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Abstract. Most existing approaches of learning to rank treat the effec-
tiveness of each query equally which results in a relatively lower ratio of
queries with high effectiveness (i.e. rich queries) in the produced ranking
model. Such ranking models need to be further optimized to increase
the number of rich queries. In this paper, queries with different effective-
ness are distinguished, and the queries with higher effectiveness are given
higher weights. We modify the gradient in the LambdaMART algorithm
based on a new perspective of Matthew effect to highlight the optimiza-
tion of the rich queries and to produce the rich ranking model, and we
present a consistency theorem for the modified optimization objective.
Based on the effectiveness evaluation criteria for information retrieval,
we introduce the Gini coefficient, mean-variance and quantity statistics
to measure the performances of the ranking models. Experimental results
show that the ranking models produced by the gradient-modified Lamb-
daMART algorithm based on Matthew effect exhibit a stronger Matthew
effect compared to the original LambdaMART algorithm.
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1 Introduction

Ranking is an important component that directly affects the performances of
information retrieval systems such as search engines and recommendation sys-
tems. For instance, the underlying assumption of the PageRank algorithm [1] is
that more important websites are likely to receive more links from other websites,
it assigns a Web page with higher score if the sum of its corresponding backlinks
is high. The PageRank algorithm exhibits the Matthew effect [2] to some extent,
which refers to the phenomenon that the rich get richer and the poor get poorer.
It is valuable since the PageRank algorithm evaluates the importance of web
pages by the link analysis, and ranks web pages by the scores of the importance
of web pages. Therefore, the Matthew effect is regarded as a desirable behavior
of the ranking model.

Moreover, keywords ranking algorithm of Baidu, goods ranking rules of
Taobao, and collaborative filtering algorithms for recommender systems are all
showed the Matthew Effect to their respective degrees. Those ranked results of
queries or recommendations at higher positions are likely to be the desired target
pages of more number of people than those at lower positions, and the ranking of
results exhibits the Matthew effect. Furthermore, it is necessary to consider the
differences of different queries and to treat those queries distinctly when solving
the ranking problem for information retrieval, due to the Matthew effects of the
ranking. Therefore, it is a natural idea to distinguish the effectiveness scores of
different queries in the training process of the ranking models.

Learning to rank for information retrieval refers to the machine learning
techniques in order to train the ranking models in the ranking task. The exist-
ing approaches of learning to rank, such as LambdaMART [3,4], CCRank [5],
ES-Rank, IESR-Rank and IESVM-Rank [6], Factorized Ranking SVM and Reg-
ularized Ranking SVM [7], all equally treat the effectiveness of each query in
the optimization process of the ranking models, and these approaches do not
distinguish the differences among the effectiveness of different queries. Here, we
note that the effectiveness can be measured by any commonly-used information
retrieval metrics (e.g. NDCG [8] and ERR [9]). Due to the fact that the effec-
tiveness of different queries may be different for the same ranking model, treating
each query equally in the optimization process of the ranking models results in
a relatively fewer number of rich queries. To this end, the ranking model needs
to be further optimized to further increase the number of rich queries.

In this paper, we modify the gradient in LambdaMART algorithm based on
Matthew effect from a new perspective. We describe how the gradient is modified,
and present a consistency theorem. Based on the effectiveness evaluation criteria
for information retrieval, we introduce the Gini coefficient, mean-variance and
quantity statistics to measure the performances of the ranking models. Moreover,
we conduct experiments to compare the performances of the ranking models
between these models trained by the gradient-modified LambdaMART algorithm
based on the Matthew effect (named as Matthew-A\-MART) and those models
trained by the original one. The experimental results indicate that the Matthew-
A-MART exhibits a stronger Matthew effect.
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2 Construction of the Rich Ranking Models via Matthew
Effect

2.1 The Gradient of LambdaMART Algorithm

LambdaMART [3,4] is a state-of-the-art learning to rank algorithm, which has
been proven to be very successful in solving real world ranking problems. An
ensemble of LambdaMART rankers won the “2010 Yahoo! Learning to Rank
Challenge”.

The main feature of the LambdaMART [3,4] algorithm is the definition of
the gradient function A of the loss function without directly defining the loss
function. A quantifies the force of a ‘to-be-sorted’” document and points out the
upward or downward adjustment direction in the next iteration. The two docu-
ments in each document pair are associated with a query have different relevance,
and the gradients of the two documents are equivalent but their moving direc-
tions are opposite to each other. The gradient of the positive direction pushes the
document toward the top of the ranked list, while the gradient of the negative
direction pushes the document toward the bottom of the ranked list.

The LambdaMART [3,4] algorithm optimizes the gradient \; of each docu-
ment d; for each query ¢ to train the ranking models. If the relevance judgement
r; between d; and ¢ is higher, and the ranked position of d; is closer to the bot-
tom of the ranked list for a given query ¢, then the positive value of \; indicates
a push toward the top of the ranked list. Meanwhile, if the value of \; is bigger,
then it shows that the force is stronger. If the relevance r; between d; and ¢ is
smaller, and the ranked position of d; is closer to the top of the ranked list, then
the negative value of )\; indicates a push toward the bottom of the ranked list.
Meanwhile, if the value of \; is smaller, then it shows that the force is stronger.

The LambdaMART [3,4] algorithm integrates the evaluation criteria
(NDCG) of the information retrieval into the computation of the gradient. The
gradient A; for each document d; is obtained by summation of all \;; over all
pairs of <d;,d;> that d; participates in for query g. Therefore, A; can be writ-
ten as /\Z = Zj:{i,j}el Aij — Zj:{j,i}e] Aija where )‘ij = —W X |AMZJ|,
which denotes the gradient of the document pair <d;,d;>. In the formula
)\ij =
s; and s; represent the score assigned to d; and d; by the ranking model respec-
tively, and AM;; represents the change on effectiveness measure M by swapping
the two documents d; and d; at rank positions ¢ and j accordingly (while keeping
the rank positions of all other documents unchanged). Therefore, AM;; can be
calculated by AM;; = M, — My, where M, denotes the effectiveness of query ¢
for a ranked list of all documents w.r.t. ¢, M denotes the effectiveness of query
q after swapping the documents d; and d; at the rank positions ¢ and j for the
ranked list, and M denotes the effectiveness evaluation criterion.

—W x |AM;;|, B is a shape parameter for the sigmoid function,
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2.2 Modification of the Gradient of the LambdaMART Algorithm

The LambdaMART algorithm equally treats the effectiveness of each query in
the training process of the ranking models. In order to discriminate the effec-
tiveness score of each query, we assign different weights to different queries with
unequal effectiveness scores for optimizing the gradients in the training process
of the ranking models. In order to highlight the gradients of rich queries and
enhance the effectiveness of rich queries, the weights of rich queries should be
given the higher values based on the idea of the Matthew effect. We assign
the effectiveness score of each query as the weight of the corresponding query.
Therefore, the original effectiveness M is replaced by the new objective M2 to
modify the gradient of the original LambdaMART algorithm, thereby expand-
ing the LambdaMART algorithm to optimize the rich ranking model. Therefore,
AM;j is replaced by AM;; when \;; is computed, where AM;; = M, — My and
AM;; = (My)? — (M;)?, which denotes the difference of the squared effective-
ness scores of query ¢ after swapping the two documents d; and d; at rank
positions ¢ and j (while keeping the rank positions of all other documents
unchanged). In other words, M, — M is replaced by (M,)? — (M;)?. The docu-
ment pair <d;, d;> for the same query is optimized according to the new gradient
Az = _% X |AM;;|7 which strengthens the differences of upward or
downward ranking force among the document pairs for different queries in the
next iteration, and thus enhances the optimization of rich queries.

The gradient function of the LambdaMART algorithm is modified, and there-
fore, it is necessary to demonstrate that the Matthew-A\-MART algorithm can be
used to train the ranking model for the learning to rank task. Now, we present
that the new optimization objective M? satisfies the consistency property pro-
posed in [4]: when swapping the ranked positions of two documents, d; and d;,
in a ranked list of documents where d; is more relevant than d; but d; is ranked
after d;, the optimization objective should be increased. In other words, for any
document-pairs, the pairwise swap between correctly ranked documents d; and
d; for the same query ¢ must lead to a decrease of M 2 and the pairwise swap
between the incorrectly ranked documents d; and d; for the same query ¢ must
lead to an increase of M2.

Theorem 1. The new optimization objective M? satisfies the
consistency property.

3 Evaluation Measures of Matthew Effect

A ranking model is richer than another model if (1) the former both has more
rich queries and has more poor queries than the latter, or (2) the distribution
of the effectiveness of queries of the former is more discrete than the latter.
A richer ranking model is of a stronger Matthew effect. In order to measure
the performances of the ranking model yielded by our modified approach, we
introduce the following utility metrics to characterize the Matthew effect of
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ranking models from different perspectives. Based on the effectiveness evaluation
criteria for information retrieval, we introduce Gini coefficient, mean-variance
and quantity statistics to measure the performances.

3.1 Gini Coefficient

The Gini coefficient [10] is a measure of the statistical dispersion, which is
intended to represent the income distribution of the residents in a nation, and is
the commonly used as a measure of inequality o£ inconme or wealth. The Gini coef-
ficient is calculated using the formula G = W
the income of individual 4, |z; — ;| denotes the absolute value of the difference
between z; and x;, ;1 denotes the mean value of all individuals’ incomes, and n
denotes the total number of individuals. The smaller the inequality of income,
the smaller the value of the Gini coefficient; and vice versa.

The Matthew effect is reflected by using Gini coefficients for the measurement
in many economic areas, so Gini Coeflicient can capture the Matthew Effect,
which can be used to measure the performance of the ranking model. If we make
an analogy with the distribution of the national income in the field of finance, the
query in the learning to rank task resembles the individual in the distribution of
the national income, and the effectiveness of the query resembles the income of
the individual. Therefore, the Gini coefficient of learning to rank can be defined

as follows: QI ~1Q
= i1 2055 | My, — My, |

20QI i, M,
where, ¢; € @ denotes the i-th query and |Q| represents the total number of
queries in query set Q.

Gini is used to measure the degree of difference in effectiveness among all
the queries in a ranking model, and to reflect the Matthew effect by comparing
the Gini of one ranking model with another. A higher Gini value represents
a greater difference in effectiveness (i.e. effectiveness inequality) among all the
queries in a ranking model. If the value of Gini obtained by a ranking model
is larger, then it indicates that the corresponding ranking model has a stronger
Matthew effect.

, where z; denotes

Gini

(1)

3.2 Mean-Variance

In probability theory and mathematical statistics, mean is used to measure the
average value of all random variables; Variance is used to measure the degree
of deviation between a set of random variables and their mean, and it is an
important and commonly used metric for calculating the discrete trend.

In order to observe the effectiveness of a ranking model, the mean p of a
ranking model is defined as follows:

1
M:@ZMq (2)

q€Q
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For a ranking model, the mean p measures the average effectiveness (such
as NDCG and ERR) of all queries in a set of queries, i.e., it refers to the
average effectiveness of the ranking model. The greater the mean u, the better
the average effectiveness of the ranking model; and vice versa.

In a ranking model, some queries are of high effectiveness but some are of
low effectiveness. Therefore, in order to observe the degrees of their deviation,
we divide the variance of a ranking model into the upside semi-variance V,,; and
the downside semi-variance Vjon, which are defined as follows:

Vir = |Q+| 2 (M 3)

qeQ+t
Vdown = |Q17‘ Z (M _M)Q (4)
q€EQ™

where, QT and Q~ denote the set of queries with above-mean effectiveness and
below-mean effectiveness in the query set Q respectively, and |QT| and |Q~|
denote the number of the set of queries Q1 and Q™ respectively. The greater
the variance, the greater the degree of deviation; and vice versa.

For a ranking model, the V,, and the Vg,,, measures the discrete degree
of effectiveness of the queries that are over and under the p in the query set
respectively. The Matthew effect of a ranking model is exhibited by comparing
the V,, and the Vjowy of the ranking model to those of other ranking models
respectively. If the values of both V,;, and Viown of a ranking model are higher,
then it indicates that the ranking model has a stronger Matthew effect; and vice
versa.

3.3 Quantity Statistics

The range of values of the most commonly used effectiveness measures is between
0 and 1 in information retrieval, such as NDCG and FRR. To compute the
effectiveness distribution of all queries in a query set, the range of values of the
effectiveness is divided into 5 intervals as [0.0,0.2], (0.2, 0.4], (0.4, 0.6], (0.6,0.8]
and (0.8, 1.0], respectively. We compute the number of queries distributed in
these different intervals according to the effectiveness values of the queries in a
given query set for different ranking models, and the purpose is to evaluate the
strengths of their exhibited Matthew effect. We use an array count to express
the quantity statistics of different intervals for the effectiveness of queries, and
the count is defined as follows:

2 M, €[0.0,0.2],4€Q 1
M, €(0.2,0.4].96Q |
count[il = ¢ > as c0.a0.6,qe0 1 1 =2 (5)
M, €(0.6,0.81.9€Q |
1

Zqu(O.S,l.O],qGQ
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If the values of count[0] and count[4] obtained by a ranking model are larger,
then the ranking model has a stronger Matthew effect.

4 Experiments

In order to verify the performances of the Matthew-A-MART, we implement
the algorithm based on the open-source RankLib library of learning to rank
algorithms developed by Van Dang et al.! Based on the effectiveness measures
NDCG and ERR, we conduct experiments on Microsoft Learning to Rank
dataset MSLR-WEB30K?, which is the larger scale dataset of learning to rank
and makes it possible to derive reliable conclusions. We report the total results
of all five folds for the test dataset. The utility metrics used in our experiments
are ft, Vup, Vdown, Gini and count respectively, and their results are shown in
Figs. 1, 2, 3, 4, 5 and 6.
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Fig. 1. Gini of each algorithm on MSLR-WEB30K dataset
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Fig. 2. i of each algorithm on MSLR-WEB30K dataset

! http://sourceforge.net /p/lemur/code/HEAD /tree/RankLib /trunk/.
2 http://research.microsoft.com/en-us/projects/mslr/download.aspx.
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Fig. 3. Vi, of each algorithm on MSLR-WEB30K dataset
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Fig. 4. Viown of each algorithm on MSLR-WEB30K dataset
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Fig. 5. count[0] of each algorithm on MSLR-WEB30K dataset
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Fig. 6. count[4] of each algorithm on MSLR-WEB30K dataset
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From the perspectives of the Gini coefficient in Fig.1, Matthew-A\-MART
obtains the bigger Gini than LambdaMART on all effectiveness measures
(including NDCG@Q@10, NDCG@20, ERRQ10 and FRR@20). These results
show that the effectiveness across different individual queries in Matthew-A-
MART has a greater difference. Therefore, the ranking models trained by
Matthew-A\-MART exhibit a stronger Matthew effect about Gini.

From the perspectives of mean-variance in Figs. 2, 3 and 4, although the u
obtained by the Matthew-A-MART are smaller, the corresponding Vi, and Viown
are both bigger than the LambdaMART on all the above effectiveness measures.
These results show that the effectiveness across different individual queries in
Matthew-A\-MART has also a greater difference. Therefore, the ranking models
trained by Matthew-A-MART also exhibit a stronger Matthew effect about V,,,
and Viown.-

From the perspectives of quantity statistics in Figs.5 and 6, the count[4]
obtained by the Matthew-A-MART w.r.t. rich queries and the corresponding
count[0] w.r.t. poor queries are both bigger than LambdaMART on all above
effectiveness measures. These results of Matthew-A\-MART produce a relative
polarization. Therefore, the ranking models trained by Matthew-A-MART fur-
ther exhibit a stronger Matthew effect about count[0] and count[4].

The primary reason for the above observations is that the gradient is modi-
fied by the Matthew effect in the original LambdaMART algorithm. Matthew-A-
MART highlights the corresponding differences of upward or downward ranking
force between documents w.r.t. rich queries with high effectiveness and docu-
ments w.r.t. poor queries with low effectiveness in the next iteration. Therefore,
the optimization of rich queries is strengthened and the optimization of poor
queries is weakened accordingly. Therefore, more attentions are paid to optimize
the ranked positions of the documents in the rich queries while less attentions
for the poor queries. It leads to an increase in the corresponding numbers of
both the rich queries and the poor queries respectively. Finally it increases the
diversion or degree of difference in the effectiveness across all the queries in the
ranking models.

5 Conclusion

To highlight the high effectiveness of the important queries and to abandon the
average effectiveness across all the queries, the queries with different effective-
ness are treated distinctly in our proposed approach, and they are assigned with
different weights. Based on the new perspectives of Matthew effect, we modify
the gradient in the LambdaMART algorithm by assigning higher weights for
the gradients of the queries with higher effectiveness so as to highlight the opti-
mization of these rich queries, and thereby produce the rich ranking model. We
introduce the Gini coefficient, mean-variance, and quantity statistics to quantize
the Matthew effect of the ranking models. In comparison with the original Lamb-
daMART algorithm, the ranking models trained by the gradient-modified Lamb-
daMART algorithm based on the Matthew effect exhibits a stronger Matthew
effect.
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It is obvious that different information has different popularity in different
time periods, which causes the popularity of queries to change over time. Some of
the queries (hot queries) gain a huge popularity with numerous searchers, while
some of the queries (cold queries) are just opposite. Most existing approaches of
learning to rank treat all the queries with equal weights and the popularity factor
of the queries is neglected. Therefore, the hot queries and the cold queries are
not treated differently. If the hot queries are not treated with higher priorities,
then the huge number of users searching such hot queries may not be satisfied,
which will degrade the overall user experiences. In order to increase the quality of
user experiences, more weights should be assigned to the hot queries during the
training process of the ranking models. As a future work, we plan to integrate the
hot queries and the cold queries into the Matthew-effect-based gradient-modified
LambdaMART algorithm to construct the ranking models. To make the rank of
search results of hot query more effective, we will give more weights to the hot
queries and less weights to the cold queries in the training process of the ranking
models, so as to enhance the overall user experiences.
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