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Preface

This book on Uncertainty in Complex Networked Systems is a collection of chapters
compiled in memory of Roberto Tempo, who was a member of the Editorial
Advisory Board of these Series until his untimely death on January 14, 2017,
during a skiing excursion at the Alps near his home town in Northwestern Italy. The
volume consists of 17 chapters written by world experts on uncertainty in systems,
robustness, networked and network systems, social networks, distributed and ran-
domized algorithms, and multi-agent systems—topical areas Roberto Tempo has
contributed to profusely during his prolific research career. A salient common
feature of all the chapters is that, besides they all addressing the general broad field
of complex systems, networks, and uncertainty, at least one author on each chapter
was a research collaborator of Dr. Tempo.

Before describing briefly the contents of the chapters comprising this volume, I
will provide a brief account of Roberto Tempo’s life story. More details can be
found in the obituary that appeared in volume 78, pages 341–342, of the IFAC
journal Automatica in April 2017. He was the Editor-in-Chief of Automatica at the
time of his death.

Roberto Tempo was born in Cuorgnè, Italy, in 1956. In 1980, he graduated in
Electrical Engineering from Politecnico di Torino, Italy. After a period spent at
Politecnico di Torino, he joined the National Research Council of Italy (CNR) at
the research institute IEIIT, Torino, where he had been a Director of Research of
Systems and Computer Engineering since 1991. He held visiting and research
positions at Tsinghua University and the Chinese Academy of Sciences in Beijing,
Kyoto University, The University of Tokyo, University of Illinois at Urbana-
Champaign, German Aerospace Research Organization in Oberpfaffenhofen, and
Columbia University in New York. He was elected a Fellow of the IEEE (2000), a
Distinguished Member of the IEEE Control Systems Society (2005), a Fellow of
IFAC (2007), and a Corresponding Member of the Academy of Sciences, Institute
of Bologna, Italy, Class Engineering Sciences (2011). He served as President of the
IEEE Control Systems Society (2010), as General Co-Chair for the IEEE
Conference on Decision and Control, Florence, Italy (2013), as Program Chair
of the first joint IEEE Conference on Decision and Control and European Control
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Conference, Seville, Spain (2005), as Editor for Technical Notes and
Correspondence of the IEEE Transactions on Automatic Control (2005–2009), and
as a Senior Editor of the same journal (2011–2014). He had a long association with
Automatica, starting in 1992 as an Associate Editor, then (from 1996) as the Editor
of the subject area “System and Control Theory”, and for 11 years as Deputy
Editor-in-Chief, before becoming Editor-in-Chief in 2015.

Roberto Tempo’s research activities were initially focused on the analysis and
design of complex systems subject to uncertainty. He pioneered the development of
randomized algorithms for robust control, generating in this topical area
trend-setting papers which appeared in international journals, books, and confer-
ences, culminating in the publication, with co-authors, of the monograph
Randomized Algorithms for Analysis and Control of Uncertain Systems, Springer,
London, which appeared in two editions in 2005 and 2013, and became a standard
reference in the field. His research then evolved toward the analysis and control of
complex networked uncertain systems. In this area, he contributed to a number of
important areas of application, among which the most relevant and prominent were
his work on algorithms for PageRank computation in the Google search engine, and
distributed localization of wireless sensor networks. More recently, he had focused
his research on algorithmic approaches toward understanding how individuals in a
group influence each other to reach a consensus—an activity that culminated in the
publication of a Science article. Over the years, several of his publications received
paper awards, including the “IEEE Control Systems Magazine Outstanding Paper
Award” for the 2014 paper “The PageRank Problem, Multi-agent Consensus and
Web Aggregation: A Systems and Control Viewpoint”, and an “Automatica
Outstanding Paper Prize Award” for the 1990 paper “The Robust Root Locus”.

Now, coming back to the contents of this volume, the 17 chapters comprising this
volume have been organized into three parts: Robustness (Part I), Randomization
and Probabilistic Methods (Part II), and Distributed Systems and Algorithms
(Part III).

Part I is comprised of four chapters. The first chapter, titled “Uncertain Systems:
Time-Varying Versus Time-Invariant Uncertainties” by F. Blanchini and
P. Colaneri, provides a survey of several decades of robustness investigation for
uncertain systems with a critical view. The second chapter, titled “Cooperative
Resilient Estimation of Uncertain Systems Subjected to a Biasing Interference” by
V. Ugrinovskii, surveys some recent results on the analysis and design of networks
of robust filters which cooperate to produce high fidelity estimates for uncertain
plants, with application to the problem of detecting and neutralizing biasing attacks
on distributed observer networks. The third chapter, titled “Robust Static Output
Feedback Design with Deterministic and Probabilistic Certificates” by D. Arzelier,
F. Dabbene, S. Formentin, D. Peaucelle, and L. Zaccarian, addresses, using a new
bilinear matrix inequality (BMI) formulation, the problem of static output design for
uncertain linear systems by iterative optimization procedures with either determin-
istic or probabilistic viewpoints, exploiting the fact that Lyapunov certificates are
separated from the control gain design variables. The fourth, and last, chapter of this
part, titled “Robust Control Against Uncertainty Quartet: A Polynomial Approach”
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by D. Zhao, C. Chen, S. Z. Khong, and L. Qiu, introduces a unifying framework to
address different types of uncertainty in systems modeling and control, the uncer-
tainty quartet, which combines the additive, multiplicative, subtractive and divisive
uncertainties, and in this framework it develops an elementary robust control theory,
involving mostly polynomial manipulations.

Part II of the volume is comprised of six chapters. The first one, titled
“Randomization in Robustness, Estimation, and Optimization” by B. Polyak and
P. Shcherbakov, addresses the question of when a random choice (in various
decision-making scenarios, such as optimization) would be better than a determin-
istic one, and provides a survey of some recent results in this domain. The second
one, titled “Stabilization of Deterministic Control Systems Under Random
Sampling: Overview and Recent Developments” by A. Tanwani, D. Chatterjee,
and D. Liberzon, addresses the problem of stabilizing continuous-time deterministic
control systems via a sample-and-hold scheme under random sampling using the
framework of piecewise deterministic Markov processes. The third one, titled
“Robust Design Through Probabilistic Maximization” by T. Alamo, J. M. Manzano,
and E. F. Camacho, studies randomized maximization methods for robust design
under uncertainty, providing in this context concentration inequalities that lead to
probabilistic guarantees on the obtained design parameters. The fourth one, titled
“Compressive Sensing and Algebraic Coding: Connections and Challenges” by
M. Vidyasagar and M. Lotfi, provides an overview of known results on compressive
sensing using both probabilistic and deterministic approaches, followed by some
new constructions of sparse binary measurement matrices, based on LDPC (low
density parity check) codes, and a description of the authors’ selected recent results
that lead to the fastest available algorithms for compressive sensing in specific
situations. The fifth chapter of this part, titled “Stochastic Optimization for Energy
Storage Allocation in Smart Grids in the Presence of Uncertainty” by M. Bucciarelli,
S. Paoletti, and A. Vicino, deals with the application area of smart grids, focusing on
the problem of optimal siting and sizing of energy storage systems in a distribution
network. The sixth, and last, one of this part, titled “A Data-Driven Basis Function
Approach in Nonparametric Nonlinear System Identification” by E.-W. Bai and
C. Cheng, proposes a data driven orthogonal basis function approach for
non-parametric finite impulse response (FIR) nonlinear system identification, where
the basis functions are not fixed a priori and match the structure of the unknown
system automatically.

The last part of the volume, Part III, is comprised of seven chapters. The first
one, titled “Perspectives on Network Systems and Mathematical Sociology” by
F. Bullo and N. E. Friedkin, provides an overview of a large group of literature on
the mathematics of network systems and its application to the study of dynamical
models for the evolution of opinions and influence systems, presenting both
mathematical results and empirical findings. The second one, titled “Distributed
Randomized Algorithms for PageRank Computation: Recent Advances” by H. Ishii
and A. Suzuki, provides an overview of recent studies on distributed algorithms for
PageRank computation that have been developed in the systems control area, and
following that introduces a new class of distributed algorithms based on a simple
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but novel interpretation, further demonstrating its advantages over existing ones via
analysis and numerical simulations. The third one, titled “Distributed Optimization
in Multi-agent Networks Using One-bit of Relative State Information” by J. Zhang
and K. You, is concerned with the design of distributed discrete-time algorithms to
cooperatively solve an additive cost optimization problem in multiagent networks,
with the striking feature that the algorithms use only the sign of relative state
information between neighbors. The fourth one, titled “Analysis of a Distributed
Consensus Based Economic Dispatch Algorithm” by R. Mudumbai, S. Dasgupta,
and M. M. M. U. Rahman, presents a consensus-based approach to the optimal
economic dispatch of power generators in a smart microgrid, where the generators
independently adjust their power-frequency primary controller setpoints using three
pieces of information as delineated in the chapter. The fifth one, titled “Impact of
Quantized Inter-agent Communications on Game-Theoretic and Distributed
Optimization Algorithms” by E. Nekouei, T. Alpcan, and R. J. Evans, addresses
the issue of handling the impact of the uncertainty that is generated by quantized
inter-agent communications in game-theoretic and distributed optimization algo-
rithms, and uses the information-theoretic notion of differential entropy power to
establish universal bounds on the maximum exponential convergence rates of
primal-dual and gradient-based Nash seeking algorithms under quantized com-
munications. The sixth one, titled “Fault Diagnosis for Uncertain Networked
Systems” by F. Boem, C. Keliris, T. Parisini, and M. M. Polycarpou, provides an
overview of results on a model-based distributed fault diagnosis approach to
uncertain nonlinear large-scale networked systems to specifically address the
presence of measurement noise, modeling uncertainty, and the presence of delays
and packet dropouts when viewed as a networked system. The seventh, and last,
one, titled “Networked Quantum Systems” by I. R. Petersen, considers the mod-
elling and realization of quantum networks from a control theory point of view,
focusing particularly on quantum linear systems.

I thank all authors referenced above for their contributions to this book, where
each chapter has maintained a wonderful balance between being expository and
providing new results and identifying fruitful future directions in research—all on
topics that were dear to Roberto. I am confident that the book will prove to be a
high-demand reference volume to a broad community of researchers interested in
uncertainty, complexity, robustness, optimization, algorithms, and networked sys-
tems, for many years to come—as a real tribute to the memory of Roberto Tempo.

Urbana, USA Tamer Başar
September 2018
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Uncertain Systems: Time-Varying Versus
Time-Invariant Uncertainties

Franco Blanchini and Patrizio Colaneri

Abstract In this chapter, we survey a few decades of robustness investigation for
uncertain systems. We aim at embracing most of the robustness literature, starting
from the Lyapunov approach of the ’70s, which involved both quadratic and non-
quadratic Lyapunov functions, until recent developments on polynomial techniques
for robustness. We consider both time-varying and time-invariant uncertainties, in
an inclusive way: important techniques are presented, such as the Lur’e systems
framework, qualitative feedback theory, parametric robustness analysis, linearmatrix
inequalities, parameter-dependent Lyapunov functions, H-infinity, small-gain theo-
rems, non-quadratic Lyapunov functions and Lyapunov–Metzler inequalities. The
chapter proposes a critical view on all these techniques, highlighting both advantages
and limitations. Illustrative examples and applications are proposed. Technicalities
are kept to the least possible level to render the chapter accessible to a broad, possibly
interdisciplinary, audience. The chapter is written with a historic view. Nonetheless,
future perspectives are emphasized, and several open problems and future research
directions are pointed out. The chapter is inspired by the spirit, attitude and fairness
of our great friend Roberto Tempo and is written following his invaluable teaching.

F. Blanchini
Dipartimento di Scienze Mathematiche, Informatiche e Fisiche, Università di Udine,
33100 Udine, Italy
e-mail: blanchini@uniud.it

P. Colaneri (B)
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4 F. Blanchini and P. Colaneri

1 Introduction

In this chapter, we propose a survey of several fundamental concepts in robustness
theory for control systems. Although it is impossible to be exhaustive, we wish to
propose to the reader a brief journey in the different approaches coping with the
analysis and control design of uncertain systems.

Quite unusually, we do not follow a specific philosophy, but our main effort is
to present several approaches, ranging from the classical Lyapunov methods for
robustness [18, 48, 101], to the frequency-domain approach [105, 121] and the
parametric approach [7]. The main conclusion we draw is that there is no a best one,
but all these theories reveal strength as well as weakness, depending on the type of
model we are considering, in particular linear or nonlinear, on the type of uncertainty,
constant or time-varying, and on the type of goal, stability or optimality.

The chapter has been thought to be a guide for further readings, so not too many
details are reported. The idea is to give the main flavour of a field that is so massive
in its scientific results that it would occupy the space of an encyclopedia rather than
a book. For more formal results, proofs and examples, the reader is referred to the
mentioned literature,which is bynomeans complete, andwe sincerely apologizewith
many Authors, since we have been forced to limit the bibliography to a reasonable
extent.

The reason why the robust control area has been, is and will be so prolific is
twofold. First of all, robustness in control theory is a must. No reasonably designed
control system can fail to be robust. Second, no other area in science has been so
long concerned with robustness. It is absolutely true that nowadays, ‘robustness’ is
a common keyword in several disciplines, including (beside control and dynamical
systems) optimization, computer science, systems biology, game theory, manage-
ment statistics, but ‘we control theoreticians’ still have the required expertise to be
leaders in the topic. This means that many problems coming from other fields have
found in our conferences and journals the proper venues to be fruitfully discussed.

This survey chapter follows the survey paper [98], co-authored byRoberto Tempo,
recently passed away. We propose it to the community in memory of our great friend
and scientist, having in mind his attitude in communicating as well in listening. So
any comments or concerns regarding the contents of the chapter will be gratefully
appreciated and taken into account in future work.

1.1 A General View of Robustness

The term robustness is deeply known in control theory since any real system is
affected by uncertainties. Uncertainties may be of different nature and they can be
essentially divided into the following categories:

• Unpredictable events.
• Unmodelled dynamics.
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• Unavailable data.

Unpredictable events are typically due to factors that perturb the system and depend
on the external environment (e.g. the air turbulence for an aircraft). Unmodelled
dynamics is due to the unavoidable simplifications that are needed to represent a
system with a tractable model (for instance, if we consider the air pressure inside a
plenum in dynamic conditions, we often neglect the fact that the pressure is not in
general uniform in space). Unavailable data is a very frequent problem in practice
since in many cases some quantities are known only when the system operates (e.g.
how much weight will be carried by a lift?).

Therefore, during the design stage, we cannot consider a single system but a
family of systems. Formally the concept of robustness can be stated as follows.

Definition 1 ApropertyP is said to be robust for the familyF of dynamic systems
if any member of F satisfies P .

The familyF and the propertyP must be properly specified. For instance, ifP
is ‘stability’ andF is a family of systems with uncertain parameters ranging in a set,
we have to specify if these parameters are constant or time-varying. In the context of
robustness the family F represents the uncertainty in the knowledge of the system.
There are basically two categories of uncertainties. Precisely:

Parametric uncertainties: dealing with a class of models depending upon param-
eters which are unknown; in this case the typical available information is given by
bounds on these parameters.
Non-parametric uncertainties: dealing with systems in which some of the com-
ponents are not modelled; the typical available information is provided in terms
of the input–output-induced norm of some operator.

1.2 A Brief History

Design for uncertain systems is a very wide topic in control theory, and robust
control has always been a main paradigm in the analysis and design of a control
system. The main motivation that spurred the research activity was the study of
performances over finite and bounded variation of parameters, whereas in classical
multivariable control the designer was only able to ensure robustness at the face of
small parameter variations. Indeed, quantitative opposite to qualitative robustness is
a watershed between classical and modern design methodologies.

A mainstream of research for quantitative robustness is the so-called H∞ control
theory, which dominated the scenario starting from the ’80s, being able to bridge
classical frequency-domain and state-space techniques in an elegant unified mathe-
matical framework. This is certainly one of the most interesting historical merits of
the H∞ approach, whose versatile nature permitted to incorporate in the same math-
ematical framework historically different problems such as filtering, factorization,
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interpolation and conjugation. The idea underlying the H∞ theory is rather sim-
ple: minimize a worst-case measure of the input–output map between disturbances
and performance variables. When reduced to robustness of stability, this worst-case
paradigm leads to the celebrated small-gain theorem due to George Zames [118],
who was also the first who proposed an input–output setting to the theory in the pio-
neering papers [117, 119]. At those times, twomain technical paths were undertaken:
the Nevanlinna–Pick interpolation technique [47, 89, 99] and the AAK method [1],
mainly based on the Nehari extension problem [60] and on the unitary dilation tech-
nique in operator theory [42]. The interpolation theory was originally part of the
circuit theory [67, 116], and only in later years became the object of investigation by
control theorists, for the solution of the disturbance reduction problem [31] and the
robust stabilization problem [61, 77]. The state-space counterpart of the interpolation
theory was worked-out in [78] via the notion of J-lossless conjugation, where the
role of the Pick matrix was translated in terms of the solution of a Riccati equation.
Successive developments of the H∞ control theory were in the frameworks of the so-
called J-spectral factorization approach [63] and chain-scattering representation of
the plant [115]. Also the almost disturbance decoupling problem [78], which has an
extensive literature behind it and is an important problem per se, was cast in the gen-
eral H∞ formulation. In the late 1980s the time became mature for the development
of a state-space technique for the solution of the general multi-input multi-output
H∞ control problem [44]. The main drawback was that it was required to compute
the solution of a high-order Riccati equation. This difficulty was removed later, and
this was due to many contributors [45]. In [83], a comprehensive picture is traced
and a complete solution is given of the robust and perfect tracking problem. The
connections between differential games and H∞ theory can be found in the book by
Basar and Bernhard [11]. The robust stabilization problem via quadratic functions
has been deeply investigated by Barmish [6], Khargonekar et al. [75] and Haddad
and Bernstein [66]. The design of H2 filters in the presence of uncertainties has been
studied by Petersen and McFarlane [97] and Bolzern et al. [27], whereas the same
problem in the H∞ context was tackled by De Souza et al. [43] and Fu et al. [49]. The
paper by Safonov and Limebeer [104] provides the so-called loop shifting approach
for the solution of the H∞ problem for plants with general structure. The H∞ control
problem was dealt with in many books after the monograph of Francis [46], see, e.g.
[33, 39, 62, 109, 110], where the so-called singular problem is dealt with.

Hereto neglected approaches which rely on the gap metric and the polyno-
mial framework are exploited in the paper by Georgiou and Smith [50] and by
Kwakernaak [79].

A success of H∞ control theory is in the easy way the various specifications on the
closed-loop system that can be incorporated through appropriate shaping functions
which reflect the desired dynamic behaviour [84]. Notably, a posteriori it was seen
that, in the state-space context, the theory has some structural similarities with the
classical LQG theory, the latter being recovered in the case where a design param-
eter (the so-called attenuation level) goes to infinity. It is a fact that the arguments
underlying H∞ control and related problems constitute a solid scientific background
for the new researchers entering the field. We can count hundreds of papers, many
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books and regular university courses at all levels in this subject. Interestingly, the
success of H∞ control in a number of important applications contributes to reduce
the historical gap between theory and application, despite the significant inherent
mathematical sophistication required to understand the underlying theory.

An important aspect concerns the solutionof robust problemsvia convexoptimiza-
tion. The various aspects of convex analysis, from the basic facts to most important
and deep results, are included in the seminal book by Rockafellar [103]. The book
[29] exhaustively treats the most important topics related to systems and control the-
ory in the framework of linear matrix inequalities so that the problems to be handled
are convex. In addition, this book is also an important source of references to those
interested in a deeper view of optimal control design using convex programming
techniques. Important papers for design problems of uncertain systems are [13, 57,
74, 91, 94] with connections to the results of [12] dealing with Riccati equation
approach and Nash game for mixed H2–H∞ problems [82]. The importance of con-
vex optimization for design of uncertain systems via linear matrix inequalities (LMI)
and sum of squares (SOS) programming is difficult to underestimate, see the impor-
tant monograph by G. Chesi [34] and the Ph.D. thesis of P. Parrillo [90]. In recent
years, C. Scherer gave a push forward to the use of convex tools for robust design
problems. In the paper [107], the classical μ-synthesis tools are generalized to the
integral quadratic constraint (IQC) framework, enabling to perform robust controller
synthesis for a significantly large class of uncertainties, like sector-bounded and
slope restricted nonlinearities, time-varying parametric uncertainties and uncertain
time-varying time delays, both with bounds on the rate-of-variation.

Lyapunov approach to robustness has played a major role. It started with the sem-
inal work of the late ’70s [65, 69, 80]. It was initially shown to be effective for some
classes of systems, in particular the mechanical ones satisfying the so-called match-
ing conditions. Later on, the investigation of quadratic stability [5, 9] of uncertain
systems became a popular subject of research. The concept of quadratic stability had
intense years of considerations as long as its deep relationship with H∞ theory was
discovered [75]. Subsequently, the latter was substantially preferred to the classical
theory based on Lyapunov quadratic functions. Quadratic Lyapunov functions are
known to be conservative. In simple words, there exist Lyapunov stable uncertain
systems for which no quadratic functions can be found. This was quite clear in both
the Russian literature [85–87] and the western literature [30]. Conversely, there are
other classes, for instance, the polyhedral Lyapunov functions, which provide nec-
essary and sufficient conditions for stability [85] and stabilizability [15] of uncertain
linear systems.

Concerning stability by means of linear state-feedback control, the paper of
Barmish [5] is important since; for the first time, the author proposes an effective
and simple way to handle uncertainties acting on both the state and input system
matrices. The notion of guaranteed cost has been introduced by Chang and Peng in
[32] related to a simple LQ problem. The main idea was to get an (nonlinear) upper
bound to the solution of the associated Riccati equation. They have been solved so
as to cope with parameter uncertainties. Two of the most important classes of uncer-
tainty have been considered and compared, namely, polyhedral convex bounded and
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norm bounded uncertainty. For the first type, results have been reported in [92, 120].
With this last paper, the reader can go deeper into the comparison of these two types
of parameter uncertainty models just mentioned. H2 and H∞ guaranteed cost control
problems have been introduced in [58, 93], respectively. The stability and guaranteed
cost control of dynamic linear systems subject to actuators failure has been analysed
in [54]. Once again, the convexity plays a central role, and it is possible to verify that
the uncertainty description by means of a convex domain leads in many instances to
better results. For nonlinear uncertainties, we will address the so-called Persidiskii
design, based on papers [51, 53, 73]. The former paper also provides many other
and more general results and is an excellent reference on this topic. Another con-
trol design procedure is called Lur’e design, which is based on the classical results
reported in the important book [114], where the notions of passivity and strictly
positive real transfer functions are addressed in a general and complete setting.

Parametric approach to robustness is also a traditional topic [70, 71]. Basic con-
cepts such as the frequency analysis based on value set were well established when,
suddenly, the parametric approach in robustness had a scientific explosion with the
famous Kharitonov theorem [76]. Subsequently, the edge theorem [4] and extensions
of traditional tools like the root-locus approach [8], reinforced the attractiveness of
the subject. For several years, it was among the most favourite lines of research in
the control community. We refer to the book [7] and the tutorial manuscript [112] for
references. Recently, the research activity has been diverted to a stochastic approach
to deal with uncertain systems and optimization problems. The so-called random-
ized approach has its seeds in the monograph [113], where Roberto Tempo and
co-authors lay the foundations of probabilistic methods in the analysis and design
of systems affected by deterministic and stochastic uncertainties. Although the para-
metric approach is today considered mature enough, still it has several potential
interesting applications.

2 Examples and Motivations

In this section, we discuss several examples of different nature, tomotivate the theory.

2.1 Magnetic Levitation System

Consider the magnetic levitator system depicted in Fig. 1. A commonly accepted
model for this system is

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t)

ẋ2(t) = g − k
m

x23 (t)
x21 (t)

ẋ3(t) = − R
L x3(t) + 1

L u(t)
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Fig. 1 Magnetic levitator

where x1 is the distance of the sphere from the magnet (oriented downwards), x2 is
its speed and x3 is the current in the coil. The control input u is the voltage supplied
by an amplifier. The following constants are involved: g is the gravity, R is the coil
resistance, L is the inductance,m is the ball mass and k is the levitator constant. Note
that the electromagnetic force is assumed to obey the relation

fEM = k
x23
x21

which is a rough approximation of the true situation.
Denoting by x̄1 = ξ the desired equilibrium value of the position, the equilibrium

value of the current is x̄3 = √
mg/kξ and the equilibrium value of the input voltage

is ū = R
√
mg/kξ . The equilibrium speed is clearly x̄2 = 0. The linearized system

has equations

⎡

⎣
ż1(t)
ż2(t)
ż3(t)

⎤

⎦ =
⎡

⎢
⎣

0 1 0

2 k
m

x̄23
x̄31

0 −2 k
m

x̄3
x̄21

0 0 − R
L

⎤

⎥
⎦

⎡

⎣
z1(t)
z2(t)
z3(t)

⎤

⎦+
⎡

⎣
0
0
1
L

⎤

⎦ v(t) y = [1 0 0
]

⎡

⎣
z1(t)
z2(t)
z3(t)

⎤

⎦

where z is the translated state variable vector. The transfer function of this system is
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F(s) = −c

(s2 − a)(s + b)

where

a = 2
k

m

x̄23
x̄31

, b = R

L
, c = 2

k

m

x̄3
x̄21

1

L

Now the issue is that these parameters are highly uncertain. The essential reasons
are that:

• the expression adopted for fEM is approximated;
• k is roughly known even at the equilibrium;
• there is a strong dependence upon the desired position ξ ;
• the resistance (affecting b) depends on the temperature.

By means of experiments, performed in the Dynamic System Laboratory in Udine,
it has been seen that the range of uncertainty for the parameters are

a = 1400 ± 400, b = 350 ± 10, c = 1500 ± 500

If we ignore the uncertainties and we consider the nominal values a = 1400,
b = 350 and c = 1500, then the following compensator

v(s) = G(s)y(s)

with

G(s) = κ
s + β

s + α

and κ = 3000, α = 50, β = 5 stabilizes the system. Now the question is

• is stability preserved for all possible parameter values?

For the moment we just observe that the parameters can be regarded as uncertain but
constant (once the equilibrium value has been fixed). Note also that the systemworks
properly also for slow variations of the parameters and therefore the state remains
close to the nominal point. It is legitimate to consider this as an uncertain system
with constant parameters.

2.2 Inverted Pendulum

Consider the cart pendulum system schematically illustrated in Fig. 2. Denoting by
y the cart position and θ the pendulum angle, for small values of the angle, the
equations are
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Fig. 2 Cart pendulum

uy

θ

Mÿ(t) = −α ẏ(t) + u(t)

ml θ̈ (t) = mgθ(t) + mÿ(t)

where M is the cart mass, m is the pendulum top mass (the pole mass is negligible),
g is the gravity, l is the length of the pendulum, and u is the applied force. The
parameterα is, in principle, just a friction coefficient. The equations are valid for small
angles which allow for the approximations sin(θ) ≈ θ and cos(θ) ≈ 1. Moreover,
the considered experimental set-up is such that the cart mass is much bigger than the
mass on the pole top and this is why no pole effects are in the equation of the cart.
We now manipulate the second equation replacing the term Mÿ(t) from the first as
follows:

ml θ̈ (t) = mgθ(t) + m

M
Mÿ(t) = mgθ(t) − m

M
α(t)ẏ(t) + m

M
u(t)

Let β = 1
Ml , γ = g

l and δ = 1
M . Further let x1 = θ , x2 = θ̇ , x3 = y, x4 = ẏ, to get

⎡

⎢
⎢
⎣

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 1 0 0
γ 0 0 −βα(t)
0 0 0 1
0 0 0 −δα(t)

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1(t)
x2(t)
x3(t)
x4(t)

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

0
β

0
δ

⎤

⎥
⎥
⎦ u(t)

Nowwe have to face the main problem: the friction α. The friction varies continually
passing from the static to dynamic regime and it abruptly changes its value. There
are many investigations of this phenomenon with many approximated models. Here,
we assume that

α− ≤ α(t) ≤ α+

for some given bounds 0 < α− < α+, and we assume that α(t) can have any func-
tional dependence on t that we ignore. Considering α uncertain but constant would
be a major mistake, because the switch static/dynamic friction occurs close to the
equilibrium. Note also that it is virtually impossible to measure the value of α(t)
online. So a scheduling procedure for control design would be infeasible.
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Fig. 3 Flexible beam
y

u

2.3 Flexible Systems with Parasitic Dynamics

Consider the problem of controlling a flexible beam such as that illustrated in Fig. 3.
A torque u is applied to the flywheel, and the problem is to control the angle of the
top of the beam. In principle this system is infinite-dimensional. Its transfer function
would be of the form

y(s)

u(s)
=

∞∑

k=0

Qk

s2 + 2ξks + (ξ 2
k + ω2

k )

achieved by considering the contribution of all flexible modes. Considering this
model would be most impractical. The typical realistic approximation is to consider
a finite number of modes, say N . The function is then written in the form

y(s)

u(s)
=

N∑

k=0

Qk

s2 + 2ξks + (ξ 2
k + ω2

k )
+ ΔN (s) = CN (s I − AN )−1BN + ΔN (s)

where (AN , BN ,CN ), is a finite-dimensional realization of order n = 2N andΔN (s)
the frequency-dependent approximation. This choice is motivated also by the fact
that the low frequency modes are typically faithfully represented, while the high
frequency ones are not. Moreover, high-order nominal models lead to high-order
nominal compensators.

Now the issue is to achieve bounds forΔN (s). This is typically done by assuming
a bound of the form

|ΔN ( jω)| ≤ φ(ω)

on the frequency response magnitude, determined by means of experimental data.
This is a dynamic uncertainty, accounting for the unmodelled system dynamics. For
instance, retaining two modes only, we have the nominal transfer function

F(s) = Q0

s2
+ Q1

s2 + 2ξ1s + (ξ 2
1 + ω2

1)

(we assume that the shaft friction is negligible). Then the nominal model would be
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Fig. 4 Control diagram

A B C

Δ

+

yu
comp

z

⎡

⎢
⎢
⎣

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 0 0
0 0 −ξ1 ω1

0 0 −ω1 −ξ1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1(t)
x2(t)
x3(t)
x4(t)

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

0
1
0
1

⎤

⎥
⎥
⎦ u(t)

and

y(t) =
[
Q0 0 Q1

ω1
0
]

⎡

⎢
⎢
⎣

x1(t)
x2(t)
x3(t)
x4(t)

⎤

⎥
⎥
⎦+ Δ ◦ u

This model can then be used for control synthesis. If we adopt a controller based
on LQG or H∞ theories, we end up with a fourth-order compensator. The compen-
sator must be designed taking into account the presence of Δ. The overall paradigm
corresponds to the diagram in Fig. 4.

In designing the compensator, based on the nominal model, we must make sure
that the control input action is not too strong, because this could potentially excite
the neglected dynamics Δ, causing instability.

If we consider the nominal part only (i.e. Δ = 0) the input output relation from z
to u is

z(s) = K (s)

1 − K (s)G(s)
u(s) = V (s)u(s)

whereG(s) = C(s I − A)−1B and K (s) are the plant and compensator transfer func-
tions. The presence of Δ implies that this transfer function is actually in a loop with

u(s) = Δ(s)z(s)

Since Δ is assumed unknown, we cannot design this loop. Only a bound of the form
‖Δ‖ ≤ δ is reasonably available. A robust strategy can be found by keeping the gain
of the transfer function V small enough, precisely ‖V ‖δ < 1, in such a way that this
second loop does not destroy stability. This is the small-gain principle which will be
discussed in detail later on.
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2.4 Robust Control of an Engine Test Bench

The engine test bench system is illustrated in Fig. 5. There are important components:

• Dynamometer.
• Connection shaft.
• Combustion engine.

The task of the test bench control problem is to stabilize the engine torque and
the engine speed. Considering the torque of the combustion engine and the air gap
torque of the dynamometer as the inputs to the mechanical part of the engine test
bench system, the overall system can be described as a two-mass oscillator.

Δϕ̇ = ωE − ωD

ω̇E = 1

θE
(TE − cΔϕ − d (ωE − ωD))

ω̇D = 1

θD
(cΔϕ + d (ωE − ωD) − TDSet )

where θE is the inertia of the combustion engine, θD the inertia of the dynamometer,
ωE and ωD are the engine and the dynamometer speed, c is the spring constant and
d the damping constant. TE and TDSet are the torque of the combustion engine and
the air gap torque of the dynamometer, respectively.

For most engine test benches the dynamometer is a very fast induction machine
with a subordinate air gap torque control loop. Since the dynamics of the subordinate
air gap torque control are very fast, it is possible to neglect these dynamics and to
consider the air gap torque as an input to the system TDSet = TD .

Fig. 5 Engine test bench system
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Fig. 6 Engine test bench system

The most critical part of the system is the engine behaviour, for which only a
rough system description is possible, including uncertainties.

The input of the combustion engine is the accelerator pedal signal α, and the
interesting output for control purposes is the engine torque. This engine torque can
be split into two parts: themean value engine torque and the oscillating torque caused
by the combustion oscillations. The oscillating torque is in a frequency range where
it is sufficiently damped by the test bench system, and therefore, only the mean
value torque is considered. The system structure is illustrated in Fig. 6. Following
this structure, the engine model consists of a static nonlinear map and a dynamical
system which is also nonlinear. The dynamical system is restricted to be a first-order
system. Hence, the dynamical part can be described by

ṪE = −ρ (TEstat , ωE ) TE + ρ (TEstat , ωE ) TEStat

TEdyn = TE

where TEstat = TEstat (α, ωE ) is the output of the static enginemap andρ (TEstat , ωE )

is the nonlinear, state and input-dependent time constant. The parameters of the sys-
temmodel are identified locally for a sufficient number of operating points. Between
these operating points, the parameters are calculated by linear interpolation.

Now, define the normalized state variables

x1 = TE − TE0

ΔTE
, x2 = Δϕ − Δϕ0

max (Δϕ)

x3 = ωE − ωE0

ΔωE
, x4 = ωD − ωD0

ΔωD

and the normalized input
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Fig. 7 Structure of the
considered system class

Fig. 8 Error model of the
system with approximated
inversion

T̃DSet = TDset − TE0

ΔωE

where TE0,Δϕ0, ωE0 and ωD0 defines the operating point andΔTE , max (Δϕ),ΔωE

and ΔωD the maximum expected distance from the equilibrium point.
The composite model of the engine test bench matches the structure in Fig. 7, i.e.

it is an Extended Hammerstein System. Here, input ū consists of α and T̃DSet and y
consists of two outputs (engine speed x3 and engine torque x1), and the static map
m comes from the approximation of the nonlinear map ρ in a polynomial fashion.

To solve the control problem, the nonlinear static map is locally inverted, and the
approximation error affects the system in the same direction as the input, see Fig. 8.

A nonlinear H∞ control law can be designed so as to ensure robust stability and
performance at the face of the uncertainties due to the imperfect inversion of the
static map, see [64] for details.

2.5 Semi-active Suspension System

The problem consists of designing a switching control strategy for comfort-oriented
semi-active suspensions in road vehicles [26, 55]. Themodel, see Fig. 9, is as follows:
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Fig. 9 Quarter-car system

M ξ̈ (t) = −c(t)(ξ̇ (t) − ξ̇t (t)) − k(ξ(t) − ξt (t)) + kΔs − Mg

mξ̈t (t) = c(t)(ξ̇ (t) − ξ̇t (t)) + k(ξ(t) − ξt (t)) − kt (ξt (t) − ξr (t)) − kΔs + ktΔt − mg

ċ(t) = −βc(t) + βcin(t)

where ξ(t), ξt(t) and ξr (t) are the vertical position of the body, the unsprungmass and
the road profile, respectively. The coefficientsM andm are the quarter-car bodymass
and the unsprung mass (tyre, wheel, brake, etc.), respectively. The coefficients β, k
and kt are the bandwidth of the active shock absorber, the stiffness of the suspension
spring and of the tyre, respectively. The coefficients Δs and Δt are the length of the
unloaded suspension spring and of the tyre. Finally, c(t) and cin(t) are the actual and
requested damping coefficients of the passive shock absorber. In order to simplify
the computations we assume that β is large enough so that c(t) ≈ cin(t). Moreover,
we consider a genuine switching strategy, so that c(t) can assume only two values,
namely, cmin and cmax , to be specified later on.

The control strategy consists of minimizing the chassis vertical acceleration ξ̈ (t)
by a suitable choice of the control variable c(t) ∈ {cmin, cmax }.

In order tofit this example in the frameworkof this chapter, let us take thevariations
δξ(t) and δξt (t) of ξ(t) and ξt (t) around an equilibrium point associated with zero
road profile, arriving at the system

˙̄ξ(t) = Aσ ξ̄ (t) + Brξr (t)

y(t) = Cσ ξ̄ (t) + d(t)

z(t) = Eσ ξ̄ (t)

where d(t) is the measurement noise and

A1 =

⎡

⎢
⎢
⎢
⎣

0 1 0 0
− k

M − cmin
M

k
M

cmin
M

0 0 0 1
k
m

cmin
m − (k+kt )

m − cmin
m

⎤

⎥
⎥
⎥
⎦
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A2 =

⎡

⎢
⎢
⎣

0 1 0 0
− k

M − cmax
M

k
M

cmax
M

0 0 0 1
k
m

cmax
m − (k+kt )

m − cmax
m

⎤

⎥
⎥
⎦

E1 = [− k
M − cmin

M
k
M

cmin
M

]

E2 = [− k
M − cmax

M
k
M

cmax
M

]

Br =

⎡

⎢
⎢
⎣

0
0
0
kt
m

⎤

⎥
⎥
⎦

and Cσ depends on the choice of the measured variables. The state vector ξ̄ (t)
contains the chassis displacement δξ(t), its derivative, the tyre displacement δξt (t)
and its derivative. Again, the disturbance vector ξr (t) is the road profile.

A reasonable set of measurements is given by

C1 =
[− k

M − cmin
M

k
M

cmin
M

0 1 0 −1

]

C2 =
[− k

M − cmax
M

k
M

cmax
M

0 1 0 −1

]

that corresponds to measuring the body acceleration and the stroke derivative.
The problem is to minimize the L2 norm

√
∫ ∞

0
ξ̈ (t)2dt

of the chassis acceleration ξ̈ (t) with respect to impulsive signals on the road profile
acceleration ξ̈r (t) (or a white noise). This is indeed a realistic situation including
road profiles described by ramps, in the deterministic setting, or double integral of a
white noise, in the stochastic case. To do this, the model is rewritten as follows. Let

w(t) =
[

ξ̈r (t)
d(t)

]

, z(t) = ξ̈ (t)

and define

x1(t) := δξ(t) − ξr (t)

x2(t) := δξ̇ (t) − ξ̇r (t)

x3(t) := δξt (t) − ξr (t)

x4(t) := δξ̇t (t) − ξ̇r (t)
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With these new variables, the system can equivalently be rewritten as

ẋ(t) = Aσ x(t) + Bw(t)

y(t) = Cσ x(t) + Dw(t) + Cσ (ξ̄ (t) − x(t))

z(t) = Eσ x(t) + Eσ (ξ̄ (t) − x(t))

where A1, A2,C1,C2, E1, E2 have already been defined and

B =

⎡

⎢
⎢
⎣

0 0 0
−1 0 0
0 0 0

−1 0 0

⎤

⎥
⎥
⎦ , D =

[
0 r1 0
0 0 r2

]

where the tuning parameters r1 and r2 reflect the measurements uncertainties.
Both H2 and H∞ output feedback control problems have been tackled via

Lyapunov–Metzler inequalities and compared with the traditional semi-active sus-
pension control law, called SH (Sky-Hook), where the system is switched according
to the sign of ξ̇ (t)(ξ̇ (t) − ξ̇t (t)), and theADD (Acceleration-driven damper) strategy,
where the switching law depends on the sign of ξ̈ (t)(ξ̇ (t) − ξ̇t (t)). It can be shown
(see Sect. 6.1, Example12), that Lyapunov–Metzler switching improves over other
methods, and, needless to say, over passive suspension with constant coefficients.

2.6 Systems Biology

A field in which robust control can play a major role is the modelling and analysis
of biological systems. There are many available models of natural phenomena, and
mathematical biology is receiving considerable attention. Yet there are major prob-
lems in modelling biological phenomena compared to other more classical contexts
such as physics, engineering, computer science. The models are deeply uncertain
and sometimes very complex. Even when a reasonable model is available, typically
its parameters are widely unknown and ranging in huge intervals. Variation of orders
of magnitude in the parameters is a common circumstance. Far from attempting to
present a general view, in this section, we wish to present some specific problems,
especially concerning biochemical models.Wewill adopt the so-called BDC decom-
position framework [16, 17, 59] which is a formal set-up in which several problems
can be successfully framed.

Consider the general model of a biochemical reaction network of the form

ẋ = Sg(x) + g0, (1)

where the state x ∈ Rn+ (the positive orthant) typically represents the concentration
of biochemical species, g(x) ∈ Rm is a vector of functions representing the reaction
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Fig. 10 A simple chemical
reaction

rates and g0 ≥ 0 is a vector of constant influxes; S ∈ Zn×m (matrices with integer
entries) is the stoichiometric matrix of the system, whose entries si j represent the net
amount of the i th species produced or consumed by the j th reaction, excluding the
contribution of constant influxes.

For isolated systems (g0 = 0), the solution is forced to stay in the stoichiometric
compatibility class C (x(0)):

x(t) ∈ C (x(0)) = {x(0) + Ra[S]} ∩ Rn
+.

Typical assumptions for this model are the following.

Assumption 1 All the component functions of vector g(x) are non-negative and
continuously differentiable. All their partial derivatives are positive in the positive
orthant.

Assumption 2 Each component function of vector g(x) is zero if and only if at least
one of its arguments is zero. Moreover, if si j < 0, then g j must depend on xi .

The latter assumption assures that for xi = 0 we have ẋi ≥ 0 and is required in order
for (1) to be a positive system.

Biochemical reaction networks can be visually represented by graphs, as shown
in Fig. 10: nodes are associated with biochemical species, while arcs represent inter-
actions among them.

Example 1 Consider, for instance, biochemical reaction network The chemical reac-
tion network shown in Fig. 10 which is associated with the ODE system

ȧ = a0 − gab(a, b)
ḃ = b0 − gab(a, b)
ċ = gab(a, b) − gc(c)

(2)

corresponds to the general model (1) with x = [a b c]�,

S =
⎡

⎣
− 1 0
−1 0
1 −1

⎤

⎦ , g(x) =
[

gab(a, b)
gc(c)

]

, g0 =
⎡

⎣
a0
b0
0

⎤

⎦ .

According to [59], it is possible to absorb the system in a differential inclusion as
follows.
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Consider any component gi of function g, depending on r variables xk1 , xk2 , . . . ,
xkr . Take any point x̄ with positive components (typically an equilibrium). We have

gi (xk1 , xk2 , . . . , xkr ) = gi (x̄k1 , x̄k2 , . . . , x̄kr ) +
r∑

j=1

[∫ 1

0

∂gi (x̄ + σ(x − x̄))

∂xk j
dσ

]

(xk j − x̄k j )

We rewrite this formula as

gi (xk1 , xk2 , . . . , xkr ) = gi (x̄k1 , x̄k2 , . . . , x̄kr ) +
r∑

j=1

[
d j (x)

]
(xk j − x̄k j )

Assume that an equilibrium x̄ exists and let z
.= x − x̄ . Since 0 = S g(x̄) + g0,

we have
ż(t) = S [g(z(t) + x̄) − g(x̄)]

hence (1) can equivalently be written as

ż(t) = BD(z(t))C z(t),

where matrix B ∈ Zn×q is formed by a selection of columns of S, C ∈ Zq×n and
D(z) is a diagonal matrix with non-negative diagonal entries which represent the
partial derivatives, so q is the number of all possible partial derivatives with respect
to all arguments.

Example 2 For the reaction network (2) in Example1, let α = ∂gab(a, b)/∂a, β =
∂gab(a, b)/∂b and γ = ∂gc(c)/∂c be positive parameters. Then D = diag(α, β, γ ),

B =
⎡

⎣
−1 −1 0
−1 −1 0
1 1 −1

⎤

⎦ , C =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

Denoting by bi the i th column of B and by c�
i the i th row of C , the system can

also be written as follows:

ż(t) =
∑

k

dk(z(t)) [bkc�
k ] z(t),

so the matrix is a positive combination of rank-one matrices [bkc�
k ].

Example 3 The reaction network in Fig. 11 has equations

ȧ = a0 − ga(a)

ḃ = ga(a) − gbc(b, c)

ċ = c0 − gbc(b, c) − gc(c)
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Fig. 11 A simple chemical reaction

Fig. 12 Graph of the
dynamical network in
Example4

ḋ = gbc(b, c) − gd(d)

ė = gd(d) − ge(e) + gc(c)

and BDC decomposition

BDC =

⎡

⎢
⎢
⎢
⎢
⎣

− 1 0 0 0 0 0
1 −1 0 −1 0 0
0 −1 −1 −1 0 0
0 1 0 1 −1 0
0 0 1 0 1 −1

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

=B

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α 0 0 0 0 0
0 β 0 0 0 0
0 0 γ 0 0 0
0 0 0 δ 0 0
0 0 0 0 ψ 0
0 0 0 0 0 ϕ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

=D

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

=C

,

where α = ∂ga/∂a, β = ∂gbc/∂a, γ = ∂gbc/∂c, δ = ∂gd/∂d, ψ = ∂gc/∂c, ϕ =
∂ge/∂e are again positive functions.

Example 4 The chemical reaction network associated with the graph in Fig. 12, is
represented by the equations

ȧ = a0 − gab(a, b) − gac(a, c) + gc(c),

ḃ = b0 − gab(a, b) − gb(b) + gc(c),

ċ = gab(a, b) − gac(a, c) − gc(c),

which can be rewritten as system (1) with x = [a b c]�,

S =
⎡

⎣
−1 1 −1 0
−1 1 0 −1
1 −1 −1 0

⎤

⎦ , g(x) =

⎡

⎢
⎢
⎣

gab(a, b)
gc(c)

gac(a, c)
gb(b)

⎤

⎥
⎥
⎦ , g0 =

⎡

⎣
a0
b0
0

⎤

⎦ .
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Its BDC decomposition is characterized by the matrices,

BDC =
⎡

⎣
−1 −1 1 −1 −1 0
−1 −1 1 0 0 −1
1 1 −1 −1 −1 0

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α 0 0 0 0 0
0 β 0 0 0 0
0 0 γ 0 0 0
0 0 0 δ 0 0
0 0 0 0 ψ 0
0 0 0 0 0 ϕ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
1 0 0
0 0 1
0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where α = ∂gab/∂a, β = ∂gab/∂b, γ = ∂gc/∂c, δ = ∂gac/∂a, ψ = ∂gac/∂c, ϕ =
∂gb/∂b are again positive functions.

A remarkable fact is the following [16, 17].

Proposition 1 The Jacobian of the system has the same BDC structure. Hence, the
linearization of a system can be studied by considering the matrix of the form BDC,
where D is a diagonal matrix with positive diagonal entries (related to the system
partial derivatives).

Now the problem is that the functions g∗ are widely unknown. A standard approx-
imation is to take them monomials of the form

gabc = ka pbqcq

(Mass Action Kinetics models). For instance, the reactions 2A + 3B → C would
have reaction speed ka2b3. This approximation holds only under several restrictive
assumptions, and even in this case, the coefficient k is deeply uncertain and depends
on several factors, for instance, the temperature.

A possible way to approach the robust investigation of chemical reaction networks
is to assume bounds on the average values of the derivatives represented by the
introduced expression

dk =
[∫ 1

0

∂gi (x̄ + σ(x − x̄))

∂xh
dσ

]

or bounds on the derivatives in an equilibrium point in the case of a study based on
linearization. Therefore,

d−
k ≤ dk(·) ≤ d+

k

There are two possible approaches.

• Robust approach: d−
k and d+

k are assumed to be assigned bounds.
• Structural approach: dk are assumed to be arbitrary positive functions.

The second approach is very demanding yet appealing in biology, where even the
values of the bounds can be unclear.

As a final consideration, we can say that the model absorbing procedure is a
general tool for investigating nonlinear systems in any context.
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3 Lyapunov Approach in Robustness

Lyapunov functions have been used in the mathematical literature to investigate
robustness, although paradigms are typically different. In particular, classical the-
orems of the beginning of the past century show that any system of differential
equations having an equilibrium point whose asymptotic stability has been estab-
lished by means of a Lyapunov function remains stable under perturbations as long
as they are small enough.

In robustness theory, the point of view is slightly different, the main concern being
the evaluation of the size of the disturbanceswhich is compatiblewith stability. In any
case, Lyapunov theory plays a fundamental role in robustness which has remained
unchanged, and even reinforced, through the years.

3.1 Control Lyapunov Functions and Gradient-Based
Control

In this section, we present a classical yet effective approach to deal with uncertain
systems based on Lyapunov functions. Consider a system of the form

ẋ(t) = f (x(t),w(t)) w(t) ∈ W (3)

where w(t) ∈ W is an unknown signal evolving in the compact setW , x(t) ∈ Rn is
the state. Assume that 0 is an equilibrium state for all w.

0 = f (0,w) w(t) ∈ W

Remark 1 It is worth pointing out that the previous assumption is restrictive since it
requires that the equilibrium is invariant with respect tow.We accept this assumption
leaving the general case to more specialized literature [18, 48, 101].

First we provide a notion of robust stability.

Definition 2 The 0 state of system (3) is robustly Globally Uniformly Asymptoti-
cally Stable (GUAS), if for any ε > 0 and μ > 0 there exists T (ε, μ) > 0 such that
if ‖x(0)‖ ≤ μ, then ‖x(t)‖ ≤ ε for all t > T (ε, μ).

The word uniform refers to the fact that the convergence to 0 is uniform with respect
to w and the ball of initial conditions. In the literature there are examples of systems
whose trajectories all converge to 0, but some require much more time than others,
namely, T depends on x(0) and w. The following theorem holds.

Theorem 1 Assume that there exist a positive definite and radially unbounded1

function V (x), V : Rn → R+ with V (0) = 0 which is continuously differentiable,

1That is, V (x) → +∞ as ‖x‖ → +∞.
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Fig. 13 Lyapunov function:
the four sets
{V (x) ≤ ε̄} ⊆ {‖x‖ ≤ ε} ⊆
{‖x‖ ≤ μ} ⊆ {V (x) ≤ μ̄}

and a continuous positive definite and radially unbounded function φ(x) such that,
for any w ∈ W ,

V̇ (x,w)
.= ∇V (x) f (x,w) ≤ −φ(x).

Then, the solution x ≡ 0 is robustly globally uniformly asymptotically stable.

Sketch of the proof. Letting x(t) = x and w(t) = w, we have that

d

dt
V (x(t))

∣
∣
∣
∣
x(t)=x, w(t)=w

.= V̇ (x,w) = ∇V (x) f (x,w)

(the Lyapunov derivative depends only on the current state x and disturbance w).
Hence by integration

V (x(t)) = V (x(0)) +
∫ t

0

d

dτ
V (x(τ ))dτ ≤ −

∫ t

0
φ(x(τ ))dτ

Since the function in the integral is positive, V (x(t)) is not increasing.
The next step is to notice that, in view of the radial unboundedness, given ε > 0

and μ > 0 (as in the definition), there exist ε̄ and μ̄ such that the following set
inclusions hold (see Fig. 13)

{V (x) ≤ ε̄} ⊆ {‖x‖ ≤ ε} ⊆ {‖x‖ ≤ μ} ⊆ {V (x) ≤ μ̄}

Moreover, if x(T ) ∈ {V (x) ≤ ε̄} at some T > 0, then x(t) ∈ {V (x) ≤ ε̄} for t > T .
This means that, if we prove that for V (x(0)) ≤ μ̄ there exists T > 0 such that
V (x(T )) < ε̄, then this T is that requested in the definition and the proof is complete.
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Assume by contradiction that x(t) remains in the closure of the complement
{V (x) ≥ ε̄}. φ being positive definite and radially unbounded, we have that it reaches
a minimum, ϕ > 0, in such a set. Therefore

V (x(t)) ≤ V (x(0)) −
∫ t

0
φ(x(τ ))dτ ≤ V (x(0)) − ϕt

which would imply that V (x(t)) becomes negative for t > V (x(0))/ϕ, which is not
possible. Hence in time T = V (x(0))/ϕ, the set {V (x) ≤ ε̄} is reached.

The result above is very powerful. It ensures that, no matter how w(t) evolves,
the origin is asymptotically reached. The weakness is that it is not always clear how
to find a proper function V having the property required by the theorem. If such a
function exists, it is called Lyapunov function.

Let us now consider a controlled system. For brevity, we consider a special, yet
quite common case in which the control enters linearly in the equation as follows:

ẋ(t) = f (x(t),w(t)) + Bu(t) w(t) ∈ W

We then say that the positive definite continuously differentiable function V (x) is a
control Lyapunov function if there exists a, possibly nonlinear, control function

u(t) = K (x(t))

having the property that the resulting closed-loop system

ẋ(t) = f (x(t),w(t)) + BK (x(t)) w(t) ∈ W

is well posed, namely, that it admits a unique globally defined solution, and that it
admits V as Lyapunov function.

Remark 2 In some mathematical literature the control Lyapunov function is defined
in a much more general way requiring that for any x and w ∈ W the equality

V̇ (x,w, u)
.= ∇V (x)[ f (x,w) + Bu] ≤ −φ(x) (4)

is pointwise feasible for some u (i.e. for all x there exists u such that the inequality
is satisfied for all w ∈ W ). The fact that u is a function u = K (x), with some regu-
larity properties is not always granted, and proper assumptions have to be made. For
instance, consider the scalar system

ẋ = x + |x |u

(which is not of the previous form since B = B(x) = |x |) and V (x) = x2. Then

V̇ = 2x2 + 2x |x |u < 0
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requires u < −1 for x > 0 and u > 1 for x < 0 so no feedback control can be
continuous in x = 0. The existence of a solution x(t) is therefore (in general, and
not only in this simple case) an issue.

Now we introduce the fundamental concept of gradient-based control. Assume
that a control Lyapunov function is given, associated with a control law u = K ∗(x),
which is not necessarily known. We assume that K ∗ is continuous. Let us rewrite (4)
as

∇V (x)Bu ≤ −φ(x) − ∇V (x) f (x,w)

This inequality is satisfied if

∇V (x)Bu ≤ −ψ(x) (5)

where we have defined

ψ(x)
.= max

w∈W
{φ(x) + ∇V (x) f (x,w)}

The inequality (5) is linear in u. We just need to find a function K (x), such that
u = K (x) satisfies this inequality for all x . A possibility is to consider the minimum
effort control [95], given by

u = KME (x)
.=
{
0 if ψ(x) ≤ 0
− ψ(x)

‖∇V (x)B‖2 B
�∇V (x)� if ψ(x) > 0

which is the control value of minimum norm which satisfies the inequality. This
control has been shown to be continuous (under suitable assumptions) [95], and it is
of the form

u = −γ (x)B�∇V (x)�

where γ is a sufficiently regular non-negative function. This is the general expression
of what we call a gradient-based controller.

A remarkable property of the gradient-based control is that it has an infinite gain
margin.

Proposition 2 Assume that the gradient-based control u = −γ̄ (x)B�∇V (x)� asso-
ciatedwith the control Lyapunov function V is robustly stabilizingwith some function
γ̄ (x) > 0. Then the control is also robustly stabilizing for any γ (x) > γ̄ (x).

The proof is easy, because if u = −γ̄ (x)B�∇V (x)� satisfies (5), namely, if

−γ̄ (x)∇V (x)BB�∇V (x)� = −γ̄ (x)‖∇V (x)B‖2 ≤ −ψ(x)

then, if we increase γ , the inequality remains satisfied. The concept of gradient-based
control is interesting, because if we know a control Lyapunov function, then we have
an expression for the control.
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Clearly, the true problem is finding a control Lyapunov functionwhich is in general
hard. There are special classes of systems for which a solution can be found and some
will be discussed next.

3.2 Some Special Classes of Systems

One remarkable class of systems of practical interest in which the theory presented
before can be successfully applied is the class of systems with matched uncertain-
ties [9, 80]. Remarkable examples are fully actuated robots and several types of
mechanical systems.

Consider a system of the form

ẋ(t) = f (x(t)) + BΔ(x, t) + Bu(t)

where we assume
‖Δ(x, t)‖ ≤ δ‖x‖

for some positive δ. Assume that the nominal part is stable and admits a Lyapunov
function V (x) for which

∇V (x) f (x) ≤ −α2‖x‖2

In practice this condition is satisfied if f is a pre-stabilized nominal system. The
idea is that we may use the Lyapunov function of the nominal system as control
Lyapunov function for the uncertain system. Consider the gradient-based control u =
−γ B�∇V (x)�.Write theLyapunovderivative, add and subtract the term‖Δ‖2/(4γ )

and complete the square, to get

V̇ = ∇V (x) f (x) + ∇V (x)BΔ − γ∇V (x)BB�∇V (x)� + Δ�Δ

4γ
− Δ�Δ

4γ
=

= ∇V (x) f (x) −
∥
∥
∥
∥
√

γ B�∇V (x)� − Δ

2
√

γ

∥
∥
∥
∥

2

+ Δ�Δ

4γ
≤

≤ −α2‖x‖2 + Δ�Δ

4γ
≤ −
[

α2 − δ2

4γ

]

‖x‖2 < 0

The last inequality holds for

γ >
δ2

4α2

This resultmeans that under thematching assumptionwe can counteract uncertainties
using a sufficiently strong gain.
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Example 5 An interesting real experiment was done at the Laboratory of System
Dynamics in Udine. Consider the inverted pendulum presented in the motivation
section, which corresponds to a system of the form

ẋ(t) = Ax(t) + BΔ(·) + Bu(t)

where we can assume that Δ(·) is an uncertainty due to friction and the friction
depends (in a nasty way) on the cart speed ‖Δ(·)‖ ≤ δ|x4|.

All attempts to stabilize this systemadopting pole placement resulted in frustrating
failures.

On the other hands, Lyapunov design has been successful. Indeed, we have con-
sidered a gradient-based control associated with a quadratic Lyapunov function
V (x) = x�Px which ensures

V̇ (x) = 2x�x P[A + BK ∗]x(t) = x�P[A + BK ∗] + [A + BK ∗]�P ≤ −x�Qx

for some gain K ∗. We have actually applied the gain −γ B�Px . The matrix P was
found adopting an LQ control approach. The optimal control is indeed a gradient-
based control.

In Fig. 14 we report the simulation (including figures) with the system equipped
with a pole assignment-based control andwith an optimal linear quadraticLQcontrol.
The simulations are realistic and confirmedby the experiments.2 Due to the amplitude
of the oscillations, the real system controlled with pole assignment does not work
while the system controlled via LQ control does.

Of course, thematching conditions are quite strong.An interesting generalizations
are possible for certain classes of systems. As an example, consider the very simple
model

ẋ1 = φ(x1) + x2
ẋ2 = u

where φ satisfies the sector-bound conditions

α ≤ φ(x1)/x1 ≤ β

Note that we can rewrite the system as

ẋ1 = wx1 + x2
ẋ2 = u

2The material is reported in the thesis: Roberta Ribis, Analisi sperimentale sul sistema carrello-
pendolo, undergraduate thesis, 2005 (in Italian).
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Fig. 14 Simulations of the
system equipped with a pole
placement based control
(top) and equipped with an
LQ control (bottom). Time is
measured in seconds
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where w = φ(x1)/x1 and α ≤ w ≤ β. The uncertainties are not matched. However,
we can apply the so-called backstepping procedure [48]. Let us (initially) cheat by
pretending that x2 is a control variable,which is not. Then x2 = −k1x1 would stabilize
the x1-subsystem if k1 > β. Now we use the true control in such a way that x2 tracks
the signal −k1x1, i.e. u = −k2(x2 + k1x1) with k2 large enough. Under the variable
transformation

z1 = x1, z2 = x2 + k1x1,

and u = −k2(x2 + k1x1) − k2z2, it turns out that

[
ż1
ż2

]

=
[−(k1 − w) 1

k1w − k21 k1 − k2

] [
z1
z2

]

The derivative of the Lyapunov function V (z1, z2) = (z22 + z21)/2 is
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V̇ (z1, z2) = −(k1 − w)z21 + (1 + k1w − k21)x1x2 − (k2 − k1)z
2
2

Since k1 > β ≥ w, ifwe take k2 large to ensure (k2 − k1)(k1 − w) > (1 + k1w − k21),
it is not difficult to see that V̇ (z1, z2) < 0 z �= 0. The backstepping procedure is
successful for systems in the so-called feedback form [48]. For more general cases,
we need to resort to other methods.

3.3 Quadratic Stability and LMI

In this subsection, we consider linear uncertain systems. Before introducing the
technical results, we would like to provide some motivations. In particular, we wish
to justify why linear uncertain systems with time-varying parameters are important.
Consider the very general problem of analysis of control of a nonlinear system of
the form

ẋ(t) = f (x(t)) + Bu(t) (6)

where f can be uncertain. The Lyapunov approach suffers a major trouble: finding
a suitable V . One possible way is to adopt numerical techniques which are, unfortu-
nately, effective only for linear uncertain systems.

One possible way to proceed is based on model–absorbing (see, for instance,
[18]). Consider again the formula (similar to that presented in Sect. 2.6)

f (x) = f (x̄) +
[∫ 1

0

∂ f (x̄ + σ(x − x̄))

∂x
dσ

]

(x − x̄) = J (x)(x − x̄)

Assume that x̄ is an equilibrium state, namely, f (x̄) = 0. Then we can write

ż(t) = J (z(t))z(t)

with z(t) = x(t) − x̄ .
Now assume that the Jacobian belongs to a convex and compact set

∂ f (x̄ + σ(x − x̄))

∂x
∈ A .

Then it is not difficult to show that also J (z) ∈ A , namely, also the averaged values
belong to the set. Hence, we have to deal with an uncertain linear system. Typically, it
is possible to find a parametrization A(w), withw ∈ W .Wehave that any trajectory of
the nonlinear system is also a trajectory of the followingLinearDifferential Inclusion:

ż(t) = A(w(t))z(t), w(t) ∈ W (7)
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(and not the other way). Therefore, if we are able to find Lyapunov functions, or
control Lyapunov functions for (7) these will serve as control Lyapunov functions for
(6). A polytope is a special (yet important) case of convex set, and hence, we consider
the case in whichW is a polytope. Note that any convex set can be approximated by
a polytope.

Example 6 Consider the simple mechanical model of a pendulum in the upper or
lower position, depending on the sign of α. We know only that |α| ≤ ᾱ, for some
given bound ᾱ > 0. Then

ẋ1 = x2

ẋ2 = α sin(x1) + 1 =
[

α
sin(x1)

x1

]

x1 + u

Since |α sin(θ)/θ | ≤ ᾱ the polytopic differential inclusion is

[
ẋ1
ẋ2

]

=
[

0 1
w(t) 0

] [
x1
x2

]

+
[
0
1

]

u |w(t)| ≤ |α|

If we are able to stabilize this system, for all possible w(t), then we can also stabilize
the original system.

A polytopic system is a system of the form ẋ = A(w)x with

ẋ =
[

N∑

i=1

wi Ai

]

x, w ∈ W (8)

where W is the simplex

W :=
{

w ∈ RN :
N∑

i=1

wi = 1, wi ≥ 0

}

(9)

In the case of a controlled system, we will consider the expression

ẋ = A(w)x + B(w)u,

where B =∑N
i=1 wi Bi has the same structure as A.

Note that a family of the form

M∑

i=1

qi Ai , q−
i ≤ qi ≤ q+

i
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can be reduced to the polytopic case by considering all the vertex matrices Âk =∑M
i=1 q̂i Ai where q̂i ∈ {q−

i , q+
i }, are taken on the extrema. For instance in the case

M = 2, the extrema are

Â1 = A1q
−
1 + A2q

−
2 , Â2 = A1q

+
1 + A2q

−
2 , Â3 = A1q

−
1 + A2q

+
2 , Â4 = A1q

+
1 + A2q

+
2

We derive conditions ensuring asymptotic stability for all w(t) ∈ W . As a first
step, we note that robust stability implies Hurwitz stability of all A(w) forw constant,
because w = const ∈ W is a possible realization of the function w. In particular, all
the vertex matrices Ai must be Hurwitz. As already mentioned, stability under arbi-
trary time-varying uncertainties is a much stronger condition than Hurwitz stability
for all constant parameters.

To ensure time-varying asymptotic stability, we seek for a common quadratic
Lyapunov function, namely, a positive definite function of the form

V (x) = x�Px (10)

This choice is motivated by the fact that for a linear (certain) system ẋ = Ax the
existence of a Lyapunov function of this form is a sufficient and necessary condition
for asymptotic stability.

In the polytopic case we say that the system is quadratically stable if there exists
a positive definite P such that

(

N∑

i=1

wi Ai )
�P + P(

N∑

i=1

wi Ai ) = A(w)�P + PA(w) < 0, for all w ∈ W

Note that this condition implies that the Lyapunov derivative of V (x) = x�Px is
negative, i.e.

V̇ (x) = x�[A(w)�P + PA(w)]x < 0 x �= 0

The machinery to find the matrix P > 0 is given by the following linear matrix
inequalities (LMIs) for P [29]:

A�
i P + PAi < 0, ∀i. (11)

We have the following result.

Theorem 2 System (8) is quadratically stable if and only if there exists P > 0which
satisfies the LMIs (11).

Proof If there exists P > 0 which satisfies the LMIs (11), then

(

N∑

i=1

wi Ai )
�P + P(

N∑

i=1

wi Ai ) = A(w)�P + PA(w) < 0
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for all w ∈ W . Conversely, if the system is quadratically stable, the condition is true
for all w ∈ W and then also on the vertices. �

Then a quadratically stable system admits a Lyapunov function of the form (10)
where P is any positive definite matrix which satisfies (11). These inequalities have
an interesting property. They are convex constraints. This means that if P1 > 0 and
P2 > 0 are solutions, then also P = αP1 + (1 − α)P2 > 0 is a solution. Then the
solution P (if any) can be found by solving a convex optimization problem. Convex
optimization can rely on nice properties [29] and efficient algorithms can be adopted.

The quadratic Lyapunov function does not depend on the parameters; hence, the
criterion is conservative if the uncertainties are constant. The criterion is conservative
also in the case of time-varying parameters. Indeed, it is possible that the system is
stable for all w(t) ∈ W but no quadratic Lyapunov function exists.

Let us now consider the problem of determining a stabilizing state feedback of
the form

u(t) = Kx(t)

for the system

ẋ =
N∑

i=1

wi Ai x +
N∑

i=1

wi Biu

where wi ≥ 0 and
N∑

i=1

wi = 1. By replacing u = Kx , we arrive at the conditions

[Ai + Bi K ]�P + P[Ai + Bi K ] < 0, ∀i

which are inequalities but nonlinear. This implies that convexity is lost in this expres-
sion. However, we can multiply both sides by S = P−1, and define R = K S to get
the equivalent set of inequalities

Ai S + Bi R + SA�
i + R�B�

i < 0, ∀i (12)

which are linear in S and R. This means that convexity holds again.
We have the following theorem.

Theorem 3 The polytopic system is quadratically stabilizable via linear feedback
u = Kx if and only if (12) is solvable. In this case, the control u = Kx is achieved
by taking K = RS−1.

As mentioned before, the existence of a common quadratic function is a suffi-
cient condition for robust stability and stabilizability, but it is not necessary. Indeed,
there are linear uncertain systems with time-varying parameters which are stable (or
stabilizable) but not quadratically stable (or stabilizable). In the next subsection we
will show that there are classes of Lyapunov functions (for instance, the piecewise
linear or polyhedral norm) whose existence is necessary and sufficient for stability
or stabilization.
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3.4 Non-quadratic Stability

Many classes of non-quadratic functions have been presented in the literature. These
include the piecewise linear, polynomial, piecewise quadratic functions. The piece-
wise linear or polyhedral functions are the most classical ones and we briefly present
some of their properties here.

By polyhedral function, we mean a convex function which is positive definite,
positively homogeneous of order one (a norm in the symmetric case). Such func-
tions are non-differentiable. Then the Lyapunov derivative has to be considered in a
generalized sense.

Consider a family of smooth functions vi (x), i = 1, 2, . . . , q, and consider the
max function

V = max
i

vi (x)

For any state x consider the maximizer set (the indices where the maximum is
achieved)

A (x) = {i : V (x) = vi (x)} ⊂ {1, 2, . . . , q}

which can have one or more elements. Then, given the system

ẋ = f (x,w)

the Lyapunov derivative is

V̇ (x,w) = max
i∈A (x)

∇vi (x)ẋ = max
i∈A (x)

∇vi (x) f (x,w)

Special cases of candidate Lyapunov functions are the polyhedral norms which can
be expressed in the form

V (x) = ‖Fx‖∞

(plane representation) with F full column rank.
Now take the unit ball P = {x : ‖Fx‖∞ ≤ 1} and let X be the matrix such that

the vertices ofP are the columns of X or their opposite; then we have the following
dual representation (vertex representation):

V (x) = min{‖p‖1 : x = Xp}

For instance if

F =
⎡

⎣
1 0
0 1
1 1

⎤

⎦ , then X =
[
1 0 1
0 1 −1

]

Given an induced norm ‖ · ‖∗, we callmeasure of the squarematrixM with respect
to such a norm the quantity defined as
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μ∗ = lim
h+→0

‖I + hM‖∗ − 1

h

Then we have the following results.

Theorem 4 Given the polytopic system (8)–(9), and a polyhedral norm represented
by F and X, the following statements are equivalent:

• V (x) is a Lyapunov function;
• there exist matrices Hi with μ∞(Pi ) < 0 such that

FAi = Hi F, i = 1, 2 . . . N

• there exist matrices Pi with μ1(Pi ) < 0 such that

Ai X = X Pi , i = 1, 2 . . . N

Theorem 5 The polytopic system (8)–(9) is asymptotically stable iff there exists a
polyhedral Lyapunov function.

These results are due to [85–87]. The theorem can be extended to stabilization [15,
18].

Example 7 Consider the chemical reaction network of Fig. 11. For brevity, assume
that the species are subject to an infinitesimal degradation, i.e. ẋ = −εx + Sg(x) +
g0, with ε > 0 arbitrarily small (otherwise some additional non-singularity assump-
tions are necessary [16, 17]). Then adopting the procedure in [16, 17] it is possible
to derive the polyhedral function V (x) with

X =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 − 1 0 − 1 0 1 0
0 0 1 0 − 1 0 − 1 0 1 0 0
0 0 0 1 1 1 0 0 − 1 − 1 − 1
0 0 0 0 0 0 1 1 1 1 2

⎤

⎥
⎥
⎥
⎥
⎦

If we now consider the chemical reaction network in Fig. 12, the procedure provides

X =
⎡

⎣
0 − 2 0 2
0 0 2 2
2 0 − 2 0

⎤

⎦

These networks are hence stable; however, they fail to admit quadratic Lyapunov
functions [17].

Theorem 6 Given the polytopic system with control u, the following statements are
equivalent.

• the polytopic system is stabilizable;
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• there exists a polyhedral control Lyapunov function V (x);
• there exist matrices Pi with μ1(Pi ) < 0 and a matrix U such that

Ai X + BiU = X Pi , i = 1, 2 . . . N

The advantage of having universality is offset by the fact that it is not easy to compute
the matrices X andU or F . Moreover, the number of rows of F or columns of X can
be huge. If these are given, checking that they work is a simple linear programming
problem. Conversely, if they have to be found, a recursive numerical procedure is
available, but its complexity can be very high [18].

There are other classes of non-quadratic functions such as piecewise quadratic
[72] and smoothed polyhedral. Piecewise quadratic functions have a strongly reduced
complexity with respect to polyhedra. The smoothed polyhedral functions are useful
because in general the control function associatedwith these functions is not linear. A
piecewise linear function canbe foundof the formu = K (x)x where K (x) is constant
over suitable simplicial cones. Since the Lyapunov function is non-differentiable,
the gradient-based control does not work. A possible remedy is to smoothen the
polyhedral function by replacing ‖Fx‖∞ by ‖Fx‖2p with p integer and large enough.
This control works if B is certain or the system has a matched input disturbance.

4 Parametric Approach

In this section, we propose some criteria for the stability analysis of uncertain systems
with constant uncertainties. Most of the existing results are based on the analysis
of the characteristic polynomial. The interested reader can find further details in
[7, 112]. We will conclude the section by presenting fundamental results on time-
invariant uncertain linear systems.

We start from the basic consideration that there is a big difference between time-
varying and constant uncertainties, even if they belong to the same bounding set. A
very popular example is the equation

ÿ(t) + 2ξ ẏ(t) + σ y(t) = 0

with 0 < σ− ≤ σ ≤ σ+ and ξ > 0. If the uncertainty σ is constant, then the system
is robustly Hurwitz. Conversely, for ξ > 0 small and a sufficiently large interval
[σ−, σ+] a time-varying σ can destabilize the system (see, for instance, [18] for
details).

4.1 Value Set and Zero Exclusion Theorem

We now consider the stability analysis for a linear time-invariant uncertain system
having uncertain constant parameter. We assume that the uncertain characteristic
polynomial has the form
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p(s, q) = pn(q)sn + pn−1(q)sn−1 + · · · + p1(q)s + p0(q), q ∈ Q

whereQ is a generic region in the parameter space. The coefficients pi are assumed
to be continuous functions of a parameter vector q. A typical representation is

pi = pi (q) q ∈ Q = {q−
k ≤ qk ≤ q+

k }

where the hyper-rectangle Q is called box. For brevity, we assume the following.

Assumption pn(q) �= 0 for all q ∈ Q.
This assumption is always true, for instance, if we consider the characteristic

polynomial of a matrix A(q): det(s I − A(q)), for which pn(q) ≡ 1.

Example 8 In the case of the levitator described in Sect. 2.1, the parameters are a,
b and c. Considering the compensator G(s) = κ

s+β

s+α
, the closed-loop characteristic

polynomial is

p(s, a, b, c) = s4 + (b + α)s3 + (αb − a)s2 + cκ − aα − ab)s + (kβ − abα)

so its coefficients pk(a, b, c) are function of the three parameters for which we
assume to know proper intervals in which they lie.

In general the coefficient vector

p(q) = [p0 p1 . . . pn]

can be a function of a vector parameter q ∈ Q, and, in general Q must not be
necessarily a hyper-rectangle.

Now the basic question is how to establish robust stability of the system, namely:

• is the polynomial p(s, q) Hurwitz for all q ∈ Q?

The robustness analysis test is based on the notion of value set.

Definition 3 Given the frequency ω ≥ 0, the value set is

Vω = {p( jω, q), q ∈ Q} ⊂ C

The following is a fundamental result [70, 71].

Theorem 7 (Zero exclusion theorem) The polynomial p(s, q) is Hurwitz for all
q ∈ Q if and only if

• p(s, q∗) is Hurwitz for some q∗ ∈ Q;
• 0 /∈ Vω, for all ω ≥ 0.

Now, to apply the criterion we have to consider the following property. Consider a
nominal polynomial p(s, q∗). This is typically derived from themodel adopted for the
synthesis. Of course, p(s, q∗)must beHurwitz and a preliminary test should bemade.
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If the nominal polynomial is Hurwitz, then it verifies the following phase increasing
property. Without any restriction, we assume that the coefficients of p(s, q∗) are
positive.

Property 1 (Michailov theorem) The polynomial p(s, q∗) is Hurwitz if and only
if its phase is well defined, namely, p( jω, q∗) �= 0 for all ω ≥ 0, and p( jω, q∗)
encircles the origin counterclockwise by an angle n π

2 .

The value set for a single polynomial at some frequency is a singleton: a complex
number. The value set Vω of an uncertain polynomial at some frequency is a cloud.
As the frequency varies, the cloud navigates in the complex plane. Therefore, if we
are able to draw the value set in the complex plane we can use a graphical test,
implementable on a computer, to ensure that 0 /∈ Vω, for all ω ≥ 0.

Under someassumptions on the functional formof the coefficients pk(q), the value
set can be easily depicted and the stability test simply performed. In other cases, it is
not easy to draw the value set, and typically one must resort to considering a region
which includes it at each frequency and apply the test to that region. Unfortunately,
this test is conservative, namely, it provides sufficient but not necessary conditions.

4.2 Vertex and Edge Theorems

Consider the case in which the coefficients pk(q) of the polynomial are affine func-
tions of the parameters q.

pk(q) =
r∑

h=1

f khqh, q−
h ≤ qh ≤ q+

h

Then we have that

p(s, q) = pn(q)sn + pn−1(q)sn−1 + · · · + p1(q)s + p0(q) =
r∑

h=1

qhφh(s)

namely, the overall polynomial is linear combinations of polynomials φh(s).

φh(s) = f n,hsn + f n−1,hsn−1 + · · · + f 1hs + f 0h

This family is called a polytope of polynomials. It is not difficult to see that, for fixed
frequency ω, the value set is

Vω =
{

r∑

h=1

qhφh( jω), q−
h ≤ qh ≤ q+

h

}

= {Φ( jω)q, q−
h ≤ qh ≤ q+

h

}
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Fig. 15 The value set for the
magnetic levitator system at
frequencies in the range
100–150 equi-spaced with
sampling interval Δω = 5.
The adopted gain is
κ = 3000. The value set hits
the origin at ω ≈ 125. The
value set for the magnetic
levitator system at
frequencies in the range
100–150 equi-spaced with
sampling interval Δω = 5.
The adopted gain is
κ = 3000. The value set hits
the origin at ω ≈ 125
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where we have adopted the compact notation Φ( jω)
.= [φ1( jω) φ2( jω) . . . φr ( jω)]

which is a vector of complex elements. The resulting set is a convex polygon in the
complex plane for each ω.

Example 9 As an example consider the levitator system with the control introduced
in Sect. 2.1. If we assume both the resistance and the inductance are precisely known
(which is a reasonable assumption since they can be measured accurately), we have
that only a and c are uncertain: q1 = a = 1400 ± 400, q2 = c = 1500 ± 500.Hence,
the closed-loop polynomial is

p(s, q1, q2) = s4 + (b + α)s3 + (αb − q1)s
2 + (q2κ − q1(α + b))s + (kβ − q1bα)

with
1000 ≤ q1 ≤ 1800, 1000 ≤ q2 ≤ 2000

The value set is a polygon depicted in Fig. 15 at some selected frequencies. Note
that the system fails the robustness test, because the value set hits the origin at the
frequency ω ≈ 125: the robustness test fails. If we reduce the gain to κ = 2500 the
system passes the robustness test. Indeed, the sequence of value sets passes above
the origin, without touching it, as shown in Fig. 16.

Remark 3 For a proper graphical test, it is advisable to normalize the value set.
Indeed, the setVω tends to become large (indeed explode) forω getting large. Clearly,
one can equivalently replace Vω by ψ(ω)Vω where ψ(ω) is any strictly positive
function, to keep the value set bounded. It is not difficult to see that this does not
alter the test results because 0 ∈ ψ(ω)Vω is equivalent to 0 ∈ Vω. In the plot we used

ψ(ω) = 1

1 + ω4
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Fig. 16 The value set for the
magnetic levitator system at
frequencies in the range
100–150 equi-spaced with
sampling interval 5. The gain
is κ = 2500. The value set
sequence does not hit the
origin: the robustness test
has passed
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Fig. 17 The value set of an
interval polynomial

A particular case of uncertainty class is given by the class of interval polynomials.
This is the case where the function representing the coefficients is identities

p(s, q) = qns
n + qn−1s

n−1 + · · · + q1s + q0, q−
k ≤ qk ≤ q+

k

In this case the polygon is a rectangle with edges parallel to the axes. Indeed, consider
the real and imaginary parts of the polynomial p( jω, q) as follows:

p( jω, q) = [q0 − q2ω
2 + q4ω

4 − q6ω
6 . . .
]+ j

[
q1ω − q3ω

3 + q5ω
5 − q7ω

7 . . .
]

Real and imaginary parts are independent, because they depend, respectively, on the
even and odd coefficients only.

It is not difficult to see that the vertices of the value set are the four polynomials
where the coefficients are taken as follows:
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q+
0 q+

1 q−
2 q−

3 q+
4 q+

5 q−
6 q−

7 . . .

q−
0 q+

1 q+
2 q−

3 q−
4 q+

5 q+
6 q−

7 . . .

q−
0 q−

1 q+
2 q+

3 q−
4 q−

5 q+
6 q+

7 . . .

q+
0 q−

1 q−
2 q+

3 q+
4 q−

5 q−
6 q+

7 . . .

These are called the Kharitonov polynomials. Adopting a phase argument one can
prove the following famous theorem [76].

Theorem 8 (Kharitonov theorem)
The interval polynomial

p(s, q) =
n∑

k=0

qks
k, q−

k ≤ qk ≤ q+
k

is robustly Hurwitz if and only if the 4 Kharitonov polynomials are Hurwitz.

The phase argument is the following: for the value set hitting the origin, necessarily
one of the Kharitonov polynomials (the one corresponding to right top vertex in
Fig. 17) must violate the phase increasing condition (Property1).

Kharitonov’s theorem is a vertex type result. For interval polynomials, it is suffi-
cient to check a finite number of polynomials to test the entire family. Similar vertex
results are available for certain classes of polynomials coming from specific appli-
cations. These include the application of a lead-lag compensator to an interval plant
[10]. Unfortunately, for general polytopes of polynomials, it is not sufficient (just
necessary) to check the vertex polynomials and see if they are Hurwitz. This is true
for special classes of polynomials.

What it is known is the following fundamental result [4]. An edge of the box Q
is a one-dimensional set of points of the form

[q±
1 q±

2 . . . (αq−
k + (1 − α)q+

k ) . . . q±
r ] 0 ≤ α ≤ 1

where q±
h are values take at the extrema, either q+

h or q−
h , and α is a parameter.

Theorem 9 (Edge theorem) (Bartlett,Hollot andHuang1988)Apolytope of polyno-
mials is robustlyHurwitz if andonly if all the one-dimensional families of polynomials
associated with the one-dimensional edges of the box (see Fig.18) are Hurwitz.

The theorem leads to the following nice graphical test. The value set of a polytope
of polynomials is a polygon whose exposed edges come from the edges of the box
(see again Fig. 18). Hence, to draw the value set, we need just to plot all vertex
polynomials and consider the convex hull (there are many available routines which
efficiently do this task) at any frequency.

The theorem also implies that one should perform a robust stability test only on
the edges of Q to make sure that all the polynomials of the box are Hurwitz. So as
a first step one has to test all vertex polynomials. If they are Hurwitz (otherwise the



Uncertain Systems: Time-Varying Versus Time-Invariant Uncertainties 43

Fig. 18 Image of the boxQ:
the delimiting edges of the
polygon come from edges of
the box

B

A
A’

B’

Re

Im

stability test fails) as a second step all the edges must be checked. Then the problem
reduces to the following one.

• Given two Hurwitz polynomials p0(s) and p1(s), is their convex combination

p(s, α) = (1 − α)p0(s) + αp1(s)

Hurwitz?

In general the answer is: not necessarily. There are several possible numerical tests,
see [7] for a summary of the existing results.

One result is the following. Write the convex combination as

p(s, α) = p0(s) + αq(s)

with q(s) = p1(s) − p0(s). Then the polynomial q(s) is called a convex direction
in the polynomial parameter space if the stability of p0(s) and p0(s) + q(s) implies
the stability of the whole edge. A phase characterization of the convex stability has
been proposed in [102].

4.3 Multilinear Uncertainties

Now we consider the case in which the uncertain polynomial does not have a linear
structure but a multilinear one.

A function ψ(q1, q2, . . . , qr ) is multilinear or multi-affine if it is affine in any
variable, namely, if we fix all variable but one, qk , we have an affine function in qk .
For instance,

ψ = 4 − q1 + 2q1q2 + q2q3 + 3q1q2q3

is multilinear. The function −q1 + 2q2
2 is not multilinear because of the square.

The interest for multilinear structures is motivated by the interval matrices. An
interval uncertain matrix has entries ai j with
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Fig. 19 The value set of the
magnetic levitator is inside
the convex hull of the vertex
images represented in the
figure. The frequencies are in
the range 100–150
equi-spaced with sampling
interval 5. The adopted gain
is κ = 2500
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a−
i j ≤ ai j ≤ a+

i j

for given bounds a−
i j and a+

i j . The coefficients of the characteristic polynomial are
multi-affine functions of the parameters if the matrix is expressed in terms of the
BDC decomposition [16, 17, 59], namely, A = BDC with D diagonal matrix with
positive coefficients dk . In the case of the magnetic levitator, if we consider a = q1,
c = q2 and b = q3 all uncertain, then the polynomial has a multi-affine structure

p(s, q1, q2, q3)= s4 + (q3 + α)s3 + (αq3 − q1)s
2 + (q2κ − q1α−q1q3)s + (kβ − q1q3α)

The value set is not so easy to be depicted for multilinear (or polynomial) uncer-
tainties. The following theorem is of a fundamental help since it shows that we can
easily compute a polygon that includes the true value set.

Theorem 10 (Mapping theorem). If the coefficients of p(s, q) are multi-affine func-
tions and

Q = {q : q− ≤ q ≤ q+},

then
Vω ⊆ conv

{
p( jω, qk), qk ∈ vertQ

}

In the case of the levitator with bounds

1000 ≤ q1 ≤ 1800, 1000 ≤ q2 ≤ 2000, 340 ≤ q3 ≤ 360

the polygon including the value set is represented in Fig. 19. The frequencies are the
same as considered before. The adopted gain is κ = 2500 and the system passes the
robust stability test. The ‘true’ value set is inside.

As a further example consider a chemical reaction network
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ẋ(t) = Sg(x) + g0

and assume that an equilibrium point x̄ exists such that 0 = Sg(x̄) + g0. Consider
the linearization of this system around the equilibrium. According to Proposition1,
the linearized system can be described by means of the BDC decomposition as

ż(t) = [BDC]z(t) =
[
∑

k

bkc
�
k dk

]

z

If we assume bounds of the form d−
k ≤ dk(·) ≤ d+

k , it is quite interesting to notice
that this is a case in which the Mapping theorem applies. To prove this it is sufficient
to notice that the characteristic polynomial is

p(s) = det(s I −
∑

k

bkc
�
k dk)

so that its coefficients are multilinear functions of the parameters dk [59].

4.4 Other Classes of Uncertainties and Stability Domains

The value set technique is a formidable analysis tool as long as we have an efficient
way to draw it. In general, this is a difficult task, yet there are several cases in which
this is possible. For instance, consider the so-called spherical families [7]

p(s) =
n∑

k=1

pks
k, ‖p‖2 ≤ μ

where ‖p‖2 is the Euclidean norm of the coefficient vector. In this case, the value
set is an ellipse. It is not difficult to see that we could generalize the norm to be any
quadratic norm ‖p‖ = √p�Sp, with S positive definite.

The drawing issue restricts the class of uncertainty we can consider in practice.
Conversely, there is no essential restriction on the stability domain.

Definition 4 Given a convex and closed domainD in the convex plane, we say that
p(s, q) is robustly D-stable if its roots are inside the interior of D .

Interesting cases of such domains are the translated left half-plane

{s ∈ C : Re(s) ≤ −α}

the damping sector
{s ∈ C : Re(s) + β|Im(s)| ≤ 0}
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and the unit circle
{z ∈ C : |z| ≤ 1}

The zero exclusion theorem can be extended without difficulties by requiring that
the family has oneD-stable element and that the value set referred to as the Nyquist
plot of the D domain does not hit the origin. For instance, exploring stability with
respect to the unit circle would require considering the value set

Vθ = {p(e jθ , q), q ∈ Q
} ⊂ C

parameterized in θ , with 0 ≤ θ ≤ 2π . Again the reader is referred to [7, 112] for fur-
ther details. For a geometric view of the problem via optimization over semialgebraic
sets, see [68].

4.5 Unstructured Uncertainties

In this subsection, we consider a robustness analysis for linear systems with constant
uncertainties, where perturbations are present on the state matrix Aun . Let the state
matrix be expressed as

Aun = A + LΔN

where A is a given Hurwitz matrix andΔ is a complex norm bounded matrix, subject
to

‖Δ‖ ≤ α

while L and N are knownmatrices describing the effect of the uncertainty. This class
of uncertainties is often referred to as norm bounded.

To assess robustness of the systems, one can consider the complex stability radius
defined as the smallest perturbation for which the system has an eigenvalue on the
stability boundary

rcomp(A, L , N )={inf ‖Δ‖, Δ complex : A+LΔN has an eigenvalue in : s= jω},

which we can also write as follows:

rcomp(A, L , N ) = inf
ω

{inf ‖Δ‖,Δ complex : det (I − ΔG( jω)) = 0}

where
G(s) = N (s I − A)−1L

To prove the equivalence of the two previous expressions, note that Aun = A + LΔN
can be seen as the state matrix achieved by closing the loop with the transfer function
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G(s) with the perturbation block Δ, i.e.

ẋ(t) = Ax(t) + Lw(t)

z(t) = Nx(t)

w(t) = Δz(t)

The robust stability of this system is deeply related to the ∞ norm of the system
(A, L , N ), as can be easily understood by recalling the celebrated small-gain the-
orem, see Sect. 5.1, Theorem13, saying that the feedback loop (and then Aun) is
asymptotically stable if

‖G(s)‖∞ < α−1

where ‖G(s)‖∞ = supω≥0 ‖G( jω)‖. Conversely, if ‖G(s)‖∞ ≥ α−1 then there
exists an element Δ∗ with norm not greater than α which renders Aun non-
Hurwitz. Indeed, let ω̄ be the frequency associated with the maximum norm of
N ( jωI − A)−1L (such maximum is the H∞ norm) and let x �= 0 be such that

L�(− jω̄I − A�)−1N�N ( jω̄I − A)−1Lx = λ2x

with λ ≥ α−1. Define y = ( jω̄I − A)−1Lx to get

Lx = ( jω̄I − A)y, and L�(− jω̄I − A�)−1N�Ny = λ2x

Now let

Δ∗ = 1

λ2
L�(− jω̄I − A�)−1N�, ‖Δ∗‖ = 1

λ
≤ α

Then, with a few algebra,

( jω̄I − A − LΔ∗N )y = 0

The above reasoning proved that Aun is stable for all complexΔ of norm not exceed-
ing α if and only if the norm of N (s I − A)−1L is less than α−1. Therefore

rcomp(A, L , N ) = 1

‖G(s)‖∞

is the complex stability radius, which is the smallest norm of Δ capable of destabi-
lizing Aun .

The next problem we consider is how to address the more difficult case in which
Δ is assumed to be real, see [100]. The real stability radius for the perturbed matrix

Aun = A + LΔN
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is defined as the largest norm of Δ real for which stability is ensured. The formal
definition is as follows:

rreal(A, L , N ) = {inf ‖Δ‖, Δ real : A + LΔN has an eigenvalue in : s = jω}

Reconsidering the previously introduced transfer function matrix G(s) we have

rreal(A, L , N ) = inf
ω

{inf ‖Δ‖,Δ real : det(I − ΔG( jω)) = 0}

For a complex matrix M , consider the quantity μreal defined as

μreal(M) = {inf ‖Δ‖, Δ real : det(I − ΔM) = 0}−1

Then it holds true that

μreal(M) = inf
γ∈(0,1]

σ2

([
Re(M) −γ Im(M)

γ −1 Im(M) Re(M)

])

where σ2 is the second largest real singular value. Based on this result it can be seen
that

r−1
real(A, L , N ) = sup

ω

inf
γ∈(0,1]

σ2

([
Re(G( jω)) −γ Im(G( jω))

γ −1 Im(G( jω)) Re(G( jω))

])

Note that the class of complex Δ’s includes the real ones, hence, rreal ≥ rcomp. Then
the complex stability radius provides a more conservative value than the real one.

Example 10 Consider the system

ẋ(t) = (A + LΔN )x(t)

with

A =
[−1 2

−2 −3

]

, L =
[
1
0

]

, Δ = [ δ1 δ2
]
, N = I

Wefirst consider the real case, namely, the largest possible normof a real perturbation
Δ such that A + LΔN remains Hurwitz (real stability radius), then we compare it
with the complex case. To this aim note that

A + LΔN =
[−1 + δ1 2 + δ2

−2 −3

]

,

and that
det[λI − A − LΔN ] = λ2 + (4 − δ1)λ + 7 − 3δ1 + 2δ2

Therefore, stability is ensured if
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δ1 < 4, δ2 > 1.5δ1 − 3.5

By a graphical test, in the δ1–δ2 space, it can be shown that the circle centred in the
origin of greatest radius is tangent to the line δ2 = 1.5δ1 − 3.5. The tangent point is
the intersection of this line and the orthogonal one passing through the origin

δ2 = 1.5δ1 − 3.5, δ2 = −2/3δ1

Then
δ1 = 21/13, δ2 = −14/13

which means that the real stability radius is

rreal(A, L , N ) =
√

δ21 + δ22 =
√
637

13
= 1.9415

which can be computed with the formula proposed before.
The complex stability radius is 1/‖G(s)‖∞, where G(s) = N (s I − A)−1L . We

get

G(s) =
[
s + 3
−2

]
1

s2 + 4s + 7
.

Hence, denoting by G∼(s) = G�(−s),

G∼(s)G(s) = 13 − s2

(s2 + 4s + 7)(s2 − 4s + 7)

Then

‖G(s)‖∞ = ‖
√
13 + s

s2 + 4s + 7
‖∞ = 0.519

As expected, the complex radius is not larger than the real one

rcomp(A, L , N ) = 1

1.1232
= 1.9269 < 1.9415 = rreal(A, L , N )

The complex stability radius is related to quadratic stability of an uncertain sys-
tem. We say that the set of matrices Aun , achieved by choosing a complex Δ with
‖Δ‖ < α is quadratically stable if there exists a positive definite matrix P which
satisfies

A∼
un P + PAun < 0, ∀Δ, ‖Δ‖ ≤ α

where A∼
un is the complex conjugate of Aun (A∼

un = (A∗
un)

�). The next theorem is
a fundamental result because it links a frequency-domain condition with quadratic
stability, which will be further developed later.
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Theorem 11 The set of matrices Aun is quadratically stable iff

‖N (s I − A)−1L‖∞ < α−1

Proof Quadratic stability implies that any element in the family is Hurwitz. On the
other hand, any Aun is Hurwitz for any Δ with norm smaller than α if and only if the
norm of N (s I − A)−1L is less than α−1 (see small gain Theorem13).

Conversely assume the H∞ normof system (A, L , N ) is less thanα−1 is equivalent
(see again Sect. 5.1) to the existence of P > 0 satisfying the matrix inequality

A�P + PA + α2PLL�P + N�N < 0

Then

0 > A�P + PA + α2PLL�P + N�N
≥ A�P + PA + α2PLL�P + N�α−2Δ∼ΔN

= A∼
un P + PAun + α−2

[
(PLα2 − N�Δ∼)(L�Pα2 − ΔN )+]

≥ A∼
un P + PAun

The proof is then concluded.

4.6 Parameter-Dependent Lyapunov Function

In this subsection, we consider again the case of polytopic systems

ẋ =
N∑

i=1

σi Ai x = A(σ )x, σ ∈ ΛN

where ΛN is the simplex

ΛN :=
{

λ ∈ RN :
N∑

i=1

λi = 1, λi ≥ 0

}

We wish to find conditions ensuring Hurwitz stability of all the elements of the set.
As a preliminary observation, according to the results in Sect. 3.3, if there exists

a symmetric matrix P > 0 that simultaneously solves the inequalities

A�
i P + PAi < 0, ∀i (13)

then the system is quadratically stable, and hence, any element in the simplex is
Hurwitz.



Uncertain Systems: Time-Varying Versus Time-Invariant Uncertainties 51

Requiring the existence of a single quadratic Lyapunov function is very conser-
vative and it would ensure stability even under arbitrary variations of A(σ (t)) (and
even under time-varying σ(t) it would be conservative).

A technique tailored for constant uncertainties is achieved as follows. Consider a
set of positive definite matrices {P1, · · · , PN } and consider the function

V (x) := x�(

N∑

i=1

σi Pi )x = x�P(σ )x

associated with the system (8). Note that P(σ ) > 0. These types of functions are
known as parameter-dependent Lyapunov functions. The next theorem holds.

Theorem 12 Assume that there exist positive definite matrices {P1, · · · , PN }, and
a pair of matrices V and G of compatible dimensions which satisfy the inequalities

[
A′
iG + G ′Ai Pi + A′

i V − G ′
Pi + V ′Ai − G −V − V ′

]

< 0, ∀i (14)

for all i = 1, · · · , N. Then the system (8) is robustly Hurwitz for any (constant)
σ ∈ ΛN .

Proof Take σ ∈ ΛN , and multiply the inequality (14) by the non-negative scalar σi

and then sum up. We have

[
A(σ )�G + G�A(σ ) P(σ ) + A(σ )�V − G�
P(σ ) + V�A(σ ) − G −V − V ′

]

< 0

Multiply this inequality on the left and on the right by [I A(σ )′] and [I A(σ )′]�,
respectively,3 to get

A(σ )�P(σ ) + P(σ )A(σ ) < 0

The theorem is then proven. �
Note that (14) implies

A�
i G + G�Ai < 0,

where G is not necessarily symmetric positive definite, in general. We thus see that
the condition of Theorem12 is less conservative than quadratic stability (13).

5 Small-Gain Theorems

In this section, we briefly recall important results concerning robust stability and
robust performances of linear systems and special classes of nonlinear ones. The

3Note that if Q > 0 then T�QT > 0 for any full column rank matrix T .



52 F. Blanchini and P. Colaneri

main theoretical tools rely on the concept of H∞ norm of a linear system, which we
now recall.

5.1 H∞ Analysis

The H∞ norm of a linear system with transfer function G(s) is defined, in the
frequency domain, as the worst (largest) value of the norm of G( jω), i.e.

‖G(s)‖∞ = sup
ω

‖G( jω)‖

To be feasible, it is only required that G(s) be well defined for all s = jω (no poles
on the imaginary axis). For G(s) stable (analytic in Re(s) ≥ 0) it can be written also
as

‖G(s)‖∞ = sup
Re(s)>0

‖G(s)‖

The space of proper rational matrix functions G(s) that are analytic in the closed
right half-plane is normally indicated by the symbol H∞ and the above norm is
the so-called H∞ norm of G(s) ∈ H∞. The meaning of such a norm is important
from an input–output perspective, since it represents the maximum amplification in
the output of a (stable) system fed by a sinusoid at the ‘worst’ frequency, say ω̄.
This characterization of G( jω̄), with different denomination, is well known since
the early days of what we can call the ‘classical’ automatic control theory, just after
the Second World War. State-space characterisations of the H∞ norm of G(s) =
C(s I − A)−1B + D came much later, in terms of the associated Hamiltonian matrix
and hence of the Riccati equation

A�P + PA + (PB + C�D)(γ 2 I − D�D)−1(B�P + D�C) + C�C = 0 (15)

Note that if we take D = 0 and we relax the equality to an inequality we get

A�P + PA + γ −2PBB�P + C�C < 0

a condition we had anticipated in Theorem11.
In particular, the H∞ norm of G(s) is less than γ > 0 if and only if A is Hurwitz,

‖D‖ < γ and the Riccati equation admits a positive semidefinite solution P such
that A + B(B�P + C�D)(γ 2 I − D�D)−1 is Hurwitz stable, see [96]. This result
is also known as bounded real lemma and has an interpretation in terms of Linear
Matrix Inequalities. To be precise ‖G(s)‖∞ < γ if and only if there exists P > 0
satisfying ⎡

⎣
A�P + PA PB C�

B�P −γ 2 I D�
C D −I

⎤

⎦ < 0 (16)
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The mathematical step from the Riccati equation (15) (relaxed to an inequality) to
the Riccati inequality in the form of the LMI (16) hinges on the celebrated Schur
Lemma for a block symmetric matrix inequality

V =
[

Q R
R� S

]

> 0

saying thatV > 0 is equivalent toQ > 0 and theSchur complement S − R�Q−1R >

0 or S > 0 and the Schur complement Q − RS−1R� > 0.
Assume now that the system (A, B,C, D) is affected by polytopic uncertainties

with vertices (Ai , Bi ,Ci , Di ), i.e.

(A, B,C, D) =
∑

i=1N

(Ai , Bi ,Ci , Di )αi (t), αi (t) ≥ 0,
N∑

i=1

αi (t) = 1

and that P > 0 satisfies the LMIs (16) in the vertex matrices (Ai , Bi ,Ci , Di ). Then,
the cost V (x) = x�Px is a common quadratic cost function for the uncertain system
(A, B,C, D). Indeed, feasibility of the associated LMIs with a common P for each
vertex of the system (with input w and output z) ensures that

V̇ (x(t)) + z(t)�z(t) < γ 2w(t)�w(t)

so that, if x(0) = 0,

∫∞
0 z�(t)z(t)dt
∫∞
0 w(t)�w(t)dt

< γ 2, ∀ 0 �= w ∈ L2

As for norm bounded uncertain systems, consider

[
A B
C D

]

=
[
An Bn

Cn Dn

]

+
[
L1

L2

]

Δ
[
N1 N2

]

with ‖Δ‖ < 1, and assume that there exists P > 0 satisfying

⎡

⎢
⎢
⎢
⎢
⎣

A�
n P + PAn PBn C�

n PL1 N�
1

B�
n P −I D�

n 0 N�
2

Cn Dn −I L2 0
L�
1 P 0 L�

2 −I 0
N1 N2 0 0 −I

⎤

⎥
⎥
⎥
⎥
⎦

< 0

Then x�Px is a common quadratic Lyapunov function for the uncertain system.
This is actually the condition (recall Theorem11) for the H∞ norm of the system
( Â, L̂, N̂ ) to be less than 1, where
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Fig. 20 Feedback scheme

G1(s)

G2(s)

Â =
[
An Bn

Cn Dn

]

, L̂ =
[
L1

L2

]

, N̂ = [ N1 N2
]

The extension of quadratic stability results to synthesis problems is quite straight-
forward. For instance, dealing with robust state-feedback stabilization of the norm
bounded uncertain system

ẋ = (A + LΔN1)x + (B + LΔN2)u

with ‖Δ‖ < 1, we can consider the Lyapunov inequality associated with the closed-
loop system

(An + BnK )S + S(An + BnK )� + (N1 + N2K )�(N1 + N2K ) + L�L < 0

and give this inequality an LMI formulation letting K S = W and exploiting the
Schur lemma, yielding

⎡

⎣
AnS + BnW + W�B�

n + SA�
n L� SN�

1 + W�N�
2

L −I 0
N1S + N2W 0 −I

⎤

⎦ < 0 (17)

Therefore, if there exist S > 0 andW satisfying theLMI (17), then u = Kx with K =
WS−1 is a quadratically stabilizing gain. The associated quadratic Lyapunov function
is x�S−1x . Notice that such a gain K is such that An + BnK + LΔ(N1 + N2K ) is
Hurwitz for any Δ (also complex) with ‖Δ‖ < 1, and also that the transfer function

GK (s) = (N1 + N2K )(s I − A − BK )−1L

has H∞ norm less than 1. On the other hand, the closed-loop system coincides with
the feedback connection between GK (s) and Δ.

The synthesis problems under uncertainties fall under the legacy of a very impor-
tant result, called small-gain theorem, that provides a strong link between robust
stabilization and H∞. Considering Fig. 20, the following result can be proven.

Theorem 13 Let G1(s) ∈ H∞ be an assigned p × m transfer function and G2(s) ∈
H∞ an arbitrary m × p transfer function with ‖G2‖∞ < α �= 0. Then
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(i) The feedback connected system shown in Fig.20 is stable for any G2(s) if
‖G1(s)‖∞ ≤ α−1.

(ii) If ‖G1(s)‖∞ > α−1, there exists a transfer function G2(s) which destabilizes
the feedback connected system shown in Fig.20.

The H∞ norm is an induced norm in the sense of the worst input–output ratio in
the L2 norm. Other norms can be associated with a system with different input–
output characterizations. For instance, consider again the Riccati equation (15), but
associated with a stable strictly proper systemwith transfer functionG(s) = C(s I −
A)−1B. It is interesting to look at what happens if γ becomes arbitrarily large. It can
be seen that for γ → ∞ the following Lyapunov equation is obtained:

A�P + PA + C�C = 0

It is important here to remember that the trace of B�PB corresponds to the square
of the so-called H2 norm of G(s), say ‖G(s)‖. It is easy to see that

‖G(s)‖2 = 1

2π

∫ ∞

−∞
trace(G(− jω)�G( jω))dω

= trace(B�PB) =
m∑

i=1

∫ ∞

0−
y[i](t)�y[i](t)dt

where y[i](t) is the impulse response of the system when the initial state is 0 and the
impulse is an impulse at the i-th input channel Three (the i-th column of CeAt B).
Here, we have used the fact that the solution of the Lyapunov equation is

P =
∫ ∞

0
eA

�tC�CeAtdt

and the Parseval identity

1

2π

∫ ∞

−∞
trace(G(− jω)�G( jω))dω =

∫ ∞

0
trace[B�eA

�tC�CeAt B]dt

As a compromise between the two defined norms, very important in the mixed
H2–H∞ control problem, it is possible to define the so-called γ -entropy of G(s). To
be precise, consider G(s), strictly proper and stable, whose H∞ norm is less than γ ,
and define the γ -entropy as follows:

Iγ (G) = − γ 2

2π

∫ ∞

−∞
ln det

[

I − G(− jω)�G( jω)

γ 2

]

dω

This quantity is well defined thanks to the assumption that ‖G(s)‖∞ < γ . We can
write
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Iγ (G) = − γ 2

2π

∫ ∞

−∞

m∑

i=1

ln

[

1 − 1

γ 2
σ 2
i (G( jω))

]

dω

where σi (·) denotes the i-th singular value.
Theorem 14 Consider G(s) = C(s I − A)−1B and assume that A is Hurwitz and
‖G(s)‖∞ < γ , for some γ > 0. Moreover, let β = γ 2

‖G(s)‖2∞ . Then

‖G(s)‖22 ≤ Iγ (G) ≤ −βlog(1 − β−1)‖G(s)‖22
Iγ (G) = trace[B�PB]

where P is the stabilizing solution of the Riccati equation

A�P + PA + γ −2PBB�P + C�C = 0

i.e. such that A + γ −2BB�P is Hurwitz.

Proof The squared H2 norm can be written as follows:

‖G(s)‖22 = 1

2π

∫ ∞

−∞

m∑

i=1

σ 2
i (G( jω)) dω

Then, defining the function

f (x2) = −γ 2log

(

1 − x2

γ 2

)

we have that

Iγ (G) = 1

2π

∫ ∞

−∞

m∑

i=1

f
(
σ 2
i (G( jω)

)
dω

Notice that f (x2) ≥ x2, ∀x , and hence, the first conclusion is that

‖G(s)‖22 ≤ Iγ (G)

Now let ri = γ 2

σ 2
i (G( jω))

and notice that ri ≥ β > 1. Function x log(1 − x−1) is nega-
tive and monotonically increasing for x > 1. Therefore,

log

[

1 − 1

ri

]

≥ β

ri
log

[

1 − 1

β

]

and hence
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Iγ (G) = 1

2π

∫ ∞

−∞

m∑

i=1

−γ 2log

[

1 − 1

ri

]

dω

≤ −βlog(1 − β−1)
1

2π

∫ ∞

−∞

m∑

i=1

σ 2
i (G( jω)) dω

= −βlog(1 − β−1)‖G(s)‖22
Finally, the condition ‖G(s)‖∞ < γ is equivalent to the existence of the stabilizing
solution P ≥ 0 of the Riccati equation

A�P + PA + γ −2PBB�P + C�C = 0

Letting Y (s) = I − γ −2B�P(s I − A)−1B, it turns out that

I − γ −2G∼(s)G(s) = Y∼(s)Y (s)

and then, using the Cauchy integral formula

Iγ (G) = − γ 2

2π

∫ ∞

−∞
log det

[
Y (− jω)�Y ( jω)

]
dω

= lim
z→∞ −γ 2

π

∫ ∞

−∞
log |det [Y ( jω)]| z2

z2 + ω2
dω

= lim
z→∞ −γ 2zlog |det [Y (z)]|

= lim
z→∞ −γ 2zlog

∣
∣det
[
I − γ −2B�P(z I − A)−1B

]∣
∣

= lim
z→∞ −γ 2zlog

∣
∣
∣
∣
∣
det

[

I − γ −2z−1B�PB − γ −2z−2B�PA
∞∑

k=0

z−k Ak B

]∣
∣
∣
∣
∣

= lim
z→∞ −γ 2zlog

∣
∣1 − γ −2z−1trace

[
B�PB

]+ O(z−2)
∣
∣

= lim
z→∞ −γ 2z

[−γ −2z−1trace
[
B�PB

]+ O(z−2)
]

= trace
[
B�PB

]

The proof is concluded. �
For single-input single-output systems, it is possible to characterize Iγ (G) in a

probabilistic way, making reference to the transfer function of a feedback system

Gcl(s) = G(s)

1 − Δ(s)G(s)

where G(s) is stable with‖G(s)‖∞ < γ and Δ( jω), for each ω, a random vari-
able with Δ( jω1) and Δ( jω2) independent of each other if ω1 �= ω2 and uniformly
distributed in the disc of radius γ −1. It can be proven that
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Iγ (G) = EΔ(‖ G(s)

1 − Δ(s)G(s)
‖22)

where EΔ indicates the expectation with respect to distribution of Δ. Indeed, let
Δ( jω) = ρe jθ and G( jω) = λe jφ , and note that the distribution of Δ( jω) is γ 2/π .
Therefore

EΔ(‖ G( jω)

1 − Δ( jω)G( jω)
‖2) = γ 2λ2

π

∫ γ −1

0
ρ

[∫ 2π

0

1

1 + λ2ρ2 − 2λρcos(θ + φ)
dθ

]

dρ

= 2γ 2λ2
∫ γ −1

0

ρ

1 − ρ2λ2
dρ = −γ 2ln(1 − λ2γ −2)

Hence

EΔ(‖ G(s)

1 − Δ(s)G(s)
‖22) = −γ 2

2π

∫ ∞

−∞
ln(1 − |G( jω)|2γ −2)dω = Iγ (G)

5.2 H∞ Design

The control problem for linear time-invariant systems has been classically tackled
in the frequency domain; see the classical scheme in Fig. 21. The aim is, loosely
speaking, guaranteeing the stability of the control system and achieving satisfactory
performances. Usually, such performances are evaluated in terms of the behaviour
of suitable variables of interest to be specified according to the problem at hand and
must be attained in spite of the disturbances acting on the system and of inaccurate
knowledge of the process model. In general, the philosophy underlying the adopted
synthesis procedure strongly affects the result: for instance, the choice of either
ignoring or taking into account the inaccurate knowledge of the processmodelmakes
a great difference to the controller. Moreover, the design procedure significantly
depends on the adopted description of the uncertainty. A design problem can be
solved under nominal conditions, meaning that the process is supposed to be perfectly

G(s)
u

K(s)
y

du dc

dr

co c

Fig. 21 Standard control problem
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known, or can be tackled in a robust way, namely, that it is stated within various
uncertainty scenarios for the plant.

A good solution to the design problem spontaneously calls for making small, in
some suitable sense to be specified, the effects of the disturbances on the variables
of interest. Thus, the desire is of making small one sensitivity function, say ϕ(s),
shaped in frequency by a shaping function, say W (s), i.e.

‖W (s)ϕ(s)‖∞ < 1

It is often realistic to assume that the process model, say G(s), belongs to some
specified set G rather than being perfectly known. Moreover, the so-called nominal
model Gn(s) is usually taken as an element of the set G and therefore viewed as a
first-order approximation of the true model G(s). Consistently, a description of the
set G can be performed by parametrizing it by means of a transfer function Δ(s)
belonging to a suitable setDα: the perturbations which Gn(s) may undergo are then
defined by the adopted parametrization and the structure of the set Dα .

Classical perturbations are those qualified only in terms of their amplitude as
specified by the set

Dα := {Δ̄(s) | Δ̄(s) ∈ H∞ , ‖Δ̄(s)‖∞ < α} (18)

Some particularly meaningful examples of parametrization of G are presented in the
following equations:

G := {G(s) | G(s) = Gn(s) + Δ̄(s)} (19)

G := {G(s) | G(s) = Gn(s)[I + Δ̄(s)]} (20)

G := {G(s) | G(s) = [I + Δ̄(s)]Gn(s)} (21)

G := {G(s) | G(s) = [I − Δ̄(s)]−1Gn(s)} (22)

G := {G(s) | G(s) = [I − Gn(s)Δ̄(s)]−1Gn(s)} (23)

It is easy to verify that eachof the sets (19)−(23) is suited to describemeaningful types
of uncertainties in a fairly natural way. For instance, the set (22) can easily absorb
right half-plane poles (as an example: Δ̄(s) = 10/(1 + s), so that [1 − Δ̄(s)]−1 =
(1 + s)/(s − 9).

The design problem in an uncertain environment consists of selecting a controller,
say K (s), which ensures stability as well as satisfactory performances not only in
nominal conditions (e.g. G(s) = Gn(s)) but also when the plant undergoes finite
perturbations. As for the basic stability requirement, a controller K (s) is said to
guarantee robust stability if, given a set Dα , the control system is stable for each
G(s) ∈ G . In a similar way, a controller K (s) is said to guarantee robust perfor-
mances if, given a set Dα , the control system satisfies some specified performance
requirements for each G(s) ∈ G , for a sensitivity function ϕ(s), which includes the
functions
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Fig. 22 The standard
three-block configuration

(s)

P(s)

(s)

yu

zw

S(s) = [I + G(s)K (s)]−1

T (s) = G(s)K (s)[I + G(s)K (s)]−1

V (s) = K (s)[I + G(s)K (s)]−1

M(s) = [I + G(s)K (s)]−1G(s)

Accordingly, the robust sensitivity performance, the robust complementary sensi-
tivity performance, the robust control sensitivity performance and the robust output
sensitivity performance are guaranteed if, given the setsG andDα , the control system
is stable for all G(s) ∈ G and

‖W1(s)S(s)‖∞ < 1 , ∀G(s) ∈ G (24)

‖W2(s)T (s)‖∞ < 1 , ∀G(s) ∈ G (25)

‖W3(s)V (s)‖∞ < 1 , ∀G(s) ∈ G (26)

‖W4(s)M(s)‖∞ < 1 , ∀G(s) ∈ G (27)

respectively.
It is possible to call for the simultaneous matching of two or even all the inequal-

ities (24)−(27). On the other hand, under some circumstances, the controller might
be required to guarantee robust stability together with satisfactory performances in
nominal conditions only (therefore with Gn(s) replacing G(s) in the inequalities
(24)−(27)).

The introduced design problems can all be reduced to a unique standard problem
in the H∞ context, described in the block configuration in Fig. 22 where P(s) is the
so-called augmented system, K (s) is the controller to be designed, Δ(s) accounts
for the uncertainties, z contains the performance variables, u the control inputs, y the
measurement outputs and w the disturbances. The controller K (s) in Fig. 21 which
solves one of the design problems is the same controller that in Fig. 22 guarantees
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stability and the boundedness of the H∞ norm of the transfer function Tzw from w
to z. The interest in reformulating the original design problem in terms of the block
structure of Fig. 22 lies in the fact that the augmented plant P(s) depends only on
the nominal plant Gn(s), on the particular set G of the given perturbations and on
the required performances of the control system.

The procedure underlying the passage from the standard control scheme in Fig. 21
to that of Fig. 22, i.e. the definition of the system P(s) and signals w and z, turns
out to be very simple when dealing with a design problem in nominal conditions
(Δ̄(s) = 0), henceforth referred to as nominal design.

For instance, consider the problem of nominal design with joint sensitivity and
complementary sensitivity performance. To this end, with reference to Fig. 21 (with
G(s) = Gn(s)) and Fig. 22 (with Δ(s) = 0), define z := [y�W1(s)� c�W2(s)�]�
and w := co. Then,

P(s) =
⎡

⎣
W1(s) −W1(s)Gn(s)
0 W2(s)Gn(s)
I −Gn(s)

⎤

⎦

The solutions of control problems under norm bounded uncertainties hinge on the
small gain Theorem13. The first problem to be fulfilled is of course robust stability.
Assume that one of the parameterizations of G in Eqs. (19)–(23) has been adopted to
account for the uncertain knowledge of the plant. It is then obvious how important
would be the choice of a controller K (s) which guarantees closed-loop stability for
an assigned set of perturbations, i.e. for an assigned value of the scalar variable α

(recall the definition of Dα , Eq. (18)). Along these lines the control problem that
spontaneously arises is a robust stability design problem. Such a problem is easily
reformulated in that of determining (if any) a controller K (s) that, with reference to
the scheme of Fig. 21, guarantees stability and is such that the H∞ normof the transfer
function Tzw is less than a suitable scalar β. The augmented plant P(s) depends on
the choice of the particular set G , as now shown for the sets in Eqs. (19) and (21).
For instance, considering the set G given by Eq. (19) (additive perturbations), define
z as the input of Δ̄(s), w as the output of Δ̄(s), and observe that the control system
of Fig. 21 is completely equivalent to that of Fig. 22 (with Δ(s) = Δ̄(s)) if

P(s) =
[

0 I
−I −Gn(s)

]

In view of Theorem13, K (s) guarantees stability for any Δ̄(s) ∈ Dα if and only if
‖Tzw(s))‖∞ < β := α−1.

It is also easy to cope with the problem of robust stability with nominal perfor-
mances. For instance, consider the control system depicted in Fig. 21 and assume
that a description of the uncertainty, based on the set G in (21), is given, with the
uncertain block Δ(s) shaped as follows:

Δ̄(s) = W5(s)Δ
∗(s)W4(s), ‖W5(s)‖∞ = 1, ‖Δ∗(s)‖∞ < 1 (28)
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Moreover, assume that the design problem is that of determining a controller K (s)
which guarantees robust stability and the fulfilment, under nominal conditions, of
a preassigned performance requirements, for instance, the sensitivity performance
(24) under nominal conditions. Therefore, the problem is stated as one of deter-
mining K (s) such that ‖W1(s)Sn(s)‖∞ < 1 and ‖W4(s)Tn(s)W5(s)‖∞ < 1. Since
‖W5(s)‖∞ = 1, it is apparent that the design specifications are met if

∥
∥
∥
∥

[
W1(s)Sn(s)
W4(s)Tn(s)

]∥
∥
∥
∥∞

< 1,

i.e. if ‖Tzw(s))‖∞ < 1, with

z :=
[
z1
z2

]

, P(s) :=
⎡

⎣
W1(s) −W1(s)Gn(s)
0 W4(s)Gn(s)
I −Gn(s)

⎤

⎦

The problem is then cast in the context illustrated in Fig. 22 with

Δ(s) =
[

0
Δ∗(s)

]

Things get more involved when the design problem is aimed at simultaneously
achieving robust stability and robust sensitivity performances.

Again considering the sets (21) and (28),

S(s) = [I + G(s)K (s)]−1 = Sn(s)[I + W5(s)Δ
∗(s)W4(s)Tn(s)]−1,

the robust sensitivity performance can be expressed as

‖W1(s)Sn(s)[I + W5(s)Δ
∗(s)W4(s)Tn(s)]−1‖∞ < 1

∀Δ∗(s) ∈ H∞ , ‖Δ∗(s)‖∞ < 1 (29)

whereas the robust stability requirement is stated as

‖W4(s)Tn(s)W5(s)‖∞ < 1. (30)

It is easy to verify that Eqs. (29) and (30) are satisfied if

∥
∥
∥
∥

[
W1(s)Sn(s)
W4(s)Tn(s)

]∥
∥
∥
∥∞

<

√
2

2
,

i.e. ‖Tzw(s)‖∞ <
√
2
2 for the augmented plant P(s) as above. Notice that the simulta-

neous request of both robust stability and robust performance has lowered, not really
surprisingly, the bound on the value of the norm.
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The foregoing discussion has shown that a number ofmeaningful control problems
can be treated in a unified fashion. As a matter of fact, it has been shown that they
are all amenable to the problem of synthesizing a controller K (s) which stabilizes
the control system in Fig. 21 and is such that the H∞ norm of the transfer function
Tzw(s) from the input w to the output z is less than a prescribed attenuation level
γ > 0. To this aim, first of all it is convenient to introduce the following time-domain
description of the process under control (augmented plant), which will be frequently
quoted in the development of the present chapter.

ẋ = Ax + B1w + B2u (31)

z = C1x + D11w + D12u (32)

y = C2x + D21w + D22u (33)

The controller is constrained to be a finite-dimensional, time-invariant, linear system,
described by

ξ̇ = Fξ + Gy (34)

u = Hξ + Ey (35)

Hence,

P(s) =
⎡

⎢
⎣

A B1 B2

C1 D11 D12

C2 D21 D22

⎤

⎥
⎦ , K (s) =

[
F G

H E

]

Of course, the feedback connection of system (31)–(33) with system (34)–(35) must
be well defined. For such a condition to be verified, it is necessary that

det[I − ED22] �= 0 (36)

so that the algebraic loop which is created by the insertion of the controller is auto-
matically solvable.

Notice that Tzw(s) ∈ H∞ entails that such a function is stable: this objective is
obviously satisfied if the internal stability of the closed-loop system is ensured, i.e.
if K (s) in (34), (35) internally stabilizes system (31)–(33). This is equivalent to
requiring the stability of the dynamic matrix of the closed-loop system, i.e.

Re(λi (AF )) < 0 , ∀i (37)

AF :=
[

A + B2(I − ED22)
−1EC2 B2(I − ED22)

−1H
G[I + D22(I − ED22)

−1E]C2 F + GD22(I − ED22)
−1H

]

(38)

The controller K (s) is admissible in H∞ for P(s) if conditions (36)−(38) are verified.
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The main result concerns the resolution of two precise points, following the
scheme formally presented in Problem1 below: the existence of a controller such
that ‖Tzw(s)‖∞ < γ and the parametrization of all such controllers. Problem1 refers
to the feedback configuration of Fig. 21 and to the set F∞γ which represents the
family of all admissible controllers in H∞ for P(s) such that ‖Tzw)‖∞ < γ .

Problem 1 (Standard problem in H∞) Let a positive scalar γ be fixed.

(a) Find a necessary and sufficient condition for the existence of a controller K (s)
which is admissible in H∞ for P(s) and such that ‖Tzw(s)‖∞ < γ .

(b) Find a family of controllers F∞γ r ⊆ F∞γ whose elements generate the whole
set of functions Tzw(s) which are generated by the elements of F∞γ .

Three main problems have been associated with a particular structure of the system
P(s): they are referred to as the full information problem, the output estimation
problem and the partial information problem. In more detail, the last problem will
be tackled by exploiting the solutions of the former ones, which, in turn, are strictly
related to each other by structural relations: the complete picture puts into sharp
relief important duality and separation properties. The main reference providing a
complete state-space solution via Riccati equations for the nominal case, i.e. Δ = 0
in Fig. 22, is [45]. To be precise, under the assumptions that D11 = 0, D22 = 0,
D�

12C1 = 0, D�
21B1 = 0, D�

12D12 = I , D21D�
21 = I , a controller R(s) such that the

closed-loop system is stable and ‖Tzw(s)‖∞ < γ exists if and only if there exist
stabilizing solutions P ≥ 0 and S ≥ 0 of Riccati equations

0 = A�P + PA + 1

γ 2
PB1B

�
1 P − PB2B

�
2 P + C�

1 C1

0 = AS + SA� + 1

γ 2
SC1C

�
1 S − SC2C

�
2 S + B1B

�
1

with the constraint ‖PS‖ < γ . One controller K (s) is then given by

˙̂x =
(

A − B2B
�
2 P + 1

γ 2 B1B
�
1 P − (I − 1

γ 2 SP)−1SC�
2 C2

)

x̂ + (I − 1

γ 2 SP)−1SC�
2 y

u = −B�
2 Px̂

The well-known separation principle (valid for H2 problems) is eventually lost, and
recovered for γ → ∞. Interestingly, it is also possible to parametrize the class of
performant controllers with a free stable parameter.

As apparent from the simple examples above, in most problems the solution is
conservative, in the sense that it encompasses uncertainties, Δ(s) in Fig. 22 that
are unstructured, i.e. Δ(s) is a unique block with bounded norm. The so-called μ-
synthesis, [106], generalizes the theory to cope with structured uncertainties (for
instance, block-diagonal Δ(s)). Even more, in the paper [107] the classical μ-
synthesis tools are generalized to the integral quadratic constraint (IQC) framework.
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Fig. 23 Persidiskii’s system

This provides a systematic design of robust controllers based on an iteration of stan-
dard nominal controller synthesis with general dynamic multipliers, thus enabling
to perform robust controller synthesis for a significantly large class of uncertain-
ties, like sector-bounded and slope restricted nonlinearities, time-varying parametric
uncertainties and uncertain time-varying time delays, both with bounds on the rate-
of-variation.

Many directions were pursued trying to enrich the corpus of available theoretical
results on robust control design and numerical analysis of the solutions. One inter-
esting problem is the so-called mixed H2–H∞ design problem, aiming at finding
a compensator capable to minimize the H2 norm between a pair of input–output
variables while keeping the H∞ norm between (another or the same) pair of input–
output variables less than a given attenuation level. The two problems, separately
taken, are amenable to be solved via convex programming. Unfortunately, convexity
is generally lost when taking into account jointly the two objectives. The minimum
entropy design approach provides a suboptimal solution to the mixed problem [88],
whereas, under suitable assumptions, the blending control approach [21] results in
the optimal solution of the mixed problem at the expense of increased dimension of
the controller.

5.3 Nonlinear Perturbations

In this subsection nonlinear robust stability and performance are considered. In this
topic, advantage is taken of the a priori knowledge of the class of nonlinear pertur-
bations acting on the open-loop model. Two main classes are of importance, namely,
multiplicative and additive nonlinear perturbations, leading to what we call Per-
sidiskii and Lur’e robust design procedures. In both cases, the control structure is
assumed to be linear and the whole state vector is available for feedback.
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5.3.1 Persidiskii Design

Consider the robust control design of a class of nonlinear systems subject to state-
dependent nonlinear perturbations called multiplicative perturbations, see Fig. 23.
The proposed design procedure will be expressed in terms of convex programming
problems only. The open-loop system is subject to a class of perturbations such that,
when they occur, the whole state vector x changes to f (x). Then, the perturbation
occurrence also changes the measured output y accordingly.

Assuming the state vector has dimension n and the nonlinear function f (x) is
not exactly known, the only available information is that it belongs to the uncertain
domain D f composed of all vector valued functions with the following properties:

(1) Each component of f (x), namely, f j (x), j = 1, 2, . . . , n is a real valued function
such that

f j (x) = f j (x j )

where x j ∈ R denotes the j-th component of the vector x ∈ Rn .
(2) Each component f j (x j ), j = 1, 2, . . . , n is such that

f j (0) = 0

f j (ξ)ξ > 0 ∀ ξ �= 0 ∈ R
∫ ∞

0
f j (ξ)dξ = ∞

The second condition says that the graph of f (·) must be contained in the first
and third quadrants of the ( f, ξ) plane. Since f (x) = x ∈ D f the corresponding
linear system is called the nominal system (Σn) and it has the following state-space
representation:

ẋ = Ax + B2u , x(0) = x0
z = C1x + D12u

Adapting the previous design goals to cope with nonlinear systems stability and
performance, we proceed trying to determine (if any exists) a linear state-feedback
control law u = Fx for Σn such that the origin x = 0 of the perturbed system Σp

ẋ = (A + B2F) f (x) , x(0) = x0
z = (C1 + D12F) f (x)

is globally stable for all f ∈ D f . Furthermore, among all state-feedback gains with
this property, find the one, namely, Ff , which solves the associated guaranteed cost
control problem

ρ̄ f (x0) := min ρ̄(F, x0) (39)
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where ∫ ∞

0
z(t)�z(t)dt ≤ ρ̄(F, x0) , ∀ f ∈ D f

Similarly the minimum value of ρ̄(F, x0) with respect to all F preserving stability
is called the minimum guaranteed cost associated with the optimal feedback gain
F = Ff . To accomplish the first goal concerning the robust stability of Σn we need
to introduce the following important result.

To ease notation, for any square matrix P , the subscript ‘d’ indicates that P = Pd
is constrained to be a diagonal matrix.

Theorem 15 (Persidiskii theorem) For any given state-feedback matrix F, suppose
that there exists a positive definite diagonal matrix Pd such that

0 ≥ (A + B2F)�Pd + Pd(A + B2F) + Q (40)

for some matrix Q = Q� > 0. Then, the origin x = 0 of the perturbed system Σp is
globally asymptotically stable for all f ∈ D f .

In the above result, it is clear that matrix Q must be positive definite but does not
need to have any particular structure. This degree of freedom is used in the next
lemma to get the upper bound defined in (39).

Lemma 1 Assume that, for all f ∈ D f , there exist n positive and finite parameters
r j , j = 1, 2, · · · , n, such that

∫ x j (0)

0
f j (ξ)dξ ≤ r j

2
, j = 1, 2, . . . , n

For any state-feedback control gain F such that there exists P = Pd satisfying the
matrix inequality (40), it is possible to choose Q = Q� > 0 such that the upper
bound ρ̄(F, x0) is given by

ρ̄(F, x0) :=
n∑

j=1

Pj jr j .

The guaranteed cost control problem (39) can be converted into a convex one by
means of Schur complements. To this end, consider the affine matrix function which
is defined by all pairs of matrices (X,Y ) of appropriate dimensions with the first one
being symmetric

A f (X,Y ) :=
[
AX + B2Y + X A� + Y�B�

2 XC�
1 + Y�D�

12
C1X + D12Y −I

]

The following preliminary result is of particular importance towards the complete
solution of the guaranteed cost control problem stated before.
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Fig. 24 Lur’e system

Theorem 16 Define the convex set

C f := {(X,Y ) : X = Xd > 0 , A f (X,Y ) < 0
}

The set of all state-feedbackmatrices F such that (40) holds for some Q > 0, denoted
as K f , is alternatively given by

K f := {Y X−1 : (X,Y ) ∈ C f
}

From this result, we are able to generate by means of a feasibility convex problem
all gains belonging to the non-convex setK f . The elements of this set assure robust
stability of the nominal closed-loop system against all nonlinear perturbations f ∈
D f . Besides, using Lemma1 and defining the matrix

D := diag
[√

r1,
√
r2, . . . ,

√
rn
]

the elements of the set C f allow for determination of the upper bound ρ̄(F, x0) for
all F ∈ K f as

ρ̄(F, x0) =
n∑

j=1

Pj jr j = trace
[
D�X−1D

]

valid for all (X,Y ) ∈ C f and F = Y X−1. From this fact the minimum guaranteed
cost is readily calculated from

ρ̄ f (x0) = inf
{
trace

[
D�X−1D

] : (X,Y ) ∈ C f
}

(41)

which is a convex programming problem. Once the global solution of the right-hand
side of (41) is calculated, the corresponding state-feedback gain, optimal solution of
the left-hand side of the same equation, is provided simply by Ff = Y X−1.
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5.3.2 Lur’e Design

Let us consider now another important robust control design for the class of output-
dependent nonlinear additive perturbations, see Fig. 24. The nominal system is
denoted by Σn . The perturbed dynamic system, namely, Σp, is subject to the non-
linear perturbation h(·) which is a vector valued function not known a priori. The
available information is that it belongs to the uncertain domain Dh composed of all
functions having the following properties:

(1) The vector valued function h(·) is defined for all ξ ∈ Rr and h(·) ∈ Rr where
r is a positive integer less than or equal to the dimension n of the state vector
x ∈ Rn .

(2) It is such that

h(0) = 0

h(ξ)�ξ ≤ 0 ∀ ξ ∈ Rr

The first condition imposes that, in Fig. 24, the vectors w and z1 have the same
dimension. The second one implies that the nonlinear function −h(·) belongs to the
sector [0,∞). In fact, in the one-dimensional case, the graph of −h(ξ) in the plane
(h, ξ) is in the first and third quadrants. The state-space equations of the nominal
open-loop system Σn , corresponding to h(·) = 0 ∈ Dh , are the standard ones

ẋ = Ax + B1w + B2u , x(0) = x0
z0 = C0x + D0u

z1 = C1x + D12u

y = x

As before, the goal is to design a state-feedback control law, namely, u = Fx , such
that the closed-loop perturbed systemΣp obtained fromΣn together withw = h(z1)
possesses the following properties associated with its state-space representation:

ẋ = (A + B2F)x + B1h(z1) , x(0) = x0
z0 = (C0 + D0F)x

z1 = (C1 + D12F)x

First, the origin x = 0must be globally stable for all h ∈ Dh . From all state-feedback
gains with this property, select (if possible) one, namely, Fh , which solves the fol-
lowing guaranteed cost control problem:

ρ̄h(x0) := min ρ̄(F, x0) (42)

where
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∫ ∞

0
z0(t)

�z0(t)dt ≤ ρ̄(F, x0) , ∀ h ∈ Dh

The guaranteed cost control problem (42) is similar to the mixed H2/H∞ control
problem. The existence of the nonlinear function h ∈ Dh does not allow us to express
it in the frequency domain. Instead, the guaranteed cost is given in terms of an upper
bound to the above integral of the controlled output. Accordingly, the exogenous
signal is replaced by an arbitrary initial condition x(0) �= 0.

Theorem 17 (Passivity theorem) For any given state-feedback matrix F suppose
that there exists a symmetric and positive definite matrix P such that

0 ≥ (A + B2F)�P + P(A + B2F) + Q (43)

B�
1 P = (C1 + D12F) (44)

for some matrix Q = Q� > 0. Then, the origin x = 0 of the perturbed system Σp is
globally asymptotically stable for all h ∈ Dh.

Contrary to Theorem15, the simultaneous feasibility of constraints (43) and (44)
depends strongly on the particular choice of matrix Q > 0.

Even so, to be able to express the upper bound ρ̄(F, x0) conveniently we need to
impose

Q = (C0 + D0F)�(C0 + D0F) + ε I (45)

with ε > 0 being an arbitrarily small parameter. Indeed, with this particular choice,
introducing V (x) = x(t)�Px(t), we have that

V̇ (x(t)) ≤ −x(t)�Qx(t)

≤ −z0(t)
�z0(t) , ∀ t ≥ 0

which after integration from t = 0 to t = ∞ provides

∫ ∞

0
z0(t)

�z0(t)dt ≤ v(x(0)) = x�
0 Px0

Based on this, it is natural to define

ρ̄(F, x0) := x�
0 Px0 (46)

as a valid upper bound for all h ∈ Dh . Furthermore, let us denote byKh the set of all
state-feedback gains F such that with Q > 0 given in (45) both constraints (43) and
(44) are simultaneously satisfied for some P > 0, and introduce the affine matrix
functions defined for all pairs of matrices (X,Y ) of appropriate dimension with the
first one being symmetric
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Ah(X,Y ) :=
[
AX + B2Y + X A� + Y�B�

2 XC�
0 + Y�D�

0
C0X + D0Y −I

]

and
Bh(X,Y ) := C1X + D12Y − B�

1

The following theorem provides a complete parametrization of the set Kh in terms
of a convex set. It is the basis for the solution of the associated optimal guaranteed
cost control problem (42).

Theorem 18 Define the convex set

Ch := {(X,Y ) : X > 0 , Ah(X,Y ) < 0 , Bh(X,Y ) = 0}

The set Kh is alternatively given by

Kh := {Y X−1 : (X,Y ) ∈ Ch
}

We have now all elements to address the optimal guaranteed cost control problem
(42). From Theorem18 and (46), it reduces to the problem

ρ̄h(x0) = inf
{
x�
0 X−1x0 : (X,Y ) ∈ Ch

}

which is a convex programming problem. Its global optimal solution provides both
the minimum guaranteed cost ρ̄h(x0) and the associated optimal state-feedback gain
Fh = Y X−1.

5.4 L1 Conditions

We briefly sketch some known robustness conditions of the small-gain type [40, 41]
which are expressed in the time domain. Consider again the usual set-up

ẋ(t) = Ax(t) + Eσ(t)

η(t) = Hx(t) (47)

σ = Δ ◦ η

where A is an Hurwitz matrix and now Δ is an operator defined in the time domain.
Let us introduce the following norm for signals with positive support (i.e. null for
t < 0):

‖η‖ .= sup
t≥0

‖η(t)‖∞

Then given a linear operator Δ, the ∞–to–∞ induced norm
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‖Δ‖1 .= sup
‖η‖≤1

‖Δ ◦ η‖∞

is called the L1 norm. The question now is whether the loop remains stable for a
bounded Δ.

As a first step we consider the norm of the operator (A, E, H). Let W (t) be the
impulse response

W (t) = HeAt E

Then

‖(A, E, H)‖1 = max
i

∑

j

∫ ∞

0
|Wi j (t)|dt

where the integral converges, thanks to the assumed asymptotic stability of A. This
norm can be computed via numerical integration.

Define the quantity

ρmax = sup ρ > 0 : the loop (47) is robustly stable, with ‖Delta‖1 < ρ

The following theorem holds, which can be considered the L1 version of the small-
gain theorem (Theorem13).

Theorem 19 ρmax = ‖(A, E, H)‖−1
1 .

Let us briefly comment on the case of an SISO system. We have that

‖W‖∞ = sup
ω≥0

|H( jωI − A)−1E | ≤ ‖(A, E, H)‖−1
1

The property is easily proved by noticing that

|W ( jω)| =
∣
∣
∣
∣

∫ ∞

0
e jωtWi j (t)dt

∣
∣
∣
∣ ≤
∫ ∞

0
|e jωtWi j (t)|dt =

∫ ∞

0
|Wi j (t)|dt

where, with a slight abuse of notation,W (s) is the transfer function of the open loop
system. This basically implies that the small-gain robust stability conditions based
on L1 norm are typically more conservative than those based onH∞ norms.

To explain why this criterion can be very conservative, we consider the case of
the perturbation Δ to which we add a delay operator

Dτ (Δ ◦ η) = [Δ ◦ η](t − τ)

It is apparent that the delay does not change the norm. Hence if the criterion above
holds, then the loop remains stable with arbitrary delay. This is quite a strong condi-
tion, in many cases unrealistic.
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6 Related Topics

Parameter modulation in active control scenarios is a very up-to-date research area
with the aim of improving the overall plant performance. In this section, we provide a
very brief overview of the analysis of linear systems with either switching or periodic
parameters.

6.1 Switching Systems

There is an enormous interest in dynamic systems whose behaviour can be described
mathematically using a mixture of logic based switching and difference/differential
equations. This interest has been primarily motivated by the realization that many
man-made systems, and somephysical systems,may bemodelled using such a frame-
work. Such systems are often referred to as switching systems, and arise frequently
in communication networks, control theory, biology and many stochastic systems
that can be described as an iterated function system. The link to systems with time-
varying polytopic uncertainties has already been discussed in previous sections.Here,
we briefly address stability and stabilization of switched systems. Important refer-
ences are themonographs [81, 111], and the recent ones for positive switched systems
[22, 25].

A switching system is a system of the form

ẋ(t) = fσ (x(t)) (48)

where the signal σ(t) belongs to

σ(t) ∈ Σ = {1, 2, . . . , q}

a finite set. By their nature they are discontinuous, so the existence of a solution is an
issue, unless we admit that σ(t) cannot have two commutations which differ in time
less than a value τ > 0, that is called dwell time. In this case a solution obviously
exists if the functions fi are regular.

A special interesting case is the linear one

ẋ(t) = Aσ x(t) (49)

with Ai assigned matrices.
As far as σ(t) is concerned, we have two possibilities.

• σ(t) is an arbitrary signal (a disturbance);
• σ(t) is a governable signal (a control).

The two cases are deeply different, and the latter case is much more difficult to study.
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Let us consider the arbitrary signal case. We can associate with the switching
system the following polytopic system

ẋ(t) =
q∑

i−1

wi (t) fi (x(t)) wi > 0,
q∑

i=1

wi = 1 (50)

If we assume that f (0) = 0, it turns out that the stability of the 0 states of (48) and
(50) are equivalent. In particular in the linear casewe have the following result, which
coincides with Theorem4, already provided in Sect. 3.4 for polytopic systems.

Theorem 20 The following statements are equivalent:

• The switching system (49) is asymptotically stable under arbitrary switching.
• The polytopic system (8)–(9) is asymptotically stable.

These results are due to Molchanov and Pyatnitskii [85–87].4

The above necessary and sufficient conditions are very hard to be assessed, in
general. Therefore,many sufficient conditions have been carried out to find a common
Lyapunov function, that we know exists if and only if the system is stable under
arbitrary switching, see also [108]. Interestingly, it was shown that a homogeneous
polynomial Lyapunov function (of sufficiently high degree) exists if and only if the
switching system is stable, see [35]. LMI techniques are also amenable to be used in
the twin problem of assessing stability under a ‘hard’ dwell time τ , meaning that the
switching signal is arbitrary but the interval between two successive jumps is lower
bounded by τ > 0. For such a problem, given τ it is clear that stability is always
guaranteed with τ sufficiently high, being the single dynamical systems stable, and
therefore, a sensible problem is that of finding the infimum τ guaranteeing stability.
Piecewise quadratic Lyapunov functions can be used, see [36, 52]. A necessary and
sufficient condition, along the lines of piecewise polyhedral Lyapunov functions
is provided in [19], whereas the extension to piecewise homogeneous polynomial
Lyapunov functions (manageable with LMIs) is in [35]. For the dwell time problem
of nonlinear switching systems, see [38].

The theory can be extended to state-feedback stabilization [15, 18], namely, to
systems of the form

ẋ(t) = Aσ x(t) + Bσu

Clearly the equivalence of the stability of (49) and (8) allows us to use the same
efficient LMI techniques for stability and stabilization.

The problem of stabilization is much more difficult. An explanation is that, even
in the linear case, stabilizability does not imply the existence of a convex Lyapunov
function [20]. There are examples of systems which can be stabilized adopting a
switching rule σ(x) but which do not admit convex Lyapunov functions.

A powerful sufficient condition is given by the following theorem.

4Notwithstanding the fact that some literature unfairly attributes the result to much more recent
contributions.
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Fig. 25 Tank system
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Theorem 21 Assume that there exists a function f̄ (x) such that

f̄ (x) ∈ conv{ fi (x)}

the convex hull of the point fi (x), and that the system

ẋ(t) = f̄ (x(t))

has an equilibrium in 0, f̄ (0) = 0, that is globally asymptotically stable and admits
a Lyapunov function V (x) such that

V̇ (t) = ∇V (x) f̄ (x(t)) ≤ −φ(x)

with φ(x) regular and negative definite. Then the switching system is stabilizable
with the switching rule

σ̂ (x) = argmin
i∈Σ

∇V (x) fi (x)

Proof Since f̄ (x) =∑q
i=1 wi fi (x)

−φ(x) ≥ V̇ (t) = ∇V (x) f̄ (x(t)) = ∇V (x)
q∑

i−1

wi fσ (x) =
q∑

i−1

wi [∇V (x) fi (x)]

Hence, beingwi non-negative and summingup to one, there exists at least one element
i which satisfies ∇V (x) fi (x) ≤ −φ(x). So if we take the minimum σ̂ (x)

∇V (x) fσ̂ (x)(x) ≤ −φ(x)

�
As a corollary, we have that, in the linear case, the existence of a Hurwitz convex

combination in the set of matrices Ai implies stabilizability. This condition is not
necessary [81].

Note that all the individual systems associated with the functions fi might be
unstable. Moreover, fi might not even have 0 as equilibrium state fi (0) �= 0, only
f̄ (0) = 0 is required.
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Example 11 Consider the tank system represented in Fig. 25. The equations are

ḣ1 = −Φ(h1 − h2) + αΓ (h0 − h1)

ḣ2 = +Φ(h1 − h2) − Ψ (h2)

where h1 and h2 are the levels of the two tanks, h0 is a constant level of the reservoir,
α ∈ {0, 1} is a switching signal (an on–off valve). FunctionsΓ ,Φ andΨ are assumed
to be unknown, monotonically increasing smooth functions, which represent the
flows as functions of the levels. We assume that Γ (0) = 0, Φ(0) = 0 and Ψ (0) = 0.

Let ᾱ such that 0 < ᾱ < 1 be an intermediate level of the switching parameter
and let h̄1 and h̄2 be the equilibrium levels which would correspond to ᾱ (which is
clearly unfeasible). In the new variables x1 = h1 − h̄1 and x2 = h2 − h̄2, the equa-
tions become

ẋ1 = −Φ(h̄1 + x1 − h̄2 − x2) + ᾱΓ (h0 − h̄1 − x1) − (α − ᾱ)Γ (h0 − h̄1 − x1)

ẋ2 = +Φ(h̄1 + x1 − h̄2 − x2) − Ψ (h̄2 + x2)

If we could apply the signal α = ᾱ by construction, the equilibrium would be
(0, 0). Note that at the equilibrium we have

Φ(h̄1 − h̄2) = ᾱΓ (h0 − h̄1) and Φ(h̄1 − h̄2) = Ψ (h̄2)

Consider the fake system with α = ᾱ and the candidate Lyapunov function
V (x1, x2) = (x21 + x22 )/2. The Lyapunov derivative is, after adding a term which
is zero in view of the relations above,

V̇ (x1, x2) = −Φ(h̄1 − h̄2 + x1 − x2)(x1 − x2) + ᾱΓ (h0 − h̄1 − x1)x1 − Ψ (h̄2 − x2)x2
+ Φ(h̄1 − h̄2)(x1 − x2) − ᾱΓ (h0 − h̄1)x1 + Ψ (h̄2)x2︸ ︷︷ ︸

=0

=

= − [Φ(h̄1 − h̄2 + x1 − x2) − Φ(h̄1 − h̄2)
]
(x1 − x2)

−ᾱ
[
Γ (h0 − h̄1) − Γ (h0 − h̄1 − x1)

]
x1 − [Ψ (h̄2 + x2)x2 − Ψ (h̄2)

]
x2

= −φ̄(x1, x2)

It is not difficult to see that φ̄(x1, x2) is positive definite. Unfortunately, α = ᾱ cannot
be actuated. However, the derivative with the true signal α ∈ {0, 1} differs from the
original expression just by the term x1(α − ᾱ)Γ (h0 − h̄1 − x1)

V̇ (x1, x2) = −φ̄(x1, x2) + x1(α − ᾱ)Γ (h0 − h̄1 − x1)

So assuming that the term Γ (h0 − h̄1 − x1) > 0 (this physically means that the level
of the first tank cannot be greater than the level of the reservoir) the switching law,
minimizing the derivative yields
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α =
{
0 if x1 > 0
1 if x1 < 0

This law would introduce chattering, which would be not suitable in the application.
The problem is solved by introducing a dwell time. This control does not require the
knowledge of the functions and works quite well, in practice. Experimental results
are shown in [18], section9.4. �

Remark 4 The reservoir system is asymptotically stable in both configurationsα = 0
andα = 1, so in principle the problemseems a trivial one (stabilizing a stable system).
This is not quite true, because we can achieve some performance improving the
convergence speed. Assume that

∇V (x) f̄ (x) ≤ −βV (x)

with β > 0. This ensures β contractivity of the system ẋ = f̄ (x) in the convex hull,
i.e.

V (x(t)) ≤ −e−βt V (x(0))

Theorem21 can be equivalently stated in terms of β contractiveness: if this condition
is ensured for the system ẋ = f̄ (x), then the switching law ensures the same speed
of convergence. This can be seen also for the suspension system, although we do not
develop this case here.

A powerful method for stabilization of switched systems is provided by the so-
called Lyapunov–Metzler inequalities. The theory was first presented in [52] and
then extended to nonlinear systems in [38]. The idea, for switching linear systems,
is to use an ‘argmin’ switching strategy to drive the system state in the steepest neg-
ative direction of the directional derivative of the Lyapunov function. To be precise,
consider the switched system (49) and assume that there exist Pi > 0 and a Metzler
matrix Λ = Λi j with 1�Λ� such that

A�
i Pi + Pi Ai +

q∑

j=1

λi j Pj < 0, ∀i.

Then
σ(t) = argmin

i
x(t)�Pi x(t) (51)

is stabilizing. A nice characteristic of such inequalities is that they are identical to
the inequalities associated with mean square stability of a Markov jump system with
σ(t) being a Markov process with infinitesimal transition matrix equal to Λ. This
parallelism has nice consequences in the interpretation of the argmin switching rule
with respect to the stochastic jumps induced by the equivalent Markovian system.
The introduction of a cost to be minimized
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J =
∫ ∞

0
x(t)�Qσ (t)x(t)dt, Q ≥ 0

leads to Lyapunov–Metzler inequalities

A�
i Pi + P1Ai +

N∑

j=1

λi j Pj + Qi < 0, ∀i (52)

that are amenable to provide a ‘surrogate’ of the Hamilton–Jacobi–Bellman equa-
tions, providing, with the above switching rule (51), a suboptimal cost that can be
very close to the optimal one; see [22] for applications in the context of positive
switched systems. For the system

ẋ(t) = Aσ(t)x(t) + Bw(t) (53)

z(t) = Eσ(t)x(t) (54)

with initial state x(0) one can define the H2 norm

J =
m∑

k=1

∫ ∞

0
z[k](t)�z[k](t)dt (55)

where z[k](t) is the output response to an impulse at the k-th channel of w(t). The
minimization of J via a switching control law is a formidable complicated problem.
The Lyapunov–Metzler approach provides a suboptimal control. Indeed, it can be
proven that the switching law (51) based on Pi satisfying (52) with Qi = E�

i Ei is
such that

J < min
i

trace
(
B�Pi B

)

The Lyapunov Metzler approach can be extended to the partial measurement case
(only a linear combination of the state is available as measurement), as proved in
[55]. Consider system (53), (54) with

y(t) = Cσ(t)x(t) + Dw(t) (56)

with x(0). The stabilizing switching rule is a functional of y via a suitable filter

ˆ̇x(t) = Âσ(t) x̂(t) + B̂σ(t)y(t) (57)

where

B̂i = V−1Li (58)

Âi = V−1Mi (X − Zi )
−1V (59)

Mi = A�
i Zi + X Ai + LiCi + E�

i Ei (60)
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Table 1 Performance of closed-loop strategies

OF2 SF SH ADD PS1 PS2
∫∞
0 ξ̈ (t)2dt for ξ̈r (t) = δ(t) 7.835 7.721 8.288 8.150 26.548 8.307
∫ T
0 ξ̈ (t)2dt
∫ T
0 ξ̈r (t)2dt

for T = 20 0.697 0.643 0.787 0.823 3.558 0.719

and the matrices V , Li , X , Zi are specified in the following theorem.

Theorem 22 Assume that there exist a Metzler matrix Λ with Λ1 = 0, a positive
definite matrix X, a set of positive definite matrices (Zi , Ri j ) and a set of matrices
Li for all i, j , such that the following matrix inequalities:

A�
i Zi + Zi Ai +

N∑

j=1

λi j Ri j + Qi < 0

A�
i X + X Ai + C�

i L�
i + LiCi + Qi < 0

Rii < Zi ,

[
Ri j − Z j Z j − Zi

• X − Z j

]

> 0, i �= j

hold. Then, the filter (57)–(60), along with the switching rule

σ(t) = arg min
i

x̂(t)�V�(X − Zi )
−1V x̂(t)

where V is an arbitrary non-singular matrix, makes the equilibrium solution x = 0
of (53)–(56) globally asymptotically stable and the associated cost (55) satisfies
J < mini Tr(Wi ) whenever matrices Wi are such that the linear matrix inequality

⎡

⎣
Wi B ′Zi B ′X + D′L ′

�• Zi Zi

• • X

⎤

⎦ > 0

holds for all i .

Example 12 Consider themotivating example presented inSect. 2.5The output feed-
back stabilization problem has been solved by taking the following set of param-
eters: M = 400kg, m = 50kg, k = 2.0 × 104 N/m, kt = 2.5 × 105 N/m, cmin =
3.0 × 102 N s/m and cmax = 3.9 × 103 N s/m. For these parameters the two matrices
A1 and A2 are both stable (although with poorly damped oscillating modes); hence,
our main goal here is to improve the transient dynamical behaviour of the system by
minimizing the vertical acceleration of the chassis.

Two sets of simulations have been carried out. The first set refers to the response of
ξ̈ (t) to a unit impulse on the road acceleration ξ̈r (t). Thefirst rowofTable1 reports the
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integral of the squared chassis acceleration obtained with different control strategies.
The symbols in the table have the following meaning:

• OF: Output feedback switching control of Theorem22 designed with the output
matrices of equations (1).

• SF: State-feedback switching control, designed via the switching rule (51) through
the Lyapunov–Metzler inequalities (52).

• SH: Two-state sky-hook strategy (based on switching according to the sign of
ξ̇ (t)(ξ̇ (t) − ξ̇t (t))).

• ADD: Acceleration-driven damper strategy with sampling period δT = 10−3sec
(based on a switching law depending on the sign of ξ̈ (t)(ξ̇ (t) − ξ̇t (t))).

• PS1: Passive suspension with fixed damping coefficient equal to cmin .
• PS2: Passive suspension with fixed damping coefficient equal to cmax .

The design of OF depends on the tuning parameters r1, r2 and Π , that have been
optimized after a limited number of trials. The resulting tuning parameters in OF are

r1 = 2.0, r2 = 0.5, Λ =
[−100 100

10 −10

]

As apparent from Table1, the difference between the outcomes of OF and SF is
relatively small. By the way, the state-feedback performance is quite close to that
obtained by applying the theoretical optimal switching strategy corresponding to
kt → ∞, see [26].

In the second set of simulations the road profile ξr (t) has been generated as the
double integral of a sample realization of a white noise process with power χ2 = 0.1.
The performance of the seven algorithms above, with the same values of the tuning
parameters, has been measured as the power attenuation on the chassis acceleration,
namely, the ratio

ΘT =
∫ T
0 ξ̈ (t)2dt
∫ T
0 ξ̈r (t)2dt

This value, for T = 20 s, is reported in the second row of Table1.
Figure26 shows the behaviour of the acceleration for the three methods OF, SH

andADD. The plot has been restricted to an interval of 2 s, in order to better represent
the effects of the commutations in the three methods. The OF strategy outperforms
the other two algorithms at the expense of faster switching commutation and shorter
dwell intervals.

Finally, the power attenuation ΘT as a function of T is plotted in Fig. 27 to show
the effectiveness of the feedback strategies based on theLyapunov–Metzler switching
rule.

It should be noted that the Lyapunov–Metzler inequalities only provide a sufficient
condition for stabilization. An extension to cope with systems for which they are
unfeasible has been first provided in [2]. Interesting is also the use of differential
LMIs, see [24], for switching, impulsive systems and systems with reset, for which
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Fig. 26 Chassis acceleration
during a short interval under
a random road acceleration
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Fig. 27 Power attenuation
under a random road
acceleration
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the theory encompasses problems related to optimization of continuous-time systems
with intermittent measurements and digital input update control actions.

The class of ‘dual switching systems’, proposed in [28] for discrete-time systems
and [25, 56] for continuous-time systems, is characterized by system parameters
affected by two switching signals, one coming from a Markov chain, the other being
either a deterministic disturbance or a control parameter. The presence of two signals
allows to cope with interesting problems in contemporary technological society,
where the interplay between performances, robustness and possibility of faults or
malfunctions is very important. The associated new control strategies generalize
switching and linear parameter varying control strategies determined so as to preserve
stochastic stability and guaranteed performances.
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6.2 Periodic Systems

Ordinary differential equations with periodic coefficients have a long history in
physics and mathematics going back to the contributions of the nineteenth cen-
tury by Faraday, Mathieu, Floquet, Rayleigh, Hill and many others. This has been
emphasized by specific application demands, in particular in industrial process con-
trol, communication systems, natural sciences and economics. In control problems,
the fact that a periodic operation may be advantageous is well known to mankind
since time immemorial, but this observation germinated in industrial applications
quite recently, in particular in the field of chemical engineering where it was seen
that the performance of a number of catalytic reactors was improved by cycling.
Suitable frequency-domain tests (such as the celebrated π -test) have been developed
for this purpose in the early 1970s. In our days, the new possibilities offered by
control technology, together with the theoretical developments of the field, opened
the way for a wide use of periodic operations. For example, periodic control is useful
in a variety of problems concerning under-actuated systems, namely, systems with
a limited number of control inputs with respect to the degrees of freedom. Another
example comes from non-holonomic mechanical systems, where in some cases sta-
bilization cannot be achieved by means of a time-invariant differentiable feedback
control law, but it is achievable with a periodic control law. Periodic control finds
many applications in all fields of engineering and social sciences. For a monograph
(including historical facts) see [14].

Consider the system
ẋ(t) = A(t)x(t)

where A(t) is a matrix with bounded periodic coefficients (of period T ). The system
is asymptotically stable if and only if the so-called characteristic multipliers have
modulus less than one. They are the eigenvalues of themonodromy matrixΦA(T, 0),
where ΦA(t, τ ) is the transition matrix, i.e. x(t) = ΦA(t, τ )x(τ ). It is clear that
a switching system ẋ(t) = Aσ(t)x(t) with σ(t) periodic can be seen as a periodic
system with discontinuous A(t) = Aσ(t). For example, if T = 2 and

σ(t) =
{
1 t ∈ [0, 1)
2 t ∈ [1, 2)

then
ΦA(2, 0) = eA2eA1

and the system is stable if and only if the eigenvalues of eA2eA1 are in the open unit
disc. Equivalently, one can associate with the periodic system a reset system

ξ̇ (t) =
[
A1 0
0 A2

]

ξ(t), ξ(t+) =
[
0 I
I 0

]

ξ(t)
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Using a Lyapunov approach it can be seen that stability is equivalent to the existence
of P(t) > 0 such that

Ṗ(t) +
[
A1 0
0 A2

]�
P(t) + P(t)

[
A1 0
0 A2

]

< 0, P(1) >

[
0 I
I 0

]�
P(0)

[
0 I
I 0

]

This problem can be cast as a convex problem (by discretizing the differential linear
matrix inequalities) so that it is amenable to deal with polytopic uncertainties on
the parameters of the system, avoiding the computation of exponentials of matrices.
On the other hand, a little thought reveals that the existence of P(t) > 0 solving the
above inequalities is equivalent to the existence of P̄ > 0 solving

P̄ >

[
0 eA2

eA1 0

]�
P̄

[
0 eA2

eA1 0

]

that is equivalent to the Schur stability of eA2eA1 .
From Floquet theory, it is possible to see that stability is equivalent to Hurwitz

stability of the matrix Ā that solves P(t)A(t) + Ṗ(t) = ĀP(t) for some Lyapunov–
Floquet transformation (diffeomorphism) P(t). The eigenvalues λ̄ of Ā are called
characteristic exponents and solve

˙̄x(t) + λ̄x̄(t) = A(t)x̄(t)

for some periodic vector x̄(t), or, equivalently

((σ + λ)I − A(t))x̄(t) = 0

where σ is the derivative operator. Notice that one can formally write a characteristic
equation by solving the above differential equations, taking into account the skew
commutative rule of periodic operators, i.e. given a periodic coefficient α. Then, the
following operator identity holds:

σα = α̇ + ασ

With these simple considerations in mind we end this subsection by illustrating a toy
example of stability and stabilization via periodic control taken from the literature
[23, 37].

Example 13 Consider the linear time-invariant (LTI) system described by the trans-
fer function

G(s) = s2 − 1

s2 − 2δs + 1
(61)
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where δ is a real parameter in the range [0, 1]. The particular form of this transfer
function comes from the Ph.D. thesis ofVincentBlondel [23],who offered a kilogram
of Belgian chocolate for the solution of each of the following control problems:

Problem 2 Find the range of values for δ for which there exists an LTI, stable and
minimum-phase stabilizing controller for plant (61).

Problem 3 Find an LTI, stable and minimum-phase stabilizing controller for plant
(61) when δ = 0.9.

Remark 5 Problem3 was solved: a controller of 11th order was found using a ran-
domized search method. Problem2 is still unsolved. Note however that stabilization
is impossible for δ = 1 since then an unstable pole-zero cancellation occurs in plant
G(s). Results of complex analysis can be used to prove that there exists a value
δ∗ < 1 such that stabilization is possible for all δ < δ∗, but impossible for δ ≥ δ∗.
A third-order controller was obtained for δ = 0.9 but also for the more difficult case
δ ≈ 0.924, and a fourth-order controller was obtained for δ ≈ 0.951, using non-
convex non-smooth optimization with gradient sampling. It was also pointed out
then that a third-order controller solving Problem3 can be found by a suitable per-
turbation of necessary stabilizability conditions. For details, the interested reader is
referred to [37].

One may argue that Blondel’s chocolate problems are mainly of academic and math-
ematical interest. However, a better understanding of the mathematics of such dif-
ficult problems, even though academic ones, can help understand more applied and
practical problems. For example, one should recall that control problems with near
cancellation of unstable poles and zeros (just as in the Belgian chocolate problem)
arise in physically relevant engineering problems, see, e.g. theX-29 prototype aircraft
design problem or Klein’s bicycle design problem mentioned in [3].

Here, it is shown, see [37], that simple control laws can be designed for plant (61)
and any given value of δ < 1, as soon as the assumption that the stable minimum-
phase controller is LTI is relaxed.

The simple control action we are looking for is the one defined by

u(t) = F(t)y(t)

where F(·) is a suitable periodic function of period T . It is possible to show that the
closed-loop system is asymptotically stable only if

T +
∫ T

0

F(t)

1 − F(t)
dt < 0.

However, it is impossible to achieve stability with a bounded and smooth periodic
gain if the function does not assume the forbidden value F(t̄) = 1 at some time point
t̄ .
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Fig. 28 F1 (up) and F2
(down) as functions of δ
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Fig. 29 First-order
compensator

On the other hand, stabilization via piecewise constant F(·) is possible, for
instance, with a periodic switching between two extreme values F1 and F2. The
analytic dependence of F1 and F2 with respect to δ is hard to be found. However
(taking a period T = 1), stabilization is possible for every δ in the fixed range, see
Fig. 28.

The curves of F1 and F2 can be approximated by data fitting. Easy numerical
computations show that the first-order polynomial ensures stability up to δ = 0.8897,
the third-order polynomial up to δ = 0.9716 and the tenth-order polynomial up to
δ = 0.994.

Finally, notice that the system has a stable zero that can be cancelled by the first-
order controller that can be chosen with a smooth periodic gain. Hence, moving
towards a first-order system, we consider the scheme depicted in Fig. 29.

The equations of the regulator are as follows:

ξ̇ = −ξ + y

u = α(t)ξ

Indicating by av(·) the mean value of a periodic function, the set of all stabilizing
periodic functions α(t) can be written as
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Fig. 30 The gain α for
δ = 0.999
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For instance, one can take T = 1 and the parameter p2 as follows:

p2(t) = −0.3 − ε(δ) − 1.3 cos(2π t)

where ε(δ) is a small number depending on δ.We have chosen δ ranging from δ = 0.8
to δ = 0.999. It can be shown by simulation that ε(δ) = 0.00001 can be chosen
independent of δ in all the given range. In Fig. 30, the function α(t) associated with
this constant choice and δ = 0.999 is plotted.

Notice that the gain α(t) has an almost piecewise constant form.
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Cooperative Resilient Estimation
of Uncertain Systems Subjected to a
Biasing Interference

Valery Ugrinovskii

Abstract The chapter revisits the recent methodology of distributed robust filtering
using the H∞ filtering approach. It summarizes some recent results on the analysis
and design of networks of robust filters, which cooperate to produce high-fidelity esti-
mates for uncertain plants. These results are applied to the problem of detecting and
neutralizing biasing attacks on distributed observer networks, to obtain algorithms
for cooperative detection of malicious biasing behaviour of compromised network
nodes.

1 Introduction

Adoption of large-scale networks of smart devices is an emerging trend in the
design of industrial control systems. Such systems operate by processing information
obtained from multiple sensors to monitor and control physical plants. Cooperative
filtering and estimation is one of the key methodologies to accomplish these tasks in
a networked environment. In a cooperative filter, each network node receives infor-
mation from several neighbouring nodes in the form of preprocessed data or raw
measurements. It also shares similar information with its neighbours. The nodes
then filter this information to extract the quantity of interest (e.g. the state of the
observed plant) [1, 3, 4, 8, 11, 15, 16, 19, 20, 22, 34]. Because the nodes are usu-
ally spatially separated, such filtering algorithms are often referred to as distributed
filters or distributed observers.

Distributing information processing among network nodes is known to have con-
siderable advantages. Distributed sensor networks are more flexible in responding to
failures, and the distributed organization helps to eliminate communication bottle-
necks. At the same time, the information feedback which underpins these advantages
is vulnerable to malicious attacks seeking to undermine the observer accuracy. For
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instance, an adversary can exploit the dependency of a node on the information
supplied by its neighbours and falsify this information to bias the node’s decisions.
Because in a cooperative environment the network components are tightly interwo-
ven, this may lead to a catastrophic failure of the filtering algorithm [24].

The literature on the topic of distributed estimation and filtering is quite rich. Its
main attention is focused on the so-called Distributed Kalman Filter problem. The
latter term refers to a large family of estimation and filtering algorithms. It includes
algorithms for calculation of optimal multisensor Kalman filter estimates in a dis-
tributed manner [25], multisensor data fusion algorithms [32], decentralized Kalman
filters for vehicle positioning and formation control [29, 31], and consensus-based
Kalman filters for maximum a posteriori (MAP) and linear minimum mean-square
error (LMMSE) tracking of fast varying processes in wireless sensor networks [26].
A detailed account of publications on the topic ofDistributedKalman Filtering can be
found in [12]. More recent results can be found, for example in [6, 13] and references
therein.

The above references represent themainstream trend in the literature ondistributed
estimation and filtering. In thismainstream setting the plant is typically assumed to be
linear, and noise and disturbances are described as randomGaussian noise processes.
A less common yet powerful approach to the design of distributed observers employs
deterministic models of noise and uncertainty. It is based on the H∞ theory and L2

gain optimization [18, 21, 27, 28, 34, 36, 37, 39, 42]. We show in this chapter
that this approach provides a convenient framework for analysing the impact of
an adversarial biasing interference on an observer network. Such attacks aim to
distort observer networks by biasing sensors and/or network communications, or
by misappropriating the network nodes and can be modelled using deterministic
models [33]. This motivates us to adopt the H∞ framework for designing distributed
observer networks resilient to biasing interference.

Resilience is a recent concept in the control system design [14, 43]. Resilient
control schemes aim to ensure that the system is capable of maintaining acceptable
(albeit possibly degraded) performance when it is subjected to a malicious interfer-
ence and recovers quickly from the attack [23, 43]. The attention to the resilience
problem has grown substantially after situations were discovered, where an adver-
sary was able to interfere with the control task by injecting false information into the
measurement data [5, 17]. These discoveries generated considerable interest in the
development of techniques for detecting and neutralizing rogue behaviours within
the system. The references [9, 10] are examples of the recent research on this topic
specific to resilient estimation. This chapter also considers resilience of distributed
observers to biasing attacks and develops a distributed estimation methodology for
detecting such attacks and neutralizing their biasing impact.

Information sharing within an observer network presents abundant opportuni-
ties for monitoring its integrity. The information routinely collected and shared
within the network can be utilized for both tracking the observed plant and detect-
ing a biasing anomaly in the observer behaviour as well as correcting this anomaly.
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We use this observation to analyse resilience of networked observers against conven-
tional biasing attacks targeting the systemsensors aswell as the attacks compromising
the integrity of the estimation algorithms rather than the data or communications.
The latter attacks are known as misappropriation attacks [7]; cf. [10]. As remarked
in [7], this type of attack is quite intricate since it allows the attacker to interfere
with the system operation without any knowledge of the system model or the plant
observed.

The organization of the chapter is as follows. In Sect. 2, we present a background
on distributed robust estimation. The aim is to review an approach to the design of dis-
tributed H∞ observers which will be used in the subsequent sections. This approach
was originally introduced in [42]. Here, we show that this approach allows to reduce
the attack detector design to a collection of decoupled H∞ filtering problems, which
can be solved independently from each other. This computational autonomy com-
pares favourably with many existing algorithms, such as, for example the algorithms
in [20, 34] where the computation of the observer gains relies on additional commu-
nication between the nodes; the latter can potentially be compromised. In contrast,
the computation of the observer gains in [42] is essentially decentralized, although it
does require a certain centralized initialization. However, this initialization involves
only the information about the communication network, and does not require knowl-
edge of the plant observed or the filters themselves.

The application of these ideas to the design of distributed biasing attack detectors
for observer networks is presented in Sects. 3 and 4. In Sect. 3, we consider the
detection of biasing misappropriation attacks, and Sect. 4 adapts this methodology
to detecting biasing attacks on system sensors. One can trivially extend the results of
Sect. 4 to include similar biasing attacks on communication channels. Remarks on
using the information from the attack detectors for correcting the effects of biasing
attacks are presented in Sect. 5. In Sect. 6, we present an illustrating example. The
concluding remarks are given in Sect. 7.

Notation: Rn denotes the real Euclidean n-dimensional vector space, with the
norm ‖x‖ = (x ′x)1/2; here the symbol ′ denotes the transpose of a matrix or a vec-
tor. Rn×m is the space of real n × m matrices. The symbol I denotes the identity
matrix. For real symmetric n × n matrices X and Y , Y > X (respectively, Y ≥ X )
means the matrix Y − X is positive definite (respectively, positive semidefinite).
diag[X1, . . . , XN ] denotes the block diagonal matrix whose diagonal blocks are
X1, . . . , XN . The notation L2[0,∞) refers to the Lebesgue space of Rn-valued
vector-functions z(.), defined on the time interval [0,∞), with the norm ‖z‖2 �(∫ ∞

0 ‖z(t)‖2dt)1/2 and the inner product
∫ ∞
0 z′

1(t)z2(t)dt . When z ∈ L2[0,∞) we
say that the signal z is L2-integrable and has a finite energy. Other notations
include the vector of ones, 1 = [1 . . . 1]′ ∈ RN and the symbol for the Kronecker
product ⊗.
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2 Preliminaries

2.1 Distributed Robust Estimation with H∞ Performance

This section provides a background on the distributed H∞ estimation problem. The
presentation mainly follows [42], where an approach to this problem was developed
which will be utilized in the subsequent sections.

Consider a continuous-time uncertain linear plant

ẋ(t) = A(t)x(t) + B(t)w(t), x(0) = x0, (1)

evolving in the n-dimensional real Euclidean space, x(t) ∈ Rn , governed by an m-
dimensional unknown disturbance inputw. The system coefficients A(t) ∈ Rn×n and
B(t) ∈ Rn×m are assumed to be known. That is, we assume that the plant model is
known, however the plant state x(t) is not known because its initial state x0 and the
disturbance process are not available for direct measurement. The disturbance will
be assumed to have a finite energy, ‖w‖22 = ∫ ∞

0 ‖w(t)‖2dt < ∞. However, the plant
is not assumed to be stable, therefore the plant trajectory is not guaranteed to be
bounded.

As alluded in Introduction, we consider sensor networks where each node col-
lects measurements about the plant and also receives a preprocessed data from its
neighbours. The localmeasurements collected at node i are described by the equation

yi (t) = Ci (t)x(t) + Di (t)vi (t). (2)

That is, each node i measures a linear function of the plant state x(t), and these
measurements are contaminated by a measurement disturbance vi . This disturbance
is also assumed to have finite energy ‖vi‖22 = ∫ ∞

0 ‖vi (t)‖2dt < ∞. The matrices Ci ,
Di characterize the sensor at node i and can be time varying, although it is assumed
that Di (t)Di (t) > 0 for all t ≥ 0.

In addition, each node communicates with its neighbours j from the neighbour-
hood Vi ; the latter set is a subset of the node set V = {1, . . . , N }. The information
that node j sends to node i is generally represented by a linear function of the state
estimate obtained at node j at time t . However this information is sent over a com-
munication channel, therefore the model for the signal ci j received by node i takes
into consideration disturbances in the communication channel,

ci j (t) = Wi j x̂ j (t) + Hi j vi j (t). (3)

Here, x̂ j (t) represents the estimate at node j , and vi j denotes the channel disturbance.
The latter will also be assumed to have finite energy. The matrices Wi j and Hi j

are considered to be given constant matrices, which indicates that the channel is
assumed to be time invariant. Also, it is assumed that Hi j H ′

i j > 0 for all j ∈ Vi ,
i = 1, . . . , N . According to (3), our model assumes that the nodes communicate
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continuously and information is transmitted instantaneously. This is an idealization
which can be overcome in some cases [38].

We now define the class of distributed observers for estimating the plant (1):

˙̂xi (t) = A(t)x̂i (t) + Li (t)(yi (t) − Ci (t)x̂i (t)) +
∑

j∈Vi

Ki j (t)(ci j (t) − Wi j x̂i (t)), (4)

x̂i (0) = 0.

According to (4), each filter obtains its estimate x̂i (t) using the measurement yi (t)
and communication ci j (t), j ∈ Vi , in the form of the innovations

ζi = yi − Ci (t)x̂i = Ci (t)(x − x̂i ) + Di (t)vi , (5)

ζi j = ci j − Wi j x̂i , j ∈ Vi . (6)

The innovation ζi symbolizes the new information contained in the measurement
acquired by node i , compared with its own prediction of that information. Likewise,
the innovation ζi j symbolizes the new information contained in the message that
node i receives from its neighbour j ∈ Vi . These innovations will be used later
for detecting a rogue biasing behaviour of misappropriated nodes. Both signals are
readily available at node i ; computing them only requires the local measurement
yi and the neighbour messages ci j . j ∈ Vi , available at node i , along with x̂i . The
gains on these innovations, Li (t), Ki j (t), are the parameters of the observer, and the
distributed estimation problem boils down to determining these gains.

From the filter (4), we see that the neighbours’ signals ci j (t) play a comple-
mentary role. They provide information about the plant that may not be present in
the local measurements yi (t) but may be present in the measurements collected by
the neighbouring nodes. This structure of the observer has proved to be useful in
the situations where the plant was not detectable from the local measurements, and
had to rely on the information sharing to accomplish the estimation task [34, 36, 37,
41]. More specifically, through the signals ci j the observers (4) utilize a ‘consensus’
feedback from the network. Indeed, we can rewrite (4) in the form which makes the
interconnections between the nodes explicit:

˙̂xi (t) = A(t)x̂i (t) + Li (t)(yi (t) − Ci x̂i (t))

+
∑

j∈Vi

Ki j (t)Wi j (x̂ j (t) − x̂i (t)) +
∑

j∈Vi

Ki j (t)Hi j vi j (t).

The second to last term is often called the diffusion term in the literature onmultiagent
consensus.

The filter (4) is admittedly not the only way to utilize the feedback from the neigh-
bours. A number of references concerned with discrete-time distributed estimation
problems employ a fusion of estimates, which is carried out before updating the state
of the observer [4, 19, 20]. However, in continuous-time problems such as the prob-
lem considered here, the information fusion is difficult to carry out separately. Hence,
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we follow [34, 36–39, 42] and embed the processing of the innovations in the filter
dynamics. Later, in the problem of detecting biasing attacks on distributed observer
networks, we extend the principle of consensus feedback to enable the detectors to
cooperatively monitor integrity of the network.

The distributed estimation problem is concerned with obtaining high-fidelity
estimates of the plant state, while suppressing degrading effects of disturbances
and/or noise on the estimation errors. A number of references, such as, for example
[16, 22], do not consider disturbances or noise, and the estimation task is concerned
with tracking the plant. Other references, such as [11, 13, 19], do consider distur-
bances/noise but focus on matching the performance of the centralized Kalman filter
estimates. This often involves infinite [19] or finite [1] consensus loops at every step
of the algorithm to enable the nodes to compute certain common quantities required
to compute the optimal centralized estimates. Typically this requires carrying out
a substantial number of consensus iterations during every update step, making the
estimation algorithm computationally demanding. In other algorithms, the consensus
step is augmented with blending the raw data [6, 13]. Effects of channel disturbances
on this type of filters are often neglected—e.g., the references [1, 6, 11, 13, 16, 19,
22] do not consider the channel disturbances and their impact on the convergence
of the filter. The approach which we follow in this chapter overcomes some of these
drawbacks. It was originated in [34, 36–39, 42]. Within this approach, the task of
distributed estimation is formalized as follows.

Distributed robust estimation problem with H∞ performance: Determine the
matrices Li (t) and Ki j (t), i = 1, . . . , N , j ∈ Vi , such that the collection of inter-
connected filters (4) satisfies the following requirements:

(DE-i) Internal stability of the distributed observer. In the absence of distur-
bances, each node of the distributed estimator must exponentially con-
verge to the true state of the plant. That is, there must exist some positive
constants c0, α such that:

‖xi (t) − x̂i (t)‖2 ≤ c0e
−αt , ∀t ≥ 0. (7)

(DE-ii) GlobalL2 disturbance attenuation. In the presence of disturbances, the
distributed estimator must deliver a certain L2 disturbance attenuation
performance while its nodes track the plant. Following [42], here the
performance of the filter is understood in the sense of a generalL2 dis-
turbance attenuation metric. Let P be an Nn × Nn symmetric positive-
definite matrix, P = P ′ > 0, and define the vector of estimation errors
e = 1 ⊗ x − [x̂ ′

1 . . . x̂ ′
N ]′. Clearly, e = [e′

1 . . . e′
N ]′, where ei = x − x̂i

is the error of the observer at node i . The L2 disturbance attenuation
performance requirement is formally defined as
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sup
x0,w,vi ,vi j ,i, j=1,...,N

∫ ∞
0 e′(t)Pe(t)dt

∑N
i=1

(‖x0‖2Xi
+ ∫ ∞

0

(‖w(t)‖2 + ‖vi (t)‖2
+ ∑

j∈Vi
‖vi j‖2)dt

)
≤ γ 2.

(8)
Here the matrices Xi weigh the uncertainty due to initiating the filter at
node i at x̂i (0) = 0 against the plant, measurement and channel distur-
bances. These matrices are assumed to be selected in advance, similarly
to how one selects an initial value for the a priori error covariance matrix
in the Kalman filter algorithm.

Condition (8) captures several performance scenarios; see [42]. For example,
letting P be a block diagonal matrix, P = diag[P1, . . . , PN ], consisting of N diag-
onal n × n blocks Pi leads to a performance condition replicating the standard H∞
filtering performance metric [2],

N∑

i=1

∫ ∞

0
e′
i (t)Piei (t)dt

≤ γ 2
N∑

i=1

⎛

⎝‖x0‖2Xi
+

∫ ∞

0

⎛

⎝‖w(t)‖2 + ‖vi (t)‖2 +
∑

j∈Vi

‖vi j‖2
⎞

⎠ dt

⎞

⎠ . (9)

Another interesting special case of the performance criterion (8) arises when

P =
[

(L + LT ) ⊗ In 0
0 (L + LT ) ⊗ In

]
, whereL ,LT are the Laplace matrices

of the communication graph and its transpose graph (i.e. the graph whose edges are
reversed), respectively. This special case corresponds to the consensus performance
cost introduced in [34, 36, 37, 39]:

∫ ∞

0

N∑

i=1

∑

j∈Vi

(‖x̂i (t) − x̂ j (t)‖2)dt

≤ γ 2
N∑

i=1

⎛

⎝‖x0‖2Xi
+

∫ ∞

0

⎛

⎝‖w(t)‖2 + ‖vi (t)‖2 +
∑

j∈Vi

‖vi j‖2
⎞

⎠ dt

⎞

⎠ . (10)

In the literature, the performance objective (9) is encounteredmore frequently than
(10). On the other hand, (10) explicitly puts an emphasis on the quality of the consen-
sus feedback—since the filter (4) uses the disagreement between the neighbouring
nodes, x̂ j (t) − x̂i (t), j ∈ Vi for feedback it makes sense to keep the detrimental
effect of uncertainties and noise on this feedback signal to a minimum.
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2.2 Design of the Distributed H∞ Observer

To present an algorithm for solving the above-distributed estimation problem intro-
duced in [42], let us consider the dynamics of the estimation errors of the observers
(4) which evolve according to the equations

ėi = (A(t) − Li (t)Ci (t) −
∑

j∈Vi

Ki j (t)Wi j )ei +
∑

j∈Vi

Ki j (t)Wi je j

+ B(t)w(t) − Li (t)Di (t)vi −
∑

j∈Vi

Ki j (t)Hi j vi j , (11)

ei (0) = x0.

The system (11) at node i depends on the estimation errors at the neighbouring
nodes j ∈ Vi . This coupling is amajor obstacle in the design of distributed observers.
Standard decentralized approaches cannot be applied directly since they tend to
treat interconnections between subsystems as undesirable disturbances. However,
interconnections are often a crucial source of information about the plant especially
at those nodes where the plant is not detectable locally [3, 35]. Because of this
dependency on the interconnections, the design of distributed H∞ observers has often
to be done off-line in a centralized manner [27], or requires intensive calculations
over the network [34, 40, 41]. The time-invariant nature of the plant and the observers
exacerbates the issues arising from coupling between the filters.

The approach proposed in [42] partially circumvents these difficulties by breaking
the original distributed filtering problem into a collection of auxiliary decentralized
filtering subproblems, whose parameters are determined judiciously based on the
global filtering objective. This endows the observer nodes with a computational
autonomy in that the observer gains (but not the estimates themselves!) can be com-
puted without interactions with other nodes, although the computations require an
initial centralized setup. However when the observers are interconnected into the
network, the estimates are generated in a distributed cooperative fashion.

The foundation of the decoupling procedure in [42] is a setup matrix inequality
condition, which provides each node i with some positive-definite symmetric matri-
ces Ri , Zi j , j ∈ Vi that define the auxiliary local filtering problem to be solved at
that node. We begin by introducing the matrices involved in that inequality:

Δi �
∑

j∈Vi

W ′
i j (Wi j Z

−1
i j W

′
i j + Hi j H

′
i j )

−1Zi j (Wi j Z
−1
i j W

′
i j + Hi j H

′
i j )

−1Wi j ,

Φi j �

⎧
⎪⎨

⎪⎩

Δi i = j,

−W ′
i j (Wi j Z

−1
i j W

′
i j + Hi j H ′

i j )
−1Wi j , i 
= j, j ∈ Vi ,

0, i 
= j, j /∈ Vi .

(12)
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Also, define R � diag[R1, . . . , RN ], Δ � diag[Δ1, . . . , ΔN ] and Φ �
[Φi j ]i, j=1,...,N . Next, consider the differential Riccati equation:

�̇i = A�i + �i A
′ − �i

(
Ci (t)

′(Di (t)Di (t)
′)−1Ci (t)

+
∑

j∈Vi

W ′
i j (Wi j Zi jW

′
i j + Hi j H

′
i j )

−1Wi j − 1

γ 2
Ri

⎞

⎠

−1

�i + BB ′, (13)

�i (0) = X−1
i .

Equation (13) only depends on the parameters associated with node i . Once the
matrices Ri , Zi j are selected at this node, Eq. (13) can be solved autonomously by
node i without interacting with its neighbours. The selection of these parameters is
explained in the following theorem, which establishes the network of observers (4)
as a solution to the distributed robust estimation problem under consideration. It is
essentially the same as Theorem 1 from [42], except here the distributed observer is
comprised of the standard H∞ filters [2].

Theorem 1 (see [42]) Given a positive semidefinite weighting matrix P = P ′ ∈
RnN×nN , and positive-definite matrices Xi ∈ Rn×n, i ∈ V, suppose a block diagonal
matrix R = R′ > 0, a collection of matrices Zi j = Z ′

i j > 0, j ∈ Vi , i ∈ V, and a
constant γ 2 > 0 are such that

R > P − γ 2(Φ + Φ ′ − Δ) (14)

and each Riccati equation (13) has a positive-definite-bounded1 solution on [0,∞).
Then, the distributed observer obtained by interconnecting the node observers (4)
equipped with the coefficients

Li (t) = �i (t)Ci (t)
′(Di (t)Di (t)

′)−1, (15)

Ki j (t) = �i (t)W
′
i j (Wi j Zi jW

′
i j + Hi j H

′
i j )

−1, (16)

solves the problem of distributed estimation under consideration, in the sense that
the conditions (7) and (8) are satisfied.

It is worth noting that despite the observers (4) with the gains (15), (16) are time
varying, the inequality (14) only involves constant matrices. Therefore, it can be
solved off-line in advance, and its solutions Ri , Zi j can then be used in (13). These
matrices do not need to be computed again, for as long as the network topologyand

1I.e., α1i I ≤ �i (t) ≤ α2i I (∃α1i , α2i > 0).
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the communication channels remain the same. However, if the network topology or
some of its channels change, the solutions of the inequality (14) must be updated.
Also, once the matrices Zi j are selected, the inequality (14) becomes a linear matrix
inequality with respect to Ri , i = 1, . . . , N and γ 2, it can be solved numerically
using the existing software.

Finally, we note that each observer (4) is an H∞ disturbance attenuating observer,
which attenuates the impact of the process disturbance w(t), the measurement vi and
channel disturbances vi j , as well as the estimation errors at neighbouring nodes j ,
j ∈ Vi :

∫ ∞

0
e′
i (t)Riei (t)dt ≤ γ 2

(
‖x0‖2Xi

+
∫ ∞

0

(
‖w(t)‖2 + ‖vi (t)‖2

+
∑

j∈Vi

‖vi j (t)‖2 + ‖e j (t)‖2Z−1
i j

⎞

⎠ dt

⎞

⎠ . (17)

Here, Ri , Zi j , j ∈ Vi , are symmetric positive-definite matrices which are selected
from (14). From (17), one can see that Ri , Zi j defines the local performance cost of
the filter (4). Specifically, the matrix Zi j imposes a weighting on the contribution of
the neighbour j’s error e j into the i’s performance. However, these parameters are
not independent as they are linked via condition (14).

3 Robust Detection of Biasing Misappropriation Attacks

In this section, we turn to the problem of detecting malicious biasing attacks [33] on
distributed observers. The problem was posed originally in [7], it is concerned with
a situation where some observers in the network are misappropriated and are used to
supply a biased information to its neighbours; cf. [30]. Specifically, we consider the
situationwhere the adversary substitutes one or several observers (4) with a tempered
version,

˙̂xi = A(t)x̂i + Li (t)(yi (t) − Ci (t)x̂i ) +
∑

j∈Vi

Ki j (t)(ci j − Wi j x̂i ) + Fi fi , (18)

x̂i (0) = 0.

Here, Fi ∈ Rn×n fi is a constant matrix and fi ∈ Rn fi is the unknown signal repre-
senting an attack input. In this section, we will present an algorithm for detecting
and tracking these unknown inputs.
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3.1 Biasing Attack Inputs

Following [7], we will consider a class of attacks consisting of biasing inputs fi (t)
of the form

fi (t) = fi1 + fi2(t), (19)

where fi1 is an unknown constant,2 and fi2(t) is an unknownL2-integrable ‘mask-
ing’ signal, which the adversary may add to conceal the biasing component of its
attack input [33]. It was shown in [7] that for any proper n fi × n fi transfer function
Gi (s) for which the transfer function 1

s (I + 1
s Gi (s))−1Gi (s) is stable, the signal

f̂i = 1

s
(I + 1

s
Gi (s))

−1Gi (s) fi (20)

approximates fi asymptotically, and the approximation error

ηi = f̂i − fi (21)

isL2-integrable.
From (20), (21), the input–output relation between ηi and f̂i is f̂i = − 1

s Gi (s)ηi .
Let

ε̇i = Ωiεi + Γiηi , εi (0) = 0, (22)

f̂i = Υiεi .

be the minimal realization of − 1
s Gi (s). It was shown in [7] that using the model

(22), fi can be observed from the data available to the observer network (18) up to an
L2-integrable error. In this chapter, we follow this idea, however, the time-varying
nature of the problem under consideration requires us to revisit the attack detection
methodology developed in [7]. The method proposed in [7] involves solving cer-
tain coupled linear matrix inequalities, which in the time-varying case will have to
be replaced by differential matrix inequalities with time-varying coefficients. Such
inequalities are difficult to solve in general. On the contrary, the observer design
methodology described in the previous section does not suffer from such difficul-
ties. For this reason, the methodology of cooperative detection of biasing attacks
presented here builds on this alternative technique. Its aim is to obtain an algorithm
for computing the characteristics of the attack detector that can be used in real time
and preferably in a decentralized manner, to reduce communication overheads.

2Formally, the attack model introduced in [7] is somewhat more general, it allows fi1 to be time
varying, although it must satisfy certain additional constraints. This more general model can be
used here as well, and this will not cause any technical issues. For that reason we restrict ourselves
to the case where fi1 is a constant, to simplify the presentation.
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Despite the apparent freedom in selecting the transfer function Gi (s), its choice
may be influenced by practical considerations. For example, [7] suggests using first-
order low-pass filters, i.e. Gi (s) = gi

s+2βi
I . In this case, βi , gi must be selected to

ensure a sufficiently fast transient performance of the attack detector.

3.2 Design of Attack Detectors

To detect a biasing attack, we rely on the information already available at the observer
nodes; that is, we aim to utilize the same two innovation signals (5), (6). We pose
the problem of detecting a biasing attack of the form (19) on the observer network
comprised of observers (18) as the problem of designing a network of innovation-
based attack detectors

μ̇i = Ad (t)μi + Ld,i (t)(ζi − Wd,iμi ) +
∑

j∈Vi

Kd,i j (t)(ζi j − Wd,i j (μ j − μi )), (23)

ϕi = Cd,iμi , μi (0) = 0.

In the fault detection and isolation theory, the output ϕi (t) is termed the residual
output, it has the purpose of tracking the attack input fi . Accordingly, the problem
of attack detection is to determine the matrix-valued coefficients Ad(t), Ld,i (t),
Kd,i j (t),Wd,i ,Wd,i j ,Cd,i to ensure that ϕi (t) converges to fi when fi 
= 0, and ϕi (t)
converge to 0 otherwise. These objectives are now stated formally.

DistributedH∞ attack detection problem: Given the observer network consisting
of the plant (1) and the filters (4), construct a network of filters (23) which, when
interconnected with the state observers (18) achieve the following properties:

(AD-i) In the absence of disturbances and when the system is not under attack, at
every node i , the detector outputs ϕi converge to 0 exponentially.

(AD-ii) In the presence of uncertainties and/or attack, each output ϕi tracks the
corresponding attack input fi in the L2 sense; that is,

∫ +∞

0
‖ϕi − fi‖2dt < +∞ ∀i. (24)

In particular, when node i is not under attack, the corresponding residual ϕi

must have a bounded energy.

Note that the proposed detectors (23) rely on the information received from their
neighbouring nodes contained in the innovation signals ζi j . Essentially, the detectors
(23) have the same structure as the observers (4), therefore our approach to detector
design will be based on the results in Sect. 2.
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3.3 Design of the Distributed Detector for Biasing
Misappropriation Attacks

Our attack scenario allows to treat both the healthy and misappropriated nodes of
the network in the same manner—the observers at the healthy nodes can be regarded
as a special case of the compromised observers corresponding to the attack input
fi = 0. Using again the notation ei = x − x̂i for the estimation error at node i , it
follows from (1), (18) that the errors of the observer (18) evolve according to

ėi = (A(t) − Li (t)Ci (t) −
∑

j∈Vi

Ki j (t)Wi j )ei +
∑

j∈Vi

Ki j (t)Wi je j

+ B(t)w − Li (t)Di (t)vi −
∑

j∈Vi

Ki j (t)Hi j vi j − Fi fi , (25)

ei (0) = x0.

Using (21), we can eliminate the input fi from (25). The resulting equation will,
however, include f̂i , which can be further eliminated by substituting its expression
from (22). Combining (25) with (22) leads to the following extended system:

ėi = (A(t) − Li (t)Ci (t) −
∑

j∈Vi

Ki j (t)Wi j )ei +
∑

j∈Vi

Ki j (t)Wi je j − FiΥiεi

+B(t)w − Li (t)Di (t)vi −
∑

j∈Vi

Ki j (t)Hi j vi j + Fiηi ,

ε̇i = Ωiεi + Γiηi , (26)

ei (0) = x0, εi (0) = 0.

The system comprised of subsystems (26) can be regarded as an interconnected
large-scale uncertain system governed by the finite energy disturbance inputs w(t),
vi (t), vi j (t) and the fictitious tracking error ηi which is alsoL2-integrable, according
to our standing assumption. Therefore, we can attempt to estimate f̂i = Υiεi from
the innovations (5), (6) which can be expressed as functions of ei , e j , j ∈ Vi ,

ζi = Ci (t)ei + Divi , (27)

ζi j = −Wi j (e j − ei ) + Hi j vi j , j ∈ Vi . (28)

These innovation signals are available for measurement at the corresponding nodes
of the observer network.

The observer which we propose below for estimating the combined state [e′
i , ε

′
i ]′,

i = 1, . . . , N , of the resulting large-scale uncertain system has the structure of the
attack detector (23):
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Fig. 1 A large-scale
interconnected system
including the plant, the state
observers and the attack
detectors
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˙̂ei = (A(t) − Li (t)Ci (t) −
∑

j∈Vi

Ki j (t)Wi j )êi +
∑

j∈Vi

Ki j (t)Wi j ê j − FiΥi ε̂i

+ L̄ i (t)(ζi − Ci (t)êi ) +
∑

j∈Vi

K̄i j (t)(ζi j − Wi j (êi − ê j )),

˙̂εi = Ωi ε̂i + Ľ i (ζi − Ci êi ) +
∑

j∈Vi

Ǩi j (t)(ζi j − Wi j (êi − ê j )),

ϕi = Υi ε̂i , (29)

êi (0) = 0, ε̂i (0) = 0.

Its state μi is μi = [ê′
i , ε̂′

i ]′, and the gains Ld,i , Kd,i j are comprised of the gains
L̄ i (t), K̄i j (t), Ľ i (t), Ǩi j (t):

Ld,i (t) =
[
L̄ i (t)
Ľ i (t)

]
, Kd,i j (t) =

[
K̄i j (t)
Ǩi j (t)

]
.

The structure of the network including the proposed attack detectors is shown in
Fig. 1. It shows that the original network of observers (18) is supplemented with
an attack detection layer. The topology of this layer replicates the topology of the
original network, and the detectors can utilize the same communication channels to
exchange information.

Henceforth, our effort is directed towards finding a constructive method for com-
puting the coefficients L̄ i (t), K̄i j (t), Ľ i (t), Ǩi j (t) which ascertain that properties
(AD-i) and (AD-ii) hold. To explain the construction of the proposed attack detector,
let us define

L̂ i = Li + L̄ i , K̂i j = Ki j + K̄i . (30)

Also, let us introduce the notation
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Ai (t) =
[
A(t) −FiΥi

0 Ωi

]
, Bi =

[
B(t) Fi
0 Γi

]
, Ci (t) = [

Ci (t) 0
]
,

Wi j = [
Wi j 0

]
, Li =

[
L̂ i

Ľ i

]
, Ki j =

[
K̂i j

Ǩi j

]
. (31)

Let Zi j be a collection of positive definite n × n matrices, i = 1, . . . , N , j ∈ Vi .
Also, consider a collection of positive- definitematrices P̂i , P̌i ; eachmatrix P̂i must be
ann × nmatrix,whilematrices P̌i must have dimensionsmatching the corresponding
vectors δi . These matrices will assign the weighting to the accuracy of estimating the
components ei and εi of the state of the system (26). Also, we introduce the matrices
X̂i = X̂ ′

i > 0, X̌i = X̌ ′
i > 0; the former one reflects our knowledge of the accuracy

of approximating x(0) = x0 with 0.
Now, consider two sets of symmetric matrices {R̂i , i = 1, . . . , N } and {Ři , i =

1, . . . , N }, which satisfy the matrix inequalities

R̂ > P̂ − γ 2
d (Φ + Φ ′ − Δ), R̂i > 0,

Ři > P̌i , (32)

where R̂ = diag[R̂1, . . . , R̂N ], P̂ = diag[P̂1, . . . , P̂N ]. The matrices Φ and Δ have
been defined in (12). Also, for every i = 1, . . . , N , consider the differential Riccati
equation of the form (13),

Ẏi = AiYi + YiA′
i + BiB′

i − Yi

(
C′

i (Di D
′
i )

−1Ci

+
∑

j∈Vi

W′
i j (Wi j Zi jW

′
i j + Hi j H

′
i j )

−1Wi j − 1

γ 2
d

Ri

⎞

⎠Yi , (33)

Yi (0) = X−1
i ,

where Xi � diag[X̂i , X̌i ], Ri � diag[R̂i , Ři ].
Theorem 2 Suppose there exists a constant γd > 0 and positive-definite symmetric
matrices R̂i , Ři , Zi j , j ∈ Vi , i = 1, . . . N,which satisfy the inequalities (32) and such
that each differential Riccati equation (33) has a positive-definite symmetric bounded
solutionYi (t) on the interval [0,∞), i.e., for all t ≥ 0, α1 I < Yi (t) = Y′

i (t) < α2 I ,
for some α1,2 > 0. Then the network of attack detectors (29) with the coefficients L̄i ,
K̄i j , Ľ i , Ǩi j , obtained by partitioning the matrices

Li (t) = Yi (t)Ci (t)
′(Di D

′
i )

−1(t),

Ki j (t) = Yi (t)W′
i j (Wi j Zi jW

′
i j + Hi j H

′
i j )

−1 (34)

according to (31) and letting L̄i = L̂ i − Li , K̄i j = K̂i j − Ki j , guarantees the
satisfaction of the following properties:
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(AD-i’) In the absence of disturbances and attacks, the detection errors vanish
exponentially as t → ∞, and ϕ → 0 exponentially as t → ∞.

(AD-ii’) In the presence of disturbances or attacks, the attack detectors provide a
guarantee of H∞-type attack detecting performance,

N∑

i=1

∫ ∞

0
‖ϕi (t) − fi (t)‖2dt ≤ γ 2

d ‖Υi‖2
σmin(P̌i )

N∑

i=1

(
‖x0‖2X̂i

+
∫ ∞

0

(
‖w(t)‖2

+‖vi (t)‖2 + ‖ηi (t)‖2 +
∑

j∈Vi

‖vi j‖2
⎞

⎠ dt

⎞

⎠ +
∫ ∞

0

N∑

i=1

‖ηi‖2dt. (35)

Proof Introduce the detector error variables zi = ei − êi , δi = εi − ε̂i . The variable
δi determines the accuracy of approximating f̂i with the detector outputϕi , f̂i − ϕi =
Υiδi . On the other hand, zi represents the accuracy of estimating the error ei of the
biased observer (18) at node i . This variable will be used later for correcting the
plant estimates produced by (18). The evolution of these variables is described by
the equations

żi = (A(t) − L̂ i (t)Ci (t) −
∑

j∈Vi

K̂i j (t)Wi j )zi − FiΥiδi −
∑

j∈Vi

K̂i j (t)Wi j z j

+Bw − L̂ i (t)Di (t)vi −
∑

j∈Vi

K̂i j (t)Hi j vi j + Fiηi ,

δ̇i = Ωiδi − Ľ i (t)Ci (t)zi −
∑

j∈Vi

Ǩi j (t)Wi j zi −
∑

j∈Vi

Ǩi j (t)Wi j z j

−Ľ i (t)Di (t)vi −
∑

j∈Vi

Ǩi j (t)Hi j vi j + Γiηi , (36)

zi (0) = x0, δi (0) = 0.

Using the notation (31), the dynamics of the detector errors can be written in the
form

λ̇i = (Ai (t) − Li (t)Ci (t) −
∑

j∈Vi

Ki jWi j )λi +
∑

j∈Vi

Ki jWi j z j

+Bi (t)

[
w
ηi

]
− Li (t)Di (t)vi −

∑

j∈Vi

Ki j Hi j vi j , λi �
[
zi
δi

]
. (37)

Once again,weobserve that detector error dynamics are interconnected, and therefore
represent a large-scale interconnected uncertain system. In fact, this system is of the
same type as the system describing the evolution of local errors of the unbiased
observer (4) and comprised of subsystems (11). Therefore, the proof of Theorem 1
can be adapted to establish the validity of the theorem. Indeed, define the Lyapunov
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function candidate for the system (37), Vi = ∑N
i=1 λ′

iY
−1
i λi . Using (34), (33), it is

easy to show by completing the squares that

V̇i =
N∑

i=1

[

−
∥
∥∥∥

[
w
ηi

]
− B′

iY
−1
i λi

∥
∥∥∥

2
−

∥∥
∥vi + D′

i (Di Di )
−1Ci zi

∥∥
∥
2

−
∑

j∈Vi

‖vi j + Hi j (Wi j Zi j W
′
i j + Hi j H

′
i j )

−1Wi j zi‖2 − 2z′i
∑

j∈Vi

Φi j z j

−z′i (Δi + 1

γ 2 Ri )zi − 1

γ 2 δ′
i Ři δi + ‖w‖2 + ‖ηi‖2 + ‖vi‖2 +

∑

j∈Vi

‖vi j‖2
]

< − 1

γ 2

∑

i=1

(z′i P̂i zi + δ′
i P̌i δi ) +

N∑

i=1

⎛

⎝‖w‖2 + ‖ηi‖2 + ‖vi‖2 +
∑

j∈Vi

‖vi j‖2
⎞

⎠ . (38)

The properties (AD-i’), (AD-ii’) of the attack detector now readily follow from this
inequality. Indeed, in the absence of disturbances and an attack, we have w(t) = 0,
vi (t) = 0, vi j (t) = 0 and also ηi (t) = 0 since fi (t) = 0 implies f̂i (t) = 0. Then
the standard Lyapunov argument leads to the conclusion that zi (t), δi (t) converge
to 0 exponentially. Also, in this case, ϕi (t) = Υi ε̂i (t) − f̂i (t) = −Υiδi (t) vanishes
exponentially as t → ∞. Thus, (AD-i’) holds. On the other hand, when the system
under consideration is subject to disturbances or when fi 
= 0, then at least one of
the signals w(t), vi (t), vi j (t) or the attack approximation error ηi (t) are non-zero. In
this case, integrating both parts of the inequality (38) over [0, T ] and letting T → ∞
leads to an inequality analogous to the condition (9):

N∑

i=1

∫ ∞
0

((ei − êi )
′ P̂i (ei − êi ) + (εi − ε̂i )

′ P̌i (εi − ε̂i ))dt

≤ γ 2
d

N∑

i=1

⎛

⎝‖x0‖2X̂i +
∫ ∞
0

⎛

⎝‖w(t)‖2 + ‖vi (t)‖2 + ‖ηi (t)‖2 +
∑

j∈Vi

‖vi j‖2
⎞

⎠ dt

⎞

⎠ . (39)

The bound (35) on the detection performance immediately follows from (39). �

We conclude this section by presenting a sufficient condition for the existence
of a bounded solution to Eq. (33). It is based on the condition for the existence of a
solution to Eq. (13) established in [42]. The condition applies only in the case when
the plant and sensing patterns are time invariant, i.e. when the matrices A, B, Ci and
Di in (1) are constant.

Theorem 3 Suppose (A, B) is stabilizable, and let P, Zi j , i = 1, . . . , N, j ∈ Vi , be
thematrices fromTheorem1. The following linearmatrix inequality (LMI) conditions
in the variables Πi , γ 2

d and R̂i , Ři , i = 1, . . . , N,
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⎡

⎢
⎣

A′
iΠi + ΠiAi + Ri

− γ 2
d

(
C′
i (Di D

′
i )

−1Ci + ∑
j∈Vi

W′
i j (Wi j Zi j W

′
i j + Hi j H

′
i j )

−1Wi j

)
ΠiBi

B′
iΠi −γ 2

d I

⎤

⎥
⎦ < 0,

Πi = Π ′
i > 0, γ 2

d (Φ + Φ ′ − Δ) + R̂ > P̂, Ři > P̌i , (40)

guarantee the satisfaction of the conditions of Theorem 1 for a sufficiently large Xi .

Proof Observe that every matrix pair (Ai ,Bi ) is stabilizable. This conclusion is
readily verified using the Hautus lemma. Indeed, (Ai ,Bi ) is stabilizable if and only
if for every s, Re s > 0, the equations

(s I − A′)z = 0,

−Υ ′
i F

′
i z + (s I − Ω ′

i )δ = 0,

B ′z = 0,

F ′
i z + Γ ′

i δ = 0 (41)

imply that z = 0, δ = 0. Since (A, B) is stabilizable by assumption, then the first
and the third equations in (41) yield z = 0. Therefore, the second and the fourth
equations in (41) simplify as (s I − Ω ′

i )δ = 0, Γ ′
i δ = 0. Recall that (22) is a minimal

realization, therefore we obtain that δ = 0. This confirms that (Ai ,Bi ) is stabilizable.
The statement of the theorem now follows from Theorem 2 in [42]. �

The inequalities (40) are linear in the decision variables Πi , R̂i , Ři and γ 2
d , there-

fore the problem of finding a solution to the conditions of Theorem 2 can be refor-
mulated as a convex problem,

inf γ 2
d subject to (40). (42)

The problem (42) can be solved efficiently using the existing software, although this
has to be done centrally. Its solutions can then be utilized in Theorem 2 to construct
an attack detector.

3.4 Local Attack Detector Performance

The condition (35) reflects the overall global attack detection capability of the net-
work. In practice, it may be more useful to monitor performance of individual detec-
tors. By design, our method equips each observer with a local bound on the energy
in the attack detection error, of the form (17):
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∫ ∞
0

(z′i (t)R̂i zi (t) + δi (t)
′ Ři δi (t))dt ≤ γ 2

d

(
‖x0‖2X̂i

+
∫ ∞
0

⎛

⎝‖w(t)‖2 + ‖ηi (t)‖2 + ‖vi (t)‖2 +
∑

j∈Vi

‖vi j (t)‖2 + ‖z j (t)‖2Z−1
i j

⎞

⎠ dt

⎞

⎠ . (43)

Here, the matrices R̂i , Ři are obtained from (32).
The bound (43) shows that by adjusting the matrices Zi j , one can predict and

adjust the disturbance attenuation level γ 2
d as well as the weighted norms of the attack

detector errors. The error δi is indicative of the attack input tracking performance at
node i . It is of primary interest from the attack detection viewpoint. On the other hand,
zi indicates the accuracy of estimating the error of the plant observer at node i under
the biasing attack. In Sect. 5, it will be used for correcting the bias introduced by the
attack. The weights R̂i , Ři on these errors are obtained through solving the inequality
(32). Although this must be done centrally, this step must be carried out only once.
In addition to equipping each node with the parameters needed for computing the
gains of the attack detector, it also provides an assessment of the expected local
performance of the detector.

4 Detection of Biasing False Data Injection Attacks

In this section, we extend the proposed H∞ attack detection methodology to allow
the detection of biasing attacks on local sensors and communication links. Instead of
biased observers (4), we consider a more conventional situation where the adversary
substitutes the measurements yi collected by the sensor at node i with the tempered
data,

yi (t) = Ci (t)x(t) + Di (t)vi (t) + Fi fi . (44)

As was the case previously, Fi ∈ Rmi×n fi is a constant matrix, and fi ∈ Rn fi is an
unknown signal representing the attack input. We adopt the same model for the
biasing signal fi which was introduced in Sect. 3. That is, we assume that the signals
fi can be approximated, up to an error ηi using a signal f̂i generated by a system of
the form (22), and that the error ηi = f̂i − fi is L2-integrable. Biasing attacks on
the communication links can be considered in the same manner, and the treatment
of these attacks is no different from how we will treat the presence of biasing in the
sensor data. Therefore, for the sake of keeping the presentation simple, we won’t
pursue this more general case here.

In contrast to the problem considered in Sect. 3, the biasing attacks (44) modify
the innovation signals. Let us rewrite them in the form explicitly reflecting their
dependency on the estimation errors and the state of the attack generator model εi ,
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ζi = Ci (t)ei + FiΥiεi + Divi − Fiηi , (45)

ζi j = −Wi j (e j − ei ) + Hi j vi j , j ∈ Vi . (46)

The extended system combining the error dynamics of the observer (4) and the attack
model (22) becomes

ėi = (A(t) − Li (t)Ci (t) −
∑

j∈Vi

Ki j (t)Wi j )ei +
∑

j∈Vi

Ki j (t)Wi je j − Li (t)FiΥiεi

+B(t)w − Li (t)Di (t)vi −
∑

j∈Vi

Ki j (t)Hi j vi j + Li (t)Fiηi ,

ε̇i = Ωiεi + Γiηi , (47)

ei (0) = x0, εi (0) = 0.

Again, we observe that the effect of the attack is somewhat different in this case
in that the gains at the variables associated with the attack input are scaled by the
observer gain Li (t). This indicates that unless they are countered, biasing attacks
may have a significant adverse impact on the performance of high-gain observers.

To obtain a network of attack detectors, we follow the idea presented in the
previous section and employ a filter of the form (29) to estimate the state of the
interconnected uncertain system comprised of the extended error dynamics (47) and
track the attack signal fi in the H∞ sense. This will be done by processing the
innovation signals (45), (46). This filter has the familiar form of the state observer

˙̂ei = (A(t) − Li (t)Ci (t) −
∑

j∈Vi

Ki j (t)Wi j )êi +
∑

j∈Vi

Ki j (t)Wi j ê j − Li (t)FiΥi ε̂i

+ L̄ i (ζi − Ci (t)êi − FiΥi ε̂i ) +
∑

j∈Vi

K̄i j (t)(ζi j − Wi j (êi − ê j )),

˙̂εi = Ωi ε̂i + Ľ i (t)(ζi − Ci êi − FiΥi ε̂i ) +
∑

j∈Vi

Ǩi j (t)(ζi j − Wi j (êi − ê j )),

ϕi = Υi ε̂i , (48)

êi (0) = 0, ε̂i (0) = 0.

To obtain the gains of this observer L̄ i , K̄i j , Ľ i , Ǩi j , we again resort to the analysis of
disturbance attenuation properties of the corresponding large-scale systemdescribing
dynamics of the detector errors.

To present the formal statement of the detector design algorithm, we need to
modify some of the notation in (31) as well as introduce an additional notation:
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Ai (t) =
[
A(t) 0
0 Ωi

]
, Bi =

[
B(t) 0 0
0 Γi 0

]
, Ci (t) = [

Ci (t) FiΥi
]
,

Wi j = [
Wi j 0

]
, Di = [

0 −Fi Di
]
,

Ãi (t) = Ai (t) − BiD
′
i (DiD

′
i )

−1Ci

=
[

A(t) 0
−Γi F

′
i (Fi F

′
i + Di D

′
i )

−1Ci Ωi − Γi F
′
i (Fi F

′
i + Di D

′
i )

−1FiΥi

]
. (49)

As previously, let Zi j be a collection of positive definite n × n matrices, i =
1, . . . , N , j ∈ Vi . Also, for every i = 1, . . . , N consider the modification of the
differential Riccati equation (33),

Ẏi = ÃiYi + Yi Ã′
i

−Yi

(
C′

i (Fi F
′
i + Di D

′
i )

−1Ci +
∑

j∈Vi

W′
i j (Wi j Zi jW

′
i j + Hi j H

′
i j )

−1Wi j

− 1

γ 2
d

Ri

)
Yi + Bi (I − D′

i (Fi F
′
i + Di D

′
i )

−1Di )B′
i , (50)

Yi (0) = X−1
i ,

with a symmetric positive definiteXi = diag[X̂i , X̌i ]. As one can see, the differences
in the attackmodel and the resulting structure of the attackdetector lead to a somewhat
more general differential Riccati equation involved in the calculation of the detector.

Theorem 4 Suppose there exist a constant γd > 0 and positive-definite symmetric
matrices R̂i , Ři , Zi j , j ∈ Vi , i = 1, . . . N,which satisfy the inequalities (32) and such
that eachdifferential Riccati equation (50) has a positive-definite symmetric-bounded
solution Yi (t) on the interval [0,∞), i.e. for all t ≥ 0, α1 I < Yi (t) = Y′

i (t) < α2 I ,
for some α1,2 > 0. Then the network of observers (48) with the coefficients L̄i , K̄i j ,
Ľ i , Ǩi j , obtained by partitioning the matrices

Li (t) = (Yi (t)Ci (t)
′ + Bi (t)Di (t)

′)(Fi F ′
i + Di D

′
i )

−1,

Ki j (t) = Yi (t)W′
i j (Wi j Zi jW

′
i j + Hi j H

′
i j )

−1 (51)

according to (31) and letting L̄i = L̂ i − Li , K̄i j = K̂i j − Ki j , guarantees the satis-
faction of the properties (AD-i’), (AD-ii’) of Theorem 2. In particular, (35) holds.

Proof The proof of Theorem 4 is essentially the same as the proof of Theorem 2. It
is based on the analysis of the errors of the attack detector (48),
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żi = (A(t) − L̂ i (t)Ci (t) −
∑

j∈Vi

K̂i j (t)Wi j )zi − L̂ i FiΥiδi −
∑

j∈Vi

K̂i j (t)Wi j z j

+Bw − L̂ i (t)Di (t)vi −
∑

j∈Vi

K̂i j (t)Hi j vi j + L̂ i Fiηi ,

δ̇i = Ωiδi − Ľ i (t)Ci (t)zi −
∑

j∈Vi

Ǩi j (t)Wi j zi −
∑

j∈Vi

Ǩi j (t)Wi j z j

−Ľ i (t)Di (t)vi −
∑

j∈Vi

Ǩi j (t)Hi j vi j + (Ľ i Fi + Γi )ηi , (52)

zi (0) = x0, δi (0) = 0.

As in the proof of Theorem 2, the statement of the theorem follows using the Lya-
punov function λ′

iY
−1
i λi for this system, where as before, λi = [z′

i δ′
i ]′. In particular,

with this Lyapunov function we show that (39) holds in this case as well. �

5 Resilient Estimation Under Biasing Attacks

The analysis in the previous sections shows that the errors of the distributed observer
can be estimated. Under normal circumstances when the system operates in a safe
environment, these error estimates are not of any value. However, when the network
is under attack, the estimates of the observer errors can be used for correcting the
biasing effect of the attack, as demonstrated in the journal version of [7]. Indeed, let
us express the true state of the plant as

x = x̂i + ei
= x̂i + êi + zi , (53)

where zi = ei − êi is the error of the attack detectors (29) and (48), respectively. That
is, zi can also be interpreted as the plant estimation error associated with choosing

ˆ̂xi (t) = x̂i (t) + êi (t) (54)

to represent an estimate of the plant state. Furthermore, from (53), it follows that

∫ T

0
(x − ˆ̂xi )′ P̂i (x − ˆ̂xi )dt =

∫ T

0
z′
i P̂i zi dt. (55)

Since the attack detectors (29) guarantee that the right- hand side of (55) remains
bounded as T → ∞ under conditions of Theorem 2, then we conclude that (29)
can be utilized as a distributed plant observer in a situation when the network is
subjected to a biasing interference. Similarly, Theorem 4 establishes that the attack
detectors (48) provide an estimate of the plant state when an adversary injects biasing
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interference into some of the network sensors. This conclusion can be formalized as
a theorem.

Theorem 5

(a) Consider the observer network (18) augmented with the distributed networked
attack detector (29) whose coefficients L̄i , K̄i , Ľ i , Ǩi are obtained using the
procedure described in Theorem 2. Then, the following statements hold:

(i) In the absence of disturbances and attack, ˆ̂xi (t) → x(t) exponentially for
all i = 1, . . . , N;

(ii) In the presence of perturbations and biasing misappropriation attacks, the
L2 performance cost of the combined observer (18), (29),

∑T
i=1

∫ T
0 (x −

ˆ̂xi )′ P̂i (x − ˆ̂xi )dt is bounded by the expression on the right-hand side of (39).
Furthermore, the expression on the right-hand side of (43) provides a bound
on the individual performance of each observer node,

∫ T
0 (x − ˆ̂xi )′ R̂i (x −

ˆ̂xi )dt.
(b) Similarly, consider the observer network (4) augmented with the distributed

networked attack detectors (48) whose coefficients L̄i , K̄i , Ľ i , Ǩi are obtained
using the procedure described in Theorem4. Then, in the absence of disturbances
and biasing attacks on the sensors, the estimates ˆ̂xi (t) produced by the combined
observer-detector network (4), (48) converges to x(t) exponentially for all i =
1, . . . , N. Also, in the presence of disturbances and/or biasing data injection
attacks, performance of these estimates is bounded, as explained in claim (ii) of
part (a).

Note that both the extended observer (18), (29) and the extended observer (4),
(48) produce two estimates of the plant state, x̂i (t) and ˆ̂xi (t). In the absence of an
attack, the estimates x̂i (t) are produced by the filters (4) and are robust against the
disturbances w, vi and vi j . In contrast with x̂i (t), the ‘corrected’ estimates ˆ̂xi (t)
are produced by the extended observer and are also robust against the fictitious
disturbance ηi , representing an attack tracking error of the system (22). Even when
the network is not under attack and ηi = 0, the signal ηi is still treated as a fictitious
uncertainty input in the derivation of the observer for ei . This makes the estimates
ˆ̂xi (t) more conservative and less accurate than x̂i (t). However, when the observer
is under attack, x̂i becomes biased whereas ˆ̂xi (t) remains unbiased. This shows that
augmenting the observer network with the attack detectors (29) or (48) allows the
network to remain functional under attack, albeit less accurate. Also, one can switch
from ˆ̂xi (t) back to x̂i once the attack has ceased. This allows the network to recover
after the attack. That is, the observers augmented with the proposed attack detectors
meet the requirements for resilience.
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6 Illustrating Example

We use the example in [34] to demonstrate the efficacy of the proposed approach.
We consider the misappropriation attack scenario discussed in Sect. 3. The plant is
time invariant and evolves according to Eq. (1) with constant state and input matrices

A =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0.3775 0 0 0 0 0
0.2959 0.3510 0 0 0 0
1.4751 0.6232 1.0078 0 0 0
0.2340 0 0 0.5596 0 0

0 0 0 0.4437 1.1878 −0.0215
0 0 0 0 2.2023 1.0039

⎤

⎥⎥⎥
⎥⎥⎥
⎦

,

B = 0.1I6×6.

(56)

The plant is observed by six sensors. The first sensor measures the first and the
second coordinates of the state vector, the second sensor measures the second and
the third coordinates, etc, with the last sensor taking measurements of the sixth and
the first coordinates. Therefore, for the fourth sensor, for example we have

C24 =
[
0 0 0 1 0 0
0 0 0 0 1 0

]
.

Also, Di = 0.01I2, ∀i . With these matrices Ci , each matrix pair (A,Ci ) is not
detectable, however, it was demonstrated in [34] that a cyclic network of observers
of the form (4) can be constructed which overcomes this deficiency. This network
broadcasts the full vector x̂i , i.e.Wi j = I6×6 for all i, j ∈ Vi . However, we now allow
for disturbances in the communication channels; cf. [36, 37]. Accordingly, we let
Hi j = 0.1 × [1 1 1 1 1 1]′.

We now wish to protect this network from biasing attacks. Let us assume that
the attack inputs are scalar and therefore, we let Fi = [1 1 1 1 1 1]′ ∀i . Accordingly
we choose a scalar Gi (s) = gi

s+2βi
, with βi = 20, gi = 410. These parameters were

found to produce the attack detectors that were sufficiently fast compared with the
duration of the attack; see Fig. 2. Next, we let Zi j = 0.01 × I6×6 and solved the LMI
optimization problem (42), to obtain the smallest γ 2

d = 5.7952 for which the LMI
conditions (41) were feasible. According to Theorem 3, this gave us a guarantee
that the Riccati equations (33) with the found R̂i , Ři and γ 2

d have positive-definite
bounded solutions as required in Theorem 2.

Next, the plant (1), the observers obtained in [34] and the attack detectors (29)
were jointly simulated using MATLAB. The gains for the attack detector (29) were
obtained from Theorem 2 using the found values of γ 2

d and R̂i , Ři . To illustrate
the impact of the disturbance, we applied sinusoidal signals of amplitude 50, with
frequencies ranging from 100 to 330 rad/s. Also, a 3 s long attack input of amplitude
5 was applied at node 2 of the observer at time t = 4s. That is, each component in
the attack vector F2 f2 had the same amplitude as the components of the disturbance
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Fig. 2 Outputs of the attack detectors ϕi (t). The solid line shows the attack input. The outputs of
the detectors are plotted using the coloured dashed lines. The figure shows that the output of the
detector at node 2 can be easily separated from the outputs of the other detectors

vectors Bw(t) and Hi j vi j (t). Despite this, the attack detector was able to segregate
the attack input from the disturbances and identify the node subjected to the attack,
as shown in Fig. 2.

7 Concluding Remarks

The basis of the proposed approach to attack detection is modelling the biasing
attack as an output of a fictitious tracking system (22) plus L2-integrable tracking
error. This allowed us to recast the attack detector design problem as a problem of
distributed stabilization of the system of detector error dynamics via output injection.
The problem has been considered within an H∞ framework, and we have proposed a
decentralized H∞ synthesis method for the design of distributed detectors of biasing
attacks on distributedfilter networks. The proposed detectors can pick a biasing attack
from local sensory information complemented with information extracted from the
routine information exchange within the network. This has been demonstrated for
two types of biasing attacks, the false data injection attacks and the misappropriation
attacks. The former bias the sensormeasurements, and the latter target the network via
directly biasing the dynamics of the compromised nodes. Extending ourmethodology
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to include similar biasing attacks on communication channels is a routine exercise
which trivially follows the derivations in Sect. 4.

The derivation of the detectors employs the technique from [42], however it is
applicable to a broad class of distributed observers (4) subjected to the biasing mis-
appropriation and false data attacks described in the foregoing paragraph. This is
because our algorithm computes the gains of the output injection stabilizing feed-
back, L̂ i , K̂i j , Ľ i , Ǩi j , from which the gains of the attack detector are obtained by
subtracting the gains of the original observer, as

L̄ i = L̂ i − Li , K̄i j = K̂i j − Ki j . (57)

Thus, the attack detectors of the form (29) or (48) can be obtained regardless of
how the gains Li , Ki j of the original observer were obtained. For instance, the
same procedure can be applied to design an attack detector network for a distributed
Kalman filter of the form (4). However, the convergence and performance guarantees
of our method rely on the assumption that the disturbances can be interpreted as finite
energy perturbations.
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Robust Static Output Feedback Design
with Deterministic and Probabilistic
Certificates

D. Arzelier, F. Dabbene, S. Formentin, D. Peaucelle and L. Zaccarian

Abstract Static output feedback design for linear plants is well known to be a
challenging non-convex problem. The presence of plant uncertainty makes this
challenge even harder. In this chapter, we propose a new BMI formulation with
S-variables which includes an interesting link between state feedback, output injec-
tion, state injection, and static output feedback gains in a unified framework. Based
on this formulation, the robust design problem is suitably addressed by iterative opti-
mization procedures with either deterministic or probabilistic viewpoints exploiting
the fact that Lyapunov certificates are separated from the control gain design vari-
ables. The deterministic approach is for affine polytopic systems. The probabilistic
approach requires no assumption on the uncertain system, and is based on the Sce-
nario with Certificates (SwC)methodwhichwas recently proposed to address certain
static anti-windup design problems. Numerical results illustrate the effectiveness of
the approach in both deterministic and stochastic cases.
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1 Introduction

Static output feedback (SOF) represents probably the simplest andmost intuitiveway
to design a feedback control law: the plant’s output is measured and fed back to the
input, multiplied by a specifically designed static gain. Its straightforward implemen-
tation and the fact that the full state vector is usually not accessible, and only a partial
information is available via the measured output, render it particularly attractive to
control designers and practitioners. Moreover, it is known that different problems
related to the design of dynamic controllers, such as e.g., fixed/low-order control,
can be recast as a SOF design problem by introducing a suitable re-parameterization
[10].

However, it has been known since many years that the SOF implementation sim-
plicity is counteracted by an intrinsic complexity in obtaining strong theoretical
results: the problem is extremely difficult, and no systematic constructive numerical
solutions exist guaranteeing SOF design, or allowing to determine whether such a
feedback does not exist. Even its exact theoretical complexity is not known. Indeed,
it is easy to see that the problem is immediately rewritten in terms of a bilinear matrix
inequality (BMI), whose solution is known to be NP-hard [16]. The interested reader
can refer to the 1997 survey [19], or to the most recent overview [18]. In particu-
lar, in [18], the different possible solutions proposed in the literature for tackling
the SOF problem are discussed and classified according to the specific approach
adopted: (i) Methods based on the numerical solution of the ensuing BMI problems:
these techniques directly tackle the bilinear problem by making recourse to specific
optimization solvers such as e.g., the PENBMI and PENLAB toolboxes [11, 14].
(ii) Methods based on Lyapunov theory: most of these methods present an iterative
algorithm in which a set of linear matrix inequalities (LMIs) is iteratively repeated,
until some termination criteria are met. (iii) Non-Lyapunov-based static output feed-
back control strategies, such as those based on the direct solution of the non-smooth
optimization problem of minimizing the spectral abscissa of the closed-loop sys-
tem, (see for instance, the free package HIFOO [2, 13] or the MATLAB© macro
HINFSTRUCT).

Among the previously introduced classes, the Lyapunov-based one presents some
very interesting features, as pointed out in [18]. First, these techniques allow keep-
ing a clear insight into the original problems, an insight that is usually lost when
directly tackling the problem through an optimization-based approach. Second, the
formulation in many cases immediately extends to uncertain problems, i.e., prob-
lems in which the plant to be controlled is not perfectly known but instead is affected
by uncertainty. This is an important characteristic, which is becoming of funda-
mental importance in modern control design. Hence, iterative LMI methods allow
extending the approach to the solution of robust static output feedback (R-SOF)
problems. Clearly, the presence of plant uncertainty makes this challenging problem
even harder. Hence, if on one side, one may expect that the solution of the R-SOF
problem will enlarge its practical interest, on the other side, one should be aware that
R-SOF solutions may not exist in many cases.
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In this chapter, we follow the Lyapunov-based approach, and we introduce a
novel BMI formulation, based on S-variables. An interesting feature of the proposed
formulation is that the involved design variables provide a clear link to the state feed-
back, output injection, state injection, and static output feedback gains. In particular,
the formulation captures all these subproblems in a unified framework. Moreover,
the formulation immediately extends to the uncertain case, so that vertex results
available for polytopic-type uncertainty can be directly applied. Furthermore, it is
observed that a key feature of the derived framework is that it maintains an explicit
distinction between design variables (i.e., those variables directly involved in the
definition of the controller gain), and the certificates, (i.e., variables whose existence
is necessary to prove the existence of a SOF, but that are not involved in the controller
construction). This paves the way to the use of recent results on probabilistic robust
design, based on the so-called Scenario with Certificates (SwC) approach [12]. This
approach represents one of the more recent findings in the area of randomized meth-
ods for systems and control [4, 20], emerged in the last decade to synergize with the
standard deterministic methods for control of systems with uncertainty. Results in
this area are based on a combination of probability and random sampling, and their
goal is to provide the research engineer with robustness guarantees which hold only
with high probability. The payback is a reduction in the computational complexity of
classical control algorithms, and in the conservativeness of standard robust control
techniques.

The chapter represents the confluence and combinationof twodifferent viewpoints
to handle uncertainty in systems: the deterministic/robust approach, in which one
is interested in obtaining guaranteed results, that hold for every possible instance
of the uncertainty, and the so-called probabilistic approach, which characterizes the
uncertain parameters as randomvariables, and then evaluates the systemperformance
in termsof probabilities. This confluencewasmadepossible by the farsightedness and
vision of our colleague and friend Roberto Tempo (1956–2017), recently suddenly
passed away. Roberto was a strong believer in collaboration and cross-fertilization
of research. He always insisted that the two approaches should not be viewed as an
alternative but rather complementary to each other: one adds to the other.

To describe the philosophy underlying the present work, we use Roberto’s words,
taken from the proposal of one of the first formal collaborations between our two
groups1: “Robustness can be tackled by two means. One, probabilistic, consists in
testing a finite number of configurations among the infinitely many admissible ones.
This approach is said to be optimistic in the sense that if a level of performance is valid
for all tested cases, it may not hold for the actual ones. The second approach, deter-
ministic, provides, using mathematical tools, a guaranteed level of performances for
all configurations. It is unfortunately conservative (or pessimistic) in the sense that
the guaranteed performance is usually worse than the worst case. The project aims
at comparing and hence enriching the optimistic and pessimistic approaches.”

1Bilateral Project “Convex optimization and randomized algorithms for robust control” (CORARC),
between IEIIT CNR and LAAS CNRS (2012).
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We organize the presentation in three main sections. Section2 presents the unified
S-variable formulation used throughout the chapter. Section3 illustrates deterministic
results and a corresponding heuristic design procedure. Section4 presents parallel
results providing probabilistic guarantees. Finally, we illustrate the effectiveness of
the proposed constructions on numerical examples in Sect. 5.

Notation: I stands for the identity matrix. AT is the transpose of the matrix A.
{A}S stands for the symmetric matrix {A}S = A + AT . For a matrix A ∈ R

n×m

of rank r , A⊥ ∈ R
m×(m−r) is the matrix of maximal rank such that AA⊥ = 0, and

A◦ ∈ R
r×n stands for the full rank matrix such that A◦A is full rank. A � B is the

matrix inequality stating that A − B is symmetric positive definite. The terminology
“congruence operation of A on B” is used to denote AT BA. If A is full rank, and B �
0, the congruence operation of A on B gives a positive definite matrix: AT BA � 0. A
matrix inequality of the type N (X) � 0 is said to be a linear matrix inequality (LMI
for short), if N (X) is affine in the decision variables X . In the following, decision
variables are highlighted2 using the blue color.�v̄ = {φv=1...v̄ ≥ 0,

∑v̄
v=1 φv = 1} is

the unitary simplex in R
v̄. The elements φ of unitary simplexes are used to describe

polytopic-type uncertainties. In the following, uncertainties φ are highlighted using
the red color.

2 S-Variables Formulation of Robust Stability

We consider an LTI uncertain system that depends on a vector of constant but uncer-
tain parameters q (to our knowledge, the proposed results are the first to address the
case where all matrices are parameter dependent):

(
ẋ
y

)

=
[
A(q) B(q)

C(q) 0

](
x
u

)

(1)

where x ∈ R
n is the state vector, u ∈ R

m is the vector of control inputs, and y ∈ R
p

is the vector of measured outputs. We assume that the uncertain parameters q take
values in a set Q whose structure will be specified next, depending on whether a
deterministic or a probabilistic approach is adopted for the static output feedback
stabilizer design.

For the uncertain system (1), our primary goal is to design a robustly stabilizing
static output feedback gain. Such a design problem can be rigorously defined as
follows:

(OF) Goal. Design a static output feedback gain F , such that the closed loop between
plant (1) and u = Fy, corresponding to ẋ = (A(q) + B(q)FC(q))x is
robustly stable, namely the matrix A(q) + B(q)FC(q) is Hurwitz for
all q ∈ Q.

2Not available in the html-only version of the book.
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A suggestive aspect of the approach presented in the sequel is that a few auxiliary
(and arguably simpler) problems will turn out to be instrumental for the solution of
the (OF) Goal, and correspond to:

• (SF) Goal. Design a state feedback gain K such that the closed loop between plant
(1) and u = Kx , corresponding to ẋ = (A(q) + B(q)K )x is robustly stable.

• (OI) Goal. Design an output injection gain L such that the closed loop ẋ =
(A(q) + LC(q))x is robustly stable.

• (SI) Goal. Design a state injection gain J such that the closed loop ẋ = (A(q) +
J )x is robustly stable.

For the problems above, a necessary condition for the existence of a solution to
the (SF) goal is that the pair (A(q), B(q)) is stabilizable for all q ∈ Q. Moreover, a
necessary condition for the existence of a solution to the (OI) goal is that the pair
(C(q), A(q)) is detectable for all q ∈ Q (indeed, L is well understood as the gain
of a full-order Luenberger observer). Finally, both conditions above are necessary
for the existence of a solution to our main goal (OF), whereas goal (SI) is trivial
and always feasible as long as Q is bounded and matrix A(·) is a locally bounded
function.

The heuristic approach proposed in this chapter for the solution of the (OF) goal
is based on a main result presented here, wherein we manage to represent all the
design goals (OF), (SF), (OI) and (SI) listed above within a single matrix inequality
depending bilinearly on a set of variables to be (optimally) selected. This matrix
inequality arises from the dual calculations associatedwith [9, Thm6.8], and involves
a Lyapunov certificate X (q) � 0 and a number of S-variables. It corresponds to:

⎡

⎣
0 0 X (q)

0 0 0
X (q) 0 0

⎤

⎦

≺

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

I

−
(

λ

[
C(q)

0p−n,n

]

+ M(q)

)

−A(q)

⎤

⎥
⎥
⎦ S1(q) +

⎡

⎣
0
S2

B(q)Z

⎤

⎦
[
0 I −HT

]

⎫
⎪⎪⎬

⎪⎪⎭

S

.

(2)

In particular, the relation between feasibility of (2) for certain selections of the blue
variables, and the four design problems (OF), (OI), (SF), and (SI) is clarified in the
next main result.

Theorem 1 Consider system (1) and any selection of variables X > 0, λ, M, S1,
S2, Z , H satisfying (2) for all q ∈ Q. The following holds:

• (OF) if λ = 1, M(q) = 0 for all q ∈ Q and S2 is nonsingular, then selection

F = −ZS−1
2

[
Ip

0n−p,p

]

solves the (OF) goal;

• (OI) if λ = 1 and M(q) = 0 for all q ∈ Q, then selection L = H

[
Ip

0n−p,p

]

solves

the (OI) goal;
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• (SF) if λ = 0, M(q) = M is common to all q ∈ Q, and S2 is nonsingular, then
K = −ZS−1

2 M solves the (SF) goal;
• (SI) if λ = 0 and M(q) = M is common to all q ∈ Q, then J = HM solves the
(SI) goal.

We shall prove the four items of the theorem one by one. In particular, given
any q ∈ Q, for each one of the four items, we show below that the corresponding
closed-loop matrix is Hurwitz. But before going into each individual proof, let us
state the following facts. Assuming invertibility of S2, the congruence operation of[
I 0 0
0 B(q)(−ZS−1

2 ) I

]

on (2) implies

[
0 X (q)

X (q) 0

]

≺
⎧
⎨

⎩

⎡

⎣
I

−A(q) − B(q)(−ZS2
−1)

(

λ

[
C(q)

0p−n,n

]

+ M(q)

)
⎤

⎦ Ŝ1(q)

⎫
⎬

⎭

S

(3)

where Ŝ1(q) = S1

[
I 0 0
0 B(q)(−ZS−1

2 ) I

]T

, and the congruence operation of
[
I 0 0
0 H I

]

on (2) implies

[
0 X (q)

X (q) 0

]

≺
⎧
⎨

⎩

⎡

⎣
I

−A(q) − H

(

λ

[
C(q)

0p−n,n

]

+ M(q)

)
⎤

⎦ Š1

⎫
⎬

⎭

S

(4)

where Š1 = S1

[
I 0 0
0 H I

]T

. The uncertainty q will be omitted in most steps of the

following proofs to simplify the notations.
Proof of (OF). We need to show that matrix A(q) + B(q)FC(q) = A + BFC is
Hurwitz. Using the assumption that λ = 1, M(q) = 0, invertibility of S2, and the

selection F = −ZS−1
2

[
Ip

0n−p,p

]

, inequality (3) implies

[
0 X
X 0

]

≺
{[

I
−A − BFC

]

Ŝ1

}S

. (5)

This S-variable inequality, together with X � 0, implies that A + BFC is
Hurwitz (see [9]). This is also corroborated by performing a congruence oper-
ation of

[
A + BFC I

]
on (5) which gives the classical Lyapunov inequality:

(A + BFC)X + X(A + BFC)T ≺ 0.
Proof of (OI). We need to show that matrix A(q) + LC(q) = A + LC is Hurwitz.

Using the assumption that λ = 1, M(q) = 0, and the selection L = H

[
Ip

0n−p,p

]

,

inequality (4) implies
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[
0 X
X 0

]

≺
{[

I
−A − LC

]

Š1

}S

.

This S-variable inequality, together with X � 0, implies that A + LC is Hurwitz.
Proof of (SF). We need to show that matrix A(q) + B(q)K = A + BK is Hurwitz.

Using the assumption thatλ = 0, invertibility of S2, and the selection K = −ZS−1
2 M ,

inequality (3) implies

[
0 X
X 0

]

≺
{[

I
−A − BK

]

Ŝ1

}S

.

This S-variable inequality, together with X � 0, implies that A + BK is Hurwitz.
Proof of (SI). We need to show that matrix A(q) + J = A + J is Hurwitz. Using
the assumption that λ = 0 and the selection J = HM , inequality (4) implies

[
0 X
X 0

]

≺
{[

I
−A − J

]

Š1

}S

.

This S-variable inequality, together with X � 0, implies that A + J is Hurwitz. �

Remark 1 Theorem1 establishes conditions for specific selections of variables λ

and M . Alternative cases are also of interest. In particular, for the general case when
M �= 0 and λ �= 1, S-variable conditions (3) and (4) show, respectively, that matrices

A(q) − B(q)ZS−1
2

(

λ

[
C(q)

0n−p,p

]

+ M(q)

)

and A(q) + H

(

λ

[
C(q)

0n−p,p

]

+ M(q)

)

are Hurwitz. These properties clarify the rationale behind the heuristic algorithm
proposed in the next section, which stems from picking an initial “simple” selection
such that A(q) + HM be Hurwitz, and then performing iterations aiming at mini-
mizing the norm of M(q) while converging to λ = 1, so that the first one of the two
matrices above corresponds to the closed loop with the static output feedback gain.

3 Robust Deterministic Static Output Feedback Design

3.1 Deterministic Robust Stability

In the deterministic approach addressed in this section, we shall assume a polytopic
uncertainty structure where the matrices in (1) lie in the convex hull of vertices
computed at extremal values q [v], v = 1, . . . , v̄, with v̄ being the number of vertices
of the polytopic representation:

Q = {q =
v̄∑

v=1

φvq
[v], φ = (φ1, . . . , φv̄) ∈ �v̄}. (6)
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A model from this uncertain polytopic set is parameterized by the barycentric coor-
dinates φ ∈ �v̄ in the following form:

(
ẋ
y

)

=
[
Aφ Bφ

Cφ 0

] (
x
u

)

=
v̄∑

v=1

φv

[
A(q [v]) B(q [v])
C(q [v]) 0

] (
x
u

)

. (7)

Alternatively, in the probabilistic approach addressed in Sect. 4, we will assume a
more general not necessarily convex dependence of the matrices in (1) on q , not
requiring convexity of the uncertainty set.

The polytopic representation in (7), together with the peculiar structure of the S-
variable characterization in (2), allows providing bilinear conditions imposed at the
vertices of the polytope (6). Then, we may apply convex combinations to conclude
robust stability in the whole polytope, as long as the dependence on the uncertain
parameters is affine. In particular, a problematic term arises from the product between
S1(q) and other uncertain variables in (2). Due to this fact, we propose the use of a
more conservative condition, corresponding to

⎡

⎣
0 0 X [v]
0 0 0
X [v] 0 0

⎤

⎦

≺

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

I

−
(

λ

[
C(q [v])
0p−n,n

]

+ M [v])
)

−A(q [v])

⎤

⎥
⎥
⎦ S1 +

⎡

⎣
0
S2

B(q [v])Z

⎤

⎦
[
0 I −HT

]

⎫
⎪⎪⎬

⎪⎪⎭

S

,

(8)

for all v = 1 . . . v̄, where we selected a common value S1 for all the values of q ∈ Q.
We may then prove the following Corollary to Theorem1.

Corollary 1 Consider system (7) and any selection of variables X [v] � 0, λ, M [v],
S1, S2, Z , H satisfying (8) for all v = 1 . . . v̄. The following holds:

• (OF) if λ = 1, M [v] = 0 for all v = 1 . . . v̄, and S2 is nonsingular, then selection

F = −ZS−1
2

[
Ip

0n−p,p

]

solves the (OF) goal;

• (OI) if λ = 1 and M [v] = 0 for all v = 1 . . . v̄, then selection L = H

[
Ip

0n−p,p

]

solves the (OI) goal;
• (SF) if λ = 0, M [v] = M is common to all v = 1 . . . v̄, and S2 is nonsingular, then

K = −ZS−1
2 M solves the (SF) goal;

• (SI) if λ = 0 and M [v] = M is common to all v = 1 . . . v̄, then J = HM solves
the (SI) goal.

Proof The proof is based on the selection of the parameter-dependent matrix Xφ =
∑v̄

v=1 φv X [v] � 0, which emerges naturally when performing a convex combination,
through φ of inequalities (8), providing
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⎡

⎣
0 0 Xφ

0 0 0
Xφ 0 0

⎤

⎦ ≺

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

I

−
(

λ

[
Cφ

0p−n,n

]

+ Mφ

)

−Aφ

⎤

⎥
⎥
⎦ S1 +

⎡

⎣
0
S2
BφZ

⎤

⎦
[
0 I −HT

]

⎫
⎪⎪⎬

⎪⎪⎭

S

.

(9)
Since Eq. (9) involves thematrices of the uncertain system (7), the proof is completed
following steps parallel to those of the proof of Theorem1, using the polytopic
stability certificate Xφ . �

Remark 2 While Theorem1 provides conditions that are hard to check in practice,
Corollary1 corresponds to a conservative way to obtain a viable practical approach
to the problem. In particular, the use of a common value of S1 for all vertices is key to
ensuring the affine nature of the conditionswith respect to the polytopic uncertainty in
(6), so that the convex combination can be carried over to the uncertainty-dependent
conditions in (8). Note that while the common value of S1 may be a source of
conservatism of the tractable conditions of Corollary1 (as compared to those of
Theorem1), a byproduct is the polytopic nature of the selected Lyapunov function
(see [9, Lemma 3.3] which proves that the search for polytopic Lyapunov certificates
is lossless under the constraint that the S-variable is common to all uncertainties).
More general parameter-dependent Lyapunov functions may be effective at reducing
the conservatism, perhaps at the expense of a higher computational burden. This is
one of the goals of the probabilistic approach adopted in Sect. 4.

3.2 Iterative Heuristic for Deterministic Robust Control

In this section, we propose a heuristic procedure to design a robust static output feed-
back exploiting the matrix inequalities (8) and Corollary1. The proposed approach
is an iterative procedure to address the bilinear nature of (8), while starting from a
reasonable initial condition. It consists of three fundamental phases:

• an initialization phase, which solves the (SI) and (SF) goals, also providing an
initial guess of a solution to (8) having promising features in terms of convergence
to the condition λ = 1 and M(·) ≡ 0 required in item (OF) of Corollary1;

• an iteration phase, which iterates between two steps aiming at refining the can-
didate solution to the BMI in the direction of this necessary condition λ = 1 and
M(·) ≡ 0;

• a validation phase, comprising a semidefinite program solving the (OF) and (OI)
goals, thus providing a static output feedback selection if the previous phase con-
verged to a solution sufficiently close to the condition λ = 1 and M(·) ≡ 0.

Let us present the three abovementioned phases one by one.
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3.2.1 Initialization Phase

The initialization phase aims at finding an initial selection of X [v] > 0, λ, M [v], S1,
S2, Z , H satisfying (8). A possible strategy is to fix variables λ, M [v], and H , so that
optimizing the remaining variables is a convex LMI problem. We then select these
variables according to the following straightforward consequence of Corollary1.

Proposition 1 For a selection X [v] � 0, λ = 0, M [v] = M, S1, S2, Z , H to be a
solution of (8), it is necessary that A(q) + J = A(q) + HM be Hurwitz for all
q ∈ Q.

Motivated by the proposition above, we propose the following selection:

λ = λ0 = 0, M [v] = M0, H = H0 = J0M
−1
0 , (10)

where J0 ensures that A(q) + J0 be Hurwitz for all q ∈ Q, and M0 is some invertible
common selection of M [v]. More specifically, keep in mind that we aim for the
following convergence

λ

[
C(q)

0n−p,p

]

+ M(q) →
[
C(q)

0n−p,p

]

.

Anatural choice of initialM0 is hence such that its first p rowsmimicC(q). Therefore
define Cm = 1

v̄

∑v̄
v=1 C(q [v]) the average of all matrices computed at vertices, and

choose

M0 =
[
C◦
mCm

C⊥T
m

]

. (11)

In this way, M0 is square and non-singular and its first rows span the same range as
the average of the C(q) matrices.

For the initial guess of the SI matrix J0 in (10), to ensure that A(q) + J0 be
robustly stable, let μ denote the maximum real part of all matrices A(q [v]). Then we
may select

J0 = (−μ − h)I, (12)

where h > 0 is a positive scalar. For a sufficiently large value of h, matrix A(q) + J0
is then robustly stable. Clearly, increasing h provides a natural way to strengthen this
robust stability condition, and is the baseline intuition for the initialization algorithm
below.

Phase 1. Initialization (provides solutions to (SI) and (SF))

1: Input: Select the initial values as per (10)–(12) with h = 1.
2: Iteration: Solve the following LMI problem for v = 1 . . . v̄:
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X [v] � 0,
⎡

⎣
0 0 X [v]
0 0 0
X [v] 0 0

⎤

⎦ ≺
⎧
⎨

⎩

⎡

⎣
I

−M0

−A(q [v])

⎤

⎦ S1 +
⎡

⎣
0
S2

B(q [v])Z

⎤

⎦
[
0 I −HT

0

]
⎫
⎬

⎭

S

.
(13)

If (13) is feasible, go to the next step. Otherwise, increase h, redefine H0 according
to (10), (12) and repeat Step 2. If for larger values of h no solution exists, then
stop: the iterative heuristic fails.

3: Output If a solution X [v], S1, S2, Z to (13) is found, then output S1,0 = S1,
K̂0 = −ZS−1

2 , K = −ZS−1
2 M0 and J = H0M0. From Corollary1, K and J are

proved to be robustly stabilizing SF and SI gains, respectively.

It is emphasized that there is no guarantee that the algorithm provides a correct
solution, and even in the case where there exists a gain K inducing a common
quadratic Lyapunov certificate X for the correspondingmatrices A(q [v]) + B(q [v])K ,
it is unclear how to get a proof of its successful termination. Nevertheless, practical
experience revealed that the algorithm is quite effective in finding a feasible solution
to (8). Moreover, there was not a need to iterate on the value of h. If the LMIs were
unfeasible for h = 1, then they happened to be unfeasible for larger values as well.

3.2.2 Iteration Phase

If the initialization phase provides an initial feasible solution to (8), we may proceed
with the iteration phase, whose goal is (starting from λ0 = 0 and M0) to iteratively
reach a solution where λ = 1 and M [v] = 0. This is done by maximizing λ ∈ [ 0 1 ]
with a constraint on the norm ofM [v] of the type (1 − λ)I � MT M and as formalized
next.

Phase 2. Iteration

1: Input: Start from the initial guess S1,0 and K̂0 provided by Phase 1 (initialization phase).
Initialize k = 0.

2: Step k, 1: Let k := k + 1. For a fixed K̂k−1, S1,k−1 is coming from the previous step, maximize
λ under the following LMI conditions for v = 1 . . . v̄:

X [v] � 0,

[
(1 − λ)I M [v]T

M [v] I

]

� 0, λ ≥ 0,

⎡

⎣
0 0 X [v]
0 0 0

X [v] 0 0

⎤

⎦

≺

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

I

−
(

λ

[
C(q[v])
0p−n,n

]

+ M [v]
)

−A(q[v])

⎤

⎥
⎥
⎦ S1,k−1 +

⎡

⎣
0

−I
B(q[v])K̂k−1

⎤

⎦
[
0 −S2 Y T

]

⎫
⎪⎪⎬

⎪⎪⎭

S

at the optimum set λk = λ, M [v]
k = M [v] and HT

k = S−1
2 Y T .
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If 1 − λk is smaller than a (small) tolerance, then Fk = K̂k−1

[
Ip

0n−p,p

]

and Lk = Hk

[
Ip

0n−p,p

]

are reasonable candidates (OF) and (OI) robustly stabilizing gains, respectively. Therefore,
transfer selection Hk to the validation phase. Otherwise, go to Step k, 2.

3: Step k, 2: For fixed λk , M
[v]
k and Hk coming from the previous step, search by bisection the

smallest α ∈ [0 1] such that the following LMIs hold for v = 1 . . . v̄:

X [v] � 0,

⎡

⎣
0 0 X [v]
0 0 0

X [v] 0 0

⎤

⎦ ≺
⎧
⎨

⎩

⎡

⎣
I

−M̂ [v](α)

−A(q[v])

⎤

⎦ S1 +
⎡

⎣
0
S2

B(q[v])Z

⎤

⎦
[
0 I −HT

k

]
⎫
⎬

⎭

S

where M̂ [v](α) =
(

(1 + α(λk − 1))

[
C(q[v])
0p−n,n

]

+ αM [v]
k

)

. At the optimum set αk = α, K̂k =
−ZS−1

2 and S1,k = S1.

If αk is smaller than a (small) tolerance, then Fk = K̂k

[
Ip

0n−p,p

]

and Lk = Hk

[
Ip

0n−p,p

]

are

reasonable candidates (OF) and (OI) robustly stabilizing gains, respectively. Therefore, transfer
selection Hk to the validation phase. Otherwise, go to Step k + 1, 1.

The key feature enjoyed by the two steps of the procedure listed in Phase 2 above,
is that whenever moving from one step to the next one, the quality of the optimized
solution (in terms of size of 1 − λ or α) cannot get worse. This is clarified in the next
proposition, whose proof is straightforward.

Proposition 2 For the iterations listed in Phase 2, the following holds:

• Given any initial solution provided by Phase 1, the conditions at Step 1, 1 are
feasible for λ = 0;

• Given any solution from Step k, 1, Step k, 2 is feasible for α = 1;
• Given any solution fromStep k, 2, Step k+1,1 is feasible forλ = λk + (1 − λk)(1 −

αk).

3.2.3 Validation Phase

This heuristic algorithm is completed by a validation phase, which comprises the
solution of an LMI, parameterized by matrix H , selected according to the iteration
phase of the previous section.

Phase 3. Validation (provides solutions to (OI) and (OF))

1: Input: Start from matrix H , produced as an output of Phase 2 (iteration).
2: Validation Step: Solve the following LMI feasibility problem for v = 1 . . . v̄:

X [v] � 0,

⎡

⎣
0 0 X [v]
0 0 0

X [v] 0 0

⎤

⎦ ≺

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

I

−
[
C(q[v])
0p−n,n

]

−A(q[v])

⎤

⎥
⎥
⎦ S1 +

⎡

⎣
0
S2

B(q[v])Z

⎤

⎦
[
0 I −HT

]

⎫
⎪⎪⎬

⎪⎪⎭

S

.
(14)
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If a solution is found, then from Corollary1 F = −ZS−1
2

[
Ip

0n−p,p

]

and L = H

[
Ip

0n−p,p

]

are,

respectively, proved to be robustly stabilizing (OF) and (OI) gains. Otherwise, the validation
phase fails and the algorithm should go back to the iteration phase reducing the tolerance for α

and λ.

Note that, the LMI conditions in the Validation Step are guaranteed to be feasible
whenever matrix H coming from the iteration step was associated with λ = 1 (equiv-
alently, from Proposition2, α = 0). However, in general, one may find it convenient
to run the Validation Step even for cases where these conditions are not exactly met.
Due to this fact, and possibly due to numerical errors, it makes sense to possibly
come back to the iteration phase (from a failing validation phase) to further improve,
via extra iterations, the previous candidate selection of H .

4 Probabilistic Static Output Feedback Design

As emphasized in the previous section, using a polytopic approach to address the
design of suitable matrices guaranteeing the conditions in Theorem1 may be too
conservative for the problem at hand. For this reason, in this section we follow an
alternative paradigm based on a probabilistic approach, which allows for uncertain
dynamics more general than (7) (thereby not requiring convexity with respect to the
uncertainty q), enables using multipliers that are not necessarily common among the
samples, reaches beyond the use of polytopic Lyapunov certificates, but comes at
the expense of providing a probabilistic guarantee of robust stability (rather than a
deterministic one), in addition to typically being computationally more expensive.

In particular, throughout this section, we do not assume that the uncertainty lies in
a convex polytope, but we consider a more general setup, in which the state matrices
in (1) may be generic continuous (possibly nonlinear) functions of the uncertainty
parameter q . On the other hand, following a classical probabilistic approach [4, 20],
we require to have additional probabilistic information on the uncertainty. Formally,
we assume that A(q), B(q),C(q) are continuous measurable functions of q , and
that q is a random variable with probability distribution Pr with support Q. Such
a probability distribution may describe the likelihood of each occurrence of the
uncertainty, or a user-defined weight for all possible uncertain situations.

Then, randomized algorithms are applied to design a controller that guarantees
performance with a prescribed level of probability. These algorithms are based on
the extraction of random samples of the uncertainty

q(1) . . . q(r̄) ∈ Q,

and the construction of sampled convex programs. The focus of this approach is in
the derivation of sample complexity bounds, i.e., bounds on the number of samples
to be extracted so as to ensure that the desired probabilistic guarantees are met.

In the next section, we briefly recall the so-called scenario approach originally
presented in [3] for dealing with convex optimization problems in the presence of
uncertainty.
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4.1 The Scenario Approach

Let us consider a generic class of robust convex optimization problems of the form:

θRO = arg min
θ∈Θ

cT θ (15)

s.t. f (θ, q) ≤ 0, ∀q ∈ Q,

where θ ∈ Θ denotes the design variable, bounded in a domainΘ , which is a convex
and compact set in R

nθ , and q is the uncertainty, bounded in the uncertainty set
Q, not necessarily compact. For a given q ∈ Q, f (θ, q) is a convex function of the
optimization variable. Furthermore, we assume that f (θ, q) is a continuous (possibly
nonlinear) function of q for any given θ .

To construct a sampled convex program, N independent identically distributed
(iid) samples are extracted according to the probability distribution of q , and the
following scenario optimization problem, based on r̄ instances (scenarios) of the
uncertain constraints:

θSO = argmin
θ∈Θ

cT θ (16)

s.t. f (θ, q(r)) ≤ 0, r = 1 . . . r̄ .

Problem (16) represents a sampled relaxation of Problem (15), since it deals onlywith
a subset of the (infinite number of) constraints considered in (15), according to the
probability distribution of the uncertainty. However, under rather mild assumptions
on Problem (15), by suitably choosing r̄ , this approximation may in practice become
negligible in some probabilistic sense. Specifically, r̄ can be selected depending on
the level of “risk” of constraint violation that the user is willing to accept. To this
end, we define the violation probability of a design θ as follows:

Viol(θ)
.= Pr {q ∈ Q : f (θ, q) > 0} (17)

The following result has been proven in [6].

Proposition 3 ([6]) Assume that, for any multisample extraction, Problem (16) is
feasible and attains a unique optimal solution. Then, given an accuracy level ε ∈
(0, 1), the solution θSO of Problem (16) satisfies

Pr {Viol(θSO) > ε} ≤ B(r̄ , ε, nθ ), (18)

where

B(r̄ , ε, nθ )
.=

nθ−1∑

k=0

(
r̄

k

)

εk(1 − ε)(r̄−k). (19)
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Wenote that nonuniqueness of the optimal solution canbe circumvented by impos-
ing additional “tie-break” rules in the problem, see, e.g., Appendix A of [3]. Also,
in [5] it is shown that the feasibility assumption can be removed at the expense of
substituting nθ − 1 with nθ in B(r̄ , ε, nθ ).

From (18), explicit bounds on the number of samples necessary to guarantee the
“goodness” of the solution have been derived. The bound provided in [1] shows that,
if, for given ε, δ ∈ (0, 1), the sample complexity r̄ is chosen to satisfy the sample
complexity bound

r̄ ≥ e

ε(e − 1)

(

ln
1

δ
+ nθ − 1

)

(20)

(where e denotes the Euler number), then the solution θSO of Problem (16) satisfies
Viol(θSO) ≤ ε with probability 1 − δ. This bound improves by a constant factor
upon previous bounds, see e.g., [5], and it shows that Problem (16) exhibits linear
dependence in 1/ε and nθ , and logarithmic dependence on 1/δ. Note however that,
from a practical viewpoint, it is always preferable to numerically solve the one-
dimensional problem of finding the smallest integer r̄ such that B(r̄ , ε, nθ ) ≤ δ.

4.2 Scenario with Certificates

The classical scenario approach previously discussed deals with uncertain optimiza-
tion problems where all variables θ are to be designed. On the other hand, in the
design with certificates approach we distinguish between design variables θ and
certificates ξ . The certificates are represented here in green color, and correspond to
those variables which are not involved in the construction of the design, but whose
existence is necessary for its derivation. A classical example of certificates are Lya-
punov functions for proving stability.

Formally, we consider a function f (θ, ξ , q), jointly convex in θ ∈ Θ and ξ ∈
� ⊆ R

nξ for given q ∈ Q, and study the following robust optimization problem with
certificates:

θRwC = argmin
θ

cT θ (21)

s.t. θ ∈ S (q), ∀q ∈ Q,

where the set S (q) is defined as

S (q)
.= {θ ∈ Θ| ∃ξ = ξ(q) ∈ � satisfying f (θ, ξ , q) ≤ 0} .

From the above formulation, the role of certificates is clear: for any value of the
uncertainty, the existence of a certificate (possibly depending on the given value
of q) is required.
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A key observation is that the set S (q) is convex in θ for any given q , see [12,
Theorem 1]. These observations lead to the introduction of the following scenario
with certificates problem, based again on a sample extraction, to approximate Prob-
lem (21), inspired by a similar approach proposed in [17] for the iterative solution
of parameter-dependent LMIs:

θSwC = arg min
θ,ξ (1),...,ξ (r̄)

cT θ (22)

s.t. f (θ, ξ (r), q(r)) ≤ 0, r = 1 . . . r̄ .

Note that, contrary to Problem (16), in this case, a new certificate variable ξ (r) is
created for every sample q(r), r = 1, . . . , r̄ . To analyze the properties of the solution
θSwC, we note that, in the case of SwC, the violation probability of design θ are
given by

Viol(θ) = Pr
{
q ∈ Q | �ξ ∈ � satisfying f (θ, ξ , q) ≤ 0

}
.

Then, the following theorem can be stated, from [12, Thm 1].

Theorem 2 ([12]) Assume that, for a multisample extraction, Problem (22) is feasi-
ble and attains a unique optimal solution. Then, given an accuracy level ε ∈ (0, 1),
the solution θSwC of Problem (22) satisfies

Pr {Viol(θSwC) > ε} ≤ B(r̄ , ε, nθ ). (23)

We remark that Problem (22) has r̄ separate constraints, one for each q(r), and
each constraint involves a different certificate. However, notice that the dimension nξ

of the certificates ξ does not enter into the right-hand side of the probability bound
(23) in Theorem2. Hence, the sample complexity of Problem (22) is smaller than that
of the scenario counterpart of the problem with common certificates, in which both θ

and ξ play the role of design variables. On the other hand, the complexity of solving
Problem (22) is higher, since the number of optimization variables significantly
increases, because a different variable ξ (r) is introduced for every sample q(r). This
increase in complexity is not surprising, being Problem (22) much more difficult
than the robust problem involving common certificates.

4.3 Probabilistic Robust Stability

In this section, we exploit the SwC setting previously discussed to derive a sample-
based heuristic for designing a SOF controller guaranteeing robust stability in prob-
ability.

To this end, we revisit the heuristic approach presented in Sect. 3.2, and observe
that both the initialization and the validation phases involve the solution of uncertain
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LMI problems, where the values of λ, M and H are fixed (λ = 0, M = M0, H = H0

in Phase 1 andλ = 1,M = 0, H = H in Phase 3). In that case, the necessity of having
a convex formulation with respect to q forced us to impose the S-variable S1(q) to
be fixed and independent of q . This limitation can be lifted in the sample-based
approach, due to the general result of Theorem2.

In the following corollary, which is a direct application of Theorems1 and 2, we
show how a sample-based approximation of Problem (2) with fixed values of λ, M ,
and H , can be derived, together with a precise characterization of its probabilistic
properties.

Corollary 2 Given ε, δ ∈ (0, 1), extract r̄ iid samples q(1) . . . q(r̄) of the uncertainty
q ∈ Q, where r̄ satisfies

r̄ ≥ e

ε(e − 1)

(

ln
1

δ
+ n(n + m) − 1

)

. (24)

Consider a selection of λ ∈ [0, 1], M and H. If there exist matrices S2, Z , and
certificates X (r) � 0, S(r)

1 , satisfying for r = 1 . . . r̄ ,

⎡

⎣
0 0 X (r)

0 0 0
X (r) 0 0

⎤

⎦

≺

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

I

−
(

λ

[
C(q(r))

0p−n,n

]

+ M

)

−A(q(r))

⎤

⎥
⎥
⎦ S(r)

1 +
⎡

⎣
0
S2

B(q(r))Z

⎤

⎦
[
0 I −HT

]

⎫
⎪⎪⎬

⎪⎪⎭

S

,

(25)

then, we guarantee with confidence at least 1 − δ, a probability of at least 1 − ε that

• (OF) if λ = 1, M = 0 and S2 is invertible, then selection F = −ZS−1
2

[
Ip

0n−p,p

]

solves the (OF) goal;

• (OI) if λ = 1 and M = 0, then selection L = H

[
Ip

0n−p,p

]

solves the (OI) goal;

• (SF) if λ = 0 and S2 is invertible, then K = −ZS−1
2 M solves the (SF) goal;

• (SI) if λ = 0, then J = HM solves the (SI) goal.

4.4 Iterative Heuristic for Probabilistic Robust Control

In the sequel, we show how the application of Corollary2 allows deriving a sample-
based version of the heuristic introduced in Sect. 3.2 for the deterministic case. In
particular, the proposed approach involves again three phases:
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1. An initialization phase, in which a sample-based SwC problem is solved, lead-
ing to the construction of initial candidate variables to be passed to the iteration
phase. In particular, this first phase returns, as a side result, the design of proba-
bilistic solutions to the robust state feedback (SF) and state injection (SI) goals.
More specifically, we are able to assess precise probabilistic properties of these
solutions, in terms of themeasure of the uncertainty set that it may fail to stabilize.

2. An iteration phase, in which a small subset r̄d ≤ r̄ of the samples employed in
the first phase is randomly selected (for instance, the first r̄d ones), and is used in
an iterative way to “push” the design obtained in the first phase (wherein λ = 0)
toward a SOF design (wherein we need λ = 1).

3. A validation phase where, based on matrix H of the previous phase, a sample-
based SwC problem is solved for the design of probabilistic solutions to the robust
output feedback (OF) and output injection (OI) goals.

It shouldbenoted that if Phase 3 fails, onemay investigatemore accurate selections
of matrix H by repeating phase 2 with a larger number r̄d of samples from Phase 1.

4.4.1 Sample-Based Initialization Phase

The initialization phase represents, substantially, the sample-based equivalent of
Phase 1 presented in Sect. 3.2.1.

Phase 1. Sample- based initialization (provides probabilistic solutions to (SI) and
(SF))

1: Input: Select the initial values as per (10)–(12) with h = 1.
2: Sample generation: Given probabilistic levels δ, ε ∈ [0, 1], set r̄ as per (24), and generate r̄ iid

samples q(1) . . . q(r̄) according to distribution Pr.
3: Iteration: Solve the following sampled feasibility problem for r = 1 . . . r̄ :

X (r) � 0,
⎡

⎣
0 0 X (r)

0 0 0
X (r) 0 0

⎤

⎦ ≺
⎧
⎨

⎩

⎡

⎣
I

−M0

−A(q(r))

⎤

⎦ S(r)
1 +

⎡

⎣
0
S2

B(q(r))Z

⎤

⎦
[
0 I −HT

0

]
⎫
⎬

⎭

S

(26)

If (26) is feasible, go to the next step. Otherwise, increase h, redefine H0 according to (10), (24)
and repeat step 2. If for larger values of h no solution exists, then stop: the iterative heuristic
fails.

4: Output: If a feasible solution to (26) is found, then output K̂0 = −ZS−1
2 , K = −ZS−1

2 M0,

J = H0M0, together with samples q(1) . . . q(r̄) and the corresponding S-variables S(1)
1 …S(r̄)

1 ,
S2, Z .

Also in this case, there is no guarantee, even in a probabilistic sense, that this step
of the algorithmwill return a feasible solution. However, if a solution is returned, then
byCorollary2 K and J defined in Step 4 are guaranteed to solve in a probabilisticway
the robust state feedback (SF) and state injection (SI) goals, respectively. Moreover,
its output constitutes the initialization step of the iteration phase presented next.
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4.4.2 Sample-Based Iteration Phase

The objective of this phase is to iteratively “push” the initial solution to (25) provided
by Phase 1 (with λ0 = 0, M = M0) toward a solution to (25) with λ = 1 and M = 0.
This phase represents a completely heuristic procedure, which, if successful, returns
a parameter H for the next validation phase, which is instead based on the rigorous
results of Corollary2.

This phase is the one that is computationally most expensive. To alleviate the
computational load, a subset of r̄d ≤ r̄ design samples is selected among the samples
returned by Phase 1.

Phase 2. Sample- based iteration

1: Input: Start from the initial guess K̂0 provided by Phase 1 (initialization phase). Initialize k = 0
2: Design samples selection: Select a (small) number r̄d ≤ r̄ of samples q(r) and the corresponding

S-variables S(r)
1,0 := S(r)

1 , r = 1 . . . r̄d returned by Phase 1.

3: Step k, 1: Let k := k + 1. For fixed K̂k−1, S
(r)
1,k−1 coming from the previous step, maximize λ

under the following conditions for r = 1 . . . r̄d

X (r) � 0,

[
(1 − λ)I M (r)T

M (r) I

]

� 0, λ ≥ 0,

⎡

⎣
0 0 X (i)

0 0 0
X (r) 0 0

⎤

⎦

≺

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

I

−
(

λ

[
C(q(r))

0p−n,n

]

+ M (r)
)

−A(q(r))

⎤

⎥
⎥
⎦ S(r)

1,k−1 +
⎡

⎣
0

−I
B(q(r))K̂k−1

⎤

⎦
[
0 −S2 Y T

]

⎫
⎪⎪⎬

⎪⎪⎭

S

at the optimum set λk = λ, M (r)
k = M (r) and HT

k = S−1
2 Y T .

If 1 − λk is smaller than a (small) tolerance level, then Fk = K̂k−1

[
Ip

0n−p,p

]

and Lk =

Hk

[
Ip

0n−p,p

]

are reasonable candidates (OF) and (OI) robustly stabilizing gains, respectively.

Therefore, transfer selection Hk to the validation phase. Otherwise, go to Step k, 2.
4: Step k, 2: For fixed λk , M

(r)
k and Hk coming from the previous step, search by bisection the

smallest α ∈ [0 1] such that the following inequalities hold for r = 1 . . . r̄d

X (r) � 0,
⎡

⎣
0 0 X (r)

0 0 0
X (r) 0 0

⎤

⎦ ≺
⎧
⎨

⎩

⎡

⎣
I

−M̂(q(r), α)

−A(q(r))

⎤

⎦ S(r)
1 +

⎡

⎣
0
S2

B(q(r))Z

⎤

⎦
[
0 I −HT

k

]
⎫
⎬

⎭

S

where M̂(q(r), α) =
(

(1 + α(λk − 1))

[
C(q(r))

0p−n,n

]

+ αM (r)
k

)

. At the optimum set αk = α,

K̂k = −ZS−1
2 and S(r)

1,k = S(r)
1 .



140 D. Arzelier et al.

If αk is smaller than a (small) tolerance level, then Fk = K̂k

[
Ip

0n−p,p

]

and Lk = Hk

[
Ip

0n−p,p

]

are reasonable candidates OF and OI robustly stabilizing gains, respectively. Therefore, transfer
selection Hk to the validation phase. Otherwise, go to Step k + 1, 1.

Similar to its deterministic counterpart, the iterations in Phase 2 guarantee that
the quality of the optimized solution does not get worse. In particular, the results of
Proposition2 still hold.

4.4.3 Sample-Based Validation Phase

The validation phase uses matrix H returned by the iterations in Phase 2 to construct
a scenario with certificates problem.

Phase 3. Sample- based validation (provides probabilistic solutions to (OI) and
(OF))

1: Input: Start from matrix H , produced as an output of Phase 2 (iteration).
2: Sample generation: Given probabilistic levels δ, ε ∈ [0, 1], set r̄ as per (2), and generate r̄ iid

samples q(1) . . . q(r̄) according to distribution Pr.
3: Validation Step: Solve the following sampled problem for r = 1 . . . r̄ :

X (r) � 0,
⎡

⎣
0 0 X (r)

0 0 0
X (r) 0 0

⎤

⎦ ≺

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

I

−
[
C(q(r))

0p−n,n

]

−A(q(r))

⎤

⎥
⎥
⎦ S(r)

1 +
⎡

⎣
0
S2

B(q(r))Z

⎤

⎦
[
0 I −HT

]

⎫
⎪⎪⎬

⎪⎪⎭

S

(27)

If a solution is found, then from Corollary2 selections, F = −ZS−1
2

[
Ip

0n−p,p

]

and L =

H

[
Ip

0n−p,p

]

are probabilistic solutions to the output feedback (OF) and the output injection

(OI) goals, respectively. Otherwise, the validation phase fails and the algorithm should go back
to the iteration phase, increasing the number of selected samples by choosing a larger number
r̄d.

Note that, the sample-based Validation Step is by nature less conservative than
the corresponding deterministic one (14) for two main reasons: (i) it does not require
the solution to be feasible for all possible values of the uncertainty, but it requires
feasibility only for a suitably selected number of samples, (ii) it does not require
a common S-variable S1, but it allows for parameter-dependent certificates. This is
done at the expense of giving up deterministic robustness, but instead allowing for a
(typically small) probability of failure.

However, if one is indeed interested in robustly guaranteed results, it should be
pointed out that nothing prevents us from testing the output of the probabilistic
Phase 2 by means to the corresponding deterministic Validation Step (14).
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5 Numerical Examples

5.1 OF Design Without Uncertainties

Although the results are intended for robust stability, the heuristic algorithm can also
be applied to systems without uncertainties. In this case, there is only one sample
and the deterministic and probabilistic algorithms coincide. The CompLeib library
provides a collection of such systems. We have tested the heuristic on some of these
examples (of low order). The results are as follows (h = 1 in all cases). The algorithm
finds a stabilizing output feedback gain

• at iteration k = 1 for examples, AC1–AC5, AC12, AC15–AC17, HE2
• at iteration k = 2 for examples, AC6, AC7, AC9, HE4
• at iteration k = 4 for example, AC8
• at iteration k = 7 for example, HE3
• does not converge for AC11, AC18, HE1, and HE5.

These results are quite encouraging because some of these examples were proved to
be hard when tested with similar tools in [9].

5.2 Deterministic OF Design with Uncertainties

The next example is borrowed from [8] with slight modifications to ensure that all
system matrices A, B, and C are uncertain. These uncertain matrices belong to a
polytope with two vertices:

A(q [1]) =
⎡

⎣
−1 4 0
0 0 1
a 6 −1

⎤

⎦ , B(q [1]) =
⎡

⎣
0
0
0.5

⎤

⎦ , C(q [1]) =
[
1 1 0
0 1 0

]

,

A(q [2]) =
⎡

⎣
−1 1 0
0 −5 1
a 1 −1

⎤

⎦ , B(q [2]) =
⎡

⎣
0
0
2

⎤

⎦ , C(q [2]) =
[
1 1 0
0 0 0

]

.

(28)

The peculiarity of this numerical example is that the uncertain input matrices C(q)

are of full row rank except at one of the vertex of the polytope. This rank deficiency
corresponds to a failure of one of the sensors of the system.This uncertain systemmay
be robustly stabilized via static output feedback for different ranges of the parameter
a ∈ [a, a] as indicated in Table1. For each integer value of a ∈ [0, 10], we search
for the maximal integer a such that the algorithm finds a solution to the (OF) goal.
K0 is the state feedback (SF) gain found at the initialization Phase 1. k̄ is the number
of iterations in Phase 2 of the algorithm. The maximal number of iterations was
set to 10, therefore k̄ = 10 indicates that Phase 2 terminated because this maximal
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Table 1 Robust stabilizing SOF gains for numerical example (28)

[a, a] K0 k̄ Fk̄ Time (s)

[0, 9]
[
−1.5939 −17.5869 −7.1516

]
2

[
−1.3792 −27.4388

]
6.5

[1, 14]
[
−3.0824 −20.0953 −7.4500

]
2

[
−2.6507 −29.2585

]
7.4

[2, 23]
[
−5.1340 −24.8380 −8.4098

]
2

[
−4.9091 −37.1852

]
7.4

[3, 29]
[
−7.1790 −32.6351 −10.1779

]
7

[
−6.8056 −48.0987

]
33.8

[4, 49]
[
−16.1234 −48.9351 −13.5936

]
10

[
−13.0042 −52.9144

]
51.3

[5, 58]
[
−21.4924 −57.7095 −14.8185

]
5

[
−14.4984 −47.2955

]
28.1

[6, 72]
[
−27.1872 −59.7972 −14.1779

]
7

[
−18.9969 −45.5168

]
45.6

[7, 77]
[
−31.3509 −62.1565 −14.7895

]
10

[
−21.6073 −42.3976

]
45.6

[8, 80]
[
−34.4863 −63.0824 −14.8762

]
2

[
−23.2575 −38.5662

]
7.5

[9, 83]
[
−37.6496 −63.8179 −14.9218

]
2

[
−25.2797 −35.1410

]
8.0

[10, 86]
[
−40.7372 −64.4806 −14.9106

]
2

[
−26.9999 −31.4823

]
6.8

[0, 1000]
[
−1305.7 −695.5 −73.5

]
10 Fail 59.3

number is reached. Otherwise, the iterations stop when 1 − λ < 10−7. The column
Fk̄ gives the value of the output feedback gain when the algorithm succeeds in finding
a robustly stabilizing one. Results are given in Table1. They outperform significantly
those of [8]. Note that in many cases the number of iterations is very low (typically
2) and, hence, the computation time is not prohibitive. The last row of the table is a
test of the method’s capability to find robustly stabilizing state feedback gains. For
this last test we have set h = 10 in the initialization Phase 1. In all other tests h = 1.

5.3 A Comparison Between the Deterministic and
Probabilistic Approaches

The following example is taken from [7]. The system is given by

A(q) =
[

0 −0.5 + q1
0.5 + q2 0

]

, B(q) =
[
0.5 + q1
0.5 − q2

]

, C = [
1 0

]
.

To compare the deterministic and the probabilistic approaches, we let q1 and q2
be defined as
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Fig. 1 Deterministic uncertainty set (gray-shaded box) and real uncertainty set (black solid line)
for q̄ = 0.4, namely the limit value for a successful deterministic OF design. In the background,
the contour plot of the absolute value of the determinant of the reachability matrix of the system in
[7] is also illustrated. This is null corresponding to the red cross and along the red curve in the right
bottom part of the figure. Also, a stabilizing SOF cannot be found if the system is unobservable,
that is for all points on the dashed line q1 = 0.5

q1 = q̄ cos(2θ), q2 = q̄ sin(θ), θ ∈
[
−π

2
,
π

2

]
,

where q̄ is a fixed parameter determining the upper bound on the absolute value of
the uncertain parameters for any value of θ .

To perform a robust deterministic design, we need to assume two independent
uncertainties |q1| ≤ q̄ and |q2| ≤ q̄ , without explicitly considering their (nonlinear)
dependence on the common parameter θ . With this assumption, the parameterization
becomes convex and we can run the procedure in Sect. 3.2. Such an overparameter-
ization of the uncertainty results in a larger uncertainty set: see the gray-shaded box
in Fig. 1 as compared to the real set indicated by the black solid line. Clearly, the
corresponding design is convex but more conservative.

For this simple example, one can compute by hand the robustly stabilizing OF
gains and these are exactly such that q̄−0.5

q̄+0.5 < F < 0. Moreover for q̄ > 0.36, there
is no state feedback that may quadratically stabilize the system (stability may not
be proved with a common to all uncertainties Lyapunov matrix). For q̄ > 0.36 only
parameter-dependent Lyapunov certificates may be used to prove robust stability of
the closed loop.

The heuristic algorithms are applied to the example for various values of q̄ . The
results are given in Tables2, 3 and 4. K0 is the state feedback (SF) gain found at
the initialization Phase 1. k̄ is the number of iterations in Phase 2 of the algorithm.
The maximal number of iterations is set to 10, therefore k̄ = 10 indicates that Phase
2 terminated because this maximal number is reached. Otherwise, the iterations
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Table 2 Numerical results for the deterministic approach

q̄ q̄−0.5
q̄+0.5 K0 k̄ 1 − λk̄ Fk̄ Validation Time (s)

0.1 −0.6667
[

−0.6589 −0.9263
]

2 7.5 · 10−9 −0.5082 OK 5.3

0.2 −0.4286
[

−0.4012 −1.0939
]

3 2.9 · 10−9 −0.3166 OK 8.6

0.3 −0.2500
[

−0.1776 −1.0576
]

3 1.4 · 10−8 −0.1185 OK 8.8

0.4 −0.1111
[

−0.0471 −0.9240
]

7 3.5 · 10−8 −0.1104 OK 26.7

0.41 −0.0989
[

−0.0427 −0.9057
]

10 8.4 · 10−7 −0.1030 - 45.0

0.42 −0.0870
[

−0.0387 −0.8886
]

10 2.7 · 10−6 −0.0928 - 53.3

0.43 −0.0753
[

−0.0345 −0.8728
]

10 7.7 · 10−6 −0.0827 - 47.0

0.44 −0.0638
[

−0.0319 −0.8654
]

10 1.5 · 10−5 −0.0712 - 54.0

0.45 −0.0526
[

−0.0337 −0.8739
]

10 3.8 · 10−5 −0.0623 - 50.1

0.455 −0.0471
[

−0.0353 −0.8758
]

10 8.3 · 10−5 −0.0546 - 49.2

0.46 −0.0417 - 1.2

Table 3 Numerical results for the probabilistic method applied to the deterministic model

q̄ q̄−0.5
q̄+0.5 K0 k̄ 1 − λk̄ Fk̄ Validation Time (s)

0.1 −0.6667
[

−0.6763 −0.8962
]

2 9.4 · 10−9 −0.5409 OK 4.5

0.2 −0.4286
[

−0.4403 −0.9932
]

3 3.4 · 10−9 −0.3657 OK 8.4

0.3 −0.2500
[

−0.2174 −0.9742
]

4 1.1 · 10−8 −0.2371 OK 11.7

0.4 −0.1111
[

−0.0569 −0.8682
]

4 1.8 · 10−9 −0.1012 OK 12.9

0.41 −0.0989
[

−0.0522 −0.8492
]

4 1.2 · 10−8 −0.0927 OK 17.0

0.42 −0.0870
[

−0.0480 −0.8297
]

3 1.6 · 10−8 −0.0792 OK 9.4

0.43 −0.0753
[

−0.0443 −0.8095
]

2 2.9 · 10−8 −0.0638 OK 5.1

0.44 −0.0638
[

−0.0406 −0.7889
]

5 1.9 · 10−9 −0.0554 OK 22.2

0.45 −0.0526
[

−0.0392 −0.7867
]

10 5.6 · 10−6 0.0950 - 50.8

0.455 −0.0471
[

−0.0413 −0.7968
]

5 1.5 · 10−8 −0.0337 OK 22.4

0.46 −0.0417 - 1.2

stop when 1 − λ < 10−7. The column 1 − λk̄ shows how close λ is to the value 1
when the iterations stop. The column Fk̄ gives the value of the OF gain when the
algorithm stops. The column named ‘Validation’ indicates whether the validation
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Phase 3 is successful (OK) or not (-). The computation time is the total time including
initialization and termination phases. For each tested value of q̄ , the theoretical limit
of the stabilizing output feedback gains is recalled.

The algorithms are applied for three cases. The first one (results of Table2) corre-
sponds to the purely deterministic case described in Sect. 3. The last one (results of
Table4) corresponds to the purely probabilistic case described in Sect. 4. The prob-
abilistic designs are done considering r̄d = 10 samples for the iterations in Phase
2. The number of samples in Phases 1 and 3 is set to r̄ = 450. This value is com-
puted from (20) with ε = 0.05 and δ = 10−4. The results of Table3 correspond to
an intermediate case where the probabilistic approach is applied to the deterministic
model, that is when considering only the four vertices as samples. This case does
not allow to conclude robustness (no deterministic nor probabilistic robustness can
be deduced) but corresponds to simultaneous stabilization of the four vertices. The
goal is to illustrate the degrees of freedom obtained when relaxing S1 from being
common to all vertices/samples.

Some conclusions about these results:

• The deterministic (OF) design is successful up to q̄ = 0.4 but when looking at the
results for larger bounds on the uncertainties, it seems that the algorithm is close
to converging to valid values. One reason for this non convergence is due to the
heuristic nature of the algorithm. The other possible reasons is that there might
not be any solution to the BMIs for q̄ > 0.4. The true bound on q̄ for the existence
of a stabilizing output feedback gain is q̄ < 0.5, but we cannot say that this bound
can be approached by the proposed conservative BMI conditions.

• When relaxing the constraints on having common variables S1, the (OF) goal is
almost always attained whatever q̄ ≤ 0.455. The fact that it fails for q̄ = 0.45 can
be due to numerical errors at some stage of the iteration, or because the heuristic
fails by going in an inappropriate direction. The improvements when comparing
Tables2 and3 illustrate the potential reduction of conservatism that can be achieved
by probabilistic methods.

• The approach allows achieving the robustly (SF) goal up to q̄ = 0.455. We know
that such a goal cannot be achieved when imposing common Lyapunov matrices
to all uncertainties. This illustrates the fact that the new LMIs of the initialization
Phase 1 have quite some potential for the robust state feedback design problem
that remains open.

• The probabilistic approach allows going further in terms of the (SF) goal. This
is not surprising since, compared to the deterministic approach, there is some
(small) tolerance on stability violation. Typically, during Phase 1 of the proba-
bilistic approach, the extremal values of the uncertainties (which happen in this
example to be the worst-case values) have low probability to be drawn. Phase 1
is hence applied considering a large scenario of samples (N = 450 in our case)
but there might be no value close the critical samples |q1| = |q2| = q̄ . The relaxed
(SF) goal is hence feasible (in probability).

• Since the approach is dependent on the samples that have been drawn, there is
no possible monotonicity in the results. This is illustrated for the case where
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Table 4 Numerical results for the randomized approach

q̄ q̄−0.5
q̄+0.5 K0 k̄ 1 − λk̄ Fk̄ Validation Time (s)

0.1 −0.6667
[

−0.7028 −0.8958
]

2 5.2 · 10−9 −0.6125 OK 31.2

0.2 −0.4286
[

−0.4885 −1.0711
]

3 4.0 · 10−9 −0.4047 OK 43.1

0.3 −0.2500
[

−0.2597 −1.1284
]

4 1.1 · 10−8 −0.2480 OK 53.4

0.4 −0.1111
[

−0.0855 −1.0275
]

6 2.8 · 10−8 −0.1296 - 79.0

0.4 −0.1111
[

−0.0750 −1.0250
]

3 2.7 · 10−8 −0.1501 - 43.0

0.41 −0.0989
[

−0.0619 −1.0026
]

4 2.8 · 10−8 −0.1275 - 55.2

0.42 −0.0870
[

−0.0464 −1.0069
]

3 5.0 · 10−9 −0.0547 - 37.5

0.43 −0.0753
[

−0.0365 −0.9873
]

2 1.5 · 10−8 −0.0942 - 35.0

0.44 −0.0638
[

−0.0241 −0.9828
]

2 2.7 · 10−8 −0.0619 - 52.0

0.45 −0.0526
[

−0.0109 −0.9624
]

3 4.7 · 10−8 −0.0293 - 42.25

0.455 −0.0471
[

−0.0052 −0.9607
]

2 1.2 · 10−8 −0.0173 - 38.2

0.46 −0.0417
[

−0.0045 −0.9433
]

2 3.6 · 10−8 −0.0174 - 39.1

0.465 −0.0363
[

−0.0019 −0.9434
]

3 2.1 · 10−8 −0.0027 - 54.8

0.47 −0.0309
[
0.0006 −0.9293

]
- num pb - 88.6

0.48 −0.0204
[
0.0053 −0.9237

]
5 6.4 · 10−8 8.98 · 10−5 - 84.9

0.49 −0.0101
[
0.0010 −0.8937

]
- num pb - 54.4

0.495 −0.0050
[
0.0024 −0.8724

]
4 1.2 · 10−8 −0.0127 - 80.0

0.50 0 - 12.4

0.505 No - 15.2

we applied the method for two different scenarios, and the results are inevitably
different. For q̄ close to 0.5 the problem becomes very constrained and for some
cases (depending on the samples) we noticed numerical errors in the algorithm
(the LMIs become unfeasible during the iterations although the sequence λk is
proved to be theoretically decreasing monotonously).

• The iterations of Phase 2 are done on a subset of the scenario. When it converges,
and this is quite often the case as illustrated by the value of 1 − λ, the conclusion
is that we have good candidates for stabilization of the few systems (r̄d = 10) used
during this phase. There is no guarantee of robustness, not even probabilistic. This
is the reason why the termination Phase 3 usually fails (except for q̄ ≤ 0.4). It fails
even though the computed value of the (OF) gain actually does solve the problem.
This result illustrates the fact that, even for the scenario situation, the BMIs are
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conservative. Conservatism comes from the fact that the S-variable S2 is imposed
to be the same for all samples.

The computations were done on a MacBook Pro 2.9GHz Intel Core i5 with
Matlab2016b. The LMIs were coded using YALMIP (release R20141030) by [15]
and solved using SDPT3 (version 4.0) by [21].

6 Conclusions

In this chapter, we proposed a new robust static output feedback design method
stemming fromanS-variable description of the set of feasible solutions. Theproposed
approach leads to both deterministic and probabilistic designs, the first one providing
worst-case guarantees (pessimistic approach) requiring polytopic uncertainty sets
and specific multipliers structures, and the second one removing these assumptions
at the cost of extra computational burden and probabilistic guarantees (optimistic
approach). The derived conditions are coded as bilinear matrix inequalities for both
cases so that a heuristic procedure is proposed for their solution. Interestingly, the
heuristic approach starts from solving a robustly stabilizing state injection gain and
a robust state feedback stabilizer, which is then refined into a robust output feedback
stabilizer and a robustly stabilizing output injection gain. Numerical tests on some
examples taken from the literature have shown good performance of the heuristic,
first in finding nominally stabilizing output feedback gains, and then addressing
robust stabilization problems.

Futureworks involve better characterizing the properties of the suggested heuristic
algorithms, possibly providingmore sophisticated solutionmethods for the proposed
BMI problems, in addition to further characterizations of the merits of the proposed
approach on relevant case studies.
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Robust Control Against Uncertainty
Quartet: A Polynomial Approach
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Abstract One of the main components of a robust control theory is a quantifiable
description of system uncertainty. A good uncertainty description should have three
desirable properties. First, it is required to capture important unmodeled dynamics
and perturbations. Second, it needs to be mathematically tractable, preferably by
using elementary tools. Third, it should lead to a self-contained robust control the-
ory, encompassing analysis and synthesis techniques that are accessible to both
researchers and practitioners. While the additive uncertainty and multiplicative
uncertainty are two of the most commonly employed uncertainty descriptions in sys-
tems modeling and control, they come up short of fulfilling the requirements above.
In this chapter, we introduce the uncertainty quartet, a.k.a. the + − ×÷ uncertainty
(as is simpler to pronounce in oriental languages), which combines in a unifying
framework the additive, multiplicative, subtractive and divisive uncertainties. An
elementary robust control theory, involving mostly polynomial manipulations, is
developed based on the uncertainty quartet. The proposed theory is demonstrated
in a case study on controlling an under-sensed and under-actuated linear (USUAL)
inverted pendulum system.
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1 Uncertainty in Dynamical Systems

Model-based control synthesis is ubiquitous in engineering. It involves designing
a controller based on a mathematical model of the system to be controlled (a.k.a.
the plant). Every model, irrespective of its complexity, can at best approximate the
dynamics of a real system. In otherwords, uncertainty is inherent to anymathematical
model of a system. An uncertainty description or model provides a useful means to
characterizing certain unmodeled dynamics of and unmeasured perturbations on a
system. In what follows, we review several uncertainty models that have been widely
adopted in practice, and discuss their advantages and shortcomings with the aid of an
illustrative example involving a double integrator.Moreover, we introduce a powerful
uncertainty description, known as the uncertainty quartet, that can be used to model a
large class of uncertainties. A robust control theory based on the uncertainty quartet
is subsequently developed in the succeeding sections.

1.1 Common Uncertainty Descriptions

The additive and multiplicative uncertainty descriptions constitute two of the most
well-studied models in robust control. As an illustration, consider a nominal double
integrator system

P(s) = 1

s2
,

which may model an ideal rigid body undergoing a forced linear motion. The real
system, however,would have an elastic body. The dynamics arising from the presence
of elasticity are not captured in this model andmay correspond to an additive damped
oscillatory term

P̃(s) = P(s) + δω2
n

s2 + 2ζωns + ω2
n

,

where δ denotes a small gain, ζ the damping ratio andωn the natural frequency, which
can all be uncertain. The value of δ provides a quantification of the difference between
the nominal system P(s) and its perturbed model P̃(s). The additive uncertainty
description of the form

P̃(s) = P(s) + Δ+(s)

can be used to model the aforementioned uncertainty satisfactorily. Observe that in
this example, Δ+(s) is stable and has a small magnitude response as determined by
the small parameter δ.

The use of the additive uncertainty model alone can be restrictive, as we explain
below. Suppose that the double integrator is subject to an uncertain gain instead and
the real system takes the form
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P̃1(s) = 1 + δ

s2
or P̃2(s) = 1

(1 + δ)s2
,

where δ denotes a small parameter. To model P̃i (s) using the additive uncertainty
model, one would have to let

Δ+(s) = δ

s2
or Δ+(s) = −δ

(1 + δ)s2
.

In this case, both the uncertainty terms above are unstable, which are in no sense
small since they both have infinite induced gains. In order to model the aforemen-
tioned perturbations with reasonably small uncertainties, we appeal to alternative
uncertainty models having the multiplicative form

P̃1(s) = (1 + Δ×(s))P(s)

or the divisive form (a.k.a. the relative form)

P̃2(s) = P(s)

1 + Δ÷(s)
.

With respect to these models, we have Δ×(s) = δ and Δ÷(s) = δ, both of which are
stable and small in magnitudes, as desired.

The following further demonstrates that the uncertainty descriptions covered
above are still inadequate from a practical point of view. Due to the existence of
a small stiffness in the rigid body motion, suppose the real system takes the form

P̃(s) = 1

s2 + ε2
,

where ε is a small parameter. In this case, it can be verified that applying the additive,
multiplicative and divisivemodelswould result in an uncertainty term that is unstable.
On the contrary, the subtractive form (a.k.a. the feedback form)

P̃(s) = P(s)

1 + Δ−(s)P(s)

gives Δ−(s) = ε2, which is stable and small in magnitude.

1.2 The Uncertainty Quartet

By integrating the additive, subtractive, multiplicative, and divisive uncertainty mod-
els within a unifying framework, we arrive at the following uncertainty description:
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Fig. 1 An uncertain system
with + − ×÷ uncertainty

P̃(s) = (1 + Δ×(s))P(s) + Δ+(s)

1 + Δ÷(s) + Δ−(s)P(s)
; (1)

see the block diagram in Fig. 1 for a depiction of P̃(s) as a mapping from ũ to ỹ.
We call the band of the four uncertainties the uncertainty quartet (or the + − ×÷
uncertainty), and the 2-by-2 transfer matrix

Δ(s) :=
[
Δ÷(s) Δ−(s)
Δ+(s) Δ×(s)

]

the uncertainty quartet matrix. It is straightforward to see that (1) gives rise to a
versatile form that can be used to model a wide class of uncertainties.

To motivate the utility of the uncertainty quartet, let us revisit the example of the
double integrator. Suppose the real system has dynamics of the form

P̃(s) = 1 + δ2

s2 + δ1s + ε2
,

where ε2 is a small stiffness term, δ1 a small damping coefficient and δ2 a small
uncertain gain. It can be verified that using only the additive and multiplicative
forms of uncertainty would result in unstable Δ+(s) and Δ×(s) regardless of the
values of ε2, δ1 and δ2. Likewise, adopting only the relative and the feedback form
of the uncertainty would give rise to unstable Δ÷(s) and Δ−(s). On the other hand,
if we characterize P̃(s) with the uncertainty quartet by applying equation (1), we
obtain

Δ(s) =
[
Δ÷(s) Δ−(s)
Δ+(s) Δ×(s)

]
= 1

s + 1

[
δ1 (δ1 + ε2)s + ε2

0 δ2

]
.

Eachmember in this uncertainty quartet is stable and small in magnitude. This exam-
ple demonstrates the fact that while each of the individual uncertainty models falls
short of providing a satisfactory characterization of the uncertainty, their combina-
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tion (1) introduces a powerful framework in which we can model various types of
perturbations.

Mathematically, the map from P(s) to P̃(s) is a linear fractional transformation
(LFT). In particular, let

LFT

([
T11(s) T12(s)
T21(s) T22(s)

]
, P(s)

)
= T22(s)P(s) + T12(s)

T11(s) + T21(s)P(s)
,

then

P̃(s) = LFT

([
1 + Δ÷(s) Δ−(s)

Δ+(s) 1 + Δ×(s)

]
, P(s)

)
.

The study of various uncertainty models has a long history in the field of robust
control. The additive, subtractive,multiplicative, and divisivemodelswere covered in
such classic books as [2, 29] and revisitedmore recently in, for example, [16]; see also
the survey paper [19]. The uncertainty quartet unifies all four of the aforementioned
uncertainties within one powerful framework for robustness analysis and control
synthesis. It is worth noting that the notation of + − ×÷ uncertainty was first used
in [10]. It is shown in [8] that the uncertainty quartet is closely related to the gap
metric and its variations [6, 7, 20, 21, 24, 27]. The uncertainty quartet has also been
used to describe the interferences and distortions within a communication channel
modeled by a two-port network [9, 28]. Moreover, one may relate the uncertainty
quartet to the coprime-factor uncertainty [6, 17, 23], namely, a pair of dynamic
uncertainties additive to the coprime factors of a nominal system. It is noteworthy
that in the uncertainty quartet, each member acts directly on the input and output of
the nominal system, whereas the coprime-factor uncertainty depends on a particular
coprime factorization of the nominal system. In addition to the uncertainty quartet,
many other types of dynamic uncertainties have been studied over the past decades;
see, for instance, [13, 16, 19, 29].

1.3 Notation

We formalize the notation in this chapter. Let I denote the identity matrix of a
proper dimension. LetR p×m denote the set of all p × m proper real-rational transfer
function matrices. The set of elements inR p×m containing bounded singular values
on the imaginary axis is denoted by RL p×m

∞ and the set of elements in RL p×m
∞

with bounded singular values on the right complex plane Re s > 0 is denoted by
RH p×m

∞ . A transfer function P(s) ∈ R p×m is said to be stable if P(s) ∈ RH p×m
∞ .

Define the set of uncertain systems of size r ∈ [0, 1) centered at P(s) as

B(P(s), r) = {
LFT (I + Δ(s), P(s)) : Δ(s) ∈ RH 2×2

∞ , ‖Δ(s)‖∞ ≤ r
}
. (2)
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Throughout, the superscripts corresponding to the dimensions may be omitted for
notational simplicity.

Recall the standard Lebesgue spaceL2 endowed with the norm ‖ · ‖2 and Hardy
space H2 ⊂ L2. The orthogonal complement of H2 in L2 is denoted by H ⊥

2 . In
other words,L2 = H2 ⊕ H ⊥

2 , where ⊕ denotes the orthogonal sum. For a G(s) ∈
RL ∞, we have

‖G(s)‖∞ = sup
U (s)∈L 2

‖G(s)U (s)‖2
‖U (s)‖2 .

Moreover, if U1(s) ∈ H2 and U2(s) ∈ H ⊥
2 , then

‖U1(s) +U2(s)‖22 = ‖U1(s)‖22 + ‖U2(s)‖22.

2 Robust Closed-Loop Stability

As explained in the last section, uncertainty is intrinsic to every mathematical model
of a system. This fact is particularly problematic to model-based control—if a model
does not accurately describe the behavior of a system, how can we be certain that a
controller designed based on the model will perform well when it is implemented on
the system? Feedback, which underlies the field of systems and control, is most com-
monly adopted to resolve this issue. It is a powerful tool with which we desensitize a
dynamical system to the effect of uncertainty. The theory of feedback control, which
will be briefly reviewed in this section, has been well studied over recent decades
and demonstrated to be effective in many application scenarios [22, 25, 29]. We
begin with the notion of a standard feedback (or closed-loop) system, and define its
closed-loop stability. Then we analyze robust closed-loop stability when the plant is
subject to uncertainty quartet, based on which we derive a robust stability condition.

A closed-loop system composed of a plant P(s) ∈ R and a feedback con-
troller C(s) ∈ R is illustrated in Fig. 2. We denote it by P(s) #C(s). We say that
P(s) #C(s) is stable if for all exogenous signals w1,w2 ∈ H2, the endogenous sig-
nals u1, u2, y1, y2 exist and belong toH2. Intuitively, stability means that the energy
within the feedback system stays bounded when it is injected with bounded-energy

Fig. 2 A standard feedback
system P(s)

C(s)

y1 y2

w1

w2

u1

u2

−
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Fig. 3 A closed-loop system
with + − ×÷ uncertainty
quartet at plant side

P(s)

Δ+(s)

Δ×(s)

C(s)

Δ−(s)

Δ÷(s)
− −

w1

w2

ũ1

ỹ2y1

u2

u1 y2

û1

ŷ2

exogenous signals. It is known that P(s) #C(s) is stable if and only if the associated
Gang of Four transfer matrix

P(s) #C(s) :=
[

1
P(s)

]
(1 + P(s)C(s))−1 [

1 C(s)
] =

⎡
⎢⎢⎢⎣

1

1 + P(s)C(s)

C(s)

1 + P(s)C(s)

P(s)

1 + P(s)C(s)

P(s)C(s)

1 + P(s)C(s)

⎤
⎥⎥⎥⎦

is stable [1]. Here, both the closed-loop system and its associated Gang of Four
transfer matrix are denoted by P(s) #C(s) for notational simplicity.

Recall from the preceding section that an uncertainty quartet is useful formodeling
a rich class of uncertainties.Whenmodel-based feedback control design is performed
based on a mathematical model of a plant, it gives rise to a stable nominal closed-
loop system. In the following, we analyze the closed-loop stability when the plant is
subject to uncertainty quartet and provide a quantification of howmuch uncertainty is
tolerable while the feedback system remains stable. Mathematically, let P(s) #C(s)
be a nominal closed-loop system. We derive an upper bound on r > 0 such that
P̃(s) #C(s) is stable for all P̃(s) ∈ B(P(s), r). First recall from (2) that every
P̃(s) ∈ B(P(s), r) can be expressed as

P̃(s) = LFT

([
1 + Δ÷(s) Δ−(s)

Δ+(s) 1 + Δ×(s)

]
, P(s)

)
= (1 + Δ×(s))P(s) + Δ+(s)

1 + Δ÷(s) + Δ−(s)P(s)
,

where

‖Δ(s)‖∞ =
∥∥∥∥
[
Δ÷(s) Δ−(s)
Δ+(s) Δ×(s)

]∥∥∥∥∞
≤ r.

See Fig. 3 for a depiction of the perturbed closed-loop system P̃(s) #C(s). It is
shown in [9] that the signals within the perturbed closed-loop system satisfy the
following relations
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Fig. 4 An equivalent
closed-loop system
composed of an uncertainty
quartet and the Gang of Four
transfer matrix

ΔΔΔ(s)

û1
ŷ2

P(s)#C(s)

u1
y2

−

[
û1
ŷ2

]
= Δ(s)

[
u1
y2

]
and

[
u1
y2

]
= P(s) #C(s)

[
û1
ŷ2

]
.

As a result, we can equivalently transform the perturbed closed-loop system in Fig. 3
into a standard feedback interconnection of an uncertainty quartet Δ(s) and the
Gang of Four transfer matrix P(s) #C(s) as shown in Fig. 4. Furthermore, it can
be verified that the stability of P̃(s) #C(s) is equivalent to that of the closed-loop
system in Fig. 4.

Since both open-loop systems Δ(s) and P(s) #C(s) are stable, robust stabil-
ity of the closed-loop system in Fig. 4 can be analyzed by means of the well-
known small-gain theorem [29, Theorem 8.1]. In particular, the closed-loop system
Δ(s) # [P(s) #C(s)] is stable for all‖Δ(s)‖ ≤ r if, andonly if, r < ‖P(s) #C(s)‖−1∞ .
Consequently, we have the following robust stability condition.

Theorem 1 Let r ∈ [0, 1). The perturbed closed-loop system P̃(s) #C(s) in Fig. 3
is stable for all P̃(s) ∈ B(P(s), r) if and only if

r < ‖P(s) #C(s)‖−1
∞ .

By virtue of Theorem 1, it is natural to define ‖P(s) #C(s)‖−1∞ as the robust
stability margin of the nominal closed-loop system P(s) #C(s). The larger the mar-
gin is, the more robust the closed-loop system will be against model uncertainties
characterized in the form of an uncertainty quartet. An optimal control problem nat-
urally arises from this context. It involves designing a feedback controller C(s) for
a nominal plant P(s) such that the stability margin ‖P(s) #C(s)‖−1∞ is maximized,
or equivalently, solving the following H∞ control problem:

min
C(s)

‖P(s) #C(s)‖∞. (3)

The optimally robust stability margin is thus given by

α(P(s)) :=
(
min
C(s)

‖P(s) #C(s)‖∞
)−1

. (4)
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3 Optimally Robust Controller Design

In this section, our aim is to derive an optimally robust controllerC(s) that minimizes
‖P(s) #C(s)‖∞. This is anH∞ optimal control problem. It has favorable properties
and can be solved efficiently using state-space methods [3, 17] based on algebraic
Riccati equations. Given the simplicity of our setup, formulated in terms of scalar
transfer functions, we provide below a more straightforward and efficient alternative
to solving the optimization problem via a polynomial approach.

It is worth noting that a certain polynomial method was proposed in [15], [22,
Chapter 9], where theH∞ optimal control problem is solved by calculating a Hankel
matrix based on special bases. Another similar polynomial method was proposed in
[12, Chapter 5] based on solving polynomial equations. By contrast, in this chapter,
we propose an even simpler alternative polynomial method, involving only elemen-
tary matricial and polynomial manipulations.

3.1 Main Algorithm

First we introduce some notation. Consider an arbitrary polynomial with real coef-
ficients

f (s) = f0s
n + f1s

n−1 + · · · + fn,

whose degree, denoted by deg f (s), is no larger than n. Correspondingly to the
polynomial f (s), define

f :=
⎡
⎢⎣
f0
...

fn

⎤
⎥⎦ , L f :=

⎡
⎢⎢⎢⎢⎣

f0 0 · · · 0

f1 f0
. . .

...
...

. . .
. . . 0

fn−1 · · · f1 f0

⎤
⎥⎥⎥⎥⎦ and U f :=

⎡
⎢⎢⎢⎢⎣

fn fn−1 · · · f1

0 fn
. . .

...
...

. . .
. . . fn−1

0 · · · 0 fn

⎤
⎥⎥⎥⎥⎦ .

Let J be a sign matrix, defined as

J :=

⎡
⎢⎢⎢⎣

(−1)n−1

. . .

−1
1

⎤
⎥⎥⎥⎦ .

The matrices L f ,U f and J are helpful in transforming a polynomial equation into a
system of linear equations. As we shall see, such a transformation plays an important
role in the proposed polynomial approach.

Suppose we are given an nth order plant
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P(s) = b(s)

a(s)
= b0sn + b1sn−1 + · · · + bn

a0sn + a1sn−1 + · · · + an
, (5)

where a0 	= 0, and a(s) and b(s) are coprime. The following algorithm computes an
optimally robust controller

Copt(s) = arg min
C(s)

‖P(s) #C(s)‖∞.

Algorithm 1 Optimally Robust Controller Design
Step 1: (Spectral factorization) Find a stable polynomial

d(s) = d0s
n + d1s

n−1 + · · · + dn

such that
a(−s)a(s) + b(−s)b(s) = d(−s)d(s).

Step 2: (Matrix construction) Construct

H = J L−1
d J

[
Lb J −La J

] [
La Lb

Ua Ub

]−1 [
Ld

Ud

]
.

Step 3: (Eigen-computation) Find the eigenvalue of H whose magnitude equals
to the spectral radius ρ(H). Let e be an eigenvector corresponding to this eigen-
value1.

Step 4: (Pole placement) Compute

[
p
q

]
=

[
La Lb

Ua Ub

]−1 [
Ld

Ud

]
e and

{
p(s) = [

sn−1 sn−2 · · · 1] p
q(s) = [

sn−1 sn−2 · · · 1] q .

An optimal controller is given by Copt(s) = q(s)

p(s)
.

Step 5: (Optimal robustness margin computation)

α(P(s)) = 1√
1 + ρ2(H)

.

1It can be shown that all the eigenvalues of H are real. For clarity of presentation, it is implicitly
assumed that there exists a unique eigenvalue of H whose magnitude is ρ(H). This is generically
the case. The more involved situation is discussed specifically in Section 3.3.
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Notice that only basic matricial and polynomial manipulations, such as spectral
factorization, eigenvalue decomposition and matrix inversion are required in the
algorithm above. See Sect. 3.2 for an illustrative example of applying the algorithm.

Whereas Steps 2, 3, and 5 in Algorithm 1 are concerned with the optimal control
design, Steps 1 and 4 are standard and well known, as we elaborate below. Denote
byPn the set of all the polynomials with real coefficients and of degree n. That is, for
d(s) ∈ Pn , it holds d(s) = d0sn + d1sn−1 + · · · + dn with d0 	= 0. This polynomial
d(s) is said to be stable if all its roots have negative real parts.

Let the plant P(s) be given as in (5). Observe that the polynomial

a(−s)a(s) + b(−s)b(s) (6)

is self-conjugate, i.e., its conjugate coincides with itself. Consequently, if z is a root
of this polynomial, then so is −z. Together with the coprimeness of a(s) and b(s), it
follows that this polynomial has no roots on the imaginary axis and all its roots are
symmetric about the imaginary axis. Step 1 in Algorithm 1 can be carried out by first
solving for the roots of the polynomial in (6) and then obtaining a stable polynomial
d(s) ∈ Pn such that

a(−s)a(s) + b(−s)b(s) = d(−s)d(s). (7)

This process is known as the spectral factorization [11, Section 3.4], [22, Section 8.1].
Given two coprime polynomials with real coefficients p(s) and q(s), by defining

C(s) := q(s)

p(s)
, (8)

we know from the definition of the Gang of Four transfer matrix P(s) #C(s) that
the closed-loop poles are the roots of the characteristic polynomial

a(s)p(s) + b(s)q(s).

One way to obtain p(s) and q(s) is via the pole placement method as follows. Let
e(s) ∈ Pn−1 be a stable polynomial. By solving the following polynomial Diophan-
tine equation [11, Section 4.5] [22, Section 3.6]

a(s)p(s) + b(s)q(s) = d(s)e(s), (9)

we obtain p(s) and q(s) with max{deg p(s), deg q(s)} ≤ n − 1. A controller C(s)
defined as in (8) then places the closed-loop poles at the roots of d(s)e(s). Such
a process is called the pole placement design, and the resulting C(s) is called a
pole placement controller. In particular, equating the coefficients in (9) yields the
following system of linear equations:
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[
La Lb

Ua Ub

] [
p
q

]
=

[
Ld

Ud

]
e, (10)

where the elements in p and q are the unknowns. The matrix

[
La Lb

Ua Ub

]

is called a Sylvester’s resultant matrix [22, Section 3.6], which is a 2n-by-2n non-
singular matrix as a(s) and b(s) are coprime. By inverting this matrix as in Step 4
of Algorithm 1, we obtain the solution to equation (9), as well as the pole placement
controller.

It is nowobvious that Steps 2 and 3 ofAlgorithm1 serve the purpose of computing
a partial set of the closed-loop poles, based on which the pole placement controller
resulting from Step 4 gives rise to an optimally robust controller. The proof of this
fact is deferred to Sect. 4.

3.2 An Illustrative Example

Here we revisit the simple example of a double integrator and apply Algorithm 1 to
obtain an optimally robust controller.

Example 1 Let

P(s) = 1

s2
.

Objective: find an optimal controller C(s) such that ‖P(s) #C(s)‖∞ is minimized
with Algorithm 1 .

1. (Spectral factorization)
s4 + 1 = d(−s)d(s).

This gives d(s) = s2 + √
2s + 1.

2. (Matrix computation) We can compute that

H =
[
1

√
2√

2 1

]
.

3. (Eigen-computation) The eigenvalues of H are 1 ± √
2. The eigenvalue with the

largest magnitude is 1 + √
2 and the corresponding eigenvector satisfies

[
1

√
2√

2 1

]
e = (1 + √

2)e.
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This gives e =
[
1
1

]
. Thus,

e(s) = [
s 1

]
e = s + 1.

4. (Pole placement) We obtain p(s) = s + 1 + √
2 and q(s) = (1 + √

2)s + 1
from

[
p
q

]
=

[
La Lb

Ua Ub

]−1 [
Ld

Ud

]
e =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

1 0√
2 1
1

√
2

0 1

⎤
⎥⎥⎦

[
1
1

]
=

⎡
⎢⎢⎣

1
1 + √

2
1 + √

2
1

⎤
⎥⎥⎦ .

An optimally robust controller is then given by

Copt(s) = (1 + √
2)s + 1

s + 1 + √
2

.

5. (Optimal robustness margin computation)

α(P(s)) = 1√
4 + 2

√
2
.

3.3 The Nongeneric Case

In Step 3 of Algorithm 1, the generic case where H admits a unique eigenvalue of
magnitude ρ(H) is dealt with. Here we mention without proof a method to handle
the singular case where H has multiple eigenvalues of magnitude ρ(H). This will
not be pursued further elsewhere in this chapter. First we introduce some notation.
For a square matrix A ∈ R

n×n , denote by λk(A), k = 1, 2, . . . , n its k-th eigenvalue
counting multiplicity, ordered according to

|λ1(A)| = · · · = |λv(A)| > |λv+1(A)| ≥ · · · ≥ |λn(A)|.

The spectral radius of H , ρ(H), is hence |λ1(A)|. Let the number of the eigenvalues
of magnitude ρ(H) be m(A) := v > 1.

It can be shown using the spectral factorization relation in Step 1 of Algorithm 1
that H is diagonalizable and all its eigenvalues are real, hence either or both of
ρ(H) and −ρ(H) are eigenvalues of H . If ρ(H) is an eigenvalue, let E1 be the
corresponding eigenspace; otherwise E1 = {0}. Similarly, let E2 be the eigenspace
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corresponding to −ρ(H). Then Algorithm 1 with Step 3 replaced by Step 3∗ below
yields an optimally robust controller whose order is no larger than n − m(H):

Step 3∗: (Eigen-computation) Find 0 	= e ∈ E1 ∪ E2 such that the degree of e(s)
is minimized, where

e(s) = [
sn−1 sn−2 · · · 1] e.

The following example of a special all-pass system illustrates how we utilize the
algorithm when m(H) > 1.

Example 2 Consider the following all-pass plant

P(s) = (s − 1)(s − 2)(s − 3)

(s + 1)(s + 2)(s + 3)
= s3 − 6s2 + 11s − 6

s3 + 6s2 + 11s + 6
.

Objective: find an optimal controller C(s) such that ‖P(s) #C(s)‖∞ is minimized
using Algorithm 1 equipped with Step 3∗ above.

1. (Spectral factorization)

d(s) = √
2(s + 1)(s + 2)(s + 3) = √

2(s3 + 6s2 + 11s + 6).

2. (Matrix computation) We can compute that

H =
⎡
⎣−1 0 0

0 1 0
0 0 −1

⎤
⎦ .

3. (Eigen-computation) The eigenvalues of H are 1, −1 and −1, all of which
have magnitude 1. Hence m(H) = n = 3. The eigenspaces corresponding to
eigenvalues 1 and −1 are, respectively,

E1 = span

⎡
⎣0
1
0

⎤
⎦ and E2 = span

⎡
⎣1 0
0 0
0 1

⎤
⎦ .

The vector 0 	= e ∈ E1 ∪ E2 such that the degree of e(s) is minimized is given
by

e =
⎡
⎣0
0
1

⎤
⎦ , whereby e(s) = 1, and deg e(s) = 0 = n − m(H).

4. (Pole placement) We obtain p(s) = √
2 and q(s) = 0 from
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[
p
q

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0
6 1 0 −6 1 0
11 6 1 11 −6 1
6 11 6 −6 11 −6
0 6 11 0 −6 11
0 0 6 0 0 −6

⎤
⎥⎥⎥⎥⎥⎥⎦

−1
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
2 0 0

6
√
2

√
2 0

11
√
2 6

√
2

√
2

6
√
2 11

√
2 6

√
2

0 6
√
2 11

√
2

0 0 6
√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣0
0
1

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0√
2
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Hence, an optimally robust controller is given by

Copt(s) = 0.

5. (Optimal robustness margin computation)

α(P(s)) = 1√
2
.

4 Proof of Optimality

The purpose of this section is to prove that the controller Copt(s) obtained from
Algorithm 1 is optimal, in the sense that it satisfies

Copt(s) = arg min
C(s)

‖P(s) #C(s)‖∞.

4.1 Preliminaries

Given a plant P(s) = b(s)

a(s)
and a stable polynomial e(s), we can rewrite the spectral

factorization in (7) and the pole placement in (9) as, respectively,

M(−s)M(s) + N (−s)N (s) = 1 and M(s)X (s) + N (s)Y (s) = 1, (11)

where

M(s) := a(s)

d(s)
, N (s) := b(s)

d(s)
, X (s) := p(s)

e(s)
, and Y (s) := q(s)

e(s)
. (12)

Based on these relations, the set of all controllers C(s) for which P(s) #C(s) is
stable is given by the Youla parametrization [26] as
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S (P(s)) =
{
C(s) = Y (s) + M(s)Q(s)

X (s) − N (s)Q(s)
: Q(s) ∈ RH ∞

}
. (13)

Obviously, an optimally robust controller belongs to the setS (P(s)).
It can be shown with some algebraic manipulations [22, Chapter 9] that

‖P(s) #C(s)‖∞ =
(
1 +

∥∥∥∥ P(−s) − C(s)

1 + P(s)C(s)

∥∥∥∥
2

∞

) 1
2

.

As a consequence,
min

C(s) ∈S (P(s))
‖P(s) #C(s)‖∞

is equivalent to

min
C(s) ∈S (P(s))

∥∥∥∥ P(−s) − C(s)

1 + P(s)C(s)

∥∥∥∥∞
=: γ (P(s)). (14)

Furthermore, the optimal robust stability margin is

α(P(s)) = 1√
1 + γ 2(P(s))

.

Later in the section, we will show that γ (P(s)) = ρ(H), whereby

α(P(s)) = 1√
1 + ρ2(H)

as in Step 5 of Algorithm 1.
In the sequel, we derive an alternative form, which is easier to work with, for the

H∞ optimal control problem in (14). In particular, given the set of all stabilizing
controllersS (P(s)) in (13) and M(s), N (s), X (s), Y (s) defined in (12), we have

γ (P(s)) = inf
C(s)∈S (P(s))

∥∥∥∥ P(−s) − C(s)

1 + P(s)C(s)

∥∥∥∥∞

= inf
Q(s)∈RH ∞

∥∥∥∥M(s)[N (−s)X (s) − M(−s)Y (s) − Q(s)]
M(−s)

∥∥∥∥∞
= inf

Q(s)∈RH ∞
‖N (−s)X (s) − M(−s)Y (s) − Q(s)‖∞

= inf
Q(s)∈RH ∞

‖G(s) − Q(s)‖∞ , (15)

where
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G(s) := N (−s)X (s) − M(−s)Y (s) = b(−s)p(s) − a(−s)q(s)

d(−s)e(s)
∈ RL ∞, (16)

and the third equality follows from the fact that

M(s)

M(−s)

is an all-pass transfer function. Consequently, solving for an optimally robust con-
troller is equivalent to finding a Q(s) ∈ RH ∞ that lies the closest toG(s) ∈ RL ∞
in the L∞ norm. This special H∞ optimal control problem is a Nehari’s problem
[18], [5, Chapter 12], which is closely related to the partial pole placement problem
introduced in what follows.

4.2 Partial Pole Placement

Definition 1 Given an nth order plant P(s) = b(s)

a(s)
and a stable polynomial d(s) ∈

Pn obtained from the spectral factorization in (7), we say that a triplet of polynomials
{p(s), q(s), e(s)} solves the partial pole placement problem for λ ∈ R if it satisfies

a(s)p(s) + b(s)q(s) = d(s)e(s),

b(−s)p(s) − a(−s)q(s) = λd(s)e(−s),

max {deg p(s), deg q(s)} ≤ deg e(s) ≤ n − 1.

(17)

A partial pole placement problem is distinguished from a pole placement problem
in (9), since the closed-loop poles, namely the roots of d(s)e(s), are not completely
prescribed ahead of time and need to be determined from the equations in (17). Two
questions arise naturally from this problem:

(i) What are the possible solutions to the partial pole placement problem?
(ii) How are these solutions related to the Nehari’s problem in (15)?

We answer these questions below, and in doing so complete the main part of the
derivation for the optimal controller from Algorithm 1. We begin with Question (ii).

Recall the expression of G(s) in (16). In a similar manner, define a series of
transfer functions inRL ∞ for k = 1, 2, . . . , n by

Gk(s) = b(−s)pk(s) − a(−s)qk(s)

d(−s)ek(s)
, (18)

where {pk(s), qk(s), ek(s)} is a solution of (17) with respect to λk and ek(s) has
exactly k − 1 anti-stable roots. In particular, e1(s) is stable. Recall that the e(s) ∈
Pn−1 in (16) is required to be a stable polynomial. Henceforth, let e(s) = e1(s),
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whereby G(s) = G1(s). Denote byRL [k]
∞ ⊂ RL ∞ the set of all the transfer func-

tions that have at most k − 1 anti-stable poles. Specifically,RL [1]
∞ = RH ∞. Sim-

ilarly to (15), consider the series of optimization problems

inf
Qk (s)∈RL [k]

∞
‖Gk(s) − Qk(s)‖∞ , k = 1, 2, . . . , n. (19)

When k = 1, the optimization problem reduces to (15). As k increases, the enlarge-
ment of the feasible set of the kth optimization problem is more than enough
to compensate for the additional anti-stable pole in Gk(s). As a result, for k =
1, 2, . . . , n − 1, we have

inf
Qk (s)∈RL [k]

∞
‖Gk(s) − Qk(s)‖∞ ≥ inf

Qk+1(s)∈RL [k+1]
∞

‖Gk+1(s) − Qk+1(s)‖∞ . (20)

The following lemma shows that the series of optimization problems above admit
analytic solutions.

Lemma 1 Given Gk(s) as defined in (18), we have

inf
Qk (s)∈RL [k]

∞
‖Gk(s) − Qk(s)‖∞ = |λk |,

where the infimum is achieved when Qk(s) = 0.

Proof Since {pk(s), qk(s), ek(s)} is a solution of (17) with respect to λk , it follows
that

Gk(s) = b(−s)pk(s) − a(−s)qk(s)

d(−s)ek(s)
= λk

d(s)ek(−s)

d(−s)ek(s)
.

Consequently,

inf
Qk (s)∈RL [k]

∞
‖Gk(s) − Qk(s)‖∞ ≤ ‖Gk(s) − 0‖∞ =

∥∥∥∥λk
d(s)ek(−s)

d(−s)ek(s)

∥∥∥∥∞
= |λk |,

(21)

where the fact that
d(s)ek(−s)

d(−s)ek(s)

is all-pass has been used. We show below

inf
Qk (s)∈RL [k]

∞
‖Gk(s) − Qk(s)‖∞ ≥ |λk |,

from which it follows that equality is achieved when Qk(s) = 0.
Let ek(s) = fk(s)gk(−s), where fk(s) and gk(s) are stable polynomials and

deg gk(s) = k − 1. For an arbitrary transfer function Qk(s) ∈ RL [k]
∞ , we can write
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Qk(s) = hk(s)

hk(−s)
Q̃k(s),

where hk(s) ∈ Pk−1 is stable and Q̃k(s) ∈ RH ∞. Define

Uk(s) := fk(s)hk(−s)

d(s)
,

which is an element in H2 since d(s) is stable and

deg fk(s) + deg hk(s) ≤ deg ek(s) < deg d(s).

Observe that

Gk(s)Uk(s) = λk
hk(−s) fk(−s)gk(s)

d(−s)gk(−s)
∈ RH ⊥

2

and

‖Gk(s)Uk(s)‖2 =
|λk |

∥∥∥∥hk(−s) fk(−s)gk(s)

d(−s)gk(−s)

∥∥∥∥
2

= |λk |
∥∥∥∥hk(−s) fk(−s)

d(−s)

∥∥∥∥
2

= |λk |‖Uk(s)‖2.

On the other hand, we have

Qk(s)Uk(s) = fk(s)hk(s)

d(s)
Q̃k(s) ∈ H2.

Therefore,

‖Gk(s) − Qk(s)‖∞ ≥ ‖Gk(s)Uk(s) − Qk(s)Uk(s)‖2
‖Uk(s)‖2

=
√

‖Gk(s)Uk(s)‖22
‖Uk(s)‖22

+ ‖Qk(s)Uk(s)‖22
‖Uk(s)‖22

=
√

|λk |2 + ‖Qk(s)Uk(s)‖22
‖Uk(s)‖22

≥ |λk |,

as required. �
Below we provide an answer to Question (i). Lying at the core of the answer is

the matrix H defined in Step 2 of Algorithm 1. First recall the notation introduced
at the start of Sect. 3.1.

Lemma 2 A triplet of polynomials {p(s), q(s), e(s)} is a solution to the partial pole
placement problem in Definition 1 with respect to a λ ∈ R if, and only if, { p, q, e}
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satisfies
He = (−1)nλe

and

[
p
q

]
=

[
La Lb

Ua Ub

]−1 [
Ld

Ud

]
e, (22)

where

H := J L−1
d J

[
Lb J −La J

] [
La Lb

Ua Ub

]−1 [
Ld

Ud

]
.

Proof Equating the coefficients of the polynomials on both sides of the equations in
(17) results in the following two systems of linear equations:

[
La Lb

Ua Ub

] [
p
q

]
=

[
Ld

Ud

]
e,

[
(−1)n J

J

] [
Lb −La

Ub −Ua

] [
J

J

] [
p
q

]
= λ

[
Ld

Ud

]
Je.

(23)

Since a(s) and b(s) are coprime, the matrix

[
La Lb

Ua Ub

]

is invertible. Thus, from (23), we obtain (22) and

[
J

(−1)n J

] [
Lb −La

Ub −Ua

] [
J

J

] [
La Lb

Ua Ub

]−1 [
Ld

Ud

]
e = (−1)nλ

[
Ld

Ud

]
Je. (24)

There are a total of 2n linear equations involving the elements of e in (24). By
equating the coefficients in the spectral factorization in (7), one may show that the
first n equations are identical to the last n ones after some algebraic manipulations.
Hence it suffices to consider the first n rows of (24):

J
[
Lb J −La J

] [
La Lb

Ua Ub

]−1 [
Ld

Ud

]
e = (−1)nλLd Je.

Since deg d(s) = n, or equivalently, d0 	= 0, Ld is invertible. Left-multiplying both
sides of the equation above by J L−1

d yields

He = (−1)nλe.
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In other words, {(−1)nλ, e} is an eigenpair of H . �

4.3 Optimally Robust Controller

Based on the previous development, we state the main result as follows.

Theorem 2 The controller Copt(s) defined inAlgorithm 1 is optimally robust, in the
sense that

Copt(s) = argmin
C(s)∈S (P(s))

∥∥∥∥ P(−s) − C(s)

1 + P(s)C(s)

∥∥∥∥∞
= argmin

C(s)∈S (P(s))
‖P(s) #C(s)‖∞.

Moreover, the optimal robustness margin is

α(P(s)) = 1√
1 + ρ2(H)

.

Proof By Lemma 1 and (20), we have for k = 1, 2, . . . , n − 1,

|λk | = ‖Gk(s)‖∞ = inf
Qk (s)∈RL [k]∞

‖Gk(s) − Qk(s)‖∞

≥ inf
Qk+1(s)∈RL [k+1]∞

‖Gk+1(s) − Qk+1(s)‖∞ = ‖Gk+1(s)‖∞ = |λk+1|,

where

Gk(s) := b(−s)pk(s) − a(−s)qk(s)

d(−s)ek(s)

is as defined in (18), {pk(s), qk(s), ek(s)} is a solution to the partial pole placement
problem in Definition 1 with respect to λk and ek(s) has exactly k − 1 anti-stable
roots. Furthermore, by Lemma 2, each |λk | is the magnitude of an eigenvalue of H
defined in Step 2 of Algorithm 1. In particular, |λ1| = ρ(H). Since e1(s) is stable,
it follows from (15) that

γ (P(s)) = inf
C(s)∈S (P(s))

∥∥∥∥ P(−s) − C(s)

1 + P(s)C(s)

∥∥∥∥∞
= inf

Q(s)∈RH ∞
‖G1(s) − Q(s)‖∞

= inf
Q1(s)∈RL [1]

∞
‖G1(s) − Q1(s)‖∞

= ‖G1(s)‖∞
= |λ1| = ρ(H).

Therefore,
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α(P(s)) = 1√
1 + γ 2(P(s))

= 1√
1 + ρ2(H)

,

and again by Lemma 2, Steps 3 and 4 of Algorithm 1 yield a triplet of polynomials
{p(s), q(s), e(s)} satisfying p(s) = p1(s), q(s) = q1(s), and e(s) = e1(s), whereby

G1(s) := b(−s)p1(s) − a(−s)q1(s)

d(−s)e1(s)
= b(−s)p(s) − a(−s)q(s)

d(−s)e(s)
.

By defining Copt(s) := q(s)

p(s)
, we have

‖G1(s)‖∞ =
∥∥∥∥b(−s)p(s) − a(−s)q(s)

d(−s)e(s)

∥∥∥∥∞

=
∥∥∥∥d(−s)a(s)

a(−s)d(s)

b(−s)p(s) − a(−s)q(s)

d(−s)e(s)

∥∥∥∥∞

=
∥∥∥∥ P(−s) − Copt(s)

1 + P(s)Copt(s)

∥∥∥∥
∞

,

where the first equality in (17) has been used. In other words, the Copt(s) obtained
in Algorithm 1 is optimally robust. �

5 Case Study: Control of a USUAL Inverted Pendulum

The inverted pendulum system has been one of the most popular control education
apparatus since the 1950s. The system has been widely utilized for verifying the
effectiveness of stabilizing algorithms due to its unstable and under-actuated prop-
erties. The system mimics the human stick balancing game: balancing a long stick
upward on our finger tip. In the game, our fingers move in a horizontal plane and
the stick can fall in all directions. In this scenario, the state of the stick is observed
directly by the human vision. Unlike the game, the inverted pendulum in this case
study, whose cart moves linearly along a straight rail and rod can only fail either to
the front or to the back of the cart, is a simplified one-dimensional version of the
game. See Fig. 5 for an illustration.

The human stick balancing game motivates us to reconsider certain issues of sta-
bilizing the inverted pendulum. Conventionally, the inverted pendulum is equipped
with two sensors, i.e., the cart position sensor and the rod angle sensor. The feedback
stabilization of the inverted pendulum is usually done by using the measured two
sensor outputs. If we recall the stick balancing game, it is highly unlikely that our
eyes are focused on the finger position and the stick angle simultaneously. What do
we really look at when we try to balance a stick using our hand? The researchers
now tend to believe that the player in the game looks at the top end of the stick when
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Fig. 5 A real inverted
pendulum

the player tries to move the fingers [4, 14, 22]. To mimic this human behavior, we
utilize a single position sensor, which measures the horizontal position of the upper
tip of the rod, to achieve the stabilization of the inverted pendulum. Clearly, such an
inverted pendulum system would be not only under-actuated, but also under-sensed.
The control of such a system is much more challenging compared with controlling
an inverted pendulum by using two measured outputs.

In this section, the output feedback stabilization of an under-sensed and under-
actuated linear (USUAL) inverted pendulum, which has only one position sensor and
one force actuator, is investigated. We successfully stabilize this USUAL inverted
pendulum without sophisticated tuning. The optimally robust controller introduced
earlier is demonstrated to be effective. To the best of our knowledge, this is the first
successful experimental study on controlling a linear inverted pendulum by using a
single position sensor measurement.

5.1 System Model

As shown in Fig. 6, a standard linear inverted pendulum consists of a cart and a
rod. The cart, with a mass Mc, slides on a stainless shaft and is equipped with a
linear motor. The rod, attached with a small ball, is mounted on the cart. The axis
of rotation of the rod is perpendicular to the direction of the motion of the cart. The
rod, of length L , has an evenly distributed mass Mp, and the small ball with a mass
Mb can be regarded as a point mass. The system has two degrees of freedom. One is
from the horizontal motion of the cart, and the other is from the rotational motion of
the rod on the plane. Nevertheless, only the horizontal motion of the cart is actuated
by the force f (t) applied to the cart, and only the horizontal position of the tip of the
rod z(t) is measured by a single position sensor. Consequently, Fig. 6 indeed shows
the schematic diagram of the USUAL inverted pendulum.

The differential equationmodel [22, Sections 2.10 and 3.9] of theUSUAL inverted
pendulum is given by
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Fig. 6 A schematic diagram
of the USUAL inverted
pendulum with input f (t)
and output z(t)

L

Cart

θ

z
x

f

Table 1 Parameters of the
USUAL inverted pendulum in
our experimental setup

Parameter Value

Mass of rod (Mp) 0.07 kg

Mass of the cart (Mc) 1.42 kg

Mass of the ball (Mb) 0.05 kg

Gravitational acceleration (g) 9.8 m/s2

Length of the rod (L) 0.335 m

f (t) = M1 ẍ(t) − M2L θ̈ (t) cos θ(t) + M2L θ̇2(t) sin θ(t),

0 = M3L θ̈ (t) − M2 ẍ(t) cos θ(t) − M2g sin θ(t),

z(t) = x(t) − L sin θ(t)

(25)

where f (t) is the system input, z(t) is the system output, x(t) is the cart position, θ(t)
is the pendulum angle, g is the gravitational acceleration, M1 = Mp + Mc + Mb,
M2 = Mp/2 + Mb, and M3 = Mp/3 + Mb are three constant coefficients of the
practical system. The system given in (25) is highly nonlinear. Our control objective
is to stabilize the rod around its upward direction, which is an unstable equilibrium
point. Linearizing the systemaround the equilibriumpoint x(t) = 0, ẋ(t) = 0, θ(t) =
0, θ̇ (t) = 0 yields

f (t) = M1 ẍ(t) − M2L θ̈ (t),

0 = M3L θ̈ (t) − M2 ẍ(t) − M2gθ(t),

z(t) = x(t) − Lθ(t)

together with the transfer function P(s) from F(s) to Z(s) as

P(s) = (M3/M2 − 1) Ls2 − g

M1s2
[
(M3/M2 − M2/M1) Ls2 − g

] . (26)

Plugging the actual values of the parameters given in Table 1 into (26) results in
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P(s) = −0.1104s2 − 22.52

s2
(
s2 − 36.23

) . (27)

This is a highly unstable system with poles at 0, 0, ±6.019 and zeros at ± j14.28. It
is impossible to stabilize this system by using PD or PID control.

5.2 Optimally Robust Stabilization

In real applications, before we apply the design algorithm to P(s), generally, loop-
shaping for the plant P(s) is carried out to help improve the control performance.
The purpose of shaping the plant is to balance the system input and output possibly
using a frequency-dependent weighting function. In our experimental setup, a simple
weighting constant is demonstrated to be sufficient.

Specifically, for the USUAL inverted pendulum, first multiply the original plant
P(s) given in (27) by the simplest weighting function, i.e., a constant W , to form a
new plant P̂(s) = WP(s), then carry out the optimally robust stabilization algorithm
to obtain the resulting controller Ĉ(s). Note that the loop transfer function is given
by

L(s) = P̂(s)Ĉ(s) = P(s)WĈ(s) = P(s)C(s)

where C(s) = WĈ(s). In other words, to guarantee the same loop transfer function
for the original P(s), we need to absorb the weighting constantW into the controller
C(s). As a result, C(s) is the optimally robust controller that we use in reality for
the original plant P(s).

The shaping constant W should be carefully tuned in actual applications. In our
real USUAL inverted pendulum setup, we find that a large range of W is applicable,
and we set W = 400 for our experiment.

In the following, we make use of the main algorithm to design an optimally robust
stabilizing controller for the real USUAL inverted pendulum.

Example 3 [USUAL Inverted Pendulum] Consider the shaped plant

P̂(s) = WP(s) = 400(−0.1104s2 − 23.52)

s4 − 36.23s2
.

Following Algorithm 1, we try to find the optimal Ĉ(s) such that ‖P̂(s) # Ĉ(s)‖∞
is minimized.

1. (Spectral factorization)

(s4 − 36.23s2)2 + 4002(−0.1104s2 − 23.52)2 = d(−s)d(s).

This yields d(s) = s4 + 27.21s3 + 334.0s2 + 2335s + 9409.
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2. (Matrix computation) We can compute that

H =

⎡
⎢⎢⎢⎢⎢⎣

−2.073 −0.3017 −2.962 × 10−2 −1.476 × 10−3

−45.48 −6.136 −0.5042 −1.055 × 10−2

−425.9 −55.28 −3.755 1.115 × 10−2

−2839 −278.7 −13.89 0.3075

⎤
⎥⎥⎥⎥⎥⎦

.

3. (Eigen-computation) The four eigenvalues of H are −13.20, 1.977, −0.5058
and 7.574 × 10−2. The one with the largest magnitude is ρ(H) = 13.20 and its
corresponding eigenvector is

e = [−1.315 × 10−3 −2.416 × 10−2 −0.1994 −0.9796
]T

.

This gives

e(s) = [
s3 s2 s 1

]
e = −1.315 × 10−3s3 − 2.416 × 10−2s2 − 0.1994s − 0.9796.

4. (Pole placement) The pole placement equation follows that

(s4 − 36.23s2)p(s) + 400(−0.1104s2 − 23.52)q(s) = d(s)e(s).

Solving the above equation gives

p(s) = s3 + 45.57s2 + 438.6s + 9834,

q(s) = −13.20s3 − 116.8s2 − 336.5s − 744.8.

Therefore, the pole placement controller is given by

Ĉ(s) = q(s)

p(s)
= −13.20s3 − 116.8s2 − 336.5s − 744.8

s3 + 45.57s2 + 438.6s + 9834
.

Absorbing W yields the desired optimally robust controller in practical use

C(s) = WĈ(s) = 400(−13.20s3 − 116.8s2 − 336.5s − 744.8)

s3 + 45.57s2 + 438.6s + 9834
. (28)

5. (Optimal robustness margin computation) We have

α(P̂(s)) = 7.552 × 10−2.
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Fig. 7 The nonlinear
simulation of the USUAL
inverted pendulum:
stabilization results of the
output z(t), cart position x(t)
and pendulum angle θ(t)
with the initial conditions
x(t) = 0.01 m,
ẋ(t) = 0.002 m/s,
θ(t) = 4π/180 rad,
θ̇ (t) = 0.5π/180 rad/s
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5.3 Simulation and Experimental Results

Toverify the effectiveness of the design algorithm,wefirst show the simulation results
for the nonlinear model given in (25) together with the optimally robust controller
C(s) designed in (28). Given the initial conditions x(t) = 0.01m, ẋ(t) = 0.002m/s,
θ(t) = 4π/180 rad, θ̇ (t) = 0.5π/180 rad/s, the stabilization simulation results are
shown in Fig. 7.

The closed-loop system startswith the initial conditions, and the simulation results
show that the output z(t), the cart position x(t) and pendulum angle θ(t) converge to
zero quickly when t > 2 s. This validates the effectiveness of the designed controller
from a theoretical perspective.

In the following, we implement the optimally robust stabilizing controller C(s)
given in (28) to the real USUAL inverted pendulum. The experiment is carried out
as follows. In the beginning, we show the stabilized behaviors of z(t), x(t), and
θ(t) of the USUAL inverted pendulum. Then, we excite the system by knocking the
pendulum gently on the top as performance testing. In the end, the behaviors of z(t),
x(t) and θ(t) of the system against the knock are presented.

The real-time experimental data of three variables z(t), x(t), and θ(t) together
with the performance testing are illustrated by Fig. 8. When t < 9.7 s, the output
z(t) is within a small range [−0.04 m, 0.02 m], and from x(t) and θ(t), we know
that the real USUAL inverted pendulum is indeed stabilized. Moreover, both θ(t)



176 D. Zhao et al.

Fig. 8 The stabilization of
the real USUAL inverted
pendulum: results of the
output z(t), cart position x(t)
and pendulum angle θ(t).
The circles represent the
rough time t = 9.7 s when
we excite the system by
hitting the pendulum on the
top
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and x(t) vary within a small range. The results indicate the closed-loop system is
running with satisfactory stabilized behaviors.

In order to test the system performance, we excite the system by hitting the
pendulum lightly on the top when the designed controller is in operation. As shown
in Fig. 8, the circles represent the rough time t = 9.7 s when we excite the system.
The results show that both x(t) and θ(t) restore quickly to their stabilized behaviors.
In the meantime, z(t) is almost free of the impact of the hit since z(t) is the controlled
output. This validates the effectiveness of the designed controller from a practical
point of view.

By simply shaping the USUAL inverted pendulum with a constant to balance
the system input and output, the optimally robust controller can be implemented
successfully without further complicated tuning. We conclude that the optimally
robust control is demonstrated to be effective in the control of the USUAL inverted
pendulum.

6 Conclusion

To characterize system uncertainties of different types and from multiple sources,
we have proposed a special uncertainty model, namely, the uncertainty quartet. The
uncertainty quartet combines and generalizes several commonly adopted uncertainty



Robust Control Against Uncertainty Quartet … 177

models, such as the additive, the multiplicative, the relative, and the feedback uncer-
tainties. In correspondence with the uncertainty quartet, a robust stability condition
was derived, resulting in a robust stability margin in terms of the Gang of Four trans-
fer matrix. An optimally robust controller, maximizing the robust stability margin,
was obtained through a proposed polynomial approach. This approach involves only
basic matricial and polynomial manipulations. Moreover, the mathematical tools
used in developing this polynomial approach are also rudimentary, e.g., the matrix
analysis and basic H∞ control theory. The clarity and simplicity of the polynomial
approach may be beneficial to the popularization of the robust control theory for
engineering applications.

The optimally robust controller was demonstrated to be effective by the case study
on the USUAL inverted pendulum, a highly nonlinear and unstable single-input
single-output system. This system is commonly seen in laboratories and familiar to
most of people in the field of control. It is nontrivial to control such a system with
simple methods, such as, PID control. As a result, the USUAL inverted pendulum
may be regarded as a benchmark to validate the effectiveness of control methods
in practice. For the purpose of education, the control of this system may serve as a
qualifying test for control system designers and engineers.
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Part II
Randomization and Probabilistic Methods



Randomization in Robustness,
Estimation, and Optimization

B. Polyak and P. Shcherbakov

Abstract This is an attempt to discuss the following question: When is a random
choice better than a deterministic one? That is, if we have an original determinis-
tic setup, is it wise to exploit randomization methods for its solution? There exist
numerous situations where the positive answer is obvious; e.g., stochastic strategies
in games, randomization in experiment design, randomization of inputs in identifi-
cation. Another type of problems where such approach works successfully relates
to treating uncertainty, see Tempo R., Calafiore G., Dabbene F., “Randomized algo-
rithms for analysis and control of uncertain systems,” Springer, New York, 2013.
We will try to focus on several research directions including optimization problems
with no uncertainty and compare known deterministic methods with their stochastic
counterparts such as random descent, various versions of Monte Carlo etc., for con-
vex and global optimization. We survey some recent results in the field and ascertain
that the situation can be very different.

1 Introduction

The use of a random mechanism to solve a problem in a deterministic setup is
very common not only in mathematics but much beyond formal framework. One can
remember that random decisions were performed in ancient times, and the procedure
of drawing lots was very common.Moreover, political events such as election of gov-
erning officers in Athens were randomized. Nowadays, elements of randomization
are often exploited in sport competitions to equalize the chances of the participants.
Very important role of random mixing in medical and biological experiments is of
no doubt.
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Probably one of the first application of stochastic approach in mathematics is the
theory of mixed strategies in zero-sum games by John von Neumann. Here the role
of randomization is to make secret a strategy of the player against the competitor.
Approximately at the same time Fisher proposed to apply mixed strategies in exper-
iment design; here their role was different. A real breakthrough was the invention
of the Monte Carlo methods by Ulam, Metropolis, von Neumann and Teller [43],
and the ideas of random sampling became very popular in modeling and numerical
analysis. Thus randomization methods found numerous applications in various fields
of research; to survey all of them does not seem to be realistic. In this chapter we
restrict ourselves to some problems related to estimation, robustness, and continuous
optimization. The typical question to be analysed is as follows. Given a determin-
istic problem (say, unconstrained smooth optimization), how randomization ideas
can be exploited for its solution and are randomized methods true competitors with
deterministic ones? We will see that situation differs in various domains of interest.

The role of Roberto Tempo in progress of this approach can not be overestimated.
His research since 2000 was mostly dedicated to randomization methods in control,
robustness, and optimization, see the monograph [77]. In the present chapter, we
continue this line of research, but also we address the directions which have little
intersections with [77] as well with other monographs and surveys on randomization
[14, 28, 29].

Due to the wide spectrum of the problems under consideration, we are forced to
provide really brief presentation of the problems; the references do not pretend to be
complete. However we have tried to emphasize the pioneering works and surveying
publications.

2 Uncertainty and Robustness

Mathematical models for systems and control are often unsatisfactory due to the
incompleteness of the parameter data. For instance, the ideas of off-line optimal
control can only be applied to real systems if all the parameters, exogenous pertur-
bations, state equations, etc., are known precisely. Moreover, feedback control also
requires a detailed information which is not available in most cases. For example, to
drive a car with four-wheel control, the controller should be aware of the total weight,
location of the center of gravity, weather conditions and highway properties as well
as many other data which may not be known. In that respect, even such a relatively
simple real-life system can be considered a complex one; in such circumstances,
control under uncertainty is a highly important issue.

In this section we consider the parametric uncertainty; other types of uncertainty
can be treated within more general models of robustness.

There are numerous tools to check robustness under parametric uncertainty; below
we focus on randomized methods. This line of research goes back to pioneering
papers by Stengel and Ray [74]. Within this approach, the uncertain parameters
are assumed to have random rather than deterministic nature; for instance, they are
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assumed to be uniformly distributed over the respective intervals of uncertainty. Next,
an acceptable tolerance ε, say ε = 0.01 is specified, and a check is performed if the
resulting random family (of polynomials, matrices, transfer functions) is stable with
probability no less than (1 − ε); see [77] for a comprehensive exposition of such a
randomized approach to robustness.

In many of the NP-hard robustness problems, such a reformulation often leads
to exact or approximate solutions. Moreover, the randomized approach has sev-
eral attractive properties even in the situations where the deterministic solution is
available. Indeed, the deterministic statements of robustness problems are minimax,
hence, the answer is dictated by the “worst” element in the family, whereas these
critical values of the uncertain parameters are rather unlikely to occur. Therefore,
by neglecting a small risk of violation of the desired property (say, stability), the
admissible domains of variation of the parameters may be considerably extended.
This effect is known as the probabilistic enhancement of robustness margins; it is
particularly tangible for the large number of the parameters. Another attractive prop-
erty of the randomized approach is its low computational complexity which only
slowly grows with increase in the number of uncertain parameters.

We illustrate some of these concepts and effects.

2.1 Volume of Violation and Approximate Feasibility

We consider robustness problems for systems described in terms of a design vec-
tor x ∈ X ⊆ R

n and a real uncertain parameter vector q ∈ Q ⊂ R
�, where Q is a

box. For such systems, the objective is to select x ∈ X such that a given continuous
performance specification

f (x, q) ≤ 0 (1)

is satisfied for all q ∈ Q. When such a design vector x exists, the triple ( f, X, Q) is
said to be robustly feasible.

In a number of situations, robust feasibility of f (x, q) ≤ 0 is guaranteed if and
only if f (x, qi ) ≤ 0 for each of the verticesqi of the �-dimensional box Q, andweuse
the term vertexization. A typical example of a vertexization is the quadratic stability
problem for the system with state space matrix A(q) = A0 + ∑�

i=1 Aiqi , where
Ai ∈ R

n×n are fixed and known, and the uncertainty parameter vector q ∈ Q. The
goal is to find a symmetric candidate Lyapunovmatrix P = P(x)with entries xi ∈ R

viewed as the design variables, such that P(x) � 0 and the linear matrix inequality
(LMI) A�(q)P(x) + P(x)A(q) ≺ 0 holds for all q ∈ Q (throughout the text, the
signs � and ≺ denote the positive and negative sign-definiteness of a symmetric
matrix). Hence, with

f (x, q) = λmax

(
A�(q)P(x) + P(x)A(q)

)
,
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this strict feasibility design problem in x is reducible to the vertices qi of Q. That
is, the satisfaction of the Lyapunov inequality above for all q ∈ Q is equivalent to
A�(qi )P(x) + P(x)A(qi ) ≺ 0 for i = 1, 2, . . . , N . However, since N = 2�, we see
that the computational task can easily get out of hand. For example, with five states
and ten uncertain parameters, the resulting LMI is of size greater than 5000 × 5000.

As an alternative to the computational burden associated with vertexization, it
is often possible to introduce an overbounding function in such a way as to enable
convex programming in order to test for robust feasibility; also, see Sect. 4 for a
different approach to solving the feasibility problem for LMIs. Note also that a
reduction to checking the vertices is rather an exception and is considered here for
illustrative purposes, while the overbounding techniques may be applied to much
broader classes of systems.

Specifically, given x , introduce the associated violation set

Qbad(x)
.= {q ∈ Q : f (x, q) > 0}

and estimate from above its volume. Equivalently, assuming that the uncertainty vec-
tor q is random, uniformly distributed over Q, we estimate from above the probability
of violation for the performance specification.

In [4, 5], a computationally modest method for finding such overbounding func-
tions is proposed and numerical examples are presented.

More delicate constructions are also described in [4, 5], where the notion of
approximate feasibility is introduced. Namely, the triple ( f, X, Q) is said to be
approximately feasible if the following condition holds: Given any ε > 0, there exists
some xε ∈ X such that

Vol
(
{q ∈ Q : f (xε, q) > 0}

)
< ε,

whereVol(·) stands for the volume of a set. For such ε, xε is called an ε-approximate
solver. So, instead of guaranteeing satisfaction of f (x, q) ≤ 0 for all q ∈ Q, we
seek solution vectors x with associated violation set having volume less than any
arbitrarily small prespecified level ε > 0.

We present a formal result on approximate feasibility in general terms; the details
can be found in [4, 5]. First, we consider so-called homogenizable in x functions
f (x, q) and use their homogenized versions denoted by f +(x0, x, q). In [4, 5] this
requirement was shown to be not verymuch restrictive, covering quite a large class of
functions. Next, the notion of approximate feasibility indicator (AFI) is introduced;
in a sense, it is a convexgeneralization of the classical indicator function. For instance,
a “natural” type of AFI is the exponential one, φ(ζ ) = eζ .

In the theorem to follow, the approximate feasibility indicator φ(ζ ) is used with
argument ζ = f +(x0, x, q) in the determination of approximate feasibility.

Theorem 1 ([4, 5]) Given the continuous homogenizable performance specification
function f (x, q), X = R

n and an approximate feasibility indicator φ(·), define
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�(x0, x)
.=

∫

Q

φ( f +(x0, x, q))dq

and
�∗ .= inf

x0>0,x
�(x0, x).

Then the following holds:
(i) �∗ = 0 implies approximate feasibility of ( f, X, Q);
(ii) For any x0 > 0 and x ∈ R

n,

Vol
(

Qbad

( x

x0

))

≤ �(x0, x).

A similar idea of overbounding was presented in [6]. Multivariable polynomials
f (x)with parameter vector x restricted to a hypercube X ∈ R

n were considered, and
the objective was to check the robust positivity of f (x), i.e., to determine if f (x) > 0
for all x ∈ X . Again, instead of solving the original NP-hard problem, the authors
proposed a straightforward procedure for the computation of an upper bound on the
volume of violation by computing a respective dilation integral that depends on the
degree k of a certain auxiliary polynomial, followed by a convexminimization in one
scalar parameter. By increasing the degree k, the authors obtain a sequence of upper
bounds εk which are shown to be “sharp” in the sense that they converge to zero
whenever the positivity requirement is satisfied. Notably, that this dilation integral
method applies to a general polynomial dependence on the variables.

2.2 Probabilistic Predictor

In the discussion above, the stochastic nature of the uncertain parameters was some-
what hidden; we just evaluated the bad portion of the uncertainty box. Assume now
that the originally deterministic parameters are randomly distributed over the given
uncertainty set Q. Then it seems natural to sample the uncertainty set Q and arrive at
conclusions on the probability of robustness. In the control-related literature, these
ideas have been first formulated in [74]; also see [3].

Together with numerous advantages of this approach, it also suffers serious draw-
backs. First, it is usually desired to have any closed-form estimates of the robustness
margin, rather than to rely on the results of simulations; moreover, in practical appli-
cations, such a simulation is often prohibited. Next, the sample size that guarantees
high reliability of the result may happen to be rather large [76, 77], hence, simula-
tions may be very time-consuming. On top of that, sampling in accordance with one
or another distribution over a given set may be highly nontrivial [30, 57]. Finally, the
results of Monte Carlo simulation heavily depend on the probabilistic distribution
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adopted and may lead to overly optimistic estimates of the robustness margin; the
correct choice of the distribution is a nontrivial problem [2].

In this section, assuming the uniform distribution of the uncertain parameters over
q ∈ γ Q, where Q ⊂ R

� is the uncertainty set and γ ∈ R is the scaling factor, we
characterize the probability of stability of a system and evaluate the probabilistic
stability margin

γmax := sup
{
γ : Prob{the system is stable for q ∈ γ Q} ≥ p

}
, p ∈ (0, 1),

where Prob(·) denotes the probability of an event.
Without getting deep into the details, we describe the idea of the probabilistic

approach to robustness as applied to polynomial families.
Since the early 1990s, numerous graphical tests for robust stability proved them-

selves to be efficient; these are based on the famous zero exclusion principle, which
is formulated next. Consider the family of polynomials p(s, q) which depend on the
vector q of uncertain parameters confined to the connected set Q ⊂ R

�. For a fixed
s = jω, the set

V (ω)
.= {p( jω, q) : q ∈ Q}

is referred to as the value set of the family p(s, q); it is the 2D image of Q under the
mapping p( jω, ·). Let the polynomial p(s, q0) be stable for some q0 ∈ Q; then, for
robust stability, the following condition is necessary and sufficient:

0 /∈ V (ω) for all ω ∈ [0, ∞). (2)

To exploit this result, one has to efficiently construct the set V (ω) and check condi-
tion (2). This is doable in a number of simple cases; however, formore or less involved
dependence of p(s, q) on q, this approach cannot be applied, since no closed-form
description of the boundary of the value set is available, and checking condition (2)
is complicated by the nonconvexity of Vω).

Taking the probabilistic point of view and letting q be random, uniformly dis-
tributed over Q, we consider the two-dimensional random variable

zω = [Rep( jω, q); Imp( jω, q)]

and construct its confidence domain

V1−ε(ω) : Prob
{
zω ∈ V1−ε(ω)

} ≥ 1 − ε, ε > 0 is small.

This set is referred to as a 100(1 − ε)% probabilistic predictor of the value set V (ω).
The condition (2) now has to be checked for the predictor, rather than for the value
set, hence, evaluating the probability of stability of the uncertain polynomial family.

Often, the construction of the predictor can be accomplished via using the central
limiting behavior of the random vector zω. Indeed, if p(s, q) depends affinely on q,
and the qi s are mutually independent, the random vector zω is represented by the
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sum of independent random vectors, and if the number � of the parameters is large
enough, then, under the general assumptions on pi (s) it is well described by the
two-dimensional Gaussian random vector with mean zω = Ezω and the covariance
matrix S = Cov zω. Therefore, V (ω)may be approximated by the confidence ellipse

Eν(ω)
.= {

z ∈ R
2 : (z − zω)�S−1(z − zω) ≤ ν2

}
,

where ν specifies the confidence level. In other words, if pν is the associated confi-
dence probability, then for a given ω we have

Prob
{
p( jω, q) ∈ Eν(ω)

} ≈ pν = 1 − e−ν2/2.

In a number of situations, it is possible to obtain a precise nonasymptotic dis-
tribution of the random vector zω and, respectively, a precise description of the
probabilistic predictor.

We illustrate these ideas via the problem of robust stability of uncertain delay
systems; i.e., those describedbyuncertain quasipolynomials, see [58]. In this case, the
generic value set has a very complicated geometry; application of the zero exclusion
principle is hardly possible, and we lean on the probabilistic approach.

Consider the delay system specified by the characteristic quasipolynomial

h(s, a, τ ) = a0 + a1s + s2 + 2se−τ1s + e−τ2s, (3)

|a0| ≤ γ, |a1| ≤ γ, |1 − τ1| ≤ γ, |2 − τ2| ≤ γ.

Here, both the coefficients and the delays are subject to interval uncertainty. The
nominal system h(s) = s2 + 2se−s + e−2s is stable, maxk Resk = −0.3181, where
sk are the roots of the quasipolynomial h(s) (the roots of h(s) are the values of the
Lambert function W (x)eW (x) = x at the point x = −1). For this system, the value
of the radius of robustness cannot be found exactly, but the estimate 0.01 < γmax <

0.05 is known from the literature. For the confidence level ν = 3, the probabilistic
approach gives γν = 0.0275, so that it fits well the deterministic estimate.

To illustrate, for a set of frequencies in 0 ≤ ω ≤ 2, Fig. 1a depicts the confidence
ellipses Eν(ω), ν = 3, for the uncertainty range γ = 0.0275. Also, presented are the
frequency responses h( jω, q) for a number of sampled values of the uncertainty
q = (a0, a1, δτ1, δτ2) in the box |qi | ≤ γ . The curves are seen to remain inside
the “corridor” defined by the confidence ellipses. Figure 1b depicts the confidence
ellipse Eν(ω) for a “typical” ω = 1.3113 together with sampled points h( jω, q); the
predictor is seen to approximate nicely the value set.

Probabilistic robustness techniques can be effectively exploited for robust control
design [12, 39, 53, 54, 61, 77, 78].
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Fig. 1 a The plot of h( jω, q) and confidence ellipses Eν(ω), ν = 3 for system (3). b Probabilistic
predictor of the value set for ω = 1.3113

2.3 Probabilistic Enhancement of Robustness Margins

It is important to note that, even for the values of pν = p close to unity, the ellipse
Eν(ω) is often considerably smaller than the value setVol(ω). Let us make use of the
probabilistic counterpart of the zero exclusion principle (the origin does not belong
to Eν(ω) for all ω) and evaluate the probabilistic stability margin defined as

γp
.= sup

{
γ : 0 /∈ Eν(ω) for all ω ∈ [0, ∞)

}
.

It then usually happens that γp  γmax, where γmax is the deterministic stability
margin. Hence, the uncertainty range may be considerably enlarged at the expense
of neglecting low-probability events. This phenomenon is referred to as probabilistic
enhancement of classical robustness margins [40]. Moreover, in accordance with the
central limit theorem, this enlargement gets bigger as the number of uncertainties
grow, and it is this case which is most problematic for deterministic methods. At
the same time, the computational burden of probabilistic methods does not depend
on the dimension of the vector of uncertain parameters. Indeed, putting the precise
description of the value set aside, we make use of an approximation of it, which is
defined by the two-dimensional covariance matrix.

We illustrate use of the probabilistic approach to the assessment of such an
enhancement via the case of matrix uncertainty. Specifically, let us consider the
uncertain matrix family

A = A0 + ,  ∈ γ Q, (4)

where A0 ∈ R
n×n is a known,Hurwitz stablematrix and is its bounded perturbation

confined to the ball in the Frobenius norm γ Q = { ∈ R
n×n : ‖‖F ≤ γ }; the goal
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Fig. 2 The pseudospectrum of A0, its linear approximation, and the probabilistic predictor

is to estimate the robust stabilitymargin of A0. To this end,weprovide an approximate
description of the pseudospectrum of A (4), the set of the eigenvalues of A for all
admissible values of the uncertainty .

For a generic case of simple complex eigenvalues λ = λ(A0) ∈ C, the perturbed
eigenvalue λ(A0 + ) is well described by the linear approximation

λ̃ = λ + Rq, R ∈ R
2×�, � = n2,

provided that γ is small enough. Here, q ∈ R
� is the vectorization of , and the

matrix R is defined by the left and right eigenvectors of λ.
It can be shown that, as q sweeps the ball γ Q, the 2D-vector [Re λ̃, Imλ̃] sweeps

the ellipse

E := {
x ∈ R

2 : (
S−1(x − λ), x − λ

) ≤ γ 2
}
, S := RR�.

Now, assuming that the uncertainty q is random, uniformly distributed over the
ball γ Q, and specifying a confidence probability p, we make use of Lemma 2 (see
Sect. 5.1) to shape an ellipsoidal probabilistic predictor Ep of the ellipse E .

A schematic illustration of the ideas above is given next. For a 6 × 6 stable matrix
having � = 36 uncertain entries, quite an accurate upper bound γ = 0.3947 of the
stability margin can be found.

Let us specify p = 0.99; then the constructions above yield γ̂p = 0.7352 as an
estimate of the value of the probabilisticmargin. In otherwords, the uncertainty radius
is almost doubled, at the expense of admitting the 1%-probability of instability. To
confirm these conclusions, we performed straightforward Monte Carlo simulations
for γ = γ̂p, which resulted in the sampled probability of stability pMC = 0.9989
(from a sample of 40, 000 points q). Figure 2 depicts the linear approximation of
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the pseudospectrum of A (larger ellipses) and its ellipsoidal probabilistic predictors
(smaller ellipses, rightmost of them touch the imaginary axis), along with sampled
values of the pseudospectrum.

Other examples relate to the probability of a polynomial with coefficients in a
cube to be stable [46] and to the generation of random stable polynomials [69].

3 Randomization in Estimation

Usual assumptions on the noise in linear regression problems are that it is a sequence
of independent zero-mean randomvariables (vectors).However in practical situations
these assumptions are often violated which may strongly affect the performance of
standard estimators. Therefore it is important to examine the possibility to estimate
the regression parameters under minimal assumptions on the noise. It may appear
surprising that the regression parameters can be consistently estimated in the case of
biased, correlated and even nonrandom noise. However, it can be done under certain
conditions when the inputs (regressors) are random. We consider a linear regression
model

yn = x�
n θ + ξn (5)

with the parameter vector θ ∈ R
N to be estimated from the observations yn, xn ,

n = 1, 2, . . . It is assumed that the inputs xn are zero-mean random vectors indepen-
dent of the noise ξk . This assumption ensures “good” properties of estimators under
extremelymild restrictions on the noise. The idea of using random inputs to eliminate
bias was put forward by Fisher [22] as the randomization principle in the design of
experiments. Besides settings of design type where regressors are randomized by the
experimenter, random inputs arise in many applications of identification, filtering,
recognition, etc. Having these applications in mind, we use the terms “inputs,” “out-
puts,” etc., rather than those traditional to the regression analysis (say, “regressors”).

We follow the results in [25], see also [27]. Let us formulate the rigorous assump-
tions on the data for the regression problem (5).

(A) the inputs xn are represented by a sequence of independent, identically dis-
tributed random vectors with symmetric distribution function, zero mean value
Exn = 0, positive-definite covariance matrix Exnx�

n = B � 0, and a finite fourth
moment E‖xn‖4 < ∞; moreover, xn is independent of {ξ0, ξ1, . . . , ξn}.

(B) the noise ξn is mean-square bounded: E|ξn|2 ≤ σ 2.

Theorem 2 Under the assumptions above, the least square estimate θn of the true
parameter θ is mean-square consistent, and the rate of convergence is given by

E(θn − θ)(θn − θ)� = σ 2

n
B−1 + o

(1

n

)
. (6)
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If the inputs are deterministic and B = limn→∞ 1
n

∑∞
i=1 xi x

�
i , one can obtain a

similar estimate for the least squares algorithm under the standard assumption that
the noise is zero mean, Eξn = 0. The principal contribution of Theorem 2 is the
removal of this restrictive assumption.

A result similar to Theorem 2 holds true for the Polyak–Ruppert online averaging
algorithm [64]:

θn = θn−1 + γnxn(yn − θ�
n−1xn) (7)

θ̂n = (1 − n−1)θ̂n−1 + n−1θn, (8)

where
γn/γn+1 = 1 + o(γn); (9)

for instance, γn = 1/nr for some 0 < r < 1. It is proved in [25] that estimate (6) is
true under assumptions (A), (B) for no-zero-mean noise.

The fruitful idea of randomizing the inputs is exploited in numerous problems
of identification, control, optimization in the monographs [28, 29]. These results
confirm the general conclusion: Randomization enables for a considerable relaxation
of the standard assumptions on the noise. In Sect. 5, we focus on such approaches to
stochastic optimization problems.

4 Feasibility

The problem of solving convex inequalities (also known as convex feasibility prob-
lem) is one of the basic problems of numerical analysis. It arises in numerous applica-
tions, including statistics, parameter estimation, pattern recognition, image restora-
tion, tomography and many others, see, e.g., monographs and surveys [7, 15, 17]
and references therein. Particular cases of the problem relate to solving of linear
inequalities and to finding a common point of convex sets. The specific feature of
some applications is a huge number of inequalities to be solved, while the dimension-
ality of the variables is moderate, see, e.g., the examples of applied problems below.
Under these circumstances many known numerical methods are inappropriate. For
instance, finding the most violated inequality may be a hard task; dual methods also
cannot be applied due to large number of dual variables.

In this survey we follow mainly the paper [56] and focus on simple iterative
methods which are applicable to the case of very large (and even infinite) number of
inequalities. They are based on projection-like algorithms, originated in the works
[1, 31, 36, 44]. There are many versions of such algorithms; they can be either
parallel or non-parallel (row-action); in the latter case the order of projections is
usually chosen as cyclical one or the-most-violated one, see [7, 15, 17]. All these
methods are well suited for the finite (and not too large) number of constraints. The
novelty of the method under consideration is its random nature, which allows to treat
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large-dimensional- and infinite-dimensional cases. Although the idea of exploiting
stochastic algorithms for optimization problemswith continua of constraints has been
known in the literature [34, 51, 80], it led to much more complicated calculations
than the proposed method. Another feature of the method is its finite termination
property—under the strong feasibility assumption a solution is found after a finite
number of steps with probability one. The version of a projection method for linear
inequalities with this property has been proposed first by V.A. Yakubovich [81].
Below we survey the main results from [56]. Related contributions can be found in
[13, 61].

Consider the general convex feasibility problem: find a point x in the set

C = {x ∈ X : f (x, q) ≤ 0 ∀ q ∈ Q}. (10)

Here X ⊂ R
n is a convex closed set, f (x, q) is convex in x for all q ∈ Q, where Q

is an arbitrary set of indices (finite or infinite). Note that this formulation is similar to
the robust feasibility problem (1) considered above. However, instead of finding its
approximate solution or evaluating the volume of violation, we are aimed at finding
a solution satisfying all inequalities, but using randomized methods.

Particular cases of problem (10) are:

1. Finite number of inequalities: Q = {1, ...m}.
2. Semi-infinite problem: Q = [0, T ] ⊂ R

1.
3. Finding a common point of convex sets: f (x, q) = dist(x,Cq) = miny∈Cq ‖x −

y‖, where the sets Cq := {x ∈ X : f (x, q) ≤ 0 for a q ∈ Q} ⊂ R
n are closed

and convex and C = ∩q∈QCq . Here, ‖x‖ denotes the Euclidean norm of a vector.
4. Linear inequalities: f (x, q) = a(q)�x − b(q).

We assume that a subgradient ∂x f (x, q) is available at any point x ∈ X for all
q ∈ Q (we mean an arbitrary subgradient if the set of them is not a singleton).

The algorithm has the following structure. At the kth iteration, we generate ran-
domly qk ∈ Q; we assume that the qk’s are independent and identically distributed
(i.i.d.) samples from some probabilistic distribution pq on Q. Two key assumptions
are adopted.
Assumption 1 (strong feasibility). The set C is nonempty and contains an interior
point

∃ x∗ ∈ C : ‖x − x∗‖ ≤ r =⇒ x ∈ C.

Here, r > 0 is a constant which is assumed to be known.
Assumption 2 (distinguishability of feasible and infeasible points). For x ∈ X \ C ,
the probability of generating a violated inequality is not vanishing:

Prob{ f (x, q) > 0} > 0.

This is the only assumption on the probability distribution pq . For instance, if Q
is a finite set and each element in Q is generated with nonzero probability, then
Assumption 2 holds. The feasibility algorithm is then formulated as follows:
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Algorithm 1: Given an initial point x0 ∈ X , proceed as follows:

xk+1 = πX

(
xk − λk∂x f (xk, qk)

)
, (11)

λk =

⎧
⎪⎪⎨

⎪⎪⎩

f (xk, qk) + r‖∂x f (xk, qk)‖
‖∂x f (xk, qk)‖2 if f (xk, qk) > 0;

0 otherwise.

(12)

Here, πX is a projection operator onto X ; that is, ‖x − πX (x)‖ = dist(x, X).
Hence, at every step, the calculation of a subgradient is performed just for one
inequality, which is randomly chosen among all inequalities Q. Note that the value
of r (the radius of a ball in the feasible set) is used in the algorithm; its modification
for r unknown will be presented later. To explain the choice of the step-size λk in
the algorithm, we consider the two particular cases.

1. Linear inequalities: f (x, q) = a(q)�x − b(q), X = R
n .

Then we have ∂x f (xk, qk) = ak , where f (xk, qk) = a�
k xk − bk and ak = a(qk),

bk = b(qk), so that the algorithm takes the form

xk+1 = xk − (a�
k xk − bk)+ + r‖ak‖

‖ak‖2 ak

for (a�
k xk − bk)+ �= 0, otherwise xk+1 = xk ; here, c+ = max{0, c}. For r = 0,

the method coincides with the projection method for solving linear inequalities
by Agmon–Motzkin–Shoenberg [1, 44].

2. Common point of convex sets: f (x, q) = dist(x,Cq), C = ∩q∈QCq , X = R
n .

Then we have ∂x f (xk, qk) = (
xk − πk(xk)

)
/ρk , where πk denotes the projection

onto the set Ck = Cqk
and ρk = ‖xk − πk(xk)‖. The algorithm takes the form

xk+1 = πk(xk) + r

�k

(
πk(xk) − xk

)
,

provided that xk /∈ Ck ; otherwise xk+1 = xk . We conclude that, for r = 0, each
iteration of the algorithm is the same as for the projection method for finding the
intersection of convex sets [7, 31].

Having this in mind, the rule for selecting the step-size λk has a very natural
explanation. Denote by yk+1 the point which is generated via the same formula as
xk+1, but with r = 0; assume also X = R

n . Then, for the case of linear inequalities,
yk+1 is the projection of xk onto the half-space

{
x : a�

k x − bk ≤ 0
}
. Similarly, if we

deal with finding a common point of convex sets, yk+1 is the projection of xk onto the
set Ck . It is easy to show that ‖xk+1 − yk+1‖ = r. Thus the step in the algorithm is
an (additively) over-relaxed projection; we perform an extra step (of length r ) inside
the current feasible set.
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The idea of additive over-relaxation is due to V.A. Yakubovich who applied such
a method to linear inequalities [81]. In the papers mentioned above, the order of
sorting out the inequalities was either cyclic or the-most-violated one was taken, in
contrast with the random order in the proposed algorithm.

Now we formulate the main result on the convergence of the algorithm.

Theorem 3 Under Assumptions 1, 2, Algorithm 1 finds a feasible point in a finite
number of iterations with probability one, i.e., with probability one there exists N
such that xN ∈ C and xk = xN for all k ≥ N.

We now illustrate how the general algorithm can be adapted to two particular
important cases.

1. Linear Matrix Inequalities are one of the most powerful tools for model formu-
lation in various fields of systems and control, see [10]. There exist well-developed
techniques for solving such inequalities as well as for solving optimization problems
subject to such inequalities (Semidefinite Programming, SDP). However in a number
of applications (for instance, in robust stabilization and control), the number of LMIs
is extremely large or even infinite, and such problems are beyond the applicability of
the standard LMI tools. Let us cast these problems in the framework of the approach
proposed above.

The space Sm ofm × m symmetric real matrices equipped with the scalar product
< A, B >= tr AB and the Frobenius norm, becomes a Hilbert space (tr(·) denotes
the trace of a matrix). Then we can define the projection A+ of a matrix A onto the
cone of positive semidefinite matrices. This projection can be found in explicit form.
Indeed, if A = RDR�, R−1 = R�, is the eigenvector–eigenvalue decomposition of
A and D = diag (d1, . . . , dm), then

A+ = RD+R�, (13)

where D+ = diag (d+
1 , . . . , d+

m ) and d+
i = max{0, di }.

Linear matrix inequality is the expression of the form

A(x) = A0 +
n∑

i=1

xi Ai � 0,

where Ai ∈ Sm , i = 0, 1, . . . , n, are givenmatrices and x = (x1, . . . , xn) ∈ R
n is the

vector variable. Another form of LMI was mentioned in Sect. 2; it is reducible to the
canonical form above.

The general system of LMIs can be written as

A(x, q) = A0(q) +
n∑

i=1

xi Ai (q) � 0 ∀ q ∈ Q. (14)

Here, Q is the set of indices which can be finite or infinite. The problem under
consideration is to find an x ∈ R

n which satisfies LMIs (14). Our first goal is to



Randomization in Robustness, Estimation, and Optimization 195

convert these LMIs into a system of convex inequalities. For this purpose, introduce
the scalar function

f (x, q) = ‖A+(x, q)‖ (15)

where A(x, q) is given by (14) and A+ is defined in (13).

Lemma 1 The matrix inequalities (14) are equivalent to the scalar inequalities

f (x, q) ≤ 0 ∀ q ∈ Q.

The function f (x, q) is convex in x and its subgradient is given by

∂x f (x, q) = 1

f (x, q)

⎛

⎜
⎝

tr A1A+(x, q)
...

tr An A+(x, q)

⎞

⎟
⎠

if f (x, q) > 0; otherwise ∂x f (x, q) = 0.

Hence, solving linear matrix inequalities can be converted into solving a convex
feasibility problem.

2. Solving linear equations. This case has some peculiarities—the solution set is
either a single point or a linear subspace, so that it never contains an interior point
andAlgorithm 1with r > 0 does not converge. However it can be appliedwith r = 0;
for a deterministic choice of the alternating directions it is precisely the Kaczmarz
algorithm [36]. Its randomized version with equal probabilities for all equations has
been proposed in [56]; it converges with linear rate. More recently, Strohmer and
Vershynin [75] studied this method with the probabilities for choosing the equation
(ai , x) = bi being proportional to ‖ai‖2. They proved that the rate of convergence
depends on the condition number of thematrix A, but not on the number of equations.
This result stimulated further research in [15, 16, 20, 26, 41].

5 Optimization

After the invention of theMonte Carlo (MC) paradigm byN.Metropolis and S. Ulam
in the late 1940s [43], it has become extremely popular in numerous application areas
such as physics, biology, economics, social sciences, and other areas. As far as math-
ematics is concerned, Monte Carlo methods proved to be exceptionally efficient in
the simulation of various probability distributions, numerical integration, estimation
of the mean values of the parameters, etc. [37, 67, 77]. More recent version of the
approach,Markov ChainMonte Carlo, is often referred to asMCMC revolution [23].
The salient feature of MC approach to solution of various problems of this sort is
that “often,” it is dimension-free in the sense that, given N samples, the accuracy of
the result does not depend on the dimension of the problem.
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On the other hand, applications of theMCparadigm in the area of optimization are
not that successful. In this regard, problems of global optimization deserve special
attention. As explained in [82] (see beginning of Chapter 1.2), “In global optimiza-
tion, randomness can appear in several ways. The main three are: (i) the evaluations
of the objective function are corrupted by random errors; (ii) the points xi are chosen
on the base of random rules, and (iii) the assumptions about the objective function
are probabilistic.” Pertinent to the exposition of this paper is only case (ii). Monte
Carlo is the simplest, brute force example of randomness-based methods (in [82]
it is referred to as “Pure Random Search”). With this method, one samples points
uniformly in the feasible domain, computes the values of the objective function, and
picks the record value as the output.

Of course, there are dozens of more sophisticated stochastic methods such as mul-
tistart, simulated annealing, genetic algorithms, evolutionary algorithms, etc.; e.g.,
see [24, 35, 52, 70, 72, 82] for an incomplete list of relevant references. However,
most of these methods are heuristic in nature; often, they lack rigorous justification,
and the computational efficiency is questionable. Moreover, there exist pessimistic
results on “insolvability of global optimization problems.” This phenomenon has first
been observed as early as in the monograph [47] by A. Nemirovskii and D. Yudin,
both in the deterministic and stochastic optimization setups (see Theorem, Section
1.6 in [47]). Specifically, the authors of [47] considered the minimax approach to the
minimization of the class of Lipschitz functions and proved that, no matter what the
optimization method is, it is possible to construct a problemwhich will require expo-
nential (in the dimension) number of function evaluations. The “same” number of
samples is required for the simplest MCmethod. Similar results can be found in [48],
Theorem 1.1.2, where the construction of “bad” problems is exhibited. Below we
present another example of such problems (with very simple objective functions,
close to linear ones) which are very hard to optimize. Concluding this brief survey,
we see that any advanced method of global optimization cannot outperform Monte
Carlo when optimizing “bad” functions.

This explains our interest in theMC approach as applied to the optimization setup.
In spite of the pessimistic results above, there might be a belief that, if Monte Carlo is
applied to a “good” optimization problem (e.g., a convex one), the results would not
be so disastrous. Our goal in this section is to blow up these optimistic expectations.
We examine the “best” optimization problems (the minimization of a linear function
on a ball) and estimate the accuracy of the Monte Carlo method. Unfortunately, the
dependence on the dimension remains exponential, and practical solution of these
simplest problems via such an approach is impossible for high dimensions.

The second part of the section is devoted to randomized algorithms for convex
optimization. The efficiency of such an approach has been discovered recently; it
became clear that advanced randomized coordinate descent and similar approaches
for distributed optimization are strong competitors to deterministic versions of the
methods.



Randomization in Robustness, Estimation, and Optimization 197

5.1 Direct Monte Carlo in Optimization

In this subsection we show that straightforward use of Monte Carlo in optimization,
both global and convex is highly inefficient in problems of high dimensions. The
material is based on the results in [60].

Global optimization: A pessimistic example. We first present a simple exam-
ple showing failure of stochastic global optimization methods in high-dimensional
spaces. This example is constructed along the lines suggested in [47] (also, see [48],
Theorem 1.1.2) and is closely related to one of the central problems discussed below,
the minimization of a linear function over a ball in Rn .

Consider an unknown vector c ∈ R
n , ‖c|| = 1, and the function

f (x) = min
{
99 − c�x,

(
c�x − 99

)
/398

}

to be minimized over the Euclidean ball Q ⊂ R
n of radius r = 100 and centered at

the origin. Obviously, the function has one local minimum x1 = −100c, with the
function value f1 = −0.5, and one global minimum x∗ = 100c, with the function
value f ∗ = −1. The objective function is Lipschitz with Lipschitz constant equal to
1, and max f (x) − min f (x) = 1.

Any standard (not problem-oriented) version of stochastic global search (such as
multistart, simulated annealing, etc.) will miss the domain of attraction of the global
minimum with probability 1 − V 1/V 0, where V 0 is the volume of the ball Q, and
V 1 is the volume of the set C = {x ∈ Q : c�x ≥ 99}. In other words, the probability
of success is equal to

Prob = V 1

V 0
= 1

2
I
(2rh − h2

r2
; n + 1

2
,
1

2

)
,

where I (x; a, b) is the regularized incomplete beta function with parameters a and b,
and h is the height of the spherical cap C ; in this example, h = 1. This probability
quickly goes to zero as the dimension of the problem grows; say, for n = 15, it is
of the order of 10−15. Hence, any “advanced” method of global optimization will
find the minimum with relative error not less than 50%; moreover, such methods
are clearly seen to be no better than a straightforward Monte Carlo sampling. The
same is true if our goal is to estimate the minimal value of the function f ∗ (not the
minimum point x∗). Various methods based on ordered statistics of sample values
(see Section 2.3 in [82]) fail to reach the set C with high probability, so that the
prediction will be close to f1 = −0.5 instead of f ∗ = −1.

Scalar convex optimization: Pessimistic results. Let Q denote the unit Euclidean
ball in R

n and let ξ (i)
∣
∣N
1 = {

ξ (1), . . . , ξ (N )
}
be a multisample of size N from the

uniform distribution ξ ∼ U (Q).
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Given the scalar-valued linear function

g(x) = c�x, c ∈ R
n, (16)

defined on Q, estimate its maximum value from the multisample.
More specifically, let η∗ be the true maximum of g(x) on Q and let

η = max{g(1), . . . , g(N )}, g(i) = g(ξ (i)), i = 1, . . . , N , (17)

be the empirical maximum; we say that η approximates η∗ with accuracy at least δ

if
η∗ − η

η∗ ≤ δ.

Then the problem is:Given a probability level p ∈]0, 1[ and accuracy δ ∈]0, 1[,
determine the minimal length Nmin of the multisample such that, with probability at
least p, the accuracy of approximation is at least δ (i.e., with high probability, the
empirical maximum nicely evaluates the true one).

The results presented below are based on the following fact established in [59]; it
relates to the probability distribution of a specific quadratic function of the random
vector uniformly distributed on the Euclidean ball.

Lemma 2 ([59]) Let the random vector ξ ∈ R
n be uniformly distributed on the unit

Euclidean ball Q ⊂ R
n. Assume that a matrix A ∈ R

m×n has rank m ≤ n. Then the
random variable

ρ =
(
(AA�)−1Aξ, Aξ

)

has the beta distributionB(m2 , n−m
2 + 1) with probability density function

fρ(x) =
⎧
⎨

⎩

�( n2 + 1)

�(m2 )�( n−m
2 + 1)

x
m
2 −1(1 − x)

n−m
2 for 0 ≤ x ≤ 1,

0 otherwise,
(18)

where �(·) is the Euler gamma function.
Alternatively, the numerical coefficient in (18) writes

�( n2 + 1)

�(m2 )�( n−m
2 + 1)

= 1/B
(m

2
,
n − m

2
+ 1

)
,

where B(·, ·) is the beta function.

We consider the scalar case (16) and discuss first a qualitative result that follows
immediately from Lemma 2. Without loss of generality, let c = (1, 0, . . . , 0)�, so
that the function g(x) = x1 takes its values on the segment [−1, 1], and the true
maximum of g(x) on Q is equal to 1 (respectively, −1 for the minimum) and is
attained with x = c (respectively, x = −c). Let us compose the random variable
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ρ = g2(ξ),

which is the squared first component ξ1 of ξ . By Lemma 2withm = 1 (i.e., A = c�),
for the probability density function (pdf) of ρ we have

fρ(x) = �( n2 + 1)

�( 12 )�( n+1
2 )

x− 1
2 (1 − x)

n−1
2 := βn x

− 1
2 (1 − x)

n−1
2 .

Straightforward analysis of this function shows that, as dimension grows, themass
of the distribution tends to concentrate closer to the origin, meaning that the random
variable (r.v.) ρ is likely to take values which are far from the maximum, equal to
unity.

We next state the following rigorous result [60].

Theorem 4 Let ξ be a random vector uniformly distributed over the unit Euclidean
ball Q ⊂ R

n and let g(x) = x1, x ∈ Q. Given p ∈]0, 1[ and δ ∈]0, 1[, the minimal
sample size Nmin that guarantees, with probability at least p, for the empirical
maximum of g(x) to be at least a δ-accurate estimate of the true maximum, is given
by

Nmin = ln(1 − p)

ln
[
1
2 + 1

2 I
(
(1 − δ)2; 1

2 ,
n+1
2

)] , (19)

where I (x; a, b) is the regularized incomplete beta function with parameters a and b.

Clearly, a correct notation should be Nmin = �·�, i.e., rounding toward the next
integer; we omit it, but it is implied everywhere in the sequel.

Numerical values of the function I (x; a, b) can be computed via use of theMat-
lab routine betainc. For example, with the modest values n = 10, δ = 0.05, and
p = 0.95, formula (19) gives Nmin ≈ 8.9 · 106, and this quantity grows quickly as
the dimension n increases.

Sincewe are interested in small values of δ, i.e., in x close to unity, a “closed-form”
lower bound for Nmin can be computed as stated below.

Corollary 1 In the conditions of Theorem 4

Nmin > Nappr = ln(1 − p)

ln
[
1 − βn

n+1
1

1−δ

(
2δ − δ2

)(n+1)/2
] ,

where βn = �( n
2 +1)

�( 1
2 )�( n+1

2 )
= 1/B( 12 ,

n+1
2 ) .

Further simplification of the lower bound can be obtained

Nappr > Ñappr = − ln(1 − p)√
2π(n + 1) 1

1−δ

(
2δ − δ2

)(n+1)/2
.
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The lower bounds obtained above are quite accurate; for instance, with n = 10,
δ = 0.05, and p = 0.95, we have Nmin ≈ 8.8694 · 106, while Nappr ≈ 8.7972 · 106
and Ñappr = 8.5998 · 106.

The moral of this subsection is that, for high dimensions, a straightforward use
of Monte Carlo sampling cannot be considered as a tool for finding extreme values
of a function, even in the convex case.

5.2 Randomized Methods

On the other hand, exploiting randomized methods in different forms can be highly
efficient; in many cases they are strong competitors of deterministic algorithms.

Unconstrained minimization. We start with random search methods for uncon-
strained minimization

min f (x), x ∈ Rn.

Probably the first publication relates to the 1960s [42, 65]. The idea was to choose
a random direction in the current point and make a step resulting in decrease of
the objective function. Rigorous results on convergence of some random search
algorithms were obtained in [19]. Nevertheless the practical experiments with sim-
ilar methods were mostly disappointing, and they did not attract much attention
(excluding global optimization, see above). For convex problems the situation has
changed recently, when the dimension of problems under consideration became
very large (n is of the order 106) or when distributed optimization problems arose
( f (x) = ∑N

i=1 fi (xi ), x = (x1, . . . , xN ), N is large).We survey some results in this
direction first.

The basic algorithm of random search can be written as

xk+1 = xk − γk
f̂ (xk + μkuk) − f̂ (xk)

μk
uk, (20)

where xk is a k-th approximation to the solution x∗, uk is a random vector, γk, μk are
step-sizes, and f̂ (xk) is ameasuredvalue of f (xk); either f̂ (xk) = f (xk) (determinis-
tic setup) or f̂ (xk) = f (xk) + ξk, ξk being a random noise (stochastic optimization).
Algorithm (20) requires one calculation of the objective function per iteration, its
symmetric version

xk+1 = xk − γk
f̂ (xk + μkuk) − f̂ (xk − μkuk)

2μk
uk, (21)

uses two calculations. The strategy of choosing step-sizes depends on smoothness
of f (x) and on the presence of errors ξk in function evaluation. The following result
is adaptation of more general theorems in [62, 63] for C2 functions.
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Theorem 5 Consider the problem of unconstrained minimization of f (x), where
f (x) is strongly convex, twice differentiable, with gradient satisfying the Lipschitz
condition. Suppose uk are random i.i.d. uniformly distributed in the cube ||u||∞ ≤ 1.
Noises ξk are independent of u1, . . . , uk and have bounded second moment E|ξi |2 ≤
σ 2. The step-size satisfies the following conditions: γk = a/k,μk = μ/k4, a is large
enough. Then the iterations xk in algorithms (20), (21) converge to the minimum
point x∗ in mean-square and

E‖xk − x∗‖2 = O(1/
√
k).

It is worth mentioning that randomization of directions uk allows to remove the
assumption Exk = 0, which is standard in stochastic optimization methods [38]; a
similar effect for estimation is exhibited in Theorem 2. If compared with the clas-
sical Kiefer–Wolfowitz (KW) method, algorithms (20), (21) are less laborious: they
require just one or two function evaluations per iteration vs n or 2n in the KW-
method. On the other hand, asymptotic rate of convergence is the same: O(1/

√
n).

More details about convergence, various forms, computational experience of such
algorithms can be found in the publications of J. Spall (e.g., [73]); he names the
algorithms SPSA (Simultaneous Perturbation Stochastic Approximation). The pio-
neering research on the algorithms are due to Yu. Ermoliev [21] and H. Kushner
[38].

Now we focus on purely deterministic version of problem (5), where mea-
surements of the objective function do not contain errors: f̂ (xk) = f (xk). As we
mentioned above, the interest to such methods grew enormously when very high-
dimensional problems became appealing due to such applications as machine learn-
ing and neural networks. The interest has been triggered with Yu. Nesterov’s paper
[49]. Roughly speaking, the approach of [49] is as follows. It is assumed that the
Lipschitz constants Li for partial derivatives ∂ f/∂xi are known (and they can be eas-
ily estimated for quadratic functions). Then, at the kth iteration, the index i = α is
chosen with probability proportional to Li , and new iteration is obtained by changing
coordinate iα with step-size (1/Lα)∂ f/∂xα . Yu. Nesterov provides sharp estimates
on the rate of convergence and also presents the accelerated version of the algorithm.
These theoretical results supported with intensive numerical experiments for huge-
scale problems confirm advantages of the random coordinate descent. This line of
research found numerous applications in distributed optimization [9, 45, 66]. The
titles of many publications (e.g., recent one [33]) confirm advantages of randomized
algorithms.

Randomization techniques are also helpful forminimization of nonsmooth convex
functions, when the only data available are the values of the function f (x) at an
arbitrary point. The idea of the following algorithm is due to A. Gupal [32], also
see [55], Section 6.5.2. In contrast with algorithm (21), we generate a random point
x̃k in the neighborhood of the current iteration point xk and then make a step similar
to (21) from this point. Thus the algorithm is written as
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xk+1 = xk − γk
f (x̃k + μkuk) − f (x̃k − μkuk)

2μk
uk, (22)

x̃k = xk + αkhk (23)

where uk, hk are independent random vectors uniformly distributed in the cube
‖u‖∞ ≤ 1, while αk, γk, μk are scalar step-sizes. It can be seen that randomiza-
tion step with hk is equivalent to smoothing of the original function, thus algorithm
similar to (21) is applied to the smoothed function. By adjusting the parameters αk ,
γk , μk , we arrive at the convergence result.

Theorem 6 Let f (x) be convex, and let a unique minimum point x∗ exist. Let the
step-sizes satisfy the conditions

∞∑

k=1

γk = ∞,

∞∑

k=1

γ 2
k ≤ ∞, γk/αk → 0, μk/αk → 0, αk → 0, |αk − αk+1|/γk → 0.

Then xk → x∗ with probability one.

This result guarantees convergence of the algorithm to the minimum point. How-
ever it does not provide effective strategies for choosing parameters, neither it esti-
mates the rate of convergence. Above-mentioned problems are deeply investigated in
[50]. The authors apply Gaussian smoothing technique (i.e., the vectors uk are Gaus-
sian) and present randomized methods for various classes of functions (smooth and
nonsmooth) for different situations (gradient or gradient-free oracles). The versions
of the algorithms with the best rate of convergence are indicated.

To conclude, we remind that there exist no-zero-order deterministic methods for
minimization of nondifferentiable convex functions, so that randomized methods
provide the only option.

Constrained minimization. There are various problem formulations related to ran-
domized methods for optimization in the presence of constraints.

One of them is closely related to feasibility problem (10), but now we are looking
to the feasible point which minimizes an objective function

min(c, x) f (x, q) ≤ 0 ∀ q ∈ Q. (24)

Here we have taken the objective function to be linear without loss of generality.
Constraint functions f (x, q) are convex in the variable x ∈ R

n for all values of the
parameters q. Numerous examples of constraints of this form were discussed in
Sect. 4. Such problems are closely related to robust optimization, see [8] and Sect. 2.
A randomized approach to the problem consists of a random choice of N parameters
q1, . . . , qN from the set Q and solving the convex optimization problem with a finite
number of constraints

min
x∈C (c, x) f (x, qi ) ≤ 0 i = 1, . . . , N . (25)
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We suppose that this problem can be solved with high accuracy (e.g., if f (x, q) are
linear in x , then (25) is LP), and denote the solution by xN . Such an approach has
been proposed in [11]; the authors answer the following question:Howmany samples
(N) need to be drawn in order to guarantee that the resulting randomized solution
violates only a small portion of the constraints? They assume that there is some
probability measure on Q which defines the probability of violation of constraints
V (x) for arbitrary x . The main result in [11] states

Theorem 7 E V (xN ) ≤ n

N + 1
.

Of course this result says nothing about the accuracy of the randomized solution
(i.e., how close xN is to the true solution x∗ or how small (c, xN − x∗) is. However,
it provides much useful information. Some related results can be found in Sect. 2
above.

Another type of constrained optimization problems reads as

min(c, x), x ∈ Q, (26)

where Q ⊂ R
n is a closed bounded set (convex or nonconvex) such that it is hard to

solve explicitly the problem above, and projection on Q is also unavailable. Then a
possible option is to sample random points in Q and take the best point having the
minimal value of the objective function. It is exactly the “direct Monte-Carlo” we
have considered in Sect. 2 and found it to be inefficient. However, another approach,
based on cutting plane ideas, might be more promising. We assume that a so-called
boundary oracle is available, that is for an x ∈ Q and y ∈ R

n , the quantities

λ = argmax{λ ≥ 0 : x − λy ∈ Q}, λ = argmax{λ ≥ 0 : x + λy ∈ Q},

can be found efficiently. Numerous examples of sets with known boundary oracles
can be found in [30, 68, 71]. Then, starting with some known x0 ∈ Q, we proceed
sampling in Q by using the technique described below.

Hit-and-Run algorithm (HR). For xk ∈ Q, take a direction vector y uniformly dis-
tributed on the unit sphere; the oracle returns xk = xk − λy and xk = xk + λy. Then,
draw xk+1 uniformly distributed on [xk, xk]. Repeat. Schematically, this algorithm
is illustrated in Fig. 3.

This technique was proposed in [71, 79]; under mild assumptions on Q, the
distribution of the random point xk was proved to approach the uniform distribution
on Q. Instead of using the “direct Monte-Carlo,” we now apply the randomized
cutting plane algorithm, following the ideas of [18, 57].

A cutting plane algorithm. Start with X0 = Q. For Xk , generate 3N points xk , xk ,
xk , k = 1, . . . , N , by theHR algorithm and find fk = min(c, x), where theminimum
is taken over these 3N points. Proceed to the new set Xk+1 = Xk

⋂{x : (c, x) ≤ fk}
and the initial point x0 = argmin(c, x), where theminimum is also taken over the 3N
points mentioned above.
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Fig. 3 The idea of the HR algorithm

Rigorous results on the rate of convergence of such an algorithm are lacking.
For the idealized analog of it (with the points x “truly” uniformly distributed in
Xk), the results on convergence can be found in [18, 57]. Moreover, the algorithm
presented above includes the boundary points xk , xk ; this essentially improves the
convergence, since theminimum in the original problem (26) is attained at a boundary
point. Numerical experiments in [18, 57] confirm a nice convergence if the set Q is
not too “flat.”

6 Conclusions

We have covered in this chapter several topics—in robustness, estimation, control,
feasibility, constrained and unconstrained optimization—where the ideas of random-
ization can be applied and moreover can provide better results than deterministic
methods. We could see that the situation with regard to effectiveness of randomized
methods is not completely clarified; e.g., some straightforward attempts to apply
Monte Carlo for optimization do not work for high dimensions. On the other hand,
the only approach to minimization of nonsmooth convex functions with zero-order
oracle (i.e., only function values are available) is based on randomization. We hope
that the survey will stimulate further interest toward this exciting field of research.
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Stabilization of Deterministic Control
Systems Under Random Sampling:
Overview and Recent Developments

Aneel Tanwani, Debasish Chatterjee and Daniel Liberzon

Abstract This chapter addresses the problem of stabilizing continuous-time
deterministic control systems via a sample-and-hold scheme under random sam-
pling. The sampling process is assumed to be a Poisson counter, and the open-loop
system is assumed to be stabilizable in an appropriate sense. Starting from as early as
mid-1950s, when this problem was studied in the Ph.D. dissertation of R.E. Kalman,
we provide a historical account of several works that have been published thereafter
on this topic. In contrast to the approaches adopted in these works, we use the frame-
work of piecewise deterministic Markov processes to model the closed-loop system,
and carry out the stability analysis by computing the extended generator. We demon-
strate that for any continuous-time robust feedback stabilizing control law employed
in the sample-and-hold scheme, the closed-loop system is asymptotically stable for
all large enough intensities of the Poisson process. In the linear case, for increas-
ingly large values of the mean sampling rate, the decay rate of the sampled process
increases monotonically and converges to the decay rate of the unsampled system
in the limit. In the second part of this article, we fix the sampling rate and address
the question of whether there exists a feedback gain which asymptotically stabilizes
the system in mean square under the sample-and-hold scheme. For the scalar linear
case, the answer is in the affirmative and a constructive formula is provided here. For
systems with dimension greater than 1 we provide an answer for a restricted class
of linear systems, and we leave the solution corresponding to the general case as an
open problem.
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1 Introduction

This chapter addresses the problem of stabilization of sampled-data control systems
under random sampling. Let

(
τn
)

n∈N denote a monotonically increasing sequence in
[0,+∞[ with τ0 := 0. Consider a nonlinear control system

ẋ(t) = f
(
x(t), u(t)

)
, x(0) given, t � 0, (1)

where f : Rd × R
m → R

d is a continuously differentiable map, and the control
process t �→ u(t) is constant on each [τn, τn+1[ for each n. The corresponding solu-
tion

(
x(t)

)
t�0 of (1) is referred to as the state process. We shall comment on the

precise properties of the solutions of (1) momentarily. Control systems where the
control process gets updated at the discrete time instants

(
τn
)

n∈N are referred to as
sampled-data control systems [2, 10, 24], and typically arise when implementing
controllers using a computer [8, 18], or in the context of networked control systems
[20, 33, 47].

Since any admissible control process t �→ u(t) defined above can be written as

u(t) =
+∞∑

k=0

u(τk) · 1[τk ,τk+1[(t) for t � 0, (2)

it is clear that the two key ingredients of sampled-data control systems are the sam-
pling times

(
τk
)

k∈N and the control values
(
u(τk)

)
k∈N. Different classes of these two

ingredients are possible: the former may be periodic [35, 36, 46], state-dependent [7,
22, 38, 42] or random [23, 24]; and the latter may be a random sequence generated
by a randomizedMarkovian policy as defined in [1] or just a feedback from the states
at the sampling instants [20, 23], etc. One of the fundamental problems of interest is
to provide a description of these two components (often in the form of an algorithm)
that results in stability of the closed-loop system. Different approaches have been
developed for the necessary analysis depending on how the sampling instants (τn)n∈N
are chosen: see [2] for an overview of classical tools in linear systems with periodic
sampling, the papers [30, 36, 37] provide tools specifically suited for nonlinear sys-
tems, and the approaches used for optimizing certain performance criterion can be
found in [9, 10]. In this article, we are interested in the situation where the sampling
times are generated randomly. Formally, we define Nt to be the number of sampling
instants before (and including) time t as

Nt := sup
{
n ∈ N

∣∣τn ≤ t
}

for t � 0, (3)

and stipulate that the sampling process (Nt )t�0 is a continuous-time stochastic pro-
cess satisfying the basic requirement

τNt −−−→
t↑+∞ +∞ almost surely. (4)
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It is assumed that there is anunderlyingprobability triplet (Ω,F ,P), sufficiently rich,
that provides the substrate for these processes (i.e., each random variable considered
here is defined on (Ω,F ,P)), and in the sequel we shall denote the mathematical
expectation with respect to the probability measure P by E[·].

Due to our assumptions on the random sequence
(
τk
)

k∈N and the right-hand side
f of (1), it follows that, P-almost everywhere on the sample space Ω , Carathéodory
solutions of (1) exist for a sufficiently small interval of time containing t = 0. In addi-
tion, we assume that solutions of (1) exist for all times. Typically, the sampling pro-
cess

(
Nt
)

t�0 is constructed by means of a renewal process [4, 20]: independent and

identically distributed positive random variables
(
Sn
)

n∈N∗ are defined on (Ω,F ,P),1

with the probability distribution function of S1 being Fhld(t) := P(S1 ≤ t) for t � 0,
and the sequence

(
τn
)

n∈N is defined according to τ0 := 0 and τk :=∑k
�=1 S� for

k ∈ N
∗. The random variable Sn is the nth holding time.

Typical control problems in this setting consist of the design of controllers (feed-
backs) for stabilization [23, 49], optimal control [3, 10], state estimation2 [32, 41],
etc., andwewill study the problemof stabilization in this article.Amapping t �→ x(t)
that satisfies (1) in the preceding setting is, naturally, a stochastic process, and con-
sequently, a library of different notions of stochastic stability are available to us
[25, 26]. We will restrict our attention mostly to the particularly important property
of stability in the mean and mean-square—especially well-studied in the context of
linear models [11, 28]—in the sequel.

Finally, we note a connection with the work of Roberto Tempo, to whom this
article is dedicated, and his coworkers on randomized algorithms in control theory
[43]. That work asks the question of how many random samples in space are needed
to obtain a sufficient guarantee that a property of interest holds over the whole space,
whereas here we are asking how frequently we should sample randomly in time so
that the feedback is still stabilizing.

2 Connections with Piecewise Deterministic Markov
Processes

This section serves the purpose of demonstrating that sampled-data control sys-
tems under random sampling can be readily recast as piecewise deterministic
Markov processes (PDMPs); consequently, typical control problems can be immedi-
ately addressed under this rather general and well-established umbrella framework
[13, 14].

To start our discussion, we recall that the sequence of holding times
(
Sn
)

n∈N∗
is, typically, independent and identically distributed. The assumption of S1 being

1For us N∗ := N \ {0}.
2In contrast to the continuous-time systems given in (1), the references indicated here in the context
of state estimation problems deal with discrete times linear systems, and the arrival of observations
is modeled as a random process.
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an exponential random variable with a given positive intensity λ is fairly common,
and the resulting sampling process

(
Nt
)

t�0 is, consequently, a Poisson process with
intensity λ. Recall [39, Theorem 2.3.2] that the Poisson process of intensity λ > 0
is a continuous-time random process

(
Nt
)

t�0 taking values in N
∗, with N0 = 0, for

every n ∈ N
∗ and 0 =: t0 < t1 < · · · < tn < +∞ the increments {Ntk − Ntk−1}n

k=1
are independent, and Ntk − Ntk−1 is distributed as a Poisson-λ(tk − tk−1) random
variable for each k. The Poisson process is among the most well-studied processes,
and standard results (see, e.g., [39, §2.3]) show that it is memoryless andMarkovian.
Nevertheless, the resulting state process

(
x(t)

)
t�0 obtained as a solution of (1) under

Poisson sampling is not controlled Markovian in general. Recall that an R
ν-valued

random process
(
x̃(t)

)
t�0 controlled by an R

m-valued random process
(
ũ(t)

)
t�0 is

controlled Markov [19, §III.6] if for every t, h > 0 and every Borel set S ⊂ R
ν we

have

P
(
x̃(t + h) ∈ S∣∣̃x(s), ũ(s) for s ∈ [0, t]) = P

(
x̃(t + h) ∈ S∣∣̃x(t), ũ(t)

)
.

Indeed, suppose thatwe intend to employ feedback at sampling instants so that u(t) =
u(τNt ) = κ

(
x(τNt )

)
for some measurable map κ, fix t, t ′ > 0, and suppose that the

history
{(

x(s), u(s)
)∣∣s ∈ [0, t]} up to time t is available to us. Of course, any finite

k samples may have occured during [t, t + t ′]. If k = 0, then x(τNt ) is not needed to
find the conditional distribution of x(t + t ′) given

{(
x(s), u(s)

)∣∣s ∈ [0, t]}. If k = 1,
then the conditional distribution of x(t + t ′) depends on the value of x(τNt ): since
τNt +1 ∈]t, t + t ′], the control action at τNt +1 depends on x(τNt +1), and influences
x(t + t ′). A similar reasoning holds for all k � 2.

The controlled Markovian property is extremely desirable in practice, and to
arrive at a controlled Markov process in the context of (6), we proceed to adjoin an
additional random vector by enlarging the state space. Corresponding to the state
process

(
x(t)

)
t�0 that solves (1), we define the continuous-time last-sample process

(
x(τNt )

)
t�0; at each time t , x(τNt ) is the value of the vector of states at the last sam-

pling time immediately preceding t . In other words, Rd -valued process
(
x(τNt )

)
t�0

attains the value of the states at each sampling instant and stays constant over the
corresponding holding time. It turns out to be convenient to introduce the continuous-
time error process

(
e(t)
)

t�0 defined by

e(t) := x(t) − x(τNt ) for t � 0. (5)

With the joint stochastic process
(
x(t), e(t)

)
t�0 taking values in R

d × R
d , we write

the system of interest as a stochastic process described by the ordinary differential
equation

(
ẋ(t)
ė(t)

)
=
(

f
(
x(t), u(t)

)

f
(
x(t), u(t)

)

)

for almost all t � 0, (6a)
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and at each sampling time τNt the process
(
x(t), e(t)

)
t�0 is reset according to

(
x(τNt )

e(τNt )

)
=
(

x(τ−
Nt

)

0

)
with the convention that x(τ−

0 ) = x0. (6b)

It is readily observed that the joint process
(
x(t), e(t)

)
t�0 is controlled Markovian.

We sometimes abbreviate the right-hand side of (6a) by

R
d × R

m � (x, u) �→ F(x, u) :=
(

f (x, u)

f (x, u)

)
∈ R

d × R
d .

We shall be concerned exclusively with feedback controls in this article. In other
words, we stipulate that there exists some measurable map

R
d × R

d � (x, e) �→ κ(x, e) ∈ R
m

such that our control process becomes, in the notation of (2),

u(t) =
+∞∑

k=0

κ
(
x(τk), e(τk)

)
1[τk ,τk+1[(t) for t � 0.

In other words, with κ substituted into (6a), our closed-loop system becomes

(
ẋ(t)
ė(t)

)
=
(

f
(
x(t),κ

(
x(τNt ), e(τNt )

))

f
(
x(t),κ

(
x(τNt ), e(τNt )

))

)

for almost all t � 0, (7)

while the reset map (6b) stays intact.
With the class of admissible feedback control processes as described above, the

description (6b)–(7) provides the basic ingredients to transit to the framework of
PDMPs. Indeed, we see readily that the standard conditions for a PDMP [14, (24.8),
p. 62] hold for the joint process

(
x(t), e(t)

)
t�0 described by (6b)–(7) with

• the vector field X in [14, §24] being the map (x, e) �→ F
(
x,κ(x, e)

)
,

• the jump rate λ in [14, §24] being a nonnegative measurable function such that
Fhld(t) = exp

(∫ t
0 λ(s) ds

)
, which can be readily derived for particular cases of

probability distribution functions Fhld as in [14, p. 37], and
• the stochastic kernel Q for the reset map in [14, §24, p. 58] is the Dirac measure

Q
(
B; (x, e)

) := δ{(x,0)}(B) = 1B(x, 0) for every Borel subset B ⊂ R
d × R

d in
the context of (6b)–(7).

In this chapter, we will work exclusively under the assumption that the controller has
access to perfect state measurements at sampling times. While, in general, it is of
interest to consider feedbacks which depend on the measurement error at sampling
times e(τNt ),we candrop the dependenceof feedbackκon e(τNt ) in the case of perfect
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measurements since e(τNt ) = 0, for each t ∈ [0,+∞[, in such cases. In the sequel,
we shall employ the feedback exclusively as a function of x(τNt ), which is described
in (5) by the difference between x(t) and e(t), i.e, we shall employ some measurable
map κ′ : Rd → R

m such that κ(x, e) = κ′(x − e) for all (x, e) ∈ R
d × R

d ; we shall
abuse notation and continue to use the symbol κ for κ′ since there is no risk of
confusion.

Remark 2.1 As a consequence of the preceding discussion, we observe that the
techniques in [14, Chapters 4, 5] (including several results on stability and optimal
control) carry over at once to the setting of sampled-data control systems under
random sampling as special cases. In particular, the so-called extended generator
of the PDMP (6b)–(7) is a particularly useful device for the purposes of analyzing
stability and optimality, and we shall look at it in greater detail below in the context
of stability.

The extended generator of the joint process
(
x(t), e(t)

)
t�0 is the linear operator

ψ �→ Lψ defined by

R
d × R

d � (y, z) �→ Lψ(y, z) :=
lim
h↓0

1

h

(
E
[
ψ
(
x(t + h), e(t + h)

)∣∣x(t) = y, e(t) = z
]− ψ(y, z)

)
∈ R (8)

for allmapsψ : Rd × R
d → R such that the limit is defined everywhere. It is possible

to directly write down the extended generator of
(
x(t), e(t)

)
t�0 from [14, (26.15),

p. 70]. We provide the following Proposition catering to the most standard special
case of sampling process being Poisson; a direct proof of Proposition 2.2 is included
in AppendixA for completeness.

Proposition 2.2 If the sampling process
(
Nt
)

t�0 is Poisson with intensity λ > 0,

then the joint process
(
x(t), e(t)

)
t�0 described above is Markovian. Moreover,

for any function R
d × R

d � (y, z) �→ ψ(y, z) ∈ [0,+∞[ with at most polynomial
growth as ‖(y, z)‖ → +∞, we have

Lψ(y, z) = 〈∇yψ(y, z) + ∇zψ(y, z), f
(
y,κ(y − z)

)〉+ λ
(
ψ(y, 0) − ψ(y, z)

)
.

(9)

We submit that this extended generator serves as an important tool inmost control-
theoretic problems associated with this class of randomly sampled-data systems. In
particular, (9) provides the following Dynkin’s formula

E [ψ(x(t), e(t))] = E [ψ(x(0), e(0))] + E

[∫ t

0
Lψ(x(s), e(s)) ds

]
, (10)

which allows us to establish connections with definitive results on stability.
In the sequel, while we provide an account of stability results obtained by different

means in priorworks, the focus is on using the extended generator to obtain conditions
under which the sampled-data systems are asymptotically stable.
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3 Lower Bounds on the Sampling Rate

We employ the tools from the previous section to study the following qualitative
property of the closed-loop system (7)–(6b). The closed-loop system (7)–(6b) is
globally exponentially stable in the second moment [25, Chapter 1, p. 23] if there
exist two constants C,μ > 0 such that

for every x(0) ∈ R
dand t � 0, E

[‖x(t)‖2 ∣∣x(0)
] ≤ C ‖x(0)‖2 e−μt .

This particular property of stochastic stability is standard, and says that, on an aver-
age, the square norm of the system states converges exponentially fast to 0 uniformly
from every initial condition.

As a first step in obtaining conditions which guarantee this property, we specify
the class of feedback controls in (7). The natural candidates for feedback controls,
for which we solve the sampled-data problem, are the ones which asymptotically
stabilize the system when the measurements of the state are available in continuous
time (without sampling), and possess some robustness properties with respect to
errors in the measurement of state. To attribute these properties to the feedback
law κ : Rd → R

m appearing in (7), it is assumed that there is a function U : Rd →
[0,+∞[ such that

(L1) there exist α,α > 0 satisfying

α|x |2 ≤ U (x) ≤ α|x |2 for all x ∈ R
d;

(L2) there exist α, γ > 0 which satisfy

〈∇U (x), f (x,κ(x − e))〉 ≤ −α U (x) + γU (e) for all (x, e) ∈ R
d × R

d;

(L3) there exist χx > 0, χe ∈ R satisfying

〈∇U (e), f (x,κ(x − e))〉 ≤ χx U (x) + χeU (e) for all (x, e) ∈ R
d × R

d .

Restricting our attention to such a class of controllers, we are interested in address-
ing the following problem:

Problem 1 Consider the system (7)–(6b) with
(
Nt
)

t�0 in (3) a Poisson process of

intensity λ. If the feedback law κ : Rd → R
m is such that (L1)–(L3) hold for some

functionU : Rd → [0,+∞[, does there existλ > 0 such that the closed-loop system
(7)–(6b) is globally exponentially stable in the second moment?

It is noted that, between two consecutive updates in the controller value, the
process

(
x, e
)
follows the differential equation
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ẋ = f (x,κ(x − e)) (11a)

ė = f (x,κ(x − e)). (11b)

Assumptions (L1)–(L2) basically characterize the existence of a feedback controller
which renders the system (11a) input-to-state stable (ISS) with respect to measure-
ment errors e. Assumption (L3) is introduced to bound the growth of the error e
which satisfies (11b). The notion of ISS, pioneered in [40], has been instrumental in
the synthesis of control laws for nonlinear systems under actuation and measurement
errors. While the general formulation of ISS property would involve nonlinear gains,
here we choose to work with linear gains to simplify the presentation. Sampled-data
problems in the deterministic setting, where the objective is to find upper bounds on
the sampling period that guarantee asymptotic stability, employing feedback con-
trollers with aforementioned robustness properties, have been studied in [36]. In
fact, such tools have also been useful in a more general framework where errors in
measurements may result from sources other than sampling (see, e.g., [30]). For our
purposes, the existence of such robust static controllers allows us to compute a lower
bound on the mean sampling rate that solves Problem1.

Proposition 3.1 Assume that there exist κ : Rd → R
m and U : Rd → R�0 such that

(L1), (L2), and (L3) hold. If the sampling process
(
Nt
)

t�0 is Poisson with intensity
λ > 0, then for each λ > 0 and δ ∈ [0, 1[ satisfying

λ > χe + γχx

δα
(12)

the system (7)–(6b) is exponentially stable in the second moment.

Proof Let us define the function V : Rd × R
d → [0,+∞[

V (x, e) = U (x) + βU (e),

where β > 0 is to be specified momentarily. From Proposition2.2 it follows that

LV (x, e) = 〈∇U (x) + β∇U (e), f (x,κ(x − e))〉 − λβU (e)

≤ −αU (x) + γU (e) + βχxU (x) + βχeU (e) − λβU (e).

Pick δ ∈ [0, 1[ and select β = δαχ−1
x . Then for any λ > 0 satisfying (12), there

exists 0 < ε < 1 such that

λβ > χeβ + γ + εα(1 − δ)β

so that

LV (x, e) ≤ −εα(1 − δ)(U (x) + βU (e)) = −εα(1 − δ)V (x, e).

Exponential stability in the secondmoment of the process
(
x(t), e(t)

)
t�0 now follows

from Dynkin’s formula (10). �
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The main point of Proposition3.1 is to show that, for controllers with certain
robustness properties, the sampled-data system with random sampling is exponen-
tially stable with large enough sampling rate, and this is done by using the extended
generator for the controlled Markovian process

(
x(t), e(t)

)
t�0. This result can be

generalized in several ways. Instead of requiring quadratic bounds on the function
U in (L1), if for some α > 0, p � 1, U (x) is lower (respectively, upper) bounded by
α|x |p (resp. α|x |p) for each x ∈ R

n , then exponential stability in pth mean can be
established. Other than the Poisson process, it is also possible to consider a differ-
ent random process to determine the sampling instants. This of course changes the
formula for the extended generator. Another level of generalization arises from intro-
ducing a diffusion term in the system dynamics (1), which would require us to work
with a weaker notion of a solution, and consequently, the assumptions on function
U need to be strengthened to be able to compute the extended generator. Stability
analysis using extended generator for impulsive renewal systems with diffusion term
in the differential equation has been carried out in [23].

So far, we have adopted a general approach to address the control of sampled-
data nonlinear systems. Most of the results in the literature on stabilization with
random sampling have been presented in the context of linear systems, and with the
exception of [23], extended generators have not appeared elsewhere. We now focus
our attention on linear systems: An overview of different approaches is presented and
our eventual goal is to establish equivalence between some of these approaches and
the extended generator approach for the case of Poisson sampling. In the process, we
establish what may be regarded as a converse Lyapunov theorem for (6b)–(7) when
the underlying renewal process

(
Nt
)

t�0 is Poisson with fixed intensity λ > 0.

4 Randomly Sampled Linear Systems: A RandomWalk
Down the History Lane

4.1 System Description

In the remainder of this chapter, we will restrict our attention to randomly sampled-
data control of linear systems described by

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 given, t � 0, (13)

with the input u given by

u(t) = K x(τNt ) for all t � 0,

where the pair (A, B) is assumed to be stabilizable, and the feedback gain K is
assumed to be fixed a priori. With

(
Nt
)

t�0 the sampling process for the above
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control system, the resulting stochastic system for the joint process
(
x(t), e(t)

)
t�0

is described by

(
ẋ(t)
ė(t)

)
=
(

A + BK −BK
A + BK −BK

)(
x(t)
e(t)

)
for almost all t � 0, (14a)

and the reset equation at the sampling times is

(
x(τNt )

e(τNt )

)
=
(

I 0
0 0

)(
x(τ−

Nt
)

e(τ−
Nt

)

)
. (14b)

For this class of systems, lower bounds on the sampling rates required for stability
can be computed more explicitly. Also, this case has been studied in the literature
over several epochs, and we provide an overview of the approaches that have been
used for analyzing the stability of randomly sampled linear systems. To simplify
notation, let us abbreviate the system in (14) as

ẋ = Fx

x(τNt ) = G x(τ−
Nt

)
(15)

where x := (x�, e�)� ∈ R
n and n = 2d.

4.2 Early Efforts

It may appear surprising that the investigations into control of linear sampled-data
control systems under random sampling started as early as the late 1950s. Indeed,
Rudolf Kalman in his Ph.D. dissertation [24] studied sample-and-hold schemes for
linear time-invariant control systems under random sampling. In particular, he stud-
ied several stochastic stability notions for both linear scalar systems and systems of
higher dimensions: the definitions of stability almost surely, stability in the mean,
stability in mean-square, and stability in the mean sampling period appear in his
thesis. It is interesting to note that the key steps in his work were to first understand
the asymptotic behaviour of the process

(
x(τk)

)
k∈N as k → +∞, and thereafter to

derive certain inferences about the continuous-time process
(
x(t)

)
t�0. Only asymp-

totically stable systemmatrices A were considered by Kalman; this peculiar assump-
tionwas perhaps a natural consequence of his proof technique. The operator-theoretic
approach à la extended generators pioneered by Dynkin [16, 17] was relatively less
known at the time of Kalman’s graduation.

About a decade later, Oskar Leneman at MIT published a sequence of short
articles on control of linear time-invariant sample-and-hold systems under random
sampling. Chief among this sequence is [29], where Leneman claimed that certain
calculations in [24] did not quite lead to correct results. He focussed attention on
scalar problems in [29], and derived his results following the same route as that of
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Kalman: first getting estimates of the behavior of the sampled process
(
x(τk)

)
k∈N,

followed by inferring stability of the underlying continuous-time process
(
x(t)

)
t�0

via lengthy calculations involving some integral transform calculus. Once again,
only scalar asymptotically stable systems were considered. Related problems of
stability of linear control systems under random sample-and-hold schemes were
almost concurrently investigated by Harold Kushner and his collaborators [27], and
their techniques were also similar to those in [29]. To the best of our knowledge,
it seems that this early period focussed attention only on open-loop asymptotically
stable systems; even neutrally stable linear systems were perhaps considered too
difficult to handle via these techniques. An admittedly speculative reason for this
may have been that even for Poisson sampling, it was not clear how to deal with
remarkably long holding times (that appear with probability 1) during which the
process may deviate very far away from a given compact set since the right-hand
side of the x-subsystem of (14) is affine in x during the holding times.

To anyone attempting to follow the footprints of Leneman, it is not difficult to
appreciate the tediousness of the calculations involved in transitioning from estimates
of the behavior of the sampled process. (In fact, [29] skips quite a few details and
provides the readers with just the key steps of his proofs.) The first part of deriving
estimates for the sampled process

(
x(τk)

)
k∈N is relatively simple:

Lemma 4.1 Let −∞ < t ′ < t ′′ < +∞. If A ∈ R
d×d , then

∫ t ′′

t ′
et A dt =

(
et ′′ A − et ′ A)

A
,

where the object on the right-hand side is defined by

(
et ′′ A − et ′ A)

A
:=

+∞∑

k=1

(t ′′)k − (t ′)k

k! Ak−1.

Proof On the one hand, if A ∈ R
d×d is non-singular, then (see also [6, p. 47])

∫ t ′′

t ′
et A dt =

∫ t ′′

t ′

+∞∑

k=0

Ak

k! t k dt =
+∞∑

k=0

Ak

(k + 1)!
(
(t ′′)k+1 − (t ′)k+1

)

= A−1(et ′′ A − et ′ A)

=
+∞∑

k=1

(t ′′)k − (t ′)k

k! Ak−1 =
(
et ′′ A − et ′ A)

A
,

where we have carried out the interchange of the summation and the integral under
the shadow of Tonelli’s theorem [15, Theorem4.4.5]. In particular, we observe that
the map

R
d×d � A �→

(
et ′′ A − et ′ A)

A
∈ R

d×d
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is continuous. On the other hand, if A ∈ R
d×d is singular, we pick a sequence

of matrices
(

An
)

n∈N∗ with An := A + εn I and εn ↓ 0, such that each An is non-
singular. (For instance, we employ a similarity transformation to obtain the upper-
triangular complex-Jordan form J of A; the eigenvalues of A are on the diagonal of
J and since A is singular, there is at least one 0 on the diagonal of J ; we pick the
sequence εn ↓ 0 such that J + εn I is nonsingular for each n — this is possible since
the spectrum of A is a finite set.) Since An −−−−→

n→+∞ A, we apply the assertion to the

nonsingular matrix An instead of A, and the general formula follows at once from
continuity. �

To simplify some calculations below, we assume that A ∈ R
d×d is non-singular.

Starting from (13) with a given initial condition x(0), and

u(t) = K x(τi ) whenever t ∈ [τi , τi+1[, i ∈ N, (16)

we arrive at

x(t) =
(
e(t−τi )A + et A A−1(e−τi A − e−t A

)
BK
)

x(τi ) for t ∈ [τi , τi+1[, (17)

or equivalently,

x(t) =
(
e(t−τi )A

(
I + A−1BK

)− A−1BK
)

x(τi ) for all t ∈ [τi , τi+1[. (18)

By continuity of solutions,

x(τi+1) =
(
e(τi+1−τi )A

(
I + A−1BK

)− A−1BK
)

x(τi ),

which is a recursive formula for the states at consecutive sampling instants. Multi-
plying out, for any N ∈ N

∗,

x(τN ) =
N−1∏

i=0

(
e(τi+1−τi )A

(
I + A−1BK

)− A−1BK
)

x(0), (19)

where we remember that the product is directed.
In the scalar case (d = 1), by independence of the holding times,

E
[
x(τN )

∣∣x(0)
] = E

[
N−1∏

i=0

(
e(τi+1−τi )A

(
1 + A−1BK

)− A−1BK
)

x(0)
∣∣x(0)

]

=
N−1∏

i=0

E
[
e(τi+1−τi )A

(
1 + A−1BK

)− A−1BK
]
x(0)
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=
N−1∏

i=0

(
E
[
e(τi+1−τi )A

](
1 + A−1BK

)− A−1BK
)

x(0).

The quantity E[e(τi+1−τi )A] is simply themoment generating functionMS (if it exists)
of (τi+1 − τi ) evaluated at A ∈ R, denoted hereafter by MS(A).3 Therefore,

E
[
x(τN )

∣∣x(0)
] =

N−1∏

i=0

(
MS(A)

(
1 + A−1BK

)− A−1BK
)

x(0).

For convergence of the product on the right-hand side to 0 as N → +∞, it is neces-
sary and sufficient that

|MS(A)(A + BK ) − BK | < |A| , (20)

from which we can immediately arrive at the range of permissible K ’s. The question
of designing stabilizing feedback gains K is addressed in detail in Sect. 6; Merely
assuming that A + BK = A(1 + A−1BK ) is Hurwitz stable may not be enough!

Remark 4.2 (A + BK Hurwitz is necessary for the scalar case) In the scalar case
and an unstable open-loop system (that is, A > 0), if we select the feedback gain
K such that A + BK > 0, then the condition (20) will not be satisfied. Indeed,
MS(A) > 1 for every A > 0 whenever the former exists.

The multidimensional case is similar to the scalar one: by independence of the
holding times,

E
[
x(τN )

∣
∣x(0)

] = E

[
N−1∏

i=0

(
e(τi+1−τi )A

(
I + A−1BK

)− A−1BK
)

x(0)
∣
∣x(0)

]

=
N−1∏

i=0

E
[
e(τi+1−τi )A

(
I + A−1BK

)− A−1BK
]
x(0)

=
N−1∏

i=0

(
E
[
e(τi+1−τi )A

](
I + A−1BK

)− A−1BK
)

x(0).

(21)

The matrix E
[
e(τi+1−τi )A

]
is well defined whenever MS(‖A‖) = E

[
e(τi+1−τi )‖A‖]

exists; this follows from a standard application of the dominated convergence theo-
rem [15, Theorem4.3.5].Now, the necessary and sufficient condition for convergence
of the product on the right-hand side to 0 as N → +∞ is that

3Recall that the moment generating functionMX , if it exists, of a random variable X is the function
R � ξ �→ MX (ξ) := E[eξX ] ∈ R. Themoment generating functionmay only be defined on a subset
of R, of course.
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A−1
(
E
[
e(τi+1−τi )A

]
(A + BK ) − BK

)
is Schur stable. (22)

It is evident that straightforward calculations are enough to arrive at necessary and
sufficient conditions for stability in the mean of the sampled process

(
x(τk)

)
k∈N. A

similar calculation can be carried out for
( ‖x(τk)‖

)
k∈N to arrive at convergence in

mean-square of the process
( ‖x(τk)‖

)
k∈N.

However, the preceding calculations do not shed much light on the inter-sample
behavior of

(
x(t)

)
t�0. The transition from stability of the sampled process to that

of
(
x(t)

)
t�0 is a nontrivial matter. A tiny calculation in this direction is to check

whether the process
(
x(τNt )

)
t�0 is stable, and to this end, our assumption (4) pro-

vides the necessary support, and one concludes that E
[
x(τNt )

∣
∣x(0)

] −−−−→
t→+∞ 0. The

next natural step is to compute E
[
x(t)

∣
∣x(0)

]
for a given time t , and finally to take

the limit (if it exists), as t → +∞. However, at this stage matters start to become
rather tedious and complicated. Indeed, if we proceed as Leneman does in [29], for
the quadratic function R

d � x �→ ϕ(x) := 1
2 〈x, Qx〉 ∈ [0,+∞[ where Q ∈ R

d×d

is some symmetric and positive-definite matrix,

E
[
ϕ
(
x(t))

∣∣x(0)
] = E

[

ϕ
(
x(t)

) +∞∑

k=0

1[τk ,τk+1[(t)
∣∣x(0)

]

=
+∞∑

k=0

E
[
ϕ
(
x(t)

)
1[τk ,τk+1[(t)

∣∣x(0)
]

where the second equality follows by the monotone convergence theorem. Since
1[τk ,τk+1[(t) = 1 if and only if Nt = k and 0 otherwise, each summand on the right-
hand side can be manipulated as

E
[
ϕ
(
x(t)

)
1[τk ,τk+1[(t)

∣∣x(0)
] = P

(
Nt = k

∣∣x(0)
)
E
[
ϕ
(
x(t)

)∣∣x(0), Nt = k
]
.

If the sampling process
(
Nt
)

t�0 is Poisson with intensity λ, we have the expression

P
(
Nt = k

∣∣x(0)
) = e−λt (λt)k

k! since the sampling process is independent of the state
process, but for more general sampling (renewal) processes, such expressions are
difficult to arrive at. Even if

(
Nt
)

t�0 is Poisson-λ, it is still not simple to compute

the second term E
[
ϕ
(
x(t)

)∣∣x(0), Nt = k
]
. Indeed, one would naturally proceed, for

the specific case of ϕ defined above, by employing (19) and then (17) and separating
out terms consisting of terms involving x(τk) and (t − τk). The (quadratic) terms
consisting only of x(τk) can be dealt with as discussed above, and those contain-
ing (t − τk) would need the probability distribution of (t − τk). By all indications,
Leneman’s calculations (which are not explicitly provided in [29]) completed the pre-
ceding steps for the case of d = 1 and asymptotically stable A. It should be evident
that for sampling processes more general than Poisson, this route quickly becomes
intractable.
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4.3 New Generation, Same Problem

Skipping a few decades, we arrive at [31] which presents stability conditions for
several sampling routines, one of which is random sampling. Instead of computing
E
[
ϕ
(
x(t))

∣
∣x(0)

]
exactly, the authors of [31] obtain an upper bound and provide

conditions which make this upper bound converge to zero asymptotically. However,
the conditions given in their main result on random sampling [31, Theorem5] are
seen to hold only for open-loop stable systems. To see this, consider the scalar system

ẋ = ax + u

and by choosing u = κx(τNt ), we consider the system ẋ = Fẋ , where

F :=
(

a + κ −κ
a + κ −κ

)
.

Employing the transformation T = ( 1 0
1 1

)
and defining x = T z, we see that

eFt =
(

(1 − κ/a)eat + κ/a 0
−(1 − κ/a)eat − κ/a 0

)
.

Let

M :=
(
1 0
0 0

)
eFt

(
1 0
0 0

)
=
(

((1 − κ/a)eat + κ/a) 0
0 0

)
.

According to [31, Theorem5], the sufficient condition for asymptotic stability in the
second moment is ∥

∥∥E
[

M
�

M
]∥∥∥ < 1.

However, for Poisson sampling with intensity λ, it is seen that

E
[
((1 − κ/a)eat + κ/a)2

] = λ

∫ +∞

0
((1 − κ/a)eat + κ/a)2e−λt dt

= (1 − κ/a)2
λ

λ − 2a
+ κ2

a2
+ 2(κ/a)(1 − κ/a)

λ

λ − a
.

Note that the term on right-hand side is greater than 1 for each λ > 2a.4 In fact, it is
a decreasing function of λ, and

lim
λ→+∞

E
[
((1 − κ/a)eat + κ/a)2

] = 1.

4The necessity of the condition λ > 2a for scalar linear systems with Poisson sampling is discussed
in Sect. 6.2.
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This shows that, even in such simple cases, we do not get
∥∥
∥E
[

M
�

M
]∥∥
∥ < 1 for

arbitrarily large values of λ. This demonstrates the conservatism in the sufficient
condition proposed in [31, Theorem5], and hence it can be presumed that the problem
of computing E

[
ϕ
(
x(t))

∣∣x(0)
]
did not get a positive response until the first decade

of this century. One positive response to this question has been provided in [4], which
we treat in greater detail in the next section. The authors of [4] provide necessary
and sufficient conditions for mean-square stability of linear systems under random
sampling for a rather general class of random processes. We examine closely and
comment on their main result in Sect. 5.1. The techniques involved in [4] are quite
different from the ones that are mainstream.

Before moving on, we mention a couple of additional references dealing with
random sampling. The article [3] deals with control under random sampling: An
optimal control problem with a quadratic instantaneous cost for linear controlled
diffusions was studied in this particular work, but under the assumption that there
are only finitely many sampling instants. The authors of the recent article [49] also
limited their scope to a Lyapunov stable matrix A.

The preceding efforts involve hands-on calculations that are specific to linear
system models and/or specific (and simple) sampling processes, with the exception
of [4]. The connection between PDMPs and sampled-data control under random
sampling discussed inRemark2.1 immediately opens up the possibility of employing
generator-based ideas in this context; our agenda for the next section will focus on
this connection closely. In particular, we shall demonstrate in Sect. 5.2 that the main
results of [4] can also be derived by employing the extended generator (8).

5 Equivalence of Different Stability Conditions for Linear
PDMPs

Turning our attention to (15), and looking at this joint system with state
x = (x�, e�)�, it is possible to find necessary and sufficient conditions for asymp-
totic stability in secondmoment by computingE

[
ψ
(
x(t))

∣∣x(0)
]
for system (15),with

ψ quadratic in x . This is done in an explicit manner in [4], where the authors use the
recursive Volterra integral equation to compute E

[‖x(t)‖2 ∣∣x(0)
]
. Another tool for

analyzing the stability in second moment for system (15) was already revealed in
Sect. 3 in the form of extended generator. After providing a quick overview of how
E
[‖x(t)‖2 ∣∣x(0)

]
is computed,we show the equivalence between the two approaches,

which essentially establishes a converse Lyapunov theorem for (15) with Poisson
renewal process.
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5.1 Volterra Integral Approach

To analyze stability in second moment for system (15), it is observed that we can
write [4, Proposition6]

E
[
x�(t)Qx(t)

] = x�
0 W (t)x0 (23)

where thematrix-valued function W : [0,+∞[→ R
n×n satisfies theVolterra integral

equation
W (t) = K(W )(t) + H(t), (24)

with H(t) = eF�t QeFte−λt for some positive-definite and symmetric Q ∈ R
n×n , and

λ > 0 being the intensity of the Poisson sampling process
(
Nt
)

t�0 so that the jump

times τNt in (14) have the property that
(
τNt − τNt −1

) ∼ Exp(λ). In (24), the operator
K : C1(R�0;Rn×n) → C1(R�0;Rn×n) is given by

K(W )(t) := λ

∫ t

0
eF�s G�W (t − s)GeFse−λs ds. (25)

Due to (23), stability of (14) can be formulated in terms of the asymptotic properties
of the matrix-valued function W (t). In [4, Theorem3], depending upon the stability
notion under consideration, several conditions are provided which are equivalent
to convergence of W in appropriate norms. For example, conditions for stochastic
stability are equivalent to absolute convergence of

∫ +∞
0 W (s) ds, and the conditions

given for mean-square stability are equivalent to W (t) → 0.

5.2 Connections Between the Extended Generator
and Volterra Integral Techniques

In Sect. 3, we used the extended generator to obtain sufficient conditions for stability
of nonlinear PDMPs. In case of linear systems (14), the same approach can be
adopted while restricting attention to quadratic test functions. Since we now have a
characterization of stability in terms of the function W given in (24), it is natural to
ask whether we can establish necessary conditions for stability in second moment
using the extended generator. To show that these approaches are equivalent for linear
dynamics (15) and Poisson renewal processes, we have the following result.

Theorem 5.1 Consider system (14) with (Nt )t�0 a Poisson process of intensity λ >

0. The following statements are equivalent:

(S1) System (14) is exponentially stable in second moment.
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(S2) There exists a symmetric positive-definite matrix Q ∈ R
n×n such that the

matrix-valued function W satisfying (24), with H(t) = eF�t QeFte−λt , con-
verges to zero exponentially as t → +∞.

(S3) There exists a symmetric, positive- definite matrix P ∈ R
n×n such that

F� P + P F + λ(G� P G − P) < 0. (26)

Ifwe letψ(x) := x� Px , then using the expression forLψ(x, e) in (9), the inequal-
ity (26) is equivalently written as Lψ(x, e) < 0, for each (x, e) ∈ R

d×d . A condition
similar to (26) has also appeared in [5, Theorem7]. Note that the result of Theo-
rem5.1 is of independent interest as it proves a converse Lyapunov theorem for a
class of linear PDMPs which are exponentially stable in second moment. Estab-
lishing converse Lyapunov theorems for stochastic hybrid systems, in general, was
identified as an open problem in [44, Section 8.4, Open Problem4], and Theorem5.1
provides a result in this direction for a particular class of stochastic hybrid systems.
The nontrivial aspect of the proof of Theorem5.1 relies on constructing P using the
expression for W in (24).

Proof The equivalence between (S1) and (S2) follows directly from (23), where the
latter is derived in [4, Proposition6]. In the sequel, we prove the equivalence between
(S2) and (S3), and for our purposes it is useful to recall that, using the properties of
Volterra integral equation, W can be explicitly described by the expression

W (t) :=
+∞∑

j=1

K j (H)(t) + H(t). (27)

Now, let us assume that (S3) holds, and from there we show that there is a matrix Q
such that W satisfying (24), with H(t) = eF�t QeFte−λt , converges to zero as t goes
to infinity. Let P be the symmetric, positive-definite matrix satisfying (26), so there
exists α > 0 such that

F� P + P F + λ(G� PG − P) + αP < 0.

Take Q = P . Multiplying the last inequality by eF�t from left, eFt from right, and
the scalar e−λt , we get

F� H + H F + λ(J − H) < −αH (28)

where we recall that H(t) = eF�t QeFte−λt , and

J (t) := eF�t G� QGeFte−λt .

With this choice of Q and H , let W be the function obtained from solving (27). To
see that W converges to zero exponentially, we need the following lemma:
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Lemma 5.2 For the continuously differentiable matrix-valued function W given in
(27), it holds that

d

dt
W (t) =

+∞∑

j=1

K j (F� H + H F − λH)(t) +
+∞∑

j=0

λK j (J )(t)

+F� H(t) + H(t)F − λH(t). (29)

The proof of this lemma is given in AppendixB. Combined with (28), and using the
expression for W in (27), this lemma immediately yields

Ẇ (t) ≤ −αW (t)

from which the exponential convergence of W follows.
Next, we show that (S2) implies the existence of matrix P such that (S3) holds.

For this implication to hold, the important relation that we need to develop is

d

dt
W (t) = F�W (t) + W (t)F − λW (t) + λG�W (t)G, t � 0. (30)

Indeed, if (30) holds, then by letting,

P := lim
t→+∞

∫ t

0
W (s) ds,

it is seen that

F� P + P F + λ(G� PG − P) = lim
t→+∞

∫ t

0

d

ds
W (s) ds,

= lim
t→+∞ W (t) − W (0)

= −Q

where we used the fact that limt→+∞ W (t) = 0 because of (S2). The limit in the
definition of thematrix P is well-defined because W converges to zero exponentially.
The matrix P is also seen to be symmetric and positive definite. To show this, we
first observe from (27) that, for each s � 0, W (s) is symmetric and W (s) � H(s).
Suppose, ad absurdum, that P is not positive definite; then, there exists x ∈ R

n ,
x �= 0, such that

0 = x� Px = lim
t→+∞

∫ t

0
x�W (s)x ds

� lim
t→+∞

∫ t

0
x� H(s)x ds = lim

t→+∞

∫ t

0
x�es F�

Qes Fe−λs x ds.
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Since Q is positive definite, the last inequality suggests that es F x = 0 for every
s � 0, and hence x = 0; a contradiction.

So, the focus in the remainder of the proof is on proving (30). We already have
an expression for d

dt W in Lemma5.2. To simplify the terms on the right-hand side
of (29), we introduce the following lemma:

Lemma 5.3 For each j � 1, we have

K j (F� H + H F − λH) + λK j−1(J )(t) = λG�K j−1(H)(t)G

+F�K j (H)(t) + K j (H)(t)F − λK j (H)(t). (31)

Again, the proof of this lemma is provided in AppendixB. Combining the statements
of Lemmas5.2 and 5.3, we get

d

dt
W (t) =

+∞∑

j=1

λG�K j−1(H)(t)G + F�K j (H)(t) + K j (H)(t)F − λK j (H)(t)

+F� H(t) + H(t)F − λH(t).
(32)

On the other hand, it follows from the expression for W in (27) that

F�W (t) + W (t)F − λW (t) =
+∞∑

j=1

F�K j (H)(t) + K j (H)(t)F − λK j (H)(t)

+F� H(t) + H(t)F − λH(t).
(33)

Substituting (33) in (32), and using the notation K0 to denote the identity operator,
we get

d

dt
W (t) = F�W (t) + W (t)F − λW (t) + λG�

⎛

⎝
+∞∑

j=1

K j−1(H)(t)

⎞

⎠G.

The desired Eq. (30) now follows by recalling the definition of W from (27). �

5.3 Exponential Stability Under Random Sampling

Now that we have established the necessary and sufficient conditions for stability
of the randomly sampled-data system (14) in Theorem5.1, we can obtain refined
estimates on the mean sampling rate λ for stability in second moment to solve Prob-
lem1. We will only work out the estimates that can be obtained from the statement
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(S3). A direct way to obtain a lower bound on the mean sampling rate is by solving
the inequality (26) in λ and P , for a given K ∈ R

m×d . But, since (26) is a bilinear
matrix inequality, and hence nonconvex, it is difficult to obtain analytical bounds on
λ for feasibility. To overcome this issue, we choose to work with a block diagonal
P and proceed with computing the lower bounds on λ analytically with such P . We
fix K to be any matrix which makes A + BK Hurwitz, and with this assumption,
we show that by choosing λ large enough as a function of the matrices A, B, K , the
resulting system is asymptotically stable in second moment.

Theorem 5.4 Consider the system (14), with
(
Nt
)

t�0 a Poisson process of intensity

λ. Assume that there exist α > 0, a matrix K ∈ R
d×m and a symmetric positive-

definite matrix P ∈ R
d×d satisfying

(A + BK )� P + P(A + BK ) ≤ −αP. (34)

For R
d � y �→ V (y) := 〈y, Py〉, there exist constants C0, C1, such that

for every ρ ∈ ]0,α[, for every λ > ρ + C0 + C1

(α − ρ)
,

for every x(0) ∈ R
d , and for every t � 0

(35)

we have
E
[
V (x(t))

∣∣x(0)
] ≤ V (x(0)) exp (−ρt). (36)

In particular, for all λ > 0 sufficiently large, the closed-loop system (14) is globally
exponentially stable in the second moment.

Remark 5.5 It is seen from the statement of the theorem that, even if we choose the
decay rate ρ to be close to α, it is possible to achieve it by choosing the sampling rate
λ to be sufficiently large. In other words, with faster sampling rates, we approach
the performance of the continuous-time system.

Remark 5.6 In the proof of Theorem5.4, we compute the constants C0 and C1 in
(35) as functions of the matrices A, B, K and P satisfying (34). By letting Ỹ :=
P1/2BK P−1/2, and Ã := P1/2 AP−1/2, it turns out that we can choose

C0 := σmax
(−Ỹ − Ỹ �) and (37a)

C1 := σmax

((
Ỹ � − Ỹ − Ã

)(
Ỹ − Ỹ � − Ã�)

)
, (37b)

where, for a given matrix M , σmax(M) denotes the maximum eigenvalue of a matrix
M . In fact, it is possible to show that the claim of Theorem5.4 holds whenever

λ − ρ > σmax

( 1

α − ρ

(
Ỹ � − Ỹ − Ã

)(
Ỹ − Ỹ � − Ã�)− Ỹ − Ỹ �

)
.
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Corollary 5.7 Let K = −R−1B� P, where R and P are symmetric positive-definite
matrices which satisfy, for some α > 0, the relation

(
A + α

2
I
)�

P + P
(

A + α

2
I
)

− 2P B R−1B� P ≤ 0. (38)

For each ρ ∈ ]0,α[, if λ satisfies (35) with

C0 := 2σmax
(
P1/2B R−1B� P1/2) and

C1 := σmax
(
P1/2 AP−1 A� P1/2

)
,

then (36) holds.

The bounds in Corollary5.7 are obtained by observing that the choice of K =
−R−1B� P leads to Ỹ = Ỹ �, which simplifies the expression for C0 and C1 to some
extent.

Proof of Theorem5.4 We choose a quadratic function ψ : Rd × R
d → R�0 of the

form
(x, e) �→ ψ(x, e) := 〈x, Px x〉 + 〈e, Pee〉 , (39)

where Px and Pe are symmetric positive-definite matrices. Using (9) from Proposi-
tion2.2, we obtain

Lψ(x, e) = 〈(Px + P�
x )x + (Pe + P�

e )e, (A + BK )x − BK e
〉

+ λ (〈x, Px x〉 − 〈e, Pee〉 − 〈x, Px x〉)
= 〈(Pe + P�

e )e, (A + BK )x − BK e
〉

+ 〈(Px + P�
x )x, (A + BK )x − BK e

〉− λ 〈e, Pee〉
= −λ 〈e, Pee〉 + 〈x, Px (A + BK )x + (A + BK )� Px x

〉

− 〈e, (Pe BK + K � B� Pe)e
〉+ 2 〈e, Pe(A + BK )x〉

− 2 〈x, Px BK e〉 .

Letting Px = Pe = P and AK := A + BK , we get

Lψ(x, e)

= −
〈(

x
e

)
,

( −P AK − A�
K P P BK − A�

K P
−P AK + K � B� P λP + P BK + K � B� P

)(
x
e

)〉

≤ −
〈(

x
e

)
,

(
αP P BK − A�

K P
−P AK + K � B� P λP + P BK + K � B� P

)

︸ ︷︷ ︸
=:M(λ)

(
x
e

)〉

.

We next analyze the matrix M(λ) and show that for λ large enough, M(λ) is positive
definite and see how the minimum eigenvalue of M(λ) varies with λ. We first write
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M(λ) as
M(λ) := M0 + M1(λ)

where for a fixed ρ ∈ ]0,α[,
M0 :=

(
ρP 0
0 ρP

)
(40)

and

M1(λ) :=
(

(α − ρ)P P BK − A�
K P

−P AK + K � B� P (λ − ρ)P + P BK + K � B� P

)
.

Using Schur complements [48, §7.4] and introducing the notation Y := P BK it is
seen that

M1(λ) � 0

⇔ (λ − ρ)P + Y + Y � �
(
Y � − Y − P A

)
P−1

(
Y − Y � − A� P

)

α − ρ
.

Let P1/2 denote the positive square root of P . Also, let Ỹ := P1/2BK P−1/2, and
Ã := P1/2 AP−1/2. Then, conjugation by P−1/2 yields

M1(λ) � 0

⇔ (λ − ρ)I + Ỹ + Ỹ � � 1

α − ρ

(
Ỹ � − Ỹ − Ã

)(
Ỹ − Ỹ � − Ã�).

Using Weyl’s inequality [21, Theorem4.3.1], we obtain

σmax

(
1

α − ρ

(
Ỹ � − Ỹ − Ã

)(
Ỹ − Ỹ � − Ã�)− (Ỹ + Ỹ �)

)

≤ σmax

(
1

α − ρ

(
Ỹ � − Ỹ − Ã

)(
Ỹ − Ỹ � − Ã�)

)
+ σmax(−Ỹ − Ỹ �)

= 1

α − ρ
σmax

((
Ỹ � − Ỹ − Ã

)(
Ỹ − Ỹ � − Ã�))+ σmax(−Ỹ − Ỹ �)

=: 1

α − ρ
C1 + C0

where we introduced the constants C0, C1 given in (37). It is now observed that
M1 � 0 for each λ > ρ + C0 + C1/(α − ρ), and hence

Lψ(x, e) ≤ −
〈(

x
e

)
, M0

(
x
e

)〉
= −ρψ(x, e).

The assertion of Theorem5.4 follows. �
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It must be noted that the condition (35) is only sufficient for stability in second
moment because in the notation of (S3) of Theorem5.1, the proof was worked out by

choosing P =
(

P 0
0 P

)
. This choice indeed makes our estimates of λ conservative.

In the next section, we study stability of closed-loop systems for smaller values of λ
by addressing the converse question of designing static feedbacks for linear systems.

6 Converse Question and Feedback Design

In contrast to finding lower bounds on the sampling rate for a given feedback law in
previous sections, we are now interested in designing the feedback laws for a fixed
sampling rate. The problem of interest is thus formalized as follows:

Problem 2 Consider the system (14), with
(
Nt
)

t�0 a Poisson process of intensity

λ. If λ > 0 is given, does there exist a matrix K ∈ R
m×d such that (14) is globally

exponentially stable in second moment?

Preparatory to addressing this problem, we first observe that the search space
for the feedback gain K is constrained by the sampling rate even in the setting of
deterministic sampling—see Sect. 6.1 for the relevant discussion. Moreover, in the
setting of Poisson sampling, there is a lower bound on the sampling rate that must
be satisfied for the expectation to be well defined; see Sect. 6.2 for the corresponding
details. These two observations are then employed to provide a partial answer to
Problem 2.

6.1 Using the Scalar Deterministic Case as a Guideline

Before addressing this question with random sampling, let us have a quick look at
the deterministic sampling case and observe how one would choose a feedback gain
in that case. Consider the scalar system

ẋ(t) = ax(t) + u(t), t � 0,

with a given a > 0. Our objective is to asymptotically stabilize this system at the
origin, and the state measurements are available only periodically at (τi )i∈N∗ ⊂
[0,+∞[, where τi+1 − τi = T for some fixed T > 0; in other words, τn = nT . We
aim to design a controller u(t) = κx(τNt ), with an appropriately chosen κ depending
on the sampling period T . Elementary calculations yield
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x(τi+1) = exp (aT )x(τi ) +
∫ τi+1

τi

exp (a(τi+1 − s))κx(τi ) ds

=
(
exp (aT ) + κ

a

(
exp (aT ) − 1

))
x(τi ),

and for a fixed sampling period T > 0, the closed-loop system is asymptotically
stable if and only if the sequence (x(τn))n∈N∗ converges to 0. The latter holds if and
only if ∣

∣∣exp (aT ) + κ

a

(
exp (aT ) − 1

)∣∣∣ < 1,

or equivalently, if and only if

−a
(exp (aT ) + 1

exp (aT ) − 1

)
< κ < −a.

We observe two key facts:

• The inequality κ < −a is necessary for the stability of the continuous-time
system. The other inequality gives a lower bound on the value of κ, and shows
that for a fixed sampling rate, one can not choose |κ| to be very large.

• On the one hand, as T goes to zero (the case of fast sampling), this lower bound
goes to−∞. On the other hand, as T grows large (the case of slow sampling), this
lower bound approaches−a from below, and the admissible set of the stabilizing
gain κ becomes smaller.

In dimensions larger than 1, the problem of selecting a suitable control gain K
becomes more delicate, as we shall momentarily see.

6.2 Necessary Lower Bounds for the Sampling Rate

We turn our attention back to the system

ẋ(t) = Ax(t) + BK x(τNt ), x(0) given, t � 0, (41)

where we recall that
(
Nt
)

t�0 defined in (3) is a Poisson process of intensity λ which
determines the sampling times. We assume for the sake of simplicity that A is in its
complex-Jordan normal form and that it is non-singular. It can be easily verified that,
for each sample path, and i ∈ N

∗, we have

x(τi+1) = A−1
(
eA(τi+1−τi )

(
A + BK

)− BK
)

x(τi ). (42)
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If the linear system (41) is exponentially stable in the second moment, then the
discrete-time system (42) must also be exponentially stable in the second moment,5

and therefore, there exist [34, Theorem9.4.2] a symmetric positive definite matrix
Pd ∈ R

d×d and γ ∈ [0, 1[ such that for each i ∈ N
∗,

E
[〈x(τi+1), Pdx(τi+1)〉

∣∣x(τi )
] ≤ γE

[〈x(τi ), Pdx(τi )〉
∣∣x(τi )

]
.

With AK := (A + BK ) and P̃d := A−1Pd A−1, time-invariance of the data leads to

A�
KE
[
eS A�

P̃de
S A
]

AK − A�
KE
[
eS A�]

P̃dBK

− (BK )� P̃dE
[
eS A
]

AK + (BK )� P̃dBK ≤ γ AP̃d A,

where S is an exponential random variable with parameter λ. The matrix on the left-

hand side is well defined if and only if E
[
eS A�

P̃deS A
]
and E

[
eS A
]
are well-defined.

The ( j, k)th entry of the matrix E
[
eS A�

P̃deS A
]
is

E

[
d∑

�=1

d∑

m=1

(eS A�
) j�
(
P̃d
)
�m(eS A)mk

]

.

Since eS A is in the block-diagonal form with the eigenvalues of A on the diagonal,
this expectation is of the form E

[
p jk(S)eS(σ j +σk )

]
for 1 ≤ j, k ≤ d, where σ j ,σk

are the j th and kth diagonal entries (eigenvalues) of A, and p jk(·) is a polynomial
of degree at most 2d. This expectation is finite only if λ > �σ j + �σk , and there-

fore, E
[
eS A�

P̃deS A
]
is well-defined whenever λ > 2max{�σ j (A) | j = 1, . . . , d}.

Similarly, E
[
eS A
]
is well-defined only for λ > max{�σ j (A) | j = 1, . . . , d}.

We conclude from this discussion that

λ > 2max{�σ j (A) | j = 1, . . . , d}

is a necessary condition for asymptotic stability in the secondmoment of the sampled
process

(
x(τn)

)
n∈N∗ , and seek to resolve the following conjecture:

Conjecture 6.1 Consider the system (41), where
(
Nt
)

t�0 is a Poisson process of
given intensity λ > 0. For each λ > 2max{�σ j (A) | j = 1, . . . , d}, there exists a
feedback matrix K ∈ R

m×d such that (41) is globally asymptotically stable in the
second moment.

5The definition of exponential stability in the secondmoment for the discrete-time case is analogous
to the continuous-time version that we have quoted above.
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6.3 The Scalar Case with Poisson Sampling

We proceed to verify that the Conjecture6.1 holds in the scalar case.

Proposition 6.2 Conjecture6.1 holds when the system dimension d = 1.

Proof Without loss of generality, we look at the scalar plant

ẋ(t) = ax(t) + u(t)

with a > 0 and are interested in choosing the scalar feedback gain κ such that u(t) =
κx(τNt ), t � 0, results in mean-squared asymptotic stability. Recalling that e(t) =
x(t) − x(τNt ) for t � 0, we pick

ψ(x, e) := px2 + e2

for some p > 0 to be specified later. Using (9), we get

Lψ(x, e) = −
〈(

x
e

)
,

( −2(a + κ)p pκ − (a + κ)

pκ − (a + κ) λ + 2κ

)

︸ ︷︷ ︸
=:M

(
x
e

)〉

.

If we show that there exist p > 0 and κ < 0 such that M is positive definite, our
proof will be complete. Toward this end, we first look at the determinant of M :

det(M) = −2p(a + κ)(λ + 2κ) − (a + κ)2 − p2κ2 + 2pκ(a + κ)

= −(p + 1)2(a + κ)2 + 2p(a + κ)(ap + a − λ) − a2 p2.

Defining θ := −(a + κ), we observe that det(M) > 0 if and only if

(p + 1)2θ2 − 2pθ(ap + a − λ) + a2 p2 < 0.

The left-hand side of the inequality is a convex function of θ, and it attains its global
minimum at

θ∗ = p(λ − a(1 + p))

(p + 1)2
.

It is then readily verified that the value of det(M) with θ = θ∗ is

det(Mθ=θ∗) = p2(λ − a(p + 1))2

(p + 1)2
− a2 p2,

so that det(Mθ=θ∗) > 0 whenever

0 < p <
δ

2a
, where δ := λ − 2a. (43)
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Fixing θ = θ∗ and letting p satisfy (43), we next look at the trace of M :

trace(Mθ=θ∗) = λ − 2a + 2θ∗(p − 1)

= δ + 2p
λ − a(p + 1)

(p + 1)2
(p − 1).

Since trace(Mθ=θ∗) is a continuous function of p and trace(M) = δ > 0when p = 0,
it follows that for p > 0 sufficiently small, it is possible to make both trace(M) and
det(M) strictly positive. The resulting feedback law is

κ = −a − p(2a − δ − a(1 + p))

(p + 1)2
,

with p > 0 chosen such that trace(Mθ=θ∗) > 0. The proof is complete. �

Remark 6.3 In the proof of Proposition6.2 we selected the function ψ from (39)
with Px = p and Pe = 1. An interesting observation is that if we select Px = Pe (as
we did in the proof of Theorem5.4), and λ is fixed, it is not possible to choose a
feedback gain K such that Lψ(x, e) < 0. To see this, we observe again in the scalar
case that by letting px = pe = p,

Lψ(x, e) = −
〈(

x
e

)
,

(−2(a + κ)p −ap
−ap (λ + 2κ)p

)(
x
e

)〉
.

Wecan chooseκ < −a so that both the diagonal terms of thematrix becomenegative,
and by looking at the determinant of the matrix, it is seen that Lψ(x, e) < 0, if and
only if,

2θ(λ − 2a − 2θ) > a2,

where θ = −(a + κ) > 0. For a given value of a, one can find λ > 2a, such that the
foregoing inequality is infeasible, regardless of the values of θ, or κ.

6.4 The Multidimensional Case

We employ the guidelines from the previous subsections to address Conjecture6.1
for systems with dimension greater than 1. As already mentioned, our results here
are not quite complete, and we require an additional assumption on the class of linear
control systems:

Assumption 1 The matrix pair (A, B) is such that, there exist positive-definite
matrices R and P , which solve the algebraic Riccati equation

A� P + P A − 2P B R−1B� P = −αP, (44)
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and (A − B R−1B� P) is Hurwitz. Moreover, the matrix P has the property that for
some C > 0 and p > 2

3 ,

lim
α↓0

σmax(P)

αp
≤ C. (45)

Assumption1 requires that σmax(P) = O(αp) when α ↓ 0. There exist linear
systems that satisfy this Assumption; indeed, consider A and B given by

A =
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ , B =
⎛

⎝
1 0
0 0
0 1

⎞

⎠ , (46)

and choose R = 2 I , with I denoting the identity matrix (of appropriate dimension).
Then (44) admits a unique solution P , with (A − B R−1B� P) Hurwitz, and the
(i, j)th entry of P has the form

[P]i j = pi j (α)

1 + α4

where pi j are functions satisfying limα↓0
pi j (α)

α
= 0 when (i, j) �= (3, 3), and for

(i, j) = (3, 3) we have limα↓0
pi j (α)

α
= 3. A crisp characterization of the class of

systems that satisfy Assumption1 is under investigation.

Remark 6.4 System (46) is a particular example of null-controllable systems where
the eigenvalues of A are on the imaginary axis. In general, we do not expect Assump-
tion1 to hold for systems with eigenvalues of A in open right-half complex plane.
This can be seen for the scalar systems ẋ = ax + u, for which the solution of (44)
with R = 1 is p = 2a + α, and clearly (45) holds only with a = 0 for 0 < p ≤ 1.

The followingTheoremprovides a recipe for designing feedback controllers under
Assumption1.

Theorem 6.5 Consider the system (41) where
(
Nt
)

t�0 is a Poisson process of given
intensity λ > 0, and suppose that Assumption1 holds. Then there exists α > 0 (suf-
ficiently small) such that the feedback gain

K = −R−1B� P with P solving(44)

renders the system (41) globally asymptotically stable in the second moment.

Proof of Theorem6.5 For α > 0 we let P denote the solution of (44), and choose

ψ(x, e) := ηe 〈e, Pe〉 + ηx 〈x, Px〉 for (x, e) ∈ R
d × R

d ,

where the positive scalars ηe, ηx will be specified later. The expression in (9) with
the above choice of ψ yields
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Lψ(e, x) = −
〈(

x
e

)
, M(α,λ)

(
x
e

)〉
,

where

M(α,λ) :=
( −ηx (A�

K P + P AK ) ηx P BK − ηe A�
K P

ηx K � B� P − ηe P AK ηe(λP + P BK + K � B� P)

)
,

in which AK = A + BK , and dependence on α is through the matrix P . It follows
that M is positive definite if M0 and M1 are positive definite, where

M0 :=
(

α
2 ηx P −ηe A�

K P
−ηe P AK

λ
2 ηe P

)

M1 :=
(

α
2 ηx P ηx P BK

ηx K � B� P λ
2 ηe P + ηe P BK + ηe K � B� P

)
.

We first treat M0. Using Schur complements [48, §7.4] followed by conjugation
with η

−1/2
e P−1/2, we get

M0 > 0 ⇔ λ

2
I > 2

ηe

ηxα
P1/2(A + BK )P−1(A + BK )� P1/2. (47)

In view of Assumption1, for a p > 2
3 satisfying σmax(P) = O(αp), we pick ε > 0

such that 0 < ε < p − 2
3 , and select ηe, ηx > 0 such that

ηe

ηx
= O(α1+ε). (48)

By lettingα ↓ 0,we see thatσmax(P1/2) = O(αp/2), which also yields that P1/2(A +
BK )P−1(A + BK )� P1/2 = O(1). Thus, the term on the right-hand side of the
inequality (47) is bounded by O(αε). This shows that for α sufficiently small,
M0 > 0.

We next analyze M1. Substituting K = −R−1B� P into M1, using Schur com-
plements [48, §7.4], and conjugating by η

−1/2
e P−1/2, we get

M1 > 0 ⇔
λ

2
I > 2αP1/2B R−1B� P1/2 + 2

ηx

ηeα
P1/2B R−1B� P2B R−1B� P1/2. (49)

Letting α ↓ 0, in view of Assumption 1 we have σmax(P) = O(αp). The first term
on the right-hand side is O(αp+1). For our choice of ηe and ηx in (48), we get

ηx

ηeα
= O(α−2−ε). (50)
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Thisway, the second term on the right-hand side of the inequality (49) is O(α3p−2−ε),
which under the assumption p > 2

3 + ε, converges to zero as α ↓ 0. We conclude
that M1, and hence M = M0 + M1, are positive definite for sufficiently small α > 0.

7 Conclusions

This chapter provided an overview on the problem of stabilization of deterministic
control systems under random sampling. Although the problem was first introduced
almost 60 years ago, the earlier efforts did not createmany inroads. The use ofmodern
tools from the literature on stochastic systems has indeed brought a constructive
solution to this problem. In particular, this chapter provided the solution to this
problem using the extended generator and Volterra integral techniques, and also
developed connections between these two approaches. One particular question that
needs further investigation is the design of feedback laws for fixed sampling rates.
In this direction, Conjecture6.1 is shown to hold for scalar systems and to some
extent for multidimensional systems under a strong assumption. Investigating design
techniques for constructing feedback gains in linear case for given sampling rates is
indeed relevant for several applications.

As it is naturally the case, the problem has been studied with more depth in
the case of linear systems which lead to Theorem5.1 and quantitative estimates in
Theorem5.4. Extending such results for the case when the sampling process in not
necessarily Poisson, but governed by some other distribution needs to be investi-
gated. In general, one can also apply the extended generator approach to the case
where transition rates are state dependent and locally bounded [20], but the stabil-
ity conditions need to be worked out more explicitly for such cases. Another set of
problems that emerges from these results is to develop their analogue counterparts
for nonlinear systems. It is not immediately clear how the Volterra integral technique
used in Theorem5.1 could be generalized in nonlinear setting. Hence, it needs to
be seen whether a converse Lyapunov theorem can be proven for nonlinear PDMPs.
Also, at this moment, Theorem5.4 shows that faster sampling in the limit leads to the
same convergence rate as one obtains for the unsampled system. To extend this line
of thought, we are currently looking into whether for randomly sampled processes,
the expected value of the random variable at each time converges to the value of the
function obtained as a solution to the unsampled process, as the mean sampling rate
grows.

While this chapter addressed the problem of stabilization with random sampling
using static time-invariant state feedback controllers, one can also explore the pos-
sibility of considering dynamic controllers with output feedback. Going beyond the
realm of conventional dynamic controllers, more recently in [45], the authors work
with discontinuous, or hybrid controllers, and consider the effect of random perturba-
tions in communication of discrete and continuous state to the controller. Addressing
similar questions, as the ones confronted in this chapter, for a more general class of
controllers is likely to bring significant contributions to the currently active field of
stochastic hybrid systems [12, 20, 44].
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Appendix

A: Proof of Proposition2.2

Proof The fact that
(
x(t), e(t)

)
t�0 is Markovian follows from the observation that

the future of x(t) depends on x(τNt ) and, therefore, equivalently on e(t).
Let Rd × R

d � (y, z) �→ ψ(y, z) ∈ R denote a function with at most polynomial
growth as ‖(y, z)‖ → +∞. Since the system under consideration is well-posed, we
have, for h > 0 small,

E
[
ψ
(
x(t + h), e(t + h)

)∣∣x(t) = y, e(t) = z
]

= E
[
ψ
(
x(t + h), e(t + h)

)(
1{Nt+h=Nt } + 1{Nt+h=1+Nt }

+ 1{Nt+h−Nt �2}
) ∣∣ x(t), e(t)

]
. (51)

We now compute the conditional probability distribution of
(
x(t + h), e(t + h)

)
for

small h > 0 given
(
x(t), e(t)

)
. Since the sampling process is independent of the joint

process
(
x(τNt ), x(t)

)
t�0, by definition of the sampling (Poisson) process we have,

for h ↓ 0, ⎧
⎪⎨

⎪⎩

P
(
Nt+h − Nt = 0

∣
∣Nt , e(t), x(t)

) = 1 − λh + o(h),

P
(
Nt+h − Nt = 1

∣∣Nt , e(t), x(t)
) = λh + o(h),

P
(
Nt+h − Nt � 2

∣∣Nt , e(t), x(t)
) = o(h).

Using these expressions we develop (51) further for h ↓ 0 as

E
[
ψ
(
x(t + h), e(t + h)

)∣∣x(t) = y, e(t) = z
]

= E
[
ψ
(
x(t + h), e(t + h)

)(
1{Nt+h=Nt } + 1{Nt+h=1+Nt }

) ∣∣ x(t), e(t)
]+ o(h)

= E
[
ψ
(
x(t + h), e(t + h)

)∣∣x(t), e(t), Nt+h = Nt
] · (1 − λh + o(h)

)

+ E
[
ψ
(
x(t + h), e(t + h)

)∣∣x(t), e(t), Nt+h = 1 + Nt
] (

λh
)+ o(h). (52)

The two significant terms on the right-hand side of (52) are now computed separately.
For the event Nt+h = Nt , given x(t) = y, e(t) = z, we have for h ↓ 0,

ψ
(
x(t + h), e(t + h)

) = ψ
(
y, z
)+ h

〈∇yψ
(
y, z
)
, f
(
y,κ
(
x(τNt )

)))〉

+ h
〈∇zψ

(
y, z
)
, f
(
y,κ
(
x(τNt )

)))〉+ o(h),

leading to the first term on the right-hand side of (52) having the estimate
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E
[
ψ
(
x(t + h), e(t + h)

)∣∣Nt+h = Nt , x(t) = y, e(t) = z
] · (1 − λh + o(h)

)

= ψ
(
y, z
)+ h

〈∇yψ
(
y, z
)+ ∇zψ

(
y, z
)
, f
(
y,κ
(
x(τNt )

)))〉

− (λh)ψ
(
y, z
)+ o(h) for h ↓ 0.

Concerning the second term on the right-hand side of (52), we observe that condi-
tional on Nt+h = 1 + Nt , the probability distribution of τNt+h is [39, Theorem2.3.7]
uniform over [t, t + h[ by definition of the sampling (Poisson) process, i.e.,

P
(
τNt+h ∈ [s, s + s ′[∣∣Nt+h = 1 + Nt

) = 1

h
s ′ for [s, s + s ′[ ⊂ [t, t + h[.

Since the sampling process is independent of the state process, the preceding condi-
tional probability is equal to

P
(
τNt+h ∈ [s, s + s ′[∣∣Nt+h = 1 + Nt , x(t) = y, e(t) = z

)
.

Wedefine θ ∈ [0, 1[ such that τNt+h = t + θh, x(t) = y, e(t) = z; then θ is uniformly
distributed on [0, 1[ given Nt+h = 1 + Nt . We also have, conditioned on the same
event,

e(τNt+h ) = e(t + θh) = 0,

and
x(τNt+h ) = x(t + θh) = x(t) + θh f

(
x(t),κ

(
x(τNt )

)))+ o(h).

The above expressions then lead to, conditioned on the event Nt+h = 1 + Nt , x(t) =
y, e(t) = z and for h ↓ 0,

x(t + h) = x(t + θh) + (1 − θ)h f
(
x(t + θh),κ(x(t + θh))

)+ o(h)

= x(t) + θh f
(
x(t),κ

(
x(τNt )

)))+ (1 − θ)h f
(
x(t + θh),κ(x(t + θh))

)+ o(h)

= x(t) + θh f
(
x(t),κ

(
x(τNt )

)))+ (1 − θ)h f
(
x(t),κ(x(t))

)+ o(h).

Similarly, it can be verified directly from the differential equation governing e that
conditioned on the same event,

e(t + h) = (1 − θ)h f (x(t),κ(x(t))) + o(h) for h0.

Therefore, for h ↓ 0,

E
[
ψ
(
x(t + h), e(t + h)

)∣∣x(t) = y, e(t) = z, Nt+h = 1 + Nt
] · (λh)

=
∫ 1

0
ψ
(

y + θh f
(
x(t),κ

(
x(τNt )

)))+ (1 − θ)h f
(
x(t),κ(x(t))

)+ o(h),

(1 − θ)h f
(
x(t),κ(x(t))

)+ o(h)
)
dθ · (λh)
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=
∫ 1

0

(
ψ
(
y, 0
)+ h

〈∇yψ
(
y, 0
)
, θh f

(
x(t),κ

(
x(τNt )

)))+ (1 − θ)h f
(
x(t), k(x(t), 0)

〉

+ h
〈∇zψ

(
y, 0
)
, (1 − θ)h f

(
x(t),κ(x(t))

)〉+ o(h)

)
dθ · (λh)

=
(
ψ
(
y, 0
)+ O(h)

)
· (λh)

= (λh)ψ
(
y, 0
)+ o(h).

Putting everything together, we arrive at

Eψ
(
x(t + h), e(t + h)

)∣∣x(t) = y, e(t) = z

= ψ(y, z) + h
(〈∇yψ(y, z) + ∇zψ(y, z), f

(
y,κ
(
y − z

))〉)

− (λh)
(
ψ(y, z) − ψ(y, 0)

)+ o(h).

Substituting these expressions in (8), we see that for each (y, z) ∈ R
d × R

d ,

Lψ(y, z) = 〈∇yψ(y, z) + ∇zψ(y, z), f
(
y,κ
(
y − z)

))〉

− λ
(
ψ(y, z) − ψ(y, 0)

)
,

as asserted. �

B: Proofs of Lemmas5.2 and 5.3

Proof of Lemma5.2 The desired expression for d
dt W (t) is obtained by differentiating

W (t) =
+∞∑

j=0

K j (H)(t)

where we recall that K is given in (25) and K0 is the identity operator. To do so,
we basically compute d

dt K j (H)(t) for each j � 0. SinceK0(H)(t) = H(t), we first
observe that

d

dt
H(t) = F� H(t) + H(t)F − λH(t).

Similarly, we compute

d

dt
K(H)(t) = λet F�

G�(H)(0)Get Fe−λt

+ λ

∫ t

0
es F�

G�
(
d

dt
H(t − s)

)
Ges Fe−λs ds

= λJ (t) + K(F� H + H F − λH)(t).
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Next, to compute d
dt K j (H)(t), for j � 2, we use the induction principle. Let us

assume that, for some j � 2,

d

dt
K j−1(H)(t) = λK j−2(J )(t) + K j−1(F� H + H F − λH)(t).

It then follows that

d

dt
K j (H)(t) = λet F�

G�K j−1(H)(0)Get Fe−λt

+ λ

∫ t

0
es F�

G� d

dt
K j−1(H)(t − s)Ges Fe−λs ds

= λK j−1(J )(t) + K j (F� H + H F − λH)(t).

Using this last expression and recalling the definition of W from (27), we obtain

d

dt
W (t) =

+∞∑

j=1

K j (F�H + H F + λ(J − H))(t) + (F�H + H F + λ(J − H))(t),

which is the desired statement. �
Proof of Lemma5.3 We first verify the desired expression (31) for j = 1. It is seen
that

λJ (t) − λG� H(t)G = λeF�t G� QGeFte−λt − λG� H(t)G

= λ

∫ t

0

∂

∂s

(
eF�s G� H(t − s)GeFse−λs

)
ds

= F�K(H)(t) + K(H)(t)F − λK(H)(t)

+ λ

∫ t

0

(
eF�s G� ∂

∂s
H(t − s)GeFse−λs

)
ds

= F�K(H)(t) + K(H)(t)F − λK(H)(t)

− K(F� H + H F − λH)(t),

and hence (31) holds for j = 1.
Proceeding by induction, we assume that for some j � 1

F�K j (H)(t) + K j (H)(t)F − λK j (H)(t) = −λG�K j−1(H)(t)G

+K j (F� H + H F − λH) + λK j−1(J )(t). (53)

We then observe that

− λG�K j (H(t))G = λ

∫ t

0

∂

∂s j

(
eF�s j G�K j (H)(t − s j )GeFs j e−λs j

)
ds j (54)
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because K j (H)(0) = 0 for each j � 1. To compute the expression in the integrand
on the right-hand side, we observe that

∂

∂s j
K j (H)(t − s j ) = −λK j−1(J )(t − s j ) − K j (F� H + H F − λH)(t − s j ),

which results in

∂

∂s j

(
eF�s j G�K j (H)(t − s j )GeFs j e−λs j

)
ds j

= −λeF�s j G�K j−1(J )(t − s)GeFs j e−λs j

− eF�s j G�K j (F� H + H F − λH)(t − s j )GeFs j e−λs j

+ F�(eF�s j G�K j (H)(t − s j )GeFs j e−λs j )

+ (eF�s j G�K j (H)(t − s j )GeFs j e−λs j )F

− λ(eF�s j G�K j (H)(t − s j )GeFs j e−λs j ).

Substituting this last equality in (53), we get

λK j (J (t)) − λG�K j (H(t))G = F�K j+1(H)(t) + K j+1(H)(t)F − λK j+1(H)(t)

− K j+1(F� H + H F − λH)(t),

and the assertion follows. �
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9. T. Başar and P. Bernhard. H∞-Optimal Control and Related Minimax Design Problems: A
Dynamic Game Approach. Birkhäuser, Basel, 2nd edition, 2008.

10. T. Chen and B. A. Francis. Optimal Sampled-Data Control Systems. Springer-Verlag, London,
1995.

11. O. L. V. Costa, M. D. Fragoso, and M. G. Todorov. Continuous-Time Markov Jump Linear
Systems. Probability and its Applications (New York). Springer, Heidelberg, 2013.

12. C. G. Cassandras and J. Lygeros, editors. Stochastic Hybrid Systems. CRC Press, Taylor &
Francis Group, Boca Raton, FL, 2007.

13. M. H. A. Davis. Piecewise-deterministic Markov processes: a general class of nondiffu-
sion stochastic models. Journal of the Royal Statistical Society. Series B. Methodological,
46(3):353–388, 1984. With discussion.

14. M. H. A. Davis. Markov Models and Optimization, volume 49 of Monographs on Statistics
and Applied Probability. Chapman & Hall, London, 1993.

15. R. M. Dudley. Real Analysis and Probability, volume 74 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989
original.

16. E. B. Dynkin. Infinitesimal operators of Markov random processes. Doklady Akademii Nauk
SSSR, 105:206–209, 1955.

17. E. B. Dynkin. Markov processes and semi-groups of operators. Akademija Nauk SSSR. Teorija
Verojatnosteı̆ i ee Primenenija, 1:25–37, 1956.

18. G. F. Franklin, J. D. Powell, and M. Workman. Digital Control of Dynamic Systems. Addison-
Wesley, Reading, MA, 3rd edition, 1997.

19. W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity Solutions, vol-
ume 25 of Stochastic Modelling and Applied Probability. Springer, New York, 2 edition, 2006.

20. J. P. Hespanha. Modeling and analysis of networked control systems using stochastic hybrid
systems. Annual Reviews in Control, 38(2):155–170, 2014.

21. R. A. Horn and C. R. Johnson.Matrix Analysis. Cambridge University Press, 2nd edition, 2013.
22. W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada. An introduction to event-triggered and

self-triggered control. In Proc. 51st IEEE Conf. Decision & Control, pages 3270–3285, 2012.
23. J. P. Hespanha and A. R. Teel. Stochastic impulsive systems driven by renewal processes. In

Proc. 17th International Symposium on Mathematical Theory of Networked Systems, pages
606–618. 2006.

24. R. Kalman. Analysis and synthesis of linear systems operating on randomly sampled data. PhD
thesis, Department of Electrical Engineering, Columbia University, New York, USA, 1957.

25. R. Khasminskii. Stochastic Stability of Differential Equations, volume 66 of Stochastic Mod-
elling and Applied Probability. Springer, Heidelberg, 2nd edition, 2012. With contributions by
G. N. Milstein and M. B. Nevelson.

26. F. Kozin. A survey of stability of stochastic systems. Automatica, 5(1):95–112, 1969.
27. H. Kushner and L. Tobias. On the stability of randomly sampled systems. IEEE Transactions

on Automatic Control, 14(4):319–324, 1969.
28. H. J. Kushner. Stochastic Stability and Control. Mathematics in Science and Engineering, Vol.

33. Academic Press, New York-London, 1967.
29. O. Leneman. Random sampling of random processes: Mean-square behavior of a first order

closed-loop system. IEEE Transactions on Automatic Control, 13(4):429–432, 1968.
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Robust Design Through Probabilistic
Maximization

T. Alamo, J. M. Manzano and E. F. Camacho

Abstract In this chapter, we study randomized maximization methods for robust
design under uncertainty. In particular, we show how order statistics can be used to
derive novel design schemes. We provide concentration inequalities that allow us to
guarantee that the obtained design parametersmeet some probabilistic specifications.
The proposed methodology addresses the robust design problem without relying on
any convexity assumption or precise knowledge of the probabilistic distribution of the
underlying uncertainty. Moreover, the required sample complexity does not depend
on the dimension of the design problem. We also propose schemes that allow us to
obtain one level of probability guarantees.

Keywords Randomized algorithms · Probabilistic robustness · Uncertain systems

1 Introduction

In a robustness problem, the controller parameters and auxiliary variables are
parameterized by means of a decision variable vector θ, which is denoted as design
parameter and is restricted to a set Θ . Furthermore, the uncertainty w is bounded
in the set W and represents one of the admissible uncertainty realizations. We also
consider a real measurable function f : Θ × W → IR that serves to formulate the
specific design problem under consideration. For example, ifw represents the uncer-
tain parameters that characterize the dynamics of a given plant and θ the parameters
of the controller, f (θ, w) could represent the L2 gain corresponding to the pair
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(θ, w) (see [36]). Similar examples in which a function f (·, ·) is used to evaluate the
performance of a given design parameter θ under a specific realization of the uncer-
tainty w can be found in [33, 37, 39].

In a deterministic setting, we could try to compute the worst-case situation by
means of a maximization over the uncertain parameter set W . That is, given θ̂ ∈ Θ

we could try to compute
γmax (θ̂) = max

w∈W
f (θ̂, w).

This sort of maximization problems often belong to the family of NP-hard prob-
lems and their exact solution is normally unaffordable from a computational point of
view [13]. Sometimes a conservative approach is applied to obtain, not γmax (θ̂), but
an upper bound of its value. However, the obtained upper bounds might be highly
conservative.

In order to circumvent these issues, randomized algorithms can be used [37].
This is the approach that we follow in this chapter. Randomized algorithms have
been successful in addressing different robust control problems of convex [6, 16, 22,
30] and non-convex nature [4, 25]. See, [2, 27, 28, 34, 35], for recent applications.

We consider a probabilistic measure PrW in W . Given θ̂ ∈ Θ , violation level
η ∈ (0, 1) and failure level δ ∈ (0, 1), the objective of this chapter is to propose a
methodology to compute γ ∈ IR in such a way that, with probability at least 1 − δ,

PrW{ f (θ̂, w) > γ} ≤ η.

We notice that this is a two-level probabilistic constraint because it considers not
only the violation level η, but also the probability δ of not obtaining γ such that the
constraint PrW{ f (θ̂, w) > γ} ≤ η is satisfied. This problem has been addressed in
[36] (see also [11]). The following property summarizes the main contribution of
[36].

Property 1 Given θ ∈ Θ , the measurable function f : Θ × W → IR, η ∈ (0, 1)
and δ ∈ (0, 1), suppose that

N ≥ 1

η
ln

1

δ
.

Suppose also that w = {w(1), w(2), . . . , w(N )} are i.i.d samples drawn from a given
probability distribution PrW . Denote

γN = J (θ,w) = max
i=1,...,N

f (θ, w(i)).

Then, with probability at least 1 − δ,

PrW{ f (θ, w) > γN } ≤ η.
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The proof of this result can be found in [36]. We also provide an alternative proof in
this chapter. Property 1 is stated in terms of two probability levels. The first one is the
probability of violation η ∈ (0, 1) and the second one is the failure level δ ∈ (0, 1).
The sample complexity N in Property 1 grows linearly with 1

η
and with the natural

logarithm of 1
δ
. This means that affordable values for N are obtained even for very

small values of the failure level δ.
In this chapter, we propose some generalizations to Property 1 and show how to

use them in the context of control of uncertain systems.We also provide some results
that depend only on one level of probability (failure level δ). Except for a reference
to a corollary in [6], all the presented results are proved from scratch.

The chapter is organized as follows. In Sect. 2 we show, bymeans of an illustrative
example, how to use Property1 in the context of robust control. In Sect. 3 we propose
a generalization of the notion of max function borrowed from the field of order
statistics. We present a two-level of probability result in Sect. 4 that generalizes the
results presented in [36]. In Sect. 5, a one level of probability result is provided. The
relationship between the hypergeometric distribution and the problems addressed
in this chapter is made explicit in Sect. 6. Some conclusions are given in Sect. 7.
The chapter ends with four appendices that cover the most technical developments
required to prove several of the results presented in this chapter.

2 Motivational Example: Bounding the Error

Suppose that the dynamics of a system are given by

x(k + 1) = h(x(k), u(k)) + w(k),

wherew(k) ∈ IRnw is a random vector with probability distribution PrW . We assume
that w(k) is probabilistically independent from w(k − 1). That is, for every j and k,
with j < k, we have that

w = {w( j), w( j + 1), . . . , w(k)}

is a sequence of independent identically distributed (i.i.d.) disturbance-error terms.
We notice that given the sequences x(k) and u(k), the sequence of error terms can be
obtained directly from w(k) = x(k + 1) − h(x(k), u(k)). Suppose that we obtain S
i.i.d. error terms

{w̃(1), w̃(2), . . . , w̃(S)}.

We could derive an ellipsoidal outer bound E = { w : ‖w‖P ≤ γ }, where P > 0
and ‖w‖P = √

w�Pw, for this collection of S “learning points” choosing
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Fig. 1 Learning points and naive ellipsoidal bound

P =
(
1

S

S∑
i=1

w̃(i)(w̃(i))�
)−1

, (1)

γ = max
i=1,...,S

√
(w̃(i))�Pw̃(i). (2)

We notice that P corresponds to the inverse of the empirical covariance matrix. The
matrix P often provides a reasonable approximation of the geometry of a given cloud
of points (especially if the points are generated by a Gaussian distribution) [12, 31].
In Fig. 1, a randomly generated set of S learning points are displayed (S = 1000). The
points correspond to a multivariate Gaussian distribution. Also, the ellipsoidal outer
bound obtained by means of Eqs. (1) and (2) is shown. We notice that this “naive”
approach, although it is able to outer bound the cloud of learning points, does not
guarantee that additional i.i.d. “test points” are contained in the naive ellipsoidal
bound.

Suppose now that we are interested in bounding the error term by means of an
expression of the form

PrW{‖w‖P > γ} ≤ η, (3)

where η ∈ (0, 1) andPrW denotes the probabilisticmeasure related to the disturbance
error terms. We could, given a collection of i.i.d. learning samples, compute the
smallest ellipsoidal bound that contains all (or almost every) learning samples. Using
the results of convex scenario [15, 17, 18], we could obtain the number S of learning
samples required to guarantee, with high probability, that the obtained ellipsoidal
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bound meets the probabilistic specifications given by (3). We notice that the number
of decision variables required to parameterize matrix P grows with the square of
the dimension of the space. This could be an issue because the number of required
samples for convex scenario grows with the number of decision variables [3, 6].
Alternative sample complexity bounds could be obtained using results from statistical
learning theory [4, 38, 39].

In order to circumvent the negative impact that the dimensionality of the design
space has in the number of samples required to guarantee the probabilistic spec-
ifications, one can resort to probabilistic validation approaches. See, for example,
[6, 7, 20, 21, 32]. In this case, we could obtain P > 0 and γ from a learning set
and validate them by means of an additional validation set. The validation step could
consist of obtaining a collection of N i.i.d. validation samples {w(1), . . . , w(N )} and
checking if the constraints

‖w(i)‖P ≤ γ, i = 1, . . . , N

are satisfied. Here we could allow some violations of these constraints to increase
the possibility of passing the validation step (see, for example, [6, 10]). We notice
that this approach has the main drawback that the candidate pair (P, γ) could fail to
pass the validation step. Therefore, one is forced to include a mechanism to provide
a sequence of candidate solutions that are tested in a sequential manner until one of
them satisfies the exit condition (validation test). As it is detailed in [6, section 7],
this exit condition can lead to feasibility issues. Moreover, the recursive generation
of candidate solutions increases the sample complexity of the validation set [6, 32].

In order to avoid the incorporation of a validation test, we could proceed in a
different manner. We could obtain P > 0 from a learning data set (by means of
Eq. (1)) and derive γ from an additional one. That is, denoting f (θ, w) = w�Pw

and Θ = { P ∈ IRnw×nw : P > 0 } we have that given θ = P > 0 and a collection
of N i.i.d. error terms

{w(1), w(2), . . . , w(N )},

that have not been used to compute P , we could obtain

γN = max
i=1,...,N

‖w(i)‖P = max
i=1,...,N

f (θ, w(i)). (4)

It is clear that if N is large, γN constitutes a probabilistic upper bound for ‖w‖P .
In Fig. 2, the histogram of the weighted norm ‖w(i)‖P , i = 1, . . . , N , for an addi-

tional collection of N = 1000 i.i.d. error terms, is displayed.We could use Property1
to obtain the number N of i.i.d. samples required to guarantee, with probability no
smaller than 1 − δ, that γN satisfies

PrW{ f (θ, w) > γN } = PrW{‖w‖P > γN } ≤ η.



252 T. Alamo et al.

Fig. 2 Histogram of the weighted norm ‖w(i)‖P , i = 1, . . . , N , for the error terms in the additional
learning set

Fig. 3 Probabilistic ellipsoidal bound and additional test points w(i), i = N + 1, . . . , N + 10

We notice that this approach circumvents the issue of the dimension of the design
space since the number of required samples does not depend on it. Another advantage
is that this approach always provides a probabilistic outer bound (does not depend
on an exit condition). In Fig. 3, an ellipsoidal bound for the error terms is displayed.
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Matrix P has been obtained by means of a learning set (1000 samples) using Eq. (1)
and the radius γN as the maximum radius obtained from an additional maximization
set of 1000 samples (see Eq. (4)). Ten additional test points are also shown in the
figure.

Suppose that the support of PrW is not finite. That is, given any scalar γ̂ and
P > 0, the probability PrW{‖w‖P > γ̂} is strictly larger than zero. In this case, for
every γ̂, the probability PrWN {γN > γ̂} tends to 1 when N tends to infinity. Since
this is valid for every γ̂ we conclude that if the support of PrW is not finite then, with
probability 1, we have

lim
N→∞ γN = ∞.

This means that the probabilistic upper bound obtained by means of Property 1
degrades when 1

η
log 1

δ
is large because it eventually becomes too conservative.

In real systems, the support of PrW is usually finite. That is, there is a finite scalar
γ̂ such that PrW{‖w‖P ≤ γ̂} = 1. In this case γN is upper bounded, with probability
one, by γ̂. This means that when N tends to infinity, γN tends to the smallest value γ̂
satisfying PrW{‖w‖P ≤ γ̂} = 1. This behavior is convenient when considering hard
constraints onw because the probabilistic upper bound approaches (from below) the
largest possible value of ‖w‖P .

A very different situation occurs when we consider soft constraints (chance con-
straint setting). In this case, we are interested in the minimum value of γ for which
the probabilistic constraint PrW{‖w‖P > γ} ≤ η is satisfied. We notice that γN can
provide an overly conservative estimation because when N tends to infinity, γN tends
to the largest possible value of ‖w‖P regardless of the value of η.

In order to address this conservativeness issue, one can discard the largest values of
a given collection of N samples in the computation of the probabilistic upper bound
of f (θ, w) = √

w�Pw. In this way, the max function is replaced by a generalized
max function that leads to less conservative results. Next section formalizes this
concept.

3 Generalization of the Max Function

We now present a generalization of the notion of the maximum of a collection of
scalars. This generalization is borrowed from the field of order statistics [1, 8], and
will allow us to reduce the conservativeness that follows from the use of the standard
notion of max function. We assume that v is a real vector of N components. That is,

v = [v(1), v(2), . . . , v(N )]� ∈ IRN .

We denote by v+ the vector obtained rearranging the values of the components of v
in a non-increasing order. That is,
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v+ = [v(1)
+ , v

(2)
+ , . . . , v

(N )
+ ]� ∈ IRN ,

where
v

(1)
+ ≥ v

(2)
+ ≥ . . . ≥ v

(N−1)
+ ≥ v

(N )
+ .

Clearly,
v

(1)
+ = max

1≤i≤N
v(i), v

(N )
+ = min

1≤i≤N
v(i).

Furthermore, v(2)
+ denotes the second largest value in v and v

(N−1)
+ the second smallest

one. We notice that v
(i)
+ could be equal to v

(i+1)
+ if vector v has components with

repeated values. The inequalities

v
(i)
+ ≥ v

( j)
+ , j = i, . . . , N ,

imply that at most i − 1 components of v have values larger than v
(i)
+ . Moreover, v(i)

+
is larger than or equal to N − i + 1 components of vector v. We are now in a position
to introduce the notion of generalized max function.

Definition 1 (Generalized max function) Given vector

v = [v(1), v(2), . . . , v(N )]� ∈ IRN ,

and the integer r with 1 ≤ r ≤ N we denote

φ(v, r) = v
(r)
+

where vector v+ = [v(1)
+ , v

(2)
+ , . . . , v

(N )
+ ]� ∈ IRN is obtained by rearranging the val-

ues of the components of v in a non-increasing order. That is,

v
(1)
+ ≥ v

(2)
+ ≥ . . . ≥ v

(N−1)
+ ≥ v

(N )
+ .

The notation proposed in this chapter is similar to the one used in the field of
order statistics [1, 8]. Given a set of N scalars

{v(1), v(2), . . . , v(N )},

it is standard in order statistics to denote the smallest one by v1:N , the second small-
est one by v2:N , and so on so forth until vN :N which denotes the largest one. In this
way, given r ≥ 1 we have that vr :N satisfies that no more than r − 1 elements of
{v1, v2, . . . , vN } are strictly smaller than vr :N . Furthermore, vN :N is the largest ele-
ment. With the notation of order statistics we have φ(v, r) = v

(r)
+ = vN−r+1:N . We

notice that the notation φ(v, r) does not need to make explicit N , the number of
components of v. This provides a more compact notation and will be used in the
remaining part of the chapter.
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The following definition introduces the notion of empirical generalizedmaximum.

Definition 2 (Empirical generalized maximum) Given θ ∈ Θ , the integers r and
N with 1 ≤ r ≤ N and w = {w(1), . . . , w(N )}, we define the empirical generalized
maximum for the pair (θ,w) as

J N
r (θ,w) = φ(

⎡
⎢⎢⎢⎣

f (θ, w(1))

f (θ, w(2))
...

f (θ, w(N ))

⎤
⎥⎥⎥⎦ , r).

Clearly, ifw has been obtained sampling N elements fromW we have that J N
r (θ,w)

has a probabilistic nature. One of the main objectives of the chapter henceforth is to
analyze the effects of N and r on the probabilistic behavior of J N

r (θ,w) when used
as a chance constrained estimation of the maximum of f (θ, w) inW .

The notion of empirical generalized maximum allows us to generalize the results
of [36]. This is precisely the main objective of the next section.

4 Two Level of Probability Results

Before introducing the main result of this section, we present some definitions and
notations.

Definition 3 (Probability of violation) Given the pair (θ, γ) ∈ Θ × IR and the mea-
surable function f : Θ × W → IR, we define the probability of violation E(θ, γ)

as
E(θ, γ) = PrW{ f (θ, w) > γ}.

We notice that the probability constraint

E(θ, γ) = PrW{ f (θ, w) > γ} ≤ η

means that if we draw M i.i.d. samples {w(1), . . . , w(M)} and denote by s the number
of samples w(i) for which f (θ, w(i)) > γ, then the ratio s/M is upper bounded by η,
with probability 1, if M tends to infinity. Therefore, the constraint E(θ, γ) ≤ η can
be given an asymptotic interpretation.

Definition 4 (Probability of asymptotic failure) Given θ ∈ Θ , the measurable func-
tion f : Θ × W → IR, the violation level η ∈ (0, 1) and the integers N , r , with
1 ≤ r ≤ N , we define the probability of asymptotic failure Pη(N , r) as

Pη(N , r) = PrWN {E(θ, J N
r (θ,w)) > η}.
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That is, the probability of asymptotic failure is the probability of drawing w ∈
WN according to PrWN and obtaining PrW{ f (θ, w) > γN ,r } > η, where γN ,r =
J N
r (θ,w). The probability of asymptotic failure depends on the particular choices of

θ and f (·, ·).With a slight abuse of notation, we do notmake explicit this dependence
in the notation Pη(N , r) because, as it will be shown in this section, an upper bound
for the probability of asymptotic failure that only depends on η, N , and r can be
obtained.

We notice that Property 1 can be rewritten in terms of the probability of asymptotic
failure for the particular case r = 1. That is, we could rewrite Property 1 as

Property 2 Given θ ∈ Θ , the measurable function f : Θ × W → IR and η ∈
(0, 1), δ ∈ (0, 1), we have

Pη(N , 1) = PrWN {E(θ, J N
1 (θ,w)) > η} ≤ δ

provided that

N ≥ 1

η
ln

1

δ
.

We are now in a position to present a generalization of Property 1 that allows
us to better address chance constrained problems. The result is written in terms of
J N
r (θ,w).

Property 3 Given θ ∈ Θ , the measurable function f : Θ × W → IR, the integers
r and N with 1 ≤ r ≤ N and η ∈ (0, 1), we have

Pη(N , r) = PrWN {E(θ, J N
r (θ,w)) > η} ≤

r−1∑
i=0

(
N
i

)
ηi (1 − η)N−i . (5)

Moreover, given δ ∈ (0, 1), the probability of asymptotic failure Pη(N , r) is no larger
than δ, provided that

N ≥ 1

η

(
r − 1 + ln

1

δ
+

√
2(r − 1) ln

1

δ

)
. (6)

The first claim of the property is proved in Sect. 6. The second one is derived
directly from the first claim and corollary 1 in [6]. We notice that inequality (5) can
also be derived from classical results from order statistics [1, 8]. Another possibility
to prove inequality (5) is to resort to convex scenario [15, 19]. Property3 is stated in
terms of two probability levels. The first one is the probability of violation η and the
second one is the failure level δ. In the next section, we present a result that relies
only on one level of probability (failure level δ).
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5 One Level of Probability Results

As commented in the previous section, the probability constraint

PrW{ f (θ, w) > γ} ≤ η

can be given an asymptotic interpretation. In some relevant control design prob-
lems, one is not interested in an asymptotic result but in a non-asymptotic one. We
enumerate now some examples:

• Adaptive Control [9, 26]: Suppose that, in an adaptive control setting, the design
parameter vector θ(k) is updated every sample time k. Suppose also that

wa = {w(k−N+1), . . . , w(k−1), w(k)}

represents the last N sampled (i.i.d.) realizations of uncertainty. Given the positive
integer r , we could consider J N

r (θ(k),wa) as a probabilistic upper bound for
f (θ(k), w). Because of the adaptive nature of θ(k), we focus only on the constraint
J N
r (θ(k),wa) ≥ f (θ(k), w(k + 1)), where w(k + 1) denotes the uncertain future

realization of w ∈ W at sample time k + 1. That is, we are interested in bounding

PrWN+1{J N
r (θ(k),wa) < f (θ(k), w(k+1))}.

This problem has been addressed in the field of order statistics [1, 8] and in the
context of randomized algorithms [18]. For example, for the particular case r = 1,
Proposition 4 in [18] states that

PrWN+1{J1(θ(k),wa) < f (θ(k), w(k+1))} ≤ 1

N + 1
.

• Iterative Learning Control [14]: Consider, for example, a chemical batch pro-
cess in which before running each batch, the design control parameter is updated
taking into consideration information of the past batches. Suppose that wa =
{w(k−N+1), . . . , w(k−1), w(k)} represents the last N sampled (i.i.d.) realizations of
uncertainty. In this setting, given the design parameter vector θ(k) and the integer
r , we are interested in characterizing the probability of violation of the constraints

f (θ(k), w(k+i)) ≤ J N
r (θ(k),wa), i = 1, . . . , M,

where M denotes the number of uncertainty realizations required to model the
next batch. Let us state the problem in a more formal way. Suppose that

wb = {w(k+1), w(k+2), . . . , w(k+M)}
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represents the nextM future i.i.d. realizations of the uncertainty. Given the positive
integer s, we are interested in bounding the probability

PrWN+M {J N
r (θ(k),wa) < J M

s (θ(k),wb)},

which is the probability that more than s future samples out of a total of M do not
satisfy the constraint f (θ(k), w) ≤ J N

r (θ(k),wa).

In order to formalize the non-asymptotic result presented in this section, we intro-
duce in the following definition the notion of probability of non-asymptotic failure.

Definition 5 (Probability of non-asymptotic failure) Given the positive integers r ,
s, N , and M with r ≤ N and s ≤ M , suppose that

w = {w(1), w(2), . . . , w(N+M)}

is drawn according to PrWN+M . Denote

wa = {w(1), . . . , w(N )},
wb = {w(N+1), . . . , w(N+M)}.

We define the probability of non-asymptotic failure PM
s (N , r) as

PM
s (N , r) = PrWN+M {J N

r (θ,wa) < J M
s (θ,wb)}.

Next property constitutes one of the main contributions of the chapter. It provides an
upper bound to the probability of non-asymptotic failure.

Property 4 Given θ ∈ Θ , the measurable function f : Θ × W → IR, the integers
r , s, N , M with 1 ≤ r ≤ N and 1 ≤ s ≤ M, we have

PM
s (N , r) ≤

r−1∑
i=0

(
N
i

) (
M

q − i

)
(
N + M

q

) , (7)

where q = r + s − 1.

The inequality (7) is proved in Sect. 6. This result can also be derived using results
from the field of order statistics [1, 8]. We notice that the binomial coefficients
appearing in inequality (7) are defined as

(
n
m

)
=

{
0 if n < m
n!

m!(n−m)! otherwise.
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Property 4 can be used to derive numerically the sample complexity N required
to guarantee that the probability PM

s (N , r) does not exceed a given failure level
δ ∈ (0, 1) for specific values of r , M and s. The following property provides an
explicit sample complexity bound for the particular case s = 1. Notice that this case
is specially relevant in engineering problems for moderate values of M . The non-
failure situation for the choice s = 1 corresponds to

J N
r (θ, [w(1), . . . , w(N )]�) ≥ f (θ, w(N+ j)), j = 1, . . . , M.

That is, the probability of non-asymptotic failure for s = 1 is

PM
1 (N , r) = PrWN+M {J N

r (θ, [w(1), . . . , w(N )]�) < max
j=1,...,M

f (θ, w(N+ j))}.

The following property shows how to explicitly choose N in order to guarantee that
the probability of non-asymptotic failure PM

1 (N , r) is no larger than a given failure
level δ ∈ (0, 1).

Property 5 Given θ ∈ Θ , the measurable function f : Θ × W → IR, the positive
integers r , N and M, with r ≤ N, we have

PM
1 (N , r) ≤ 1 −

(
1 − r

N + 1

)M

. (8)

Moreover, given failure level δ ∈ (0, 1),

PM
1 (N , r) ≤ δ,

provided that

N ≥ r − 1 + rM

δ
.

Proof See AppendixC.
Thebounds on the probability of failure (both in its asymptotic andnon-asymptotic

versions) allow one to assess the probabilistic performance of a given design vector
θ ∈ Θ . Therefore, the bounds provided in Properties 3 and 4 provide a way to address
the robustness analysis. In order to pass from a probabilistic analysis framework to a
design one, different schemes are possible. For example, if the design parameter set
Θ has finite cardinality, then the “finite families for design” approach can be adopted
(see [5, 6, 29]). Another possibility is to resort to sequential schemes as in [6, 20,
32] or to randomization in the design space [24].
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6 Probabilistic Maximization by Sampling

We prove in this section the first claim of Property 4. We show that the probability of
non-asymptotic failure PM

s (N , r) canbeboundedby thehypergeometric distribution:

PM
s (N , r) ≤

r−1∑
i=0

(
N
i

) (
M

r + s − 1 − i

)
(

N + M
r + s − 1

) .

Once this inequality is proved, we will use it to derive the first claim of Property 3:

Pη(N , r) ≤
r−1∑
i=0

(
N
i

)
ηi (1 − η)N−i .

In order to relate the probability of non-asymptotic failurewith the hypergeometric
distribution we first introduce some notations. We will denote by CN+M

N the set
representing all the different ways of drawing, without replacement, N elements out
of a set of N + M . This is stated in a formal way in the following definition.

Definition 6 Given integers N and M , we say that the set of integers
I = {i1, i2, . . . , iN } belongs to CN+M

N if and only if

1 ≤ i1 < i2 < . . . < iN−1 < iN ≤ N + M.

Moreover, given I = {i1, i2, . . . , iN } ∈ CN+M
N , we denote by I c the complement of

I in 1, . . . , N + M . That is, Ic = { j1, j2, . . . , jM} with

1 ≤ j1 < j2 < . . . < jM−1 < jM ≤ N + M

and I
⋂

I c = ∅.
Every element I ∈ CN+M

N provides a different way of choosing N components
from v ∈ IRN+M . Therefore, the cardinality of CN+M

N is equal to

(
N + M

N

)
= (N + M)!

M !N ! .

The following definition introduces a notation that allows us to select from vector
v ∈ IRN+M a vector z ∈ IRN composed by N components from v ∈ IRN+M .

Definition 7 Given I = {i1, i2, . . . , iN } ∈ CN+M
N and vector

v = [v(1), v(2), . . . , v(N+M)]� ∈ IRN+M ,

we denote by
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z = v(I )

the vector
z = [z(1), z(2), . . . , z(N )]� ∈ IRN ,

where z( j) = v(i j ), j = 1, . . . , N .

It is clear that, given v ∈ IRN+M , 1 ≤ r ≤ N , and a random element I of CN+M
N ,

φ(v(I ), r)

provides probabilistic information about the N + M components of vector v. We
characterize in this section the values of integers N and r such that φ(v(I ), r) upper
bounds with high probability the remaining components of v, that is, the components
of v(I c). In particular, given 1 ≤ s ≤ M , we obtain the probability that the general-
ized max φ(v(I ), r) does not upper bound the generalized maximum φ(v(I c), s). In
the following property, the probability

PrCN+M
N

{φ(v(I ), r) < φ(v(I c), s)}

is bounded by means of the hypergeometric distribution.

Property 6 Given the positive integers N, r , M, and s, with 1 ≤ r ≤ N and 1 ≤
s ≤ M, we have

PrCN+M
N

{φ(v(I ), r) < φ(v(I c), s)} ≤
r−1∑
i=0

(
N
i

) (
M

q − i

)
(
N + M

q

) , ∀v ∈ IRN+M ,

where q = r + s − 1.

The proof of this property can be found in AppendixA.
We now present the main contribution of this section, which is the relationship

between the probability of non-asymptotic failure and the hypergeometric distribu-
tion,

Property 7 Given θ ∈ Θ , the measurable function f : Θ × W → IR, the integers
r , s, N , M with 1 ≤ r ≤ N and 1 ≤ s ≤ M, we have

PM
s (N , r) ≤

r−1∑
i=0

(
N
i

) (
M

q − i

)
(
N + M

q

) ,

where q = r + s − 1.
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Proof Given the positive integers N , r , M , and s, with 1 ≤ r ≤ N and 1 ≤ s ≤ M ,
suppose that

w = {w(1), w(2), . . . , w(N+M)}

is drawn according to PrWN+M . Let

wa = {w(1), . . . , w(N )},
wb = {w(N+1), . . . , w(N+M)}.

We have, by Definition 5, that the probability of non-asymptotic failure PM
s (N , r)

is equal to
PrWN+M {J N

r (θ,wa) < J M
s (θ,wb)}.

If we now define

vw = [ f (θ, w(1)), f (θ, w(2)), . . . , f (θ, w(N+M))]�
= [v1, v2, . . . , vN , vN+1, . . . , vN+M ]�

va(w) = [v1, v2, . . . , vN ]�
vb(w) = [vN+1, vN+2, . . . , vN+M ]�.

we obtain, by Definition 2,

J N
r (θ,wa) = φ(va(w), r)

J M
s (θ,wb) = φ(vb(w), s).

Therefore,

PM
s (N , r) = PrWN+M {J N

r (θ,wa) < J M
s (θ,wb)}

= PrWN+M {φ(va(w), r) < φ(vb(w), s)}.

Since the elements of w are i.i.d., the order in which they are drawn does not affect
the probability. That is,

PM
s (N , r) = PrWN+M {φ(va(w), r) < φ(vb(w), s)}

= PrWN+M ,CN+M
N

{φ(vw(I ), r) < φ(vw(I c), s)}.

In view of Property 6 we have that, for every vw ∈ IRN+M ,

PrCN+M
N

{φ(vw(I ), r) < φ(vw(I c), s)} ≤
r−1∑
i=0

(
N
i

) (
M

q − i

)
(
N + M

q

) .
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Since the previous inequality is valid for every vw ∈ IRN+M we obtain that the
probability of non-asymptotic failure can be bounded by an expression that does not
depend on the particular probability measure PrW . That is,

PM
s (N , r) = PrWN+M ,CN+M

N
{φ(vw(I ), r) < φ(vw(I c), s)}

≤
r−1∑
i=0

(
N
i

)(
M

q − i

)
(
N + M

q

) .

�

We now prove the first claim of Property 3. That is, we prove the following
property.

Property 8 Given θ ∈ Θ , the measurable function f : Θ × W → IR, the integers
r and N with 1 ≤ r ≤ N and η ∈ (0, 1), we have

Pη(N , r) = PrWN {E(θ, J N
r (θ,w)) > η} ≤

r−1∑
i=0

(
N
i

)
ηi (1 − η)N−i .

Proof Suppose that M is an integer and that s(M) denotes the smallest integer no
smaller than ηM . That is, s(M) = �ηM. Suppose now that

w = {w(1), w(2), . . . , w(N+M)}

is drawn according to PrWN+M . Let

wa = {w(1), . . . , w(N )},
wb = {w(N+1), . . . , w(N+M)}.

Suppose that γ ∈ IR satisfies

γ ≥ J M
s(M)(θ,wb).

Then, the fraction of the components of the vector

vb = [ f (θ, w(N+1)), f (θ, w(N+2)), . . . , f (θ, w(N+M))]� ∈ IRM

strictly larger than γ is no larger than

s(M) − 1

M
= �ηM − 1

M
<

ηM + 1 − 1

M
= η.
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From this we infer that if M tends to infinity, then the inequality

γ ≥ J M
s(M)(θ,wb)

implies, with probability 1, that

E(θ, γ) = PrW{ f (θ, w) ≤ γ} ≤ η.

If we make now γ equal to J N
r (θ,wa), we obtain that

J N
r (θ,wa) ≤ lim

M→∞ J M
s(M)(θ,wb)

implies
E(θ, J N

r (θ,wa)) ≤ η.

Therefore, the probability of asymptotic failure can be bounded by the probability
of the event

PrWN+M {J N
r (θ,wa) > lim

M→∞ J M
s(M)(θ,wb)} = lim

M→∞ PM
s(M)(N , r)

That is,
Pη(N , r) ≤ lim

M→∞ PM
s(M)(N , r).

From Property 4, we have

Pη(N , r) ≤ lim
M→∞ PM

s(M)(N , r)

≤ lim
M→∞

r−1∑
i=0

(
N
i

)(
M

r + s(M) − 1 − i

)
(

N + M
r + s(M) − 1

) ,

=
r−1∑
i=0

(
N
i

)
ηi (1 − η)N−i .

We notice that the last inequality is due to the asymptotic convergence of the hyper-
geometric distribution to the binomial one (see Property 11 in AppendixD). �

7 Conclusions

In this chapter we proposed a novel methodology, based on probabilistic maximiza-
tion, to address robust design problems. This technique allows one to assess the
probabilistic performance of a given design parameter vector. The proposed approach
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is well suited for non-asymptotic schemes as adaptive control or iterative learning
control. Concentration inequalities that allow one to guarantee that the obtained
design parameters meet some probabilistic specifications are presented. The pro-
posed methodology does not rely on any convexity assumption or precise knowledge
of the probabilistic distribution of the underlying uncertainty. Moreover, the required
sample complexity does not depend on the dimension of the design problem.
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Appendices

A: Properties of the Generalized Max Function

We now prove Property 6, which is rewritten here for the convenience of the reader.

Property 9 Given the positive integers N, r and s with 1 ≤ r ≤ N and 1 ≤ s ≤ M

PrCN+M
N

{φ(v(I ), r) < φ(v(I c), s)} ≤
r−1∑
i=0

(
N
i

) (
M

q − i

)
(
N + M

q

) , ∀v ∈ IRN+M ,

where q = r + s − 1.

Proof Denote by

v+ = [v(1)
+ , v

(2)
+ , . . . , v

(N+M)
+ ]� ∈ IRN+M

the vector composed by the components of v ∈ IRN+M ordered in non-increasing
order. Denote also by z the first q = r + s − 1 components of v+. That is,

z = [v(1)
+ , v

(2)
+ , . . . , v

(q)
+ ]� ∈ IRq .

Notice that, by construction, the smallest component of z is equal to v
q
+. Given I ∈

CM+N
N , suppose that at least r components ofv(I ) are included among the components

of z. This implies that
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φ(v(I ), r) ≥ v
q
+. (9)

Moreover, under the assumption that at least r components of v(I ) are included in z,
no more than q − r = s − 1 components of v(I c) are included in z. This means that

φ(v(I c), s) ≤ v
q
+. (10)

We conclude from inequalities (9) and (10) that if r or more components of v(I ) are
included in z, then

φ(v(I ), r) ≥ v
q
+ ≥ φ(v(I c), s).

Therefore, the probability of non-asymptotic failure is no larger than the probability
that fewer than r elements of v(I ) are included in z. Given i with 0 ≤ i ≤ r − 1, the
probability that v(I ) has exactly i components in z is given by

(
N
i

) (
M

q − i

)
(
N + M

q

) .

Therefore, the probability

PrCN+M
N

{φ(v(I ), r) < φ(v(I c), s)}

is bounded by

r−1∑
i=0

(
N
i

) (
M

q − i

)
(
N + M

q

) .

�

B: Inequalities for the Natural Logarithm

The following lemma states well-known bounds for the the natural logarithm. Such
inequalities are frequently used in the context of probability theory [23].

Lemma 1 Suppose that z ∈ [0, 1). Then,

z ≤ z + z2

2
≤ ln

(
1

1 − z

)
≤ z + z2

2(1 − z)
≤ z

1 − z
.

Proof The first inequality is trivial. From the well-known Taylor series expansion
for the natural logarithm (see, for example, [23, II.8]) we have
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ln

(
1

1 − z

)
=

∞∑
k=1

zk

k
.

Since z ≥ 0, we have

ln

(
1

1 − z

)
≥

2∑
k=1

zk

k
= z + z2

2
.

This proves the second inequality. We now prove the third one:

ln

(
1

1 − z

)
=

∞∑
k=1

zk

k
= z +

∞∑
k=2

zk

k

≤ z + z2

2

∞∑
k=0

zk = z + z2

2(1 − z)
.

We notice that in the last equality we used the equality
∞∑
k=0

zk = 1
1−z . The fourth

inequality follows directly from

z + z2

2(1 − z)
= z

(
1 + z

2(1 − z)

)
= z

(
2 − z

2(1 − z)

)
≤ z

1 − z
.

�

C: Non-asymptotic Failure (s = 1)

Wenowprove in this appendix Property 5,which is rewritten here for the convenience
of the reader.

Property 10 Given θ ∈ Θ , the measurable function f : Θ × W → IR, the positive
integers r , N and M, with r ≤ N, we have

PM
1 (N , r) ≤ 1 −

(
1 − r

N + 1

)M

. (11)

Moreover, given δ ∈ (0, 1),
PM
1 (N , r) ≤ δ,

provided that

N ≥ r − 1 + rM

δ
.
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Proof We first show that inequality (11) is satisfied for the particular case M = 1.
That is, we will prove that P1

1 (N , r) ≤ 1 − (1 − r
N+1 )

1 = r
N+1 . From Property 4 and

M = s = 1, we have

P1
1 (N , r) ≤

r−1∑
i=0

(
N
i

) (
1

r − i

)
(
N + 1
r

) .

Moreover, since (
1

r − i

)
=

{
1 if r − i = 1
0 if r − i > 1

,

we obtain that

P1
1 (N , r) ≤

r−1∑
i=0

(
N
i

) (
1

r − i

)
(
N + 1
r

) =
r−1∑

i=r−1

(
N
i

) (
1

r − i

)
(
N + 1
r

) =

(
N

r − 1

)(
1
1

)
(
N + 1
r

)

=
(

N !
(r − 1)!(N − r + 1)!

)(
r !(N − r + 1)!

(N + 1)!
)

= r

N + 1
.

That is,

P1
1 (N , r) ≤ r

N + 1
. (12)

We now prove that if inequality (11) is satisfied forM − 1 ≥ 1, then it is also satisfied
for M . That is, we assume now that

PM−1
1 (N , r) ≤ 1 −

(
1 − r

N + 1

)M−1

, (13)

and use this assumption to prove inequality (11). Suppose that

w = [w(1), w(2), . . . , w(N+M)]�

is drawn according to PrWM+N . Given integers i and j with 1 ≤ i ≤ j ≤ M , denote
by A j

i the event

J N
r (θ, [w(1), . . . , w(N )]�) ≥ f (θ, w(N+k)), k = i, . . . , j.

With this notation, we have that the event AM
1 is the complement of the event
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J N
r (θ, [w(1), . . . , w(N )]�) < max

j=1,...,M
f (θ, w(N+ j))

= J M
1 (θ, [w(N+1), . . . , w(N+M)]�).

That is,
PrWN+M {AM

1 } = 1 − PM
1 (N , r). (14)

Similarly, we have

PrWN+M {AM
M} = PrWN+M {J N

r (θ, [w(1), . . . , w(N )]�) ≥ f (θ, w(N+M))}
= PrWN+M {J N

r (θ, [w(1), . . . , w(N )]�) ≥ f (θ, w(N+1))}
= 1 − P1

1 (N , r).

We now show how to obtain a bound on PM
1 (N , r) from the bound on PM−1

1 (N , r).
Notice that

1 − PrM1 (N , r) = PrWN+M {AM
1 }

= PrWN+M {AM−1
1 and AM

M}
= PrWN+M {AM−1

1 }PrWN+M {AM
M |AM−1

1 }. (15)

We notice that the event AM−1
1 provides statistical evidence for the satisfaction of

the inequality
Jr (N , r) ≥ f (θ, w(N+M)).

That is,
PrWN+M {AM

M |AM
1 } ≥ PrWN+M {AM

M | not AM
1 }.

From this inequality we infer

PrWN+M {AM
M} = PrWN+M {AM

1 }PrWN+M {AM
M |AM

1 }
+PrWN+M { not AM

1 }PrWN+M {AM
M | not AM

1 }
≤ PrWN+M {AM

1 }PrWN+M {AM
M |AM

1 }
+PrWN+M { not AM

1 }PrWN+M {AM
M |AM

1 }
= (PrWN+M {AM

1 } + PrWN+M { not AM
1 })PrWN+M {AM

M |AM
1 }

= PrWN+M {AM
M |AM

1 }.

Thus,
PrWN+M {AM

M |AM
1 } ≥ PrWN+M {AM

M}.
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From this and Eq. (15), we obtain,

1 − PrM1 (N , r) = PrWN+M {AM−1
1 }PrWN+M {AM

M |AM−1
1 }

≥ PrWN+M {AM−1
1 }PrWN+M {AM

M}
= (1 − PM−1

1 (N , r))(1 − P1
1 (N , r)).

We conclude, in view of this and inequalities (12) and (13), that

1 − PrM1 (N , r) ≥ (1 − r

N + 1
)M−1(1 − r

N + 1
)

= (1 − r

N + 1
)M .

That is,

PrM1 (N , r) ≤ 1 −
(
1 − r

N + 1

)M

. (16)

This proves the first claim of the property. We now prove the second one. In view of
inequality (16), a sufficient condition for PM

1 (N , r) ≤ δ is

1 −
(
1 − r

N + 1

)M

≤ δ.

Equivalently,

1 − δ ≤
(
1 − r

N + 1

)M

,

ln (1 − δ) ≤ M ln

(
1 − r

N + 1

)
.

ln

(
1

1 − δ

)
≥ M ln

(
1

1 − r
N+1

)
. (17)

Since r
N+1 ∈ (0, 1), we infer from Lemma 1 (see AppendixB) that

ln

(
1

1 − r
N+1

)
≤

r
N+1

1 − r
N+1

= r

N + 1 − r
.

Therefore, a sufficient condition for inequality (17) is

ln

(
1

1 − δ

)
≥ rM

N + 1 − r
. (18)
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We have also from Lemma 1 that

δ ≤ ln

(
1

1 − δ

)
.

Therefore, a sufficient condition for inequality (18), and consequently for inequality
PM
1 (N , r) ≤ δ is

δ ≥ rM

N + 1 − r
,

N + 1 − r ≥ rM

δ
,

N ≥ r − 1 + rM

δ
.

�

D: Asymptotic Behavior of the Hypergeometric Distribution

It is well known that the hypergeometric distribution can be approximated by a
binomial distribution when the total population tends to infinity [23, II.11]. Next
property states the asymptotic approximation of the hypergeometric distribution by
a binomial one.

Property 11 Suppose that the integers r and N, with 1 ≤ r ≤ N, are given. Suppose
also that the sequence s(1),s(2), . . ., s(M) satisfies

lim
M→∞

s(M)

M
= η ∈ (0, 1).

Then,

lim
M→∞

r−1∑
i=0

(
N
i

) (
M

q(M) − i

)
(
N + M
q(M)

) =
r−1∑
i=1

(
N
i

)
ηi (1 − η)N−i ,

where q(M) = r + s(M) − 1.

Proof In order to simplify the notation, we do not make explicit the dependence with
respect to M in q(M).

Υi =
(
N + M

q

)−1 (
M

q − i

)

=
(
q!(N + M − q)!

(N + M)!
) (

M !
(q − i)!(M − q + i)!

)
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= q!
(q − i)!

(
M !

(N + M)!
) (

(N + M − q)!
(M − q + i)!

)

= q!
(q − i)!

(
(N + M − q)(N + M − q − 1) . . . (M − q + i + 1)

(N + M)(N + M − 1) . . . (M + 1)

)

= q!
(q − i)!

⎛
⎜⎜⎜⎝

N−i∏
j=1

N + M − q + 1 − j

N∏
j=1

N + M + 1 − j

⎞
⎟⎟⎟⎠

= q!
(q − i)!

⎛
⎜⎜⎜⎝

N−i∏
j=1

N + M − q + 1 − j

N−i∏
j=1

N + M + 1 − j
N∏

j=N−i+1
N + M + 1 − j

⎞
⎟⎟⎟⎠

=
⎛
⎝ i∏

j=1

q − j + 1

⎞
⎠

⎛
⎜⎜⎜⎝

N−i∏
j=1

N + M − q + 1 − j

N−i∏
j=1

(N + M + 1 − j)
i∏

j=1
M + j

⎞
⎟⎟⎟⎠

=
i∏

j=1

q − j + 1

M + j

N−i∏
j=1

N + M − q + 1 − j

N + M + 1 − j
(19)

Recall that q = q(M) = r + s(M) − 1. Since r and N are given (bounded) integers
we have from the assumptions of the property that

lim
M→∞

q(M)

M
= lim

M→∞
r + s(M) − 1

M
= η

lim
M→∞

q(M) − j + 1

M + j
= lim

M→∞
q(M)

M
= η, j = 1, . . . , r − 1,

lim
M→∞

N + M − q(M) + 1 − j

N + M + 1 − j
= lim

M→∞

(
1 − q(M)

M

)
= 1 − η, j = 1, . . . , N .

Therefore, from equality (19), we obtain

lim
M→∞ Υi =

i∏
j=1

η

N−i∏
j=1

(1 − η) = ηi (1 − η)N−i .
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We conclude

lim
M→∞

r−1∑
i=0

(
N
i

) (
M

q(M) − i

)
(
N + M
q(M)

) = lim
M→∞

r−1∑
i=0

(
N
i

)
Υi

=
r−1∑
i=0

(
N
i

)
ηi (1 − η)N−i .

�
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Compressive Sensing and Algebraic
Coding: Connections and Challenges

Mathukumalli Vidyasagar and Mahsa Lotfi

Abstract Compressive sensing refers to the reconstruction of high dimensional
but low-complexity objects from relatively few measurements. Examples of such
objects include: high dimensional but sparse vectors, large images with very few
sharp edges, and high-dimensional matrices of low rank. One of the most popular
methods for reconstruction is to solve a suitably constrained �1-norm minimization
problem, otherwise known as basis pursuit (BP). In this approach, a key role is
played by the measurement matrix, which converts the high dimensional but sparse
vector (for example) into a low-dimensional real-valued measurement vector. The
widely used sufficient conditions for guaranteeing that BP recovers the unknown
vector are the restricted isometry property (RIP), and the robust null space property
(RNSP). It has recently been shown that the RIP implies the RNSP. There are two
approaches for generating matrices that satisfy the RIP, namely, probabilistic and
deterministic. Probabilistic methods are older. In this approach, the measurement
matrix consists of samples of a Gaussian or sub-Gaussian random variable. This
approach leads to measurement matrices that are “order optimal,” in that the number
of measurements required is within a constant factor of the optimum achievable.
However, in practice, such matrices have no structure, which leads to enormous
storage requirements and CPU time. Recently, the emphasis has shifted to the use of
sparse binary matrices, which require less storage and are much faster than randomly
generatedmatrices. A recent trend has been the use ofmethods from algebraic coding
theory, in particular, expander graphs and low-density parity-check (LDPC) codes,
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to construct sparse binary measurement matrices. In this chapter, we will first briefly
summarize the known results on compressed sensing using both probabilistic and
deterministic approaches. In the first part of the chapter, we introduce some new
constructions of sparse binary measurement matrices based on low-density parity-
check (LDPC) codes. Then, we describe some of our recent results that lead to the
fastest available algorithms for compressive sensing in specific situations.We suggest
some interesting directions for future research.

1 Introduction

Compressed sensing refers to the recovery of high dimensional but low-complexity
entities from a limited number of measurements. The most widely studied applica-
tions of compressed sensing are the recovery of a high dimensional but low-rank
matrix from a small number of linear projections of the matrix, and vector recovery,
which is the problem studied in this chapter. Specifically, the problem is to recover a
vector x ∈ R

n where only k � n components are significant and the rest are either
zero or small, from a set of linear measurements y = Ax where A ∈ R

m×n . A variant
is when y = Ax + η where η denotes measurement noise, and a prior bound of the
form ‖η‖ ≤ ε is available. By far, the most popular solution methodology for this
problem is basis pursuit in which an approximation x̂ to the unknown vector x is
constructed via

x̂ := argmin
z

‖z‖1 s.t. ‖y − Az‖ ≤ ε. (1)

The basis pursuit approach (with η = 0 so that the constraint in (1) becomes y = Az)
was proposed in [1, 2], but without guarantees on its performance. During the mid-
2000s, several papers derived sufficient conditions on the measurement matrix A
under which basis pursuit leads to the recovery of all sufficiently sparse vectors.
Some of the more prominent papers are [3–7]. In particular, it is shown in [3] that
if the measurement matrix A consists of mn samples of a zero-mean, unit-variance
Gaussian or sub-Gaussian random variable, normalized by 1/

√
m, then basis pursuit

leads to the recovery of sparse vectors with high probability (with respect to the
process of generating A). In this approach, the number of measurements m that is
required is O(k log(n/k)). Subsequent research showed that any algorithm requires
Ω(k log(n/k)) measurements. See [8] for an early result, and [9] for a simpler and
more explicit version of this bound. Thus, during the early days of compressed
sensing theory, random Gaussian matrices were considered to be “order optimal” in
the sense that the number of measurements is within a fixed universal constant of the
minimum required.

In recent times, there has been a lot of interest in the use of sparse binarymeasure-
ment matrices for compressed sensing. One of the main advantages of this approach
is that it allows one to connect compressed sensing to fields such as graph theory
and algebraic coding theory. Random matrices are dense, and each element needs to
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be stored to high precision. In contrast, sparse binary matrices require less storage
both because they are sparse, and also because every nonzero element equals one.
For this reason, binary matrices are also said to be “multiplication-free.” As a result,
popular compressed sensing approaches such as (1) can be applied effectively for
far larger matrices, and with greatly reduced CPU time, when A is a sparse binary
matrix instead of a random Gaussian matrix.

Previously, the best available bounds for the number of measurements required by
a binarymatrix arem = O(max{k2,√n}). This bound is improved here to k

√
n. Note

that there is no O symbol in the formula. This contrasts with m = O(k log(n/k))
for random Gaussian matrices. However, in the latter case, the O symbol hides a
very large constant. It is shown here that for values of n < 105 of thereabouts, the
known bounds with binary matrices are in fact smaller than with random Gaussian
matrices.

The preceding discussion refers to the case where a particular matrix A is “guar-
anteed” to recover all sufficiently sparse vectors. A parallel approach is to study
conditions under which “most” sparse vectors are recovered. Specifically, in this
approach, n,m are fixed, and k is varied from 1 to m. For each choice of k, a large
number of vectors with exactly k nonzero components are generated at random, and
the fraction that is recovered accurately is computed. Clearly, as k is increased, this
fraction decreases. But the phenomenon of interest is known as “phase transition.”
One might expect that the fraction of recovered randomly generated vectors equals 1
when k is sufficiently small, and decreases gradually to 0 as k approachesm. In real-
ity, there is a sharp boundary below which almost all k-sparse vectors are recovered,
and above which almost no k-sparse vectors are recovered. This has been estab-
lished theoretically for the case where A consists of random Gaussian samples in
[6, 10–12]. A very general theory is derived in [13], where the measurement matrix
still consists of random Gaussians, but the objective function is changed from the
�1-norm to an arbitrary convex function. In a recent paper [14], phase transitions are
studied empirically for several classes of deterministic measurement matrices, and
it is verified that there is essentially no difference between the phase transitions with
random Gaussian matrices.

Now we describe the organization of the chapter as well as its contributions.
Part I of the chapter, specifically Sects. 2–5, contains background material, but also
includes some improvements over known results. Specifically, Sect. 2 gives a precise
definition of compressed sensing. Sections 3 and 7 discuss two of the most popular
sufficient conditions for achieving compressed sensing, namely, the restricted isom-
etry property (RIP) and the robust null space property (RNSP), respectively. The
relationship between the two is discussed in Sect. 5. Then, we review the literature
on the construction of binary matrices for compressed sensing in Sect. 6.

Part II of the chapter presents some original contributions on the construction
of binary measurement matrices where the number of measurements is “nearly
optimal.” In Sect. 7, we derive a sufficient condition for a binary matrix to sat-
isfy the RNSP. This condition improves the best-known bounds by a factor of
roughly 3

√
3/2 ≈ 2.6. In Sect. 8 we derive a universal lower bound on the numberm

of measurements that is needed to satisfy the sufficient condition derived in Sect. 7.
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It is shown that the number of measurements is minimized when the bipartite graph
associated with the measurement matrix has girth 6. In Sect. 9, we present a class of
binary matrices that have girth 6, which includes as special cases (i) a construction
from low-density parity-check (LDPC) coding theory known as array codes and (ii)
another construction based on Euler squares, the matrices in this class come close to
meeting the lower bound on the number of measurements derived in Sect. 8. This is
the justification for the phrase “nearly optimal” in the title of the chapter.

In Part III of the chapter, we present a new algorithm for compressed sensing that
is noniterative, i.e., does not involve any optimization. Consequently, it is hundreds of
times faster than basis pursuit. The new algorithm is based on the theory of expander
graphs, and is able to accommodate exactly sparse as well as nearly sparse vectors,
and also “shot noise,” that is, noise with bounded support.

Finally, in Part IV of the chapter, we focus on “statistical” recovery, that is, the
recovery of “most” sparse vectors as opposed to all sparse vectors. In this case, the
number of measurements can be reduced substantially. The currently best-known
results from the literature are presented in Sect. 16. In Sect. 17, we discuss the phase
transition behavior of the basis pursuit formulation when this class of binarymatrices
is used. In Sect. 18, we present some numerical examples. The last section containing
numerical examples is Sect. 19, where the performance of the noniterative algorithm
is illustrated.

On the basis of these examples, it is possible to conclude that: (i) there is no
discernible difference between the phase transition behavior with random Gaussian
matrices compared to the binary matrices proposed in [15], and the class of matrices
proposed here. On the other hand, the time of execution using our class of binary
matrices is 1,000 times faster, if notmore, compared to randomGaussianmatrices.On
the basis of the material presented here, we believe that the class of binary matrices
proposed here are a viable alternative to, and possibly a replacement for, random
Gaussian measurement matrices.

Part I: Preliminaries

2 Definition of Compressed Sensing

Let Σk ⊆ R
n denote the set of k-sparse vectors in Rn , that is

Σk := {x ∈ R
n : ‖x‖0 ≤ k},

where, as is customary, ‖ · ‖0 denotes the number of nonzero components of x . Given
a norm ‖ · ‖ on Rn , the k-sparsity index of x with respect to that norm is defined by

σk(x, ‖ · ‖) := min
z∈Σk

‖x − z‖.
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Now, we are in a position to define the compressed sensing problem precisely. Note
that A ∈ R

m×n is called the measurement matrix and Δ : Rm → R
n is called the

“decoder map.”

Definition 1 The pair (A,Δ) is said to achieve exact sparse recovery of order k if

Δ(Ax) = x, ∀x ∈ Σk . (2)

The pair (A,Δ) is said to achieve stable sparse recovery of order k and indices
p, q if there exists a constant C such that

‖Δ(Ax) − x‖p ≤ Cσk(x, ‖ · ‖q), ∀x ∈ R
n. (3)

The pair (A,Δ) is said to achieve robust sparse recovery of order k and indices
p, q (and norm ‖ · ‖) if there exist constants C and D such that, for all η ∈ R

m with
‖η‖ ≤ ε, it is the case that

‖Δ(Ax + η) − x‖p ≤ Cσk(x, ‖ · ‖q) + Dε, ∀x ∈ C
n. (4)

It is obvious that robust sparse recovery implies stable sparse recovery, which in
turn implies exact sparse recovery. The above definitions apply to general norms. In
this chapter, and indeed in much of the compressed sensing literature, the emphasis
is on the case where q = 1 and p ∈ [1, 2]. However, the norm on η is still arbitrary.

3 Approaches to Compressed Sensing—I: RIP

Next, we present some sufficient conditions for basis pursuit as defined in (1) to
achieve robust or stable sparse recovery. There are two widely used sufficient con-
ditions, namely, the restricted isometry property (RIP) and the stable or robust null
space property (SNSP or RNSP). We begin by discussing the RIP.

Definition 2 Amatrix A ∈ R
m×n is said to satisfy the restricted isometry property

(RIP) of order k with constant δ if

(1 − δ)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δ)‖u‖22, ∀u ∈ Σk . (5)

The RIP is formulated in [3]. In that same paper, another constant called the
“restricted orthogonality constant” is also introduced, but it is no longer used. Also,
some authors define the RIP constant to be the smallest constant such that (5) holds.
However, it is now known that determining the smallest constant such that (5) holds
is NP-hard. Thus, the emphasis in contemporary theory is on the following question:
Given integers n, k, and a constant δ, can we determine an integer m and a matrix
A ∈ R

m×n such that (5) holds?
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It is shown in a series of papers [3, 4, 7] that the RIP of A is sufficient for (A,ΔBP)

to achieve robust sparse recovery. Now, we present the best known, and indeed the
“best possible,” result relating RIP and robust recovery.

Theorem 1 If A satisfies the RIP of order tk with constant δtk <
√

(t − 1)/t for
some t ≥ 4/3, or δtk < t/(4 − t) for t ∈ (0, 4/3), then (A,ΔBP) achieves robust
sparse recovery. Moreover, both bounds are tight.

The first bound is proved in [16] while the second bound is proved in [17]. Note
that both bounds are equal when t = 4/3. Hence, the theorem provides a continuous
tight bound on δtk for all t > 0.

This theorem raises the question as to how one may go about designing measure-
ment matrices that satisfy the RIP. There are two popular approaches, one proba-
bilistic and one deterministic. In the probabilistic method, the measurement matrix
A equals (1/

√
m)Φ whereΦ consists ofmn independent samples of a Gaussian vari-

able, or more generally, a sub-Gaussian random variable. In this chapter, we restrict
our attention to the case where A consists of Gaussian samples, and refer the reader
to [18] for the more general case of sub-Gaussian samples. The relevant bound on
m to ensure that A satisfies the RIP with high probability is given next; it is a fairly
straightforward modification of [18, Theorem 9.27].

Theorem 2 Suppose an integer k and real numbers δ, ξ ∈ (0, 1) are specified, and
that A = (1/

√
m)Φ, where Φ ∈ R

m×n consists of independent samples of a normal
Gaussian random variable X. Define

g = 1 + 1√
2 ln(en/k)

, η =
√
1 + δ − 1

g
. (6)

Then, A satisfies the RIP of order k with constant δ with probability≥ 1 − ξ provided

m ≥ 2

η2

(
k ln

en

k
+ ln

2

ξ

)
. (7)

Proof The proof of this theorem is given in very sketchy form, as it follows that
of [18, Theorem 9.27]. In that theorem, it is shown that, if the measurement matrix
A ∈ R

m×n consists of independent samples of Gaussian random variables, and if

m ≥ 2

η2

(
k log

en

k
+ ln

2

ξ

)
,

where η satisfies

δ ≤ 2gη + g2η2,

then A satisfies the RIP of order k with constant δ, with probability ≥ 1 − ξ . Now,
the above equation can be rewritten as
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δ + 1 ≤ 1 + 2gη + g2η2 = (1 + gη)2.

Rearranging this equation leads to (6).

Equation (7) leads to an upper bound of the form m = O(k log(n/k)) for the
number of measurements that suffice for the random matrix to satisfy the RIP with
high probability. It is shown in [9, Theorem 3.1] that any algorithm that achieves
stable sparse recovery requiresm = O(k log(n/k))measurements. See [8, Theorem
5.1] for an earlier version. For the convenience of the reader, we restate the latter
theorem. Note that it is assumed in [9] that p = q = 1, but the proof requires only
that p = q. In order to state the theorem, we introduce the entropy with respect
to an arbitrary integer θ . Suppose θ ≥ 2 is an integer. Then, the θ -ary entropy
Hθ : (0, 1) → (0, 1] is defined by

Hθ (u) := −u logθ

u

θ − 1
− (1 − u) logθ (1 − u). (8)

If θ = 2, this is just the usual Shannon entropy (to the base 2) of a binary random
variable assuming the values 0 and 1 with probabilities u and 1 − u, respectively.
Elementary calculus shows that the θ -ary entropy assumes its maximum value when
u = (θ − 1)/θ =: u∗, and that H(u∗) = 1. Moreover, Hθ (·) is monotonic on either
side of u∗.

Theorem 3 Suppose A ∈ R
m×n and that, for some map Δ : Rm → R

n, the pair
(A,Δ) achieves stable k-sparse recoverywith constant C.Define θ = n/k�. Then,1

m ≥ 1 − Hθ (1/2)

log(4 + 2C)
k log θ (9)

= 1

log(4 + 2C)

log(θ/2
√

θ − 1)

log θ
k log θ (10)

≈ 1

2(log(4 + 2C))
k log

⌊n
k

⌋
if n � k. (11)

Because robust k-sparse recovery implies stable k-sparse recovery, the bound in
(11) applies also to robust k-sparse recovery. Note that the expression (9) is the one
presented in [9, Theorem 3.1], but the second and third expressions follow readily.

Comparing Theorems 2 and 3 shows that m = O(k log(n/k)) measurements are
both necessary and sufficient for robust k-sparse recovery. For this reason, the prob-
abilistically generated measurement matrices are considered to be “order optimal.”
However, this statement is misleading because the O symbol in the upper bound
hides a very large constant, as shown next.

1Note that the base of the logarithm does not matter because it cancels out between the two log
terms.
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Example 1 Suppose n = 22, 201 = 1492 and k = 69, which is a problem instance
studied later in Sect. 18. Then, the upper and lower bounds from Theorems 2 and 3
imply that

14 ≤ m ≤ 44, 345.

Thus, the spread between the upper and lower bounds is more than three orders of
magnitude. Also, the upper bound for the number of measurements is more than the
dimension n.

There is another factor as well. As can be seen from Theorem 2, probabilistic
methods lead tomeasurementmatrices that satisfy theRIP only with high probability,
that can be made close to one but never exactly equal to one. Moreover, as shown in
[19], once a matrix has been generated, it is NP-hard to test whether that particular
matrix satisfies the RIP.

These observations have led the research community to explore deterministic
methods to construct matrices that satisfy the RIP. A popular approach is based on
coherence of a matrix.

Definition 3 Suppose A ∈ R
m×n is column normalized, so that ‖a j‖2 = 1 for all

j ∈ [n], where a j denotes the j-column of A. Then, the coherence of A is denoted
by μ(A) and is defined as

μ(A) := max
i �= j

|〈ai , a j 〉|. (12)

The following result is an easy consequence of the Gershgorin circle theorem.

Lemma 1 A matrix A ∈ R
m×n satisfies the RIP of order k with constant

δk = (k − 1)μ, (13)

provided that (k − 1)μ < 1, or equivalently, k < 1 + 1/μ.

4 Approaches to Compressed Sensing—II: RNSP

An alternative to the RIP approach to compressed sensing is provided by the stable
(and robust) null space property. The SNSP is formulated in [20], while, to the best
of the authors’ knowledge, the RNSP is formulated for the first time in [21]; see also
[18, Definition 4.17].

Definition 4 Suppose A ∈ R
m×n and let N (A) denote the null space of A. Then,

A is said to satisfy the stable null space property (SNSP) of order k with constant
ρ < 1 if, for every set S ⊆ [n] with |S| ≤ k, we have that

‖vS‖1 ≤ ρ‖vSc‖1, ∀v ∈ N (A). (14)
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The matrix A is said to satisfy the robust null space property (RNSP) of order k for
the norm ‖ · ‖ with constants ρ < 1 and τ > 0 if, for every set S ⊆ [n] with |S| ≤ k,
we have that

‖hS‖1 ≤ ρ‖hSc‖1 + τ‖Ah‖, ∀h ∈ R
n. (15)

It is obvious that RNSP implies the SNSP.
The utility of these definitions is brought out in these theorems.

Theorem 4 (See [18, Theorem 4.12]) Suppose A satisfies the stable null space
property of order k with constant ρ. Then, the pair (A,ΔBP) achieves stable k-sparse
recovery with

C = 2
1 + ρ

1 − ρ
. (16)

Theorem 5 (See [18, Theorem 4.22]) Suppose A satisfies the robust null space
property of order k for the norm ‖ · ‖with constants ρ and τ . Then, the pair (A,ΔBP)

achieves robust k-sparse recovery with

C = 2
1 + ρ

1 − ρ
, D = 4τ

1 − ρ
. (17)

5 Relationship Between RIP and RNSP

Until recently, the twin approaches of RIP and RNSP had proceeded along parallel
tracks. However, it is shown in [22, Theorem 9] that if A satisfies the RIP of order tk
with constant δtk <

√
(t − 1)/t for some t > 1, then it satisfies the RSNP of order

k. The specific result is the following:

Theorem 6 Given integers k, n, and a real number t > 1, suppose that the matrix
A satisfies the RIP of order tk with constant δtk = δ <

√
(t − 1)/t . Define

ν := √
t (t − 1) − (t − 1). (18)

Then, A satisfies the RNSP with constants

ρ = c/a < 1, τ = b
√
k/a2, (19)

where

a := [ν(1 − ν) − δ(0.5 − ν + ν2)]1/2

= [(1 − δ) − (1 + δ)(1 − 2ν)2]1/2
2

, (20)

b := ν(1 − ν)
√
1 + δ, (21)
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c :=
[

δν2

2(t − 1)

]1/2

. (22)

As stated in Theorem 1, δtk <
√

(t − 1)/t is the weakest sufficient condition in
terms ofRIP for robust sparse recovery,whenever t > 4/3. Taken in conjunctionwith
Theorem 6, it follows that it is not possible to obtain weaker sufficient conditions
using the RIP approach than using the RNSP approach.

Note that if A has coherenceμ, then byLemma1,we have that δtk ≤ (tk − 1)μ for
all t . Next, by Theorem 6, basis pursuit achieves robust k-sparse recovery, whenever

(tk − 1)μ <

√
t − 1

t
(23)

for any t > 1. So, let us ask: What is an “optimal” choice of t? To answer this
question, we neglect the 1 in comparison to tk, and rewrite the above inequality as

kμ <

√
t − 1

t3
.

Thus, we get the best bound by maximizing the right side with respect to t . It is
an easy exercise in calculus to show that the maximum is achieved with t = 1.5,
and the corresponding bound

√
(t − 1)/t = 1/

√
3. Hence, by combining with

Lemma 1, we can derive the following bound.

Theorem 7 Suppose A ∈ R
m×n has coherence μ. Then, (A,ΔBP) achieves robust

k-sparse recovery, whenever

(1.5k − 1)μ < 1/
√
3, (24)

or equivalently

k <

⌊
2

3
√
3μ

+ 2

3

⌋
. (25)

Moreover, the bound is nearly optimal when applying Theorem 6.

If we retain the term tk − 1 instead of replacing it by tk, we would get a more
complicated expression for the optimal value of t . However, it can be verified that if
(24) is satisfied, then so is (23).

6 Binary Matrices for Compressed Sensing: A Review

In this section, we present a brief review of the use of binarymatrices asmeasurement
matrices in compressed sensing. The first construction of a binarymatrix that satisfies
the RIP is due to DeVore and is given in [15]. The DeVore matrix has dimensions



Compressive Sensing and Algebraic Coding… 285

q2 × qr+1, where q is a power of a prime number, and r ≥ 2 is an integer, has exactly
q elements of 1 in each column, and has coherence μ ≤ r/q. This construction
is generalized to algebraic curves in [23], but does not seem to offer much of an
advantage over that in [15]. A construction that leads to matrices of order 2m ×
2m(m+1)/2 based on Reed–Muller codes is proposed in [24]. Because the number of
measurements is restricted to be a power of 2, this is not a very practical method. A
construction in [25] is based on a method to generate Euler squares from nearly a
century ago [26]. The resulting binary matrix has dimensions lq × q2, where q is an
arbitrary integer, making this perhaps themost versatile construction. The integer l is
bounded as follows: Let q = 2r0 pr11 . . . prss be the prime number decomposition of q.
Then l + 1 ≤ min{2r0 , pr11 , . . . , prss }. In particular, if q is itself a power of a prime,
we can have l = q − 1. Each column of the resulting binary matrix has exactly l
ones and the matrix has coherence 1/ l. All of these matrices can be used to achieve
robust k-sparse recovery via the basis pursuit formulation, by combining Lemma 1
with Theorem 1. Another method found in [27] constructs binary matrices using the
Chinese remainder theorem, and achieves probabilistic recovery.

There is another property that is sometimes referred to as the �1-RIP, introduced
in [28–30], which makes a connection between expander graphs and compressed
sensing. However, while this approach readily leads to stable k-sparse recovery, it
does not lend itself readily to robust k-sparse recovery. One of the main contributions
of [31] is to show that the construction of [15] can also be viewed as a special case
of an expander graph construction proposed in [32].

Yet another direction is initiated in [33], in which a general approach is presented
for generating binarymatrices for compressed sensing using algebraic coding theory.
In particular, it is shown that binary matrices which, when viewed as elements over
the binary field F2, have good properties in decoding, will also be good measurement
matrices when viewed as matrices of real numbers. In particular, several notions of
“pseudoweights” are introduced, and it is shown that these pseudoweights can be
related to the satisfaction of the stable (but not robust) null space property of binary
matrices. These bounds are improved in [34] to prove the stable null space property
under weaker conditions than in [33].

Part II: Binary Matrices Based on LDPC Codes

7 Robust Null Space Property of Binary Matrices

In this section, we commence presenting the new results of this chapter on identifying
a class of binary matrices for compressed sensing that has a nearly optimal number
of measurements. Note that the contents of this part of the chapter are taken from
[35].

Suppose A ∈ {0, 1}m×n with m < n. Then, A can be viewed as the biadjacency
matrix of a bipartite graph with n input (or “left”) nodes and m output (or “right”)
nodes. Such a graph is said to be left regular if each input node has the same degree,



286 M. Vidyasagar and M. Lotfi

say dl . This is equivalent to saying that each column of A contains exactly dl ones.
Given a bipartite graph with E edges, n input nodes and m output nodes, define
the “average left degree” of the graph as d̄l = E/n and d̄r = E/m. Note that these
average degrees need not be integers. Then, it is clear that nd̄l = md̄r . The girth of
a graph is defined as the length of the shortest cycle. Note that the girth of a bipartite
graph is always an even number, and in “simple” graphs (not more than one edge
between any pair of vertices), the girth is at least four.

Hereafter, in this chapter, we will not make a distinction between a binary matrix,
and the bipartite graph associated with the matrix. Specifically, the columns cor-
respond to the “left” nodes while the rows correspond to the “right” nodes. So an
expression such as “A is a left-regular binary matrix of degree dl” means that the
associated bipartite graph is left regular with degree dl . This usage will permit us to
avoid some tortuous sentences.

Theorems 8 and 9 are the starting point for the contents of this section.

Theorem 8 (See [34, Theorem 2]) Suppose A ∈ {0, 1}m×n is left regular with left
degree dl , and suppose that the maximum inner product between any two columns
of A is λ. Then, for every v ∈ N (A), we have that

|vi | ≤ λ

2dl
‖v‖1, ∀i ∈ [n], (26)

where [n] denotes {1, . . . , n}.
If the matrix A has girth 6 or more, then the maximum inner product between any

two columns of A is at most equal to one. In such a case, it is possible to improve
the bound (26).

Theorem 9 (See [34, Theorem 3]) Suppose A ∈ {0, 1}m×n and that A has girth
g ≥ 6. Then, for every v ∈ N (A), we have that

|vi | ≤ ‖v‖1
C ′ , ∀i ∈ [n], (27)

where, if g = 4t + 2, then

C ′ := 2
t∑

i=0

(dl − 1)i , (28)

and if g = 4t , then

C ′ := 2
t−1∑
i=0

(dl − 1)i , (29)

Note that Theorem 9 is an improvement over Theorem 8 only when the girth of the
graph is ≥ 10. If the girth equals 6, then C ′ as defined in (28) becomes C ′ = 2, and
the bound in (27) becomes the same as that in (26) after noting that λ = 1. Similarly,
if g = 8, then C ′ in (29) also becomes just C ′ = 2.
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In [34], the bounds (26) and (27) are used to derive sufficient conditions for the
matrix A to satisfy the stable null space property. However, it is now shown that the
same two bounds can be used to infer the robust null space property of A. This is a
substantial improvement, because with such an A matrix, basis pursuit would lead
to robustness against measurement noise, which is not guaranteed with the SNSP.
We derive our results through a series of preliminary results.

Lemma 2 Suppose A ∈ R
m×n, and let ‖ · ‖ be any norm onRm. Suppose there exist

constants α > 2, β > 0 such that

|hi | ≤ ‖h‖1
α

+ β‖Ah‖, ∀i ∈ [n], ∀h ∈ R
n . (30)

Then, for all k < α/2, the matrix A satisfies the RNSP of order k. Specifically,
whenever S ⊆ [n] with |S| ≤ k, (15) holds with

ρ = k

α − k
, τ = αkβ

α − k
. (31)

Proof Let S ⊆ [n] with |S| ≤ k be arbitrary. Then,

‖hS‖1 =
∑
i∈S

|hi |

≤ k

α
‖h‖1 + kβ‖Ah‖

= k

α
(‖hS‖1 + ‖hSc‖1) + kβ‖Ah‖.

Therefore,

(
1 − k

α

)
‖hS‖1 ≤ k

α
‖hSc‖1 + kβ‖Ah‖,

or

‖hS‖1 ≤ k

α − k
‖hSc‖1 + αkβ

α − k
‖Ah‖,

which is the desired conclusion.

Next, let A ∈ R
m×n be arbitrary and let ‖ · ‖ be any norm on R

n . Let N (A) ⊆
R

n denote the null space of A, and let N ⊥ := [N (A)]⊥ denote the orthogonal
complement of N (A) in Rn . Then, for all u ∈ N ⊥, it is easy to see that

‖u‖2 ≤ 1

σmin
‖Au‖2,
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where σmin is the smallest nonzero singular value of A. Because all norms on a finite-
dimensional space are equivalent, there exists a constant c that depends only on the
norm ‖ · ‖ on R

m such that

‖y‖2 ≤ c‖y‖, ∀y ∈ R
m . (32)

In particular, ‖y‖2 ≤ ‖y‖1, so we can take c = 1 in this case. Therefore, by Schwarz’
inequality, we get

‖u‖1 ≤ √
n‖u‖2 ≤ c

√
n

σmin
‖Au‖, ∀u ∈ N ⊥. (33)

Now, we can state the main result of this section.

Theorem 10 Suppose A ∈ {0, 1}m×n is left regular with left degree dl , and let λ

denote the maximum inner product between any two columns of A (and observe that
λ ≤ dl). Next, let σmin denote the smallest nonzero singular value of A, and for an
arbitrary norm ‖ · ‖ on R

m, choose the constant c such that (32) holds. Then, A
satisfies (30) with

α = 2dl
λ

, β =
(

λ

2dl
+ 1

)
c
√
n

σmin
. (34)

Consequently, for all k < α/2 = dl/λ, A satisfies the RNSP of order k with

ρ = λk

2dl − λk
, τ = 2dlk

2dl − λk
β. (35)

Proof Let h ∈ R
n be arbitrary, and express h as h = v + u, where v ∈ N (A) and

u ∈ N ⊥. Then, clearly

|hi | = |vi + ui | ≤ |vi | + |ui |, ∀i ∈ [n].

We will bound each term separately.
As shown in Theorem 8, we have that

|vi | ≤ λ

2dl
‖v‖1

≤ λ

2dl
(‖h‖1 + ‖u‖1)

≤ λ

2dl
‖h‖1 + λc

√
n

2dlσmin
‖Au‖

= λ

2dl
‖h‖1 + λc

√
n

2dlσmin
‖Ah‖,

where the last step follows from the fact that Ah = Au because Av = 0. Next,
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|ui | ≤ ‖u‖1 ≤ c
√
n

σmin
‖Ah‖, ∀i ∈ [n].

Combining these two inequalities shows that

|hi | ≤ |vi | + |ui | ≤ λ

2dl
‖h‖1 +

(
λ

2dl
+ 1

)
c
√
n

σmin
‖Ah‖.

This establishes (34). Now (35) follows from Lemma 2, specifically (31).

Theorem 11 Suppose A ∈ {0, 1}m×n is left regular with left degree dl , and has girth
of at least six. Define the constant C ′ as in (28) or (29) as appropriate. Then, for all
k < C ′/2, the matrix A satisfies the RNSP of order k, with constants

ρ = k

C ′ − k
, τ = C ′k

C ′ − k
β. (36)

The proof of Theorem 11 is entirely analogous to that of Theorem 10, with the
bound in Theorem 9 replacing that in Theorem 8. Therefore, the proof is omitted.

The results in Theorem 10 lead to sharper bounds for the sparsity count compared
to using RIP and coherence bounds. This is illustrated next.

Example 2 Suppose A ∈ {0, 1}m×n is left regular with degree dl and with the inner
product between any two columns bounded by λ. Then, it is easy to see that the
coherence μ of A is bounded by λ/dl . Therefore, if we use Theorem 7, then it
follows that (A,ΔBP) achieves robust k-sparse recovery, whenever

k <

⌊
2dl

3
√
3λ

+ 2

3

⌋
.

In contrast, if we use Theorem 10, it follows that (A,ΔBP) achieves robust sparse
recovery, whenever k < dl/λ, which is an improvement by a factor of roughly
3
√
3/2 ≈ 2.6.

8 Lower Bounds on the Number of Measurements

Theorem9 shows that, for a fixed left degreedl , as the girth of the graph corresponding
to A becomes larger, so does the constant C ′. Therefore, as the girth of A increases,
so does the upper bound on k as obtained from Theorem 11. This suggests that, for
a given left degree dl and number of input nodes n, it is better to choose graphs of
large girth. However, as shown next, as the girth of a graph is increased, the number
of measurements m also increases. As shown below, the “optimal” choice for the
girth is actually six.



290 M. Vidyasagar and M. Lotfi

To establish this statement, let us define

k̄ :=
{

(dl − 1)t if g = 4t + 2,
(dl − 1)t−1 if g = 4t.

(37)

It is recognized that k̄ is just the last term in the summation in (28) and (29). Now,
if the actual sparsity count k satisfies k ≤ k̄, then it follows from Theorem 9 that
the pair (A,ΔBP) achieves robust k-sparse recovery. As stated before, if we choose
the matrix A to have higher and higher girth, the bound k̄ also becomes higher. So,
the question, therefore, becomes: What happens to m, the number of measurements,
as the girth is increased? The answer is given next.

Theorem 12 Suppose A ∈ {0, 1}m×n is dl -left regular graph with m ≤ n, and that
every row and every column of A contain at least two ones. If the girth g of A equals
4t + 2, then

m ≥ k̄2/(t+1)nt/(t+1), (38)

whereas if g = 4t for t ≥ 2, then

m ≥ k̄(2t−1)/[t (t−1)]n(t−1)/t . (39)

The proof of Theorem 12 is based on the following result [36, Equations (1) and
(2)]:

Theorem 13 Suppose A ∈ {0, 1}m×n withm < n. Suppose, further, that in the bipar-
tite graph associated with A, every node has degree ≥ 2.2 Let E denote the total
number of edges of the graph, and define d̄l = E/n, d̄r = E/m to be the average
left-node degree and average right-node degree, respectively. Suppose, finally, that
the graph has girth g = 2r . Then,

m ≥
r−1∑
i=0

(d̄l − 1)�i/2�(d̄r − 1)i/2�. (40)

It is important to note that the above theorem does not require any assumptions
about the underlying graph (e.g., regularity). The only assumption is that every node
has degree two or more, so as to rule out trivial cases. Usually, such theorems are
used to find upper bounds on the girth of a bipartite graph in terms of the numbers
of its nodes and edges (as in Theorem 14 below). However, we turn it around here
and use the theorem to find a lower bound on m, given the integers n and g.

Note that if g = 4, then r = 2 and the bound (40) becomes m ≥ d̄l , which is
trivial. In fact, m has to exceed the maximum degree of any left node. However, for
g ≥ 6, the bound in (40) is meaningful.

2This is equivalent to the requirement that every row and every column of A contains at least two
ones.
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Proof (Of Theorem 12) The bound (40) implies that m is no smaller than the last
term in the summation, that is

m ≥ d̄�(r−1)/2�
l d̄(r−1)/2�

r . (41)

Because A is assumed to be left regular, actually d̄l = dl , but we do not make use
of this, and will carry the symbol d̄l throughout. By definition, we have that d̄r =
(nd̄l)/m. Therefore, if n ≥ m, then it follows that

d̄r − 1 = nd̄l
m

− 1 ≥ nd̄l
m

− n

m
= n

m
(d̄l − 1).

Therefore, (41) implies that

m ≥ (d̄l − 1)α
( n

m

)(r−1)/2�
, (42)

where

α = �(r − 1)/2� + (r − 1)/2�.

Now, we treat the cases g = 4t + 2 and g = 4t separately. If g = 4t + 2, then
r = g/2 = 2t + 1, so that

�(r − 1)/2� = (r − 1)/2� = t, α = 2t.

Therefore, (42) becomes

m ≥ (d̄l − 1)2t
( n

m

)t = k̄2
( n

m

)t
.

This can be rearranged as

mt+1 ≥ nt k̄2,

or

m ≥ k̄2/(t+1)nt/(t+1),

which is (38). In case g = 4t , the proof proceeds along entirely parallel lines and is
omitted.

It is obvious from (38) that the lower bound is minimized (for a fixed choice
of n and k̄) with t = 1 or g = 6. Similarly, the lower bound in (39) is minimized
when t = 2 or g = 8. Higher values of g would lead to more measurements being
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required. We can also compare g = 6 with g = 8 and show that g = 6 is better. Let
us substitute t = 1 in (38) and t = 2 in (39). This gives

m ≥
{
k̄n1/2 if g = 6,
k̄3/2n1/2 if g = 8.

(43)

If we wish to have fewer measurements than the dimension of the unknown vector,
we can set m < n. Substituting this requirement into (43) leads to

k̄ < n1/2 if g = 6, k̄ < n1/3 if g = 8.

Hence, graphs of girth 6 are preferable to graphs of girth 8, because the upper limit
on the recoverable sparsity count k̄ is higher with a graph of girth 6 than with a graph
of girth 8.

9 Construction of Nearly Optimal Graphs of Girth 6

The discussion of the preceding section suggests that we must look for bipartite
graphs of girth 6 where the integer m satisfies the bound (40) with the ≥ replaced by
an equality, or at least, close to it. In this section, we prove a general result to the effect
that a class of binary matrices has girth 6. Then, we give two specific constructions.
The first of these is based on array codes which are a part of low-density parity-check
(LDPC) codes, and the second is based on Euler squares. The first construction is
easier to explain, but the second one gives far more flexibility in terms of the number
of measurements.

Here is the general theorem.

Theorem 14 Suppose A ∈ {0, 1}lq×q2
for some integers 4 ≤ l ≤ q − 1. Suppose,

further, that

1. d̄l ≥ l, where d̄l is the average left degree of A.
2. The maximum inner product between any two columns of A is one.
3. Every row and every column of A have at least two ones.

Then the girth of A is six.

Remark: Before proving the theorem, let us see how closely such a matrix satisfies
the inequality (40). In the constructions below, we have that d̄l = dl = l, g = 6, and
r = 3. Therefore, the bound in (40) becomes

m ≥ 1 + (l − 1) + (l − 1)(q − 1) = q(l − 1) + 1.

Since m = lq, we see that the actual value of m exceeds the lower bound for m by a
factor of l/(l − 1) (after neglecting the last term of −1 on the right side). Note that
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there is no guarantee that the lower bound in Theorem 10 is actually achievable. So,
the class of matrices proposed above (if they could actually be constructed), can be
said to be “near optimal.” In applying this theorem, we would choose q such that
n ≤ q2, and choose any desired l ≤ q − 1. With such a measurement matrix, basis
pursuit will achieve robust k-sparse recovery up to k < l, that is, k <

√
n, more or

less.

Proof Let g denote the girth of A. Then, Condition (2) implies that g ≥ 6. Condition
(3) implies that the bound (40) applies with m = lq, n = q2, and n/m = q/ l. Let
g = 2r , and define

α = �(r − 1)/2� + (r − 1)/2�, β = (r − 1)/2�.

Then, the inequality (40) implies that

lq ≥ (d̄l − 1)α(q/ l)β ≥ (l − 1)α(q/ l)β .

This can be rewritten as

(l − 1)α
qβ−1

lβ+1
≤ 1. (44)

Note that g ≥ 6, so that r ≥ 3, due to Condition (2). We study two cases separately.
Case (1): g = 4t for some t ≥ 2. In this case,

(r − 1)/2 = t − 1/2, �(r − 1)/2� = t, (r − 1)/2� = t − 1,

α = 2t − 1, β = t − 1.

Therefore, (44) becomes

(l − 1)2t−1 q
t−2

lt
≤ 1, (45)

or

qt−2(l − 1)t−1 ≤
(

l

l − 1

)t

≤ 2t ,

because l/(l − 1) ≤ 2 for l ≥ 2. Also

qt−2(l − 1)t−1 ≥ qt−2(l − 1)t−2 = [q(l − 1)]t−2.

Combining these inequalities gives

[q(l − 1)]t−2 ≤ 2t ,
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or [
q(l − 1)

2

]t−2

≤ 22 = 4. (46)

It is now shown that (46) cannot hold if t ≥ 3. If t ≥ 3, then

q(l − 1)

2
≤

[
q(l − 1)

2

]t−2

≤ 4,

or q(l − 1) ≤ 8. However, q ≥ 5 and l − 1 ≥ 3, so this inequality cannot hold. Now,
let us consider the possibility that g = 8, i.e., that t = 2. In this case, (45) becomes

(l − 1)3
1

l2
≤ 1, or (l − 1)3 ≤ l2.

This inequality can hold only for l = 1, 2, 3 and not if l ≥ 4. Hence, A cannot have
girth 4t for any t ≥ 2.

Case (2): g = 4t + 2 for some t ≥ 1. In this case,

�(r − 1)/2� = (r − 1)/2� = t, α = 2t, β = t.

So, (44) becomes

(l − 1)2t
qt−1

lt+1
≤ 1. (47)

As before, this can be rewritten as

qt−1(l − 1)t−1 ≤
(

l

l − 1

)t+1

≤ 2t+1,

or [
q(l − 1)

2

]t−1

≤ 22 = 4. (48)

This inequality can hold if t = 1 because the left side equals 1. However, if t > 1,
then (48) implies that

q(l − 1)

2
≤

[
q(l − 1)

2

]t−1

≤ 4,

or q(l − 1) ≤ 8, which is impossible. Hence, (48) implies that t = 1, or that g = 6.

Now, we present two explicit constructions of binary matrices that satisfy the
conditions of Theorem 14.

The first construction is taken from the theory of low-density parity-check (LDPC)
codes, and is a generalization of [37]. This type of construction for low-density
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parity-check codes (LDPC) was first introduced in [38]. Let q be a prime number,
and let P ∈ {0, 1}q×q be any “fixed-point free” permutation of [q]. In [37], P is taken
as the shift permutation matrix defined by Pi,i−1 = 1 and the rest zeros, where i − 1
is interpreted modulo q. Then, Pq = I , the identity matrix. Now, let l < q be any
integer, and define the matrix H(q, l) ∈ {0, 1}lq×q2

as the block-partitioned matrix
[Mi j ], i ∈ [l], j ∈ [q], where

Mi j = P (i−1)( j−1). (49)

More elaborately, the matrix H(q, l) is given by

H(q, l) =

⎡
⎢⎢⎢⎢⎢⎣

I I I . . . I
I P P2 . . . Pq−1

I P2 P4 . . . P2(q−1)

...
...

. . .
...

...

I Pl−1 P2(l−1) . . . P (l−1)(q−1)

⎤
⎥⎥⎥⎥⎥⎦

. (50)

The matrix H(q, l) is biregular, with left (column) degree l and right (row) degree
q. It is rank deficient, having rank (q − 1)l + 1. In principle, we could drop the
redundant rows, but that would destroy the left regularity of thematrix, thus rendering
the theory in this chapter inapplicable. (However, the resulting matrix would still be
right regular.) Moreover, due to the fixed-point-free nature of P , it follows that the
inner product between any two columns of H(q, l) is at most equal to one.

It is shown in [37, Proposition 1] that H(q, l) has girth 6, but that follows from
Theorem 14.

The second construction is based on Euler squares. In [26], a general recipe is
given for constructing generalized Euler squares. This is used in [25] to construct an
associated binary matrix of order lq × q2 where q is any arbitrary integer (in contrast
with the construction of [37] which requires q to be a prime number), such that the
maximum inner product between any two columns is at most equal to one. Again, by
Theorem 14, such matrices have girth 6 and are thus nearly optimal for compressed
sensing. The upper bound on l is defined as follows: Let q = 2r0 pr11 . . . prss be the
prime number decomposition of q. Then l < min{2r0 , pr11 , . . . , prss }. In particular,
if q is a prime or a power of a prime, then we can have l < q − 1. It is easy to
verify that if q is a prime, then the construction in [25] is the same as the array code
construction of [37] with permuted columns. For the case, where q is a prime power,
the construction is more elaborate and is not pursued further here.

Example 3 In this example, we compare the number of samples required when using
the DeVore construction and a matrix that satisfies the hypotheses of Theorem 14,
such as the array code matrix or the Euler square matrix. The conclusions are that:
(i) When k <

√
n/4, the Devore construction requires fewer measurements than the

array code, whereas when
√
n/4 < k <

√
n, the array code type of matrix requires

fewer measurements. (ii) When k >
√
n/2, the DeVore construction requires more
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measurements than n, the dimension of the unknown vector, whereas the array code
construction has m < n whenever k <

√
n.

To see this, recall that the DeVore construction produces a matrix of dimensions
q2 × qr+1 with the maximum inner product between columns equal to r , and each
column contains q ones. So if we choose r = 2, then λ in Theorem 11 equals 2, while
dl = l. Consequently the DeVore matrix satisfies the RNSP of order k whenever k <

q/2, and the number of measurements mD equals q2 = 4k2, Thus, mD < n requires
that 4k2 < n, or k <

√
n/2. In contrast, a matrix of the type discussed in Theorem

14 has dimensions lq × q2 where n = q2 and l = k + 1. For this class of matrices,
we have λ = 1 and dl = l. This matrix satisfies the RNSP whenever k = l − 1 < q,
and the number ofmeasurements equals lq = (k + 1)q. Now, 4k2 < kq if and only if
k < q/4 = √

n/4.AlsomA = (k + 1)q < n = q2 whenever k + 1 < q = √
n.Here,

in the interests of simplicity, we ignore the fact that q has to be a prime number in
both cases, and various rounding up operations.

Part III: Applications of Graph Theory to Compressed
Sensing

10 Compressive Sensing Using Expander Graphs

This part of the chapter is taken from [31].
A recent development is the application of ideas from algebraic coding theory

to compressive sensing. In [39], a method called “sudocodes” is proposed, which
is based on low-density parity-check (LDPC) codes, which are well established in
coding theory. The sudocodes method can recover sparse signals with high proba-
bility. Motivated by this method, Xu and Hassibi in [40] proposed a method based
on expander graphs, which are a special type of bipartite graph. For the convenience
of the reader, the definition of an expander graph is recalled next.

The object under study is an undirected bipartite graphs, consisting of a set VI

of input vertices, a set VO of output vertices, and an edge set E ⊆ VO × VI , where
(i, j) ∈ E if and only if there is an edge between node i ∈ VO and node j ∈ VI . The
corresponding matrix A ∈ {0, 1}|VO |×|V I | is called the biadjacency matrix of the
bipartite graph. The graph is said to be left regular of degree D, or D-left regular,
if every input node has degree D. This is equivalent to requiring that every column
of the biadjacency matrix A has exactly D elements equal to 1. Given an input vertex
j ∈ VI , letN (i) ⊆ VO denote the set of its neighbors, defined as

N ( j) := {i ∈ VO : (i, j) ∈ E }.

Given set of input vertices S ⊆ VI , the set of its neighbors N (S) ⊆ VO is
defined as
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N (S) :=
⋃
j∈S

N ( j) = {i ∈ VO : ∃ j ∈ S s.t. (i, j) ∈ E }.

Definition 5 A D-left-regular bipartite graph (VI ,VO ,E ) is said to be a (K , 1 − β)-
expander for some integer K and some number β ∈ (0, 1) if, for every S ⊆ VI with
|S| ≤ K , we have that |N (S)| ≥ (1 − β)D|S|.

In [40], Xu and Hassibi introduce a new signal recovery algorithm in which the
biadjacency matrix of an expander graph with β ≤ 1/4 is used as the measurement
matrix. It is referred to here as the “Expander Recovery Algorithm.” Xu and Has-
sibi show that their algorithm recovers an unknown k-sparse vector x exactly in
O(k log n) iterations. Subsequently, their method was updated in [41] by increasing
the expansion factor from 1 − 1/4 = 3/4 to 1 − ε in which ε < 1

4 . With this change,
it is shown that the number of recovery iterations required is O(k). However, the
number of measurements is more than in the Xu–Hassibi algorithm.

Expander Recovery Algorithm
1: Initialize x − 0n×1
2: if Y = Ax then return output x and exit
3: else
4: find a variable x j such that at least (1 − 2ε)Dof themeasurements it participates in have identical

gap g

5: x j ← x j + g and go to step 2
6: end if

In the algorithm above, the term g is called the gap and it determines the amount
of information of the unknown signal that is missing in the estimate. The gap is
defined as following:

gi = yi −
n∑
j=1

Ai j x j

in which x, y, and A are the unknown signal, the measurement vector, and the
measurement matrix, respectively.

11 The New Algorithm

Now, we present our new algorithm, and show that it can exactly recover sparse sig-
nals in a single pass, without any iterations. Then, we analyze the performance of the
algorithm when the true but unknown vector is not exactly sparse, and/or the mea-
surement is corrupted by noise. The performance of our algorithm is compared with
those of �1-norm minimization and expander graph algorithms in the next section.
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12 The New Algorithm

Suppose a matrix A ∈ {0, 1}m×n has the following properties, referred to as themain
assumption:

1. Every column a j of A has precisely q entries of 1 and m − q entries of 0.
2. If a j , at are distinct columns of A, then 〈a j , at 〉 ≤ r − 1.

Suppose x ∈ Σk is a k-sparse n-dimensional vector, and define y = Ax to be the
measurement vector. For a given index j ∈ [n], let {v1( j), . . . , vq( j)} ⊆ [m] denote
the q rows such that ai j = 1. For an index j ∈ [n], the reducedmeasurement vector
ȳ j ∈ R

q is defined as

ȳ j := [yv1( j) . . . yvq ( j)]�.

Note that ȳ j is the vector consisting of the q measurements in which the component
x j participates.

The main result is given next. Recall that ‖v‖0 denotes the number of nonzero
components of a vector v.

Theorem 15 Suppose x ∈ Σk , y = Ax. Then,

1. If j /∈ supp(x), then ‖ȳ j‖0 ≤ k(r − 1).
2. If j ∈ supp(x), then ȳ j contains at least q − (k − 1)(r − 1) components that are

all equal to x j .

Proof For t ∈ [n], let et ∈ R
n denote the t th canonical basis vector, which has a 1

as its t th element, and zeros elsewhere, and let 1q ∈ R
q denote the column vector

consisting of all ones. Then, we can write:

x =
∑

t∈supp(x)
xtet ,

y = Ax =
∑

t∈supp(x)
xt Aet =

∑
t∈supp(x)

xtat ,

where at denotes the t th column of A. Therefore, for a fixed j ∈ [n] and l ∈ [q], we
have that

yvl ( j) =
∑

t∈supp(x)
xt (at )vl ( j).

Letting l range over [q] shows that

ȳ j =
∑

t∈supp(x)
xt (at ) j , (51)

where (at ) j is the reduced vector of at consisting of (at )v1( j), . . . , (at )vq ( j).
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Proof of (1): Suppose j /∈ supp(x). Then, j �= t for all t ∈ supp(x). Therefore,
according to item (ii) of the main assumption, we have that 〈a j , at 〉 ≤ r − 1. Recall
that v1( j), . . . , vq( j) are the row indices of column j that contain a 1. Therefore, for
a fixed index t �= j , the number of 1’s in the set {(at )v1( j), . . . , (at )vq ( j)} equals the
inner product 〈a j , at 〉 and thus cannot exceed r − 1. Therefore, for a fixed index t ∈
supp(x), the vector xt (at ) j contains no more than r − 1 nonzero entries. Substituting
this fact into (51) shows that ȳ j is the sum of at most k vectors (because x is k-sparse),
each of which has no more than r − 1 nonzero entries. Therefore, ‖ȳ j‖0 ≤ k(r − 1).

Proof of (2): Suppose j ∈ supp(x). Then, we can write

ȳ j =
∑

t∈supp(x)
xt (at ) j (52)

= x j1q +
∑

t∈supp(x)\{ j}
xt (at ) j , (53)

because the “reduced vector” (a j ) j consists of q 1’s, as denoted by 1q . By the same
reasoning as in the proof of (1), it follows that

∥∥∥∥∥∥
∑

t∈supp(x)\{ j}
xt (at ) j

∥∥∥∥∥∥
0

≤ (k − 1)(r − 1).

Therefore, at least q − (k − 1)(r − 1) terms in ȳ j equal x j .

In view of Theorem 15, we can formulate an algorithm for the recovery of k-sparse
vectors, as follows:

New Recovery Algorithm
1: for j ∈ [n] do
2: Construct the reduced measurement vector ȳ j .
3: Find the number of the elements of ȳ j that are nonzero; call it ν. � (In implementation, we

find the number of elements that are greater than some tolerance δ.)
4: if ν > q/2 then
5: Find a group of q/2 elements in ȳ j that are equal; call this value θ j . � (In

implementation, we allow some tolerance here.)
6: x̂ j = θ j .
7: else
8: x̂ j = 0

9: end
10: end

Note that there is no iterative process involved in the recovery— the estimate x̂
is generated after a single pass through all n indices.

Theorem 16 If x is k-sparse, and A satisfies the main assumption with q > 2k(r −
1), then x̂ = x.
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Proof Note q > 2k(r − 1) implies that

k(r − 1) < q/2, q − (k − 1)(r − 1) > q − k(r − 1) > q/2.

Therefore, by Statement 1 of Theorem 15, it follows that if j /∈ supp(x), then
‖ȳ j‖0 ≤ k(r − 1) < q/2. Taking the contrapositive shows that if ‖ȳ j‖0 ≥ q/2, then
j ∈ supp(x). Therefore, by Statement 2 of Theorem 15, it follows that at least
q − (k − 1)(r − 1) > q − k(r − 1) > q/2 elements of ȳ j equal x j .

Next, we present the extension of our basic algorithm to the cases of a sparse
signal with measurement noise, and a nearly sparse signal.

13 Recovery of Sparse Signals with Measurement Noise

In previous work, the model for noisy measurements is that y = Ax + η where there
is a prior bound of the form ‖η‖2 ≤ ε. If x ∈ Σk , then σk(x, ‖ · ‖1) = 0. Therefore,
if robust sparse recovery is achieved, then the bound in (4) becomes ‖x̂ − x‖2 ≤ Dε.
However, our approachdraws its inspiration fromcoding theory,wherein it is possible
to recover a transmitted signal correctly provided the transmission is not corrupted
in too many places. Therefore, our noise model is that ‖η‖0 ≤ M . In other words,
it is assumed that a maximum of M components of the “true” measurement Ax are
corrupted by additive noise, but there are no assumptions regarding the magnitude
of the error signal η. In this case, it is shown that, by increasing the number of
measurements, it is possible to recover the true sparse vector x perfectly.

Theorem 17 Suppose x ∈ Σk , and that y = Ax + η where ‖η‖0 ≤ M. Suppose
further that the matrix A satisfies the main assumption. Then,

1. If j /∈ supp(x), then ȳ j contains nomore than k(r − 1) + M nonzero components.
2. If j ∈ supp(x), then ȳ j contains at least q − [(k − 1)(r − 1) + M] components

that are all equal to x j .
3. Suppose the new recovery algorithm is applied with a measurement matrix A that

satisfies the main assumption with q > 2[k(r − 1) + M]. Then, x̂ = x.

Proof Suppose x ∈ Σk and let y = Ax + η where A satisfies the main assumption
and ‖η‖0 ≤ M . Let u = Ax denote the uncorrupted measurement. For a fixed index
j ∈ [n], let ȳ j ∈ R

q denote the reduced measurement vector, consisting of the com-
ponents yv1( j) through yvq ( j), and define ū j ∈ R

q and η̄ j ∈ R
q analogously.

First suppose j /∈ supp(x). Then, it follows from Item (1) of Theorem 15 that
‖ū j‖0 ≤ k(r − 1). Moreover, because η has no more than M nonzero components
and η̄ j is a subvector of η, it follows that ‖η̄ j‖0 ≤ M . Therefore,

‖ȳ j‖0 = ‖ū j + η̄ j‖0 ≤ ‖ū j‖0 + ‖η̄ j‖0 ≤ k(r − 1) + M.
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This is Item (1) above. Next, suppose that j ∈ supp(x). Then, it follows from Item
(1) of Theorem 15 that at least q − (k − 1)(r − 1) elements of ū j equal x j . Because
‖η̄ j‖0 ≤ M , it follows that at least q − (k − 1)(r − 1) − M components of ȳ j equal
x j . This is Item (2) above. Finally, if q > 2k(r − 1) + 2M , it follows as in the proof
of Theorem 16 that x̂ = x .

Note that the assumption on the noise signal η can be modified to ‖η̄ j‖0 ≤ M
for each j ∈ [n]. In other words, instead of assuming that η has no more than M
nonzero components, one can assume that every reduced vector η̄ j has no more than
E nonzero components.

14 Recovery of Nearly Sparse Signals

As before, if x /∈ Σk , then let xd ∈ R
n denote the projection of x onto its k largest

components, and let xr = x − xd . We refer to xd , xr as the dominant part and the
residual, respectively. Note that, for any p ∈ [1,∞], we have that the sparsity index
σk(x, ‖ · ‖p) equals ‖xr‖p. To (nearly) recover such a vector, we modify the new
recovery algorithm slightly. Let δ be a specified threshold.

Modified Recovery Algorithm
1: for j ∈ [n] do
2: Construct the reduced measurement vector ȳ j .
3: Find the number of the elements of ȳ j that are greater than δ in magnitude; call it ν.
4: if ν > q/2 then
5: Find a group of q/2 elements in ȳ j such that the difference between the largest and smallest

elements is no larger than 2δ; Let θ j denote the average of these numbers.
6: x̂ j = θ j .
7: else
8: x̂ j = 0

9: end
10: end

Theorem 18 Suppose x ∈ R
n and that σk(x, ‖ · ‖1) ≤ δ. Write x = xd + xr where

xd is the dominant part of x consisting of its k largest components, and xr = x − xd is
the residual. Let y = Ax where A satisfies the main assumption with q > 2k(r − 1),
and apply the modified recovery algorithm. Then, (i) supp(x̂) = supp(xd) and (ii)
‖x̂ − xd‖∞ ≤ δ.

Remark: If �1-norm minimization is used to recover a nearly sparse vector using
(1), then the resulting estimate x̂ need not be sparse, and second, the support set of
the dominant part of x̂ need not equal the support set of the dominant part of x .

Proof Write x = xd + xr where xd consists of the dominant part of x and xr consists
of the residual part. By assumption, ‖xr‖1 ≤ δ. Note that the measurement y equals
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Ax = Axd + Axr . Let u = Axd and observe that xd ∈ Σk . Further, observe that,
because the matrix A is binary, we have that the induced matrix norm

‖A‖1→∞ := sup
v �=0

‖Av‖∞
‖v‖1 = max

i, j
|ai j | = 1.

Therefore, ‖Axr‖∞ ≤ ‖xr‖1 ≤ δ. Now, by Item (1) of Theorem 15, we know that
if j /∈ supp(xd), then no more than k(r − 1) components of the reduced vector ū j

are nonzero. Therefore, then no more than k(r − 1) components of the reduced vec-
tor ȳ j have magnitude more than δ. By Item (2) of Theorem 15, we know that if
j ∈ supp(xd), then at least q − (k − 1)(r − 1) components of ū j equal x j . There-
fore, at least q − (k − 1)(r − 1) components of ȳ j lie in the interval [x j − δ, x j + δ].
Finally, if q > 2k(r − 1), then there is only one collection of q − (k − 1)(r − 1) >

q/2 components of the reduced vector ȳ j that lie in an interval of width 2δ. The
true x j lies somewhere within this interval, and we can set x̂ j equal to the midpoint
of the interval containing all of these components. In this case, |x̂ j − x j | ≤ δ. Because
this is true for all j ∈ supp(xd), it follows that (i) supp(x̂) = supp(xd) and
(ii) ‖x̂ − xd‖∞ ≤ δ.

Finally, it is easy to combine the two proof techniques and to establish the fol-
lowing theorem for the case where x is not exactly sparse and the measurements are
noisy.

Theorem 19 Suppose x ∈ R
n and that σk(x, ‖ · ‖1) ≤ δ. Write x = xd + xr where

xd is the dominant part of x consisting of its k largest components, and xr = x − xd
is the residual. Let y = Ax + η where ‖η‖0 ≤ M, and A satisfies the main assump-
tion with q > 2k(r − 1) + 2M. Apply the modified recovery algorithm. Then, (i)
supp(x̂) = supp(xd) and (ii) ‖x̂ − xd‖∞ ≤ δ.

15 Construction of a Binary Measurement Matrix

The results presented until now show that the key to the procedure is the construction
of a binary matrix A that satisfies the main assumption. In this subsection, it is
shown that previous work by DeVore [15] provides a simple recipe for constructing
a binary matrix with the desired properties. Note that [15] was the first paper to
propose a completely deterministic procedure for constructing a matrix that satisfies
the restricted isometry property. It is shown, in this section, that DeVore’s matrix is
also a special case of the biadjacency matrix of an expander graph. Therefore, the
DeVore matrix acts as a bridge between two distinct compressed sensing algorithms.

We now describe the construction in [15]. Suppose q is a prime number or a
power of a prime number, and let Fq denote the finite field with q elements. Sup-
pose a is a polynomial of degree r − 1 or less with coefficients in Fq , and define
its “graph” as the set of all pairs (x, a(x)) as x varies over Fq . Now, construct a
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vector ua ∈ {0, 1}q2×1 by setting the entry in row (i, j) to 1 if j = a(i), and to
zero otherwise. To illustrate, suppose q = 3, so that Fq = {0, 1, 2} with arithmetic
modulo 3. Let r = 4, and let a(x) = 1 + 2x + x2 + x3. With this choice, we have
that a(0) = 1, a(1) = 2, and a(2) = 2. The corresponding 9 × 1 column vector has
1’s in positions (0, 1), (1, 2), (2, 2), and zeros elsewhere. This construction results
in a q2 × 1 column vector ua that consists of q blocks of size q × 1, each of which
contains a single 1 and q − 1 zeros. Therefore, ua contains q elements of 1 and the
rest equal to zero.

Now, let Πr−1(Fq) denote the set of all polynomials of degree r − 1 or less with
coefficients in Fq . In other words,

Πr−1(Fq) :=
{
a(x) =

r−1∑
i=0

ai x
i , ai ∈ Fq

}
.

Note that Πr−1(Fq) contains precisely qr polynomials, because each of the r coef-
ficients can assume q different values.3 Now, define

A := [ua, a ∈ Πr−1(Fq)] ∈ {0, 1}q2×qr . (54)

The following theorem from [15] shows that the matrix A constructed as above
satisfies the main assumption, and also the RIP with appropriately chosen constants.

Theorem 20 (See [15, Theorem 3.1])For thematrix A ∈ {0, 1}q2×qr defined in (54),
we have that

〈ua, ub〉 ≤ r − 1 (55)

whenever a, b are distinct polynomials in Πr−1(Fq). Consequently, if we define the
column-normalized matrix A′ = (1/

√
q)A, then A satisfies the RIP of order k with

constant δk ≤ ((k − 1)(r − 1))/q.

Next, it is shown that the DeVore construction is a special case of a method given
in [32] for constructing expander graphs. The construction in [32] is as follows: Let
h ≥ 2 be any integer. Then, the map Γ : Fr

q × Fq → F
s+1 is defined as

Γ ( f, y) := [y, f (y), f h(y), f h
2
(y), . . . , f h

s−1
(y)]. (56)

An alternate way to express the function Γ is

Γ ( f, y) = [y, ( f hi (y), i = 0, . . . , s − 1)].

In the definition of the function Γ , y ranges over Fq as the “counter,” and the above
graph is left regular with degree q. The set of input vertices is F

r
q , consisting of

polynomials in some indeterminate Y with coefficients in Fq of degree no larger than

3If the leading coefficient of a polynomial is zero, then the degree would be less than r .
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r − 1. The set of input vertices has cardinality qr . The set of output vertices is Fs+1

and each output vertex is an (s + 1)-tuple consisting of elements from Fq . The set
of output vertices has cardinality qs+1. Note that the graph is q-left regular in that
every input vertex has exactly q outgoing edges.

Theorem 21 (See [32, Theorem 3.3]) For every pair of integers h, s, the bipartite
graph defined in (56) is a (hs, 1 − β)-expander with

β = (r − 1)(h − 1)s

q
(57)

whenever

h <
q

s(r − 1)
+ 1.

Note that the inequality simply ensures that β > 0.
Now, we relate the construction of DeVore with that in [32].

Theorem 22 The matrix A constructed in [15] is a special case of the graph in
Theorem 21 with s = 1, and any value for h. Therefore, a bipartite graph with the
biadjacency matrix of [15] is a (h, 1 − β)-expander with

β = (r − 1)(h − 1)

q
(58)

whenever

h <
q

r − 1
+ 1.

Proof Suppose that s = 1 and that h is any integer. In this case, each polynomial f
with coefficients in Fq of degree r − 1 or less gets mapped into the pair (y, f (y)) as
y ranges over Fq . This is precisely what was called the “graph” of the polynomial f
in [15].

Part IV: Numerical Experiments

16 Statistical Recovery

The preceding two parts of the chapter were devoted to two methods for guaran-
teed recovery of all sparse vectors. For such methods, m = O(k ln(n/k)) measure-
ments suffice to generate (with high probability) a matrix that satisfies the restricted
isometry property (RIP) and thus can be used along with basis pursuit to recover
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all sufficiently sparse vectors. If the measurement matrix is chosen as the biadja-
cencymatrix of a bipartite graph, thenm = k

√
nmeasurements suffice.Moreover, in

practice, deterministic methods often require fewer measurements. Further details
can be found in the Appendix.

If the requirement is relaxed from guaranteed recovery of all sufficiently sparse
vectors to recovery of most sufficiently sparse vectors or statistical recovery, then
there is a parallel body of research showing that the number of measurements m
can be reduced quite substantially. In fact, m = O(k) measurements suffice. In this
subsection, we highlight just a few of the many papers in this area of research. To
streamline the presentation, the papers are not always cited in chronological order.

In [42], the underlying assumption is that the unknown vector x is generated
according to a known probability distribution pX , which can in fact be used by the
decoder. Three different dimensions of the probability distribution pX are introduced,
namely, the Rényi information dimension, theMMSEdimension, and theMinkowski
dimension. The encoder is permitted to be nonlinear, in contrast to earlier caseswhere
the encoding consisted of multiplication by a measurement matrix. The decoder
is also permitted to be nonlinear but is assumed to be Lipschitz continuous. The
optimal performance in this setting is analyzed. A central result in this paper states
that asymptotically as the vector dimension n and the number of measurements m
both approach infinity, statistical recovery is possible if and only if

m ≥ nd̄(pX ) + o(n),

where d̄(pX ) denotes the Rényi information dimension of pX . Since the Rényi infor-
mation dimension is comparable to the ratio k/n, the above result states that O(k)
measurements are sufficient. However, no procedure is given to construct an encoder–
decoder pair.

In a series of papers [11, 12, 43], Donoho and various co-workers studied “phase
transitions” in the performance of various recovery algorithms. A readable survey of
these results is given in [44]. The unknown n-vector is assumed to be k-sparse, and
the measurement vector y ∈ R

m equals Ax , where A consists of samples of normal
random variables, scaled by the normalization factor a/

√
m. Two quantities are

relevant here, namely, the “undersampling rate” δ = m/n and the sparsity ρ = k/m.
In all of these papers, the aim is to show that for each algorithm there exists a sharp
threshold ρθ (δ) such that if ρ > ρθ(δ), then the unknown vector is recovered with
probability approaching one, whereas if ρ < ρθ(δ), then the algorithm fails with
probability approaching one.

Specifically, in [43], an algorithm known as “approximate message passing”
(AMP) is analyzed. AMP is a simple thresholding type of algorithm that is much
faster than minimizing the �1-norm. Specifically, suppose φ : R → R is a smooth
“threshold” function, and extend it to amap fromR

n toRn by applying it component-
wise. The AMP algorithm begins with an initial guess x0 = 0, and then one sets

xt+1 = φ(A�wt + xt ),



306 M. Vidyasagar and M. Lotfi

wt = y − Axt + 1

δ
wt−1(φ′(A�wt−1 + xt−1)),

where φ′ denotes the derivative of φ. It is clear that AMP is much faster than �1-norm
minimization. Despite this, it is shown in [43] that the phase transition behavior of
AMP is comparable to that of �1-norm minimization. In [45], the AMP algorithm is
modified to incorporate the results of [42], and phase transition results are derived.
In this paper, the authors also introduce the idea of “spatial coupling” introduced in
[46].

Finally, in [13], the authors study a very general class of algorithms. Suppose
as before that y ∈ R

m equals Ax , where A consists of samples of normal random
variables, scaled by the normalization factor a/

√
m. The decoding algorithm is

x̂ = argmin
z

f (z) s.t. y = Az,

where the “regularizer” f (·) is a convex function satisfying some technical condi-
tions. So, this theory applies to �1-norm minimization. In this paper, a central role is
played by the “descent cone” of f at a point x , which is defined as

D( f, x) :=
⋃
τ>0

{h ∈ R
n : f (x + τh) ≤ f (x)}.

It is clear that D( f, x) is indeed a cone. Next, for each cone, a quantity called
the “statistical dimension,” denoted by δ, is defined; see [13, Section 2.2] for a
precise definition. With all these items in place, a central result is established; see
[13, Theorem II].

Theorem 23 Define a(ε) := √
8 log(4/ε). With all other symbols as above, if

m ≤ δ(D( f, x)) − a(ε)
√
n,

then the decoding algorithm fails with probability ≥ 1 − ε. If

m ≥ δ(D( f, x)) + a(ε)
√
n,

then the decoding algorithm succeeds with probability ≥ 1 − ε.

17 Phase Transitions

Phase transition refers to an abrupt change in the qualitative behavior of the solution
to a problem as the parameters are changed. In the case of compressed sensing,
let us define two quantities: θ := m/n, which is known as the undersampling ratio
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and φ := k/m, which is known as the oversampling ratio.4 Suppose we choose
integers n,m < n, together with a matrix A, and use basis pursuit as the decoder. If a
k-sparse vector is chosen at random,we can ask:What is the probability that (A,ΔBP)

recovers the vector?
This question is answered in [6, 47] using techniques from combinatorial geome-

try, specifically polytope theory. Suppose P is a convex polytope, that is, the convex
hull of a finite number of points in R

n , and A as a m × n matrix. Polytopes have
vertices, edges, and k-dimensional faces called facets. Let fk(P) denote the number
of facets of dimension k. In particular, we can define various polytopes correspond-
ing to k-sparse vectors in R

n , which is called a “cross polytope” [47]. The image
of P under A, denoted by AP , is also a polytope, and for each k, we have that
fk(AP) ≤ fk(P). Moreover, it is shown in [47] that, if x is drawn at random from
the cross polytope P , then the probability of recovering x via basis pursuit equals
the ratio fk(AP)/ fk(P). Thus, the question becomes of analyzing the behavior of
this ratio for specific polytopes P and specific matrices A.

In [10], it is proved that if A consists of samples of a normal (Gaussian) random
variable, then as n → ∞ this recovery probability (i.e., the face count ratio) exhibits
a sharp change when φ is increased for a fixed θ . It is claimed that this behavior
is observed even with moderate values of n such as n = 1024. In this paper, the
authors make a distinction between two types of recovery, namely, uniform and
nonuniform. In uniform recovery, basis pursuit is expected to recover all k-sparse
vectors, with high probability (with respect to the randomly generated Gaussian
matrix). In nonuniform recovery, there is also a uniform probability measure on the
set of k-sparse vectors in R

n , and basis pursuit is expected to recover a k-sparse
vector with high probability (both with respect to the randomly generated k-sparse
vector and the randomly generated Gaussian vector). Clearly, nonuniform recovery
holds whenever uniform recovery holds, but the converse need not be true. In the
present chapter, the focus is on uniform recovery.

Donoho and Tanner in [11] and [48] define the strong threshold φs and weak
threshold φw as the threshold for uniform and nonuniform recovery, respectively.
Unfortunately, there is no closed form expression for φ values either in the weak
or the strong case. However, in [48], Theorems 1.4 and 1.5 suggest complicated
formulas for these φ functions that work in the asymptotic case when n → ∞ (or
δ → 0). The complicated closed-form formulas for δ → 0 can be approximated as
follows:

φs(θ) ≈
∣∣∣∣ 1

2e log(
√

πθ)

∣∣∣∣ , θ → 0,

4This terminology is introduced in [6] with m/n denoted by δ and k/m denoted by ρ. Since these
symbols are now used to denote different quantities in the compressed sensing literature, we use θ

and φ instead.
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φw(θ) ≈
∣∣∣∣ 1

2 log(θ)

∣∣∣∣ , θ → 0.

It can be seen that, as θ → 0, φw(θ) ≈ eφs(θ). This means that when n is very large
and θ is very small (that is, very few measurements compared to the dimension of
the unknown vector), the threshold in k for recovering the vast majority of k-sparse
vectors is roughly e times the threshold for recovering all k-sparse vectors.

All of the results mentioned above are for Gaussian measurement matrices. They
are rigorous and draw upon very deep results about Gaussian random variables.
However, there is interest to seewhether similar phase transition behavior is observed
with other types of measurement matrices. It is shown in [14, 47, 49] that a large
class of random and deterministic measurement matrices display the same phase
transition boundary as Gaussian matrices. Specifically, in [14] the authors study
various deterministic constructions for measurement matrices, such as spikes and
sines, spikes and noiselets, Delsarte–Goethals frames, Grassmannian frames, Paley
frames, and chirp matrices. They conclude that all of these matrices display the same
phase transition boundary as with Gaussian matrices. However, as mentioned by the
authors of [14], all of the deterministicmatrices they study satisfy only the “statistical
restricted isometry property (STRIP)” and not necessarily the RIP/RNSP. Thus, with
the class of deterministic matrices studied in [14], there is no guaranteed recovery
via basis pursuit. The main motivation for this part of the present chapter is to fill
this gap, by studying phase transitions in basis pursuit with a class of deterministic
matrices that are guaranteed to achieve sparse recovery, namely, the DeVore class
and the array matrix class.

18 Numerical Experiments

In this section, we carry out two different numerical experiments to illustrate the
use of binary matrices in compressed sensing. In each experiment, we compare the
array code matrix proposed here with the DeVore construction of [15] and a random
Gaussian matrix. In the first experiment, the objective is to compare both classes of
binary matrices with random Gaussian matrices, while the objective in the second
experiment is to compare the phase transition boundaries for all three classes of
matrices. In each case, we generate 100 random k-sparse vectors and use the CVX
package under MATLAB to perform �1-norm minimization.

18.1 Guaranteed Recovery

In this experiment, we fix the vector dimension n, and vary the sparsity count k.
Specifically, the dimension n is chosen as n = 1492 = 22, 201, and two different
sparsity counts k are chosen, namely, k = 14 and k = 69. For each of the array
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Table 1 Comparison of DeVore, array code, and random Gaussian matrices for n = 1492 =
22, 201 and k = 14, 69

Array matrix DeVore matrix Gaussian matrix

k mA T in sec. mD T in sec. mG T in sec.

14 2,235 29.014 841 15.94 11,683 259,100

69 10,430 248.5 19,321 1795 44,345 692,260

code matrices, the DeVore matrix, and a random Gaussian matrix, the number of
measurements m is chosen so as to guarantee robust k-sparse recovery using basis
pursuit. In the case of the randomGaussian matrix, the failure probability ξ is chosen
as 10−9, and the number of samples m is chosen in accordance with Theorem 2,
specifically (7). Because the number of measurements m in each case is chosen to
be large enough to guarantee recovery, the only items of interest are (i) value of
m for the same n, k with different methods of generating A and (ii) the CPU time
associated with basis pursuit in each case.

When n = 1492 and k = 14,with the array codematrixwe choose q = √
n = 149

and dl = k + 1 = 15, which leads to m = dl
√
n = 2, 235 measurements. With

DeVore’s construction, we choose q to be the next largest prime after 2k, namely,
q = 29 and m = 292 = 841. Because k <

√
n/4, the DeVore construction requires

fewer measurements than the array code matrix, as expected. When k = 69, with
the array code matrix, we choose dl = k + 1 = 70 and m = dl

√
n = 10, 430 mea-

surements. In contrast, with the DeVore construction, we choose q to be the next
largest prime after 2k, namely, 139, which leads to m = q2 = 19, 321. Because
k >

√
n/4, the DeVore construction requiresmoremeasurements than the array code

matrix, as expected. For the random Gaussian matrix, (7) gives m = 11, 683 when
n = 1492, k = 14 and m = 44, 345, that is, more than n, when k = 69. Therefore,
there was no point in running the Gaussian method with k = 69.

The results are shown in Table 1. From this table, it can be seen that both classes
of binary matrices (DeVore and array code) require significantly less CPU time
compared to random Gaussian matrices. As shown in Example 3, the DeVore matrix
is to be preferred when k <

√
n/4 while the array code matrix is to be preferred

when k >
√
n/4. But in either case, both classes of matrices are preferable to random

Gaussian matrices.

18.2 Phase Transition Study

In this subsection, we compare the phase transition behavior of the basis pursuit for-
mulation with both classes of binary matrices (DeVore and array code), and random
Gaussian matrices. The dimension of the vector n is chosen to be 1024, to match the
previous literature on the topic. The phase transition boundary for the Gaussian case
is computed using the software provided by Prof. David Donoho. For the DeVore
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Fig. 1 Phase transition diagram with success, transition, and failure regions for n = 1024 using
DeVore measurement matrix

class of binary matrices, we again chose n = 1024 = 210 which is an even power of
a prime number. For the array code class, we chose m = 961 = 312, which is the
nearest square of a prime number to 1024. For each class of binary matrix, there are
only certain values of m that are permissible. For the DeVore class, m equals the
square of a prime number q such that m = q2 < n. Thus, the permissible choices
for q are

{11, 13, 16, 17, 19, 23, 25, 29, 31}.

In the case of array matrices n = 312 = q2, and the permissible values of m are lq
as l ranges from 1 to q − 1 = 30 (Fig. 1).

Our first objective is to compare the phase transition width for binary versus
Gaussian matrices. The phase transition width is defined as the interval of values of
φ for which the recovery rate is 5 and 95%. The specific questions studied are given
as follows:

1. Is the phase transition width the same for all three types of matrices?
2. As n is varied, does the phase transition width vary as C/

√
n for some constant

C that is independent of the method used?
3. What is the CPU time with each type of binary matrix?
4. Is the 95% recovery value of φ for a given θ the same for all three types of

matrices?

The results are presented in Table 2. It can be seen that the transition widths are
almost the same for the three methods, which suggests that phase transition is a
universal property and is independent of the measurement matrix. The CPU time
needed to run basis pursuit is also indicated in Table 2. From this, it is clear that
binary measurement matrices provide a far more time-efficient recovery procedure,
especially when n is large.
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Table 2 Comparison of transition widths w, 50% success rate width φ50, average width w̄, and
elapsed time T for n = 1024 using Binary DeVore matrix and Gaussian measurement matrix (sub-
script b and g, respectively)

θ wb wg φ50b φ50g Tb in sec. Tg in sec.

0.12 0.083 0.074 0.18 0.2 70 182

0.17 0.071 0.071 0.22 0.22 106 416

0.25 0.09 0.078 0.25 0.27 168 1435

0.28 0.073 0.059 0.27 0.28 222 1484

0.35 0.072 0.066 0.31 0.32 316 5038

0.52 0.08 0.07 0.41 0.39 636 8695

0.61 0.11 0.09 0.5 0.46 1695 12810

0.82 0.12 0.1 0.66 0.63 1744 13453

0.94 0.17 0.15 0.9 0.77 2261 15827

w̄ 0.097 0.084 –

Next, we computed thewidth of the phase transition region for eachmethod, using
the formula C1/

√
n for some constant C1 as claimed in [14]. We tried three different

n values, (n = 256, 512, 1024), using DeVore’s binary measurement matrices of
dimensions q2 × n. As it is discussed earlier in this chapter, q must satisfy 3

√
n ≤

q <
√
n. For a fixed m and n, the phase transition zone is found by varying k in

[1,m]. In order to find the constant C1 for each n, we consider the average weight
w̄ and C1 = w̄ × √

n. This gives us three different but yet close values of C1. By
setting C1 = 2.7 (which is the average of all C1 values), we can assume that for
binary DeVore’s measurement matrix, the phase transition width is of the form 2.7√

n
.

In Table 3, Δ shows how far off this expression is for each n. Since Δ is around
0.01 for each n, we can claim that C1 = 2.7 is a reasonable choice and for DeVore’s
binary measurement matrices, the phase transition width follows the same formula
as in Gaussian matrices.

We repeated the same experiment for the array code matrix with n = 961 = q2.
In this case, k < dl − 1, where dl lies in the range 2 to q. Hence, k was varied in the
range 1 to m with recovery guaranteed for k < dl − 1. The phase diagram is shown
in Fig. 2. Table 4 shows the phase transition width and the CPU time using the array
codematrices. A comparison of Tables2 and 4 shows that for almost a similar n value
(n = 1024 vs. n = 961), array matrices are much faster in recovery than DeVore and
Gaussian matrices while the phase transition width is nearly identical in all cases.

Our final observation is presented in Fig. 3. It shows that the experimental phase
transition boundary for the array and DeVore binary deterministic matrices for 95%
recovery perfectly matches the asymptotic (theoretical) curve shown in [43, Figure
1] and reproduced here.5

5We thank Prof. David Donoho for providing the software to reproduce the curve.
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Table 3 Phase transition widths w, 50% success rate width φ50, average width w̄, and the constant
C1 for three different dimensions, n = 256, 512, 1024 using DeVore’s binary measurement matrix

n θ w φ50 n θ w φ50 n θ w φ50

256 0.19 0.16 0.2 512 0.16 0.11 0.2 1024 0.12 0.083 0.18

0.25 0.16 0.22 0.24 0.09 0.24 0.17 0.071 0.22

0.32 0.14 0.31 0.33 0.095 0.3 0.25 0.09 0.25

0.47 0.16 0.36 0.5 0.11 0.4 0.28 0.073 0.27

0.66 0.17 0.47 0.57 0.11 0.43 0.35 0.072 0.31

– – – 0.71 0.15 0.52 0.52 0.08 0.41

– – – – – – 0.61 0.11 0.5

– – – – – – 0.82 0.12 0.66

– – – – – – 0.94 0.17 0.9

w̄ 0.16 0.11 0.097

C1 2.56 2.53 3.104

Δ 0.01 0.009 0.011

Fig. 2 Phase transition diagram with success, transition, and failure regions for n = 961 using
array LDPC parity-check matrix

19 Computational Results for the Noniterative Algorithm

Theorems 20 and 22 show that themeasurementmatrix construction proposed in [15]
falls within the ambit of both the restricted isometry property as well as expander
graphs. Hence, this matrix can be used together with �1-norm minimization, the
expander graph algorithm of Xu–Hassibi as well as our proposed algorithm. In this
section, we compare the performance of all three algorithms using the DeVore con-
struction. Note, however, that the number of rows of the matrix (or equivalently, the
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Table 4 Phase transition widths w, 50% success rate width φ50, and average width w̄ for n = 961
using array LDPC parity-check matrix

θ m w φ50 T in sec.

0.1935 186 0.08 0.24 0.9423

0.2258 217 0.08 0.24 0.9351

0.2581 248 0.08 0.27 0.8931

0.2903 279 0.08 0.29 0.8732

0.3548 341 0.07 0.33 0.8458

0.5161 496 0.1 0.42 0.6909

0.6129 589 0.1 0.5 0.5946

0.8387 806 0.16 0.78 0.1818

0.9355 899 0.28 0.91 0.0385

w̄ 0.1144
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Phase transitions at 95% recovery using Array and DeVore matrices vs. 
    Theoretical curves
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Theo. curve for bounded inputs
95% Rec. Array Matrix
95% Rec. DeVore Matrix

Fig. 3 Theoretical curves for real and bounded inputs and 95% recovery curve using array LDPC
parity-check matrix and DeVore matrix

number of measurements) will vary from one method to another. This is discussed
in this section.

We begin by comparing the number of measurements required by �1-norm min-
imization, expander graphs, and our method. In �1-norm minimization, as shown
in Theorem 20, the matrix A, after column normalization dividing each column
by

√
q , satisfies the RIP with constant δk = (k − 1)(r − 1)/q. Combined with

Theorem 1, we conclude that �1-norm minimization with the DeVore construction
achieves robust k-sparse recovery, whenever
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(�tk� − 1)(r − 1)

q
<

√
t − 1

t
. (59)

To maximize the value of k for which the above inequality holds, we set r to its
minimum permissible value, which is r = 3. Also, we replace �tk� − 1 by its upper
bound tk, which leads to

2tk

q
<

√
t − 1

t
, or

2k

q
<

√
t − 1

t3
.

Elementary calculus shows that the right side is maximized when t = 1.5. So, the
RIP constant of the measurement matrix must satisfy

δtk <
√

(t − 1)/t = 1/
√
3 ≈ 0.577.

Let us choose a value of 0.5 for δtk to give some “cushion.” Substituting the values t =
1.5, r = 2 in (59) and ignoring the rounding operations finally leads to the condition

3k

q
< 0.5, or q > 6k. (60)

For expander graphs, we can calculate the expansion factor 1 − β from
Theorem 21. This gives

β = (r − 1)(h − 1)s

q
.

Since we wish the expansion factor 1 − β to be as close to one as possible, or
equivalently, β to be as small as possible, we choose s to be its minimum value,
namely, s = 1. Now, we substitute r = 3, h = 2k (following [40]), and set 1 − ε ≥
3/4, or equivalently ε ≤ 1/4. This leads to

2(2k − 1)

q
≤ 1/4, or q ≥ 8(2k − 1).

Finally, for the newalgorithm, it has already been shown thatq ≥ 2(r − 1)k = 4k.
Therefore, the required number of measurements for each of the three algorithms
are as shown in Table 5. Note that since the matrix A has q3 columns, we must also
have that n ≤ q3.

Next, we present a numerical example to compare the three methods. We chose
n = 20, 000 tobe thedimensionof theunknownvector x . Since all threemethodspro-
duce a measurement matrix with m = q2 rows, we must have q < 141 ≈ √

20000,
because otherwise the number of measurements would exceed the dimension of the
vector! Since the expander graph method requires the most measurements, the spar-
sity count k must satisfy 8(2k − 1) < 141, which gives k ≤ 9. However, if we try to
recover k-sparse vectors with k = 9 using the expander graph method, the number
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Table 5 Number of measurements for various approaches

Method �1-norm Min. Expander graphs New Alg.

Bound: q ≥ 6k 8(2k − 1) 4k

Bound: m ≥ 36k2 64(2k − 1)2 16k2

q with k = 6 37 89 29

m with k = 6 1,369 7,921 841

of measurements m would be essentially equal to the dimension of the vector n.
Hence, we chose value of k = 6. With this choice, the values of q and the number of
measurements are shown in Table 5. Note that q must be chosen as a prime number.

Having chosen the values of n and k, we generated 100 different k-sparse n-
dimensional vectors, with both the support set of size k and the nonzero values
of x generated at random.6 As expected, both the expander graph method and the
new algorithm recovered the unknown vector x exactly in all 100 cases. The �1-
norm minimization method recovers x with very small error. However, there was a
substantial variation in the average time over the 100 runs. Our algorithm took an
average of 0.0951 seconds, or about 95ms, �1-norm minimization took 21.09 s, and
the expander graph algorithm took 76.75 s. Thus, our algorithm was about 200 times
faster than �1-normminimization and about 800 times faster than the expander graph
algorithm.

As a final example, we introduced measurement noise into the output. As per
Theorem 17, if y = Ax + η where ‖η‖0 ≤ M , then it is still possible to recover x
exactly by increasing the prime number q. (Note that it is also possible to retain the
same value of q by reducing the sparsity count k so that k + M is the same as before.)
Note that the only thing that matters here is the number of nonzero components of
the noise η and not their magnitudes. One would expect that if the norm of the noise
gets larger and larger our algorithm would continue to recover the unknown sparse
vector exactly, while �1-norm minimization would not be able to. In other words,
our algorithm is tolerant to “shot” noise, whereas �1-norm minimization is not. The
computational results bear this out. We choose n = 20, 000 and k = 6 as before, and
M = 6, so that we perturb the true measurement Ax in six locations. Specifically, we
chose η = αv where each component of v is normally distributed, and then increased
the scale factorα. Each experimentwas repeatedwith 100 randomly generated sparse
vectors and shot noise. The results are shown in Table6.

20 Discussion

In this chapter, we have built upon a previously proven sufficient condition for stable
k-sparse recovery, and showed that it actually guarantees robust k-sparse recovery,
that is, basis pursuit achieves k-sparse recovery even in the presence of measurement

6MATLAB codes are available from the authors.
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Table 6 Performance of new algorithm and �1-norm minimization with additive shot noise

New Algorithm �1-norm minimization

Alpha Err. Time Rec. Err. Time Rec.

10−5 0 0.1335 100 3.2887e-06 26.8822 0

10−4 0 0.1325 100 3.2975e-05 26.6398 0

10−3 0 0.1336 100 3.3641e-04 28.1876 0

10−2 0 0.1357 100 0.0033 23.1727 0

10−1 0 0.1571 100 0.033 28.9145 0

10 0 0.1409 100 1.3742 26.6362 0

20 0 0.1494 100 1.3967 26.5336 0

noise. We then derived a universal lower bound on the number of measurements
in order for binary matrix to satisfy this sufficient condition. Ideally, we would like
to prove a universal necessary condition along the following lines: If a left-regular
binary measurement matrix A achieves robust k-sparse recovery of order k, then
dl ≥ φ(k) where φ(·) is some function that is waiting to be discovered. In such a
case, the bounds in Theorem 11 would truly be universal. At present, there are no
known universal necessary conditions for binary measurement matrices, other than
Theorem 3 which is applicable to all matrices, not just binary matrices.

Note that, as shown in [18, Problem 13.6], a binary matrix does not satisfy the
RIP of order k with constant δ unless

m ≥ min

{
1 − δ

1 + δ
n,

(
1 − δ

1 + δ

)2

k2
}

.

This negative result has often beenused to suggest that binarymatrices are not suitable
for compressed sensing. However, RIP is only a sufficient condition for robust sparse
recovery, and as shown here, it is possible to provide far weaker sufficient conditions
for robust sparse recovery in terms of the RNSP, when the measurement matrix is
binary.

Moreover, it is possible to compare the sample complexities implied by (7) for
randomGaussianmatriceswith those corresponding to theDeVore class and the array
code class, to see that when n < 105 and k <

√
n, in fact binary matrices require

fewer measurements, as shown in Table 7.
One might argue that the bound in (7) is only a sufficient condition for the number

of measurements, and that in actual examples, far fewer measurements suffice. This
is precisely the motivation behind studying the phase transition of basis pursuit with
binary matrices. As shown in Sect. 18.2, in fact, there is no difference between the
phase transition behavior of random Gaussian matrices and binary matrices. This
observation reinforces earlier observations in [14]. In other words, the fraction of
randomly generated k-sparse vectors that can be recovered using m measurements
is the same whether one uses Gaussian matrices or binary matrices. Given that basis
pursuit can be implementedmuchmore efficientlywith binarymeasurementmatrices
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Table 7 Comparison of the number of measurements for the DeVore binary matrix, the array code
binary matrix, and the random Gaussian matrix. Note that mD = q2D and mA = (k + 1)qA. The
quantity mG is computed according to (7)

n k qD mD qA mA mG

900 5 11 121 31 186 4,467

10 23 529 341 6,682

15 31 961 496 8,982

20 41 1,681 651 10,863

104 20 47 2,209 101 2,121 14,436

40 83 6,889 4,141 25,430

60 127 16,129 6,161 35,600

80 163 26,569 8,181 45,232

105 50 101 10,201 317 16,167 39,165

100 211 44,521 32,017 71,878

150 307 94,249 47,867 102,604

200 401 160,801 63,717 132,030

than with random Gaussian matrices, and both classes of matrices exhibit similar
phase transition properties, there appears to be a very strong case for preferring
binary measurement matrices over random Gaussian matrices, notwithstanding the
“order optimality” of the latter class.

There is one final point that we wish to make. Theorem 12 suggests that in order
to use binary matrices for compressed sensing, it is better to use graphs with small
girth, in fact, of girth 6. This runs counter to the intuition in LDPC decoding, where
one wishes to design binary matrices with large girth. Indeed, in [50], the authors
build on an earlier paper [51] and develop a message-passing type of decoder that
achieves order optimality using a binary matrix. The binary matrices that are used
in [50] all have large girth Ω(log n) which is the theoretical upper bound. This
discrepancy needs to be explored. At present, all that we can say is that the model for
compressed sensing used in [50] is different from the one used here and inmost of the
compressed sensing literature. Specifically (to paraphrase a little bit), in [50] in the
unknown vector, each component is binary, and the probability that the component
equals one is k/n. Thus, the expected value of nonzero bits is k, but it could be larger
or smaller. Accordingly, the actual sparsity count is a random number that could
exceed k. The recovery results proved in [50] are also probabilistic in nature. It is
worth further study to determine whether this difference is sufficient to explain why,
in the present case, graphs of low girth are to be preferred.

Acknowledgements The contents of this chapter report various results from the doctoral thesis
of the second author, carried out under the supervision of the first author. The authors thank Prof.
David Doonoho and Mr. Hatef Monajemi of Stanford University for their helpful suggestions on
phase transitions, and for providing code to enable us to reproduce their computational results. They
also thank Prof. Phanindra Jampana of IIT Hyderabad for helpful discussions on the construction
of Euler squares.



318 M. Vidyasagar and M. Lotfi

Appendix

In this appendix, we compare the number of measurements used by probabilistic
as well as deterministic methods to guarantee that the corresponding measurement
matrix A satisfies the restricted isometry property (RIP), as stated in Theorem 1.
Note that the number of measurements is computed from the best available sufficient
condition. In principle, it is possible that matrices with fewer rows might also satisfy
the RIP. But there would not be any theoretical justification for using such matrices.

In probabilistic methods, the number of measurementsm is O(k log(n/k)). How-
ever, in reality, the O symbol hides a huge constant. It is possible to replace the O
symbol by carefully collating the relevant theorems in [18]. This leads to the follow-
ing explicit bounds.

Theorem 24 Suppose X is a random variable with zero mean, unit variance, and
suppose in addition that there exists a constant c such that7

E[exp(θX)] ≤ exp(cθ2), ∀θ ∈ R. (61)

Define
γ = 2, ζ = 1/(4c), α = γ e−ζ + eζ , β = ζ, (62)

c̃ := β2

2(2α + β)
. (63)

Suppose an integer k and real numbers δ, ξ ∈ (0, 1) are specified, and that A =
(1/

√
m)Φ, whereΦ ∈ R

m×n consists of independent samples of X. Then, A satisfies
the RIP of order k with constant δ with probability ≥ 1 − ξ provided

m ≥ 1

c̃δ2

(
4

3
k ln

en

k
+ 14k

3
+ 4

3
ln

2

ξ

)
. (64)

In (64), the number of measurements m is indeed O(k log(n/k)). However, for
realistic values of n and k, the number of measurements n would be comparable
to, or even to exceed, n, which would render “compressed” sensing meaningless.8

For “pure” Gaussian variables, it is possible to find improved bounds for m (see
Theorem 2 which is based on [18, Theorem 9.27]. Also, for binary random variables
where X equals ±1 with equal probability, another set of bounds is available [52].
While all of these bounds are O(k log(n/k)), in practical situations the bounds are
not useful.

7Such a random variable is said to be sub-Gaussian. A normal random variable satisfies (61) with
c = 1/2.
8In many papers on compressed sensing, especially those using Gaussian measurement matrices,
the number of measurements m is not chosen in accordance with any theory, but simply picked out
of the air.
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Table 8 Best available bounds for the number of measurements for various choices of n and k
using both probabilistic and deterministic constructions. For probabilistic constructions, the failure
probability is ξ = 10−9. mG ,mSG ,mA denote, respectively, the bounds on the number of mea-
surements using a normal Gaussian, a sub-Gaussian with c = 1/2, and a bipolar random variable
and the bound of Achlioptas. For deterministic methods, mD denotes the number of measurements
using DeVore’s construction, while mC denotes the number of measurements using chirp matrices

n k mG mSG mA mD mC

104 5 5,333 28,973 3,492 841 197

104 6 5,785 31,780 3,830 1,369 257

104 7 6,674 37,308 4,496 1,681 401

104 8 7,111 40,035 4,825 2,209 487

104 9 7,972 45,424 5,474 2,809 677

104 10 8,396 48,089 5,796 3,481 787

105 10 10,025 57,260 6,901 3,481 787

105 12 11,620 66,988 8,073 5,041 1,163

105 14 13,190 76,582 9,229 6,889 1,601

105 16 14,739 86,061 10,372 9,409 2,129

105 18 16,268 95,441 11,502 11,449 2,707

105 20 17,781 104,733 12,622 16,129 3,371

106 5 7,009 38,756 4,671 10,201 1,009

106 10 11,639 66,431 8,006 10,201 1,009

106 15 16,730 96,976 11,687 10,201 1,949

106 20 21,069 123,076 14,832 16,129 3,371

106 25 25,931 152,373 18,363 22,201 5,477

106 30 30,116 177,635 21,407 32,041 7,753

106 50 47,527 283,042 34,110 94,249 21,911

106 60 55,993 334,440 40,304 128,881 31,687

106 70 64,335 385,171 46,417 175,561 43,271

106 80 72,573 435,331 52,462 229,441 56,659

106 90 80,718 484,992 58,447 292,681 71,837

106 100 88,781 534,210 64,378 358,801 88,807

This suggests that it is worthwhile to study deterministic methods for generating
measurement matrices that satisfy the RIP. There are very few such methods. Indeed,
the authors are aware of only three methods. The paper [15] uses a finite field method
to construct a binary matrix, and this method is used in the present chapter. The paper
[53] gives a procedure for choosing rows from a unitary Fourier matrix such that
the resulting matrix satisfies the RIP. This method leads to the same values for the
number ofmeasurementsm as that in [15]. Constructing partial Fourier matrices is an
important part of reconstructing time-domain sparse signals from a limited number
of frequency measurements (or vice versa). Therefore, the results of [53] can be used
in this situation. In both of these methods, m equals q2 where q is appropriately
chosen prime number. Finally, in [54] a method is given based on chirp matrices. In
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this case, m equals a prime number q. Note that the partial Fourier matrix and the
chirp matrix are complex, whereas the method in [15] leads to a binary matrix. In all
three methods, m = O(n1/2), which grows faster than O(k log(n/k)). However, the
constant under this O symbol is quite small. Therefore, for realistic values of k and
n, the bounds for m from these methods are much smaller than those derived using
probabilistic methods.

Table 8 gives the values of m for various values of n and k. Also, while the chirp
matrix has fewer measurements than the binary matrix, �1-norm minimization with
the binary matrix runs much faster than with the chirp matrix, due to the sparsity of
the binary matrix. In view of these numbers, in the present chapter, we used DeVore’s
construction as the benchmark for the recovery of sparse vectors.
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Stochastic Optimization for Energy
Storage Allocation in Smart Grids
in the Presence of Uncertainty
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Abstract A key subject in the study of smart grids is to accommodate uncertainty
in various contexts, including planning and operation of electricity grids in the pres-
ence of distributed generation from renewable energy sources, stochastic demand
patterns, and varying network configurations. The impact of uncertainty on the solu-
tion of different problems formulated in the optimal power flow framework calls
for stochastic programming paradigms in the form of two- or multi-stage problems,
or optimization programs with chance constraints. In this chapter, we focus on the
problem of optimally siting and sizing the energy storage systems in a distribu-
tion network. These devices are recognized as good candidates to tackle different
issues, such as voltage/frequency regulation, minimal curtailment of renewable gen-
eration, peak shaving, or others. For the sizing problem, a scenario-based approach
is adopted to cope with uncertain demand and generation profiles at the different
buses of the network. A novel scenario reduction technique is presented to make
the resulting stochastic optimization problem computationally tractable. A heuristic
strategy based on network voltage sensitivity analysis is adopted to deal with the
combinatorial nature of the energy storage siting problem. The overall procedure is
tested on a IEEE benchmark network, highlighting good performance on a realistic
case study.
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1 Introduction

In spite of its contribution to reducing carbon dioxide production, the widespread
and ever-increasing penetration of solar photovoltaic and wind power generation
plants in electricity grids is posing several challenging problems to the operation
of existing distribution electricity networks. Indeed, since the main feature of non-
programmable renewable energy sources is intermittency, their introduction has con-
sistently increased the coupling of grid planning and operation with weather and
climate conditions. These issues have been strengthened by the dramatic changes of
demand behavior at critical nodes of the grids, as a consequence of the introduction
of new sources of uncertainty deriving from, e.g., demand response programs, charg-
ing of electric vehicles, and installation of heat pumps [20]. Appropriate planning
and operation of modern electricity grids require to understand and model all these
uncertainties, characterized by high dimensionality, strong interdependencies, and
complex dynamics. For example, classical approaches based on generating proba-
bilistic forecasts by exploiting predictive marginal probability distribution functions
are not appropriate in a context where both spatial and temporal correlations are an
essential feature of demand patterns and distributed generation (DG).

The main contribution of the present chapter consists of showing how an accurate
modeling of uncertainties on demand and DG, taking into account both time and
space interdependencies, allows one to solve robustly the problem of allocating
energy storage systems (ESSs) in a distribution electricity grid with the aim, e.g., of
supporting voltage control. It is indeedwell recognized [1, 9, 22, 35] that the effect of
different types of uncertainties on grid operation can be mitigated by the deployment
of ESSs, which can act either as loads or as generators to compensate the local excess
or lack of energy in the grid. While there exists a wide literature on ESS sizing in
a deterministic context, where generation and demand curves are assumed to be
known, tackling the ESS allocation problem by suitably accommodating uncertainty
remains a challenging problem [2, 4, 13, 26, 27].

As mentioned above, ESS deployment allows for improving grid performance,
reliability, flexibility, and security. In this chapter, we focus on voltage regulation in
distribution networks, which, according to most regulatory frameworks, is a crucial
aspect of the quality of service to end customers [11, 34]. For instance, excess
of power from DG may determine overvoltages in the distribution grid, leading to
a reverse power flow upstream the transformer, with a strong impact on system
operation and protection management. In these situations, charging of the ESSs
installed in the grid may help bring voltage magnitudes back within the limits. As an
additional benefit, in thisway, it is possible to avoidDGcurtailment, which represents
the action most widely used by distribution system operators to limit the impact of
excessive production fromDG. Use of ESSs may also help smooth the fast occurring
voltage variations arising as one of the tangible effects of sudden changes in energy
production and/or demand patterns.
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The problem of the optimal ESS allocation must be tackled at the planning
stage. The decision problem consists of defining the number of storage devices
to be deployed, their locations (siting), and sizes (sizing). A literature review of
ESS allocation techniques, classified according to both the ESS application and the
methodology used to find a solution, can be found in the survey paper [36]. Optimal
ESS siting and sizing are often carried out simultaneously, either through a cost–
benefit analysis [29] or formulating a single optimization problem, e.g., in the form
of a mixed integer nonlinear program [26], or a bi-level model [3]. In other cases,
the two problems are dealt with separately in order to alleviate the computational
burden. This is the approach taken in this chapter.

We formulate the ESS sizing problem in an optimal power flow (OPF) framework,
where an appropriate cost function including storage installation and operation costs
is optimized, subject to storage dynamics, power flow, and network constraints (see,
e.g., [19, 21]). Demand and DG profiles at the different buses of the network are con-
sidered as realizations of stochastic processes, whose characteristics are estimated
from available historical data. A scenario-based approach is taken for describing the
statistics of uncertain variables, by generating a rich set of scenarios reflecting the
spatial and temporal correlations of the processes involved. Then, the ESS sizing
problem is formulated as a two-stage stochastic program [30], where the first-stage
problem aims atminimizing a linear combination of storage installation and expected
operation costs, and the second-stage problem is a standard OPF, whose solution pro-
vides the optimal storage control policy for given realizations of demand and DG
[8]. The two-stage problem is approximated with a single-stage, multi-scenario OPF,
which, in view of the richness of the scenario set, turns out to be typically intractable.
To cope with this challenging computational complexity, a scenario reduction tech-
nique is devised, which relies on a metric exploiting the structure of the single-stage,
multi-scenario problem [8].

With reference to the ESS siting problem, which is combinatorial in the number
of buses of the network and the number of ESSs to be deployed, a heuristic procedure
is adopted, which exploits the network voltage sensitivity matrix [15].

The overall ESS siting and sizing procedure is illustrated using the topology of
an IEEE 37-bus test network with wind power generation, showing the effectiveness
of the procedure in the presence of a very large scenario set.

The chapter is organized as follows. Section 2 presents the networkmodel and con-
straints, and states the considered ESS allocation problem. This problem is addressed
in Sect. 3 in a framework with uncertainty on demand and generation. In that section,
the ESS siting and sizing procedures of [8, 15] are summarized by highlighting how
uncertainty is dealt with in both of them. Numerical results obtained by applying the
ESS allocation procedure to an IEEE 37-bus distribution network are illustrated in
Sect. 4. Finally, conclusions are drawn in Sect. 5.
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2 The ESS Allocation Problem

The decision problem considered in this chapter consists of defining the number
of ESSs to be deployed in a distribution network, their locations (siting) and sizes
(sizing) [35]. In order to formulate the problem mathematically, we first introduce
the bus injection model of a distribution network, and the problem constraints related
to ESS and network operation.

In the following, Re(z), Im(z), |z|, and z∗ denote the real part, imaginary part,
modulus, and complex conjugate of the complex number z, respectively. For a real
number x ,

[
x]+ = max{x, 0} and [

x]− = max{0,−x}. Moreover, u(t) is the value
of the variable u at time tΔT , where t = 0, 1, 2, . . . is the discrete time index and
ΔT is the time step.

2.1 Bus Injection Model

The bus injection model is one of the standard models used for power flow (PF)
analysis and optimization [21]. The model involves nodal variables such as voltages
and current/power injections. Let a distribution network be described by a graph
(N ,E ), where N = {1, 2, . . . , n} is the set of nodes (buses) and E is the set of
edges (lines). According to the classical π -model for the n-bus system [24], the
admittance to ground at bus i is denoted by yii , while yi j = y ji is the line admittance
between buses i and j . If (i, j) /∈ E , yi j = 0. At time t , the complex voltage at bus i
is denoted by Vi (t), while the net active and reactive power injections into bus i are
denoted by Pi (t) and Qi (t), respectively. These quantities are related by the power
balance equations

Pi (t) = Re
{
Vi (t)

∑

j∈N
V ∗
j (t)Y

∗
i j

}
(1a)

Qi (t) = Im
{
Vi (t)

∑

j∈N
V ∗
j (t)Y

∗
i j

}
, (1b)

where

Yi j =
{
yii + ∑

h �=i yih if i = j

−yi j otherwise.
(2)

Without loss of generality, bus 1 represents the interconnection with an external grid,
modeled as a slack bus with fixed complex voltage V1(t). The other buses in the set
L = {2, . . . , n} are modeled as load buses, for which the known quantities are the
net active and reactive power injections Pi (t) and Qi (t). At time t and for given
V1(t), P2(t), Q2(t), …, Pn(t), Qn(t), the PF problem consists of solving the system
of nonlinear equations (1), i ∈ N , with respect to the unknowns P1(t), Q1(t), V2(t),
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…, Vn(t). There are several methods for carrying out this task, themost popular being
the Newton–Raphson method (see, e.g., [24, Chap. 3]).

2.2 Constraints

It is assumed that m ESSs are installed in the network. The subset of buses equipped
with ESSs is denoted byS = {s1, . . . , sm} ⊆ L . The energy level in the storage at
bus s and time t is denoted by es(t), satisfying the physical constraint

0 ≤ es(t) ≤ Es, (3)

where Es is the ESS size. Let rs(t) be the active power exchanged by the ESS at bus
s and time t . If power is injected into the ESS, we set rs(t) > 0, whereas rs(t) < 0
when power is extracted from the ESS. With the same convention about the sign,
the reactive power exchanged by the ESS at bus s and time t is denoted by bs(t).
Limits on the apparent power exchanged by the ESS aremodeled through a polygonal
approximation of the feasible region for the pair

(
rs(t), bs(t)

)
, described by

Γs rs(t) + Υs bs(t) ≤ Ξs Es, (4)

where Γs , Υs , andΞs are given column vectors [8, 26]. The right-hand side of (4) is a
function of Es to model the possible dependence of power ratings on energy ratings
for a given storage technology [32]. The first-order difference equation

es(t) = es(t − 1) + ηc
s

[
rs(t)

]+
ΔT − 1

ηd
s

[
rs(t)

]−
ΔT (5)

models the dynamics of es(t), where ηc
s and ηd

s are the charging and discharging
efficiencies of the storage at bus s, and es(0) is the known initial condition. Since, in
this chapter, we consider time horizons of one day, we further impose the constraint
that the storage energy level is equal at the beginning and at the end of the day,
namely,

es(T ) = es(0), (6)

where T is the number of time steps per day. This is done in order to decouple ESS
operation over different days.

Additional constraints are included to describe desired and/or physical limits on
PF variables. In order to keep the voltage magnitude between bounds imposed by
voltage quality requirements, the following constraints are enforced:

v2i ≤ |Vi (t)|2 ≤ v2i , (7)
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where vi ≤ vi are given positive constants. Moreover, physical properties of the lines
impose limits on the apparent power transferred from bus i ∈ N to the rest of the
network through line (i, j) ∈ E . These limits are expressed by the constraints

∣∣Vi (t)
[
Vi (t) − Vj (t)

]∗
y∗
i j

∣∣ ≤ Si j , (8)

where Si j = S ji are given upper bounds.
Summarizing, for a generic bus i ∈ L , possibly having loads, generators, andESS

connected to it, the power balance equations (1) can be rewritten by highlighting all
contributions of active and reactive power

Re
(
Vi (t)

∑

j∈N
V ∗
j (t)Y

∗
i j

)
= PG

i (t) − PD
i (t) − ri (t) (9a)

Im
(
Vi (t)

∑

j∈N
V ∗
j (t)Y

∗
i j

)
= QG

i (t) − QD
i (t) − bi (t), (9b)

where PG
i (t) and PD

i (t) denote the active power generated and demanded at bus i ,
and QG

i (t) and QD
i (t) have a similar meaning in terms of reactive power (all these

quantities are assumed to be nonnegative). In (9), if no load, generator or ESS is
connected to bus i , the corresponding contribution is set equal to zero.

2.3 Problem Formulation

The decision about the number, the locations and the sizes of the ESSs to be deployed
in the network is to be made by minimizing a combination of installation and oper-
ation costs. We consider a cost structure of the following type:

C(m, λ, x) = ρm + ς
[
c(x) + γ g(λ, x)

]
, (10)

wherem is the number of ESSs, λ = (s1, . . . , sm) is the vector of ESS locations, and
x = (Es1 , . . . , Esm ) is the vector of ESS sizes. The term c(x) in (10) represents the
total energy capacity corresponding to the vector x as

c(x) =
∑

s∈S
Es, (11)

while g(λ, x) is a measure of the (expected) operational costs corresponding to ESSs
placed at the locations defined by the vector λ, and sized according to the vector x
(see Sect. 3.1 for a discussion on the structure of the cost g(λ, x)). It is assumed
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that g(λ, x) = ∞ when there exist operating conditions (defined by demand and
generation profiles in the network) forwhich it is not possible to satisfy the constraints
(3)–(9). The nonnegative coefficients ρ, ς , and γ are used in (10) to trade-off the
different cost terms.

With the above definitions, the considered ESS allocation problem reads as fol-
lows.

Problem 1 For a given distribution network described by the graph (N ,E ) and the
admittance matrix Y = [Yi, j ]i, j∈N , find the number m of ESSs to be deployed, the
vector of ESS locations λ, and the vector of ESS sizes x , which minimize the cost
C(m, λ, x) in (10).

3 Dealing with Uncertainty in ESS Allocation

Solving Problem 1 directly is a very challenging task due to the combinatorial nature
of the siting problem, and the fact that future realizations of demand and generation,
needed to evaluate the operation costs in (10), are unknown at the planning stage.
The latter aspect calls for problem formulations taking this uncertainty explicitly into
account.

In order to tackle the above issues,we adopt an iterative two-step procedure similar
to that proposed in [15], and shown in Algorithm 1. At each iteration, the procedure
first solves the siting problem for a given number of ESSs, and then computes the
optimal sizes for those ESSs.

Algorithm 1 Iterative procedure for ESS allocation
for m = 1 to n − 1 do

λ(m) ← Solve siting problem for m ESSs
x (m) ← Solve sizing problem for ESSs placed according to λ(m)

C(m, λ(m), x (m)) ← Evaluate total cost
end for
m� = argminm C(m, λ(m), x (m))

return (m�, λ(m∗), x (m∗))

The two steps of the proposed ESS allocation procedure are described in the
following sections. The siting step of Algorithm 1 is performed by applying the
heuristic approach proposed in [15]. The approach copes with the combinatorial
nature of the siting problem by exploiting clustering and voltage sensitivity analysis
to identify a set of buses with greater effect of power injection on voltage variations
at the other buses. In turn, the sizing step is carried out following the scenario-based
approach proposed in [8], which makes it possible to accommodate uncertainty on
demand and generation described in the form of a very large set of daily profiles.
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3.1 ESS Siting

The approach to ESS siting proposed in [15] is based on clustering and voltage
sensitivity analysis. It applies to radial networks. First, a complete graph is built over
the network using the entries of the voltage sensitivity matrix to weight the arcs. This
complete graph is then partitioned into a given number of clusters. Finally, a bus is
selected within each cluster with the aim of maximizing voltage controllability in the
cluster. The approach is summarized in the following steps, where q is the predefined
number of clusters.

1. Network clustering. First, the set L is partitioned into q disjoint subsets by
running a clustering algorithm on the complete graph built overL . The weight
associated with the edge (i, j) is equal to the sensitivity of voltage magnitude at
bus j to power injection at bus i , defined as

Ψi, j = ∂|Vj |/∂Pi . (12)

Among several methods for graph clustering available in the literature (see, e.g.,
[25]), the one adopted in [15] is based on [17]. It searches for q subgraphs
which form a partition of the original graph, while minimizing the sum of the
weights associated with the removed edges. In our application, this amounts to
constructing the partition of the complete graph which minimizes the sum of the
voltage sensitivities associated with the removed connections. The outcome of
the clustering algorithm is a partition {Lh}qh=1 of the node set L , from which
subnetworksGh = (Lh,Eh) are reconstructed bydefiningEh = {(i, j) ∈ E : i ∈
Lh, j ∈ Lh}.

2. Candidate buses. For each subnetwork Gh , the critical buses are identified as
the buses with generation and the buses that are leaves of the original network.
The corresponding set is denoted by Ch . Then, the set Ωh of candidate buses is
formed with all the buses along the paths connecting any pair of critical buses
of Gh .

3. Bus selection. The ESS for subnetwork Gh is placed at bus sh defined as

sh = argmax
i∈Ωh

min
j∈L h\{i}

Ψi, j . (13)

This choice aims at maximizing the effect of power injections at one bus on
voltage variations at the other buses of the subnetwork.

In the following, the above three steps are referred to as CSA algorithm. In practice,
if a subnetwork Gh resulting from step 1 does not contain any bus affected by voltage
problems, it can be reasonably left without ESS, thus avoiding to deploy an ESS
which would turn out to be unnecessary. This implies that the number m of ESS
locations resulting from running the CSA algorithm with the number of clusters
equal to q, satisfies in general m ≤ q.
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In practical applications, the voltage sensitivity value Ψi, j in (12) is estimated
numerically by evaluating the voltage variation at bus j consequent to a unit power
injection at bus i , which amounts to solving a PF problem. While it is true that the
absolute values of (12) do depend on the particular demand and generation profiles,
their relative values (which in fact determine the outcome of the CSA algorithm) are
quite invariant, being mostly determined by network topology and line admittances
[5, 33]. As a consequence, the outcome of the CSA algorithm is expected to be
robust to uncertainty on demand and generation profiles, and the values in (12) can
be computed once, e.g., considering average demand and generation profiles at each
bus.

3.2 ESS Sizing

In the sizing step of Algorithm 1, the number and the locations of the ESSs to be
deployed in the network are fixed.Hence, for givenm andλ, and in viewof Problem1,
the ESS sizing problem reads as the minimization of the cost C(m, λ, x) in (10) with
respect to the vector of ESS sizes x only, corresponding to solve

min
x∈X

c(x) + γ g(λ, x), (14)

where the set X includes the constraints that all ESS sizes must be nonnegative.
Taking into account that, at the planning stage, future realizations of demand and
generation are unknown, the above problem is cast in a setting which explicitly
accounts for uncertainty. The two-stage stochastic optimization framework of [30]
is suitable to this aim (see Appendix 1 for the general form of a two-stage stochastic
program).

In order to formulate (14) as a stochastic optimization problem,wemodel the daily
demand and generation profiles as stochastic quantities, and introduce the random
vector p with elements PD

i (t), QD
i (t), PG

i (t), and QG
i (t) for all i ∈ L and t ∈ T ,

where T = {1, . . . , T }. Then, we let

g(λ, x) := Ep[F(x,p)], (15)

where, for a given realization p of p, F(x, p) is given by

F(x, p) := min
y∈Y (x,p)

f (x, y, p), (16)

and Ep[·] denotes expectation with respect to the probability distribution of the
random variable p. In (16), y denotes the vector containing the values Vi (t), rs(t),
and bs(t) for all i ∈ L , s ∈ S , and t ∈ T , and Y (x, p) is the feasible solution set
for y, defined as
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Y (x, p) = {y : (3) − (9), i ∈ L , s ∈ S , (i, j) ∈ E , t ∈ T }. (17)

Notice that S is the (fixed) set of ESS locations corresponding to the vector λ.
The cost function f (x, y, p) in (16) represents daily operation costs. Hence, prob-
lem (16) aims at finding the ESS control policy {rs(t), bs(t)}Tt=1 which minimizes
daily operation costs under the demand and generation profiles defined by p, while
satisfying constraints (3)–(6) onESS dynamics, constraints (7) and (8) on voltage and
apparent power, and power balance equations (9). In turn, g(λ, x) in (15) represents
the expected daily operation costs, assuming that the ESSs with sizes defined by x
and placed at the locations defined by λ are optimally operated under all possible
realizations of demand and generation.

The daily operation costs f (x, y, p) can be the linear combination of several
terms. Some examples are as follows:

• The average total line losses per time step, i.e.,

f1(x, y, p) =
∑

t∈T

∑

i∈N
Pi (t)ΔT/T ; (18)

• The average energy exchanged by the ESSs per time step,

f2(x, y, p) =
∑

t∈T

∑

s∈S
|rs(t)|ΔT/T, (19)

which is a measure of the overall battery usage;
• The average energy exchanged at the slack bus per time step,

f3(x, y, p) =
∑

t∈T
|P1(t)|ΔT/T, (20)

which is a measure of by how much the considered distribution network impacts
the external grid.

With the choices (15) and (16), the ESS sizing problem (14) reads as the following
two-stage stochastic program:

min
x∈X

c(x) + γ Ep[F(x,p)] (21a)

F(x, p) := min
y∈Y (x,p)

f (x, y, p). (21b)

As is standard in two-stage stochastic programming, when the setY (x, p) is empty,
we set F(x, p) = ∞. Hence, the fact that the cost in (21a) is finite for a given
solution x requires that, by operating the ESSs with sizes defined by x , network
constraints can be satisfied under all possible realizations of demand and generation.

Solving optimization problems like (21), where uncertainty on input data is mod-
eled by continuous, multivariate random variables, is a very hard task in general.
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A typical approach adopted in the literature to tackle these problems consists of
discrete approximations based on scenarios [30]. In the considered problem, a sce-
nario is a realization pd of the random vector p, i.e., a particular instance of daily
demand and generation profiles at network buses. Assume that a set of scenarios
P = {p1, . . . , pD} is sampled from the probability distribution of p,1 and define
the set of indices D = {1, . . . , D}. Let {πP

d }d∈D be the approximating probability
mass function of P with respect to the probability distribution of p. Moreover, for
each scenario pd , define a vector of unknowns yd with the same meaning as y in
(16). Then, the discrete approximation of the two-stage problem (21) reads as the
following (deterministic) single-stage problem:

J ∗ = min
x,{yd }d∈D

c(x) + γ
∑

d∈D
πP
d f (x, yd , pd) (22)

s.t. x ∈ X , yd ∈ Y (x, pd), d ∈ D .

This approximation is justified by the fact that if pwere actually discrete valued with
supportP , then (21a) and (22) would be equivalent thanks to the interchangeability
principle [30]. In the following, we will denote by x∗ and y∗

d the values of the
unknowns x and yd at the optimum of (22), while E∗

s is the size of the ESS at bus s
corresponding to the solution x∗.

In spite of the transformation into a deterministic problem, (22) is still hard to solve
for a number of reasons. First, the problem is an AC OPF, which brings the intrinsic
difficulties of this class of problems (e.g., nonconvexity). Second, time-coupling con-
straints determined by ESS dynamics and scenario-coupling constraints represented
by ESS sizes (common to all scenarios) further increase the complexity of the prob-
lem. Finally, and most importantly, a good discrete approximation requires a very
large number of scenarios. This may make problem (22) practically intractable even
resorting to state-of-the-art relaxation techniques for OPF problems [19, 21], due to
the huge number of variables involved, asking for prohibitive memory requirements.
In other words, even if computation timemight be not so critical at the planning stage,
the real difficulty with problem (22) would be the practical impossibility to find a
solution. In order to keep the problem size affordable, scenario-based approaches
are often coupled in the literature with techniques to downsize the scenario set. To
this aim, clustering algorithms such as K-means and centroid-linkage clustering are
adopted [4, 26]. Another option is to apply scenario reduction techniques based on
the notion of probability distance [12]. However, as shown in [6], all these techniques
may fail in preserving the useful information contained in the original scenario set.

1In practical applications, scenarios can be obtained from historical data, or generated via suitable
scenario generation techniques, such as simulation of identified models [10] and methods based on
the use of copula functions [28].
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3.2.1 Computing Bounds and a Feasible Solution

For the reasons described above, a decomposition approach is proposed in [8] to
tackle problem (22). The approach is based on solving a problem similar to (22) for
each scenario pd as

min
x,yd

c(x) + γ f (x, yd , pd) (23)

s.t. x ∈ X , yd ∈ Y (x, pd).

This amounts to solving D multi-period OPF problems, for which solution strategies
based on semidefinite programming (SDP) convex relaxations can be adopted, see,
e.g., [19]. Notice that solving (23) is typically affordable. Moreover, the solution
of the D single-scenario problems can be parallelized, thus reducing the overall
computation time. The values of x and yd at the optimum of problem (23) are denoted
by x̃d and ỹd , while Ẽs,d is the size of the ESS at bus s corresponding to the vector x̃d .

As shown in [8], the pairs (̃xd , ỹd) can be used to compute a lower bound JLB to
the optimal cost J ∗ of (22) as

JLB =
∑

d∈D
πP
d

[
c(̃xd) + γ f (̃xd , ỹd , pd)

]
. (24)

Lower bounds are useful to evaluate the quality of any feasible solution of (22). The
computation of JLB is straightforward, because the terms c(̃xd) + γ f (̃xd , ỹd , pd)
on the right-hand side of (24) are the optimal costs of the problems (23) that were
previously solved. A less conservative lower bound for the case γ = 0 is given by

J 0
LB = max

d∈D
c(̃xd). (25)

A feasible solution of (22), and consequently an upper bound to J ∗, can also be
recovered from the solutions of the single-scenario problems (23), by constructing
the following vector of ESS sizes:

x̃ = max
d∈D

x̃d , (26)

where the max is to be intended component-wise. It is shown in [8] that the solution
(̃x, {ỹd}d∈D ) is feasible for (22), and an upper bound to the optimal cost of (22) is
given by

JUB = c(x̃) + γ
∑

d∈D
πP
d f (x̃, ỹd , pd). (27)

If the cost function f (x, y, p) is a linear combination of (18)–(20), it can be shown
that f (x̃, ỹd , pd) = f (̃xd , ỹd , pd), where f (̃xd , ỹd , pd) is known, being the daily
operation costs at the optimum of (23). Hence, the computation of the upper bound
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does not introduce any additional burden into the procedure. In the following, we
denote by Ẽs the size of the ESS at bus s corresponding to the vector x̃ .

3.2.2 Optimal Solution via Scenario Reduction

When the objective of ESS sizing is only to minimize the total installed ESS capac-
ity, and therefore γ = 0 in (22), an iterative procedure is proposed in [8] for solving
problem (22) at the optimum. The procedure is based on a metric for scenario reduc-
tion which exploits the structure of the multi-scenario problem, and allows one to
find, provided it exists, a downsized scenario set which can replace the original set
in (22), while preserving the overall optimality of the solution. In the following, we
say that a vector of ESS sizes x ∈ X is feasible for scenario pd if and only if the
set Y (x, pd) is nonempty, i.e., for the given scenario pd , it is possible to control
the ESSs over T so that all ESS and network operation constraints are satisfied. A
vector x ∈ X is feasible for problem (22) if and only if it is feasible for all scenarios.

The procedure is initialized by solving problem (23) with γ = 0 for each scenario
pd ∈ P . This makes it possible to order the scenarios according to the cost c(̃xd).We
denote by D̃ = {d1, . . . , dD}, a permutation of the set D such that c(̃xd�

) ≥ c(̃xdκ
)

if � < κ . Since c(x∗) ≥ c(̃xd) for all d ∈ D , intuitively, the ordering defined by D̃
provides an indication of the scenarios that are most critical to determine the optimal
solution x∗. This idea is exploited in Algorithm 2, which summarizes the procedure
for solving problem (22) at the optimum [8].

Algorithm 2 Scenario reduction
1: Set �0 = 0 and κ = 1
2: Select �κ such that �κ−1 < �κ ≤ D
3: x∗

κ ← Solve problem (28) with Dκ = {d1, . . . , d�κ }
4: Check feasibility of x∗

κ for all scenarios pd , d ∈ D \ Dκ

5: if (feasibility == true) then
6: return x∗ = x∗

κ

7: else
8: κ ← κ + 1
9: goto 2
10: end if

At each iteration κ , the set of indices Dκ represents the �κ scenarios pd with the
largest total ESS capacities c(̃xd). For this set of �κ scenarios, the following problem
is solved:

min
x,{yd }d∈D κ

c(x) (28)

s.t. x ∈ X , yd ∈ Y (x, pd), d ∈ Dκ .



336 M. Bucciarelli et al.

Notice that (28) coincides with (22) for γ = 0, considering a downsized scenario set
in place of P . The optimal value of x in (28) is denoted by x∗

κ . It is proven in [8]
that if the vector x∗

κ is feasible for all scenarios pd such that d ∈ D \ Dκ , then it is
optimal for (22). Otherwise, the algorithm is iterated by increasing the cardinality
�κ of the downsized scenario set. A rule of thumb to start the �κ -sequence is to set
�1 = 1. Since the vector of ESS sizes x∗

1 = x̃d1 is already available for scenario pd1 ,
one needs just to check the feasibility of this solution for all other scenarios. If the
feasibility test fails, one can choose �2 at the knee of the curve c(̃xd�

), � = 1, . . . , D,
compatibly with the size of the largest instance of problem (22) which can be solved.

Remark 1 Verifying the feasibility of a given vector of ESS sizes x for scenario pd
amounts to check whether the set Y (x, pd) is nonempty. This problem can be for-
mulated as an OPF in the unknown yd with feasible solution setY (x, pd), regardless
of the considered objective function. This test can often be avoided by exploiting the
vector x̃d . Indeed, if the condition x ≥ x̃d is satisfied, where the inequality has to
be intended component-wise, x is feasible for scenario pd . If x ≥ x̃d , x is said to
dominate x̃d .

4 Numerical Results

The procedure for ESS allocation described in Sect. 3 is demonstrated using the
topology of the IEEE 37-bus test network [18], which is shown in Fig. 1. The lengths
of the lines correspond to the original test network, while line admittances are typical
of low-voltage feeders. The network hosts 36 loads and 4 wind power generators,
whose installed power is, respectively, 13 kW at bus 5, 11 kW at bus 11, and 10 kW
at buses 17 and 35.

As far as the sizing problem is concerned, the bound Si j in (8) is set to 50 kVA
for all the lines, while 10% tolerance around the nominal voltage is allowed at each
bus, i.e., vi = 0.9 pu and vi = 1.1 pu in (7). Vectors Γs , Υs , and Ξs in (4) are defined
as

Γs =

⎡

⎢⎢
⎣

1
−1
0
0

⎤

⎥⎥
⎦ , Υs =

⎡

⎢⎢
⎣

0
0
1

−1

⎤

⎥⎥
⎦ , Ξs = ρs√

2

⎡

⎢⎢
⎣

1
1
1
1

⎤

⎥⎥
⎦ , (29)

corresponding to the inner approximation of the constraint rs(t)2 + bs(t)2 ≤ (
ρs Es)

2

on the apparent power exchanged by the ESS at time t , with a square with sides
parallel to the coordinate axes. It is assumed that the choice of the ESSs is within a
family (e.g., lithium-ion based) characterized by a coefficient ρs = 1.5 kVA/kWh in
(29). Since the analysis presented in this section does not depend on the charging and
discharging efficiencies of storage devices, ηc

s and ηd
s are set to 1 in (5). Consequently,

the dynamics (5) of es(t) simplifies as
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Fig. 1 IEEE 37-bus test network. Red bars represent the candidate buses, while dashed bars denote
buses not affected by voltage problems

es(t) = es(t − 1) + rs(t)ΔT, (30)

where the initial energy level es(0) is set to zero.
OPF problems are tackled via the SDP convex relaxation of [19]. SDP programs

are implemented through the CVX modeling package for convex optimization [16],
and solved via the SeDuMi solver [31] on an Intel Xeon 2.4 GHz CPU with 32 GB
RAM. As long as it can be solved, the computation time of the SDP relaxation of
the multi-scenario problem (22) grows almost quadratically with the cardinality of
the set D [7]. A single-scenario problem is solved in about 2 min. For all examples
discussed in this section, a feasible solution to the original problem (22), (23), or (28)
is reconstructed from the optimal solution of the corresponding relaxed program by
solving a series of PFs.

The next sections illustrate different applications of the procedures for ESS siting
and sizing described in this chapter. Section 4.2 contains the results of the ESS
siting and sizing procedures for two ESSs to be deployed. In Sect. 4.3, the whole
ESS allocation procedure is presented, providing the optimal number, locations, and
sizes of the ESSs for the considered network. In order to deal with uncertainty in
the considered decision problem, Sect. 4.1 shows how a large number of scenarios
of demand and DG is generated.
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4.1 Scenario Generation

In order to apply the scenario-based approach described in Sect. 3.2 and test, in par-
ticular, the scenario reduction procedure of Sect. 3.2.2, a large number of scenarios of
demand andDG is generated with the copula-basedmethod described in Appendix 2.
To this purpose, a scenario of demand and DG is considered as a set of daily profiles,
one for each load and each generator, sampled with time step ΔT = 60 min.

Concerning load profiles, it is assumed that there is no correlation between loads at
different buses. For each load, hourly sampled real data of demandare used to estimate
the empirical marginal distributions for each hour of the day and the correlation
matrix. Then, D = 1000 daily demand profiles are independently generated for each
of the 36 loads hosted in the network using the copula-based method. It is stressed
that, for a single load, the generated scenarios take into account temporal correlations.

For wind power generation, a common approach in the literature is to focus on
wind speed profiles, which are then converted into power (or energy) through the
power curve of the wind turbine [23]. This is the approach taken in this section.
Moreover, different from the demand scenarios, it is assumed that the four wind
turbines in the network operate under strongly correlated wind conditions. Conse-
quently, hourly sampled historical wind speed data at a single location are used to
estimate the empirical marginal distributions for each hour of the day and the correla-
tion matrix. Then, D daily wind speed profiles are generated using the copula-based
method, and finally these profiles are converted into D wind energy generation pro-
files for each of the four wind turbines using the corresponding power curve. We
recall that by plotting the hourly energy w generated by a wind turbine versus the
hourly average wind speed v, the plotted points can be typically well approximated
by a sigmoid function saturated below at 0 and above at the installed power E of the
wind turbine. This leads to the model given below:

w =
{
min{max{0, Eσ (v)}, E} if v ≤ vout
0 otherwise,

(31)

where vout is the cut-out wind speed of the wind turbine and Eσ (v) is a suitable sig-
moid function. There exist several mathematical expressions for sigmoid functions.
The one considered in this work has the following form [14]:

Eσ (v) = b + (a − b)
(
1 + e(v−v0)/c

)d
, (32)

where a > 0, b < 0, c < 0, d < 0, and v0 > 0 are the model parameters estimated
from recorded measurements by solving a nonlinear least squares problem.

In the following, the generated scenario set is denoted by P = {p1, . . . , p1000}.
In all solved problems, scenarios are considered equiprobable. With the choice made
above for the voltage bounds in (7), the generated demand and DG profiles are
such that, in the absence of ESSs, the network occasionally experiences over- and/or
undervoltages.
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Table 1 Results of the application of the CSA algorithm for q = 4

Subnetwork Lh Ch Ωh sh

G1 {2} ∅ ∅ −
G2 {3, 4, 8, . . . , 16} {10, 11, 13, 14, 16} {8, . . . , 16} 11

G3 {5, 6, 7} {5, 6, 7} ∅ −
G4 {17, . . . , 37} {17, 20, 21, 24, 26, 27, 31, 32, 35, 36, 37} {17, . . . , 37} 22

4.2 Siting and Sizing for a Fixed Number of ESSs

This section illustrates the ESS siting and sizing procedures of Sects. 3.1 and 3.2.
The number of ESSs to be deployed is fixed to m = 2.

For the considered 37-bus network, the voltage sensitivity values Ψi, j defined in
(12) are computed numerically. This is done by solving a PF problem for each pair
(i, j), in order to evaluate the voltage variation at bus j consequent to a unit power
injection at bus i . Since the relative values of the Ψi, j ’s are mostly determined by
the network topology and admittances of the lines (see the discussion at the end of
Sect. 3.1), the Ψi, j ’s are computed once, by considering the average demand and DG
profiles over the scenario set P . A pseudocolor plot of the values Ψi, j is shown in
Fig. 2. With this representation, it is possible to visualize the effect that a power
injection at one bus has on voltage at another bus: the warmer the color of a cell of
the pseudocolor plot, the stronger the coupling of the two buses corresponding to this
cell. The valuesΨi, j are used in the CSA algorithm of Sect. 3.1. For a fixed number of
clusters q, the CSA algorithm returns a suitable number of storage unitsm ≤ q to be
installed, and the corresponding locations. The smallest number of clusters for which
the CSA algorithm returns m = 2 is q = 4. Table 1 shows the composition of the
four clusters, the corresponding sets of critical and candidate buses, and the locations
of the two ESSs determined by the algorithm. Candidate buses are highlighted in red
in Fig. 1, showing also the buses not affected by voltage problems in the absence
of ESSs. This helps clarify that the set of candidate buses Ω3 is empty (though in
principle it should contain buses 5, 6, and 7) because the cluster L3 is formed only
by buses not affected by voltage problems. As a consequence, the subnetwork G3 is
left without ESS. On the other hand, the subnetwork G1 is left without ESS because it
does not contain critical (and hence also candidate) buses. The CSA algorithm places
two ESSs at buses 11 and 22, selected from the subnetworks G2 and G4 through the
criterion defined by (13).

For given ESS locations returned by the CSA algorithm, the ESS sizing prob-
lem is tackled with γ = 0. Since out-of-memory issues hinder solving problem (22)
directly for the whole scenario set P composed of 1000 scenarios, Algorithm 2 is
applied to compute the optimal solution. At initialization, the single-scenario prob-
lem (23) is solved for each scenario. The corresponding vectors of optimal ESS sizes
x̃d = (

Ẽ11,d , Ẽ22,d
)
, d = 1, . . . , 1000 are shown in the scatter plot of Fig. 3. Then, the

scenarios are sorted according to decreasing values of c(̃xd), returning the ordered set
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Fig. 2 Graphical representation of the voltage sensitivity matrix for the IEEE 37-bus test network

D̃ = {d1, d2, d3, . . . , d1000}. In the first iteration of Algorithm 2, D1 = {d1} is con-
sidered. Hence, x∗

1 = x̃d1 , and one has to check whether the solution x
∗
1 is feasible for

all the scenarios which correspond to solutions x̃d not dominated by x∗
1 , represented

by black circles in Fig. 3 (red circles represent solutions x̃d dominated by x∗
1 ). The

feasibility check fails for ten scenarios. From the second to the ninth iteration of the
algorithm (D2 = {d1, d2}, . . . ,D9 = {d1, . . . , d9}), problem (28) is solved, returning
in all iterations the same solutions x∗

2 = x∗
3 = · · · = x∗

9 . The feasibility check of these
solutions fails for nine scenarios. From the 10th to the 27th iteration of the algorithm
(D10 = {d1, . . . , d10}, . . . ,D27 = {d1, . . . , d27}), problem (28) is solved, returning
in all iterations the same solutions x∗

10 = x∗
11 = · · · = x∗

27, though different from the
previous ones. The feasibility check of the new solutions fails for eight scenarios.
In the 28th iteration, scenario pd28 is added. According to the ordered set D̃ , this
is the first scenario which requires a significant value of the ESS capacity installed
at bus 11. Problem (28) is solved with D28 = {d1, . . . , d28}, returning the solution
x∗
28, which is feasible for all scenarios except pd33 . This solution is the same as those
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Fig. 3 The circles represent the solutions x̃d of the single-scenario problem (23) for each of
the considered 1000 scenarios. The red star represents x∗

1 = x̃d1 , while red circles correspond to
solutions x̃d dominated by x∗

1

Table 2 Summary of the iterations of Algorithm 2. ESS sizes are expressed in kWh

κ E∗
11,κ E∗

22,κ c(x∗
κ )

1 0.89 57.95 58.84

2, . . . , 9 0.89 58.22 59.11

10, . . . , 27 1.07 58.78 59.85

28, . . . , 32 12.02 52.65 64.67

33 12.75 52.12 64.87

found solving problem (28) at iterations κ = 29, . . . , 32 of the algorithm. The final
step of the algorithm is reached by solving problem (28) with D33 = {d1, . . . , d33}.
This iteration returns the solution x∗

33, which is feasible for all the scenarios. Hence,
Algorithm 2 terminates with the optimal solution x∗ = x∗

33 for problem (22). The
33 iterations of the algorithm are summarized in Table 2, where E∗

s,κ is the ESS
size at bus s corresponding to the solution x∗

κ . Notice that the algorithm generates a
sequence of lower bounds c(x∗

κ ) converging to the optimal cost c(x∗). A graphical
representation of the iterations of Algorithm 2 is provided in Fig. 4.

Remark 2 In the proposed application of Algorithm 2, only one scenario is added
at each iteration. This is done for illustrative purposes. In practice, one may speed
up the convergence of the algorithm by adding scenarios according to suitable ad
hoc rules. For instance, since the feasibility check fails for ten scenarios in the first
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Fig. 4 Graphical representation of the ESS sizing procedure of Sect. 3.2. The solution x̃d33 refers
to scenario pd33 . The oblique lines represent level curves of the cost function c(x)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
1 

2 

3 

4 

5 

6 

7 

8 

9 

10

11

12

13

14

15

Fig. 5 Number of ESSs m returned by the CSA algorithm as a function of the number of clusters
q for the IEEE 37-bus test network

iteration of the algorithm, one could argue that those scenarios are critical, and select
�2 in Algorithm 2 so as to include them in the scenario set {pd1 , . . . , pd�2

} considered
in the second iteration.

4.3 Optimal ESS Allocation

In this section, thewholeESSallocationprocedure is presented, providing the optimal
number, locations, and sizes of the ESSs for the considered test network.
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Fig. 6 Sizes and locations of the ESSs allocated for m = 2 (blue), m = 3 (green), and m = 4
(yellow)

Following Algorithm 1, the CSA algorithm is repeated for all possible values of
q, ranging from 1 to 36. Figure 5 shows the number of ESSs m as a function of the
number of clusters q. Notice that m is typically strictly less than q, and in the case
q = 36 (each bus forming an individual cluster) m corresponds to the number of
critical buses affected by voltage problems, i.e., m = 15. For a given value of q, the
CSA algorithm returns not only a suitable number m of ESSs but also the vector of
their locations λ(m). Optimal sizing of the ESSs placed according to λ(m) is tackled
by solving problem (22) with γ = 0. This is done by applying Algorithm 2, because
problem (22) cannot be solved directly for 1000 scenarios due to out-of-memory
issues, as already discussed in Sect. 4.2. The corresponding vector of optimal ESS
sizes is denoted by x (m), while J (m) denotes the optimal cost of problem (22), which,
with the choice γ = 0, coincides with c(x (m)). It is stressed that x (m) and J (m) can
be computed only for m ≥ 2. Indeed, for m = 1, the single-scenario problem (23)
is infeasible for 73 scenarios, which implies that problem (22) is also infeasible.
For m = 2, the iterations of Algorithm 2 were described in Sect. 4.2. For m ≥ 3,
Algorithm 2 always stops at the first iteration, since the solution x∗

1 = x̃d1 is feasible
for the whole scenario set. Figure 6 shows the sizes and the locations of the ESSs
allocated for m = 2, 3, 4.

For a given number m of ESSs, the total cost (10) is computed as

C(m, λ(m), x (m)) = ρm + ς J (m), (33)

where ρ = 10 ke and ς = 575 e/kWh. The total cost (33) as a function of m is
shown in Fig. 7a. The minimum value of this cost is 54.26 ke, which corresponds
to m∗ = 3 ESSs deployed at buses 11, 17, and 29 (see Fig. 6).
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Fig. 7 Results of the proposed ESS allocation procedure for the IEEE 37-bus test network a: Total
cost in (33) as a function of m, b: Term J (m) in (33) as a function of m. With the choice γ = 0,
J (m) coincides with c(x (m))

Figure 7b shows the term J (m) of (33) as a function of m. It can be observed
that, when increasing the number of ESSs, this term tends to a constant value. This
explains why the total cost in Fig. 7a grows linearly with m for m ≥ 4.

Remark 3 In the proposed application of Algorithm 1, where γ = 0, the term J (m)

in (33) can be computed thanks to Algorithm 2. When γ > 0, Algorithm 2 is not
applicable, but it is possible to derive lower and upper bounds to the term J (m), as
described in Sect. 3.2.1. These can be translated into bounds to the total cost in (33),
which in turn may be used to select a suitable value of m, following a reasoning
similar to that in Fig. 7a.

5 Conclusions and Future Work

In this chapter, we addressed the allocation problem of energy storage systems for
voltage support in a distribution electricity network. As far as the sizing problem
is concerned, a stochastic programming approach based on scenarios was adopted
to accommodate uncertainty on future demand and generation profiles. Since the
resulting stochastic optimization problem becomes rapidly intractable as the number
of scenarios grows, an iterative procedure based on a scenario reduction technique
was presented. This technique, exploiting the structure of the problem to be solved,
generates a sequence of approximating optimization problems, whose solutions con-
verge to the optimal one.With reference to the siting problem,which is combinatorial
in the number of buses of the network and the number of energy storage systems to be
deployed, a heuristic procedure was adopted, which exploits the voltage sensitivity
matrix of the grid.
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The overall procedure was tested on the topology of the IEEE 37-bus test network.
The obtained numerical results show a good performance of the iterative sizing
algorithm, with the solutions of the approximating problems converging rapidly to
the optimal solution of the multi-scenario problem. This confirms the validity of the
scenario reduction technique adopted, which extracts sequentially the most critical
scenarios for the problem at hand from the rich set describing the statistics of the
uncertain variables involved.

Ongoing work is focused on extending the proposed scenario-based technique to
tackle grid operation problems in the presence of uncertainties modeled by proba-
bilistic constraints.

Appendix 1

A two-stage stochastic program is an optimization problem written in the form

min
x∈X

Ep[W (x,p)] (34a)

W (x, p) := min
y∈Y (x,p)

w(x, y, p), (34b)

where x is the vector of decision variables of the first-stage problem (34a),X is the
feasible solution set for x , and Ep[W (x,p)] is the expectation (taken with respect to
the probability distribution of the random variable p) of the optimal value W (x,p)

of the second-stage problem (34b). In (34b), Y (x, p) is the feasible solution set for
the second-stage decision variables y, and w(x, y, p) is the cost function. Notice
that for a given instance x of the first-stage variables and a given realization p of the
random vector p, (34b) is a deterministic problem.

Appendix 2

This appendix briefly describes the copula-based method to generate samples of
correlated variables. Consider amultivariate random variable Z = {Z1, . . . , Zr }, and
let the marginal cumulative distribution functions FZi (·) and the correlation matrix
RZ be known. Assuming a Gaussian copula, the method to generate samples of Z
works as follows:
1: Generate a sample g = (g1, . . . , gr ) from a multivariate normal distribution with

zero mean and covariance matrix equal to RZ .
2: Transform each entry gi of g through the standard normal cumulative distribution

function φ(·)
ui = φ(gi ).
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3: Apply to each entry ui , the inverse of FZi (·)

zi = F−1
Zi

(ui ).

The samples z = (z1, . . . , zr ) generated through the above procedure are statistically
characterized by the right marginal cumulative distribution functions and correlation
matrix, while the joint cumulative distribution functions of the samples actually
depend on the choice of the copula function.
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A Data-Driven Basis Function Approach
in Nonparametric Nonlinear System
Identification

Er-Wei Bai and Changming Cheng

In memory of Dr Roberto Tempo.

Abstract In this chapter, a data-driven orthogonal basis function approach is
proposed for nonparametric FIR nonlinear system identification. The basis functions
are not fixed a priori and match the structure of the unknown system automatically.
This eliminates the problem of blindly choosing the basis functions without a priori
structural information. Further, based on the proposed basis functions, approaches
are proposed for model order determination and regressor selection along with their
theoretical justifications.Both random inputs and deterministic inputs are considered.

1 Introduction

System identification is often the first and critical step in system analysis, design,
simulation, and control. In the literature, there exist a huge number of papers as well
as various well-developed algorithms for linear system identification [11, 18, 28].
Despite a long history and practical demands, nonlinear system identification is far
from mature both in theory and in practice [15, 21, 27, 29]. Because the structure
of nonlinear systems is so rich, it is not expected that a single method could be
effectively applied to all nonlinear systems. Instead, various identification methods
have to be developed for different classes of nonlinear systems and for different
intended purposes.
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Roughly speaking, nonlinear system identification can be divided into two
categories depending on available a priori information on the structure of the
unknown system. If the structure of the unknown system is available a priori, the
identification problem is reduced to a parameter estimation problem, essentially a
nonlinearminimizationproblem. Issues are how tofindaminimumand if the obtained
minimum is a global minimum. The other category is that no a priori information
is available on the structure. This is a much harder problem. Traditional ways to
approach this problem are the Volterra and Wiener series representations [25]. They
are elegant in theory but applications are often limited. For the Volterra series, its
application is limited to very low-order kernels because the number of unknown
parameters to be estimated increases exponentially. Further, identification has to be
repeated every time when an additional kernel is deemed necessary and is added. For
the Wiener series, the input is usually assumed to be Gaussian. For both the Volterra
series and theWiener series, the basic idea is a multivariable polynomial approxima-
tion of the unknown system and thus, a very high-order model is needed to be able
to approximate the true but unknown nonlinear system. This makes them practically
intractable unless the unknown system is close to a polynomial of low order. To
overcome this problem, a fixed basis function approach developed for linear systems
[23, 31] has been investigated and applied for nonlinear system identification with
some success [10, 16, 30]. Typical basis functions are Fourier series, polynomials,
and some orthogonal functions. In particular, orthogonal functions are very attrac-
tive because no previously obtained terms have to be reestimated when an additional
term is added. Only the added term needs to be estimated. Clearly, success of the
orthogonal basis function approach relies on the fact that a nonparametric nonlinear
identification problem is reduced to a parametric parameter estimation problem and
moreover, estimations of each term are separable in some sense. On the other hand,
however, its advantage is also its weakness. Performance of an orthogonal basis
function approach, like any basis function approach, depends on whether the chosen
basis functions resemble the structure of the unknown nonlinear system. Without
enough a priori information on the structure, a fixed basis function approach often
requires a large number of terms to be able to reasonably approximate the true but
unknown nonlinear system which has a considerable negative effect on the identi-
fication performance. Some ideas, e.g., tunable basis functions, are proposed in the
literature including wavelets, neural network, fuzzy, etc [14, 33, 34]. Even with these
tunable basis functions, adequate a priori information on the structure is still needed
so that the tunable basis functions are rich enough to capture the unknown system.
There is an additional difficulty with such tunable basis function approaches, i.e.,
minimization could be trapped in a local minimum.

In this work, we propose a data-driven basis function approach to nonlinear sys-
tem identification. The basis functions are not fixed but are data generated as a
part of identification. The basis functions are chosen as a result of identification
and automatically match the structure of the unknown nonlinear system. This elimi-
nates the problem of blindly guessing basis functions without knowing the structure
of the unknown nonlinear system. Further, the chosen basis functions are orthogo-
nal and when it is determined that an additional term is needed, all the previously
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calculated terms remain unchanged and only the added term has to be identified. This
is
particularly useful since the order and the structure of the nonlinear system are
unknown and have to be determined as a part of identification.

The main contribution is a framework that uses the data-driven orthogonal basis
functions for nonparametric nonlinear system identification. The chosen orthogonal
functions always match the system even when the system is unknown and very little
a priori information on the structure of the unknown system is assumed. This is
different from the existing literature where a fixed basis function is used for system
identification. Thework ismotivated by [2, 26] though the driving force is completely
different. In addition, approaches are proposed for model order determination and
regressor selection. The first one is the combined residual analysis and modified
Box–Pierce hypothesis test approach. It is known in the literature that the popular
Box–Pierce test extensively used in linear identification [18, 29] is in general invalid
for nonlinear identification and amodifiedBox–Pierce test is proposed in this work in
the context of nonlinear system identification. The second approach is the relative and
cumulative contribution approach. The approach utilizes the orthogonal properties
of the basis functions and is simple and effective. To present the material without
interruption, all the proofs are provided in Appendix.

2 System and Orthogonal Basis Functions

Consider a general nonparametric nonlinear finite impulse response (FIR) system

y[k] = f (u[k − 1], u[k − 2], ..., u[k − n]) + v[k]

= c̄ +
n∑

j=1

f̄ j (u[k − j]) +
∑

1≤ j1< j2≤n

f̄ j1 j2(u[k − j1], u[k − j2]) + ...

+
∑

1≤ j1< j2<...< jm≤n

f̄ j1 j2... jm (u[k − j1], u[k − j2], ..., u[k − jm])

+ v(k), k = 1, 2, ..., N

where y[k] and u[k] are output and input measurements. It is assumed that

1. The input u[k] is an independent and identically distributed (iid) random sequence
in a (unknown) open interval I ∈ R with a (unknown) probability density function
ψ(·). The noise v[k] is a sequence of iid random variables with zero mean and
bounded variance.

2. The exact time lag is unknown and only the upper bound n is available.
3. The functions f̄ j1 j2... jl ’s, l ≤ n, referred to as l-factor terms, are unknown and

describe interactions of variables u[k − j1], u[k − j2], ..., u[k − jl]. No struc-
tural prior information on f̄ j1 j2... jl ’s is assumed.
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To convey the idea clearly without tedious and unilluminating detailed technical
derivations, we will focus on the system with upto 2-factor interactive terms in this
work.

y[k] = f (u[k − 1], u[k − 2], ..., u[k − n]) + v[k]

= c̄ +
n∑

j=1

f̄ j (u[k − j]) +
∑

1≤ j1< j2≤n

f̄ j1 j2(u[k − j1], u[k − j2]) + v[k] (1)

All the results of this work can be trivially but cumbersomely extended to a general
system with arbitrary interactive terms. Obviously, for a system upto 2-factor inter-
active terms, there are totally M + 1 = 1 + n + n(n − 1)/2 terms in the system, one
constant term, n 1-factor terms f̄ j ’s and

n(n−1)
2 2-factor terms f̄ j1 j2 ’s.

What we are concerned are:

• How to determine orthogonal basis functions φi (·)’s, i = 0, 1, ..., M , based on the
given data set {y[k], u[k]}N

1 that represents the unknown system (1)?
• How to identify these basis functions?
• Once the basis functions φi (·)’s are determined, it does not mean that all M + 1
terms are needed. In most practical cases, only the terms i = 0, 1, ..., p < M + 1
are needed. How to find the order p?

• Even the order p is found, the system could be sparse in the sense that not all terms
i = 0, 1, 2, ..., p are present and many terms are actually zero. How to identify
those terms so they can be removed?

In the following derivation, we denote the expectation operator by E and con-
ditional expectation operators for given u[k − j1] = x j1 , and/or u[k − j2] = x j2 by,
respectively,

E(y[k] | u[k − j1] = x j1),

E(y[k] | u[k − j1] = x j1 , u[k − j2] = x j2),

E( f j1 j2(u[k − j1], u[k − j2]) | u[k − j1] = x j1),

E( f j1 j2(u[k − j1], u[k − j2]) | u[k − j2] = x j2).

For every x j1 and x j2 ∈ I , define the normalized functions f j1 j2 ’s and f j ’s in (2).

f j1 j2(x j1 , x j2) = f̄ j1 j2(x j1 , x j2) − E( f̄ j1 j2(u[k − j1], u[k − j2]) | u[k − j2] = x j2)

− E( f̄ j1 j2(u[k − j1], u[k − j2]) | u[k − j1] = x j1)

+ E{ f̄ j1 j2(u[k − j1], u[k − j2])}︸ ︷︷ ︸
c j1 j2

, 1 ≤ j1 < j2 ≤ n

f1(x1) = f̄1(x1) +
n∑

i=2

E( f̄1i (u[k − 1], u[k − i]) | u[k − 1] = x1)
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− E{ f̄1(u[k − 1]) +
n∑

i=2

E( f̄1i (u[k − 1], u[k − i]) | u[k − 1] = x1)}
︸ ︷︷ ︸

c1

f j (x j ) = f̄ j (x j ) +
n∑

i= j+1

E( f̄ j i (u[k − j], u[k − i]) | u[k − j] = x j )

+
j−1∑

i=1

E( f̄i j (u[k − i], u[k − j]) | u[k − j] = x j )

− E{ f̄ j (u[k − j]) +
n∑

i= j+1

E( f̄ j i (u[k − j], u[k − i]) | u[k − j] = x j )

︸ ︷︷ ︸
c1j

+
j−1∑

i=1

E( f̄i j (u[k − i], u[k − j]) | u[k − j] = x j )}
︸ ︷︷ ︸

c2j

, j = 2, ..., n − 1

fn(xn) = f̄n(xn) +
n−1∑

i=1

E( f̄in(u[k − i], u[k − n]) | u[k − n] = xn)

− E{ f̄n(u[k − n]) +
n−1∑

i=1

E( f̄in(u[k − i], u[k − n]) | u[k − n] = xn)}
︸ ︷︷ ︸

cn

c = c̄ −
∑

1≤ j1< j2≤n

c j1 j2 +
n∑

j=1

c j , with c j = c1j + c2j . (2)

Then, the system (1) can be rewritten as

y[k] = c +
n∑

j=1

f j (u[k − j]) +
∑

1≤ j1< j2≤n

f j1 j2(u[k − j1], u[k − j2])

+ v[k], k = 1, 2, . . . , N (3)

We are now in a position to define data dependent orthogonal basis functions φi ,
i = 0, ..., M .

φ0 = c =⇒ φ0 φ j (x j ) = f j (x j ), j = 1, ..., n =⇒ φ1, ..., φn,

φ 2n
2 −1+ j (x1, x j ) = f1 j (x1, x j ), j = 2, ..., n =⇒ φn+1, ..., φ2n−1,
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φ 2n−1
2 2−2+ j (x2, x j ) = f2 j (x2, x j ), j = 3, ..., n =⇒ φ2n, ..., φ3n−3,

φ 2n−2
2 3−3+ j (x3, x j ) = f3 j (x3, x j ), j = 4, ..., n =⇒ φ3n−2, ..., φ4n−6,

. . .

φ 2n−(n−3)
2 (n−2)−(n−2)+ j (xn−2, x j ) = f(n−2) j (xn−2, x j ), =⇒ φ n2+n

2 −2, φ n2+n
2 −1,

j = n − 1, n

φ 2n−(n−2)
2 (n−1)−(n−1)+ j (xn−1, x j ) = f(n−1) j (xn−1, x j ), =⇒ φ n2+n

2
, j = n

When the meaning is clear from the context, we interchangeably use

φ j [k] = φ j (u[k − j]), j = 1, ..., n

φ j [k] = φ j (u[k − 1], u[k − j + n − 1]), j = n + 1, ..., 2n − 1

φ j [k] = φ j (u[k − 2], u[k − j + 2n − 3]), j = 2n, ..., 3n − 3

. . .

φ j [k] = φ j (u[k − n + 2], u[k − j + M − n − 1]), j = M − 2, M − 1

φ j [k] = φ j (u[k − n + 1], u[k − n]), j = M = n(n + 1)/2.

Clearly,φ0 denotes the constant term,φ j (x j )’s, j = 1, ..., n, represent the 1-factor
terms and φi (x j1 , x j2)’s, i = n + 1, ..., M , are 2-factor terms. The following theorem
is the main result of this section.

Theorem 1 Consider the system (1). Then we have:

1. The system (1) can be represented by the data-driven basis functions φi ’s,

y[k] =
M∑

i=0

φi [k] + v[k] (4)

where M = n + n(n − 1)/2 = n(n + 1)/2.
2. The data-driven basis functions φi ’s are orthogonal. i.e., for all 1 ≤ j ≤ M and

0 ≤ j1 < j2 ≤ M,
Eφ j [k] = 0, Eφ j1 [k]φ j2 [k] = 0.

3. The unknown φ j ’s are the expectations or conditional expectations of the output,

φ0 = E{y[k]},
φ j (x j ) = E{y[k] | u[k − j] = x j } − φ0, j = 1, ..., n,

φ 2n
2 −1+ j (x1, x j ) = E{y[k] | u[k − 1] = x1, u[k − j] = x j }

− φ1(x1) − φ j (x j ) − φ0, j = 2, ..., n

φ 2n−1
2 2−2+ j (x2, x j ) = E{y[k] | u[k − 2] = x2, u[k − j] = x j , }

− φ2(x2) − φ j (x j ) − φ0, j = 3, ..., n

. . .
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φ 2n−(n−3)
2 (n−2)−(n−2)+ j (xn−2, x j ) = E{y[k] | u[k − n + 2] = xn−2, u[k − j] = x j }

− φn−2(xn−2) − φ j (x j ) − φ0, j = n − 1, n

φ 2n−(n−2)
2 (n−1)−(n−1)+ j (xn−1, x j ) = E{y[k] | u[k − n + 1] = xn−1, u[k − j] = x j }

− φn−1(xn−1) − φ j (x j ) − φ0, j = n (5)

From the theorem, we see that not only the system (1) can be represented by the
data-driven basis functions φi ’s as in (4) but also these basis functions are orthogonal
and can be estimated separately. If the estimate ŷ = ∑p

i=0 φi [k] is deemed to be not
sufficient enough and an additional term φp+1[k] is needed, then only the additional
term φp+1[k] has to be identified and added to the model. No previously obtained
terms φi , i = 0, 1..., p have to be reestimated.

3 Identification Under Random Inputs

Though the basis functions φi ’s are determined, they depend on the unknown system
and have to be identified from the given data set. From Theorem1, these unknown
φi ’s are the expectations or conditional expectations of the output. Now the question
is how to calculate these expectation values by empirical averages based on the
available input–output measurement data set {y[k], u[k]}N

1 . In this work, we adopt
a fairly simple yet efficient kernel approach which was developed in our previous
works [5, 6]. To this end, let x j be any point in the interval I in which the input u[·]
lies, define

ϕ j (x j , k) = |u[k − j] − x j |.

Let δ > min ϕ j (x j , k) be any positive constant. Let

M j (x j ) = {m j (1), m j (2), ..., m j (l j )}

be a set that contains integers m j (i)’s such that m j (i) ∈ M j (x j ) ⇔ δ > ϕ j (x j ,

m j (i)). l j (x j ) is the number of elements in M j (x j ) that is the same as the num-
ber of ϕ j (x j , k)’s that are smaller than δ. Define, for each j and x j ,

w j (x j , k) =
{

δ−ϕ j (x j ,k)

l j δ−∑l j
i=1 ϕ j (x j ,m j (i))

k ∈ M j (x j )

0 k /∈ M j (x j )
.

Obviously for all k, j and x j , w j (x j , k) ≥ 0 and
∑N

k=1 w j (x j , k) = ∑l j

i=1 w j (x j ,

m j (i)) = 1. Similarly, for any pair 0 ≤ j1 < j2 ≤ n and (x j1 , x j2) ∈ I 2, define

ϕ j1 j2(x j1 , x j2 , k) = ‖(u[k − j1], u[k − j2]) − (x j1 , x j2)‖2.
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If δ > min ϕ j1 j2(x j1 , x j2 , k), let M j1 j2(x j1 , x j2) = {m j1 j2(1), m j1 j2(2), ..., m j1 j2(l j1 j2)}
be a set such that k ∈ M j1 j2(x j1 , x j2) ⇔ δ > ϕ j1 j2(x j1 , x j2 , k). Define

w j1 j2(x j1 , x j2 , k) =
{

δ−ϕ j1 j2 (x j1 ,x j2 ,k)

l j1 j2 δ−
∑l j1 j2

i=1 ϕ j (x j1 ,x j2 ,m j1 j2 (i))
k ∈ M j1 j2(x j1 , x j2)

0 k /∈ M j1 j2(x j1 , x j2)
.

Notice that the same properties hold

w j1 j2(x j1 , x j2 , k) ≥ 0,
N∑

k=1

w j1 j2(x j1 , x j2 , k) =
l j1 j2∑

i=1

w j1 j2(x j1 , x j2 , m j1 j2(i)) = 1.

Now, for a given pair (x j1 , x j2) ∈ I 2, we define the estimates φ̂i , i = 0, 1, ..., M ,

φ̂0 = 1

N

N∑

k=1

y[k],

φ̂ j (x j ) =
N∑

k=1

w j (x j , k)y[k] − φ̂0, j = 1, ..., n,

φ̂ 2n
2 −1+ j (x1, x j ) =

N∑

k=1

w1 j (x1, x j , k)y[k] − φ̂1(x1) − φ̂ j (x j ) − φ̂0, j = 2, ..., n

φ̂ 2n−1
2 2−2+ j (x2, x j ) =

N∑

k=1

w2 j (x2, x j , k)y[k],−φ̂2(x2) − φ̂ j (x j ) − φ̂0, j = 3, ..., n

. . .

φ̂ 2n−(n−3)
2 (n−2)−(n−2)+ j (xn−2, x j ) =

N∑

k=1

wn−2, j (xn−2, x j , k)y[k]

− φ̂n−2(xn−2) − φ̂ j (x j ) − φ̂0, j = n − 1, n

φ̂ 2n−(n−2)
2 (n−1)−(n−1)+ j (xn−1, x j ) =

N∑

k=1

wn−1, j (xn−1, x j , k)y[k]

− φ̂n−1(xn−1) − φ̂ j (x j ) − φ̂0, j = n (6)

Theorem 2 Consider the system (4) and the estimates above. For any x j1 , x j2 ∈ I ,
assume

• The unknown basis functions φi ’s are differentiable with the Lipschitz constant L
for x j1 , x j2 ∈ I .

• Let ψ(·) be the (unknown) probability density function of the input u[·] and ψ(·)
is nonzero at x j1 , x j2 , i.e.,
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ψ(x j1) > 0, ψ(x j2) > 0.

• δ → 0 and δ2N → ∞ as N → ∞.

Then, as N → ∞, we have in probability that

φ̂0 → φ0,

φ̂ j (x j ) → φ j (x j ), j = 1, 2, ..., n

φ̂ j (x j1 , x j2) → φ j (x j1 , x j2), 1 ≤ j1 < j2 ≤ n, j = n + 1, ..., M

Moreover asymptotically, |φ̂ j (x j ) − φ j (x j )|2 ∼ O(δ + 1
δN ), j = 1, 2, ..., n and

|φ̂ j (x j1 , x j2) − φ j (x j1 , x j2)|2 ∼ O(δ + 1
δ2N ), 1 ≤ j1< j2 ≤ n, j = n + 1, ..., M.

4 Order Determination

How many terms should be included in the model or equivalently how to determine
the order p of the estimate f̂ = ∑p

i=0 φ̂i [k] is an important and difficult part of iden-
tification. This amounts to if the chosen order is sufficient to represent the unknown
nonlinear system or an additional term or terms should be added to the estimate. A
related issue is the regressor selection. Even if the order is accurately obtained, some
terms φi ’s are irrelevant to the output and should not be included in the estimate.
How to find and remove those terms are also important. These two issues are closely
related. We propose two approaches towards these two issues.

4.1 Combined Residual Analysis and Statistical Test

The idea of the statistical test is fairly simple. Suppose the order p is sufficient so
that the estimate

∑p
i=0 φi [k] represents the true but unknown system f well. Then,

the residual

r [k] = y[k] −
p∑

i=0

φi [k] ≈ v[k]

is almost white. In other words, if the residual is white, nothingmore can be squeezed
out from the data and thus the order p is sufficient. Let

μ = Er [k], γ [ j] = E(r [k] − μ)(r [k − j] − μ), ρ[ j] = γ [ j]/γ [0]

denote themean, the lag-j autocovariance and the lag-j correlation coefficient of r [k],
respectively. If the residual r [k] is white, it follows that
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γ [1] = γ [2] = ... = 0, ρ[1] = ρ[2] = ... = 0

In particular, for the system (4), r [k] = y[k] − ∑
φi [k] is a function of u[k −

1], u[k − 2], ..., u[k − n] and r [k − n] = y[k − n] − ∑
φi [k − n] is a function of

u[k − n − 1], u[k − n − 2], ..., u[k − 2n]. They are automatically independent.
Thus, what we have to to check is if

ρ[1] = ρ[2] = ... = ρ[n − 1] = 0

The most effective test in the literature for checking if ρ[1] = ρ[2] = ... = ρ[n −
1] = 0 are the Box–Pierce test [9] and its variants which have been widely accepted
and applied for linear system identification [18, 29]. It states as follows: for large N ,

N
n−1∑

j=1

ρ[ j]2 = N (ρ[1], ..., ρ[n − 1])
⎛

⎜⎝
ρ[1]

...

ρ[n − 1]

⎞

⎟⎠ (7)

follows a chi-square distribution with (n-1) degree of freedom if r [k] is white. This
provides a framework for statistical hypothesis tests. Let

H0 : the residual r [k] is white.

Then, the null hypothesis H0 can be tested based on N
∑n−1

j=1 ρ[ j]2 and theχ2(n −
1) distribution. If H0 is accepted, r [k] is considered to be white and the order p is
accepted. To test the hypothesis, we calculate N

∑n−1
j=1 ρ[ j]2 based on the residual.

Let the threshold d be taken from the χ2(n − 1) distribution with α being the level
of significance, i.e., the probability to reject H0 though H0 is true. The hypothesis
H0 is accepted if N

∑n−1
j=1 ρ[ j]2 ≤ d and is rejected if N

∑n−1
j=1 ρ[ j]2 > d and we

conclude that the order p is not high enough.
There are two problems however. The first is that what we really test is not if

the residual r [k] is white or not but if r [i] and r [ j] are uncorrelated or not. The
Box–Pierce test (7) works well for this purpose in linear identification but may
not work for nonlinear identification. If the residual r [k] exhibits some nonlinear
dependence which is usually the case in nonlinear identification because no actual
φi ’s are available and only their estimates φ̂i ’s are known. This unavoidably adds
some nonlinear dependence on the residual. In such a case, the Box–Pierce test
does not work well. In fact, the Box–Pierce test could be invalid and provide some
misleading conclusions [32]. Therefore, a modified Box–Pierce test is needed in the
presence of nonlinear dependence of r [k]. The second problem is that even the null
hypothesis H0 is accepted, it does not necessarily mean that r [k] is white. Since the
null hypothesis only tests if H0 should be accepted given H0 is true. There is no way
of knowing the probability

Prob{ accept H0 : H0 is f alse}
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This is referred to as the second type of error and is hard to answer. Thus, there must
an additional and independent test to ensure reasonably that H0 is not false. We deal
with these two problems separately.
Modified Box–Pierce test: Let r [k] = y[k] − ∑p

i=0 φ̂i [k] be the residual. Denote
the sampled mean, the lag-j autocovariance, the lag-j correlation coefficient by
respectively

μ̂ = 1

N

N∑

k=1

r [k], γ̂ [ j] = 1

N − j

N∑

k= j+1

(r [k] − μ̂)(r [k − j] − μ̂), ρ̂ [ j] = γ̂ [ j]/γ̂ [0]

It was shown in [19] that for large N ,

N (ρ̂ [1], ..., ρ̂ [n − 1])V −1

⎛

⎜⎝
ρ̂ [1]

...

ρ̂ [n − 1]

⎞

⎟⎠ (8)

follows a chi-square distributionwith (n-1) degree of freedomwhen H0 is true, where

V = C/γ [0]2 =
⎛

⎜⎝
c11 . . . c1,n−1
...

. . .
...

cn−1,1 . . . cn−1,n−1

⎞

⎟⎠ /γ [0]2

ci j =
∞∑

q=−∞
E(r [k] − μ)(r [k − i] − μ)(r [k + q] − μ)(r [k + q − j] − μ)

i, j = 1, ..., n − 1

with μ being the mean value of r [k]. The difference is that the identity matrix is
used in the Box–Pierce test (7) while in the modified Box–Pierce test (8), the actual
autocovariancematrix V is used. Themodified Box–Pierce test is reliable for large N
even the residual r [k] exhibits nonlinear dependence. For our application, however,
the actual autocovariance matrix V is unknown and has to be estimated. To this end,
let

W [k] =

⎛

⎜⎜⎜⎝

(r [k] − μ̂)(r [k − 1] − μ̂)

(r [k] − μ̂)(r [k − 2] − μ̂)
...

(r [k] − μ̂)(r [k − n + 1] − μ̂)

⎞

⎟⎟⎟⎠

and K (x) be the triangle kernel function

K (x) =
{
1 − |x |, |x | ≤ 1
0, |x | > 1
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Now, define the estimate V̂ of V by Ĉ/γ̂ [0]2 with

Ĉ =
l∑

q=−l

K (
q

l
)

1

N − n + 1 − |q|
∑

k

W [k]W [k − q]′

=
0∑

q=−l

K (
q

l
)

1

N − n + 1 + q

N+q∑

k=n

W [k]W [k − q]′

+
l∑

q=1

K (
q

l
)

1

N − n + 1 − q

N∑

k=n+q

W [k)W [k − q]′

where l is the bandwidth of the kernel K (·). Note all the variables μ̂, ρ̂ [ j], W [k] and
γ̂ [ j] are computable. Now, we show that the modified Box–Pierce test is still valid
if the actual autocovariance matrix V is replaced by its estimate as discussed above,

Theorem 3 Consider the residual r [k] and the corresponding μ̂, γ̂ [ j], ρ̂ [ j] and
V̂ = Ĉ/γ̂ [0]2. Then,

Qn−1 = N (ρ̂ [1], ..., ρ̂ [n − 1])V̂ −1

⎛

⎜⎝
ρ̂ [1]

...

ρ̂ [n − 1]

⎞

⎟⎠ (9)

converges, in distribution as N → ∞, to a chi-square distribution with (n-1) degree
of freedom if the residual r [k] is white, provided that

l → ∞, l/N → 0, as N → ∞

Residual analysis: As discussed above, the hypothesis test is effective only it is
reasonably sure that H0 is not false. A very simple but a common sense way is
to check the magnitude of the residual. There are two purposes. If the estimate
represents the system well or the order is adequate, the residual should be small. On
the other hand, we do not want to over-fit the system. In this regard, the parsimony
principle applies. Let rp[k] = y[k] − ∑p

i=0 φ̂i [k] be the residual where the subscript
p indicates the order of the estimate. Define the average error

e[p] = 1

N

N∑

k=1

rp[k]2

Obviously, the average error e[p] is a monotonically decreasing function of the
order p as depicted in the top diagram of Fig. 4. Initially, e[p] decreases as the order
increases because the model picks up relevant terms φi ’s of the unknown system.
However, even when the correct order has been reached, the value e[p] still decreases
because additionally added terms try to model noise. The improved “fit” is harmful
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since it models noise but not the system. However, the decrease from the over-fit
is less significant than the decrease when the relevant terms are picked up by the
estimate. Therefore, what we are looking for is where the curve e[p] is small and
flattened, known as the “knee” in Fig. 4.

We are now in a position to state the combined residual analysis and hypothesis
test approach for order determination.

Step 1: Carry out identification by estimating φ̂i as described in the previous sections.
Step 2: Calculate the residual rp[k] for each p and plot the average error e[p] vs p
as shown in the top diagram of Fig. 4.
Step 3: Find the knee in the curve where the average error e[p] is small and flattened.
Determine the corresponding order p for the hypothesis test.
Step 4: Calculate Qn−1 as in (9) and carry out the modified Box–Pierce test. Let
the threshold d be taken from the χ2(n − 1) distribution with α being the level of
significance usually 0.03–0.05, i.e., the probability to reject H0 though H0 is true. The
hypothesis H0 is accepted if Qn−1 ≤ d and we conclude that the order p is sufficient.
The hypothesis H0 is rejected if Qn−1 > d and we conclude that the order p is not
high enough and an additional term or terms should be included in the estimate.
Then, the test is repeated with p → p + 1.

4.2 Relative and Cumulative Contribution Approach

In order determination, what we are interested in is not if a particular term φi [k]
contributes or not, but whether the contribution is significant or not. Identification
is always a balance between model accuracy and model parsimony. The data-driven
orthogonal approach discussed in the previous sections allows us to decompose the
total contribution into a sum of individual contributions, referred to as the relative
contribution in this work, and provides a reliable way for the order determination
and regressor selection. To this end, we propose a relative contribution approach for
order determination and regressor selection that exploits the orthogonal properties of
the basis functions. Consider the system (4). It is easily verified from the orthogonal
properties of φi [k]’s that

Ey[k]2 = E{
M∑

i=0

φi [k] + v[k]}2 =
M∑

i=0

Eφ j [k]2 + Ev[k]2

We now define the relative contribution Rc[ j] as

Rc[ j] = Eφ j [k]2
Ey[k]2 , j = 0, ..., M

Since the square term is proportional to energy, the meaning of the relative contri-
bution Rc[p] is the percent of energy in the p’s term to the overall output energy.
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Obviously, if the p’s term is insignificant, the relative contribution Rc[p] should be
small and not be a part of the estimate.

A closely related concept is the cumulative contribution Cc[p]

Cc[p] =
p∑

j=0

Rc( j) =
p∑

j=0

Eφ j [k]2
Ey[k]2 , p = 0, ..., M

which measures the contribution of first p + 1 terms relative to the overall output.
Obviously, if the order p is correct, the cumulative contribution Cc[p] should be
close to unit and is flattened in the curve Cc[p] vs p. It is important to point out that
because of noise contribution term Ev[k]2, the cumulative contribution can never
reach 100%. To test the order based on the cumulative contribution, an estimate
of the relative contribution of the unknown noise has to be done. This makes the
method based on the cumulative contribution less efficient compared to the relative
contribution approach.

In reality, φ′
i are unavailable and only their estimates φ̂i ’s are available. However,

because of their convergence properties, φ̂i → φi as N → ∞, we may define the
estimates of Rc[p] and Cc[ j] by

R̂c[ j] =
1
N

∑N
k=1 φ̂ j [k]2

1
N

∑N
k=1 y[k]2

and

Ĉc[p] =
p∑

j=0

1
N

∑N
k=1 φ̂ j [k]2

1
N

∑N
k=1 y[k]2 .

The substitution is reliable for large N because of the convergence property.
To test whether the pth term should be included, we compute R̂c[p] and choose a

threshold d1, for example d1 = 0.03 or 3%. If R̂c[p] ≥ d1, the pth term is included.
Otherwise the term is discarded. This not only provides the order of the system but
also determines exactly which term should be included in the model.

5 Deterministic Inputs and Galois Sequence

Generally, there are two ways to estimate the structure of the system. The first one
is full scale system identification. The idea is to identify the system including each
f̄i and f̄i j and then enumerate all possible models for different combinations of f̄i

and f̄i j as well as n. Some performance measures are calculated and the model that
achieves the best performance is chosen. Then, the corresponding n is the estimate
of time lag and the surviving terms of f̄i and f̄i j are retained in the system. All
other f̄i ’s and f̄i j ’s are considered to be negligible. The method does not distinguish
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between model structural estimation and full scale system identification. Note that
the system is nonparametric and nonlinear. Hence, identification is usually computa-
tionally expensive and the optimization algorithm could be stuck in a local minimum.
It is certainly advantageous if the structure of the system can be estimated before a
full scale system identification is performed. To this end, we propose two different
methods.

5.1 Visual Inspection Method

Recall that in structural estimation, we are interested not in full scale system iden-
tification, but rather in finding a simple and reliable way to estimate the structure,
in particular to determine the terms f̄i and f̄i j which contribute significantly. In this
section, we assume that the input is at our disposal (which admittedly may be restric-
tive in some applications). Under such an assumption, the first problem is to find an
input sequence that is simple and has the ability to separate the contributions of f̄i

and f̄i j ,

U23 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(1) u(0) u(−1)
u(2) u(1) u(0)
u(3) u(2) u(1)
u(4) u(3) u(2)
u(5) u(4) u(3)
u(6) u(5) u(4)
u(7) u(6) u(5)
u(8) u(7) u(6)
u(9) u(8) u(7)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a1 a1

a2 a1 a1

a2 a2 a1

a2 a2 a2

a1 a2 a2

a2 a1 a2

a1 a2 a1

a1 a1 a2

a1 a1 a1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

To this end, let l be a prime number that indicates the number of levels of input,
i.e., u[k] = {a1, a2, ..., al}, usually |ai | = |a j | to avoid ambiguity for quadratic non-
linearities. To excite the system to the maximum extent, the input sequence should
contain all possible combinations of n-tuple (ai1 , ai2 , . . . , ain ), ai j = a1, . . . , , al . The
minimum length of such a generating sequence is n + ln − 1. The Galois sequence
is such a sequence which has been investigated in [13, 20] for worst-case identifica-
tion. Galois sequence has many desirable properties. It is a periodic pseudorandom
sequence with period ln [20] and can be easily generated [13]. More importantly,
within one period, it produces each n-tuple combination exactly once [20]. Note that
the Galois sequence defined here is slightly different from the traditional one [13]
as we need all the n-tuples to be included. This small difference can be easily taken
care of and in fact this definition is exactly the same as in [20]. An example of G(ln)

for n = 3 and l = 2 is given in (10). To average out the effect of noise, the input
sequence is repeated L times, i.e.,
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ULln =

⎛

⎜⎜⎜⎝

Uln

Uln

...

Uln

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
Ltimes. (11)

Before performing structural estimation, it is interesting to observe that the repre-
sentation (1) of the system is actually not unique. For instance, f̄1 → f̄1 + c and
f̄2 → f̄2 − c for any constant c would not change the input–output relationship
which implies that the structure of the system, as represented in (1), is not identifi-
able. To overcome this problem, we normalize the system to make the averages of
f̄i and f̄i j with respect to the input equal to zero. Let

g j,i j (u[k − j]) = 1

l

l∑

m=1

f̄i j (am, u[k − j]),

gi,i j (u[k − i]) = 1

l

l∑

m=1

f̄i j (u[k − i], am)

be the partial average of f̄i j with respect to the first and second variables respectively
and

či j = 1

l2

l∑

m1=1

l∑

m2=1

f̄i j (am1 , am2)

be the total average. Define

f̌i j (u[k − i], u[k − j]) = f̄i j (u[k − i], u[k − j]) − g j,i j (u[k − j]) − gi,i j (u[k − i]) + či j .

(12)

Obviously, the average of this new function is zero,

l∑

m=1

f̌i j (am, u[k − j]) =
l∑

m=1

f̌i j (u[k − i], am) = 0. (13)

To make the average of f̄i equal to zero, let, for each 1 ≤ i ≤ n,

f̌1(u[k − 1]) = f̄1(u[k − 1]) +
n∑

i=2

g1,1i (u[k − 1]) − 1

l

l∑

m=1

[ f̄1(am) +
n∑

i=2

g1,1i (am)]
︸ ︷︷ ︸

č1

,

f̌n−1(u[k − n + 1]) = f̄n−1(u[k − n + 1]) +
n−2∑

i=1

g(n−1),i(n−1)(u[k − n + 1])
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+g(n−1),(n−1)n(u[k − n + 1]) − 1

l

l∑

m=1

[ f̄n−1(am) +
n−2∑

i=1

g(n−1),i(n−1)(am) + g(n−1),(n−1)n(am)]
︸ ︷︷ ︸

čn−1

,

f̌n(u[k − n]) = f̄n(u[k − n]) +
n−1∑

i=1

gn,in(u[k − n]) − 1

l

l∑

m=1

[ f̄n(am) +
n−1∑

i=1

gn,in(am)]
︸ ︷︷ ︸

čn

. (14)

Since,
l∑

m=1

f̌i (am) = 0, ∀i (15)

by taking č = c̄ − ∑
1≤i< j≤n či j + ∑n

i=1 či , it follows that the system (1) can be
rewritten as

y[k] = č +
n∑

i=1

f̌i (u[k − i]) +
∑

1≤i< j≤n

f̌i j (u[k − i], u[k − j]) + v[k], k = 1, 2, . . . , Lln .

(16)
This makes the representation unique. For each 1 ≤ i < j ≤ n, mi , m j = 1, . . . , l
and s = 1, 2, . . . , L , define the partial averages of the output,

Zi j
mi m j s = 1

ln−2

ln∑

t=1
u[k−i]=ami ,u[k− j]=am j

y[(s − 1)ln + k]

Zi j
mi m j · = 1

L

∑L
k=1 Zi j

mi m j s

Z i j
mi ·· = 1

l

∑l
m j =1 Zi j

mi m j ·

Zi j·m j · = 1
l

∑l
mi =1 Zi j

mi m j ·

Zi j··· = 1
l

∑l
mi =1 Zi j

mi ·· = 1
l

∑l
m j =1 Zi j·m j ·

(17)

The subscript “dot” indicates that average has been takenwith respect to this variable,
e.g., Zi j

mi m j · is the average of Zi j
mi m j s with respect to the last variable s.

To provide a physical interpretation of the above variables, let us focus on the
system (16) with n = 3, l = 2 and the Galois sequence G F(23) as in (10) and (11).
Within one period, it is clear that for any fixed column ofU23 , half of the entries have
values at a1 and the other half are at a2. Further, it is straightforward using (13) and
(15) to show that for i = 1 and j = 2,

Z12
11s = č + f̌1(a1) + f̌2(a1) + f̌12(a1, a1) + (v[(s − 1)23 + 1] + v[(s − 1)23 + 8])/2,

Z12
12s = č + f̌1(a1) + f̌2(a2) + f̌12(a1, a2) + (v[(s − 1)23 + 5] + v[(s − 1)23 + 7])/2,
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Z12
21s = č + f̌1(a2) + f̌2(a1) + f̌12(a2, a1) + (v[(s − 1)23 + 2] + v[(s − 1)23 + 6])/2,

Z12
22s = č + f̌1(a2) + f̌2(a2) + f̌12(a2, a2) + (v[(s − 1)23 + 3] + v[(s − 1)23 + 4])/2.

Moreover,

Z12
11· = č + f̌1(a1) + f̌2(a1) + f̌12(a1, a1) + 1

L

L∑

s=1

(v[(s − 1)23 + 1] + v[(s − 1)23 + 8])/2,

Z12
12· = č + f̌1(a1) + f̌2(a2) + f̌12(a1, a2) + 1

L

L∑

s=1

(v[(s − 1)23 + 2] + v[(s − 1)23 + 7])/2,

Z12
1·· = č + f̌1(a1) + 1

2L

L∑

s=1

{(v[(s − 1)23 + 2] + v[(s − 1)23 + 7])/2

+ (v[(s − 1)23 + 1] + v[(s − 1)23 + 8])/2},

Z12··· = č + 1

4L

L23∑

t=1

v[k].

Clearly, an estimate č is obtained by Z12··· and an estimate f̌1(a1) is obtained by
Z12
1·· − Z12··· . The results can be trivially but cumbersomely extended to the system

(16) with any n ≥ 2, l ≥ 2 and i, j as summarized in the following theorem.

Theorem 4 Consider the system (16) for any n ≥ 2, l ≥ 2 with the Galois input as
in (11) and the variables defined in (17). Then, for any 1 ≤ i < j ≤ n and mi , m j =
1, . . . , l, we have

Zi j
mi m j s = č + f̌i (ami ) + f̌ j (am j ) + f̌i j (ami , am j ) + εi j

mi m j s

where ε
i j
mi m j s ’s are iid with zero mean and variance σ 2/ln−2 and

Zi j
mi m j · = č + f̌i (ami ) + f̌ j (am j ) + f̌i j (ami , am j ) + 1

L

L∑

s=1

εi j
mi m j s,

Zi j
mi ·· = č + f̌i (ami ) + 1

l L

l∑

m j =1

L∑

s=1

εi j
mi m j s,

Zi j
·m j · = č + f̌ j (am j ) + 1

l L

l∑

mi =1

L∑

s=1

εi j
mi m j s,

Zi j
··· = č + 1

lln−2L

Lln∑

k=1

v[k].
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Therefore, for a large L , very good estimates of č, f̌i , and f̌i j are available from
Zi j

mi m j ·, Zi j
mi ··, Zi j·m j ·, and Zi j··· that are computable from the input–outputmeasurements.

The implication of the above result is that the graph of f̌i (ami ) ( f̌ j (am j )) versus ami

(am j ) is obtained by the graph of its estimate

f̃i (ami ) = Zi j
mi ·· − Zi j

··· vs ami or

f̃ j (am j ) = Zi j
·m j · − Zi j

··· vs am j

and the graph of f̌i j (ami , am j ) versus (ami , am j ) is obtained by f̃i j (ami , am j ) =
(Zi j

mi m j · − Zi j
mi ·· − Zi j·m j · + Zi j···) and

f̃i j (ami , am j ) vs (ami , am j ).

Accordingly, the contribution of f̌i (ami ) and f̌i j (ami , am j ) can be visually
inspected by the graphs of f̃i (ami ) and f̃i j (ami , am j ). We make two comments here.

• Structural estimation is similar to model validation in identification. One can never
validate amodel unless all possible inputs have been applied. This is clearly impos-
sible in practice. In structural estimation, one can only say that the contribution of
f̌i (ami ) or f̌i j (ami , am j ) is negligible with respect to the applied input. Therefore,
the values a1, . . . , al are important and have to be chosen judiciously.

• In general, increasing the level l excites the system at more points and this is quite
useful for nonlinear system identification. However, there is a balance between
the number of levels l and the complexity of the implementation. For l = 2 or any
binary input, the minimum length of the sequence to cover all possible n-tuple
combinations is 2n and for an l level input, the minimum length becomes ln . Thus,
the complexity increases quickly as l gets larger.

• In general, a visual inspection works only for 2-factor terms.

5.2 Analysis of Variance (ANOVA)

The visual inspection approach discussed above is intuitive, efficient but Ad Hoc.
If an estimate f̃i is nonzero but small, it is hard to determine if the term should be
retained or discarded because of noise. To make the idea mathematically rigorous, in
this section, we develop a statistical hypothesis test based on the well-known analysis
of variance (ANOVA) and F distribution tests. To this end we make an assumption.

Assumption 5.1 The noise v[·] is iid Gaussian with zero mean and variance σ 2.

The Gaussian assumption is needed for the mathematical derivation. However, it
has been well documented in the literature [17] that ANOVA is quite robust against
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violation of the Gaussian assumption. Consider the system (16), the input (11), and
the variables (17). Let, for each 1 ≤ i < j ≤ n,

SSi j
T = ∑l

mi =1

∑l
m j =1

∑L
s=1(Zi j

mi m j s − Zi j···)2

SSi j
mi · = ∑l

mi =1 l L(Zi j
mi ·· − Zi j···)2

SSi j·m j = ∑l
m j =1 l L(Zi j·m j · − Zi j···)2

SSi j·· = ∑l
mi =1

∑l
m j =1 L(Zi j

mi m j · − Zi j·m j · − Zi j
mi ·· + Zi j···)2

SSi j
E = ∑l

mi =1

∑l
m j =1

∑L
s=1(Zi j

mi m j s − Zi j
mi m j ·)2.

(18)

The following theorem can be shown by some algebraic manipulations and the
Cochran Theorem [24].

Theorem 5 Consider the variables defined in (18). Then,

• SSi j
T = SSi j

mi · + SSi j·m j + SSi j·· + SSi j
E .

• SSi j
mi ·, SSi j·m j , SSi j·· , and SSi j

E are statistically independent.

• ln−2

σ 2 SSi j
E ∼ χ2(l2(L − 1)) is χ2 distributed with l2(L − 1) degrees of freedom.

• If f̌i j (ami , am j ) = 0 for all mi , m j = 1, . . . , l, then

ln−2

σ 2
SSi j

·· ∼ χ2((l − 1)2).

• If f̌i (ami ) = 0 for all mi = 1, . . . , l, then

ln−2

σ 2
SSi j

mi · ∼ χ2(l − 1).

• If f̌ j (am j ) = 0 for all m j = 1, . . . , l, then

ln−2

σ 2
SSi j

·m j
∼ χ2(l − 1).

This theorem sets the foundation for the test of three null hypotheses,

H0i j : f̌i j (ami , am j ) = 0, ∀ami , am j = 1, . . . , l,

H0i · : f̌i (ami ) = 0, ∀ami = 1, . . . , l,
H0· j : f̌ j (am j ) = 0, ∀am j = 1, . . . , l,

by the F-test because if H0i j is true then

T i j = SSi j·· /(l − 1)2

SSi j
E /(l2(L − 1))

∼ F((l − 1)2, l2(L − 1)), for all 1 ≤ i < j ≤ n,

is F-distributed with (l − 1)2 and l2(L − 1) degrees of freedom. Similarly, if H0i · is
true,
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T 1 = SS12
mi ·/(l − 1)

SS12
E /(l2(L − 1))

∼ F(l − 1, l2(L − 1))

and if H0· j is true, ∀ j = 2, . . . , n,

T j = SS1 j·m j /(l − 1)

SS1 j
E /(l2(L − 1))

∼ F(l − 1, l2(L − 1)).

The null hypothesis H0i j is rejected if T i j > Fα((l − 1)2, l2(L − 1)) where α

denotes the level of significance, usually in the range 0.01 − 0.1. The tests for H0i ·
and H0· j are similar. The results from the hypothesis tests are used to determine
which fi or fi j should be retained with a certain confidence in probability.

6 Full Scale Identification

For full scale system identification, using the Galois sequence is not appropriate
because the Galois sequence only excites the system at a finite points. We assume
in this section that the input u[k] is an iid random sequence in a (unknown) open
interval I ∈ R with a (unknown) probability density function ψ(·). Then, the results
of [3] can be used. Similar to the structural estimation case, the system (1) needs to
be normalized for identification purposes. Let E be the expectation operator. Define
the partial averages,

ci j = E{ f̄i j (u[k − i], u[k − j])},

c1 = E{ f̄1(u[k − 1]) +
n∑

j=2

E( f̄1 j (u[k − 1], u[k − j]) | u[k − 1] = x1)},

c1i = E{ f̄i (u[k − i]) +
n∑

j=i+1

E( f̄i j (u[k − i], u[k − j]) | u[k − i] = xi )},

c2i =
i−1∑

j=1

E( f̄ j i (u[k − j], u[k − i]) | u[k − i] = xi ),

cn = E{ f̄n(u[ j − n]) +
n−1∑

j=1

E( f̄ jn(u[k − j], u[k − n]) | u[k − n] = xn)}.

Now, for every xi and x j ∈ I , define

fi j (xi , x j ) = f̄i j (xi , x j ) − E( f̄i j (u[k − i], u[k − j]) | u[k − j] = x j )

− E( f̄i j (u[k − i], u[k − j]) | u[k − i] = xi ) + ci j , 1 ≤ i < j ≤ n,
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f1(x1) = f̄1(x1) +
n∑

j=2

E( f̄1 j (u[k − 1], u[k − j]) | u[k − 1] = x1) − c1,

fi (xi ) = f̄i (xi ) +
n∑

j=i+1

E( f̄i j (u[k − i], u[k − j]) | u[k − i] = xi )

+
i−1∑

j=1

E( f̄ j i (u[k − j], u[k − i]) | u[k − i] = xi ) − c1i − c2i , i = 2, 3, . . . , n − 1,

fn(xn) = f̄n(xn) +
n−1∑

i=1

E( f̄in(u[k − i], u[k − n]) | u[k − n] = xn) − cn .

(19)

Next, with c = c̄ − ∑
1≤i< j≤n ci j + ∑n

i=1 ci , ci = c1i + c2i , the system (1) can be
written as

y[k] = c +
n∑

i=1

fi (u[k − i]) +
∑

1≤i< j≤n

fi j (u[k − i], u[k − j]) + v[k], k = 1, 2, . . . , N

(20)
with

E fi (u[k − i]) = E( fi j (u[k − i], u[k − j]) | u[k − i] = xi )

= E( fi j (u[k − i], u[k − j]) | u[k − j] = x j ) = 0.

The problem is how to identify fi and fi j . Observe that these variables are condi-
tional expectations and thus can be calculated by empirical data easily, for instance
using the kernel estimation method [3]. To this end, we define the kernel functions.
A continuous, bounded and radially symmetric function K (·) is said to be a kernel
function if

K (z) =
{

> 0, z ∈ [−1, 1]
0, z /∈ [−1, 1] and

∫ 1

−1
K (z)dz = 1. (21)

Now, the estimates of c, fi and fi j can be defined for each xi , x j ∈ I in which the
input u[·] lies,

ĉ = 1

N

N∑

k=1

y[k] (22)

f̂i (xi ) =
∑N

k=1 K ( xi −u[k−i]
δ

)y[k]
∑N

k=1 K ( xi −u[k−i]
δ

)
− ĉ, i = 1, . . . , n

f̂i j (xi , x j ) =
∑N

k=1 K (
‖(xi ,x j )−(u[k−i],u[k− j])‖

δ
)y[k]

∑N
k=1 K (

‖(xi ,x j )−(u[k−i],u[k− j])‖
δ

)
− f̂i (xi ) − f̂ j (x j ) − ĉ, 1 ≤ i < j ≤ n
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where δ > 0 is the bandwidth. The following result, which is a standard exercise,
follows from [3].

Theorem 6 Consider the system (3) with differentiable fi and fi j , and any kernel
function defined above. Then, for any xi , x j ∈ I , provided that the input density
function is positive at xi , x j , i.e., ψ(xi ), ψ(x j ) > 0 and δ → 0, δ2N → ∞ as N →
∞, we have

ĉ → c

f̂i (xi ) → fi (xi )

f̂i j (xi , x j ) → fi j (xi , x j )

in probability as N → ∞.

7 Comparisons with Existing Methods

A new representation for a class of nonlinear nonparametric system has been pro-
posed in (16). Further, structural estimation and full scale identification have been
discussed in the previous section. Naturally, two questions arise. The first one is what
are the advantages of the representation (16) as compared to some existing methods,
in particular the fixed basis approach and the Volterra series? Second, even if one
accepts the representation (16), why use the structural estimation and system identi-
fication techniques discussed in the previous section as compared to the traditional
approach of identifying f (u[k − 1], . . . , u[k − n]) directly? We address these two
issues in this section.

7.1 Relation with the Volterra Series

If the system (16) is smooth with an upper bound n on the time lag, its Volterra series
is given by

y[k] = h0 +
n∑

l=1

∞∑

i1=0

∞∑

i2=i1

· · ·
∞∑

il=il−1

hl (i1, . . . , il ) · u[k − i1]u[k − i2] . . . u[k − il ] + v[k].

Twoof themajor advantages of theVolterra series are (1) it is in a closed formand (2) it
is parametric. In otherwords, any smooth nonlinear nonparametric systemcan always
be written in the above form. Further, identification becomes a linear estimation of
the coefficients hl’s. However, theVolterra series also has some disadvantages. In this
work, we are mainly interested in verifying if the Volterra series is a good candidate
for the system of short termmemory and low degree of interaction as in (1) or (3). To



372 E.-W. Bai and C. Cheng

this end, we need to understand the differences between a system of low degree of
interaction and a system of low order in the classical sense. Traditionally, a system is
said to be of low order if it can be written as or at least can be well approximated by
a low-order multidimensional polynomial. For instance, a system is said to be first
order if it is linear

y[k] = f (u[k − 1], . . . , u[k − n]) = c +
n∑

i=1

αi u[k − i]

or to be of second order if

y[k] = c +
n∑

i=1

αi u[k − i] +
∑

1≤ j1≤ j2≤n

γ j1 j2u[k − j1]u[k − j2].

Clearly, in both cases, the system is of 1-factor or 2-factor terms. In general, a
system of low order in the traditional sense implies low degree of interaction.
The other way around is however incorrect. For example, eu[k−1] is an 1-factor
term that is not necessarily of low order depending on the input magnitude. Also,
(u[k − 1]u[k − 2])10 is a 2-factor term which may not be approximated well by a
second-order polynomial. Therefore, nonlinear systems of loworder in the traditional
sense are low degree interaction systems but the reverse implication is not neces-
sarily true. Now, we consider a Volterra series approach. A second-order Volterra
series is a model that contains all the first- and second-order kernels u[k − i]’s and
u[k − j1]u[k − j2]’s. Thismodel is a 2-factor interaction system.However, a 2-factor
system y[k] = eu[k−1] + (u[k − 1]u[k − 2])10 is definitely not represented well by a
low-order Volterra series.

In summary, if a nonlinear systemof short-termmemory and lowdegree of interac-
tion resembles the structure of a low-ordermultidimensional polynomial, theVolterra
series is a good candidate. If the system is far away from a polynomial or the order
of the polynomial is high, the Volterra series is not a good candidate simply because
too many terms are needed to approximate the given system. In such a case, i.e.,
the unknown system is of low degree of interaction but not necessarily a low-order
polynomial, the proposed representation is a vital choice. This observation is not sur-
prising because the Volterra series is an extension of Taylor polynomial expansion
of an analytic function. The advantages of the proposed representation for systems
of short memory and low degree of interaction will be further illustrated in the sim-
ulation section.

7.2 Basis Function Approach

Without structural information, a fixed basis function approach is often used in non-
linear system identification. Typical basis functions are Fourier series, polynomials,
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and some orthogonal versions. Obviously, the success of a basis function approach
relies on how much a priori information is available on the unknown structure. If
the chosen basis functions resemble the structure of the unknown nonlinear system,
only a few terms are needed to represent the unknown system. In this case, identifica-
tion is likely to be successful. Otherwise, a fixed basis function approach requires a
large number of terms which has a considerable negative effect on the identification
step. The advantage of the proposed representation is that, if a nonlinear system has
short-term memory and low degree of interaction which fits (3), then no additional
structural information is required. In other words, there is no need to choose any basis
functions and whether a chosen basis function resembles the unknown structure is
no longer an issue.

7.3 Traditional One Shoot Kernel Approach

Once the representation of (1) or (3) is accepted, the second question is why to
use the identification method proposed in the previous section and why not to iden-
tify the nonlinear function f (u[k − 1], . . . , u[k − n]) directly, which is a traditional
approach. The difference is that the identification method proposed in this work
decomposes a potentially high-dimensional nonlinear identification problem into a
number of one- or two-dimensional problems. Since the method proposed in the
work is kernel based, we compare it with the one shoot kernel based identification
method.

First, for the one shoot kernel estimation of f (u[k − 1], . . . , u[k − n]) under iid
inputs, the asymptotic convergence rate [12] is O(N− α

2α+n ), where N is the total
number of data points and α depends on the choices of the kernel functions and the
bandwidth. For the method proposed in the work, because identification is one or
two dimensional, the asymptotic convergence rate is O(N− α

2α+n |n=2) = O(N− α
2α+2 )

[12]. Thus, asymptotically, there is an advantage to use the proposed method.
Next, we consider the case that N is large but fixed. For nonlinear system identi-

fication, the curse of dimensionality is always a concern even for a modest n. We use
similar arguments and examples as in [2] to illustrate the situation. Let u[·] be uni-
formly distributed in I = [−1, 1]. Suppose one wants to estimate f (x1, x2, . . . , xn)

at a point (x1, x2, . . . , xn) ∈ I n . Since any nonparametric identification scheme,
including the kernel approach, is in some form of local smoother or weighted aver-
age based on the measurement data in the neighborhood of (x1, x2, . . . , xn), there
must be enough data in the neighborhood to average out the effects of noise and
the uncertainty due to lack of structural information. For simplicity, suppose the
neighborhood is a hyper-box with the side length 0.1. Then, the volume of I n is
2n and the volume of the neighborhood is 0.1n . This implies that the probability
that a measurement data (u[k − 1], u[k − 2], . . . , u[k − n]) is in the neighborhood
of (x1, x2, . . . , xn) is (1/20)n that goes to zero exponentially as n gets large. For a
large N , there are likely N · (1/20)n measurements in the neighborhood. Unless N is
huge, there is not enough data in a neighborhood for identification purpose even for
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a modest n. For the proposed method, however, the maximum dimension is two. The
curse of dimensionality is not a problem. For instance, let n = 8. Then, the problem
becomes identification of 8 1-factor terms f j (u[k − j]), j = 1, 2, . . . , 8, and 28 2-
factor terms f j1 j2(u[k − j1], u[k − j2]). Though the number of identification steps
increases, the complexity of identification is reduced drastically. Because of decou-
pling, the probability of an u[k − j] in the neighborhood of x j for one-dimensional
identification is 0.05 and the probability of (u[k − j1], u[k − j2]) in the neighbor-
hood of (x j1 , x j2) is 0.0025. Suppose that the total number of data points is N = 105.
This implies that likely there are 5000 or 250 measurements in the neighborhood
for identification of 1-factor or 2-factor terms, respectively. Recall that if the eight-
dimensional f (x1, . . . , x8) is identified directly, the probability that a data vector is in
the neighborhood of (x1, . . . , x8) is (1/20)8.With N = 105, the probability that there
is one measurement in a neighborhood is (1/2)8 · 10−3 = 1

28103 that makes identifi-
cation nearly impossible. Clearly, the performance of identification of the 1-factor or
2-factor term can be substantially improved for the same N , compared to the iden-
tification of a eight-dimensional problem f . This effectively combats the curse of
dimensionality.

8 Numerical Simulation

We now provide numerical simulation examples. We separate the discussions about
random inputs and Galois sequence inputs.

8.1 Random Inputs

Example 1 Consider a nonlinear system

y[k] = f (u[k − 1], u[k − 2], u[k − 3], u[k − 4], u[k − 5]) + v[k]

= 1.25/3︸ ︷︷ ︸
φ0=c

+ u[k − 1]︸ ︷︷ ︸
φ1= f1

+ 10 · u[k − 2]3︸ ︷︷ ︸
φ2= f2

+ 5 · u[k − 3]2 − 1.25/3︸ ︷︷ ︸
φ3= f3

+ 0︸︷︷︸
φ4= f4

+ 0︸︷︷︸
φ5= f5

+ + 5 · u[k − 1] ∗ u[k − 2]︸ ︷︷ ︸
φ6= f12

+ 0︸︷︷︸
φ7= f13

+

0︸︷︷︸
φ8= f14

+ 0︸︷︷︸
φ9= f15

+ 0.5 · sin(2π(u[k − 2] + u[k − 3]])︸ ︷︷ ︸
φ10= f23

+ 0︸︷︷︸
φ11= f24

+ + 0︸︷︷︸
φ12= f25

+ + 0︸︷︷︸
φ13= f34

+ + 0︸︷︷︸
φ14= f35

+ + 0︸︷︷︸
φ15= f45

+v[k] (23)
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Fig. 1 φ j [k] = f j (u[k − j])’s (solid) and their estimates φ̂ j [k] (dashdot), j = 1, 2, 3, 4, 5

No prior structural information on f is available. The time lag of the system is
unknown and only an upper bound of n = 5 is assumed. For simulation, N = 20, 000
and δ = 0.1. The input u[·] is independent and uniformly distributed in [−0.5, 0.5],
and the noise v[·] is iid Gaussian with SN R = 20dB.

Figure1 shows the actual but unknown φ j [k](solid), j = 1, ..., 5 and their esti-
mates φ̂ j [k] (dashdot), j = 1, ..., 5, respectively. The top diagrams of Fig. 2 show
φ6[k], φ10[k] superimposed with their estimates φ̂6[k], φ̂10[k]. The estimation errors
of φ6[k] − φ̂6[k] and φ10[k] − φ̂10[k] are in the bottom diagrams. The estimates
φ̂ j [k]’s, j = 7, 8, 9, 11, 12, 13, 14 and 15 are in Fig. 3. It can be seen that all the
estimates fit the actual but unknown functions well.

To determine the order of the estimation model, we calculate the residual and plot
the average error as a function of the estimation order p as in the top diagramof Fig. 4.
Obviously, there is a drastic reduction in the average error for the order p = 10 and
there is a little change for p > 10. Thus, we take p = 10 and test if the order p = 10
is acceptable by the modified Box–Pierce test (9). When p = 10, Qn−1 = Q4 =
5.6434. Let the level of significance be 0.05. This corresponds to, from the χ2(n −
1) = χ2(4) distribution table, the threshold d = 9.4877. Since Q4 = 5.6434 < d =
9.4877. The order p = 10 is accepted which is in fact the actual but unknown order.
The order determination can also be carried by the relative contribution Rc[p] shown
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Fig. 2 φ6[k], φ̂6[k] and φ10[k], φ̂10[k]

Fig. 3 φ̂ j [k], j = 7, 8, 9, 11, 12, 13, 14 and 15
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Table 1 Relative contributions for N = 20000, 10000, 5000 and d1 = 0.03, respectively

N 20000 ≥ d1 10000 ≥ d1 5000 ≥ d1

R̂c[0] 0.1717
√

0.1819
√

0.1793
√

R̂c[1] 0.1041
√

0.0802
√

0.0792
√

R̂c[2] 0.1854
√

0.1480
√

0.1504
√

R̂c[3] 0.1156
√

0.1001
√

0.1152
√

R̂c[4] 0.0002 0.0003 0.0005

R̂c[5] 0.0000 0.0000 0.0000

R̂c[6] 0.1584
√

0.1464
√

0.1574
√

R̂c[7] 0.0008 0.0021 0.0035

R̂c[8] 0.0009 0.0028 0.0045

R̂c[9] 0.0009 0.0029 0.0036

R̂c[10] 0.1826
√

0.1199
√

0.1176
√

R̂c[11] 0.0007 0.0019 0.0039

R̂c[12] 0.0010 0.0026 0.0050

R̂c[13] 0.0009 0.0019 0.0090

R̂c[14] 0.0011 0.0026 0.0040

R̂c[15] 0.0010 0.0023 0.0050
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Fig. 5 Cumulative and relative contributions

in Table1 as well as in the bottom diagram of Fig. 5. The cumulative contribution
Cc[p] is shown in the top diagram of Fig. 5. To determine which term φ̂ j should be
included in the estimate, let the threshold d1 = 0.03. If R̂c[ j] ≥ d1, we include the
corresponding term φ̂ j in the model. Otherwise the contribution of the corresponding
term is deemed to be insignificant and omitted in the model. Clearly, from Table1,
only the terms φ̂0, φ̂1, φ̂2, φ̂3, φ̂6 and φ̂10 contribute significantly and should be
included in the model. Simply put, the system time lag is determined to be n = 3,
though the upper bound is assumed to be 5. Further, it is determined that the system
contains only 6 terms, φ0 = c, φ1 = f1, φ2 = f2, φ3 = f3, φ6 = f12, and φ10 = f23
and all other terms are zero. The conclusion is consistent with the true but unknown
system.

Finally, to validate the obtained estimate f̂ = ∑
i=0,1,2,3,6,10 φ̂i [k], a fresh input

u[k] = 0.5 sin(k/10) · cos(k/20), k = 1..., 150
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Fig. 6 Actual output (solid) and predicted output (dash-dot) for a fresh input

is generated which is completely different from the white noise input that was used
for identification. A standard goodness-of-fit criterion

(1 −
√ ∑

k(y[k] − ŷ[k])2
∑

k(y[k] − 1
N

∑
k y[k])2 ) × 100% (24)

is calculated. Based on the fresh input, the output y[k] of the actual but unknown
nonlinear system (23) is generated as well as the predicted output ŷ[k] based on the
estimate

ŷ[k] = f̂ (u[k − 1], [u − 2], u[k − 3], u[k − 4], u[k − 5])

= φ̂0 + φ̂1[k] + φ̂2[k] + φ̂3[k] + φ̂6[k] + φ̂10[k].

Figure6 shows the actual output y[k] (solid) and the predicted output ŷ[k] (dash-dot)
with the goodness-of-fit 0.9411, an almost perfect fit. This validates the effectiveness
of the identification method proposed in the work along with its order determination
and regressor selection.
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8.2 Galois Sequence Inputs

In this subsection, we discuss two numerical examples that shed lights on the
efficiency of the proposed representation and identification method using Galois
sequence inputs in the context of existing methods.

Example 2

w[k] = u[k] − 0.3u[k]3
x[k] = 0.3x[k − 1] − 0.02x[k − 2] + 0.5w[k − 1] + 0.4w[k − 2]
y[k] = x[k] + 0.4x[k]2 + v[k]

The noise v[k] is an iid zero mean and unit variance Gaussian random variable
multiplied by 0.2. The actual nonlinear system is IIR and therefore there are no
exact fi and fi j . We represent the system by (3) assuming that the maximum time
lag n ≤ 8. Note determination of the order of an unknown nonlinear system is an
interesting and open problem which is out of scope of the work. Here we just assume
that the upper bound n = 8 is available (admittedly it could be restrictive in some
applications).

First, structural estimation is carried out by using a binary Galois sequence
G F(28) with n = 8, l = 2 and L = 11 and a1 = 1, a2 = 0. ANOVA was used to
calculate T i j and T i as shown in Table 2 that are the averages of 50 Monte Carlo
simulations.

For the hypothesis tests, we choose α = 0.1. From the F distribution, we have
F0.1(1, 40) = 2.84. By the F-tests, we have T 1, T 2, T 3, T 4, T 12, T 13, T 23 > 2.84,
and all other T i , T i j < 2.84 as can be seen in Table1. Thus, we reject the hypotheses
that f1, f2, f3, f4, f12, f13, and f23 are negligible and assume that all other terms
are zero. Second, these non-negligible terms are identified with iid input uniformly
in [−1.5, 1.5], a triangle kernel [3] with δ = 0.4 and the total number of data points
N = 5000. Further, their estimates are used to construct the model

Table 2 Calculated T i and T i j for polynomial input nonlinearity
i 1 2 3 4 5 6 7 8
T i 3986 4617 371.5 23.3 2.5 1 1.2 1.1

T i j j
2 3 4 5 6 7 8

i 1.0 56 49 1.2 1.1 0.9 0.6 1.1
2 5.8 1.5 1,.0 0.9 0.7 1.0
3 1.2 1.3 0.7 1.2 0.9
4 1.3 1.0 1.0 0.9
5 1.0 0.9 0.8
6 0.9 0.7
7 0.8
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Table 3 Goodness-of-fits for the polynomial input nonlinearity

Proposed method Fourth-order
Volterra

Second-order
fixed basis

Traditional one
shoot

Gof 0.9470 0.9563 0.8121 0.6762

ŷ[k] = ĉ + f̂1(u[k − 1]) + f̂2(u[k − 2]) + f̂3(u[k − 3]) + f̂4(u[k − 4])
+ f̂12(u[k − 1], u[k − 2]) + f̂13(u[k − 1], u[k − 3]) + f̂23(u[k − 2], u[k − 3]).

To validate the model, the input is generated

u[k] = 1.5 sin(k/10) cos(k/20), k = 1, . . . , 160

as well as the corresponding actual outputs y[k] and predicted outputs ŷ[k]’s.
Figures7, 8, 9, and 10 show y[k], ŷ[k]’s predicted by the proposed method, the

Volterra series of fourth order, a fixed basis of polynomial upto the second order and
the one shoot method respectively as well as their gof’s. Since the actual nonlinearity
is a polynomial, the proposed method, the Volterra series, and the fixed basis of
polynomial all perform satisfactory, significantly better than the one shoot method
as expected. An overview of the performances is given in Table3.

Example 3

w[k] = u[k] − 0.3u[k]3e1.4u[k]
x[k] = 0.3x[k − 1] − 0.02x[k − 2] + 0.5w[k − 1] + 0.4w[k − 2]
y[k] = x[k] + 0.4x[k]2 + v[k].

The only difference between Examples2 and 3 is that the input nonlinearity now
contains an exponential term. All other simulation conditions remain the same. T i

and T i j for Example3 are given in Table4 for a binary test input G F(ln) with
n = 8, l = 2 and L = 11.

With α = 0.1 and by the F-test as shown in Table4, only the terms f1, f2, f3, f4,
f5, f12, f13, f14, f23, and f24 are not negligible and thus the model is given by

ŷ[k] = ĉ + f̂1(u[k − 1]) f̂2(u[k − 2]) + f̂3(u[k − 3]) + f̂4(u[k − 4]) + f̂5(u[k − 5])
+ f̂12(u[k − 1], u[k − 2]) + f̂13(u[k − 1], u[k − 3]) + f̂14(u[k − 1], u[k − 4])
+ f̂23(u[k − 2], u[k − 3]) + f̂24(u[k − 2], u[k − 4]).

Under the samevalidation input, the corresponding y[k] andpredicted ŷ[k]byvarious
methods are shown in Figs. 11, 12, 13 and 14. The corresponding gof’s are given in
Table 5.

The results of the second-, third-, fourth-, fifth-, and sixth-order Volterra series
are also shown in Table5 and Fig. 12, exhibiting a considerable performance dete-
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Fig. 7 Actual y[k] and predicted ŷ[k] by the proposed method with gof = 0.9470 (polynomial
nonlinearity)
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Fig. 8 Actual y[k] and predicted ŷ[k] by an fourth-order Volterra with gof = 0.9563 (polynomial
nonlinearity)
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Fig. 9 Actual y[k] and predicted ŷ[k] by a second polynomial with gof = 0.8121 (polynomial
nonlinearity)
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Fig. 10 Actual y[k] and predicted ŷ[k] by one shoot method with gof = 0.6762 (polynomial
nonlinearity)
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Table 4 T i and T i j for exponential nonlinearity
i 1 2 3 4 5 6 7 8
T i 25784 30338 2336 123 8 1 1 1

T i j j
2 3 4 5 6 7 8

i 1 846 65 4 1 1 1 1
2 78 5 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1
5 1 1 1
6 1 1
7 1
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Fig. 11 Actual y[k] and predicted ŷ[k] by the proposed method (exponential nonlinearity)

rioration. This is because a low-order polynomial approximation in u[·] like the
Volterra series is inefficient to model an exponential function. This demonstrates
the advantage of the proposed representation along with structural estimation and
system identification for nonlinear nonparametric system of short-term memory and
low degree of interaction. It is interesting to note that a higher order Volterra does not
necessarily imply a better identification result because variance error also increases
as the order gets high. The gofs of the fixed basis function for the second- and third-
order polynomials are 0.2299 and 0.1659, respectively. Figure13 demonstrates the
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Fig. 12 Actual y[k] and predicted ŷ[k] by a third-order Volterra (exponential nonlinearity)
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Fig. 13 Actual y[k] and predicted ŷ[k] by a third polynomial (exponential nonlinearity)

corresponding y[k] and ŷ[k] for the fixed basis function approach of third order.
Again, the performance of a fixed basis function approach depends on if the chosen
functions resemble the unknown structure or not. The result of the one shoot kernel
is shown in Fig. 14 with gof = 0.1679, a poor performance. The reason is that for
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Fig. 14 Actual y[k] and predicted ŷ[k] by one shoot method (exponential nonlinearity)

Table 5 Goodness-of-fits for the exponential input nonlinearity
proposed 2nd order 3rd order traditional
method fixed basis fixed basis one shoot

gof 0.6855 0.2299 0.1679 0.2722
Volterra 2nd 3rd 4th 5th 6th
(order)
gof -0.3437 -0.7652 -0.6194 -8.6657 -7.5490

a higher dimension n = 8, the bandwidth δ has to be large or there is no data in
the neighborhood that consequently increases the bias. In the simulation, bandwidth
was carefully adjusted to find the best gof which is reported here. It is clear, for
Example3 which is of short-term memory and low-order interaction, the proposed
method outperforms any other method.

9 Discussion

In this section, we provide discussions and try to shed some lights on the proposed
method.

• Orthogonalization and marginal influences: The essential step of the work is an
orthogonalization procedure that allows us to write the output as a summation
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of marginal influences of the input variables. Then, these marginal influences are
estimated by empirical averages weighted by a kernel function. This is related to
the additive or generalized additive systems investigated in the statistics literature
[12], especially discussed in a recent publication [26].

• FIR and iid assumptions: The orthogonalization is achieved in the work by assum-
ing iid inputs and FIR structure of the unknown nonlinear system. The iid assump-
tion removes statistical correlations between input variables and makes orthogo-
nalization easier. The iid condition is however not critical as long as the correlations
between u[k − i]’s and u[k − j]’s are available so they can be canceled out in the
orthogonalization procedure. On the other hand, the FIR assumption on the nonlin-
ear system is critical. Without this assumption, the output y[k] is a function of the
previous outputs y[k − i]’s as well as the input u[k − j]’s which are correlated.
The exact correlation between y[k − i] and u[k − j] relies on the system to be
identified. This makes cancelation of the correlations between the output variables
and between the output and input variables very difficult. We are working along
this direction and some preliminary results have been reported in [4].

• Kernel estimator and the choice of the bandwidth: The kernel estimator (6) is a
smooth version of a conditional mean. The unknown function is estimated by the
empirical mean of the measurements in the neighborhood of the point to be esti-
mated. The size of the neighborhood, referred to as the bandwidth δ, controls the
number of measurements to be used. The idea is to represent the unknown non-
linearities locally. All measurements outside the neighborhood ϕ(k) > δ, are not
used to construct the estimates. The choice of δ balances the trade-off between the
bias and the variance. A large δ implies a large bandwidth interval and accordingly
more data is used that results in a small variance. On the other hand, because more
data points area used even with those not in a close vicinity, the approximation
error gets large, which gives rise to a large bias term. A small δ produces just the
opposite, a large variance and a small bias. Hence, increasing δ tends to reduce the
variance but at the same time increases the bias. The best choice is to balance the
bias and the variance. There is a huge literature on this topic and some guidelines
are available in [12, 22, 26] for the choice of the bandwidth δ. For instance, the
optimal bandwidth can be derived by minimizing the mean square error if the ana-
lytical expression exists. Alternatively, a data-driven bandwidth can be derived by
using the leaving-one-out criterion. For details, see [12] and the references within.

• Recursive algorithms: The kernel estimator proposed in the work can be calculated
recursively when the new data become available. First, let φ̂N+1

0 and φ̂N
0 be the

estimates of φ0 at N + 1 and N , respectively, where the superscripts N + 1 and
N emphasize on the dependence of the data upto N + 1 and N , respectively. It is
easily verified that

φ̂N+1
0 = N

N + 1
φ̂N
0 + 1

N + 1
· y[N + 1].

To calculate φ̂N+1
j (x j ) from φ̂N

j (x j ), j = 1, 2, ..., n, recursively, consider
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1. Collect new data y[N + 1], u[N ] and calculate ϕ j (x j , N + 1) = |u[N + 1 −
j] − x j |.

2. If δ ≤ ϕ j (x j , N + 1), then

wN+1
j (x j , k) =

{
wN

j (x j , k), k = 1, 2, ..., N
0, k = N + 1

3. φ̂N+1
j (x j ) = φ̂N

j (x j ). Reset N + 1 ⇒ N and go back to step 1.
4. If δ > ϕ j (x j , N + 1), let

λ(N + 1) = l jδ − ∑l j

i=1 ϕ j (x j , m j (i))

l jδ − ∑l j

i=1 ϕ j (x j , m j (i)) + δ − ϕ j (x j , N + 1)

and define

wN+1
j (x j , k) =

⎧
⎪⎨

⎪⎩

wN
j (x j , k) · λ(N + 1), k ∈ M j = {m j (1), ..., m j (l j )}

δ−ϕ j (x j ,N+1)

(l j +1)δ−∑l j
i=1 ϕ j (x j ,m j (i))−ϕ j (x j ,N+1)

, k = N + 1

0, k /∈ {N + 1, m j (1), ..., m j (l j )}

Identify N + 1 = m j (l j + 1).
5. φ̂N+1

j (x j ) = φ̂N
j (x j ) · λ(N + 1) + wN+1

j (x j , N + 1)y(N + 1). Reset l j + 1 ⇒
l j , N + 1 ⇒ N and go back to step 1.

Other φ̂ j , j > n, can be similarly calculated recursively.
• Higher factor interactive term systems and computational complexity: This work
focuses on the system upto 2-factor interactive terms. All the results can be
extended to higher factor interactive term systems. We summarize the procedures
for a 3-factor term system.

Step 1: Consider the system (1). Define f j1 j2 j3 which is the normalized f̄ j1 j2 j3 so
that the average is zero with respect to any xi and (xi , x j ).
Step 2: Redefine f̄ j1 j2 by adding the original f̄ j1 j2 to all the 2-factor terms with
index j1 j2 resulting from the normalization of f̄ j1 j2 j3 . Normalize f̄ j1 j2 to have f j1 j2 .
Step 3: Redefine f̄ j by adding the original f̄ j to all the 1-factor terms with the
index j resulting from the previous steps. Normalize f̄ j to have f j . Also, adjust
the constant term c.

Then, the orthogonal functions φ j ’s and their estimates φ̂ j ’s can be similarly
defined. The estimates enjoy the same convergence properties as in the 2-factor
term case.
In theory, the procedure can be extended to any factor term system. However, the
number of terms increases exponentially and so is the computational complexity.
Practically, the method proposed in the work is more efficient for a low-order
factor term system, say 2-factor or 3-factor interactive term systems with a modest
time lag n.
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• Curse of dimensionality: A common feature of most nonlinear identificationmeth-
ods in the literature is to find directly the nonlinearity f representing the input–
output relationship of the system. This amounts to solving a high-dimensional non-
linear identification problemdirectly and is usually difficult if n is not small. One of
the main problems is the curse of dimensionality in nonparametric identification.
To illustrate the situation, let u[·] be uniformly distributed in I = [−0.5, 0.5].
Suppose one wants to estimate f (x1, x2, ..., xn) at a point (x1, x2, ..., xn) ∈ I n .
Since any nonparametric identification scheme is in some form of local smoother
or weighted average based on the measurement data in the neighborhood of
(x1, x2, ..., xn), there must be enough data in the neighborhood to average out
the effects of noise and the uncertainty due to lack of structural information. For
simplicity, suppose the neighborhood is a hyper-box with the side length 0.1.
Then, the volume of I n is 1n = 1 and the volume of the neighborhood is 0.1n . This
implies the probability that a measurement data (u[k − 1], u[k − 2], ..., u[k − n])
is in the neighborhood of (x1, x2, ..., xn) is 0.1n/1 = 0.1n that goes to zero expo-
nentially as the order or dimension n gets larger. Let N be the number of total data
measurements. For a large N , it is likely there are N · 0.1n measurements in the
neighborhood. Unless N is huge, there is not enough data in a neighborhood for
identification purpose even for a modest n.
Now, consider the proposedmethod for a low-order factor termsystem, say for an2-
factor term system.The aimof themethod is not to estimate the high-dimensional f
directly but to estimate the unknown interactive terms f j and f j1 j2 or the orthonor-
mal functions φ j ’s. Moreover, identification of each interactive term is decoupled
with each other. This is very beneficial. For instance, let n = 5. Then, the prob-
lem becomes identification of five 1-dimensional 1-factor terms f j (u[k − j]),
j = 1, 2..., 5, and ten 2-dimensional 2-factor terms f j1 j2(u[k − j1], u[k − j2]),
1 ≤ j1 < j2 ≤ 5. Though the number of identifications is increased, the complex-
ity of identification is reduced drastically. Because of decoupling, the probability
of an u[k − j] in the neighborhood of x j for one-dimensional identification is
0.1/1 = 0.1 and the probability of (u[k − j1], u[k − j2]) in the neighborhood of
(x j1 , x j2) is 0.1

2/1 = 0.12. Suppose the total number of data points is N = 104.
This implies that it is likely there are 103 or 102 measurements in the neighbor-
hood for identification of 1-factor or 2-factor terms, respectively. Recall that if the
five-dimensional f (x1, x2, x3, x4, x5) is identified directly, the probability that a
data vector is in the neighborhood of (x1, x2, x3, x4, x5) is 0.15.With N = 104, the
probability that there is one measurement in a neighborhood is 0.1. That makes
that identification is nearly impossible in the presence of noise. Clearly, the per-
formance of identification of the 1-factor or 2-factor term can be substantially
improved for the same N , compared to the identification of a five-dimensional
problem f . This effectively combats the curse of dimensionality. In a sense, the
approach proposed here is to replace a difficult high-dimensional problem by a
number of less-difficult and manageable low-dimensional problems.

• Combined residual analysis and statistical test: A version of the Box–Pierce test is
developed in the context of nonlinear system identification. The reason behind this
choice is that traditional Box–Pierce tests do not work well if there is a nonlinear
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Table 6 Goodness-of-fit as a function of N and δ

N = 20000 N = 10000 N = 5000

δ = 0.12 0.9280 0.9186 0.9204

δ = 0.1 0.9411 0.9376 0.9062

δ = 0.08 0.9457 0.9174 0.8994

dependence and could givemisleading conclusions [32]. ThemodifiedBox–Pierce
test overcomes this problem. Moreover, any Box–Pierce test assumes that the null
hypothesis is true and then tests based on a measured data set if the null hypothesis
should be accepted with a given probability. It alone can never answer the question
of the second type error as discussed in the work. The contribution of the work is
to deal with this problem by combining the Box–Pierce test with residual analysis.
This reasonably guarantees that the null hypothesis is true before the Box–Pierce
test.
In the Box–Pierce test and the residual analysis, the choices of the level of signif-
icance and other parameters are always tricky and subjective. Whether the level
of significance 0.01 or 0.03 is enough is tightly connected to the intended purpose
of the model. If prediction is the intended purpose, the identified model should
be validated on a fresh data to verify if the identified model fulfills the intended
purpose. It may take several iterations to have some good design parameters for a
particular application.

• Finite data performance: The proposed method is convergent. The convergence
rate is O( 1√

δ2N
) for a system upto 2-factor interactive terms and is O( 1√

δl N
) for

a system upto to l-factor interactive terms. Like most of nonlinear identification
algorithms, the analysis of finite data performance of the proposed method is very
hard to carried analytically. We provide numerical simulations to demonstrate the
finite data performance in terms of robustness of the choiceswith respect to the data
length N , the bandwidth δ, and the order determination. To see the effect of data
length N on the order determination, the same example (23) was simulated under
the same simulation conditions for N = 20000, 10000, and 5000 respectively. The
results are in Table1 and fairly consistent even N experiences a large variation
from 5000 to 20000. To test the effects of the data length N and the bandwidth
δ on the obtained model, we use the goodness-of-fit (24) as an indicator. Table6
shows goodness-of-fit for various N and δ. Again, the identified model, in terms of
prediction error, is robust with respect to variations of design parameters N and δ.

10 Concluding Remarks

In this work, a data-driven orthogonal basis function approach is proposed for
nonlinear system identification. The main advantage is that it eliminates the guess-
ing works when there is a little priori information on the structure of the unknown
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system. Further the data driven basis functions are orthogonal and thus enjoy many
preferable properties. We are working on extending the results presented in the work
to IIR nonlinear systems.

In addition, methods are proposed for order determination and regressor selection.
These topics are generally very hard for nonlinear system identification. Themethods
proposed have potential to be applicable to many nonlinear system identification
schemes and we felt they deserve more studies.

Finally, two structure identification methods under deterministic inputs are pro-
posed to estimate the structure of the system before a full scale system identification
is performed. They can efficiently simplify the procedure of system identification.

Appendix

Proof of Theorem1: The first part is directly from the definition of φi ’s. Also from
the definition, it is easily verified that Eφ j [k] = 0 for j = 1, ..., n. Eφ j [k] = 0,
j = n + 1, ..., M follows from E f j1 j2(u[k − j1], u[k − j2]) = 0. We now show
Eφ j1 [k]φ j2 [k] = 0. For 0 ≤ j1 < j2 ≤ n, Eφ j1 [k]φ j2 [k] = Eφ j1 [k]Eφ j2 [k] = 0
because of independence of u[k − j1] and u[k − j2]. The proofs for other j1 and
j2 follow from the same arguments as

Eφ1[k]φn+1[k] = Eφ1(u[k − 1])φn+1(u[k − 1], u[k − 2])
= E{φ1(u[k − 1])E{φn+1(u[k − 1], u[k − 2]) | u[k − 1]}} = 0.

To show the third part, observe

y[k] = c +
n∑

j=1

f j (u[k − j]) +
∑

1≤ j1< j2≤n

f j1 j2(u[k − j1], u[k − j2]) + v[k],

Ey[k] = c = φ0

E{y[k]|u[k − j] = x j } = c + f j (x j ) = φ0 + φ j (x j ), j = 1, ..., n

E{y[k] | u[k − j1] = x j1 , u[k − j2] = x j2 }
= c + f j1(x j1) + f j2 (x j2 ) + f j1 j2 (x j1 , x j2 )

= φ0 + φ j1(x j1) + φ j2 (x j2 ) + f j1 j2 (x j1 , x j2 ), 1 ≤ j1 < j2 ≤ n

Then, the conclusion follows from the definition of φ j ’s.
Proof of Theorem2: The first part is from Theorem1 and the law of large numbers,

φ̂0 = 1

N

∑
y[k] → Ey[k] = φ0.



392 E.-W. Bai and C. Cheng

For the second part, from the assumptions δ → 0, δN → ∞ as N → ∞, the number
of samples u[k − j]’s in the interval,

ϕ j (x j , k) = |u[k − j] − x j | ≤ δ

converges to 2ψ(x j )δN → ∞, where the probability density function of the input at
x j , ψ(x j ), is assumed to be positive, or the number of elements l j → 2ψ(x j )δN →
∞. Now,

|φ̂ j (x j ) − φ j (x j )| = |
N∑

k=1

w j (x j , k)y[k] − φ j (x j ) − φ̂0|

= |
N∑

k=1

w j (x j , k)(φ0 − φ̂0) +
N∑

k=1

w j (x j , k)(φ j (u[k − j]) − φ j (x j ))

+
n∑

i=1,i = j

N∑

k=1

w j (x j , k)φi (u[k − i]) +
M∑

j=n+1

N∑

k=1

w j (x j , k)φ j [k] +
N∑

k=1

w j (x j , k)v[k]|

= |
l j∑

l=1

w j (x j , m j (l))(φ0 − φ̂0) +
l j∑

l=1

w j (x j , m j (l))(φ j (u[m j (l) − j]) − φ j (x j ))

+
n∑

i=1,i = j

l j∑

l=1

w j (x j , m j (l))φi (u[m j (l) − i]) +
M∑

j=n+1

l j∑

l=1

w j (x j , m j (l))φ j [m j (l)]+

l j∑

l=1

w j (x j , m j (l))v[m j (l)]| ≤ |
l j∑

l=1

w j (x j , m j (l))(φ0 − φ̂0)|

+ |
l j∑

l=1

|w j (x j , m j (l))(φ j (u[m j (l) − j]) − φ j (x j ))|

+ |
n∑

i=1,i = j

l j∑

l=1

w j (x j , m j (l))φi (u[m j (l) − i])|

+ |
M∑

j=n+1

l j∑

l=1

w j (x j , m j (l))φ j [m j (l)]| + |
l j∑

l=1

w j (x j , m j (l))v[m j (l)]|

With L being the Lipschitz constant and from the orthogonal properties of φ j ,

l j → ∞, w j (x j , m j (l)) ≥ 0 and
∑l j

l=1 w j (x j , m j (l)) = 1,



A Data-Driven Basis Function Approach in Nonparametric … 393

l j∑

l=1

w j (x j , m j (l))(φ0 − φ̂0) = φ0 − φ̂0,

|
l j∑

l=1

|w j (x j , m j (l))(φ j (u[m j (l) − j]) − φ j (x j ))| ≤ δL ,

|
n∑

i=1,i = j

l j∑

l=1

w j (x j , m j (l))φi (u[m j (l) − i])|2

→ |
n∑

i=1,i = j

E{φi (u[k − i]) | u[k − j] = x j }|2 + O(
1

δN
),

|
M∑

j=n+1

l j∑

l=1

w j (x j , m j (l))φ j [m j (l)]|2

→ |
M∑

j=n+1

E{φ j [k] | u[k − j] = x j }|2 + O(
1

δN
),

|
l j∑

l=1

w j (x j , m j (l))v[m j (l)]|2 → |Ev[k]|2 + O(
1

N
).

Therefore,

|φ̂ j (x j ) − φ j (x j )| → |φ0 − φ̂0| + δL + O(
1√
δN

) → 0, j = 1, ..., n

This completes the proof of the second part. The proofs of the third part are similar.
The only difference is that the convergence rate is O( 1√

δ2N
) as N → ∞.

Proof of Theorem3: It is easily verified that

∫ ∞

∞
|K (x)|dx < ∞,

∫ ∞

−∞
|
∫ ∞

−∞
K (x)e− jωx dx |dω < ∞.

The rest part of the proof follows directly from Lemma 2 of [19].
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Perspectives on Network Systems
and Mathematical Sociology

Francesco Bullo and Noah E. Friedkin

Abstract This chapter reviews selected topics in network systems and mathemat-
ical sociology. We first review classic results on Perron–Frobenius and algebraic
graph theory. We then focus on mathematical sociology and describe models of
opinion dynamics in social influence systems, including the classic French–Harary–
DeGroot and the Friedkin–Johnsen models. Based on recent controlled experiments,
we present recent empirical results on opinion dynamics along single issues and
sequences of issues. Finally, motivated by these empirical results, we describe some
mathematical models for the evolution of social power and influence systems via the
reflected appraisal mechanism.

1 Introduction

Recent years have witnessed the emergence of a discipline of study focused on
modeling, analyzing, and designing dynamic phenomena over networks. We refer to
such systems as network systems; they are also equivalently referred to asmulti-agent
or distributed systems. This emerging discipline, rooted in graph theory, control the-
ory, andmatrix analysis, is increasingly relevant because of its broad set of application
domains. Network systems appear naturally in (i) social networks and mathematical
sociology, (ii) electric, mechanical, and physical networks, and (iii) animal behavior,
population dynamics, and ecosystems. Network systems are designed in the context
of networked control systems, robotic networks, power grids, parallel and scientific
computation, and transmission and traffic networks, to name a few.
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Within this broad context, the disciplines of social networks and mathematical
sociology have themselves received growing attention. Building on a classic history
of work starting in the 50s, the study of influence systems and opinion dynam-
ics has become a modern topic of interest to social scientists, engineers, computer
scientists, and physicists. The scientific trend toward quantitate analysis in the social
sciences is motivated by the availability of insightful datasets and sharper statistical
and mathematical analysis tools.

A recent outstanding survey on social networks is given in [43]. Recent excellent
treatments of network systems and their applications are given in the recent books
[2, 3, 7, 8, 14, 17, 36, 45] and recent related surveys include [9, 27, 35, 40, 46].
The books and articles [6, 10, 16, 31, 38, 39] are instead excellent references on
network science.

Against this background, this chapter is a review document intended for scientists
interested in network systems and cooperative control as well as social networks and
mathematical sociology. This chapter has a dual focus. First, we review classic results
in the theory of linear network systems and place them in an algebraic framework
based on Perron–Frobenius and algebraic graph theory. For example, we characterize
the set of non-negative matrices in terms of irreducibility and primitivity. Second, we
focus on mathematical sociology and describe models of opinion dynamics in social
influence systems, including the classic French–Harary–DeGroot and the Friedkin–
Johnsen models. Motivated by recent empirical evidence on opinion dynamics along
single issues and sequences of issues, we then describe some mathematical models
for the evolution of social power and influence systems via the reflected appraisal
mechanism.

Paper Organization and Related Literature

Sections 2 and 3 review Perron Frobenius and algebraic graph theory. Classic ref-
erences on this material include [26, 30, 47]. This content may be regarded as a
highly-abbreviated version of the first part of the recent textbook [7].

Section 4 describes models of opinion dynamics. This classic field initiated with
the seminal papers by [1, 15, 19, 29]. The classic discrete-time linear averagingmodel
is well known as the DeGroot model, but a more accurate historic name would be the
French–Harary–DeGroot model since modeling concepts were contained in [19] and
analysis results in [29]. It is worth remarking how the 15 years before DeGroot the
mathematical analysis in [29] was rather sophisticated already and included the con-
cept of average consensus. The second model we review is the Friedkin–Johnsen
model, which is an elaboration of the French–Harary–DeGroot. Documented in
[22, 23], this model is still based upon linear averaging but it includes also an attach-
ment to initial opinions. Recent results on variations of this model are given in
[18, 25, 41, 42, 44].

Section 5 reviews the empirical findings on influence system evolution in small
deliberative groups that are documented and analyzed in [21, 24]. The human sub-
ject experiments focused on both the opinion formation process on a single issue
as well as on the influence network evolution that takes place along a sequence
of opinion dynamic issues. Via multilevel linear regression analysis, we provide
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statistical evidence that the observed human subjects behavior is consistent with
(1) the Friedkin–Johnsenmodel for single-issue opinion formation and (2) a reflected
appraisal mechanism for the network evolution along issues. We remark that the
papers [21, 24] report a rich collection of opinion dynamics phenomena and issue
sequence effects on influence network structure, only some of which are reviewed
here.

Section 6 reviews the mathematical model of social power and influence network
evolution proposed by [34]. The key idea is to combine the French–Harary–DeGroot
model of opinion dynamics with the Friedkin formalization of the reflected appraisal
mechanism. Recent results on this model and its variations include the following.
[33] completes the analysis in [34] by treating the case of reducible interaction
matrices. For single-time scale models, [12] proposes a continuous-time distributed
model and [32] proposes a dynamical flow model of interpersonal appraisals. Only
preliminary results in [37] are known at this time for the case of stubborn individ-
uals. Reference [51] obtains results on exponential convergence and the setting of
time-varying interaction networks. [11] treats the case of switching and stochastic
interaction matrices.

2 Perron–Frobenius Theory

Here we review the widely established Perron–Frobenius theory for non-negative
matrices.We start by classifying non-negativematrices in terms of their zero/nonzero
pattern and of the asymptotic behavior of their powers.

Definition 1 (Irreducible and primitive matrices) A square n × n non-negative
matrix A, for n ≥ 2, is

(i) irreducible if
∑n−1

k=0 A
k is positive,

(ii) primitive if there exists k ∈ IN such that Ak is positive.

A matrix that is not irreducible is said to be reducible.

In equivalent words, the matrix A is irreducible if, for any pair of indices (i, j)
there exists an exponent k = k(i, j) ≤ (n − 1) such that (Ak)i j > 0. It is not hard to
show that, if a non-negative matrix is primitive, then it is also irreducible (Fig. 1).

We now state the main results in Perron–Frobenius theory and characterize the
properties of the spectral radius of a non-negative matrix.

non-negative
(A ≥ 0)

primitive
(there exists k

such that Ak > 0)

positive
(A > 0)

irreducible
(
∑n−1

k=0 A
k > 0)

Fig. 1 The set of non-negative square matrices and its increasingly smaller subsets of irreducible,
primitive and positive matrices
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Theorem 1 (Perron–Frobenius Theorem) Consider a square n × n non-negative
matrix A, for n ≥ 2. If A is irreducible, then

(i) there exists a simple positive eigenvalue λ satisfying λ ≥ |μ| ≥ 0 for all other
eigenvalues μ,

(ii) the right and left eigenvectors vright and vleft of λ are unique and positive, up to
rescaling.

If additionally A is primitive, then

(iii) the eigenvalue λ satisfies λ > |μ| for all other eigenvalues μ.

The real non-negative eigenvalueλ is the spectral radiusρ(A) of A and it is usually
referred to as the dominant or Perron eigenvalue of A. The right and left eigenvectors
vright and vleft (unique up to rescaling and selected non-negative) of the dominant
eigenvalue λ are called the right and left dominant eigenvectors, respectively.

Finally, the Perron–Frobenius Theorem for primitive matrices has immediate
consequences for the asymptotic behavior of the discrete-time dynamical system
x(k + 1) = Ax(k), that is, for the powers Ak as k → ∞.

Proposition 1 (Powers of primitive matrices) Consider a square n × n non-
negative matrix A, for n ≥ 2. Let λ be the dominant eigenvalue and let vright and
vleft be the right and left dominant eigenvectors of A normalized so that they are both
positive and satisfy v�

rightvleft = 1. Then

lim
k→∞

Ak

λk
= vrightv

�
left.

3 Algebraic Graph Theory

In this section, we review some basic and prototypical results that involve correspon-
dences between graphs and adjacency matrices. We let G denote a weighted digraph
and A its weighted adjacency matrix or, equivalently, we let A be a non-negative
matrix and we let G be its associated weighted digraph (i.e., the digraph with nodes
{1, . . . , n} and with weighted adjacency matrix A).

We start with some basic definitions about a directed graphG. A node i is globally
reachable if, for every other node j , there exists a directed walk-in G from node j
to node i . A directed graph is strongly connected if each node is globally reachable.
A subgraph of G is a subset of nodes and edges of G. A subgraph H is a strongly
connected component of G if H is strongly connected and any other subgraph of
G containing H is not strongly connected. A directed graph G is aperiodic if there
exists no integer that divides the length of each cycle of G.

We will also need the notion of condensation of a digraph. Given a directed graph
G, the condensation digraph of G is formed by contracting each strongly connected
component into a single node and letting an arc exist from one component to another
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if and only if at least one arc exists from a member of one component to a member of
the other in G. The condensation digraph is acyclic and, therefore, contains at least
one sink.

The first result we present relate the powers of the adjacency matrix with directed
walks on the graph.

Lemma 1 Let G be an unweighted digraph with unweighted adjacency matrix
A0,1 ∈ {0, 1}n×n. For all i, j ∈ {1, . . . , n} and k ∈ IN, the (i, j) entry of Ak

0,1 equals
the number of directed walks of length k (including walks with self-loops) from node
i to node j .

Moreover, if G is a weighted digraph with weighted adjacency matrix A, then the
(i, j) entry of Ak is positive if and only if there exists a directed walk of length k
(including walks with self-loops) from node i to node j .

Theorem 2 (Connectivity properties of the digraph and positive powers of the adja-
cencymatrix) Let G be aweighted digraphwith n ≥ 2 nodes andweighted adjacency
matrix A. The following statements are equivalent:

(i) A is irreducible, that is,
∑n−1

k=0 A
k > 0;

(ii) there exists no permutation matrix P such that P�AP is block triangular;
(iii) G is strongly connected;
(iv) for all partitions {I ,J } of the index set {1, . . . , n}, there exists i ∈ I and

j ∈ J such that {i, j} is an edge in G.

Let us remark that, instead of the order in which we presented matters here, most
references define an irreducible matrix through property (ii) or, possibly, through
property (iv).

Theorem 3 (Strongly connected and aperiodic digraph and primitive adjacency
matrix) Let G be a weighted digraph with weighted adjacency matrix A. Then
G is strongly connected and aperiodic if and only if A is primitive.

Fig. 2 These five images depict increasing powers of a non-negative matrix A ∈ IR25×25. The
digraph associated to A is strongly connected and has self-loops at each node so that, by Theorem 3,
there exists k (in this case k = 5) such that Ak > 0
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4 Mathematical Models for the Evolution of Opinions

This section reviews some classic models for opinion dynamics. We focus on basic
linear and affine models, whose relevance is established empirically (Fig. 2).

We start by presenting some convergence results for systems of the form

x(k + 1) = Ax(k), where A is row-stochastic. (1)

Recall that the non-negative square matrix A is said to be row-stochastic if all its
row-sums are equal to one, that is, if A1n = 1n . Therefore, the right eigenvector of
the eigenvalue 1 can be selected as 1n .

The discrete-time averaging model (1) is well known as the DeGroot model,
but a more accurate historic name would be the French–Harary–DeGroot model,
as discussed in the introduction. The matrix A describes an interpersonal influence
network.

Theorem 4 (Consensus for row-stochastic matrices with a globally-reachable ape-
riodic strongly connected component) Let A be a row-stochastic matrix and let G
be its associated digraph. The following statements are equivalent:

(A1) the eigenvalue1 is simple,ρ(A) = 1, and all other eigenvalues havemagnitude
strictly smaller than 1,

(A2) A is semi-convergent (i.e., limk→∞ Ak exists and is finite) and limk→∞ Ak =
1nv�

left, for some vleft ∈ IRn, vleft ≥ 0, and 1�
n vleft = 1,

(A3) the digraph associated to A contains a globally reachable node and the sub-
graph of globally reachable nodes is aperiodic.

If any, and therefore all, of the previous conditions are satisfied, then the matrix A
is said to be indecomposable and the following properties hold:

(i) vleft ≥ 0 is the left dominant eigenvector of A and (vleft)i > 0 if and only if node
i is globally reachable;

(ii) the solution to the averaging model x(k + 1) = Ax(k) in Eq. (1) satisfies

lim
k→∞ x(k) = (

v�
leftx(0)

)
1n;

In this case we say that the dynamical system achieves consensus;
(iii) if additionally A is doubly-stochastic, then vleft = 1

n 1n (because A
�1n = 1n and

1
n 1

�
n 1n = 1) so that

lim
k→∞ x(k) = 1�

n x(0)

n
1n = average

(
x(0)

)
1n.

In this case we say that the dynamical system achieves average consensus.

The limiting vector is, therefore, a weighted average of the initial conditions.
The relative weights of the initial conditions are the convex combination coefficients
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(a) A rows-stochastic ma-
trix; in each row, nonzero en-
tries are equal and sum to 1.

(b) The corresponding digraph
has an aperiodic subgraph of
globally reachable nodes.

1

(c) The spectrum of the adja-
cency matrix includes a dom-
inant eigenvalue.

Fig. 3 An example indecomposible row-stochastic matrix, its associated digraph consistent with
Theorem 4(A2), and its spectrum consistent with Theorem 4(A1)

(vleft)1, . . . , (vleft)n . In a social influence network, the coefficient (vleft)i is regarded
as the “social influence” of agent i .

In Fig. 3 we show a non-negative matrix that is indecomposable, together with its
directed graph and its spectrum.

The implication (A3) =⇒ (ii) amounts to a result in which the structure of the
networkdetermines its function, i.e., the asymptotic behavior of the averaging system.

Next, we consider the general case of digraphs that do not contain globally reach-
able nodes, that is, digraphs whose condensation digraph has multiple sinks. In what
follows, we say that a node is connected with a sink of a digraph, if there exists a
directed walk from the node to any node in the sink.

Theorem 5 (Convergence for row-stochasticmatriceswithmultiple aperiodic sinks)
Let A be a row-stochastic matrix, let G be its associated digraph, and let M ≥ 2
be the number of sinks in the condensation digraph C(G). If each of the M sinks is
aperiodic, then

(i) the semi-simple eigenvalue ρ(A) = 1 has multiplicity equal M and is strictly
larger than the magnitude of all other eigenvalues, hence A is semi-convergent,

(ii) there exist M left eigenvectors of A, denoted by vmleft ∈ IRn, for m ∈ {1, . . . , M},
with the properties that: vmleft ≥ 0, 1�

n v
m
left = 1 and (vmleft)i is positive if and only

if node i belongs to the m-th sink,
(iii) the solution to the averaging model x(k + 1) = Ax(k) with initial condition

x(0) satisfies

lim
k→∞ xi (k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(vmleft)
�x(0), if node i belongs to the m-th sink,

(vmleft)
�x(0), if node i is connected only with the m-th sink,

M∑

m=1

zi,m
(
(vmleft)

�x(0)
)
, if node i is connected to more than one sink,
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Properties of row-stochastic matrix A Properties of associated digraph

Converges to consensus
on the average

Properties of x(k + 1) = Ax(k)

Does not converge

Converges to consensus
depending on all nodes

Converges to consensus
that does not depend
on all the nodes

Converges
not to consensus

Primitive

Irreducible
but not primitive

Strongly connected
and periodic

Strongly connected
and aperiodic

Strongly connected,
aperiodic and
weight-balanced

One aperiodic
sink component

Multiple aperiodic
sink components

Doubly stochastic
and primitive

Indecomposable

Fig. 4 Corresponding properties for the discrete-time averaging dynamical system x(k + 1) =
Ax(k), the row-stochastic matrix A and the associated weighted digraph

where, for each node i connected to more than one sink, the coefficients zi,m,
m ∈ {1, . . . , S}, are convex combination coefficients and are strictly positive if
and only if there exists a directed walk from node i to the sink m.

Note that convergence does not occur to consensus (not all components of the
state are equal) and the final value of all nodes is independent of the initial values
at nodes which are not in the sinks of the condensation digraph. We summarize the
discussion in this section with a figure summarizing the asymptotic behavior of the
French–Harary–DeGroot discrete-time averaging systems; see Fig. 4.

We next consider the opinion dynamics model by [22] which, for generic param-
eter values, features persistent disagreement and lack of consensus. As before we let
A be a row-stochastic matrix whose associated digraph describes an interpersonal
influence network. We assume that every individual is naturally given an openness
level λi ∈ [0, 1], i ∈ {1, . . . , n}, describing how open the individual is to interper-
sonal influence and, therefore, to changing her initial opinion about a subject. We
then define Λ = diag(λ1, . . . , λn), where diag is the standard operator that maps an
array to a diagonal matrix.

The Friedkin–Johnsen model of opinion dynamics is defined by

x(k + 1) = ΛAx(k) + (In − Λ)x(0), (2)

where, for individual i , xi (k) represents the current opinion and xi (0) represents
the initial opinion or prejudice. The Friedkin–Johnsen model is again an averaging
model with stubborn individuals in the sense that here every individual i exhibits an
attachment (1 − λi ) to its initial opinion xi (0).

Theorem 6 (Persistent disagreement in the Friedkin–Johnsen model) Consider a
square n × n non-negative matrix A, for n ≥ 2, and a diagonal matrixΛwith entries
in [0, 1]. Assume that
(A1) at least one individual has a strictly positive attachment to its initial opinion,

that is, λi < 1 for at least one individual i; and
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(A2) the interpersonal influence network contains directed walks from each indi-
vidual with openness level equal to 1 to an individual j with openness level
λ j < 1.

Then the following statements hold:

(i) the matrix ΛA is convergent, that is, ρ(ΛA) < 1,
(ii) the total influence matrix V = (In − ΛA)−1(In − Λ) is well defined and row-

stochastic, and
(iii) the limiting opinions satisfy limk→+∞ x(k) = V x(0).

We conclude with some remarks. As predicted in the model formulation, con-
sensus is not achieved asymptotically because of the attachment to initial opinions.
If Assumption (A1) is not satisfied and, therefore, Λ = In , then we recover the
French–Harary–DeGroot opinion dynamics model.

Finally, it is worth noting that the original work [22], see also [23], make the addi-
tional assumption that λi = 1 − aii , for i ∈ {1, . . . , n}. This additional assumption is
justified by sociological reasons and introduces coupling between the openness level
and the interpersonal influence values. Other properties of this model are studied
in [4, 24, 44].

5 Empirical Findings on the Evolution of Opinions
and Influence Networks

We here review the empirical findings on influence system evolution in small delib-
erative groups that are documented and analyzed in [21, 24]. The human subject
experiments focus on both the opinion formation process on a single issue as well as
on the influence network evolution that takes place along a sequence of issues.

5.1 The Friedkin–Johnsen Model on Judgmental Issues

We collected data in experiments on 30 groups of 4 individuals assembled to dis-
cuss a sequence of 15 risk/reward choice-dilemma issues. Choice-dilemma issues
are judgmental issues, in which no absolute truth exists. In risk/reward dilemmas
individuals develop opinions about the minimum level of confidence (measured as a
scalar value in the [0, 1] interval) required to accept a risky option with a high payoff
over a less risky option with a low payoff. In other words, individuals are asked to
answer questions of the following type:

What is your minimum level of confidence (scored 0–100) required to accept a risky option
with a high payoff rather than a less risky option with a low payoff?
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Table 1 Prediction of an individual’s final opinion on an issue. Opinions are scaled 0 − 100.
Notes: F-J stands for Friedkin–Johnsen. Standard errors are in parentheses; ∗ p ≤ 0.05 ∗∗ p ≤ 0.01
∗∗∗ p ≤ 0.001; balanced random-intercept multilevel longitudinal design; maximum likelihood
estimation with robust standard errors; n = 1, 800

(a) (b) (c)

F-J prediction 0.897∗∗∗
(0.018)

1.157∗∗∗
(0.032)

Initial opinion −0.282∗∗∗
(0.031)

Constant 58.975∗∗∗
(1.550)

5.534
(1.176)

6.752∗∗∗
(1.124)

Log likelihood −8579.835 −7329.003 −7241.097

Questions are selected from a variety of domains, including medical, financial, and
professional. The groups are assembled for face-to-face discussion and put under
pressure to reach consensus via instructions similar to “reaching consensus is desir-
able, but not required.” Each human subject recorded privately and chronologically
on each issue:

(i) an initial opinion about the issue prior to the group discussion,
(ii) a final opinion after the group discussion (which lasted anywhere between

3–27min), and
(iii) an allocation of “100 influence units” to the four components of the group.

These influence units are described as follows: “these allocations represent
your appraisal of the relative influence of each group member’s opinion on
your own final opinion.”

The 15 issues were presented in random order and subjects were assigned to groups
randomly to eliminate bias in group composition.We refer to [24] for details about the
maximum likelihood multilevel random-intercept linear regression and its software
implementation.

In summary, this regression analysis, presented in Table 1 below, confirms that
the Friedkin–Johnsen model has predictive value for the final opinion achieved by a
group discussing risk/reward choice issues.

5.2 The Friedkin–Johnsen Model on Intellective
and Multidimensional Issues

We next briefly describe how opinion averaging models are predictive also in the
setting of intellective and resource allocation issues. In other words, we extend our
analysis from the risk/reward choice dilemmas to two other types of issues: analytical
reliability problems with exact answers and multidimensional constrained resource
allocation issues.
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First, the empirical findings in [21] deal with analytical reliability problems based
on Bayesian reasoning. These problems have an exact answer and, therefore are
referred to as intellective issues. It is known that in such problems often, but not
always, “truth wins” in the sense that the correct answer propagates from a correct
individual to the others in the group. Here is an example drawn from the medical
field.

Two medical teams are working independently to achieve a cure for a disease. Team A suc-
ceeds if it can solve two scientific problems A1 and A2 with independent success probabilities
P[A1] = 0.60 and P[A2] = 0.45. Team B succeeds if it can solve three scientific prob-
lems B1, B2, and B3, with independent success probability P[B1] = 0.80, P[B2] = 0.85,
P[B3] = 0.95. What is your estimate of the probability that the disease will be cured?

While we refer the reader to [21] for the detailed findings, we summarize the work
here by stating that the Friedkin–Johnsen model (i) has predictive value for the final
opinion expressed by the groupmember and (ii) substantially clarifies how truth wins
in groups engaged in sequences of intellective issues based on an evolving centrality
of the truth in the groups.

Second, in forthcoming publications, we will report empirical findings on group
decision-making on resource allocation distributions under conditions of uncertainty.
Here is an example drawn from the political field.

If you were a State Legislator, what would be your opinion on the percentage of state tax
revenues that should be allocated to each the following categories: (i) Spending onEducation,
(ii) Spending on State Employee Wages, Health Care, and Pensions, (iii) Spending on State
Physical Infrastructure Improvements, and (iv) All Other Categories (Welfare, Other Costs
of Government, etc.)? These percentages must sum to 100%.

Preliminary results indicate howmultidimensional opinions are constrained to evolve
in certain polytopic spaces and how a single Friedkin–Johnsen model is predictive of
the final group decision. The findings establish a natural meshing of automatic poly-
topic decision spaces, weighted averaging models, and group decision making on
uncertain resource allocation problems. These findings provide a mechanistic expla-
nation for the bounded-rationality phenomenon of satisficing, that is, the achievement
of satisfactory consensus distribution as described by the Nobel award-winning work
by [49].

5.3 A Reflected Appraisal Mechanism Explaining Influence
Network Evolution

We next consider network evolution phenomena along sequences and, specifically,
we postulate a mechanism for network evolution. As documented in [13, 20, 28],
the reflected appraisal mechanism is a psychological process that affects the levels
of closure-openness levels of individuals in response to an individual’s perception
of how others see and evaluate him or her. In this mechanism it is postulated that
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individuals react to their perception of their social influence, or social power, in the
group decision making.

If an individual is perceived to havehad a large role in influencing agroupoutcome,
then that individual tends to elevate his or her own self-weight or, equivalently, his
or her own closure level to interpersonal influence. Conversely, if an individual is
perceived to have (or really does have) limited and diminishing influence on a group
outcome, then the self-weight will tend to diminish.

It is a consequence of this postulated mechanism of reflected appraisal that indi-
viduals come to think of themselves in ways that are affected by what other indi-
viduals think of them. In other words, levels of stubbornness and closure-openness
to interpersonal influence are ultimately social constructions and not personality
characteristics.

To mathematize this group psychological mechanism, we start by describing
loosely a simplified and crude model for it:

Each individual dampens/elevates her self-weight according to her prior influence centrality
in prior issues.

Specifically, along the issue sequence s = 1, 2, . . . , the self-weight of each individual at
issue s + 1 is set equal to the relative control of that individual on the prior issue s.

Here, relative control over an issue outcome is tantamount to social power of an
individual in the group. Here also note how we have simplified the mechanism
(influence centrality) to assume that individuals are capable of perceiving from their
peers their actual level of relative control.

With the notation introduced in Sect. 4 for the Friedkin–Johnsen model in Eq. (2),
we define the following issue-dependent concepts:

A(s) = influence matrix at issue s,

aii (s) = self-weight (level of closure to influence) of individual i at issue s,

V (s) = total influence matrix at issue s,

ci (s) = V (s)�1n/n = social power of individual i at issue s,

c̄i (s) = 1

s

s∑

t=1

ci (t) = issue-averaged social power of individual i up until issue s.

We next perform a regression analysis of the empirical data collected in [24]
to determine whether or not individuals’ self-weights on issue s + 1 adjust along
the issue sequence s = 1, 2 . . . in correspondence with their social power at issue
s or issue-averaged social power until issue s. As before we perform a maximum
likelihood multilevel random-intercept linear regression and we refer to [24] for the
corresponding technical details. The findings in Table 2 confirm that both social
power and issue-averaged social power do indeed predict individuals’ issue-specific
self-weights on the following issues. The effect of social power ci (s) on self-weight
aii (s + 1) is constant along the issue sequence. Remarkably, instead, the effect of
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Table 2 Prediction of an individual’s level of closure to influence aii (s + 1) based on the
individual’s prior centrality ci (s) and time-averaged cumulative centrality c̄i (s) = 1

s

∑s
t=1 ci (t).

Standard errors are in parentheses.Notes: ∗ p ≤ 0.05 ∗∗ p ≤ 0.01 ∗∗∗ p ≤ 0.001; balanced random-
interceptmultilevel longitudinal design;maximumlikelihoodestimationwith robust standard errors;
n = 1,680

(a) (b) (c)

ci (s) 0.336∗∗∗
(0.104)

c̄i (s) 0.404∗∗
(0.159)

s 0.002
(0.004)

−0.018∗∗∗
(0.005)

s × ci (s) 0.171
(0.012)

s × c̄i (s) 0.095∗∗∗
(0.018)

Constant 0.643∗∗∗
(0.016)

0.515∗∗∗
(0.030)

0.498∗∗∗
(0.039)

Log likelihood −367.331 −327.051 −293.656

issue-averaged social power c̄i (s) on self-weight aii (s + 1) increases along the issue
sequence.

6 Mathematical Models for the Evolution of Influence
Networks

Motivated by the empirical findings in the previous section we now propose a basic
dynamical model for the evolution of self-weight, social power, and influence net-
works through the process of reflected appraisal. The key references for this section
are [20] where a first model is proposed and [34] where a comprehensive modeling
and analysis framework is developed.

6.1 Models of Reflected Appraisal = Dynamics
of the Influence Network

We start by revisiting the French–Harary–DeGroot model in Eq. (1) parametrized by
a single row-stochastic matrix A. We start with the fundamental observation that the
entries of A do not all have the same interpretation. From an applied psychological
viewpoint, the diagonal entries are self-weight values, that is, measures of self-
appraisal, levels of closure to interpersonal influence and stubbornness. The off-
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self-appraisal

reflected appraisal mechanism
x(s+ 1) = vleft(A(x(s)))

x(s) A(x(s)) vleft(A(x(s)))

influence network social power

Fig. 5 An illustration of the reflected appraisal mechanism as a feedback mechanism, leading to
the definition of a closed-loop dynamical system. Here A(x) is given as in Eq. (4)

diagonal terms are instead interpersonal accorded weights, that is, they represent
what influence an individual is willing to accord to another. Under mild connectivity
assumptions, it is possible to re-parametrize the matrix A in the following way. First,
we define the self-weights

Aii =: xi ∈ [0, 1]. (3)

Second, we assume the existence of a zero-diagonal row-stochastic matrixW , whose
off-diagonal entries Wi j are relative interpersonal accorded weights satisfying the
equality Ai j =: (1 − xi )Wi j . In short, we can now write

A(x) = diag(x) + diag(1n − x)W. (4)

Before proceeding, we define the left dominant eigenvector for W to be w =
(w1, . . . ,wn) = vleft(W ). We recall that the right dominant eigenvector of W is 1n
and that, under irreducibility assumptions, Theorem 1 implies that the left dominant
eigenvector is positive and unique with the scaling 1�

n w = 1.
One can show that, after somemanipulation and almost everywhere, the following

equation relates the dominant eigenvector of A(x) with that of W :

vleft(A(x)) =
( w1

1 − x1
, . . . ,

wn

1 − xn

)
/

n∑

i=1

wi

1 − xi
.

We are now ready to implement in simple, even crude, mathematical form the
reflected appraisal mechanism described in the previous section: “along issues
s = 1, 2, . . . , individual dampens/elevates self-weight according to prior influence
centrality.” We turn this into the following equation:

x(s + 1) = vleft(A(x(s))), (5)

that is, the self-weights are set equal to the relative control of the individuals on
prior issues, i.e., their social power. Note that, after at most one iteration, the state
of this system takes value in the simplex Δn = {y ∈ IRn | y ≥ 0, 1�

n y = 1}. The
definition of this dynamical system is illustrated in Fig. 5. We refer to the dynamical
system (5) as to the DeGroot-Friedkin model, as introduced in [34] and motivated
by the foundational works in [15, 20].
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6.2 Equilibrium and Asymptotic Convergence Analysis

Now that we have defined a dynamical system for the evolution of self-weights and
social power, we can investigate what long-term predictions are consistent with this
model. It is of interest to characterize the existence and stability of equilibria, the role
of network structure and parameters, andwhether the influence systemhas a tendency
toward the emergence of autocracy (social power concentrated in one individual) and
democracy (social power equitably distributed among all individuals).

Theorem 7 (Equilibria and convergence)LetW be the zero-diagonal row-stochastic
matrix of relative interpersonal accordedweights and consider the resultingDeGroot-
Friedkin model in Eq. (5), for n ≥ 3. Assume that W is irreducible, that w is its dom-
inant left eigenvector, and that its associated digraph does not have star topology.
Then

(i) in the interior of the simplex there exists a unique fixed point
x∗ = x∗(w1, . . . ,wn),

(ii) from almost all initial conditions the following convergence result holds:

lim
s→∞ x(s) = lim

s→∞ vleft(A(x(s))) = x∗,

so that, in other words, individuals forget their initial conditions, and
(iii) the fixed point is characterized by a phenomenon of accumulation of social

power and self-appraisal at the top in the following sense:

• the fixed point x∗ has same ordering of (w1, . . . ,wn), i.e., if wi ≥ wj then also
x∗
i ≥ x∗

j , and• x∗ is an extreme version of (w1, . . . ,wn) in the sense that there exists a social
power threshold p such that, each individual i satisfies either x∗

i < wi < p
or p < wi < x∗

i .

A special case of this result is the emergence of democracy for matrices W of
relative interpersonal accorded weights that are doubly-stochastic. In this case, one
can easily verify that the theorem above implies:

(i) the unique nontrivial fixed point is
1n
n
, and

(ii) lim
s→∞ x(s) = lim

s→∞ vleft(A(x(s))) = 1n
n
.

In other words, such networks are characterized by uniform social power and no
power accumulation at the top. In simple words, one may say that the influence
system is functioning as a democracy.

The other relevant special case is that of a star topology associated to W ; this
setting is not a direct consequence of Theorem 7 and required an ad-hoc analysis.
In this case, the DeGroot-Friedkin dynamics leads to the emergence of autocracy in
the following sense. If W has star topology with center j :
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(i) there are no fixed points, other than the vertices of the simplex, and
(ii) lim

s→∞ x(s) = lim
s→∞ vleft(A(x(s))) = e j ,

where e j is the j th vector of the canonical basis. In other words, individual j , the
center node of the star topology, comes to be the autocrat of the influence system. In
this case, the topology of the interpersonal accorded weights leads to extreme power
accumulation, in the sense that the autocrat j has full power.

Naturally, we refer to the original paper for a much more detailed treatment and
for the detailed proofs. It is worth, however, to review the method of proof for the
statements in the main Theorem 7. We first establish the existence of the equilibrium
point x∗ via the Brouwer Fixed Point Theorem. Uniqueness is proved by contradic-
tion through an elementary calculation.We next establish the followingmonotonicity
property. Let imax denote the individual withmaximum x j (0)

x∗
j
, for simplicity let us here

assume that it is unique. Then it turns out that imax remains the index correspond-
ing to the largest x j (s)

x∗
j

for all subsequent issues s. (A similar result holds for imin.)

In turn, this monotonicity allows us to prove convergence via a variation on classic
“max-min” Lyapunov function:

V (x) = max
j

(
ln

x j

x∗
j

)
− min

j

(
ln

x j

x∗
j

)
.

It is historically interesting to mention that, to the best of our knowledge, the earliest
work introducing a max-min Lyapunov function is the work [50] on distributed
optimization. This work is however related to the classic work by [5]. We also refer
to [48] for a review of this history and for a study of consensus in noncommutative
spaces.

7 Conclusions

This chapter has reviewed a large literature on the mathematics of network systems
and its application to the study of dynamical models for the evolution of opinions
and influence systems. We have presented both mathematical results and empirical
findings.

Overall our recent works provide a new perspective on influence networks and
social power, grounded in multiple human subject experiments and based on both
multilevel regression and control theoretical analysis. We have designed, executed,
and analyzed experiments on group discussions for judgmental and intellective
issues. We have proposed, analyzed, and validated a novel dynamical model with
feedback. In turn, this model provides a novel mechanism that may explain the phe-
nomenon of power accumulation and emergence of autocracy in certain influence
networks.

Ongoing and future research will focus on (1) studying the mathematical robust-
ness of our findings to modeling assumptions, (2) studying and modeling the evolu-
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tion of the matrix of interpersonal accorded weights, and (3) performing larger scale
controlled experiments perhaps via online software. We will also endeavor to design
and validate intervention strategies to influence group discussions.
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Abstract PageRank is a well-known centrality measure for the web used in search
engines, representing the importance of each web page. Its computation is very large
scale as the rankings for all pages in the entire web are to be calculated at once,
and this has prompted various studies on the algorithmic aspects of this problem. In
this chapter, we first present a short overview on the recent studies on distributed
algorithms that have been developed in the systems control area. These algorithms
share the features that (i) each page computes its own PageRank value by interacting
with pages connected over hyperlinks and (ii) gossip-type randomization is employed
in the update schemes. Then, we introduce a new class of distributed algorithms for
PageRank, which is based on a simple but novel interpretation. It is demonstrated via
analysis and numerical simulations that these algorithms have significant advantages
in their convergence performances in comparisonwith other existing techniques. The
chapter ends with a brief summary of the works on randomization-based distributed
algorithms, heavily influenced by the collaboration with Roberto Tempo, to whom
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1 Introduction

For search engines at Google, one of the many measures used for ranking the web
pages in search results is the so-called PageRank. For each web page, the PageRank
value provides a measure of its importance or popularity, which is based on the
network structure of the web in terms of the hyperlinks. A page is considered more
important and popular if it receives more hyperlinks from other pages and especially
those that are important themselves.When such a structure in the hyperlinks is present
around a page, it suggests how easily users surfing the web might arrive there, even
by chance. The notion of PageRank was proposed by the co-founders of Google,
Brin and Page, in [7]. It has received a great deal of interest especially in the context
of complex networks as it is an effective measure of centrality. General references
on this topic include the monograph [33] and the overview papers [23, 27].

The problem of computing PageRank itself has been a subject of extensive studies
over the years. Despite the simple nature of the problem, because of the problem size
involving billions of pages in the web, its efficient computation has remained as a
difficult task. For centralized computation, the simple power method has been the
realistic option for this reason. Alternative methods have been studied based on
Monte Carlo simulations of the underlying Markov chain (e.g., [1]) and distributed
algorithms (e.g., [48]).

Recently, in the systems control community, PageRank has gained much attention
from theviewpoint of distributed computation. In particular, in [26], itwas pointedout
that the PageRank problem shared several similarities with themulti-agent consensus
problem (e.g., [8, 40]) and randomized distributed algorithms were developed. The
approach there is to view the web as a network of pages capable of communicating
with neighbors connected via hyperlinks. Then, in a distributed manner, each web
page can act as an agent which computes its own PageRank value iteratively by
exchanging data with other pages. To cope with the network size, the pages randomly
determine when to initiate updates, which is sometimes called gossiping [6]. The
method is guaranteed to converge in the mean-square sense. However, it involves
the time averaging of the state values, resulting in the convergence rate of order 1/k
with respect to the updating time k.

The focus of this chapter is the research activities on the topic of PageRank that
have taken place since. The chapter consists of roughly three parts. In the first, we
provide a brief overview on the subject of distributed computation of PageRank, start-
ing with the work of [26]. More recently, studies focusing on convergence speeds
have appeared. In particular, it has been found that convergence with exponential
rate is possible. Notably, in [57], the PageRank problem is formulated as a least-
squares problem and then a distributed gradient-descent algorithm is applied. This
work also points out the difficulty in assuming the global parameter of the total num-
ber of web pages to be known by all pages, leading to alternative algorithms that
enable the PageRank calculation without the knowledge. The work [14] employs
another technique of matching pursuit algorithms for solving linear equations
and provides a randomized version. On the other hand, in [32], a modified
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gradient-descent algorithm is constructed so that the states of all pages remain to have
the total equal to one throughout its execution. We also refer to [43], which studied
stochastic gradient algorithms for PageRank. In this first part, we will introduce and
discuss these algorithms and their different features such as their convergence speeds
and required loads for communication and computation.

In the second part, we propose a novel approach towards the PageRank com-
putation from a slightly different perspective [50]. By making use of the property
that PageRank involves a stochastic matrix representing the network structure of
the pages, we reformulate the problem in a certain way, expressed as an infinite
matrix series. This formulation leads us to a completely different set of algorithms
tailored to the problem. Specifically, we propose algorithms for both synchronous
and asynchronous settings in the communication among the linked pages. Their con-
vergence properties are fully analyzed in the development. For the asynchronous
case, we employ randomization-based gossiping, but the probability to be selected
for updates need not be uniform. We show that they have desirable characteristics
including exponential convergence and relatively low requirements for the com-
munication among agents. Through numerical examples, we carry out a detailed
comparison of the algorithms discussed in the chapter.

The novel aspects of the proposed algorithms can be summarized as follows.
First, the reformulation idea is simple and its advantage may not be immediately
clear. This is partly because additional states are introduced for the pages, which
increase the computational burden. In fact, in the synchronous case, the convergence
is not necessarily faster than the power method. Second, in the proposed random-
ized algorithms, the states are guaranteed to reach the true PageRank values from
below in a monotonic fashion. Hence, despite the randomization, the responses of
the states are smooth, which may explain the efficiency of the approach. Third, in
the randomization, the pages to initiate updates can be chosen under arbitrary distri-
butions. It should be noted that no change is necessary in the algorithm due to the
chosen distribution. This leaves a certain degree of freedom in enhancing the conver-
gence speed as discussed in the numerical example section. Furthermore, the pages
communicate over only their outgoing hyperlinks and do not require the knowledge
of the incoming ones as in some methods in the literature.

As the last part, which is the shortest, we discuss the different roles that ran-
domization may play in networked systems problems and, in particular, multi-agent
consensus problems. In addition to gossiping in communication, probabilistic tech-
niques can be useful in enhancing distributed decision-making as well as cyberse-
curity levels for systems in hazardous environments where malicious attackers may
take advantage to disrupt the execution of algorithms and control.

Finally, we should note that, in the area of systems control, studies on PageRank
have grown in a spectrum of interesting directions; see [27] for more discussions.
For distributed algorithms, the approach of [26] has been extended, for example,
to incorporate aggregation of pages to realize more efficient computation in [29].
Stronger convergence properties with probability one are established with the help
of stochastic approximation results in [58]. Moreover, in [12, 28, 36], different
probability distributions are employed for the randomized updates in the pages,
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making them capable to function, e.g., even if the channels for the communication
among pages are unreliable. Otherworks conducted studied on the problemof finding
the ranges of PageRank values when a subset of the hyperlinks is uncertain in the
sense whether they are actually present [25], optimization of PageRank for pages of
interest by changing the link structure [13, 19], and a game theoretic analysis for
enhancing PageRank through aggregation of pages [38].

This chapter is organized as follows: We first give an overview on the PageRank
problem in Sect. 2. In Sect. 3, we introduce the recent works on distributed compu-
tation approaches for the PageRank. In Sect. 4, an alternative formulation for the
problem is presented, which is then used for deriving two novel distributed algo-
rithms based on randomized gossiping. Illustrative numerical examples are provided
in Sect. 5. Amore general discussion on the topic of randomization-based techniques
in the context of multi-agent systems is provided in Sect. 6. The chapter is finally
concluded in Sect. 7.

Notation: For vectors and matrices, inequalities are used to denote entry-wise
inequalities: For X,Y ∈ R

n×m , X ≤ Y implies xi j ≤ yi j for all i, j ; in particular,
we say that the matrix X is nonnegative if X ≥ 0 and positive if X > 0. A probabil-
ity vector is a nonnegative vector v ∈ R

n such that
∑n

i=1 vi = 1. A matrix X ∈ R
n×n

is said to be (column) stochastic if it is nonnegative and each column sum equals 1,
i.e.,

∑n
i=1 xi j = 1 for each j . Let 1n ∈ R

n be the vector whose entries are all 1 as
1n := [1 · · · 1]T . For a vector x , we use ‖x‖ to denote its the Euclidean norm. For a
discrete set D , its cardinality is given by |D |.

2 The PageRank Problem

In this section, we introduce the basics of PageRank and its interpretations commonly
employed for its computation [7, 27, 33].

The underlying idea for PageRank is to regard the entire web as a directed graph
consisting of web pages with hyperlinks. By solely using the network structure there,
PageRank provides a powerful measure of centrality, indicating how important or
popular each web page is.

Let n be the total number of pages in the web; we assume n ≥ 2 to avoid the trivial
case. The web graph is given by G := (V ,E ), where V := {1, 2, . . . , n} is the set
of vertices representing the web pages, and E is the set of hyperlinks connecting the
pages. Here, (i, j) ∈ E holds if and only if page i has a hyperlink to page j . In such a
case, for page i , page j becomes its out-neighbor, whereas page i is the in-neighbor
of page j .

The hyperlinks are not always mutual, so this graph is generally a directed graph.
When a node does not have any outgoing link, it is referred to as a dangling node.
Here, to simplify the discussion, we assume that all pages have at least one outgoing
hyperlink. This is commonly done by slightly modifying the structure of the web,
specifically by adding hyperlinks from such dangling nodes, which correspond to
the use of back buttons; see, e.g., [33] for more details.
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Next, we define the hyperlink matrix A = (
ai j

) ∈ R
n×n of this graph by

ai j :=
{

1
n j

if i ∈ L j ,

0 otherwise,
(1)

where Li := { j : (i, j) ∈ E } is the set of outgoing neighbors of page i and ni is
its cardinality, i.e., ni := |Li |. By the assumption that all pages have one or more
hyperlinks, this matrix A is (column) stochastic, that is, it is a nonnegative matrix
where the sum of entries in each column is equal to 1.

For the web consisting of n pages, the PageRank vector x∗ ∈ [0, 1]n is defined as

x∗ = (1 − m)Ax∗ + m

n
1n, 1Tn x

∗ = 1, (2)

where the parameter is chosen as m ∈ (0, 1). Note that x∗ is a nonnegative vector,
and the second equation above indicates that it is a probability vector. For m, it is
common to use the value 0.15 as proposed by [7]; we follow this convention in this
chapter.

The definition in (2) can be rewritten as

x∗ = Mx∗, 1Tn x
∗ = 1, (3)

where the modified link matrix M is given by

M := (1 − m)A + m

n
1n1Tn .

Since M is a convex combination of two stochastic matrices A and (1/n)1n1Tn , it
is stochastic as well. It is now clear that x∗ is the eigenvector of the link matrix M
corresponding to the eigenvalue 1. Such an eigenvector x∗ exists and is unique; this
follows from Perron’s theorem [24] because the stochastic matrix M has the property
of being positive.

For its computation, the PageRank vector x∗ can be obtained by solving the linear
equation (2) or (3). The practical issue that requires serious attention is the size of
the problem. Recall that the dimension of the PageRank vector is the same as the
number of pages in the web. Hence, the computation must rely on algorithms that
have simple structures.

A common approach, which is centralized, is to employ the power method. It is
expressed by the iteration of the form

x(k + 1) = (1 − m)Ax(k) + m

n
1n, (4)

where x(k) ∈ R
n is the state whose initial value x(0) can be taken as any probability

vector. By Perron’s theorem [24], it follows that x(k) → x∗ as k → ∞.
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Fig. 1 An example graph
with seven nodes

Another interesting interpretation of PageRank is that of the random surfermodel.
It follows from the expression in (3) that the PageRank vector x∗ can be regarded as
the stationary distribution of a Markov chain whose transition matrix is represented
by the stochastic matrix M . Wemay imagine a person who surfs the web in a random
manner:When he visits one page, with probability 1 − m, he chooses one of the links
with equal probability; otherwise, with probabilitym, he decides to jump to any of the
pages in the web with equal probability, that is, 1/n. Under this model, the PageRank
of page i can be regarded as the probability that such a surfer visits there in the steady
state. Clearly, the link structure of the web creates pages which are more likely to be
visited by such an imaginary surfer.

We now present a simple example to illustrate the problem of PageRank.

Example 1 Consider theweb consisting of seven pages depicted in Fig. 1. The hyper-
link matrix A of this web is given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
2

1
2

1
3 1 0 0

1
2 0 1

2
1
3 0 0 0

1
2 0 0 0 0 0 0

0 1
2 0 0 0 0 0

0 0 0 1
3 0 1 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We can calculate the PageRank vector of this graph as

x∗ = [
0.316 0.259 0.156 0.132 0.0951 0.0214 0.0214

]T
.

It is noted that the indices of the pages are set according to the order of their
PageRanks. Pages 1 and 2 have, respectively, four and three incoming links, mak-
ing their rankings high. Pages 6 and 7 have no incoming hyperlink and, as a result,
take the lowest possible PageRank, which is equal to m/n = 0.15/7 = 0.0214. We
should emphasize that the number of links is not the only factor that determines
PageRank. Both pages 3 and 4 have only one incoming link, but take better rankings
than page 5, which has three links. This is because the ranks also depend on the
values of the pages from which the links originate. In this respect, pages 3 and 4
are more advantageous than page 5, whose links include those from pages 6 and 7,
having minor impact on its importance.
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3 Distributed Algorithms for PageRank

In this section, we discuss the recent studies on randomized distributed algorithms for
the PageRank computation and their differences. Namely, we focus on the methods
developed in Ishii and Tempo [26], You et al. [57], Dai and Freris [14], and Lagoa
et al. [32].

The computation of PageRank may be costly if it is performed centrally because
of the size of the problem determined by the number of pages in the entire web.
Hence, distributed computation is one natural approach to resolve this issue. In the
systems control community, this viewpoint is particularly motivated by the recent
research on coordinated control of multi-agent systems (e.g., [8, 40]). In the setting
of the web, the pages may act as agents interacting over the hyperlinks to compute
their own PageRank values through an iterative algorithm. In practice, resources for
computation and communication are available at the numerous web servers where
the data regarding the pages connected via hyperlinks is available.

In what follows, we present several distributed algorithms for PageRank com-
putation. We use the common notation for the value of page i at time k, which is
expressed as xi (k). In view of the size of the system, one issue is how to coordinate
the pages in terms of the timings for them to initiate updates and communication of
their values. Here, we bring in randomization in the pages’ decisions and employ
the so-called gossip-type communication: At each time step, one of the pages is ran-
domly chosen in an independently identically distributed (i.i.d.) manner. Denoting
the index of the page chosen at time k by θ(k) ∈ V , we have

Prob
{
θ(k) = i

} = 1

n
for i ∈ V and k ∈ Z+. (5)

All of the algorithms discussed here are equipped with this mechanism.
Among the distributed algorithms, there are differences in how the chosen

page θ(k) interacts with its neighboring linked pages. Some approaches require that
page θ(k) send its current value xθ(k)(k) to its out-neighborswhereas other algorithms
mandate communications with its in-neighbors. Another aspect that will become an
important difference is the level of synchronization necessary among the pages in
their clocks. In general, it is difficult to expect that a common clock exists, shared
by all pages with perfect synchronization.

3.1 Towards Distributed Computations

First, we present the approach of [26], which introduced distributed algorithms from
the viewpoint of coordinated control of multi-agent systems. The update law for this
case is motivated by the centralized iterative one in (4). In comparison with other
algorithms, a key feature is the reliance on the use of stochastic matrices.
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The idea is to employ distributed link matrices Ai containing the i th column of
the link matrix A given in (1), and the remaining columns are set so that Ai becomes
a stochastic matrix. Here, we present the version from [27], which takes a slightly
simpler form. More concretely, the distributed link matrices Ai , i = 1, . . . , n, are
defined by

(i) The i th column of Ai is equal to the i th column of A.
(ii) The diagonal entries of the columns other than the i th one are equal to one.
(iii) The remaining entries are chosen to be zero.

It is clear that these matrices Ai are column stochastic by construction.
As a consequence, according to the probability distribution of the process θ(k),

the average matrix A := E[Aθ(k)] takes a special form as

A = 1

n

n∑

i=1

Ai = 2

n
A +

(

1 − 2

n

)

I. (6)

Notice that this matrix A is a convex combination of two column stochastic matrices.
The distributed update law using the link matrices can be represented as follows:

x(k + 1) = (1 − m̂)Aθ(k)x(k) + m̂

n
1n, (7)

where the initial vector x(0) is a probability vector and m̂ ∈ (0, 1) is a parameter to be
determined, corresponding tom = 0.15 in the centralized algorithm (4). This update
law is accompanied by the time average process y(k) of the states x(0), . . . , x(k)
given by

y(k) := 1

k + 1

k∑

�=0

x(�). (8)

Observe that each page i can locally compute the average yi (k) of its own past states
xi (�), � = 0, . . . , k. It is also noted that the state x(k) and hence the average y(k)
are both probability vectors at all k.

We now discuss the convergence properties of the update scheme (7) and (8). The
parameter m̂ is to be set as

m̂ := 2m

n − m(n − 2)
.

This choice allows us to represent the PageRank vector x∗ based on the average
matrix A in (6) as

x∗ = (
1 − m̂

)
Ax∗ + m̂

n
1.

Then, we can establish that the expected value E[x(k)] of the states converges to the
PageRank vector x∗, that is, E[x(k)] → x∗ as k → ∞. While it is not possible to



Distributed Randomized Algorithms for PageRank Computation: Recent Advances 427

show that the state vector x(k) itself converges to the PageRank vector x∗, it follows
that its time average y(k) does so in the mean-square sense. More specifically, for
any initial state x(0) which is a probability vector, it holds that

E
[∥
∥y(k) − x∗∥∥2] → 0 ask → ∞.

This kind of convergence is referred to as ergodicity of random processes and the
time average plays an important role. The original state x(k) in general demonstrates
persisting oscillationswithout convergence. Furthermore, the scheme convergeswith
probability one, as was shown in [58] using methods from stochastic approximation.

We discuss a few issues that may be of concern about the update scheme (7) and
(8). They become relevant because of the involvement of the time averaging in y(k).
One is that the speed of convergence is somewhat limited. It can be shown to be
linear and, more specifically, of the order 1/k. Another is the necessity for the pages
to be synchronized; this is needed for correctly computing the time average yi (k) by
all pages as pointed out in [57]. Finally, in this algorithm, each page i must store and
update two variables, namely, xi (k) and yi (k). Interesting extensions of this class of
algorithms have been made in [22, 46], where applications to sensor localization in
wireless networks, social dynamics, and state estimation in power systems can be
found.

3.2 Enhancement in Convergence Speed

Next, we proceed to discuss the alternative approach of the work [57] for distributed
computation of the PageRank vector. Their approach is based on the viewpoint of
distributed optimization, which in turn allows us to adopt existing algorithms from
the area and to demonstrate its exponential convergence.

The starting point is to rewrite the PageRank vector x∗ in its definition as the
solution to the linear equation given by

[I − (1 − m)A] x∗ = m

n
1n. (9)

This implies that the vector can be obtained through an unconstrained optimization
given by

x∗ = argmin
x

∥
∥
∥[I − (1 − m)A] x − m

n
1n

∥
∥
∥
2
. (10)

Under this formulation, the PageRank computation problem can be further reduced
to a form having a distributed nature more explicitly. Let

H := I − (1 − m)A and g := m

n
1n. (11)
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Denote by h̃T
i ∈ R

n the i th row of the matrix H . The optimization problem (10) can
be expressed as

x∗ = argmin
x

n∑

i=1

(
h̃T
i x − gi

)2
. (12)

For solving this optimization problem, the work [57] presents a distributed
gradient-descent algorithm, which can be seen as an extension of the randomized
Kaczmarz algorithm of [59]. An interesting feature is that the index θ(k) of the cho-
sen page follows a Markov chain whose states correspond to the pages in the web;
this is introduced to deal with the situation where the total number n of pages in the
web is unknown.

We now present the simple case where θ(k) is an i.i.d. random process according
to (5). This version requires the knowledge of the size n of the web. The update
scheme can be given as follows:

x(k + 1) = x(k) − 1

2n
· d

dx

(
gθ(k) − h̃T

θ(k)x
)2 ∣

∣
∣
x=x(k)

= x(k) + 1

n
h̃θ(k)

(
gθ(k) − h̃T

θ(k)x(k)
)

, (13)

where the initial condition is set as x(0) = 0.
It is shown in [57] that the randomized algorithm in (13) has a guaranteed conver-

gence rate and, in fact, it exponentially converges almost surely to the true PageRank
vector x∗. This is an important characteristic, which is not attainable in the approach
of [26] based on stochastic matrices and time averaging of the state. Another dif-
ference is that this algorithm involves only one variable per page for the PageRank
computation.

On the other hand, it is important to note that the necessary communication load
among the nodes may be high and requires the knowledge of the in-neighbors at
each page. This can be confirmed since in the update rule (13), the row h̃θ(k) of H
corresponding to the chosen page θ(k) at time k appears twice. This indicates that
(i) the values x j (k) of the in-neighbors j ∈ Nθ(k) of page θ(k) must be collected for
obtaining h̃T

θ(k)x(k) and then (ii) the value gθ(k) − h̃T
θ(k)x(k) is sent back to the same

in-neighbors for the update of their own values x j (k).

3.3 Reduction in Communication Loads

The perspective of linear equations was the motivation also for the third approach for
PageRank computation proposed in [14]. The distributed algorithm there employs
the technique of matching pursuit algorithms from the area of signal processing
(e.g., [39]). Matching pursuit is for approximating a signal with a finite number of
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functions (called atoms). As a consequence, this algorithm is guaranteed to possess
exponential convergence as well.

In contrast to the approach of [57], which required the updating pages to com-
municate with their in-neighbors, the algorithm of [14] involves interactions only
with the out-neighbors. Such neighbors are easily known to any page as they can be
reached through its own hyperlinks.

To this end, we introduce the notations for the columns of thematrix H in (11). Let
hi ∈ R

n be the i th column of H . In this case, each page is equipped with two scalar
variables denoted by xi (k) and ri (k), whose initial values are given by xi (0) = 0 and
ri (0) = m/n. As in the algorithms discussed so far, let θ(k) be the page chosen at
time k via the probability density in (5) in an i.i.d. fashion. Then, the two variables
are updated as

x(k + 1) = x(k) + hT
θ(k)r(k)

‖hθ(k)‖2 eθ(k), (14)

r(k + 1) = r(k) − hT
θ(k)r(k)

‖hθ(k)‖2 hθ(k), (15)

where e j is the j th column of the identity matrix In .
This scheme has the property that Hx(k) + r(k) remains constant. This can be

easily verified by multiplying H from the left of (14) and then adding it with (15),
which yields

Hx(k + 1) + r(k + 1) = Hx(k) + r(k), k ≥ 0.

In particular, because the initial values have been chosen as xi (0) = 0 and ri (0) =
m/n, this implies that

Hx(k) + r(k) = r(0) = g, k ≥ 0. (16)

However, in general, in this scheme, the vector x(k) is not consistent, meaning that
x(k) is not a probability vector. We can check this by multiplying 1Tn from the left
of (16) and obtain

1Tn (Hx(k) + r(k)) = 1Tn
(
mx(k) + r(k)

) = 1Tn g = m.

Thus, we have 1Tn x(k) = 1 − 1Tn r(k)/m.
It can be shown that this algorithm has exponential convergence in the mean-

square sense, that is, it holds that E
[‖x(k) − x∗‖2] → 0 as k → ∞. In view of (16),

the convergence property can be attained by showing that E
[‖r(k)‖2] goes to zero

exponentially fast.
A notable difference of this algorithm from that of [57] is the use of the columns

{hi } of the matrix H instead of the rows {h̃i }. In the networked system under con-
sideration, the nonzero entries of the i th column hi correspond to the out-neighbors
of page i . In the update scheme (14) and (15) for page θ(k), first hT

θ(k)r(k) must be
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computed, which requires the values r j (k) of the out-neighbor j be sent to page θ(k).
Then, in (14), only xθ(k)(k) is updated whereas in (15), the values r j (k) are updated
for all out-neighbors j of page θ(k). This means that page θ(k) sends its own state
value rθ(k)(k) to all of its out-neighbors. Furthermore, it is clear that the norm ‖hθ(k)‖2
appearing in both (14) and (15) can be computed locally at each page in an offline
manner before the execution of the algorithm.

3.4 Exponential Convergence with Consistency

All schemes that we have seen so far with exponential convergence do not have the
property of consistency, that is, x(k) is not a probability vector. This aspect is pointed
out and then improved in the scheme introduced by [32]. Lack of consistency may be
problematic in practice since the update schemes will terminate the updates in their
states after a finite number of steps. Even at that point, there is no guarantee that the
vector x(k) is a stochastic vector. We skip the details of the update scheme; though
it involves only two variables per page, the description of the algorithm tends to be
complicated.

4 An Alternative Approach to PageRank

In this section,we present a new formulation of PageRank by transforming its original
definition [50]. Then, novel distributed algorithms are developed where this formu-
lation becomes the key. The idea itself is simple, but its advantage in the context of
distributed computation of PageRank will become clear.

4.1 Reformulation of the PageRank Problem

The formula of PageRank in (2) can be transformed as

x∗ = (1 − m)Ax∗ + m

n
1n ⇐⇒ x∗ = [I − (1 − m)A]−1 m

n
1n

⇐⇒ x∗ =
∞∑

t=0

[(1 − m)A]t
m

n
1n. (17)

In the last transformation, the Neumann series is applied. Notice that (1 − m)A is a
Schur stable matrix because the link matrix A is stochastic and thus has the spectral
radius equal to 1.



Distributed Randomized Algorithms for PageRank Computation: Recent Advances 431

The formula in (17) suggests that the PageRank computation can be carried out
iteratively in several ways. It is immediate to write down an equation for the state
x(k) ∈ R

n given by

x(k) =
k∑

t=0

[(1 − m)A]t
m

n
1n . (18)

The power method in (4) is a compact way to realize this using only x(k) as the
state. There, we can express the state x(k) as the solution to the linear system. With
a slight difference in the time index, it follows that

x(k) = [(1 − m)A]k x(0) +
k−1∑

t=0

[(1 − m)A]t
m

n
1n .

The contribution of the initial value x(0) in the first term on the right-hand side
attenuates asymptotically, but it is effective in maintaining consistency in the state
and, thus, it always holds that 1Tn x(k) = 1 for all k.

Another approach to the expression in (18) is to use a redundant iteration by
having an additional state, denoted by z(k) ∈ R

n . Set the initial states as x(0) =
z(0) = (m/n)1n . Then, the update scheme of the two states is given as follows:

x(k + 1) = x(k) + (1 − m)Az(k),

z(k + 1) = (1 − m)Az(k).
(19)

Through this alternative algorithm, we can obtain the PageRank vector x∗. We for-
mally state this along with other properties of this algorithm as a proposition in the
following. Similar properties will appear in our development of distributed algo-
rithms.

Proposition 1 In the update scheme in (19), the states x(k) and z(k) satisfy the
following:

(i) z(k) → 0 as k → ∞.
(ii) x(k) ≤ x(k + 1) ≤ x∗ for k.
(iii) x(k) → x∗ as k → ∞.

Proof (i) As the link matrix A is stochastic, its spectral radius equals 1, and thus
(1 − m)A is a Schur stable matrix. This implies that z(k) converges to zero.

(ii) Note that z(k) ≥ 0 because A is stochastic and z(0) > 0. Furthermore, we
have x(0) > 0. Thus, it is clear that x(k) is nondecreasing as a function of k. The
fact that it is upper bounded by x∗ follows from (iii).

(iii) From (19), we can write x(k) as
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x(k) =
k∑

t=1

z(t) + x(0) =
k∑

t=1

[(1 − m)A]t z(0) + x(0)

=
k∑

t=0

[(1 − m)A]t
m

n
1n. (20)

This and (17) indicate that the state x(k) converges to x∗. �
We have a few remarks on the alternative approach introduced above in compar-

ison with the power method in (4). First, the computation uses the second state z(k)
in addition to x(k). As seen in (20), this state z(k) is integrated over time to compute
x(k) in (18). Second, the initial values of x(k) and z(k) are fixed to (m/n)1n , and
there is no freedom in these choices. Hence, each time the computation takes place
through the update scheme (19), the algorithm cannot, for example, make use of
the PageRank values computed in the past as initial guesses. This point may be a
limitation of this approach. Also, the initial states are not probability vectors as in the
power method. In fact, x(k) becomes a probability vector only asymptotically when
converging to x∗. Third, notice that n/m is the minimum PageRank value, which
will be assigned to pages having no incoming links. For such pages, the states will
not change during the updates.

Though we do not discuss in this chapter, there is a generalized PageRank
definition which uses a probability vector v ∈ R

n instead of (1/n)1n , that is,
x∗ = (1 − m)Ax∗ + mv (e.g., [33]). In such a case, the proposed algorithm can
be easily modified by replacing the initial states with x(0) = z(0) = mv.

We now turn our attention to distributed algorithms. From the perspective of such
algorithms, one interpretation of (19) can be given as follows:

1. At time 0, all pages start with the value m/n.
2. At time k, each page attenuates its current value by 1 − m and then sends it to its

linked pages after equally dividing it. At that time, page i computes the weighted
sum of the values received from the neighbors having links to the page.

We finally present a distributed algorithm based on (19) with synchronous com-
munication.

Algorithm 1 (Synchronous distributed algorithm) For each page i , set the initial
values as xi (0) = zi (0) = m/n. At each time k, page i transmits its value zi (k) to
its neighbors along its outgoing hyperlinks and then makes updates for its two states
xi (k) and zi (k) as

xi (k + 1) = xi (k) +
∑

j : i∈L j

1 − m

n j
z j (k),

zi (k + 1) =
∑

j : i∈L j

1 − m

n j
z j (k).

Through simulations in Sect. 5, we will demonstrate that this synchronized algo-
rithm may not be particularly fast, especially in comparison with the power method.
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Moreover, due to the additional state z(k), the algorithm requires more memory and
computation. The advantage of the proposed reformulation however becomes evident
in the asynchronous versions of this distributed algorithm, which will be presented
in the next subsection.

4.2 Gossip-Type Distributed Algorithms

In this subsection, we extend the distributed algorithm discussed above so that the
pagesmay interactwith each other at different time instants. The algorithms are based
on randomized gossip communication among the pages similarly to those presented
in Sect. 3.

In the asynchronous update schemes, at each time k, one page θ(k) ∈ V is ran-
domly chosen, which transmits its current state value to the linked pages. We present
two algorithms which differ in their probability distributions for selecting the updat-
ing pages. One uses the uniform distribution and the other is more general. In both
cases, the distributions remain fixed throughout the execution of the algorithms; thus,
the updating pages are chosen in an i.i.d. manner.

4.2.1 Algorithm Based on the Uniform Distribution

First, we consider the case where the selection of the updating pages follows the
uniform distribution. The proposed distributed algorithm for this case is outlined
below.

Algorithm 2 (Distributed randomized algorithm) For page i ∈ V , set the initial
values as xi (0) = zi (0) = m/n. At time k, the following steps are executed:

1. Select one page θ(k) based on the uniform distribution as in (5).
2. Page θ(k) transmits its value zθ(k)(k) over its outgoing links.
3. Each page i updates its values xi (k) and zi (k) as

xi (k + 1) =
{
xi (k) + 1−m

nθ(k)
zθ(k)(k) if i ∈ Lθ(k),

xi (k) otherwise,

zi (k + 1) =

⎧
⎪⎨

⎪⎩

0 if i = θ(k),

zi (k) + 1−m
nθ(k)

zθ(k)(k) if i ∈ Lθ(k),

zi (k) otherwise.

(21)

This distributed algorithm has a simple structure, which can be seen to be efficient
from both computational and communication viewpoints. Each page keeps track of
its states xi (k) and zi (k) and when it is randomly chosen as θ(k) = i , it transmits one
of its states, namely zi (k), to its neighboring pages along its outgoing hyperlinks.
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Such hyperlinks are clearly known to the pages, and the necessary communication
is limited with only one value at a time, without any data sent back from the linked
pages. Other pages not linked by page θ(k) will simply keep their states unchanged.
Since the time index k is irrelevant and not involved in the computation, there is no
synchronization required in time among the pages.

The resemblance of this algorithm to Algorithm1 is obvious. The two states
xi (k) and zi (k) play similar roles in both algorithms. The differences are that in the
asynchronous case, the updates are made with one neighbor at a time, and also both
xi (k) and zi (k) are integrated over time. For zi (k), thiswas not the case inAlgorithm1.
The two variables are updated differently when page i is the selected page θ(k) at
time k: In such cases, its own zi (k) is set to zero. By contrast, in Algorithm1, zi (k)
is zero only in the case where page i has no incoming link.

We now rewrite this algorithm in the vector form. First, let Q := (1 − m)A.
Denote the i th columns of the (n × n)-identity matrix In and Q, respectively, by ei
and qi . Then, we define the matrices Qi , Ri ∈ R

n×n by

Qi := [
e1 e2 · · · ei−1 qi ei+1 · · · en

]
,

Ri := [
0n 0n · · · 0n qi 0n · · · 0n

]
,

where in both matrices, it is the i th column that is equal to qi . Note that the matrices
Q, Qi , and Ri are all nonnegative matrices for i ∈ V .

Let the initial states be x(0) = z(0) = (m/n)1n . The update schemes in (21) for
the two states can be written in a compact form as

x(k + 1) = x(k) + Rθ(k)z(k),

z(k + 1) = Qθ(k)z(k).
(22)

We are now ready to present the main result for this distributed algorithm for
PageRank computation. It shows that the true PageRank values can be obtained
almost surely.

Theorem 1 Under Algorithm2, the PageRank vector x∗ is computed with x(k) →
x∗ as k → ∞ with probability one. In particular, the following two properties hold:

(i) x(k) ≤ x(k + 1) ≤ x∗ holds for k ≥ 0.
(ii) E [x(k)] → x∗ as k → ∞, and the convergence speed is exponential.

This theorem guarantees that the proposed gossip-based algorithm computes the
true PageRank almost surely in a fully distributed fashion. In particular, similar to
the synchronous case, the state vector x(k) is a nondecreasing function of time k
elementwise. Furthermore, its convergence to the PageRank vector is shown to be
exponential in the mean, that is, the mean E[x(k)] approaches x∗ exponentially fast.
These two properties indicate that despite the use of randomization in the updates,
there will not be any oscillation in the trajectories of the states. We will see that this
is a unique feature among the other distributed algorithms.
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In comparison with the algorithms presented in Sect. 3, our method is based on
a simple reinterpretation of the definition of PageRank from the systems viewpoint,
and it seems well suited for the PageRank computation in terms of convergence. We
also note that similarly to [14], our algorithm does not require the pages to know the
incoming links. Different from [14], communication in our scheme is directed in the
sense that page i must transmit its value zi (k) to its outgoing neighbors, but need not
receive their values. We will make further comparisons among the different schemes
later in Sect. 4.2.3.

4.2.2 Generalization to Nonuniform Distributions

We next generalize the gossip-type distributed algorithm to the case where the pages
will be chosen from distributions not limited to the uniform one. This extension is an
interesting feature of the proposed approach and makes the algorithm more suitable
for its use in a distributed environment. For example, depending on the computational
and communication resources, the pages or the servers that carry out the PageRank
computation may like to update at different frequencies [12]. Even in such situations,
this algorithm is capable of computing the correct values with probability one.

Consider an i.i.d. random sequence {θ(k)} for the page selections. Let pi be the
probability of page i to be chosen at each time k. Assume that all pi are strictly
positive and

∑n
i=1 pi = 1. The distributed algorithm for this nonuniform case is

outlined below.

Algorithm 3 (Generalized distributed randomized algorithm) For page i ∈ V , set
the initial values as xi (0) = zi (0) = m/n. At time k, execute the following steps:

1. Select one page θ(k) based on the distribution pi :

Prob
{
θ(k) = i

} = pi for i ∈ V . (23)

2. Page θ(k) transmits its value zi (k) to pages over its outgoing links.
3. Each page i updates its values xi (k) and zi (k) as in (21) of Algorithm2.

For this algorithm, we now state the main result.

Theorem 2 Under Algorithm3, the PageRank vector x∗ is computed with
x(k) → x∗ as k → ∞ with probability one. In particular, the following two proper-
ties hold:

(i) x(k) ≤ x(k + 1) ≤ x∗ holds for k ≥ 0.
(ii) E [x(k)] → x∗ as k → ∞, and the convergence speed is exponential.

This theorem can be established similarly to Theorem1.
This gossip-type distributed algorithm can be carried out even if the probability

distribution for the page selection is not uniform. Though other algorithms may
be able to deal with nonuniform selection [12, 28, 36], in those cases, additional
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computations and adjustments are often required. In contrast, in our algorithm, no
change is necessary and the update scheme performed by each page remains exactly
the same. We have seen that the state values increase monotonically to reach the true
PageRank. This might indicate that increasing the selection probabilities of pages
with large values may lead to faster convergence. We will examine this idea in the
context of a numerical example later.

Another idea for assigning the probabilities is to make them time varying. In
particular, for pages having no hyperlink pointing to them, it is enough if they transmit
their values to the neighbors once in the entire run of the algorithm. This can greatly
reduce the amount of the overall communication required in the algorithm. As we
have seen above, such pages are already given their PageRank values, equal to m/n,
as their initial states. By examining the update scheme in (21), it is clear that once
such a page i transmits the state zi (k) for the first time to its linked pages, this state
zi (k) is set to zero and then will remain so for the rest of the time since it will not
receive any data from others. The other state xi (k) will stay unchanged at its true
PageRank value m/n.

4.2.3 Comparison of Different Methods

So far, we have introduced five differentmethods for the computation of PageRank by
randomized distributed algorithms. We have seen that they have different features in
terms of convergence speed, necessary computation and communication resources,
and so on. In Table1, we summarize the various aspects of these algorithms. The five
algorithms are listed in the chronological order that they appeared in the literature.

The aspects that are shown here are the following:
(i) Data received from: Each time the page θ(k) is chosen at time k for initiating an

update, it may use for updating its own state the data received fromother pages. These
pages are linked either by the incoming hyperlinks (in-neighbors) or the outgoing
ones (out-neighbors).

(ii) Data sent to: The updating page θ(k) sends its own state, whichwill be used for
the updates by the pages that receive it. Again, such pages may be the in-neighbors
or out-neighbors, depending on the algorithms.

(iii) Time synchronization: In the distributed update schemes, the pages may
require time synchronization among them. This is in fact needed only in the scheme
of [26] for accurately computing the time average of the states.

(iv) Consistency: The state vector x(k) is said to be consistent if it is a probability
vector, i.e.,

∑n
i=1 xi (k) = 1 at all times k. As discussed in [57], this property may

not be critical and may not be possible to achieve especially if the total number of
pages in the network is unknown.

(v) Convergence speed: The method of [26] is not exponential in its convergence
speed. This is because it uses the time average and thus becomes linear. Other algo-
rithms all have exponential rates for their convergence.

(vi) Simulation result: We will see in the next section that the five algorithms
exhibit different performances in numerical simulations. This point will be further
discussed there.
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Table 1 Comparison of randomized distributed algorithms

Method Data received
from

Data sent to Time
synch.

Consistent Conv. speed Simulation
result

Ishii and
Tempo [26]

None Out-neighbors Yes Yes Linear Slow

You et al.
[57]

In-neighbors In-neighbors No No Exponential Medium

Dai and
Freris [14]

Out-neighbors Out-neighbors No No Exponential Fast

Lagoa et al.
[32]

In-neighbors In-neighbors No Yes Exponential Medium

Algorithm2 None Out-neighbors No No Exponential Very fast

5 Numerical Examples

To illustrate the performance of the distributed algorithms discussed so far in Sects. 3
and 4, we present results obtained through numerical simulations. We apply the dif-
ferent update schemes to two types of graphs and compare their properties including
convergence speeds.

5.1 Small Graph

The first case that we consider is the simple graph with seven pages shown in Fig. 1
from Example1.

5.1.1 Synchronized Algorithms

As an initial step, we examine the performance of the following two synchronous
algorithms: The power method in (4) and Algorithm1 from Sect. 4. These algorithms
may be more suited for centralized implementation, but if proper synchronization
can be introduced, distributed implementation should be possible as discussed in
Sect. 4.

Their differences can be summarized as follows: (i) They have been derived from
different viewpoints. The power method follows the original definition of (3) while
Algorithm1 is based on the interpretation expressed as the Neumann series (18) and
has not been studied elsewhere. (ii) The numbers of variables per page are one for the
power method and two for Algorithm1. (iii) For the initial states, the power method
can take any initial value as long as it is a probabilistic vector; in this simulation,
we used uniform values, i.e., (1/n)1n . In the meantime, Algorithm1 requires x(0)
to be fixed as (m/n)1n , which is also uniform, but not a probabilistic vector. On the
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other hand, these two algorithms share the property of being deterministic. Thus,
the responses of pages 6 and 7 become exactly the same since both of them have no
incoming link due to the structure of the graph.

The time response of the PageRank value for each page is shown in Fig. 2 for the
two algorithms. We observe that the power method converges faster and, for most of
the nodes, it takes less than 10 time steps. In the responses of the proposed algorithm,
the convergence is slower and takes about 30 time steps. It is noticeable that they are
nondecreasing with respect to time, a property shown in Proposition1(i). Also, recall
that for pages 6 and 7, in the proposed algorithm, the PageRank values of these pages
are equal to the assigned initial values m/n. Hence, for these pages, the proposed
algorithm requires no update.

5.1.2 Distributed Algorithms via Gossiping

Next, we discuss the simulation results for the gossip-based distributed algorithms
using the simple network.

We make comparisons of the convergence performance of the five algorithms
shown in Table1. All five algorithms select one page at each time k based on the
uniform distribution as shown in (5), and we applied the same sequence {θ(k)} to
them for each run. As discussed earlier, in the two algorithms of [14, 57], the total
number n of pages in the web may be unknown; here, we assume that n is known
by all pages. Concerning the initial states, only our proposed algorithm requires that
the pages take fixed values, equal to m/n. Other algorithms have some freedom in
the choices. Here, however, we set them so that all pages are given the same initial
values: For the algorithm of [14], it was set to 0, and in the remaining two algorithms,
we took 1/n.

The time responses of the calculated PageRank values of the pages are plotted in
Fig. 3. We omit the result for page 7 as its behavior is similar to that of page 6. It is
observed that the responses for most algorithms are oscillatory or noisy due to the
randomization in the gossiping for updates and communication. On the other hand,
there are certain levels of differences in the speeds of convergence among the algo-
rithms. The responses of [26] appear to be the slowest and the most oscillatory with
high peaks, possibly reflecting the fact of being the only non-exponential algorithm
among the five.

In view of this, the proposed algorithm, namely Algorithm2, is characteristic
in that despite the randomization, the profile of the responses is smooth and again
nondecreasing as in Fig. 2. This behavior is most visible in the plot for page 5. It
is also clear that the proposed algorithm is the fastest in terms of convergence time
for all pages in comparison with other algorithms. This is more evident in Fig. 4
where the total errors in the states from the true PageRank are displayed for all five
algorithms in the logarithmic scale.
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Fig. 2 Time responses of the synchronous algorithms for the small graph: The power method and
the proposed Algorithm1

5.1.3 Comparison of Distributions in Page Selection

In this part of the simulation, we illustrate how the convergence speed can be
improved by employing Algorithm3 with a nonuniform distribution for the ran-
dom selection of θ(k). As discussed in Sect. 4.2.2, to improve convergence of the
algorithm, it seems reasonable to increase the selection probability of pages which
are expected to take larger PageRank values. We adjusted the probabilities so that
pages having more incoming links are more likely to be selected, and each page’s
probability of selection is larger than 0. In particular, we assigned each page the
probability proportional to its in-degree plus 1.

In Fig. 5, the time responses of the pages are shown for two algorithms, Algo-
rithm2 using the original uniform distribution in (5) and Algorithm3 using this
nonuniform distribution. As in Fig. 3, the responses of page 7 are omitted. We con-
firm that the nonuniform distribution is capable to further accelerate the convergence
by a certain margin. It remains to be investigated what kind of distribution can in
general be beneficial in improving the convergence rate.

5.2 Large Graph

We proceed to apply the five distributed algorithms to a larger web data. Specifi-
cally, we randomly generated a graph with 60 nodes. Figure 6 displays the network
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Fig. 3 Time responses of the asynchronous algorithms for the small graph: Ishii and Tempo [26],
You et al. [57], Dai and Freris [14], Lagoa et al. [32], and the proposed Algorithm2

structure where the dots indicate the nonzero entries of the hyperlink matrix A. The
first eight pages are designed to be popular and receive hyperlinks from roughly
one-third of the remaining nodes. In addition, each node has up to two hyperlinks to
randomly selected nodes. In total, there are 223 hyperlinks and no dangling node in
the network.

We applied the five randomized distributed algorithms with similar initial con-
ditions. The responses of the sum of the errors are shown in Fig. 7. Here, we con-
firm that the performance of the proposed algorithm is the fastest and the error
reduces exponentially.While the response of [26] is the slowest, the three methods of
[14, 32, 57] exhibit exponential convergence. It is noted that we made simulations
with other graphs of various sizes and observed similar results in general.

6 Discussion on Randomization in Multi-agent Systems

In this section, we would like to discuss, from a more general perspective, the roles
that randomization plays in distributed algorithms and control for multi-agent sys-
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Fig. 4 Time responses of the errors in the asynchronous algorithms for the small graph: Ishii and
Tempo [26], You et al. [57], Dai and Freris [14], Lagoa et al. [32], and the proposed Algorithm2

Fig. 5 Time responses in the asynchronous algorithms for the small graph: Algorithm2 (uniform
distribution) and Algorithm3 (nonuniform distribution)
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tems. This is in fact a broad subject as randomized techniques can now be found to
be employed in many ways and we do not intend to be exhaustive. Our discussion
hence will be limited to the recent research that we conducted and the works that are
related.

Randomization techniques have received a significant level of attention within
the community of systems control in the last two decades or so. In the early times,
the motivation for employing such techniques originated from the need to address
the issue of computational complexity arising in the context of uncertain and hybrid
systems. For such systems, many control analysis and design problems are known
to be computationally difficult to solve and can even be NP-hard (e.g., [4]). Appli-
cation of probabilistic techniques to such problems has been found to be useful in
developing computationally efficient algorithms. Recent developments can be found
in the monograph [52]; see also the survey paper [53].

In large-scale network systems, randomized algorithms have been widely
employed, but the distributed nature of such systems calls for the exploitation of
randomization with a purpose different from that of relaxing computational com-
plexity as discussed above. Here, we would like to highlight three essential roles
in multi-agent systems that randomized techniques can play. Those are related to
(i) communication, (ii) decision-makings through dithering, and (iii) cybersecurity.
In the following, we briefly describe recent progress along these directions.

(i) In multi-agent systems, communication among the agents must be initiated
by the individual agents since there is often no centralized entity that would com-
mand them to synchronize. Thus, as we have seen in this chapter, communicating at
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randomly chosen time instants can be a useful option. It is also a realistic model in
the case of wireless communication; if collisions occur due to simultaneous trans-
missions, retransmissions will be made after some waiting times, whose lengths
are randomly chosen. Communication at random times is sometimes referred to as
gossiping [6] and has been exploited in a number of works in multi-agent systems
including [9–11, 15, 30, 34, 46, 51, 56].

(ii) In distributed algorithms, randomized algorithms can help the process of
decision-makings by introducing a certain level of noise or perturbation in the sys-
tem. In signal processing, dithering is awell-known probabilisticmethod in quantiza-
tion [55]. It introduces random noise before the operation of quantizing a real-valued
signal. In audio signals, for instance, dithering is commonly used for reducing unnat-
ural sounds in quantized signals that can result from certain periodicity introduced
through the analog-to-digital conversion.

This method has been found useful in the context of multi-agent systems as well.
In particular, in the so-called quantized consensus problems, agents take integer
values in their states. There, some update schemes employ randomized quantization
so that, for example, the state may be rounded up or down randomly. Such a method
has the effect of introducing perturbation in the consensus process so as to avoid the
states being stuck before reaching consensus. For related studies, see, e.g., [2, 9, 10,
15, 21, 30].

(iii) In potentially hazardous environments where malicious attackers may exploit
the vulnerabilities in systems and communication networks (e.g., [18, 44, 47]), ran-
domization can be a viablemethod in raising the security level. For example, intruders
interested in the data exchanged among agents may need more resources to attack
or to eavesdrop on the communications when the times are chosen randomly. Such
a stochastic scheme is proposed and analyzed in a multi-agent consensus problem
in [31]; the agents’ communication is disrupted by jamming attacks, but the energy
for emitting jamming signals is constrained as in [49]. Making the transmission
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times unpredictable becomes the key to realize consensus even under a less stringent
condition for the attackers.

On the other hand, in the literature of distributed algorithms in computer science,
multi-agent consensus has been long studied. An important class of problems there
includes fault-tolerant consensus for multi-agent systems in the presence of faulty
agents or even those which are driven by malicious attackers. Such agents may not
follow the a priori given update rules. The non-faulty, regular agents are equipped
with a resilient version of the consensus algorithm, which determines the neighbors
taking suspicious values and thus to be ignored in the updates. Such problems have
been studied in, e.g., [3, 5, 54] in computer science, and more recently in, e.g.,
[16, 17, 35] in the systems control literature.

In computer science, probabilistic algorithms have been known to improve
resilience. In distributed decision-making problems, various “impossibility results”
have been derived, showing that deterministic approaches are insufficient for achiev-
ing the desired goal with certain scalability properties [20, 37, 45]. We would like to
mention that recently, in [15], it was established that in asynchronous update schemes
for resilient consensus, probabilistic gossip-based communication among agents can
be superior to deterministic approaches in terms of the necessary network structures;
this may be seen as a form of an impossibility result.

More generally, probabilistic techniques have been extensively studied in the
area of algorithms in computer science; see, e.g., the monographs [41, 42] and the
references therein. As discussed in [53], randomized algorithms can be classified into
two categories: The Monte Carlo type and the Las Vegas type. Roughly speaking,
algorithms of the Monte Carlo type may produce incorrect outputs with limited
probabilities whereas the Las Vegas types are guaranteed to provide correct solutions
with probability one. Many of the algorithms in the studies of uncertain and hybrid
control systems belong to theMonte Carlo type. They often rely on random sampling
in the uncertain sets, which are continuous sets. On the other hand, those discussed
in this chapter are of the Las Vegas type. Indeed, in Theorems1 and 2 of Sect. 4, we
have seen that the convergence of the randomized algorithms is guaranteed almost
surely.

7 Conclusion

In this chapter, we have introduced the problem of PageRank computation from
the perspective of systems and control and then provided a short overview on the
recent developments on distributed algorithms.We have also proposed a new class of
distributed algorithms for the computation of PageRank using a new interpretation
of its definition. Specifically, two types of distributed algorithms have been obtained:
One is synchronous in that all agents update their state values at the same time, while
in the other, randomization is used for determining the page that initiates an update at
each time step. Regarding their convergence properties, it has been established that
they are exponential. The relation of the proposed algorithms to those in the literature
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has been discussed as well. One characteristics of our approachmaking it suitable for
distributed implementation is that it does not need to follow the uniform distribution.
We have shown through simulations that our algorithms exhibit superior performance
in both a simple web and a large-scale web. Finally, a general discussion from a
broader perspective on the advantages that randomization may bring to distributed
algorithms has been given.

In future research, we will further analyze the convergence speeds of the proposed
algorithms and employ other schemes for page selections. We are also interested in
studying other problems where our approach can be useful in developing distributed
algorithms.
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Distributed Optimization in Multi-agent
Networks Using One-bit of Relative State
Information

Jiaqi Zhang and Keyou You

Abstract This chapter is concerned with the design of distributed discrete-time
algorithms to cooperatively solve an additive cost optimization problem in multi-
agent networks. The striking feature of our distributed algorithms lies in the use of
only the sign of relative state information between neighbors, which substantially
differentiates our algorithms from others in the existing literature. Moreover, the
algorithm does not require the interaction matrix to be doubly-stochastic. We first
interpret the proposed algorithms in terms of the penalty method in optimization
theory and then perform non-asymptotic analysis to study convergence for static
network graphs. Compared with the celebrated distributed subgradient algorithms,
which however use the exact relative state information, the convergence speed is
essentially not affected by the loss of information. We also extend our results to the
cases of deterministically and randomly time-varying graphs. Finally, we validate
the theoretical results by simulations.

1 Introduction

In recent years, distributed optimization problems in multi-agent systems have
attracted increasing attention. Distributed optimization is concerned with that all
agents to cooperatively minimize a sum of local objective functions over a graph.
The key feature of such an optimization problem lies in that each agent only knows a
local component of the objective function and thus must cooperate with its neighbors
to compute the optimal value. The interaction between nodes is modeled by an alge-
braic graph. The motivating examples for distributed computation include the AUV
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formation control [24], large-scale machine learning [4, 17, 25], and the distributed
quantile regression over sensor networks [21].

To solve the distributed optimization problem, the majority of the algorithms (see
e.g., [11, 15, 16, 21] and the references therein) are generally comprised of two
parts. One is to drive all agents to consensus, which is based on the well-known
consensus algorithm [18]. The other one is to push the consensus value toward an
optimal point by using the local (sub)gradient in each node. In this case, subgradient-
based algorithms have been widely used. To achieve consensus of the multi-agent
network, most of the existing methods require each agent to access the state values
of its neighbors at each time, either exactly [15, 18] or in a quantized form [19,
23]. However, in some situations, an agent may only roughly know relative state
measurements between its neighbors. For example, consider the case of several robots
working in a plane, when each robot can only tell which quadrant its neighbor is
lying by cheap sensors but not the neighbor’s accurate relative position. Thus, the
information accessible is restricted to be only one bit. Note that this is different from
the quantized setting in [19], which studied the effects of exchanging a quantized
rather than an exact state between neighbors. This is also different from previous
studies on exchanging quantized gradients [13] since we are only using the quantized
relative state information. Therefore, most algorithms in the literature, particularly
the ones in the references cited above, cannot handle the case of one-bit information.
It is worth noting that another advantage of our algorithm, in addition to using only
one bit of relative information, is that it does not require the interaction matrix of the
agents to be doubly-stochastic. A doubly-stochastic adjacency matrix is a common
assumption in many existing algorithms [14, 16, 20], but it is restrictive in the
distributed setting. For example, the Metropolis method [20] to construct a doubly-
stochastic matrix requires each node to know its neighbors’ degrees, which may be
impractical in applications, especially when the graph is time-varying.

Designing an algorithm using one bit of information often involves nonlinear
systems analysis, which is substantially different from the commonly applied graph
Laplacian theory in the aforementioned works. There are, however, some excep-
tions [5, 9, 12]. In [5], the authors designed a consensus algorithm using only sign
information of the relative state. A similar algorithm was also proposed in [9] to
distributedly compute a sample median. The algorithm in [12] is the most relevant to
the one in this chapter except that it is a continuous-time algorithm, which adopts a
completely different analysis tool than ours. We will return to this point, and discuss
more extensively later.

In fact, all the aforementioned works that use one bit of information focused on
continuous-time algorithms. However, a discrete-time algorithm is worth studying
because many distributed optimization applications involve communication between
agents and control of agents, which are typically discrete in nature. Besides, a
discrete-time algorithm is easier to implement. What is more, a continuous-time
algorithm cannot be extended to the discrete-time case that easily, since the methods
used to analyze continuous-time algorithms in the above works are often based on
Lyapunov theory. We know that some general stepsize rules (e.g., constant, dimin-
ishing) in discrete-time gradient-based algorithms cannot guarantee the nonincreas-
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ingness of a latent Lyapunov function, and some special stepsize rules (e.g., line
minimization rule) often fail to meet the requirement of distributed computation,
which renders the Lyapunov analysis difficult to extend to the discrete-time case.
Therefore, an alternative method is urgently needed, which is what this chapter does.

More precisely, we propose in this chapter a distributed optimization algorithm
using only one bit of information in the discrete-time case. Different from most of
the previous works, our analysis is based on optimization theory rather than alge-
braic graph theory or Lyapunov theory. There are two underlying advantages of this.
First, compared to many existing approaches which first propose an algorithm, and
then find a Lyapunov function to prove its convergence, the intuition behind our
algorithm appears to be more natural and reasonable, as it aims to minimize a well-
designed objective function. Second, a wealth of research in convex optimization
theory ensures our algorithmmore easily extensible tomore general cases. For exam-
ple, our algorithm over time-varying graphs is a direct extension of that over static
graphs. Specifically, we extend our algorithm to both deterministically time-varying
graphs and randomly time-varying graphs. The former can model the time-varying
topology of agents in applications [17, 22], while the latter can be used to describe
the gossip networks [10], random package losses in communication networks, etc.
Based on optimization theory, our methods to analyze the cases of deterministically
time-varying graphs and randomly time-varying graphs take advantage of incremen-
tal gradient methods and stochastic gradient descent methods, respectively.

For a connected static graph, each node of the distributed optimization algorithm
is shown to converge asymptotically to the same optimal point of the optimization
without any reduction in the convergence rate. For deterministically time-varying
graphs, the convergence of the distributed optimization algorithm is established if
the graphs are uniformly jointly connected. For randomly time-varying graphs, we
show the convergence of the distributed optimization algorithm in the almost sure
sense under the so-called randomly activated connected graph assumption.

The rest of the chapter is organized as follows. Section 2 provides some prelimi-
naries and introduces the distributed optimization problem. In Sect. 3, we present our
discrete-time distributed optimization algorithmusing one bit of information. Section
4 includes our main results on convergence and convergence rate of the algorithm
over static graphs. Section 5 provides the convergence results over uniformly jointly
connected graphs and randomly activated graphs. Finally, we perform simulations
to validate the theoretical results in Sect. 6, and draw some concluding remarks in
Sect. 7.

Notation: We use a, a, A, and A to denote a scalar, vector, matrix, and set,
respectively. aT and AT denote the transposes of a and A, respectively. [A]i j denotes
the element in row i and column j of A. R denotes the set of real numbers and R

n

denotes the set of all n-dimensional real vectors. 1 denotes the vector with all ones,
the dimension of which depends on the context. We let ‖ · ‖1, ‖ · ‖ and ‖ · ‖∞ denote
the l1-norm, l2-norm and l∞-norm of a vector or matrix, respectively. We define

sgn(x) =
{

1, if x ≥ 0,
−1, otherwise.
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With a slight abuse of notation, ∇ f (x) denotes any subgradient of f (x) at x , i.e.,
∇ f (x) satisfies

f (y) ≥ f (x) + (y − x)T∇ f (x), ∀y ∈ R. (1)

The subdifferential ∂ f (x) is the set of all subgradients of f (x) at x . If f (x) is
differentiable at x , then ∂ f (x) includes only the gradient of f (x) at x .

We call infx∈Rn f (x) the optimal value of f (x). Any element from the set
arg infx∈Rn f (x) is called an optimal solution or optimal point of f (x).

Superscripts are usually used to represent sequence indices, i.e., xk represents the
value of the sequence {xk} at time k.

2 Problem Formulation

This section introduces some basics of graph theory, and presents the distributed
optimization problem in multi-agent networks.

2.1 Basics of Graph Theory

A graph (network) is represented as G = (V ,E ), where V = {1, ..., n} is the set of
nodes and E ⊆ V × V is the set of edges. Let Ni = { j ∈ V |(i, j) ∈ E } be the set
of neighbors of node i , and A = [ai j ] be the weighted adjacency matrix of G , where
ai j > 0 if and only if there exists an edge connecting nodes i and j , and otherwise,
ai j = 0. If A = AT, the associated graph is undirected. This chapter focuses only on
undirected graphs.

In the case of time-varying graphs, we use G k = (V ,E k, Ak) to represent the
graph at time k. Let G k1 ∪ G k2 denote the graph (V ,E k1 ∪ E k2 , Ak1 + Ak2). Let
N k

i = { j ∈ V |(i, j) ∈ E k} denote the set of neighbors of node i at time k. The
incidence matrix B ∈ R

n×m of G is defined by

Bie =

⎧⎪⎨
⎪⎩

1, if node i is the source node of edge e,

−1, if node i is the sink node of edge e,

0, otherwise.

For any x = [x1, ..., xn]T, we have that

bTe x = xi − x j

where be, e ∈ E is the e-th column of B, and i and j are the source and the sink
nodes of edge e, respectively.
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A path is a sequence of consecutive edges that connect a set of different nodes.
We say a graph is connected if there exists a path between any pair of two nodes. To
evaluate the intensity of the graph’s connectivity, we introduce an important concept
called l-connected graph below.

Definition 1 (l-connected graph) A connected graph is l-connected (l ≥ 1) if it
remains connected whenever fewer than l edges are removed.

Clearly, a connected graph is at least 1-connected and each node of an l-connected
graph has at least l neighbors.

2.2 Distributed Optimization Problem

With only the sign of relative state, our objective is to distributedly solve the multi-
agent optimization problem

minimize
x∈R

f (x) :=
n∑

i=1

fi (x) (2)

where for each i ∈ V , the local objective function fi (x) is continuously convex but
not necessarily differentiable, and is only known by node i . The number of nodes is
set to be n > 1. We first make a mild assumption.

Assumption 1 (Nonempty optimal set and bounded subgradients)

(a) The set X � of optimal solutions of problem (2) is nonempty, i.e., for any x� ∈
X �, it holds that f � := f (x�) = inf x∈R f (x).

(b) There exists a constant c > 0 such that

|∇ fi (x)| ≤ c, ∀i ∈ V , x ∈ R. (3)

Assumption 1 is common in the literature, see e.g., [16, 25]. In particular, the
second part is often made to guarantee the convergence of a subgradient method
[16], and obviously holds if the decision variable x is restricted to a compact set.

3 The Distributed Optimization Algorithm Over Static
Graphs

In this section, we provide the discrete-time distributed optimization algorithm that
uses only the sign information of the relative state of the neighboring nodes (hence
one-bit information), and then interpret it via the penalty method in optimization
theory.
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This section only focuses on static graphs, which are important to the analysis of
time-varying cases in following sections.

3.1 The Distributed Optimization Algorithm

The discrete-time distributed algorithm to solve (2) over a static network G is given
in Algorithm 1.

Algorithm 1: Distributed Algorithm Using the Sign of Relative State

1: Initialization: Every node i sets x0i = 0 for all i ∈ V .
2: Repeat
3: Information collection: Each node i collects the sign of the relative state to its neighbor

j ∈ Ni and obtain rki , which is given below

rki =
∑
j∈N i

ai j sgn(x
k
j − xki ).

4: Local update: The decision variable in each node is locally updated as

xk+1
i = xki + ρk

(
λ · rki − ∇ fi (x

k
i )

)
,

where λ and ρk are to be given, and ∇ fi (xki ) is any subgradient of fi (x) at xki .
5: Set k = k + 1.
6: Until a predefined stopping rule (e.g., a maximum iteration number) is satisfied.

The continuous-time version of Algorithm 1 is also given in (4) of [12] and is
proved to be convergent by using the non-smooth analysis tool [6]. To ensure a valid
algorithm, it is important to choose both λ and ρk , which, for the discrete-time case,
requires a completely different approach from that of [12], as it will be evident in
Sect. 3.2.

Compared with the celebrated distributed gradient descent (DGD) algorithm, see
e.g.,[16],

xk+1
i = xki +

∑
j∈N i

ãi j (x
k
j − xki ) − ρk∇ fi (x

k
i ). (4)

Algorithm 1 has at least two advantages. First, each node i in Algorithm 1 only uses
the binary information of the relative state (xkj − xki ), instead of the exact relative state
from each of its neighbors j , which is essential in some cases where sgn(xkj − xki ) is
the only available information. Second, Algorithm 1 does not require the adjacency
matrix Ak to be doubly-stochastic, while associated adjacency matrix Ãk must be
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doubly-stochastic in DGD [16], where [ Ãk]i j := ãki j . This is very restrictive in the
distributed setting.

Remark 1 Algorithm 1 also works if x is a vector by applying sgn(·) to each element
of the relative state vector. All the results on the scalar case continue to hold with
such an adjustment.

3.2 Penalty Method Interpretation of Algorithm 1

In this subsection, we interpret Algorithm 1 via the penalty method and show that it
is the subgradient iteration of a penalized optimization problem.

Notice that problem (2) can be essentially reformulated as follows:

minimize
x∈Rn

g(x) :=
n∑

i=1

fi (xi ) (5)

subject to xi = x j , ∀i, j ∈ {1, ..., n}

where x = [x1, ..., xn]T. It is easy to see that the optimal value of problem (5) is also
f �, and the set of optimal solutions is {x�1|x� ∈ X �}.
Define a penalty function by

h(x) = 1

2

n∑
i=1

∑
j∈N i

ai j |xi − x j |. (6)

If the associated network G is connected, then h(x) = 0 is equivalent to that
xi = x j , ∀i, j ∈ {1, ..., n}. Thus, a penalized optimization problem of (5) can be
given as

minimize
x∈Rn

f̃λ(x) := g(x) + λh(x) (7)

where λ > 0 is the penalty factor.
We show below that Algorithm 1 is just the subgradient iteration of the penalized

problem (7) with stepsizes ρk . Recall that sgn(x) is a subgradient of |x | for any
x ∈ R. It follows from (6) that a subgradient ∇h(x) = [∇h(x)1, ...,∇h(x)n]T of
h(x) is given element-wise by

∇h(x)i =
∑
j∈N i

ai j sgn(xi − x j ), i ∈ V .

Similarly, a subgradient∇g(x) = [∇g(x)1, ...,∇g(x)n]T of g(x) is given element-
wise by ∇g(x)i = ∇ fi (xi ). Then, the i-th element of a subgradient of f̃λ(x) is given
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as

∇ f̃λ(x)i = λ
∑
j∈N i

ai j sgn(xi − x j ) + ∇ fi (xi ), i ∈ V .

Finally, the subgradient method for solving (7) is given as

xk+1 = xk − ρk∇ f̃λ(xk),

which is exactly the vector form of the local update in Algorithm 1. By [2], it follows
that the subgradient method converges to an optimal solution of problem (7) if ρk is
appropriately chosen.

For a finite λ > 0, the optimization problems (5) and (7) are generally not equiva-
lent. Under mild conditions, our main result shows that they actually become equiv-
alent if the penalty factor λ is strictly greater than an explicit lower bound. To this
end, we define

x̄ = 1

n
1Tx, (8)

v(x) = max
i

(xi ) − min
i

(xi ),

and let a(l)
min be the sum of the l smallest edges’ weights, i.e.,

a(l)
min =

l∑
e=1

a(e) (9)

where a(1), a(2), . . . are given as an ascending order of the positive weights ai j for
any edge (i, j) ∈ E .

Theorem 1 (Lower bound for the penalty factor, [28]) Suppose that Assumption 1
holds, and that themulti-agent network is l-connected. If the penalty factor is selected
as

λ > λ := nc

2a(l)
min

, (10)

where c and a(l)
min are defined in (3) and (9), then

(a) The optimization problems (2) and (7) are equivalent in the sense that the set of
optimal solutions and optimal value of (7) are given by X̃ � = {x�1|x� ∈ X �}
and f �, respectively.

(b) For any x /∈ {α1|α ∈ R}, it holds that

‖∇ f̃λ(x)‖∞ ≥ 2λa(l)
min

n
− c.
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Proof (of part (a)) Consider the inequalities below

f̃λ(x) = λh(x) + g(x − x̄1 + x̄1) (11)

≥ λh(x) + g(x̄1) + (x − x̄1)T∇g(x̄1)

≥ λh(x) + f (x̄) − ‖x − x̄1‖‖∇g(x̄1)‖

where the equality follows from the definition of f̃λ(x), the first inequality is from
(1), and the second inequality results from the Cauchy–Schwarz inequality [2] as
well as the fact that g(a1) = f (a).

Then, we can show that

h(x) ≥ a(l)
minv(x). (12)

Since the multi-agent network is l-connected, it follows from Menger’s theorem
[8] that there exist at least l disjoint paths (two paths are disjoint if they have no
common edge) between any two nodes of the graph. Therefore, letting xmax and xmin

be two nodes associated with the maximum element and the minimum element of x,
respectively, we can find l disjoint paths from xmax to xmin.

Let x(p,1), ..., x(p,np) denote the nodes of path p in order, where np is the number
of nodes in path p, and x(p,1) = xmax, x(p,np) = xmin for all p ∈ {1, ..., l}. Since these
l paths are disjoint, it follows that

h(x) ≥
l∑

p=1

np−1∑
i=1

a(p,i,i+1)|x(p,i) − x(p,i+1)| (13)

≥
l∑

p=1

np−1∑
i=1

min
i

a(p,i,i+1)|x(p,i) − x(p,i+1)|

≥
l∑

p=1

min
i

a(p,i,i+1)

np−1∑
i=1

(x(p,i) − x(p,i+1))

≥
l∑

p=1

min
i

a(p,i,i+1)(xmax − xmin) ≥ a(l)
minv(x)

where a(p,i,i+1) is the weight of the edge connecting nodes x(p,i) and x(p,i+1).
Letting x̃ = 1

2 (maxi (xi ) + mini (xi )), we have

‖x − x̄1‖‖∇g(x̄1)‖ ≤ ‖x − x̃1‖‖∇g(x̄1)‖ (14)

≤ √
n‖x − x̃1‖∞ · √

n‖∇g(x̄1)‖∞

≤ nc

2
v(x).
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where the first inequality follows from the fact that x̄ minimizes ‖x − α1‖ with
respect to (w.r.t.) α for all x. Equations (11), (12) and (14) jointly imply the following
inequality

f̃λ(x) − f � ≥ f (x̄) − f � + (λa(l)
min − cn

2
)v(x). (15)

Since λ > nc/(2a(l)
min), v(x) ≥ 0, ∀x ∈ R

n and f (x̄) ≥ f �,∀x̄ ∈ R, then the
right-hand side of (15) is nonnegative. That is, f̃λ(x) ≥ f � for all x ∈ R

n .
Moreover, it follows from (7) that f̃λ(x�1) = f � for any x� ∈ X �, i.e., f̃λ(x) =

f � for any x ∈ X̃ �. What remains to be shown is that f̃λ(x) > f � for all x /∈ X̃ �,
which includes

Case (a): x �= α1 for any α ∈ R,
Case (b): x = α1 for some α /∈ X �.

For Case (a), v(x) is strictly positive, and hence we know that f̃λ(x) > f � from (15).
For Case (b), we have v(x) = 0. By (15) we have that f̃λ(x) ≥ f (x̄) = f (α) > f �.
Thus, f̃λ(x) > f � for all x /∈ X̃ �, which completes the proof of part (a).

The proof of part (b) is very involved and the interested readers are referred to
[28] for details. �

Algorithm 1(b) can also be modified to deal with objective functions with
unbounded subgradients, e.g., quadratic functions, see [28] for details.
Theorem 1 provides a sufficient condition for the equivalence between problems
(5) and (7), and allows us to focus only on problem (7). Notice that this result is
nontrivial even though the penalty method has been widely studied in optimization
theory [2]. For example, a well-known result is that the gap between the optimal val-
ues of the penalized problem (7) and the problem (5) gets smaller asλ becomes larger,
which however cannot always guarantee the existence of a finite penalty factor λ to
eliminate the gap. A large λ may have negative effects on the transient performance
of Algorithm 1.

Remark 2 It is worth mentioning that (10) in Theorem 1 also holds for the mul-
tidimensional case if Assumption 1(b) is replaced with ‖∇ fi (x)‖ ≤ c for all i
and x.

In viewof the duality theory [2], a potential lower bound forλ could be the absolute
value of the associated Lagrange multiplier. However, a Lagrange multiplier usually
cannot be obtained before solving its dual problem. Theorem 1 gives an explicit
lower bound for λ in terms of the network size and its connectivity, and is tighter
than the bounds in [9] and [12].

In fact, the lower bound can be tight in some cases as shown in the following
example. Note that [9] does not consider a generic optimization problem.
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(a) (b) (c)

Fig. 1 Some graphs

Example 1 ([28]) Consider the graph in Fig. 1b with unit edge weights, i.e., ai j =
1 for all (i, j) ∈ V . Let f1(x) = |x |, f2(x) = |x − 2|, f3(x) = |x − 4|, f4(x) =
|x − 6| and f (x) = ∑4

i=1 fi (x). It is not difficult to compute that the optimal value
of f (x) is 8 and the set of optimal solutions is a closed interval [2, 4]. By (7), the
corresponding penalized problem is given as

f̃λ(x) = |x1| + |x2 − 2| + |x3 − 4| + |x4 − 6|+
λ(|x1 − x2| + |x2 − x3| + |x3 − x4| + |x4 − x1|).

Theorem 1 implies that f̃λ(x) has the same optimal value as f (x) and the set of
optimal solutions is X̃ � = {x�1|x� ∈ [2, 4]}, provided that λ > 4 · 1/(2 · 2) = 1.

Given any λ ≤ 1, consider x = [2, 2, 4, 4]T /∈ X̃ �. Clearly,

f̃λ(x) = 4 + 4λ ≤ f � = 8,

which implies that the set of optimal solutions of the penalized problem is not X̃ �.
Thus for any λ ≤ 1, the original problem f (x) cannot be solved via the penalized
problem f̃λ(x), and the lower bound in (10) is tight in this example. �

The lower bound in (10) is in a simple form and a(l)
min cannot be easily replaced.One

may consider to use theminimumdegree of the network, i.e., dm = mini∈V
∑n

j=1 ai j .
This is impossible in some cases. Consider the 1-connected graph in Fig. 1c with
unit edge weights. Then, a(1)

min = 1 and dm = 2. Let [s1, ..., s6] = [1, 2, 3, 4, 5, 6] and
fi (x) = |x − si |, ∀i ∈ {1, ..., 6}. Set

x = [x1, ..., x6]T = [3, 3, 3, 4, 4, 4]T.

Then, using similar arguments as in Example 1, one can infer that the lower bound
λ in (10) cannot be reduced to nc/(2dm) = 3/2.

A similar penalty method interpretation of (4) with constant ρk is provided in
[14], where the penalty function is chosen as

xTLx = 1

2

∑
i, j

ai j (xi − x j )
2
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and L is the graph Laplacian matrix. However, such a quadratic penalty function
cannot always guarantee the existence of a finite λ for the equivalence of the two
problems. We provide a concrete example to illustrate this.

Example 2 Consider the graph in Fig. 1a with unit edge weights. Let f1(x) =
(x − 1)2 and f2(x) = (x − 3)2. Clearly, the optimal solution of f (x) = f1(x) +
f2(x) is x� = 2. Then a corresponding penalized problem using xTLx is

minimize
x1,x2∈R

f1(x1) + f2(x2) + λ(x1 − x2)
2. (16)

The optimal solution of (16) is x�
1 = (1 + 4λ)/(1 + 2λ) and x�

2 = (3 + 4λ)/(1 +
2λ), and there does not exist a finite value of λ which makes both of them equal to
x� = 2. �

By [2], x� is an optimal solution of (7) if and only if 0 ∈ ∂ f̃λ(x�). Part (b) of Theo-
rem 1 shows that for any x /∈ {α1|α ∈ R}, the norm of the corresponding subgradient
is uniformly greater than a positive lower bound, which clearly shows non-optimality
of x.

4 Convergence Analysis of Algorithm 1 Over Static Graphs

In this section, we examine the convergence behavior of Algorithm 1 over static
graphs. If ρk is diminishing, all agents converge to the same optimal solution of
problem (2) under Algorithm 1. With a constant stepsize, all agents eventually con-
verge to a neighborhood of an optimal solution, where the error size is proportional
to the stepsize. For both cases, we perform the non-asymptotic analysis to quantify
their convergence rates.

Before providing the convergence results of {xk}, we recall fromPropositionA.4.6
in [2] a well-known result on the convergence of a sequence of vectors.

Lemma 1 ([2]) LetX � be a nonempty subset ofRn, and let {xk} ∈ R
n be a sequence

satisfying for some p > 0 and for all k,

‖xk+1 − x�‖p ≤ ‖xk − x�‖p − γ kφ(xk) + δk, ∀x� ∈ X �,

where {γ k} and {δk} are nonnegative sequences satisfying
∞∑
k=0

γ k = ∞,

∞∑
k=0

δk < ∞.

Suppose that φ(·) is continuous, nonnegative, and satisfies φ(x) = 0 if and only if
x ∈ X �. Then {xk} converges to an optimal point inX �.

The first result in this section is on the convergence of Algorithm 1 under the
assumption of diminishing stepsize, which is given as follow:
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Assumption 2 The sequence {ρk} satisfies
∞∑
k=0

ρk = ∞, and
∞∑
k=0

(ρk)2 < ∞.

Proof of the convergence of Algorithm 1 under Assumption 2 is now given below.

Theorem 2 (Convergence, [28]) Suppose that the conditions in Theorem 1 and
Assumption 2 hold. Let {xk} be generated by Algorithm 1. Then, there exists some
optimal point x� ∈ X � such that limk→∞ xk = x�1.

Proof Under Assumption 1, we have that

‖∇ f̃λ(x)‖ ≤ ca,∀x ∈ R
n (17)

where ca = √
n(c + λ‖A‖∞). Since Algorithm 1 is the exact iteration of the subgra-

dient method of problem (7), this implies that

‖xk+1 − x�1‖2 (18)

= ‖xk − x�1‖2 − 2ρk(xk − x�1)T∇ f̃λ(xk) + (ρk)2‖∇ f̃λ(xk)‖2
≤ ‖xk − x�1‖2 − 2ρk( f̃λ(xk) − f̃λ(x

�1)) + (ρk)2c2a
≤ ‖xk − x�1‖2 − 2ρk( f̃λ(xk) − f �) + (ρk)2c2a, ∀x� ∈ X �

where the first inequality follows from (1) and (17), and the second inequality is
from Theorem 1.

By virtue of Lemma 1 and Theorem 1, the result follows immediately. �

Our next result provides a non-asymptotic result to evaluate the convergence rate
for ρk = k−α, α ∈ (0.5, 1]. To this end, we first define

d(x) = min
x�∈X �

‖x − x�1‖. (19)

Then, it follows from (8) that

v(xk) = max
i

(xki ) − min
i

(xki )

x̄ k = 1

n
1Txk .

Clearly, d(x) is the distance between x and the set of optimal solutions, vk is the
maximum divergence between agents’ states at time k, and x̄ k is the mean of all
agents’ states at time k. Intuitively, we can use the rates that f (x̄ k) approaches f �

and vk reduces to 0 to evaluate the convergence rate of Algorithm 1.
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Theorem 3 Suppose that the conditions in Theorem1 hold, and let {xk} be generated
by Algorithm 1. If ρk = k−α, α ∈ (0.5, 1], then

min
1<k≤k̄

f (x̄ k) − f � ≤ (2α − 1)d(x0)2 + 2αc2a
2(2α − 1)s(k̄)

, (20)

min
1<k≤k̄

v(xk) ≤ (2α − 1)d(x0)2 + 2αc2a
(2λa(l)

min − cn)(2α − 1)s(k̄)
,

where x0 is the initial point, x̄ k and v(xk) are defined in (8), and

s(k̄) =
⎧⎨
⎩

1

1 − α
(k̄1−α − 1), if α ∈ (0.5, 1),

ln(k̄), if α = 1.

Proof By Theorem 2, {xk} is a convergent sequence. For any x� ∈ X �, it follows
from (18) that

2ρk( f̃λ(xk) − f �) ≤ ‖xk − x�1‖2 − ‖xk+1 − x�1‖2 + (ρk)2c2a .

Summing the above relation over k ∈ {1, ..., k̄} yields

2
k̄∑

k=1

ρk( f̃λ(xk) − f �) ≤ ‖x0 − x�1‖2 − ‖xk̄+1 − x�1‖2 +
k̄∑

k=1

(ρk)2c2a

≤ d(x0)2 +
k̄∑

k=1

(ρk)2c2a

where the last inequality holds by choosing x� = argminx∈X �‖x0 − x1‖. Then, we
arrive at

min
0≤k≤k̄

f̃λ(xk) − f � ≤ d(x0)2 + ∑k̄
k=1(ρ

k)2c2a

2
∑k̄

k=1 ρk
. (21)

Since
∫ k̄
1 x−αdx <

∑k̄
k=1 k

−α <
∫ k̄
1 x−αdx + 1, we have that

k̄∑
k=1

(ρk)2 <

∫ k̄

1
x−2αdx + 1 = 1 − k̄1−2α

2α − 1
+ 1 <

2α

2α − 1
,

and
∑k̄

k=1 ρk >
∫ k̄
1 x−αdx = s(k̄). Using the above and (21) leads to
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min
0≤k≤k̄

f̃λ(xk) − f � ≤ (2α − 1)d(x0)2 + 2αc2a
2(2α − 1)s(k̄)

. (22)

Since f (x̄ k) − f � > 0 and λa(l)
min − 1

2cn > 0, it follows from (15) and (22) that
(20) holds. �

The first inequality in (20) quantifies the decreasing rate of the gap between f (x̄ k)
and the optimal value f �, while the second one shows that the largest difference
between agents’ states is reduced at a comparable rate. Thus, Theorem 3 reveals that
the convergence rate lies between O(1/ln(k)) and O(ln(k)/

√
k), depending on the

choice of ρk .
We also provide an alternative evaluation of the convergence rate, which uses a

robust form and is presented in the following Corollary 1.

Corollary 1 (Non-asymptotic convergence, [28]) Suppose that the conditions in
Theorem 3 hold. Then

min
1<k≤k̄

max
i∈V

f (xki ) − f � ≤ (2α − 1)d(x0)2 + 2αc2a
2(2α − 1)s(k̄)

where all notations are the same as those in Theorem 3.

Proof For all k and any xm ∈ [mini∈V xki ,maxi∈V xki ], it follows from (11) that

f (xm) ≤ f̃λ(xk) − λh(xk) + ‖xk − xm1‖‖∇g(xm1)‖

which together with

‖xk − xm1‖‖∇g(xm1)‖ ≤ √
n‖xk − xm1‖∞ · √

n‖∇g(xm1)‖∞ ≤ ncv(xk)

and (13) yields that

f (xm) ≤ f̃λ(xk) − λh(xk) + nc

a(l)
min

h(xk)

= g(xk) + nc

a(l)
min

h(xk)

≤ f̃2λ(xk)

where the last inequality follows from λ > nc/(2a(l)
min).

Noting that (22) implies

min
0≤k≤k̄

f̃2λ(xk) − f � ≤ (2α − 1)d(x0)2 + 2αc2a
2(2α − 1)s(k̄)

the result follows immediately. �
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If f (x) is non-differentiable, the objective function of the classical distributed
algorithm (4) converges at a rate of O(ln(k)/

√
k) when ρk = 1/

√
k [20], which

is comparable to Algorithm 1 when α approaches 0.5. Thus using only the sign
of relative state essentially does not lead to any reduction in the convergence rate.
However, if f (x) is more smooth, e.g., differentiable or strongly convex, Algorithm
1 may converge at a rate slower than that of (4).

For a constant stepsize, Algorithm 1 approaches a neighborhood of an optimal
solution as fast as O(1/k) and the error size is proportional to the stepsize. These
are formally stated in Theorems 4 and 5.

Theorem 4 (Constant Stepsize, [28]) Suppose that the conditions in Theorem 1
hold, and let {xk} be generated by Algorithm 1. If ρk = ρ, then

lim sup
k→∞

d(xk) ≤ 2
√
nmax

{
d̃(ρ),

ρc2a
2λa(l)

min − cn

}
+ ρca

where X̃ (ρ) = {x | f (x) ≤ f � + ρc2a/2} and d̃(ρ) = maxx∈X̃ (ρ) d(x) < ∞.

Proof See the Appendix. �

In Theorem 4, d̃(0) = 0 and d̃(ρ) is increasing in ρ. Thus, Algorithm 1 under a
constant stepsize finally approaches a neighborhood of x�1 for some x� ∈ X �, the
size of which decreases to zero as ρ tends to zero. If the order of growth of f near
the set of optimal solutions is available, then d̃(ρ) can even be determined explicitly,
which is illustrated in Corollary 2.

Corollary 2 ([28]) Suppose that the conditions in Theorem 4 hold, and that f (x)
satisfies

f (x) − f � ≥ γ (d(x))α

where γ > 0 and α ≥ 1. Then, it holds that

lim sup
k→∞

d(xk) ≤ 2
√
nmax

{(
ρc2a
2γ

) 1
α

,
ρc2a

2λa(l)
min − cn

}
+ ρca

Proof Noting that d̃(ρ) ≤ (ρc2a/2γ )
1
α , the result follows directly from Theorem 4.

�

The following theorem evaluates the convergence rate when the stepsize is set to
be constant.

Theorem 5 ([28]) Suppose that the conditions in Theorem 4 hold. Then
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min
0≤k≤k̄

f (x̄ k) − f � ≤ ρc2a
2

+ d(x0)2

2ρk̄
, (23)

min
0≤k≤k̄

v(xk) ≤ ρc2a
2λa(l)

min − cn
+ d(x0)2

ρk̄(2λa(l)
min − cn)

.

Proof From (21) we know that

min
0≤k≤k̄

f̃λ(xk) − f � ≤ d(x0)2 + k̄ρ2c2a
2ρk̄

,

which together with (15) implies the result. �

Remark 3 The following conclusions can be easily drawn from Theorem 5.

(a) min0≤k≤k̄ f (x̄ k) approaches the interval [ f �, f � + ρc2a
2 ] at a rate of O(1/k̄).

(b) Given k̄ iterations, let ρ = 1
ca

d(x0)√
k̄
, which minimizes the right-hand side of (23).

Then

min
0≤k≤k̄

f (x̄ k) − f � ≤ ca
d(x0)√

k̄
,

min
0≤k≤k̄

v(xk) ≤ ca

2λa(l)
min − cn

d(x0)√
k̄

.

The multi-agent network converges only to a point that is close to an optimal
solution with an error size O(k̄−1/2).

Algorithm 2: Distributed Algorithm Using the Sign of Relative State

1. Initialization: Every node i sets x0i = 0 for all i ∈ V .
2. Repeat
3. Information collection: Each node i collects the sign of the relative state to its neighbors

at time k, e.g., node j ∈ N k
i and obtain rki , which is given below

rki =
∑
j∈N k

i

aki j sgn(x
k
j − xki ).

4. Local update: The decision variable in each node is locally updated as

xk+1
i = xki + ρk

(
λ · rki − ∇ fi (x

k
i )

)
,

where λ and ρk are to be given, and ∇ fi (xki ) is any subgradient of fi (x) at xki .
5. Set k = k + 1.
6. Until a predefined stopping rule (e.g., a maximum iteration number) is satisfied.
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5 The Distributed Optimization Algorithm over
Time-varying Graphs

When the graphs are time-varying, Algorithm 1 is revised and we provide the details
in Algorithm 2. In this section, we study the convergence of Algorithm 2 over two
types of time-varying graphs: uniformly jointly connected time-varying graphs and
randomly activated graphs.

5.1 Uniformly Jointly Connected Time-varying Graphs

Now we introduce the concept of uniformly jointly connected time-varying graphs.
First we define the union of the graphs G (k,b) for integers k ≥ 0 and b > 0 below

G (k,b) = (V ,E (k,b), A(k,b)) := G k ∪ G k+1 ∪ · · · ∪ G k+b−1

and A(k,b) is the associated adjacency matrix of G (k,b). We make the following
assumption.

Assumption 3 Assume that

(a) For some η > 0, it holds that

{
aki j ≥ η, if (i, j) ∈ E k,

aki j = 0, otherwise.
(24)

(b) There exists an integer b ≥ 1 such that A(tb,b) is l-connected for each t =
0, 1, 2, ...

Assumption 3 is commonly made in dealing with deterministically time-varying
graphs. The first part requires that either an edge is not connected at some time, or
the edge is connected with a weight larger than some fixed value. The second part
assumes the joint graph in time intervals with length b to be connected. We call
time-varying graphs satisfying Assumption 3 uniformly jointly connected graphs,
which are also sometimes referred to as b-connected graphs [15, 17].

We are now ready to present the convergence result of Algorithm 2 over uniformly
jointly connected graphs.

Theorem 6 (Convergence, [26]) Suppose that Assumptions 1-3 hold, and that there
exists a constant cρ > 0 such that for all k > 0,

max
t∈[k,k+b)

ρ t ≤ cρ min
t∈[k,k+b)

ρ t . (25)
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Select

λ >
nbccρ

2lη
,

where n is the number of agents, c is given in Assumption 1, cρ is given in
Assumption 2, and b, l, η are given in Assumption 3. Let {xk} be generated by Algo-
rithm 2. Then, limk→∞ xk = x�1 for some x� ∈ X �.

Proof Wefirst consider the subsequence {xtb, t = 0, 1, 2, ...}, i.e., we let k = tb, t ∈
{0, 1, 2, ...}. Define

f̃ kλ (x) := λ

2

∑
i, j∈V

aki j |xi − x j | +
n∑

i=1

fi (xi )

and

f̃ (k,b)
λ (x) := 1

ρk

b+k−1∑
t=k

ρ t f̃ tλ(x)

= λ

2ρk

∑
i, j∈V

b+k−1∑
t=k

ρ t ati j |xi − x j | + 1

ρk

b+k−1∑
t=k

ρ t
n∑

i=1

fi (xi )

= ρ̄k

⎡
⎣λ

2

∑
i, j∈V

āki j |xi − x j | +
n∑

i=1

fi (xi )

⎤
⎦

where

ρ̄k =
b+k−1∑
t=k

ρ t

ρk
, and āki j =

∑b+k−1
t=k ρ t ati j∑b+k−1
t=k ρ t

.

Let [ Āk]i j := āki j and āk,(l)min be the sum of the l smallest nonzero elements of Āk .

Note that āk,(l)min is well defined because for any (i, j), if [A(k,b)]i j is nonzero, then
[ Āk]i j is also nonzero, and A(k,b) has at least l nonzero elements by Assumption 3.

Then, we obtain from (25) that

āki j ≥ mint∈[k,k+b) ρ t
∑b+k−1

t=k ati j
bmaxt∈[k,k+b) ρ t

≥
∑b+k−1

t=k ati j
bcρ

.

Thus, if āki j �= 0, then it follows from (24) that āki j must be larger than η/bcρ , which

means that any nonzero element of Āk is larger thanη/bcρ , and hence ā
k,(l)
min ≥ lη/bcρ .

By virtue of that λ > nbccρ/(2lη) and Theorem 1, we know that the problem
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minimize
x∈Rn

1

ρ̄k
f̃ (k,b)
λ (x)

is equivalent to the original problem for all k = tb, t ∈ {0, 1, 2, ...}. That is, we have
f̃ (k,b)
λ (x) ≥ ρ̄k f � for all x ∈ R

n , and f̃ (k,b)
λ (x) = ρ̄k f � if and only if x ∈ {a1|a ∈

X �}.
Let dk = [dk

1 , ..., d
k
n ]T, where

dk
i = −λ

∑
j∈N k

i

aki j sgn(x
k
j − xki ) + ∇ fi (x

k
i ).

Then, Algorithm 2 can be written in a compact form as

xk+1 = xk − ρkdk .

Note that dk is a subgradient of f̃ kλ (x) at xk , and ‖∇ f̃ kλ (x)‖ ≤ ca for any x ∈ R
n

by (17). Hence ‖dk‖ ≤ ca for any k. Let x� be an arbitrary element ofX �. We have
the following relation

‖xk+b − x�1‖2 =
∥∥∥∥∥xk −

b+k−1∑
t=k

ρ tdt − x�1

∥∥∥∥∥
2

(26)

= ‖xk − x�1‖2 + 2(x�1 − xk)T
b+k−1∑
t=k

ρ tdt +
∥∥∥∥∥
b+k−1∑
t=k

ρ tdt

∥∥∥∥∥
2

≤ ‖xk − x�1‖2 + 2(x�1 − xk)T
b+k−1∑
t=k

ρ tdt + bc2a

b+k−1∑
t=k

(ρ t )2.

Consider the second term of the right-hand-side of (26); then

(x�1 − xk)T
b+k−1∑
t=k

ρ tdt =
b+k−1∑
t=k

ρ t (x�1 − xk)Tdt (27)

=
b+k−1∑
t=k

ρ t (x�1 − xt )Tdt +
b+k−1∑
t=k

ρ t (xt − xk)Tdt

≤
b+k−1∑
t=k

ρ t ( f̃ tλ(x�1) − f̃ tλ(xt )) +
b+k−1∑
t=k

ρ t (xt − xk)Tdt

=
b+k−1∑
t=k

ρ t ( f � − f̃ tλ(xk)) +
b+k−1∑
t=k

ρ t ( f̃ tλ(xk) − f̃ tλ(xt )) +
b+k−1∑
t=k

ρ t (xt − xk)Tdt
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= ρk( f � − f̃ (k,b)
λ (xk)) +

b+k−1∑
t=k

ρ t ( f̃ tλ(xk) − f̃ tλ(xt )) +
b+k−1∑
t=k

ρ t (xt − xk)Tdt

≤ ρk( f � − f̃ (k,b)
λ (xk)) +

b+k−1∑
t=k

ρ t
(‖xt − xk‖‖dt‖ + ‖xk − xt‖‖∇ f̃ tλ(xk)‖)

= ρk( f � − f̃ (k,b)
λ (xk)) +

b+k−1∑
t=k

ρ t‖xk −
t−1∑
u=k

ρudu − xk‖(‖dt‖ + ‖∇ f̃ tλ(xk)‖)

≤ ρk( f � − f̃ (k,b)
λ (xk)) + (

b+k−1∑
t=k

ρ t )2

≤ ρk( f � − f̃ (k,b)
λ (xk)) + 2bc2a

b+k−1∑
t=k

(ρ t )2.

Combining (27) with (26) yields that

‖xk+b − x�1‖2 ≤ ‖xk − x�1‖2 + 2ρk( f � − f̃ (k,b)
λ (xk)) + 5bc2a

b+k−1∑
t=k

(ρ t )2. (28)

Noting that k = tb, t ∈ {0, 1, ...}, the above relation becomes

‖x(t+1)b − x�1‖2

≤ ‖xtb − x�1‖2 + 2ρ tb( f � − f̃ (tb,b)
λ (xk)) + 5bc2a

(t+1)b−1∑
u=tb

(ρu)2.

Note that f̃ (tb,b)
λ (xk) is nonnegative and f̃ (tb,b)

λ (x) = 0 if and only if x ∈ {a1|a ∈
X �}, and that∑∞

t=1 ρ tb = ∞,
∑∞

t=1(ρ
tb)2 < ∞. It follows fromLemma 1 that there

exists x̄ ∈ X � such that the subsequence {xtb}, t ∈ {0, 1, 2, ...}must converge to x̄1.
This, combined with limk→∞ ρk = 0, implies that {xk} converges to x̄1. �

Compared with the convergence result on static graphs (Theorem 2), the major
difference on uniformly jointly connected graphs is that λ should be bcρ times larger
than that in the case of static graphs.

Next, we evaluate the convergence rate of Algorithm 2 over uniformly jointly
connected graphs when ρk = k−α, α ∈ (0.5, 1]. As in Theorem 3, we evaluate the
rates that f (x̄ k) approaches f � and v(xk) tends to 0 to quantify the convergence rate.

Theorem 7 (Non-asymptotic result, [26]) Let the assumptions in Theorem 6 hold,
and further assume that λ > nbc/ lη. Let {xk} be generated by Algorithm 2. If ρk =
k−α with some α ∈ (0.5, 1], then for any k0 > 2b,
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min
1<k≤k0

f (x̄ k) − f � ≤ (2α − 1)(d(x0))2 + 10αbc2a
b(2α − 1)s(k0)

(29)

min
1<k≤k0

v(xk) ≤ 2(2α − 1)(d(x0))2 + 12αbc2a
(λlη − nbc)(2α − 1)s(k0)

where x0 is the initial point, and

s(k0) =

⎧⎪⎪⎨
⎪⎪⎩

(k0 − b)1−α − b1−α

b(1 − α)
, α ∈ (0.5, 1),

1

b
[ln(k0 − b) − ln(b)], α = 1.

Proof Note that λ and {ρk} satisfy the conditions in Theorem 6 with cρ = 2, and
‖∇ f̃ kλ (x)‖ ≤ ca for any x and k. Let x� be an arbitrary optimal solution of problem
(2) and t0 = �k0/b�, where �x� denotes the nearest integer to (·) that is smaller than
(·). It then follows from (28) that

2ρ tb( f̃ (tb,b)
λ (xk) − f �) ≤ ‖xtb − x�1‖2 − ‖x(t+1)b − x�1‖2 + 5bc2a

tb+b−1∑
u=tb

(ρu)2.

Summing the above relation over t = 0, 1, ..., t0 yields

2
t0∑
t=0

ρ tb( f̃ (tb,b)
λ (xk) − f �)

≤ ‖x0 − x�1‖2 − ‖xt0b+1 − x�1‖2 + 5bc2a

t0∑
t=0

(t+1)b−1∑
u=tb

(ρu)2

≤ d(x0) + 5bc2a

k0∑
k=1

(ρk)2.

Therefore, we have

min
0≤k≤k0

f̃ (k,b)
λ (xk) − f � ≤ d(x0) + 5bc2a

∑k0
k=1(ρ

k)2

2
∑t0

t=0 ρ tb
. (30)

Since ∫ k0

1

1

xα
dx <

k0∑
k=1

1

kα
<

∫ k0

1

1

xα
dx + 1,

we obtain that
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k0∑
k=1

(ρk)2 <

∫ k0

1

1

x2α
dx + 1 = 1 − k1−2α

0

2α − 1
+ 1 <

2α

2α − 1

and for α ∈ (0.5, 1),

t0∑
t=0

ρ tb > b−a
t0∑
t=0

ρ t > b−a
∫ t0

1

1

xα
dx = t1−α

0 − 1

ba(1 − α)

>
(k0/b − 1)1−α − 1

ba(1 − α)
= s(k0).

We also obtain
∑t0

t=0 ρ tb = s(k0) using similar arguments. Substituting these two
inequalities into (30) yields

min
0≤k≤k0

f̃ (k,b)
λ (xk) − f � ≤ (2α − 1)d(x0) + 10bcaα

2(2α − 1)s(k0)
. (31)

Noticing that ρ̄k ≥ cρ/2 ≥ b/2 for all k, we have

f̃ (k,b)
λ (xk) = λρ̄kh(xk) + ρ̄kg(xk − x̄ k1 + x̄ k1) (32)

≥ b

2

[
λh(xk) + g(x̄ k1) + (xk − x̄ k1)T∇g(x̄ k1)

]

≥ b

2

[
λh(xk) + f (x̄ k) − ‖xk − x̄ k1‖‖∇g(x̄ k1)‖]

where the first equality follows from the definition of f̃ (k,b)
λ (x), the second inequality

is from the definition of a subgradient, and the last inequality is the result of the
Cauchy–Schwarz inequality as well as the fact that g(a1) = f (a).

Recall from (13) and (14) that

h(xk) ≥ lη

2b
vk, and ‖xk − x̄ k1‖‖∇g(x̄ k1)‖ ≤ nc

2
v(xk).

These two relations together with (32) yield

f̃ (k,b)
λ (xk) − f � ≥ b

2

[
f (x̄ k) − f � + (

λlη

2b
− nc

2
)v(xk)

]
.

Since f (x̄ k) − f � > 0 and λlη − bcn > 0, the above inequality combined with (31)
implies (29) immediately. �

Theorem 2 reveals that from the worst-case point of view, the convergence rate
over uniformly jointly connected time-varying graphs is about b times slower than
that of a static graph (Theorem 3), which is reasonable.
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5.2 Randomly Activated Graphs

This subsection studies the convergence of Algorithm 2 over randomly activated
graphs, which can model many networks such as gossip social networks and random
measurement losses in networks. The definition is given as follows.

Definition 2 (Randomly Activated Graphs) The sequence of graphs {G k} are ran-
domly activated if for all i, j ∈ V , i �= j , {aki j } is an i.i.d. Bernoulli process with
P{aki j = 1} = pi j , where P(X ) denotes the probability of an event X and 0 ≤
pi j ≤ 1, ∀i, j ∈ V .

Remark 4 For brevity, we assume here that the weight of each edge aki j is taken to
be either zero or one at each time k in randomly activated graphs.

We call P = [pi j ] the activation matrix of G k , and the graph associated with P
is denoted as GP , which is also the mean graph of G k , i.e.,

GP := E(G k). (34)

Recall that Algorithm 1 is the iteration of subgradient methods of (7). Similarly,
Algorithm 2 is just the iteration of the stochastic subgradient method of the following
optimization problem

minimize
x∈Rn

f̂λ(x) := g(x) + λĥ(x) (35)

where g(x) is given in (5) and

ĥ(x) = 1

2

n∑
i, j=1

pi j |xi − x j |.

To exposit it, notice thatE(aki j ) = pi j , and thus a stochastic subgradient∇s ĥ(x) =
[∇s ĥ(x)1, ...,∇s ĥ(x)n]T of ĥ(x) is given element-wise by

∇s ĥ(x)i =
n∑
j=1

aki j sgn(xi − x j ) =
∑
j∈N k

i

sgn(xi − x j ).

Since E{∇s ĥ(x)i } = ∑
j pi j sgn(xi − x j ), E{∇s ĥ(x)} is a subgradient of ĥ(x).

Hence, the almost sure convergence of Algorithm 2 follows from the following
lemma.

Lemma 2 (Convergence of Stochastic Subgradient Method, [3]) Consider the opti-
mization problem

minimize
x∈Rn

E{F(x,w)} (36)
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where w is a random variable and F(x,w) : Rn × R → R is continuous and convex
w.r.t. x for any given w. LetX � be the set of optimal solutions and assume thatX �

is not empty.
The stochastic subgradient method for (36) is given by

xk+1 = xk − ρkr(xk,wk)

where r(x,wk) is bounded and E(r(x,wk)) is a subgradient of E{F(x,wk)} for all
x ∈ R

n. If {ρk} is chosen such that

∞∑
k=0

ρk = ∞,

∞∑
k=0

(ρk)2 < ∞,

then it holds almost surely that limk→∞ xk = x� for some x� ∈ X �.

The following theorem summarizes the above analysis, and is the main result of
this subsection.

Theorem 8 ([28]) Suppose that Assumptions 1 and 2 hold, and that the multi-agent
network GP is l-connected. Select

λ >
nc

2p(l)
min

,

whereGP is given in (34), p
(l)
min denotes the sumof the l smallest nonzero elements of P.

Let {xk} be generated by Algorithm 2. Then, it holds almost surely that limk→∞ xk =
x�1 for some x� ∈ X �.

Proof By Theorem 1, it follows that problem (35) has the same set of optimal solu-
tions and optimal value as problem (2). Combined with Lemma 2, the proof follows.

�

6 Numerical Examples

In this section, we apply our algorithms to distributedly find the geometric median of
a couple of points in a two-dimensional plane. The geometric median of n points is
defined as the point which minimizes the sum of Euclidean distances to these points
[7]. In other words, it is the optimal solution of the following convex optimization
problem:

minimize
x∈R2

f (x) :=
n∑

i=1

fi (x) =
n∑

i=1

‖x − xi‖. (37)
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The local function fi (x) := ‖x − xi‖ is convex but non-differentiable, the subdiffer-
ential of which is given as

∂ fi (x) =
⎧⎨
⎩

x − xi
‖x − xi‖ , if x �= xi

{g | ‖g‖ ≤ 1}, otherwise.

Apparently, problem (37) satisfies Assumption 1, and hence it can be solved by
Algorithms 1 and 2. Notice that x in (37) is 2-dimensional and Algorithms 1 and 2
should be modified accordingly as stated in Remark 1.

The geometric median problem is a special case of least square problems in statis-
tics and Weber problems in location theory. Here we provide a possible application
in distributed settings. Consider n base stations under the sea, and we want to find
a place to build a communication center, which should have the minimum distances
to these stations to save the costs of cables. Since global positioning is very difficult
under seas, a feasible distributed approach to find the desired place is for each station
to send an agent, which however can only measure the distance to the station and
know rough relative positions to its neighbor agents. Clearly, we can use the proposed
algorithms to achieve this goal.

In this example, we consider five stations (hence five agents), the positions of
which are randomly generated on a rectangular area with size 100 × 100. We run
three simulations over a static graph, uniformly jointly connected graphs, and ran-
domly activated graphs, respectively. We choose the stepsize ρk = 5/(k + 10) in all
simulations. The topology of the five agents is a ring graph as shown in Fig. 2a. The
λ in Algorithm 1 used in the static graph’s case is chosen to be 2, which satisfies
the condition in Remark 2. For the uniformly jointly connected graphs’ case, we let
only one edge in the graph of Fig. 2a connect at each time, and each edge connects
once and only once in each cycle, the order of which is determined by a random
permutation of {1, ..., 5} at the beginning of each cycle. The λ in Algorithm 2 used
in the case of uniformly jointly connected graphs is chosen to be 6. We generate
randomly activated graphs by letting each edge in the graph of Fig. 2a connect with
probability 0.5 at each time, and we choose λ to be 4.

Fig. 2b, c, d depict respectively the trajectories of the 5 agents from k = 1 to 1500
over the static graph, uniformly jointly connected graphs and randomly activate
graphs, where the filled circles are the initial positions of the agents and the black
triangle is the geometric median of these circles computed by Weiszfeld’s method
[1]. As shown in the figures, agents in all cases converge to the geometric median
with however slightly different transient performances.

If λ is smaller than the lower bound provided in Theorem 1, consensus may not be
achieved among agents. Figure3 shows the trajectories of agents with λ = 0.8, 2, 1.5
over a static graph, uniformly jointly connected graphs, randomly activated graphs,
respectively. Other settings remain the same except that we increase the times of
iterations to 5000. Clearly, agents fail to converge to the geometric median.
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Fig. 2 aThe topology of the agents.bThe trajectories of the agents in a static graph, where the filled
circles are the initial positions of the agents and the black triangle is the geometric median of these
circles. c The trajectories of the agents in uniformly jointly connected graphs. d The trajectories of
the agents in randomly activated graphs
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Fig. 3 The trajectories of agents with smaller λ over a static graph, uniformly jointly connected
graphs, randomly activated graphs, respectively
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7 Conclusions

In this chapter, we have proposed a distributed optimization algorithm to solve the
additive cost optimization problem in multi agent networks. Each agent in the algo-
rithm uses only the sign of relative state to each of its neighbor agents. The network
was allowed to be static or time-varying. For the former case, we have first provided
a penalty method interpretation of our algorithm, and then studied its convergence
under diminishing stepsizes as well as a constant stepsize. We have shown that the
convergence rate varies from O(1/ln(k)) to O(1/

√
k), depending on the stepsize. For

the latter case, we studied the performance of our algorithm over the so-called uni-
formly jointly connected graphs and randomly activated graphs, the convergence of
which is also guaranteed. Finally, we have applied our algorithm to solve a geometric
median problem. All the theoretical results have been corroborated via simulations.
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Appendix: Proof of Theorem 4

We first show that d̃(ρ) < ∞. Since f̃λ(x) is convex, X̃ (ρ) is convex and X � ⊆
X̃ (ρ) for any ρ > 0. One can verify that X̃ (ρ) − X � is bounded. If X̃ (ρ) − X �

is empty, then d̃(ρ) = 0, otherwise 0 ≤ d̃(ρ) = maxx∈X̃ (ρ) minx�∈X � |x − x�| =
maxx∈X̃ (ρ)−X � minx�∈X � |x − x�| < ∞.

Then, we claim the following.
Claim 1: If ‖xk − x�1‖ > cρ for all x� ∈ X �, then f̃λ(xk) − f � > ρc2a/2.
Recall from (15) that

f̃λ(xk) − f � ≥ f (x̄ k) − f � + (λa(l)
min − 1

2
cn)v(xk),∀k.

This implies that if either f (x̄ k) − f � > ρc2a/2 or v(xk) >
ρc2a

2λa(l)
min−cn

, then f̃λ(xk) −
f � > ρc2a/2. Let

cρ := 2
√
nmax{d̃(ρ),

ρc2a
2λa(l)

min − cn
}.

Since
cρ < ‖xk − x�1‖ ≤ ‖xk − x̄ k1‖ + ‖x̄ k1 − x�1‖

≤ √
nv(xk) + √

n|x̄ k − x�|
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we obtain that v(xk) > cρ/(2
√
n) ≥ ρc2a

2λa(l)
min−cn

or |x̄ k − x�| > cρ/(2
√
n) ≥ d̃(ρ). For

the former casewehave f̃λ(xk) − f � > ρc2a/2. For the latter case, x̄
k /∈ X̃ (ρ),which

by the definition of X̃ (ρ) implies f̃λ(xk) − f � > ρc2a/2.
Claim 2: There is x�

0 ∈ X � such that lim infk→∞ ‖xk − x�
01‖ ≤ cρ .

Otherwise, there exists k0 > 0 such that

‖xk − x�1‖ > cρ,∀x� ∈ X �,∀k > k0.

By Claim 1, there exists some ε > 0 such that f̃λ(xk) − f � > ρc2a/2 + ε for all
k > k0. Together with (18), it yields that

‖xk+1 − x�1‖2 ≤ ‖xk − x�1‖2 − 2ρ( f̃λ(xk) − f �) + ρ2c2a (38)

≤ ‖xk − x�1‖2 − 2ρ(
ρc2a
2

+ ε) + ρ2c2a

= ‖xk − x�1‖2 − 2ρε.

Summing this relation implies that for all k > k0,

‖xk+1 − x�1‖2 ≤ ‖xk0 − x�1‖2 − 2(k + 1 − k0)ρε,

which clearly cannot hold for a sufficiently large k. Thus, we have verified Claim 2.
Claim 3: There is x� ∈ X � such that lim supk→∞ ‖xk − x�1‖ ≤ cρ + ρca .
Otherwise, for any x� ∈ X �, there must exist a subsequence {xk}k∈K (which

depends on x�) such that for all k ∈ K ,

‖xk − x�1‖ > cρ + ρca . (39)

Notice that the penalty function h(x) can be represented as

h(x) =
m∑
e=1

ae|bTe x|.

where ae is the weight of edge e. The subdifferential of h(x) is then given by

∂h(x) =
m∑
e=1

aeSGN(bTe x)be = BAeSGN(BTx) (40)

where Ae = diag{a1, ..., am}. Then, it follows from (40) that

‖xk+1 − x�1‖ = ‖xk − x�1 − ρλBAesgn(B
Txk) − ρ∇g(xk)‖

≤ ‖xk − x�1‖ + λρ‖BAesgn(B
Txk)‖ + ρ‖∇g(xk)‖

≤ ‖xk − x�1‖ + ρ
√
n(λ‖A‖∞ + c)
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= ‖xk − x�1‖ + ρca,∀k

where the second inequality follows from

‖BAesgn(B
Txk)‖ ≤ √

n‖BAesgn(B
Txk)‖∞

≤ √
n‖BAe‖∞‖sgn(BTxk)‖∞

≤ √
nmax

i

n∑
j=1

ai j = √
n‖A‖∞.

Thus, we obtain that for all k ∈ K ,

‖xk−1 − x�1‖ ≥ ‖xk − x�1‖ − ρca > cρ. (41)

By Claim 2, there must exist some k1 ∈ K and k1 > k0 such that

‖xk1−1 − x�
01‖ ≤ cρ + ρca .

Together with (41), it implies that

cρ < ‖xk1−1 − x�
01‖ ≤ cρ + ρca . (42)

Hence, it follows from Claim 1 that f̃λ(xk1−1) − f � > ρc2a/2, which together with
(38) and (42) yields that

‖xk1 − x�
01‖ ≤ ‖xk1−1 − x�

01‖ ≤ cρ + ρca . (43)

Setting x� = x�
0 in (39), we have ‖xk1 − x�

01‖ > cρ + ρca .This contradicts (43), and
hence verifies Claim 3.

In view of (19), the proof is completed. �
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Abstract We present a consensus-based approach to the optimal economic dispatch
of power generators in a smart microgrid. Under the proposed approach, generators
independently make adjustments to their power frequency primary controller set
points using three pieces of information: (a) their own marginal cost of generation,
(b) the measured frequency deviation, and (c) marginal generation cost of a subset
of other generators obtained using local message exchanges. We show that in the
absence of power losses, these independent adjustments can be designed in such
a way that frequency deviations are reduced to zero, and additionally, the overall
cost of generation is minimized; that a slight modification to enforce harp power
constraints on power generation achieves the same as long as the global optimum
is within those bounds. When power losses are taken into account, our algorithm
still reduces the frequency deviations to zero; however, in this case, the total cost of
generation is only approximately minimized, though the resulting suboptimality can
be shown to be negligible for typical levels of power losses. The proposed approach
can be thought of as a gradient search of a carefully chosen objective function,
whose minimization only requires the frequency deviation and message exchanges
between neighboring generators. We prove that the algorithm uniformly converges
to the global optimum and illustrate its performance using numerical simulations.
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1 Introduction

We present a simple, distributed consensus based algorithm for optimal economic
dispatch [1], of power generators in a smart electric grid. To place the work in the
context, we refer to our earlier papers [2, 3], which describe a distributed scheme
where each generator adjusts its power frequency primary controller set points using
only the measured frequency deviation, which eventually drives the set points to
the optimal minimum cost allocations without any explicit communication between
the generators. However, since the only information used by the generators is the
frequency deviation, the resulting algorithm requires persistent nonzero frequency
deviations in order to progress towards optimality. In practice, if initialized far from
optimal allocations, the convergence of the algorithm in [2, 3] can be slow. This
chapter is based on the idea that additional information exchange between the gen-
erators can significantly speedup the progress to optimality.

Accordingly, in this chapter,we consider a gridwhere the generators are connected
by a communication network that forms a connected, potentially undirected, graph
and are able to exchange information over this network regarding their marginal cost
of generation with their neighbors. The generators independently make adjustments
to their power frequency primary controller set points using three pieces of informa-
tion: (a) their ownmarginal cost of generation, (b) the measured frequency deviation,
and (c) marginal generation cost of a subset of other generators obtained using local
message exchanges. The algorithm we propose globally uniformly asymptotically
erases the frequency deviation, while achieving near-optimal allocations, under mild
assumptions. More precisely, in the absence of power losses, the proposed algo-
rithm achieves the exact minimum cost if the max and min limits on the generators
are inactive, and achieves a cost arbitrarily close to the minimum when max and
min limit constraints are active. With typical levels of power losses, the algorithm
achieves near-optimal allocations. These properties are retained by a simple modifi-
cation when there are hard bounds on the power outputs of each generator, as long
as the optimum is within these bounds.

1.1 Motivation

Just like our previous work [3], this work is motivated by the anticipated needs
of the next-generation electric grid which is expected to have smart consumer end
nodes [4] and alternative energy generators. Thus while in the traditional electric
grid, only a small number of large generation units are dispatchable, the future smart
grid potentially involves a large number of small distributed generation (DG) [6],
storage and demand response units that can all contribute to dispatch; integrating
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these units is expected to be crucial to accommodate a high penetration of intermittent
[5] alternative energy generators.

Under this vision of the next-generation grid, a centralized control approach
does not scale: the communication and computational overheads associated with
learning and controlling the real-time state of a large number of dispatch units in a
highly intermittent setting would be prohibitive. Thus a decentralized approach with
a limited use of communication infrastructure and using local message exchanges is
very attractive, and there is now a growing body of research into such decentralized
methods (see e.g., [13–15]). In this chapter, we describe a novel distributed solution
to the dispatch problem that leverages techniques from the distributed consensus
literature. While we consider the dispatch problem in this chapter, we believe the
distributed consensus approach provides a powerful set of tools for other control
loops in the electric grid such as reactive power control, voltage regulation, and so
on.

For convenience, we adopt the terminology of the traditional economic dispatch
problem in this chapter, thus we use the term “generators” to represent all dispatch-
able units. We do assume that all dispatchable units have primary controllers that
follow a power frequency droop characteristic with negative slope, just like tradi-
tional generators. While the droop curve was originally conceived to ensure stable
interconnection of synchronous generators [33], and modern generators with power
electronic converters do not necessarily require such a relationship in their primary
controllers, recent studies [34] have shown that the droop curve is useful and effective
and it is advantageous to retain this mechanism even for modern microgrids.

1.2 Background

In a traditional electric grid, control of generators is accomplished on multiple time
scales using multiple different mechanisms [7]. Primary control is implemented in a
distributed fashion at the generators, but secondary and tertiary control (correspond-
ing to load frequency control (LFC) and economic dispatch (ED), respectively) are
implemented from a centralized control station at the transmission system operator
(TSO) and load serving entity (LSE) [8]. While the primary control operates over
short time scales of up to 30s [32], secondary and tertiary control operate over longer
time scales on the order of minutes. Traditionally, an ad hoc allocation is used by
the secondary controller to return ACE to zero without consideration of cost min-
imization; the latter function is the responsibility of the tertiary control process or
economic dispatch (ED). The economic dispatch process periodically re-allocates
the total generation power among generators to minimize total cost; the power allo-
cations once set by the dispatch algorithm may over time deviate from their optimal
values because of cumulative load fluctuations and the actions of the secondary
controller until it is again optimally re-allocated by the dispatch process.

Recent studies [9] have shown that Centralized Security Constrained Economic
Dispatch (SCED) methods [10] are effective for dispatch in a large-scale grid
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while taking into account congestion management, electricity market operations,
transmission line constraints and so on. We would like to emphasize that the dis-
tributed approach presented in this chapter is not intended as an alternative to these
methods. Rather, we envision a process by which small autonomous “microgrids”
with smart grid capabilities are gradually integrated into the larger electric grid; our
work is targeted towards the needs of such microgrids, specifically, ones with dis-
tributed generation, storage and/or demand response needs that are unsuitable for
centralized management. The control systems of microgrids are carefully decoupled
from, and operate alongside, the corresponding control systems in the larger grid.
The concept of a microgrid is described in detail in [11].

It is important to emphasize that our proposed technique of distributed dispatch
combines the functions of load frequency control and economic dispatch; however,
it retains the same relationship between the primary and secondary control as in the
traditional grid. Specifically, the dispatch algorithm operates at a slower time scale
(min) as compared to the primary control which typically operates over time scales of
up to 30s or so. The dispatch algorithm does not directly change the power generated
by each unit—doing so might cause instability in the form of frequency hunting, see
e.g., [32]; rather our dispatch algorithm changes the power frequency set point on
the droop curve of each unit, which indirectly changes the power generated by each
unit through the operation of the primary controller.

Thus, for example, suppose that there is a small increase in load in a system
that is currently at its optimal operating point (minimum cost allocations across its
generators and zero frequency deviation). The immediate effect of the additional load
would be to activate the AGC loops in the generators which would together increase
their generations to match the extra load; this process typically occurs over a period
of several seconds, and at the end of this process, after the transients have died down
and steady-state is achieved, there is a small negative frequency deviation on the grid
proportional to the extra load power. Note that with the increased load, the original
allocations among the generators is no longer optimal. Our algorithm is designed
to work with the frequency deviation to restore optimality. In this example, on the
next iteration of the dispatch algorithm, each of the generators will make a small
adjustment to their power frequency set point that will have the effect of reducing
the steady-state frequency deviation. The cumulative effect of several iterations will
be to drive the frequency deviation to zero while reallocating the power among the
generators to achieve minimum cost.

1.3 Relation to Previous Work

Economic dispatch is a classical and very well-studied problem in the literature on
power systems. Traditionally economic dispatch has been formulated and imple-
mented as a multivariable constrained optimization problem [1]. A centralized net-
work control center with detailed knowledge of cost curves of each generator along
with models of line losses and constraints for the whole grid periodically calculates
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the optimal allocation of power across all the generating units, and then disseminates
these allocations to the generators [9, 10]. Earlier academic work on this problem
frequently use complex numerical optimization methods such as neural networks,
particle swarm optimization or Monte Carlo methods [31, 38] to find the optimal
solution.

Recently, the growing interest in “smart grid” technologies [12] has driven a surge
of interest in distributed approaches to various optimization and control functions
in the electric grid including secondary frequency and voltage control [16], adaptive
scheduling [17], optimal power flow [18] and other related topics [19].

There is also previous work on distributed control methods for dispatch
[13–15]; however, this chapter contains several novel features compared to this pre-
vious work as we now detail. In [13] the nodes exchange and update their estimates
of the optimal marginal costs; however this procedure needs a globally consistent
initial estimate of the generator allocations that add up to a sum that equals the total
load as does the approach proposed in [15]. The authors in [13, 15] do not specify
how this information on the load power is obtained by the entities participating in
the dispatch process. By contrast, each node in our algorithm only needs to locally
measure the frequency deviation from which the power imbalance is inferred using
the power frequency droop curve.

The major difference between the work reported here and each of [13–15],
however is that they require the generator cost functions to be convex and quadratic.
These algorithms simply cannot be implemented without this property, as they crit-
ically require the closed-form relationship between the marginal cost and the power
value, that is available for quadratic functions, but not necessarily for more general
functions. By contrast our algorithm permits arbitrary convex cost functions.Unlike
the general optimization framework in [19], which requires local optimization at
each node augmented by message passing, we focus on the specific problem of dis-
patch and are able to take advantage of the structure of the problem to obtain a much
simpler algorithm.

The work presented here also represents a significant advance over our own pre-
vious work of [2, 3]. This previous work is based on the following simple idea.
When there is a positive power imbalance (i.e., instantaneous load exceeds rated
generation), it is intuitively reasonable for a generator with a lower marginal cost
to increase its generation by a larger amount than one with a higher marginal cost.
The key limitation of this approach is that since the generators move slowly and
incrementally towards the optimal allocations in response to small frequency devia-
tions, it can take a long time to achieve optimality. This new work improves on [2,
3] by ensuring that the generators keep making adjustments to their generation even
when there are no power imbalances on the grid. They do so by taking advantage of
a separate communication infrastructure. In other words, in addition to the implicit
signal available from the frequency deviation, we now assume that there is a commu-
nication network that allows each generator to directly query its neighbors regarding
their instantaneous marginal costs and make adjustments accordingly.

Note, however, our assumptions on the communication network are minimal: We
do not require that each generator talk to all other generators or that communication
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be bidirectional. Nor dowe assume that there is any central authority to coordinate all
the generators. We only require that the communication links between the generators
form a connected graph. While this work has clear parallels to the rich literature on
consensus and multi-agent theory, [21–27], there are notable distinctive features. In
particular, should we apply traditional consensus algorithms the result would be the
equalization of the marginal costs, without necessarily erasing the load imbalance.
Our approach on the other hand can be viewed as a constrained consensus technique
where consensus of marginal costs is achieved subject to zero load imbalance. A
preliminary version of this work was presented in [30]. A related argument was
studied in [29], but the proof given assumed a continuous time update. The discrete
time analysis here is significantly harder. Neither [30] nor [29] tackle constraints.

The rest of this chapter is organized as follows. We first introduce the dispatch
problem considered in this chapter in Sect. 2 and our proposed distributed algorithm
is presented in Sect. 3. Section4 has the stability analysis. Section5 addresses issues
of hard bounds and power losses. We illustrate the performance of the algorithm
using simulations in Sect. 6 and conclude in Sect. 7.

2 The Dispatch Problem

We model the economic dispatch problem as follows. We assume that there are N
generators supplying power to the network. We denote the total power consumed by
PL and the active power set point for generator i at the rated system frequency by
Pi (k), i ∈ 1 . . . N . As a result, the power imbalance in the system is given by

Δ(k) = PL −
N∑

i=1

Pi (k) (1)

The Pi (k) represents the active power set point; the actual active power produced
by each generator is determined by its primary controller which uses Pi (k) as a
reference. More precisely, the primary controller on each generator responds to a
power deficit (or surplus) Δ(k) by increasing (or decreasing) its generated power
above (or below) its generation set point Pi (k) until the total generated powermatches
the total load. This action by the controller has the side effect of introducing a small
frequency deviation that is proportional to the original imbalance Δ(k).

In other words, the total imbalance between the rated generation power and the
load, after the controllers have reached steady-state, results in a proportional fre-
quency deviation Δ f (k) = βΔ(k) on the grid. This frequency deviation can be
monitored continuously by each generator which thus can directly monitor the power
imbalance Δ(k). This is analogous to the area control error (ACE) signal observed
by the secondary controller in a traditional load frequency control (LFC) implemen-
tation [28]. We assume that β remains constant for all values of Pi (k) andΔ(k). This
is a reasonable assumption for small frequency deviations.



Analysis of a Distributed Consensus Based Economic Dispatch Algorithm 487

Our analysis assumes that the load PL is constant and Ji (Pi ) the cost function for
generator i , is strictly convex, an assumption that is standard in the power systems
literature.With P = [P1, . . . , PN ]�, define P∗

i to be power allocations that minimize
the total cost:

∑
i∈V Ji (Pi )

subject to
∑

i∈V Pi = PL , 0 < p−
i ≤ Pi ≤ p+

i . (2)

Observe that as is often the case in practice the formulation also restricts the power
generation of each generator. In the sequel, we will call the problem without gener-
ation limits (WGL) for all i ∈ V , the constraint

p−
i ≤ Pi ≤ p+

i (3)

is removed.

Assumption 2.1 The optimum solutions of the WGL problem and the constrained
problem (2) are identical.

In Sect. 3 we provide a distributed algorithm that achieves

lim
k→∞ Pi (k) = P∗

i , (4)

without respecting (3). Subsequently we will provide a simple modification that
achieves (4) while respecting (3), as long as Assumption2.1 holds.

3 The Algorithm for WGL

Weassume that the networkof generators formanunderlying,possibly directedgraph
G = (V, E), where V = {1, . . . , N } is the vertex set comprising the generators. The
directed edge {i, j} ∈ E if generator i has access to generator j’s marginal cost
J ′
j (Pj ), where Pj is the power generated by agent j . In the sequel N (i) represents

the set of neighbors of i . In particular:

N (i) = { j |{i, j} ∈ E } . (5)

In the sequel we assume a constant load PL , and a load deficit:

Δ = PL −
N∑

i=1

Pi . (6)

The following constitutes a standing assumption of this chapter.
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Assumption 3.1 The load PL is constant. For all i ∈ V , the cost Ji (·) : R → R
+

is analytic everywhere and strictly convex and the marginal cost J ′
i (·) positive. In

particular for all x ∈ R, and i ∈ V , there holds,

J ′′
i (x) > 0. (7)

Further, on every compact subset S ⊂ R
N , and all i , Ji and all its derivatives are

uniformly bounded and there exists ω(S) > 0 such that

J ′′
i (x) > ω(S), ∀x ∈ S. (8)

Finally, for every i ∈ V
lim
Pi→∞ J ′

i (Pi ) = ∞. (9)

We now comment on these assumptions. Observe, (8) is a convexity assumption
on the generator costs. This is standard for most cost functions used in the power
systems literature. Sometimes, these can be manufactured by interpolating tabulated
data. Such data are themselves of a form that permits a convex interpolant, [20].
The convexity condition of course implicitly reflects the appealing reality that the
marginal cost increases with production. Likewise, (9) is in accord with intuition.
The marginal cost is unbounded and positive. Observe, our conditions require the
marginal costs to be always positive, which is again a reality. For technical reasons,
we have not restricted the Pi to be nonnegative, though, in reality they would be. We
comment more on this fact after presenting the technical results in the next section.

The next Lemma shows that the solution to (2) is unique.

Theorem 1 Under Assumptions2.1 and 3.1, the solution to (2) is unique and obeys

J ′
i (P

∗
i ) = J ′

j (P
∗
j ), ∀ {i, j} ⊂ V . (10)

Proof As under Assumption2.1 the solution to (2) is identical to the the WGL prob-
lem we focus on the latter where (3) does not hold. In this case (10) under

PL =
∑

i∈V
P∗
i . (11)

is a necessary condition for optimality. We now assert that P∗
i that satisfy (10) and

(11) are unique. Indeed if a second set of Pi obey

PL =
∑

i∈V
Pi

then for some i, j , Pi > P∗
i , Pj < P∗

j . Then from Assumption3.1,

J ′(Pi ) > J ′(P∗
i ) = J ′(P∗

j ) > J ′(P∗
j ).
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Thus this set of Pi cannot be optimizing.

Thus, effectively wemust find Pi that equalize themarginals subject to (2). Equal-
ization of the marginals through their local exchange has similarities to the goals of
consensus algorithms, [22]. A defining departure is in the additional requirement of
(2). To achieve this modified objective, we resort to the gradient descent optimization
of an alternative cost function.

Specifically, with P(k) = [P1(k), . . . , PN (k)]� : Z → R
N , define the auxilliary

cost, for some α > 0,

J (P) = αΔ2 +
∑

{i, j}∈E

(
J ′
i (Pi ) − J ′

j (Pj )
)2

. (12)

Minimization of J (P) achieves (2) and the equalization of at least the marginal costs
of neighbors. Connectedness ensures the equalization of all marginals.

Then our algorithm is the following gradient descent law: for μ > 0,

Pi (k + 1) = Pi (k) − μ
∂ J (P)

∂Pi

∣∣∣∣
P=P(k)

. (13)

Observe,
∂ J (P)

∂Pi
= −2αΔ + 2J ′′

i (Pi )
∑

j∈N (i)

(
J ′
i (Pi ) − J ′

j (Pj )
)
. (14)

Thus, to implement its update law the i th generator needs to know its neighbors’
marginal costs, and a quantity proportional to the load deficit that as noted earlier is
supplied by local measurement of the frequency deviation. This law does not account
for the constraint (3). In Sect. 5, we address modifications that address (3).

4 Stability

We begin with a fairly general result on gradient descent the proof of which requires
two additional results. The first is the multivariable Taylor’s theorem, [35]. A clean
proof of this result can be found in [36].

Theorem 2 Consider an analytic function f : RN → R. For x, h ∈ R
N . Define the

Hessian, H f : RN → R
N×N , whose i j th element obeys

[
Hf (x)

]
i j = ∂2 f (x)

∂xi∂x j

where xi is the i th element of x. Then there exists R2(x, h) with the property that
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lim
h→0

R2(x, h)

‖h‖2 = 0, (15)

for which

f (x + h) = f (x) + h� ∂ f (x)

∂x
+ h�H(x)h + R2(x, h).

The second result is a consequence of Lasalle’s invariance principle, a recent proof
of which is in [37].

Theorem 3 Consider the state equation

ρ[k + 1] = g(ρ[k]), ∀k ≥ k0 (16)

where k and k0 are integers, and g(ρ[k]) has no explicit dependence on k. Suppose
the following conditions hold:

(a) ρ[k] is uniformly bounded for every finite ρ[k0].
(b) There exists a nonnegative function f (ρ[k]) such that the following holds for all

k ≥ k0 along the trajectories of (16):

f (ρ[k + 1]) ≤ f (ρ[k]) (17)

(c) For all finite ρ[k0], f (ρ[k]) is uniformly bounded.
Then ρ[k] uniformly converges to a trajectory of (16) on which f (ρ[k]) is a constant.

Now the promised result on gradient descent.

Lemma 1 Consider an analytic, nonnegative function f (·) : RN → R+ and the
algorithm for k ≥ k0:

x(k + 1) = x(k) − μ
∂ f (x)

∂x

∣∣∣∣
x=x(k)

, x(k0) = x0. (18)

Suppose for every f0 > 0, the set S( f0) = {
x ∈ R

N | f (x) ≤ f0
}
is compact and

each derivative of f in this compact set is uniformly bounded. Then there exists a
μ∗ such that for every 0 < μ < μ∗, there exists a(μ) > 0 such that for all k > k0,
there holds:

f (x(k + 1)) ≤ f (x(k)) − a(μ)

∥∥∥∥∥
∂ f (x)

∂x

∣∣∣∣
x=x(k)

∥∥∥∥∥

2

. (19)

Further, for every x0, there exists a μ∗, such that for all 0 < μ < μ∗, the following
holds, uniformly in k0,

lim
k→∞

∂ f (x)

∂x

∣∣∣∣
x=x(k)

= 0.



Analysis of a Distributed Consensus Based Economic Dispatch Algorithm 491

Proof From Theorem 2, in the notation of Theorem 2, there holds for suitable

C

(
x, μ

∂ f (x)

∂x

∣∣∣∣
x=x(k)

)

f (x(k + 1)) = f

(
x(k) − μ

∂ f (x)

∂x

∣∣∣∣
x=x(k)

)

= f (x[k]) − μ

∥∥∥∥∥
∂ f (x)

∂x

∣∣∣∣
x=x(k)

∥∥∥∥∥

2

+ μ2 ∂ f (x)

∂x

∣∣∣∣
�

x=x(k)

Hf (x(k))
∂ f (x)

∂x

∣∣∣∣
x=x(k)

+ C

(
x, μ

∂ f (x)

∂x

∣∣∣∣
x=x(k)

)

Because of Theorem 2 and the assumptions embedded in the hypothesis of this
lemma, there is an M , such that

∂ f (x)

∂x

∣∣∣∣
�

x=x(k)

Hf (x(k))
∂ f (x)

∂x

∣∣∣∣
x=x(k)

≤ M

∥∥∥∥∥
∂ f (x)

∂x

∣∣∣∣
x=x(k)

∥∥∥∥∥

2

and

lim
μ→0

C

(
x, μ ∂ f (x)

∂x

∣∣∣
x=x(k)

)

μ2

∥∥∥∥
∂ f (x)
∂x

∣∣∣
x=x(k)

∥∥∥∥
2 = 0. (20)

Consequently, there holds:

f (x[k + 1]) ≤ f (x[k]) − μ

∥∥∥∥∥
∂ f (x)

∂x

∣∣∣∣
x=x(k)

∥∥∥∥∥

2

+ μ2M

∥∥∥∥∥
∂ f (x)

∂x

∣∣∣∣
x=x(k)

∥∥∥∥∥

2

+ C

(
x, μ

∂ f (x)

∂x

∣∣∣∣
x=x(k)

)

= f (x[k]) − μ

∥∥∥∥∥
∂ f (x)

∂x

∣∣∣∣
x=x(k)

∥∥∥∥∥

2

μ2M

∥∥∥∥∥
∂ f (x)

∂x

∣∣∣∣
x=x(k)

∥∥∥∥∥

2

⎛

⎜⎜⎜⎝1 +
C

(
x, μ ∂ f (x)

∂x

∣∣∣
x=x(k)

)

μ2

∥∥∥∥
∂ f (x)
∂x

∣∣∣
x=x(k)

∥∥∥∥
2

⎞

⎟⎟⎟⎠

Thus, because of (20) there exists a μ∗ such that for every 0 < μ < μ∗, there exists
a(μ) > 0 such that for all k > k0, (19) holds. As f (.) is nonnegative, f (x(k)) is
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bounded. Thus, as S( f0) is compact for all finite f0, for every x0, x(k) is uniformly
bounded. The result follows from Theorem 3.

Thus, under the right conditions, gradient descent forces the gradient to con-
verge to zero. The next Lemma shows that our auxiliary cost satisfies the conditions
imposed on f (·) in Lemma 1.

Lemma 2 With the various quantities as defined above suppose Assumption 3.1
holds and the graph G is connected. Under (12) consider for B > 0, the set:

ΩB = {
P ∈ R

N |J (P) ≤ B
}
. (21)

Then ΩB is compact.

Proof Clearly ΩB is closed. It remains to show that it is bounded. To establish a
contradiction, suppose it is unbounded. Then for every M , there exists an i and
Pi ∈ ΩB , such that |Pi | > M . Consider such an i and M . Observe

|Δ| ≤ B√
α

.

From (6), there exists j ∈ V such that:

|Pj | ≥ M

N − 1
− B√

α(N − 1)
(22)

and Pj and Pi have opposite signs. Thus, from (9) and (8), by choosing M arbitrarily
large one can make |J ′

i (Pi ) − J ′
j (Pj )| arbitrarily large. Now, because of (21) and

(12) for all {k, l} ∈ E
|J ′

k(Pk) − J ′
l (Pl)| ≤ B

As G is connected, for all i, j ∈ V , and there are N nodes in the network, there are
at most N − 1 hops in a path from any node i to any node j . Thus for aribitrary i, j :

|J ′
j (Pj ) − J ′

i (Pi )| ≤ (N − 1)B

establishing a contradiction.

Taken together, Lemmas 1 and 2 show that (13) forces:

lim
k→∞

∂ J (P)

∂P

∣∣∣∣
P=P(k)

= 0.

To show that this ensures that J (P) is minimized, we next expose a property of
the gradient of J (·).
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Lemma 3 With the various quantitities defined as above, consider (14). Then

∂ J (P)

∂Pi
= 0

iff
Δ = 0

and for all i ∈ V ∑

{i, j}∈E

(
J ′
i (Pi ) − J ′

j (Pj )
) = 0.

Proof Observe that (8) and (14) ensure that the result clearly holds when Δ = 0. To
establish a contradiction suppose first that Δ < 0. Choose any i∗ ∈ V such that:

i∗ = argmin
i∈V

{
J ′
i (Pi )

}
.

Note i∗ need not be unique. Consider (14) with i = i∗. Then the convexity part of
Assumption 3.1 ensures that:

J ′′
i∗(Pi∗)

∑

j∈N (i∗)

(
J ′
i∗(Pi∗) − J ′

j (Pj )
) ≤ 0.

Consequently, Δ = 0. Likewise if Δ > 0. Choose any i∗ ∈ V such that:

i∗ = argmax
i∈V

{
J ′
i (Pi )

}
.

Then again Δ = 0 as ∑

j∈N (i∗)

(
J ′
i∗(Pi∗) − J ′

j (Pj )
) ≥ 0,

completing the proof.

This brings us to the main result of this section.

Theorem 4 With the various quantitities definedabove, consider (12) underAssump-
tion 3.1 and with G connected. Define P∗ = [P∗

1 , P∗
2 , . . . , P∗

N ]� whose elements sat-
isfy Theorem 1. Then for every P(0) there exists a μ∗, such that for all 0 < μ ≤ μ∗,
under (13) there holds uniformly:

lim
k→∞ P(k) = P∗.



494 R. Mudumbai et al.

Proof From Lemma 2 and Assumption 3.1 that J (·) satisfies the conditions imposed
on f (·) in Lemma 1. Then from Lemma 1

lim
k→∞

∂ J (P)

∂Pi

∣∣∣∣
P=P(k)

= 0.

Because of Lemma 3 this means that

lim
k→∞ Δ(k) = 0,

and for all i ∈ V and j ∈ N (i)

lim
k→∞

(
J ′
j (Pj (k)) − J ′

i (Pi (k))
) = 0. (23)

As G is connected this means (23) holds for all {i, j} ⊂ V . Then the result follows
from arguments used in the proof Theorem 1. Uniformity is a consequence of the
autonomous nature of (13).

5 Incorporation of (3) and Consequences of Power Loss

Observe as presented, the Pi (k) generated by (13) need not respect (3). We now
present an additional reasonable assumption and argue that subject to its satisfaction
a simple fix suffices to ensure the satisfaction of (3).

Assumption 5.1 In (3), there exists δ > 0 such that the following holds for all
{i, j} ⊂ V ,

J ′
i (p

−
i ) + δ < J ′

j (p
+
j ), (24)

and
p−
i < p+

j . (25)

Thus the marginal costs at the smallest allowable power are uniformly over bounded
by those at the largest. Then we argue that the following algorithm converges to the
optimum.

Pi (k + 1) =
{
Pi (k) − μ ∂ J (P)

∂Pi

∣∣∣
P=P(k)

p−
i ≤ Pi (k + 1) ≤ p+

i

Pi (k) else
(26)

Thus this algorithm employs the simplest possible projection: Do not move if you
violate constrains. Then we have the following theorem.
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Theorem 5 Under the conditions of Theorem 4, suppose Assumptions 2.1, 5.1 and

p−
i ≤ Pi (0) ≤ p+

i

hold. Then there exists μ∗ > 0 such that for all 0 < μ ≤ μ∗ so does (4).

Proof We first prove that there exists no k such that

ψi (k) = Pi (k) − μ
∂ J (P)

∂Pi

∣∣∣∣
P=P(k)

/∈ [p−
i , p+

i ], ∀i ∈ V (27)

holds. To establish a contradiction suppose at some k (27) holds. Suppose firstΔ(k) ≥
0.Then because ofAssumption 5.1 theremust be an i ∈ V such thatψi (k) < p−

i , and
because ofAssumption 5.1, and sufficiently smallμ > 0, J ′

i (Pi (k)) < J ′
j (Pj (k)), for

all j ∈ N (i). Then from (14),ψi (k) > Pi (k) ≥ p−
i .This establishes a contradiction.

The Δ(k) < 0 case is similarly handled. Thus (27) cannot hold. Now suppose P̄(k)
comprise all Pi (k) that violate (27). Then

P̄i (k + 1) = P̄i (k) − μ
∂ J (P)

∂ P̄i

∣∣∣∣
P=P̄(k)

.

Then (19) holds for sufficiently small μ with f (·) = J (·). Then a slight variation of
the arguments leading to the proof of Theorem 4 yields the result.

We now address the issue of power losses. Assume the total loss amounts to
Ploss(k). Then as shown in [3]

Δ(k) = PL −
∑

i∈V
Pi (k) + Ploss(k).

In this case convergence still occurs to a point where

Δ = 0 and J ′
i (Pi ) = J ′

j (Pj ), ∀ {i, j} ⊂ V . (28)

This is however, no longer the optimum. However, as in [3] assume

L(P) = Ploss. (29)

Note this permits a coupled dependence of the net loss on the Pi . As in [3], assume
that

γi (P) = ∂L(P)

∂Pi
≤ γ0 < 1.

Observe γ0 is the extra unit of power from generator i lost in the grid. Then as shown
in [3], that the suboptimality induced by (28) is proportional to γ 2

0 and for small γ0
is small.
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6 Simulations

Simulations are conducted with 100 generating units to examine the scalability of
this approach to larger grids, and to study the effect of power losses. To demonstrate
the efficacy of the algorithm for more general non-quadratic cost functions, cubic
cost functions are used.

A randomly generated adjacency graph models the communication links in the
smart grid. This graph is generated by placing all the generators units uniformly and
randomly in a square grid and connecting any two nodes within a threshold distance.
This model is suitable, for instance, to model the communication links when the
network comprises isotropic wireless links. Figure 1 shows the connectivity graph.
In this graph, each node has on average 6 neighbors. The cubic cost functions have the
form Ji (Pi ) = di P3

i + ci P2
i + bi Pi + ai . The parameters di , ci , bi , ai are chosen

randomly (independent and identically distributed across the generators).
The first simulation of the 100 unit system is without any power losses. The

parameter values for this simulation are μ = 10 and α = 0.0001. The results are
shown in Fig. 2. Near-optimal cost is reached and power imbalance is removed
within less than 50 iterations underscoring the scalability of the algorithm.

The next simulation studies the effect of power losses on this 100 unit system.
The power losses in the grid is modeled using the popular model in the literature
on dispatch (see e.g., [31]) as Ploss = ∑N

i, j=1 BB(i, j)Pi Pj + ∑N
i=1 B(i)Pi , where

BB(i, j) is a positive-semidefinite matrix and B a nonnegative vector of quadratic
and linear loss terms respectively. The loss parameters BB, B were chosen randomly
to give power losses of approximately 1% in this simulation.

Fig. 1 Connectivity graph
of a 100 node network
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Fig. 2 Convergence of dispatch algorithm for a 100 node network

The simulation results in Fig. 3 show the convergence behavior of the algorithm
for the 100 node system with losses. All parameters for the results in Fig. 3 are the
same as for Fig. 2 except for the power losses. It can be seen that the total generation
cost decreases to a steady-state value within 100 iterations and the algorithm is able
to restore power balance even in the presence of power losses. Our analysis in [3]
suggests, however, that the equilibrium point of this algorithm is no longer optimal
in the presence of power losses, though the sub-optimality can be shown to be small
for typical levels of power losses. We can see by comparing Figs. 2 and 3 that the
steady-state total generation cost is slightly higher with losses that reflects the cost of
generating additional power to compensate for the losses. Since the (equal marginal
cost) solution to which our algorithm converges in the presence of losses is the same
solution considered in [3], the analysis of losses presented in [3] extends also to the
algorithm presented in this chapter.
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Fig. 3 Simulation of distributed dispatch algorithm with non-quadratic cost functions with power
losses

7 Conclusion

We have presented a decentralized consensus-based algorithm for achieving opti-
mal dispatch, that uniformly achieves optimal power allocation while meeting load
requirements. Our algorithm relies on local frequency deviation measurements and
on a connected network over which neighboring generators exchange their marginal
costs. The underlying network graph is permitted to be directed.

Several areas of future research can be pursued. The algorithm as presented
involves synchronous communication. Asynchronous communication, in the tra-
dition of, [21] is worthy of exploration. Other kinds of information exchange that
can further enhance the convergence rate of the algorithm is also an interesting topic
for further study.
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Impact of Quantized Inter-agent
Communications on Game-Theoretic
and Distributed Optimization Algorithms

Ehsan Nekouei, Tansu Alpcan and Robin J. Evans

Abstract Quantized inter-agent communications in game-theoretic and distributed
optimization algorithms generate uncertainty that affects the asymptotic and transient
behavior of such algorithms. This chapter uses the information-theoretic notion of
differential entropy power to establish universal bounds on themaximum exponential
convergence rates of primal-dual and gradient-based Nash seeking algorithms under
quantized communications. These bounds depend on the inter-agent data rate and the
local behavior of the agents’ objective functions, and are independent of the quantizer
structure. The presented results provide trade-offs between the speed of exponential
convergence, the agents’ objective functions, the communication bit rates, and the
number of agents and constraints. For the proposed Nash seeking algorithm, the
transient performance is studied and an upper bound on the average time required to
settle inside a specified ball around the Nash equilibrium is derived under uniform
quantization. Furthermore, an upper bound on the probability that the agents’ actions
lie outside this ball is established. This bound decays double exponentially with time.

1 Introduction

Modern societies are heavily dependent on networking technologies for almost every
type of activity. The Internet, smart phones, and cloud computing could not exist
without networking. In all networked systems, a limited number of resources, e.g.,
bandwidth and computing power, are shared among the interconnected devices, here-
after called the agents. The performance of the networked system is highly depen-
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dent on how these resources are shared among the agents. Hence, resource allocation
algorithms play an important role in networking technologies. The network resource
allocation problem between the agents can be formulated as a global optimization
problem with a team-optimal solution, or modeled as a non-cooperative game. The
solution in the former case is team-optimal, whereas the resources are shared accord-
ing to the equilibrium of the game among the selfish agents in the latter.

This chapter studies two distinct scenarios for the network resource sharing prob-
lem related to these cases. In the first scenario, the resource allocation problem is
posed as a network utility maximization (NUM) problem, and the agents deploy a
distributed, iterative primal-dual optimization algorithm to solve the NUM problem.
In the second scenario, the interaction between the agents is modeled as a non-
cooperative game and the agents compute the Nash equilibrium (NE) solution of the
game using a gradient-based Nash seeking algorithm. The communication channels
between the agents are modeled as digital ones since the agents may be far away
from each other. The actions of the agents are hence quantized into discrete-valued
symbols that may are represented as bits. The finite capacity of practical communi-
cation leads to an upper bound on the average number of bits transmitted per unit
time. Consequently, the agents’ local variables can only be transmitted in a quantized
form using a finite number of bits per time interval. It is known in the literature that
such data rate limitations can have detrimental impacts on the performance of con-
trol and optimization algorithms. For example, a communication channel deployed
in a feedback control system can destabilize the system if its data rate is too low,
e.g., see [1, 2]. Moreover, in distributed optimization as well as Nash equilibrium
seeking algorithms, the quantized communications results in information ambiguity
since each agent receives only quantized information from the other agents (which
is typically different from unquantized information).

The aim of this chapter is to quantify the impact of quantized communications in
NUM problems and non-cooperative games by making use of information-theoretic
ideas. The results presented integrate and summarize those in [3, 4].

The remainder of the chapter is organized as follows. The next section introduces
the quantized primal-dual algorithm for NUMs and studies its asymptotic perfor-
mance under quantized inter-agent communications. In Sect. 3, a quantized gradient-
based Nash seeking algorithm is proposed and its asymptotic and non-asymptotic
behaviors are analyzed under quantized communications. Section3.3 presents the
numerical results, which is followed by the concluding remarks of Sect. 4.

2 Primal-Dual Algorithm Under Quantized
Communications

In the seminal work [5], Kelly et al. introduced the network utility maximization
(NUM) approach, which provides decentralized frameworks in the form of primal,
dual, and primal-dual (PD) decomposition methods, for solving network resource
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allocation problems. Each decomposition method distributes the computational
burden of solving the resource allocation problem among the agents, while the task of
information transfer between the agents is handled by the underlying communication
network. The problem of devising efficient decomposition methods for NUM prob-
lems has been extensively studied in the literature, e.g., see [6] and the references
therein. While the performance of distributed optimization algorithms, in particu-
lar of NUM algorithms, is well understood under perfect communication channels,
investigation of the impact of imperfect communications on these optimization algo-
rithms is relatively a new research area that has attracted much interests in the recent
years, e.g., see [7, 8].

This section focuses on a NUM problem in which a group of agents maximize
the sum of their local concave objective functions subject to a set of linear con-
straints using a quantized PD algorithm with a random initial condition. Following
the conventions of the NUM literature, e.g., see [5, 6] and the references therein, it
is assumed that the primal variables are updated by the agents, whereas each dual
variable is updated by a network node (NN) that has access to the knowledge of the
constraint associated with that specific dual variable. Thus, the agents and NNs need
to exchange the quantized values of the primal and dual variables to execute the PD
algorithm. The impact of quantized communications between the agents and NNs on
the convergence rate of the PD algorithm under quantization is investigated in this
setup.

The rest of this section first studies the system model, and then describes the
communication graph, the structure of quantizers, as well as the underlying stand-
ing assumptions. Asymptotic and non-asymptotic results on the convergence of PD
algorithm under quantization are presented.

2.1 NUM Model

A specific formulation of the NUM problem as one of convex optimization involves
M agents, who maximize the sum of their individual objective functions subject to a
set of linear equality constraints. Let xi andUi

(
xi
)
represent the decision variable of

the agent i and its objective function, respectively. Assume that the objective function
of each agent is concave in its decision variable. The agents then collectively solve
the following NUM problem:

maximize
x

M∑

i
Ui

(
xi
)

Subject to Ax = b,
, (1)

where, M is the number of agents, b ∈ R
N , A ∈ R

N×M , N is the number of con-
straints, and x = [

x1, · · · , xM
]�
. The condition N < M is imposed to ensure that the

feasible set of the optimization problem (1) is nonempty. The matrix A is assumed
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to be full rank, i.e., rank (A) = N , to ensure the uniqueness of the dual optimal
solution. The objective function in (1) is concave and the constraints are linear.
Thus, the centralized optimization problem (1) can be solved using the standard
convex optimization techniques.

When solving the problem in a distributed manner using the PD algorithm [6],
the primal and dual variables are updated according to

xik = xik−1 + μk−1

(
d

dxi
Ui

(
xik−1

) − A�
i λk−1

)
, 1 ≤ i ≤ M

λ
j
k = λ

j
k−1 + μk−1

(
Ā j xk−1 − b j

)
1 ≤ j ≤ N , (2)

where μk−1 is the step size of the algorithm at iteration k − 1, xik and λ
j
k denote the

values of i th primal variable and j th dual variable at iteration k, respectively. In terms
of notation, λk−1 = [

λ1
k−1, . . . , λ

N
k−1

]�
, Ai denotes the i th column of the matrix A,

and Ā j denotes the j th row of matrix A. The solution of the optimization problem
(1) is obtained following a primal-dual (PD) decomposition approach in which the
primal variables, i.e., agents’ decision variables, are updated by the agents at each
iteration. In addition, at each iteration of the PD algorithm, the j th dual variable,
i.e., λ j , is updated by the specific j th network node (NN) with knowledge of the
parameters characterizing the constraint associated with λ j , i.e., A j and b j . The
vector of PD variables at iteration k, i.e., yk , is defined as the vector concatenation
of xk and λk , i.e.,

yk = [
xk, λk

]
.

It is assumed that the initial primal and dual variables, i.e., x0 and λ0, are chosen
randomly according to the probability density functions px0 (x) and pλ0 (λ), respec-
tively. By allowing the initial condition to be random, the primal and dual variables
become random variables. This facilitates the use information-theoretic tools for
studying the speed of exponential convergence of the primal-dual algorithm under
quantized communications. Furthermore, the following assumptions are imposed
on the objective functions of the agents, the step size μk , px0 (x), and pλ0 (λ).

1. The agents’ objective functions are concave and twice continuously differentiable.
2. Umin

i ≤ d2

dxi 2
Ui

(
xi
) ≤ Umax

i < 0 for xi ∈ R and all i .

3. μk ≤ mini 1|Umin
i | for all k.

4. The sequence {μk}k converges to μ� > 0.
5. The random vectors x0 and λ0 are mutually independent and the distributions of

x0 and λ0 have finite differential entropies, i.e.,

∣∣∣∣−
∫

px0 (x) log
(
px0 (x)

)
dx

∣∣∣∣ < ∞
∣
∣∣∣−

∫
pλ0 (λ) log

(
pλ0 (λ)

)
dλ

∣
∣∣∣ < ∞
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Assumptions 1 and 2 above are standard in the optimization literature.Assumption
2 implies that the objective functions of agents are strongly concave and the first
derivative of each objective function is Lipschitz continuous. Assumption 4 implies
that the unquantized update rule does not employ a diminishing step size rule as the
PD update may not converge exponentially with such a step size rule. Assumptions 3
and4,which are not commonlyused in the literature, allowusageof the entropypower
method from information theory. Assumption 5 implies that the initial condition
injects a minimum amount of uncertainty to the PD algorithm, and the amount of
uncertainty due to the initial condition is bounded. Variants of Assumption 5 are used
in the quantized feedback control literature [1].

2.1.1 Communication Topology and Cost

The inter-agent communication topology is represented as a bipartite graph induced
by the N × M constraint matrix A. In this graph, the edges exist only between the
agents and the network nodes (NNs), which form two disjoint sets of vertices. There
exists an edge between agent i and NN j in the communication graph if and only if
A ji �= 0.

The communicationmechanism is broadcast in nature,with each vertex ‘listening’
and broadcasting only to those other vertices with which it shares an edge. This
is implemented by uniquely assigning every vertex in the graph one of N + M
disjoint transmission radio-frequency bands (frequency division multiplexing) or one
of N + M disjoint time slots per cycle (time divisionmultiplexing), before the system
is deployed. Any other vertex that needs to listen to a transmission just tunes in to the
appropriate frequency band or time slot dedicated to the corresponding transmitter.
Note that the edges do not represent individual one-to-one channels, but indicate the
broadcast transmitter-receiver structure of the system.

Under typical digital modulation formats, the width of the frequency band/time
slot allocated to agent i and/or the average transmission power it consumes to broad-
cast its encoded symbols to all NNs j with A ji �= 0 will be proportional to its aver-
age data rate Ri

x := limk→∞ 1
k

∑k−1
t=0 log

∣
∣A x

i,t

∣
∣. Similarly, the band/slot-width and/or

transmission power used by NN j to broadcast its encoded dual symbols to all

agents i with A ji �= 0 is typically proportional to R j
λ := limk→∞ 1

k

∑k−1
t=0 log

∣∣∣A λ
j,t

∣∣∣.
Equation (5) in the upcoming section, which can be intuitively interpreted as∑M

i=1 R
i
x + ∑N

j=1 R
j
λ , then captures the total amount of physical resources, i.e., time,

bandwidth, or transmission power, required for the system to communicate. It can be
seen that this communication cost scales with O(N + M) as the network grows in
size. Note that due to the broadcast nature of the system, every transmission can be
heard by multiple receivers, without the transmitter having to use up extra resources.
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2.1.2 A Quantizer Structure for NUM

To execute the PD update rule (2), the agents and NNs require the knowledge of
dual and primal variables, respectively. Since the agents and NNs are not necessarily
co-located, the information exchange between NNs and agents is performed via
broadcast communication channels, as described in the next subsection. Due to the
capacity limitations of these channels, only quantized versions of the primal and dual
variables can be exchanged between NNs and agents.

At iteration k, agent i encodes xik to Q̂x
i,k using an adaptive encoder mapping of

the form

Q̂x
i,k = E x

i,k

({
xin
}k
n=0 ,

{
Q̂x

i,n

}k−1

n=0

)
.

It then broadcasts Q̂x
i,k to all NNs j with A ji �= 0. The output of the encoder of

agent i at iteration k, i.e., Q̂x
i,k , belongs to the finite alphabet set A x

i,k . Thus, agent
i requires log2

∣∣A x
i,k

∣∣ bits to transmit its encoded symbol to NNs. A large value of∣∣A x
i,k

∣∣ indicates that agent i transmits its decision variable with high precision to NNs
whereas a low

∣∣A x
i,t

∣∣ indicates low quality communication between agent i and NNs.

Upon receiving Q̂x
i,k , all NNs j with A ji �= 0 reconstruct the quantized estimate of

xik , i.e., Q
x
i,k , using the decoder mapping Qx

i,k = Dx
i,k

({
Q̂x

i,n

}k

n=0

)
.

Similarly, at iteration k, NN j chooses symbol Q̂λ
j,k from the finite alphabet set

A λ
j,k according to the adaptive encoding map

Q̂λ
j,k = Eλ

k

({
λ j
n

}k
n=0 ,

{
Q̂λ

j,n

}k−1

n=0

)
,

and broadcasts Q̂λ
j,k to all the agents with index i , where A ji �= 0. Next, all agents i

with A ji �= 0 construct the quantized version of λ j
k , i.e., Q

λ
j,k , using the decodingmap

Qλ
j,k = Dλ

j,k

({
Q̂λ

j,n

}k

n=0

)
. Note that this formulation allows the encoded symbol at

iteration k to depend on the current and past values of the primal/dual variables as
well as the past outputs of the encoder.

Let Q =
{{
E x
i,k (·),Dx

i,k (·)}
i
,
{
Eλ

j,k (·),Dλ
j,k (·)

}

j

}∞

k=0

be a quantization scheme.

Then, the quantized versions of the PD variables at iteration k under the quanti-
zation scheme Q are denoted by Qk , i.e.,

Qk = [
Qx

k , Qλ
k

]
,

where Qx
k=

[
Qx

1,k, . . . , Q
x
M,k

]�
and Qλ

k=
[
Qλ

1,k, . . . , Q
λ
N ,k

]�
.
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Next, three notions of data rate for a given quantization scheme Q are defined
and later used to study the convergence behavior of primal, dual, and PD variables.
The average aggregate data rate per unit time for transmitting the primal variables to
NNs under the quantization schemeQ, Rx , is defined as

Rx = lim
k→∞

1

k

k−1∑

t=0

(
M∑

i=1

log
∣∣A x

i,t

∣∣
)

(3)

Similarly, define the average aggregate data rate per unit time for broadcasting the
dual variables to agents under the quantization scheme Q, Rλ, as

Rλ = lim
k→∞

1

k

k−1∑

t=0

⎛

⎝
N∑

j=1

log
∣∣A λ

j,t

∣∣

⎞

⎠ (4)

Finally, the average total data rate per unit time under the quantization scheme Q,
i.e., RQ , is defined as

RQ = lim
k→∞

1

k

k−1∑

t=0

⎛

⎝
(

M∑

i=1

log
∣∣A x

i,t

∣∣
)

+
N∑

j=1

log
∣∣A λ

j,t

∣∣

⎞

⎠ (5)

The quantized PD update rule under the quantization scheme Q is formulated as

xik = xik−1 + μk−1

(
d

dxi
Ui

(
xik−1

) − A�
i Q

λ
k−1

)
,

λ
j
k = λ

j
k−1 + μk−1

(
Ā j Q

x
k−1 − b j

)
(6)

Let x�, λ� be the primal optimal and dual optimal solutions, respectively. Further,
let y� be the vector concatenation of x�, λ�. Define εk = yk − y� as the difference
between the PD variables at iteration k and the optimal solution. Let ‖εk‖2 denote
the distance of the PD variables at iteration k from the optimal solution, i.e.,

‖εk‖2 =
√√
√√

M∑

i=1

(
xik − xi �

)2 +
N∑

j=1

(
λ
j
k − λ j �

)2
, (7)

where xi
�
and λ j � are the optimal values of the primal variable xi and the dual

variable λ j , respectively. Then, the mean square distance (MSD) of the PD variables
from the optimal solution at iteration k under the quantization schemeQ is defined as
E
[‖εk‖22

]
. Define the MSD of the primal variables from the optimal primal solution

at iteration k as E
[∥∥εx

k

∥∥2
2

]
where εx

k = xk − x�. Similarly, the MSD of the dual

variables at iteration k from the optimal dual solution is defined as E
[∥
∥ελ

k

∥
∥2
2

]
where
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ελ
k = λk − λ�. Next, the class of optimum achieving (OA) quantization schemes are

defined.

Definition 1 The quantization scheme Q is called an OA quantization scheme if,
under Q, the primal and dual variables converge to their optimal values x� and λ�.
That is:

lim
k→∞ xk = x�

lim
k→∞ λk = λ�

Definition 1 implies that, under an OA quantization scheme, the quantization
error does not impede the convergence of the PD algorithm to the optimal solution.
Thus, under an OA quantization scheme, the PD algorithm converges to the optimal
solution of the optimization problem regardless of the quantized communication
between agents and NNs.

2.2 Distributed Optimization Results and Discussion

This section analyzes the impact of quantized communications on the mean square
distance (MSD) from the optimal solution of the primal and dual variables generated
by the primal-dual algorithm (PD) for two different regimes: (i) Asymptotic regime,
(ii) Non-asymptotic regime. In the asymptotic regime, the behavior of the MSD
under OA quantization schemes is studied as the number of iterations k increases
to infinity. To this end, the notion of distance decay exponent (DDE) is introduced,
which captures the rate of exponential convergence of the MSD to zero. Universal
lower bounds on the DDE of PD variables, namely the primal variables and dual
variables, are established in Theorems 1, 2, 3, and 4. In the non-asymptotic regime,
the behavior of the MSD is investigated for any finite k. Here, the results provide
universal lower bounds on the MSD for any finite k (see Corollaries 1 and 2 for more
details).

2.2.1 Asymptotic Behavior of PD Algorithm Under Quantization

This subsection first introduces the notion of the distance decay exponent (DDE) for
the primal and dual variables in PD. Subsequently, universal lower bounds on the
DDE of PD, primal, and dual variables are derived.

Definition 2 LetQ be anOAquantization scheme. Then, theDDEof the PD, primal,
and dual variables under Q are defined as
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lim inf
k→∞

1

k
logE

[‖εk‖22
]
,

lim inf
k→∞

1

k
logE

[∥∥εx
k

∥∥2
2

]
,

lim inf
k→∞

1

k
logE

[∥
∥ελ

k

∥
∥2
2

]
,

respectively.

The DDEs capture the speed of exponential mean square convergence of the PD
primal and dual variables to their corresponding optimal solutions. These are non-
positive quantities, where a more negative DDE indicates faster convergence to the
optimal solution. Moreover, a zero DDE implies slower-than-exponential conver-
gence. In this subsection, the information-theoretic notion of entropy power is used
to establish universal lower bounds on the DDE of the primal and dual variables.

The next theoremprovides a universal lower boundon theDDEof the PDvariables
under OA quantization schemes. The proof uses the information-theoretic notion of
differential entropy power, which has been previously applied to study control with
communication constraints; see, e.g., [9].

Theorem 1 LetQ be anOAquantization scheme. Then, theDDEof thePDvariables
under Q can be bounded from below

lim inf
k→∞

1

k
logE

[‖εk‖22
] ≥ 2

N + M

(
M∑

i=1

log

(
1 + μ� d2

dxi 2
Ui

(
xi

�
))

− RQ

)

,

(8)

where xi
�
is the optimal value of the primal variable xi .

Proof. See the Appendix.

Theorem 1 establishes an explicit universal lower bound on the DDE of PD vari-
ables under OA quantization schemes. This bound is universal in the sense that it is
independent of the structure of the quantizer, and is thus applicable to all quantization
schemes which are OA.

According to Theorem 1, for a given average total data rate RQ , the PD variables
converge to the optimal solution at most exponentially fast. The speed of this expo-
nential convergence is bounded by the average total data rate under the quantization
scheme, i.e., RQ , and also by the behavior of the objective functions of agents around
the optimal solution. As stated in Theorem 1, the lower bound on the DDE for PD
variables decreases linearly with RQ . Note that as RQ becomes large, the NNs and
agents have more precise information about the primal and dual variables. The lower
bound on the DDE also increases with the second derivatives of the agents’ objective
functions at the optimal solution. As these second derivatives become less negative,
the objective function becomes flatter near the optimal solution and the quantized PD
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algorithm can be expected to converge more slowly. Theorem 1 is in concordance
with this intuition.

The next theorem establishes a universal lower bound on the DDE of primal
variables in the quantized PD update rule under an OA quantization scheme.

Theorem 2 ([10]) Under an OA quantization scheme Q, the DDE of the primal
variables is lower bounded by

lim inf
k→∞

1

k
logE

[∥
∥εx

k

∥
∥2
2

]
≥ 2

M

(
M∑

i=1

log

(
1 + μ� d2

dxi 2
Ui

(
xi

�
))

− Rλ

)

. (9)

According to Theorem 2, the exponential convergence speed of the primal vari-
ables is limited by (i) the behavior of objective functions of the agents around the
optimal solution, (ii) the average aggregate data rate for transmission of dual vari-
ables, and (iii) the number of agents. Different from the PD bound in Theorem 1,
this lower bound on the DDE of the primal variables depends only on the average
aggregate data rate for transmission of dual variables, i.e., Rλ, rather than on the
average total data rate under the quantization scheme Q. This observation signifies
the role of the quantized dual variables on the convergence of the primal variables.

The next theorem presents a result on DDE for dual variables.

Theorem 3 ([10]) The DDE of dual variables under an OA quantization schemeQ
satisfies

lim inf
k→∞

1

k
logE

[∥∥ελ
k

∥∥2
2

]
≥ − 2

N
Rx . (10)

Theorem 3 establishes a universal bound on the fastest possible exponential con-
vergence rate of the dual variables under any OA quantization schemeQ. The lower
bound in Theorem 3 is controlled by the number of constraints and the average
aggregate data rate for transmission of primal variables to NNs. Compared to the PD
lower bound, it does not depend on the behavior of the objective functions of agents
and is only limited by the average aggregate data rate for transmission of the primal
variables, i.e., Rx , rather than the average total data rate RQ .

Next, a lower bound on the DDE of the PD algorithm is derived for quadratic
NUM problems under zoom-in quantization schemes (see Definition 3). This bound
is tighter than the lower bound in Theorem 1 for the high data rate regime. In a
quadratic NUM problem, the objective function of agent i is given by Ui

(
xi
) =

− ai
2

(
xi
)2 + ci xi + fi where ai is a positive constant. The unquantized PD algorithm

for quadratic NUM problems can be written as

xik = (1 − μai ) x
i
k−1 + μ

(
ci − A�

i λk−1
)
, 1 ≤ i ≤ M

λ
j
k = λ

j
k−1 + μ

(
Ā j xk−1 − b j

)
1 ≤ j ≤ N (11)
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Let yk be the vector concatenation of xk and λk . Then, (11) can be written as

yk = T yk−1 + μ

[
c

−b

]

where c = [c1 . . . , cM ]� and the matrix T is defined as

T =
[
Diag (1 − μa1, . . . , 1 − μaM) −μA�

μA IN

]
(12)

in which IN denotes an N -by-N identity matrix and Diag (1 − μa1, . . . , 1 − μaM)

is a diagonal matrix with the i th diagonal element equal to 1 − μai .

Let Q̃k =
{
Q̂x

1,n, . . . , Q̂
x
M,n, Q̂

λ
1,n, . . . , Q̂

λ
N ,n

}k

n=0
be the collection of encoders’

outputs up to iteration k, respectively. The quantized PD update rule is

xik = Tii x
i
k−1 +

M+N∑

j=M+1

Ti j Q
λ( j−M)

k + μci

λ
j
k = λ

j
k−1 +

M∑

i=1

Tji Q
xi
k − μb j

The quantized update rule is denoted by yk+1 = T̂
(
yk, q̃k

)
where q̃k is a realization

of Q̃k . We use Ck (q̃k) to represent the quantization cell corresponding to q̃k , i.e., the
set of points in R

N+M which are mapped to the same output by the encoder when
Q̃k = q̃k . Next, a zoom-in quantization scheme is defined.

Definition 3 Consider the quantization scheme Q, and let Ck (q̃k) be the quan-
tization cell at iteration k which contains yk . Then, Q is a zoom-in quantization
scheme if at time k + 1 the image of Ck (q̃k) under T̂ (·, q̃k) is quantized for all
k ∈ N0 = {0, 1, 2, . . .}.

In addition to the assumptions stated in Sect. 2.1 we also require

1. The matrix T is invertible and all its eigenvalues are inside the unit circle in the
complex plane.

2. A zoom-in quantization scheme is employed and each primal/dual variable is
independently quantized.

3. The distributions of initial primal and dual variables, i.e., px0 (x) and pλ0 (λ), are
bounded and have finite support sets.

Theorem 4 ([10]) Consider any zoom-in quantization schemeQ with ρ = δmax
k

δmin
k

(for

all k) where δmax
k and δmin

k are the maximum and minimum quantization steps under
Q at iteration k, respectively. Let B be the hypercube centered at the origin with
the i th side length equal to 4ρ |Tii | + 2 ‖T ‖∞ where ‖·‖∞ denotes the norm infinity
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Fig. 1 Two-dimensional lattice of integers Z2 (a) and the lattice TZ2 (b)

and Tii is the i diagonal entry of matrix T . Let βT be the number elements in the set
B ∩ TZN+M where the lattice TZN+M is defined as TZN+M = {

T I, I ∈ Z
N+M

}

and Z
N+M is the lattice of integers in R

N+M. Then, the DDE of the PD variables
under Q for quadratic NUM problems is lower bounded as

lim inf
k→∞

1

k + 1
logE

[‖εk+1‖22
] ≥ − 2

M + N
log

⎛

⎝ βT(∏M+N
i=1 |Tii |

)

⎞

⎠ . (13)

Theorem 4 establishes a bound on the fastest possible exponential convergence
speed of quantized PD algorithms in quadratic NUM problems, under any zoom-in
quantization scheme which is OA. The lower bound in Theorem 4 depends on the
number of agents, number of constraints, and βT . The constant βT depends on the
dynamics of the unquantized PD algorithm, i.e., matrix T , and can be interpreted
as the number of lattice points in Z

N+M which lie in B after applying the linear
transformation T to Z

N+M . Figure1 shows the two dimensional lattice of integers
Z
2 and its image after applying a linear transformation. In Fig. 1b, the number of

lattice points in the square is equal to βT . Since the transformation T is linear, 0
always lies in B which implies βT ≥ 1.

Consider the PD algorithm in a quadratic NUM problem under the zoom-in quan-
tization schemeQ with ρ = δmax

k

δmin
k

. For the quadratic PD algorithms, Theorems 1 and
4 can be combined into

lim inf
k→∞

1

k + 1
logE

[∥∥εk+1
∥∥2
2

]
≥ 2

M + N

⎛

⎝

⎛

⎝
M∑

i=1

log (1 − μai )

⎞

⎠ − min
(
log (βT ) , RQ

)
⎞

⎠

(14)

If the quantization intervals for each primal/dual variable are divided into K ≥ 2
equal length intervals, the data rate under quantization scheme Q i.e., RQ , will
increase by (N + M) log (K ) bits and ρ does not change. Hence, according to (14),
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the lower bound inTheorem4becomes tighterwhen compared to that inTheorem1as
RQ (or K ) becomes large. This observation shows that the exponential convergence
speed of the quantized PD algorithm in quadratic NUM problems cannot be made
arbitrarily fast by increasing RQ .

An upper bound on βT can be obtained by finding the number of lattice points
of ZN+M which lie in the smallest hypercube containing the image of B under T−1.
Let T−1 (B) be the image of the hypercube B under linear transformation T−1. Let
B�
T−1 be the smallest hypercube containing T−1 (B). Then, βT is upper bounded by∏
i

(⌊
l�i
⌋ + 1

)
where l�i is the i th side length of B

�
T−1 . In the numerical analysis, this

upper bound on βT is used to compute the lower bound in Theorem 4.

2.2.2 PD Algorithm in the Non-asymptotic Regime

This subsection establishes universal lower bounds on the mean square distance
(MSD) of primal-dual (PD), primal, and dual variables from their corresponding
optimal solutions at any finite time instance k. Unlike Theorems 1, 2 and 3, the
following results are not limited to optimum achieving (OA) quantization schemes.
Thus, they give rise to universal lower bounds on the MSD of PD, primal and dual
variables from their corresponding optimal solutions, under arbitrary quantization
schemes. The results in this subsection indicate that the distance between the opti-
mization variables and the optimal solution cannot be made arbitrarily close to zero
at a given time instance k. The following corollary presents a non-asymptotic lower
bound on the MSD of the PD variables.

Corollary 1 ([10]) Consider the PD algorithm under the quantization scheme Q.
Then, the MSD of the PD variables from the optimal solution at iteration k can be
lower bounded as

logE
[‖εk‖22

] ≥ log

(
e1−

1
M+N

2πe

)

+ 2

N + M

(
M∑

i=1

k−1∑

n=0

log
(
1 + μnU

min
i

)

+ h
[
y0
] −

k−1∑

t=0

⎛

⎝
(

M∑

i=1

log
∣∣A x

i,t

∣∣
)

+
N∑

j=1

log
∣∣A λ

j,t

∣∣

⎞

⎠

⎞

⎠ , (15)

Corollary 1 provides a universal lower bound on the MSD of PD variables under
quantized communications between agents and NNs. This result indicates that at a
given time the PD variables cannot be arbitrarily close to the optimal solution (in
the mean square sense), and imposes a lower bound on the MSD of PD variables
from the optimal solution at a given time. According to Corollary 1, the MSD of
PD variables from the optimal solution at iteration k is bounded from below by
the behavior of the second derivative of the objective functions of agents along the
trajectories of primal variables up to time k − 1, the total number of bits exchanged
between agents and NNs up to time k − 1, the differential entropy of distribution
of initial PD variables, i.e., h

[
y0
]
, and the number of constraints and agents. The
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impact of objective functions of agents and the data rate between agents and NNs on
the lower bound in (15) are similar to those in Theorem 1.

Note that the entropy power of y0, i.e.,
1

2πe e
2

N+M h[ y0] is a measure of effective
support volume of the random vector y0. Thus, as h

[
y0
]
becomes large, the size

of the effective support set of y0 increases, i.e., y0 will be distributed on a larger
region of RN+M . As a result, the MSD of the PD variables from the optimal solution
increases since y0 effectively takes value from a larger set, a behavior predicted by
Corollary 1.

The next corollary establishes a lower bound on the MSD of primal and dual
variables:

Corollary 2 ([10])LetE
[∥∥εx

k

∥∥2
2

]
andE

[∥∥ελ
k

∥∥2
2

]
be theMSDof the primal variables

and dual variables, respectively, at iteration k from the optimal solution. Then,

logE
[∥∥εxk

∥∥2
2

]
≥ log

⎛

⎝ e1−
1
M

2πe

⎞

⎠ + 2

M

⎛

⎝
M∑

i=1

k−1∑

n=0

log
(
1 + μnU

min
i

)
+ h [x0] −

k−1∑

t=0

N∑

j=1

log
∣∣
∣A λ

j,t

∣∣
∣

⎞

⎠ ,

logE

[∥
∥∥ελ

k

∥
∥∥
2

2

]
≥ log

⎛

⎝ e1−
1
N

2πe

⎞

⎠ + 2

N

⎛

⎝h [λ0] −
k−1∑

t=0

M∑

i=1

log
∣
∣∣A x

i,t

∣
∣∣

⎞

⎠ ,

2.3 An Optimum Achieving Quantization Scheme for NUM

This section presents a zoom-in uniform optimum achieving (OA) quantization
scheme for the PD algorithm, denoted as Qa. It is also proven that the PD algo-
rithm under the quantization scheme Qa converges to the optimal solution of the
optimization problem (1). To this end, assume that the unquantized PD algorithm
forms a contraction map with contraction constant α ∈ [0, 1) . Further assume that α
is known by all agents and NNs. Under the quantization schemeQa, the quantization
step at iteration k, i.e., δk , is set to δk = αk+1.

At time k = 0, the agent i generates xi0 according to a uniform distribution on
the interval (−Lα, Lα) where L is a positive integer. Similarly, NN j generates
λ
j
0 using a uniform distribution on (−Lα, Lα). Next, agents and NNs quantize the

initial primal and dual variables, respectively, using a midpoint uniform quantizer on
(−Lα, Lα) with quantization step δ0 = α. Thus, the quantizer employed by agents
and NNs at time k = 0, is given by Qa,0 (z) = ⌊

z
α

⌋
α + α

2 for z ∈ (−Lα, Lα) where
�·� is the floor function. Each agent (NN) only needs ⌈log2 (2L)

⌉
bits to communicate

its initial primal (dual) variable where ·� is the ceiling function.

At time k + 1, agent i first encodes xik+1 using the encoder Q̂

(
xik+1−Cxi

k+1

δk+1

)
where

Cxi
k+1 = Qx

i,k +
⌊
xik+1−xik

δk

⌋
δk , Qx

i,k is the quantized version of xik , and Q̂ (·) is given
by



Impact of Quantized Inter-agent Communications on Game-Theoretic … 515

Q̂ (z) =
{⌈ 2

α

⌉ − 1
(⌈

2
α

⌉ − 1
) ≤ z ≤ ⌈

2
α

⌉

�z� − ⌈
2
α

⌉ ≤ z ≤ (⌈
2
α

⌉ − 1
) (16)

Let I x
i

k+1 be the interval centered at C
xi
k+1 with length 2

⌈
2
α

⌉
δk+1. It can be shown that

xik+1 belongs to this interval, which implies that the encoder mapping is always well
defined (see the proof of Theorem 5 for more details).

Next, agent i transmits Q̂

(
xik+1−Cxi

k+1

δk+1

)
to its neighboring NNs in the commu-

nication graph using
⌈
log2

(
2
⌈
2
α

⌉)⌉
bits. Agent i also transmits

⌊
xik+1−xik

δk

⌋
to its

neighboring NNs. This will allow the neighboring NNs of agent i to compute

Cxi
k+1, and update their decoders at time k + 1. Note that

⌊
xik+1−xik

δk

⌋
is an inte-

ger which can be transmitted using finite number of bits. Finally, the neighboring
NNs of agent i construct the quantized version of xik+1 using the decoder mapping

Qx
i,k+1 = Cxi

k+1 + Q̂

(
xik+1−Cxi

k+1

δk+1

)
δk+1 + δk+1

2 .

At time k + 1, NN j first encodes λ
j
k+1 using the encoder mapping Q̂

(
λ
j
k+1−Cλ j

k+1

δk+1

)

where Cλ j

k+1 = Qλ
j,k +

⌊
λ
j
k+1−λ

j
k

δk

⌋
δk , Qλ

j,k is the quantized version of λ
j
k and Q̂ (·) is

given by (16). Let I λ j

k+1 be the interval centered at Cλ j

k+1 with the length 2
⌈
2
α

⌉
δk+1.

It can be shown that λ j
k+1 belongs to I λ j

k+1 which indicates that the encoder mapping
is always well defined.

Next, NN j transmits Q̂

(
λ
j
k+1−Cλ j

k+1

δk+1

)
and

⌊
λ
j
k+1−λ

j
k

δk

⌋
to its neighboring agents

in the communication graph. Finally, the neighboring agents of the NN j con-
struct the quantized version of λ

j
k+1 using the decoder mapping Qλ

j,k+1 = Cλ j

k+1 +
Q̂

(
λ
j
k+1−Cλ j

k+1

δk+1

)
δk+1 + δk+1

2 .

The next theorem shows that the quantized PD algorithm under Qa converges to
the optimal solution.

Theorem 5 ([10]) The PD algorithm under the quantization scheme Qa converges
exponentially to the optimal solution of the optimization problem (1).

3 Gradient-Based Nash Seeking Algorithms Under
Quantized Communications

Game theory has been established to be of ubiquitous importance in engineering
and used to analyze numerous problems, e.g., power control in wireless networks
[11], wind energy harvesting, or sensor coverage [12]. In non-cooperative games,
multiple agents aim to maximize individual utility functions by taking actions that
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are not necessarily coordinated with one another. The Nash equilibrium (NE) is one
of themost important solution concepts in such games. It is a point in the action space
at which no agent can increase its own utility by unilaterally changing its action.

The problem of finding Nash equilibria is an active research area that has attracted
much attention, e.g., see [13, 14] and references therein. Gradient-based equilibrium-
seeking (ES) algorithms are popular techniques for finding the NE of games with
continuous action spaces and differentiable utility functions. In such algorithms,
each agent modifies its current action according to the partial derivative of its utility
function with respect to its action. The computation of this derivative implicitly
requires communication between agents, since it typically depends on the actions of
other agents.

This section investigates the effect of quantized communicationongradient-based,
Nash seeking algorithms. More specifically, the following questions are addressed:
(i) How does the communication data rate generally affect the convergence speeds
achievable by ES algorithms? (ii) Given a uniform quantization scheme, on average
how many time-steps are required for the ES algorithm to settle inside a ball around
theNE? (iii)Given a uniformquantization scheme,what is the probability that agents’
actions lie outside this ball at a given time?.

Section3.1 introduces the non-cooperative game among agents and the distributed
Nash seeking algorithm under quantized communications. The main results on the
asymptotic and non-asymptotic behaviors of the Nash seeking algorithm are dis-
cussed in Sect. 3.2.

3.1 Game Model

Consider a game with M agents, indexed by i ∈ M := {1, . . . , M}. Let xi ∈ R be

the action of the i th agent, x−i := [
x1, . . . , xi−1, xi+1, xM

]� ∈ R
M−1, the vector of

all agents’ actions except the i th, and Ui
(
xi , x−i

) ∈ R the utility of the i th agent.
Refer to this game as G = 〈M ,

{
xi
}
i
, {Ui (·)}i 〉. Assume that each utility function

Ui
(
xi , x−i

)
is twice continuously differentiable and concave with respect to xi .

Ideally, each agent in the game would like to make its own utility as large as
possible. However, since the global maximizers of the utility functions will not
generally coincide, a compromise is needed. This is provided by theNash equilibrium
(NE), already. If all agents play their NE strategies, denoted by xiNE, i ∈ M , then no
agent can increase its individual utility by unilaterally changing its action, i.e.,

xiNE = argmax
xi

Ui
(
xi , x−i

NE

)
,∀i ∈ M .

Throughout this section, it is assumed that the game admits a unique NE. This
can be easily satisfied by imposing some additional mild conditions on the utility
functions of agents, e.g., see [15]. Games arising in many engineering applications
often admit a unique NE, which is associated with the desired operating point.
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3.1.1 Gradient-Based Equilibrium Seeking with Quantized
Communication

Gradient-based, equilibrium-seeking (ES) algorithms are among the most popular
iterative techniques for finding the NE of a game with continuous action spaces and
differentiable utility functions. In the absence of quantization, such algorithms take
the general form

xik+1 = xik + μk
∂

∂xi
Ui

(
xik, x

−i
k

)
, k ∈ N0 := {0, 1, 2 . . .} (17)

where xik is the action of the i th agent at iteration k, x−i
k is the vector of all agent

actions at iteration k except the i th, and μk > 0 is a time-varying step size.
In order to implement this update rule, each agent does not need to know other

agents’ utility functions, which may be kept private, but only their latest actions.
However, agents in a distributed game are often located far from each other, e.g.,
power plants competing in a wholesale electricity market for maximizing their indi-
vidual profits. The long distance between agents, combined with finite transmission
power and bandwidth, limit the communication capacity between agents. Conse-
quently, the agents in distributed games cannot transmit their actions with infinite
resolution, but instead exchange quantized versions that are representable with finite
numbers of bits.

Assuming that each i th agent knows its ownaction xik perfectly, let Di,k
(
xik
) ∈ Ai,k

represent the quantized action broadcast by it to all other agents at iteration k. Here
Ai,k ⊂ R is a finite set and

∣
∣Ai,k

∣
∣ is the number of quantization levels used by the

i th agent at iteration k. A large value of
∣∣Ai,k

∣∣ implies that the i th agent transmits
its action with high precision, whereas a low value reflects poor communication
capacity and low precision.

Let Dk
(
xk
) ∈ Ak represent the component-wise quantized version of the vector

xk , that is Dk
(
xk
) = [

Di,k
(
xik
)]�

i . Note that log |Ak | denotes the aggregate number
of bits used by agents to represent their actions in the kth iteration, where |Ak | =∏M

i=1

∣
∣Ai,k

∣
∣. With a slight abuse of notation, let Qk denote the quantized version of

the vector x−i
k . The ES algorithm with quantization then takes the form

xik+1 = xik + μk
∂

∂xi
Ui

(
xik, Qk

)
, ∀i ∈ M . (18)

Let D = {Dk}∞k=0 be a quantization scheme. Given D , the average aggregate data
rate per unit time is defined as

RD := lim sup
k−→∞

1

k

k−1∑

j=0

log
∣∣A j

∣∣. (19)

The next subsection studies the asymptotic and transient performance of this
algorithm.
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3.2 Equilibrium-Seeking Algorithm Results and Discussion

This section presents three performance measures for gradient-based equilibrium-
seeking (ES) algorithms under quantization (18): (i) the asymptotic rate of expo-
nential mean square convergence to the Nash equilibrium (NE), (ii) the expected
time for agent actions to settle inside a specified neighborhood of the NE, under
uniform quantization, and (iii) the probability that agent actions at a given iteration
k lie outside this neighborhood, also under uniform quantization. The first criterion
measures the long-term performance of the system, whereas the other two criteria
characterize its transient performance. It is assumed that x0, the vector of initial
agent actions, is drawn randomly according to a probability distribution onRM . This
assumption allows application of stochastic methods to analyze performance, under
mild assumptions on the initial distribution.

3.2.1 Lower Bound on the Asymptotic Mean Square Convergence Rate

This subsection presents a universal lower bound on the asymptotic convergence
rate of any quantized ES scheme of the form (18). In this asymptotic analysis, it is
assumed that

• the joint probability density function (pdf) px0 of initial actions has finite differ-
ential entropy, i.e.,

∣∣− ∫
px0(x0) log

(
px0(x0)

)
dx0

∣∣ < ∞.
• the second partial derivatives of the utility functions are uniformly bounded above
and below as

ci ≤ ∂2

∂xi 2
Ui

(
xi , x−i

) ≤ bi < 0, ∀x ∈ R
M (20)

• the step sizesμk > 0 converge toμ� > 0 as k → ∞ and also satisfy supk∈N0
μk <

1
maxi |ci | , where ci is the lower bound (20) on the second derivative of the i th agent’s
utility function with respect to its action.

Next, equilibrium-achieving (EA) quantization schemes are defined.

Definition 4 A quantization scheme D is equilibrium-achieving if all quantized
and unquantized actions converge to the NE with time for any initial condition in the
support of px0 , i.e.

lim
k−→∞ xk = xNE,

lim
k−→∞ Qk = xNE. (21)

The notion of distance decay exponent (DDE) for the ES algorithm under an EA
quantization scheme is defined next.
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Definition 5 For a given equilibrium-achieving quantization scheme D , let εk be
the difference between agent actions and the NE at iteration k, i.e., εk = xk − xNE.
Then the distance decay exponent (DDE) is defined as

lim inf
k−→∞

1

k
logE

[‖εk‖22
]
.

The DDE gives the speed of exponential mean square convergence of the agents’
actions to NE under D , where the expectation is taken with respect to the initial
distribution of actions. A more negative exponent indicates faster convergence. The
first main result of this section is stated now

Theorem 6 ([4]) Let D be any equilibrium-achieving quantization scheme with
average aggregate data rate RD (19). Then, the error decay exponent is lower
bounded as

lim inf
k−→∞

1

k
logE

[‖εk‖22
] ≥ 2

M

(
M∑

i=1

log

(

1 + μ� ∂2Ui

∂xi 2

∣∣∣∣
xNE

)

− RD

)

. (22)

Theorem 6 establishes a universal lower bound on the rate of exponential mean
square convergence that holds for any EA quantization scheme. This lower bound
depends on the average aggregate date-rate RD , the second derivatives of the utility
functions at the NE, and the number of agents. Recall that a more negative DDE
corresponds to faster convergence.

Based on (22), the lower bound decreases (linearly) as RD increases. This reflects
the fact that each agent has more accurate information about the actions of the others
and hence can make better decisions. Furthermore, the bound increases with the
second derivatives of the utility functions. This is because a less negative second
derivative indicates a flatter utility function, hence slower convergence to the NE.

Though the bound above may be conservative, unlike previous work it does not
impose any particular structure on the quantization scheme, and delineates a universal
trade-off between convergence rate, utility functions, data rate, and the number of
agents.

3.2.2 Transient Performance

This subsection investigates the transient behavior of the equilibrium-seeking (ES)
algorithm (18) under a uniform, time-invariant quantization scheme. The following
assumptions are made on the game G and the ES algorithm (17):

• The NE of the game G belongs to the open, bounded and connected setR ⊂ R
M

which has non-zero Lebesgue measure.
• x0, i.e., the initial action of agents, is randomly drawn fromR.
• ∂

∂xi Ui
(
xi , x−i

)
is twice continuously differentiable for all i .

• The ES algorithm under perfect communication, i.e., the update rule (17), is a
pseudo-contraction mapping. That is
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∥∥xk − xNE
∥∥
2 ≤ α

∥∥xk−1 − xNE
∥∥
2 ,

where α ∈ [0, 1 ) and

xik = xik−1 + μk−1
∂

∂xi
Ui

(
xik−1, x

−i
k−1

)
.

• The sequence {μk}∞k=0 is assumed to be bounded.

Let d be the diameter of R, that is, d = sup
{‖x − y‖2 : x, y ∈ R

}
. Let

B (xc, d/2) be the smallest ball containingR where B (xc, d/2) represents a closed
ball in Euclidean norm centered at xc with radius d/2. Let Q (xc, 3d/2) be the cube
centered at xc with side length 3d. In this subsection, assume that the agents employ
a uniform, time-invariant quantization scheme denoted by Du. Under Du, the inter-
section of Q (xc, 3d/2) and action space of each agent is uniformly quantized with
the quantization step δ. The ES update rule under the uniform quantization scheme
Du is given by

xik+1 = xik + μk
∂

∂xi
Ui

(
xik,Du

(
x−i
k

) )
,∀i. (23)

Since the quantization scheme Du is only defined on Q (xc, 3d/2), the actions
of agents have to stay in Q (xc, 3d/2). Note that if x0, the initial action of agents,
belongs to R and the quantization step δ is sufficiently small, then, the actions of
agents will always stay in Q (xc, 3d/2). A sufficient condition for δ is given by

sup
k

μk

⎛

⎝δ

√∑

i

Φ2
i + 1

2
δ2

⎛

⎝M

√∑

i

Ψ 2
i +

√∑

i

η2
i

⎞

⎠

⎞

⎠

≤ (1 − α) d, (24)

where Φi , Ψi and ηi are given by

Φi = sup
x∈Q(xc,3d/2)

∑

j �=i

∣∣∣
∣

∂2

∂2x j xi
Ui

(
xi , x−i

)
∣∣∣
∣ ,

Ψi = sup
x∈Q(xc,3d/2)

∥∥∥
∥∇2 ∂

∂xi
Ui

(
xi , x−i

)
∥∥∥
∥
2

,

ηi = sup
x∈Q(xc,3d/2)

∣∣∣∣∣
∂3

∂xi 3
Ui

(
xi , x−i

)
∣∣∣∣∣
.

respectively, where ∇2 (·) is the Hessian operator. The left hand side of (24) is an
upper bound on the distortion induced by the quantization scheme Du. Thus, (24)
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essentially implies that the quantization scheme Du is well defined if the distortion
caused by the quantization scheme at each time-step is small enough.

The termΦi represents the sensitivity of update rule of the i th agent to the actions
of other agents. When agents are less sensitive to each other’s actions, according to
(24), a relatively large quantization step δ can be chosen without introducing a large
amount of distortion in the evolution of the ES algorithm. However, when agents
are highly sensitive to each other’s actions, a high-resolution quantization scheme
should be employed to avoid a large amount of distortion. Moreover, according to
(24), small values of the step size result in small distortion values. Since each agent
modifies its action by adding the term μk

∂
∂xi Ui

(
xik,Du

(
x−i
k

) )
to its previous action,

a small value of step size results in a small value of distortion at the cost of a slow
convergence speed.

Let E [N ] denote the expected time required for xk to settle inside B
(
xNE, r

)
. A

small value ofE [N ] indicates that the ES algorithm, on average, quickly approaches
the NE whereas a large value of the E [N ] indicates a relatively slow convergence.
Due to the quantization distortion, the radius of B

(
xNE, r

)
cannot be arbitrarily

small. If r is less than the total quantization distortion, one cannot guarantee that
agents’ actions will eventually settle inside B

(
xNE, r

)
as k becomes large. Here, it

is assumed that r > θ where θ is given by

θ = supk μk

1 − α

⎛

⎝δ

√∑

i

Φ2
i + 1

2
δ2

⎛

⎝M

√∑

i

Ψ 2
i +

√∑

i

η2
i

⎞

⎠

⎞

⎠ .

Note that, θ represents an upper bound on the aggregate distortion caused by the
quantization scheme Du over time (see [4] for more details). The next theorem
provides an upper bound on E [N ].

Theorem 7 ([4]) Consider the uniform quantization scheme Du with the quanti-
zation step δ satisfying (24). Let E [N ] denote the expected time required for the
ES algorithm under Du to settle in B

(
xNE, r

)
with r > θ . Then, E [N ] is upper

bounded as

E [N ] ≤ 1

log
(
1
α

)

(

E

[

log

(∥∥x0 − xNE
∥∥
2

r − θ

)

I{‖x0−xNE‖2
r−θ

>1

}

]

Theorem 7 provides an upper bound on the expected time required for the actions
of agents to settle inside a ball of radius r centered at the NE. This upper bound is
controlled by α, θ , r and the distribution of the initial actions of agents. According
to this theorem, the effect of α on the expected time is manifested through the
multiplicative factor 1

log( 1
α )

withα ∈ [0, 1) . Asα becomes closer to zero, the distance

between the actions of agents and the NE decays faster due to the pseudo-contraction
property of the non-quantized update rule. Thus, the average time required to settle
inside B

(
xNE, r

)
becomes smaller as α decreases.
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The function E [N ] is non-increasing in r . That is, as r becomes small, it takes
more time for the ES algorithm (23) to settle in B

(
xNE, r

)
. This observation is

also consistent with our result in Theorem 7, i.e., the upper bound on the E [N ]
increases as r becomes small. Finally, Theorem 7 suggests that the expected time
required to settle inside B

(
xNE, r

)
is influenced by the distribution of initial actions

of agents, px0 (x). Observe that, when px0 (x) is highly concentrated around the
Nash equilibrium, the ES algorithm (23) requires less time to settle inside B

(
xNE, r

)

compared to the case that px0 (x) has a low degree of concentration around the NE.
The upper bound in Theorem 7 depends on the distance between the initial action

of agents and the NE, i.e.,
∥∥x0 − xNE

∥∥
2. Since both x0 and xNE belong to R, one

can use the fact that
∥
∥x0 − xNE

∥
∥
2 ≤ d to obtain an upper bound on the E [N ] which

is independent of x0 and xNE. This result is stated in the next corollary.

Corollary 3 ([4]) The expected time required for the ES algorithm underDu to settle
in B

(
xNE, r

)
can be upper bounded as

E [N ] ≤ 1

log
(
1
α

) log
(

d

r − θ

)
.

Another performance measure for the transient behavior of the ES algorithm (23)
under the uniform quantization scheme Du is investigated next. In this case, the
probability that xk lies outside a ball of radius r > θ around the NE, i.e.,

Pr
{∥∥xk − xNE

∥
∥
2 > r

}
.

Note that, Pr
{∥∥xk − xNE

∥∥
2 > r

}
is a function of k, and decays to zero as k

tends to infinity. For a given k, a small value of Pr
{∥∥xk − xNE

∥
∥
2 > r

}
indi-

cates that xk approaches the NE at a higher speed compared to a large value of
Pr

{∥∥xk − xNE
∥∥
2 > r

}
. The next theorem provides an upper bound on the probabil-

ity that xk lies outside B
(
xNE, r

)
.

Theorem 8 ([4]) Consider the uniform quantization scheme Du with the quantiza-
tion step δ satisfying (24). Then, the probability that xk lies outside B

(
xNE, r

)
with

r > θ is upper bounded as

Pr
{∥∥xk − xNE

∥∥
2 > r

} ≤ min
(
1, e− r−θ

αk E
[
e‖x0−xNE‖2

])
. (25)

Theorem 8 provides an upper bound on the probability that xk lies outside of
the ball radius r around the NE at a given time. According to Theorem 8, this
probability decays to zero at least double exponentially with k. Also, the decay rate
of this probability depends on the contraction constant α. As α becomes small, the
distance between agents’ actions and the NE decays faster. Hence, the probability
that xk lies outside B

(
xNE, r

)
decays faster to zero, and xk with high probability

lies inside B
(
xNE, r

)
. The term E

[
e‖x0−xNE‖2

]
in (25) indicates the effect of the
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distribution of x0 on Pr
{∥∥xk − xNE

∥∥
2 > r

}
. That is, when the distribution of x0

is more concentrated around the NE, we expect xk to approach the NE at a faster
speed. Note that for a given k, Pr

{∥∥xk − xNE
∥∥
2 > r

}
is a non-increasing function

of r . That is, xk lies outside B
(
xNE, r

)
with high probability as r becomes small.

This behavior is consistent with the upper bound in Theorem 8.
One can use the fact that

∥
∥x0 − xNE

∥
∥
2 ≤ d to obtain an upper bound on

Pr
{∥∥xk − xNE

∥∥
2 > r

}
which is independent of x0 and xNE. This result is stated

in the next corollary.

Corollary 4 The probability that xk lies outside B
(
xNE, r

)
can be upper

bounded as

Pr
{∥∥xk − xNE

∥∥
2 > r

} ≤ min
(
1, ed− r−θ

αk

)
. (26)

Finally, the upper bound in Corollary 4 can be used to obtain an upper bound on
the number of time-steps required for xk to lie in B

(
xNE, r

)
with a given certainty

level. Let Np be the number of time-steps required for xk to lie in B
(
xNE, r

)
with

the probability at least equal to p. Then, using (26), Np can be upper bounded by
the smallest positive integer satisfying

d − (r − θ) ≤ αk log (1 − p) .

Theorem 8 and Corollary 4 can be used to obtain bounds on the required number
of quantization levels to guarantee that the agents’ actions at iteration k lie inside
a ball of radius r around the NE with a given probability. In addition, Theorem 7
and Corollary 3 give rise to bounds on the required number of quantization levels
to guarantee an average settling time. Finally, Theorem 6 provides guidelines on the
required average aggregate data rate for achieving a desired speed of exponential
convergence to the NE.

3.2.3 An Adaptive EA Quantization Scheme

Based on the previous analysis of the uniform quantization scheme Du, this sub-
section presents an adaptive EA quantization scheme under which the ES algorithm
converges to the NE. This quantization scheme is denoted asDa. Later, in the numer-
ical result section, the error decay exponent of Da is studied. Recall that, the NE
belongs to the region R with the diameter d. The basic idea behind the adaptive
quantization scheme Da is to reduce the size of the known region around the NE in
each time-step.

Let Rk denote the region which the NE belongs to at iteration k under the quan-
tization scheme Da. The quantization scheme Da is designed such that the diameter
of Rk converges to zero as k tends to infinity. Under the quantization scheme Da,
initially, the intersection of action space of each agent with Q (xc, 3d/2) is quantized
with the quantization step δ0 which satisfies the following inequality
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sup
k

μk

⎛

⎝δ0

√∑

i

Φ2
i + 1

2
δ20

⎛

⎝M

√∑

i

Ψ 2
i +

√∑

i

η2
i

⎞

⎠

⎞

⎠ ≤ α̂d, (27)

where α̂ is a constant arbitrarily selected from the interval (0, 1 − α). It is straight-
forward to show that the distance between x1 and the NE under Da can be upper
bounded as

∥
∥x1 − xNE

∥
∥
2 ≤ α

∥
∥x0 − xNE

∥
∥
2 + sup

k
μk

⎛

⎝δ0

√∑

i

Φ2
i + 1

2
δ20

⎛

⎝M
√∑

i

Ψ 2
i +

√∑

i

η2i

⎞

⎠

⎞

⎠

≤ (
α + α̂

)
d,

which implies that the NE belongs to the ball of radius
(
α + α̂

)
d around x1. In

the second time-step, Q
(
x1,

(
α + α̂

)
d
) ∩ Q (xc, 3d/2) is considered asR1 and the

intersection of each agent’s action space with theR1 is quantized. Similarly, at iter-
ation k, k ≥ 1, we have Rk = Q

(
xk, dk

) ∩ Q (xc, 3d/2) where di = (
α + α̂

)
di−1

with d0 = d. Then, the intersection of action space of each agent with Rk is quan-
tized. Also, the quantization step at iteration k, δk , is chosen such that the following
inequality is satisfied:

sup
k

μk

⎛

⎝δk

√∑

i

Φ2
i + 1

2
δ2k

⎛

⎝M

√∑

i

Ψ 2
i +

√∑

i

η2
i

⎞

⎠

⎞

⎠ ≤ α̂dk, (28)

Since dk converges to zero as k tends to infinity, the actions of agents and their
quantized versions, under the quantization schemeDa, converge to the NE as k tends
to infinity which implies that Da is an EA quantization scheme. Algorithm1 shows
the different steps of the adaptive quantization scheme Da.

Algorithm 1 The adaptive quantization scheme Da

1: k ← 0. (k is the time index.)
2: dk ← d. (d and dk are the radii of R and Rk , respectively.)
3: Set δk as the solution of (27). (δk is the quantization step at iteration k.)
4: Quantize the intersection of action space of each agent with the Q (xc, 3d/2).
5: repeat
6: Update the actions of agents.
7: k ← k + 1.
8: dk ← (

α + α̂
)
dk−1.

9: Choose δk such that (28) is satisfied.
10: Quantize the intersection of action space of each agent with Q

(
xk , dk

) ∩ Q (xc, 3d/2).
11: until The ES algorithm converges to the NE.
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3.3 Numerical Results

This section presents a set of numerical results for a non-cooperative game with five
agents seeking to maximize their utility functions. The utility function of i th agent
is given by

Ui
(
xi , x−i

) = tii
2

(
xi
)2 + xi

⎛

⎝
∑

j �=i

ti j x
j − li

⎞

⎠ , (29)

where tii < 0 for all i and ti j , li ∈ R. Utility functions of the form (29) arise in
many engineering applications such as analyzing the bidding behavior of a group
of generators competing for maximizing their profits in an electricity market, e.g.,
see [16]. Let T be an M-by-M matrix with the (i, j)th entry equal to ti j . Assume
that T is negative definite. Since T is invertible, it can be easily verified, using the
Karush–Kuhn–Tucker conditions, that the quadratic game with the utility functions
(29) admits a unique Nash equilibrium. For this quadratic game, the ES algorithm
under perfect communication condition can be written as
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Fig. 2 The average time required for the ES algorithm to settle in a ball of radius r around the NE
for the fixed and adaptive quantizers as a function of r
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xk+1 = (I + μT ) xk − μl,

where l = [l1, . . . , lM ]�. The step size μ is selected such that the spectral radius of
I + μT is strictly less than one. In the numerical results, it is assumed that the NE
belongs to a hypercubeR, whose side length is equal to 10√

5
. Additionally, the vector

of initial actions of agents, x0, is assumed to be uniformly distributed on R.
Figure2 illustrates the expected time required for xk to settle inside B

(
xNE, r

)

as a function of r for different quantization schemes and different values of average
aggregate data rates RD . In this figure, θ , d and α are set to 10−2, 10 and 0.46,
respectively. As r becomes large, the ES algorithm under both Du and Da requires
less time to settle inside B

(
xNE, r

)
, and as a result, the expected time, under both

Du and Da, decreases as r becomes large. As shown in Fig. 2, the expected time
under the fixed quantization scheme Du is limited by the upper bound provided by
Theorem 7. According Fig. 2, the ES algorithm under the EA quantization scheme
Da, on average, requires less time to settle inside B

(
xNE, r

)
compared to the fixed

quantization scheme Du. The fast convergence of the ES algorithm under Da is due
to the flexible structure of the EA quantization scheme Da.
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Fig. 3 log-mean-square-error-norm divided by k under the adaptive quantization scheme Da as a
function of k
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In Fig. 2, the ES algorithm under Du with coarse quantization scheme RD = 25
cannot settle inside the ball B

(
xNE, r

)
when r is small which is due to the

large amount of distortion caused by the coarse quantization scheme. However, as
r becomes large, the ES algorithmunder the coarse quantization scheme settles inside
the ball B

(
xNE, r

)
faster than the fine quantization scheme RD = 60. Note that any

quantization scheme introduces an extra displacement to the agents’ action at each
time-step. A coarse quantization scheme causes a bigger displacement, compared to
a fine quantization scheme, which results in a lower expected time to settle inside
B
(
xNE, r

)
(when r is large enough).

Figure3 demonstrates the behavior of log-mean-square-error-norm divided by k,
i.e., 1

k logE
[‖εk‖22

]
, under the adaptive quantizer Da as a function of the number

of time-steps. As Fig. 3 shows 1
k logE

[‖εk‖22
]
stays above −4.2318, the predicted

lower bound by Theorem 6, as k becomes large.

4 Conclusion

This chapter presented a set of results on the convergence behavior of a quantized
primal-dual (PD) algorithm aswell as a gradient-basedNash seeking algorithmunder
quantized inter-agent communications. First, using the information-theoretic notion
of entropy power, universal bounds were derived on the fastest speed of exponential
mean square convergence of PD, primal, and dual variables to the optimal solution
under optimum achieving quantization schemes. These results highlight the universal
trade-offs between the speed of convergence of the quantized PD algorithm, data rate
under the quantization, objective functions of agents, the number of agents, and the
number of constraints. Next, universal lower bounds were established on the mean
square distance of PD, primal, and dual variables from the optimal solution of the
NUM problem for any finite time index.

Subsequently, the impact of quantized inter-agent communications on the con-
vergence behavior of the gradient-based Nash equilibrium seeking (ES) algorithm
in non-cooperative games was studied. The information-theoretic notion of entropy
power helped establishing a universal lower bound on the rate of exponential mean
square convergence of such algorithms, assuming equilibrium-achieving quantizers.
This lower bound signifies the impact of inter-agent communication data rates on
the convergence speed of the ES algorithm to the Nash equilibrium (NE). Next,
the transient behavior of the ES algorithm under quantized message passing among
agents was examined. To this end, an upper bound was derived on the expected time
required for the ES algorithm to settle inside a ball centered at theNE under a uniform
quantization scheme. Moreover, an upper bound was obtained on the probability that
agents’ actions at a given time lie outside a ball around the Nash equilibrium. It is
worth noting that these last two results only concern the behavior of the ES algo-
rithm until it reaches a neighborhood of the Nash equilibrium, and do not make any
assumption on the convergence of the ES algorithm.
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Appendix

Proof of Theorem 1

This appendix presents the main steps of the proof of Theorem 1. To this end, first,
the notion of conditional differential entropy power of a random vector is defined.
Then, the notion of entropy power facilitates establishing a universal lower bound on
the DDE of the PD variables. The differential entropy power of the random vector
z ∈ R

N+M conditioned on the event A = a, denoted by N [ z| A = a], is defined as

N [ z| A = a] = 1

2πe
e

2
M+N h[ z|A=a],

where h [ z| A = a] is the conditional differential entropy of z given A = a defined
as

h [ z| A = a] = −
∫

log (p ( z| A = a)) p ( z| A = a) d z,

where p ( z| A = a) is the conditional distribution of z given A = a. Using the
entropy maximizing property of Gaussian distributions, the conditional entropy
power of z given A = a can be upper bounded [1] as

N [ z| A = a] ≤ e1/(M+N )−1E
[‖z‖22

∣∣ A = a
]
, (30)

where E [ z| A = a] is conditional expectation of z given A = a. Let
EA [N [ z| A = a]] denote the average conditional entropy power of z given A = a.
Using (30), EA [N [ z| A = a]] can be upper bounded as

EA [N [ z| A]] ≤ e1/(M+N )−1E
[‖z‖22

]
. (31)

Next, the inequality (31) is used to establish the universal lower bound on
the DDE of the PD variables under OA quantization schemes. To this end, let

Dk−1 =
{
Q̂n = q̂n

}k−1

n=0
where Q̂n =

[
Q̂x

1,n, . . . , Q̂
x
M,n, Q̂

λ
1,n, . . . , Q̂

λ
N ,n

]
and q̂n is

a possible realization of Q̂n . Using (31), E
[‖εk‖22

]
can be lower bounded as

e1−
1

M+N

2πe e
2

M+N E[h[εk |D k−1 ]]
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E
[‖εk‖22

] ≥ e1−
1

M+N E
[
N
[
εk |Dk−1

]]

(∗)≥ e1−
1

M+N

2πe
e

2
M+N E[h[ εk |D k−1]], (32)

where (∗) is obtained using the Jensen inequality. The term h
[
εk |Dk−1

]
on the right

hand side of (32) can be expanded as

h
[
εk |Dk−1

] = h
[
yk − y�

∣∣Dk−1
]

(∗)= h
[
yk
∣∣Dk−1

]
, (33)

where (∗) follows from the translation invariance property of differential entropy as
y� is a constant vector (see [17] Theorem 8.6.3 page 253).

The next lemma establishes a useful expression between h
[
yn
∣∣Dk−1

]
and

h
[
yn−1

∣∣Dk−1
]
for n ≤ k, which is used to further expand h

[
yk
∣∣Dk−1

]
.

Lemma 1 For n ≤ k, h
[
yn
∣∣Dk−1

]
can be expanded as

h
[
yn
∣∣Dk−1

] = h
[
yn−1

∣∣Dk−1
] + E

⎡

⎣
M∑

j=1

log

(
1 + μn−1

d2

dx j 2
Uj

(
x j
n−1

))∣∣∣∣Dk−1

⎤

⎦

(34)

Proof. Let x̃ in = xin + μn
(

d
dxi Ui

(
xin
))
and x̃n = [

x̃ i1, . . . , x̃
i
M

]�
. Let ỹn be the vector

concatenation of x̃n and λn . This lemma is proved in two steps. First, it is shown
that the conditional differential entropy of yn givenDk is equal to that of ỹn−1 given
Dk (see (35)). Next, a relation between the conditional differential entropy of ỹn−1
given Dk and that of yn−1 given Dk is established. Note that, h

[
yn
∣∣Dk−1

]
can be

written as

h
[
yn
∣∣Dk−1

] = h
[
xn,λn|Dk−1

]

∗= h
[
x̃n−1,λn−1

∣∣Dk−1
]

= h
[
ỹn−1

∣∣Dk−1
]

(35)

where (∗) follows from the translation invariance property of the differential entropy

and the fact that Qk−1 is fixed given Dk−1 =
{
Q̂n = q̂n

}k−1

n=0
. Next, we derive an

expression for the probability density function (PDF) of ỹn in terms of the PDF of
yn . Let p ỹn ( y |Dk−1 ) and p yn ( y |Dk−1 ) to denote the PDFs of ỹn and yn , respec-
tively, conditioned on Dk−1. Let F (·) represent the mapping between ỹn and yn ,
i.e., ỹn = F

(
yn
)
. Note that 0 < 1 + μn

d2

dxi 2
Ui

(
xi
)

< 1 since 0 < μn < mini 1|Umin
i |

which implies that the mapping F (·) is invertible. Thus, the change-of-variables
formula for invertible diffeomorphisms of random vectors (see e.g., (4.63) in [18])
can be applied to write
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p ỹn−1
( y |Dk−1 ) = 1

det JF
[
F−1( y)

] p yn−1

(
F−1 ( y) |Dk−1

)
, (36)

where JF [x] is Jacobian of F (x) evaluated at x. Using (36), the conditional entropy
of ỹn−1 given Dk−1 can be written as

h
[
ỹn−1

∣∣Dk−1
] =

∫
log

(
det JF

[
F−1 ( y)

]) 1

det JF
[
F−1 ( y)

] p yn−1

(
F−1 (y) |Dk−1

)
d y

−
∫

log
(
p yn−1

(
F−1 ( y) |Dk−1

)) 1

det JF
[
F−1 ( y)

] p yn−1

(
F−1 (y) |Dk−1

)
d y,

(∗)=
∫

log (det JF [z]) p yn−1 (z |Dk−1 ) d z −
∫

log
(
p yn−1 (z |Dk−1 )

)
p yn−1 (z |Dk−1 ) d z,

=
M∑

j=1

E

[
log

(
1+μn−1

d2

dx j 2
Uj

(
x j
n−1

))∣∣∣∣Dk−1

]
+ h

[
yn−1

∣∣Dk−1
]
, (37)

where (∗) follows from the change of variable z = F−1 (x).

Using Lemma 1, h
[
yk
∣∣Dk−1

]
can be further expanded as

h
[
yk
∣∣Dk−1

] = h
[
y0
∣∣Dk−1

] +
M∑

j=1

k−1∑

n=0

E

[
log

(
1 + μn

d2

dx j 2
Uj

(
x j
n

))
∣∣∣
∣Dk−1

]

(38)

Using (38), E
[
h
[
yk
∣∣Dk−1

]]
can be written as

E
[
h
[
yk
∣∣Dk−1

]] =
M∑

j=1

k−1∑

n=0

E

[
log

(
1 + μn

d2

dx j 2
Uj

(
x j
n

))] + E
[
h
[
y0
∣∣Dk−1

]]
,

(39)

The following lemma, adapted from [1], establishes a lower bound on
E
[
h
[
yk
∣∣Dk−1

]]
:

Lemma 2 The average conditional entropy of y0 givenDk−1, i.e., E
[
h
[
y0
∣∣Dk−1

]]
,

can be lower bounded as

E
[
h
[
y0
∣∣Dk−1

]]≥h
[
y0
]−

k−1∑

t=0

⎛

⎝

(
M∑

i=1

log
∣∣A x

i,t

∣∣
)

+
N∑

j=1

log
∣∣A λ

j,t

∣∣

⎞

⎠ .

Proof. Follows directly from the first inequality in appendix C in [1]; alternatively,
it can be derived from (8.48) and (8.89) in [17].

Applying Lemma 2 to (39) yields
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E
[
h
[
yk
∣
∣Dk−1

]] ≥
M∑

j=1

k−1∑

n=0

E

[
log

(
1 + μn

d2

dx j 2
Uj

(
x j
n

))]
+ h

[
y0
] −

k−1∑

t=0

⎛

⎝
(

M∑

i=1

log
∣
∣A x

i,t

∣
∣
)

+
N∑

j=1

log
∣∣
∣A λ

j,t

∣∣
∣

⎞

⎠ ,

(40)

Since x0 and λ0 are independent, the differential entropy of y0 can be written as
h
[
y0
] = h [x0] + h [λ0] which implies that y0 has finite differential entropy. Using

(32), (33), (40) and the fact that y0 has a finite entropy, the DDE can be lower
bounded as

lim inf
k−→∞

1

k
logE

[
‖εk‖22

]
≥ 2

M + N

⎛

⎝lim inf
k−→∞

M∑

j=1

1

k

k−1∑

n=0

E

[

log

(

1 + μn
d2

dx j 2
Uj

(
x j
n

)
)]

− RQ

)

.

(41)

The next lemma presents the asymptotic behavior of the first term in the right hand
side of equation (41).

Lemma 3 ([10])Consider the primal-dual update rule (6) under anOAquantization
scheme. Then,

lim
k−→∞

M∑

j=1

1

k

k−1∑

n=0

E

[

log

(

1 + μn
d2

dx j 2
Uj

(
x j
n

)
)]

=
M∑

j=1

log

(

1 + μ� d2

dx j 2
Uj

(
x j �

)
)

.

Applying Lemma 3 to (41) yields

lim inf
k→∞

1

k
logE

[‖εk‖22
] ≥ 2

N + M

(
m∑

i=1

log

(
1 + μ� d2

dxi 2
Ui

(
xi

�
))

− RQ

)

.

(42)

which completes the proof.
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Fault Diagnosis for Uncertain Networked
Systems

Francesca Boem, Christodoulos Keliris, Thomas Parisini
and Marios M. Polycarpou

Abstract Fault diagnosis has been at the forefront of technological developments
for several decades. Recent advances in many engineering fields have led to the
networked interconnection of various systems. The increased complexity of modern
systems leads to a larger number of sources of uncertainty which must be taken
into consideration and addressed properly in the design of monitoring and fault
diagnosis architectures. This chapter reviews a model-based distributed fault diag-
nosis approach for uncertain nonlinear large-scale networked systems to specifically
address: (a) the presence of measurement noise by devising a filtering scheme for
dampening the effect of noise; (b) the modeling of uncertainty by developing an
adaptive learning scheme; (c) the uncertainty issues emerging when considering
networked systems such as the presence of delays and packet dropouts in the com-
munication networks. The proposed architecture considers in an integrated way the
various components of complex distributed systems such as the physical environ-
ment, the sensor level, the fault diagnosers, and the communication networks. Finally,
some actions taken after the detection of a fault, such as the identification of the fault
location and its magnitude or the learning of the fault function, are illustrated.
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1 Introduction: From Centralized to Distributed Fault
Diagnosis

In systems and control engineering, the adoption of models describing the behav-
ior of systems is ubiquitous and of fundamental importance. However, such models
are usually affected by some uncertainty and the sources of uncertainty may vary
quite a lot. For instance, the derivation of an accurate mathematical model may be
very difficult to obtain or even entail increased financial costs and so, less accurate
models are used. Other sources of uncertainty include the measurement noise, the
system disturbances, and the changing system parameters due to the components
degradation over time. The presence of uncertainty is especially important when
considering complex large-scale systems, such as Systems of Systems (SoS) [79] or
Cyber-Physical Systems (CPS) [4], where it is difficult to understand and model the
relationships that exist among the (possibly large) number of interconnected sub-
systems. Therefore, uncertainty represents an important challenge for many control
applications, thus motivating the research and the development of robust methods
able to manage its presence and effect on the control task performance [25, 67, 97,
109]. In some situations, the mismatch between the considered model and the actual
system behavior becomes major, due to the presence of undesired or unexpected
behaviors, possibly leading to negative consequences such as instabilities, failures
in the system, or deterioration of performance. Therefore, it is important to take into
consideration modeling uncertainty at the design stage, so that if any unexpected
behavior is observed during the system operation, it will be feasible to identify the
presence of a fault, avoiding, at the same time, the occurrence of false alarms.

Reliability is a key requirement for modern systems. It can be defined as the
ability of a system to perform its intended function over a given period of time [7].
The inability to perform the intended function is called a failure, and it can be due
to the effects of a fault. A fault is a change in the behavior of a system, or part of it,
from the behavior that was set at design time.

As practical systems becomemore complex andmore interconnected, the need for
enhanced robustness, fault tolerance and sustainability becomes of essential impor-
tance. Potential faults could lead tomajor catastrophes and consequently could trigger
a chain of failing dependent systems, such as electric power systems, communication
andwater networks, alongwith production plants, causing tremendous economic and
social damage. Therefore, safe and reliable operation of such systems through the
early detection of any “small” fault before they become serious failures is a crucial
component of the overall system performance and sustainability.

For these reasons, fault diagnosis is a research field that has been in the forefront of
the technological evolution for a few decades and has attracted the attention from the
research and industrial communities, as testified by many important survey papers
[33, 37, 43, 99–101] and books [9, 18, 44, 65].

Generally, fault diagnosis is comprised of several steps: detection of a fault, iso-
lation and identification of the fault and fault accommodation, or reconfiguration of
the system.
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Fig. 1 Fault types and FDI

Fault detection consists of understanding whether a fault has occurred or not,
while the isolation task refers to pinpointing the type of fault and its location. Fault
identification is an extra step that is carried on after isolation in order to quantify the
extent to which a fault is present. Fault accommodation addresses the problem of
how the system actively responds to the fault: for example, after a successful fault
diagnosis, the controller parameters may be adjusted to accommodate changed plant
dynamics in order to prevent failure at the system level.

A control system is comprised of mainly three parts: the actuators, the plant com-
ponents, and the sensors, therefore a fault may appear in any of these (see Fig. 1).
Specifically, process faults (on the plant components) alter the dynamics of the sys-
tem, sensor faults alter the measurement readings and actuator faults modify the
controllers’ influence on the system.

Apart from the fault source, we can further distinguish between abrupt or incipient
faults.Abrupt faults are sudden, step-like changes that appear almost instantaneously
and can lead to immediate component or even general system failure. On the other
hand, incipient faults are slowlydeveloping faults that occur due to parameter changes
of the components because of their continuous operation and diminishing lifetime.
These changes develop slowly and are initially small, thus harder to detect and may
be better prevented through system maintenance.

There are mainly twomethods to address the possible presence of a fault. The first
one is physical redundancy (or hardware redundancy), that is the fact that critical
components of the system are replicated in a greater number than what is strictly
necessary. This is effective but implies a highly expensive solution and can be justi-
fied only for critical, potentially life-threatening systems (i.e., aviation applications).
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The second method is the analytical redundancy approach which is based on a math-
ematical model of the system under healthy system behavior. In this approach, the
actual physical signals that are measured, are compared to the corresponding signals
given by the mathematical model of the process under healthy state; their difference
constitutes the residuals (residual generation stage). Under the ideal conditions of
no faults, no modeling uncertainties and no measurement noise nor disturbances,
the residuals are zero. In real applications, after the residual generation stage, the
information given by residuals is processed to take a decision regarding the health
status of the system and determine the potential occurrence of faults (decisionmaking
stage). If the fault decision is positive, then further analysis is conducted to identify
the fault’s type and location, and possibly its size. Although this approach is more
affordable, it is computationally intensive and may be sensitive to false alarms due to
inaccuracies in the mathematical modeling of the system which may be mistakenly
passed as faults. This model-based approach was born during the 1970s thanks to the
seminal works of Beard, Jones and Clark [5, 22, 47] among others (see the survey
papers [33, 37, 45, 100]).

An alternative approach to model-based methods is represented by the signal-
based techniques, in which known features of signals, such as spectral components
or statistical features, are compared to nominal ones [37, 44]. Thesemethods though,
require some knowledge of previous behavior of the system during healthy operation
and that is the reason why they are classified into the wider class of process history
fault diagnosis approaches (i.e., see [99] and the references therein).

Under the analytical redundancy framework, there are various methods to gen-
erate the residual vector, which can be divided into two main approaches: the state
estimation techniques (such as parity space approach, observer schemes, and detec-
tion filters) and the parameter identification techniques. Moreover, in order to ease
the fault isolation task, residuals can be designed so as to contain specific isolation
properties. The main residual enhancement techniques are represented by structured
and directional residuals [38, 100]. In the structured residuals scheme, each fault
affects a specific subset of the residuals and any residual responds only to a specific
subset of faults. Therefore, due to the dependence of the residuals on the faults,
certain patterns appear on the residual vector that can be used for fault isolation. In
the directional residuals scheme, each fault amounts to a specific direction in the
residual space, and thus fault isolation is concluded by selecting the direction that
the generated residual vector lies closest to. More information regarding these tech-
niques can be found in the books by Gertler [39] and Isermann [44]. In the literature,
many methods have been proposed for the generation of residuals, which can mainly
be classified according the following approaches:

• Parity space approach. This method consists of checking the consistency of the
mathematical equations by using the actual measurements: a fault is declared
whenever predetermined error thresholds are exceeded. Further information can
be found in [38] and the references therein.

• Observer schemes. In this category lie many approaches, starting from the Fault
detection filter (FDF), first proposed by Beard and Jones in the early 70s, to the



Fault Diagnosis for Uncertain Networked Systems 537

Diagnostic Observer approach, which has been widely adopted in the literature.
According to this approach, observers are used to reconstruct the output ŷ of the
system from measurements y and the residual is represented by the output esti-
mation error e = y − ŷ. In the case of stochastic systems, the observers may be
substituted by Kalman filters and the residual is the innovation which under the
fault-free case should be white noise with zero mean and known covariance. The
isolation of faults can be enhanced with the use of a bank of residual generators
under the Dedicated Observer Scheme (DOS) proposed by Clark [22] or the Gen-
eralized Observer Scheme (GOS) [33, 34]. In both schemes as many residuals as
the number of possible faults are generated. The difference is that in the DOS
scheme, each residual is sensitive to only a single fault, while in the GOS, each
residual is sensitive to every but one fault. The DOS scheme is appealing as it can
also isolate concurrent faults, but it cannot always be designed. Instead, the GOS
can be always applied, but can only isolate non-concurrent faults. It is important
to note that, as pointed out in [34], the observers used in fault diagnosis are pri-
marily output observers which simply reconstruct the measurable part of the state
variables, rather than state observers which are required for control purposes. The
use of state observers for nonlinear systems has not been used extensively for the
FDI problem, even though analytical results regarding the stability of the nonlin-
ear observers and design procedures have been established. The main issue with
the observer approach is that the design of observers for nonlinear systems with
asymptotically stable error dynamics is not an easy task even when the nonlin-
earities are fully known. As a result, the research in fault diagnosis for nonlinear
systems utilizing state observers is more limited [1, 36, 41, 51].

• Parameter estimation. This method is particularly suited to the detection of incip-
ient faults and it is extensively studied in the survey papers by Isermann [45] and
Frank [33] and the books by Patton et al. [65] and Isermann [44]. Using system
identification methods (utilizing the input and output signals), the parameters of a
mathematical model of the system can be obtained (recursively and online) across
different time intervals and compared to their respective values based on a nomi-
nal model. Any significant difference could indicate the occurrence of a fault and
a relation between parameter changes and faults can be formed with the use of
pattern recognition methods.

An important aspect to be considered when monitoring controlled systems relates
to the possibly conflicting dynamic behaviors of the FDI scheme and the reconfig-
urable controller, namely the feedback controller may hide the presence of faults
by compensating their effects (see as example the simulation analysis in [78]) thus
making the FDI task much more difficult or even impossible [3, 21, 35, 100]. This
is particularly eminent in passive FDI methods, in which the status of health of
the system is analyzed by comparing input–output data for the closed-loop system
with a process model or historical data. A possible solution has been proposed for
this problem when considering application use-cases allowing to affect the closed-
loop dynamics by acting at run time on the control inputs. This paves the way to the
so-called active FDI methodologies. Active FDI approaches consist of suitably mod-
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ifying the control input to improve fault detectability and isolability capabilities [2,
6, 20, 42, 71, 73, 82, 87, 92]. The typical main limitation of active FDI techniques
concerns high computational cost and complexity. This drawback restricts quite a bit
the applicability of this approach to low-dimensional systems [30, 73, 85, 86, 104,
105], even though some approaches have been suggested in the literature to alleviate
the computational complexity (see as examples [6, 62]).

An obvious problem in the practical implementation ofmodel-based FDI schemes
consists of deriving accurate mathematical models of engineering systems. This is a
challenging task and thus, due to the presence of uncertainties and modeling errors,
the resulting residual vectors are never identically zero. In addition, generally in
the literature, the presence of measurement noise and modeling uncertainty is often
overseen. In most real-world applications, such uncertainties may influence signif-
icantly the performance of fault detection schemes by causing, for example, false
alarms. Therefore, bounds on the residuals must be defined, but still the proper
choice remains a major problem. If bounds are chosen too narrow, this may lead to
false alarms, whilst if they are chosen too wide faults may pass undetected. There-
fore, dealing with the uncertainty in Fault Detection and Isolation architectures is
of fundamental importance. As a result, there is a growing demand for robust resid-
ual generation to reduce the sensitivity of the residual against the effect of modeling
errors, noise and disturbances. This issue can be tackled either by the use of enhanced
techniques for robust residual generation or by choosing appropriately the level of
the error threshold which can also change adaptively as discussed in the book by
Patton et al. [65]. A line of research tried to overcome the problem of accurate math-
ematical modeling by using qualitative models, where only qualitative information,
such as sign or trend of measured variables, are used [101] as well as classification
techniques and inference methods. A more successful approach, anyway, is based
on the use of adaptive online approximators, such as neural networks as example, to
learn online the unknown or uncertain parts of the system dynamical model or the
fault model [15, 16, 28, 31, 50, 53, 69, 98, 107].

1.1 Distributed and Networked Large-Scale Systems

In the literature, FDI methods have been historically designed for centralized frame-
works, where information about the state of the system is gathered and processed
centrally. From a practical perspective, gathering the distributed information into a
central processing unit to implement a centralized approach for the fault diagnosis
task is counterproductive due to communication overload and the requirement for
higher computational power. Moreover, the processing of the information at a cen-
tralized station imposes several risks since the station constitutes a single point of
failure, thus making the architecture possibly fragile to faults. Recent advances in
communications and distributed sensing have allowed the transition from centralized
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fault diagnosis approaches [9, 18, 33, 65, 100] toward the development of hierar-
chical, decentralized and distributed schemes [8, 13–15, 23, 29, 31, 40, 48, 49, 52,
54–56, 66, 75, 76, 78, 84, 89, 90, 96, 102, 108].

In many cases, a distributed FDI framework is not an option but a necessity, since
many factors contribute to this formulation such as the large-scale nature of the sys-
tem to be monitored, its spatial distribution, the inability to access certain parts of the
system from a remotemonitoring component. Specifically, recent research efforts are
focused on decentralized, distributed, networked systems, Cyber-Physical Systems
(CPS) [4] and Systems of Systems (SoS) [80]. Examples of these systems include
power networks, water distribution networks, transportation systems, smart build-
ings and complex industrial plants. The term CPS refers to systems with integrated
computational and physical capabilities that can interact with humans through many
new modalities [4], expanding the capabilities of the physical world through com-
putation, communication, and control. On the other hand, a SoS can be considered
as a composition, made of components that are themselves systems, which is char-
acterized by two properties that the whole must possess for it [61]: operational and
managerial independence of components. This means that the component systems
fulfill their own purposes and continue to operate to fulfill those purposes even if
disassembled from the overall system; besides, the component systems are managed
(at least in part) for their own purposes rather than the purposes of the whole.

In this chapter, we will use the term networked with twomeanings: the considered
system can be represented as a network of physically interconnected subsystems,
and the monitoring agents operate and collaborate using input–output information
obtained through a communication network.

When monitoring this kind of systems, distributed or decentralized algorithms
are usually necessary due to computational, communication, scalability and relia-
bility limits. The main benefits of using a distributed fault diagnosis scheme can be
summarized as follows: (a) enhanced robustness of themonitoring architecture, since
centralized approaches are subject to single point of failure, (b) reduced computation
costs, and (c) scalability benefits; the distributed scheme allows formore flexibility in
adding subsystems with respective fault detection modules requiring fewer and pos-
sibly local modifications in the already existing architecture. Moreover, an emerging
requirement is the design of monitoring architectures that are robust to changes that
may occur in the dynamic topology of the large-scale systems, allowing the addi-
tion/disconnection of subsystem to/from the network of interconnected subsystems
only requiring local operations (see for example [11, 13, 78]).

Concerning Cyber-Physical Systems, in the literature, many contributions deal
with the description of the technical challenges and design and modeling issues that
need to be addressed in order to interface with these modern systems, the technolog-
ical impact deriving by CPS and the requirements emerging by them [4, 46, 57–59,
74, 83, 93, 103, 106]. With regards to reliability, safety and security of CPS, some
methods have been proposed ([77], including some recent works dealing with the
topic of the detection of cyber-physical attacks and attacks against process control
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systems [17, 19, 26, 63, 64, 81, 84, 88, 95]. An interesting approach for distributed
fault diagnosis is based on exploiting sensor networks [32, 110].

Another important direction of research related to the control and monitoring of
large-scale distributed networked systems is the design of distributed Fault-Tolerant
Control (FTC) architectures based on passive [8, 10, 78, 91] or active FDI methods
[72].

1.2 Outline of the Chapter

Motivated by the issues raised above, in this chapter, we present a distributed FDI
architecture specifically designed for uncertain networked nonlinear large-scale sys-
tems. We will consider different sources of uncertainty, namely modeling uncer-
tainty, measurement noise, and network-related uncertainties, such as communica-
tion delays, packet losses, and asynchronous measurements, and the presence of
possibly unknown anomalies. In Sect. 2 the problem formulation is given and the
objectives and contributions of this chapter are explained in detail. In Sect. 3, the
development of a fault detection scheme is presented in a continuous-time frame-
work based on [48], where a filtering technique, which is embedded in the design of
the residual and threshold signals, is used to attenuate the measurement noise. This
allows for the design of tight thresholds, and thus enhances fault detectability whilst
guaranteeing the absence of false alarms. This filtering approach for fault detection
is rigorously investigated, providing results regarding the class of detectable faults,
the magnitude of detectable faults and the filtering impact (according to the poles’
location and filters’ order) on the detection time.

Section4 addresses the need for integration between the different levels compos-
ing CPS systems, which are deeply correlated in modern systems, by presenting a
comprehensive architecture, based on [14], where all the parts of complex distributed
systems are considered: the physical environment, the sensor level, the diagnosers
layer, and the communication networks. Based on the problem formulation given
in Sect. 2 and on the filtering approach explained in Sect. 3, a distributed fault diag-
nosis approach is designed for distributed uncertain nonlinear large-scale systems
to specifically address the issues emerging when considering networked diagnosis
systems, such as the presence of delays and packet dropouts in the communication
networks that degrade performance and could be a source of instability, misdetection,
and false alarms.

Section5 discusses some issues regarding fault diagnosis, that is the actions taken
after the detection of a fault, for identifying its location and its magnitude or even
learning the fault function so that it can be used for fault accommodation schemes.
Finally, in Sect. 6, some concluding remarks are given.
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2 Problem Formulation

Consider a large-scale distributed nonlinear dynamic system composed of N sub-
systems ΣI , I ∈ {1, ..., N }, each of which is described by the differential equation:

ΣI :
⎧
⎨

⎩

ẋ I (t) = f I (xI (t), uI (t)) + gI (xI (t), zI (t), uI (t)) + ηI (xI (t), zI (t), uI (t))

+βI (t − T0)φI (xI (t), zI (t), uI (t)) (1)

mI (t) = xI (t) + wI (t), (2)

where xI ∈ R
nI , uI ∈ R

lI andmI ∈ R
nI are the state, input andmeasured output vec-

tors of the I -th subsystem respectively, zI ∈ R
n̄ I is the vector of interconnection vari-

ables which are the state variables of the other subsystems J ∈ {1, . . . , N } \ {I } that
affect the I -th subsystem, f I : RnI × R

lI �→ R
nI is the known local function dynam-

ics of the I -th subsystem and gI : RnI × R
n̄ I × R

lI �→ R
nI is the known part of the

interconnection function between the I -th and the other subsystems. The vector func-
tion ηI : RnI × R

n̄ I × R
lI �→ R

nI is the overall modeling uncertainty associatedwith
the known local and interconnection function dynamics andwI ∈ DwI ⊂ R

nI (DwI is
a compact set) represents themeasurement noise. The state vectors xI , I ∈ {1, ..., N }
are considered unknown whereas their noisy counterparts mI are known. Analo-
gously, in the case of the interconnection variable zI , only its noisy counterpart
mzI (t) = zI (t) + ςI (t) is available, where ςI (t) is composed by the components
of wJ affecting the relevant components of mJ (as before J refers to a neighbor-
ing subsystem). The term βI (t − T0)φI (xI , zI , uI ) characterizes the fault function
dynamics affecting the I -th subsystem including its time evolution. More specifi-
cally, the term φI : RnI × R

n̄ I × R
lI �→ R

nI is the unknown fault function and the
term βI (t − T0) : R �→ R

+ denotes the time evolution of the fault, where T0 is the
unknown time of the fault occurrence [70].Note that the fault functionφI maydepend
on the interconnection state variable vector zI and not only on the local state vector
xI . In this work, we consider the case of a single fault that occurs in a subsystem
(hence there is only one function φI (·)) and not the case of a distributed fault that
spans across several subsystems. Of course, the fault that occurs in a subsystem ΣI

can affect neighboring subsystems ΣJ through the interconnection terms z J . The
fault time profile βI (t − T0) can be used to model abrupt faults or incipient faults
using a decaying exponential type function:

βI (t − T0) �
{
0 if t < T0
1 − e−bI (t−T0) if t ≥ T0

(3)

where bI > 0 is typically an unknown parameter which denotes the fault evolution
rate. Abrupt faults correspond to the limit bI → ∞, in this case, the time profile
βI (t − T0) becomes a step function. In general, small values of bI indicate slowly
developing faults (incipient faults), whereas large values of bI make the time profile
βI (t − T0) approach a step function (abrupt faults).
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In this work, subsystem ΣJ is said to affect subsystem ΣI (or in other words ΣJ

is a “neighbor” of ΣI ), if the interconnection variables of ΣI , i.e., zI (t), contains at
least one of the state variables of ΣJ , i.e., xJ (t).

The notation | · | used in this chapter indicates the absolute value of a scalar
function or the 2-norm in case of a vector. In addition, the notation y(t) = H(s)

[
x(t)

]

(which is used extensively in the adaptive control literature) denotes the output y(t) of
a linear system represented by the transfer function H(s)with x(t) as input. In terms
of more rigorous notation, let h(t) be the impulse response associated with H(s);
i.e., h(t) � L −1 [H(s)], whereL −1 is the inverse Laplace transform operator. Then
y(t) = H(s)

[
x(t)

] = ∫ t
0 h(τ )x(t − τ ) dτ .

The following assumptions are used throughout the chapter:

Assumption 1 For each subsystemΣI , I ∈ {1, ..., N }, the local state variables xI (t)
and the local inputs uI (t) belong to a known compact region DxI and DuI , respec-
tively, before and after the occurrence of a fault, i.e., xI (t) ∈ DxI , uI (t) ∈ DuI for
all t ≥ 0. �

Assumption 2 The modeling uncertainty η(i)
I (i denotes the i-th component of ηI )

in each subsystem is an unstructured and possibly unknown nonlinear function of
xI , zI , and uI but uniformly bounded by a known positive function η̄(i)

I , i.e.,

|η(i)
I (xI , zI , uI )| ≤ η̄(i)

I (mI ,mzI , uI ), i = 1, 2, . . . , nI (4)

for all t ≥ 0 and for all (xI , zI , uI ) ∈ DI , where mzI = zI + ςI is the measurable
noisy counterpart of zI , ςI ∈ DςI ⊂ R

n̄ I and η̄(i)
I (mI ,mzI , uI ) ≥ 0 is a known bound-

ing function in some region of interest DI = DxI × DzI × DuI ⊂ R
nI × R

n̄ I × R
lI .

The regions DςI and DI are compact sets. �

Assumption1 is required for well posedness since here we do not address the
control design and fault accommodation. Assumption2 characterizes the class of
modeling uncertainties being considered. In practice, the system can be modeled
more accurately in certain regions of the state space. Therefore, the fact that the
bound η̄I is a function of mI , mzI and uI provides more flexibility by allowing the
designer to take into consideration any prior knowledge of the system. Moreover, the
bound η̄I is required in order to distinguish the effects between modeling uncertainty
and faults. For example if the bound η̄I is not set properly and it is too low so that (4)
does not hold, then false alarms may occur. On the other hand, if the bound η̄I is set
too high, so that (4) holds, then this might lead to conservative detection thresholds
which may never be crossed, leading to undetected faults. Therefore, the handling of
the modeling uncertainty is a key design issue in fault diagnosis architectures, which
creates a trade-off between false alarms and conservative fault detection. In Sect. 4.4,
adaptive approximationmethodswill be used to learn themodeling uncertaintyηI and
we will use the learned function in order to obtain even tighter detection thresholds
and enhance fault detectability.

Each sensor is associatedwith exactly one subsystem (see Fig. 2). The local sensor
S(i)
I associated with the I -th subsystem provides a measurement m(i)

I of the i-th
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Fig. 2 An example of the proposedmulti-layer fault detection architecture. The local state variables
for each subsystem (physical layer, left) are measured by the sensor layer (center). The sensors
communicate their measurements to the LFDs by means of the first level communication network.
The second level communication network (right) allows the diagnosers to communicate with each
other exchanging information

component of the local state vector xI according to the output equation

S(i)
I : m(i)

I (t) = x (i)
I (t) + w(i)

I (t) , i = 1, . . . , nI , (5)

where w(i)
I denotes the noise affecting the i-th sensor of the I -th subsystem.

Assumption 3 For each i-thmeasurementm(i)
I , with i = 1, . . . , nI , being the vector

component index, the measurement uncertainty term w(i)
I is an unstructured and

unknown function of time, but it is bounded by a known positive time function

w̄(i)
I (t) such that

∣
∣
∣w(i)

I (t)
∣
∣
∣ ≤ w̄(i)

I (t), i = 1, . . . , nI , I = 1, . . . , N , t ≥ 0. �

We assume that the control input is available without any error or delay (it is assumed
that there exist feedback controllers yielding a local control action uI such that
some desired control objectives are achieved). Each subsystem is monitored by its
respective Local Fault Diagnoser (LFD). The objective is to design and analyze a
distributed fault detection scheme, with each subsystem ΣI being monitored by a
LFD that receives local measurements through the first communication network (see
Fig. 2) and partial information (i.e., the measurements mzI of the interconnection
variables) from neighboring LFDs through the second communication network. In
general, the distributed fault detection scheme is composed of N LFDs SI , one for
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each subsystemΣI . Each LFDSI requires the input and output measurements of the
subsystem ΣI that it is monitoring and also the measurements of all interconnecting
subsystems ΣJ that affect ΣI . Note that these last measurements are communicated
by neighboring LFDs SJ , and not by the subsystems ΣJ . Therefore, there is the
need of communication between the LFDs depending on their interconnections. It is
important to note that, the second layer communication network mirrors the physical
coupling morphology. Note that, the information exchanged among the subsystems
is readily available since it is constituted by quantities zI that are measurable with
some uncertainty as mzI (t) = zI (t) + ςI (t) (the noisy counterpart of zI ). Therefore,
the distributed nature of the scheme stems from the fact that there is communica-
tion between the LFDs depending on their interconnections. More specifically, each
LFD receives from its local sensors the noisy state measurements forming the vector
mI = col(m(i)

I , i = 1, . . . , nI ) (see (5)) and from the J -th neighboringLFD the noisy
measurements m(i)

z I , i = 1, . . . , n̄ I of the local state variables components x (i)
J that

influence the I -th subsystem (i.e., the variables x (i)
J belonging to the interconnection

vector zI ). Each LFD computes a local state estimate x̂ I (t) based on the local I -th
model, by communicating the interconnection variables (and possibly other infor-
mation) to neighboring LFDs. The LFD implements a model-based fault detection
method: the local residual error vector rI (t) is compared, component by component,
to a time-varying detection threshold vector r̄ I (t), well-suited guarantee the absence
of false alarms.

2.1 Objectives and Contributions

In this chapter, a distributed fault diagnosis methodology is presented to address the
sources of uncertainty mentioned in the introduction. More specifically:

(a) a filtering-based design is embedded in a distributed fault diagnosismethodology
to dampen the effect of the measurement noise and enhance fault detection
robustness by facilitating less conservative conditions for fault detectability;

(b) an adaptive learning approach is adopted to reduce the modeling uncertainty and
thus, further enhance fault detectability;

(c) a delay compensation strategy is devised to address delays and packet losses in
the communication network between the LFDs using Time stamps and a buffer,
called diagnosis buffer (see Fig. 4);

(d) amodel-based re-synchronization algorithm is embedded in the diagnosis proce-
dure to manage asynchronous measurements. This algorithm is based on virtual
sensors implemented in the LFDs and on the use of a measurements buffer (see
Fig. 4);

In the following, we will first present in Sect. 3 the distributed filtering approach
in a continuous-time framework under the assumptions of (i) global synchronization,
i.e., subsystems, sensors, andLFDs are assumed to share the same clock and sampling
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frequency and (ii) perfect information exchange, i.e., it is assumed that information
exchanged between LFDs and communicated from the system to the LFDs is without
any error nor delay and it is immediately available at anypoint of the diagnosis system.
The effect of the filtering on the detectability performance is rigorously analyzed.
After that, in Sect. 4, the filtering design is adapted in a discrete-time formulation to
allow to analyze the more realistic networked scenarios, where different strategies
for managing modeling uncertainty and network-related issues will be integrated in
a comprehensive framework.

3 Filtering-Based Distributed Fault Detection

In this section, we present a filtering framework for the detection of faults in a class of
interconnected, nonlinear, continuous-time systems with modeling uncertainty and
measurement noise (see [48] for more details). In order to address the measurement
noise issue which can lead to conservative detection thresholds or even false alarms
if not dealt with properly, filtering is used by embedding the filters into the design in
a way that takes advantage of the filtering noise suppression properties. Essentially,
filtering dampens the effect of measurement noise in a certain frequency range allow-
ing to set less conservative adaptive fault detection thresholds and thus enhancing
fault detectability. As a result, a robust fault detection scheme is designed which
guarantees no false alarms. The distributed fault detection scheme is comprised of
a set of interacting LFDs, in which each subsystem is monitored by its respective
detection agent.

To dampen the effect of measurement uncertainty wI (t), each measured variable
m(i)

I is filtered by H(s), where H(s) is a p-th order filter with strictly proper transfer
function

H(s) = sHp(s), (6)

Hp(s) = dp−2s p−2 + dp−3s p−3 + . . . + d0
s p + cp−1s p−1 + . . . + c1s + c0

. (7)

Note that the strictly proper requirement is important. If the transfer function H(s)
is proper, then the noise would appear in the filter output and the noise dampening
would not be effective.

The choice of a particular type of filter to be used is application dependent, and it is
made according to the available a priori knowledge on the noise properties. Usually,
measurement noise is constituted by high frequency components and therefore the
use of low-pass filter for dampening noise is well justified. On other occasions,
one may want to focus the fault detectability on a prescribed frequency band of the
measurement signals and hence choose the filter accordingly.
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Generally, each measured variable m(i)
I (t) can be filtered by a different filter. In

this chapter, without loss of generality, we consider H(s) to be the same for all the
output variables in order to simplify the notation and presentation.

The filters H(s) and Hp(s) are asymptotically stable and hence BIBO stable.
Therefore, for bounded measurement noise wI (t) (see Assumption3), the filtered
measurement noise εwI (t) � H(s) [wI (t)] is uniformly bounded as follows:

|ε(i)
wI

(t)| ≤ ε̄(i)
wI

i = 1, 2, . . . , nI , (8)

where ε̄(i)
wI

are known bounding constants. Depending on the noise characteristics,
H(s) can be selected to reduce the bound ε̄(i)

wI
.

3.1 Distributed Fault Detection

In this section, we explain in detail the fault filtering framework in order to obtain the
residual signals rI (t) to be used for fault detection and the corresponding detection
thresholds r̄ I (t). The fault detection logic is based on deriving suitable detection
thresholds so that in the absence of a fault the residual signals are bounded by their
corresponding detection threshold signals, guaranteeing no false alarms. To state
this formally: in the absence of a fault (i.e., for t ∈ [0, T0)), it is guaranteed that
|r (i)

I (t)| ≤ r̄ (i)
I (t), ∀i = 1, . . . , nI and ∀I = 1, . . . , N . The detection decision of a

fault in the overall system is made when |r (i)
I (t)| > r̄ (i)

I (t) at some time t for at least
one component i in any subsystem ΣI . Note that, in this chapter, only a single fault
φI is considered to occur in the large-scale distributed system.

By locally filtering the output signal mI (t), we obtain the filtered output yI, f (t):

yI, f (t) = H(s) [mI (t)] (9)

= H(s) [xI (t) + wI (t)] .

ByusingεwI (t) = H(s) [wI (t)] and the fact that s[xI (t)] = ẋ I (t) + xI (0)δ(t) (where
δ(t) is the delta function), we obtain

yI, f (t) = H(s) [xI (t)] + εwI (t)

= Hp(s) [ẋ I (t)] + Hp(s) [xI (0)δ(t)] + εwI (t)

= Hp(s)
[
f I

(
xI (t), uI (t)) + gI (xI (t), zI (t), uI (t)

)

+ ηI
(
xI (t), zI (t), uI (t)

) + βI (t − T0)φI
(
xI (t), zI (t), uI (t)

)]

+ εwI (t) + h p(t)xI (0), (10)

where h p(t) is the impulse response of the filter Hp(s), i.e., h p(t) � L −1
[
Hp(s)

]
.

The estimation model x̂ I (t) for xI (t) under fault-free operation is generated based
on (1) by considering only the known components and by using the measurements
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mI and mzI as follows:

˙̂xI = f I (mI (t), uI (t)) + gI (mI (t),mzI (t), uI (t)), (11)

with the initial condition x̂ I (0) = mI (0).
The corresponding estimation model for yI, f (t), denoted by ŷI, f (t), is given by

ŷI, f (t) = H(s)
[
x̂ I (t)

]
, (12)

and by using (11) and following a similar procedure as in the derivation of (10),
ŷI, f (t) becomes

ŷI, f (t) =Hp(s)
[
f I

(
mI (t), uI (t)

) + gI
(
mI (t),mzI (t), uI (t)

)] + h p(t)mI (0).
(13)

The local residual error rI (t) to be used for fault detection is defined as

rI (t) � yI, f (t) − ŷI, f (t), (14)

and it is readily computable from Eqs. (9), (11) and (12).
Prior to the fault (t < T0), the local residual error can be written using Eqs. (10),

(13) and (14) as

rI (t) = Hp(s) [χI (t)] + εwI (t) (15)

where the total uncertainty term χI (t) is defined as

χI (t) � Δ f I (t) + ΔgI (t) + ηI
(
xI (t), zI (t), uI (t)

)
, (16)

Δ f I (t) � f I
(
xI (t), uI (t)

) − f I
(
xI (t) + wI (t), uI (t)

)
, (17)

ΔgI (t) � gI
(
xI (t), zI (t), uI (t)

) − gI
(
xI (t) + wI (t), zI (t) + ςI (t), uI (t)

)
. (18)

For simplicity, in the derivation of (15), the initial conditions xI (0) = mI (0) are
assumed to be known. If there is uncertainty in the initial conditions (i.e., xI (0) 
=
mI (0)) then that introduces the extra term h p(t)(xI (0) − mI (0)) in (15) which how-
ever converges to zero exponentially (since h p(t) is exponentially decaying [24])
and thus does not affect significantly the subsequent analysis.

By taking bounds on (15) and by using the triangle inequality for each component
i of the residual, we obtain

|r (i)
I (t)| ≤ |Hp(s)

[
χ(i)
I (t)

]
| + |ε(i)

wI
(t)| = |

∫ t

0
h p(t − τ )χ(i)

I (τ ) dτ | + |ε(i)
wI

(t)|

≤
∫ t

0
|h p(t − τ )||χ(i)

I (τ )| dτ + |ε(i)
wI

(t)|



548 F. Boem et al.

≤
∫ t

0
h̄ p(t − τ )χ̄(i)

I (τ ) dτ + ε̄(i)
wI

(19)

where h̄ p(t) is the impulse response (of the filter H̄p(s)) that satisfies |h p(t)| ≤ h̄ p(t)
for all t > 0 (details for selecting H̄p(s) will be given in Sect. 3.2) and χ̄(i)

I (t) is the
bound on the total uncertainty term χ(i)

I (t), i.e., |χ(i)
I (t)| ≤ χ̄(i)

I (t).
Using Assumption2, the bound χ̄(i)

I (t), i = 1, 2, . . . , nI is defined as

χ̄(i)
I (t) �Δ f

(i)
I + Δg

(i)
I + η̄(i)

I

(
mI (t),mzI (t), uI (t)

)
, (20)

where

Δ f
(i)
I � sup

(xI ,uI )∈D xI ×DuI
wI∈DwI

| f (i)
I

(
xI , uI

) − f (i)
I

(
xI + wI , uI

)| (21)

Δg
(i)
I � sup

(xI ,zI ,uI )∈D I
(wI ,ςI )∈DwI ×D ςI

|g(i)
I

(
xI , zI , uI

) − g(i)
I

(
xI + wI , zI + ςI , uI

)|. (22)

Since the regions DI , DwI and DςI are compact sets, the suprema in (21) and (22)
are finite. In addition, note that the bound χ̄(i)

I (t) in (20) depends on t because of the
bounding function η̄(i)

I .
Finally, a suitable detection threshold r̄ (i)

I (t) can be selected as the right-hand side
of (19) which can be rewritten as

r̄ (i)
I (t) = H̄p(s)

[
χ̄(i)
I (t)

]
+ ε̄(i)

wI
. (23)

A practical issue that requires consideration is the derivation of the bound χ̄(i)
I (t)

given in (20). Specifically, the derivation of χ̄(i)
I (t) requires the bounds Δ f

(i)
I and

Δg
(i)
I on Δ f (i)

I (t) and Δg(i)
I (t), respectively. One approach for deriving the bound

Δ f
(i)
I in (21) is to consider a local Lipschitz assumption:

| f (i)
I (xI , uI ) − f (i)

I (xI + wI , uI )| ≤ L f (i)
I

|wI | (24)

where L f (i)
I
is the Lipschitz constant for the function f (i)

I (xI , uI ) with respect to xI
in the regionDxI . Therefore, if we have a bound w

M
I on the measurement noise, i.e.,

|wI (t)| ≤ wM
I ∀t > 0, then we can obtain a bound on Δ f (i)

I (t). A similar approach
can be followed for Δg(i)

I (t).
Another way of obtaining a less conservative bound than χ̄(i)

I and therefore further
enhance fault detectability, is by exploiting the use of filtering which can be proved
beneficial for dampening the mismatch function Δ f I (t) + ΔgI (t) which results due
to the measurement noise. Among the various filters one can select, some may lead
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to less conservative detection thresholds. Therefore, a significantly less conservative
detection threshold without the need for the Lipschitz constants can be obtained by
observing that the residual (15) can be written as

rI (t) =Hp(s)
[
ηI

(
xI (t), zI (t), uI (t)

)] + Hp(s) [Δ f I (t) + ΔgI (t)] + εwI (t) (25)

and by making the following assumptions:

Assumption 4 The filtered function mismatch term εΔI (t) � Hp(s) [Δ f I (t)+
ΔgI (t)] is uniformly bounded as follows:

|ε(i)
ΔI

(t)| ≤ ε̄(i)
ΔI

i = 1, 2, . . . , nI , (26)

where ε̄(i)
ΔI

is a known bounding constant. �

Assumption4 is based on the fact that filtering dampens the effect of measurement
noise present in the function mismatch term Δ f I (t) + ΔgI (t). A suitable selection
of ε̄(i)

ΔI
can be made through the use of simulations (i.e., Monte Carlo methods)

by filtering the function mismatch term Δ f I (t) + ΔgI (t) using the known function
dynamics and the available noise characteristics (recall that the measurement noise
is assumed to take values in a compact set).

Therefore, the detection threshold becomes

r̄ (i)
I (t) =H̄p(s)

[
η̄(i)
I

(
mI (t),mzI (t), uI (t)

)] + ε̄(i)
ΔI

+ ε̄(i)
wI

. (27)

Figure3 illustrates the I -th LFD which includes the implementation of the local
filtered fault detection scheme for the I -th subsystem resulting from Eqs. (9), (11),
(12), (14) and (23).

3.2 Selection of Filter H̄p(s)

Two methods for selecting a suitable transfer function H̄p(s) with impulse response
h̄ p(t) such that |h p(t)| ≤ h̄ p(t) for all t ≥ 0 are illustrated.

In general though, note that if the impulse response h p(t) is nonnegative, i.e.,
h p(t) ≥ 0, for all t ≥ 0, then the calculation of H̄p(s) can be omitted. In this case
Hp(s) can be used instead of H̄p(s) in (23), as it can easily be seen from (19)
since |h p(t − τ )| = h p(t − τ ). Necessary and sufficient conditions for nonnegative
impulse response for a specific class of filters are given in [60].

• First method.

The first method relies on the following Lemma, which describes a methodology
for finding H̄p(s). For notational convenience, for any m × n matrix A we define
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Fig. 3 Local filtered fault detection scheme

|A|E as the matrix whose elements correspond to the modulus of the element ai, j ,
i = 1, . . . ,m and j = 1, . . . , n of the matrix A.

Lemma 1 ([48]). Let w(t) = CeAt B be the impulse response of a strictly proper
SISO transfer function W (s) with state space representation (A, B,C). Then, for
any signal v(t) ≥ 0, the following inequality holds for all t ≥ 0:

∫ t

0
|w(t − τ )|v(τ ) dτ ≤ W (s) [v(t)] ,

where W (s) is given by

W (s) � |CT |E (s I − Re[J ])−1
∣
∣T−1B

∣
∣
E

(28)

and J = T−1AT is the Jordan form of the matrix A.
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Therefore, by using Lemma1withw(t) = h p(t), the transfer function H̄p(s) such
that its impulse response satisfies |h p(t)| ≤ h̄ p(t) can be obtained from (28).

• Second method.

The second method is by using the following well-known result (see, for instance
[24]).

Lemma 2 The impulse response h p(t) of a strictly proper and asymptotically stable
transfer function Hp(s) decays exponentially; i.e., |h p(t)| ≤ κe−υt for some κ > 0,
υ > 0, for all t ≥ 0.

By using Lemma2, a suitable impulse response h̄ p(t) such that |h p(t)| ≤ h̄ p(t)
for all t ≥ 0 is given by h̄ p(t) = κe−υt and can be implemented using linear filtering
techniques as H̄p(s) = κ

s+υ
.

3.3 Fault Detectability and Detection Time Analysis

3.3.1 Fault Detectability Analysis

The design and analysis of the fault detection scheme in the previous sections were
based on the derivation of suitable thresholds r̄ (i)

I (t) such that in the absence of any
fault, the residual signals r (i)

I (t) are bounded by r̄ (i)
I (t). An important related question

iswhat class of faults can be detected. This is referred to as fault detectability analysis.
In this section, fault detectability conditions for the aforementioned fault detection
scheme are derived. The fault detectability analysis constitutes a theoretical result
that characterizes quantitatively the class of faults detectable by the proposed scheme.

Theorem 1 Consider the nonlinear system (1), (2) with the distributed fault detec-
tion scheme described in (9), (11), (12), (14) and (23) in the general case of H(s)
given by (6). A sufficient condition for a fault φ(i)

I (xI , zI , uI ) in the I -th subsystem
initiated at T0 to be detectable at time Td > T0 is that for some i = 1, 2, . . . , nI :

|Hp(s)
[
βI (Td − T0)φ

(i)
I

(
xI (Td), zI (Td), uI (Td)

)]| > 2r̄ (i)
I (Td). (29)

Proof In the presence of a fault that occurs at T0, Eq. (15) becomes

r (i)
I (t) =Hp(s)

[
χ(i)
I (t) + βI (t − T0)φ

(i)
I

(
xI (t), zI (t), uI (t)

)] + ε(i)
wI

(t).

By using the triangle inequality, for t > T0, the residual r
(i)
I (t) satisfies

|r (i)
I (t)| ≥ − |Hp(s)

[
χ(i)
I (t)

]| − |ε(i)
wI

(t)|
+ |Hp(s)

[
βI (t − T0)φ

(i)
I

(
xI (t), zI (t), uI (t)

)]|
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≥ −
∫ t

0
|h p(t − τ )||χ(i)

I (τ )| dτ − |ε(i)
wI

(t)|
+ |Hp(s)

[
βI (t − T0)φ

(i)
I

(
xI (t), zI (t), uI (t)

)]|
≥ −

∫ t

0
h̄ p(t − τ )χ̄(i)

I (τ ) dτ − ε̄(i)
wI

+ |Hp(s)
[
βI (t − T0)φ

(i)
I

(
xI (t), zI (t), uI (t)

)]|
≥ − r̄ (i)

I (t) + |Hp(s)
[
βI (t − T0)φ

(i)
I (xI (t), zI (t), uI (t))

]|.

For fault detection, the inequality |r (i)
I (t)| > r̄ (i)

I (t) must hold at some time t = Td
for some i = 1, . . . , nI , so the final fault detectability condition given by (29) is
obtained. �

Although Theorem1 is based on threshold (23), it can be readily shown that
the same result holds in the case where threshold (27) is used. Clearly, the fault
functions φI (xI , zI , uI ) are typically unknown and therefore this condition cannot
be checked a priori. However, it provides useful intuition about the type of faults
that are detectable. The detectability condition given in Theorem1 is a sufficient
condition, but not a necessary one and hence, the class of detectable faults can be
significantly larger. The use of filtering is of crucial importance in order to derive
tighter detection thresholds that guarantee no false alarms. As it can be seen in the
detectability condition given by (29), the detection of the fault depends on the filtered
fault function φI and as a result, the selection of the filter is very important. Since the
fault function is usually comprised of lower frequency components, it is not affected
that much by low-pass filtering in comparison to the measurement noise which is
usually of higher frequency. In addition, filtering allows the derivation of tighter
detection thresholds and as a result, the fault detectability condition can be met more
easily. Obviously, some filter selections may lead to less conservative thresholds than
others.

The detectability properties of the proposed filtering approach are further inves-
tigated by considering a specific case for the filter Hp(s)

Hp(s) = αp

(s + α)p
. (30)

This type of filter is well suited for gaining further intuition since it contains
two parameters p and α that denote the order of the filter and the pole location,
respectively. More specifically, the order p of the filter regulates the damping effect
of the high frequency noise, whereas the value α of the filter determines the cutoff
frequency at which the damping begins. In general, more selective filter implemen-
tations can be made (i.e., Butterworth filters) which may have some implications in
the filters required for the detection threshold implementation (due to the fact that
the impulse response may not be always positive). But, the particular filter Hp(s)
given by (30) is perfectly suited for the investigation of the analytical properties of
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the filtering scheme. Note also that Hp(s) has a nonnegative impulse response h p(t)
and therefore H̄p(s) can be selected simply as Hp(s).

In order to conduct this fault detectability analysis, we simplify Assumption2 by
considering a constant bounding condition. It is important to note that the constant
bounding of the uncertaintymay introduce additional conservativeness, thus reducing
the advantage given by the tighter conditions obtained through the filtering.

Assumption 5 The modeling uncertainty η(i)
I in each subsystem is an unstructured

and possibly unknown nonlinear function of xI , zI and uI but uniformly bounded
by a known positive scalar η̄(i)

I , i.e.,

|η(i)
I (xI , zI , uI )| ≤ η̄(i)

I , i = 1, 2, . . . , nI (31)

for all t ≥ 0 and for all (xI , zI , uI ) ∈ DI , where η̄(i)
I ≥ 0 is a known bounding scalar

in some region of interest DI = DxI × DzI × DuI ⊂ R
nI × R

n̄ I × R
lI . �

By using the Lipschitz assumption stated in (24), along with the known constant
bound wM

I of the measurement uncertainty |wI | and the constant bound on the mod-
eling uncertainty η̄(i)

I , as stated in Assumption5, the bound of the total uncertainty
term χ̄(i)

I (t) takes a constant value χ̄(i)
I . Then, Theorem2, which follows, can be

obtained (its proof can be found in [48]).
It must be pointed out that, although we use (23) for the detection threshold, the

adaptation of the subsequent results in the case where the threshold is given by (27)
is straightforward by simply replacing χ̄(i)

I with η̄(i)
I and adding the term ε̄(i)

ΔI
along

the term ε̄(i)
wI

in what follows.

Theorem 2 Consider the nonlinear system (1), (2) with the distributed fault detec-
tion scheme described in (9), (11), (12), (14) and (23) in the special case of
Hp(s) given by (30) and with H̄p(s) = Hp(s). Suppose at least one component
φ(i)
I (xI , zI , uI ) of the fault vector φI (xI , zI , uI ) satisfies the condition

|φ(i)
I (xI (t

′), zI (t ′), uI (t
′))| ≥ M, ∀ t ′ ∈ [T0, t] , (32)

for sufficiently large t > T0 and is continuous in the time interval t ′ ∈ [T0, t]. If
M > 2(χ̄(i)

I + ε̄(i)
wI

), then the fault will be detected, that is |r (i)
I (t)| > r̄ (i)

I (t).

The aforementioned theorem is conceptually different from Theorem1. More
specifically, the detectability condition (29) of Theorem1 allows the fault function
φ(i)
I to change sign. On the other hand, Theorem2 states that if the fault function φ(i)

I

maintains the same sign over time and its magnitude is larger than 2(χ̄(i)
I + ε̄(i)

wI
) for

sufficiently long, then the fault is guaranteed to be detected.
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3.3.2 Detection Time Analysis

The detection time of a fault, that is, the time interval between the fault occurrence
and its detection, plays a crucial role in fault diagnosis and it constitutes a form of
performance criterion. When a fault is detected faster, then timely actions can be
undertaken to avoid more serious or even disastrous consequences. It is worth noting
that incipient faults are more difficult to detect, especially during their early stages,
and as a result the detection time of an incipient fault is generally larger than that of
an abrupt fault. In this section, an upper bound of the detection time is obtained in
the case where a fault is detected according to Theorem2. Moreover, we investigate
the influence of the filter’s order p and the pole location α on the upper bound of
the detection time in order to derive some insight regarding the selection of p and
α. The results are obtained for the general case of an incipient fault; concerning the
dependence of the detection time on the filter’s order p, only the abrupt fault case is
addressed for the sake of simplicity.

Theorem 3 Consider the nonlinear system (1), (2) with the distributed fault detec-
tion scheme described in (9), (11), (12), (14) and (23) in the special case of Hp(s)
given by (30) and with H̄p(s) = Hp(s). If at least one component φ

(i)
I (xI , zI , uI ) of

the fault vector φI (xI , zI , uI ) satisfies the condition

∣
∣
∣φ

(i)
I

(
xI (t

′), zI (t ′), uI (t
′)
)∣∣
∣ ≥ M, ∀ t ′ ∈ [T0, t] (33)

where M > 2(χ̄(i)
I + ε̄(i)

wI
) for sufficiently large t > T0 and is continuous in the time

interval t ′ ∈ [T0, t] such that the fault can be detected according to Theorem2, then:

(a) A sufficient condition for fault detectability is given by

q(t, T0,α) >
2(p − 1)!

M
(χ̄(i)

I + ε̄(i)
wI

). (34)

where

q(t, T0,α) � q1(t, T0,α) − q2(t, T0,α) (35)

q1(t, T0,α) = γ
(
p,α(t − T0)

)
, (36)

q2(t, T0,α) =
{

αp

p (t − T0)pe−α(t−T0) if α = bI
αpe−bI (t−T0)

(a−bI )p
γ
(
p, (α − bI )(t − T0)

)
else,

(37)

and γ(·) indicates the lower incomplete Gamma function, defined as γ
(
p, z

)
�

∫ z
0 wp−1e−w dw.
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(b) An upper bound on the detection time Td of an incipient fault can be found by
solving the equation

q1(Td , T0,α) − q2(Td , T0,α) = 2(p − 1)!
M

r̄ (i)
I (Td), (38)

where r̄ (i)
I is given by

r̄ (i)
I (t) = 1

(p − 1)! χ̄
(i)
I γ

(
p,αt

) + ε̄(i)
wI

. (39)

(c) The upper bound Td decreases monotonically as the value of α increases.
(d) In the case of abrupt faults, the upper bound on the detection time Td increases

as the order p of the filter increases.

The proof of Theorem3 can be found in [48]. Part (b) of the above theorem
establishes the mathematical equation whose solution gives an upper bound on the
detection time. At this point, we must stress that, although we refer to the solution
of the equation as the upper bound of the detection time (because of the requirement
(32)), there are cases where the solution is the actual detection time. For instance,
consider the case where the magnitude of the fault is

∣
∣φ(i)

I (xI (t ′), zI (t ′), uI (t ′))
∣
∣ =

M, ∀ t ′ ∈ [T0, t] andM > 2(χ̄(i)
I + ε̄(i)

wI
). Then, the solution of (38) gives the actual

detection time.
Part (c) of the theorem shows that by increasing the value of the pole α, the upper

bound on the detection time (and sometimes the actual detection time as explained
before) decreases. On the other hand, the value of α regulates the cutoff frequency
of the filter where the damping begins, so the pole location has an inherent trade-off
between noise damping and fault detection speed.

Part (d) of the theorem states that in the case of abrupt faults, the upper bound
on the detection time increases as the order p of the filter increases. Although the
proof is for the case of abrupt faults, the same behavior is observed in the case of
incipient faults as well. An obvious downside of higher order filtering is the possible
increased detection time. There is also a qualitative explanation for Part (d), as it has
necessarily to do with the phase lag introduced by the filter which increases with
p. Simply put, by increasing p results in increased phase lag or delay between the
input and output signals of the filter and since the detectability of a fault relies on
the filtered signals, the detection time increases according to the delay incurred.

Remark 1 Prior to the occurrence of a fault, the residual differs from zero due to
the effect of the filtered noise and filtered modeling uncertainty as indicated by (15).
When a fault occurs, the residual is permanently contaminated by the filtered fault
function as shown in the proof of Theorem1. In general, the location of the poles
simply affects the effectiveness of the noise dampening. To make things more clear,
consider Theorems2 and 3 which rely on the special case of the filter Hp(s) given in
(30). Theorem2, states that in the case of a fault (abrupt or incipient), which satisfies
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the conditions given in the Theorem then the fault is guaranteed to be detected.
Note that this is irrespective of the location of the filters’ poles. In fact, as shown in
Theorem3, having faster poles results in a smaller upper bound on the detection time
or even smaller actual detection time. In conclusion, the location of the poles does
not limit the duration of the residual activation when a fault occurs, but instead the
residual is permanently affected by the filtered fault function. Therefore, the location
of the poles has an inherent trade-off between noise damping and fault detection
speed.

Simulation results showing the effectiveness of the illustrated techniques can be
found in [48].

4 The Cyber-Physical Networked Architecture

In this section, we present a cyber-physical networked fault detection architecture
based on [14]. Let us note that the approach for distributed fault diagnosis of nonlinear
uncertain large-scale systems that we have previously described is based on some
underlying assumptions that may restrict its applicability, namely:

1. global synchronization: subsystems, sensors, and LFDs were assumed to share
the same clock and sampling frequency;

2. perfect information exchange: itwas assumed that information exchangedbetween
LFDs and communicated from the system to the LFDs is without any error nor
delay and it is immediately available at any point of the diagnosis system.

In several realistic contexts, (1) and (2) may not hold, and as a consequence,
(i) some faults may become undetectable due to the fact that LFDs make detection
decisions based on outdated information; (ii) delays in information exchange may
cause longer detection times; (iii) the lack of accurate and timely information may
cause false alarms.

In order to address these issues and the more complex nature of real CPS systems,
we now consider a more comprehensive framework, where the previously proposed
filtering design to reduce measurement noise is adapted in the current formulation
in discrete time.

The proposed distributed fault detection architecture is made of three layers: the
system layer, the sensor layer and the diagnosis layer. In Fig. 2, this layout was shown
in a pictorial way. These three layers are briefly described next.

The system layer refers to the large-scale system to be monitored. It is described
by the continuous-time state equations for each subsystem Eq. (1) and the output
Eq. (2).

The sensor layer consists of the available sensors taking measurementsm(i)
I (t) in

continuous-time (see (5)) and sampling and sending such measurements to the I -th
LFD at time instants t (i)s I that are not necessarily equally spaced in time. As we do
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not assume that the measurements delivered by the sensors are synchronized with
each other, each measurement is labeled with a Time Stamp (TS) [94] to indicate
the time instant t (i)s I at which the measurements are taken by sensor S(i)

I in the time
coordinate t .

The communication between the sensors and the LFDs is achieved through the
first level communication network (see Fig. 2). This network can introduce delays
and packet losses, for instance because of collision between different sensors trying
to communicate at the same time. Therefore, measurements communicated from the
sensors to LFDs may be received at any time instant.

The Diagnosis layer consists of the previously introduced LFDs providing a dis-
tributed fault diagnosis procedure. The structure of each LFD is shown in Fig. 4.
As previously mentioned, each LFD receives the measurements from specific sen-
sors with the aim to provide local fault diagnosis decisions. The LFDs operate in a
discrete-time synchronous time frame k ∈ Z which turns out to be more convenient
for handling any communications delays, as will be seen in the next sections. For
the sake of simplicity, the sampling time of the discrete-time frame is assumed to
be unitary and the reference time is common, that is, the origin of the discrete-time
axis is the same as that of the continuous-time axis. Therefore, the operation of the
LFDs is based on the local discrete-time models, which are the discrete-time version
of local models (1):

xI (k + 1) = f I (xI (k), uI (k)) + gI (xI (k),zI (k), uI (k)) + ηI (xI (k), zI (k), uI (k))

+ βI (k − k0)φI (xI (k), zI (k), uI (k)) ,

(40)
where φI describes the local discretized fault effects, occurring at some discrete-time
k0 (that is, βI (k − k0)φI (xI (k), zI (k), uI (k)) = 0, k < k0). Each LFD exchanges
information with neighboring LFDs by means of the second level communication
network (see right side ofFigs. 2 and4).Aswewill see in the following, the exchanged
information consists in the re-synchronized interconnection variables vJ . In Fig. 4,
an example of a two LFDs architecture is presented to provide more insight into the
structure of the proposed scheme.

In summary, two different and not reliable communication networks are consid-
ered in this work: the first level communication network allows each LFD to com-
municate with its local sensors and the second level communication network allows
the communication between different LFDs for detection purposes. Both these com-
munication networks may be subject to delays and packet losses. Given the different
nature of the networks (the first is local, while the second is connecting different
subsystems, which may be geographically apart), in the next section we provide two
different strategies to manage communication issues: a re-synchronization method
for the first level communication network and a delay compensation strategy for the
second level communication network.
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Fig. 4 An example of a two LFDs architecture. The internal structure of each LFD is shown
(similarly as in [14]), composed of two buffers (the measurements buffer and the diagnosis buffer)
to collect the information received, respectively, by the local sensors and neighboring LFDs, the
Virtual Sensor (processing the received measurements), and the Fault Detection unit, responsible
for the monitoring analysis. The communicated information between LFDs is represented

4.1 Re-Synchronization at Diagnosis Level

Let us consider a state variable x (i)
I (t); as mentioned before, at time t = t (i)s I the

sensor S(i)
I takes the measurement m(i)

I (t (i)s I ) and sends it to the I -th LFD with a
time stamp t (i)s I . The I -th diagnoser receives the measurement sent by S(i)

I at time
t (i)aI > t (i)s I . Since the LFDs run the distributed fault diagnosis algorithm with respect
to a discrete-time framework associated with an integer k (see (40)), an online re-
synchronization procedure has to be carried out at the diagnosis level. Moreover,
the possible time-varying delays and packet losses introduced by the communica-
tion networks between the local sensors and the corresponding LFDs have to be
addressed since they may affect the fault diagnosis decision. Note that, the classi-
cal discrete-time FD architecture assumes that quantities sampled at exactly time
k are used to compute quantities related to time k + 1. Unfortunately, the LFDs
may receive measurements associated with time instants different from k, because of
transmission delays and because of the arbitrary sampling time instants of the sen-
sors. The availability of the time stamp t (i)s I enables each LFD to implement a set of
local virtual sensors by which the re-synchronization of the measurements received
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at the Diagnosis level is implemented. We assume that sensors and diagnosers share
the same clock at the local level.1

Specifically, each LFD collects the most recent sensors measurements in a
buffer and computes a projection m̂(i)

I (k|t (i)s I ) of these latest available measurements
m(i)

I (t (i)s I ), i = 1, . . . , nI , to the discrete-time instant2 k ≥ t (i)aI > t (i)s I , by integrating
the local nominal model on the time interval [t (i)s I , k].
Remark 2 Let us note that measurements may be related to and could be received
also before time k − 1, without any assumption on the delay length, thus allowing
the possibility of measurement packet losses. Moreover, thanks to the use of the
time stamps and the buffers, “out-of-sequence” packets can be managed. The same
measurement could be used by the virtual sensor more than once to obtain more than
one projections related to different discrete-time instants.

The projected measurement m̂(i)
I (k|t (i)s I ) can be computed by noticing that, under

healthy mode of behavior, the local nominal model (1) for the state component i at
any time t > t (i)s I can be rewritten as

x (i)
I (t) = x (i)

I (t (i)s I ) +
∫ t

t (i)s I

[ f (i)
I (xI (τ ), uI (τ )) + g(i)

I (xI (τ ), zI (τ ), uI (τ ))

+ η(i)
I (xI (τ ), zI (τ ), uI (τ ))]dτ .

Hence, the LFD implements a virtual sensor that generates an estimate of the mea-
surement at discrete-time k given by

m̂(i)
I (k|t(i)s I ) = m(i)

I (t(i)s I )

+
∫ k

t (i)s I

[ f (i)
I (m̂ I (τ |t(i)s I ), uI (τ ))+g(i)

I (m̂ I (τ |t(i)s I ), m̂z I (τ |t(i)s I ), uI (τ))

+ η̂
(i)
I (m̂ I (τ |t(i)s I ), m̂z I (τ |t(i)s I ), uI (τ ))]dτ ,

(41)

where η̂I characterizes an adaptive approximator designed to learn the unknown
modeling uncertainty function ηI [27] and m̂z I are the projections of the measured
interconnection variables mzI . An example enhancing the re-synchronization proce-
dure for one LFD monitoring a subsystem with three state variables is illustrated in
Fig. 5.

1As example, this could be obtained in accordancewith the IEEE 1588-2002 standard (“Standard for
a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems”),
where each diagnoser can be selected as a synchronization master for the sensors that communicate
with it.
2Recall that the sampling time of the diagnosers is supposed to be unitary for simplicity.
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Fig. 5 The re-synchronization procedure [14] needed to manage delays and packet losses in the
communication networks between each LFD and its local sensors. A single LFD is considered
whose local model depends on three variables, which are measured by three different sensors. The
clock signals of each layer involved are shown

Remark 3 It is worth noting that the discrete-time index k ∈ Z represents kind of a
“virtual Time Stamp” (vTS) computed by the LFDs after the re-synchronization task
and communicated in the second level communication network between LFDs. This
will be exploited in Sect. 4.2.

Remark 4 Although in (41), for analysis purposes, η̂I represents the output of
a continuous-time adaptive approximator, for implementation reasons, a suitable
discrete-time approximator will be used, designed as explained in Sect. 4.4.

The above-described projection and re-synchronization procedure gives rise to an
additional source of measurement uncertainty: the virtual measurement error, which
is defined as

ξ(i)
I (k) � m̂(i)

I (k|t (i)s I ) − x (i)
I (k).

For the sake of analysis, it is worth noting that, due to synchronization and measure-
ment noise, the virtual measurement error is given by
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ξ(i)
I (k) = m(i)

I (t (i)s I ) − x (i)
I (t (i)s I )

+
∫ k

t (i)s I

[Δsynch f
(i)
I (τ ) + Δsynchg

(i)
I (τ ) + Δsynchη

(i)
I (τ )]dτ

= w(i)
I (t (i)s I ) +

∫ k

t (i)s I

[Δsynch f
(i)
I (τ ) + Δsynchg

(i)
I (τ ) + Δsynchη

(i)
I (τ )]dτ ,

(42)
where

Δsynch f
(i)
I (τ ) � f (i)

I (m̂ I (τ |t (i)s I ), uI (τ )) − f (i)
I (xI (τ ), uI (τ )) ,

Δsynchg
(i)
I (τ ) � g(i)

I (m̂ I (τ |t (i)s I ), m̂z I (τ |t (i)s I ), uI (τ )) − g(i)
I (xI (τ ), zI (τ ), uI (τ )) ,

and

Δsynchη
(i)
I (τ ) � η̂(i)

I (m̂ I (τ |t (i)s I ), m̂z I (τ |t (i)s I ), uI (τ )) − η(i)
I (xI (τ ), zI (τ ), uI (τ )) .

For notational convenience, we now collect the projected measurements m̂(i)
I (k|t (i)s I )

in a vector, which, in the following, we denote as yI (k), with k being its vTS:

yI (k) = col
{
m̂(i)

I (k|t (i)s I ), i = 1, . . . , nI

}
.

Therefore, it is as if the virtual sensor implemented by the LFDs takes uncertain local
measurements yI of the state xI , according to

yI (k) = xI (k) + ξI (k),

where ξI is the unknown virtual measurement error (42). Moreover, in place of the
interconnection variables zI , only the vector

vI (k) = zI (k) + ςI (k)

is available for diagnosis, as it is possible to see in Fig. 6, where ςI is composed by
the components of ξJ affecting the relevant components of yJ (as before, J refers to
a neighboring subsystem). For simplicity, we assume here that the control signal uI

is available to the diagnoser without any delays or other uncertainty.
The virtualmeasuring errors ξI and ςI are unstructured and unknown. For each i =

1, . . . , nI and j = 1, . . . , n̄ I , it is possible to compute a bound for their components
using (42): ∣

∣
∣ξ

(i)
I (k)

∣
∣
∣ ≤ ξ̄(i)

I (k),
∣
∣
∣ς

( j)
I (k)

∣
∣
∣ ≤ ς̄

( j)
I (k),
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Fig. 6 An example of the multi-layer fault detection architecture. The interconnection variables zI
and the corresponding projected measurements vI communicated among the diagnosers

where

ξ̄(i)
I (k) = w̄(i)

I (t (i)s I ) +
∫ k

t (i)s I

Δ̄synch f
(i)
I (τ ) + Δ̄synchg

(i)
I (τ ) + Δ̄synchη

(i)
I (τ )dτ (43)

is a positive function, w̄(i)
I is the one defined in Assumption3,

Δ̄synch f
(i)
I (τ ) = max

xI∈R nI

∣
∣
∣ f (i)

I (m̂ I (τ ), uI (τ )) − f (i)
I (xI (τ ), uI (τ ))

∣
∣
∣ ,

Δ̄synchg
(i)
I (τ ) = max

xI∈R nI ,zI∈R n̄ I

∣
∣
∣g(i)

I (m̂ I (τ ), m̂z I (τ ), uI (τ )) − g(i)
I (xI (τ ), zI (τ ), uI (τ ))

∣
∣
∣ ,

remembering that the setsRnI ,R n̄ I are the domain of the state and interconnection
variables, respectively, and Δ̄synchη

(i)
I (τ ) can be computed in an analogous way

as in (65) (see Sect. 4.6). The bound ς̄I is computed with the same procedure by
the neighboring subsystems. In the next section, the fault diagnosis procedure is
presented.
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4.2 The Distributed Fault Detection Methodology

For fault detection purposes, each LFD communicates with neighboring LFDs. It
is assumed that the inter-LFD communication is carried over a packet-switched
network, which we call the second level communication network, possibly subject to
packet delays and losses. In order to manage delays in this network, the data packets
are Time Stamped, with the virtual Time Stamp, which contains the time instant the
virtual measurements are referred to. In this layer, we assume to have perfect clock
synchronization between the LFDs. In this way, all the devices of the monitoring
architecture can share the same clock, that is, they know the reference time, and the
use of Time Stamps can be valid.

Furthermore, we propose to provide eachLFDwith a buffer to collect the variables
sent by neighbors. In the following,wedenotewith the superscript “b” themost recent
value of a variable (or of a communicated function value) in the corresponding buffer
of a given LFD; for example, vbI denotes the most recent value of the measured
interconnection vector vI contained in the buffer of the I -th LFD, while [ f I (·)]b
denotes the most recent value of the function [ f I (·)] in the buffer.

Each LFD computes a nonlinear adaptive estimate x̃ I of the associated monito-
red subsystem state xI . The local estimator, called Fault Detection Approximation
Estimator (FDAE), is based on the local discrete-time nominal model (Eq. (40)).
Similarly to what done in the first part of this chapter (Sect. 3), to dampen the effect
of the virtual measurement error ξI (k), each measured variable y(i)

I = x (i)
I + ξ(i)

I is
filtered by H(z), where H(z) is a p-th order, asymptotically stable filter (poles lie
inside the open unit disc |z| = 1) with proper transfer function

H(z) = d0 + d1z−1 + d2z−2 + . . . + dpz−p

1 + c1z−1 + . . . + cpz−p
. (44)

Generally, each measured variable y(i)
I (k) can be filtered by a different filter but,

without loss of generality,we consider H(z) to be the same for all the output variables,
in order to simplify notation and presentation. In addition, note that the form of H(z)
allows both IIR and FIR types of digital filters. The filter H(z) can be written as
H(z) = zHp(z) where Hp(z) is the strictly proper transfer function

Hp(z) = d0z−1 + d1z−2 + d2z−3 + . . . + dpz−(p+1)

1 + c1z−1 + . . . + cpz−p
. (45)

Note that, the filter Hp(z) is also asymptotically stable since it comprises of the same
poles as H(z)with an additional pole at z = 0 (inside |z| = 1). Since the filters H(z)
and Hp(z) (with impulse responses h(t) and h p(t), respectively) are asymptotically
stable, they are also BIBO stable. Therefore, for bounded virtual measurement error
ξI (k), the filtered virtual measurement error3 ΞI (k) � H(z) [ξI (k)] is bounded as

3For notational convenience, we use the shorthand H(z) [ξ(k)] to denote Z −1 {H(z)Ξ(z)}.
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follows:
∣
∣
∣Ξ

(i)
I (k)

∣
∣
∣ ≤ Ξ̄

(i)
I (k) i = 1, . . . , nI (46)

where Ξ̄
(i)
I are bounding functions that can be computed as Ξ̄

(i)
I � H̄(z)[ξ̄(i)

I ], being
H̄(z) a filter with impulse response h̄(k) that satisfies |h(k)| ≤ h̄(k) and using
Eq. (43). The selection of suitable filters H̄(z) can be made by utilizing the methods
indicated in Sect. 4.7. Note that we denote with capital letters the filtered signals.

4.3 Fault Detection Estimation and Residual Generation

In this subsection, we present a method for computing the local state estimate x̃ I for
fault detection purposes. The local estimation x̃ (i)

I is given by

x̃ (i)
I (k + 1) = f (i)

I (yI (k), uI (k)) + g(i)
I (yI (k), v

b
I (k), uI (k))

+ η̂(i)
I (yI (k), v

b
I (k), uI (k), ϑ̂I (k)), (47)

with initial condition x̃ (i)
I (0) = y(i)

I (0), where η̂I is the output of an adaptive approx-
imator designed in Sect. 4.4 to learn the unknown modeling uncertainty function ηI ,
ϑ̂I ∈ Θ̂I denotes its adjustable parameters vector and tb is the virtual time stamp of
the most recent information received vbI in the buffer at time k.

The local estimation residual error rI (k) is defined as

rI (k) � YI (k) − ŶI (k), (48)

where we obtain the filtered output YI (k) by locally filtering the measurement output
signal yI (k)

YI (k) � H(z) [yI (k)] , (49)

and the output estimates as

ŶI (k) � H(z)
[
x̃ I (k)

]
. (50)

The residual constitutes the basis of the fault detection scheme. It can be compared,
component by component, to a suitable adaptive detection threshold r̄ I ∈ R

nI , thus
generating a local fault decision attesting the status of the subsystem: healthy or
faulty. A fault in the overall system is said to be detected when |r (i)

I (k)| > r̄ (i)
I (k),

for at least one component i in any I -th LFD.
We now analyze the filtered measurements and estimates:

YI (k) = H(z) [yI (k)] = H(z) [xI (k) + ξI (k)]

= Hp(z) [z [xI (k)]] + ΞI (k). (51)
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In the absence of any faults (i.e., φI
(
xI (k), zI (k), uI (k)

) = 0), (51) becomes

YI (k) = Hp(z)
[
xI (k + 1) + z

[
xI (0)δ(k)

]] + ΞI (k)

= Hp(z)
[
f I

(
xI (k), uI (k)

) + gI
(
xI (k), zI (k), uI (k)

)

+ ηI
(
xI (k), zI (k), uI (k)

)] + h(k)xI (0) + ΞI (k), (52)

where δ(k) denotes the discrete-time unit-impulse sequence.
The filtered output estimation model for YI , denoted by ŶI , can be analyzed from

the estimate provided by (47) as follows:

Ŷ (i)
I (k) =Hp(z)

[

f (i)
I

(
yI (k), uI (k)

) + g(i)
I

(
yI (k), v

b
I (k), uI (k)

)

+ η̂(i)
I

(
yI (k), v

b
I (k), uI (k), ϑ̂I (k)

)
]

+ h(k)y(i)
I (0). (53)

Therefore, the residual (48) is readily computable from (49) and (50). The residual
is analyzed in Sect. 4.6 to obtain a suitable adaptive detection threshold. Now, we
design the adaptive approximator η̂I , needed to compute the state estimate (47) and
hence (50).

4.4 Learning of the Modeling Uncertainty

Reducing the modeling uncertainty enables improved detection thresholds which, in
turn, results in better detection capabilities. In this subsection, we consider the design
of a nonlinear adaptive approximator, exploiting the variables available in the local
buffers in each LFD to manage communication delays (the details of the delay com-
pensation strategy are given in Sect. 4.5). The structure of the linear in the parame-
ters nonlinear multivariable approximator is not dealt with in this chapter (nonlinear
approximation schemes like neural networks, fuzzy logic networks, wavelet net-
works, spline functions, polynomials, etc., can be used).

As shown later on in this subsection, adaptation of the parameters ϑ̂I of the
approximator is achieved through the design of a dynamic state estimator which
takes on the form:

x̂ (i)
I (k + 1) = λ(x̂ (i)

I (k) − y(i)
I (k)) + f (i)

I (yI , uI ) + g(i)
I (yI , v

b
I , uI ) + η̂(i)

I (yI , v
b
I , uI , ϑ̂I ),

(54)

where 0 < λ < 1 is a design parameter. Let us introduce the estimation error

εI (k) � yI (k) − x̂ I (k)
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We compute the i-th state estimation error component as follows:

ε(i)
I (k + 1) = y(i)

I (k + 1) − x̂ (i)
I (k + 1)

= λε(i)
I + Δ f (i)

I + Δg(i)
I + Δη(i)

I − λξ(i)
I + λξ(i)

I (k) + ξ(i)
I (k + 1) ,

(55)

where
Δ f (i)

I � f (i)
I (xI , uI ) − f (i)

I (yI , uI ) ,

Δg(i)
I � g(i)

I (xI , zI , uI ) − g(i)
I (yI , v

b
I , uI ) ,

and
Δη(i)

I � η(i)
I (xI , zI , uI ) − η̂(i)

I (yI , v
b
I , uI , ϑ̂I ) .

From this equation, the following learning law can be derived using Lyapunov sta-
bility techniques (see [107]) for every I :

ϑ̂I (k + 1) = PΘ̂I

[
ϑ̂I (k) + γI L

�
I [εI (k + 1) − λεI (k)

]
, (56)

where L�
I = ∂η̂I /∂ϑ̂I is the gradient matrix of the online approximator with respect

to its adjustable parameters and γI = μI /ρI + ∥
∥L�

I

∥
∥2
F , with PΘ̂I

being a projection

operator restricting ϑ̂I within Θ̂I [68], ‖ · ‖F denotes the Frobenius norm and ρI > 0,
0 < μI < 2 are design constants that guarantee the stability of the learning law [68].

4.5 Delay Compensation Strategy

Next, we analyze the properties of the Fault Detection estimator introduced in
Sect. 4.3, where the filtered measurements are used; in particular, we explain how
the estimator manages delays and packet losses in the second-level communication
network between diagnosers.

In order to compute (47) and (54), the generic J -th diagnoser communicates
to the neighboring LFDs the current values of the variables vI . It is worth noting
that this information exchange between diagnosers can be affected by time-varying
delays and packet losses and hence a compensation strategy has to be devised. The
delay compensation strategy is derived without any assumption on the delay length,
thus eventually dealing with the problem of packet losses and “out-of-sequence”
packets.We assume that the communication network between diagnosers is designed
so to avoid pathological scenarios, such as, for example, a situation in which the
communication delay is always larger than the sampling time. It is important to note
that a re-synchronization strategy like the one used in the first level communication
networks cannot be used in this case, since here we consider data exchanged between
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different LFDs, and each LFD, of course, does not know the model of neighboring
subsystems.

As in [12], thanks to the use of the virtual Time Stamps, the most recent measure-
ments and information are considered. When a data packet arrives, its virtual Time
Stamp vTS is compared to tb, which is the virtual Time Stamp of the information
already in the buffer. If vTS > tb, then the novel data packet takes its place in the
buffer and tb ← vTS. At time tc, with k < tc < k + 1, each LFD computes the esti-
mates for the time instant k + 1 using information referred to time k. A variable in
the buffer is up to date if tb = k. Should a delay or a packet loss occur in the second
level communication network, we proceed as follows. If some of the interconnection
variables are not up to date, that is tb < k, then the learning of the modeling uncer-
tainty function ηI (56) is temporarily paused. Anyway, not up to date interconnection
variables are used to compute the local value of the interconnection function in the
state estimators (47) and (54), but this error is taken into account in the computation
of the detection threshold, as will be seen in the following subsection.

4.6 Detection Threshold

In order to define an appropriate threshold for the detection of faults, we now analyze
the dynamics of the output estimation error when the system is under healthy mode
of behavior. Since, from (52) we have

Y (i)
I (k) = Hp(z)

[
f (i)
I

(
xI (k), uI (k)

) + g(i)
I

(
xI (k), zI (k), uI (k)

)

+ η(i)
I

(
xI (k), zI (k), uI (k)

)] + h(k)x (i)
I (0) + Ξ

(i)
I (k),

(57)

we are able to compute the residual defined in (48) by using (53) and (57):

r (i)
I (k) =

[
χ(i)
I (k)

]b − ξ(i)
I (0)h(k) + Ξ

(i)
I (k) , (58)

where the total uncertainty term χ(i)
I (k) is defined as

χ(i)
I (k) � Hp(z)

[
Δ f (i)

I (k) + Δg(i)
I (k) + Δη(i)

I (k)
]
. (59)

The function error ΔηI can be computed as the sum of four different terms:

ΔηI = L I ϑ̃I + υI + Δη̂I + Δητ
I . (60)

The first term takes into account the error due to the parameters’ estimation. This
error can be characterized by introducing an optimal weight vector [98] ϑ̂∗

I as follows:



568 F. Boem et al.

ϑ̂∗
I � argmin

ϑ̂I

sup
xI ,zI ,uI

∥
∥
∥ηI (xI , zI , uI ) − η̂I (xI , zI , uI , ϑ̂I

∥
∥
∥ , (61)

with ϑ̂I , xI , zI , uI taking values in their respective domains, and by defining the
parameter estimation error

ϑ̃I � ϑ̂∗
I − ϑ̂I .

The second term in (60) is the so-called Minimum Functional Approximation Error
υI , which describes the least possible approximation error that can be obtained at
time k if ϑ̂I were optimally chosen:

υI (k) � ηI (xI , zI , uI ) − η̂I (xI , zI , uI , ϑ̂
∗
I ) .

Then, a term representing the error caused by the use of the uncertain measurements
instead of the actual values of the state variables is defined:

Δη̂I � η̂I (xI , zI , uI , ϑ̂I ) − η̂I (yI , vI , uI , ϑ̂I ) .

Finally, the estimation error due to the use of delayed measurements is taken into
account by

Δητ
I � η̂I (yI , vI , uI , ϑ̂I ) − η̂I (yI , v

b
I , uI , ϑ̂I )

where vI is the current measured variable and vbI is the value in the buffer, which is
“old” in the presence of delays. Clearly,Δητ

I = 0 when up to date measurements are
used (in this case, vbI = vI ).

Using (60), the total uncertainty term χ(i)
I (k) in (59) can be rewritten as

χ(i)
I (k) � Hp(z)

[
Δ f (i)

I (k) + Δg(i)
I (k) + L(i)

I ϑ̃I (k) + υ(i)
I (k)

+ Δη̂(i)
I (k) + Δητ (i)

I (k)
]
,
(62)

where L(sI )
I indicates the sI -th line of the matrix L I . Using the triangle inequality,

(58) satisfies:

∣
∣
∣r (i)

I (k)
∣
∣
∣ ≤

∣
∣
∣
∣
∣

[

χ(i)
I (k)

]b
∣
∣
∣
∣
∣
+

∣
∣
∣ξ

(i)
I (0)h(k)

∣
∣
∣ +

∣
∣
∣Ξ

(i)
I (k)

∣
∣
∣

≤
[ ∣

∣
∣χ

(i)
I (k)

∣
∣
∣

]b

+ ξ̄(i)
I (0) |h(k)| + Ξ̄

(i)
I (k). (63)

From (62) and using again the triangle inequality, we can obtain

∣
∣
∣χ

(i)
I (k)

∣
∣
∣ ≤

∣
∣
∣Hp(z)

[
Δ f (i)

I (k) + Δg(i)
I (k) + Δη(i)

I (k)
]∣∣
∣



Fault Diagnosis for Uncertain Networked Systems 569

≤
k∑

n=0

∣
∣h p(k − n)

∣
∣
∣
∣
∣Δ f (i)

I (n) + Δg(i)
I (n) + L(i)

I ϑ̃I (n) + υ(i)
I (n)

+Δη̂(i)
I (n) + Δητ (i)

I (n)

∣
∣
∣

≤ χ̄(i)
I (k) � H̄p(z)

[
Δ̄ f (i)

I (k) + Δ̄g(i)
I (k) + Δ̄η(i)

I (k)
]
, (64)

where H̄p(z) is the transfer function with impulse response that satisfies
∣
∣h p(k)

∣
∣ ≤

h̄ p(k) (more details for the selection of H̄p(z) are given in Sect. 4.7),

Δ̄ f (i)
I (k) � max

|ξI |≤ξ̄I

{∣
∣
∣Δ f (i)

I (k)
∣
∣
∣

}
,

Δ̄g(i)
I (k) � max

|ξI |≤ξ̄I (k)
max

|ςI |≤ς̄I (k)

{∣
∣
∣Δg(i)

I (k)
∣
∣
∣

}

and

Δ̄η(i)
I (k) �

∥
∥
∥L(i)

I

∥
∥
∥ κI (ϑ̂I ) + ῡ(i)

I (k) + max
|ξI |≤ξ̄I (k)

max
|ςI |≤ς̄I (k)

∣
∣
∣Δη̂(i)

I (k)
∣
∣
∣

+ max
vI∈R v

∣
∣
∣η̂

(i)
I (yI , vI , uI , ϑ̂I ) − η̂(i)

I (yI , v
b
I (tb), uI , ϑ̂I )

∣
∣
∣ ,

(65)
with ῡI denoting a bound to the minimum functional approximation error, the func-

tionκI being such thatκI (ϑ̂I ) ≥
∥
∥
∥ϑ̃I

∥
∥
∥ andRvI ⊂ R

η̄I , where this last term represents

a local domain of the interconnection variable and is communicated by the neigh-
boring LFDs at k = 0. It is important to remark thatRvI coincides with the domain
DzI for subsystem I . Thanks to the way the threshold is designed from (63), it is
straightforward that it guarantees the absence of false alarms, since the residual prior
to the fault occurrence always satisfies

∣
∣
∣r (i)

I (k)
∣
∣
∣ ≤ r̄ (i)

I (k) ,

where the detection threshold r̄ (i)
I is defined as

r̄ (i)
I (k) �

[

χ̄(i)
I (k)

]b

+ ξ̄(i)
I (0) |h(k)| + Ξ̄

(i)
I (k). (66)

Remark 5 Notice that, even in the case of a conservative bound ξ̄(i)
I , the second term

ξ̄(i)
I |h(k)| affects the detection threshold only during the initial portion of the tran-
sient (the impulse response h(k) of the filter H(z) decays exponentially). Moreover,
the term Ξ̄

(i)
I in (65) takes into account the uncertainty due to the delays in the com-

munication network between LFDs. This term is instrumental to ensure the absence
of false alarms caused by these communication delays.
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Remark 6 The terms ξ̄I (k) and ς̄I (k) are computed by the LFDs at each time step
after the re-synchronization task (see (43)) and are available to compute the fault
detection threshold.

Remark 7 Admittedly, the bounds used in (64) and (65) give rise to conservative
thresholds but have the advantage of guaranteeing the absence of false-positive alarms
and of being easily computable requiring a small amount of data to be exchanged
between the LFDs. In the presence of a priori knowledge on the process to be moni-
tored, tighter bound could be devised. For example, Lipschitz conditions on the local
models could be easily exploited to devise tighter detection thresholds.

4.7 Selection of Filter H̄p(z)

A practical issue that requires consideration is the selection of the filter H̄p(z)whose
impulse response must satisfy |h p(t)| ≤ h̄ p(t) as stated before. In the case where
the impulse response h p(t) is nonnegative, the selection H̄p(z) = Hp(z) is trivial.
Sufficient conditions for nonnegative impulse response for a class of discrete-time
transfer functions are given in [60]. In the following, we present two methods for
choosing H̄p(z), one considering H(z) as a digital IIR filter and the other one as a
FIR filter.

First, we consider the case where H(z) is an IIR filter. Due to the way Hp(z)
was defined, Hp(z) is strictly proper and asymptotically stable. Hence, the impulse
response h p(k) satisfies |h p(k)| ≤ κλk for all k ∈ N, for some κ > 0 and λ ∈ [0, 1).
Since |h p(k)| ≤ h̄ p(k) must hold, the impulse response h̄ p(k) can be selected as
h̄ p(k) = κλk and thus H̄p(z) = κ

1−λz−1 .
Now, let us consider the case in which H(z) is a FIR filter. FIR filters have

several advantages, as they are inherently stable and can easily be designed to be
linear phase which corresponds to uniform delay at all frequencies. Let H(z) be a
p-th order FIR filter given by H(z) = ∑p

n=0 dnz
−n . Therefore, Hp(z) = z−1H(z) =∑p

n=0 dnz
−(n+1) and h̄ p(k) can be selected as h̄ p(k) = |h p(k)|which leads to the FIR

filter H̄p(z) = ∑p
n=0 |dn|z−(n+1).

4.8 The Local Fault Detection Algorithm

Now, all the elements needed to implement the fault detection scheme are available.
For the sake of clarity, the implementation of the local fault detection methodology
is sketched in the following Algorithm1. Extensive simulation results showing the
effectiveness of the presented approach can be found in [14].
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Algorithm 1 Fault detection algorithm for the I -th LFD
Learning = ON
Initialize the estimate x̂ I (0) = yI (0)
Initialize the estimate x̃ I (0) = yI (0)
Compute the estimate x̂ I (1) (Eq. (54))
Compute the estimate x̃ I (1) (Eq. (47))
Set k = 1
while A fault is not detected do
Measurements yI (k) are acquired
Compute εI (k) = yI (k) − x̂ I (k) (for learning)
Compute YI (k) (Eq. (49)), ŶI (k) (Eq. (50))
Compute the residual rI (k) = YI (k) − ŶI (k)
Information from neighbors is acquired
Compute the threshold r̄ I (k) (Eq. (66))
Compare |rI (k)| with r̄ I (k)
if |rI (k)| > r̄ I (k) then
A fault is detected
Learning = OFF

end if
if Some components i of vI (k) are not received then
Learning = OFF

else
Learning = ON
vb(i)I (k) = v(i)

I (k)
end if
if Learning = ON then
Update ϑ̂I (k) (Eq. (56))

else
ϑ̂I (k) = ϑ̂I (k − 1)

end if
Compute the novel estimate x̂ I (k + 1) (Eq. (54))
Compute the novel estimate x̃ I (k + 1) (Eq. (47))
k = k + 1

end while

4.9 Detectability Conditions

In this subsection, we address some sufficient conditions for detectability of faults
by the proposed distributed networked fault detection scheme, thus considering the
behavior of the fault detection algorithm in the case of a faulty system.We assume that
at an unknown time k0 a fault φI occurs. The fault detectability analysis constitutes a
theoretical result that characterizes quantitatively (and implicitly) the class of faults
detectable by the proposed scheme.

Theorem 4 (Fault Detectability) A fault in the I -th subsystem occurring at time k =
k0 is detectable at a certain time k = kd if the fault function φ(i)

I (xI (k), zI (k), uI (k))
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satisfies the following inequality for some i = 1, . . . , nI :

∣
∣
∣
∣
∣

kd∑

n=k0

h p(k − n)φ(i)
I

(
xI (n), zI (n), uI (n)

)
∣
∣
∣
∣
∣
> 2r̄ (i)

I (kd). (67)

Proof After fault occurrence, that is for k > k0, Eq. (58) becomes

r (i)
I (k) = χ(i)

I (k)b + Hp(z)
[
φ(i)
I

(
xI (k), zI (k), uI (k)

)] − ξ(i)
I (0)h(k) + Ξ

(i)
I (k)

= χ(i)
I (k)b − ξ(i)

I (0)h(k) + Ξ
(i)
I (k) + Hp(z)

[
φ(i)
I

(
xI (k), zI (k), uI (k)

)]
.

(68)
Using the triangle inequality, from (68) we can write

∣
∣
∣r (i)

I (k)
∣
∣
∣ ≥ −

∣
∣
∣χ

(i)
I (k)b

∣
∣
∣ −

∣
∣
∣ξ

(i)
I (0)h(k)

∣
∣
∣ −

∣
∣
∣Ξ

(i)
I (k)

∣
∣
∣

+
∣
∣
∣Hp(z)

[
φ(i)
I

(
xI (k), zI (k), uI (k)

)]∣∣
∣

(69)

and by using a similar procedure as in the derivation of (66), (69) becomes

∣
∣
∣r (i)

I (k)
∣
∣
∣ ≥ −r̄ (i)

I (k) +
∣
∣
∣Hp(z)

[
φ(i)
I

(
xI (k), zI (k), uI (k)

)]∣∣
∣ . (70)

For fault detection at time k = kd , the inequality |r (i)
I (kd)| > r̄ (i)

I (kd) must hold for
some i = 1, . . . , nI , so the final fault detectability condition is obtained:

∣
∣
∣Hp(z)

[
φ(i)
I (xI (kd), zI (kd), uI (kd))

]∣∣
∣ > 2r̄ (i)

I (kd).

This can be rewritten in the summation form (67) of the Theorem. �

This theorem provides a sufficient condition for the implicit characterization of
a class of faults that can be detected by the proposed fault detection scheme. Let us
note that the detectability condition represents the minimum cumulative magnitude
of the fault that can be detected under a specific trajectory of the system. It is possible
to study this condition off line for representative trajectories of the system.

4.10 Identification of the Faulty Subsystem

In the next section, we consider the fault diagnosis problem. More specifically, we
illustrate an approach for the adaptive learning of the local fault function after fault
detection. Before developing the adaptive approximation procedure, we present an
important remark.
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A fundamental question regarding fault detectability is whether the fault that
occurs in subsystem ΣJ is detectable not only by the LFDFJ , but also by the LFD
FI of the neighboring subsystem ΣI , whose state is influenced by ΣJ dynamics.

It can be shown (the interested reader can refer to [52]), that the proposed fault
detection scheme guarantees that, a process fault φJ (·) occurring in subsystem ΣJ

which affects ΣI , can only be detected by its corresponding LFD FJ and not by
the LFD FI . This result is essentially the implication of using the measurements
of the state and interconnection variables in the estimation model given by (11).
Qualitatively, this can be explained as follows. When a process fault occurs in ΣJ ,
the fault affects its states which in turn affect other subsystems through the intercon-
nection variables. So, the states of ΣJ are “contaminated” by the process fault and
the measurements of these states also contain the process fault effects. Therefore, a
subsystem ΣI that is affected by ΣJ , is affected by the process fault that occurred in
ΣJ through the interconnection variables zI and the detection LFD FI makes use
of the measurements vI which are also “contaminated” by the same fault. Hence,
the effect of the process fault that occurred in ΣJ , is “canceled out” in the LFD FI

and it is unable detect the fault. Hence, a process fault occurring in subsystem ΣJ is
detectable only by its respective detection LFD FJ and not by any other LFD FI .
This is a very important result because when a fault is detected in a subsystem, at the
same time the faulty subsystem is identified, and further fault isolation/identification
methods can be used targeting only the particular faulty subsystem.

5 Fault Diagnosis - Learning the Fault Function

After a fault is detected by the LFDFI at time Td , the fault isolation task is initiated
to identify the type of fault occurring in the faulty subsystem ΣI . In order to do this,
various approaches can be used, and two of them are discussed in the sequel.

5.1 Generalized Observer Scheme

A fault isolation logic can be implemented based on a Generalized Observer Scheme
(GOS, see [33, 65]). As in [31], it is assumed that each subsystem knows a
local fault set OI , collecting all the NO I possible fault functions: φl

I (xI , zI , uI ),
l ∈ {1, . . . , NO I }. Once a fault is detected at time Td in the I -th subsystem, the
respective LFD FI activates NO I estimators, where each filter is sensitive to a spe-
cific fault: the generic l-th fault isolation estimator of the I -th LFD is matched to
the corresponding fault function φl

I , belonging to the local fault set OI . Each l-th
estimator provides a local state estimate x̂ lI of the local state xI affected by the l-th
fault:
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x̂ l(i)I (k + 1) = λ(x̂ l(i)I (k) − y(i)
I (k)) + f (i)

I (yI , uI ) + g(i)
I (yI , v

b
I , uI )

+ η̂(i)
I (yI , v

b
I , uI , ϑ̂I (Td)) + φl(i)

I (yI , v
b
I , uI ),

(71)
where the learning of the modeling uncertainty has been stopped at time Td in order
not to learn the fault effect. The difference between the estimate x̂ lI and the re-
synchronized measurements yI , after filtering, consists of the fault isolation esti-
mation residual r l

I � YI − Ŷ l
I , where Ŷ

l
I � H(z)[x̂ lI (k)]. This residual is compared,

component by component, to some properly designed isolation thresholds r̄ l
I so that

if the j-th fault (in the fault set OI ) has occurred, then it is guaranteed that

|r j (i)
I (k)| ≤ r̄ j (i)

I (k) ∀ k > Td , i = 1, . . . , nI . (72)

The isolation thresholds are defined similarly as the detection threshold in (66),
modifying χ̄(i)

I (k) adding the following term:

Δ̄φl(i)
I (k) � max

|ξI |≤ξ̄I (k)
max

|ςI |≤ς̄I (k)

{∣
∣
∣Δφl(i)

I (k)
∣
∣
∣

}
,

being Δφl(i)
I (k) = φl(i)

I (xI , zI , uI ) − φl(i)
I (yI , vbI , uI ).

If a residual crosses its corresponding threshold, then we can exclude the occur-
rence of the considered l-th fault. Therefore, if we are able to exclude all the faults
but one, then we can say that the fault is isolated.

5.2 Learning the Fault Function

In the case that the fault functions are not known a priori, we can use a differ-
ent approach based on the adaptive learning of the fault function. According to the
approximation model (54) introduced in Sect. 4.4 for learning the modeling uncer-
tainty, when a fault is detected in the I -th subsystem, then the approximation model
starts to learn the combined effect of the modeling uncertainty and the fault func-
tion. Assuming that the detection time Td is sufficiently long, so that the model-
ing uncertainty is learned, its estimation is given by η̂I (yI (k), vbI (k), uI (k), ϑ̂I (Td)).
Therefore, by allowing a sufficiently long learning period TL after the fault detection,
the approximator η̂I learns the combined effect of the modeling uncertainty and the
fault function as η̂I (yI (k), vbI (k), uI (k), ϑ̂I (Td + TL)) for k > Td + TL . Therefore,
the estimated fault function is given by φ̂I (k) = η̂I (yI (k), vbI (k), uI (k), ϑ̂I (Td +
TL)) − η̂I (yI (k), vbI (k), uI (k), ϑ̂I (Td)), k > Td + TL . Note that, the fault could be
incipient and still be developing at the end of the learning period, so the designer
may let the learning process to continue. In this case, the estimated fault function is
given by φ̂I (k) = η̂I (yI (k), vbI (k), uI (k), ϑ̂I (k)) − η̂I (yI (k), vbI (k), uI (k), ϑ̂I (Td)),
k > Td + TL . The estimated fault function can then be used for fault accommodation
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purposes in order to guarantee the stability of the faulty system. For more informa-
tion regarding this approach for learning the fault function, the interested reader can
refer to [53].

6 Concluding Remarks

This chapter has reviewed a distributed fault diagnosis framework specifically
designed for uncertain networked nonlinear large-scale systems concerning vari-
ous sources of uncertainty, namely modeling uncertainty, measurement noise, and
network-related uncertainties.

In order to deal with the presence of measurement noise, a filtering scheme has
been presented by integrating a general class of filters into the design of the residual
and threshold signals in a way that takes advantage of the filtering noise suppression
properties. Essentially, filtering dampens the effect of measurement noise in a certain
frequency range allowing to set tighter detection thresholds and thus enhancing fault
detectability. The main implications of the filtering scheme is rigorously investigated
providing insights on the impact of the filters’ poles and on the fault detection time.

The modeling uncertainties are also taken into account by means of an adaptive
learning technique.

Furthermore, the chapter addressed the need for integration between the different
levels composing CPS systems, by proposing a comprehensive architecture, where
all parts of complex distributed systems are considered: the physical environment,
the sensor level, the diagnosers layer and the communication networks. By adapting
and incorporating the devised filtering scheme into the overall framework, a dis-
tributed fault diagnosis approach has been designed for distributed uncertain nonlin-
ear large-scale systems to specifically address the issues emerging when considering
networked diagnosis systems, such as the presence of delays and packet dropouts
in the communication networks that degrade performance and could be a source of
instability, misdetection, and false alarms. Multi-rate systems, where the measure-
ments may not be synchronous, were also considered. Under the stated assumptions,
the proposed architecture guarantees the absence of false-positive alarms.

Finally, some information was provided regarding the actions that can be taken
after the detection of a fault in order to isolate the potential fault by identifying its
location andmagnitude, or even learning the fault function.Basedon this information,
actions can be taken in order to alleviate the fault effects and safeguard the system
operation.

Modern, complex, interconnected systems canbeprone to various sources of faults
due to the increased complexity or even malicious attacks which can be considered
as a “type” of fault. As a result, comprehensive fault diagnosis schemes need to
be devised by considering the recent technological challenges, and this chapter has
reviewed an integrated methodology which represents a step in that direction.
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Networked Quantum Systems

Ian R. Petersen

Abstract This chapter presents a survey of results in the area of networked quan-
tum systems. The chapter includes background material on quantum linear system
models and finite level quantum system models. Different forms of these models
are discussed and the issue of physical realizability is addressed. Also, the Kalman
decomposition for linear quantum systems is described. The use of optical linear
quantum networks in the physical realization of quantum systems is discussed for
both the passive and non-passive case.

1 Introduction

Roberto Tempowas a friend and colleague ofmine for almost all ofmy career. During
this time, we only wrote one paper together, which was the Automatica survey paper
[57]. This paper surveyed the area of Robust Control, which was our area of great
common interest. In this chapter, I have tried to follow the style of that survey paper
but covering my other main area of interest, which is quantum networks. The study
of networks in control systems was one of Roberto’s important areas of research,
although he never ventured into the area of quantum networks. This chapter presents
a survey of recent results on the theory of quantum systems and quantum networks
from a systems and control point of view. Ideas from systems and control theory, and
in particular nonlinear filtering theory, have been applied to the quantum systems area
since the early work of Belevkin; e.g., see [2–4]. Also, nonlinear and optimal control
ideas have been applied to control problems for quantum systems since the earlywork
of Tarn andRabitz; e.g., see [25, 68, 70]. In addition, the theory of quantum stochastic
differential equations (QSDEs) was developed by Hudson and Parthasarathy, which
put stochastic Heisenberg picturemodels of quantum systems on a firmmathematical
footing; e.g., see [26, 52]. This approach to the modelling of quantum systems often
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leads to control theory which closely resembles the corresponding control theory
for classical systems and is used for many of the results which are presented in
this survey. Also, these developments led to an ongoing interest in the connections
between control theory and quantum physics, including some experimental work
such as the quantum optics experiments in the group of Mabuchi; e.g., see [1, 5, 9,
10, 23, 29, 30, 41–43, 58, 63].

Building on the work of Belevkin, the area of quantum filtering was one of the
first areas of quantum systems theory in which classical control theory ideas made a
major impact; e.g., see [6, 7]. This work together with the QSDEmodelling approach
of [26, 52] led naturally to the development of a theory of quantum networks; e.g.,
see [14–17, 19, 28]. Also, this theory led to quantum versions of some classical
control problems such as the H∞ control problem and the linear quadratic Gaussian
(LQG) control problem; e.g., see [11, 27, 47].

An important idea to emerge from the use of QSDEmodels of quantum systems in
the solution of problems of quantum H∞ and LQG control was the notion of physical
realizability presented in [27]. This idea arose in the consideration of coherent quan-
tum control problems in which both the plant and controller are quantum systems.
This is becausemethods which lead to the synthesis of a controller described in terms
of a QSDE model need to ensure that this model can actually be implemented as a
physical quantum system. The notion of physical realizability was further explored in
the papers [12, 13, 31, 39, 59, 66]. In addition, a number of papers have considered
the problem of constructing a quantum system using a network of optical compo-
nents to implement any physically realizable quantum; e.g., see [20, 45, 46, 49, 50,
53, 67]. Some of these results are surveyed in this chapter. The chapter will also
survey some results on the structure of linear quantum systems such as described in
the papers [18, 22, 55, 69] and the book [48]. Additional results about the structure
and properties of linear quantum networks which may be of interest to the readers,
but which are not covered in this survey, can be found in the papers [21, 32, 33,
35–38, 56, 61, 62, 64].

The remainder of this chapter proceeds as follows. In Sect. 2, various classes
of quantum system models are introduced. These models include general linear
quantum systems described in terms of QSDEs, passive linear quantum systems,
which are a special class of linear quantum systems which do not contain any energy
generating active elements, and finite level quantum systems described in terms of
QSDEs. This section also considers the property of physical realizability for these
various classes of models as well as describing the Kalman decomposition for linear
quantum systems. The section also presents Schrödinger picture models for finite
level quantum systems in terms of master equations. Section3 considers the problem
of constructing a network of quantum optical components to physically implement
a given linear quantum system. In Sect. 4, some conclusions are given.
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2 Quantum System Models

2.1 Linear Quantum Systems

The linear quantum systems we will consider involve a collection of quantum har-
monic oscillators. In the Heisenberg picture of quantum mechanics, the dynamics of
these oscillators can be described in terms of the time evolution of operator variables
such as the vector of annihilation operators

a =

⎡
⎢⎢⎢⎣

a1
a2
...

an

⎤
⎥⎥⎥⎦ . (1)

Each quantum harmonic oscillator has a corresponding annihilation operator ai ,
which is an operator on an underlying infinite dimensional Hilbert space H . Also,
each quantum harmonic oscillator is associated with a corresponding creation oper-
ator a∗

i , which is the adjoint of the annihilation operator ai ; e.g., see [16, 44, 48, 52,
55].

The operators ai and a∗
i do not commute but rather satisfy the following canonical

commutation relations:

[ai , a∗
j ] = aia

∗
j − a∗

j ai = δi j . (2)

Here δi j denotes the Kronecker delta multiplied by the identity operator. Also,

[ai , a j ] = 0, [a∗
i , a

∗
j ] = 0. (3)

In addition, we use the notation

a# =

⎡
⎢⎢⎢⎣

a∗
1

a∗
2
...

a∗
n

⎤
⎥⎥⎥⎦ ,

aT = [
a1 a2 . . . an

]
, and a† = (

a#
)T
. Also, we often use the ’doubled-up’ nota-

tion

ă =
[
a
a#

]
.

Using the above notation, the commutation relations can be written as
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[[
a
a#

]
,

[
a
a#

]†
]

=
[
a
a#

] [
a
a#

]†

−
([

a
a#

]# [
a
a#

]T
)T

=
[
I 0
0 −I

]
. (4)

In an open linear quantum system, the quantum harmonic oscillators being con-
sidered are coupled to a collection of quantum fields representing the environment
of the quantum system or the system’s interaction with a driving laser. These fields
aremodelled by corresponding field annihilation operatorsA1(t),A2(t), . . . ,Am(t),
which are on corresponding Fock spacesFi . Also, the adjoints of these field annihila-
tion operators are corresponding field creation operatorsA ∗

1 (t),A ∗
2 (t), . . . ,A ∗

m (t).
The field operators have corresponding forward differentials

dA j (t) = A j (t + dt) − A j (t)

and
dA ∗

j (t) = A ∗
j (t + dt) − A ∗

j (t),

which satisfy the Ito relations

dA j (t)dAk(t)
∗ = δ jkdt;

dA ∗
j (t)dAk(t) = 0;

dA j (t)dAk(t) = 0;
dA ∗

j (t)dA ∗
k (t) = 0;

e.g., see [7, 26, 48, 51, 52]. The field annihilation operators define corresponding
quantum stochastic processes and we often use the vector notation

A (t) =

⎡
⎢⎢⎢⎣

A1(t)
A2(t)

...

Am(t)

⎤
⎥⎥⎥⎦ .

Also, we use the following vector notation for the corresponding field creation oper-
ators

A #(t) =

⎡
⎢⎢⎢⎣

A ∗
1 (t)

A ∗
2 (t)
...

A ∗
m (t)

⎤
⎥⎥⎥⎦ .

The dynamics of a linear quantum system are determined by the Hamiltonian,
which is a self-adjoint operator on the underlying Hilbert spaceH and the coupling
operators, which are also operators onH but not necessarily self-adjoint. For a linear
quantum system, the Hamiltonian operator is of the form
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H = 1

2

[
a† aT

]
M

[
a
a#

]
(5)

where M ∈ C
2n×2n is a Hermitian matrix of the form

M =
[
M1 M2

M#
2 M#

1

]
(6)

such that M1 = M†
1 , M2 = MT

2 . Here, we use the notation M† to denote the complex
conjugate transpose of the complex matrix M . Also, we use the notation MT to
denote the transpose of the complex matrix M , and we use the notation M# to denote
the complex conjugate of the complex matrix M .

For an open linear quantum system, we also specify a vector of coupling operators
of the form

L = [
N1 N2

] [
a
a#

]
(7)

where N1 ∈ C
m×n and N2 ∈ C

m×n . Also, we write

[
L
L#

]
= N

[
a
a#

]
=

[
N1 N2

N #
2 N #

1

] [
a
a#

]
. (8)

In addition, the input–output dynamics of an open linear quantum system are depen-
dent on a unitary scattering matrix S ∈ C

n×n . These quantities define the (S, L , H)

parameters of an open linear quantum system; e.g., see [16, 28].
In theHeisenberg picture of quantummechanics, the dynamics of a linear quantum

system can be described in terms of a set of QSDEs. For an open linear quantum
system with (S, L , H) parameters defined as above, the corresponding QSDEs are
given as follows:

[
da(t)
da(t)#

]
= F

[
a(t)
a(t)#

]
dt + G

[
dA (t)
dA (t)#

]
;

[
dA out (t)
dA out (t)#

]
= H

[
a(t)
a(t)#

]
dt + K

[
dA (t)
dA (t)#

]
(9)

where

F =
[
F1 F2

F#
2 F#

1

]
; G =

[
G1 G2

G#
2 G#

1

]
;

H =
[
H1 H2

H #
2 H #

1

]
; K =

[
K1 K2

K #
2 K #

1

]
. (10)

and
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F = −i J M − 1

2
J N † J N ;

G = −J N †

[
S 0
0 −S#

]
;

H = N ;
K =

[
S 0
0 S#

]
; (11)

e.g, see [16, 48, 55]. Here,

J =
[
I 0
0 −I

]
. (12)

Using the fact that S is unitary, it follows that

K JK † = J. (13)

Also,

KK † = I. (14)

2.2 Passive Linear Quantum Systems

An important class of linear quantum systems is those in which the dynamics can
be described purely in terms of QSDEs involving only annihilation operators. This
class of linear quantum systems corresponds to those systems containing only passive
elements such as cavities, beamsplitters and phase shifters; e.g., see [39, 40, 42, 48,
53, 55]. This class of linear quantum systems corresponds to the case in which
M2 = 0 and N2 = 0. This leads to QSDEs of the form

da(t) = Fa(t)dt + GdA (t);
dA out (t) = Ha(t)dt + KdA (t) (15)

where

F = −iM1 − 1

2
N †
1 N1;

G = −N †
1 S;

H = N1;
K = S. (16)

In this case, the commutation relations (4) are replaced by the relations

[a, a†] = I.
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2.3 Position and Momentum Operator Linear Quantum
Systems

In the QSDE description of a general linear quantum system (9), the matrices F , G,
H , K are in general complex matrices of the form (10). However, it is possible to
introduce a change of variables so that the corresponding QSDE description involves
only real matrices; e.g., see [27, 47, 48, 51, 55, 59]. In this case, the system variables
as well as the field variables are given in terms of position and momentum operators
instead of annihilation and creation operators. That is, we introduce the following
change of variables:

x =
[
q
p

]
= Φ

[
a
a#

]
;

u =
[
Q(t)
P(t)

]
= Φ

[
A (t)
A (t)#

]
;

y =
[
Qout (t)
Pout (t)

]
= Φ

[
A out (t)
A out (t)#

]
(17)

where the matrices Φ have the form

Φ =
[

I I
−i I i I

]
. (18)

In this description, q is a vector of the self-adjoint position operators and p is a vector
of self-adjoint momentum operators. Also, Q(t) is a vector of the self-adjoint field
position operators and P(t) is a vector of self-adjoint field momentum operators.

When these transformations are applied to theQSDEs (9),QSDEs of the following
form are obtained:

[
dq(t)
dp(t)

]
= A

[
p(t)
q(t)

]
dt + B

[
dQ(t)
dP(t)

]
;

[
dQout (t)
dPout (t)

]
= C

[
q(t)
p(t)

]
dt + D

[
dP(t)
dQ(t)

]
,

(19)

where

A = ΦFΦ−1;
B = ΦGΦ−1;
C = ΦHΦ−1;
D = ΦKΦ−1 (20)

These matrices are all real. Also, it follows from (3) that
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[[
q
p

]
,

[
q
p

]†
]

= Ξ (21)

where
Ξ = Φ JΦ†, (22)

which is a Hermitian matrix. In addition, we can write

Ξ = Φ JΦ† = 2i

[
0 I

−I 0

]
= 2iJ (23)

where

J =
[

0 I
−I 0

]
. (24)

In this position and momentum operator description of a linear quantum sys-
tem, it is often more convenient to write the Hamiltonian and coupling operators in
terms of the vectors q and p rather than the vectors a and a#. Hence, applying the
transformations (17) to Eq. (5), we obtain

H = 1

2

[
qT pT

]
R

[
q
p

]
,

[
L
L#

]
= V

[
q
p

]

where
R = (

Φ†
)−1

MΦ−1, V = NΦ−1. (25)

Note that thematrix R is real and symmetric. However, thematrix V may be complex.
Also applying the transformations (17) to the Eq. (7), we obtain

[
L + L#

L−L#

i

]
= Φ

[
L
L#

]
= ΦV

[
q
p

]
= W

[
q
p

]

where

W = ΦV = ΦNΦ−1,

which is a real matrix. This equation can be written as

[�(L)

�(L)

]
= 1

2
W

[
q
p

]
.

In terms of the matrices R, S andW , the matrices A, B, C , D can now be written

A = 2JR + 1

2
JWT

JW ;
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B = JWT
JD;

C = W ;
D = 1

2

[
S + S# i

(
S − S#

)
i
(
S − S#

)
S + S#

]
. (26)

It follows from this that

DDT = I (27)

and

DJDT = J. (28)

2.4 Physical Realizability of Linear Quantum Systems

We now consider conditions under which a set of annihilation-creation QSDEs of the
form (9) in fact corresponds to a linear quantum systemwith an (S, L , H) description
of the form (5), (7). In this case, the QSDEs (9) are said to be physically realizable;
e.g., see [24, 27, 39, 40, 47, 48, 53–55, 59]. This notion is formalized in the following
definition.

Definition 1 Annihilation-creation QSDEs of the form (9), (10) are said to be phys-
ically realizable if there exist complex matrices M = M†, N , S such that S†S = I ,
and (6), (8) and (11) are satisfied.

The following theorem gives necessary and sufficient conditions for physical
realizability in this case.

Theorem 1 ([55, 59]) The annihilation-creation QSDEs (9) are physically realiz-
able if and only if the following equations are satisfied:

F J + J F† + GJG† = 0;
G = −J H † J K ;
K JK † = J ;
KK † = I. (29)

Corresponding to the annihilation-creation QSDEs (9) is the transfer function
matrix

Γ (s) = H (s I − F)−1 G + K . (30)
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Definition 2 A transfer function matrix Γ (s) is said to be annihilation-creation
physically realizable if it has a minimal state space realization (30) such that the
corresponding annihilation-creation QSDEs (9) are physically realizable.

The following theorem gives a necessary and sufficient condition for a transfer
function matrix to be annihilation-creation physically realizable.

Theorem 2 (See [31, 55, 59]) The transfer function matrix (30) is annihilation-
creation physically realizable if and only if the following conditions are satisfied:

(i)
Γ (s)JΓ ∼(s) = J

for all s ∈ C+.
(ii)

Γ (∞)Γ (∞)† = I ; (31)

Here, Γ ∼(s)
Δ= Γ (−s∗)† and C+ denotes the set {s ∈ C : �[s] ≥ 0}.

We now consider the physical realizability of passive linear quantum systems of
the form (15).

Definition 3 Passive QSDEs of the form (15) are said to be physically realizable
if there exist complex matrices M1 = M†

1 , N1, and S such that S†S = I and (16) is
satisfied.

The following theorem gives necessary and sufficient conditions for physical
realizability in the passive case.

Theorem 3 (See [39, 54, 55]) The passive QSDEs (15) are physically realizable if
and only if the following equations are satisfied:

F + F† + GG† = 0;
G = −H †K ;
K †K = I. (32)

Corresponding to the passive QSDEs (15) is the transfer function matrix

Γ (s) = H (s I − F)−1 G + K . (33)

Definition 4 A transfer function matrix Γ (s) is said to be passive physically real-
izable if it has a minimal state space realization (33) such that the corresponding
passive QSDEs (15) are physically realizable.

The following theorem gives a necessary and sufficient condition for a transfer
function matrix to be passive physically realizable.
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Theorem 4 (See [39, 54, 55]) A transfer function matrix Γ (s) is passive physically
realizable if and only if the following conditions are satisfied:

(i) All of the poles of Γ (s) have strictly negative real parts;
(ii)

Γ (iω)†Γ (iω) = I

for all ω ∈ R.

We now consider the physical realizability of position-momentum linear quantum
systems of the form (19).

Definition 5 Position-momentum QSDEs of the form (19) are said to be position-
momentum physically realizable if there exist real matrices R, W and D such that
R = RT , DJDT = J, DDT = I , and (26) is satisfied.

The following theorem gives necessary and sufficient conditions for physical
realizability in the position-momentum case.

Theorem 5 (See [27, 47, 55]) The position-momentum QSDEs (19) are physically
realizable if and only if the following equations are satisfied:

AJ + JAT + BJBT = 0;
B = JCT

JD;
DJDT = J;
DDT = I. (34)

Corresponding to the position-momentum QSDEs (19) is the transfer function
matrix

Υ (s) = C(s I − A)−1B + D. (35)

Definition 6 A transfer function matrixΥ (s) is said to be position-momentum phys-
ically realizable if it has a minimal state space realization (35) such that the corre-
sponding position-momentum QSDEs (19) are physically realizable.

The following theorem gives a necessary and sufficient condition for a transfer
function matrix to be position-momentum physically realizable.

Theorem 6 (See [31, 55]) A transfer function matrix Υ (s) is position-momentum
physically realizable if and only if the following conditions are satisfied:

(i) All of the poles of Υ (s) have strictly negative real parts;
(ii)

Υ (s)JΥ ∼(s) = J

for all s ∈ C+;
(iii)

Υ (∞)Υ (∞)† = I.
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2.5 The Kalman Decomposition for Linear Quantum Systems

In this subsection, we consider a Kalman decomposition for quantum linear systems;
see [18, 22, 69]. We first consider physically realizable annihilation-creation quan-
tum linear systems of the form (9), (11). The Kalman decomposition for the system
(9), (11) involves decomposing the system into three subsystems via a state space
transformation of the form ⎡

⎣
ăh
ăco
ăc̄ō

⎤
⎦ = T † ă

such that the commutation relations (4) are satisfied by each subsystem in the trans-
formed system. That is, each subsystem in the transformed system is required to be
a physically realizable quantum system. In order to achieve this, we require that the
transformation matrix T satisfies the following blockwise Bogoliubov condition:

T † JnT =
⎡
⎣
Jn3 0 0
0 Jn1 0
0 0 Jn2

⎤
⎦ .

Here the notation Jk refers to a (2k) × (2k) matrix of the form (12).

Theorem 7 (See [69]) There exists a unitary and blockwise Bogoliubov coordinate
transformation ⎡

⎣
ăh
ăco
ăc̄ō

⎤
⎦ = T † ă (36)

which transforms the physically realizable linear quantum system (9), (11) into the
form

⎡
⎢⎣

˙̆ah(t)
˙̆aco(t)
˙̆ac̄ō(t)

⎤
⎥⎦ = ¯A

⎡
⎣

ăh(t)
ăco(t)
ăc̄ō(t)

⎤
⎦ + B̄ b̆(t); (37)

b̆out(t) = C̄

⎡
⎣

ăh(t)
ăco(t)
ăc̄ō(t)

⎤
⎦ + b̆(t), (38)

where

¯A � T †A T =
⎡
⎣

Ah A12 A13

A21 Aco 0
A31 0 Ac̄ō

⎤
⎦ ;
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Fig. 1 Block diagram
corresponding to
annihilation-creation
Kalman decomposition

B̄ � T †B =
⎡
⎣

Bh

Bco

0

⎤
⎦ ;

C̄ � C T = [
Ch Cco 0

]
(39)

and
[
A21

A31

]
(s I − Ah)

−1 [
A12 A13

] = 0. (40)

Here the pair (Aco,Bco) is controllable and the pair (Aco,Cco) is observable.

A block diagram for the system (37)–(39) is given in Fig. 1.
We now consider the Kalman decomposition for physically realizable passive

linear quantum systems of the form (15), (16). The Kalman decomposition for the
system (15), (16) involves decomposing the system into two subsystems via a state
space transformation of the form

[
ac̄ō
aco

]
= T †a

such that the commutation relations (4) are satisfied by each subsystem in the trans-
formed system. That is, each subsystem in the transformed system is required to be
a physically realizable quantum system. In order to achieve this, we require that the
transformation matrix T is unitary.

Theorem 8 (See [69]) There exists a unitary coordinate transformation

[
ac̄ō
aco

]
= T †a
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Fig. 2 Block diagram
corresponding to passive
Kalman decomposition

which transforms the physically realizable passive linear quantum system (15), (16)
into the form

[
ȧc̄ō(t)
ȧco(t)

]
= ¯A

[
ac̄ō(t)
aco(t)

]
+ B̄ b(t); (41)

bout(t) = C̄

[
ac̄ō(t)
aco(t)

]
+ b(t), (42)

where

¯A � T †A T =
[
Ac̄ō 0
0 Aco

]
;

B̄ � T †B =
[

0
Bco

]
;

C̄ � C T = [
0 Cco

]
. (43)

Here the pair (Aco,Bco) is controllable and the pair (Aco,Cco‘) is observable.

A block diagram for the system (41)–(43) is given in Fig. 2.
We now consider the Kalman decomposition for physically realizable position-

momentum linear quantum systems of the form (19), (26). The Kalman decomposi-
tion for the system (19), (26) involves decomposing the system into four subsystems
via a state space transformation of the form

⎡
⎢⎢⎣

qh
ph
xco
x c̄ō

⎤
⎥⎥⎦ = S	x.

Each of these four subsystems corresponds to a subsystem in the standard classical
Kalman decomposition. However, in the quantum case, the subsystems correspond-
ing to the variables qh and ph will always be of the same dimension and we will

group these two subsystems together by defining a vector of variables xh =
[
qh
ph

]

so that the transformed system can be regarded as involving three subsystems:
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⎡
⎣

xh
xco
x c̄ō

⎤
⎦ = S	x.

Then, we require the transformationmatrix to be constructed so that the commutation
relations (3) are satisfied by each subsystem in the transformed system. That is,
each subsystem in the transformed system is required to be a physically realizable
position-momentum quantum system. In order to achieve this, we require that the
transformation matrix S satisfies the following blockwise symplectic condition:

S	
Jn S = diag

(
Jn3 , Jn1 , Jn2

)
. (44)

Here the notation Jk refers to a (2k) × (2k) matrix of the form (24).

Theorem 9 (See [69]) There exists a real orthogonal and blockwise symplectic
coordinate transformation

⎡
⎢⎢⎣

qh
ph
xco
x c̄ō

⎤
⎥⎥⎦ = S	x (45)

which transforms the physically realizable position-momentum linear quantum sys-
tem (19), (26) into the form

⎡
⎢⎢⎣

q̇h(t)
ṗh(t)
ẋco(t)
ẋ c̄ō(t)

⎤
⎥⎥⎦ = Ā

⎡
⎢⎢⎣

qh(t)
ph(t)
xco(t)
x c̄ō(t)

⎤
⎥⎥⎦ + B̄u(t); (46)

y(t) = C̄

⎡
⎢⎢⎣

qh(t)
ph(t)
xco(t)
x c̄ō(t)

⎤
⎥⎥⎦ + u(t), (47)

where matrices Ā, B̄, C̄ are of the form

Ā =

⎡
⎢⎢⎣
A11
h A12

h A12 A13

0 A22
h 0 0

0 A21 Aco 0
0 A31 0 Ac̄ō

⎤
⎥⎥⎦ ;

B̄ =

⎡
⎢⎢⎣

Bh

0
Bco

0

⎤
⎥⎥⎦ ;
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Fig. 3 Block diagram corresponding to position-momentum Kalman decomposition

C̄ = [
0 Ch Cco 0

]
. (48)

After a rearrangement, the system (46)–(47) becomes

⎡
⎢⎢⎣

q̇h(t)
ẋco(t)
ẋ c̄ō(t)
ṗh(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A11
h A12 A13 A12

h
0 Aco 0 A21

0 0 Ac̄ō A31

0 0 0 A22
h

⎤
⎥⎥⎦

⎡
⎢⎢⎣

qh(t)
xco(t)
x c̄ō(t)
ph(t)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

Bh

Bco

0
0

⎤
⎥⎥⎦ u(t); (49)

y(t) = [0 Cco 0 Ch]

⎡
⎢⎢⎣

qh(t)
xco(t)
x c̄ō(t)
ph(t)

⎤
⎥⎥⎦ + u(t). (50)

Here the pairs (A11
h , Bh) and (Aco, Bco) are controllable and the pairs (Aco,Cco)

and (A22
h ,Ch) are observable.

A block diagram for the system (46)–(48) is given in Fig. 3.

2.6 Finite Level Quantum Systems in the Heisenberg Picture

In the Heisenberg picture model of an open finite level quantum system, the model
consists of bilinearQSDEswhere the systemvariables are initialized at thegenerators
of SU (n) for an n-level quantum system; see [13]. These generators are known as the
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generalized Gell-Mann matrices. The generators are labelled {I, λ1, . . . , λs}, where
s = n2 − 1. Thesematrices satisfy Tr(λiλ j ) = 2δi j , where δi j denotes the Kronecker
delta. They also satisfy the following commutation and anti-commutation relations:

[λi , λ j ] = 2iii
s∑

k=1

fi jkλk;

{λi , λ j } = 4

n
δi j + 2

s∑
k=1

di jkλk .

Then, the product λiλ j can be computed as

λiλ j = 1

2

([λi , λ j ] + {λi , λ j }
) = 2

n
δi j +

s∑
k=1

(
iii fi jk + di jk

)
λk,

where the real completely antisymmetric tensor fi jk and the real completely sym-
metric tensor di jk are the structure constants of SU (n). These tensors satisfy

film fmjk + f jlm fimk + fklm fi jm = 0; (51a)

filmdmjk + f jlmdimk + fklmdi jm = 0; (51b)
s∑

k=1

filk fmjk = 2

n

(
δimδl j − δi jδlm

) +
s∑

k=1

(
dimkdl jk − di jkdlmk

) ; (51c)

s∑
m,k=1

fimk f jmk = nδi j . (51d)

We define the matrices Fi , Di ∈ R
s×s , i ∈ {1, . . . , s}, such that their ( j, k) com-

ponents are (Fi ) jk = fi jk and (Di ) jk = di jk . The identities (51a)–(51c) imply [13]

[Fi , Fj ] = −
s∑
k

fi jk Fk; (52a)

[Fi , Dj ] = −
s∑
k

fi jk Dk; (52b)

Fi D j + Fj Di =
s∑
k

di jk Fk; (52c)

Di Fj + Dj Fi =
s∑
k

di jk Fk; (52d)
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(
Di Dj − Fj Fi

)
ml =

s∑
k

di jk(Dk)ml + 2

n

(
δi jδml − δimδ jl

)
. (52e)

Definition 7 Let β ∈ C
s . The linear mappingsΘ−,Θ+ : Cs → C

s×s are defined as

Θ−(β) = (
FT
1 β, · · · , FT

s β
) =

⎛
⎜⎝

βT FT
1

...

βT FT
s

⎞
⎟⎠ ; (53a)

Θ+(β) = (
DT

1 β, · · · , DT
s β

) =
⎛
⎜⎝

βT DT
1

...

βT DT
s

⎞
⎟⎠ . (53b)

It follows from the properties of the f and d-tensors that Θ−(β) and Θ+(β) are
antisymmetric and symmetric, respectively. For an s-dimensional row vector β, then
we use the notation Θ−(β) = Θ−(βT ) and Θ+(β) = Θ+(βT ). Also, we consider
the stacking operator vec : Cm×n → C

mn which acts on a matrix to create a column
vector by stacking its columns on top of one another. The stacking operator vec has
the following property:

vec(ABC) = (CT ⊗ A) vec(B) (54)

for A ∈ C
n×m , B ∈ C

m×l and C ∈ C
l×r where n,m, l, r ∈ N, and ⊗ denotes the

Kronecker product. The matrices Θ−(β) and Θ+(β) are such that

vec(Θ−(β)) =
⎛
⎜⎝

Θ−
1 (β)
...

Θ−
s (β)

⎞
⎟⎠ = Fβ,

and

vec(Θ+(β)) =
⎛
⎜⎝

Θ+
1 (β)
...

Θ+
s (β)

⎞
⎟⎠ = Dβ,

where Θ−
i (β) = FT

i β,
F = (F1, · · · , Fs)

T , (55)

Θ+
i (β) = Diβ,

D = (D1, · · · , Ds)
T (56)

and β ∈ C
s . Using (51d), F satisfies
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FT F = nI. (57)

The following lemma gives some of the properties of Θ−(·) and Θ+(·).
Lemma 1 (See [13]) Let β, γ ∈ C

s be given. Then, the mappingsΘ−(·) andΘ+(·)
satisfy

Θ−(β)γ = −Θ−(γ )β; (58a)

Θ+(β)γ = Θ+(γ )β; (58b)

Θ−(β)β = 0; (58c)

Θ− (
Θ−(β)γ

) = [Θ−(β),Θ−(γ )]; (58d)

Θ− (
Θ+(β)γ

) = Θ−(β)Θ+(γ ) + Θ−(γ )Θ+(β); (58e)

Θ+ (
Θ−(β)γ

) = [Θ+(β),Θ−(γ )] = [Θ−(β),Θ+(γ )]; (58f)

Θ+ (
Θ+(β)γ

) = Θ+(β)Θ+(γ ) − Θ−(γ )Θ−(β) − 2

n

(
βT γ I − βγ T

)
. (58g)

Now we define a vector of spin operators X whose components are the system
variables evolving in SU (n) for a finite level open quantum system:

X =
⎛
⎜⎝
X1
...

Xs

⎞
⎟⎠ . (59)

Here X1, . . . , Xs are spanned by the generalized Gell-Mann matrices. The initial
value of the system variables can be set to X (0) = (λT

1 , . . . , λT
s )T with λ1, . . . , λs

being the generators of SU (n).
Using this notation, the commutation and anti-commutation relations can be

expressed as

[X, XT ] = 2iiiΘ−(X); (60a)

{X, XT } = 4

n
I + 2Θ+(X). (60b)

Here, {X,Y T } � XY T + (Y XT )T . Therefore,

XXT = 1

2

([X, XT ] + {X, XT }) = 2

n
I + iiiΘ−(X) + Θ+(X). (61)

As in the case of linear quantum systems, the dynamics of an open finite level
quantum system are specified by a system Hamiltonian and vector of coupling oper-
ators. Without significant loss of generality, we will restrict attention to the class of
linear Hamiltonians

H = αX (62)



602 I. R. Petersen

with αT ∈ R
s , and also consider the class of vector coupling operators of the form

L = Γ X (63)

with Γ ∈ C
m×s . Here we assume that the scattering matrix S is equal to the identity:

S = I. (64)

These values of S, L , H then form an (S, L , H) description of a finite level open
quantum system. The Heisenberg picture description of a finite level open quantum
system interacting with m fields is then described by a set of bilinear QSDEs of the
form

dX = A0 dt + AX dt + (BX, · · · , B1m X, B21X, · · · , B2m X)

[
dQ(t)
dP(t)

]
; (65)

[
dQout (t)
dPout (t)

]
=

(
C1

C2

)
X dt +

[
dQ(t)
dP(t)

]
(66)

where

[
dQ(t)
dP(t)

]
defines the field quadrature variables as in (17). Here, A0 ∈ R

s ,

A, B1k, B2k ∈ R
s×s and C1,C2 ∈ R

m×s for k = 1, . . . ,m. These real vectors and
matrices are given by the following equations in terms of the system Hamiltonian
and coupling operators:

A0 = 4iii

n

m∑
k=1

Θ−(Γ #
k )Γ T

k ; (67a)

A = −2Θ−(α) +
m∑

k=1

(Rk − iii Qk) ; (67b)

B1k = Θ− (
iii(Γ #

k − Γk)
) ; (67c)

B2k = −Θ−(Γk + Γ #
k ); (67d)

C1 = Γ + Γ #; (67e)

C2 = iii
(
Γ # − Γ

)
(67f)

where

Rk � Θ−(Γk)Θ
−(Γ #

k ) + Θ−(Γ #
k )Θ−(Γk);

Qk � Θ−(Γk)Θ
+(Γ #

k ) − Θ−(Γ #
k )Θ+(Γk).
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2.7 Physical Realizability of Finite Level Quantum Systems

We now consider conditions under which a set of bilinear QSDEs of the form (65),
(66) in fact corresponds to afinite level quantumsystemwith an (S, L , H)description
of the form (62), (63), (64). In this case, the bilinear QSDEs (65), (66) are said to be
physically realizable. This notion is formalized in the following definition.

Definition 8 Bilinear QSDEs of the form (65), (66) are said to be physically real-
izable if there exist a vector α and a complex matrix Γ such that equations (67) are
satisfied.

The following theorem gives necessary and sufficient conditions for physical
realizability in this case.

Theorem 10 (See [13]) The bilinear QSDEs (65), (66) are physically realizable if
and only if the following conditions are satisfied:

A0 = 1

n

nw∑
k=1

(B1k + iii B2k) ((C1)k + iii(C2)k)
† ; (68a)

B1k = Θ−((C2)k); (68b)

B2k = −Θ−((C1)k); (68c)

A + AT +
2,nw∑
i,k=1

Bik Bik
T = n

2
Θ+(A0). (68d)

In this case, the coupling matrix is given by

Γ = 1

2
(C1 + iiiC2), (69)

and the vector α defining the system Hamiltonian, is given by

α = 1

4n
vec

(
AT − A + 1

2

nw∑
k=1

({B1k,Θ
+((C1)k)} + {B2k,Θ

+((C2)k)}
))T

F

(70)

where F is defined as in (55).

2.8 Finite Level Quantum Systems in the Schrödinger Picture

We now consider Schrödinger picture models of finite level quantum systems. In
these models, we consider the evolution of the quantum state which is described by
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a positive density matrix ρ. The density ρ is an operator on the underlying finite-
dimensional complex Hilbert space satisfying tr(ρ) = 1. The dynamics of ρ(t) are
described by a Markovian master equation of the form

ρ̇(t) = −iii[H, ρ(t)] +
m∑

k=1

(
Lkρ(t)L†

k − 1

2
L†
k Lkρ(t) − 1

2
ρ(t)L†

k Lk

)
(71)

where H is the system Hamiltonian operator and

L =

⎡
⎢⎢⎢⎣

L1

L2
...

Lm

⎤
⎥⎥⎥⎦

is the coupling operator vector for the system.

3 Linear Quantum Networks in the Realization
of Quantum Systems

In this section, we consider various linear quantum networks which can be used
in the implementation of physically realizable quantum linear systems and transfer
function matrices. We begin with the case of passive physically realizable transfer
function matrices which can be realized by a cascade of optical cavities and phase
shifters.

3.1 Cascade Network Realization of Passive Physically
Realizable Transfer Function Matrices

In this subsection, we consider the problem of constructing a network of quantum
optical components such that this network has a transfer function matrix which is the
same as a given passive physically realizable transfer function matrix Γ (s) of the
form (33). In this case, the network will consist of a cascade connection of optical
ring cavities and phase shifters.

Amulti-mirror ring cavity is a passive optical component consisting of a collection
of partially reflecting mirrors arranged as shown in Fig. 4. Such an optical ring cavity
is a passive optical device and can be described by a set of passive QSDEs of the
form (15) as follows:
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Fig. 4 Schematic
representation of an m mirror
optical cavity

da =
(
−γ

2
+ ıΔ

)
adt −

m∑
i=1

√
κi dui ;

dyi = √
κi adt + dui , i = 1, 2, . . . ,m. (72)

Here, γ = ∑m
i=1 κi . The quantities κi ≥ 0, i = 1, 2, . . . ,m are the coupling coeffi-

cients which correspond to the reflectivities of the partially reflecting mirrors which
make up the cavity. Also, the quantity Δ ∈ R corresponds to the detuning between
the resonant frequency of the cavity and the frequency of the coherent fields applied
to the cavity.

We now generalize this m-input m-output linear quantum system by introducing
phase shifters on each input and output channel as shown in the block diagram in
Fig. 5. In practice, these phase shifts would be introduced by simply adjusting the
optical path length in the corresponding optical channel. This leads to a passive
quantum system which can be described by a set of QSDEs of the form (15) as
follows:

da =
(
−γ

2
+ ıΔ

)
adt −

m∑
i=1

√
κi e

−ıθi dui ;

dyi = √
κi e

ıθi adt + dui , i = 1, 2, . . . ,m. (73)

Thus, the phase shifter cavity system can be described by QSDEs of the form:

da = padt − h†du; dy = hadt + du (74)

where

p + p∗ = −γ = −
m∑
i=1

κi = −h†h. (75)
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Fig. 5 Block diagram of an m channel optical cavity with phase shifters

Fig. 6 Block diagram of a cascade of n generalized cavities

Here p = −γ /2 + ıΔ,

h =

⎡
⎢⎢⎢⎣

√
κ1eıθ1√
κ2eıθ2

...√
κmeıθm

⎤
⎥⎥⎥⎦ , du =

⎡
⎢⎢⎢⎣

du1
du2
...

dum

⎤
⎥⎥⎥⎦ , dy =

⎡
⎢⎢⎢⎣

dy1
dy2
...

dym

⎤
⎥⎥⎥⎦ .

It is straightforward to verify that theseQSDEs are physically realizable according
toDefinition 3. Such as system is referred to as a generalized cavity.We now consider
a linear quantum network consisting of a cascade of n such systems as shown in the
block diagram in Fig. 6.

If each of the generalized cavities in the linear quantum network is described by
the QSDEs

dak = pkakdt − H †
k duk;

dyk = Hkakdt + duk; (76)

pk + p∗
k = −H †

k Hk, (77)

then the total cascade network can be described in terms of passive QSDEs of the
form (15) where
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F1 =

⎡
⎢⎢⎢⎢⎢⎣

p1 0 . . . 0
−H †

2 H1 p2
...

. . .
...

0
−H †

n H1 . . . −H †
n Hn−1 pn

⎤
⎥⎥⎥⎥⎥⎦

,G1 = −

⎡
⎢⎢⎢⎣

H †
1

H †
2
...

H †
n

⎤
⎥⎥⎥⎦ ,

H1 = [
H1 H2 . . . Hn

]
, J = I. (78)

The main result of this subsection shows that almost all passive physically real-
izable transfer function matrices of the form (33) can be realized via such a cascade
linear quantum network. Indeed, the class of such transfer function matrices for
which this physical realization exists are those passive physically realizable transfer
function matrices with distinct poles. Such transfer function matrices have a state
space realization in modal canonical form as follows:

dã(t) = F̃ ã(t)dt + G̃du(t);
dy(t) = H̃ ã(t)dt + du(t) (79)

where

F̃ =

⎡
⎢⎢⎢⎢⎣

p1 0 . . . 0

0 p2
...

...
. . . 0

0 . . . 0 pn

⎤
⎥⎥⎥⎥⎦

; G̃ =

⎡
⎢⎢⎢⎣

G̃1

G̃2
...

G̃n

⎤
⎥⎥⎥⎦ ;

H̃ = [
H̃1 H̃2 . . . H̃n

]
. (80)

In order to construct a cascade cavity physical realization for such a passive physically
realizable transfer function matrix, we will apply the following algorithm.

Step 1: Begin with a minimal modal canonical form realization (79), (80) of the
lossless bounded real transfer function K (s).

Step 2: Let

H̄n = H̃n, αn = − H̄ †
n H̄n

pn + p∗
n

,

Hn = H̄n√
αn

, t (n, n) = 1√
αn

. (81)

Step 3: Calculate the quantities Hn−1, Hn−2, . . . , H1, αn−1, αn−2, . . . , α1, t (i, j),
for j = n − 1, n − 2, . . . , 1 and i ≥ j . These values are calculated using the
following recursive formulas starting with the values determined in Step 2 for
i = n:
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H̄i =
⎡
⎣I +

n∑
j=i+1

H̃ j

p j − pi

j∑
k=i+1

t ( j, k)H †
k

⎤
⎦

−1

H̃i ; (82)

αi = − H̄ †
i H̄i

pi + p∗
i

, Hi = H̄i√
αi

, (83)

t (k, i) = 1

pi − pk

k∑
j=i+1

t (k, j)H †
j Hi for k = i + 1, . . . , n, (84)

t (i, i) = 1√
αi

. (85)

Step 4: . Set t (k, i) = 0 for k < i and define a transformation matrix T whose
(i, j)th element is t (i, j).

Then, we have the following result.

Theorem 11 (See [53])Consider an m × m lossless bounded real complex transfer
functionmatrix K (s)with aminimalmodal canonical form quantum realization (79),
(80) such that the eigenvalues of the matrix F̃ are all distinct and that all of the matrix
inverses exist in Eq. (82) when the above algorithm is applied to the system (79), (80).
Then, the vectors H1, H2, . . . , Hn defined in the above algorithm together with the
eigenvalues p1, p2, . . . , pn define an equivalent cascade quantum realization (15),
(78) for the transfer function matrix K (s). Furthermore, this system is such that the
condition (77) is satisfied for all k. Moreover, the matrices {F,G, H, I } defining this
cascade quantum realization are related to the matrices {F̃, G̃, H̃ , I } defining the
modal quantum realization (79), (80) according to the formulas:

F̃ = T FT−1, G̃ = TG, H̃ = HT−1 (86)

where the matrix T is defined in the above algorithm.

3.2 Cascade Network Realization for Generic Physically
Realizable Transfer Function Matrices

In this subsection, we consider a general physically realizable position-momentum
quantum linear system of the form (19), (26). We wish to construct a change of
variables x̃ = T x on the vector of system variables x defined in (17) such that

x̃ =

⎡
⎢⎢⎢⎣

x̃1
x̃2
...

x̃ n
2

⎤
⎥⎥⎥⎦
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Fig. 7 Block diagram of a pure cascade of n
2 subsystems

where

x̃i =
[
q̃i
p̃i

]

for i = 1, 2, . . . , n
2 . Furthermore, it is required that the transformed system can be

expressed as a pure cascade of its single mode subsystems corresponding to each
sub-vector x̃i as illustrated in Fig. 7. In addition, it is required that the commutation
relations (21) be preserved for each of the subsystems of the transformed quantum
system. This restricts the class of transformationmatrices T which can be considered.
To specify this class of transformation matrices, we first write T = T̃Π where Π is
a permutation matrix such that

Πx = Π

[
q
p

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
p1
q2
p2
...

q n
2

q n
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, the matrix T̃ is required to be a symplectic matrix. That is T̃ satisfies
T̃ Jn T̃ T = Jn where Jn is the block diagonal matrix Jn = Diag(J2, J2, . . . , J2) and

J2 =
[

0 1
−1 0

]
.

Definition 9 A square matrix M of even dimension is said to be 2 × 2 block lower
triangular if it has the form

M =

⎡
⎢⎢⎢⎣

M11 0 0 . . . 0
M21 M22 0 . . . 0
...

. . .
. . .

. . .
...

Mn1 Mn2 . . . . . . Mnn

⎤
⎥⎥⎥⎦

where each matrix Mi j is a 2 × 2 matrix. Furthermore, M is said to be 2 × 2 block
upper triangular if MT is 2 × 2 block lower triangular.



610 I. R. Petersen

The algorithm for constructing the desired transformation matrix T̃ involves the
symplectic QR transformation of [45].

Lemma 2 (See [45]) Let V be a real inevitable matrix of even dimension n with lin-
early independent columns v1, v2, . . . , vn. Let Mi = [

v2i−1 v2i
]
for i = 1, 2, . . . , n

2 .

Also, let M̃1 = M1, M̃2 = [
M1 M2

]
, . . ., M̃ n

2
= [

M1 M2 . . . Mn
2

]
. Assume that

Ñi = M̃T
i Jn M̃i = Jn is full rank for i = 1, 2, . . . , n

2 − 1. Then, the matrix V has
a QR decomposition V = SY where S is symplectic and Y is 2 × 2 block upper
triangular. Furthermore, the matrix S can be constructed recursively.

This lemma is used in [45] to prove the following result on a Symplectic Schur
Decomposition.

Lemma 3 (See [45]) Let A be a real matrix of even dimension n. Then there exits
a symplectic matrix S and a 2 × 2 block lower triangular matrix U such that A has
the symplectic Schur deposition A = S−1US if there exists an invertable matrix Ṽ
with linearly independent columns ṽ1, ṽ2, . . . , ṽn such that the following conditions
are satisfied.

1. The matrix Ṽ−1AṼ is 2 × 2 block upper triangular and in real Jordan canonical
form.

2. The matrices Ñ1, Ñ2, . . . Ñ n
2 −1 given by

Ñ1 = [
ṽ1 ṽ2

]T
Jn

[
ṽ1 ṽ2

] ;
Ñ2 = [

ṽ1 ṽ2 ṽ3 ṽ4
]T

Jn
[
ṽ1 ṽ2 ṽ3 ṽ4

] ;
...

Ñ n
2 −1 = [

ṽ1 ṽ2 . . . ṽn−2
]T

Jn
[
ṽ1 ṽ2 . . . ṽn−2

]

are all full rank.

This lemma enables the following result to be established.

Theorem 12 (See [45])Consider a physically realizable position-momentum quan-
tum linear system of the form (19), (26). Suppose there exists a matrix Ṽ associated
with the matrix A for this system satisfying the conditions of Lemma 3. Then there
exists a symplectic matrix S such that the transformed system matrix SAS−1 is 2 × 2
block lower triangular. This implies that the corresponding transformed system is
physically realizable with a pure cascade realization and that the corresponding
transfer function matrix Υ (s) in (35) is physically realizable with a pure cascade
realization.

This theorem leads to the following corollary.

Corollary 1 (See [45]) Almost all physically realizable position-momentum quan-
tum linear systems of the form (19), (26) have a pure cascade realization.
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Fig. 8 Schematic diagram
of a beamsplitter

3.3 Quantum Network Realization for General Physically
Realizable Transfer Function Matrices

In this subsection, we consider the optical realization of general physically realizable
quantum systems and transfer function matrices, including those which may not be
realizable using a pure cascade. This requires a more complex class of quantum
networks involving the use of feedback; see [20]. Here, we consider a physically
realizable annihilation-creation quantum system of the form (9), (11) with transfer
function matrix Γ (s) (30). In addition to the passive cavities considered in Sect. 3.1,
we will consider beamsplitters, static squeezers, and generalized cavities allowing
for both passive and active channels.

A beamsplitter is a passive optical device consisting of a single partially reflecting
mirror as illustrated in Fig. 8. A beamsplitter has two input channels and two output
channels and is described by the equations

[
y1
y2

]
= R

[
u1
u2

]

where

R =
[

eı
φ+ψ

2 cos θ
2 eı

φ−ψ

2 sin θ
2

−eı
φ−ψ

2 sin θ
2 e−ı φ+ψ

2 cos θ
2

]
.

Here, θ ∈ [0, 2Π ] is the mixing angle of the beamsplitter. The angles φ and ψ

correspond to phase shifts on the input and output channels of the beamsplitter,
respectively. A matrix R of this form corresponds to a general 2 × 2 unitary matrix
with unit determinant.

A static squeezer is an active optical device with one input channel and one output
channel. It is described by the equations

[
y
y∗

]
= R

[
u
u∗

]
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Fig. 9 Schematic diagram of a generalized active–passive cavity. The black dots represent purely
active channels and the white dots represent purely passive channels. In the case that all of the
channels are vector channels of the samedimension, this diagram is also used to represent a collection
of generalized active–passive cavities in parallel

where

R =
[
eı(φ+ψ) cosh x eı(φ−ψ) sinh x
eı(φ−ψ) sinh x e−ıφ+ψ) cosh x

]

where x ∈ R is the squeezing parameter and the angles φ and ψ correspond to phase
shifts on the input and output channels of the squeezer, respectively.

Using the Shale decomposition of a Bogoliubov matrix [8, 16, 20, 34, 60], it
turns out that any Bogoliubov static transformation

[
y
y#

]
= R

[
u
u#

]

can be constructed exclusively from phase shifters, beam splitters and squeezers.
Also, we consider a generalization of the multichannel cavities described by the

QSDEs (73) to allow for active as well as passive input–output channels. These
generalized cavities are described by the QSDEs

da =
(
−γ

2
+ ıΔ

)
adt −

m∑
i=1

√
κi e

−ıθi dui +
m∑
i=1

√
gie

ıφi du∗
i ;

dyi = √
κi e

ıθi adt + √
κi e

ıφi a#dt + dui , i = 1, 2, . . . ,m. (87)

Here, γ = ∑m
i=1 (κi − gi ) . We will restrict attention to the case in which a channel

is either purely passive corresponding to gi = 0 or purely active corresponding to
κi = 0. Such a generalized cavity is represented schematically as shown in Fig. 9.

We now present a canonical form for doubled-up complex matrices; see [20].

Theorem 13 (See [20]) Consider a complex matrix N with the doubled-up form

N =
[
N1 N2

N #
2 N #

1

]
. Assume that all of the eigenvalues of the matrix J N † J N are semi-

simple and Ker[J N † J N ] = Ker[N ]. Then there exist Bogoliubov matrices V , W
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and a doubled-up matrix N̂ =
[
N̂1 N̂2

N̂ #
2 N̂ #

1

]
such that N = V N̂ JW † J . Here N̂1 and

N̂2 are complex diagonal matrices whose diagonal elements are constructed from
the eigenvalues of the matrix J N † J N.

Applying this decomposition to the matrix N in a linear quantum system with
(S, L , H) parameters defined as in (6), (8), the following result can be obtained. This
result enables the realization of a general annihilation-creation physically realizable
transfer function matrix; see [20].

Theorem 14 (See [20]) Consider an open linear quantum system with (S, L , H)

parameters defined as in (5), (8), QSDE description as in (9), (11) and transfer
function matrix (30):

Γ (s) =
[
I − N

(
s I + ı J M + 1

2
J N † J N

)−1

J N †

][
S 0
0 −S#

]
.

Furthermore, assume that the matrix N in (8) satisfies the assumptions of
Theorem 13 and let N = V N̂ JW † J be the corresponding decomposition of this

matrix. Then Γ (s) can be factored as Γ (s) = V Γ̂ (s)JV † J

[
S 0
0 −S#

]
where

Γ̂ (s) = I − N

(
s I + ı J M̂ + 1

2
J N̂ † J N̂

)−1

J N̂ †

and M̂ = W †MW. Furthermore, Γ̂ (s) corresponds to an open linear quantum sys-
tem with (S, L , H) parameters defined by S = I ,

H = 1

2

[
a† aT

]
M̂

[
a
a#

]
,

and [
L
L#

]
= N̂

[
a
a#

]
.

This open linear quantum system corresponds to QSDEs of the following form:

[
da(t)
da(t)#

]
= −

(
ı J M̄ + 1

2
J N̄ † J N̄ + 1

2
J N̂ † J N̂

)[
a(t)
a(t)#

]
dt

−J N̄ †

[
dAint (t)
dAint (t)#

]
− J N̂ †

[
dA (t)
dA (t)#

]
;

[
dA out (t)
dA out (t)#

]
= N̂

[
a(t)
a(t)#

]
dt +

[
dA (t)
dA (t)#

]
;
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Fig. 10 Quantum optical realization of a general physically realizable transfer function matrix.
In this diagram, the generalized active–passive cavity blocks represent collections of cavities in
parallel

[
dA out

int (t)
dA out

int (t)#

]
= N̄

[
a(t)
a(t)#

]
dt +

[
dAint (t)
dAint (t)#

]
;

[
dAint (t)
dAint (t)#

]
= R

[
dA out

int (t)
dA out

int (t)#

]
.

Here N̄ is an arbitrary positive definite diagonal matrix, M̄ = diag(D, D) + E +
ET , D is an arbitrary positive definite diagonal matrix, and E is a matrix determined

by the eigenvalues of J N † J N.Also,wedefine X = 2ı
(
J N̄ † J

)−1
(
J M̂ − J M̄

)
N̄−1.

Then the feedback gain is defined by R = (X − I ) (X + I )−1. The structure of these
matrices means that Γ (s) can be realized by the quantum optical feedback network
shown in Fig. 10.

Remark 1 The above theorem shows that for a general class of annihilation-creation
physically realizable transfer function matrices, they can be implemented as a quan-
tum optical network consisting of beamsplitters, phase shifters and squeezers, single
channel passive optical cavities, two channel passive optical cavities, two channel
optical cavities with one purely passive channel and one purely active channel and
three channel optical cavities with two purely passive channels and one purely active
channel. In practice, the optical channels containing purely active channels would
need to be approximated by a combination of passive cavities and dynamic squeezers;
e.g., see [16, 65].
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4 Conclusions

In this chapter, we have considered the modelling and realization of quantum net-
works from a control theory point of view. The chapter has introduced various classes
of quantum system models, particularly quantum linear systems. The properties of
these models have then been studied by surveying a range of recent results. In par-
ticular, results on the property of physical realizability have been considered. This
property characterizes when a given model corresponds to a physical quantum sys-
tem obeying the laws of quantum mechanics. The chapter also surveyed results on
the structure of physical quantum systems and the realization of quantum system
models as quantum optical networks, with given structures.
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