
Chapter 10
Comparing Student Understanding
of Graphs in Physics and Mathematics

Maja Planinic, Ana Susac, Lana Ivanjek, and Željka Milin Šipuš

10.1 Introduction and Background

Research suggests that many students at high school or introductory university
level lack the ability to understand and interpret graphs. This has been documented
in several physics education studies (e.g., McDermott et al. 1987; Brasell and
Rowe 1993; Beichner 1994; Forster 2004; Araujo et al. 2008; Nguyen and Rebello
2011; Christensen and Thompson 2012), as well as mathematics education studies
(Dreyfus and Eisenberg 1990; Leinhardt et al. 1990; Swatton and Taylor 1994;
Graham and Sharp 1999; Kerslake 1981; Hadjidemetriou and Williams 2002; Habre
and Abboud 2006). Student difficulties with calculating and interpreting slope of a
graph and area under a graph were common.

The concept of slope (gradient) is very important for physics since many physical
quantities are defined as gradients (e.g., velocity, acceleration) and represented with
line graphs. The concept of slope is also important for mathematics as a necessary
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prerequisite for the development of the concept of derivation. Students study line
graph slope in both mathematics and physics, but because of the differences in
contexts, they may not necessarily realize that they are studying the same concept.

Student difficulties concerning the interpretation of the area under a graph may
be even stronger than those concerning graph slope, since interpretation of slope
is usually more emphasized by school mathematics and physics teaching than the
interpretation of area under a graph. Yet, the area interpretation, with the idea of
accumulation of infinitesimal quantities, underlies the concept of definite integral,
important for both mathematics and physics teaching.

Student difficulties with graphs were identified through both physics and mathe-
matics education research. Most of the research on student understanding of graphs
in physics was done in the context of kinematics, because of the very broad use of
graphical representations in kinematics. Students were found to have difficulties
with linking the graph and the verbal descriptions of a given event and with
understanding graphs as symbolic representations of relationships among variables
(Brasell and Rowe 1993; Beichner 1994). They often have trouble discriminating
the slope and height of a graph and interpret changes in height as changes in
slope (McDermott et al. 1987; Beichner 1994). Many students are unable to choose
which feature of the graph represents the information that is needed to answer the
question (e.g., they calculate slope when they should have been calculating the area)
(McDermott et al. 1987; Beichner 1994). Very few students seem to be able to
interpret the area under an a vs. t graph as a change in velocity, whereas they have
far less problems interpreting the area under a v vs. t graph as a distance travelled
(Beichner 1994). Some of the research in mathematics education was also based
on kinematics motion graphs and had similar general findings (Graham and Sharp
1999; Kerslake 1981), while studies in purely mathematical context have in addition
shown that student understanding of mathematical concepts (such as functions)
tends to be typically algebraic and not visual. Visual information, including graphs,
seems to be more difficult for students to learn and is considered by them to be less
mathematical (Dreyfus and Eisenberg 1990; Habre and Abboud 2006).

Student difficulties with graphs are sometimes classified as interval-point confu-
sions, slope-height confusions, and iconic confusions (Leinhardt et al. 1990). The
iconic confusion is usually characteristic of younger students, although traces of it
can also be found in older populations, sometimes even university students (Mc-
Dermott et al. 1987; Beichner 1994). It consists in students’ incorrect interpretation
of the graph as an actual picture of the motion. Students who show this difficulty
will tend to interpret, for example, a curved v vs. t graph as representing the motion
along a curved trajectory. Such students do not yet see the graph as a symbolic
representation of an abstract relationship between the variables on its axis but as a
concrete picture of body’s motion. It is therefore difficult for them to see why the
graph should change if the variables on the axes change, and they will generally
expect the graph to remain the same.

The slope-height confusion happens when students mistake the height of the
graph for its slope (McDermott et al. 1987; Beichner 1994; Leinhardt et al. 1990).
For example, when asked to reason about the slope of a graph, students sometimes
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just read off the y coordinate (the height of the graph at the point of interest). If they
observe, for example, the constant diminishing of the y coordinate of the graph,
they usually conclude that the slope of the graph shows the same behavior (e.g., the
slope of the straight line constantly diminishes, because the y coordinate constantly
diminishes).

The interval-point confusion refers to the cases where students focus on a single
point of the graph when they should be using an interval. This difficulty will be
displayed, for example, when students attempt to determine the slope of a graph
from one point only, instead of choosing two points and calculating Δy/Δx. Slope-
height and interval-point confusions are quite common among students at high
school and university level (McDermott et al. 1987; Beichner 1994; Forster 2004;
Leinhardt et al. 1990; Hadjidemetriou and Williams 2002; Wemyss and van Kampen
2013). Overall, the findings of both physics and mathematics education research
are rather similar and point to the presence of similar student difficulties in both
domains.

The important issue of transfer of knowledge between mathematics and physics
(usually expected to occur from mathematics to physics) was also tackled in several
studies on graphs (Christensen and Thompson 2012; Wemyss and van Kampen
2013; Woolnough 2000), with mostly negative results. It was suggested in one of
the studies that most secondary students, even those who do well in mathematics
and physics, do not make substantial links between the two domains and that
some students may even think that it is not appropriate to transfer concepts from
mathematics to physics (Woolnough 2000). For transfer to occur, it is necessary that
students possess the required mathematical knowledge, but this is not always the
case, especially when advanced concepts such as derivative or integral are concerned
(Nguyen and Rebello 2011; Christensen and Thompson 2012). The problem of
transfer of knowledge between mathematics and physics was addressed in cognitive
psychology, unrelated to graphs. One study that investigated interdomain transfer
between isomorphic topics in algebra and physics (kinematics) found very high
transfer from algebra to physics, but almost no transfer from physics to algebra,
and suggested that “transfer from physics to other domains is blocked by the
embedding of physics equations within a specific content domain” (Bassok and
Holyoak 1989). The problem of domain specificity of knowledge is not limited
to physics; it is also present in mathematics. Michelsen (2005) suggests that it
is not just the mathematical formalism that presents a barrier in learning physics
but that the problem lies in the missing link between mathematics and physics. He
suggests that the mathematical domain should be expanded by using examples from
physics and from everyday life contexts in mathematics teaching, in order to solve
the problem of domain specificity. In such an expanded domain, modeling of real-
life situations could be a way of bridging the gap between mathematics and physics.
We will take a closer look at the key issue of transfer of learning from theoretical
viewpoint in the following chapter.
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10.2 Theoretical Framework

Transfer of learning is usually defined as the ability to extend what has been learned
in one context to new contexts (Bransford et al. 1999) and is sometimes regarded
as one of the ultimate goals of education. Hammer et al. (2005) suggest that it
would generally be more appropriate to speak of activation of cognitive resources
than of transfer, since knowledge and reasoning abilities are comprised of many
resources that may, or may not, be activated in a particular context. They oppose
the view of knowledge and abilities as objects which are acquired, manipulated, and
transferred as intact units, with the exception of locally coherent sets of resources
which activate together and possess internal structural stability. Such cognitive units,
whose mechanism of stability is structural rather than contextual, can be viewed as
transferable (Hammer et al. 2005). In our opinion, students’ concepts of the graph
slope and of the area under a graph can be examples of such transferable units in
cases when they are well formed and stable.

Whether or not transfer will happen depends not only on the presence or absence
of relevant resources but also on students’ framing of the situation (Hammer et al.
2005). Framing means that students have to interpret what is going on in a certain
situation or in a certain problem and decide accordingly which resources to use or
which epistemic game to play (Tuminaro and Redish 2007). In physics education we
usually expect students to transfer their mathematical knowledge from mathematics
to physics. There are several reasons why the expected transfer could fail: either the
required resource does not exist, or the resource exists, but is not activated due to
the wrong framing of the problem, or the resource is activated, but its mapping to
the problem is not appropriate (Tuminaro 2004). Research suggests that transfer is
more likely to happen when students have seen the given idea in at least two separate
contexts or when they receive metacognitive scaffolding (Bransford et al. 1999).

Many studies that have looked for transfer of knowledge have usually come up
with mostly negative results, which may be due, among other things, also to the
design of those studies (Bransford and Schwartz 1999). Bransford and Schwartz
(1999) have suggested to shift the view on transfer from the direct application
perspective (successful application of knowledge acquired in one context to similar
problems in different contexts) to a more dynamical view of preparation for future
learning (PFL). The PFL perspective can be demonstrated through questions about
and approaches to the new problem, which were shaped and influenced by the
previous learning, even if students are not able to completely solve the new problem.
The PFL perspective is very important for learning, because it reveals more about
students’ useful learning trajectories than the direct application perspective. The
focus is not only on what students can or cannot directly transfer and solve but
whether students are able to learn while they transfer. In this way transfer can be
considered a dynamical way of reconstructing knowledge (Cui 2006) rather than
just an application of previously acquired knowledge in a different situation. This
dynamical view of transfer is in agreement with knowledge-as-elements perspective,
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because it assumes activation of different knowledge elements in a new context and
dynamical creation of the response on the spot.

Theories of transfer of knowledge are based upon the idea that knowledge
can be transferred from one situation to another and linked with a new situation
(Potgieter et al. 2008). Some researchers disagree and argue that learners’ mental
processes are structured by the context and the implemented activities and tools
(Lave 1988). Teachers often expect students to rise above the context, but that is not
easy for students. Recognizing mathematics in a different context requires good
understanding of the context (which is often missing), along with mathematical
knowledge (Potgieter et al. 2008). To investigate transfer of knowledge in more
detail, some comparative studies in mathematics and physics were conducted and
produced interesting results.

10.3 Results of Comparative Studies on Graphs
in Mathematics and Physics

Few studies attempted to compare student reasoning difficulties about graphs in
different contexts and domains (Wemyss and van Kampen 2013; Woolnough 2000).
Such comparison, on the other hand, can provide interesting and important insights
in student knowledge and learning and the issue of possible transfer between
domains. An example is the study of Wemyss and van Kampen (2013), in which
first-year university students solved three different context problems including line
graphs, found that the number of students’ correct answers to a problem involving
water level vs. time graph, which students had not encountered in the formal
educational setting before, was much higher than the number of correct answers
to the supposedly more familiar problem of determining the speed of object from
a distance-time graph. The reason for students’ poorer performance on physics
problems was attributed to students’ reliance on learned procedures in physics
(e.g., use of formulas). This study also found evidence that students’ mathematical
knowledge of slope does not guarantee their success on problems involving slope in
kinematics.

In our first study on graphs (Planinic et al. 2012), we compared second-year high
school students’ (N = 114) understanding of the line graph slope in the domains
of physics and mathematics. Student answers to two pairs of parallel (isomorphic)
questions regarding line graph slope from mathematics and physics (kinematics)
were analyzed and compared. Also, a sample (N = 90) of Croatian physics teachers
were asked to rank the isomorphic questions according to their expected difficulty
for students. Physics teachers largely thought that the physics questions would be
easier for students because they were regarded as less abstract than the mathematics
questions. Many also expressed the belief that the lack of mathematical knowledge
would present the main problem for students when solving physics questions. It was
found however that, contrary to the prevalent belief of physics teachers, students



238 M. Planinic et al.

did better on mathematics than on physics questions. The main source of student
difficulties with the concept of line graph slope in physics seemed not to be their lack
of mathematical knowledge but rather their lack of ability to interpret the meaning
of the line graph slope in physics context. Many students successfully solved the
mathematical questions but were unable to solve parallel physics questions or used
different strategies for solving analogous mathematics and physics problems. It was
observed that the transfer of knowledge from mathematics to physics did not always
occur, even though many students possessed the needed mathematical knowledge.
(Interestingly, beside the expected transfer from mathematics to physics, which was
relatively weak, some occasional cases of transfer from physics to mathematics were
also observed.) Also, the same student difficulty known as slope-height confusion
was detected in both domains, but it occurred far more frequently in physics than in
mathematics (about twice as often).

After this study it was natural to pose the question about the reason for the
observed higher difficulty of physics questions relative to parallel mathematics
questions: Is the higher difficulty of physics questions the consequence of students’
lack of relevant physics conceptual knowledge, or would the same effect be
observed to the same extent also in parallel questions situated in different contexts,
which did not require additional content knowledge? We attempted to investigate
this issue by using sets of three parallel (isomorphic) questions and to analyze
and compare item difficulties as well as student strategies in different domains.
The three domains were mathematics without context, physics (kinematics), and
mathematics in contexts other than physics, which did not require additional
conceptual knowledge. Eight such sets of parallel (isomorphic) mathematics,
physics, and other context questions about graphs were developed by the authors
and administered to 385 first-year students at Faculty of Science, University of
Zagreb in Zagreb, Croatia, and later also to 417 first-year students at University
of Vienna. Students were either prospective physics or mathematics teachers or
prospective physicists or mathematicians. Students were tested at the beginning
of the first semester, before any formal instruction on graphs, so their knowledge
on graphs came only from high school mathematics and physics instruction. Five
sets of questions referred to the concept of graph slope and three to the concept
of area under a graph. Four sets were in a multiple choice format, and four sets
were open-ended (the whole test can be accessed through the link in reference
(http://journals.aps.org/prstper/supplemental/10.1103/PhysRevSTPER.9.020103/Pl
aninic_TEST_PRST_PER.pdf)). In addition to choosing the correct answer in
multiple choice questions, or providing the answer in open-ended questions,
students were asked to provide explanations for their answers and/or necessary
calculations where appropriate, so that insight into the underlying student reasoning
could be obtained. Rasch analysis (Linacre 2006, n.d.; Bond and Fox 2001) was
performed to evaluate the functioning of the test and obtain linear measures of
item difficulties. Both sets of data (Croatian and Austrian students) seemed to fit
the Rasch model. The functioning of the test as a whole for Croatian students
was found to be satisfactory with very high item reliability (0.99) and somewhat
lower, but satisfactory, person reliability (0.85) and Cronbach alpha (0.88) (Planinic
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et al. 2013). For Austrian students the test functioned similarly: item reliability was
found to be 0.99, person reliability 0.86 and Cronbach alpha 0.90 (Ivanjek et al.
2015). The analysis of item fit showed that no test items in either data set were
degrading for measurement (all had infit and outfit MNSQ values within the range
of 0.5–1.5). The point-biserial correlations of items were all positive and greater
than 0.3 (Planinic et al. 2013; Ivanjek et al. 2015). It can be concluded that all
items worked together in defining the underlying variable (student understanding
of graphs) and that a reliable scale of item difficulties was obtained for the items in
the test, which allowed further analysis of difficulties of different groups of items.
Interestingly, parallel questions of the same set usually differed quite significantly in
difficulty.

In order to compare the difficulties of items in each investigated context,
the average values of item difficulties over three different domains (mathematics
without context, physics, mathematics in context) and two investigated concepts
(slope, area) were calculated. The comparison of average difficulties of slope and
area items for the two samples is presented in Fig. 10.1. Since in Rasch analysis the
average difficulty of items in the test is usually assigned the value of zero logits,
positive values in the graph indicate higher than average difficulty (harder items)
and negative values lower than average difficulty (easier items).

The comparison of the results of the two samples indicated the stability of the
construct of the test. Although some differences in the performance of students in
the two groups were noticed, the general trends were the same. For both groups of
students, it was noticed that mathematics without context was the easiest domain.
Adding context to questions generally had the effect of increasing the difficulty.
Kinematics was found to be a difficult context for the students in both samples, in
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spite of the presumed students’ familiarity with the type of questions (kinematics
questions used in the test were of the type that is often used in physics teaching,
whereas other context questions were typically new to students). When comparing
student understanding of slope and area, it was found that, on the average, slope
seemed to be better understood. It was also found to be more homogenous – the
differences between domains were less pronounced than in the case of area under a
graph. Interpretation of area in kinematics and other context was the most difficult
aspect of graph interpretation for the students in the both samples (Fig. 10.1).
The difficulty of the concept of area under a graph differs dramatically between
mathematics on one side and physics and other contexts on the other. This is
consistent with the findings of Nguyen and Rebello (2011) that very few students
are able to apply this concept in physics problems.

Another aspect of the study conducted on Croatian sample was the analysis of
students’ strategies and expressed difficulties, obtained through the analysis of their
explanations and procedures provided with the answers to questions (Ivanjek et al.
2016). The main findings can be summarized as follows:

1. Strategies used on parallel questions are often context-dependent and domain-
specific. The preferred strategy on physics questions seems to be the use of
physics formulas.

Only a small fraction of students typically used the same strategy on all three
questions of the same set of questions, although some have used the same strategy
on two of the three questions. It seems that in many cases, students perceived the
questions from the same set as different and approached them in different ways.
The strategy that was used usually depended on the domain and the context of the
problem.

It seems that if students acquire domain-specific procedures for solving a certain
class of problems (such as determining the slope of the straight line in mathematics
with the use of mathematical formulas or calculating acceleration in physics with
the use of physics formulas), they will tend to stick to those procedures and will
generally not seem to recognize the mathematical similarity of the problems in
different domains. This may be an indication of the absence of transfer of knowledge
between the domains, but it could also be a consequence of students’ different
learning experiences in different school subjects, where they had implicitly learned
that each discipline has its own language and conventions and that they have to
answer questions in the way that the particular discipline requires. How students
framed the problem (Hammer et al. 2005) may have determined their choice of
strategy for its solving.

Even though students demonstrated that they were capable of using different
strategies for reasoning about graphs, the preferred strategy in physics domain
tended to be the use of kinematics formulas. On all area problems and some slope
problems, students chose the use of formulas as the main strategy for solving
physics problems. The application of the incorrect or inappropriate formulas led
them to many incorrect conclusions on physics questions, even on the questions
where calculations were not necessary. At the same time, it was not uncommon
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for students to give correct answers to parallel questions in mathematics and other
contexts domains, demonstrating that they were able to reason correctly about the
same problem in a different context. The very extensive use of the formula a = v/t
on the test indicates, for example, that many students may not have understood the
very meaning of the concept of acceleration (as the rate of change of velocity) and
therefore cannot be expected to understand its representation as the slope of the v vs.
t graph. All these findings suggest that students not only have problems with graph
interpretation but also with the understanding of the meaning and applicability of
physics formulas.

2. Students use a wider spectrum of strategies on other context problems than on
physics problems. Other context problems could be potentially useful in physics
and mathematics teaching.

Other context problems seemed to activate more of students’ cognitive resources,
and students displayed a wider variety of strategies on those problems than on
physics problems. Some students came to the idea that multiplication is needed
and others to calculate the area under a graph on other context questions by using
some form of dimensional analysis. Dimensional analysis is an approach primarily
developed in physics, but surprisingly students did not use the same approach on
physics questions.

Many of the student approaches to other context problems could have helped
them to solve physics problems as well, but the reliance on formulas as the primary
strategy in physics prevented students from using other approaches of which they
were capable. Some instances of transfer of knowledge in the sense of preparation
for future learning were evidenced in students’ use of knowledge and techniques
(e.g., dimensional analysis, modeling), acquired in one domain (usually physics), in
some other domain (usually other context questions). Some students seemed to think
more creatively and used more of the available resources on other context questions
than on physics questions, where they seemed to be bound too much by how they
perceived the conventions of the discipline. Other context problems could therefore
be a potentially useful tool in teaching of both mathematics and physics.

3. Students show similar difficulties with graph interpretation in all domains, but
there are differences between their understanding of graph slope and area under
a graph.

The same patterns of naïve reasoning (slope-height confusion and interval-point
confusion) were present in all three domains, but not equally often in each one of
them (more frequently in physics than mathematics domain). This is something that
we had already noticed in a previous study on high school students’ understanding
of line graph slope (Planinic et al. 2012).

However, differences were found in students’ understanding of the concepts
of slope and area and their interpretation. Student explanations on mathematics
slope items revealed that for many students, slope may not be more than the vague
notion of how steep a straight line is, sometimes identified with the angle that the
straight line forms with one of the coordinate axis. In problems which demand only
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qualitative comparison of slopes, this may often be enough to produce the correct
answer. However, when it comes to calculating slope, this vague idea no longer
helps. Even though students did not do too well on determining slope in mathematics
domain, they did even worse in other domains. The percentage of Croatian students
in the study who knew how to determine slope mathematically (54%) was roughly
the same as was found in two other studies on first-year university students
(Beichner 1994; Wemyss and van Kampen 2013), whereas the respective percentage
for Austrian students was somewhat higher (66%). Calculation of slope, as some
other studies also suggest (Hadjidemetriou and Williams 2002), may be the most
difficult aspect of the concept of slope.

An important aspect of the understanding of the concept of slope is the
understanding of the meaning of negative slope. Negative slope is obviously more
difficult to understand than positive slope. It seems that students who used vague
explanations of negative slope on the basis of graph appearance (e.g., “straight line
is going down”) do not fully understand the concept but have some visual rule for
recognizing it.

When it comes to area under a graph, most students know how to determine it,
but the interpretation of the meaning of that area seems to be a much bigger problem.
Few students seem to be able to interpret areas under graphs in new situations.
Unlike slope, whose meaning is more often discussed during teaching, and which
is encountered in a greater variety of situations than the area under a graph,
interpretation of area seems to be limited to a few isolated examples in physics and
learned without sufficient understanding and without necessary reasoning required
to transfer that knowledge to other situations. It is interesting that students are more
likely to come to the correct interpretation of area in other context questions than in
physics, because in physics they often seem to be blocked in their thinking by their
overreliance on physics formulas.

10.4 Conclusions and Implications for Teaching

We have attempted through several studies to compare student performance on
mathematically similar problems in different domains. The results suggest that
students interpret graphs best in mathematics without context. Even though math-
ematics questions appear more abstract, they are more direct and require less
processing of information and less conceptual understanding than parallel physics
(kinematics) questions. Kinematics was found to be a difficult context for students,
even though it was rather extensively covered in high school. It can be concluded
that context generally seems to increase the difficulty of items. Context added to
the mathematical slope or area problem will usually increase the cognitive demand
on the students, acting as an additional barrier in the problem, and will therefore
also increase the difficulty of the item. The only exception may be very familiar
contexts for students. Teachers should realize that it is very important to work on
students’ conceptual understanding and interpretation of physical and mathematical
quantities as well as on building stronger links between the two subjects.
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Many physics teachers attribute student difficulties with graphs in physics to their
presumed lack of mathematical knowledge. But even if students have the needed
mathematical knowledge, which was generally the case in our studies (although
some problems were noticed in that area too), the transfer to a different domain is
not guaranteed. The interpretation of the mathematical quantities in physics or in
other contexts is a crucial step which most students in our sample were not able
to perform. Some cases of transfer of the problem-solving strategies from physics
to other contexts were found on the area items (e.g., dimensional analysis). During
teaching of kinematics, the interpretation of slope is usually much more emphasized
than the interpretation of area under a graph. An important implication for physics
teaching is that we should work more on building student reasoning which leads
toward the interpretation of area (which is essentially the idea of integral) and not
only provides ready-made interpretation for specific cases in physics. That could
also help later to strengthen student understanding of the concept of a definite and
indefinite integral in mathematics.

Student reasoning about problems is often very much bound by the contexts and
conventions of the disciplines in which their knowledge was acquired. The observed
dependence of student strategies on the domain and context of the questions seems
to support the knowledge-in-pieces framework, which explains this dependence
through context-dependent activation of cognitive resources and the importance of
framing. Students seemed to think more freely and creatively, and to transfer more
of their knowledge, in problems which in their perception probably did not fall in the
category of either physics or mathematics (other context problems). Other context
problems may have a potential to expose and develop student reasoning more than
the standard domain-specific mathematics and physics questions. They should be
used more, in both mathematics and physics teaching. Both disciplines should
work more on establishing links between common concepts and procedures in
mathematics and physics and promote their integration in students’ minds to a much
larger extent than is the case now. Students’ almost exclusive reliance on formulas
in physics presents, in our opinion, an important obstacle for the development
of students’ deeper reasoning in physics and sometimes even an obstacle for the
application of their already existing knowledge and reasoning developed in other
domains.

The comparison of the results of Croatian and Austrian students has confirmed
the stability of the test and its relevance beyond just Croatian educational system.
Currently we continue the research on graphs on other groups of students, besides
physics and mathematics students, using also other techniques, such as eye tracking.
Some preliminary results suggest better success of nonspecialist groups of univer-
sity students (e.g., psychology students) on qualitative than quantitative slope and
area questions and higher transfer of strategies from physics to finance problems for
physics students.
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On the basis of our findings, we can summarize some teaching recommendations
that might help in the effort of building stronger and more unified student knowledge
about graphs:

• Use of other context problems in both mathematics and physics teaching
• Use of multiple strategies on graph problems, which can help remove emphasis

from the use of physics formulas as the primary strategy
• Promoting conceptual understanding of graph slope and area in both mathematics

and physics teaching
• Building better understanding of the meaning and applicability of physics

formulas (and their graphical interpretations where possible)
• Encouraging transfer between mathematics and physics by using and linking

different contexts when teaching graphs (e.g., using kinematics examples in
mathematics teaching and relating kinematics graphs and formulas to their
mathematical origin and meaning in physics teaching)

• Strengthening and operationalizing student understanding of the concept of slope
and its calculation (the practice of drawing the rise and run triangle on a line
graph – Steigungsdreieck in German – seems to help for calculation of slope)

• Promoting interpretation of area under a graph in physics teaching wherever
possible by leading students to the idea of accumulation

The presented findings confirm once again that human knowledge is very com-
plex and multifaceted. Students’ answers to questions and problems are influenced
by the context and formulation of the question, students’ framing of the question,
the procedures and conventions of the domain in which a certain piece of knowledge
was first acquired, the existing or missing links between the domains, as well as
many other factors. Using many contexts during teaching and constantly building
and strengthening links between different domains could be a good way to building
stronger student knowledge. This could help education efforts in both mathematics
and physics.
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