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Abstract In this chapter, a data-driven orthogonal basis function approach is
proposed for nonparametric FIR nonlinear system identification. The basis functions
are not fixed a priori and match the structure of the unknown system automatically.
This eliminates the problem of blindly choosing the basis functions without a priori
structural information. Further, based on the proposed basis functions, approaches
are proposed for model order determination and regressor selection along with their
theoretical justifications.Both random inputs and deterministic inputs are considered.

1 Introduction

System identification is often the first and critical step in system analysis, design,
simulation, and control. In the literature, there exist a huge number of papers as well
as various well-developed algorithms for linear system identification [11, 18, 28].
Despite a long history and practical demands, nonlinear system identification is far
from mature both in theory and in practice [15, 21, 27, 29]. Because the structure
of nonlinear systems is so rich, it is not expected that a single method could be
effectively applied to all nonlinear systems. Instead, various identification methods
have to be developed for different classes of nonlinear systems and for different
intended purposes.

E.-W. Bai (B) · C. Cheng
Department of Electrical and Computer Engineering, University of Iowa,
Iowa City, IA 52242, USA
e-mail: er-wei-bai@uiowa.edu

© Springer Nature Switzerland AG 2018
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Roughly speaking, nonlinear system identification can be divided into two
categories depending on available a priori information on the structure of the
unknown system. If the structure of the unknown system is available a priori, the
identification problem is reduced to a parameter estimation problem, essentially a
nonlinearminimizationproblem. Issues are how tofindaminimumand if the obtained
minimum is a global minimum. The other category is that no a priori information
is available on the structure. This is a much harder problem. Traditional ways to
approach this problem are the Volterra and Wiener series representations [25]. They
are elegant in theory but applications are often limited. For the Volterra series, its
application is limited to very low-order kernels because the number of unknown
parameters to be estimated increases exponentially. Further, identification has to be
repeated every time when an additional kernel is deemed necessary and is added. For
the Wiener series, the input is usually assumed to be Gaussian. For both the Volterra
series and theWiener series, the basic idea is a multivariable polynomial approxima-
tion of the unknown system and thus, a very high-order model is needed to be able
to approximate the true but unknown nonlinear system. This makes them practically
intractable unless the unknown system is close to a polynomial of low order. To
overcome this problem, a fixed basis function approach developed for linear systems
[23, 31] has been investigated and applied for nonlinear system identification with
some success [10, 16, 30]. Typical basis functions are Fourier series, polynomials,
and some orthogonal functions. In particular, orthogonal functions are very attrac-
tive because no previously obtained terms have to be reestimated when an additional
term is added. Only the added term needs to be estimated. Clearly, success of the
orthogonal basis function approach relies on the fact that a nonparametric nonlinear
identification problem is reduced to a parametric parameter estimation problem and
moreover, estimations of each term are separable in some sense. On the other hand,
however, its advantage is also its weakness. Performance of an orthogonal basis
function approach, like any basis function approach, depends on whether the chosen
basis functions resemble the structure of the unknown nonlinear system. Without
enough a priori information on the structure, a fixed basis function approach often
requires a large number of terms to be able to reasonably approximate the true but
unknown nonlinear system which has a considerable negative effect on the identi-
fication performance. Some ideas, e.g., tunable basis functions, are proposed in the
literature including wavelets, neural network, fuzzy, etc [14, 33, 34]. Even with these
tunable basis functions, adequate a priori information on the structure is still needed
so that the tunable basis functions are rich enough to capture the unknown system.
There is an additional difficulty with such tunable basis function approaches, i.e.,
minimization could be trapped in a local minimum.

In this work, we propose a data-driven basis function approach to nonlinear sys-
tem identification. The basis functions are not fixed but are data generated as a
part of identification. The basis functions are chosen as a result of identification
and automatically match the structure of the unknown nonlinear system. This elimi-
nates the problem of blindly guessing basis functions without knowing the structure
of the unknown nonlinear system. Further, the chosen basis functions are orthogo-
nal and when it is determined that an additional term is needed, all the previously
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calculated terms remain unchanged and only the added term has to be identified. This
is
particularly useful since the order and the structure of the nonlinear system are
unknown and have to be determined as a part of identification.

The main contribution is a framework that uses the data-driven orthogonal basis
functions for nonparametric nonlinear system identification. The chosen orthogonal
functions always match the system even when the system is unknown and very little
a priori information on the structure of the unknown system is assumed. This is
different from the existing literature where a fixed basis function is used for system
identification. Thework ismotivated by [2, 26] though the driving force is completely
different. In addition, approaches are proposed for model order determination and
regressor selection. The first one is the combined residual analysis and modified
Box–Pierce hypothesis test approach. It is known in the literature that the popular
Box–Pierce test extensively used in linear identification [18, 29] is in general invalid
for nonlinear identification and amodifiedBox–Pierce test is proposed in this work in
the context of nonlinear system identification. The second approach is the relative and
cumulative contribution approach. The approach utilizes the orthogonal properties
of the basis functions and is simple and effective. To present the material without
interruption, all the proofs are provided in Appendix.

2 System and Orthogonal Basis Functions

Consider a general nonparametric nonlinear finite impulse response (FIR) system

y[k] = f (u[k − 1], u[k − 2], ..., u[k − n]) + v[k]

= c̄ +
n∑

j=1

f̄ j (u[k − j]) +
∑

1≤ j1< j2≤n

f̄ j1 j2(u[k − j1], u[k − j2]) + ...

+
∑

1≤ j1< j2<...< jm≤n

f̄ j1 j2... jm (u[k − j1], u[k − j2], ..., u[k − jm])

+ v(k), k = 1, 2, ..., N

where y[k] and u[k] are output and input measurements. It is assumed that

1. The input u[k] is an independent and identically distributed (iid) random sequence
in a (unknown) open interval I ∈ R with a (unknown) probability density function
ψ(·). The noise v[k] is a sequence of iid random variables with zero mean and
bounded variance.

2. The exact time lag is unknown and only the upper bound n is available.
3. The functions f̄ j1 j2... jl ’s, l ≤ n, referred to as l-factor terms, are unknown and

describe interactions of variables u[k − j1], u[k − j2], ..., u[k − jl]. No struc-
tural prior information on f̄ j1 j2... jl ’s is assumed.
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To convey the idea clearly without tedious and unilluminating detailed technical
derivations, we will focus on the system with upto 2-factor interactive terms in this
work.

y[k] = f (u[k − 1], u[k − 2], ..., u[k − n]) + v[k]

= c̄ +
n∑

j=1

f̄ j (u[k − j]) +
∑

1≤ j1< j2≤n

f̄ j1 j2(u[k − j1], u[k − j2]) + v[k] (1)

All the results of this work can be trivially but cumbersomely extended to a general
system with arbitrary interactive terms. Obviously, for a system upto 2-factor inter-
active terms, there are totally M + 1 = 1 + n + n(n − 1)/2 terms in the system, one
constant term, n 1-factor terms f̄ j ’s and

n(n−1)
2 2-factor terms f̄ j1 j2 ’s.

What we are concerned are:

• How to determine orthogonal basis functions φi (·)’s, i = 0, 1, ..., M , based on the
given data set {y[k], u[k]}N

1 that represents the unknown system (1)?
• How to identify these basis functions?
• Once the basis functions φi (·)’s are determined, it does not mean that all M + 1
terms are needed. In most practical cases, only the terms i = 0, 1, ..., p < M + 1
are needed. How to find the order p?

• Even the order p is found, the system could be sparse in the sense that not all terms
i = 0, 1, 2, ..., p are present and many terms are actually zero. How to identify
those terms so they can be removed?

In the following derivation, we denote the expectation operator by E and con-
ditional expectation operators for given u[k − j1] = x j1 , and/or u[k − j2] = x j2 by,
respectively,

E(y[k] | u[k − j1] = x j1),

E(y[k] | u[k − j1] = x j1 , u[k − j2] = x j2),

E( f j1 j2(u[k − j1], u[k − j2]) | u[k − j1] = x j1),

E( f j1 j2(u[k − j1], u[k − j2]) | u[k − j2] = x j2).

For every x j1 and x j2 ∈ I , define the normalized functions f j1 j2 ’s and f j ’s in (2).

f j1 j2(x j1 , x j2) = f̄ j1 j2(x j1 , x j2) − E( f̄ j1 j2(u[k − j1], u[k − j2]) | u[k − j2] = x j2)

− E( f̄ j1 j2(u[k − j1], u[k − j2]) | u[k − j1] = x j1)

+ E{ f̄ j1 j2(u[k − j1], u[k − j2])}︸ ︷︷ ︸
c j1 j2

, 1 ≤ j1 < j2 ≤ n

f1(x1) = f̄1(x1) +
n∑

i=2

E( f̄1i (u[k − 1], u[k − i]) | u[k − 1] = x1)
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− E{ f̄1(u[k − 1]) +
n∑

i=2

E( f̄1i (u[k − 1], u[k − i]) | u[k − 1] = x1)}
︸ ︷︷ ︸

c1

f j (x j ) = f̄ j (x j ) +
n∑

i= j+1

E( f̄ j i (u[k − j], u[k − i]) | u[k − j] = x j )

+
j−1∑

i=1

E( f̄i j (u[k − i], u[k − j]) | u[k − j] = x j )

− E{ f̄ j (u[k − j]) +
n∑

i= j+1

E( f̄ j i (u[k − j], u[k − i]) | u[k − j] = x j )

︸ ︷︷ ︸
c1j

+
j−1∑

i=1

E( f̄i j (u[k − i], u[k − j]) | u[k − j] = x j )}
︸ ︷︷ ︸

c2j

, j = 2, ..., n − 1

fn(xn) = f̄n(xn) +
n−1∑

i=1

E( f̄in(u[k − i], u[k − n]) | u[k − n] = xn)

− E{ f̄n(u[k − n]) +
n−1∑

i=1

E( f̄in(u[k − i], u[k − n]) | u[k − n] = xn)}
︸ ︷︷ ︸

cn

c = c̄ −
∑

1≤ j1< j2≤n

c j1 j2 +
n∑

j=1

c j , with c j = c1j + c2j . (2)

Then, the system (1) can be rewritten as

y[k] = c +
n∑

j=1

f j (u[k − j]) +
∑

1≤ j1< j2≤n

f j1 j2(u[k − j1], u[k − j2])

+ v[k], k = 1, 2, . . . , N (3)

We are now in a position to define data dependent orthogonal basis functions φi ,
i = 0, ..., M .

φ0 = c =⇒ φ0 φ j (x j ) = f j (x j ), j = 1, ..., n =⇒ φ1, ..., φn,

φ 2n
2 −1+ j (x1, x j ) = f1 j (x1, x j ), j = 2, ..., n =⇒ φn+1, ..., φ2n−1,



354 E.-W. Bai and C. Cheng

φ 2n−1
2 2−2+ j (x2, x j ) = f2 j (x2, x j ), j = 3, ..., n =⇒ φ2n, ..., φ3n−3,

φ 2n−2
2 3−3+ j (x3, x j ) = f3 j (x3, x j ), j = 4, ..., n =⇒ φ3n−2, ..., φ4n−6,

. . .

φ 2n−(n−3)
2 (n−2)−(n−2)+ j (xn−2, x j ) = f(n−2) j (xn−2, x j ), =⇒ φ n2+n

2 −2, φ n2+n
2 −1,

j = n − 1, n

φ 2n−(n−2)
2 (n−1)−(n−1)+ j (xn−1, x j ) = f(n−1) j (xn−1, x j ), =⇒ φ n2+n

2
, j = n

When the meaning is clear from the context, we interchangeably use

φ j [k] = φ j (u[k − j]), j = 1, ..., n

φ j [k] = φ j (u[k − 1], u[k − j + n − 1]), j = n + 1, ..., 2n − 1

φ j [k] = φ j (u[k − 2], u[k − j + 2n − 3]), j = 2n, ..., 3n − 3

. . .

φ j [k] = φ j (u[k − n + 2], u[k − j + M − n − 1]), j = M − 2, M − 1

φ j [k] = φ j (u[k − n + 1], u[k − n]), j = M = n(n + 1)/2.

Clearly,φ0 denotes the constant term,φ j (x j )’s, j = 1, ..., n, represent the 1-factor
terms and φi (x j1 , x j2)’s, i = n + 1, ..., M , are 2-factor terms. The following theorem
is the main result of this section.

Theorem 1 Consider the system (1). Then we have:

1. The system (1) can be represented by the data-driven basis functions φi ’s,

y[k] =
M∑

i=0

φi [k] + v[k] (4)

where M = n + n(n − 1)/2 = n(n + 1)/2.
2. The data-driven basis functions φi ’s are orthogonal. i.e., for all 1 ≤ j ≤ M and

0 ≤ j1 < j2 ≤ M,
Eφ j [k] = 0, Eφ j1 [k]φ j2 [k] = 0.

3. The unknown φ j ’s are the expectations or conditional expectations of the output,

φ0 = E{y[k]},
φ j (x j ) = E{y[k] | u[k − j] = x j } − φ0, j = 1, ..., n,

φ 2n
2 −1+ j (x1, x j ) = E{y[k] | u[k − 1] = x1, u[k − j] = x j }

− φ1(x1) − φ j (x j ) − φ0, j = 2, ..., n

φ 2n−1
2 2−2+ j (x2, x j ) = E{y[k] | u[k − 2] = x2, u[k − j] = x j , }

− φ2(x2) − φ j (x j ) − φ0, j = 3, ..., n

. . .
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φ 2n−(n−3)
2 (n−2)−(n−2)+ j (xn−2, x j ) = E{y[k] | u[k − n + 2] = xn−2, u[k − j] = x j }

− φn−2(xn−2) − φ j (x j ) − φ0, j = n − 1, n

φ 2n−(n−2)
2 (n−1)−(n−1)+ j (xn−1, x j ) = E{y[k] | u[k − n + 1] = xn−1, u[k − j] = x j }

− φn−1(xn−1) − φ j (x j ) − φ0, j = n (5)

From the theorem, we see that not only the system (1) can be represented by the
data-driven basis functions φi ’s as in (4) but also these basis functions are orthogonal
and can be estimated separately. If the estimate ŷ = ∑p

i=0 φi [k] is deemed to be not
sufficient enough and an additional term φp+1[k] is needed, then only the additional
term φp+1[k] has to be identified and added to the model. No previously obtained
terms φi , i = 0, 1..., p have to be reestimated.

3 Identification Under Random Inputs

Though the basis functions φi ’s are determined, they depend on the unknown system
and have to be identified from the given data set. From Theorem1, these unknown
φi ’s are the expectations or conditional expectations of the output. Now the question
is how to calculate these expectation values by empirical averages based on the
available input–output measurement data set {y[k], u[k]}N

1 . In this work, we adopt
a fairly simple yet efficient kernel approach which was developed in our previous
works [5, 6]. To this end, let x j be any point in the interval I in which the input u[·]
lies, define

ϕ j (x j , k) = |u[k − j] − x j |.

Let δ > min ϕ j (x j , k) be any positive constant. Let

M j (x j ) = {m j (1), m j (2), ..., m j (l j )}

be a set that contains integers m j (i)’s such that m j (i) ∈ M j (x j ) ⇔ δ > ϕ j (x j ,

m j (i)). l j (x j ) is the number of elements in M j (x j ) that is the same as the num-
ber of ϕ j (x j , k)’s that are smaller than δ. Define, for each j and x j ,

w j (x j , k) =
{

δ−ϕ j (x j ,k)

l j δ−∑l j
i=1 ϕ j (x j ,m j (i))

k ∈ M j (x j )

0 k /∈ M j (x j )
.

Obviously for all k, j and x j , w j (x j , k) ≥ 0 and
∑N

k=1 w j (x j , k) = ∑l j

i=1 w j (x j ,

m j (i)) = 1. Similarly, for any pair 0 ≤ j1 < j2 ≤ n and (x j1 , x j2) ∈ I 2, define

ϕ j1 j2(x j1 , x j2 , k) = ‖(u[k − j1], u[k − j2]) − (x j1 , x j2)‖2.
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If δ > min ϕ j1 j2(x j1 , x j2 , k), let M j1 j2(x j1 , x j2) = {m j1 j2(1), m j1 j2(2), ..., m j1 j2(l j1 j2)}
be a set such that k ∈ M j1 j2(x j1 , x j2) ⇔ δ > ϕ j1 j2(x j1 , x j2 , k). Define

w j1 j2(x j1 , x j2 , k) =
{

δ−ϕ j1 j2 (x j1 ,x j2 ,k)

l j1 j2 δ−
∑l j1 j2

i=1 ϕ j (x j1 ,x j2 ,m j1 j2 (i))
k ∈ M j1 j2(x j1 , x j2)

0 k /∈ M j1 j2(x j1 , x j2)
.

Notice that the same properties hold

w j1 j2(x j1 , x j2 , k) ≥ 0,
N∑

k=1

w j1 j2(x j1 , x j2 , k) =
l j1 j2∑

i=1

w j1 j2(x j1 , x j2 , m j1 j2(i)) = 1.

Now, for a given pair (x j1 , x j2) ∈ I 2, we define the estimates φ̂i , i = 0, 1, ..., M ,

φ̂0 = 1

N

N∑

k=1

y[k],

φ̂ j (x j ) =
N∑

k=1

w j (x j , k)y[k] − φ̂0, j = 1, ..., n,

φ̂ 2n
2 −1+ j (x1, x j ) =

N∑

k=1

w1 j (x1, x j , k)y[k] − φ̂1(x1) − φ̂ j (x j ) − φ̂0, j = 2, ..., n

φ̂ 2n−1
2 2−2+ j (x2, x j ) =

N∑

k=1

w2 j (x2, x j , k)y[k],−φ̂2(x2) − φ̂ j (x j ) − φ̂0, j = 3, ..., n

. . .

φ̂ 2n−(n−3)
2 (n−2)−(n−2)+ j (xn−2, x j ) =

N∑

k=1

wn−2, j (xn−2, x j , k)y[k]

− φ̂n−2(xn−2) − φ̂ j (x j ) − φ̂0, j = n − 1, n

φ̂ 2n−(n−2)
2 (n−1)−(n−1)+ j (xn−1, x j ) =

N∑

k=1

wn−1, j (xn−1, x j , k)y[k]

− φ̂n−1(xn−1) − φ̂ j (x j ) − φ̂0, j = n (6)

Theorem 2 Consider the system (4) and the estimates above. For any x j1 , x j2 ∈ I ,
assume

• The unknown basis functions φi ’s are differentiable with the Lipschitz constant L
for x j1 , x j2 ∈ I .

• Let ψ(·) be the (unknown) probability density function of the input u[·] and ψ(·)
is nonzero at x j1 , x j2 , i.e.,
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ψ(x j1) > 0, ψ(x j2) > 0.

• δ → 0 and δ2N → ∞ as N → ∞.

Then, as N → ∞, we have in probability that

φ̂0 → φ0,

φ̂ j (x j ) → φ j (x j ), j = 1, 2, ..., n

φ̂ j (x j1 , x j2) → φ j (x j1 , x j2), 1 ≤ j1 < j2 ≤ n, j = n + 1, ..., M

Moreover asymptotically, |φ̂ j (x j ) − φ j (x j )|2 ∼ O(δ + 1
δN ), j = 1, 2, ..., n and

|φ̂ j (x j1 , x j2) − φ j (x j1 , x j2)|2 ∼ O(δ + 1
δ2N ), 1 ≤ j1< j2 ≤ n, j = n + 1, ..., M.

4 Order Determination

How many terms should be included in the model or equivalently how to determine
the order p of the estimate f̂ = ∑p

i=0 φ̂i [k] is an important and difficult part of iden-
tification. This amounts to if the chosen order is sufficient to represent the unknown
nonlinear system or an additional term or terms should be added to the estimate. A
related issue is the regressor selection. Even if the order is accurately obtained, some
terms φi ’s are irrelevant to the output and should not be included in the estimate.
How to find and remove those terms are also important. These two issues are closely
related. We propose two approaches towards these two issues.

4.1 Combined Residual Analysis and Statistical Test

The idea of the statistical test is fairly simple. Suppose the order p is sufficient so
that the estimate

∑p
i=0 φi [k] represents the true but unknown system f well. Then,

the residual

r [k] = y[k] −
p∑

i=0

φi [k] ≈ v[k]

is almost white. In other words, if the residual is white, nothingmore can be squeezed
out from the data and thus the order p is sufficient. Let

μ = Er [k], γ [ j] = E(r [k] − μ)(r [k − j] − μ), ρ[ j] = γ [ j]/γ [0]

denote themean, the lag-j autocovariance and the lag-j correlation coefficient of r [k],
respectively. If the residual r [k] is white, it follows that
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γ [1] = γ [2] = ... = 0, ρ[1] = ρ[2] = ... = 0

In particular, for the system (4), r [k] = y[k] − ∑
φi [k] is a function of u[k −

1], u[k − 2], ..., u[k − n] and r [k − n] = y[k − n] − ∑
φi [k − n] is a function of

u[k − n − 1], u[k − n − 2], ..., u[k − 2n]. They are automatically independent.
Thus, what we have to to check is if

ρ[1] = ρ[2] = ... = ρ[n − 1] = 0

The most effective test in the literature for checking if ρ[1] = ρ[2] = ... = ρ[n −
1] = 0 are the Box–Pierce test [9] and its variants which have been widely accepted
and applied for linear system identification [18, 29]. It states as follows: for large N ,

N
n−1∑

j=1

ρ[ j]2 = N (ρ[1], ..., ρ[n − 1])
⎛

⎜⎝
ρ[1]

...

ρ[n − 1]

⎞

⎟⎠ (7)

follows a chi-square distribution with (n-1) degree of freedom if r [k] is white. This
provides a framework for statistical hypothesis tests. Let

H0 : the residual r [k] is white.

Then, the null hypothesis H0 can be tested based on N
∑n−1

j=1 ρ[ j]2 and theχ2(n −
1) distribution. If H0 is accepted, r [k] is considered to be white and the order p is
accepted. To test the hypothesis, we calculate N

∑n−1
j=1 ρ[ j]2 based on the residual.

Let the threshold d be taken from the χ2(n − 1) distribution with α being the level
of significance, i.e., the probability to reject H0 though H0 is true. The hypothesis
H0 is accepted if N

∑n−1
j=1 ρ[ j]2 ≤ d and is rejected if N

∑n−1
j=1 ρ[ j]2 > d and we

conclude that the order p is not high enough.
There are two problems however. The first is that what we really test is not if

the residual r [k] is white or not but if r [i] and r [ j] are uncorrelated or not. The
Box–Pierce test (7) works well for this purpose in linear identification but may
not work for nonlinear identification. If the residual r [k] exhibits some nonlinear
dependence which is usually the case in nonlinear identification because no actual
φi ’s are available and only their estimates φ̂i ’s are known. This unavoidably adds
some nonlinear dependence on the residual. In such a case, the Box–Pierce test
does not work well. In fact, the Box–Pierce test could be invalid and provide some
misleading conclusions [32]. Therefore, a modified Box–Pierce test is needed in the
presence of nonlinear dependence of r [k]. The second problem is that even the null
hypothesis H0 is accepted, it does not necessarily mean that r [k] is white. Since the
null hypothesis only tests if H0 should be accepted given H0 is true. There is no way
of knowing the probability

Prob{ accept H0 : H0 is f alse}
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This is referred to as the second type of error and is hard to answer. Thus, there must
an additional and independent test to ensure reasonably that H0 is not false. We deal
with these two problems separately.
Modified Box–Pierce test: Let r [k] = y[k] − ∑p

i=0 φ̂i [k] be the residual. Denote
the sampled mean, the lag-j autocovariance, the lag-j correlation coefficient by
respectively

μ̂ = 1

N

N∑

k=1

r [k], γ̂ [ j] = 1

N − j

N∑

k= j+1

(r [k] − μ̂)(r [k − j] − μ̂), ρ̂ [ j] = γ̂ [ j]/γ̂ [0]

It was shown in [19] that for large N ,

N (ρ̂ [1], ..., ρ̂ [n − 1])V −1

⎛

⎜⎝
ρ̂ [1]

...

ρ̂ [n − 1]

⎞

⎟⎠ (8)

follows a chi-square distributionwith (n-1) degree of freedomwhen H0 is true, where

V = C/γ [0]2 =
⎛

⎜⎝
c11 . . . c1,n−1
...

. . .
...

cn−1,1 . . . cn−1,n−1

⎞

⎟⎠ /γ [0]2

ci j =
∞∑

q=−∞
E(r [k] − μ)(r [k − i] − μ)(r [k + q] − μ)(r [k + q − j] − μ)

i, j = 1, ..., n − 1

with μ being the mean value of r [k]. The difference is that the identity matrix is
used in the Box–Pierce test (7) while in the modified Box–Pierce test (8), the actual
autocovariancematrix V is used. Themodified Box–Pierce test is reliable for large N
even the residual r [k] exhibits nonlinear dependence. For our application, however,
the actual autocovariance matrix V is unknown and has to be estimated. To this end,
let

W [k] =

⎛

⎜⎜⎜⎝

(r [k] − μ̂)(r [k − 1] − μ̂)

(r [k] − μ̂)(r [k − 2] − μ̂)
...

(r [k] − μ̂)(r [k − n + 1] − μ̂)

⎞

⎟⎟⎟⎠

and K (x) be the triangle kernel function

K (x) =
{
1 − |x |, |x | ≤ 1
0, |x | > 1
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Now, define the estimate V̂ of V by Ĉ/γ̂ [0]2 with

Ĉ =
l∑

q=−l

K (
q

l
)

1

N − n + 1 − |q|
∑

k

W [k]W [k − q]′

=
0∑

q=−l

K (
q

l
)

1

N − n + 1 + q

N+q∑

k=n

W [k]W [k − q]′

+
l∑

q=1

K (
q

l
)

1

N − n + 1 − q

N∑

k=n+q

W [k)W [k − q]′

where l is the bandwidth of the kernel K (·). Note all the variables μ̂, ρ̂ [ j], W [k] and
γ̂ [ j] are computable. Now, we show that the modified Box–Pierce test is still valid
if the actual autocovariance matrix V is replaced by its estimate as discussed above,

Theorem 3 Consider the residual r [k] and the corresponding μ̂, γ̂ [ j], ρ̂ [ j] and
V̂ = Ĉ/γ̂ [0]2. Then,

Qn−1 = N (ρ̂ [1], ..., ρ̂ [n − 1])V̂ −1

⎛

⎜⎝
ρ̂ [1]

...

ρ̂ [n − 1]

⎞

⎟⎠ (9)

converges, in distribution as N → ∞, to a chi-square distribution with (n-1) degree
of freedom if the residual r [k] is white, provided that

l → ∞, l/N → 0, as N → ∞

Residual analysis: As discussed above, the hypothesis test is effective only it is
reasonably sure that H0 is not false. A very simple but a common sense way is
to check the magnitude of the residual. There are two purposes. If the estimate
represents the system well or the order is adequate, the residual should be small. On
the other hand, we do not want to over-fit the system. In this regard, the parsimony
principle applies. Let rp[k] = y[k] − ∑p

i=0 φ̂i [k] be the residual where the subscript
p indicates the order of the estimate. Define the average error

e[p] = 1

N

N∑

k=1

rp[k]2

Obviously, the average error e[p] is a monotonically decreasing function of the
order p as depicted in the top diagram of Fig. 4. Initially, e[p] decreases as the order
increases because the model picks up relevant terms φi ’s of the unknown system.
However, even when the correct order has been reached, the value e[p] still decreases
because additionally added terms try to model noise. The improved “fit” is harmful
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since it models noise but not the system. However, the decrease from the over-fit
is less significant than the decrease when the relevant terms are picked up by the
estimate. Therefore, what we are looking for is where the curve e[p] is small and
flattened, known as the “knee” in Fig. 4.

We are now in a position to state the combined residual analysis and hypothesis
test approach for order determination.

Step 1: Carry out identification by estimating φ̂i as described in the previous sections.
Step 2: Calculate the residual rp[k] for each p and plot the average error e[p] vs p
as shown in the top diagram of Fig. 4.
Step 3: Find the knee in the curve where the average error e[p] is small and flattened.
Determine the corresponding order p for the hypothesis test.
Step 4: Calculate Qn−1 as in (9) and carry out the modified Box–Pierce test. Let
the threshold d be taken from the χ2(n − 1) distribution with α being the level of
significance usually 0.03–0.05, i.e., the probability to reject H0 though H0 is true. The
hypothesis H0 is accepted if Qn−1 ≤ d and we conclude that the order p is sufficient.
The hypothesis H0 is rejected if Qn−1 > d and we conclude that the order p is not
high enough and an additional term or terms should be included in the estimate.
Then, the test is repeated with p → p + 1.

4.2 Relative and Cumulative Contribution Approach

In order determination, what we are interested in is not if a particular term φi [k]
contributes or not, but whether the contribution is significant or not. Identification
is always a balance between model accuracy and model parsimony. The data-driven
orthogonal approach discussed in the previous sections allows us to decompose the
total contribution into a sum of individual contributions, referred to as the relative
contribution in this work, and provides a reliable way for the order determination
and regressor selection. To this end, we propose a relative contribution approach for
order determination and regressor selection that exploits the orthogonal properties of
the basis functions. Consider the system (4). It is easily verified from the orthogonal
properties of φi [k]’s that

Ey[k]2 = E{
M∑

i=0

φi [k] + v[k]}2 =
M∑

i=0

Eφ j [k]2 + Ev[k]2

We now define the relative contribution Rc[ j] as

Rc[ j] = Eφ j [k]2
Ey[k]2 , j = 0, ..., M

Since the square term is proportional to energy, the meaning of the relative contri-
bution Rc[p] is the percent of energy in the p’s term to the overall output energy.
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Obviously, if the p’s term is insignificant, the relative contribution Rc[p] should be
small and not be a part of the estimate.

A closely related concept is the cumulative contribution Cc[p]

Cc[p] =
p∑

j=0

Rc( j) =
p∑

j=0

Eφ j [k]2
Ey[k]2 , p = 0, ..., M

which measures the contribution of first p + 1 terms relative to the overall output.
Obviously, if the order p is correct, the cumulative contribution Cc[p] should be
close to unit and is flattened in the curve Cc[p] vs p. It is important to point out that
because of noise contribution term Ev[k]2, the cumulative contribution can never
reach 100%. To test the order based on the cumulative contribution, an estimate
of the relative contribution of the unknown noise has to be done. This makes the
method based on the cumulative contribution less efficient compared to the relative
contribution approach.

In reality, φ′
i are unavailable and only their estimates φ̂i ’s are available. However,

because of their convergence properties, φ̂i → φi as N → ∞, we may define the
estimates of Rc[p] and Cc[ j] by

R̂c[ j] =
1
N

∑N
k=1 φ̂ j [k]2

1
N

∑N
k=1 y[k]2

and

Ĉc[p] =
p∑

j=0

1
N

∑N
k=1 φ̂ j [k]2

1
N

∑N
k=1 y[k]2 .

The substitution is reliable for large N because of the convergence property.
To test whether the pth term should be included, we compute R̂c[p] and choose a

threshold d1, for example d1 = 0.03 or 3%. If R̂c[p] ≥ d1, the pth term is included.
Otherwise the term is discarded. This not only provides the order of the system but
also determines exactly which term should be included in the model.

5 Deterministic Inputs and Galois Sequence

Generally, there are two ways to estimate the structure of the system. The first one
is full scale system identification. The idea is to identify the system including each
f̄i and f̄i j and then enumerate all possible models for different combinations of f̄i

and f̄i j as well as n. Some performance measures are calculated and the model that
achieves the best performance is chosen. Then, the corresponding n is the estimate
of time lag and the surviving terms of f̄i and f̄i j are retained in the system. All
other f̄i ’s and f̄i j ’s are considered to be negligible. The method does not distinguish
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between model structural estimation and full scale system identification. Note that
the system is nonparametric and nonlinear. Hence, identification is usually computa-
tionally expensive and the optimization algorithm could be stuck in a local minimum.
It is certainly advantageous if the structure of the system can be estimated before a
full scale system identification is performed. To this end, we propose two different
methods.

5.1 Visual Inspection Method

Recall that in structural estimation, we are interested not in full scale system iden-
tification, but rather in finding a simple and reliable way to estimate the structure,
in particular to determine the terms f̄i and f̄i j which contribute significantly. In this
section, we assume that the input is at our disposal (which admittedly may be restric-
tive in some applications). Under such an assumption, the first problem is to find an
input sequence that is simple and has the ability to separate the contributions of f̄i

and f̄i j ,

U23 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(1) u(0) u(−1)
u(2) u(1) u(0)
u(3) u(2) u(1)
u(4) u(3) u(2)
u(5) u(4) u(3)
u(6) u(5) u(4)
u(7) u(6) u(5)
u(8) u(7) u(6)
u(9) u(8) u(7)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a1 a1

a2 a1 a1

a2 a2 a1

a2 a2 a2

a1 a2 a2

a2 a1 a2

a1 a2 a1

a1 a1 a2

a1 a1 a1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

To this end, let l be a prime number that indicates the number of levels of input,
i.e., u[k] = {a1, a2, ..., al}, usually |ai | = |a j | to avoid ambiguity for quadratic non-
linearities. To excite the system to the maximum extent, the input sequence should
contain all possible combinations of n-tuple (ai1 , ai2 , . . . , ain ), ai j = a1, . . . , , al . The
minimum length of such a generating sequence is n + ln − 1. The Galois sequence
is such a sequence which has been investigated in [13, 20] for worst-case identifica-
tion. Galois sequence has many desirable properties. It is a periodic pseudorandom
sequence with period ln [20] and can be easily generated [13]. More importantly,
within one period, it produces each n-tuple combination exactly once [20]. Note that
the Galois sequence defined here is slightly different from the traditional one [13]
as we need all the n-tuples to be included. This small difference can be easily taken
care of and in fact this definition is exactly the same as in [20]. An example of G(ln)

for n = 3 and l = 2 is given in (10). To average out the effect of noise, the input
sequence is repeated L times, i.e.,
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ULln =

⎛

⎜⎜⎜⎝

Uln

Uln

...

Uln

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
Ltimes. (11)

Before performing structural estimation, it is interesting to observe that the repre-
sentation (1) of the system is actually not unique. For instance, f̄1 → f̄1 + c and
f̄2 → f̄2 − c for any constant c would not change the input–output relationship
which implies that the structure of the system, as represented in (1), is not identifi-
able. To overcome this problem, we normalize the system to make the averages of
f̄i and f̄i j with respect to the input equal to zero. Let

g j,i j (u[k − j]) = 1

l

l∑

m=1

f̄i j (am, u[k − j]),

gi,i j (u[k − i]) = 1

l

l∑

m=1

f̄i j (u[k − i], am)

be the partial average of f̄i j with respect to the first and second variables respectively
and

či j = 1

l2

l∑

m1=1

l∑

m2=1

f̄i j (am1 , am2)

be the total average. Define

f̌i j (u[k − i], u[k − j]) = f̄i j (u[k − i], u[k − j]) − g j,i j (u[k − j]) − gi,i j (u[k − i]) + či j .

(12)

Obviously, the average of this new function is zero,

l∑

m=1

f̌i j (am, u[k − j]) =
l∑

m=1

f̌i j (u[k − i], am) = 0. (13)

To make the average of f̄i equal to zero, let, for each 1 ≤ i ≤ n,

f̌1(u[k − 1]) = f̄1(u[k − 1]) +
n∑

i=2

g1,1i (u[k − 1]) − 1

l

l∑

m=1

[ f̄1(am) +
n∑

i=2

g1,1i (am)]
︸ ︷︷ ︸

č1

,

f̌n−1(u[k − n + 1]) = f̄n−1(u[k − n + 1]) +
n−2∑

i=1

g(n−1),i(n−1)(u[k − n + 1])
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+g(n−1),(n−1)n(u[k − n + 1]) − 1

l

l∑

m=1

[ f̄n−1(am) +
n−2∑

i=1

g(n−1),i(n−1)(am) + g(n−1),(n−1)n(am)]
︸ ︷︷ ︸

čn−1

,

f̌n(u[k − n]) = f̄n(u[k − n]) +
n−1∑

i=1

gn,in(u[k − n]) − 1

l

l∑

m=1

[ f̄n(am) +
n−1∑

i=1

gn,in(am)]
︸ ︷︷ ︸

čn

. (14)

Since,
l∑

m=1

f̌i (am) = 0, ∀i (15)

by taking č = c̄ − ∑
1≤i< j≤n či j + ∑n

i=1 či , it follows that the system (1) can be
rewritten as

y[k] = č +
n∑

i=1

f̌i (u[k − i]) +
∑

1≤i< j≤n

f̌i j (u[k − i], u[k − j]) + v[k], k = 1, 2, . . . , Lln .

(16)
This makes the representation unique. For each 1 ≤ i < j ≤ n, mi , m j = 1, . . . , l
and s = 1, 2, . . . , L , define the partial averages of the output,

Zi j
mi m j s = 1

ln−2

ln∑

t=1
u[k−i]=ami ,u[k− j]=am j

y[(s − 1)ln + k]

Zi j
mi m j · = 1

L

∑L
k=1 Zi j

mi m j s

Z i j
mi ·· = 1

l

∑l
m j =1 Zi j

mi m j ·

Zi j·m j · = 1
l

∑l
mi =1 Zi j

mi m j ·

Zi j··· = 1
l

∑l
mi =1 Zi j

mi ·· = 1
l

∑l
m j =1 Zi j·m j ·

(17)

The subscript “dot” indicates that average has been takenwith respect to this variable,
e.g., Zi j

mi m j · is the average of Zi j
mi m j s with respect to the last variable s.

To provide a physical interpretation of the above variables, let us focus on the
system (16) with n = 3, l = 2 and the Galois sequence G F(23) as in (10) and (11).
Within one period, it is clear that for any fixed column ofU23 , half of the entries have
values at a1 and the other half are at a2. Further, it is straightforward using (13) and
(15) to show that for i = 1 and j = 2,

Z12
11s = č + f̌1(a1) + f̌2(a1) + f̌12(a1, a1) + (v[(s − 1)23 + 1] + v[(s − 1)23 + 8])/2,

Z12
12s = č + f̌1(a1) + f̌2(a2) + f̌12(a1, a2) + (v[(s − 1)23 + 5] + v[(s − 1)23 + 7])/2,



366 E.-W. Bai and C. Cheng

Z12
21s = č + f̌1(a2) + f̌2(a1) + f̌12(a2, a1) + (v[(s − 1)23 + 2] + v[(s − 1)23 + 6])/2,

Z12
22s = č + f̌1(a2) + f̌2(a2) + f̌12(a2, a2) + (v[(s − 1)23 + 3] + v[(s − 1)23 + 4])/2.

Moreover,

Z12
11· = č + f̌1(a1) + f̌2(a1) + f̌12(a1, a1) + 1

L

L∑

s=1

(v[(s − 1)23 + 1] + v[(s − 1)23 + 8])/2,

Z12
12· = č + f̌1(a1) + f̌2(a2) + f̌12(a1, a2) + 1

L

L∑

s=1

(v[(s − 1)23 + 2] + v[(s − 1)23 + 7])/2,

Z12
1·· = č + f̌1(a1) + 1

2L

L∑

s=1

{(v[(s − 1)23 + 2] + v[(s − 1)23 + 7])/2

+ (v[(s − 1)23 + 1] + v[(s − 1)23 + 8])/2},

Z12··· = č + 1

4L

L23∑

t=1

v[k].

Clearly, an estimate č is obtained by Z12··· and an estimate f̌1(a1) is obtained by
Z12
1·· − Z12··· . The results can be trivially but cumbersomely extended to the system

(16) with any n ≥ 2, l ≥ 2 and i, j as summarized in the following theorem.

Theorem 4 Consider the system (16) for any n ≥ 2, l ≥ 2 with the Galois input as
in (11) and the variables defined in (17). Then, for any 1 ≤ i < j ≤ n and mi , m j =
1, . . . , l, we have

Zi j
mi m j s = č + f̌i (ami ) + f̌ j (am j ) + f̌i j (ami , am j ) + εi j

mi m j s

where ε
i j
mi m j s ’s are iid with zero mean and variance σ 2/ln−2 and

Zi j
mi m j · = č + f̌i (ami ) + f̌ j (am j ) + f̌i j (ami , am j ) + 1

L

L∑

s=1

εi j
mi m j s,

Zi j
mi ·· = č + f̌i (ami ) + 1

l L

l∑

m j =1

L∑

s=1

εi j
mi m j s,

Zi j
·m j · = č + f̌ j (am j ) + 1

l L

l∑

mi =1

L∑

s=1

εi j
mi m j s,

Zi j
··· = č + 1

lln−2L

Lln∑

k=1

v[k].
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Therefore, for a large L , very good estimates of č, f̌i , and f̌i j are available from
Zi j

mi m j ·, Zi j
mi ··, Zi j·m j ·, and Zi j··· that are computable from the input–outputmeasurements.

The implication of the above result is that the graph of f̌i (ami ) ( f̌ j (am j )) versus ami

(am j ) is obtained by the graph of its estimate

f̃i (ami ) = Zi j
mi ·· − Zi j

··· vs ami or

f̃ j (am j ) = Zi j
·m j · − Zi j

··· vs am j

and the graph of f̌i j (ami , am j ) versus (ami , am j ) is obtained by f̃i j (ami , am j ) =
(Zi j

mi m j · − Zi j
mi ·· − Zi j·m j · + Zi j···) and

f̃i j (ami , am j ) vs (ami , am j ).

Accordingly, the contribution of f̌i (ami ) and f̌i j (ami , am j ) can be visually
inspected by the graphs of f̃i (ami ) and f̃i j (ami , am j ). We make two comments here.

• Structural estimation is similar to model validation in identification. One can never
validate amodel unless all possible inputs have been applied. This is clearly impos-
sible in practice. In structural estimation, one can only say that the contribution of
f̌i (ami ) or f̌i j (ami , am j ) is negligible with respect to the applied input. Therefore,
the values a1, . . . , al are important and have to be chosen judiciously.

• In general, increasing the level l excites the system at more points and this is quite
useful for nonlinear system identification. However, there is a balance between
the number of levels l and the complexity of the implementation. For l = 2 or any
binary input, the minimum length of the sequence to cover all possible n-tuple
combinations is 2n and for an l level input, the minimum length becomes ln . Thus,
the complexity increases quickly as l gets larger.

• In general, a visual inspection works only for 2-factor terms.

5.2 Analysis of Variance (ANOVA)

The visual inspection approach discussed above is intuitive, efficient but Ad Hoc.
If an estimate f̃i is nonzero but small, it is hard to determine if the term should be
retained or discarded because of noise. To make the idea mathematically rigorous, in
this section, we develop a statistical hypothesis test based on the well-known analysis
of variance (ANOVA) and F distribution tests. To this end we make an assumption.

Assumption 5.1 The noise v[·] is iid Gaussian with zero mean and variance σ 2.

The Gaussian assumption is needed for the mathematical derivation. However, it
has been well documented in the literature [17] that ANOVA is quite robust against
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violation of the Gaussian assumption. Consider the system (16), the input (11), and
the variables (17). Let, for each 1 ≤ i < j ≤ n,

SSi j
T = ∑l

mi =1

∑l
m j =1

∑L
s=1(Zi j

mi m j s − Zi j···)2

SSi j
mi · = ∑l

mi =1 l L(Zi j
mi ·· − Zi j···)2

SSi j·m j = ∑l
m j =1 l L(Zi j·m j · − Zi j···)2

SSi j·· = ∑l
mi =1

∑l
m j =1 L(Zi j

mi m j · − Zi j·m j · − Zi j
mi ·· + Zi j···)2

SSi j
E = ∑l

mi =1

∑l
m j =1

∑L
s=1(Zi j

mi m j s − Zi j
mi m j ·)2.

(18)

The following theorem can be shown by some algebraic manipulations and the
Cochran Theorem [24].

Theorem 5 Consider the variables defined in (18). Then,

• SSi j
T = SSi j

mi · + SSi j·m j + SSi j·· + SSi j
E .

• SSi j
mi ·, SSi j·m j , SSi j·· , and SSi j

E are statistically independent.

• ln−2

σ 2 SSi j
E ∼ χ2(l2(L − 1)) is χ2 distributed with l2(L − 1) degrees of freedom.

• If f̌i j (ami , am j ) = 0 for all mi , m j = 1, . . . , l, then

ln−2

σ 2
SSi j

·· ∼ χ2((l − 1)2).

• If f̌i (ami ) = 0 for all mi = 1, . . . , l, then

ln−2

σ 2
SSi j

mi · ∼ χ2(l − 1).

• If f̌ j (am j ) = 0 for all m j = 1, . . . , l, then

ln−2

σ 2
SSi j

·m j
∼ χ2(l − 1).

This theorem sets the foundation for the test of three null hypotheses,

H0i j : f̌i j (ami , am j ) = 0, ∀ami , am j = 1, . . . , l,

H0i · : f̌i (ami ) = 0, ∀ami = 1, . . . , l,
H0· j : f̌ j (am j ) = 0, ∀am j = 1, . . . , l,

by the F-test because if H0i j is true then

T i j = SSi j·· /(l − 1)2

SSi j
E /(l2(L − 1))

∼ F((l − 1)2, l2(L − 1)), for all 1 ≤ i < j ≤ n,

is F-distributed with (l − 1)2 and l2(L − 1) degrees of freedom. Similarly, if H0i · is
true,
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T 1 = SS12
mi ·/(l − 1)

SS12
E /(l2(L − 1))

∼ F(l − 1, l2(L − 1))

and if H0· j is true, ∀ j = 2, . . . , n,

T j = SS1 j·m j /(l − 1)

SS1 j
E /(l2(L − 1))

∼ F(l − 1, l2(L − 1)).

The null hypothesis H0i j is rejected if T i j > Fα((l − 1)2, l2(L − 1)) where α

denotes the level of significance, usually in the range 0.01 − 0.1. The tests for H0i ·
and H0· j are similar. The results from the hypothesis tests are used to determine
which fi or fi j should be retained with a certain confidence in probability.

6 Full Scale Identification

For full scale system identification, using the Galois sequence is not appropriate
because the Galois sequence only excites the system at a finite points. We assume
in this section that the input u[k] is an iid random sequence in a (unknown) open
interval I ∈ R with a (unknown) probability density function ψ(·). Then, the results
of [3] can be used. Similar to the structural estimation case, the system (1) needs to
be normalized for identification purposes. Let E be the expectation operator. Define
the partial averages,

ci j = E{ f̄i j (u[k − i], u[k − j])},

c1 = E{ f̄1(u[k − 1]) +
n∑

j=2

E( f̄1 j (u[k − 1], u[k − j]) | u[k − 1] = x1)},

c1i = E{ f̄i (u[k − i]) +
n∑

j=i+1

E( f̄i j (u[k − i], u[k − j]) | u[k − i] = xi )},

c2i =
i−1∑

j=1

E( f̄ j i (u[k − j], u[k − i]) | u[k − i] = xi ),

cn = E{ f̄n(u[ j − n]) +
n−1∑

j=1

E( f̄ jn(u[k − j], u[k − n]) | u[k − n] = xn)}.

Now, for every xi and x j ∈ I , define

fi j (xi , x j ) = f̄i j (xi , x j ) − E( f̄i j (u[k − i], u[k − j]) | u[k − j] = x j )

− E( f̄i j (u[k − i], u[k − j]) | u[k − i] = xi ) + ci j , 1 ≤ i < j ≤ n,
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f1(x1) = f̄1(x1) +
n∑

j=2

E( f̄1 j (u[k − 1], u[k − j]) | u[k − 1] = x1) − c1,

fi (xi ) = f̄i (xi ) +
n∑

j=i+1

E( f̄i j (u[k − i], u[k − j]) | u[k − i] = xi )

+
i−1∑

j=1

E( f̄ j i (u[k − j], u[k − i]) | u[k − i] = xi ) − c1i − c2i , i = 2, 3, . . . , n − 1,

fn(xn) = f̄n(xn) +
n−1∑

i=1

E( f̄in(u[k − i], u[k − n]) | u[k − n] = xn) − cn .

(19)

Next, with c = c̄ − ∑
1≤i< j≤n ci j + ∑n

i=1 ci , ci = c1i + c2i , the system (1) can be
written as

y[k] = c +
n∑

i=1

fi (u[k − i]) +
∑

1≤i< j≤n

fi j (u[k − i], u[k − j]) + v[k], k = 1, 2, . . . , N

(20)
with

E fi (u[k − i]) = E( fi j (u[k − i], u[k − j]) | u[k − i] = xi )

= E( fi j (u[k − i], u[k − j]) | u[k − j] = x j ) = 0.

The problem is how to identify fi and fi j . Observe that these variables are condi-
tional expectations and thus can be calculated by empirical data easily, for instance
using the kernel estimation method [3]. To this end, we define the kernel functions.
A continuous, bounded and radially symmetric function K (·) is said to be a kernel
function if

K (z) =
{

> 0, z ∈ [−1, 1]
0, z /∈ [−1, 1] and

∫ 1

−1
K (z)dz = 1. (21)

Now, the estimates of c, fi and fi j can be defined for each xi , x j ∈ I in which the
input u[·] lies,

ĉ = 1

N

N∑

k=1

y[k] (22)

f̂i (xi ) =
∑N

k=1 K ( xi −u[k−i]
δ

)y[k]
∑N

k=1 K ( xi −u[k−i]
δ

)
− ĉ, i = 1, . . . , n

f̂i j (xi , x j ) =
∑N

k=1 K (
‖(xi ,x j )−(u[k−i],u[k− j])‖

δ
)y[k]

∑N
k=1 K (

‖(xi ,x j )−(u[k−i],u[k− j])‖
δ

)
− f̂i (xi ) − f̂ j (x j ) − ĉ, 1 ≤ i < j ≤ n
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where δ > 0 is the bandwidth. The following result, which is a standard exercise,
follows from [3].

Theorem 6 Consider the system (3) with differentiable fi and fi j , and any kernel
function defined above. Then, for any xi , x j ∈ I , provided that the input density
function is positive at xi , x j , i.e., ψ(xi ), ψ(x j ) > 0 and δ → 0, δ2N → ∞ as N →
∞, we have

ĉ → c

f̂i (xi ) → fi (xi )

f̂i j (xi , x j ) → fi j (xi , x j )

in probability as N → ∞.

7 Comparisons with Existing Methods

A new representation for a class of nonlinear nonparametric system has been pro-
posed in (16). Further, structural estimation and full scale identification have been
discussed in the previous section. Naturally, two questions arise. The first one is what
are the advantages of the representation (16) as compared to some existing methods,
in particular the fixed basis approach and the Volterra series? Second, even if one
accepts the representation (16), why use the structural estimation and system identi-
fication techniques discussed in the previous section as compared to the traditional
approach of identifying f (u[k − 1], . . . , u[k − n]) directly? We address these two
issues in this section.

7.1 Relation with the Volterra Series

If the system (16) is smooth with an upper bound n on the time lag, its Volterra series
is given by

y[k] = h0 +
n∑

l=1

∞∑

i1=0

∞∑

i2=i1

· · ·
∞∑

il=il−1

hl (i1, . . . , il ) · u[k − i1]u[k − i2] . . . u[k − il ] + v[k].

Twoof themajor advantages of theVolterra series are (1) it is in a closed formand (2) it
is parametric. In otherwords, any smooth nonlinear nonparametric systemcan always
be written in the above form. Further, identification becomes a linear estimation of
the coefficients hl’s. However, theVolterra series also has some disadvantages. In this
work, we are mainly interested in verifying if the Volterra series is a good candidate
for the system of short termmemory and low degree of interaction as in (1) or (3). To
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this end, we need to understand the differences between a system of low degree of
interaction and a system of low order in the classical sense. Traditionally, a system is
said to be of low order if it can be written as or at least can be well approximated by
a low-order multidimensional polynomial. For instance, a system is said to be first
order if it is linear

y[k] = f (u[k − 1], . . . , u[k − n]) = c +
n∑

i=1

αi u[k − i]

or to be of second order if

y[k] = c +
n∑

i=1

αi u[k − i] +
∑

1≤ j1≤ j2≤n

γ j1 j2u[k − j1]u[k − j2].

Clearly, in both cases, the system is of 1-factor or 2-factor terms. In general, a
system of low order in the traditional sense implies low degree of interaction.
The other way around is however incorrect. For example, eu[k−1] is an 1-factor
term that is not necessarily of low order depending on the input magnitude. Also,
(u[k − 1]u[k − 2])10 is a 2-factor term which may not be approximated well by a
second-order polynomial. Therefore, nonlinear systems of loworder in the traditional
sense are low degree interaction systems but the reverse implication is not neces-
sarily true. Now, we consider a Volterra series approach. A second-order Volterra
series is a model that contains all the first- and second-order kernels u[k − i]’s and
u[k − j1]u[k − j2]’s. Thismodel is a 2-factor interaction system.However, a 2-factor
system y[k] = eu[k−1] + (u[k − 1]u[k − 2])10 is definitely not represented well by a
low-order Volterra series.

In summary, if a nonlinear systemof short-termmemory and lowdegree of interac-
tion resembles the structure of a low-ordermultidimensional polynomial, theVolterra
series is a good candidate. If the system is far away from a polynomial or the order
of the polynomial is high, the Volterra series is not a good candidate simply because
too many terms are needed to approximate the given system. In such a case, i.e.,
the unknown system is of low degree of interaction but not necessarily a low-order
polynomial, the proposed representation is a vital choice. This observation is not sur-
prising because the Volterra series is an extension of Taylor polynomial expansion
of an analytic function. The advantages of the proposed representation for systems
of short memory and low degree of interaction will be further illustrated in the sim-
ulation section.

7.2 Basis Function Approach

Without structural information, a fixed basis function approach is often used in non-
linear system identification. Typical basis functions are Fourier series, polynomials,
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and some orthogonal versions. Obviously, the success of a basis function approach
relies on how much a priori information is available on the unknown structure. If
the chosen basis functions resemble the structure of the unknown nonlinear system,
only a few terms are needed to represent the unknown system. In this case, identifica-
tion is likely to be successful. Otherwise, a fixed basis function approach requires a
large number of terms which has a considerable negative effect on the identification
step. The advantage of the proposed representation is that, if a nonlinear system has
short-term memory and low degree of interaction which fits (3), then no additional
structural information is required. In other words, there is no need to choose any basis
functions and whether a chosen basis function resembles the unknown structure is
no longer an issue.

7.3 Traditional One Shoot Kernel Approach

Once the representation of (1) or (3) is accepted, the second question is why to
use the identification method proposed in the previous section and why not to iden-
tify the nonlinear function f (u[k − 1], . . . , u[k − n]) directly, which is a traditional
approach. The difference is that the identification method proposed in this work
decomposes a potentially high-dimensional nonlinear identification problem into a
number of one- or two-dimensional problems. Since the method proposed in the
work is kernel based, we compare it with the one shoot kernel based identification
method.

First, for the one shoot kernel estimation of f (u[k − 1], . . . , u[k − n]) under iid
inputs, the asymptotic convergence rate [12] is O(N− α

2α+n ), where N is the total
number of data points and α depends on the choices of the kernel functions and the
bandwidth. For the method proposed in the work, because identification is one or
two dimensional, the asymptotic convergence rate is O(N− α

2α+n |n=2) = O(N− α
2α+2 )

[12]. Thus, asymptotically, there is an advantage to use the proposed method.
Next, we consider the case that N is large but fixed. For nonlinear system identi-

fication, the curse of dimensionality is always a concern even for a modest n. We use
similar arguments and examples as in [2] to illustrate the situation. Let u[·] be uni-
formly distributed in I = [−1, 1]. Suppose one wants to estimate f (x1, x2, . . . , xn)

at a point (x1, x2, . . . , xn) ∈ I n . Since any nonparametric identification scheme,
including the kernel approach, is in some form of local smoother or weighted aver-
age based on the measurement data in the neighborhood of (x1, x2, . . . , xn), there
must be enough data in the neighborhood to average out the effects of noise and
the uncertainty due to lack of structural information. For simplicity, suppose the
neighborhood is a hyper-box with the side length 0.1. Then, the volume of I n is
2n and the volume of the neighborhood is 0.1n . This implies that the probability
that a measurement data (u[k − 1], u[k − 2], . . . , u[k − n]) is in the neighborhood
of (x1, x2, . . . , xn) is (1/20)n that goes to zero exponentially as n gets large. For a
large N , there are likely N · (1/20)n measurements in the neighborhood. Unless N is
huge, there is not enough data in a neighborhood for identification purpose even for
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a modest n. For the proposed method, however, the maximum dimension is two. The
curse of dimensionality is not a problem. For instance, let n = 8. Then, the problem
becomes identification of 8 1-factor terms f j (u[k − j]), j = 1, 2, . . . , 8, and 28 2-
factor terms f j1 j2(u[k − j1], u[k − j2]). Though the number of identification steps
increases, the complexity of identification is reduced drastically. Because of decou-
pling, the probability of an u[k − j] in the neighborhood of x j for one-dimensional
identification is 0.05 and the probability of (u[k − j1], u[k − j2]) in the neighbor-
hood of (x j1 , x j2) is 0.0025. Suppose that the total number of data points is N = 105.
This implies that likely there are 5000 or 250 measurements in the neighborhood
for identification of 1-factor or 2-factor terms, respectively. Recall that if the eight-
dimensional f (x1, . . . , x8) is identified directly, the probability that a data vector is in
the neighborhood of (x1, . . . , x8) is (1/20)8.With N = 105, the probability that there
is one measurement in a neighborhood is (1/2)8 · 10−3 = 1

28103 that makes identifi-
cation nearly impossible. Clearly, the performance of identification of the 1-factor or
2-factor term can be substantially improved for the same N , compared to the iden-
tification of a eight-dimensional problem f . This effectively combats the curse of
dimensionality.

8 Numerical Simulation

We now provide numerical simulation examples. We separate the discussions about
random inputs and Galois sequence inputs.

8.1 Random Inputs

Example 1 Consider a nonlinear system

y[k] = f (u[k − 1], u[k − 2], u[k − 3], u[k − 4], u[k − 5]) + v[k]

= 1.25/3︸ ︷︷ ︸
φ0=c

+ u[k − 1]︸ ︷︷ ︸
φ1= f1

+ 10 · u[k − 2]3︸ ︷︷ ︸
φ2= f2

+ 5 · u[k − 3]2 − 1.25/3︸ ︷︷ ︸
φ3= f3

+ 0︸︷︷︸
φ4= f4

+ 0︸︷︷︸
φ5= f5

+ + 5 · u[k − 1] ∗ u[k − 2]︸ ︷︷ ︸
φ6= f12

+ 0︸︷︷︸
φ7= f13

+

0︸︷︷︸
φ8= f14

+ 0︸︷︷︸
φ9= f15

+ 0.5 · sin(2π(u[k − 2] + u[k − 3]])︸ ︷︷ ︸
φ10= f23

+ 0︸︷︷︸
φ11= f24

+ + 0︸︷︷︸
φ12= f25

+ + 0︸︷︷︸
φ13= f34

+ + 0︸︷︷︸
φ14= f35

+ + 0︸︷︷︸
φ15= f45

+v[k] (23)



A Data-Driven Basis Function Approach in Nonparametric … 375

−0.4 −0.2 0 0.2
−0.5

0

0.5
φ1 & φ1

−0.4 −0.2 0 0.2
−0.5

0

0.5
φ2 & φ2

−0.4 −0.2 0 0.2
−0.5

0

0.5
φ3 & φ3

−0.4 −0.2 0 0.2
−1

−0.5

0

0.5

1
φ4 & φ4

−0.4 −0.2 0 0.2
−1

−0.5

0

0.5

1
φ5 & φ5

Fig. 1 φ j [k] = f j (u[k − j])’s (solid) and their estimates φ̂ j [k] (dashdot), j = 1, 2, 3, 4, 5

No prior structural information on f is available. The time lag of the system is
unknown and only an upper bound of n = 5 is assumed. For simulation, N = 20, 000
and δ = 0.1. The input u[·] is independent and uniformly distributed in [−0.5, 0.5],
and the noise v[·] is iid Gaussian with SN R = 20dB.

Figure1 shows the actual but unknown φ j [k](solid), j = 1, ..., 5 and their esti-
mates φ̂ j [k] (dashdot), j = 1, ..., 5, respectively. The top diagrams of Fig. 2 show
φ6[k], φ10[k] superimposed with their estimates φ̂6[k], φ̂10[k]. The estimation errors
of φ6[k] − φ̂6[k] and φ10[k] − φ̂10[k] are in the bottom diagrams. The estimates
φ̂ j [k]’s, j = 7, 8, 9, 11, 12, 13, 14 and 15 are in Fig. 3. It can be seen that all the
estimates fit the actual but unknown functions well.

To determine the order of the estimation model, we calculate the residual and plot
the average error as a function of the estimation order p as in the top diagramof Fig. 4.
Obviously, there is a drastic reduction in the average error for the order p = 10 and
there is a little change for p > 10. Thus, we take p = 10 and test if the order p = 10
is acceptable by the modified Box–Pierce test (9). When p = 10, Qn−1 = Q4 =
5.6434. Let the level of significance be 0.05. This corresponds to, from the χ2(n −
1) = χ2(4) distribution table, the threshold d = 9.4877. Since Q4 = 5.6434 < d =
9.4877. The order p = 10 is accepted which is in fact the actual but unknown order.
The order determination can also be carried by the relative contribution Rc[p] shown
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Fig. 2 φ6[k], φ̂6[k] and φ10[k], φ̂10[k]

Fig. 3 φ̂ j [k], j = 7, 8, 9, 11, 12, 13, 14 and 15
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Fig. 4 Average error versus the estimation order

Table 1 Relative contributions for N = 20000, 10000, 5000 and d1 = 0.03, respectively

N 20000 ≥ d1 10000 ≥ d1 5000 ≥ d1

R̂c[0] 0.1717
√

0.1819
√

0.1793
√

R̂c[1] 0.1041
√

0.0802
√

0.0792
√

R̂c[2] 0.1854
√

0.1480
√

0.1504
√

R̂c[3] 0.1156
√

0.1001
√

0.1152
√

R̂c[4] 0.0002 0.0003 0.0005

R̂c[5] 0.0000 0.0000 0.0000

R̂c[6] 0.1584
√

0.1464
√

0.1574
√

R̂c[7] 0.0008 0.0021 0.0035

R̂c[8] 0.0009 0.0028 0.0045

R̂c[9] 0.0009 0.0029 0.0036

R̂c[10] 0.1826
√

0.1199
√

0.1176
√

R̂c[11] 0.0007 0.0019 0.0039

R̂c[12] 0.0010 0.0026 0.0050

R̂c[13] 0.0009 0.0019 0.0090

R̂c[14] 0.0011 0.0026 0.0040

R̂c[15] 0.0010 0.0023 0.0050
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Fig. 5 Cumulative and relative contributions

in Table1 as well as in the bottom diagram of Fig. 5. The cumulative contribution
Cc[p] is shown in the top diagram of Fig. 5. To determine which term φ̂ j should be
included in the estimate, let the threshold d1 = 0.03. If R̂c[ j] ≥ d1, we include the
corresponding term φ̂ j in the model. Otherwise the contribution of the corresponding
term is deemed to be insignificant and omitted in the model. Clearly, from Table1,
only the terms φ̂0, φ̂1, φ̂2, φ̂3, φ̂6 and φ̂10 contribute significantly and should be
included in the model. Simply put, the system time lag is determined to be n = 3,
though the upper bound is assumed to be 5. Further, it is determined that the system
contains only 6 terms, φ0 = c, φ1 = f1, φ2 = f2, φ3 = f3, φ6 = f12, and φ10 = f23
and all other terms are zero. The conclusion is consistent with the true but unknown
system.

Finally, to validate the obtained estimate f̂ = ∑
i=0,1,2,3,6,10 φ̂i [k], a fresh input

u[k] = 0.5 sin(k/10) · cos(k/20), k = 1..., 150
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Fig. 6 Actual output (solid) and predicted output (dash-dot) for a fresh input

is generated which is completely different from the white noise input that was used
for identification. A standard goodness-of-fit criterion

(1 −
√ ∑

k(y[k] − ŷ[k])2
∑

k(y[k] − 1
N

∑
k y[k])2 ) × 100% (24)

is calculated. Based on the fresh input, the output y[k] of the actual but unknown
nonlinear system (23) is generated as well as the predicted output ŷ[k] based on the
estimate

ŷ[k] = f̂ (u[k − 1], [u − 2], u[k − 3], u[k − 4], u[k − 5])

= φ̂0 + φ̂1[k] + φ̂2[k] + φ̂3[k] + φ̂6[k] + φ̂10[k].

Figure6 shows the actual output y[k] (solid) and the predicted output ŷ[k] (dash-dot)
with the goodness-of-fit 0.9411, an almost perfect fit. This validates the effectiveness
of the identification method proposed in the work along with its order determination
and regressor selection.
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8.2 Galois Sequence Inputs

In this subsection, we discuss two numerical examples that shed lights on the
efficiency of the proposed representation and identification method using Galois
sequence inputs in the context of existing methods.

Example 2

w[k] = u[k] − 0.3u[k]3
x[k] = 0.3x[k − 1] − 0.02x[k − 2] + 0.5w[k − 1] + 0.4w[k − 2]
y[k] = x[k] + 0.4x[k]2 + v[k]

The noise v[k] is an iid zero mean and unit variance Gaussian random variable
multiplied by 0.2. The actual nonlinear system is IIR and therefore there are no
exact fi and fi j . We represent the system by (3) assuming that the maximum time
lag n ≤ 8. Note determination of the order of an unknown nonlinear system is an
interesting and open problem which is out of scope of the work. Here we just assume
that the upper bound n = 8 is available (admittedly it could be restrictive in some
applications).

First, structural estimation is carried out by using a binary Galois sequence
G F(28) with n = 8, l = 2 and L = 11 and a1 = 1, a2 = 0. ANOVA was used to
calculate T i j and T i as shown in Table 2 that are the averages of 50 Monte Carlo
simulations.

For the hypothesis tests, we choose α = 0.1. From the F distribution, we have
F0.1(1, 40) = 2.84. By the F-tests, we have T 1, T 2, T 3, T 4, T 12, T 13, T 23 > 2.84,
and all other T i , T i j < 2.84 as can be seen in Table1. Thus, we reject the hypotheses
that f1, f2, f3, f4, f12, f13, and f23 are negligible and assume that all other terms
are zero. Second, these non-negligible terms are identified with iid input uniformly
in [−1.5, 1.5], a triangle kernel [3] with δ = 0.4 and the total number of data points
N = 5000. Further, their estimates are used to construct the model

Table 2 Calculated T i and T i j for polynomial input nonlinearity
i 1 2 3 4 5 6 7 8
T i 3986 4617 371.5 23.3 2.5 1 1.2 1.1

T i j j
2 3 4 5 6 7 8

i 1.0 56 49 1.2 1.1 0.9 0.6 1.1
2 5.8 1.5 1,.0 0.9 0.7 1.0
3 1.2 1.3 0.7 1.2 0.9
4 1.3 1.0 1.0 0.9
5 1.0 0.9 0.8
6 0.9 0.7
7 0.8
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Table 3 Goodness-of-fits for the polynomial input nonlinearity

Proposed method Fourth-order
Volterra

Second-order
fixed basis

Traditional one
shoot

Gof 0.9470 0.9563 0.8121 0.6762

ŷ[k] = ĉ + f̂1(u[k − 1]) + f̂2(u[k − 2]) + f̂3(u[k − 3]) + f̂4(u[k − 4])
+ f̂12(u[k − 1], u[k − 2]) + f̂13(u[k − 1], u[k − 3]) + f̂23(u[k − 2], u[k − 3]).

To validate the model, the input is generated

u[k] = 1.5 sin(k/10) cos(k/20), k = 1, . . . , 160

as well as the corresponding actual outputs y[k] and predicted outputs ŷ[k]’s.
Figures7, 8, 9, and 10 show y[k], ŷ[k]’s predicted by the proposed method, the

Volterra series of fourth order, a fixed basis of polynomial upto the second order and
the one shoot method respectively as well as their gof’s. Since the actual nonlinearity
is a polynomial, the proposed method, the Volterra series, and the fixed basis of
polynomial all perform satisfactory, significantly better than the one shoot method
as expected. An overview of the performances is given in Table3.

Example 3

w[k] = u[k] − 0.3u[k]3e1.4u[k]
x[k] = 0.3x[k − 1] − 0.02x[k − 2] + 0.5w[k − 1] + 0.4w[k − 2]
y[k] = x[k] + 0.4x[k]2 + v[k].

The only difference between Examples2 and 3 is that the input nonlinearity now
contains an exponential term. All other simulation conditions remain the same. T i

and T i j for Example3 are given in Table4 for a binary test input G F(ln) with
n = 8, l = 2 and L = 11.

With α = 0.1 and by the F-test as shown in Table4, only the terms f1, f2, f3, f4,
f5, f12, f13, f14, f23, and f24 are not negligible and thus the model is given by

ŷ[k] = ĉ + f̂1(u[k − 1]) f̂2(u[k − 2]) + f̂3(u[k − 3]) + f̂4(u[k − 4]) + f̂5(u[k − 5])
+ f̂12(u[k − 1], u[k − 2]) + f̂13(u[k − 1], u[k − 3]) + f̂14(u[k − 1], u[k − 4])
+ f̂23(u[k − 2], u[k − 3]) + f̂24(u[k − 2], u[k − 4]).

Under the samevalidation input, the corresponding y[k] andpredicted ŷ[k]byvarious
methods are shown in Figs. 11, 12, 13 and 14. The corresponding gof’s are given in
Table 5.

The results of the second-, third-, fourth-, fifth-, and sixth-order Volterra series
are also shown in Table5 and Fig. 12, exhibiting a considerable performance dete-
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Fig. 7 Actual y[k] and predicted ŷ[k] by the proposed method with gof = 0.9470 (polynomial
nonlinearity)
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Fig. 8 Actual y[k] and predicted ŷ[k] by an fourth-order Volterra with gof = 0.9563 (polynomial
nonlinearity)



A Data-Driven Basis Function Approach in Nonparametric … 383

0 20 40 60 80 100 120 140 160
−1

−0.5

0

0.5

1

1.5

ac
tu

al
 (s

ol
id

), 
pr

ed
ic

te
d−

po
ly

 2
nd

 o
rd

er
 (d

as
he

d)

time(k)

polynomial nonlinearity

Fig. 9 Actual y[k] and predicted ŷ[k] by a second polynomial with gof = 0.8121 (polynomial
nonlinearity)
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Fig. 10 Actual y[k] and predicted ŷ[k] by one shoot method with gof = 0.6762 (polynomial
nonlinearity)
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Table 4 T i and T i j for exponential nonlinearity
i 1 2 3 4 5 6 7 8
T i 25784 30338 2336 123 8 1 1 1

T i j j
2 3 4 5 6 7 8

i 1 846 65 4 1 1 1 1
2 78 5 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1
5 1 1 1
6 1 1
7 1
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Fig. 11 Actual y[k] and predicted ŷ[k] by the proposed method (exponential nonlinearity)

rioration. This is because a low-order polynomial approximation in u[·] like the
Volterra series is inefficient to model an exponential function. This demonstrates
the advantage of the proposed representation along with structural estimation and
system identification for nonlinear nonparametric system of short-term memory and
low degree of interaction. It is interesting to note that a higher order Volterra does not
necessarily imply a better identification result because variance error also increases
as the order gets high. The gofs of the fixed basis function for the second- and third-
order polynomials are 0.2299 and 0.1659, respectively. Figure13 demonstrates the
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Fig. 12 Actual y[k] and predicted ŷ[k] by a third-order Volterra (exponential nonlinearity)
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Fig. 13 Actual y[k] and predicted ŷ[k] by a third polynomial (exponential nonlinearity)

corresponding y[k] and ŷ[k] for the fixed basis function approach of third order.
Again, the performance of a fixed basis function approach depends on if the chosen
functions resemble the unknown structure or not. The result of the one shoot kernel
is shown in Fig. 14 with gof = 0.1679, a poor performance. The reason is that for
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Fig. 14 Actual y[k] and predicted ŷ[k] by one shoot method (exponential nonlinearity)

Table 5 Goodness-of-fits for the exponential input nonlinearity
proposed 2nd order 3rd order traditional
method fixed basis fixed basis one shoot

gof 0.6855 0.2299 0.1679 0.2722
Volterra 2nd 3rd 4th 5th 6th
(order)
gof -0.3437 -0.7652 -0.6194 -8.6657 -7.5490

a higher dimension n = 8, the bandwidth δ has to be large or there is no data in
the neighborhood that consequently increases the bias. In the simulation, bandwidth
was carefully adjusted to find the best gof which is reported here. It is clear, for
Example3 which is of short-term memory and low-order interaction, the proposed
method outperforms any other method.

9 Discussion

In this section, we provide discussions and try to shed some lights on the proposed
method.

• Orthogonalization and marginal influences: The essential step of the work is an
orthogonalization procedure that allows us to write the output as a summation
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of marginal influences of the input variables. Then, these marginal influences are
estimated by empirical averages weighted by a kernel function. This is related to
the additive or generalized additive systems investigated in the statistics literature
[12], especially discussed in a recent publication [26].

• FIR and iid assumptions: The orthogonalization is achieved in the work by assum-
ing iid inputs and FIR structure of the unknown nonlinear system. The iid assump-
tion removes statistical correlations between input variables and makes orthogo-
nalization easier. The iid condition is however not critical as long as the correlations
between u[k − i]’s and u[k − j]’s are available so they can be canceled out in the
orthogonalization procedure. On the other hand, the FIR assumption on the nonlin-
ear system is critical. Without this assumption, the output y[k] is a function of the
previous outputs y[k − i]’s as well as the input u[k − j]’s which are correlated.
The exact correlation between y[k − i] and u[k − j] relies on the system to be
identified. This makes cancelation of the correlations between the output variables
and between the output and input variables very difficult. We are working along
this direction and some preliminary results have been reported in [4].

• Kernel estimator and the choice of the bandwidth: The kernel estimator (6) is a
smooth version of a conditional mean. The unknown function is estimated by the
empirical mean of the measurements in the neighborhood of the point to be esti-
mated. The size of the neighborhood, referred to as the bandwidth δ, controls the
number of measurements to be used. The idea is to represent the unknown non-
linearities locally. All measurements outside the neighborhood ϕ(k) > δ, are not
used to construct the estimates. The choice of δ balances the trade-off between the
bias and the variance. A large δ implies a large bandwidth interval and accordingly
more data is used that results in a small variance. On the other hand, because more
data points area used even with those not in a close vicinity, the approximation
error gets large, which gives rise to a large bias term. A small δ produces just the
opposite, a large variance and a small bias. Hence, increasing δ tends to reduce the
variance but at the same time increases the bias. The best choice is to balance the
bias and the variance. There is a huge literature on this topic and some guidelines
are available in [12, 22, 26] for the choice of the bandwidth δ. For instance, the
optimal bandwidth can be derived by minimizing the mean square error if the ana-
lytical expression exists. Alternatively, a data-driven bandwidth can be derived by
using the leaving-one-out criterion. For details, see [12] and the references within.

• Recursive algorithms: The kernel estimator proposed in the work can be calculated
recursively when the new data become available. First, let φ̂N+1

0 and φ̂N
0 be the

estimates of φ0 at N + 1 and N , respectively, where the superscripts N + 1 and
N emphasize on the dependence of the data upto N + 1 and N , respectively. It is
easily verified that

φ̂N+1
0 = N

N + 1
φ̂N
0 + 1

N + 1
· y[N + 1].

To calculate φ̂N+1
j (x j ) from φ̂N

j (x j ), j = 1, 2, ..., n, recursively, consider
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1. Collect new data y[N + 1], u[N ] and calculate ϕ j (x j , N + 1) = |u[N + 1 −
j] − x j |.

2. If δ ≤ ϕ j (x j , N + 1), then

wN+1
j (x j , k) =

{
wN

j (x j , k), k = 1, 2, ..., N
0, k = N + 1

3. φ̂N+1
j (x j ) = φ̂N

j (x j ). Reset N + 1 ⇒ N and go back to step 1.
4. If δ > ϕ j (x j , N + 1), let

λ(N + 1) = l jδ − ∑l j

i=1 ϕ j (x j , m j (i))

l jδ − ∑l j

i=1 ϕ j (x j , m j (i)) + δ − ϕ j (x j , N + 1)

and define

wN+1
j (x j , k) =

⎧
⎪⎨

⎪⎩

wN
j (x j , k) · λ(N + 1), k ∈ M j = {m j (1), ..., m j (l j )}

δ−ϕ j (x j ,N+1)

(l j +1)δ−∑l j
i=1 ϕ j (x j ,m j (i))−ϕ j (x j ,N+1)

, k = N + 1

0, k /∈ {N + 1, m j (1), ..., m j (l j )}

Identify N + 1 = m j (l j + 1).
5. φ̂N+1

j (x j ) = φ̂N
j (x j ) · λ(N + 1) + wN+1

j (x j , N + 1)y(N + 1). Reset l j + 1 ⇒
l j , N + 1 ⇒ N and go back to step 1.

Other φ̂ j , j > n, can be similarly calculated recursively.
• Higher factor interactive term systems and computational complexity: This work
focuses on the system upto 2-factor interactive terms. All the results can be
extended to higher factor interactive term systems. We summarize the procedures
for a 3-factor term system.

Step 1: Consider the system (1). Define f j1 j2 j3 which is the normalized f̄ j1 j2 j3 so
that the average is zero with respect to any xi and (xi , x j ).
Step 2: Redefine f̄ j1 j2 by adding the original f̄ j1 j2 to all the 2-factor terms with
index j1 j2 resulting from the normalization of f̄ j1 j2 j3 . Normalize f̄ j1 j2 to have f j1 j2 .
Step 3: Redefine f̄ j by adding the original f̄ j to all the 1-factor terms with the
index j resulting from the previous steps. Normalize f̄ j to have f j . Also, adjust
the constant term c.

Then, the orthogonal functions φ j ’s and their estimates φ̂ j ’s can be similarly
defined. The estimates enjoy the same convergence properties as in the 2-factor
term case.
In theory, the procedure can be extended to any factor term system. However, the
number of terms increases exponentially and so is the computational complexity.
Practically, the method proposed in the work is more efficient for a low-order
factor term system, say 2-factor or 3-factor interactive term systems with a modest
time lag n.
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• Curse of dimensionality: A common feature of most nonlinear identificationmeth-
ods in the literature is to find directly the nonlinearity f representing the input–
output relationship of the system. This amounts to solving a high-dimensional non-
linear identification problemdirectly and is usually difficult if n is not small. One of
the main problems is the curse of dimensionality in nonparametric identification.
To illustrate the situation, let u[·] be uniformly distributed in I = [−0.5, 0.5].
Suppose one wants to estimate f (x1, x2, ..., xn) at a point (x1, x2, ..., xn) ∈ I n .
Since any nonparametric identification scheme is in some form of local smoother
or weighted average based on the measurement data in the neighborhood of
(x1, x2, ..., xn), there must be enough data in the neighborhood to average out
the effects of noise and the uncertainty due to lack of structural information. For
simplicity, suppose the neighborhood is a hyper-box with the side length 0.1.
Then, the volume of I n is 1n = 1 and the volume of the neighborhood is 0.1n . This
implies the probability that a measurement data (u[k − 1], u[k − 2], ..., u[k − n])
is in the neighborhood of (x1, x2, ..., xn) is 0.1n/1 = 0.1n that goes to zero expo-
nentially as the order or dimension n gets larger. Let N be the number of total data
measurements. For a large N , it is likely there are N · 0.1n measurements in the
neighborhood. Unless N is huge, there is not enough data in a neighborhood for
identification purpose even for a modest n.
Now, consider the proposedmethod for a low-order factor termsystem, say for an2-
factor term system.The aimof themethod is not to estimate the high-dimensional f
directly but to estimate the unknown interactive terms f j and f j1 j2 or the orthonor-
mal functions φ j ’s. Moreover, identification of each interactive term is decoupled
with each other. This is very beneficial. For instance, let n = 5. Then, the prob-
lem becomes identification of five 1-dimensional 1-factor terms f j (u[k − j]),
j = 1, 2..., 5, and ten 2-dimensional 2-factor terms f j1 j2(u[k − j1], u[k − j2]),
1 ≤ j1 < j2 ≤ 5. Though the number of identifications is increased, the complex-
ity of identification is reduced drastically. Because of decoupling, the probability
of an u[k − j] in the neighborhood of x j for one-dimensional identification is
0.1/1 = 0.1 and the probability of (u[k − j1], u[k − j2]) in the neighborhood of
(x j1 , x j2) is 0.1

2/1 = 0.12. Suppose the total number of data points is N = 104.
This implies that it is likely there are 103 or 102 measurements in the neighbor-
hood for identification of 1-factor or 2-factor terms, respectively. Recall that if the
five-dimensional f (x1, x2, x3, x4, x5) is identified directly, the probability that a
data vector is in the neighborhood of (x1, x2, x3, x4, x5) is 0.15.With N = 104, the
probability that there is one measurement in a neighborhood is 0.1. That makes
that identification is nearly impossible in the presence of noise. Clearly, the per-
formance of identification of the 1-factor or 2-factor term can be substantially
improved for the same N , compared to the identification of a five-dimensional
problem f . This effectively combats the curse of dimensionality. In a sense, the
approach proposed here is to replace a difficult high-dimensional problem by a
number of less-difficult and manageable low-dimensional problems.

• Combined residual analysis and statistical test: A version of the Box–Pierce test is
developed in the context of nonlinear system identification. The reason behind this
choice is that traditional Box–Pierce tests do not work well if there is a nonlinear
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Table 6 Goodness-of-fit as a function of N and δ

N = 20000 N = 10000 N = 5000

δ = 0.12 0.9280 0.9186 0.9204

δ = 0.1 0.9411 0.9376 0.9062

δ = 0.08 0.9457 0.9174 0.8994

dependence and could givemisleading conclusions [32]. ThemodifiedBox–Pierce
test overcomes this problem. Moreover, any Box–Pierce test assumes that the null
hypothesis is true and then tests based on a measured data set if the null hypothesis
should be accepted with a given probability. It alone can never answer the question
of the second type error as discussed in the work. The contribution of the work is
to deal with this problem by combining the Box–Pierce test with residual analysis.
This reasonably guarantees that the null hypothesis is true before the Box–Pierce
test.
In the Box–Pierce test and the residual analysis, the choices of the level of signif-
icance and other parameters are always tricky and subjective. Whether the level
of significance 0.01 or 0.03 is enough is tightly connected to the intended purpose
of the model. If prediction is the intended purpose, the identified model should
be validated on a fresh data to verify if the identified model fulfills the intended
purpose. It may take several iterations to have some good design parameters for a
particular application.

• Finite data performance: The proposed method is convergent. The convergence
rate is O( 1√

δ2N
) for a system upto 2-factor interactive terms and is O( 1√

δl N
) for

a system upto to l-factor interactive terms. Like most of nonlinear identification
algorithms, the analysis of finite data performance of the proposed method is very
hard to carried analytically. We provide numerical simulations to demonstrate the
finite data performance in terms of robustness of the choiceswith respect to the data
length N , the bandwidth δ, and the order determination. To see the effect of data
length N on the order determination, the same example (23) was simulated under
the same simulation conditions for N = 20000, 10000, and 5000 respectively. The
results are in Table1 and fairly consistent even N experiences a large variation
from 5000 to 20000. To test the effects of the data length N and the bandwidth
δ on the obtained model, we use the goodness-of-fit (24) as an indicator. Table6
shows goodness-of-fit for various N and δ. Again, the identified model, in terms of
prediction error, is robust with respect to variations of design parameters N and δ.

10 Concluding Remarks

In this work, a data-driven orthogonal basis function approach is proposed for
nonlinear system identification. The main advantage is that it eliminates the guess-
ing works when there is a little priori information on the structure of the unknown
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system. Further the data driven basis functions are orthogonal and thus enjoy many
preferable properties. We are working on extending the results presented in the work
to IIR nonlinear systems.

In addition, methods are proposed for order determination and regressor selection.
These topics are generally very hard for nonlinear system identification. Themethods
proposed have potential to be applicable to many nonlinear system identification
schemes and we felt they deserve more studies.

Finally, two structure identification methods under deterministic inputs are pro-
posed to estimate the structure of the system before a full scale system identification
is performed. They can efficiently simplify the procedure of system identification.

Appendix

Proof of Theorem1: The first part is directly from the definition of φi ’s. Also from
the definition, it is easily verified that Eφ j [k] = 0 for j = 1, ..., n. Eφ j [k] = 0,
j = n + 1, ..., M follows from E f j1 j2(u[k − j1], u[k − j2]) = 0. We now show
Eφ j1 [k]φ j2 [k] = 0. For 0 ≤ j1 < j2 ≤ n, Eφ j1 [k]φ j2 [k] = Eφ j1 [k]Eφ j2 [k] = 0
because of independence of u[k − j1] and u[k − j2]. The proofs for other j1 and
j2 follow from the same arguments as

Eφ1[k]φn+1[k] = Eφ1(u[k − 1])φn+1(u[k − 1], u[k − 2])
= E{φ1(u[k − 1])E{φn+1(u[k − 1], u[k − 2]) | u[k − 1]}} = 0.

To show the third part, observe

y[k] = c +
n∑

j=1

f j (u[k − j]) +
∑

1≤ j1< j2≤n

f j1 j2(u[k − j1], u[k − j2]) + v[k],

Ey[k] = c = φ0

E{y[k]|u[k − j] = x j } = c + f j (x j ) = φ0 + φ j (x j ), j = 1, ..., n

E{y[k] | u[k − j1] = x j1 , u[k − j2] = x j2 }
= c + f j1(x j1) + f j2 (x j2 ) + f j1 j2 (x j1 , x j2 )

= φ0 + φ j1(x j1) + φ j2 (x j2 ) + f j1 j2 (x j1 , x j2 ), 1 ≤ j1 < j2 ≤ n

Then, the conclusion follows from the definition of φ j ’s.
Proof of Theorem2: The first part is from Theorem1 and the law of large numbers,

φ̂0 = 1

N

∑
y[k] → Ey[k] = φ0.
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For the second part, from the assumptions δ → 0, δN → ∞ as N → ∞, the number
of samples u[k − j]’s in the interval,

ϕ j (x j , k) = |u[k − j] − x j | ≤ δ

converges to 2ψ(x j )δN → ∞, where the probability density function of the input at
x j , ψ(x j ), is assumed to be positive, or the number of elements l j → 2ψ(x j )δN →
∞. Now,

|φ̂ j (x j ) − φ j (x j )| = |
N∑

k=1

w j (x j , k)y[k] − φ j (x j ) − φ̂0|

= |
N∑

k=1

w j (x j , k)(φ0 − φ̂0) +
N∑

k=1

w j (x j , k)(φ j (u[k − j]) − φ j (x j ))

+
n∑

i=1,i = j

N∑

k=1

w j (x j , k)φi (u[k − i]) +
M∑

j=n+1

N∑

k=1

w j (x j , k)φ j [k] +
N∑

k=1

w j (x j , k)v[k]|

= |
l j∑

l=1

w j (x j , m j (l))(φ0 − φ̂0) +
l j∑

l=1

w j (x j , m j (l))(φ j (u[m j (l) − j]) − φ j (x j ))

+
n∑

i=1,i = j

l j∑

l=1

w j (x j , m j (l))φi (u[m j (l) − i]) +
M∑

j=n+1

l j∑

l=1

w j (x j , m j (l))φ j [m j (l)]+

l j∑

l=1

w j (x j , m j (l))v[m j (l)]| ≤ |
l j∑

l=1

w j (x j , m j (l))(φ0 − φ̂0)|

+ |
l j∑

l=1

|w j (x j , m j (l))(φ j (u[m j (l) − j]) − φ j (x j ))|

+ |
n∑

i=1,i = j

l j∑

l=1

w j (x j , m j (l))φi (u[m j (l) − i])|

+ |
M∑

j=n+1

l j∑

l=1

w j (x j , m j (l))φ j [m j (l)]| + |
l j∑

l=1

w j (x j , m j (l))v[m j (l)]|

With L being the Lipschitz constant and from the orthogonal properties of φ j ,

l j → ∞, w j (x j , m j (l)) ≥ 0 and
∑l j

l=1 w j (x j , m j (l)) = 1,
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l j∑

l=1

w j (x j , m j (l))(φ0 − φ̂0) = φ0 − φ̂0,

|
l j∑

l=1

|w j (x j , m j (l))(φ j (u[m j (l) − j]) − φ j (x j ))| ≤ δL ,

|
n∑

i=1,i = j

l j∑

l=1

w j (x j , m j (l))φi (u[m j (l) − i])|2

→ |
n∑

i=1,i = j

E{φi (u[k − i]) | u[k − j] = x j }|2 + O(
1

δN
),

|
M∑

j=n+1

l j∑

l=1

w j (x j , m j (l))φ j [m j (l)]|2

→ |
M∑

j=n+1

E{φ j [k] | u[k − j] = x j }|2 + O(
1

δN
),

|
l j∑

l=1

w j (x j , m j (l))v[m j (l)]|2 → |Ev[k]|2 + O(
1

N
).

Therefore,

|φ̂ j (x j ) − φ j (x j )| → |φ0 − φ̂0| + δL + O(
1√
δN

) → 0, j = 1, ..., n

This completes the proof of the second part. The proofs of the third part are similar.
The only difference is that the convergence rate is O( 1√

δ2N
) as N → ∞.

Proof of Theorem3: It is easily verified that

∫ ∞

∞
|K (x)|dx < ∞,

∫ ∞

−∞
|
∫ ∞

−∞
K (x)e− jωx dx |dω < ∞.

The rest part of the proof follows directly from Lemma 2 of [19].
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