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Abstract PageRank is a well-known centrality measure for the web used in search
engines, representing the importance of each web page. Its computation is very large
scale as the rankings for all pages in the entire web are to be calculated at once,
and this has prompted various studies on the algorithmic aspects of this problem. In
this chapter, we first present a short overview on the recent studies on distributed
algorithms that have been developed in the systems control area. These algorithms
share the features that (i) each page computes its own PageRank value by interacting
with pages connected over hyperlinks and (ii) gossip-type randomization is employed
in the update schemes. Then, we introduce a new class of distributed algorithms for
PageRank, which is based on a simple but novel interpretation. It is demonstrated via
analysis and numerical simulations that these algorithms have significant advantages
in their convergence performances in comparisonwith other existing techniques. The
chapter ends with a brief summary of the works on randomization-based distributed
algorithms, heavily influenced by the collaboration with Roberto Tempo, to whom
this writing is dedicated.
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1 Introduction

For search engines at Google, one of the many measures used for ranking the web
pages in search results is the so-called PageRank. For each web page, the PageRank
value provides a measure of its importance or popularity, which is based on the
network structure of the web in terms of the hyperlinks. A page is considered more
important and popular if it receives more hyperlinks from other pages and especially
those that are important themselves.When such a structure in the hyperlinks is present
around a page, it suggests how easily users surfing the web might arrive there, even
by chance. The notion of PageRank was proposed by the co-founders of Google,
Brin and Page, in [7]. It has received a great deal of interest especially in the context
of complex networks as it is an effective measure of centrality. General references
on this topic include the monograph [33] and the overview papers [23, 27].

The problem of computing PageRank itself has been a subject of extensive studies
over the years. Despite the simple nature of the problem, because of the problem size
involving billions of pages in the web, its efficient computation has remained as a
difficult task. For centralized computation, the simple power method has been the
realistic option for this reason. Alternative methods have been studied based on
Monte Carlo simulations of the underlying Markov chain (e.g., [1]) and distributed
algorithms (e.g., [48]).

Recently, in the systems control community, PageRank has gained much attention
from theviewpoint of distributed computation. In particular, in [26], itwas pointedout
that the PageRank problem shared several similarities with themulti-agent consensus
problem (e.g., [8, 40]) and randomized distributed algorithms were developed. The
approach there is to view the web as a network of pages capable of communicating
with neighbors connected via hyperlinks. Then, in a distributed manner, each web
page can act as an agent which computes its own PageRank value iteratively by
exchanging data with other pages. To cope with the network size, the pages randomly
determine when to initiate updates, which is sometimes called gossiping [6]. The
method is guaranteed to converge in the mean-square sense. However, it involves
the time averaging of the state values, resulting in the convergence rate of order 1/k
with respect to the updating time k.

The focus of this chapter is the research activities on the topic of PageRank that
have taken place since. The chapter consists of roughly three parts. In the first, we
provide a brief overview on the subject of distributed computation of PageRank, start-
ing with the work of [26]. More recently, studies focusing on convergence speeds
have appeared. In particular, it has been found that convergence with exponential
rate is possible. Notably, in [57], the PageRank problem is formulated as a least-
squares problem and then a distributed gradient-descent algorithm is applied. This
work also points out the difficulty in assuming the global parameter of the total num-
ber of web pages to be known by all pages, leading to alternative algorithms that
enable the PageRank calculation without the knowledge. The work [14] employs
another technique of matching pursuit algorithms for solving linear equations
and provides a randomized version. On the other hand, in [32], a modified
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gradient-descent algorithm is constructed so that the states of all pages remain to have
the total equal to one throughout its execution. We also refer to [43], which studied
stochastic gradient algorithms for PageRank. In this first part, we will introduce and
discuss these algorithms and their different features such as their convergence speeds
and required loads for communication and computation.

In the second part, we propose a novel approach towards the PageRank com-
putation from a slightly different perspective [50]. By making use of the property
that PageRank involves a stochastic matrix representing the network structure of
the pages, we reformulate the problem in a certain way, expressed as an infinite
matrix series. This formulation leads us to a completely different set of algorithms
tailored to the problem. Specifically, we propose algorithms for both synchronous
and asynchronous settings in the communication among the linked pages. Their con-
vergence properties are fully analyzed in the development. For the asynchronous
case, we employ randomization-based gossiping, but the probability to be selected
for updates need not be uniform. We show that they have desirable characteristics
including exponential convergence and relatively low requirements for the com-
munication among agents. Through numerical examples, we carry out a detailed
comparison of the algorithms discussed in the chapter.

The novel aspects of the proposed algorithms can be summarized as follows.
First, the reformulation idea is simple and its advantage may not be immediately
clear. This is partly because additional states are introduced for the pages, which
increase the computational burden. In fact, in the synchronous case, the convergence
is not necessarily faster than the power method. Second, in the proposed random-
ized algorithms, the states are guaranteed to reach the true PageRank values from
below in a monotonic fashion. Hence, despite the randomization, the responses of
the states are smooth, which may explain the efficiency of the approach. Third, in
the randomization, the pages to initiate updates can be chosen under arbitrary distri-
butions. It should be noted that no change is necessary in the algorithm due to the
chosen distribution. This leaves a certain degree of freedom in enhancing the conver-
gence speed as discussed in the numerical example section. Furthermore, the pages
communicate over only their outgoing hyperlinks and do not require the knowledge
of the incoming ones as in some methods in the literature.

As the last part, which is the shortest, we discuss the different roles that ran-
domization may play in networked systems problems and, in particular, multi-agent
consensus problems. In addition to gossiping in communication, probabilistic tech-
niques can be useful in enhancing distributed decision-making as well as cyberse-
curity levels for systems in hazardous environments where malicious attackers may
take advantage to disrupt the execution of algorithms and control.

Finally, we should note that, in the area of systems control, studies on PageRank
have grown in a spectrum of interesting directions; see [27] for more discussions.
For distributed algorithms, the approach of [26] has been extended, for example,
to incorporate aggregation of pages to realize more efficient computation in [29].
Stronger convergence properties with probability one are established with the help
of stochastic approximation results in [58]. Moreover, in [12, 28, 36], different
probability distributions are employed for the randomized updates in the pages,
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making them capable to function, e.g., even if the channels for the communication
among pages are unreliable. Otherworks conducted studied on the problemof finding
the ranges of PageRank values when a subset of the hyperlinks is uncertain in the
sense whether they are actually present [25], optimization of PageRank for pages of
interest by changing the link structure [13, 19], and a game theoretic analysis for
enhancing PageRank through aggregation of pages [38].

This chapter is organized as follows: We first give an overview on the PageRank
problem in Sect. 2. In Sect. 3, we introduce the recent works on distributed compu-
tation approaches for the PageRank. In Sect. 4, an alternative formulation for the
problem is presented, which is then used for deriving two novel distributed algo-
rithms based on randomized gossiping. Illustrative numerical examples are provided
in Sect. 5. Amore general discussion on the topic of randomization-based techniques
in the context of multi-agent systems is provided in Sect. 6. The chapter is finally
concluded in Sect. 7.

Notation: For vectors and matrices, inequalities are used to denote entry-wise
inequalities: For X,Y ∈ R

n×m , X ≤ Y implies xi j ≤ yi j for all i, j ; in particular,
we say that the matrix X is nonnegative if X ≥ 0 and positive if X > 0. A probabil-
ity vector is a nonnegative vector v ∈ R

n such that
∑n

i=1 vi = 1. A matrix X ∈ R
n×n

is said to be (column) stochastic if it is nonnegative and each column sum equals 1,
i.e.,

∑n
i=1 xi j = 1 for each j . Let 1n ∈ R

n be the vector whose entries are all 1 as
1n := [1 · · · 1]T . For a vector x , we use ‖x‖ to denote its the Euclidean norm. For a
discrete set D , its cardinality is given by |D |.

2 The PageRank Problem

In this section, we introduce the basics of PageRank and its interpretations commonly
employed for its computation [7, 27, 33].

The underlying idea for PageRank is to regard the entire web as a directed graph
consisting of web pages with hyperlinks. By solely using the network structure there,
PageRank provides a powerful measure of centrality, indicating how important or
popular each web page is.

Let n be the total number of pages in the web; we assume n ≥ 2 to avoid the trivial
case. The web graph is given by G := (V ,E ), where V := {1, 2, . . . , n} is the set
of vertices representing the web pages, and E is the set of hyperlinks connecting the
pages. Here, (i, j) ∈ E holds if and only if page i has a hyperlink to page j . In such a
case, for page i , page j becomes its out-neighbor, whereas page i is the in-neighbor
of page j .

The hyperlinks are not always mutual, so this graph is generally a directed graph.
When a node does not have any outgoing link, it is referred to as a dangling node.
Here, to simplify the discussion, we assume that all pages have at least one outgoing
hyperlink. This is commonly done by slightly modifying the structure of the web,
specifically by adding hyperlinks from such dangling nodes, which correspond to
the use of back buttons; see, e.g., [33] for more details.
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Next, we define the hyperlink matrix A = (
ai j

) ∈ R
n×n of this graph by

ai j :=
{

1
n j

if i ∈ L j ,

0 otherwise,
(1)

where Li := { j : (i, j) ∈ E } is the set of outgoing neighbors of page i and ni is
its cardinality, i.e., ni := |Li |. By the assumption that all pages have one or more
hyperlinks, this matrix A is (column) stochastic, that is, it is a nonnegative matrix
where the sum of entries in each column is equal to 1.

For the web consisting of n pages, the PageRank vector x∗ ∈ [0, 1]n is defined as

x∗ = (1 − m)Ax∗ + m

n
1n, 1Tn x

∗ = 1, (2)

where the parameter is chosen as m ∈ (0, 1). Note that x∗ is a nonnegative vector,
and the second equation above indicates that it is a probability vector. For m, it is
common to use the value 0.15 as proposed by [7]; we follow this convention in this
chapter.

The definition in (2) can be rewritten as

x∗ = Mx∗, 1Tn x
∗ = 1, (3)

where the modified link matrix M is given by

M := (1 − m)A + m

n
1n1Tn .

Since M is a convex combination of two stochastic matrices A and (1/n)1n1Tn , it
is stochastic as well. It is now clear that x∗ is the eigenvector of the link matrix M
corresponding to the eigenvalue 1. Such an eigenvector x∗ exists and is unique; this
follows from Perron’s theorem [24] because the stochastic matrix M has the property
of being positive.

For its computation, the PageRank vector x∗ can be obtained by solving the linear
equation (2) or (3). The practical issue that requires serious attention is the size of
the problem. Recall that the dimension of the PageRank vector is the same as the
number of pages in the web. Hence, the computation must rely on algorithms that
have simple structures.

A common approach, which is centralized, is to employ the power method. It is
expressed by the iteration of the form

x(k + 1) = (1 − m)Ax(k) + m

n
1n, (4)

where x(k) ∈ R
n is the state whose initial value x(0) can be taken as any probability

vector. By Perron’s theorem [24], it follows that x(k) → x∗ as k → ∞.
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Fig. 1 An example graph
with seven nodes

Another interesting interpretation of PageRank is that of the random surfermodel.
It follows from the expression in (3) that the PageRank vector x∗ can be regarded as
the stationary distribution of a Markov chain whose transition matrix is represented
by the stochastic matrix M . Wemay imagine a person who surfs the web in a random
manner:When he visits one page, with probability 1 − m, he chooses one of the links
with equal probability; otherwise, with probabilitym, he decides to jump to any of the
pages in the web with equal probability, that is, 1/n. Under this model, the PageRank
of page i can be regarded as the probability that such a surfer visits there in the steady
state. Clearly, the link structure of the web creates pages which are more likely to be
visited by such an imaginary surfer.

We now present a simple example to illustrate the problem of PageRank.

Example 1 Consider theweb consisting of seven pages depicted in Fig. 1. The hyper-
link matrix A of this web is given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
2

1
2

1
3 1 0 0

1
2 0 1

2
1
3 0 0 0

1
2 0 0 0 0 0 0

0 1
2 0 0 0 0 0

0 0 0 1
3 0 1 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We can calculate the PageRank vector of this graph as

x∗ = [
0.316 0.259 0.156 0.132 0.0951 0.0214 0.0214

]T
.

It is noted that the indices of the pages are set according to the order of their
PageRanks. Pages 1 and 2 have, respectively, four and three incoming links, mak-
ing their rankings high. Pages 6 and 7 have no incoming hyperlink and, as a result,
take the lowest possible PageRank, which is equal to m/n = 0.15/7 = 0.0214. We
should emphasize that the number of links is not the only factor that determines
PageRank. Both pages 3 and 4 have only one incoming link, but take better rankings
than page 5, which has three links. This is because the ranks also depend on the
values of the pages from which the links originate. In this respect, pages 3 and 4
are more advantageous than page 5, whose links include those from pages 6 and 7,
having minor impact on its importance.
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3 Distributed Algorithms for PageRank

In this section, we discuss the recent studies on randomized distributed algorithms for
the PageRank computation and their differences. Namely, we focus on the methods
developed in Ishii and Tempo [26], You et al. [57], Dai and Freris [14], and Lagoa
et al. [32].

The computation of PageRank may be costly if it is performed centrally because
of the size of the problem determined by the number of pages in the entire web.
Hence, distributed computation is one natural approach to resolve this issue. In the
systems control community, this viewpoint is particularly motivated by the recent
research on coordinated control of multi-agent systems (e.g., [8, 40]). In the setting
of the web, the pages may act as agents interacting over the hyperlinks to compute
their own PageRank values through an iterative algorithm. In practice, resources for
computation and communication are available at the numerous web servers where
the data regarding the pages connected via hyperlinks is available.

In what follows, we present several distributed algorithms for PageRank com-
putation. We use the common notation for the value of page i at time k, which is
expressed as xi (k). In view of the size of the system, one issue is how to coordinate
the pages in terms of the timings for them to initiate updates and communication of
their values. Here, we bring in randomization in the pages’ decisions and employ
the so-called gossip-type communication: At each time step, one of the pages is ran-
domly chosen in an independently identically distributed (i.i.d.) manner. Denoting
the index of the page chosen at time k by θ(k) ∈ V , we have

Prob
{
θ(k) = i

} = 1

n
for i ∈ V and k ∈ Z+. (5)

All of the algorithms discussed here are equipped with this mechanism.
Among the distributed algorithms, there are differences in how the chosen

page θ(k) interacts with its neighboring linked pages. Some approaches require that
page θ(k) send its current value xθ(k)(k) to its out-neighborswhereas other algorithms
mandate communications with its in-neighbors. Another aspect that will become an
important difference is the level of synchronization necessary among the pages in
their clocks. In general, it is difficult to expect that a common clock exists, shared
by all pages with perfect synchronization.

3.1 Towards Distributed Computations

First, we present the approach of [26], which introduced distributed algorithms from
the viewpoint of coordinated control of multi-agent systems. The update law for this
case is motivated by the centralized iterative one in (4). In comparison with other
algorithms, a key feature is the reliance on the use of stochastic matrices.
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The idea is to employ distributed link matrices Ai containing the i th column of
the link matrix A given in (1), and the remaining columns are set so that Ai becomes
a stochastic matrix. Here, we present the version from [27], which takes a slightly
simpler form. More concretely, the distributed link matrices Ai , i = 1, . . . , n, are
defined by

(i) The i th column of Ai is equal to the i th column of A.
(ii) The diagonal entries of the columns other than the i th one are equal to one.
(iii) The remaining entries are chosen to be zero.

It is clear that these matrices Ai are column stochastic by construction.
As a consequence, according to the probability distribution of the process θ(k),

the average matrix A := E[Aθ(k)] takes a special form as

A = 1

n

n∑

i=1

Ai = 2

n
A +

(

1 − 2

n

)

I. (6)

Notice that this matrix A is a convex combination of two column stochastic matrices.
The distributed update law using the link matrices can be represented as follows:

x(k + 1) = (1 − m̂)Aθ(k)x(k) + m̂

n
1n, (7)

where the initial vector x(0) is a probability vector and m̂ ∈ (0, 1) is a parameter to be
determined, corresponding tom = 0.15 in the centralized algorithm (4). This update
law is accompanied by the time average process y(k) of the states x(0), . . . , x(k)
given by

y(k) := 1

k + 1

k∑

�=0

x(�). (8)

Observe that each page i can locally compute the average yi (k) of its own past states
xi (�), � = 0, . . . , k. It is also noted that the state x(k) and hence the average y(k)
are both probability vectors at all k.

We now discuss the convergence properties of the update scheme (7) and (8). The
parameter m̂ is to be set as

m̂ := 2m

n − m(n − 2)
.

This choice allows us to represent the PageRank vector x∗ based on the average
matrix A in (6) as

x∗ = (
1 − m̂

)
Ax∗ + m̂

n
1.

Then, we can establish that the expected value E[x(k)] of the states converges to the
PageRank vector x∗, that is, E[x(k)] → x∗ as k → ∞. While it is not possible to
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show that the state vector x(k) itself converges to the PageRank vector x∗, it follows
that its time average y(k) does so in the mean-square sense. More specifically, for
any initial state x(0) which is a probability vector, it holds that

E
[∥
∥y(k) − x∗∥∥2] → 0 ask → ∞.

This kind of convergence is referred to as ergodicity of random processes and the
time average plays an important role. The original state x(k) in general demonstrates
persisting oscillationswithout convergence. Furthermore, the scheme convergeswith
probability one, as was shown in [58] using methods from stochastic approximation.

We discuss a few issues that may be of concern about the update scheme (7) and
(8). They become relevant because of the involvement of the time averaging in y(k).
One is that the speed of convergence is somewhat limited. It can be shown to be
linear and, more specifically, of the order 1/k. Another is the necessity for the pages
to be synchronized; this is needed for correctly computing the time average yi (k) by
all pages as pointed out in [57]. Finally, in this algorithm, each page i must store and
update two variables, namely, xi (k) and yi (k). Interesting extensions of this class of
algorithms have been made in [22, 46], where applications to sensor localization in
wireless networks, social dynamics, and state estimation in power systems can be
found.

3.2 Enhancement in Convergence Speed

Next, we proceed to discuss the alternative approach of the work [57] for distributed
computation of the PageRank vector. Their approach is based on the viewpoint of
distributed optimization, which in turn allows us to adopt existing algorithms from
the area and to demonstrate its exponential convergence.

The starting point is to rewrite the PageRank vector x∗ in its definition as the
solution to the linear equation given by

[I − (1 − m)A] x∗ = m

n
1n. (9)

This implies that the vector can be obtained through an unconstrained optimization
given by

x∗ = argmin
x

∥
∥
∥[I − (1 − m)A] x − m

n
1n

∥
∥
∥
2
. (10)

Under this formulation, the PageRank computation problem can be further reduced
to a form having a distributed nature more explicitly. Let

H := I − (1 − m)A and g := m

n
1n. (11)
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Denote by h̃T
i ∈ R

n the i th row of the matrix H . The optimization problem (10) can
be expressed as

x∗ = argmin
x

n∑

i=1

(
h̃T
i x − gi

)2
. (12)

For solving this optimization problem, the work [57] presents a distributed
gradient-descent algorithm, which can be seen as an extension of the randomized
Kaczmarz algorithm of [59]. An interesting feature is that the index θ(k) of the cho-
sen page follows a Markov chain whose states correspond to the pages in the web;
this is introduced to deal with the situation where the total number n of pages in the
web is unknown.

We now present the simple case where θ(k) is an i.i.d. random process according
to (5). This version requires the knowledge of the size n of the web. The update
scheme can be given as follows:

x(k + 1) = x(k) − 1

2n
· d

dx

(
gθ(k) − h̃T

θ(k)x
)2 ∣

∣
∣
x=x(k)

= x(k) + 1

n
h̃θ(k)

(
gθ(k) − h̃T

θ(k)x(k)
)

, (13)

where the initial condition is set as x(0) = 0.
It is shown in [57] that the randomized algorithm in (13) has a guaranteed conver-

gence rate and, in fact, it exponentially converges almost surely to the true PageRank
vector x∗. This is an important characteristic, which is not attainable in the approach
of [26] based on stochastic matrices and time averaging of the state. Another dif-
ference is that this algorithm involves only one variable per page for the PageRank
computation.

On the other hand, it is important to note that the necessary communication load
among the nodes may be high and requires the knowledge of the in-neighbors at
each page. This can be confirmed since in the update rule (13), the row h̃θ(k) of H
corresponding to the chosen page θ(k) at time k appears twice. This indicates that
(i) the values x j (k) of the in-neighbors j ∈ Nθ(k) of page θ(k) must be collected for
obtaining h̃T

θ(k)x(k) and then (ii) the value gθ(k) − h̃T
θ(k)x(k) is sent back to the same

in-neighbors for the update of their own values x j (k).

3.3 Reduction in Communication Loads

The perspective of linear equations was the motivation also for the third approach for
PageRank computation proposed in [14]. The distributed algorithm there employs
the technique of matching pursuit algorithms from the area of signal processing
(e.g., [39]). Matching pursuit is for approximating a signal with a finite number of
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functions (called atoms). As a consequence, this algorithm is guaranteed to possess
exponential convergence as well.

In contrast to the approach of [57], which required the updating pages to com-
municate with their in-neighbors, the algorithm of [14] involves interactions only
with the out-neighbors. Such neighbors are easily known to any page as they can be
reached through its own hyperlinks.

To this end, we introduce the notations for the columns of thematrix H in (11). Let
hi ∈ R

n be the i th column of H . In this case, each page is equipped with two scalar
variables denoted by xi (k) and ri (k), whose initial values are given by xi (0) = 0 and
ri (0) = m/n. As in the algorithms discussed so far, let θ(k) be the page chosen at
time k via the probability density in (5) in an i.i.d. fashion. Then, the two variables
are updated as

x(k + 1) = x(k) + hT
θ(k)r(k)

‖hθ(k)‖2 eθ(k), (14)

r(k + 1) = r(k) − hT
θ(k)r(k)

‖hθ(k)‖2 hθ(k), (15)

where e j is the j th column of the identity matrix In .
This scheme has the property that Hx(k) + r(k) remains constant. This can be

easily verified by multiplying H from the left of (14) and then adding it with (15),
which yields

Hx(k + 1) + r(k + 1) = Hx(k) + r(k), k ≥ 0.

In particular, because the initial values have been chosen as xi (0) = 0 and ri (0) =
m/n, this implies that

Hx(k) + r(k) = r(0) = g, k ≥ 0. (16)

However, in general, in this scheme, the vector x(k) is not consistent, meaning that
x(k) is not a probability vector. We can check this by multiplying 1Tn from the left
of (16) and obtain

1Tn (Hx(k) + r(k)) = 1Tn
(
mx(k) + r(k)

) = 1Tn g = m.

Thus, we have 1Tn x(k) = 1 − 1Tn r(k)/m.
It can be shown that this algorithm has exponential convergence in the mean-

square sense, that is, it holds that E
[‖x(k) − x∗‖2] → 0 as k → ∞. In view of (16),

the convergence property can be attained by showing that E
[‖r(k)‖2] goes to zero

exponentially fast.
A notable difference of this algorithm from that of [57] is the use of the columns

{hi } of the matrix H instead of the rows {h̃i }. In the networked system under con-
sideration, the nonzero entries of the i th column hi correspond to the out-neighbors
of page i . In the update scheme (14) and (15) for page θ(k), first hT

θ(k)r(k) must be
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computed, which requires the values r j (k) of the out-neighbor j be sent to page θ(k).
Then, in (14), only xθ(k)(k) is updated whereas in (15), the values r j (k) are updated
for all out-neighbors j of page θ(k). This means that page θ(k) sends its own state
value rθ(k)(k) to all of its out-neighbors. Furthermore, it is clear that the norm ‖hθ(k)‖2
appearing in both (14) and (15) can be computed locally at each page in an offline
manner before the execution of the algorithm.

3.4 Exponential Convergence with Consistency

All schemes that we have seen so far with exponential convergence do not have the
property of consistency, that is, x(k) is not a probability vector. This aspect is pointed
out and then improved in the scheme introduced by [32]. Lack of consistency may be
problematic in practice since the update schemes will terminate the updates in their
states after a finite number of steps. Even at that point, there is no guarantee that the
vector x(k) is a stochastic vector. We skip the details of the update scheme; though
it involves only two variables per page, the description of the algorithm tends to be
complicated.

4 An Alternative Approach to PageRank

In this section,we present a new formulation of PageRank by transforming its original
definition [50]. Then, novel distributed algorithms are developed where this formu-
lation becomes the key. The idea itself is simple, but its advantage in the context of
distributed computation of PageRank will become clear.

4.1 Reformulation of the PageRank Problem

The formula of PageRank in (2) can be transformed as

x∗ = (1 − m)Ax∗ + m

n
1n ⇐⇒ x∗ = [I − (1 − m)A]−1 m

n
1n

⇐⇒ x∗ =
∞∑

t=0

[(1 − m)A]t
m

n
1n. (17)

In the last transformation, the Neumann series is applied. Notice that (1 − m)A is a
Schur stable matrix because the link matrix A is stochastic and thus has the spectral
radius equal to 1.
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The formula in (17) suggests that the PageRank computation can be carried out
iteratively in several ways. It is immediate to write down an equation for the state
x(k) ∈ R

n given by

x(k) =
k∑

t=0

[(1 − m)A]t
m

n
1n . (18)

The power method in (4) is a compact way to realize this using only x(k) as the
state. There, we can express the state x(k) as the solution to the linear system. With
a slight difference in the time index, it follows that

x(k) = [(1 − m)A]k x(0) +
k−1∑

t=0

[(1 − m)A]t
m

n
1n .

The contribution of the initial value x(0) in the first term on the right-hand side
attenuates asymptotically, but it is effective in maintaining consistency in the state
and, thus, it always holds that 1Tn x(k) = 1 for all k.

Another approach to the expression in (18) is to use a redundant iteration by
having an additional state, denoted by z(k) ∈ R

n . Set the initial states as x(0) =
z(0) = (m/n)1n . Then, the update scheme of the two states is given as follows:

x(k + 1) = x(k) + (1 − m)Az(k),

z(k + 1) = (1 − m)Az(k).
(19)

Through this alternative algorithm, we can obtain the PageRank vector x∗. We for-
mally state this along with other properties of this algorithm as a proposition in the
following. Similar properties will appear in our development of distributed algo-
rithms.

Proposition 1 In the update scheme in (19), the states x(k) and z(k) satisfy the
following:

(i) z(k) → 0 as k → ∞.
(ii) x(k) ≤ x(k + 1) ≤ x∗ for k.
(iii) x(k) → x∗ as k → ∞.

Proof (i) As the link matrix A is stochastic, its spectral radius equals 1, and thus
(1 − m)A is a Schur stable matrix. This implies that z(k) converges to zero.

(ii) Note that z(k) ≥ 0 because A is stochastic and z(0) > 0. Furthermore, we
have x(0) > 0. Thus, it is clear that x(k) is nondecreasing as a function of k. The
fact that it is upper bounded by x∗ follows from (iii).

(iii) From (19), we can write x(k) as
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x(k) =
k∑

t=1

z(t) + x(0) =
k∑

t=1

[(1 − m)A]t z(0) + x(0)

=
k∑

t=0

[(1 − m)A]t
m

n
1n. (20)

This and (17) indicate that the state x(k) converges to x∗. �
We have a few remarks on the alternative approach introduced above in compar-

ison with the power method in (4). First, the computation uses the second state z(k)
in addition to x(k). As seen in (20), this state z(k) is integrated over time to compute
x(k) in (18). Second, the initial values of x(k) and z(k) are fixed to (m/n)1n , and
there is no freedom in these choices. Hence, each time the computation takes place
through the update scheme (19), the algorithm cannot, for example, make use of
the PageRank values computed in the past as initial guesses. This point may be a
limitation of this approach. Also, the initial states are not probability vectors as in the
power method. In fact, x(k) becomes a probability vector only asymptotically when
converging to x∗. Third, notice that n/m is the minimum PageRank value, which
will be assigned to pages having no incoming links. For such pages, the states will
not change during the updates.

Though we do not discuss in this chapter, there is a generalized PageRank
definition which uses a probability vector v ∈ R

n instead of (1/n)1n , that is,
x∗ = (1 − m)Ax∗ + mv (e.g., [33]). In such a case, the proposed algorithm can
be easily modified by replacing the initial states with x(0) = z(0) = mv.

We now turn our attention to distributed algorithms. From the perspective of such
algorithms, one interpretation of (19) can be given as follows:

1. At time 0, all pages start with the value m/n.
2. At time k, each page attenuates its current value by 1 − m and then sends it to its

linked pages after equally dividing it. At that time, page i computes the weighted
sum of the values received from the neighbors having links to the page.

We finally present a distributed algorithm based on (19) with synchronous com-
munication.

Algorithm 1 (Synchronous distributed algorithm) For each page i , set the initial
values as xi (0) = zi (0) = m/n. At each time k, page i transmits its value zi (k) to
its neighbors along its outgoing hyperlinks and then makes updates for its two states
xi (k) and zi (k) as

xi (k + 1) = xi (k) +
∑

j : i∈L j

1 − m

n j
z j (k),

zi (k + 1) =
∑

j : i∈L j

1 − m

n j
z j (k).

Through simulations in Sect. 5, we will demonstrate that this synchronized algo-
rithm may not be particularly fast, especially in comparison with the power method.
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Moreover, due to the additional state z(k), the algorithm requires more memory and
computation. The advantage of the proposed reformulation however becomes evident
in the asynchronous versions of this distributed algorithm, which will be presented
in the next subsection.

4.2 Gossip-Type Distributed Algorithms

In this subsection, we extend the distributed algorithm discussed above so that the
pagesmay interactwith each other at different time instants. The algorithms are based
on randomized gossip communication among the pages similarly to those presented
in Sect. 3.

In the asynchronous update schemes, at each time k, one page θ(k) ∈ V is ran-
domly chosen, which transmits its current state value to the linked pages. We present
two algorithms which differ in their probability distributions for selecting the updat-
ing pages. One uses the uniform distribution and the other is more general. In both
cases, the distributions remain fixed throughout the execution of the algorithms; thus,
the updating pages are chosen in an i.i.d. manner.

4.2.1 Algorithm Based on the Uniform Distribution

First, we consider the case where the selection of the updating pages follows the
uniform distribution. The proposed distributed algorithm for this case is outlined
below.

Algorithm 2 (Distributed randomized algorithm) For page i ∈ V , set the initial
values as xi (0) = zi (0) = m/n. At time k, the following steps are executed:

1. Select one page θ(k) based on the uniform distribution as in (5).
2. Page θ(k) transmits its value zθ(k)(k) over its outgoing links.
3. Each page i updates its values xi (k) and zi (k) as

xi (k + 1) =
{
xi (k) + 1−m

nθ(k)
zθ(k)(k) if i ∈ Lθ(k),

xi (k) otherwise,

zi (k + 1) =

⎧
⎪⎨

⎪⎩

0 if i = θ(k),

zi (k) + 1−m
nθ(k)

zθ(k)(k) if i ∈ Lθ(k),

zi (k) otherwise.

(21)

This distributed algorithm has a simple structure, which can be seen to be efficient
from both computational and communication viewpoints. Each page keeps track of
its states xi (k) and zi (k) and when it is randomly chosen as θ(k) = i , it transmits one
of its states, namely zi (k), to its neighboring pages along its outgoing hyperlinks.
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Such hyperlinks are clearly known to the pages, and the necessary communication
is limited with only one value at a time, without any data sent back from the linked
pages. Other pages not linked by page θ(k) will simply keep their states unchanged.
Since the time index k is irrelevant and not involved in the computation, there is no
synchronization required in time among the pages.

The resemblance of this algorithm to Algorithm1 is obvious. The two states
xi (k) and zi (k) play similar roles in both algorithms. The differences are that in the
asynchronous case, the updates are made with one neighbor at a time, and also both
xi (k) and zi (k) are integrated over time. For zi (k), thiswas not the case inAlgorithm1.
The two variables are updated differently when page i is the selected page θ(k) at
time k: In such cases, its own zi (k) is set to zero. By contrast, in Algorithm1, zi (k)
is zero only in the case where page i has no incoming link.

We now rewrite this algorithm in the vector form. First, let Q := (1 − m)A.
Denote the i th columns of the (n × n)-identity matrix In and Q, respectively, by ei
and qi . Then, we define the matrices Qi , Ri ∈ R

n×n by

Qi := [
e1 e2 · · · ei−1 qi ei+1 · · · en

]
,

Ri := [
0n 0n · · · 0n qi 0n · · · 0n

]
,

where in both matrices, it is the i th column that is equal to qi . Note that the matrices
Q, Qi , and Ri are all nonnegative matrices for i ∈ V .

Let the initial states be x(0) = z(0) = (m/n)1n . The update schemes in (21) for
the two states can be written in a compact form as

x(k + 1) = x(k) + Rθ(k)z(k),

z(k + 1) = Qθ(k)z(k).
(22)

We are now ready to present the main result for this distributed algorithm for
PageRank computation. It shows that the true PageRank values can be obtained
almost surely.

Theorem 1 Under Algorithm2, the PageRank vector x∗ is computed with x(k) →
x∗ as k → ∞ with probability one. In particular, the following two properties hold:

(i) x(k) ≤ x(k + 1) ≤ x∗ holds for k ≥ 0.
(ii) E [x(k)] → x∗ as k → ∞, and the convergence speed is exponential.

This theorem guarantees that the proposed gossip-based algorithm computes the
true PageRank almost surely in a fully distributed fashion. In particular, similar to
the synchronous case, the state vector x(k) is a nondecreasing function of time k
elementwise. Furthermore, its convergence to the PageRank vector is shown to be
exponential in the mean, that is, the mean E[x(k)] approaches x∗ exponentially fast.
These two properties indicate that despite the use of randomization in the updates,
there will not be any oscillation in the trajectories of the states. We will see that this
is a unique feature among the other distributed algorithms.
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In comparison with the algorithms presented in Sect. 3, our method is based on
a simple reinterpretation of the definition of PageRank from the systems viewpoint,
and it seems well suited for the PageRank computation in terms of convergence. We
also note that similarly to [14], our algorithm does not require the pages to know the
incoming links. Different from [14], communication in our scheme is directed in the
sense that page i must transmit its value zi (k) to its outgoing neighbors, but need not
receive their values. We will make further comparisons among the different schemes
later in Sect. 4.2.3.

4.2.2 Generalization to Nonuniform Distributions

We next generalize the gossip-type distributed algorithm to the case where the pages
will be chosen from distributions not limited to the uniform one. This extension is an
interesting feature of the proposed approach and makes the algorithm more suitable
for its use in a distributed environment. For example, depending on the computational
and communication resources, the pages or the servers that carry out the PageRank
computation may like to update at different frequencies [12]. Even in such situations,
this algorithm is capable of computing the correct values with probability one.

Consider an i.i.d. random sequence {θ(k)} for the page selections. Let pi be the
probability of page i to be chosen at each time k. Assume that all pi are strictly
positive and

∑n
i=1 pi = 1. The distributed algorithm for this nonuniform case is

outlined below.

Algorithm 3 (Generalized distributed randomized algorithm) For page i ∈ V , set
the initial values as xi (0) = zi (0) = m/n. At time k, execute the following steps:

1. Select one page θ(k) based on the distribution pi :

Prob
{
θ(k) = i

} = pi for i ∈ V . (23)

2. Page θ(k) transmits its value zi (k) to pages over its outgoing links.
3. Each page i updates its values xi (k) and zi (k) as in (21) of Algorithm2.

For this algorithm, we now state the main result.

Theorem 2 Under Algorithm3, the PageRank vector x∗ is computed with
x(k) → x∗ as k → ∞ with probability one. In particular, the following two proper-
ties hold:

(i) x(k) ≤ x(k + 1) ≤ x∗ holds for k ≥ 0.
(ii) E [x(k)] → x∗ as k → ∞, and the convergence speed is exponential.

This theorem can be established similarly to Theorem1.
This gossip-type distributed algorithm can be carried out even if the probability

distribution for the page selection is not uniform. Though other algorithms may
be able to deal with nonuniform selection [12, 28, 36], in those cases, additional
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computations and adjustments are often required. In contrast, in our algorithm, no
change is necessary and the update scheme performed by each page remains exactly
the same. We have seen that the state values increase monotonically to reach the true
PageRank. This might indicate that increasing the selection probabilities of pages
with large values may lead to faster convergence. We will examine this idea in the
context of a numerical example later.

Another idea for assigning the probabilities is to make them time varying. In
particular, for pages having no hyperlink pointing to them, it is enough if they transmit
their values to the neighbors once in the entire run of the algorithm. This can greatly
reduce the amount of the overall communication required in the algorithm. As we
have seen above, such pages are already given their PageRank values, equal to m/n,
as their initial states. By examining the update scheme in (21), it is clear that once
such a page i transmits the state zi (k) for the first time to its linked pages, this state
zi (k) is set to zero and then will remain so for the rest of the time since it will not
receive any data from others. The other state xi (k) will stay unchanged at its true
PageRank value m/n.

4.2.3 Comparison of Different Methods

So far, we have introduced five differentmethods for the computation of PageRank by
randomized distributed algorithms. We have seen that they have different features in
terms of convergence speed, necessary computation and communication resources,
and so on. In Table1, we summarize the various aspects of these algorithms. The five
algorithms are listed in the chronological order that they appeared in the literature.

The aspects that are shown here are the following:
(i) Data received from: Each time the page θ(k) is chosen at time k for initiating an

update, it may use for updating its own state the data received fromother pages. These
pages are linked either by the incoming hyperlinks (in-neighbors) or the outgoing
ones (out-neighbors).

(ii) Data sent to: The updating page θ(k) sends its own state, whichwill be used for
the updates by the pages that receive it. Again, such pages may be the in-neighbors
or out-neighbors, depending on the algorithms.

(iii) Time synchronization: In the distributed update schemes, the pages may
require time synchronization among them. This is in fact needed only in the scheme
of [26] for accurately computing the time average of the states.

(iv) Consistency: The state vector x(k) is said to be consistent if it is a probability
vector, i.e.,

∑n
i=1 xi (k) = 1 at all times k. As discussed in [57], this property may

not be critical and may not be possible to achieve especially if the total number of
pages in the network is unknown.

(v) Convergence speed: The method of [26] is not exponential in its convergence
speed. This is because it uses the time average and thus becomes linear. Other algo-
rithms all have exponential rates for their convergence.

(vi) Simulation result: We will see in the next section that the five algorithms
exhibit different performances in numerical simulations. This point will be further
discussed there.
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Table 1 Comparison of randomized distributed algorithms

Method Data received
from

Data sent to Time
synch.

Consistent Conv. speed Simulation
result

Ishii and
Tempo [26]

None Out-neighbors Yes Yes Linear Slow

You et al.
[57]

In-neighbors In-neighbors No No Exponential Medium

Dai and
Freris [14]

Out-neighbors Out-neighbors No No Exponential Fast

Lagoa et al.
[32]

In-neighbors In-neighbors No Yes Exponential Medium

Algorithm2 None Out-neighbors No No Exponential Very fast

5 Numerical Examples

To illustrate the performance of the distributed algorithms discussed so far in Sects. 3
and 4, we present results obtained through numerical simulations. We apply the dif-
ferent update schemes to two types of graphs and compare their properties including
convergence speeds.

5.1 Small Graph

The first case that we consider is the simple graph with seven pages shown in Fig. 1
from Example1.

5.1.1 Synchronized Algorithms

As an initial step, we examine the performance of the following two synchronous
algorithms: The power method in (4) and Algorithm1 from Sect. 4. These algorithms
may be more suited for centralized implementation, but if proper synchronization
can be introduced, distributed implementation should be possible as discussed in
Sect. 4.

Their differences can be summarized as follows: (i) They have been derived from
different viewpoints. The power method follows the original definition of (3) while
Algorithm1 is based on the interpretation expressed as the Neumann series (18) and
has not been studied elsewhere. (ii) The numbers of variables per page are one for the
power method and two for Algorithm1. (iii) For the initial states, the power method
can take any initial value as long as it is a probabilistic vector; in this simulation,
we used uniform values, i.e., (1/n)1n . In the meantime, Algorithm1 requires x(0)
to be fixed as (m/n)1n , which is also uniform, but not a probabilistic vector. On the



438 H. Ishii and A. Suzuki

other hand, these two algorithms share the property of being deterministic. Thus,
the responses of pages 6 and 7 become exactly the same since both of them have no
incoming link due to the structure of the graph.

The time response of the PageRank value for each page is shown in Fig. 2 for the
two algorithms. We observe that the power method converges faster and, for most of
the nodes, it takes less than 10 time steps. In the responses of the proposed algorithm,
the convergence is slower and takes about 30 time steps. It is noticeable that they are
nondecreasing with respect to time, a property shown in Proposition1(i). Also, recall
that for pages 6 and 7, in the proposed algorithm, the PageRank values of these pages
are equal to the assigned initial values m/n. Hence, for these pages, the proposed
algorithm requires no update.

5.1.2 Distributed Algorithms via Gossiping

Next, we discuss the simulation results for the gossip-based distributed algorithms
using the simple network.

We make comparisons of the convergence performance of the five algorithms
shown in Table1. All five algorithms select one page at each time k based on the
uniform distribution as shown in (5), and we applied the same sequence {θ(k)} to
them for each run. As discussed earlier, in the two algorithms of [14, 57], the total
number n of pages in the web may be unknown; here, we assume that n is known
by all pages. Concerning the initial states, only our proposed algorithm requires that
the pages take fixed values, equal to m/n. Other algorithms have some freedom in
the choices. Here, however, we set them so that all pages are given the same initial
values: For the algorithm of [14], it was set to 0, and in the remaining two algorithms,
we took 1/n.

The time responses of the calculated PageRank values of the pages are plotted in
Fig. 3. We omit the result for page 7 as its behavior is similar to that of page 6. It is
observed that the responses for most algorithms are oscillatory or noisy due to the
randomization in the gossiping for updates and communication. On the other hand,
there are certain levels of differences in the speeds of convergence among the algo-
rithms. The responses of [26] appear to be the slowest and the most oscillatory with
high peaks, possibly reflecting the fact of being the only non-exponential algorithm
among the five.

In view of this, the proposed algorithm, namely Algorithm2, is characteristic
in that despite the randomization, the profile of the responses is smooth and again
nondecreasing as in Fig. 2. This behavior is most visible in the plot for page 5. It
is also clear that the proposed algorithm is the fastest in terms of convergence time
for all pages in comparison with other algorithms. This is more evident in Fig. 4
where the total errors in the states from the true PageRank are displayed for all five
algorithms in the logarithmic scale.
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Fig. 2 Time responses of the synchronous algorithms for the small graph: The power method and
the proposed Algorithm1

5.1.3 Comparison of Distributions in Page Selection

In this part of the simulation, we illustrate how the convergence speed can be
improved by employing Algorithm3 with a nonuniform distribution for the ran-
dom selection of θ(k). As discussed in Sect. 4.2.2, to improve convergence of the
algorithm, it seems reasonable to increase the selection probability of pages which
are expected to take larger PageRank values. We adjusted the probabilities so that
pages having more incoming links are more likely to be selected, and each page’s
probability of selection is larger than 0. In particular, we assigned each page the
probability proportional to its in-degree plus 1.

In Fig. 5, the time responses of the pages are shown for two algorithms, Algo-
rithm2 using the original uniform distribution in (5) and Algorithm3 using this
nonuniform distribution. As in Fig. 3, the responses of page 7 are omitted. We con-
firm that the nonuniform distribution is capable to further accelerate the convergence
by a certain margin. It remains to be investigated what kind of distribution can in
general be beneficial in improving the convergence rate.

5.2 Large Graph

We proceed to apply the five distributed algorithms to a larger web data. Specifi-
cally, we randomly generated a graph with 60 nodes. Figure 6 displays the network
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Fig. 3 Time responses of the asynchronous algorithms for the small graph: Ishii and Tempo [26],
You et al. [57], Dai and Freris [14], Lagoa et al. [32], and the proposed Algorithm2

structure where the dots indicate the nonzero entries of the hyperlink matrix A. The
first eight pages are designed to be popular and receive hyperlinks from roughly
one-third of the remaining nodes. In addition, each node has up to two hyperlinks to
randomly selected nodes. In total, there are 223 hyperlinks and no dangling node in
the network.

We applied the five randomized distributed algorithms with similar initial con-
ditions. The responses of the sum of the errors are shown in Fig. 7. Here, we con-
firm that the performance of the proposed algorithm is the fastest and the error
reduces exponentially.While the response of [26] is the slowest, the three methods of
[14, 32, 57] exhibit exponential convergence. It is noted that we made simulations
with other graphs of various sizes and observed similar results in general.

6 Discussion on Randomization in Multi-agent Systems

In this section, we would like to discuss, from a more general perspective, the roles
that randomization plays in distributed algorithms and control for multi-agent sys-
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Fig. 4 Time responses of the errors in the asynchronous algorithms for the small graph: Ishii and
Tempo [26], You et al. [57], Dai and Freris [14], Lagoa et al. [32], and the proposed Algorithm2

Fig. 5 Time responses in the asynchronous algorithms for the small graph: Algorithm2 (uniform
distribution) and Algorithm3 (nonuniform distribution)
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tems. This is in fact a broad subject as randomized techniques can now be found to
be employed in many ways and we do not intend to be exhaustive. Our discussion
hence will be limited to the recent research that we conducted and the works that are
related.

Randomization techniques have received a significant level of attention within
the community of systems control in the last two decades or so. In the early times,
the motivation for employing such techniques originated from the need to address
the issue of computational complexity arising in the context of uncertain and hybrid
systems. For such systems, many control analysis and design problems are known
to be computationally difficult to solve and can even be NP-hard (e.g., [4]). Appli-
cation of probabilistic techniques to such problems has been found to be useful in
developing computationally efficient algorithms. Recent developments can be found
in the monograph [52]; see also the survey paper [53].

In large-scale network systems, randomized algorithms have been widely
employed, but the distributed nature of such systems calls for the exploitation of
randomization with a purpose different from that of relaxing computational com-
plexity as discussed above. Here, we would like to highlight three essential roles
in multi-agent systems that randomized techniques can play. Those are related to
(i) communication, (ii) decision-makings through dithering, and (iii) cybersecurity.
In the following, we briefly describe recent progress along these directions.

(i) In multi-agent systems, communication among the agents must be initiated
by the individual agents since there is often no centralized entity that would com-
mand them to synchronize. Thus, as we have seen in this chapter, communicating at
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randomly chosen time instants can be a useful option. It is also a realistic model in
the case of wireless communication; if collisions occur due to simultaneous trans-
missions, retransmissions will be made after some waiting times, whose lengths
are randomly chosen. Communication at random times is sometimes referred to as
gossiping [6] and has been exploited in a number of works in multi-agent systems
including [9–11, 15, 30, 34, 46, 51, 56].

(ii) In distributed algorithms, randomized algorithms can help the process of
decision-makings by introducing a certain level of noise or perturbation in the sys-
tem. In signal processing, dithering is awell-known probabilisticmethod in quantiza-
tion [55]. It introduces random noise before the operation of quantizing a real-valued
signal. In audio signals, for instance, dithering is commonly used for reducing unnat-
ural sounds in quantized signals that can result from certain periodicity introduced
through the analog-to-digital conversion.

This method has been found useful in the context of multi-agent systems as well.
In particular, in the so-called quantized consensus problems, agents take integer
values in their states. There, some update schemes employ randomized quantization
so that, for example, the state may be rounded up or down randomly. Such a method
has the effect of introducing perturbation in the consensus process so as to avoid the
states being stuck before reaching consensus. For related studies, see, e.g., [2, 9, 10,
15, 21, 30].

(iii) In potentially hazardous environments where malicious attackers may exploit
the vulnerabilities in systems and communication networks (e.g., [18, 44, 47]), ran-
domization can be a viablemethod in raising the security level. For example, intruders
interested in the data exchanged among agents may need more resources to attack
or to eavesdrop on the communications when the times are chosen randomly. Such
a stochastic scheme is proposed and analyzed in a multi-agent consensus problem
in [31]; the agents’ communication is disrupted by jamming attacks, but the energy
for emitting jamming signals is constrained as in [49]. Making the transmission
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times unpredictable becomes the key to realize consensus even under a less stringent
condition for the attackers.

On the other hand, in the literature of distributed algorithms in computer science,
multi-agent consensus has been long studied. An important class of problems there
includes fault-tolerant consensus for multi-agent systems in the presence of faulty
agents or even those which are driven by malicious attackers. Such agents may not
follow the a priori given update rules. The non-faulty, regular agents are equipped
with a resilient version of the consensus algorithm, which determines the neighbors
taking suspicious values and thus to be ignored in the updates. Such problems have
been studied in, e.g., [3, 5, 54] in computer science, and more recently in, e.g.,
[16, 17, 35] in the systems control literature.

In computer science, probabilistic algorithms have been known to improve
resilience. In distributed decision-making problems, various “impossibility results”
have been derived, showing that deterministic approaches are insufficient for achiev-
ing the desired goal with certain scalability properties [20, 37, 45]. We would like to
mention that recently, in [15], it was established that in asynchronous update schemes
for resilient consensus, probabilistic gossip-based communication among agents can
be superior to deterministic approaches in terms of the necessary network structures;
this may be seen as a form of an impossibility result.

More generally, probabilistic techniques have been extensively studied in the
area of algorithms in computer science; see, e.g., the monographs [41, 42] and the
references therein. As discussed in [53], randomized algorithms can be classified into
two categories: The Monte Carlo type and the Las Vegas type. Roughly speaking,
algorithms of the Monte Carlo type may produce incorrect outputs with limited
probabilities whereas the Las Vegas types are guaranteed to provide correct solutions
with probability one. Many of the algorithms in the studies of uncertain and hybrid
control systems belong to theMonte Carlo type. They often rely on random sampling
in the uncertain sets, which are continuous sets. On the other hand, those discussed
in this chapter are of the Las Vegas type. Indeed, in Theorems1 and 2 of Sect. 4, we
have seen that the convergence of the randomized algorithms is guaranteed almost
surely.

7 Conclusion

In this chapter, we have introduced the problem of PageRank computation from
the perspective of systems and control and then provided a short overview on the
recent developments on distributed algorithms.We have also proposed a new class of
distributed algorithms for the computation of PageRank using a new interpretation
of its definition. Specifically, two types of distributed algorithms have been obtained:
One is synchronous in that all agents update their state values at the same time, while
in the other, randomization is used for determining the page that initiates an update at
each time step. Regarding their convergence properties, it has been established that
they are exponential. The relation of the proposed algorithms to those in the literature
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has been discussed as well. One characteristics of our approachmaking it suitable for
distributed implementation is that it does not need to follow the uniform distribution.
We have shown through simulations that our algorithms exhibit superior performance
in both a simple web and a large-scale web. Finally, a general discussion from a
broader perspective on the advantages that randomization may bring to distributed
algorithms has been given.

In future research, we will further analyze the convergence speeds of the proposed
algorithms and employ other schemes for page selections. We are also interested in
studying other problems where our approach can be useful in developing distributed
algorithms.
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