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Abstract This is an attempt to discuss the following question: When is a random
choice better than a deterministic one? That is, if we have an original determinis-
tic setup, is it wise to exploit randomization methods for its solution? There exist
numerous situations where the positive answer is obvious; e.g., stochastic strategies
in games, randomization in experiment design, randomization of inputs in identifi-
cation. Another type of problems where such approach works successfully relates
to treating uncertainty, see Tempo R., Calafiore G., Dabbene F., “Randomized algo-
rithms for analysis and control of uncertain systems,” Springer, New York, 2013.
We will try to focus on several research directions including optimization problems
with no uncertainty and compare known deterministic methods with their stochastic
counterparts such as random descent, various versions of Monte Carlo etc., for con-
vex and global optimization. We survey some recent results in the field and ascertain
that the situation can be very different.

1 Introduction

The use of a random mechanism to solve a problem in a deterministic setup is
very common not only in mathematics but much beyond formal framework. One can
remember that random decisions were performed in ancient times, and the procedure
of drawing lots was very common.Moreover, political events such as election of gov-
erning officers in Athens were randomized. Nowadays, elements of randomization
are often exploited in sport competitions to equalize the chances of the participants.
Very important role of random mixing in medical and biological experiments is of
no doubt.
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Probably one of the first application of stochastic approach in mathematics is the
theory of mixed strategies in zero-sum games by John von Neumann. Here the role
of randomization is to make secret a strategy of the player against the competitor.
Approximately at the same time Fisher proposed to apply mixed strategies in exper-
iment design; here their role was different. A real breakthrough was the invention
of the Monte Carlo methods by Ulam, Metropolis, von Neumann and Teller [43],
and the ideas of random sampling became very popular in modeling and numerical
analysis. Thus randomization methods found numerous applications in various fields
of research; to survey all of them does not seem to be realistic. In this chapter we
restrict ourselves to some problems related to estimation, robustness, and continuous
optimization. The typical question to be analysed is as follows. Given a determin-
istic problem (say, unconstrained smooth optimization), how randomization ideas
can be exploited for its solution and are randomized methods true competitors with
deterministic ones? We will see that situation differs in various domains of interest.

The role of Roberto Tempo in progress of this approach can not be overestimated.
His research since 2000 was mostly dedicated to randomization methods in control,
robustness, and optimization, see the monograph [77]. In the present chapter, we
continue this line of research, but also we address the directions which have little
intersections with [77] as well with other monographs and surveys on randomization
[14, 28, 29].

Due to the wide spectrum of the problems under consideration, we are forced to
provide really brief presentation of the problems; the references do not pretend to be
complete. However we have tried to emphasize the pioneering works and surveying
publications.

2 Uncertainty and Robustness

Mathematical models for systems and control are often unsatisfactory due to the
incompleteness of the parameter data. For instance, the ideas of off-line optimal
control can only be applied to real systems if all the parameters, exogenous pertur-
bations, state equations, etc., are known precisely. Moreover, feedback control also
requires a detailed information which is not available in most cases. For example, to
drive a car with four-wheel control, the controller should be aware of the total weight,
location of the center of gravity, weather conditions and highway properties as well
as many other data which may not be known. In that respect, even such a relatively
simple real-life system can be considered a complex one; in such circumstances,
control under uncertainty is a highly important issue.

In this section we consider the parametric uncertainty; other types of uncertainty
can be treated within more general models of robustness.

There are numerous tools to check robustness under parametric uncertainty; below
we focus on randomized methods. This line of research goes back to pioneering
papers by Stengel and Ray [74]. Within this approach, the uncertain parameters
are assumed to have random rather than deterministic nature; for instance, they are



Randomization in Robustness, Estimation, and Optimization 183

assumed to be uniformly distributed over the respective intervals of uncertainty. Next,
an acceptable tolerance ε, say ε = 0.01 is specified, and a check is performed if the
resulting random family (of polynomials, matrices, transfer functions) is stable with
probability no less than (1 − ε); see [77] for a comprehensive exposition of such a
randomized approach to robustness.

In many of the NP-hard robustness problems, such a reformulation often leads
to exact or approximate solutions. Moreover, the randomized approach has sev-
eral attractive properties even in the situations where the deterministic solution is
available. Indeed, the deterministic statements of robustness problems are minimax,
hence, the answer is dictated by the “worst” element in the family, whereas these
critical values of the uncertain parameters are rather unlikely to occur. Therefore,
by neglecting a small risk of violation of the desired property (say, stability), the
admissible domains of variation of the parameters may be considerably extended.
This effect is known as the probabilistic enhancement of robustness margins; it is
particularly tangible for the large number of the parameters. Another attractive prop-
erty of the randomized approach is its low computational complexity which only
slowly grows with increase in the number of uncertain parameters.

We illustrate some of these concepts and effects.

2.1 Volume of Violation and Approximate Feasibility

We consider robustness problems for systems described in terms of a design vec-
tor x ∈ X ⊆ R

n and a real uncertain parameter vector q ∈ Q ⊂ R
�, where Q is a

box. For such systems, the objective is to select x ∈ X such that a given continuous
performance specification

f (x, q) ≤ 0 (1)

is satisfied for all q ∈ Q. When such a design vector x exists, the triple ( f, X, Q) is
said to be robustly feasible.

In a number of situations, robust feasibility of f (x, q) ≤ 0 is guaranteed if and
only if f (x, qi ) ≤ 0 for each of the verticesqi of the �-dimensional box Q, andweuse
the term vertexization. A typical example of a vertexization is the quadratic stability
problem for the system with state space matrix A(q) = A0 + ∑�

i=1 Aiqi , where
Ai ∈ R

n×n are fixed and known, and the uncertainty parameter vector q ∈ Q. The
goal is to find a symmetric candidate Lyapunovmatrix P = P(x)with entries xi ∈ R

viewed as the design variables, such that P(x) � 0 and the linear matrix inequality
(LMI) A�(q)P(x) + P(x)A(q) ≺ 0 holds for all q ∈ Q (throughout the text, the
signs � and ≺ denote the positive and negative sign-definiteness of a symmetric
matrix). Hence, with

f (x, q) = λmax

(
A�(q)P(x) + P(x)A(q)

)
,
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this strict feasibility design problem in x is reducible to the vertices qi of Q. That
is, the satisfaction of the Lyapunov inequality above for all q ∈ Q is equivalent to
A�(qi )P(x) + P(x)A(qi ) ≺ 0 for i = 1, 2, . . . , N . However, since N = 2�, we see
that the computational task can easily get out of hand. For example, with five states
and ten uncertain parameters, the resulting LMI is of size greater than 5000 × 5000.

As an alternative to the computational burden associated with vertexization, it
is often possible to introduce an overbounding function in such a way as to enable
convex programming in order to test for robust feasibility; also, see Sect. 4 for a
different approach to solving the feasibility problem for LMIs. Note also that a
reduction to checking the vertices is rather an exception and is considered here for
illustrative purposes, while the overbounding techniques may be applied to much
broader classes of systems.

Specifically, given x , introduce the associated violation set

Qbad(x)
.= {q ∈ Q : f (x, q) > 0}

and estimate from above its volume. Equivalently, assuming that the uncertainty vec-
tor q is random, uniformly distributed over Q, we estimate from above the probability
of violation for the performance specification.

In [4, 5], a computationally modest method for finding such overbounding func-
tions is proposed and numerical examples are presented.

More delicate constructions are also described in [4, 5], where the notion of
approximate feasibility is introduced. Namely, the triple ( f, X, Q) is said to be
approximately feasible if the following condition holds: Given any ε > 0, there exists
some xε ∈ X such that

Vol
(
{q ∈ Q : f (xε, q) > 0}

)
< ε,

whereVol(·) stands for the volume of a set. For such ε, xε is called an ε-approximate
solver. So, instead of guaranteeing satisfaction of f (x, q) ≤ 0 for all q ∈ Q, we
seek solution vectors x with associated violation set having volume less than any
arbitrarily small prespecified level ε > 0.

We present a formal result on approximate feasibility in general terms; the details
can be found in [4, 5]. First, we consider so-called homogenizable in x functions
f (x, q) and use their homogenized versions denoted by f +(x0, x, q). In [4, 5] this
requirement was shown to be not verymuch restrictive, covering quite a large class of
functions. Next, the notion of approximate feasibility indicator (AFI) is introduced;
in a sense, it is a convexgeneralization of the classical indicator function. For instance,
a “natural” type of AFI is the exponential one, φ(ζ ) = eζ .

In the theorem to follow, the approximate feasibility indicator φ(ζ ) is used with
argument ζ = f +(x0, x, q) in the determination of approximate feasibility.

Theorem 1 ([4, 5]) Given the continuous homogenizable performance specification
function f (x, q), X = R

n and an approximate feasibility indicator φ(·), define
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�(x0, x)
.=

∫

Q

φ( f +(x0, x, q))dq

and
�∗ .= inf

x0>0,x
�(x0, x).

Then the following holds:
(i) �∗ = 0 implies approximate feasibility of ( f, X, Q);
(ii) For any x0 > 0 and x ∈ R

n,

Vol
(

Qbad

( x

x0

))

≤ �(x0, x).

A similar idea of overbounding was presented in [6]. Multivariable polynomials
f (x)with parameter vector x restricted to a hypercube X ∈ R

n were considered, and
the objective was to check the robust positivity of f (x), i.e., to determine if f (x) > 0
for all x ∈ X . Again, instead of solving the original NP-hard problem, the authors
proposed a straightforward procedure for the computation of an upper bound on the
volume of violation by computing a respective dilation integral that depends on the
degree k of a certain auxiliary polynomial, followed by a convexminimization in one
scalar parameter. By increasing the degree k, the authors obtain a sequence of upper
bounds εk which are shown to be “sharp” in the sense that they converge to zero
whenever the positivity requirement is satisfied. Notably, that this dilation integral
method applies to a general polynomial dependence on the variables.

2.2 Probabilistic Predictor

In the discussion above, the stochastic nature of the uncertain parameters was some-
what hidden; we just evaluated the bad portion of the uncertainty box. Assume now
that the originally deterministic parameters are randomly distributed over the given
uncertainty set Q. Then it seems natural to sample the uncertainty set Q and arrive at
conclusions on the probability of robustness. In the control-related literature, these
ideas have been first formulated in [74]; also see [3].

Together with numerous advantages of this approach, it also suffers serious draw-
backs. First, it is usually desired to have any closed-form estimates of the robustness
margin, rather than to rely on the results of simulations; moreover, in practical appli-
cations, such a simulation is often prohibited. Next, the sample size that guarantees
high reliability of the result may happen to be rather large [76, 77], hence, simula-
tions may be very time-consuming. On top of that, sampling in accordance with one
or another distribution over a given set may be highly nontrivial [30, 57]. Finally, the
results of Monte Carlo simulation heavily depend on the probabilistic distribution



186 B. Polyak and P. Shcherbakov

adopted and may lead to overly optimistic estimates of the robustness margin; the
correct choice of the distribution is a nontrivial problem [2].

In this section, assuming the uniform distribution of the uncertain parameters over
q ∈ γ Q, where Q ⊂ R

� is the uncertainty set and γ ∈ R is the scaling factor, we
characterize the probability of stability of a system and evaluate the probabilistic
stability margin

γmax := sup
{
γ : Prob{the system is stable for q ∈ γ Q} ≥ p

}
, p ∈ (0, 1),

where Prob(·) denotes the probability of an event.
Without getting deep into the details, we describe the idea of the probabilistic

approach to robustness as applied to polynomial families.
Since the early 1990s, numerous graphical tests for robust stability proved them-

selves to be efficient; these are based on the famous zero exclusion principle, which
is formulated next. Consider the family of polynomials p(s, q) which depend on the
vector q of uncertain parameters confined to the connected set Q ⊂ R

�. For a fixed
s = jω, the set

V (ω)
.= {p( jω, q) : q ∈ Q}

is referred to as the value set of the family p(s, q); it is the 2D image of Q under the
mapping p( jω, ·). Let the polynomial p(s, q0) be stable for some q0 ∈ Q; then, for
robust stability, the following condition is necessary and sufficient:

0 /∈ V (ω) for all ω ∈ [0, ∞). (2)

To exploit this result, one has to efficiently construct the set V (ω) and check condi-
tion (2). This is doable in a number of simple cases; however, formore or less involved
dependence of p(s, q) on q, this approach cannot be applied, since no closed-form
description of the boundary of the value set is available, and checking condition (2)
is complicated by the nonconvexity of Vω).

Taking the probabilistic point of view and letting q be random, uniformly dis-
tributed over Q, we consider the two-dimensional random variable

zω = [Rep( jω, q); Imp( jω, q)]

and construct its confidence domain

V1−ε(ω) : Prob
{
zω ∈ V1−ε(ω)

} ≥ 1 − ε, ε > 0 is small.

This set is referred to as a 100(1 − ε)% probabilistic predictor of the value set V (ω).
The condition (2) now has to be checked for the predictor, rather than for the value
set, hence, evaluating the probability of stability of the uncertain polynomial family.

Often, the construction of the predictor can be accomplished via using the central
limiting behavior of the random vector zω. Indeed, if p(s, q) depends affinely on q,
and the qi s are mutually independent, the random vector zω is represented by the
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sum of independent random vectors, and if the number � of the parameters is large
enough, then, under the general assumptions on pi (s) it is well described by the
two-dimensional Gaussian random vector with mean zω = Ezω and the covariance
matrix S = Cov zω. Therefore, V (ω)may be approximated by the confidence ellipse

Eν(ω)
.= {

z ∈ R
2 : (z − zω)�S−1(z − zω) ≤ ν2

}
,

where ν specifies the confidence level. In other words, if pν is the associated confi-
dence probability, then for a given ω we have

Prob
{
p( jω, q) ∈ Eν(ω)

} ≈ pν = 1 − e−ν2/2.

In a number of situations, it is possible to obtain a precise nonasymptotic dis-
tribution of the random vector zω and, respectively, a precise description of the
probabilistic predictor.

We illustrate these ideas via the problem of robust stability of uncertain delay
systems; i.e., those describedbyuncertain quasipolynomials, see [58]. In this case, the
generic value set has a very complicated geometry; application of the zero exclusion
principle is hardly possible, and we lean on the probabilistic approach.

Consider the delay system specified by the characteristic quasipolynomial

h(s, a, τ ) = a0 + a1s + s2 + 2se−τ1s + e−τ2s, (3)

|a0| ≤ γ, |a1| ≤ γ, |1 − τ1| ≤ γ, |2 − τ2| ≤ γ.

Here, both the coefficients and the delays are subject to interval uncertainty. The
nominal system h(s) = s2 + 2se−s + e−2s is stable, maxk Resk = −0.3181, where
sk are the roots of the quasipolynomial h(s) (the roots of h(s) are the values of the
Lambert function W (x)eW (x) = x at the point x = −1). For this system, the value
of the radius of robustness cannot be found exactly, but the estimate 0.01 < γmax <

0.05 is known from the literature. For the confidence level ν = 3, the probabilistic
approach gives γν = 0.0275, so that it fits well the deterministic estimate.

To illustrate, for a set of frequencies in 0 ≤ ω ≤ 2, Fig. 1a depicts the confidence
ellipses Eν(ω), ν = 3, for the uncertainty range γ = 0.0275. Also, presented are the
frequency responses h( jω, q) for a number of sampled values of the uncertainty
q = (a0, a1, δτ1, δτ2) in the box |qi | ≤ γ . The curves are seen to remain inside
the “corridor” defined by the confidence ellipses. Figure 1b depicts the confidence
ellipse Eν(ω) for a “typical” ω = 1.3113 together with sampled points h( jω, q); the
predictor is seen to approximate nicely the value set.

Probabilistic robustness techniques can be effectively exploited for robust control
design [12, 39, 53, 54, 61, 77, 78].
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Fig. 1 a The plot of h( jω, q) and confidence ellipses Eν(ω), ν = 3 for system (3). b Probabilistic
predictor of the value set for ω = 1.3113

2.3 Probabilistic Enhancement of Robustness Margins

It is important to note that, even for the values of pν = p close to unity, the ellipse
Eν(ω) is often considerably smaller than the value setVol(ω). Let us make use of the
probabilistic counterpart of the zero exclusion principle (the origin does not belong
to Eν(ω) for all ω) and evaluate the probabilistic stability margin defined as

γp
.= sup

{
γ : 0 /∈ Eν(ω) for all ω ∈ [0, ∞)

}
.

It then usually happens that γp  γmax, where γmax is the deterministic stability
margin. Hence, the uncertainty range may be considerably enlarged at the expense
of neglecting low-probability events. This phenomenon is referred to as probabilistic
enhancement of classical robustness margins [40]. Moreover, in accordance with the
central limit theorem, this enlargement gets bigger as the number of uncertainties
grow, and it is this case which is most problematic for deterministic methods. At
the same time, the computational burden of probabilistic methods does not depend
on the dimension of the vector of uncertain parameters. Indeed, putting the precise
description of the value set aside, we make use of an approximation of it, which is
defined by the two-dimensional covariance matrix.

We illustrate use of the probabilistic approach to the assessment of such an
enhancement via the case of matrix uncertainty. Specifically, let us consider the
uncertain matrix family

A = A0 + ,  ∈ γ Q, (4)

where A0 ∈ R
n×n is a known,Hurwitz stablematrix and is its bounded perturbation

confined to the ball in the Frobenius norm γ Q = { ∈ R
n×n : ‖‖F ≤ γ }; the goal
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Fig. 2 The pseudospectrum of A0, its linear approximation, and the probabilistic predictor

is to estimate the robust stabilitymargin of A0. To this end,weprovide an approximate
description of the pseudospectrum of A (4), the set of the eigenvalues of A for all
admissible values of the uncertainty .

For a generic case of simple complex eigenvalues λ = λ(A0) ∈ C, the perturbed
eigenvalue λ(A0 + ) is well described by the linear approximation

λ̃ = λ + Rq, R ∈ R
2×�, � = n2,

provided that γ is small enough. Here, q ∈ R
� is the vectorization of , and the

matrix R is defined by the left and right eigenvectors of λ.
It can be shown that, as q sweeps the ball γ Q, the 2D-vector [Re λ̃, Imλ̃] sweeps

the ellipse

E := {
x ∈ R

2 : (
S−1(x − λ), x − λ

) ≤ γ 2
}
, S := RR�.

Now, assuming that the uncertainty q is random, uniformly distributed over the
ball γ Q, and specifying a confidence probability p, we make use of Lemma 2 (see
Sect. 5.1) to shape an ellipsoidal probabilistic predictor Ep of the ellipse E .

A schematic illustration of the ideas above is given next. For a 6 × 6 stable matrix
having � = 36 uncertain entries, quite an accurate upper bound γ = 0.3947 of the
stability margin can be found.

Let us specify p = 0.99; then the constructions above yield γ̂p = 0.7352 as an
estimate of the value of the probabilisticmargin. In otherwords, the uncertainty radius
is almost doubled, at the expense of admitting the 1%-probability of instability. To
confirm these conclusions, we performed straightforward Monte Carlo simulations
for γ = γ̂p, which resulted in the sampled probability of stability pMC = 0.9989
(from a sample of 40, 000 points q). Figure 2 depicts the linear approximation of



190 B. Polyak and P. Shcherbakov

the pseudospectrum of A (larger ellipses) and its ellipsoidal probabilistic predictors
(smaller ellipses, rightmost of them touch the imaginary axis), along with sampled
values of the pseudospectrum.

Other examples relate to the probability of a polynomial with coefficients in a
cube to be stable [46] and to the generation of random stable polynomials [69].

3 Randomization in Estimation

Usual assumptions on the noise in linear regression problems are that it is a sequence
of independent zero-mean randomvariables (vectors).However in practical situations
these assumptions are often violated which may strongly affect the performance of
standard estimators. Therefore it is important to examine the possibility to estimate
the regression parameters under minimal assumptions on the noise. It may appear
surprising that the regression parameters can be consistently estimated in the case of
biased, correlated and even nonrandom noise. However, it can be done under certain
conditions when the inputs (regressors) are random. We consider a linear regression
model

yn = x�
n θ + ξn (5)

with the parameter vector θ ∈ R
N to be estimated from the observations yn, xn ,

n = 1, 2, . . . It is assumed that the inputs xn are zero-mean random vectors indepen-
dent of the noise ξk . This assumption ensures “good” properties of estimators under
extremelymild restrictions on the noise. The idea of using random inputs to eliminate
bias was put forward by Fisher [22] as the randomization principle in the design of
experiments. Besides settings of design type where regressors are randomized by the
experimenter, random inputs arise in many applications of identification, filtering,
recognition, etc. Having these applications in mind, we use the terms “inputs,” “out-
puts,” etc., rather than those traditional to the regression analysis (say, “regressors”).

We follow the results in [25], see also [27]. Let us formulate the rigorous assump-
tions on the data for the regression problem (5).

(A) the inputs xn are represented by a sequence of independent, identically dis-
tributed random vectors with symmetric distribution function, zero mean value
Exn = 0, positive-definite covariance matrix Exnx�

n = B � 0, and a finite fourth
moment E‖xn‖4 < ∞; moreover, xn is independent of {ξ0, ξ1, . . . , ξn}.

(B) the noise ξn is mean-square bounded: E|ξn|2 ≤ σ 2.

Theorem 2 Under the assumptions above, the least square estimate θn of the true
parameter θ is mean-square consistent, and the rate of convergence is given by

E(θn − θ)(θn − θ)� = σ 2

n
B−1 + o

(1

n

)
. (6)
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If the inputs are deterministic and B = limn→∞ 1
n

∑∞
i=1 xi x

�
i , one can obtain a

similar estimate for the least squares algorithm under the standard assumption that
the noise is zero mean, Eξn = 0. The principal contribution of Theorem 2 is the
removal of this restrictive assumption.

A result similar to Theorem 2 holds true for the Polyak–Ruppert online averaging
algorithm [64]:

θn = θn−1 + γnxn(yn − θ�
n−1xn) (7)

θ̂n = (1 − n−1)θ̂n−1 + n−1θn, (8)

where
γn/γn+1 = 1 + o(γn); (9)

for instance, γn = 1/nr for some 0 < r < 1. It is proved in [25] that estimate (6) is
true under assumptions (A), (B) for no-zero-mean noise.

The fruitful idea of randomizing the inputs is exploited in numerous problems
of identification, control, optimization in the monographs [28, 29]. These results
confirm the general conclusion: Randomization enables for a considerable relaxation
of the standard assumptions on the noise. In Sect. 5, we focus on such approaches to
stochastic optimization problems.

4 Feasibility

The problem of solving convex inequalities (also known as convex feasibility prob-
lem) is one of the basic problems of numerical analysis. It arises in numerous applica-
tions, including statistics, parameter estimation, pattern recognition, image restora-
tion, tomography and many others, see, e.g., monographs and surveys [7, 15, 17]
and references therein. Particular cases of the problem relate to solving of linear
inequalities and to finding a common point of convex sets. The specific feature of
some applications is a huge number of inequalities to be solved, while the dimension-
ality of the variables is moderate, see, e.g., the examples of applied problems below.
Under these circumstances many known numerical methods are inappropriate. For
instance, finding the most violated inequality may be a hard task; dual methods also
cannot be applied due to large number of dual variables.

In this survey we follow mainly the paper [56] and focus on simple iterative
methods which are applicable to the case of very large (and even infinite) number of
inequalities. They are based on projection-like algorithms, originated in the works
[1, 31, 36, 44]. There are many versions of such algorithms; they can be either
parallel or non-parallel (row-action); in the latter case the order of projections is
usually chosen as cyclical one or the-most-violated one, see [7, 15, 17]. All these
methods are well suited for the finite (and not too large) number of constraints. The
novelty of the method under consideration is its random nature, which allows to treat



192 B. Polyak and P. Shcherbakov

large-dimensional- and infinite-dimensional cases. Although the idea of exploiting
stochastic algorithms for optimization problemswith continua of constraints has been
known in the literature [34, 51, 80], it led to much more complicated calculations
than the proposed method. Another feature of the method is its finite termination
property—under the strong feasibility assumption a solution is found after a finite
number of steps with probability one. The version of a projection method for linear
inequalities with this property has been proposed first by V.A. Yakubovich [81].
Below we survey the main results from [56]. Related contributions can be found in
[13, 61].

Consider the general convex feasibility problem: find a point x in the set

C = {x ∈ X : f (x, q) ≤ 0 ∀ q ∈ Q}. (10)

Here X ⊂ R
n is a convex closed set, f (x, q) is convex in x for all q ∈ Q, where Q

is an arbitrary set of indices (finite or infinite). Note that this formulation is similar to
the robust feasibility problem (1) considered above. However, instead of finding its
approximate solution or evaluating the volume of violation, we are aimed at finding
a solution satisfying all inequalities, but using randomized methods.

Particular cases of problem (10) are:

1. Finite number of inequalities: Q = {1, ...m}.
2. Semi-infinite problem: Q = [0, T ] ⊂ R

1.
3. Finding a common point of convex sets: f (x, q) = dist(x,Cq) = miny∈Cq ‖x −

y‖, where the sets Cq := {x ∈ X : f (x, q) ≤ 0 for a q ∈ Q} ⊂ R
n are closed

and convex and C = ∩q∈QCq . Here, ‖x‖ denotes the Euclidean norm of a vector.
4. Linear inequalities: f (x, q) = a(q)�x − b(q).

We assume that a subgradient ∂x f (x, q) is available at any point x ∈ X for all
q ∈ Q (we mean an arbitrary subgradient if the set of them is not a singleton).

The algorithm has the following structure. At the kth iteration, we generate ran-
domly qk ∈ Q; we assume that the qk’s are independent and identically distributed
(i.i.d.) samples from some probabilistic distribution pq on Q. Two key assumptions
are adopted.
Assumption 1 (strong feasibility). The set C is nonempty and contains an interior
point

∃ x∗ ∈ C : ‖x − x∗‖ ≤ r =⇒ x ∈ C.

Here, r > 0 is a constant which is assumed to be known.
Assumption 2 (distinguishability of feasible and infeasible points). For x ∈ X \ C ,
the probability of generating a violated inequality is not vanishing:

Prob{ f (x, q) > 0} > 0.

This is the only assumption on the probability distribution pq . For instance, if Q
is a finite set and each element in Q is generated with nonzero probability, then
Assumption 2 holds. The feasibility algorithm is then formulated as follows:
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Algorithm 1: Given an initial point x0 ∈ X , proceed as follows:

xk+1 = πX

(
xk − λk∂x f (xk, qk)

)
, (11)

λk =

⎧
⎪⎪⎨

⎪⎪⎩

f (xk, qk) + r‖∂x f (xk, qk)‖
‖∂x f (xk, qk)‖2 if f (xk, qk) > 0;

0 otherwise.

(12)

Here, πX is a projection operator onto X ; that is, ‖x − πX (x)‖ = dist(x, X).
Hence, at every step, the calculation of a subgradient is performed just for one
inequality, which is randomly chosen among all inequalities Q. Note that the value
of r (the radius of a ball in the feasible set) is used in the algorithm; its modification
for r unknown will be presented later. To explain the choice of the step-size λk in
the algorithm, we consider the two particular cases.

1. Linear inequalities: f (x, q) = a(q)�x − b(q), X = R
n .

Then we have ∂x f (xk, qk) = ak , where f (xk, qk) = a�
k xk − bk and ak = a(qk),

bk = b(qk), so that the algorithm takes the form

xk+1 = xk − (a�
k xk − bk)+ + r‖ak‖

‖ak‖2 ak

for (a�
k xk − bk)+ �= 0, otherwise xk+1 = xk ; here, c+ = max{0, c}. For r = 0,

the method coincides with the projection method for solving linear inequalities
by Agmon–Motzkin–Shoenberg [1, 44].

2. Common point of convex sets: f (x, q) = dist(x,Cq), C = ∩q∈QCq , X = R
n .

Then we have ∂x f (xk, qk) = (
xk − πk(xk)

)
/ρk , where πk denotes the projection

onto the set Ck = Cqk
and ρk = ‖xk − πk(xk)‖. The algorithm takes the form

xk+1 = πk(xk) + r

�k

(
πk(xk) − xk

)
,

provided that xk /∈ Ck ; otherwise xk+1 = xk . We conclude that, for r = 0, each
iteration of the algorithm is the same as for the projection method for finding the
intersection of convex sets [7, 31].

Having this in mind, the rule for selecting the step-size λk has a very natural
explanation. Denote by yk+1 the point which is generated via the same formula as
xk+1, but with r = 0; assume also X = R

n . Then, for the case of linear inequalities,
yk+1 is the projection of xk onto the half-space

{
x : a�

k x − bk ≤ 0
}
. Similarly, if we

deal with finding a common point of convex sets, yk+1 is the projection of xk onto the
set Ck . It is easy to show that ‖xk+1 − yk+1‖ = r. Thus the step in the algorithm is
an (additively) over-relaxed projection; we perform an extra step (of length r ) inside
the current feasible set.
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The idea of additive over-relaxation is due to V.A. Yakubovich who applied such
a method to linear inequalities [81]. In the papers mentioned above, the order of
sorting out the inequalities was either cyclic or the-most-violated one was taken, in
contrast with the random order in the proposed algorithm.

Now we formulate the main result on the convergence of the algorithm.

Theorem 3 Under Assumptions 1, 2, Algorithm 1 finds a feasible point in a finite
number of iterations with probability one, i.e., with probability one there exists N
such that xN ∈ C and xk = xN for all k ≥ N.

We now illustrate how the general algorithm can be adapted to two particular
important cases.

1. Linear Matrix Inequalities are one of the most powerful tools for model formu-
lation in various fields of systems and control, see [10]. There exist well-developed
techniques for solving such inequalities as well as for solving optimization problems
subject to such inequalities (Semidefinite Programming, SDP). However in a number
of applications (for instance, in robust stabilization and control), the number of LMIs
is extremely large or even infinite, and such problems are beyond the applicability of
the standard LMI tools. Let us cast these problems in the framework of the approach
proposed above.

The space Sm ofm × m symmetric real matrices equipped with the scalar product
< A, B >= tr AB and the Frobenius norm, becomes a Hilbert space (tr(·) denotes
the trace of a matrix). Then we can define the projection A+ of a matrix A onto the
cone of positive semidefinite matrices. This projection can be found in explicit form.
Indeed, if A = RDR�, R−1 = R�, is the eigenvector–eigenvalue decomposition of
A and D = diag (d1, . . . , dm), then

A+ = RD+R�, (13)

where D+ = diag (d+
1 , . . . , d+

m ) and d+
i = max{0, di }.

Linear matrix inequality is the expression of the form

A(x) = A0 +
n∑

i=1

xi Ai � 0,

where Ai ∈ Sm , i = 0, 1, . . . , n, are givenmatrices and x = (x1, . . . , xn) ∈ R
n is the

vector variable. Another form of LMI was mentioned in Sect. 2; it is reducible to the
canonical form above.

The general system of LMIs can be written as

A(x, q) = A0(q) +
n∑

i=1

xi Ai (q) � 0 ∀ q ∈ Q. (14)

Here, Q is the set of indices which can be finite or infinite. The problem under
consideration is to find an x ∈ R

n which satisfies LMIs (14). Our first goal is to
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convert these LMIs into a system of convex inequalities. For this purpose, introduce
the scalar function

f (x, q) = ‖A+(x, q)‖ (15)

where A(x, q) is given by (14) and A+ is defined in (13).

Lemma 1 The matrix inequalities (14) are equivalent to the scalar inequalities

f (x, q) ≤ 0 ∀ q ∈ Q.

The function f (x, q) is convex in x and its subgradient is given by

∂x f (x, q) = 1

f (x, q)

⎛

⎜
⎝

tr A1A+(x, q)
...

tr An A+(x, q)

⎞

⎟
⎠

if f (x, q) > 0; otherwise ∂x f (x, q) = 0.

Hence, solving linear matrix inequalities can be converted into solving a convex
feasibility problem.

2. Solving linear equations. This case has some peculiarities—the solution set is
either a single point or a linear subspace, so that it never contains an interior point
andAlgorithm 1with r > 0 does not converge. However it can be appliedwith r = 0;
for a deterministic choice of the alternating directions it is precisely the Kaczmarz
algorithm [36]. Its randomized version with equal probabilities for all equations has
been proposed in [56]; it converges with linear rate. More recently, Strohmer and
Vershynin [75] studied this method with the probabilities for choosing the equation
(ai , x) = bi being proportional to ‖ai‖2. They proved that the rate of convergence
depends on the condition number of thematrix A, but not on the number of equations.
This result stimulated further research in [15, 16, 20, 26, 41].

5 Optimization

After the invention of theMonte Carlo (MC) paradigm byN.Metropolis and S. Ulam
in the late 1940s [43], it has become extremely popular in numerous application areas
such as physics, biology, economics, social sciences, and other areas. As far as math-
ematics is concerned, Monte Carlo methods proved to be exceptionally efficient in
the simulation of various probability distributions, numerical integration, estimation
of the mean values of the parameters, etc. [37, 67, 77]. More recent version of the
approach,Markov ChainMonte Carlo, is often referred to asMCMC revolution [23].
The salient feature of MC approach to solution of various problems of this sort is
that “often,” it is dimension-free in the sense that, given N samples, the accuracy of
the result does not depend on the dimension of the problem.
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On the other hand, applications of theMCparadigm in the area of optimization are
not that successful. In this regard, problems of global optimization deserve special
attention. As explained in [82] (see beginning of Chapter 1.2), “In global optimiza-
tion, randomness can appear in several ways. The main three are: (i) the evaluations
of the objective function are corrupted by random errors; (ii) the points xi are chosen
on the base of random rules, and (iii) the assumptions about the objective function
are probabilistic.” Pertinent to the exposition of this paper is only case (ii). Monte
Carlo is the simplest, brute force example of randomness-based methods (in [82]
it is referred to as “Pure Random Search”). With this method, one samples points
uniformly in the feasible domain, computes the values of the objective function, and
picks the record value as the output.

Of course, there are dozens of more sophisticated stochastic methods such as mul-
tistart, simulated annealing, genetic algorithms, evolutionary algorithms, etc.; e.g.,
see [24, 35, 52, 70, 72, 82] for an incomplete list of relevant references. However,
most of these methods are heuristic in nature; often, they lack rigorous justification,
and the computational efficiency is questionable. Moreover, there exist pessimistic
results on “insolvability of global optimization problems.” This phenomenon has first
been observed as early as in the monograph [47] by A. Nemirovskii and D. Yudin,
both in the deterministic and stochastic optimization setups (see Theorem, Section
1.6 in [47]). Specifically, the authors of [47] considered the minimax approach to the
minimization of the class of Lipschitz functions and proved that, no matter what the
optimization method is, it is possible to construct a problemwhich will require expo-
nential (in the dimension) number of function evaluations. The “same” number of
samples is required for the simplest MCmethod. Similar results can be found in [48],
Theorem 1.1.2, where the construction of “bad” problems is exhibited. Below we
present another example of such problems (with very simple objective functions,
close to linear ones) which are very hard to optimize. Concluding this brief survey,
we see that any advanced method of global optimization cannot outperform Monte
Carlo when optimizing “bad” functions.

This explains our interest in theMC approach as applied to the optimization setup.
In spite of the pessimistic results above, there might be a belief that, if Monte Carlo is
applied to a “good” optimization problem (e.g., a convex one), the results would not
be so disastrous. Our goal in this section is to blow up these optimistic expectations.
We examine the “best” optimization problems (the minimization of a linear function
on a ball) and estimate the accuracy of the Monte Carlo method. Unfortunately, the
dependence on the dimension remains exponential, and practical solution of these
simplest problems via such an approach is impossible for high dimensions.

The second part of the section is devoted to randomized algorithms for convex
optimization. The efficiency of such an approach has been discovered recently; it
became clear that advanced randomized coordinate descent and similar approaches
for distributed optimization are strong competitors to deterministic versions of the
methods.



Randomization in Robustness, Estimation, and Optimization 197

5.1 Direct Monte Carlo in Optimization

In this subsection we show that straightforward use of Monte Carlo in optimization,
both global and convex is highly inefficient in problems of high dimensions. The
material is based on the results in [60].

Global optimization: A pessimistic example. We first present a simple exam-
ple showing failure of stochastic global optimization methods in high-dimensional
spaces. This example is constructed along the lines suggested in [47] (also, see [48],
Theorem 1.1.2) and is closely related to one of the central problems discussed below,
the minimization of a linear function over a ball in Rn .

Consider an unknown vector c ∈ R
n , ‖c|| = 1, and the function

f (x) = min
{
99 − c�x,

(
c�x − 99

)
/398

}

to be minimized over the Euclidean ball Q ⊂ R
n of radius r = 100 and centered at

the origin. Obviously, the function has one local minimum x1 = −100c, with the
function value f1 = −0.5, and one global minimum x∗ = 100c, with the function
value f ∗ = −1. The objective function is Lipschitz with Lipschitz constant equal to
1, and max f (x) − min f (x) = 1.

Any standard (not problem-oriented) version of stochastic global search (such as
multistart, simulated annealing, etc.) will miss the domain of attraction of the global
minimum with probability 1 − V 1/V 0, where V 0 is the volume of the ball Q, and
V 1 is the volume of the set C = {x ∈ Q : c�x ≥ 99}. In other words, the probability
of success is equal to

Prob = V 1

V 0
= 1

2
I
(2rh − h2

r2
; n + 1

2
,
1

2

)
,

where I (x; a, b) is the regularized incomplete beta function with parameters a and b,
and h is the height of the spherical cap C ; in this example, h = 1. This probability
quickly goes to zero as the dimension of the problem grows; say, for n = 15, it is
of the order of 10−15. Hence, any “advanced” method of global optimization will
find the minimum with relative error not less than 50%; moreover, such methods
are clearly seen to be no better than a straightforward Monte Carlo sampling. The
same is true if our goal is to estimate the minimal value of the function f ∗ (not the
minimum point x∗). Various methods based on ordered statistics of sample values
(see Section 2.3 in [82]) fail to reach the set C with high probability, so that the
prediction will be close to f1 = −0.5 instead of f ∗ = −1.

Scalar convex optimization: Pessimistic results. Let Q denote the unit Euclidean
ball in R

n and let ξ (i)
∣
∣N
1 = {

ξ (1), . . . , ξ (N )
}
be a multisample of size N from the

uniform distribution ξ ∼ U (Q).
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Given the scalar-valued linear function

g(x) = c�x, c ∈ R
n, (16)

defined on Q, estimate its maximum value from the multisample.
More specifically, let η∗ be the true maximum of g(x) on Q and let

η = max{g(1), . . . , g(N )}, g(i) = g(ξ (i)), i = 1, . . . , N , (17)

be the empirical maximum; we say that η approximates η∗ with accuracy at least δ

if
η∗ − η

η∗ ≤ δ.

Then the problem is:Given a probability level p ∈]0, 1[ and accuracy δ ∈]0, 1[,
determine the minimal length Nmin of the multisample such that, with probability at
least p, the accuracy of approximation is at least δ (i.e., with high probability, the
empirical maximum nicely evaluates the true one).

The results presented below are based on the following fact established in [59]; it
relates to the probability distribution of a specific quadratic function of the random
vector uniformly distributed on the Euclidean ball.

Lemma 2 ([59]) Let the random vector ξ ∈ R
n be uniformly distributed on the unit

Euclidean ball Q ⊂ R
n. Assume that a matrix A ∈ R

m×n has rank m ≤ n. Then the
random variable

ρ =
(
(AA�)−1Aξ, Aξ

)

has the beta distributionB(m2 , n−m
2 + 1) with probability density function

fρ(x) =
⎧
⎨

⎩

�( n2 + 1)

�(m2 )�( n−m
2 + 1)

x
m
2 −1(1 − x)

n−m
2 for 0 ≤ x ≤ 1,

0 otherwise,
(18)

where �(·) is the Euler gamma function.
Alternatively, the numerical coefficient in (18) writes

�( n2 + 1)

�(m2 )�( n−m
2 + 1)

= 1/B
(m

2
,
n − m

2
+ 1

)
,

where B(·, ·) is the beta function.

We consider the scalar case (16) and discuss first a qualitative result that follows
immediately from Lemma 2. Without loss of generality, let c = (1, 0, . . . , 0)�, so
that the function g(x) = x1 takes its values on the segment [−1, 1], and the true
maximum of g(x) on Q is equal to 1 (respectively, −1 for the minimum) and is
attained with x = c (respectively, x = −c). Let us compose the random variable
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ρ = g2(ξ),

which is the squared first component ξ1 of ξ . By Lemma 2withm = 1 (i.e., A = c�),
for the probability density function (pdf) of ρ we have

fρ(x) = �( n2 + 1)

�( 12 )�( n+1
2 )

x− 1
2 (1 − x)

n−1
2 := βn x

− 1
2 (1 − x)

n−1
2 .

Straightforward analysis of this function shows that, as dimension grows, themass
of the distribution tends to concentrate closer to the origin, meaning that the random
variable (r.v.) ρ is likely to take values which are far from the maximum, equal to
unity.

We next state the following rigorous result [60].

Theorem 4 Let ξ be a random vector uniformly distributed over the unit Euclidean
ball Q ⊂ R

n and let g(x) = x1, x ∈ Q. Given p ∈]0, 1[ and δ ∈]0, 1[, the minimal
sample size Nmin that guarantees, with probability at least p, for the empirical
maximum of g(x) to be at least a δ-accurate estimate of the true maximum, is given
by

Nmin = ln(1 − p)

ln
[
1
2 + 1

2 I
(
(1 − δ)2; 1

2 ,
n+1
2

)] , (19)

where I (x; a, b) is the regularized incomplete beta function with parameters a and b.

Clearly, a correct notation should be Nmin = �·�, i.e., rounding toward the next
integer; we omit it, but it is implied everywhere in the sequel.

Numerical values of the function I (x; a, b) can be computed via use of theMat-
lab routine betainc. For example, with the modest values n = 10, δ = 0.05, and
p = 0.95, formula (19) gives Nmin ≈ 8.9 · 106, and this quantity grows quickly as
the dimension n increases.

Sincewe are interested in small values of δ, i.e., in x close to unity, a “closed-form”
lower bound for Nmin can be computed as stated below.

Corollary 1 In the conditions of Theorem 4

Nmin > Nappr = ln(1 − p)

ln
[
1 − βn

n+1
1

1−δ

(
2δ − δ2

)(n+1)/2
] ,

where βn = �( n
2 +1)

�( 1
2 )�( n+1

2 )
= 1/B( 12 ,

n+1
2 ) .

Further simplification of the lower bound can be obtained

Nappr > Ñappr = − ln(1 − p)√
2π(n + 1) 1

1−δ

(
2δ − δ2

)(n+1)/2
.
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The lower bounds obtained above are quite accurate; for instance, with n = 10,
δ = 0.05, and p = 0.95, we have Nmin ≈ 8.8694 · 106, while Nappr ≈ 8.7972 · 106
and Ñappr = 8.5998 · 106.

The moral of this subsection is that, for high dimensions, a straightforward use
of Monte Carlo sampling cannot be considered as a tool for finding extreme values
of a function, even in the convex case.

5.2 Randomized Methods

On the other hand, exploiting randomized methods in different forms can be highly
efficient; in many cases they are strong competitors of deterministic algorithms.

Unconstrained minimization. We start with random search methods for uncon-
strained minimization

min f (x), x ∈ Rn.

Probably the first publication relates to the 1960s [42, 65]. The idea was to choose
a random direction in the current point and make a step resulting in decrease of
the objective function. Rigorous results on convergence of some random search
algorithms were obtained in [19]. Nevertheless the practical experiments with sim-
ilar methods were mostly disappointing, and they did not attract much attention
(excluding global optimization, see above). For convex problems the situation has
changed recently, when the dimension of problems under consideration became
very large (n is of the order 106) or when distributed optimization problems arose
( f (x) = ∑N

i=1 fi (xi ), x = (x1, . . . , xN ), N is large).We survey some results in this
direction first.

The basic algorithm of random search can be written as

xk+1 = xk − γk
f̂ (xk + μkuk) − f̂ (xk)

μk
uk, (20)

where xk is a k-th approximation to the solution x∗, uk is a random vector, γk, μk are
step-sizes, and f̂ (xk) is ameasuredvalue of f (xk); either f̂ (xk) = f (xk) (determinis-
tic setup) or f̂ (xk) = f (xk) + ξk, ξk being a random noise (stochastic optimization).
Algorithm (20) requires one calculation of the objective function per iteration, its
symmetric version

xk+1 = xk − γk
f̂ (xk + μkuk) − f̂ (xk − μkuk)

2μk
uk, (21)

uses two calculations. The strategy of choosing step-sizes depends on smoothness
of f (x) and on the presence of errors ξk in function evaluation. The following result
is adaptation of more general theorems in [62, 63] for C2 functions.



Randomization in Robustness, Estimation, and Optimization 201

Theorem 5 Consider the problem of unconstrained minimization of f (x), where
f (x) is strongly convex, twice differentiable, with gradient satisfying the Lipschitz
condition. Suppose uk are random i.i.d. uniformly distributed in the cube ||u||∞ ≤ 1.
Noises ξk are independent of u1, . . . , uk and have bounded second moment E|ξi |2 ≤
σ 2. The step-size satisfies the following conditions: γk = a/k,μk = μ/k4, a is large
enough. Then the iterations xk in algorithms (20), (21) converge to the minimum
point x∗ in mean-square and

E‖xk − x∗‖2 = O(1/
√
k).

It is worth mentioning that randomization of directions uk allows to remove the
assumption Exk = 0, which is standard in stochastic optimization methods [38]; a
similar effect for estimation is exhibited in Theorem 2. If compared with the clas-
sical Kiefer–Wolfowitz (KW) method, algorithms (20), (21) are less laborious: they
require just one or two function evaluations per iteration vs n or 2n in the KW-
method. On the other hand, asymptotic rate of convergence is the same: O(1/

√
n).

More details about convergence, various forms, computational experience of such
algorithms can be found in the publications of J. Spall (e.g., [73]); he names the
algorithms SPSA (Simultaneous Perturbation Stochastic Approximation). The pio-
neering research on the algorithms are due to Yu. Ermoliev [21] and H. Kushner
[38].

Now we focus on purely deterministic version of problem (5), where mea-
surements of the objective function do not contain errors: f̂ (xk) = f (xk). As we
mentioned above, the interest to such methods grew enormously when very high-
dimensional problems became appealing due to such applications as machine learn-
ing and neural networks. The interest has been triggered with Yu. Nesterov’s paper
[49]. Roughly speaking, the approach of [49] is as follows. It is assumed that the
Lipschitz constants Li for partial derivatives ∂ f/∂xi are known (and they can be eas-
ily estimated for quadratic functions). Then, at the kth iteration, the index i = α is
chosen with probability proportional to Li , and new iteration is obtained by changing
coordinate iα with step-size (1/Lα)∂ f/∂xα . Yu. Nesterov provides sharp estimates
on the rate of convergence and also presents the accelerated version of the algorithm.
These theoretical results supported with intensive numerical experiments for huge-
scale problems confirm advantages of the random coordinate descent. This line of
research found numerous applications in distributed optimization [9, 45, 66]. The
titles of many publications (e.g., recent one [33]) confirm advantages of randomized
algorithms.

Randomization techniques are also helpful forminimization of nonsmooth convex
functions, when the only data available are the values of the function f (x) at an
arbitrary point. The idea of the following algorithm is due to A. Gupal [32], also
see [55], Section 6.5.2. In contrast with algorithm (21), we generate a random point
x̃k in the neighborhood of the current iteration point xk and then make a step similar
to (21) from this point. Thus the algorithm is written as
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xk+1 = xk − γk
f (x̃k + μkuk) − f (x̃k − μkuk)

2μk
uk, (22)

x̃k = xk + αkhk (23)

where uk, hk are independent random vectors uniformly distributed in the cube
‖u‖∞ ≤ 1, while αk, γk, μk are scalar step-sizes. It can be seen that randomiza-
tion step with hk is equivalent to smoothing of the original function, thus algorithm
similar to (21) is applied to the smoothed function. By adjusting the parameters αk ,
γk , μk , we arrive at the convergence result.

Theorem 6 Let f (x) be convex, and let a unique minimum point x∗ exist. Let the
step-sizes satisfy the conditions

∞∑

k=1

γk = ∞,

∞∑

k=1

γ 2
k ≤ ∞, γk/αk → 0, μk/αk → 0, αk → 0, |αk − αk+1|/γk → 0.

Then xk → x∗ with probability one.

This result guarantees convergence of the algorithm to the minimum point. How-
ever it does not provide effective strategies for choosing parameters, neither it esti-
mates the rate of convergence. Above-mentioned problems are deeply investigated in
[50]. The authors apply Gaussian smoothing technique (i.e., the vectors uk are Gaus-
sian) and present randomized methods for various classes of functions (smooth and
nonsmooth) for different situations (gradient or gradient-free oracles). The versions
of the algorithms with the best rate of convergence are indicated.

To conclude, we remind that there exist no-zero-order deterministic methods for
minimization of nondifferentiable convex functions, so that randomized methods
provide the only option.

Constrained minimization. There are various problem formulations related to ran-
domized methods for optimization in the presence of constraints.

One of them is closely related to feasibility problem (10), but now we are looking
to the feasible point which minimizes an objective function

min(c, x) f (x, q) ≤ 0 ∀ q ∈ Q. (24)

Here we have taken the objective function to be linear without loss of generality.
Constraint functions f (x, q) are convex in the variable x ∈ R

n for all values of the
parameters q. Numerous examples of constraints of this form were discussed in
Sect. 4. Such problems are closely related to robust optimization, see [8] and Sect. 2.
A randomized approach to the problem consists of a random choice of N parameters
q1, . . . , qN from the set Q and solving the convex optimization problem with a finite
number of constraints

min
x∈C (c, x) f (x, qi ) ≤ 0 i = 1, . . . , N . (25)
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We suppose that this problem can be solved with high accuracy (e.g., if f (x, q) are
linear in x , then (25) is LP), and denote the solution by xN . Such an approach has
been proposed in [11]; the authors answer the following question:Howmany samples
(N) need to be drawn in order to guarantee that the resulting randomized solution
violates only a small portion of the constraints? They assume that there is some
probability measure on Q which defines the probability of violation of constraints
V (x) for arbitrary x . The main result in [11] states

Theorem 7 E V (xN ) ≤ n

N + 1
.

Of course this result says nothing about the accuracy of the randomized solution
(i.e., how close xN is to the true solution x∗ or how small (c, xN − x∗) is. However,
it provides much useful information. Some related results can be found in Sect. 2
above.

Another type of constrained optimization problems reads as

min(c, x), x ∈ Q, (26)

where Q ⊂ R
n is a closed bounded set (convex or nonconvex) such that it is hard to

solve explicitly the problem above, and projection on Q is also unavailable. Then a
possible option is to sample random points in Q and take the best point having the
minimal value of the objective function. It is exactly the “direct Monte-Carlo” we
have considered in Sect. 2 and found it to be inefficient. However, another approach,
based on cutting plane ideas, might be more promising. We assume that a so-called
boundary oracle is available, that is for an x ∈ Q and y ∈ R

n , the quantities

λ = argmax{λ ≥ 0 : x − λy ∈ Q}, λ = argmax{λ ≥ 0 : x + λy ∈ Q},

can be found efficiently. Numerous examples of sets with known boundary oracles
can be found in [30, 68, 71]. Then, starting with some known x0 ∈ Q, we proceed
sampling in Q by using the technique described below.

Hit-and-Run algorithm (HR). For xk ∈ Q, take a direction vector y uniformly dis-
tributed on the unit sphere; the oracle returns xk = xk − λy and xk = xk + λy. Then,
draw xk+1 uniformly distributed on [xk, xk]. Repeat. Schematically, this algorithm
is illustrated in Fig. 3.

This technique was proposed in [71, 79]; under mild assumptions on Q, the
distribution of the random point xk was proved to approach the uniform distribution
on Q. Instead of using the “direct Monte-Carlo,” we now apply the randomized
cutting plane algorithm, following the ideas of [18, 57].

A cutting plane algorithm. Start with X0 = Q. For Xk , generate 3N points xk , xk ,
xk , k = 1, . . . , N , by theHR algorithm and find fk = min(c, x), where theminimum
is taken over these 3N points. Proceed to the new set Xk+1 = Xk

⋂{x : (c, x) ≤ fk}
and the initial point x0 = argmin(c, x), where theminimum is also taken over the 3N
points mentioned above.
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Fig. 3 The idea of the HR algorithm

Rigorous results on the rate of convergence of such an algorithm are lacking.
For the idealized analog of it (with the points x “truly” uniformly distributed in
Xk), the results on convergence can be found in [18, 57]. Moreover, the algorithm
presented above includes the boundary points xk , xk ; this essentially improves the
convergence, since theminimum in the original problem (26) is attained at a boundary
point. Numerical experiments in [18, 57] confirm a nice convergence if the set Q is
not too “flat.”

6 Conclusions

We have covered in this chapter several topics—in robustness, estimation, control,
feasibility, constrained and unconstrained optimization—where the ideas of random-
ization can be applied and moreover can provide better results than deterministic
methods. We could see that the situation with regard to effectiveness of randomized
methods is not completely clarified; e.g., some straightforward attempts to apply
Monte Carlo for optimization do not work for high dimensions. On the other hand,
the only approach to minimization of nonsmooth convex functions with zero-order
oracle (i.e., only function values are available) is based on randomization. We hope
that the survey will stimulate further interest toward this exciting field of research.
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