
Distributed Optimization in Multi-agent
Networks Using One-bit of Relative State
Information

Jiaqi Zhang and Keyou You

Abstract This chapter is concerned with the design of distributed discrete-time
algorithms to cooperatively solve an additive cost optimization problem in multi-
agent networks. The striking feature of our distributed algorithms lies in the use of
only the sign of relative state information between neighbors, which substantially
differentiates our algorithms from others in the existing literature. Moreover, the
algorithm does not require the interaction matrix to be doubly-stochastic. We first
interpret the proposed algorithms in terms of the penalty method in optimization
theory and then perform non-asymptotic analysis to study convergence for static
network graphs. Compared with the celebrated distributed subgradient algorithms,
which however use the exact relative state information, the convergence speed is
essentially not affected by the loss of information. We also extend our results to the
cases of deterministically and randomly time-varying graphs. Finally, we validate
the theoretical results by simulations.

1 Introduction

In recent years, distributed optimization problems in multi-agent systems have
attracted increasing attention. Distributed optimization is concerned with that all
agents to cooperatively minimize a sum of local objective functions over a graph.
The key feature of such an optimization problem lies in that each agent only knows a
local component of the objective function and thus must cooperate with its neighbors
to compute the optimal value. The interaction between nodes is modeled by an alge-
braic graph. The motivating examples for distributed computation include the AUV

Parts of the results in this chapter have previously been appeared in [26–28].

J. Zhang · K. You (B)
Department of Automation, and BNRist, Tsinghua University, Beijing 100084, China
e-mail: youky@tsinghua.edu.cn

J. Zhang
e-mail: zjq16@mails.tsinghua.edu.cn

© Springer Nature Switzerland AG 2018
T. Başar (ed.), Uncertainty in Complex Networked Systems,
Systems & Control: Foundations & Applications,
https://doi.org/10.1007/978-3-030-04630-9_13

449

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04630-9_13&domain=pdf
mailto:youky@tsinghua.edu.cn
mailto:zjq16@mails.tsinghua.edu.cn
https://doi.org/10.1007/978-3-030-04630-9_13

450 J. Zhang and K. You

formation control [24], large-scale machine learning [4, 17, 25], and the distributed
quantile regression over sensor networks [21].

To solve the distributed optimization problem, the majority of the algorithms (see
e.g., [11, 15, 16, 21] and the references therein) are generally comprised of two
parts. One is to drive all agents to consensus, which is based on the well-known
consensus algorithm [18]. The other one is to push the consensus value toward an
optimal point by using the local (sub)gradient in each node. In this case, subgradient-
based algorithms have been widely used. To achieve consensus of the multi-agent
network, most of the existing methods require each agent to access the state values
of its neighbors at each time, either exactly [15, 18] or in a quantized form [19,
23]. However, in some situations, an agent may only roughly know relative state
measurements between its neighbors. For example, consider the case of several robots
working in a plane, when each robot can only tell which quadrant its neighbor is
lying by cheap sensors but not the neighbor’s accurate relative position. Thus, the
information accessible is restricted to be only one bit. Note that this is different from
the quantized setting in [19], which studied the effects of exchanging a quantized
rather than an exact state between neighbors. This is also different from previous
studies on exchanging quantized gradients [13] since we are only using the quantized
relative state information. Therefore, most algorithms in the literature, particularly
the ones in the references cited above, cannot handle the case of one-bit information.
It is worth noting that another advantage of our algorithm, in addition to using only
one bit of relative information, is that it does not require the interaction matrix of the
agents to be doubly-stochastic. A doubly-stochastic adjacency matrix is a common
assumption in many existing algorithms [14, 16, 20], but it is restrictive in the
distributed setting. For example, the Metropolis method [20] to construct a doubly-
stochastic matrix requires each node to know its neighbors’ degrees, which may be
impractical in applications, especially when the graph is time-varying.

Designing an algorithm using one bit of information often involves nonlinear
systems analysis, which is substantially different from the commonly applied graph
Laplacian theory in the aforementioned works. There are, however, some excep-
tions [5, 9, 12]. In [5], the authors designed a consensus algorithm using only sign
information of the relative state. A similar algorithm was also proposed in [9] to
distributedly compute a sample median. The algorithm in [12] is the most relevant to
the one in this chapter except that it is a continuous-time algorithm, which adopts a
completely different analysis tool than ours. We will return to this point, and discuss
more extensively later.

In fact, all the aforementioned works that use one bit of information focused on
continuous-time algorithms. However, a discrete-time algorithm is worth studying
because many distributed optimization applications involve communication between
agents and control of agents, which are typically discrete in nature. Besides, a
discrete-time algorithm is easier to implement. What is more, a continuous-time
algorithm cannot be extended to the discrete-time case that easily, since the methods
used to analyze continuous-time algorithms in the above works are often based on
Lyapunov theory. We know that some general stepsize rules (e.g., constant, dimin-
ishing) in discrete-time gradient-based algorithms cannot guarantee the nonincreas-

Distributed Optimization in Multi-agent Networks … 451

ingness of a latent Lyapunov function, and some special stepsize rules (e.g., line
minimization rule) often fail to meet the requirement of distributed computation,
which renders the Lyapunov analysis difficult to extend to the discrete-time case.
Therefore, an alternative method is urgently needed, which is what this chapter does.

More precisely, we propose in this chapter a distributed optimization algorithm
using only one bit of information in the discrete-time case. Different from most of
the previous works, our analysis is based on optimization theory rather than alge-
braic graph theory or Lyapunov theory. There are two underlying advantages of this.
First, compared to many existing approaches which first propose an algorithm, and
then find a Lyapunov function to prove its convergence, the intuition behind our
algorithm appears to be more natural and reasonable, as it aims to minimize a well-
designed objective function. Second, a wealth of research in convex optimization
theory ensures our algorithmmore easily extensible tomore general cases. For exam-
ple, our algorithm over time-varying graphs is a direct extension of that over static
graphs. Specifically, we extend our algorithm to both deterministically time-varying
graphs and randomly time-varying graphs. The former can model the time-varying
topology of agents in applications [17, 22], while the latter can be used to describe
the gossip networks [10], random package losses in communication networks, etc.
Based on optimization theory, our methods to analyze the cases of deterministically
time-varying graphs and randomly time-varying graphs take advantage of incremen-
tal gradient methods and stochastic gradient descent methods, respectively.

For a connected static graph, each node of the distributed optimization algorithm
is shown to converge asymptotically to the same optimal point of the optimization
without any reduction in the convergence rate. For deterministically time-varying
graphs, the convergence of the distributed optimization algorithm is established if
the graphs are uniformly jointly connected. For randomly time-varying graphs, we
show the convergence of the distributed optimization algorithm in the almost sure
sense under the so-called randomly activated connected graph assumption.

The rest of the chapter is organized as follows. Section 2 provides some prelimi-
naries and introduces the distributed optimization problem. In Sect. 3, we present our
discrete-time distributed optimization algorithmusing one bit of information. Section
4 includes our main results on convergence and convergence rate of the algorithm
over static graphs. Section 5 provides the convergence results over uniformly jointly
connected graphs and randomly activated graphs. Finally, we perform simulations
to validate the theoretical results in Sect. 6, and draw some concluding remarks in
Sect. 7.

Notation: We use a, a, A, and A to denote a scalar, vector, matrix, and set,
respectively. aT and AT denote the transposes of a and A, respectively. [A]i j denotes
the element in row i and column j of A. R denotes the set of real numbers and R

n

denotes the set of all n-dimensional real vectors. 1 denotes the vector with all ones,
the dimension of which depends on the context. We let ‖ · ‖1, ‖ · ‖ and ‖ · ‖∞ denote
the l1-norm, l2-norm and l∞-norm of a vector or matrix, respectively. We define

sgn(x) =
{

1, if x ≥ 0,
−1, otherwise.

452 J. Zhang and K. You

With a slight abuse of notation, ∇ f (x) denotes any subgradient of f (x) at x , i.e.,
∇ f (x) satisfies

f (y) ≥ f (x) + (y − x)T∇ f (x), ∀y ∈ R. (1)

The subdifferential ∂ f (x) is the set of all subgradients of f (x) at x . If f (x) is
differentiable at x , then ∂ f (x) includes only the gradient of f (x) at x .

We call infx∈Rn f (x) the optimal value of f (x). Any element from the set
arg infx∈Rn f (x) is called an optimal solution or optimal point of f (x).

Superscripts are usually used to represent sequence indices, i.e., xk represents the
value of the sequence {xk} at time k.

2 Problem Formulation

This section introduces some basics of graph theory, and presents the distributed
optimization problem in multi-agent networks.

2.1 Basics of Graph Theory

A graph (network) is represented as G = (V ,E), where V = {1, ..., n} is the set of
nodes and E ⊆ V × V is the set of edges. Let Ni = { j ∈ V |(i, j) ∈ E } be the set
of neighbors of node i , and A = [ai j] be the weighted adjacency matrix of G , where
ai j > 0 if and only if there exists an edge connecting nodes i and j , and otherwise,
ai j = 0. If A = AT, the associated graph is undirected. This chapter focuses only on
undirected graphs.

In the case of time-varying graphs, we use G k = (V ,E k, Ak) to represent the
graph at time k. Let G k1 ∪ G k2 denote the graph (V ,E k1 ∪ E k2 , Ak1 + Ak2). Let
N k

i = { j ∈ V |(i, j) ∈ E k} denote the set of neighbors of node i at time k. The
incidence matrix B ∈ R

n×m of G is defined by

Bie =

⎧⎪⎨
⎪⎩

1, if node i is the source node of edge e,

−1, if node i is the sink node of edge e,

0, otherwise.

For any x = [x1, ..., xn]T, we have that

bTe x = xi − x j

where be, e ∈ E is the e-th column of B, and i and j are the source and the sink
nodes of edge e, respectively.

Distributed Optimization in Multi-agent Networks … 453

A path is a sequence of consecutive edges that connect a set of different nodes.
We say a graph is connected if there exists a path between any pair of two nodes. To
evaluate the intensity of the graph’s connectivity, we introduce an important concept
called l-connected graph below.

Definition 1 (l-connected graph) A connected graph is l-connected (l ≥ 1) if it
remains connected whenever fewer than l edges are removed.

Clearly, a connected graph is at least 1-connected and each node of an l-connected
graph has at least l neighbors.

2.2 Distributed Optimization Problem

With only the sign of relative state, our objective is to distributedly solve the multi-
agent optimization problem

minimize
x∈R

f (x) :=
n∑

i=1

fi (x) (2)

where for each i ∈ V , the local objective function fi (x) is continuously convex but
not necessarily differentiable, and is only known by node i . The number of nodes is
set to be n > 1. We first make a mild assumption.

Assumption 1 (Nonempty optimal set and bounded subgradients)

(a) The set X � of optimal solutions of problem (2) is nonempty, i.e., for any x� ∈
X �, it holds that f � := f (x�) = inf x∈R f (x).

(b) There exists a constant c > 0 such that

|∇ fi (x)| ≤ c, ∀i ∈ V , x ∈ R. (3)

Assumption 1 is common in the literature, see e.g., [16, 25]. In particular, the
second part is often made to guarantee the convergence of a subgradient method
[16], and obviously holds if the decision variable x is restricted to a compact set.

3 The Distributed Optimization Algorithm Over Static
Graphs

In this section, we provide the discrete-time distributed optimization algorithm that
uses only the sign information of the relative state of the neighboring nodes (hence
one-bit information), and then interpret it via the penalty method in optimization
theory.

454 J. Zhang and K. You

This section only focuses on static graphs, which are important to the analysis of
time-varying cases in following sections.

3.1 The Distributed Optimization Algorithm

The discrete-time distributed algorithm to solve (2) over a static network G is given
in Algorithm 1.

Algorithm 1: Distributed Algorithm Using the Sign of Relative State

1: Initialization: Every node i sets x0i = 0 for all i ∈ V .
2: Repeat
3: Information collection: Each node i collects the sign of the relative state to its neighbor

j ∈ Ni and obtain rki , which is given below

rki =
∑
j∈N i

ai j sgn(x
k
j − xki).

4: Local update: The decision variable in each node is locally updated as

xk+1
i = xki + ρk

(
λ · rki − ∇ fi (x

k
i)

)
,

where λ and ρk are to be given, and ∇ fi (xki) is any subgradient of fi (x) at xki .
5: Set k = k + 1.
6: Until a predefined stopping rule (e.g., a maximum iteration number) is satisfied.

The continuous-time version of Algorithm 1 is also given in (4) of [12] and is
proved to be convergent by using the non-smooth analysis tool [6]. To ensure a valid
algorithm, it is important to choose both λ and ρk , which, for the discrete-time case,
requires a completely different approach from that of [12], as it will be evident in
Sect. 3.2.

Compared with the celebrated distributed gradient descent (DGD) algorithm, see
e.g.,[16],

xk+1
i = xki +

∑
j∈N i

ãi j (x
k
j − xki) − ρk∇ fi (x

k
i). (4)

Algorithm 1 has at least two advantages. First, each node i in Algorithm 1 only uses
the binary information of the relative state (xkj − xki), instead of the exact relative state
from each of its neighbors j , which is essential in some cases where sgn(xkj − xki) is
the only available information. Second, Algorithm 1 does not require the adjacency
matrix Ak to be doubly-stochastic, while associated adjacency matrix Ãk must be

Distributed Optimization in Multi-agent Networks … 455

doubly-stochastic in DGD [16], where [Ãk]i j := ãki j . This is very restrictive in the
distributed setting.

Remark 1 Algorithm 1 also works if x is a vector by applying sgn(·) to each element
of the relative state vector. All the results on the scalar case continue to hold with
such an adjustment.

3.2 Penalty Method Interpretation of Algorithm 1

In this subsection, we interpret Algorithm 1 via the penalty method and show that it
is the subgradient iteration of a penalized optimization problem.

Notice that problem (2) can be essentially reformulated as follows:

minimize
x∈Rn

g(x) :=
n∑

i=1

fi (xi) (5)

subject to xi = x j , ∀i, j ∈ {1, ..., n}

where x = [x1, ..., xn]T. It is easy to see that the optimal value of problem (5) is also
f �, and the set of optimal solutions is {x�1|x� ∈ X �}.
Define a penalty function by

h(x) = 1

2

n∑
i=1

∑
j∈N i

ai j |xi − x j |. (6)

If the associated network G is connected, then h(x) = 0 is equivalent to that
xi = x j , ∀i, j ∈ {1, ..., n}. Thus, a penalized optimization problem of (5) can be
given as

minimize
x∈Rn

f̃λ(x) := g(x) + λh(x) (7)

where λ > 0 is the penalty factor.
We show below that Algorithm 1 is just the subgradient iteration of the penalized

problem (7) with stepsizes ρk . Recall that sgn(x) is a subgradient of |x | for any
x ∈ R. It follows from (6) that a subgradient ∇h(x) = [∇h(x)1, ...,∇h(x)n]T of
h(x) is given element-wise by

∇h(x)i =
∑
j∈N i

ai j sgn(xi − x j), i ∈ V .

Similarly, a subgradient∇g(x) = [∇g(x)1, ...,∇g(x)n]T of g(x) is given element-
wise by ∇g(x)i = ∇ fi (xi). Then, the i-th element of a subgradient of f̃λ(x) is given

456 J. Zhang and K. You

as

∇ f̃λ(x)i = λ
∑
j∈N i

ai j sgn(xi − x j) + ∇ fi (xi), i ∈ V .

Finally, the subgradient method for solving (7) is given as

xk+1 = xk − ρk∇ f̃λ(xk),

which is exactly the vector form of the local update in Algorithm 1. By [2], it follows
that the subgradient method converges to an optimal solution of problem (7) if ρk is
appropriately chosen.

For a finite λ > 0, the optimization problems (5) and (7) are generally not equiva-
lent. Under mild conditions, our main result shows that they actually become equiv-
alent if the penalty factor λ is strictly greater than an explicit lower bound. To this
end, we define

x̄ = 1

n
1Tx, (8)

v(x) = max
i

(xi) − min
i

(xi),

and let a(l)
min be the sum of the l smallest edges’ weights, i.e.,

a(l)
min =

l∑
e=1

a(e) (9)

where a(1), a(2), . . . are given as an ascending order of the positive weights ai j for
any edge (i, j) ∈ E .

Theorem 1 (Lower bound for the penalty factor, [28]) Suppose that Assumption 1
holds, and that themulti-agent network is l-connected. If the penalty factor is selected
as

λ > λ := nc

2a(l)
min

, (10)

where c and a(l)
min are defined in (3) and (9), then

(a) The optimization problems (2) and (7) are equivalent in the sense that the set of
optimal solutions and optimal value of (7) are given by X̃ � = {x�1|x� ∈ X �}
and f �, respectively.

(b) For any x /∈ {α1|α ∈ R}, it holds that

‖∇ f̃λ(x)‖∞ ≥ 2λa(l)
min

n
− c.

Distributed Optimization in Multi-agent Networks … 457

Proof (of part (a)) Consider the inequalities below

f̃λ(x) = λh(x) + g(x − x̄1 + x̄1) (11)

≥ λh(x) + g(x̄1) + (x − x̄1)T∇g(x̄1)

≥ λh(x) + f (x̄) − ‖x − x̄1‖‖∇g(x̄1)‖

where the equality follows from the definition of f̃λ(x), the first inequality is from
(1), and the second inequality results from the Cauchy–Schwarz inequality [2] as
well as the fact that g(a1) = f (a).

Then, we can show that

h(x) ≥ a(l)
minv(x). (12)

Since the multi-agent network is l-connected, it follows from Menger’s theorem
[8] that there exist at least l disjoint paths (two paths are disjoint if they have no
common edge) between any two nodes of the graph. Therefore, letting xmax and xmin

be two nodes associated with the maximum element and the minimum element of x,
respectively, we can find l disjoint paths from xmax to xmin.

Let x(p,1), ..., x(p,np) denote the nodes of path p in order, where np is the number
of nodes in path p, and x(p,1) = xmax, x(p,np) = xmin for all p ∈ {1, ..., l}. Since these
l paths are disjoint, it follows that

h(x) ≥
l∑

p=1

np−1∑
i=1

a(p,i,i+1)|x(p,i) − x(p,i+1)| (13)

≥
l∑

p=1

np−1∑
i=1

min
i

a(p,i,i+1)|x(p,i) − x(p,i+1)|

≥
l∑

p=1

min
i

a(p,i,i+1)

np−1∑
i=1

(x(p,i) − x(p,i+1))

≥
l∑

p=1

min
i

a(p,i,i+1)(xmax − xmin) ≥ a(l)
minv(x)

where a(p,i,i+1) is the weight of the edge connecting nodes x(p,i) and x(p,i+1).
Letting x̃ = 1

2 (maxi (xi) + mini (xi)), we have

‖x − x̄1‖‖∇g(x̄1)‖ ≤ ‖x − x̃1‖‖∇g(x̄1)‖ (14)

≤ √
n‖x − x̃1‖∞ · √

n‖∇g(x̄1)‖∞

≤ nc

2
v(x).

458 J. Zhang and K. You

where the first inequality follows from the fact that x̄ minimizes ‖x − α1‖ with
respect to (w.r.t.) α for all x. Equations (11), (12) and (14) jointly imply the following
inequality

f̃λ(x) − f � ≥ f (x̄) − f � + (λa(l)
min − cn

2
)v(x). (15)

Since λ > nc/(2a(l)
min), v(x) ≥ 0, ∀x ∈ R

n and f (x̄) ≥ f �,∀x̄ ∈ R, then the
right-hand side of (15) is nonnegative. That is, f̃λ(x) ≥ f � for all x ∈ R

n .
Moreover, it follows from (7) that f̃λ(x�1) = f � for any x� ∈ X �, i.e., f̃λ(x) =

f � for any x ∈ X̃ �. What remains to be shown is that f̃λ(x) > f � for all x /∈ X̃ �,
which includes

Case (a): x �= α1 for any α ∈ R,
Case (b): x = α1 for some α /∈ X �.

For Case (a), v(x) is strictly positive, and hence we know that f̃λ(x) > f � from (15).
For Case (b), we have v(x) = 0. By (15) we have that f̃λ(x) ≥ f (x̄) = f (α) > f �.
Thus, f̃λ(x) > f � for all x /∈ X̃ �, which completes the proof of part (a).

The proof of part (b) is very involved and the interested readers are referred to
[28] for details. �

Algorithm 1(b) can also be modified to deal with objective functions with
unbounded subgradients, e.g., quadratic functions, see [28] for details.
Theorem 1 provides a sufficient condition for the equivalence between problems
(5) and (7), and allows us to focus only on problem (7). Notice that this result is
nontrivial even though the penalty method has been widely studied in optimization
theory [2]. For example, a well-known result is that the gap between the optimal val-
ues of the penalized problem (7) and the problem (5) gets smaller asλ becomes larger,
which however cannot always guarantee the existence of a finite penalty factor λ to
eliminate the gap. A large λ may have negative effects on the transient performance
of Algorithm 1.

Remark 2 It is worth mentioning that (10) in Theorem 1 also holds for the mul-
tidimensional case if Assumption 1(b) is replaced with ‖∇ fi (x)‖ ≤ c for all i
and x.

In viewof the duality theory [2], a potential lower bound forλ could be the absolute
value of the associated Lagrange multiplier. However, a Lagrange multiplier usually
cannot be obtained before solving its dual problem. Theorem 1 gives an explicit
lower bound for λ in terms of the network size and its connectivity, and is tighter
than the bounds in [9] and [12].

In fact, the lower bound can be tight in some cases as shown in the following
example. Note that [9] does not consider a generic optimization problem.

Distributed Optimization in Multi-agent Networks … 459

(a) (b) (c)

Fig. 1 Some graphs

Example 1 ([28]) Consider the graph in Fig. 1b with unit edge weights, i.e., ai j =
1 for all (i, j) ∈ V . Let f1(x) = |x |, f2(x) = |x − 2|, f3(x) = |x − 4|, f4(x) =
|x − 6| and f (x) = ∑4

i=1 fi (x). It is not difficult to compute that the optimal value
of f (x) is 8 and the set of optimal solutions is a closed interval [2, 4]. By (7), the
corresponding penalized problem is given as

f̃λ(x) = |x1| + |x2 − 2| + |x3 − 4| + |x4 − 6|+
λ(|x1 − x2| + |x2 − x3| + |x3 − x4| + |x4 − x1|).

Theorem 1 implies that f̃λ(x) has the same optimal value as f (x) and the set of
optimal solutions is X̃ � = {x�1|x� ∈ [2, 4]}, provided that λ > 4 · 1/(2 · 2) = 1.

Given any λ ≤ 1, consider x = [2, 2, 4, 4]T /∈ X̃ �. Clearly,

f̃λ(x) = 4 + 4λ ≤ f � = 8,

which implies that the set of optimal solutions of the penalized problem is not X̃ �.
Thus for any λ ≤ 1, the original problem f (x) cannot be solved via the penalized
problem f̃λ(x), and the lower bound in (10) is tight in this example. �

The lower bound in (10) is in a simple form and a(l)
min cannot be easily replaced.One

may consider to use theminimumdegree of the network, i.e., dm = mini∈V
∑n

j=1 ai j .
This is impossible in some cases. Consider the 1-connected graph in Fig. 1c with
unit edge weights. Then, a(1)

min = 1 and dm = 2. Let [s1, ..., s6] = [1, 2, 3, 4, 5, 6] and
fi (x) = |x − si |, ∀i ∈ {1, ..., 6}. Set

x = [x1, ..., x6]T = [3, 3, 3, 4, 4, 4]T.

Then, using similar arguments as in Example 1, one can infer that the lower bound
λ in (10) cannot be reduced to nc/(2dm) = 3/2.

A similar penalty method interpretation of (4) with constant ρk is provided in
[14], where the penalty function is chosen as

xTLx = 1

2

∑
i, j

ai j (xi − x j)
2

460 J. Zhang and K. You

and L is the graph Laplacian matrix. However, such a quadratic penalty function
cannot always guarantee the existence of a finite λ for the equivalence of the two
problems. We provide a concrete example to illustrate this.

Example 2 Consider the graph in Fig. 1a with unit edge weights. Let f1(x) =
(x − 1)2 and f2(x) = (x − 3)2. Clearly, the optimal solution of f (x) = f1(x) +
f2(x) is x� = 2. Then a corresponding penalized problem using xTLx is

minimize
x1,x2∈R

f1(x1) + f2(x2) + λ(x1 − x2)
2. (16)

The optimal solution of (16) is x�
1 = (1 + 4λ)/(1 + 2λ) and x�

2 = (3 + 4λ)/(1 +
2λ), and there does not exist a finite value of λ which makes both of them equal to
x� = 2. �

By [2], x� is an optimal solution of (7) if and only if 0 ∈ ∂ f̃λ(x�). Part (b) of Theo-
rem 1 shows that for any x /∈ {α1|α ∈ R}, the norm of the corresponding subgradient
is uniformly greater than a positive lower bound, which clearly shows non-optimality
of x.

4 Convergence Analysis of Algorithm 1 Over Static Graphs

In this section, we examine the convergence behavior of Algorithm 1 over static
graphs. If ρk is diminishing, all agents converge to the same optimal solution of
problem (2) under Algorithm 1. With a constant stepsize, all agents eventually con-
verge to a neighborhood of an optimal solution, where the error size is proportional
to the stepsize. For both cases, we perform the non-asymptotic analysis to quantify
their convergence rates.

Before providing the convergence results of {xk}, we recall fromPropositionA.4.6
in [2] a well-known result on the convergence of a sequence of vectors.

Lemma 1 ([2]) LetX � be a nonempty subset ofRn, and let {xk} ∈ R
n be a sequence

satisfying for some p > 0 and for all k,

‖xk+1 − x�‖p ≤ ‖xk − x�‖p − γ kφ(xk) + δk, ∀x� ∈ X �,

where {γ k} and {δk} are nonnegative sequences satisfying
∞∑
k=0

γ k = ∞,

∞∑
k=0

δk < ∞.

Suppose that φ(·) is continuous, nonnegative, and satisfies φ(x) = 0 if and only if
x ∈ X �. Then {xk} converges to an optimal point inX �.

The first result in this section is on the convergence of Algorithm 1 under the
assumption of diminishing stepsize, which is given as follow:

Distributed Optimization in Multi-agent Networks … 461

Assumption 2 The sequence {ρk} satisfies
∞∑
k=0

ρk = ∞, and
∞∑
k=0

(ρk)2 < ∞.

Proof of the convergence of Algorithm 1 under Assumption 2 is now given below.

Theorem 2 (Convergence, [28]) Suppose that the conditions in Theorem 1 and
Assumption 2 hold. Let {xk} be generated by Algorithm 1. Then, there exists some
optimal point x� ∈ X � such that limk→∞ xk = x�1.

Proof Under Assumption 1, we have that

‖∇ f̃λ(x)‖ ≤ ca,∀x ∈ R
n (17)

where ca = √
n(c + λ‖A‖∞). Since Algorithm 1 is the exact iteration of the subgra-

dient method of problem (7), this implies that

‖xk+1 − x�1‖2 (18)

= ‖xk − x�1‖2 − 2ρk(xk − x�1)T∇ f̃λ(xk) + (ρk)2‖∇ f̃λ(xk)‖2
≤ ‖xk − x�1‖2 − 2ρk(f̃λ(xk) − f̃λ(x

�1)) + (ρk)2c2a
≤ ‖xk − x�1‖2 − 2ρk(f̃λ(xk) − f �) + (ρk)2c2a, ∀x� ∈ X �

where the first inequality follows from (1) and (17), and the second inequality is
from Theorem 1.

By virtue of Lemma 1 and Theorem 1, the result follows immediately. �

Our next result provides a non-asymptotic result to evaluate the convergence rate
for ρk = k−α, α ∈ (0.5, 1]. To this end, we first define

d(x) = min
x�∈X �

‖x − x�1‖. (19)

Then, it follows from (8) that

v(xk) = max
i

(xki) − min
i

(xki)

x̄ k = 1

n
1Txk .

Clearly, d(x) is the distance between x and the set of optimal solutions, vk is the
maximum divergence between agents’ states at time k, and x̄ k is the mean of all
agents’ states at time k. Intuitively, we can use the rates that f (x̄ k) approaches f �

and vk reduces to 0 to evaluate the convergence rate of Algorithm 1.

462 J. Zhang and K. You

Theorem 3 Suppose that the conditions in Theorem1 hold, and let {xk} be generated
by Algorithm 1. If ρk = k−α, α ∈ (0.5, 1], then

min
1<k≤k̄

f (x̄ k) − f � ≤ (2α − 1)d(x0)2 + 2αc2a
2(2α − 1)s(k̄)

, (20)

min
1<k≤k̄

v(xk) ≤ (2α − 1)d(x0)2 + 2αc2a
(2λa(l)

min − cn)(2α − 1)s(k̄)
,

where x0 is the initial point, x̄ k and v(xk) are defined in (8), and

s(k̄) =
⎧⎨
⎩

1

1 − α
(k̄1−α − 1), if α ∈ (0.5, 1),

ln(k̄), if α = 1.

Proof By Theorem 2, {xk} is a convergent sequence. For any x� ∈ X �, it follows
from (18) that

2ρk(f̃λ(xk) − f �) ≤ ‖xk − x�1‖2 − ‖xk+1 − x�1‖2 + (ρk)2c2a .

Summing the above relation over k ∈ {1, ..., k̄} yields

2
k̄∑

k=1

ρk(f̃λ(xk) − f �) ≤ ‖x0 − x�1‖2 − ‖xk̄+1 − x�1‖2 +
k̄∑

k=1

(ρk)2c2a

≤ d(x0)2 +
k̄∑

k=1

(ρk)2c2a

where the last inequality holds by choosing x� = argminx∈X �‖x0 − x1‖. Then, we
arrive at

min
0≤k≤k̄

f̃λ(xk) − f � ≤ d(x0)2 + ∑k̄
k=1(ρ

k)2c2a

2
∑k̄

k=1 ρk
. (21)

Since
∫ k̄
1 x−αdx <

∑k̄
k=1 k

−α <
∫ k̄
1 x−αdx + 1, we have that

k̄∑
k=1

(ρk)2 <

∫ k̄

1
x−2αdx + 1 = 1 − k̄1−2α

2α − 1
+ 1 <

2α

2α − 1
,

and
∑k̄

k=1 ρk >
∫ k̄
1 x−αdx = s(k̄). Using the above and (21) leads to

Distributed Optimization in Multi-agent Networks … 463

min
0≤k≤k̄

f̃λ(xk) − f � ≤ (2α − 1)d(x0)2 + 2αc2a
2(2α − 1)s(k̄)

. (22)

Since f (x̄ k) − f � > 0 and λa(l)
min − 1

2cn > 0, it follows from (15) and (22) that
(20) holds. �

The first inequality in (20) quantifies the decreasing rate of the gap between f (x̄ k)
and the optimal value f �, while the second one shows that the largest difference
between agents’ states is reduced at a comparable rate. Thus, Theorem 3 reveals that
the convergence rate lies between O(1/ln(k)) and O(ln(k)/

√
k), depending on the

choice of ρk .
We also provide an alternative evaluation of the convergence rate, which uses a

robust form and is presented in the following Corollary 1.

Corollary 1 (Non-asymptotic convergence, [28]) Suppose that the conditions in
Theorem 3 hold. Then

min
1<k≤k̄

max
i∈V

f (xki) − f � ≤ (2α − 1)d(x0)2 + 2αc2a
2(2α − 1)s(k̄)

where all notations are the same as those in Theorem 3.

Proof For all k and any xm ∈ [mini∈V xki ,maxi∈V xki], it follows from (11) that

f (xm) ≤ f̃λ(xk) − λh(xk) + ‖xk − xm1‖‖∇g(xm1)‖

which together with

‖xk − xm1‖‖∇g(xm1)‖ ≤ √
n‖xk − xm1‖∞ · √

n‖∇g(xm1)‖∞ ≤ ncv(xk)

and (13) yields that

f (xm) ≤ f̃λ(xk) − λh(xk) + nc

a(l)
min

h(xk)

= g(xk) + nc

a(l)
min

h(xk)

≤ f̃2λ(xk)

where the last inequality follows from λ > nc/(2a(l)
min).

Noting that (22) implies

min
0≤k≤k̄

f̃2λ(xk) − f � ≤ (2α − 1)d(x0)2 + 2αc2a
2(2α − 1)s(k̄)

the result follows immediately. �

464 J. Zhang and K. You

If f (x) is non-differentiable, the objective function of the classical distributed
algorithm (4) converges at a rate of O(ln(k)/

√
k) when ρk = 1/

√
k [20], which

is comparable to Algorithm 1 when α approaches 0.5. Thus using only the sign
of relative state essentially does not lead to any reduction in the convergence rate.
However, if f (x) is more smooth, e.g., differentiable or strongly convex, Algorithm
1 may converge at a rate slower than that of (4).

For a constant stepsize, Algorithm 1 approaches a neighborhood of an optimal
solution as fast as O(1/k) and the error size is proportional to the stepsize. These
are formally stated in Theorems 4 and 5.

Theorem 4 (Constant Stepsize, [28]) Suppose that the conditions in Theorem 1
hold, and let {xk} be generated by Algorithm 1. If ρk = ρ, then

lim sup
k→∞

d(xk) ≤ 2
√
nmax

{
d̃(ρ),

ρc2a
2λa(l)

min − cn

}
+ ρca

where X̃ (ρ) = {x | f (x) ≤ f � + ρc2a/2} and d̃(ρ) = maxx∈X̃ (ρ) d(x) < ∞.

Proof See the Appendix. �

In Theorem 4, d̃(0) = 0 and d̃(ρ) is increasing in ρ. Thus, Algorithm 1 under a
constant stepsize finally approaches a neighborhood of x�1 for some x� ∈ X �, the
size of which decreases to zero as ρ tends to zero. If the order of growth of f near
the set of optimal solutions is available, then d̃(ρ) can even be determined explicitly,
which is illustrated in Corollary 2.

Corollary 2 ([28]) Suppose that the conditions in Theorem 4 hold, and that f (x)
satisfies

f (x) − f � ≥ γ (d(x))α

where γ > 0 and α ≥ 1. Then, it holds that

lim sup
k→∞

d(xk) ≤ 2
√
nmax

{(
ρc2a
2γ

) 1
α

,
ρc2a

2λa(l)
min − cn

}
+ ρca

Proof Noting that d̃(ρ) ≤ (ρc2a/2γ)
1
α , the result follows directly from Theorem 4.

�

The following theorem evaluates the convergence rate when the stepsize is set to
be constant.

Theorem 5 ([28]) Suppose that the conditions in Theorem 4 hold. Then

Distributed Optimization in Multi-agent Networks … 465

min
0≤k≤k̄

f (x̄ k) − f � ≤ ρc2a
2

+ d(x0)2

2ρk̄
, (23)

min
0≤k≤k̄

v(xk) ≤ ρc2a
2λa(l)

min − cn
+ d(x0)2

ρk̄(2λa(l)
min − cn)

.

Proof From (21) we know that

min
0≤k≤k̄

f̃λ(xk) − f � ≤ d(x0)2 + k̄ρ2c2a
2ρk̄

,

which together with (15) implies the result. �

Remark 3 The following conclusions can be easily drawn from Theorem 5.

(a) min0≤k≤k̄ f (x̄ k) approaches the interval [f �, f � + ρc2a
2] at a rate of O(1/k̄).

(b) Given k̄ iterations, let ρ = 1
ca

d(x0)√
k̄
, which minimizes the right-hand side of (23).

Then

min
0≤k≤k̄

f (x̄ k) − f � ≤ ca
d(x0)√

k̄
,

min
0≤k≤k̄

v(xk) ≤ ca

2λa(l)
min − cn

d(x0)√
k̄

.

The multi-agent network converges only to a point that is close to an optimal
solution with an error size O(k̄−1/2).

Algorithm 2: Distributed Algorithm Using the Sign of Relative State

1. Initialization: Every node i sets x0i = 0 for all i ∈ V .
2. Repeat
3. Information collection: Each node i collects the sign of the relative state to its neighbors

at time k, e.g., node j ∈ N k
i and obtain rki , which is given below

rki =
∑
j∈N k

i

aki j sgn(x
k
j − xki).

4. Local update: The decision variable in each node is locally updated as

xk+1
i = xki + ρk

(
λ · rki − ∇ fi (x

k
i)

)
,

where λ and ρk are to be given, and ∇ fi (xki) is any subgradient of fi (x) at xki .
5. Set k = k + 1.
6. Until a predefined stopping rule (e.g., a maximum iteration number) is satisfied.

466 J. Zhang and K. You

5 The Distributed Optimization Algorithm over
Time-varying Graphs

When the graphs are time-varying, Algorithm 1 is revised and we provide the details
in Algorithm 2. In this section, we study the convergence of Algorithm 2 over two
types of time-varying graphs: uniformly jointly connected time-varying graphs and
randomly activated graphs.

5.1 Uniformly Jointly Connected Time-varying Graphs

Now we introduce the concept of uniformly jointly connected time-varying graphs.
First we define the union of the graphs G (k,b) for integers k ≥ 0 and b > 0 below

G (k,b) = (V ,E (k,b), A(k,b)) := G k ∪ G k+1 ∪ · · · ∪ G k+b−1

and A(k,b) is the associated adjacency matrix of G (k,b). We make the following
assumption.

Assumption 3 Assume that

(a) For some η > 0, it holds that

{
aki j ≥ η, if (i, j) ∈ E k,

aki j = 0, otherwise.
(24)

(b) There exists an integer b ≥ 1 such that A(tb,b) is l-connected for each t =
0, 1, 2, ...

Assumption 3 is commonly made in dealing with deterministically time-varying
graphs. The first part requires that either an edge is not connected at some time, or
the edge is connected with a weight larger than some fixed value. The second part
assumes the joint graph in time intervals with length b to be connected. We call
time-varying graphs satisfying Assumption 3 uniformly jointly connected graphs,
which are also sometimes referred to as b-connected graphs [15, 17].

We are now ready to present the convergence result of Algorithm 2 over uniformly
jointly connected graphs.

Theorem 6 (Convergence, [26]) Suppose that Assumptions 1-3 hold, and that there
exists a constant cρ > 0 such that for all k > 0,

max
t∈[k,k+b)

ρ t ≤ cρ min
t∈[k,k+b)

ρ t . (25)

Distributed Optimization in Multi-agent Networks … 467

Select

λ >
nbccρ

2lη
,

where n is the number of agents, c is given in Assumption 1, cρ is given in
Assumption 2, and b, l, η are given in Assumption 3. Let {xk} be generated by Algo-
rithm 2. Then, limk→∞ xk = x�1 for some x� ∈ X �.

Proof Wefirst consider the subsequence {xtb, t = 0, 1, 2, ...}, i.e., we let k = tb, t ∈
{0, 1, 2, ...}. Define

f̃ kλ (x) := λ

2

∑
i, j∈V

aki j |xi − x j | +
n∑

i=1

fi (xi)

and

f̃ (k,b)
λ (x) := 1

ρk

b+k−1∑
t=k

ρ t f̃ tλ(x)

= λ

2ρk

∑
i, j∈V

b+k−1∑
t=k

ρ t ati j |xi − x j | + 1

ρk

b+k−1∑
t=k

ρ t
n∑

i=1

fi (xi)

= ρ̄k

⎡
⎣λ

2

∑
i, j∈V

āki j |xi − x j | +
n∑

i=1

fi (xi)

⎤
⎦

where

ρ̄k =
b+k−1∑
t=k

ρ t

ρk
, and āki j =

∑b+k−1
t=k ρ t ati j∑b+k−1
t=k ρ t

.

Let [Āk]i j := āki j and āk,(l)min be the sum of the l smallest nonzero elements of Āk .

Note that āk,(l)min is well defined because for any (i, j), if [A(k,b)]i j is nonzero, then
[Āk]i j is also nonzero, and A(k,b) has at least l nonzero elements by Assumption 3.

Then, we obtain from (25) that

āki j ≥ mint∈[k,k+b) ρ t
∑b+k−1

t=k ati j
bmaxt∈[k,k+b) ρ t

≥
∑b+k−1

t=k ati j
bcρ

.

Thus, if āki j �= 0, then it follows from (24) that āki j must be larger than η/bcρ , which

means that any nonzero element of Āk is larger thanη/bcρ , and hence ā
k,(l)
min ≥ lη/bcρ .

By virtue of that λ > nbccρ/(2lη) and Theorem 1, we know that the problem

468 J. Zhang and K. You

minimize
x∈Rn

1

ρ̄k
f̃ (k,b)
λ (x)

is equivalent to the original problem for all k = tb, t ∈ {0, 1, 2, ...}. That is, we have
f̃ (k,b)
λ (x) ≥ ρ̄k f � for all x ∈ R

n , and f̃ (k,b)
λ (x) = ρ̄k f � if and only if x ∈ {a1|a ∈

X �}.
Let dk = [dk

1 , ..., d
k
n]T, where

dk
i = −λ

∑
j∈N k

i

aki j sgn(x
k
j − xki) + ∇ fi (x

k
i).

Then, Algorithm 2 can be written in a compact form as

xk+1 = xk − ρkdk .

Note that dk is a subgradient of f̃ kλ (x) at xk , and ‖∇ f̃ kλ (x)‖ ≤ ca for any x ∈ R
n

by (17). Hence ‖dk‖ ≤ ca for any k. Let x� be an arbitrary element ofX �. We have
the following relation

‖xk+b − x�1‖2 =
∥∥∥∥∥xk −

b+k−1∑
t=k

ρ tdt − x�1

∥∥∥∥∥
2

(26)

= ‖xk − x�1‖2 + 2(x�1 − xk)T
b+k−1∑
t=k

ρ tdt +
∥∥∥∥∥
b+k−1∑
t=k

ρ tdt

∥∥∥∥∥
2

≤ ‖xk − x�1‖2 + 2(x�1 − xk)T
b+k−1∑
t=k

ρ tdt + bc2a

b+k−1∑
t=k

(ρ t)2.

Consider the second term of the right-hand-side of (26); then

(x�1 − xk)T
b+k−1∑
t=k

ρ tdt =
b+k−1∑
t=k

ρ t (x�1 − xk)Tdt (27)

=
b+k−1∑
t=k

ρ t (x�1 − xt)Tdt +
b+k−1∑
t=k

ρ t (xt − xk)Tdt

≤
b+k−1∑
t=k

ρ t (f̃ tλ(x�1) − f̃ tλ(xt)) +
b+k−1∑
t=k

ρ t (xt − xk)Tdt

=
b+k−1∑
t=k

ρ t (f � − f̃ tλ(xk)) +
b+k−1∑
t=k

ρ t (f̃ tλ(xk) − f̃ tλ(xt)) +
b+k−1∑
t=k

ρ t (xt − xk)Tdt

Distributed Optimization in Multi-agent Networks … 469

= ρk(f � − f̃ (k,b)
λ (xk)) +

b+k−1∑
t=k

ρ t (f̃ tλ(xk) − f̃ tλ(xt)) +
b+k−1∑
t=k

ρ t (xt − xk)Tdt

≤ ρk(f � − f̃ (k,b)
λ (xk)) +

b+k−1∑
t=k

ρ t
(‖xt − xk‖‖dt‖ + ‖xk − xt‖‖∇ f̃ tλ(xk)‖)

= ρk(f � − f̃ (k,b)
λ (xk)) +

b+k−1∑
t=k

ρ t‖xk −
t−1∑
u=k

ρudu − xk‖(‖dt‖ + ‖∇ f̃ tλ(xk)‖)

≤ ρk(f � − f̃ (k,b)
λ (xk)) + (

b+k−1∑
t=k

ρ t)2

≤ ρk(f � − f̃ (k,b)
λ (xk)) + 2bc2a

b+k−1∑
t=k

(ρ t)2.

Combining (27) with (26) yields that

‖xk+b − x�1‖2 ≤ ‖xk − x�1‖2 + 2ρk(f � − f̃ (k,b)
λ (xk)) + 5bc2a

b+k−1∑
t=k

(ρ t)2. (28)

Noting that k = tb, t ∈ {0, 1, ...}, the above relation becomes

‖x(t+1)b − x�1‖2

≤ ‖xtb − x�1‖2 + 2ρ tb(f � − f̃ (tb,b)
λ (xk)) + 5bc2a

(t+1)b−1∑
u=tb

(ρu)2.

Note that f̃ (tb,b)
λ (xk) is nonnegative and f̃ (tb,b)

λ (x) = 0 if and only if x ∈ {a1|a ∈
X �}, and that∑∞

t=1 ρ tb = ∞,
∑∞

t=1(ρ
tb)2 < ∞. It follows fromLemma 1 that there

exists x̄ ∈ X � such that the subsequence {xtb}, t ∈ {0, 1, 2, ...}must converge to x̄1.
This, combined with limk→∞ ρk = 0, implies that {xk} converges to x̄1. �

Compared with the convergence result on static graphs (Theorem 2), the major
difference on uniformly jointly connected graphs is that λ should be bcρ times larger
than that in the case of static graphs.

Next, we evaluate the convergence rate of Algorithm 2 over uniformly jointly
connected graphs when ρk = k−α, α ∈ (0.5, 1]. As in Theorem 3, we evaluate the
rates that f (x̄ k) approaches f � and v(xk) tends to 0 to quantify the convergence rate.

Theorem 7 (Non-asymptotic result, [26]) Let the assumptions in Theorem 6 hold,
and further assume that λ > nbc/ lη. Let {xk} be generated by Algorithm 2. If ρk =
k−α with some α ∈ (0.5, 1], then for any k0 > 2b,

470 J. Zhang and K. You

min
1<k≤k0

f (x̄ k) − f � ≤ (2α − 1)(d(x0))2 + 10αbc2a
b(2α − 1)s(k0)

(29)

min
1<k≤k0

v(xk) ≤ 2(2α − 1)(d(x0))2 + 12αbc2a
(λlη − nbc)(2α − 1)s(k0)

where x0 is the initial point, and

s(k0) =

⎧⎪⎪⎨
⎪⎪⎩

(k0 − b)1−α − b1−α

b(1 − α)
, α ∈ (0.5, 1),

1

b
[ln(k0 − b) − ln(b)], α = 1.

Proof Note that λ and {ρk} satisfy the conditions in Theorem 6 with cρ = 2, and
‖∇ f̃ kλ (x)‖ ≤ ca for any x and k. Let x� be an arbitrary optimal solution of problem
(2) and t0 = �k0/b�, where �x� denotes the nearest integer to (·) that is smaller than
(·). It then follows from (28) that

2ρ tb(f̃ (tb,b)
λ (xk) − f �) ≤ ‖xtb − x�1‖2 − ‖x(t+1)b − x�1‖2 + 5bc2a

tb+b−1∑
u=tb

(ρu)2.

Summing the above relation over t = 0, 1, ..., t0 yields

2
t0∑
t=0

ρ tb(f̃ (tb,b)
λ (xk) − f �)

≤ ‖x0 − x�1‖2 − ‖xt0b+1 − x�1‖2 + 5bc2a

t0∑
t=0

(t+1)b−1∑
u=tb

(ρu)2

≤ d(x0) + 5bc2a

k0∑
k=1

(ρk)2.

Therefore, we have

min
0≤k≤k0

f̃ (k,b)
λ (xk) − f � ≤ d(x0) + 5bc2a

∑k0
k=1(ρ

k)2

2
∑t0

t=0 ρ tb
. (30)

Since ∫ k0

1

1

xα
dx <

k0∑
k=1

1

kα
<

∫ k0

1

1

xα
dx + 1,

we obtain that

Distributed Optimization in Multi-agent Networks … 471

k0∑
k=1

(ρk)2 <

∫ k0

1

1

x2α
dx + 1 = 1 − k1−2α

0

2α − 1
+ 1 <

2α

2α − 1

and for α ∈ (0.5, 1),

t0∑
t=0

ρ tb > b−a
t0∑
t=0

ρ t > b−a
∫ t0

1

1

xα
dx = t1−α

0 − 1

ba(1 − α)

>
(k0/b − 1)1−α − 1

ba(1 − α)
= s(k0).

We also obtain
∑t0

t=0 ρ tb = s(k0) using similar arguments. Substituting these two
inequalities into (30) yields

min
0≤k≤k0

f̃ (k,b)
λ (xk) − f � ≤ (2α − 1)d(x0) + 10bcaα

2(2α − 1)s(k0)
. (31)

Noticing that ρ̄k ≥ cρ/2 ≥ b/2 for all k, we have

f̃ (k,b)
λ (xk) = λρ̄kh(xk) + ρ̄kg(xk − x̄ k1 + x̄ k1) (32)

≥ b

2

[
λh(xk) + g(x̄ k1) + (xk − x̄ k1)T∇g(x̄ k1)

]

≥ b

2

[
λh(xk) + f (x̄ k) − ‖xk − x̄ k1‖‖∇g(x̄ k1)‖]

where the first equality follows from the definition of f̃ (k,b)
λ (x), the second inequality

is from the definition of a subgradient, and the last inequality is the result of the
Cauchy–Schwarz inequality as well as the fact that g(a1) = f (a).

Recall from (13) and (14) that

h(xk) ≥ lη

2b
vk, and ‖xk − x̄ k1‖‖∇g(x̄ k1)‖ ≤ nc

2
v(xk).

These two relations together with (32) yield

f̃ (k,b)
λ (xk) − f � ≥ b

2

[
f (x̄ k) − f � + (

λlη

2b
− nc

2
)v(xk)

]
.

Since f (x̄ k) − f � > 0 and λlη − bcn > 0, the above inequality combined with (31)
implies (29) immediately. �

Theorem 2 reveals that from the worst-case point of view, the convergence rate
over uniformly jointly connected time-varying graphs is about b times slower than
that of a static graph (Theorem 3), which is reasonable.

472 J. Zhang and K. You

5.2 Randomly Activated Graphs

This subsection studies the convergence of Algorithm 2 over randomly activated
graphs, which can model many networks such as gossip social networks and random
measurement losses in networks. The definition is given as follows.

Definition 2 (Randomly Activated Graphs) The sequence of graphs {G k} are ran-
domly activated if for all i, j ∈ V , i �= j , {aki j } is an i.i.d. Bernoulli process with
P{aki j = 1} = pi j , where P(X) denotes the probability of an event X and 0 ≤
pi j ≤ 1, ∀i, j ∈ V .

Remark 4 For brevity, we assume here that the weight of each edge aki j is taken to
be either zero or one at each time k in randomly activated graphs.

We call P = [pi j] the activation matrix of G k , and the graph associated with P
is denoted as GP , which is also the mean graph of G k , i.e.,

GP := E(G k). (34)

Recall that Algorithm 1 is the iteration of subgradient methods of (7). Similarly,
Algorithm 2 is just the iteration of the stochastic subgradient method of the following
optimization problem

minimize
x∈Rn

f̂λ(x) := g(x) + λĥ(x) (35)

where g(x) is given in (5) and

ĥ(x) = 1

2

n∑
i, j=1

pi j |xi − x j |.

To exposit it, notice thatE(aki j) = pi j , and thus a stochastic subgradient∇s ĥ(x) =
[∇s ĥ(x)1, ...,∇s ĥ(x)n]T of ĥ(x) is given element-wise by

∇s ĥ(x)i =
n∑
j=1

aki j sgn(xi − x j) =
∑
j∈N k

i

sgn(xi − x j).

Since E{∇s ĥ(x)i } = ∑
j pi j sgn(xi − x j), E{∇s ĥ(x)} is a subgradient of ĥ(x).

Hence, the almost sure convergence of Algorithm 2 follows from the following
lemma.

Lemma 2 (Convergence of Stochastic Subgradient Method, [3]) Consider the opti-
mization problem

minimize
x∈Rn

E{F(x,w)} (36)

Distributed Optimization in Multi-agent Networks … 473

where w is a random variable and F(x,w) : Rn × R → R is continuous and convex
w.r.t. x for any given w. LetX � be the set of optimal solutions and assume thatX �

is not empty.
The stochastic subgradient method for (36) is given by

xk+1 = xk − ρkr(xk,wk)

where r(x,wk) is bounded and E(r(x,wk)) is a subgradient of E{F(x,wk)} for all
x ∈ R

n. If {ρk} is chosen such that

∞∑
k=0

ρk = ∞,

∞∑
k=0

(ρk)2 < ∞,

then it holds almost surely that limk→∞ xk = x� for some x� ∈ X �.

The following theorem summarizes the above analysis, and is the main result of
this subsection.

Theorem 8 ([28]) Suppose that Assumptions 1 and 2 hold, and that the multi-agent
network GP is l-connected. Select

λ >
nc

2p(l)
min

,

whereGP is given in (34), p
(l)
min denotes the sumof the l smallest nonzero elements of P.

Let {xk} be generated by Algorithm 2. Then, it holds almost surely that limk→∞ xk =
x�1 for some x� ∈ X �.

Proof By Theorem 1, it follows that problem (35) has the same set of optimal solu-
tions and optimal value as problem (2). Combined with Lemma 2, the proof follows.

�

6 Numerical Examples

In this section, we apply our algorithms to distributedly find the geometric median of
a couple of points in a two-dimensional plane. The geometric median of n points is
defined as the point which minimizes the sum of Euclidean distances to these points
[7]. In other words, it is the optimal solution of the following convex optimization
problem:

minimize
x∈R2

f (x) :=
n∑

i=1

fi (x) =
n∑

i=1

‖x − xi‖. (37)

474 J. Zhang and K. You

The local function fi (x) := ‖x − xi‖ is convex but non-differentiable, the subdiffer-
ential of which is given as

∂ fi (x) =
⎧⎨
⎩

x − xi
‖x − xi‖ , if x �= xi

{g | ‖g‖ ≤ 1}, otherwise.

Apparently, problem (37) satisfies Assumption 1, and hence it can be solved by
Algorithms 1 and 2. Notice that x in (37) is 2-dimensional and Algorithms 1 and 2
should be modified accordingly as stated in Remark 1.

The geometric median problem is a special case of least square problems in statis-
tics and Weber problems in location theory. Here we provide a possible application
in distributed settings. Consider n base stations under the sea, and we want to find
a place to build a communication center, which should have the minimum distances
to these stations to save the costs of cables. Since global positioning is very difficult
under seas, a feasible distributed approach to find the desired place is for each station
to send an agent, which however can only measure the distance to the station and
know rough relative positions to its neighbor agents. Clearly, we can use the proposed
algorithms to achieve this goal.

In this example, we consider five stations (hence five agents), the positions of
which are randomly generated on a rectangular area with size 100 × 100. We run
three simulations over a static graph, uniformly jointly connected graphs, and ran-
domly activated graphs, respectively. We choose the stepsize ρk = 5/(k + 10) in all
simulations. The topology of the five agents is a ring graph as shown in Fig. 2a. The
λ in Algorithm 1 used in the static graph’s case is chosen to be 2, which satisfies
the condition in Remark 2. For the uniformly jointly connected graphs’ case, we let
only one edge in the graph of Fig. 2a connect at each time, and each edge connects
once and only once in each cycle, the order of which is determined by a random
permutation of {1, ..., 5} at the beginning of each cycle. The λ in Algorithm 2 used
in the case of uniformly jointly connected graphs is chosen to be 6. We generate
randomly activated graphs by letting each edge in the graph of Fig. 2a connect with
probability 0.5 at each time, and we choose λ to be 4.

Fig. 2b, c, d depict respectively the trajectories of the 5 agents from k = 1 to 1500
over the static graph, uniformly jointly connected graphs and randomly activate
graphs, where the filled circles are the initial positions of the agents and the black
triangle is the geometric median of these circles computed by Weiszfeld’s method
[1]. As shown in the figures, agents in all cases converge to the geometric median
with however slightly different transient performances.

If λ is smaller than the lower bound provided in Theorem 1, consensus may not be
achieved among agents. Figure3 shows the trajectories of agents with λ = 0.8, 2, 1.5
over a static graph, uniformly jointly connected graphs, randomly activated graphs,
respectively. Other settings remain the same except that we increase the times of
iterations to 5000. Clearly, agents fail to converge to the geometric median.

Distributed Optimization in Multi-agent Networks … 475

1

2

3

4 5

(a)

10 20 30 40 50 60 70 80 90

10 20 30 40 50 60 70 80 9010 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90
1

2

3

4

5

(b)

0

10

20

30

40

50

60

70

80

90
1

2

3

4

5

(c)

0

10

20

30

40

50

60

70

80

90
1

2

3

4

5

(d)

Fig. 2 aThe topology of the agents.bThe trajectories of the agents in a static graph, where the filled
circles are the initial positions of the agents and the black triangle is the geometric median of these
circles. c The trajectories of the agents in uniformly jointly connected graphs. d The trajectories of
the agents in randomly activated graphs

0 20 40 60 80 100
0

20

40

60

80

100

1

2

3

4

5

(a)

0 20 40 60 80 100
0

20

40

60

80

100

1

2

3

4

5

(b)

0 20 40 60 80 1000

20

40

60

80

100

1

2

3

4

5

(c)

Fig. 3 The trajectories of agents with smaller λ over a static graph, uniformly jointly connected
graphs, randomly activated graphs, respectively

476 J. Zhang and K. You

7 Conclusions

In this chapter, we have proposed a distributed optimization algorithm to solve the
additive cost optimization problem in multi agent networks. Each agent in the algo-
rithm uses only the sign of relative state to each of its neighbor agents. The network
was allowed to be static or time-varying. For the former case, we have first provided
a penalty method interpretation of our algorithm, and then studied its convergence
under diminishing stepsizes as well as a constant stepsize. We have shown that the
convergence rate varies from O(1/ln(k)) to O(1/

√
k), depending on the stepsize. For

the latter case, we studied the performance of our algorithm over the so-called uni-
formly jointly connected graphs and randomly activated graphs, the convergence of
which is also guaranteed. Finally, we have applied our algorithm to solve a geometric
median problem. All the theoretical results have been corroborated via simulations.

Acknowledgements The authors would very much like to thank Professor Tamer Başar for the
stimulating discussions on this topic. This work was supported by the National Natural Science
Foundation of China under Grant No. 61722308, and National Key Research and Development
Program of China under Grant No. 2017YFC0805310.

Appendix: Proof of Theorem 4

We first show that d̃(ρ) < ∞. Since f̃λ(x) is convex, X̃ (ρ) is convex and X � ⊆
X̃ (ρ) for any ρ > 0. One can verify that X̃ (ρ) − X � is bounded. If X̃ (ρ) − X �

is empty, then d̃(ρ) = 0, otherwise 0 ≤ d̃(ρ) = maxx∈X̃ (ρ) minx�∈X � |x − x�| =
maxx∈X̃ (ρ)−X � minx�∈X � |x − x�| < ∞.

Then, we claim the following.
Claim 1: If ‖xk − x�1‖ > cρ for all x� ∈ X �, then f̃λ(xk) − f � > ρc2a/2.
Recall from (15) that

f̃λ(xk) − f � ≥ f (x̄ k) − f � + (λa(l)
min − 1

2
cn)v(xk),∀k.

This implies that if either f (x̄ k) − f � > ρc2a/2 or v(xk) >
ρc2a

2λa(l)
min−cn

, then f̃λ(xk) −
f � > ρc2a/2. Let

cρ := 2
√
nmax{d̃(ρ),

ρc2a
2λa(l)

min − cn
}.

Since
cρ < ‖xk − x�1‖ ≤ ‖xk − x̄ k1‖ + ‖x̄ k1 − x�1‖

≤ √
nv(xk) + √

n|x̄ k − x�|

Distributed Optimization in Multi-agent Networks … 477

we obtain that v(xk) > cρ/(2
√
n) ≥ ρc2a

2λa(l)
min−cn

or |x̄ k − x�| > cρ/(2
√
n) ≥ d̃(ρ). For

the former casewehave f̃λ(xk) − f � > ρc2a/2. For the latter case, x̄
k /∈ X̃ (ρ),which

by the definition of X̃ (ρ) implies f̃λ(xk) − f � > ρc2a/2.
Claim 2: There is x�

0 ∈ X � such that lim infk→∞ ‖xk − x�
01‖ ≤ cρ .

Otherwise, there exists k0 > 0 such that

‖xk − x�1‖ > cρ,∀x� ∈ X �,∀k > k0.

By Claim 1, there exists some ε > 0 such that f̃λ(xk) − f � > ρc2a/2 + ε for all
k > k0. Together with (18), it yields that

‖xk+1 − x�1‖2 ≤ ‖xk − x�1‖2 − 2ρ(f̃λ(xk) − f �) + ρ2c2a (38)

≤ ‖xk − x�1‖2 − 2ρ(
ρc2a
2

+ ε) + ρ2c2a

= ‖xk − x�1‖2 − 2ρε.

Summing this relation implies that for all k > k0,

‖xk+1 − x�1‖2 ≤ ‖xk0 − x�1‖2 − 2(k + 1 − k0)ρε,

which clearly cannot hold for a sufficiently large k. Thus, we have verified Claim 2.
Claim 3: There is x� ∈ X � such that lim supk→∞ ‖xk − x�1‖ ≤ cρ + ρca .
Otherwise, for any x� ∈ X �, there must exist a subsequence {xk}k∈K (which

depends on x�) such that for all k ∈ K ,

‖xk − x�1‖ > cρ + ρca . (39)

Notice that the penalty function h(x) can be represented as

h(x) =
m∑
e=1

ae|bTe x|.

where ae is the weight of edge e. The subdifferential of h(x) is then given by

∂h(x) =
m∑
e=1

aeSGN(bTe x)be = BAeSGN(BTx) (40)

where Ae = diag{a1, ..., am}. Then, it follows from (40) that

‖xk+1 − x�1‖ = ‖xk − x�1 − ρλBAesgn(B
Txk) − ρ∇g(xk)‖

≤ ‖xk − x�1‖ + λρ‖BAesgn(B
Txk)‖ + ρ‖∇g(xk)‖

≤ ‖xk − x�1‖ + ρ
√
n(λ‖A‖∞ + c)

478 J. Zhang and K. You

= ‖xk − x�1‖ + ρca,∀k

where the second inequality follows from

‖BAesgn(B
Txk)‖ ≤ √

n‖BAesgn(B
Txk)‖∞

≤ √
n‖BAe‖∞‖sgn(BTxk)‖∞

≤ √
nmax

i

n∑
j=1

ai j = √
n‖A‖∞.

Thus, we obtain that for all k ∈ K ,

‖xk−1 − x�1‖ ≥ ‖xk − x�1‖ − ρca > cρ. (41)

By Claim 2, there must exist some k1 ∈ K and k1 > k0 such that

‖xk1−1 − x�
01‖ ≤ cρ + ρca .

Together with (41), it implies that

cρ < ‖xk1−1 − x�
01‖ ≤ cρ + ρca . (42)

Hence, it follows from Claim 1 that f̃λ(xk1−1) − f � > ρc2a/2, which together with
(38) and (42) yields that

‖xk1 − x�
01‖ ≤ ‖xk1−1 − x�

01‖ ≤ cρ + ρca . (43)

Setting x� = x�
0 in (39), we have ‖xk1 − x�

01‖ > cρ + ρca .This contradicts (43), and
hence verifies Claim 3.

In view of (19), the proof is completed. �

References

1. Beck A, Sabach S (2015) Weiszfelds method: Old and new results. Journal of Optimization
Theory and Applications 164(1):1–40

2. Bertsekas DP (2015) Convex Optimization Algorithms. Athena Scientific Belmont
3. Borkar VS (2008) Stochastic approximation: a dynamical systems viewpoint. Baptism’s 91

Witnesses
4. CevherV,Becker S, SchmidtM (2014)Convex optimization for big data: Scalable, randomized,

and parallel algorithms for big data analytics. IEEE Signal Processing Magazine 31(5):32–43
5. ChenG, Lewis FL, Xie L (2011) Finite-time distributed consensus via binary control protocols.

Automatica 47(9):1962–1968
6. Clarke FH, Ledyaev YS, Stern RJ, Wolenski PR (2008) Nonsmooth Analysis and Control

Theory, vol 178. Springer Science & Business Media

Distributed Optimization in Multi-agent Networks … 479

7. CohenMB, Lee YT, Miller G, Pachocki J, Sidford A (2016) Geometric median in nearly linear
time. In: Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
ACM, pp 9–21

8. Deo N (1974) Graph Theory with Applications to Engineering and Computer Science. Courier
Dover Publications

9. Franceschelli M, Giua A, Pisano A (2017) Finite-time consensus on the median value with
robustness properties. IEEE Transactions on Automatic Control 62(4):1652–1667

10. Kan Z, Shea JM, DixonWE (2016) Leader–follower containment control over directed random
graphs. Automatica 66:56–62

11. Li T, Fu M, Xie L, Zhang J (2011) Distributed consensus with limited communication data
rate. IEEE Transactions on Automatic Control 56(2):279–292

12. Lin P, RenW, Farrell JA (2017)Distributed continuous-time optimization: nonuniform gradient
gains, finite-time convergence, and convex constraint set. IEEE Transactions on Automatic
Control 62(5):2239–2253

13. Magnússon S, Enyioha C, Li N, Fischione C, Tarokh V (2017) Convergence of limited com-
munications gradient methods. IEEE Transactions on Automatic Control 63(5):1356–1371

14. Mokhtari A, Ling Q, Ribeiro A (2017) Network Newton distributed optimization methods.
IEEE Transactions on Signal Processing 65(1):146–161

15. Nedić A, Olshevsky A (2015) Distributed optimization over time-varying directed graphs.
IEEE Transactions on Automatic Control 60(3):601–615

16. Nedic A, Ozdaglar A (2009) Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control 54(1):48–61

17. Nedić A, OlshevskyA, RabbatMG (2017)Network topology and communication-computation
tradeoffs in decentralized optimization. In: Proceedings of the IEEE, vol 106, no 5, pp 953–976,
May 2018

18. Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching
topology and time-delays. IEEE Transactions on Automatic Control 49(9):1520–1533

19. Pu Y, Zeilinger MN, Jones CN (2017) Quantization design for distributed optimization. IEEE
Transactions on Automatic Control 62(5):2107–2120

20. Shi W, Ling Q, Wu G, Yin W (2015) Extra: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization 25(2):944–966

21. Wang H, Li C (2017) Distributed quantile regression over sensor networks. IEEE Transactions
on Signal and Information Processing over Networks pp 1–1, 10.1109/TSIPN.2017.2699923

22. Xie P, You K, Tempo R, Song S, Wu C (2018) Distributed convex optimization with inequality
constraints over time-varying unbalanced digraphs. IEEE Transactions on Automatic Control
PP(99):1–1, 10.1109/TAC.2018.2816104

23. Yi P, Hong Y (2014) Quantized subgradient algorithm and data-rate analysis for distributed
optimization. IEEE Transactions on Control of Network Systems 1(4):380–392

24. You K, Xie L (2011) Network topology and communication data rate for consensusability
of discrete-time multi-agent systems. IEEE Transactions on Automatic Control 56(10):2262–
2275

25. You K, Tempo R, Xie P (2018) Distributed algorithms for robust convex optimization via the
scenario approach. IEEE Transactions on Automatic Control

26. Zhang J, You K (2018) Distributed optimization with binary relative information over deter-
ministically time-varying graphs. To appear in the 57th IEEE Conference on Decision and
Control, Miami Beach, FL, USA

27. Zhang J, You K, Başar T (2017) Distributed discrete-time optimization by exchanging one bit
of information. In: 2018 annual American Control Conference (ACC), IEEE, pp 2065–2070

28. Zhang J, YouK, Başar T (2018) Distributed discrete-time optimization in multi-agent networks
using only sign of relative state. Accepted by IEEE Transactions on Automatic Control

	Distributed Optimization in Multi-agent Networks Using One-bit of Relative State Information
	1 Introduction
	2 Problem Formulation
	2.1 Basics of Graph Theory
	2.2 Distributed Optimization Problem

	3 The Distributed Optimization Algorithm Over Static Graphs
	3.1 The Distributed Optimization Algorithm
	3.2 Penalty Method Interpretation of Algorithm 1

	4 Convergence Analysis of Algorithm 1 Over Static Graphs
	5 The Distributed Optimization Algorithm over Time-varying Graphs
	5.1 Uniformly Jointly Connected Time-varying Graphs
	5.2 Randomly Activated Graphs

	6 Numerical Examples
	7 Conclusions
	References

