drawback is that the
gaps are not monitored at all, and once the orientation angle is computed, the
sensor orientation remains unchanged.

For weak and strong-barrier coverage, the sensors can rotate or be static.
Works [7] and [8] consider static sensors. In this case, the goal is to minimize
the number of mobile sensors needed to cover the gaps in the pre-deployed,
stationary sensor barrier. The barrier consists of different types of sensors with
different sensing ranges and angles. The barrier sensors cannot rotate after they
are deployed in the field. Therefore, additional mobile sensors are deployed to
cover the gaps in the barrier.

To determine the type and number of mobile sensor nodes that have to be
deployed, clusters are defined by groups of overlapping sensors. Then, a cluster-
based directional barrier graph is computed, where vertices are defined by the
clusters and edges are weighted. The weight of an edge is calculated by solving
the ILP problem of minimizing the cost of mobile sensors needed to cover the
gap between two clusters or vertices. Each type of mobile sensor has a cost. The
mobile sensors are randomly deployed and they need to move to the barrier gaps.
Article [7] uses the Hungarian algorithm to calculate the optimal assignment of
mobile sensor to the gaps. However, due to the difficulty of obtaining an optimal
solution, in article [8] the authors use a greedy algorithm to move sensors to
closer gaps.

Similarly, article [12] uses static sensors for statistical local face-view barrier
coverage. In this case, intruder detection is guaranteed if the path has length �,
where � is the length of an intruder’s path across the barrier, projected parallel
to the barrier. Camera sensors are deployed in the field and can rotate to adjust
the covered barrier zone, resulting in an adjustment of the length �. Depending
on the covered zone, the intruders are detected with a certain probability. This
probability also depends on the view angle of the camera, the rotation angle of
the camera, the effective angle between the intruder and the camera, and the
head rotation angle of the intruder. For a successful detection, there must be a
camera detecting the face of the intruder. The authors calculate the probability of
intruder detection using the path length, the head rotation angle of the intruder,
the effective angle, and the number of cameras.

Article [3] presents an optimization of a full-view barrier coverage using
rotating cameras. In this work the cameras do not need to detect the face of
the intruder, but rather they rotate to detect the intruder. The authors define
the strongly connected Full-view Barrier coverage with Rotable Camera sensors
(FBRC) problem, as well as the weakly connected version. For the strongly con-
nected version, they prove that it is NP-hard by reducing the Group Steiner Tree
problem to the strongly connected FBRC problem. The problem of minimizing
the number of sensors needed to detect an intruder is solved using “subtrees”
that are calculated using a modification of the Dijkstra’s algorithm, where the
edge weights depend on the distance between the nodes. For the weakly con-
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nected version, the projection of the arc of the sensing cone of a sensor on the
x-axis is used. If the projections of two continuous sensors start in the same
point, the one with the larger ending point is selected. If the projections of two
continuous sensors start and end in the same point, then the sensor with the
larger “y” position is selected.

Similarly, the authors of [2] use rotating sensors for mending gaps in a line-
based sensor network. The authors first obtain all sub-barriers in the network
using projections of the arcs of the sensing cone of sensors on the x-axis, similar
to the work described previously. If the projections of two continuous sensors
overlap, then they are part of the same sub-barrier. The authors propose two gap-
mending algorithms to fix the barrier gaps. The first algorithm, Simple Rotation
Algorithm (SRA), mends the gaps only by rotating the orientation angles of two
critical sensors, the sensor on the left of the gap and the sensor on the right of the
gap. The second algorithm, Chain reaction-based Rotation Algorithm (CRA),
rotates the critical sensors and their neighbors in order to avoid possible new
gaps.

Article [11] presents a model that uses both the location and the facing direc-
tion of an object in order to detect it using a barrier of sensors. The goal of the
algorithm is to minimize sensor overlapping, thus maximizing the coverage of
the barrier. At each round of the algorithm, each sensor decides its rotation
clockwise or counter-clockwise by a predefined angle. This leads to a reduced
overlapping of the view-coverage of a sensor with its neighbors. The algorithm
stops when sensors tend to reach a stable state, which means that they oscil-
late around some specific orientation, which will become the final orientation of
the sensor. The authors also implement an improvement of the algorithm using
different predefined angles for rotating sensors.

Our work is innovative in the following aspects:

– We use a dynamic distributed algorithm to mend gaps in the line-based bar-
rier. Sensors rotate adaptively in order to mend gaps based on intruders’
location. Thus the barrier may exhibit different gaps at different times.

– We use low-cost sensor nodes to detect intruders and notify the border nodes
which rotate accordingly.

The rest of the paper is organized as follows. Section 2 presents the network
model and describes the problem definition. In Sect. 3 we present our adaptive,
distributed algorithm for event detection and gap mending. The performance
of our algorithm is illustrated in Sect. 4, where we conduct simulations using
MATLAB [5]. The conclusions are stated in Sect. 5.

2 Network Model and Problem Definition

In this paper we propose a solution for the weak-barrier coverage problem, where
the objective is to detect events (e.g. intruders) that move north-south. We
consider two types of wireless nodes, see Fig. 1: sensor nodes and border nodes.
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Sensor nodes are less expensive, deployed in a larger number and they are
used for early detection of intruders. They can be for example small sensors
buried in the ground to detect vibrations caused by nearby activity [6]. We
assume that n sensor nodes {s1, s2,...,sn} are deployed randomly near the bor-
der, forming a “band” for early detection of intruders moving north-south. Each
sensor node detects a moving object with a certain intensity and has a commu-
nication range rt.

Fig. 1. Network deployment

Border nodes are resource-rich and more expensive nodes, therefore fewer
such nodes will be deployed. We assume a model similar to [9], where nodes are
equipped with camera, GPS, and are able to run sophisticated detection and
classification algorithms. Similar to [9], we assume a directional sensing model
represented as a 2D sector-shaped sensing, see Fig. 2b.

When larger borders or perimeters are to be covered, border nodes are
remotely deployed, e.g. sprayed from an aircraft. Besides the uniform deploy-
ment, the line-based deployment model has been used for barrier coverage.

We assume a line-based deployment similar to [9]. A total of N border nodes
{S1, S2, ..., SN} are deployed in a rectangular field of length L and width H,
see Fig. 2a. In the line-based node deployment, nodes are evenly deployed on
a horizontal-line (e.g. y = 0). Such an example is illustrated in Fig. 2a by the
“target” positions, where the coordinate of the ith node is computed as (2i −
1)L/2N . This is hard to achieve in practice for remotely deployed sensors, and
their “actual” positions have random offsets. We follow the model in [1] where
the random offset distances have a Gaussian distribution. A border node Si’s
location is denoted by (Si.x, Si.y).

Border nodes have the ability to exchange messages with each other and with
the sensor nodes. We assume an omnidirectional communication model, where
the transmission range of each border node is Rt. In addition, we assume that
the border nodes have a directional sensing with a finite view angle. Different
from isotropic sensors, they cannot sense the whole circular area.
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Fig. 2. (a) Line-based random deployment of border nodes; (b) Border node coverage
model

Directional sensing can be modeled as 2D sector-shaped sensing [4]. We
describe a node Si using the five tuple <(Si.x, Si.y), Si.θ, Si.ϕ, Rs, Rt>, see
Fig. 2b, where (Si.x, Si.y) are the Cartesian coordinates of Si, Si.θ is the view
angle, Si.ϕ is the orientation angle, Rs is the sensing range, and Rt is the com-
munication range. We assume that all border nodes in the network have the
same view angle, sensing range, and communication range.

We assume that intruders move north-south. In the barrier coverage problem,
the objective is to construct a barrier such that any north-south path falls into
the coverage area of at least a border node. For the weak-barrier coverage, the
barrier of sensors has to provide coverage when intruders move along vertical
traversing paths.

Due to the random deployment of the border nodes, a complete weak-barrier
coverage may be impossible to achieve, and in this case the target region is
divided into sub-barriers (where coverage is provided) and gaps. Figure 1 shows
an initial sensor deployment scenario with sub-barriers (SB) and gaps (G).
Intruders crossing through a SB region are detected, while those crossing though
a G region are not detected.

Using the distributed algorithm from [9], we can minimize the number and
length of the gaps, but the intruders traversing the border through the gaps are
undetected. The objective of this paper is to design an adaptive mechanism where
border nodes rotate dynamically, in order to cover the regions where intruders
are expected to trespass the border, based on notification received from sensor
nodes.

Problem Definition: Given a connected WSN with n randomly-deployed sensor
nodes {s1, s2,...,sn} and N border nodes {S1, S2,...,SN} deployed using a random
line-based model, design an adaptive, distributed algorithm for weak-barrier cov-
erage that allows border nodes to dynamically compute their orientation angle
such to maximize the number of intruders detected by the border nodes.

3 Adaptive Distributed Algorithm for Weak-Barrier
Coverage

In this section, we present our adaptive, distributed algorithm for weak-barrier
coverage. We assume that the border nodes form a connected topology and each
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sensor node is connected to at least a border node using direct or multi-hop
communication. Figure 3 shows the main phases of the algorithm:

Fig. 3. Network organization

Phase 1 is the initialization phase. Border nodes perform neighbor discovery
and exchange location information with neighboring border nodes. Sensor nodes
establish a direct or multi-hop path to border nodes. In phase 2, border nodes
rotate according to the algorithm in [9] that minimizes the number of gaps and
the gap distance. We call this the “default” rotation.

In phase 3, one or more sensor nodes detect the event and execute the mech-
anism for reporting the event to border nodes. In phase 4, border nodes run
the mechanism for computing the orientation angle so that the event is weakly
covered by border nodes. After the event crosses the barrier, the border nodes
return to the default rotation from phase 2. Phases 2 through 4 repeat in time
as new events are detected. Next, we describe each phase in detail.

Phase 1: Initialization
During phase 1 each border node broadcasts a Hello message including its ID and
location. For the weak-barrier coverage problem, we work with node projections
on the x-axis. A border node Si receiving Hello(Sj , (Sj .x, Sj .y), hops = 0), stores
Sj in its BorderNodeNeighbor list if |Si.x − Sj .x| ≤ 2Rs. Each border node Si

computes its closest right neighbor Si.rn and its closest left neighbor Si.ln from
the nodes in the BorderNodeNeighbor list.

As Hello messages are initiated by border nodes, sensor nodes form con-
vergecast trees rooted at border nodes. Each sensor node sk that receives a
Hello message for the first time, increments the hops field, sets the sending node
as its parent, stored in the field sk.tp, and sends a message Hello(sk, (sk.x, sk.y),
hops). At the end of this step, each sensor node sk has set-up its parent in a
convergecast tree rooted at a border node. If a sensor node receives another Hello
messages, then it stores the parent leading to the shortest path, and retransmits
the updated Hello message if needed.

Phase 2: Default Rotation of Border Nodes
The border nodes rotate according to the distributed algorithm presented in [9].
The objective is to minimize the number of gaps and the overall gap length.
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ALGORITHM 1. Check-Coverage (border nodes S1, S2, ..., Sk, event e,
BNlist = empty list)

1: I = [e.xl, e.xr]
2: for i = 1 to k do
3: if Si.coverage ∩ I �= Φ then
4: add Si to BNlist
5: I = I − Si.coverage
6: end if
7: end for
8: if I == 0 then
9: return True

10: else
11: return False
12: end if

Phase 3: Sensor Nodes Detect an Event and Notify the Border Nodes
As specified previously, we assume that border nodes know their location, using
GPS. Based on this, we assume that the sensor nodes run a localization mecha-
nism, and thus they are aware of their location too.

A sensor node si detecting a moving event e, sends a message
EventDetected(e, si, (si.x, si.y)) to the root border node, following the par-
ent path in the convergecast tree computed in phase 1. More specifically the
message is retransmitted by the si.tp sensor node. e stores information about
the detected event.

Phase 4: Border Nodes Rotate for Weak Coverage of the Event
When a border node Si receives the EventDetected message from a sensor node
sk, it broadcasts EventCoverageRequest(Si, e, (sk.x, sk.y)) after a small amount
of time. A border node Sj receiving this message will re-broadcast the message
if |sk.x − Sj .x| ≤ Rs or if it has received a message reporting the same event
from another sensor node.

If Sj has received a report about the same event from another sensor node
sp, then it rebroadcasts EventCoverageRequest(Si, e, (sk.x, sk.y), (sp.x, sp.y)).
When the EventCoverageRequest stops being propagated by border nodes, the
left-most and right-most border nodes send back towards Si an EventCover-
ageReply message, appending their current orientation angle and a field called
committed. Committed is 1 if the border node is committed to the current ori-
entation angle for covering a certain event, otherwise it is 0. If committed is 0,
then it means that the sensor node can rotate if needed for coverage purpose.
These messages are propagated from left and right directions back towards Si.

After receiving EventCoverageReply messages from the left and right neigh-
bors, Si knows the orientation angles and the committed attributes for all border
nodes that have the potential of covering the event e. Si executes an algorithm
to decide the orientation angle of these border nodes and then sends a mes-
sage EventRotationCommit to these border nodes. Upon receiving this message,
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ALGORITHM 2. Compute-Coverage (border nodes S1, S2, ..., Sk, event e,

BNlist = empty list)

1: I = [e.xl, e.xr]
2: for j = 1 to k do
3: if Sj .committed == 1 then
4: if Sj .coverage ∩ I �= Φ then
5: add Sj to BNlist
6: I = I − Sj .coverage
7: end if
8: else
9: if [Sj .x − Rs, Sj .x + Rs] ∩ I �= Φ then

10: Compute-Orientation-Angle(Sj , I)
11: add Sj to BNlist
12: I = I − Sj .coverage
13: end if
14: end if
15: end for
16: if I == 0 then
17: return True
18: else
19: return False
20: end if

the border nodes set their orientation angle and set the committed attribute to
1. The EventRotationCommit message is re-sent periodically by Si, otherwise
after a specific period of time the nodes set the attribute committed to 0 and
the orientation angle to the default angle.

Next, we discuss the algorithm used to compute the orientation angles. Let
us assume that the border nodes involved in covering the event are S1, S2,
..., Sk from left to right, with the orientation angles S1.ϕ, S2.ϕ, ..., and Sk.ϕ
respectively. Let us assume that the horizontal projection of the event ranges
between e.xl and e.xr.

The first step is to determine whether [e.xl, e.xr] is already covered by the
current sensors’ orientation, see Algorithm 1. BNlist is used to compute the list
of border nodes needed to cover the interval [e.xl, e.xr]. Lines 2 to 7 iterate
through the border nodes, and if new coverage is provided, then the sensor is
added to the BNlist. The coverage of a sensor Sj is computed as Sj .coverage =
[min{Sj .x, Sj .x + Rscos(π − Sj .θ − Sj .ϕ)}, max{Sj .x, Sj .x + RscosSj .ϕ}].

If the event is covered by the sensors in the list BNlist, then the algorithm
returns True, otherwise it returns False. If Algorithm 1 returns True, then Even-
tRotationCommit message contains the BNlist. The nodes in this list will set-up
their committed attribute to 1, in order to guarantee the coverage of the event e.
If Algorithm 1 returns False, then Si runs the Algorithm2 to compute the sensor
rotation angles needed to cover the event e.
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ALGORITHM 3. Compute-Orientation-Angle (border node Sj , set of
intervals I)

1: I ′ = [Si.x − Rs, Si.x + Rs] ∩ I
2: if I ′ == 0 then
3: return
4: end if
5: if I ′.xl ≤ Sj .x then

6: Sj .ϕ
′ = max{0, π − θ − arccos(

Sj .x−I′.xl

Rs
)}

7: else
8: Sj .ϕ

′ = 0
9: end if

Algorithm 2 iterates through the border nodes in order to build the BNlist.
BNlist contains the nodes participating in covering the event e and these nodes
will set their committed attribute to 1 if it was 0 previously. Lines 3 through
7 address the case when Sj is committed to the current orientation due to the
covering of some other event. If the current orientation still covers some parts
of I, then Sj is added to the BNlist, and I is updated accordingly. I represents
the horizontal interval (or group of intervals) of the event e which are currently
uncovered.

Lines 9 through 13 discuss the case when Sj has the committed attribute
set-up to 0, that means it can rotate to participate in the covering of the event
e if needed. If its rotation can have an impact on I, then its orientation angle is
computed in the Algorithm3. In this case Sj is added to BNlist and I is updated
accordingly.

Algorithm 3 starts by computing the horizon interval I ′ which is the interval
(or set of intervals) that can be covered by Sj , based on the sensing range Rs.
The orientation angle Sj .ϕ

′ is computed such that o start covering from the
leftmost point of the interval I ′, denoted by the attribute I ′.xl.

Algorithm 2 returns True or False, depending on whether the border nodes in
the BNlist are able to completely cover the event e or not. EventRotationCommit
message is sent back to the border nodes S1, S2, ..., Sk, containing the BNlist, and
the new orientation angles. The nodes in the BNlist will set-up their committed
attribute to 1 (if it was 0 previously), and will set-up their orientation angles
accordingly.

Our algorithm does not guarantee that all the events will be completely cov-
ered. Some of the border nodes cannot change their orientation angle if they are
committed to cover other events. Nevertheless, our adaptive algorithm improves
substantially the number of events detected completely or partially.

4 Simulations

We used MATLAB [5] to evaluate the performance of our distributed algorithm,
and we compared it with the algorithm proposed in [9].
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4.1 Simulation Environment

Following the settings from [9], we deployed the WSN into a square region of
length L = 500 m and width H = 100 m. The initial orientation angle of the
border nodes follows a uniform distribution in the range [0, 2π]. The sensing
range is Rs = 15 m. The border nodes positions have random offsets following
a Gaussian distribution with mean 0 and variance σ2. We denote δxi and δyi the
offset distance of the border node Si in the horizontal and vertical directions,
with δxi , δyi ∼ N(0, sσ2). In our simulations we set σ = 5.

We take n = 100 sensor nodes s1, s2, ..., sn, randomly deployed in the area.
In each simulation run we generate events which have a circular area. The center
is generated randomly. Five types of events are used in the simulations:

– small events, where the event diameter is 10 m
– small-medium events, where the event diameter is 30 m
– medium events, where the event diameter is 50 m
– medium-large events, where the event diameter is 70 m
– large events, where the event diameter is 90 m.

We assume that the events move north-south, that means that the events
move perpendicular to the barrier. The number of events generated follows a
Poisson distribution with λ = 5. The average and maximum speed of the events
are indicated in Table 1. The location of an event is selected randomly.

Table 1. Event speed

Average speed (m/s) Maximum speed (m/s)

1 2

2 3

3 4

4 5

5 6

We generated 100 different sensor deployments. Each data point in our sim-
ulation results is an average of 100 experiments. We used the following values
when variables are not changed in the experiments:

– number of border nodes = 30
– number of sensor nodes = 100
– view angle = 60◦ or 120◦

– event size = 50 m
– event speed (average) = 2 m/s.
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4.2 Simulation Results

In this section we compare the following two algorithms:

– the Distributed Gap Mending Algorithm from [9]
– our proposed solution, the Adaptive Distributed Algorithm for Weak-Barrier

Coverage, called Adaptive Distributed W-B Coverage.

For both algorithms we compare their performance using the following rep-
resentative metrics:

– the percentage of events which are completely covered by border nodes. Here
we count only the events whose horizontal projection is completely covered
by border nodes.

– the percentage of event coverage. Some of the events are partially covered,
some are completely covered, and some other events are not covered at all.
Considering the projection of the events on the horizontal axis, we measure
the percentage of event coverage by border nodes. For example, if we have
1 event completely uncovered, 1 event covered only on half of its projection,
and 1 event completely covered, then the percentage of event coverage is
1.5/3 = 0.5, that means 50%.

In our experiments we vary the number of border nodes, the number of
sensors, the view angle, the event size, and the event speed.

Fig. 4. Results when we vary the number of border nodes. (a) Percentage of events
completely covered; (b) Percentage of event coverage.

Figure 4a presents the percentage of events which are completely covered
when we vary the number of border nodes. We used two values for the view
angle: 60◦ and 120◦. The number of sensor nodes is 100 and the event size is
medium.

In both cases, our algorithm performs better than the algorithm in [9]. When
the view angle is 60◦, the algorithms converge when the number of border nodes
is close to 50, while for a view angle of 120◦ the algorithms converge when the
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Fig. 5. Results when we vary the number of sensor nodes. (a) Percentage of events
completely covered; (b) Percentage of event coverage.

number of border nodes is about 30. When the view angle is bigger, the projection
of the coverage sector on the x-axis is larger, thus the node can provide more
coverage.

When the number of border nodes is small (near 20), the distance between
them is larger, thus more coverage gaps will occur. Contrary, when the number
of border nodes is large (near 50), the nodes will become closer, then even with
the initial setting of the orientation angle the whole barrier will be covered.

Figure 4b confirms the previous result. This figure shows the percentage of
event coverage, counting both partially and completely covered events, when we
vary the number of border nodes with view angle 60◦ and 120◦, respectively.
The percentage of event coverage by our algorithm is larger in both cases, until
they reach the point of convergence: near 30 nodes for a view angle of 120◦ and
near 45 nodes for a view angle of 60◦.

Figure 5a shows the percentage of events that were completely covered when
we varied the number of sensor nodes, using a view angle of 60◦ and 120◦,
respectively. The number of border nodes is 30 and the event size is medium.
The results are consistent with those in the Fig. 4.

When the number of sensor nodes is 100, the results are comparable with
those in the Fig. 4. Just as mentioned previously, when the view angle is 120◦,
the convergence of both algorithms is near 30 border nodes. This justifies why
the percentage of completely covered events is equal even if we vary the number
of sensors. When the view angle is 60◦, if we decrease the number of sensor
nodes, then the two algorithms will converge and have the same performance.
This happens because our algorithm will not be able to start phase 3 and phase
4. Figure 5b presents the percentage of event coverage when we vary the number
of sensors with a view angle of 60◦ and 120◦, respectively.

Figure 6a shows the percentage of completely covered events when we vary
the view angle. We used two measurements: 30 and 40 border nodes. The number
of sensors is 100 and the event size is medium. As we increase the view angle of
the border nodes, the projection of the sensing sector on the x-axis is increasing
as well. Therefore, each border node covers a larger portion of the barrier.
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Fig. 6. Results when we vary the view angle of the border nodes. (a) Percentage of
events completely covered; (b) Percentage of event coverage.

For 30 border nodes, the converging point of the algorithms is for a view angle
of 105◦, while for the case of 40 border nodes, both algorithms have a similar
performance for a view angle of 97◦. Figure 6b presents the percentage of event
coverage when we vary the view angle, for 30 and 40 border nodes respectively.
Similar to Fig. 6a, our algorithm has better results than the algorithm [9].

When the number of sensor nodes is 100, the results are comparable with
those in the Fig. 4. For a 120◦ view angle, the two algorithms converge near 30
border nodes. This justifies why the percentage of completely covered events is
equal even if we vary the number of sensors. When the view angle is 60◦, if we
decrease the number of sensor nodes, then the two algorithms converge and have
the same performance. This happens because our algorithm cannot start phase
3 and phase 4. Figure 5b shows the percentage of event coverage when we vary
the number of sensors with a view angle of 60◦ and 120◦, respectively.

Figure 6a illustrates the percentage of events that were completely covered
when we vary the view angle, for 30 and 40 border nodes. The number of sensors
is 100 and the event size is medium. As we increase the view angle of the border
nodes, we are also increasing the projection of the sensing sector on the x-axis.
Then each border node covers a larger portion of the barrier.

For 30 border nodes, the converging point of the algorithms is for a view angle
of 105◦, while for the case of 40 border nodes both algorithms have a similar
performance for a view angle of 97◦. Figure 6b presents the percentage of event
coverage when we vary the view angle, for 30 and 40 border nodes respectively.
Similar to Fig. 6a, our algorithm performs better than the algorithm in [9].

Figure 7a measures the percentage of completely covered events when we vary
the size of the event, for a view angle of 60◦ and 120◦, respectively. We took 30
border nodes and 100 sensor nodes. A small event could fit through a gap, and
if the nearby sensors have the committed field 1, then the event is completely
uncovered. When the size of the event increase to 30 m, the probability to cover
a bigger portion of the event increases compared to small events, thus the per-
centage of detected events increases. As the event size increases, the percentage
of events successfully detected decreases. This happens because a larger event
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Fig. 7. Results when we vary the event size. (a) Percentage of events completely cov-
ered; (b) Percentage of event coverage.

requires coverage from more border nodes. When a new event arrives, some of
the senors are committed to another event, and cannot rotate. The number of
border nodes play a role too. A smaller number of border nodes results in more
gaps with a larger gap distance. Thus it becomes difficult to cover simultaneous
events.

When the view angle is 120◦, the performance of both algorithms is similar.
This is consistent with the results in Fig. 4a. Figure 7b presents the percentage
of event coverage when we vary the size of the event. The view angle is 60◦ and
120◦, respectively. The results are consistent with those in the Fig. 7a. When the
view angle is 120◦, the percentage of events covered is the same when the event
size is at least 30 m.

Fig. 8. Results when we vary the event speed. (a) Percentage of events completely
covered; (b) Percentage of event coverage.

In Fig. 8a we measure the percentage of completely covered events when we
vary the speed of the event. We use two view angles: 60◦ and 120◦. The number
of border nodes is 30, the number of sensor nodes is 100, and the event size
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is medium. Varying the speed of the events does not impact the results of the
algorithm [9] in any way since the border nodes are static after the first setting
of the orientation angles.

For our algorithm, an increase in the event speed results in a decrease in the
performance, that means the percentage of events detected is smaller. This is
due to the fact that the border nodes are not notified on time to set-up their
orientation angle. This notification process is initiated by the sensor nodes which
start detecting the event before it crosses the barrier. Figure 8b illustrates the
percentage of event coverage. The results are consistent with those in the Fig. 8a.
The percentage is larger than the results in Fig. 8a, since this time we measured
the percentage of events which are partially or completely covered.

5 Conclusions

In this paper we studied weak-barrier coverage for directional border nodes with
random line-based deployment. Since monitoring gaps can occur, we proposed an
adaptive, distributed algorithm that allow border nodes to dynamically adjust
their orientation angle depending on the events detected by sensor nodes. Sim-
ulation results show that our mechanism detects more events compared to the
mechanism proposed in [9], where the orientation angles do not change over time.
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