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Preface

In recent years, the interest in the role of mathematics in physics education has
risen steadily. This can be seen in connection with the efforts of showing students
the nature of physics which has gained increasing importance in physics education.
Whereas the conceptual understanding of physics is an important goal of physics
education, it is equally undoubted that mathematics is inevitably inherent in physics
and its methods. As the physical method lives on the mathematical description of the
reality, the mathematical aspects have to be taken into account from the perspective
of teaching and learning physics itself as well as learning about physics. This book is
devoted to the struggle to make the interplay of physics and mathematics insightful
to students. Besides these fundamental considerations, there are practical aspects:
the lecturers of first year university science courses all over the world complain
increasingly about the difficulties of students in applying mathematical instruments
to physical problems. Therefore, the questions arise: what are the deeper reasons of
this deficiency, and what can be done about it during secondary school? The research
about this topic has become more intense during the last 15 years and has reached a
certain state that makes it desirable to gather the most important results from people
working in the field in a book. We collected results of research on teaching and
learning about the role of mathematics in physics gained so far and cover the whole
spectrum of research, the theoretical foundation, as well as empirical results. The
book should also raise the awareness of the role of mathematics in physics education
and induce further research projects.

The research areas addressed in this book cover a broad range. Therefore, the
book is divided into four parts, each concentrating on a specific aspect. In the first
part, “Perspectives on Mathematics in Physics Education,” theoretical viewpoints
are treated, enlightening the interplay of physics and mathematics and also including
historical developments. In the second part, “Learning Mathematization,” with the
most contributions, we delve into the learners’ perspective. In this part, not only
aspects of the learning by secondary school students but also by students just
entering university or teacher students are considered as far as they could shed
light onto learning in secondary school. The third part “Teaching Mathematization”
includes a broad range of subjects from teachers’ views and knowledge, the
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vi Preface

analysis of classroom discourse, and an evaluated teaching proposal. In the last
part, “Facilitating Mathematization by Visual Means,” approaches are described that
take up mathematization in a broader interpretation. These contributions show that
formal thinking might start before the use of mathematical elements in a narrower
sense and thus prepare mathematization.

We hope this book will be a valuable source for researchers in the field, teacher
educators, advanced students, as well as interested teachers.

We have to thank all the contributors of the book for their patience and,
especially, Marisa Michelini for her constant support.

Dresden, Germany Gesche Pospiech
July 2018
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Chapter 1
Framework of Mathematization
in Physics from a Teaching Perspective

Gesche Pospiech

1.1 Introduction

This book roots in the perception of physics as an empirical science which cannot be
thought without a mathematical description of fundamental physical structures, this
being one of the characteristic traits and most powerful tools of physics. Therefore
at the heart of this book lies the idea of mathematics and physics as being involved in
a constant interplay starting from the very beginning of scientific thought. Therefore
we do not think of mathematics as an “application” in physics but more as a
“mutual interaction between mathematics and physics that develops and shapes
both disciplines” (Kjeldsen and Lützen 2015). This disciplinary view is not without
relevance for physics education.

Physics education at school tries to achieve a variety of aims at different levels.
The overarching goal is to provide students with a basis for further learning about
science and the prerequisites for participation in the scientifically oriented societal
discourse in shaping a scientific world view. That means that students should
acquire scientific literacy encompassing physics knowledge, skills and insight into
the nature of physics. This implies learning the concepts, principles and the structure
of physics as well as the use of scientific methods including mathematical elements
as an intrinsic feature of doing physics. The importance of teaching this complete
picture of physics is underlined as most “national educational standards call for
pupils to connect mathematics and science to real world phenomena” (Carrejo and
Marshall 2007). Therefore, if scientific literacy as a goal of physics education is
taken seriously, physics should be taught not only relying on the experiment as
an empirical basis but also applying mathematics. It is the task of the teachers
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2 G. Pospiech

to use both aspects in a balanced way for achieving an adequate understanding
of physics with the students. However, experience shows this is not an easy task.
Often students may be able to solve quantitative problems by certain techniques
but have not reached an “understanding” of physical concepts or their relation with
mathematics. This indicates that understanding the meaning of mathematical tools
and their interrelation with the physical description of the world seems to be one
of the most difficult and time-consuming steps in physics learning. Therefore, the
basis for awareness and competences in this interplay has to be laid early in the
educational career, starting from lower secondary school.

Besides the fundamental analysis of the interplay of mathematics and physics
and underlying theoretical frameworks, we give an overview of empirical research
on competences and views or attitudes of students and teachers and aspects of its
teaching and learning. Mostly, the contributions in this book focus on secondary
school students and their teachers. This does not exclude some results from physics
education in college or university if we think them instructive with respect to
secondary school. As the views and competences of teachers play a central role
for the successful learning of students, also the teachers come into focus.

1.2 An Educational Perspective on the Interplay

In this section we will highlight the peculiarities of mathematics and physics with
respect to their interplay. The role of mathematics in physics has multiple aspects:
it serves as a tool (pragmatic perspective), it acts as a language (communicative
function, see also Sect. 1.4), and it provides a logical and structural framework for
describing, ordering and classifying physical processes and theories (Krey 2012).
This will be discussed in this section and enriched by the historical perspective.

1.2.1 Historical-Philosophical Perspective on the Interplay

The interplay was intensely studied from the perspectives of history of science
and its philosophy (see, e.g. Pask 2003; Brush 2015 and many others) as well as
from physicists themselves (see, e.g. Dirac 1939; Wigner 1960; Einstein 1921).1

An insight into the developing role of mathematics for physics and doing physics
during the past centuries and its consequences is indicated by Gingras (2001). Even
if we do not expand on this literature, all the contributors in this book are aware of

1The reference to the broad and deep literature on this topic would strongly go beyond the scope
of this book, concentrating on the teaching perspective. Therefore we refer the interested reader to
the relevant literature.
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the deep, manifold and fruitful interrelation showing a rich variety, implying that
the interplay is by no means “one-way”:

• mathematics is seen as a tool in physics: e.g. formula and equations serve for
making quantitative predictions

• physics could be seen as a field of application of mathematics: e.g. the construct
of Hilbert spaces is applied in quantum theory

• there are physical concepts that developed from mathematics: e.g. the concept of
curved space time was derived from Riemannian manifolds

• there are mathematical elements or structures that were inspired by physics:
e.g. the problem of the three-body system in gravitational physics boosted the
development of the theory of nonlinear systems or the development of the theory
of distributions (Kjeldsen and Lützen 2015)

• there are concepts where the contribution of mathematics and physics cannot be
separated: e.g. the development of the concept of derivative, as used in describing
velocity and acceleration

This listing spans the range from mathematics as a technical tool to an inseparable
mathematical-physical reasoning. A core feature of physics confirming its image
as a rigorous and powerful science is the ability to make precise quantitative
predictions enabled by the precise formulation of physical laws by equations and
formula. But the power of mathematics goes far beyond such calculation as can
be seen with many examples from the history of physics. Even with relatively
simple instances such as the ideal gas law, it can be argued that the mathematical
description combined with the power of algebraic and analytic manipulation allows
for logical deduction of consequences that would not be possible only on the basis of
qualitative physical arguments (de Berg 1992). This shows that physics inherits from
the mathematical formulation also a deductive power enabling the development
of theories. In a deeper sense, it is this structural significance of mathematical
elements for physics that seems to be a central component of an adequate approach
to science. For example, central physical concepts such as acceleration (Basson
2002) or force or the principle of least action cannot be thought of in a meaningful
way without mathematics. Hestenes (1986) is even advocating the advantages of a
unified language, based on geometric structures such as Clifford algebras.

This story of success relies on a long (historical) process of giving physical
meaning to mathematical constructs. However, some steps that seem to be easy
nowadays required a long development. Karam, Uhden and Höttecke in their
contribution (“The ‘math as prerequisite’ illusion: Historical considerations and
implications for physics teaching”) derive possible learning difficulties from the
historical pathway. Their analysis leads to the insight that it would be too short-
sighted to assume that mathematical techniques could be applied straightforward
in the domain of physics. There are specific differences between the scientific
cultures of mathematics and physics, implying different foci and therefore specific
approaches. This becomes obvious in different conventions and interpretations. It is
important that also teachers are aware of this additional difficulty for appropriately
shaping their instruction.
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1.2.2 Mathematical Perspective on the Interplay

As mathematics serves as a “language of physics”, it provides mathematical
elements and symbols such as numbers, tables, diagrams and algebraic notation
for representing physical constructs. But beyond this representational role, it gives
structural insights where the mathematical structures may even be richer than the
physical world (Quale 2010). So in stressing the interplay, it may not be forgotten
that physics and mathematics have their specific viewpoints and methods. This
general statement can be clarified even with the most simple mathematical elements.
Handling numbers in mathematics requires knowledge of their properties and the
calculation rules, but there are no additional meanings behind. In physics numbers
often are connected to units, expressing a physical quantity and implying that a big
or small number has a special meaning in the real world. Because of the units, even
the numbers have to be interpreted from a physical point of view. In addition, in
experiments the numerical values have to be considered together with the measuring
deviation. Hence even a number is laden with meaning in a physical context, even
more so algebraic terms such as, e.g. a formula or a function (see Sect. 1.4.2).
Indeed, mathematics provides many structures with specific meaning in a physics
context. These structures contribute to the precise formulation of physical laws and
allow for recognizing analogies, classifying, noticing patterns and so on. De Berg
(1995) writes:

.. algebraic expressions are primarily useful for theoretical development which leads not
only to new data but new concepts. This development takes place through the laws of
mathematics.

From a mathematical point of view, the existing differences are elaborated on
in the chapter by Heck and van Buuren (“Students’ understanding of algebraic
concepts”). Their analysis shows the broadness of certain concepts in mathematics,
e.g. of a variable, even in mathematics itself. The different possible meanings of
variables and algebraic expressions which are not always communicated clearly
add to the learning difficulties of students (Redish 2005). Therefore even in the
introduction of a mathematical construct, it has to be made explicit for the students
how to embed it into a physics context.

Another example is the notion of “function”. Its mathematical definition focusses
on the aspect of pointwise relation between the independent and the dependent
variables. In physics however, the functional dependence is the most important
aspect describing how one physical quantity depends on others. Furthermore in
physics, there is a certain choice which variable is the dependent and which the
independent variable. Sometimes their roles can be interchanged depending on the
concrete situation. Also the distinction between parameters and variables often is
difficult for students.
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1.2.3 Mathematics and Conceptual Physics Understanding

From a school perspective, the role of mathematics sometimes is equated with
solving end-of-chapter problems. Such a narrow focus might indeed lead to the
impression that using mathematics could be opposed to understanding the concepts
of physics. That the reconciliation of formal mathematics and physics concepts is
not an easy task also on university level was shown by many studies, (e.g. Hu and
Rebello 2013; Kuo et al. 2013; Nguyen and Rebello 2011). Even Hund (1975, p11),
from the perspective of a physicist, pointed out a dichotomy between “handling
physics” and “understanding physics”, which were not easy to bridge. So it is no
surprise that there is a struggle between the emphasis on conceptual understanding
and the use of mathematics. Experience of many teachers shows that the merging
of both is not easy to achieve (e.g. Monk 1994), especially as often the students’
mathematical understanding itself is instrumental (Richland et al. 2012). However,
that both aspects can support each other was advocated by Hewitt (1983, 2011). The
mathematical, mostly algebraic, formulation of physical laws requires the ability to
translate or transfer physical and mathematical elements onto each other.

A conceptual mathematical understanding is the more important as the mathe-
matical elements cannot be simply transported into physics, but their meaning has
to be framed by physical concepts (Bing and Redish 2007). The interpretation of
mathematical symbols in terms of physics requires that mathematical and physical
meanings have to be blended (Sherin 2001). In order to capture this aspect, the
notion of a “symbolic form” was introduced. These symbolic forms cover quite a
range of possible meanings of mathematical operations and hence could promote
the understanding of physics equations. Sherin’s capturing of understanding-driven
processes of problem solving by symbolic forms gives valuable ideas about
the interrelated role of mathematical experiences, semantic understanding of an
equation and physical intuition.

Mathematics does not provide a direct description but even more includes an
abstraction or idealization connected with a conceptual understanding. From a
theoretical perspective, this aspect was analysed with the example of Coulomb’s
law (Kneubil and Robilotta 2015). They show that mathematics can be used as
an epistemological tool in physics teaching in the sense that the interpretation
of the interplay may not be unique and can hint to several aspects of a physical
concept, in their case the concept of charge. Another study asked how prospective
teachers connect experimental situations with mathematical models in an inquiry-
based approach to kinematics (Carrejo and Marshall 2007). This study shows the
complexity of the pathway from the phenomenon to a mathematical description. The
complexity of the physics-mathematics interrelation and its strong dependence on
the concrete context is discussed with the field of electricity and the learning gains
of students by Meltzer (2002). A related example in the field of optics is presented
in this book by Krey (“What is learned about the role of mathematics in physics
while learning physics concepts? A mathematics sensitive look at physics teaching
and learning”). He focusses on the added value of a mathematical formulation
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of physical examples going hand in hand with a reduction of complexity. Krey’s
example at the same time refers to the importance of varied representations. These
different representations are at the core of the communication role of mathematics
in physics and hence serve also as facilitating insight into physics. How the
representations support each other and in which way the transformation between
them could support conceptual understanding is discussed in the contribution of
Geyer/Kuske-Janßen (“Mathematical Representations in Physics Lessons”, see also
Sect. 1.4).

From these studies one can infer that the interplay of mathematics and physics
can be seen from different perspectives and is by no means straightforward but needs
closer analysis with the help of models.

1.3 Modelling the Interplay from a Physics Education
Perspective

In order to capture details of the described complex interplay, models are needed
that allow for ordering and classifying selected aspects. Because of its many facets,
it will not be possible to devise a single model incorporating all possibilities and
serving all research purposes. Accordingly there is quite a range of models of the
interplay, each one specific for the intended research framework or instructional
goal. The models highlight certain aspects, provide focus and allow for detailed
analysis. In the end they should – from a teaching perspective – contribute to shaping
the interplay in the actual lesson. In this section we will present a selection of
models.

First there are theoretical models of mathematization in physics. By mathema-
tization we mean the process of gradually transferring (with focus on conceptual
considerations) and translating (focus on mathematics as language of physics)
physical processes or phenomena into mathematical elements and structures. The
most basic model is shown in Fig. 1.1 with a very schematic principle of the
mathematization process. However, it displays a central element present in all other
models, namely, processes starting from a physical situation going to mathematics
and vice versa, thus including the processes of mathematization and interpretation
or validation, respectively.

In order to proceed through this process, we will describe in more detail which
aspects of the interplay mathematics and physics should be considered.

1.3.1 Technical and Structural Role of Mathematics in Physics

Describing physical processes or solving physical problems requires that the steps
of the aforementioned model are done successfully. In the light of Sect. 1.2, it can
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Physical Situation Mathematical Elements

Physical Processes Mathematical Results

Validating
Working
mathematically

Modeling

Interpreting

Fig. 1.1 Basic model of interplay mathematics and physics. (Modified according to Redish and
Kuo 2015)

be concluded that this requires to understand the physical content of mathematical
representations and to reach conceptual understanding in mathematics as well as
in physics. However, many students appear to have difficulties to be aware of
the meaning of formulas (perceived as the predominant feature of physics) and
tend to rote application of mathematical techniques. Therefore from an educational
viewpoint, it has to be considered that in mathematics as in physics, a more
computational or instrumental role and a more relational or conceptual role can
be distinguished (see Fig. 1.2). The instrumental role in mathematics implies
that algorithms or calculational rules are used without thinking much about the
background or reasons (Skemp 1976). Similarly if in physics a numerical procedure
is applied without much thinking about the physical background or concepts behind,
e.g. simply calculating the value of a formula, we can call this the computational
aspect of physics. As opposed to superficially doing mathematics, Skemp defined
“relational understanding” by which he means understanding the mathematical
concepts instead of just applying rules. Hewitt (1983) on the physics side called
for doing physics conceptually, meaning to focus on the physical concepts behind,
e.g. everyday processes before trying to use mathematical elements. Concerning the
interplay of mathematics and physics, we comprise superficial procedures in the
“technical role of mathematics in physics” and a deeper entanglement we call the
“structural role of mathematics in physics” (see Fig. 1.2).

The distinction between the technical and structural role in the interplay should
serve to catch the most relevant aspects of insightful handling the mathematical
elements in physics (Pietrocola 2008). According to Pietrocola, the technical role
comprises aspects or activities mainly related to numerical procedures: calculating,
using algorithms or drawing function graphs. This technical role dominates the
perception of students as well as of many teachers or researchers. On the other
hand, Pietrocola stresses the importance of the structural role of mathematics. He
characterizes it by the following descriptions:
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Conceptual ApproachTechnical Approach

Physics

Mathematics Instrumental

Interplay

Validating

Transfer

Computational

Technical

Relational

Structural

Conceptual

Modeling

Fig. 1.2 Technical and structural aspects. The figure should be read as follows: Concentrating on
the horizontal line labelled “Mathematics”, the instrumental and relational aspects of mathematics
are indicated, similarly in the line labelled “Physics” the corresponding computational and
conceptual aspects. In the middle line labelled “Interplay” according to Pietrocola (2008), its
technical and structural aspects are named. The vertical arrows indicate that there is a transfer
between both domains: a mathematical model arises from the physics section and has to be
evaluated and validated there. It is observed that in every constellation, the focus could lie on
algorithmic aspects or on deeper understanding

• Physics inherits the formal operations and definitions of mathematical objects if
these are used (use of vectors, derivatives, etc.) This point is related to the aspect
of mathematics as a language.

• Mathematics orders the physical phenomena according to underlying patterns
(e.g. analogies)

• Mathematics orders physical thought by the physical (concrete) meanings of its
operations (limiting cases, functions, etc.)

The role of mathematics as a structural means hence builds the skeleton of physical
theories and provides valuable general theorems allowing to proceed into the
unknown. A famous example is the Noether theorems. Generally it can be said that
the structuring role of mathematics becomes more and more important the more
advanced the physical theory is, as is obvious, e.g. in the physical theories of the
twentieth century. In these theories, often mathematics is needed as a guidance even
for conceptual explanations or reasoning.

It has to be stressed that the transition from the technical to the structural role
is along a continuum and there is no sharp separating line. Let us consider the
concept of function as an example: functions can serve as a tool, e.g. evaluating
them by inserting numbers, but by their properties, they also may clarify deeper
relations between physical quantities or even allow for deduction of new insights.
This example also shows that the technical role is a necessary part of doing physics
but has to be informed by the structural aspects. Nevertheless the distinction of a
technical and a structural role of mathematics could be helpful as a means to focus
on the meaningful use of mathematical structures and elements in physics education.
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1.3.2 Modelling Mathematization in Physics

A theory-based model of the interplay mathematics and physics from the perspective
of understanding physics theories was developed by Greca and Moreira (2002).
The starting point is the scientific theory requiring on the one hand the semantic
structure and content of physics and on the other hand the syntactic structure of
a mathematical model, including, e.g. equations or the formalism. These both are
intimately connected with the mathematical model embedded into the physical
model. Important is the relation of the physics model to the physical phenomena
by itself requiring idealizations. The process of understanding also includes the
formation of a mental model that connects all the parts: the physical phenomenon,
the physical model and the mathematical model. They argue that this overall relation
fits well from the viewpoint of well-established physical theories and physics taught
at school but admit that this picture might not apply to physical theories of the
twentieth century where physics and mathematics are much stronger intertwined
with each other.

A different model but compatible to the Greca-Moreira model was developed
by Hansson et al. (2015). It has in its centre the perspective of teaching at school
with focus on classroom discourse. Specific in their model is the explicit reference
to “reality” in different stages. “Reality” here means the appearances students
experience with concrete objects or phenomena in their everyday life or in a learning
environment at school as, e.g. experiments. The perspective of reality is related
to a theoretical (physical) model and to a mathematical model and the relations
between these three perspectives (see contribution of Hansson et al. (“A Theoretical
Framework for Ternary Analysis of Textbooks and the Teaching of Physics”) in this
book). They also distinguish, as in Fig. 1.2, the technical or instrumental vs the
structural or relational role of mathematical approaches. Their results hint to the
importance of the role of the teacher and his or her use of textbooks in order to shape
the interaction in the classroom, showing that the pedagogical content knowledge of
teachers is important (for description of this aspect, see Sect. 1.5.3.1).

1.3.3 Models for Learning the Interplay of Mathematics and
Physics

Getting to more concrete cases, there are models for the processes occurring
in teaching and learning, more precisely in problem solving and mathematical-
physical modelling. Those models often intend to capture strategies actually used by
students. They could also serve for describing and analysing teaching and learning
processes with respect to strategies used and difficulties experienced.
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1.3.3.1 Modelling Physical-Mathematical Modelling

The key difficulty students face in problem solving or more general, in the process
of physical-mathematical modelling, is the transfer between the concrete physical
phenomena and the abstract mathematical world, blending the meaning of formal
elements in both worlds. Since the famous book by Polya (2014), often strategies
for problem solving have been proposed. However, mostly, only general rules
are given. In order to analyse the thinking and the strategies actually used by
students, more detailed models are necessary. As is natural, different research
contexts have led to different models of the interplay mathematics and physics
in students’ problem solving. All these different models struggle with the diverse
possibilities of the modelling procedure – ideal modelling strategies vs the real
strategies, difficulties and ideas of students concerning the mathematical domain
as well as the physical domain. Even if the different models often were developed
and represented independently from each other depending on the research framings,
a close inspection shows a remarkable agreement between them.

In mathematics education, the mathematical modelling of a situation of everyday
life plays an important role. Accordingly there is a detailed model, the so-called
modelling cycle by Blum and Leiß (Blum and Borromeo 2009, for a discussion,
see also Phillips 2016). This model indicates the complexity of the process of
mathematical modelling. It defines several steps suggesting an ideal sequence in
the modelling process, starting from a real situation which is first transformed
into a model of the situation and then simplified or structured. It follows a step,
not described in detail, leading to the mathematical model in the mathematical
world which gives mathematical results. These then are interpreted and validated
in terms of the real situation. Empirical evidence shows that pupils do not follow
exactly this cycle but go back and forth in very different and individual paths (see,
e.g. Blum and Borromeo 2009; Borromeo 2006). However, knowing this model
seems to help school students in organizing their work. Analysis of this model and
comparison with the difficulties experienced by physics students in solving physics
problems with mathematical methods hints that the transfer between the simplified
situation model and the mathematical model is the most critical part of problem
solving. There seems to be a “gap” between the “real situation/problem” in the
physical world2 and the mathematical model in the mathematical world (see, e.g.
Aufschnaiter et al. 2000; Brahmia 2014; Monk 1994). To make this gap visible
and find ways for analysing the modelling process in more detail, modified models
were developed. The two selected models (see Fig. 1.3) agree insofar as they fill
the gap between mathematics and physics and expand on the processes “between
the worlds” that were not addressed in the model of Blum and Borromeo (2009).
Both models are very similar in describing the ideal problem solving process even
if the drawing looks very different. Indeed the description and arrows from the
model by Czocher in Fig. 1.3a can be mapped one to one to the model of Uhden-

2“Real” again means objects or processes from everyday life.
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Fig. 1.3 Two graphically different representations of the mathematization process containing the
same steps and procedures: (a) Model by Czocher as presented by Brahmia (2014), (b) Model
based on Uhden et al. (2012). Both models strongly focus on the processes of mathematization and
interpretation and validation

Karam in Fig. 1.3b. The arrows of Fig. 1.3a, signed by “b”, correspond to the arrows
in the central rectangle in Fig. 1.3b providing steps of increasing mathematization
and interpretation. The detailed description of these steps gives hints for shaping
instruction. On the other hand, the models can be used for detailed analysis of the
transfer and translation processes and specific difficulties therein (Uhden et al. 2012;
Uhden 2016) or for focus on the process as a whole and the interrelation of steps
(Czocher 2018). Both models imply that students have to master the spectrum of
understanding from procedural to conceptual or structural aspects, syntactics as well
as semantics, both in mathematics and in physics.

1.3.3.2 Modelling Problem Solving

Whereas these models describe the interplay mathematics and physics from a
theoretical viewpoint in order to analyse learning processes, Brahmia (2014)
develops a pragmatic model derived from observations on the understanding of
students (see Fig. 1.4).
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Fig. 1.4 Model of Brahmia, slightly adapted from Brahmia (2014)

This model suggests that mathematical and physical understanding are related
to each other. It contains technical aspects, i.e. algorithms and mathematical
procedures, as well as structural aspects: flexibility in applying physical concepts
and proceptual3 abilities in mathematics. Insofar it sheds light from a learning
perspective on the different aspects of the interplay as described in Fig. 1.2. The
desired result of instruction consists in mastering the higher levels of both sides
and thus reaching “generativity”, implying to be able to follow the emergence
of the mathematical description from a physical phenomenon and the flexible
use of mathematical elements and physical concepts. The importance of practical
competences for a conceptual understanding may not be underestimated.

On the whole there seems to be a great consensus that should result in a unified
representation of the intended mathematization process. Such a model depiction,
leading the attention onto the processes and not the states during modelling of
problem solving, is given in Fig. 1.5. Here the processes are depicted not as arrows
but as rectangles in order to hint that there are fine-grained structures inside, leaving
space to analyse the details of the processes. That this model indeed describes
the process of physics problem solving of high school students was empirically
validated (Trump 2015).

It is clearly seen in the model in Fig. 1.5 that the contributions of physics
and mathematics overlap in a significant part of the process of problem solving.
Therefore we prefer speaking about the interplay of mathematics and physics

3Brahmia uses the term of “proceptual” indicating that in mathematics the conceptual understand-
ing has to be related to procedural abilities.
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Fig. 1.5 Proposed unified model, suitable for scientific-mathematical modelling. It can also serve
for displaying the procedures during problem solving (Trump and Borowski 2012; Müller et al.
2016, own graphical interpretation). In this model there are included the procedural, conceptual,
structural and relational aspects already addressed in Fig. 1.2 and the proceptual aspect proposed
by Brahmia (Fig. 1.4)

rather than about the application of mathematics in physics. It is the task of the
teachers to make this interplay visible to the students, together with the relevance
of understanding physics concepts. In order to achieve this goal successfully, the
teacher needs relevant pedagogical content knowledge (see Sect. 1.5.3.1).

1.4 Mathematics as Language: Representations

In this book we see mathematical representations in physics as an essential aspect
of mathematics as a language of physics. To put the typical representational forms
into a bigger picture, a broader framework is unfolded in which representations in
physics can be treated (Kuske-Janßen and Geyer: “Mathematical Representations
in Physics Lessons”). From different resources, they derive a classification of
representations most relevant for the use in physics education. Their approach
serves as a joint basis for discussing the role of different representations, especially
the switching between them. They also discuss which students’ competences are
required and which difficulties and advantages for students are connected with the
use of multiple representations.

Here we describe mathematical representations in the framework set in the
sections above. They make the interplay with signs and symbols visible and
communicable. The power of symbolic representations for communication can
easily be recognized in reading a physical paper in an unknown language: The
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mathematical symbols follow a fixed syntax satisfying general rules and conventions
and represent relations between physical quantities. Partly independent of the verbal
formulations, the semantics is telling how the symbols are to be interpreted in the
framework of the physical knowledge.

For describing physical relations, various mathematical elements are used:
numbers with units, diagrams such as line graphs, geometrical elements such as rays
and arrows, functions and equations and more advanced mathematical techniques
such as calculus. Perhaps the most prominent mathematical representations occur
as algebraic forms (by which we mean formulas, resp., equations or functions).
Graphical representations play a special role as they are partly iconic and at
the same time abstract and symbolic. As graphs often are used for representing
experimental data, formula or functions for describing the relations, they seem
to play a bridging role between the iconic and the algebraic representations. All
these representations, e.g. a line graph or an algebraic expression of a function,
contain different information and highlight specific aspects of a physical relation
(see, e.g. Larkin and Simon 1987). In this section we choose the most important
representational forms, namely, formula and graphs for a deeper consideration. A
central aspect is again the distinction of the technical and the structural role of
mathematics in physics.

1.4.1 Graphical Representations

Among the graphical representations line graphs play a particularly prominent role.
Such graphs occur, e.g. in evaluating experiments, where the tabulated data are
visualized. Herewith they serve as an intermediate step between an experiment
or phenomenon and the algebraic formulation of a physical law. During this
transfer, some information (perhaps the precision of the measured value) is lost,
but other information is gained, e.g. the underlying pattern of the data becomes
visible by drawing a regression curve and thus describing the relation between the
corresponding physical quantities. Such a visualized relation can be memorized
more easily than an abstract formula. Therefore graphs may have an advantage over
numbers or formula concerning learning. They could even contribute to reducing
cognitive load and promote physical thinking.

However, some students show difficulties with graphs. For example, reading
and making diagrams is not easy for school students. They have to systematically
learn about sketching and reading graphs (Mevarech and Kramarsky 1997). This
is underlined by the extensive research on graphs and their interpretation, mostly
with college students in the context of kinematics (see, e.g. McDermott et al.
(1987) and many others). Even if there is less research with school students, some
fundamental papers give insight into the possible capabilities of young children
(Disessa and Sherin 2000; Aberg-Bengtsson and Ottosson 2006; Leinhardt et al.
1990 or Wavering 1985 among many others). From these findings, it can be deduced
that the competences of pupils have to be developed systematically. In this context
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it seems interesting that there is no recent model of the competences needed for
handling graphs from the perspective of physics. A competence model has been
developed for biology describing mostly technical aspects such as choosing the
axes of the diagram, insertion of values or reading them off. The included structural
aspects mostly refer to identification and interpretation of the graphs (Lachmayer
et al. 2007). In addition there are extended studies from mathematics education
(see, e.g. Kramarski 2004; Friel et al. 2001; Roth and McGinn 1997; Nitsch et al.
2014 and references therein). The question arises if the results from mathematics
education can be transferred to physics. It might be conjectured that physics creates
additional difficulties beyond the purely mathematical problems. Recently Planinic
et al. (2013) have extensively studied the role of context if graphs are being used:
graphs in mathematics, in physics and in other contexts. This is expanded on in the
contribution of Planinic et al. (“Student understanding of graphs in physics and
mathematics”). Their results hint that the technical aspects alone are not sufficient.
They seem to imply that the interpretation and working with graphs need structural
insights and that the transfer from the mathematics to physical concepts or vice
versa requires corresponding experience and abilities.

The above-mentioned results provide arguments that graphing can take several
roles in communicating and learning science and that students interpret graphs
depending on the framing. Hence the isolated view on a fixed expected cognition
might stress difficulties, whereas handling graphs is more a “practice” (comparable
with language learning) being easier and more flexible the more often it is used
(Roth and McGinn 1997). This stance is fruitful for the use of digital media where
different graphical representations are easily be realized. With digital media, the
physical process can be directly combined with graphical representations in real-
time graphs. So students can use this direct connection for their understanding and
conceptual development. This aspect is described in a study by Alberto Stefanel
(“Graph in physics education: from representation to conceptual understanding”)

1.4.2 Algebraic Representations

In the perception of the public as well as of school students, algebraic representa-
tions, named as formula (also equations or functions), serve as a symbol for physics:
many reports on science contain formula, and pictures of science or scientists
often show a blackboard full of formula (if they do not show an experiment).
Correspondingly “formula” is the first association of students if they think about
physics (Krey 2012).

In algebraic representations, the physical information is condensed with help
of signs, following fixed conventions. These conventions allow for simplified
communications among those who know the signs, the meaning of the signs and
the meaning of the represented physical quantities. However, the use of algebraic
representations can be an insurmountable obstacle for those who are not sufficiently
acquainted with them (for the historical perspective, see Gingras 2001).
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In physics the use of the terms formula, equation or function is generally not
well defined. The transition from one to the other strongly depends on the situation
or the problem at hand (for a deeper analysis, see Heck and van Buuren “Students’
understanding of algebraic concepts” in this book). If a formula is being interpreted
in a more general sense as an equation or as the definition of a function, then a
full range of new possibilities arises, e.g. use of derivative or integral. The results
of corresponding physical-mathematical reasoning can imply new insights into
physical laws. As Sherin (2001) pointed out, also the understanding of the physical
meaning of the mathematical operations themselves is relevant. Such theoretical
implications make the algebraic representation a powerful tool of physics and show
how intimately mathematical structures and techniques are intertwined with physics.

1.4.2.1 Formula or Equation

What is a formula? We could say that a formula is the amalgam of an algebraic term
with a physical meaning: the letters carry a meaning or even create a new quantity,
e.g. the density that is built from mass and volume. Formula serve for calculating
concrete values and making precise quantitative predictions to be evaluated and
validated. So the formula invites to technical application by just calculation, but
the given characterization includes invariably the structural role, i.e. the transfer
between the algebraic symbols and their physical meaning. In addition Hewitt
(1983) argued that “formula are guides to thinking” and made strong the need of
teaching concepts first but also to work with and interpret each formula.

1.4.2.2 Function

The concept of function is seen differently in mathematics and physics. In mathe-
matics the term “function” is defined abstractly as a relation between two sets and
is a central concept in mathematics. In physics, this definition of a function as a
relation is not the prevalent feature but the functional thinking, recognizing and
exploiting the covariance between physical quantities. Herewith line graphs play an
important role by providing an overview of the function as a whole (Leinhardt et al.
1990). The intricacies of these notions are discussed in detail by van Buuren and
Heck (“Learning to use formulas and variables for constructing computer models
in lower secondary physics education”).

If a formula is thought of as a function, it becomes important to distinguish
the dependent and independent variables and to identify constant parameters.
Once the functional dependencies are identified, the mathematical techniques, e.g.
differentiation or integration, can be used for analysing and exploring the scope of
the function and derive additional insights into physical phenomena.
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1.4.3 Language as Verbal Representation in Mathematization

Often verbal formulations are not treated as a separate representation in their own
right. However, with language we describe physical situations and the relation
between physical quantities in a qualitative way. Comparable to the transition from
everyday language to special language where the terms and concepts have to be
carefully built, the meaning of mathematical representations has to be imparted by
means of language. It can be observed that many teachers tend to use very special
figures of speech to describe, e.g. a proportional relation. In this process everyday
understanding and mathematical meaning might interfere (Pospiech et al. 2012).

Up to now there is no model how meaning can be systematically assigned to a
formula with help of (everyday) language and how a situation or verbal description
can be systematically translated into a formula. Janßen and Pospiech (2015)
developed such a model that distinguishes several steps bridging the gap between
the formula itself and a verbal description of a situation in which the formula
might play a role. It is currently being validated by analysing classroom discourse
and is described in this book in chapter Kuske-Janßen and Geyer (“Mathematical
Representations in Physics Lessons”).

1.4.4 Iconic Representations in Mathematization

Digital media may substantially enhance the interrelation of graphical and algebraic
representation hence enabling high school students to enter into modelling and
discussing the meaning of formula. This is shown with the example of ALGODOO
by Euler and Gregorcic: “Algodoo: Creatively Linking Mathematics and Physics”.

A far broader understanding about graphical representation is described by
Lehavi et al. (“Taking the Phys-Math interplay from research into practice”). Their
invention of “Visual Mathematics” was developed and successfully evaluated in
the context of Newtonian mechanics. Its refined and systematically introduced
consistent graphical representation showed that students can learn a conceptual
understanding in lower secondary school and even draw on it during a more formal
and algebraic representation in high school. This approach has been extended to the
topic of energy, which still has to be tested and evaluated.

1.4.5 Interrelating Representations

As every representation has its specific properties and information content, the
whole picture of physics (or a physical situation) emerges through the use of
several representations, complementing each other. Special attention is needed for
the change between representations: each representation carries its own information,
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be it in an explicit form, e.g. numbers in a table, or be it implicitly encoded, e.g.
the shape of a line graph. Learners have to relate the different representations
to each other. Generally, Ainsworth (2008) discusses the benefits of multiple
representations, the changing between them and also the problems these might have
for inexperienced learners. The main problem seems to be that the use of several
representations requires the learners to know all these and to relate them, causing
cognitive load.

In the context of mathematics education, especially handling functions, models
have been developed to describe problems of students in doing the required
translation, e.g. by Nitsch et al. (2014). They applied their model for describing
the competences of 15- to 16-year-old students in switching between different
representations in mathematics lessons. They discovered that there are more simple
transfers and others are more complicated but that each translation required specific
competences. They could not identify a most basic translation between any of
those representation types. Adu-Gyamfi et al. (2012) discuss a model for the
translation between different mathematical representations. In a study with college
students, they could identify three types of errors: interpretation, implementation
and preservations error. They found that most implementation errors in translation
occurred if an equation was involved. For the transfer of these models from
mathematics education to physics education, see the contribution of Kuske-Janßen
and Geyer “Mathematical Representations in Physics Lessons”.

1.5 Empirical Research

The topic “mathematics in physics education” has recently been rediscovered as a
topic of physics education research. Most existing research focusses on problem
solving on college or university level, but there is still relatively few research on
lower secondary or high school level; however, this is changing by now.

On all stages of the educational career, there are many statements saying that
students do not know mathematics sufficiently well in order to be successful in
doing physics. However, these statements are too short-sighted: “It is undoubtedly
the case that mathematics does make physics difficult for students. But any diagnosis
that stops there is flawed” (Monk 1994). So many research groups tried to fill in this
missing knowledge. On the basis of the theoretical analysis of the interplay between
mathematics and physics in Sects. 1.2 and 1.3, the generally observed difficulties of
students in coping with this interplay lead to the question after the deeper nature
of their difficulties and the corresponding causes. Hence the goals of research may
cover different aspects thereof:

• Research describes in detail the difficulties, strategies and abilities of students
during problem solving and modelling or their views on certain aspects of this
interplay.
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• Research analyses the findings on the basis of models as presented in Sect. 1.3.
This may result in the uncovering of patterns, e.g. the “epistemic games” by
Tuminaro and Redish (2007).

• Research puts the observed or expected behaviour into a wider (psychologically
or science theoretically based) framework in order to find deeper lying causes for
certain types of difficulties, strategies and abilities.

• Research provides the basis for interventions on the basis of evidence, plans the
interventions and evaluates them.

Most research approaches are aware of the distinction between the mathematics
part, in itself divided into a more instrumental and a more relational understanding
(Skemp 1976), and the physics part, also with more technical and more structural as-
pects (see Sect. 1.3.1 or Fig. 1.2). However, in order to find underlying mechanisms,
also frameworks from psychology are needed and used.

1.5.1 Frameworks of Research Approaches

It is one thing to find, describe and analyse the difficulties, strategies and abilities
of students. But for understanding the why of these observations and for developing
suitable learning environments, it is necessary to know more about the underlying
psychological reasons and patterns. An attempt concerning physics learning in
general has been made, e.g. by di Sessa by applying “knowledge analysis” (diSessa
1993). Sherin embedded his approach in this framework, by stating that symbolic
forms are kind of intermediate description being sufficiently small to capture the
thinking of students and sufficiently big to give meaningful results (Sherin 2001).

Also in the aftermath of the identification of “epistemic games”4, there were
efforts to understand how these strategies emerge (Tuminaro and Redish 2007; Bing
and Redish 2009). The influence of “epistemological framing” on the process of
problem solving for upper level undergraduate students was found together with
the observation that students might know the mathematics or physics they need for
solving the problem at hand but get “on the wrong track”. Then they do not have
the variability of changing their strategy; they get stuck in their current “frame”
which could be calculation, physical mapping, invoking authority or mathematical
consistency. Hence it seems reasonable to infer that students’ reasoning depends
on the “framing” (What is expected from me?), leading them to use “epistemic
resources” (Which elements of knowledge can I bring into play?) and, if challenged,
to give “warrants” (“How do I support my choices?”). This framework is no
fixed theory but well suited to model the emerging patterns in problem solving.
With a focus on the potential abilities of students, it is used by Eichenlaub and

4The “epistemic games” range from “plug and chug“ to “mapping mathematics to physics” or vice
versa, also including incomplete strategies or graphical strategies. Tuminaro does not say that there
only those six strategies exist but that those have been observed in the sample.
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Redish (“Blending physical knowledge with mathematical form in physics problem
solving”) to take a positive approach and to describe competences of students.

Another framework is chosen by Greca and Ataide in their contribution “The
influence of epistemic views about the relationship between physics and math-
ematics in understanding Physics”. They use the so-called schemes framework
derived from the idea of “conceptual fields” developed orginally by Vergnaud. His
framework starts from procedural knowledge relying on experiences with many
diverse situations from which “schemes” are developing. “Schemes” describe how
the behaviour of a person is universally organized in certain situations. An example
given by Ataide and Greca concerns the treatment of a motion with friction: the
necessary forces, the definition and rules for velocity or acceleration and so on
together build a scheme (which has not necessarily to be physically correct but
guides the thinking and the action of the person). The learning (and understanding)
happens by mental representations and increasingly explicit formulation of these
schemes. For instance, students will have to recognize if one scheme can be applied
to different situations or if they have to use different schemes. Some schemes can
be very stable and hence difficult to change and therefore cause difficulties, e.g. in
problem solving.

In this sense there are connections between the frameworks of “epistemic
resources” and the “schemes framework”. Both allude to the mental activation
process of the students which might strongly depend on the context. Applied to the
interplay of mathematics and physics, this activation process often is not realized in
a favourable way as, e.g. an irrelevant scheme is activated or the students focus on
technical aspects. In order to understand better their strategies in problem solving
and to analyse in more detail their thinking also the “actor-oriented perspective”,
a research perspective from mathematics education (Lobato 2012), could enrich
the research process. This perspective takes into account the previous experiences
and interpretations made by students during the teaching and learning, mostly in
classroom.

All these frameworks have in common that they consider cognitive as well as
individual and situational or contextual aspects as relevant for learning and for
transfer into new contents.

1.5.2 Research Concerning Students

Here we will describe research studies on the cognitive abilities, strategies and
difficulties of students at high school or junior high school/middle school but also on
their epistemic views and attitudes towards the mathematization in physics lessons.

Only relatively few studies ask students directly about their views and attitudes,
while most studies try to find patterns among the problem solving strategies and
analyse critical points in order to interpret these in the light of the underlying
framework. This can be justified as research shows that cognition and affective or
epistemic views are somehow interrelated.
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1.5.2.1 Students’ Views

From studies among college and university students, it is known that many students
have an instrumental view of the role of mathematics in physics, more focusing on
the technical role than the structural role. One of the rare studies with high school
students has been performed by Krey and Mikelskis (2010) and Krey (2012). He
analysed in detail the views of students at school and compared them to the views of
students at university (physics majors and physics minors). The view of students on
physics is characterized by a strong role of mathematics, mostly including formula
as the dominant element. It could be shown that the attitude of students towards
mathematics is not as negative as it is often assumed. Especially they recognize
different roles of mathematics: as communicative tool and as computational tool.
The views seem to develop during their educational career towards a more and more
adequate view, also without explicitly teaching about the role of mathematics.

A study at junior high school with students of grade 8 (14 years old) hints that
some of the students can distinguish the more technical and the structural role of
formula already at this early stage. However, their interpretation of a given formula
often remains on the technical level. Generally the students see the graphical
representations, mostly line graphs, as a bridge between the physical situation and
the algebraic representation (Pospiech 2013; Pospiech and Oese 2013). In interviews
students stated that they appreciate graphs because they visualize relations between
physical quantities and that they can remember them better than by a formula
(Pospiech and Oese 2014). Especially weaker students prefer graphs and like them
more than strong students. As we focus on students of (junior) high school, we
cannot expect a refined viewpoint on the interplay math-phys because those students
have relatively few experiences, but on the whole, their views are surprisingly
balanced.

1.5.2.2 Students’ Problem Solving

One step towards deeper analysis of problem solving is indicated in Sect. 1.3.3,
resp., Sect. 1.3.3.2, where we placed the modelling and problem solving procedure
into the context of the technical and the structural role of mathematics. There
are several studies from mathematics education as well as from physics education
underlining the need of taking into account conceptual understanding on both sides
(see also Fig. 1.2). Once one is aware that the difficulties of students can lie on the
technical as well as the structural side, both aspects and their mutual interplay have
to be analysed in detail where the models described in Sect. 1.3.3 could serve as a
basis.

Studies with students identify strategies as well as corresponding problems in
different age groups, starting from secondary school (e.g. Trump and Borowski
2014; Uhden and Pospiech 2009; Uhden 2016) over college level (Bing and Redish
2007; Tuminaro and Redish 2007; Sherin 2001; Kuo et al. 2013, and many others)
up to university (Britton et al. 2005; Kohl and Finkelstein 2008; Brahmia 2014 and
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many others). The general feature was that most students, not only at secondary
school, focus on technical aspects. Among these many studies here I only mention
a few because our focus is on the comparatively few studies with school students.
A look into the details reveals interesting insights (Brahmia 2014; Byun and Lee
2014; Ivanjek et al. 2016). They show clearly that not so much deficiencies in
the technical role of mathematics but missing awareness of its structural role is
the cause for the apparent difficulties. Therefore, the conceptual understanding of
physics and the structural function of mathematics have to be central in teaching
and learning including the ability to explain physical phenomena and to apply or
develop adequate physical models to a given situation. This is confirmed by a study
of how students use equations in order to solve problems (Kuo et al. 2013). The
focus of the study was on the distinction of a more algorithmic use or a blending
of mathematical and physical considerations. For this purpose students from third
semester were interviewed with concrete prompts for explanations of equations or
solving a problem in an everyday context. As a result, it was found that blending
techniques also can lead to success giving a hint for appropriate instruction of
students. Similar strategies or difficulties have been observed (Meli et al. 2016; Niss
2017).

The transfer between mathematics and science, especially physics, cannot be
described as single directed (Roorda et al. 2015; Marrongelle 2004). They analyse
empirically the different possibilities students develop in making meaning of
mathematical elements. Students might use elements from mathematics as well
as from physics, depending on their individual strengths and learning progress.
Physical events can help students to interpret mathematical concepts, e.g. in graphs
(Marrongelle 2004). It was also observed that the students apply some techniques
not directly after learning but only after some time of getting used to them and
exercising (Roorda et al. 2015). In no case it is easy to transfer mathematical
knowledge into the physics domain (see, e.g. Planinic et al. 2013; Ivanjek et al.
2016; Redish 2017). In addition the requirements during assessment might influence
teaching and the strategies of students (Johansson 2016). Other studies concern the
question if the difficulties of students are caused purely by lacking mathematical
abilities or by applying mathematics in a context, e.g. in the interpreting and
handling of graphs (Planinic et al. 2013; Ivanjek et al. 2016).

There are very few studies in lower secondary school. However, some examples
are interesting. In a study with students in secondary school of age 15–16 years,
special tasks were designed in order to evoke strategies not learned explicitly at
school and to avoid standard routines (Uhden 2016; Uhden and Pospiech 2009).
The students solved the tasks in pairs in order to have to discuss about possible
solutions and the solution path. The analysis revealed different areas of difficulties.
Most were related to the structural transfer between the physical situation and the
mathematical formulation. Some difficulties clearly were due to lacking conceptual
basis: missing understanding of physical concepts caused problems, especially if
met by weaknesses on the mathematical side. On the other hand, mathematical
weakness sometimes seemed to inhibit the correct implementation of physical
conceptual considerations. In some instances, it was nearly impossible to tell if the
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mathematical or the physical difficulties were the reason for the inability to solve the
problem at hand. There were also hints that students got better results if they tried
to align the physics and the mathematics aspect from a more structural perspective.

1.5.2.3 Relation of Views and Problem Solving

There is evidence that the views of students on the role of mathematics in physics
influences their strategies of problem solving (Al-Omari and Miqdadi 2014; Malone
2008; Mason and Singh 2016). Connected to the ways in which students (and
teachers, Siswono et al. 2017; Turşucu et al. 2017) think about the transfer between
mathematics and physics is their approach to problem solving. Expertlike beliefs
are correlated with problem solving strategies of university students (Bodin and
Winberg 2012; Malone 2008). Many studies show that the interrelation of views
and strategies used is quite intricate and hint that several types of students can be
characterized (Ataide and Greca 2013). Also different types of problems require
different approaches to problem solving (Jensen et al. 2017). The deeper relation
between epistemic views and problem solving approaches is being discussed in
Ataide/Greca (“The influence of epistemic views about the relationship between
physics and mathematics in understanding Physics”).

As a summary, it seems crucial that the students acknowledge that the application
of mathematics to physics problems has to be more deeply rooted than just to
apply formulae to some physical problems by receipt. For this the students need
a strong conceptual understanding of physics as well as of the meaning related
to mathematical operations (as, e.g. described in Sherin (2001) and analysed by
Brahmia (2014), see also Fig. 1.4). These findings still need confirmation with
respect to completeness of findings. So additional studies will be necessary.

1.5.2.4 Use of Representations

Another broadly studied aspect refers to the role and use of representations, be it
that the problem is posed with a specific representation or the students use different
representations for solving the problem (e.g. De Cock 2012; Kohl and Finkelstein
2006, 2008; Meltzer 2005; Ibrahim and Rebello 2012). On the whole it is very
difficult to draw general conclusions. However, it seems that the problem solving
strategies strongly rely on details in representation and context of the problem
supporting the framing aspect discussed in Sect. 1.5.1. So this might be taken as
a hint that the framing of the given problem solving situation indeed strongly
influences the invoked strategies. Students seem to use multiple representations
quite well but depending on their experience often more in an exploratory than
in a goal-oriented way. Especially they show difficulties in connecting visual
representation with algebraic representations. However, some early studies showed
that even young students are able to invent graphs in suitably designed learning
environments (Beichner 1994; Hammer et al. 1991). Often it is possible to foster the
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competences of reading and making graphs with help of the interactive opportunities
inherent to the use of computers or apps (Hale 2000; van den Berg et al. 2010). In the
light of the possibilities of modern digital media, the competences of secondary and
high school students are studied in detail in the contribution of Stefanel (“Graph in
physics education: from representation to conceptual understanding”). He focusses
on the activities and the reasoning of students in drawing and making sense of graphs
in two different examples.

1.5.3 Research Concerning Teachers and Teacher Students

As was described in the preceding sections, the teacher plays an important role in
imparting an appropriate view of physics and its method. Up to now, only little is
known about the knowledge and views of teachers in the important area of shaping
the interplay of mathematics and physics. The definition of teachers PCK as done
in Sect. 1.5.3.1 is the first step towards a systematic evaluation. However, one has to
be careful to infer from a good PCK that the teachers have corresponding success
in their teaching as, e.g. is measured in students’ learning success (see, e.g. Cauet
et al. 2015; Kirschner et al. 2016). Nevertheless the construct of PCK is fruitful for
domain-specific characterization of teachers’ views and their teaching strategies.

1.5.3.1 Pedagogical Content Knowledge of the Interplay

Generally, for a high quality of teaching, the knowledge and competences of
teachers are very relevant, especially their content knowledge and their pedagogical
content knowledge (PCK) (for general aspects (Shulman 1987), concerning mathe-
matics (Krauss et al. 2008)). In this section we want to focus on the PCK as this part
has proven to be directly related to the learning success of students (Riese 2010;
Baumert and Kunter 2013).

In the aftermath of the work of Shulman, different models of pedagogical content
knowledge have been developed (for an overview, see Gramzow et al. 2013). A
modified model in the context of chemistry education on the basis of case studies
stressing the importance of the teachers’ experiences in combination with their
reflection was given by Park and Oliver (2008). Out of these, the model proposed
by Magnusson et al. (1999, Fig. 6a), also adapted by Etkina (2010), seems to be a
good choice in that it focusses on joint aspects of most models. The model from
Fig. 1.6 is explained in detail in the contribution “Role of Teachers as Facilitators
of the Interplay Physics and Mathematics” by Pospiech et al.. The detailed models
described in Sect. 1.3 serve for deducing categories describing teachers’ views and
knowledge, e.g. with respect to technical/structural role or teaching strategies for
facilitating the mathematization process for students in more detail.
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Fig. 1.6 The PCK model for the interplay mathematics physics. (Adapted from Lehavi et al. 2017)

1.5.3.2 Epistemic Views of Teachers and Teaching Problem Solving

Underlying the teachers’ views on the interplay and their choice of teaching patterns
are epistemic views. In studying this relation, it was found that traditionally oriented
teachers tend to view the role of mathematics as instrumental, whereas more
conceptually oriented teachers viewed mathematics as the language of physics and
as suitable to derive models or new insights into physics (Mulhall and Gunstone
2007).

As an example the mathematical modelling of prospective teachers in a kinematic
unit was studied (Carrejo and Marshall 2007). This study makes clear that the
conscious “self-made” connection between the physical phenomenon and the
mathematical model offers great learning opportunities for the teacher students with
respect to their view on the interplay. In another case study, it was shown that
the conceptions and actual teaching practices of teachers might diverge (Freitas
et al. 2004). In a quantitative study, it was found that prospective teachers prefer
a constructivist stance on mathematical-physical modelling. However, it could not
be tested if this is reflected in their actual teaching strategies (Fazio and Spagnolo
2008).

According to a study with 34 teacher students, “a strong relationship between
students’ problem solving strategy, and their epistemological perception on the
role mathematics plays in physics, learning and understanding physics, and solving
problems in physics” exists (Al-Omari and Miqdadi 2014). Similar studies were
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conducted by Başkan et al. (2010) or Ataide and Greca (2013). However, it is not
clear how teacher students reflect their views on the interplay of mathematics and
physics in a concrete example.

1.5.3.3 Awareness of Students’ Ideas and Proposals for Teaching
Strategies

In order to shape the teaching-learning process, teachers have to be aware of
the students’ ideas. Only if they know the typical difficulties, they can think of
appropriate teaching strategies. In a study the teachers stated that they achieve the
best results by abandoning the “number crunching” and instead emphasizing careful
explaining and reasoning as well of the mathematical operations as of the physical
processes (Khalili 2016).

In order to learn about the teachers’ views and attitudes towards the interplay
of mathematics and physics, an interview study has been conducted in Israel (8
teachers) and Germany (14 teachers). This study showed that the introduced and
slightly adapted PCK model from Fig. 1.6 fits to the statements of the teachers
and that their views often are very much shaped by their teaching experience
(see contribution “Role of Teachers as Facilitators of the Interplay Physics and
Mathematics” by Pospiech et al.).

Besides foundational work on strategies and problems of students, several
researchers at the same time also developed strategies for improving instruction
towards a more sense-making use of mathematics. The overarching goal is to
overcome the discrepancy between the apparent possibilities of learning and under-
standing physics by interpreting and analysing formula and the often predominant
rote plug’n chug in solving physics problems.

Interrelated Treatment of Mathematics and Physics

In the view of the complex interplay, meanwhile many attempts have been made to
let mathematics and physics understanding support each other, e.g. by integrating
mathematics and physics on school level (see, e.g. Davison et al. 1995) and on the
university level by Dunn and Barbanel (2000) or by invoking technology (Niess
2005; Vogel et al. 2007; Boujaoude and Jurdak 2010) using MBL teaching for
mathematization at the example of kinematics.

Basson (2002) remarks that some textbooks (used in South Africa) use quite a
lot of concepts not structured very clearly for the students. In order to establish a
unifying view, he suggests to relate mathematics (concept of function) explicitly
to physical concepts in order that those both school subjects benefit from each
other and the other way around (Michelsen 2006). This would take into account
that the transfer is not one way but bidirectional. The goal is that the interplay of
mathematics and physics is used for better learning results.
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In addition several proposals have been made to teach mathematics and physics
in an interdisciplinary way (Michelsen 2015). In this book an example from teacher
education is described by Mäntylä/ Poranen (“Combining physics and mathematics
learning: Discovering the latitude in pre-service subject teacher education”).

Meaning Making of Formula

Bagno et al. (2008) focus on the process of making meaning to a given formula,
stressing the relevance of discussing the corresponding concepts. One example is the
uniformly accelerated motion. They propose a step-by-step interpretation involving
single work, discussion with a partner and then a whole class discussion. This
approach led to fruitful exchange among teachers during professionalization and
also among students in class.

Invention Tasks

One could also use unusual tasks as invention tasks where the students should
develop their own “physical” quantity (Brahmia et al. 2016). Brahmia showed that
the students develop a better understanding of the mathematization procedure even
allowing to proceed quicker in the aftermath. A similar approach was tried by Uhden
(2016) with students in lower grades at school developing a quantification to the
concepts of density.

Also Uhden and Pospiech (2013) propose the variation of standard textbook
tasks in order to let students activate their mathematical-physical reasoning. In
the same direction, Dufresne et al. (1997) propose flexible problem solving with
representations.

1.6 Outlook

From many studies, we can infer that the use of mathematics should be an integral
part of teaching physics, as well at school as in teacher preparation. Generally, it
might be useful to introduce students right from the beginning in the interplay of
physical phenomena of objects, a physical model and a mathematical model. There
is evidence such that some rules can be formulated:

• students need support in first thinking about the physics concepts before they go
to a mathematical formulation

• teachers need encouragement to give a variety of different tasks which require
flexible use of mathematics as well as physics concepts.

In view of the results, the next step would be to develop materials, tasks and
problems thus implementing the favourable strategies. Hence the next research steps
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would be the evaluation of such teaching-learning sequences, perhaps in a design-
based research approach.
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Chapter 2
The “Math as Prerequisite” Illusion:
Historical Considerations
and Implications for Physics Teaching

Ricardo Karam, Olaf Uhden, and Dietmar Höttecke

2.1 Introduction

Mathematics is commonly seen as a prerequisite for the learning of physics, and the
lack of basic mathematical skills is often regarded as one of the main reasons for
students’ failure in physics courses. This widespread view is found, for instance, in
the way typical physics curricula at university level are structured, where disciplines
like calculus, linear algebra, or mathematical methods for physicists are supposed
to provide the tools that students will need in their subsequent physics courses.

This attitude is grounded in an implicit epistemological conviction about the
relationship between mathematics and physics, namely, that mathematicians first
develop elegant and abstract structures and then physicists make use of them
in their theories. This image is, of course, historically inaccurate, and there are
plenty of cases in the history of mathematics showing that several theories (e.g.,
calculus, trigonometry, tensor analysis to name a few) were originally related to the
search for solutions to physics problems (Kline 1959). An evidence of this close
relationship is the fact that some of the most influential scholars of the eighteenth
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and nineteenth centuries (e.g., Newton, d’Alembert, Euler, Lagrange, Fourier) made
sound contributions to both mathematics and physics.

Despite this mutual interplay, it is imprecise and even unfair to say that
mathematics and physics are just different manifestations of the same activity. As
Feynman (1985, p. 55) rightly pointed out, although one helps the other “physics
is not mathematics and mathematics is not physics.” Even in the cases where the
same person made important contributions to both fields, it is still possible to find
different parts of their work that can be classified as being either mathematical or
physical.

This chapter focuses precisely on some important differences between the
way physicists use mathematics to think about the world and what is usually
recognized as mathematics by mathematicians. In this sense, we are aligned with
other chapters in this book (e.g., Heck & Buuren and Planinic) as well as other
authors in the literature such as Redish and Kuo (2015), who clearly state that
“using math in physics has a different language, even a distinct semiotics, from
pure mathematics.” The explicit acknowledgment of these differences has important
didactical implications, as will be shown with specific examples in the following
sections. Our focus here is different from the contributions of Heck and Buuren and
Planinic et al., since it aims at identifying aspects of the origin of these differences,
by taking a closer look at their historical genesis.

2.2 Multiplication

Let us start with a quite simple mathematical operation, namely, multiplication. In
mathematics lessons, we learn to interpret multiplication as some kind of sum, for
instance, when we say “2 × 3,” we mean two threes, i.e., “3 + 3.” If we then
calculate “3 × 2,” we mean something else, i.e., three twos “2 + 2 + 2,” which
turns out to be also 6 and that is why we say that multiplication is a commutative
operation.

Another plausible interpretation of the multiplication of two numbers we learn
from mathematics lessons is related to areas of planar figures. Although it may seem
that calculating an area is something very different, the idea of a sum is still deeply
present. Consider, for instance, a rectangle with sides 2 m and 3 m (Fig. 2.1). To
calculate its area is to add the total number of squares (1 m2). And in order to count
the number of squares that compose the rectangle on the left of Fig. 2.1, we can

Fig. 2.1 Visualizing
2 × 3 = 3 × 2 = 6
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either say there are two rows of three squares or three columns of two squares. One
important difference of this example is that now the result of the multiplication has
a different unit (2 m × 3 m = 6 m2). Reasoning with units is crucial in physics, and
we will return to this point later.

With these images associated to multiplication in mind, what kind of meaning
can be extracted from equations like p = mv, U = RI, or F = ma? Does it make
sense to say that to calculate p is to add v m times or that U is the area of a rectangle
with sides R and I?

These simple examples suffice to highlight the fact that in physics we assign a
different meaning to multiplication. Usually, when physicists define a magnitude as
the product of two others, they want to express a mutual dependence.1 Consider,
for instance, the physical quantity that expresses the capability of a force to rotate
a given body, often called torque (τ ). Disregarding vector considerations, we define
torque as τ = Fd, which means that τ depends both on the intensity of the force and
on the distance from the point in which the force is applied to the rotation axis. It is
also important to stress that the multiplication gives rise to a new/different quantity,
whereas in mathematics the result is usually just another number.

This way of multiplying different magnitudes is more recent than one would
think. It is definitely not found in the original works on statics from the classical
antique, e.g., Archimedes’ studies of equilibrium (Fig. 2.2).

Archimedes would express the relationship between the bodies’ weights and their
distances to the fulcrum in the equilibrium situation as follows:

Magnitudes are in equilibrium at distances reciprocally proportional to their weights

d1

F1
F2

d2

Fig. 2.2 Static equilibrium

1This is not always the case. Consider, for instance, the equation v = λf, expressing the relation
between a wave’s velocity, frequency, and wave length. Phenomenologically, v depends on the
characteristics of the medium, whereas f is the frequency of the source. Thus, it is usually not
correct to say that v increases when f increases. Since v and f are determined by different causes, λ
is the factor that is adjusted to maintain this equality. Overall, this exemplifies how physics makes
a rather flexible use of mathematics.
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Mathematically, this inverse [reciprocal] proportionality would be represented as

F1

F2
= d2

d1

This is how the Greeks would represent relationships between quantities, namely,
in the language of ratios. Thus, there is no concept of torque as the multiplication
of force by distance (Fd) in Archimedes’ work, since this was not conceptually
conceivable by the Greeks (Bochner 1963). A multiplication between two lengths
could be interpreted as an area, but it did not make sense to multiply two different
magnitudes let alone to obtain a third one.

This begins to be conceptually possible in the seventeenth century. John Wallis
(1616–1703), who also made significant contributions for the development of our
modern algebraic notation, introduces this kind of reasoning in his treatise entitled
Mechanica, sive Tractatus de Motu (Mechanics, or Tract on Motion, 1669–1671).
When defining the quantity Impedimenta (I), somehow similar to torque, by the
product of Pondera (P), equivalent to weight, by the arm (L), he writes the following
(Fig. 2.3).

Here we see his clear emphasis on the commutative property of multiplication,
something we would nowadays simply take for granted. Later in his treatise, Wallis
expresses another quantity called Moment (M) by the product of the driving force
(V) by its time of action (T) (Fig. 2.4).

Once again, we notice Wallis’ careful and clear presentation that goes from
specific to general. This is justified due to the novelty of both the reasoning and
the notation.

Another example of the physical use of multiplication is Newton’s (1642–1727)
definition of quantity of motion (linear momentum) found in the very beginning of
his celebrated Principia:

The quantity of motion is the measure of the same, arising from the velocity and quantity
of matter conjointly.

P.
2 L.

2PL.
L.

2 P.

I ::2PL.  I.

n P.
m L.

mnPL.
 n L.
m P.

I :: mnPL.  I.

2 P.
3 L.

6PL.
2 L.
3 P.

I :: 6PL.  I.

Fig. 2.3 Wallis’ definition of Impedimenta

Fig. 2.4 Wallis’ definition of Moment
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The mutual dependence is emphasized by the word conjointly. Although not
explicitly represented by an algebraic expression as Wallis, Newton does make clear
that he means multiplication by stating that “in a body double in quantity, with equal
velocity, the motion is double; with twice the velocity, it is quadruple.” This need to
express the relationship with words shows once more its innovative character.

Together with the notion of torque, the quantity of motion is one of the first
appearances in history of a magnitude defined as the product of two others (Bochner
1963).2 Of course, previous works have studied how multiple quantities are related
to each other, but they did not express this relationship by means of multiplication
of different quantities. In sum, the physical way of reasoning about multiplication
as mutual dependence was developed in the seventeenth century and is essentially
different from our first mathematics lessons. Being physics specific, one should
assume that physics teachers are the ones responsible for introducing such way of
thinking.

2.3 Division and Proportion

Similar differences between the typical reasoning in physics and mathematics can
be found in the operation of division. In our mathematics lessons, we learn that
division has something to do with sharing. If an adult wants to distribute ten
bonbons equally among five children (10:5), it means that each child will receive
two bonbons (10:5 = 2). This is already a very different operation when compared
to multiplication, since it is not commutative (5:10 = 0.5). In the latter example,
although the “sharing” idea is still valid since five bonbons to ten children is equal
to 0.5 (half a bonbon) per child, dividing a smaller by a greater number poses serious
learning difficulties for beginners.

In order to promote a better understanding of such cases in which the numerator
is smaller than the denominator, another image intensively promoted in mathematics
lessons are fractions. One learns to divide a whole (e.g., a circle) in equal parts
given by the denominator and “take” or “color” the number of parts expressed in the
numerator. In this sense, 3/4 means three parts of a whole that was divided into four
equals parts (Fig. 2.5).

Once again, we are tempted to ask the question: With these images of division in
mind, how are we supposed to make meaning from ρ = m/V, R = U/I, or f = v/λ?
Can the physical way of reasoning about division be naturally transferred from
mathematics lessons?

2The first definition of Newton’s Principia is the “quantity of matter” which is “arises from its
density and bulk [volume] conjointly.” In Wallis’ work we also find several other examples of such
mutual dependence. Furthermore, Huygens’ vis viva, represented by the scalar quantity mv2, is
also among the first examples of the essentially physical use of multiplication to represent a new
quantity.
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Fig. 2.5 Mathematical image
of 3/4

As previously mentioned, expressing a physical quantity as a quotient of two
other quantities was not possible for the Greeks, since a ratio had to be the division
between two values of the same magnitude. Thus, a quantity like U/I would not be
conceivable. If one wanted to express a direct proportionality between U and I, one
would write U1/U2 = I1/I2.

In physics, a division between two quantities is often related to the idea
of “per” unit of the quantity in the denominator. Some common examples are
velocity (meters per second), density (kilograms per cubic meter), and heat capacity
(calories per Kelvin). In some situations this can actually resemble a bit the
idea of sharing bonbons, although this is usually not the case. Furthermore, if
more than one quantity appears in the denominator, a situation rarely approached
in mathematics lessons, the conceptual understanding, is quite challenging, e.g.,
specific heat (calories per kilogram per Kelvin) and water flux (cubic meters per
second per square meter). It is worth noticing that a systematic reasoning about
units and dimensions came much later as we will show in the next section.

A common question studied in physics is how rapidly things change, and
therefore it is quite usual to express quantities with time in the denominator. Galileo
strongly emphasized the time dependence in his studies of motion, but he still
reasoned in terms of ratios (we do not find something like s/t in his work). Wallis
(1669), on the other hand, does express the quantity celeritas (speed) by the quotient
L/T, but similarly to his approach to describe multiplication, this is done in a very
didactic step-by-step way.

When treating the relation C = L/T, Wallis considers separately each case in
which one of the magnitudes is constant. For situations where time is constant,
he writes the following (Fig. 2.6): meaning that distance (longitudo, L) and speed
are directly proportional. For constant distance, the effect in the change of time is
expressed as in Fig. 2.7, and for the case of constant speed, it is expressed as in
Fig. 2.8.

A modern reader might not understand why Wallis bothers to describe each single
situation, since C = L/T implies all of this in one single formula. What the modern
reader must understand is that, similarly to the case of multiplication, this kind of
notation and reasoning appears only in the seventeenth century and is radically new
for the time. In fact, understanding some of the historical struggles can be helpful
to appreciate some difficulties faced by our students when trying to make sense of
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L . C :: 2 L . 2 C :: n L . n C :

Fig. 2.6 Relation between speed (celeritas) and distance for constant time

L
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n
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Fig. 2.7 Relation between speed (celeritas) and time for constant distance

L . T :: 2 L . 2 T :: 3 L . 3 T :: n L . n T :

Fig. 2.8 Relation between time and distance for constant speed (celeritas)

the condensed representations we teach them today. For instance, when we write
s = vt and claim that it is just the same as v = s/t, Wallis’ presentation could
help us realize that this is far from obvious for newcomers. The main reason is
that, although mathematically equivalent, the two representations may refer to two
different physical situations.

This example illustrates another interesting difference found in the way pro-
portionality relations are expressed in physics and mathematics lessons. If two
quantities (A and B) are said to be directly proportional, a mathematics teacher
would highlight that the quotient between these quantities remains the same and
would express this by A/B = k (where k is a constant). If A and B were inversely
proportional, then the product between them is constant (AB = k).

Students in a physics lesson would learn something apparently different. When
a physics teacher says that the quantity A is directly proportional to the quantity B,
she usually writes A ∝ B or the following equation A = kB (where k is constant).
If A were inversely proportional to B, she would write A ∝ 1/B and A = k/B.
This is probably because in physics one is often connecting the mathematical
representation to an experimental setting, in which the independent variable is
what one can vary in the experiment and the dependent is what is measured. The
two approaches to proportionality are of course equivalent, but it is pedagogically
relevant to notice that they are “psychologically” different. Thus, one should not
expect this specifically physical kind of reasoning to be transferred automatically
from mathematics lessons.

2.4 The Crucial Role of Units in Physics

The way physicists emphasize the importance of units is another crucial difference
when compared to mathematicians. In math, the equation a = b + c is usually not
seen as problematic, whereas a physicist would immediately protest that this is only
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valid if a, b, and c have the same units. In fact, physics equations do not involve
sums of quantities as often as products. When assuming that a particular quantity
depends on two others – for instance, that linear momentum depends both on mass
and velocity – physicists always express this as a multiplication (p = mv) and never
as a sum (p = m + v). It is simply forbidden to add different physical quantities;
in physics the rule “apples with apples and oranges with oranges” always applies.
One of the reasons for using multiplication is that if a quantity depends mutually on
two others, this means that when one of them is zero (e.g., v = 0), then the original
quantity must also be zero (p = 0).

The differences regarding the ways physicists and mathematicians worry about
units can be evidenced by looking at some common problems proposed in mathe-
matics textbooks that are supposed to be related to the physical world. Consider one
typical example below (Fig. 2.9).

For a physicist, the equation y = − 5
v2 x2 + h is clearly wrong because the first

term on the right side has unit s2 and therefore cannot be added with h (in m). In
physics lessons, on the other hand, one learns specific rules about how to consider
the units in the calculations and always check if they match, as exemplified in the
following example typically found in physics textbooks (Fig. 2.10).

As we can see, this methodical concern with units is essentially physical and will
usually not be taught in mathematics lessons. Interestingly, a systematic approach
to units is something quite recent. One of its first examples can be traced back to
Fourier’s (1768–1830) masterpiece Analytical Theory of Heat (Fourier 1822).

In this work, Fourier investigates the problem of finding the temperature at a
given point in space and time (T = f (r,t)) of different surfaces and bodies under
certain boundary conditions. The most important physical result of this work is a
partial differential equation called the heat equation, and the mathematical one is

Y

X

Fig. 2.9 Typical problem in mathematics textbooks: an airplane flying at a height h (in m) with a
speed v (in m/s) delivers a package, which has approximately a parabolic trajectory described by
the equation y = − 5

v2 x2 + h, where y is the package’s height and x its horizontal distance from
the point it was abandoned
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Peter is standing with his motorbike at a stop light. After
it turns green he accelerates uniformly. After four
seconds he has reached the velocity of  72 kilometers
per hour. What is his acceleration? What distance has he
travelled?

Find: a, s
Solution:

1. Step: Calculation of a 2. Step: Calculation of s

Given: t = 4s, v = 72 kilometers/hour = 20 m/s

a =
t

a =
4 s.s = 5 
20m

s2
m

s2
42s2m

at2v S =
2

s =

1

2
. . = 40m1 5

Fig. 2.10 Typical problem in physics textbooks showing how to perform calculations with units

Table 2.1 Fourier (1822, p. 130)

an innovative way to conceive functions as trigonometric series (Fourier series).
In his physical considerations, Fourier separated the specific (internal) conductivity
from the external (surface) conductivity of materials. Another important material-
dependent quantity for his calculations was the specific heat capacity. Since the
several equations in his work involved many of these quantities, Fourier felt the
need to introduce a method to represent all of them in terms of three basic quantities
length, duration, and temperature, as shown in the table (Table 2.1).

Fourier justifies the importance of this method as follows:

It must now be remarked that every undetermined magnitude or constant has one dimension
proper to itself, and that the terms of one and the same equation could not be compared, if
they had not the same exponent of dimension. We have introduced this consideration into
the theory of heat, in order to make our definitions more exact, and to serve to verify the
analysis; it is derived from primary notions on quantities; for which reason, in geometry
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and mechanics, it is the equivalent of the fundamental lemmas which the Greeks have left
us without proof. (ibid, p. 128)

A specific concern with units was also motivated by studies of electricity and
magnetism. The main reason is that many phenomena were manifested by forces,
which were themselves expressed in mechanical units. This generated the question
of defining the units to measure electric/magnetic charges (Coulomb’s laws) as well
as currents (Ampère’s force law). Wilhelm Weber (1804–1891) took this project
very seriously and designed extremely precise instruments to measure relations
between electrostatic and electromagnetic units. These results turned out to be
essential for the unification of electromagnetism and optics (see Assis 2003).

In the very first pages of his celebrated Treatise of Electricity and Magnetism
(1873), Maxwell (1831–1879) highlights the importance of dimensional analysis
and presents it in a very familiar way for the modern reader. A general rule of
dimensional coherence for equations is stated as follows:

A knowledge of the dimensions of units furnishes a test which ought to be applied to the
equations resulting from any lengthened investigation. The dimensions of every term of such
an equation, with respect to each of the three fundamental units, must be the same. If not,
the equation is absurd, and contains some error, as its interpretation would be different
according to the arbitrary system of units which we adopt. (Maxwell, 1873, p. 1, our
emphasis)

Later on, he defines mass, length, and time as fundamental units and refers to other
units as derived. The dimensions of velocity, acceleration, and density, for instance,
are written as [LT−1], [LT−2], and [ML−3], respectively, pretty much how we would
learn/teach today. In sum, these historical examples suffice to show that a systematic
treatment of units is a characteristic trait of physics and appeared mostly in the
nineteenth century in investigations about heat and electromagnetism. Once again,
it is naïve to expect that pupils will learn this in their mathematics lessons.

2.5 Functions and Diagrams

The way functions are treated in mathematics and physics lessons is also rather
different. In mathematics, functions are defined in the context of set theory as
abstract assignments of elements from one set to another. According to a functional
rule often referred to as f, elements of a domain set X are assigned to a codomain
set Y by a correspondence, so that exactly one y of Y can be assigned to each x of X.
The pairings of x and the associated y are represented by a Cartesian product of the
elements of the sets X and Y.

The independent variable is usually x and can take all values from the domain
set. Parameters which are common in general forms of functions, e.g., a, b, c in
f(x) = ax + b or f (x) = ax2 + bx + c, are usually characterized by the choice of
specific letters. In mathematics lessons, properties of the functions are discussed
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using the respective parameters a, b, and c. The letters have a high recognition value
and are generally not modified to avoid cognitive overload. The consequence may
be that students cannot deal with different representations of the same function,
because they associate the concept of function with representations commonly used
in mathematics lessons. If a function is not expressed by f(x) and/or if the parameters
are not a, b, and c, the function may not be identified as a linear or quadratic
function.3

But how are functions treated in physics lessons? Well firstly the notation f(x) is
not used at all! That this does not mean that there are no mathematical functions in
physics is far from obvious to students. One of the first contacts with functions
in physics lessons is in kinematics, for instance, when equations of motion are
represented as

s(t) = s0 + vt or s(t) = s0 + v0t + at2/2.

Here at least the term s(t) indicates that position is a function of time. Neverthe-
less the connection with the functions of mathematics lessons is still not trivial, and
it is rarely the case that students spontaneously transfer their knowledge from one
domain to the other.

In reality the situation is even worse. Formulas in physics are typically functions,
but this is seldom explicitly expressed; one writes U = RI, E = mgh, P = UI, or
p = mv. In fact, in physical formulas the very role of dependent and independent
variables is often blurred, and the representation of a formula as a function depends
on the physical situation and the measurement process. If, in the case of a constant
resistance, the current intensity is measured as a function of the voltage, Ohm’s law
is actually a function of the form I (U) = U/R. However, there are other measurement
processes that are better represented by functions of the form U (R) = IR. This shows
that the representation of physical functions can be highly dependent on the design
of the respective experiments. In general, Ohm’s law is a function of more than
one variable, I (U, R) = U/R, which usually has no correspondent in mathematics
lessons at school level.

Significant differences4 are also identified in the way graphs of functions are
built in physics and mathematics lessons. Let us consider the simple example
f(x) = 2x + 3 from math and compare it with s(t) = 2 t + 3 from physics
lessons. Although the function is the same, their representations are rather different
(Fig. 2.11). For instance, the angle with the horizontal has a specific meaning in
mathematics (its tangent is the slope), whereas it makes no sense to talk about
an angle in physics since the scale is arbitrary, and the axes contain two different
quantities. Moreover, the physical situation may impose some constraints; the graph
on the right is only physically valid for t ≥ 0.

3There are many other subtleties in the way functions are taught/learned at school (see Ellermeijer
and Heck 2002 as well as the chapter from Heck and Buuren in this collection).
4See also Ellermeijer and Heck 2002, and the chapter from Planinic in this collection.
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Fig. 2.11 Differences between graphs in mathematics and physics

Fig. 2.12 Oresme’s
classification of motion.
(Clagett 1968)

Uniform Uniformly
difform

Difformly
difform

When we look at the historical development of the concept of function, it is
interesting to notice how it has been greatly influenced by physics. Already in
one of the first manifestations of graphs of functions, the French medieval scholar
Nicole Oresme represented the change of velocity with time and distinguished
between uniform, uniformly difform, and difformly difform motions. In Fig. 2.12,
the baseline (longitudo) is the time, and the perpendiculars raised on the baseline
(latitudines) represent the velocity from instant to instant in the motion.

A similar influence is found in Newton’s celebrated Method of Fluxions (written
in 1671, published in 1736), which is one of the first publications on differential
and integral calculus. In the beginning of this work, Newton states that all problems
solved can be divided into two categories. In his own words:

[ . . . ] it may be observed, that all the difficulties [ . . . ] may be reduced to these two
problems only, which I shall propose concerning a Space described by local Motion, any
how accelerated or retarded.

I. The Length of the Space described being continually (that is, at all Times) given; to
find the Velocity of the Motion at any Time proposed.

II. The Velocity of the Motion being continually given; to find the Length of the Space
described at any Time proposed. (Newton 1736, p. 19)

For the modern reader, those are the well-known differentiation and integration
operations. In mathematics lessons it is common to define the derivative in an
abstract manner (limit of a function) and afterwards present the velocity as an
application of this concept. A quick look at its original formulation gives a different
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picture and illustrates how velocity and derivative are deeply interrelated since the
very genesis of calculus.5

Nevertheless, the abstract set-theoretic definition of function we teach today in
math lessons is less than 100 years old and was driven by intrinsic foundational
considerations.6 Although it is pedagogically relevant to learn about the “physical
origins” of the concept of function, it is equally important that students become
acquainted with authentic (pure) mathematical reasoning in order to recognize the
disciplinary specificities of these two intellectual enterprises.

2.6 Final Discussion and Didactical Implications

Physics teachers often complain that their students don’t know enough math. When
solving problems where some kind of mathematical operation is needed, it is not
uncommon to hear them telling their students: “You should have learned this in
your math courses!”. The main goal of this chapter is to show that this assumption
is flagrantly incorrect since physicists often use mathematics in a very different way
compared to how these things are taught in math lessons.

These differences have historical roots as we have tried to show in the examples
discussed. The list could go on and on (e.g., trigonometric functions, complex
numbers, matrices, differentials, etc.), but the take-home message is the same:
Physics has developed a specific way to reason mathematically about the world that
serves its own purposes. Therefore it should be taught/learned in physics lessons.
Some of these differences may have more sociological origins (it is just a matter of
convention), but most of them are due to important epistemological differences that
pertain to the nature of physics and mathematics.

What does this imply for the teaching of physics? Here are some general ideas:

– Make differences explicit to students.

An important methodological consequence of what has been presented is simply
to address these differences explicitly with students. Instead of implicitly meaning
“this is just like what you learn in math,” physics teachers should prefer “this is
different from what you learned in math because . . . .” Having the same teacher
teaching both disciplines to the same class can be a useful strategy because then
she can always refer to the other discipline and cannot just blame the math
teacher. Even better is the idea of having fully integrated courses, taught conjointly

5The interested reader can find another episode that illustrates the great influence physics had in
the conceptualization of function, namely, the so-called vibrating string controversy (Wheeler and
Crummett 1987).
6See Kjeldsen and Lützen (2015) for an overview on the historical development of the concept of
function.
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by a mathematician and a physicist, where epistemological and methodological
differences become inevitably apparent. An interesting experience is described
in Dunn and Barbanel (2000), where vector calculus is taught together with
electromagnetism and explicit discussions about substantial differences in context,
notation, and philosophy are presented as pedagogically beneficial.

– Express variables explicitly; compare with known functions from mathematics.

A possibly fruitful approach for physics lessons is to express physics formulas in
a more mathematically coherent way so that the distinction between dependent and
independent variables is explicit. For instance, if the gravitational potential energy
is expressed by E(h) = m · g · h, then it should be clear the association with a
physical situation where one is varying the height of a body with (constant) mass
m immersed in a (fixed) gravitational field g and estimating the potential energy.
Now it even becomes possible to relate this formula with the general linear function
from the mathematics lessons f (x) = a · x + b. Then, the slope a can be associated
with mg, x with h and the point where the graph crosses the y-axis interpreted as the
potential energy at height zero (physically it could be assumed to have a non-zero
value E0). This back and forth from mathematical formalism to physical meaning
is extremely beneficial in order to develop the competence of transfer/translation,
which is essential for physics.

– “Play” with conventions to aim at deep conceptual understanding.

Several differences are due to conventions adopted by the communities of
mathematicians and physicists and have no objective justification. A potentially
meaningful teaching strategy is to “play” with these conventions and explore
whether or not students have a deep conceptual understanding of the matter.
Consider, for instance, the kinematic expression s(t) = 2 t + 3 mentioned above.
Instead of plotting its graph with t in the horizontal axis, one could consider the
function t(s) = s/2 – 3/2, draw a time x position diagram, and discuss its meaning.
Using the international system of units, in the first expression, one would identify
the body’s velocity as being 2 m/s, whereas in the second case, a new quantity whose
unit is s/m could be thought. Instead of how many meters are traversed per second,
the latter induces the question of how many seconds a body takes to traverse 1
meter, which is still physically meaningful. In general, highlighting the differences
between mere conventions and objectively right or wrong statements is of major
educational value, and the “playing with conventions” strategy can be quite useful.

– Use original sources.

Although the historical examples mentioned in this chapter were primarily
thought to be discussed with pre- or in-service physics teachers, we are confident
that original sources can also play an important role in the classroom. Already the
fact that the notation is usually very different shows the dynamic nature of our
conventions and the evolution of our representations. Sometimes, since the abstract
mathematical formalism was not yet established, more accessible, concrete, and
visual representations are found, which possess a high didactical potential (e.g.,
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Galileo’s or Newton’s geometrical reasoning). Examples of early appearances of
particular kinds of reasoning and notations, such as Wallis’ definitions of torque
and speed, can also highlight the nontriviality of topics students often struggle to
learn.

By referring to the “math as prerequisite” illusion in the title, it may appear
that we are against popular math “crash courses” or that we advocate that only
physicists should teach math to physics students. This is not the case. Pure
math courses are very important – among other reasons – because they convey
a genuine mathematical approach and possibly make physics students even learn
more about the nature of physics (by contrast with the nature of mathematics). The
main argument is that even if such courses are necessary, they are certainly not
sufficient because of the specificities of physics we have underlined. But although
this may seem a general methodological recommendation, one needs to be aware
of the complex and multifaceted nature of the relationship between physics and
mathematics. Instead of looking for “always valid” assertions, one learns much more
by studying concrete cases and drawing specific conclusions related to them.
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Chapter 3
Students’ Understanding of Algebraic
Concepts

André Heck and Onne van Buuren

3.1 Introduction

In mathematics and physics education, teachers and researchers working at all levels
of education have identified many difficulties of their students with mathematics
and physics at conceptual and procedural level. Because it is well accepted that
mathematics plays an important role in physics, to such an extent that many call
it the language of physics, it comes to no surprise that much research has been
done to identify the students’ problems with mathematical formalism in physics
and to design tasks that help students get a better understanding of mathematics
and its methods in the context of physics. Lack of algebraic expertise and lack of
representational fluency of the students and their inability to recognize concepts and
procedures of mathematics when dealing with problems in physics can be consid-
ered as causes of the difficulties, for which physics teachers easily tend to blame
their students or the mathematics teachers that they did not do a good job before.

But there are more causes: one of them seems to be the unawareness or neglect
of teachers of the many differences that exist between mathematics used in its own
discipline and mathematics in physics. This holds both for the algebraic, graphical,
and other representations used during mathematical work and for the language
spoken and written alongside. The coin is two-sided: on the one side, there is
the complex meaning of mathematical formalism in physics that many students
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apparently not understand deeply enough (Uhden 2012; Uhden and Pospiech 2010,
2012), but on the other side, physics itself adds complexities. Mathematics and
physics are closely intertwined as disciplines, but this seems often not sufficiently
addressed in education. When not discussed in class, the differences and similarities
in mathematical work may not be noticed by the students and lead to mistakes
that they cannot really understand well, or these differences and complexities may
confuse students and challenge them in an unproductive manner. Redish and Kuo
(2015, p. 583) gave in their paper on the language of physics and mathematics for
higher physics education the following take-away message:

How mathematical formalism is used in the discipline of mathematics is fundamentally
different from how mathematics is used in the discipline of physics—and this difference is
often not obvious to students. For many of our students, it is important to explicitly help
them learn to blend physical meaning with mathematical formalism.

We argue that this message already holds in lower secondary physics education,
in particular when mathematical modelling comes into play in school physics,
and that the students are not to blame for being confused and failing to transfer
between mathematics and physics. We discuss the challenges that these students
face in algebra when using and building mathematical models of physical systems.
This chapter is organized as follows: in subsequent sections, we focus on the
different ways of using variables, equations, formulas, and functions in mathematics
and physics. We are of opinion that the differences cannot be ignored in physics
education and that discussion can better start at the lower secondary level, because
at that stage also the teaching and learning path from arithmetic to algebra starts in
mathematics classes. Many of the data and examples of student challenges presented
in this chapter are taken from earlier work of the first author (Ellermeijer and Heck
2002; Heck 2001) and from the doctoral and postdoctoral work of the second author
on the development of a modelling learning path (Van Buuren 2014).

Two other chapters in this volume discuss the differences in mathematical for-
malism between mathematics and physics and how it is taught at secondary school
level. But their aims differ from each other. Van Buuren and Heck (this volume)
narrow the discussion to the use of variables and formulas for constructing computer
models in lower secondary physics education. Karam, Uhden, and Höttecke (this
volume) aim at identifying aspects of the origin of the differences by taking a closer
look at their historical genesis. Altogether, the chapters give a comprehensive and
helpful overview of the subject and offer plenty of food for thought.

3.2 The Meaning of Variable Is Variable

Tarski (1956, p. 1909) characterized the significance of the notion of variable as
follows:

Without exaggeration it can be said that the invention of variables constitutes a turning point
in the history of mathematics; with these symbols man acquired a tool that prepared the way



3 Students’ Understanding of Algebraic Concepts 55

for the tremendous development of the mathematical sciences and for the solidification of
its logical foundations.

Skemp (1986, p. 213) claimed that

the idea of a set and that of a variable are two of the most basic in mathematics. . . The idea
of a variable is in fact a key concept in algebra—although many elementary texts do not
explain or even mention it.

Further on he wrote: “In mathematics, an unspecified element of a given set is
called a variable.” This last sentence already marks a significant difference between
(1) the use of a variable in mathematics and logics as a placeholder for things from
a particular replacement set and (2) the use of a variable in physics as a name for a
measurable physical quantity with a unit, certain precision, and possibly a direction.
In essence, the several meanings of variables (see, e.g., Kücheman 1981; Schoenfeld
and Arcavi 1988), depending on the context in which they are used, and the lack
of discussion about this in the classroom are what makes it hard for students to
understand.

Results of research studies on the role of variables in students’ algebraic thinking
(Kücheman 1981; Malisani and Spagnoloi 2009; Trigueros and Ursini 2003)
suggest that different conceptions of variable have different degrees of difficulty:
the “letter as an unknown” is simpler to grasp than the “generalised number”
and “variable in functional relationship.” Several studies have linked students’
difficulties with obstacles that have been met in history in the slow development
of symbolic language. For example, Karam, Uhden, and Höttecke (this volume)
show how the way physicists make use of some basic mathematical concepts such
as multiplication, division, and functions is specific to physics by identifying their
historical genesis and contrasting with the way these concepts are usually taught
in math lessons. Malisani (2006) and Radford (1996) highlighted that the notion of
variable as unknown and as a thing that varies has a totally different genesis and
evolution. The notion of the unknown has its origin in the resolution of equations.
The introduction by Viète (1540–1603) of letters and signs to represent quantities
and operations is a landmark in the development of the language of symbolic
algebra. The notion of a variable as a thing that varies is very ancient, but its origin
in the history of mathematics is unclear. Its evolution is very slow and goes from
relationships among numbers on Babylonian tablets, through curves described in
kinematical terms and functional relationships among variable quantities alongside
the development of calculus and analysis during the seventeenth and eighteenth
centuries, to the set-theoretical definition of the concept of function in the twentieth
century.

In secondary education, one often deals with the various purposes and meanings
of variables by treating them as primitive terms that are best learned by practice.
After all, trying to fit the notion of variable into a single conception would
oversimplify it and actually distort the purposes of algebra. Basic idea of the
pragmatic approach is that students will learn from the examples and the exercises
and that they will gradually sense the meanings of variable. One obstacle in this
learning process is however that mathematical meaning is often determined by
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context, rather than by formal rules and notation. For example, what does the
symbolism v(t − θ) mean? Is it a function v with argument t − θ , a generalized
number v × (t − θ), or an expression in which the symbol v represents the velocity
of an object and the time t is transformed via a constant θ? And how does v(t − θ)

compare with a(x − y)? For a secondary school student, it takes time and practice
to get used to the fact that a variable actually gets meaning in mathematics and
physics through its use (as indeterminate, as unknown, as parameter, etc.), through
its domain of values, and through the context in which it is used. We quote a
16-year-old student in upper vocational physics, who struggled initially with the
resemblance of Hooke’s law for a spring with a mathematical equation of a straight
line but acquired the structural insight while he was doing regression analysis in the
computer learning environment Coach (Heck et al. 2009):

Only after the practical work, in which I had to do a function fit, I realised that Fspring = C ·u
actually is y = ax + b. There you see the link with mathematics. This should have been
explicitly mentioned in the textbook.

In the above example, there is a link between the two equations, but it cannot be
ignored that they are different in several aspects: in the first equation, the symbols
stand for the physics notion of force, stiffness, and displacement. The equation
is used to make sense of the process of extension and compression of a spring.
The second equation primarily activates mathematical knowledge about straight
lines. What students need to learn is to transfer back and forth between these two
perspectives, and they definitely need the help of both their mathematics and physics
teacher herein.

3.3 Variables in Mathematics

In mathematics education, researchers and educators are constantly searching for
ways to familiarize students with variables (see, e.g., Arcavi et al. 2017; Kieran
1992, 1997, 2007) and to make the transition from arithmetic to algebra, or
generalized arithmetic as it is commonly called, easier for them. Besides algebra as
generalized arithmetic, Usiskin (1988) identified three other conceptions of algebra,
namely, algebra as a study of procedures for solving certain kinds of problems, as a
study of structures, and as the study of relationships among quantities (including
modelling and functions). He correlated each of these four approaches with the
different relative importance given to various uses of variables: pattern generalizer,
unknown, arbitrary object, and argument or parameter, respectively.

Ursini and Trigueros (2001) distinguished three main uses of variables in
elementary algebra and described in detail different aspects that underlie a basic
understanding of these three uses of variable. In their model, they distinguished
variable as unknown (as in 2x + 3 = 5), variable as general number (as in 2x + 3,
but also as parameter in ax + b), and variables in a functional relationship (as in
2x+3 = y). They found that secondary school students and teachers have problems
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to differentiate between the uses of variable as unknown and as general number,
to accept an open expression as valid, and they feel compelled to find a specific
result when an equal sign is present. In another study (Trigueros and Ursini 2003),
these authors obtained similar results for first year undergraduates in economics,
administration, and accounting at a private Mexican university.

The framework of Ursini and Trigueros resembles the distinction of the three
uses of variable made by Freudenthal (1983): variable as a

• polyvalent name, i.e., a name for an object that can take a multitude of values (as
in the task to solve the equation x2 = 2)1;

• placeholder, which denotes the places in an expression where the same object
is meant (as in the equivalence (a + b)2 = a2 + 2ab + b2 or in the function
definition f (x) = x2);

• variable object, i.e., a symbol for an object with varying value (as in the statement
“2−n for n from 1 upward” or when the object is a quantity with varying values).

This distinction can also be applied to the notion of parameter. Although this can be
illustrated within a mathematical context, we do this with examples from physics.
In the role of a placeholder, the parameter has one value at a time. For example, in
the formula T = 2π

√
L/g, for the period of the mathematical pendulum of length

L, the letter g stands for the acceleration of gravity. You may study the motion
of the pendulum on earth or moon, but always it has one value only (although this
value is different in different contexts). The given formula expresses the relationship
between the period of the pendulum and the length of the pendulum. Then the letter
L can play the role of a variable object (in a thought experiment taking pendulum to
the moon and to Mars, L of course stays the same). Thirdly, as a polyvalent name, a
parameter supports the writing of a general formula or a distinction of various cases.
For example, the letters A (for amplitude), ω (angular frequency), and φ (phase)
are used in the general formula u = A sin(ωt + φ) to describe harmonic motion
mathematically. Another example is the role of initial height y0, the initial velocity
v0, and the release angle α in the mathematical formula y = y0 +v0 t sin(α)− 1

2gt2

that gives the vertical position of an object thrown away. Typically, one keeps values
of all parameters except one fixed and explores the formula for several values of
the free parameter. In other words, the parameter in its generalizing role is used to
distinguish several cases: the values of a parameter can vary, but they are temporarily
thought of as fixed, and a change of the parameter value will not just change one
quantity but a complete expression, function, or graph at hand. These examples also
show that, in mathematics and physics, the type of a variable depends on the way
it is used in the context. For example, the acceleration of gravity g can be seen in a

1Although the term “polyvalent name” suggests that the variable represents more than one value,
this is not necessary. Often, one does not know in advance how many values are possible: for
example, when asked to find the real roots of a third-degree polynomial with real coefficients, one
does not easily whether the answers will consist of one or three solutions.
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physics problem as a parameter, but also as a variable quantity, in case we study the
dependence of g on the height h above the surface of a planet.

Students have to learn to distinguish and give meaning to letters as parameters
and other variables in algebraic expressions and problems involving parameters.
Complication factor is that this meaning is in mathematics and physics problems
often context dependent. Ursini and Trigueros (2004) found that although students
have difficulties in differentiating the role of a parameter and often use memorized
facts to make sense of the role of a parameter, their difficulties decrease when they
can attribute a referent from a familiar situation to it. In mathematics lessons, the
referent of the equation ax + by + c = 0 can be that of the straight line in plane
geometry, and the equation represents families of straight lines. In physics problems,
the context situation provides in many cases the referent, and this is reflected in the
choice of letters as abbreviations of full names for quantities involved. The formula
A = A0 · e−r·t not only allows the calculation of the radioactive amount A from
the initial amount A0, the decay rate r , and time t , but it also represents families of
exponential decay functions.

3.4 The Process-Object Duality

Mathematics education research on the teaching and learning of algebra has led to
several frameworks for understanding difficulties of students in the transition from
arithmetic to algebra; we discuss some of them. They all take the viewpoint that at
the beginning of learning algebra, the link with arithmetic is emphasized. At this
early stage, an algebraic expression is still considered as an arithmetic operation
upon numbers, and algebraic manipulation is more or less a change of the recipe to
compute a result: x + x and 2x are algebraically equivalent because the numerical
results when x is replaced by a concrete numerical value are the same, ignoring
that the expressions are different from computational point of view. But in order to
become successful in algebra, a student must learn to see 2x not just as that process
of doubling a value but also as a product with which one can continue to compute,
say, for example, adding it to 4 to get 4+2x. Also in arithmetic, this process-product
duality already comes to the fore when one sees 4

6 and 6
9 as equivalent representative

of the fraction 2
3 . How small this step may seem, for learners it is in fact a big step in

their learning of algebra. It explains why students have difficulty in accepting 4+2x

as an answer and why many still want to simplify it to 2 + x or 6x, or even ignore
the variable in the end.2

2Note that arithmetic computations like 4 + 2 1
2 = 6 1

2 and 4 + 2 1
3 = 6 1

3 may seduce a learner to

generalize to 4 + 2x = 6x. Similarly, an arithmetic computation like 3 1
2 − 1

2 = 3 may explain the
mistake 3x −x = 3, and the calculation 2+ 1

2 = 2 1
2 may make a learner believe that 2+x is equal

to 2x.
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Sfard (1991) generalized the process-product duality to process-object duality.
In her framework, a mathematical conception, i.e., the set of internal represen-
tations and associations evoked by some mathematical concept, often consists of
two complementary types, namely, (1) an operational conception in which the
mathematical concept is seen as a process, algorithm, and/or (imaginable) action
and (2) a structural conception in which a mathematical concept is treated as an
object. For example, 2 × 3 has a clear process aspect of multiplication, but it can
also be viewed as a prime factorization of the number 6, which on its turn can be
seen as 3 + 3. Three expressions for one and the same integer!3 Another example
the expression 4/6 has a clear process aspect of division, but at the same time, it
can be one of the representations of the rational number 2/3. This does not mean
that once we have achieved the notion of 2/3 as a fraction that we can forget 2/3
as a division. Rather, the accomplished attitude toward 2/3 is ambiguous in nature.
Ambiguity is an essential characteristic of mathematical thinking and mathematical
representation. This is something that students must gradually learn. For example,
lower secondary students are surprised that a ratio such as 2 : 3 is linked to the
fraction 2/3. During the learning process about ambiguity in representation, they
may still be at work within an incomplete or even incorrect orientation base and rely
on improper solution methods. For example, application of the thin lens equation
1
f

= 1
do

+ 1
di

, relating the focal length f , the object distance do, and the image

distance di, and the magnification equation hi
ho

= di
do

for object height ho and image

height hi, students often arrive in exercises at an equation like 4
ho

= − 3
5 . Solving this

equation is then often done by the trick of swapping the numerator and denominator
to the equation ho

4 = − 5
3 , but many a student does not really understand why this

can be done.
The process aspects of a function such as f (t) = 10−4.9t2 are among others the

rule for calculating function values and the solving of equations such as f (t) = 0.
The function is a prescription for a calculation process. Meanwhile, also structural
aspects can be identified, such as membership of the family of quadratic functions,
being the solution of the initial value problem f ′′(t) = −9.8, f (0) = 10, f ′(0) =
0, and being an object to which one can apply calculus operations like differentiation
and integration. In general, the operational conception comes before the structural
conception, and the structural conception is viewed as more abstract and advanced.
The objectification of processes toward an integrated, object-like whole is called
reification. Many difficulties in doing mathematics can be explained as a too strong
focus of the students on the operational aspects of mathematical concepts. Again
and again, researchers have found that much effort must be put into mathematical
instruction for process-object development: for example, all years of secondary
school mathematics are used (and needed) to let students develop an adequate
understanding of the concept of mathematical function.

3Karam, Uhden and Höttecke (this volume) use the same example to illustrate that in physics and
mathematics, different meanings are assigned to multiplication.
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Arcavi et al. (2017) argued in their research-based pedagogical framework for
the teaching and learning of algebra that the seemingly simple algebra of school
mathematics requires a long path from arithmetic to algebra when adequate alge-
braic expertise is aimed at. The action-process-object-schema (APOS) framework
developed by Dubinsky and others (Arnon et al. 2014) and the three worlds
of mathematics framework developed by Tall (2013), in which the proceptual4

symbolic world is one of the worlds, are two of the commonly used frameworks
in mathematics education that take this process-object duality strongly into account
in the development of mathematical understanding.

Students must learn to cope with the process-object duality and develop pro-
ceptual thinking, or otherwise they will have difficulties to see structure in algebraic
questions. For example, 89% of the 73 first year psychobiology students who took in
2015 a resit of Basic Mathematics failed on the following multiple choice question:

To which of the following expressions can one simplify
√

(x2 − 1)2 + 4x2?

(a) x2 + 2x − 1
(b) x2 + 1
(c) 3x2 + 1
(d) 2x2 − 2x

The vast majority of students (61) selected the first option and apparently could
not resist the visual salience of the erroneous statement

√
a2 + b2 = √

a2 + √
b2 =

a + b, linked to over-linearization of expressions as a result of the feeling to be
compelled to do something with the square root in combination with the squares.
However, when explicitly asked about the correctness of this statement in a and
b, they all knew that it is wrong. They only made the mistake when the symbols
were replaced by algebraic expressions: maybe the cognitive load of covering up
the subexpression x2 − 1 and seeing 4x2 as (2x)2 was so high that they could not
deal well anymore with these eye-catching elements. But maybe we are here facing
the difference between fast and slow decision-making, terms coined by Kahneman
(2011), and students are triggered by the structure of the formula to think fast and
follow their intuition, instead of thinking slowly and analytically, what would be
wiser in this example.

Kirshner and Awtry (2004) concluded that many errors in algebra are not the
result of conceptual misunderstanding, but of an overreliance on visual salience. At
least we can conclude from the above example that the ability of the students to
read through algebraic expressions and to foresee the effects of manipulations were
limited. They could recognize certain features of algebraic expressions but failed
in a flexible choice of an algebraic manipulation strategy. Bokhove (2011) added
the notion of pattern salience to the gestalt view on a formula, that is, the notion of
elements that seemingly scream for action. For example, many a student is triggered

4Procept, a contamination of process and concept, is a term introduced for the combination of
symbol, process, and concept, to make clear that a mathematical object never completely loses its
process nature.
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by the brackets and powers in the equation (x − 1)2 + 2 = 6 to expand brackets in
the left-hand side as a first step to rewriting of the quadratic equation into standard
form. But an algebraically skilled person would recognize that after subtracting 2
both sides are squares, namely, of x − 1 and 2. Again, students seemingly cannot
resist fast thinking in case where slow thinking is more appropriate.

Van Stiphout (2011) used Sfard’s framework to assess students’ algebraic
proficiency in pre-university education and found that, although students make
progress during their school career, they struggle at the end of school still with tasks
that require structure sense and that the difficulties increase according to the number
of transitions that have to be made between an operation and a structural approach.
Students are said to display structure sense if they can

• recognize a familiar structure in its simplest form;
• deal with a compound term as a single entity and through an appropriate

substitution recognize a familiar structure in a more complex form;
• choose appropriate manipulations to make best use of a structure (cf. Hoch and

Dreyfus 2006; Novotná and Hoch 2008).

Van Stiphout concluded that the process-object duality is inherently difficult for
students and that Dutch mathematics education apparently does not pay enough
attention to fostering the process of reification. Looking at the vast literature on
learning and teaching algebra (see, e.g., Kieran 1992, 1997, 2007; Stewart and
Reeder 2017), we have no reason to doubt that this is different in educational
systems in other countries.

3.5 Formula and Equation

When we wrote that a variable gets meaning through the context in which it is
used, we meant both the context of “doing school mathematics” and the context
of “doing mathematics in school physics,” which both have their own conventions.
For example, the word formula has a special meaning in school mathematics, and
the role of the letters in the formula y = x2 is not the same as in the equation
y − x2 = 0. The words formula and equation are used to distinguish between
the case of a functional relationship between the isolated variable that depends on
the other variable and the case of a more general relationship between unknowns.
For students, it is important to make a clear distinction between these different
notions, even though the textbook may not be so explicit about it. A mathematician
or scientist, however, is much used to applying the same algebraic symbolism for
many purposes: y = x2 may stand for an equation, a function definition, a process
of computing the value of y from the value of x, and so on.

Note however that equivalent mathematical expression may elicit different
mathematical thoughts: for example, y = 1

2x + 1
2 brings the idea of a straight line

with slope 1
2 more readily in mind than the equivalent y = 1

2 (x + 1) and y =
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(x + 1)/2, which connect more to the theory of rational functions. In physics, this
meaning making of a formula also depends on the symbolism used. For example,
a formula like E = 1

2mv2 elicits other thoughts in the head of a physicist than
just its bare use of symbols: (s)he will probably think, in a glimpse of a second, of
kinetic energy E, with m standing for mass of a moving object and v for its velocity.
Redish (2005) noted that loading meanings onto symbols leads to differences in how
physicists and mathematicians interpret formulas and equations and that labelling of
constants and variables differs in these fields. Where variables in calculus are almost
always an x, y, z, or t , and constants or parameters are commonly labelled by a, b,
c, or d, physicists use many symbols in formulas and equation and load meanings to
symbols like m, c, v, V , e, E, and so on, depending on the context (e.g., Q can stand
for the amount of heat and the amount of electric charge). In physics, and science
in general, it is mostly forbidden to change names in an expression because it will
ruin its meaning: for example, the variables in Newton’s 2nd law F = ma stand
in a unique way for physical concepts, and renaming it as p = mv would turn it
into the definition of momentum, a different physical concept. Replacing m by p

in Newton’s law would ruin it because m denotes mass by default in physics, and
any other letter (besides M) does not have this extra meaning. It is as if Newton’s
law is in fact an equation combined with a set of rather fixed definitions, where one
cannot do without the other. In contrast, there is in mathematics more freedom to
select names of variables, for example, {(a, b) ∈ R

2 | ab = 1} is the same set as
{(x, y) ∈ R

2 | xy = 1}. The strong sense of notational conventions in physics and
science in general, compared to the notational freedom or algebraic ambiguity in
mathematics, occurs on many occasions.

3.6 The Equal Sign

Research (see, e.g., Godfrey and Thomas 2008; Knuth et al. 2006) has found that
the meaning of the equal sign causes difficulties at all student levels. In arithmetic,
the equal sign is mostly used as a sign for action (“do something; work it out now”):
exercises like 2 + 3 = � and 2 + � = 5 ask for the result of some calculation.
When lower secondary students first practice with physics problems like “what is the
distance covered by a cyclist when he bikes for two hours at a speed of 20 km/h?”
and later on encounter the word formula speed×duration = distance, then they will
interpret the equal sign as a sign for doing a computation. For them, it is not obvious
that distance = speed × duration can mean something else. Replacing words
by symbols does not change this perspective. The operational, process-oriented
perspective of the sign suffices during early years at school, but students must
develop an object-oriented understanding of equality as equation and equivalence
relation so that they can think algebraically. They must also start recognizing when
the equal sign is used in the sense of “is equal to,” “is supposed to be equal to,”
“corresponds with,” “is assigned the value,” “is defined as,” and “is equivalent to.”
In common language, the term “is equal to” or “corresponds with” is mostly used
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to express that for some useful purpose two things are swappable and that it makes
no real difference which one to use. We may say that 100 centimeters equals 1
meter and may write down 100 cm = 1 m. It is a matter of convenience which
unit is used, but one will notice a difference in practice when doing measurements
or calculations. The entities are swappable, but not the same. Written in the form
1 cm = 1

100 m, it looks more like a definition or conversion rule. The equal sign
has lost its notion of balance between the sides of the equality and is now used in a
unidirectional way.

Thus, the dual nature of an algebraic expression to indicate both a process and an
object is never lost: statements like

1

x + 1
+ 1

x + 2
= 2x + 3

x2 + 3x + 2
, for every real number x

and

2x + 3

x2 + 3x + 2
= 1

x + 1
+ 1

x + 2
, for every real number x

are in formal sense equivalent, but it cannot be denied that the first statement is
about computing the sum of two rational expressions, whereas the second one
represents a partial fraction decomposition. In the first statement, the equal sign is
not read as “is formally equivalent to”, but as “yields”: it is about addition, triggered
even more by the plus symbol between the two terms on the left-hand side. In the
second statement, the equal sign indicates equivalence by referring to a process of
simplification, which is not immediately triggered by the expression on the left-
hand side but has more to do with the context in which it is used (say, integration
or decomposition in similar terms). Students must become aware of the dual nature
of an algebraic expression, or in the terminology of Tall (2013) become proceptual
thinkers, in order to acquire algebraic expertise. It would help if teachers would
explain their students why they sometimes read a formula from right to left instead
of from left to right. Algebraic expertise of students would be increased if teachers
would explain why they sometimes expand brackets in a mathematical expressions
or why they do the opposite and factorize an expression.

It is interesting to notice that in programming language, different symbols
are used for assignment (or definition), equality, and sameness: the mathematical
software Mathematica uses =, ==, and === for these three purposes, respectively. In

mathematical texts, the symbols := and
def= are often used to make a definition; the

symbols ≡ and ∼ denote equivalence. But just using different symbols for different
meanings does not help students develop algebraic insight or symbol sense,5 but

5Arcavi (2005) described symbol sense as the ability to give meaning to symbols, expressions, and
formulas and to have a feeling for their structure. Drijvers (2011, p. 22) confined the interpretation
of symbol sense to the understanding of the meaning and structure of algebraic formulas and
expressions, which involves (1) the strategic abilities to arrive at a problem approach and to
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may only confuse them more. Instead, we are of opinion that teachers and textbook
authors should be more explicit to their students and readers in explaining the
ambiguous notations that they use so that students can familiarize themselves
with purposeful ambiguity in mathematical notation and can start appreciating the
mathematical symbolism. For example, teachers could talk with their students more
about the distinction between an identical equation (or identity), which holds for all
values of the variables involved, and a conditional equation, which is only true for
certain values of the variables. Adding a few words to a mathematical expression
may already help: taken by itself, a + b = b + a is meaningless, but “for all real
numbers a and b, a + b = b + a” describes the commutativity of addition more
clearly. Instead of just writing down the equation x2 = 2, one could add a few words
to arrive at “for some number x such that x2 = 2.” When one writes “the function
y = x2,” it is immediately clear that one means something else than “the equation
y = x2.” Too easily in mathematical texts and in explanations on the blackboard,
the words that support the meaning of mathematical expressions disappear.

Research has found that as a consequence, many students at all levels hold
misconceptions about the equal sign and cannot distinguish formulas and equations.
For example, some young students believe that the equal sign cannot be used in an
equation that does not have an operator symbol (i.e., 2 = 2) and that all operator
symbols must be at the left-hand side of an equation. Older students, even freshmen
at university (Godfrey and Thomas 2008), may believe that an equation must at least
contain one variable or emphasize the solution aspect of an equation (and thus do
not see a + b = b + a as an equation).

3.7 Variables in Physics

In physics, a variable is mostly used as a name for a quantity that can vary (often
with respect to time) and that in many cases can be measured. The name of a
physical quantity is often an abbreviation of the full name: T for temperature, V for
volume, m for mass, v for velocity, and so on. Measured values are always floating-
point numbers, possibly with margins of error, or natural numbers (in counting
processes). Physicists mostly compute with quantities as with real numbers except
that they take into account the accuracy of floating-point arithmetic. A value of a
physical quantity actually consists of three parts, namely, the numerical value (a
number), the precision (the number of significant decimals or the margins of error),
and the unit that is used to measure the quantity. This makes quantity arithmetic
more difficult to learn and to use than reference-free number arithmetic. On the
other hand, the units of physical quantities can also hint whether the formula into
which numeric value numbers have been plugged is correct: when one keeps track of

maintain an overview of this process, (2) the capacity to view symbolic expressions globally, and
(3) the capacity of algebraic reasoning.
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the units during a computation, one should end with a numerical value and a valid
unit for the computed quantity. This however requires algebraic skills that lower
secondary students may not have sufficiently developed yet.

Quantity arithmetic is also often connected to a particular perspective on the
context situation. The following example illustrates this. First, compare the given
answers to the following problem:

A red and blue car move slowly in a straight line in the same direction from the same starting
point, with the same speed of 2 m/s. The red car starts first, at time t = 0, and the blue car
3 s later. Give the formula for the distance s that the blue car has moved after t seconds, for
t > 3 s.

Answer 1 : s = 2(t − 3) Answer 2 : s = 2t − 6

In generalized arithmetic, the two expressions are equivalent: a factored and
expanded form. In quantity arithmetic, which takes dimensions into consideration,
the first answer represents a time approach of the problem via a distance =
speed × time formula, and the second answer represents a distance approach via a
distance = distance − distance formula. In the terminology of Sherin’s framework
(2001, 2006) for understanding of physics equations, this means that two different
symbolic forms are invoked, namely, intensive-extensive (� × �) and opposition
(� − �) and that the reasoning is different. But students are not always aware why
to switch to an alternative equivalent form, for example, why to expand brackets or
to factorize an expanded form. It takes much time, effort, and experience to develop
symbol sense in both mathematics and physics context.

Whereas in mathematics, variables often occur in isolation (e.g., in a quadratic
expression x2 + 2x + 3), in physics, they are mostly used in relationships that
combine two or more quantities. As example may serve Boyle’s law p V =
constant, for pressure p and volume V . But the variables in this law are not only
used as varying quantities; depending on the problem to solve, the symbols may also
stand for a finite set of values or a single value. Thus, in Boyle’s law, the variables
may actually be functions of time, viz., p �→ p(t) and V �→ V (t), and the law says
that the product of these functions is a constant function, i.e., p(t) ·V (t) = constant,
at every time t . In a problem like “suppose that V = 10 mL when p = 3 bar, how
much is V when p = 6 bar?” p and V do not represent functions anymore but
function values, namely, the pressure and volume at a certain fixed time. Actually,
we solve such problem via a relationship between two states characterized by two
physical quantities: p1 · V1 = p2 · V2, where (p1, V1) = (3, 10).

Proportionality is another type of relationship between several states involving
two or more physical quantities. For example, Charles’s law (also known as Gay-
Lussac’s 1st law), V/T = constant, for volume V and temperature T , can also be
written as V1/T1 = V2/T2. In school physics problems, three of the four quantities
are often given, and a student is asked to use the proportionality to compute the
value of the fourth quantity. Again, the variables are not treated anymore as varying
quantities but as momentary values or constants.
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The focus of mathematical thinking may differ radically from the one in a study
of a real-world problem. For example, when one encounters in mathematical work
a rational expression of the form ax

x+b
, the attention goes almost automatically

to the singular behavior as x approaches -b. Compare this with the study of
enzyme kinetics, where the Michaelis-Menten expression for the initial rate of

transformation of a substrate, S, by an enzyme, is v = Vmax[S]
KM + [S] , where [S]

is the concentration of S, Vmax is the maximum rate, and KM is the so-called
Michaelis-Menten constant. Because the parameters and concentrations are positive,
the singularity is never encountered, and the common mathematical analysis is
irrelevant. Sometimes a mathematical conflict corresponds with a problem in the
context situation. An example is electric short circuit, in which the resistance
becomes zero, and Ohm’s law gives an infinitely high current. In reality, the
resistance is never equal to zero, but it can be small enough to lead to a very high
current. A physicist will often ignore the mathematical problems and use Ohm’s law
whenever it is convenient. In other case, a physicist may ignore the mathematical
problems by circumventing them via practical reasoning.

In physics, or more generally in science, words like “big,” “small,” and “relatively
small” can be used while talking about physical quantities, and the absolute values
of the physical quantities are often used for this purpose. A force F1 of −10 N is
stronger than a force F2 of 3 N. But if students have learned in mathematics lessons
that 3 > −10, they might be tempted to write F2 > F1 and call F2 greater than F1 in
the sense of strength. The symbol << signifies that the left-hand side is much smaller
than the right-hand side. This notation is not used in mathematics. A small change
of a quantity Q is also given a name in science, such as 
Q, and one manipulates it
as any other variable, except that one often ignores higher-order term like (
Q)2 to
get a simpler model description. In this way, many physics laws are derived. Going
from calculus of small changes to infinitesimal change and calculus of differentials
is then a natural step. In a system dynamics approach to mathematical modelling,
Van Buuren (2014) showed that difference equations are already within reach of
lower secondary students. Actually, in his design experiments, when students were
confronted with a change in notation for the formula for distance, velocity, and time
from s = v · t to 
x = v · 
t , they argued that it would be easier for them to use

-notation from the beginning (with 
Q denoting a finite difference of the quantity
Q).

3.8 Mathematical Modelling

Redish and Kuo (2015) remarked that not only the mathematics is different in
physics but also its purpose is different: in physics, one tries to make sense of the
real world, not of an abstract field built upon axioms. Equations often come from
theories and laws of physics, and they are used in models to describe and explain
the real world. As Redish (2016) argued, equations are used to organize and pack
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You have to pick
an object to pay
attention to

Forces change
an object’s
velocity

These stand for 3 equations
that are independently
true for each direction.

Force is what
you have to pay
attention to when
considering motion

What matters is
the sum of the forces

on the object
being considered

The total force
is “shared ” to
all paerts of
the object

Total force (shared over
the parts of the mass) causes
an object’s velocity to change

aA

F A

mA

=

net

Fig. 3.1 Conceptual knowledge packed in a single equation, viz., Newton’s second law for the
3-dimensional motion of object A. (Picture taken from Redish 2016)

conceptual knowledge. He illustrated this with Newton’s second law of motion as
shown in Fig. 3.1.

Torigoe (2015) argued that many students struggling with symbolic equations
activate a web of resources appropriate for solving numeric problems and are
not sensitive to the cues for resources appropriate for symbolic problem solving.
Kanderakis (2016) argued that in physics, the continual interplay between physics
concepts, models, mathematical symbolic expressions, and the real world causes
students’ difficulties in modelling activities, because the mathematics of secondary
school physics is more complex semantically and conceptually than secondary
school mathematics. He also used the history of mathematization of physics to show
that mathematical concepts, structures, and operations are indispensable parts of
modern physics and consequently of secondary school physics and to exhibit that
the use and construction of models are essential for a quantitative mathematical
study of the physical word, also when models are created to apply known physics
theory to real physical systems. On the other hand, we are of opinion that the real
world actually helps making physics models concrete, tangible, and understandable.
Students just need a helping hand in the mathematization. A nice aspect of physics
is that one can often act and think in a non-mathematical way as well, and this offers
a broader perspective and extra means to check one’s findings.

Redish (2005) noted that traditional physics education does not give enough
emphasis to many of the critical steps in mathematical modelling: students are
mostly provided with a ready-made model that they only have to manipulate
mathematically in order to get an answer to a posed problem. This explains why
many students find it difficult to create models themselves from verbal descriptions
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of problem situations. As Duggan et al. (1996) identified as a critical point in
investigative work, selecting and defining relevant variables (such as independent,
dependent, and control variables) and relating them to each other in a qualitative
sense of cause-effect or in a quantitative way for a problem at hand are already
difficult steps for lower secondary students to make at the beginning of inquiry-
based investigative work. Cause-effect is not always as easy as it may look at first
sight: for example, many a substance expands when the temperature increases.
In this perspective, it is the temperature change that causes the expansion. But
in a mercury thermometer, the temperature is read off from the height of the
mercury in the glass tube. Here, the temperature depends on the height. So it is not
straightforward on many occasions which variable to select as independent variable
and which one as depending variable. In physics problems in which mass, density,
and volume play a role or in physics problem involving distance, speed, and time, it
depends on the concrete task which variable is best seen as the dependent one.

3.9 Proportionality, Ratio Table, and Cross-Multiplication
Table

Two related notions stand out in mathematics and physics education, namely,
proportionality and ratio table, and again mathematics and physics education treat
them differently, even when it concerns only the notion of cross-multiplication table.
Van der Valk and Broekman (2001) pointed out that in mathematics textbooks, a
ratio table has in most cases the following characteristics:

• it consists of two rows in no particular order and a variable number of columns;
• the rows have a label to indicate the meaning of the numbers and to specify, if

needed, the units used;
• the ratio between the numbers in the columns is the same for all columns;
• proportional arithmetic operations in the vertical and/or horizontal direction are

used to calculate empty places in the ratio table.

There is still room for extension: the function table shown in Table 3.1 originates
from a Dutch mathematics textbook and is used herein as an example to verify that
the ratio between a certain power of x and y is the same for all columns. In this
case, y is directly proportional to x3, and in particular y = 0.3x3. Note that in this
example, the independent and dependent variable are in the first and second row,
respectively. In a real context, swapping the rows is often useful: for example, in a

Table 3.1 Example of a function table in a mathematics textbook at upper secondary level, taken
from Reichard et al., Getal & Ruimte [Numbers & Space] wi havo D deel 3, 2007, p. 74

x 1.8 2.3 3.7 4.1 5.3 6.1

y 1.75 3.65 15.2 20.7 44.7 68.1
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Table 3.2 Example of a ratio table in a science textbook at lower secondary level, taken from
Hogenbirk et al., Natuur- en Scheikunde Overal [Physics and Chemistry Everywhere], 2 mHV,
1997, p. 111

× 3600

Duration 1 s 1 h

Distance 7.2 m 25,920 m ≈ 26 km

× 3600

table of salary as a function of working hours, one can better put amount of salary
in the first row and number of working hours in the second row because the ratio
has then a meaning as hourly wages. This layout of a ratio table would better match
with the distance-time table often used in physics textbooks.

In science textbooks, Van der Valk and his colleagues found several versions of
ratio tables, including Table 3.2 about the conversion of the constant speed of a
moped from m/s into km/h.

In this example, there are in fact two ways to compute the distance travelled
in 1 h: using the multiplicative relationship within or between the contextual
magnitudes (duration, distance). In Table 3.2, the symbol × 3600 suggests the
first approach, i.e., multiply within the variable “distance.” But one can also use
the multiplicative relationship between the contextual magnitudes and multiply
the duration of 3600 s by the unit rate of 7.2 m per 1 s. In mathematics education
research literature, the first approach is called the scalar perspective on proportional
reasoning, and the second one is called the functional perspective. In addition,
there is the cross-multiplication algorithm. A high level of proportional reasoning
involves the flexible use of either the scalar or functional relationship depending
upon the ease of calculation with the numbers in the problem.

In the above example, the ratio table differs in four aspects from a mathematical
ratio table:

• only four cells are present, which allow the cross-multiplication algorithm to be
used instead of row and column operations;

• labels are missing near quantities and instead information like units is placed
inside cells;

• the ratio of the numbers changes due to the use of units and rounding (1:7.2
becomes 1:26 from mathematical point of view);

• rows are changed compared to a mathematics-like table: The ratio expressed in
the table changes from 1 s :7.2 m to 1 h :26 km, but the task linked to this ratio
table is actually about speed, i.e., distance divided by duration; so why not an
ordering of rows that reflects this?

Van der Valk and Broekman (2001) advocated that the subject of ratio tables is
one of the areas in which mathematics and science teachers could collaborate
and gear activities for one another to let their students develop good proportional
reasoning skills. Otherwise, the ratio table may remain an algorithm instead of
a tool for promoting understanding. This cooperation between mathematics and
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physics in teaching and learning about proportionality is not as straightforward
as it may seem because proportional reasoning goes beyond the ratio table and
includes verbalization of proportionalities; conversion of the verbalization to for-
mulas, tables, and graphs; and recognition of behavior of these tables and graphs.
About graphing in mathematics and physics, Ellermeijer and Heck (2002) pointed
at technical, linguistic, and contextual differences. As an example of different
perspective on proportionality formulas in mathematics and physics, we mention
that one can often find in mathematics texts the characterization of proportionality
and inverse proportionality of variables P and Q in the format of formulas P/Q = c

and P · Q = c for some constant c, respectively. In physics, the mainstream
perspective of characterizing quantities P and Q as proportional and inversely
proportional apparently is P = c · Q and P = c · Q−1, respectively. These two
perspectives (constant ratio or constant multiplier) are reflected in the different ways
the ratio tables are treated in textbooks in these disciplines and whether the scalar
or functional perspective on proportional reasoning is promoted.

3.10 Conclusion

In this chapter, we have illustrated that math in physics is not the same as math in
mathematics. Physicists and mathematicians do mathematics for different purposes,
load meanings onto symbols differently (i.e., link equations with physical contexts
and let symbols carry extra information not present in the mathematical formulas),
and seemingly communicate in a different language. Redish and Kuo (2015) came
to the same conclusion and also provided a lot of examples. These differences, when
not explicitly discussed in classroom, confuse many students and often bring them
into situations where they do not know how to proceed. What also happens in school
practice is that students do not recognize similarities between math in mathematics
and math in physics because they are obscured by the context. Here, it helps if a
teacher points at similarities and discusses the students whenever possible. We are of
the opinion that knowledge about the differences and possibly obscured similarities
of use of math in physics and mathematics helps teachers understand students’
obstacles in doing math. Once physics and mathematics teachers have more insight
into students’ difficulties in math caused by epistemological differences between
the fields, they can jointly make steps toward coherent teaching. This requires an
open mind, time and willingness for discussion with other teachers, goodwill from
school or faculty directors, and instructional materials that are jointly written for
coherence. It is not easy but doable if one sets achievable goals. One such goal is to
be consistent between mathematics and physics wherever possible: it is unhelpful
to have arbitrary differences in approaches and terminology between the subjects;
students benefit if they are pointed at similarities in the use of mathematics in the
various fields.

As a concrete example of what can be achieved by gearing representations in
mathematics and physics lessons for one another, we take the proposal of Weijers
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Table 3.3 A ratio table with
extra rows for unit
conversion; compare this
table with Table 3.2

Duration (s) 1 3600

Duration (h) 1

Distance (m) 7.2 25,920

Distance (km) 25.92

and Van der Valk (2001) for extending the ratio table to include unit conversion. The
main idea is to extend the number of rows of a ratio table for unit conversion, which
in most cases also requires proportional reasoning. Table 3.2 about a moped going
at a speed of 7.2 m/s is in the proposed representation equal to Table 3.3. At the end,
the speed can be approximated to 26 km/h.

How small this change may look like at first sight; yet it enables the use of similar
representations and operations in ratio tables in mathematics and science disciplines.
When teachers in these disciplines look in each other’s textbooks, discuss notations
and methods with each other, and collaborate to bring more coherence in the use of
mathematics in their subjects, they will find other opportunities to improve teaching
and learning. In the recent reports of Bohan (2016) and Needham (2016), written
to support UK teachers of 11–16 science in the use of mathematical ideas in the
new science curriculum, one can find examples and recommendations. Concrete
suggestions can be as small but as helpful as choosing a common notation for
derivatives and denoting physical quantities, units, and symbols in the same manner
with the same typography. Also it helps if mathematics teachers like physics
teachers work with formulas that are independent of the units used: for example,
they better avoid wordings like “the length of L centimeters” and “L is the length in
centimeters” and then construct a formula in L, but instead do what physics teachers
do, stating just “L is length.” Coherence between mathematics and science can also
be improved by sharing lesson planning formats where a common mathematical
focus is identified or by having linked lessons on a common theme and comparing
approaches from the various disciplines.

But as argued in this paper, essential differences between the use of math
in mathematics and physics remain unavoidable. The best thing teachers can do
is discuss with their students the differences and similarities of mathematical
representations. One better points students at discipline-based conventions and how
they relate to each other. For example, in mathematics, one prefers the lexicographic
ordering in mathematical expressions and does not use labelled names if they can
be avoided; physics often uses labelled names (if only to label the object under
investigation or the source of a force) and has its own conventions of ordering.
Teachers better clarify the meaning of algebraic terms and notations in their lessons
and help students relate them to what they already know from earlier mathematics
and physics lessons. For example, Van Buuren (2014) clarified in his modelling
learning path for lower secondary physics student what he meant with terms like
equation, formula, and a simple calculation. Even though these were operational
definitions, which would be extended at later stages of education, they helped his
students to make the first steps in algebraization of context situations and in doing
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computations that would prepare them for creating models later on in their school
career.

In summary, the main recommendations for mathematics and physics teachers at
all levels of education are that they discuss with their colleagues how mathematics
is used in their fields, try to agree on consistent use of mathematics in their lessons
wherever possible, and explicitly discuss in their classrooms with their students
what the similarities and differences between mathematics use in their fields are.
Concrete examples will help their students better grasp the mathematical methods
and techniques and transfer them from one subject to another.
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Chapter 4
Mathematical Representations in Physics
Lessons

Marie-Annette Geyer and Wiebke Kuske-Janßen

4.1 Introduction

Communication in science is characterized by the use of specific types of represen-
tations. Physicists use different ways to represent their knowledge and to explain and
analyze phenomena. In the same way, these specific representations occur in physics
lessons and play an important role in the teaching and learning of physics. Different
media and representations are used as the following example of a typical situation
in physics class illustrates: the design of an experiment is sketched, the experiment
is conducted, the relation between the measured quantities is firstly represented in
a table and then in a graph, a formula is derived, and conclusions are formulated.
During all these steps, verbal language in an oral or written form occurs as well.

Particularly mathematical representations play an important role in physics
and physics lessons. It is alarming that learners show problems especially in
understanding and handling mathematics in physics (e.g., Uhden 2015; Pospiech
and Oese 2014; Bagno et al. 2011; McDermott et al. 1987). Therefore, the interest
of this article lies in the description and classification of different mathematical
representations in physics lessons. This helps to understand specific characteristics
of these different representations and is a first important step toward investigating
students’ handling with these representations and identifying their difficulties as
well.

Beginning with a general description of representations from a cognitive sci-
ences’ and semiotics’ view, the article presents the state of theory about repre-
sentations in physics education with focus on mathematical ones. Based on this,
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an adapted model for the classification of representations is presented. Proceeding
from theoretical considerations and empirical findings about the relevance of
representations for learning and understanding physics and students’ difficulties,
two theoretical models are presented. These models are part of current research and
offer an approach to analyze different changes of representations in physics classes.
Ultimately several implications for teaching will be derived.

4.2 Representations

The Encyclopedia of Science Education defines representations as “notions or signs
or symbols that stand for something in the absence of that thing, a thing which
typically is a phenomenon or an object in the external world but can be just in our
imagination” (Dolin 2016, p. 836 f.). This definition needs specification for our
purpose of describing mathematical representations in physics lessons.

First of all the definition differentiates between the external world and our
imagination. This links to a description of representations either as external or
as internal. External representations are used to communicate meaning. These
external representations are perceived by our senses and converted to an internal
representation; some authors (e.g., Greca and Ataide in this book) also speak
of mental models of the external representation. Gilbert defines: “The meanings
attached in the brain to a given external representation may therefore be called
a personal internal representation of it and is a visualization of it” (Gilbert 2016,
p. 122).

Bruner (1974) specifies internal representations and how they evolve with in-
creasing age and the development of cognitive abilities from birth till adulthood. He
differentiates between enactive, iconic, and symbolic representations (cf. Fig. 4.1).
As a child we are only able to represent the world internally by acting. We discover
the world by movement and the sense of touch, and these actions are our mental
representation of the world. An example for an enactive representation is the
manual palpation of different substances. After a while learning progresses toward
representing the world by iconic signs. We look at a cat and construct an internal
picture of the cat. The picture has similarity with the original cat. Because of these
similarities, we are able to connect our internal representations with the objects we

Fig. 4.1 Bruner’s classification of representations
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represent. A third and most complex way to represent objects is using symbolic
representations. A symbol does not have any similarity with the object it represents.
Frequently the mapping between representations and objects follows socially shared
principles; the connection of a symbol and its content is an arbitrary convention.
An example for symbolic representations is the human language. We see a cat
and represent it internally by thinking the word “cat.” This word does not have
any similarity relations to the cat but is an abstract sign for a group of objects,
in this case for animals walking on four paws, with a tail, that make “mew.” In
physics lessons, all three categories, enactive, iconic, and symbolic representations,
play an important role. Conducting experiments enables students to make enactive
representations, drawing a sketch encourages iconic representations, and all kinds
of language and also mathematics are symbolic representations.

Because we think it is important to investigate the observable macro-level of
physics lessons (e.g., how does the teacher act in class, what representations does
he use, how do students handle different representations), we will concentrate
on external representations initially. This detailed description is an important
prerequisite for a better understanding of individual learning processes. Theoretical
approaches for internal representations will be used in further research to derive
implications for the use of different external representations in teaching.

Representations are always embedded in communicational processes. Because
we are concentrating on representation as signs that contain information, we will
focus on the informational side of communicational processes. With reference to
the communicational model of Schulz von Thun, we ignore the self-revelation,
relationship, and appeal sides of a message and concentrate on the factual infor-
mation side (Schulz von Thun n.y.). Considering this focus communication intends
a transportation of meaning from one person to another. Since the construction of
meaning is always embedded in a person’s prior knowledge, the outgoing and the
incoming information of two communication partners will not be identical. This
is important for the context of teaching and learning. Focusing on the information
that a representation encodes, representations can be seen as signs. The definition
above uses sign as synonym for representation. The use and meaning of signs is
part of semiotics. As Peirce (1960) points out, each (external) sign is connected
to an (external) object and to an (internal) interpretant: “A sign [ . . . ] addresses
somebody, that is, creates in the mind of that person an equivalent sign, or perhaps
a more developed sign. That sign which it creates I call the interpretant of the
first sign. The sign stands for something, its object” (Peirce 1960, p. 135). The
interpretant always depends on the person who is reading the sign and his or her
individual knowledge. This triad of a sign is shown in Fig. 4.2. A good illustration
of this from a physics lesson is the term “electric voltage.” When a student
uses the words “electric voltage,” his/her speech is the (external) representation
for the object, in this case the physical concept of electric voltage. His internal
representation might differ from this object and how it is understood by another
person, e.g., a physicist or a physics teacher. In physics education it is well known
that many concepts that students have diverge from the established concepts of
the community of the discipline. These different individual concepts of an object
constitute the interpretant.
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Fig. 4.2 Peirce’s triad of a
sign (cf. Peirce 1960): every
sign, respectively,
representation is connected to
an object and an interpretant

Another important characteristic of a representation is that it represents not
every aspect of an object but focuses on a collection of characteristics that are
relevant for the communicational purpose. In this way a representation is related
to a model of an object. Lemke (1998) emphasizes this characteristic and therefore
states that it is always important to use different representations to understand
the meaning of an object or concept: “It is sometimes argued that the various
representations of a ‘concept’ are entirely ‘redundant’ with one another, that they
can be placed in one-to-one correspondence, so that meanings that can be made
in one semiotic modality can be equally well made in the others. This is not
the way scientific communication appears to work: meanings are made by the
joint codeployment [co-deployment: combination and connection, authors’ note] of
two or more semiotic modalities, and such codeployment of resources is needed
for canonical interpretation. In my opinion, semiotic modalities (e.g. language,
depiction) are essentially incommensurable” (Lemke 1998, p. 110). This aspect will
be deepened in the section about multimodal representation in this article.

4.2.1 Specific Nature of Mathematical Representations

Mathematical representations, for instance, formulas and graphs, are in some
aspects different from representations in everyday life or in other disciplines. The
reason is the nature of mathematical objects. Duval (2006) asks, “How can the
represented object be distinguished from the semiotic representation used when
there is no access to mathematical objects apart from semiotic representations?”
(Duval 2006, p. 115). This citation describes the complexity of mathematical
representations as consequence of the complexity of mathematical objects. A
mathematical object is not something we can see or even touch, but it is an abstract
cognitive construct. Therefore, enactive and iconic representations do not play an
essential role for mathematical concepts in the first place. However, they may occur
in the context of teaching.
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Furthermore, it has to be considered that mathematical representations are
ambiguous by nature. Hence, they are frequently interpreted in different ways.
Heck and van Buuren (in this book) illustrate this particularity of mathematical
representations with the help of different examples.

Based on Schnotz and Bannert (2003), Bauer (2015) describes the internal
representation of a mathematical object. The internal representation includes pos-
sible external representations; the relationship with other mathematical terms and
possible mathematical operations (Bauer 2015, p. 24). Redish and Kuo (2015)
follow a comparable approach by using the concept of encyclopedic knowledge
for describing the meaning of a physical formula. This approach leads to the
relevance of multimodal representations for learning and teaching physics and will
be described in this article in Sect. 4.4.

4.3 Classification of Representations in Physics Lessons

Examining a physics classroom, a huge variety of representations can be found.
Students have to learn how to interpret, use, construct, or change between them. For
analyzing the related teaching and learning processes, it is necessary to describe the
different kinds of representations, their similarities and differences, and their cross-
linking. Therefore, in this section a detailed classification of external representations
in physics is presented. Because of the specific role of mathematical representations,
these are highlighted in this classification. For this reason first a classification of
representations from mathematics education is introduced which later is adapted to
physics.

4.3.1 Representations in Mathematics

Prediger and Wessel (2011) developed a model to distinguish between different
registers of representations (“Darstellungsregister”) in mathematics lessons that is
related, for instance, to Bruner (1974). It draws a distinction between the registers:

Objective
Pictorial
Verbal
Symbolic-numerical and
Symbolic-algebraic

Furthermore, the verbal register can be divided into everyday language, academic
language, and special language.

The different representation registers in their model are basically ordered
according to the degree of abstractness whereby the symbolic registers are the most
abstract ones. However, this can be different for different situations depending on
the context. For instance, abstract pictures can act as a mediator between academic
and special language.
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4.3.2 Representations in Physics

Physics involves its own representations which are characteristic for the discipline.
The Encyclopedia of Science Education (Dolin 2016, p. 837) and other authors
(e.g., Gilbert 2016, pp. 123–131) present different ways to classify them. As the
particularity of mathematical representations in physics should be highlighted in
this article, the classification by Prediger and Wessel (2011, p. 167) was adapted as
it focuses on representations which include mathematical symbolism and concepts.
To meet the conditions of the discipline of physics, some adjustments were made.

Figure 4.3 shows the adapted classification of representations in physics lessons
that contains the following categories.

Objective Representations: This category relates to the enactive level by Bruner
(1974) described in Sect. 4.2. It includes representations of objects or physical
concepts that exist as objects. They can not only be seen but also touched or
moved. In physics lessons, they occur, for example, during experimental situations
and also in the form of objective models, e.g., a movable model of the solar
system. This category has two subcategories: On the one hand, there are iconic
objective representations in which similarities to the represented object exist, e.g.,
an objective model of an engine. On the other hand, there are symbolic objective
representations in which a certain symbolism has to be known to understand and
work with these kinds of representations, e.g., an objective model of the axes of
a three-dimensional coordinate system (also in form of gestures, e.g., using three
fingers for symbolizing the three axes).

Pictorial Representations: Photographs, pictures, drawings, sketches, etc. are
classified as pictorial representations. Two subcategories are distinguished as well:
First there are iconic pictures that still show similarities to the objects they
represent. Examples are photographs and sketches of experiments. Second there
are symbolic pictures that expose no or almost no similarity between the picture
and the represented object or physical concept. These representations can only be
interpreted and used if the symbolism is known and understood. For instance, a
circuit diagram can only be interpreted if the circuit symbols are known. Also energy
flow charts belong to this subcategory.

Verbal Representations: This category comprises written as well as spoken
language. According to Prediger and Wessel (2011) and Prediger (2013), three
levels with no clear boundaries are distinguished:

Everyday language includes predominantly expressions of spoken language. Fre-
quently there is a lack of explicitness. (e.g., I use the switch. The light turns on.)

Academic language includes primarily expressions of written language. It is
explicit, with more complex grammar and impersonal. To some extent words
of special language occur. (e.g., the electric circuit is closed. The LED is on.)

Special language is characterized by high precision, conciseness, clearness, and
high occurrence of specialized terminology. The communication is optimized
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Fig. 4.3 Classification of representations in physics lessons (Bear in mind that the term “object”
in the subcategories does not mean the object that is represented but its representation in form of
an object)
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toward efficiency and clarity. (e.g., the electric circuit is closed. The LED emits
light of the wavelength 550 nanometers.)

It can happen that other representations than verbal ones occur within these three
types of languages, e.g., formulas within a written text or gestures within a talk. In
contrast to Prediger (2013, p. 175), we see this as a blending of or cross-linking
between different kinds of representations and not as part of the verbal categories.

Pure Mathematical Representations: As mathematical objects are abstract con-
structs, the mathematical representation of physical objects inherits the high level of
abstractness. For instance, data that was measured in an experiment is represented
in form of a table. This kind of representation is called numerical. Line diagrams or
graphs that are drawn or interpreted are categorized as graphical. And mathematical
terms, equations, and formulas which are derived to describe physical phenomena
or that are used to solve physical problems are located in the category of algebraic
representations. These are often used to sum up experimental results and to represent
a general relation between physical quantities.

As already mentioned above, this classification of mathematical representations
in physics is based on a classification used in mathematics education. Some
adjustments had to be made to meet the conditions of the discipline physics and
to make it applicable for the planning and analyzing of physics lessons. These
modifications are deepened and justified in the following.

4.3.3 Different Kinds of Objective and Pictorial
Representations

Both the objective and the pictorial categories in the presented classification consist
of two subcategories, whereas Prediger and Wessel (2011) have only one category
for each of them in their model. The distinction between iconic and symbolic
objects, respectively, and pictures refers to the idea of Schnotz and Bannert (2003).
They distinguish between depictive and descriptive representations. It is important
to distinguish between these two different sorts of representations because they
relate to different levels of abstractness. A depictive representation is attached to
the content in a way that makes it easy to extract information about the represented
object. Structural characteristics of the object and its representation are equal (cf.
Schnotz and Bannert 2003, p. 143). These kinds of representations are named iconic
here. On the other hand, a descriptive representation includes symbols that describe
the represented object in an abstract way. Only with the help of conventions these
symbolic representations can be interpreted or constructed (cf. Schnotz and Bannert
2003, p. 143). In the presented classification, the term symbolic is used to describe
these kinds of representations.

The meaning and the relevance of this distinction will be illustrated by the
following examples of objective and pictorial representations.
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Objective representations in physics can be of different levels of abstractness.
For instance, a physical model of a combustion engine represents the structure and
functionality of it. It can be moved to illustrate different phases of the process. Such
a model shows similarities to the real object that it represents and hence is classified
as an iconic objective representation.

But many objective representations in physics lessons include symbolism.
Similarities to the objects that they represent are missing. This is due to the fact
that most physical theories describe objects or constructs that cannot be observed
directly, e.g., the electric current. Because this implies extra challenges for students
who have to handle them, they should be seen in a different way. For instance,
when the physics teacher demonstrates three of his fingers explaining the relations
of electric current, magnetic field, and force, a lot of information is embedded. Only
if the rules of the symbolism and the physical concepts are known this representation
can be useful to students. The described gesture is classified as a symbolic objective
representation.

The example of an experiment in which the electrical conductivity of different
materials is investigated helps to illustrate the difference between iconic and
symbolic pictures. A picture of the experimental set-up is less abstract than a circuit
diagram. A student has to be able to relate the circuit symbols to concrete objects to
understand the latter. This means students have to face different requirements when
they interpret these different sorts of pictorial representations. The circuit symbols
show almost no similarity to the objects they are representing. They are symbols and
therefore at a higher degree of abstractness compared to photographs or sketches.

The same applies to flow charts in physics that are used, for example, to represent
energy transformations. Leisen (2004, 2005) sees them coequal to line graphs.
However, if they are not focusing on quantifiable aspects, it seems more appropriate
to classify them at a lower level of abstractness compared to mathematical repre-
sentations. The different degree of symbolism and abstractness justifies why these
symbolic pictures have to be distinguished from iconic pictures (e.g., photographs).

Especially for physics teachers, it is important to consider this difference between
iconic and symbolic objects or pictures. Using different kinds of representations
creates different challenges for students. Students first have to get used to the
way in which physics is communicated. They have to learn how to interpret, use,
and interrelate different symbolism and physical concepts that are represented in
pictures and objects. Using objective and pictorial representations in physics lessons
is not necessarily easy for students although they are meant to be clear, descriptive,
and demonstrative (especially in comparison to mathematical representations).

4.3.4 Graphical Representations

In the classification by Prediger and Wessel (2011), (line) graphs are located in
the pictorial register, whereas in our classification, they belong to one subcategory
of pure mathematical representations, graphical representations (cf. Fig. 4.3).
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Fig. 4.4 Variety of
classifying a vector in physics

Thereby, they are considered as different from pictures and are assigned to a higher
level of abstractness, in a greater distance to the level of objective representations.
There are several reasons for it: Within graphs symbolic features occur (e.g., labels
of the axes, trend lines, error bars) which increase abstractness and semantic density
of the representation. Furthermore, graphs contain quantifiable aspects; they are
representing a functional dependency. For these reasons they are mathematical
representations and have to be seen differently to pictures.

It should be noted that the mapping of a representation to the presented
classification in Fig. 4.3 could depend on the situation. The example in Fig. 4.4
that examines a vector in physics is illustrating this.

The presented classification was predominantly developed to analyze the partic-
ularity of mathematical representations in physics lessons. Therefore, it focuses on
representations that occur in textbooks, at the black- or whiteboard, in the students’
notes, and in the teachers’ and students’ speech. Nowadays technology allows a
dynamic variation and connection of mathematical representations as well. This
can be seen as a blending of the presented categories. For instance, in simulations
pictorial and different kinds of pure mathematical representations are connected.
The article by Euler and Gregorcic in this book illustrates how this blending of
different representations can be used in a fruitful way to provide learning of physics.
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4.4 Relevance of Different Representations for the Learning
and Understanding of Physics

Physicists use many different representations for their work and communication.
Thus, representations are an important part of physical methods and techniques that
students should be introduced to. Teachers can use a multimodal approach in their
physics lessons to emphasize this and to enable their students to understand and
work on physical topics. In this section it is highlighted as well that students should
not only learn how to use and interpret representations in physics but in addition gain
some meta-knowledge and meta-competences about representations in physics.

4.4.1 Representations as Part of Physical Methods

Understanding of physics includes that students should know about physical
concepts, theories, structures, terms, and methods and apply them appropriately, for
instance, to investigate, describe, and explain a physical phenomenon. This means,
using the words of Airey and Linder (2009), that the students should get access to
a way of knowing, “the coherent system of concepts, ideas, theories, etc. that have
been created to account for observed phenomena in a discipline” (Airey 2009, p. 11).
For instance, talking about different states of matter and phase transitions in physics,
the related way of knowing includes among others the concepts of energy and heat,
latent heat, physical quantities like temperature and pressure, and physical terms like
melting, evaporating, condensing, and freezing. Following Airey and Linder (2009),
these different aspects of the way of knowing are represented by different edges
of a polygon in Fig. 4.5. Access to these aspects can be gained through different
representations,1 e.g., images and formulas. It may occur that some of the aspects
of a way of knowing are not addressed or even not known (represented as a question
mark in Fig. 4.5).

The representations which are important to understand a way of knowing are in
general of different types. For the presented example of states of matter, some of
them are shown in Table 4.1.

Each of these representations has specific potentials for uncovering a particular
aspect of the regarded way of knowing. This has been described by Fredlund
et al. (2012) as the disciplinary affordance of the representation.2 Many of these
representations “overlap” and can link to other representations, while others have
quite specific disciplinary affordances (i.e., meanings that cannot be made by
other means). Only when there is a combination of different representations a

1Airey and Linder (2009) use the term semiotic resources and distinguish between tools, activities,
and representations. In our argumentation this distinction is not important; tools and activities can
be seen predominantly as handling with objective representations.
2Fredlund et al. (2012) use the terminology of semiotic resources as well; therefore they call it the
disciplinary affordance of a semiotic resource.
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Fig. 4.5 Different representations give access to different aspects of the physical concept that
should be understood (cf. Airey and Linder 2009). For instance, exploring the phenomenon of
constant temperature during a phase transition could take place with the help of laboratory work
and graphs

holistic experience of the way of knowing (i.e., understanding) can be reached.
Therefore, students should be taught to become fluent in changing between different
representations. This fluency is necessary but not sufficient for an understanding.
Students might only imitate the use of different representations and thus still not
experience the corresponding aspects of the way of knowing (cf. Airey and Linder
2009). In that way understanding different representations and using them correctly
is part of the methods in physics. These different representations emphasize the
importance of multimodal representations from a perspective that focuses on an
understanding of the discipline itself more than on the specific content: “a set
of carefully selected multimodal representations, each with their own (unique,
supplementary or complementary) affordances, is needed in order to generate a
collective disciplinary affordance” (Linder 2013, p. 47).

Airey and Linder (2009, p. 40) claim that a critical constellation of semiotic
resources is necessary to reach a holistic understanding of a physical concept.
Students should become fluent in this certain constellation of resources first.
Teachers can follow a multimodal approach to support this.
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Table 4.1 Examples of different representations giving access to the way of knowing about states
of matter and phase transitions

Pure mathematical representations Q = m·c·ΔT + Qlatent

Q_latent = q·m

Verbal representations The ice melts

The temperature is increasing when energy is added

Pictorial representations

Objective representations Thermodynamic apparatus, e.g., calorimeter,
thermometer, barometer (includes laboratory work,
measuring, observing)
Objective model of the particle model illustrating the
movement of particles

4.4.2 Multimodal Representations

In Sect. 4.2, one of the characteristics of representations was specified: they
focus on some aspects of the object they represent and leave out others. This
means that to achieve a holistic experience of an object, e.g., a physical object,
concept, or law, different representations have to be included. Considering different
representations, we get a holistic impression of the physical context. On the other
hand, using different representations enables different approaches to one concept
and is therefore important for understanding and learning the physical concept
itself. Lemke (2004) argues that science itself is multimodal and that students need



88 M.-A. Geyer and W. Kuske-Janßen

to learn all “languages of science.” Students should be able to interpret, connect,
and integrate different representations. He states that “Scientific literacy is not just
the knowledge of scientific concepts and facts; it is the ability to make meaning
conjointly with verbal concepts, mathematical relationships, visual representations,
and manual-technical operations” (Lemke 2004, p. 38).

Multimodal representations can fulfill different functions for learning and thus
help to support learning and understanding of physics.

Different Information and Processes: As different representations display dif-
ferent (complementary) information, multimodal representations support learning
different aspects of a phenomenon. In addition different representations promote
different processes, e.g., a table will mainly be used for reading single values, a
graph will help to recognize trends, while an equation invites to calculate.

Understand One Representation with Another One: Moreover, multimodal
representations help students to understand a certain representation better by using a
second representation to constrain the interpretation of the first one. Either students
can relate an unknown representation to a well-known form of representation
(constrain by familiarity) or by using a more specific representation to give more
detailed information about the first ambiguous representation (constrain by inherent
properties).

Construct Deeper Understanding: And finally multimodal representations can
help students to construct deeper understanding, either relational understanding
(relating different representations) or extending knowledge from one representation
to another (e.g., transfer knowledge about a velocity-time graph to understand an
acceleration-time graph) or allowing abstraction by referencing different represen-
tations, and thereby gain insight in the underlying structure of a topic (Ainsworth
2008; Ainsworth 2006). Furthermore, Waldrip et al. (2010) argue that “unless
learners can represent their understandings in diverse modes, then their knowledge
is unlikely to be sufficiently robust or durable” (Waldrip et al. 2010, p. 69).

As mathematical representations are highlighted in this article, a multimodal
approach has to be stressed especially for them. Redish and Kuo (2015) reason from
a cognitive semantics approach. Whereas Airey and Linder (2009), as described
above, derive the necessity of using multimodal representations from within physics
itself, Redish and Kuo (2015) focus more on the question what helps a student
to understand a physical concept. They discuss what it means to make meaning
of a mathematical expression in physics. For this, they apply three concepts from
cognitive semantics: embodied cognition, encyclopedic knowledge, and contextual-
ization. All three concepts imply that it is necessary to connect the mathematical
expression with other cognitive resources to understand its meaning. On the
one hand, the mathematical expression is connected with a physical experience
(embodied cognition) or on the other hand with a network of different concepts
that are related to it (encyclopedic knowledge). Furthermore, the interpretation of a
mathematical expression depends on the context in which it is used (contextualiza-
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tion). For instance, if the sign Q is used in physics lesson, it can mean either heat or
electric charge. Redish and Kuo (2015) do not mention multimodal representations
explicitly, but all presented concepts focus on the connection of different resources.
Considering that physical knowledge is represented in different representations and
thereby multimodal, it is always necessary to connect, e.g., an equation with other
representations related to it. This means connecting different representations can
help to develop a better conceptual understanding.

4.4.3 Successful Learning with and about Representations

The theoretical considerations we described above let us assume that multiple
representations effect the learning of science positively. Bauer (2015) quotes several
studies that seem to report these positive effects for learning: van der Meij and
de Jong 2006; Kozma et al. 1996; Ainsworth et al. 1998; Mayer and Sims 1994.
However, he underlines that there is the possibility of cognitive overload. If students
are not able to handle the multimodal representations that are used, they can interfere
successful learning. He summarizes studies that could not show any effect of
multiple representations on learning or even showed a negative effect: Chandler
and Sweller 1991; Ainsworth et al. 1998; van Someren 1998.

This leads to the question what competencies students need to use (multimodal)
representations successfully. Lemke (2004) emphasizes the importance of not only
using different representations for teaching and learning, but in addition students
should learn about different representations (their characteristics, their meaning,
etc.) explicitly. Ainsworth (2008, pp. 199–204) specifies what students need to know
for a successful learning by using representations. They should understand:

• The form of a representation (e.g., how to read a graph)
• The relation between the representation and the domain (e.g., what the symbols

in a formula in a given physical context mean)
• How to select an appropriate representation (e.g., what representation can help to

solve a specific problem)
• How to construct an appropriate representation (e.g., how to draw a graph or

design a table)
• How to relate representations (e.g., how to connect a graph with a formula)

A similar approach can be found in the work of diSessa (2004). He developed a
concept of metarepresentational competence (MRC) to describe higher levels of rep-
resentational competence and enhances the importance of teaching MRC explicitly.
The concept of MRC helps to understand how students design new representations,
discuss the adequacy and suitability of representations, understand the purposes of
representations, explain representations, and learn new representations quickly.
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4.5 Students’ Difficulties with Mathematical Representations
in Physics

In the previous sections, it has been discussed why different representations are
important in physics and which particularities mathematical representations have.
A multimodal approach and learning about representations might improve learning
and understanding of physics. Nevertheless it has to be considered that it challenges
students to handle mathematical representations as several studies in mathematics
and physics education research demonstrate.

For instance, Leinhardt et al. (1990) and Hattikudur et al. (2012) describe that
students of lower secondary school struggle a lot with graphs. They have different
misconceptions and difficulties with both interpretation and construction of graphs
(e.g., graph-as-a-picture confusion, tendency toward linearity). A similar situation is
reported regarding algebraic representations: students have difficulties to construct,
adapt, and interpret even simple equations that describe everyday situations (Malle
et al. 1993).

Studies that investigated how students change between different representations
in mathematics demonstrate that it matters between which representations they
translate. The difficulty depends on which kinds of representations are involved
(Nitsch 2015). For instance, most difficulties occur during a change from a table,
graph, or formula to a verbal representation (Bossé et al. 2012). Furthermore,
novices have greater problems to connect different representations compared to
experts (Kozma 2003).

With respect to mathematical representations in different disciplines (e.g., in
physics), research results show that even if students have high mathematical skills,
they are sometimes not able to apply them in these contexts (e.g., Rebello and Cui
2008; Planinic et al. 2013). Furthermore, they tend to neglect the context and focus
on surface features of the representations. A conceptual understanding is mostly
missing (e.g., Kim and Pak 2002; Tuminaro and Redish 2007; Uhden 2015; Bagno
et al. 2011; Strahl et al. 2010; Pospiech and Oese 2014; Eriksson et al. 2014).

These multiple difficulties of students demonstrate the importance of further
research in this field. There is still much to be learned about how students handle
mathematical representations in physics, for example:

• How do students construct, adapt, and interpret mathematical representations in
physics?

• How do they connect different mathematical representations and change between
them in physics?

• What can be expected from students at which age with respect to the handling of
mathematical representations in physics?

• To which extent do the students imitate their teachers in handling mathematical
representations in physics?

• How can teaching be changed to promote a conceptual understanding of mathe-
matical representations in physics?
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The importance of multimodality and the described students’ difficulties empha-
size the importance of learning explicitly about representations. Two approaches
that could help students to link different representations and to get a better insight
in students’ difficulties translating from one representation to another are presented
in the next section.

4.6 Change of Representations in Physics Lessons

As described in Sect. 4.4, it is necessary to work with different kinds of represen-
tations to achieve a holistic understanding of a physical concept or phenomenon.
Therefore, the translation between different representations in physics becomes a
part of the skills that students should learn.

A change of representations can be seen as a translation from a source represen-
tation to a target representation (cf. Janvier 1987, p. 29). The elements and structure
of the source have to be transferred into the elements and the structure of the target.
As described above, different kinds of representations focus on different aspects of
a given physical content, some of the represented information is lost, and other is
added during this process.

The direction of the translation should be taken into consideration as well. For
instance, it is a different task for students to construct a graph referring to a given
formula compared to derive a formula from a given graph (cf. Duval 2006, p. 122).

In the following, two theoretical models are presented that focus on the change
of representations in physics. They illustrate the particular role of mathematical
representations in this process and its connection to verbal representations.

4.6.1 Changing Between Representations of Functional
Dependencies in Physics

To describe the process of changing between different representations of functional
dependencies, a model was developed (cf. Fig. 4.6). It was derived from a model in
mathematics education (cf. Adu-Gyamfi et al. 2012) which characterizes the change
between representations of functional dependencies, i.e., it covers only numerical,
graphical, algebraic, and verbal representations as source or target representations.

During a translation from the source representation to a target representation,
different categories of activities (A, B, C) can occur. For reaching the target repre-
sentation, not every category has to occur. Furthermore, the order and frequency of
applying them is not fixed.

• Activities A: stepwise realization
The origin of this category is the construct implementation verification by

Adu-Gyamfi et al. (2012). It brings out the use of algorithms and step-by-step
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source
representation

target
representation

A B C

A B C

structural translation

technical translation

A  stepwise realization
B  use of characteristics
C  verification of consistency

Fig. 4.6 Model of changing between representations of functional dependencies in physics (cf.
Geyer and Pospiech 2015)

activities during a translation process. The target representation is built, e.g., by
calculating values or plotting points.

• Activities B: use of characteristics
Like in the attribute verification by Adu-Gyamfi et al. (2012), these activities

focus on using key characteristics for the translation. Explicitly or implicitly
given properties of the source representation are used to build the target
representation, e.g., the kind of dependency between the related quantities.

• Activities C: verification of consistency
This category was derived from the construct equivalence verification by Adu-

Gyamfi et al. (2012) and concerns the verification of the consistency of the
source and target representation. Both should convey consistent information. For
example, single steps of the translation process are examined.

Each one of A, B, or C can be part of a technical or structural translation.
These terms refer to the technical and structural role of mathematics in physics
(cf. Pietrocola 2008; Karam and Pietrocola 2010). The possible approaches to a
solution can focus on pure mathematics including remembered algorithms and
routines (technical translation) or on an argumentation in which mathematics and
physics are strongly intertwined (structural translation).

The task in Fig. 4.7 illustrates a characteristic example for a change of represen-
tations in a mechanics lesson.

Using this example, Table 4.2 describes how students could solve the task and
maps possible steps to the categories of the model in Fig. 4.6.

In an explorative laboratory study with students aged about 14 years, the model
in Fig. 4.6 will be used to describe and structure the process of the students working
on physical-mathematical tasks which include changes of representations. This will
be a step toward a first validation of the model.
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Fig. 4.7 Example for a change between a table and a graph in physics

In the following, we will focus on the change between algebraic and verbal
representations. This case shows that each of the kinds of representations can also
occur in different modifications, e.g., different types of verbalizations.

4.6.2 Verbalization of Physical Formulas

Students frequently fail at describing conceptual meaning of formulas (e.g., Bagno
et al. 2011). Formulas in physics are used to sum up physical and mathematical
meaning, and physicists are able to connect the symbols used in the formulas
to different knowledge resources (e.g., physical terms, theories, experiments, and
mathematical relations and applications). Thus formulas construct a complex mean-
ing; Redish describes that formulas are used “to organize and pack our conceptual
knowledge” (Redish 2016, see also the example in the article of Heck and van
Buuren in this book). Meanwhile students use formulas frequently for calculations.
Therefore, it is interesting to have a closer look on how formulas can be translated
into natural language and connected with verbal descriptions.

To be able to describe different forms of speaking about a formula, a model
was developed that is based predominantly on linguistic theory and reflections.
Referring to Hoffmann (1987, pp. 64–71) linguistics describes specialized language
on the one hand in horizontal separations and on the other hand with vertical layers.
Horizontal layers of specialized language describe the differences of language in
different scientific fields, for example, language used by mathematicians compared
to the language used in the field of physics or on a more detailed scale language
in experimental nuclear physics compared to language in experimental solid-state
physics. The interest for vertical layers of specialized language on the other hand
focuses on differences within one scientific field. Hoffmann describes five vertical
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Table 4.2 During a translation from a table to a graph, different activities can occur during a
technical or a structural translation. Some examples are presented

There are only positive numbers in the table. The x-axis and y-axis are drawn
for the first quadrant

A technical

The table shows distance in kilometer and time in minutes. Every minute the
distance of a moving object was measured. The distance is a function of time.
The x-axis is labeled with t in min, and the y-axis is labeled with s in km

A structural

The axes are scaled (arbitrarily) A technical
All six points that are given in the table are plotted A technical

All points seem to be in a line. Hence they could be connected by a straight line
which shows the relation between s and t

A technical

The graph shows a uniform motion because the distances between every minute
are the same. There is a proportional relationship between distance and time.
This is represented by a straight line through the origin. If there is no change in
velocity, the line can be extended up to 7 min

B structural

If the direct proportional relationship is recognized without plotting all the
points, the graph could be drawn by extracting the slope with the help of the
given point (1|1.7) or calculating the quotient s/t that is approximately constant
and around 1.7

B technical

If the uniform motion is recognized without plotting all the points, the graph
could be drawn by extracting the velocity of the moving object out of the pair
(1 min|1.7 km). It moves (approximately) 1.7 km/min which is represented by
the slope of the graph

B structural

The slope of the graph represents the velocity of the constant motion.
1.7 km/min is 102 km/h. The represented relation can be an idealized
description of a car moving with 102 km/h at a straight part of a highway

C structural

The s-value for t = 7 can be calculated: s = 1.7 ·7 = 11.9. The point (7|11.9) is
(approximately) part of the curve

C technical
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Fig. 4.8 Levels of verbalization of a physical formula (cf. Janßen and Pospiech 2015)

levels differentiated according to the level of abstraction manifested in linguistic
characteristics of the language. A high level of abstraction is characterized by the
use of artificial symbols for elements and relations; a low level of abstraction is
characterized by a high proportion of natural, everyday language (cf. Hoffmann
1987 p. 64–71).

This in German Linguistics well-established theory of specialized language was
applied to physics education and led to the model represented in Fig. 4.8. The model
describes different levels of verbalization of a formula. The levels do not describe
a preferred order in which the levels should be used in physics classes, but they
describe in reference to Hoffmann from I to V decreasing semantic density. The
bigger the number of the level in the model, the less dense the meaning is described,
and the closer it approaches to everyday life and speech.

The model was developed to describe how teachers speak in class about formulas.
However, it can also be used to reflect how it is spoken about formulas in general and
thus to investigate the connection between verbal and mathematical representations.
Fig. 4.9 presents an example for each level.

Level I On top of the model, the formula stands as a representation with a very high
density of semiotic. Following Bruner (1974) “the possibility of consolidation – the
quality that allows to condense meaning for example F = MA” (Bruner 1974, p. 18)
is a characteristic of symbolic representations. A formula condenses a high amount
of meaning on very little space.

Level II A first step to reduce the semantic density is to translate either the physical
symbols (IIA) or the mathematical symbols in the formula (IIB). Thus, either a word
formula or a sentence formula is built.

Level III At this level of verbalization, all symbols are translated to their technical
terms of special language. It leads to a sentence with physical and mathematical
terms. The sentence contains exactly the same information as the formula, but all
symbols are verbalized.
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Fig. 4.9 Example for different levels of verbalization of a physical formula

Level IV Here the formula is connected to physical theories and mathematical
implications. Only at this level any external information is added to the formula
itself. The information added can be the following: contextualization of the formula
in a physical theory (at least by naming the theory), referring the formula to an
experiment (e.g., comparing experimental and theoretical values), mathematical
implications (e.g., proportionalities: if the resistance increases at constant voltage,
the current decreases), and a “categorization” of the formula (e.g., as a definition,
a natural law, an empirical principle). All information that is added contributes to
the conceptual understanding of a formula. There are many different possibilities to
connect the formula to other knowledge. The kind of information that is connected
with a formula depends on the individual person and its individual knowledge.
Accordingly to this, the verbalization is a kind of an interpretation. The academic
language used at this level is characteristic for school. Special terms still occur, but
speaking with the word of Hoffmann (1987), the language is at a lower vertical level
of specialized language.

Level V Level V connects the formula with didactical analogies, models, or
everyday life. The formula could be associated with analogies from everyday life
(e.g., “Imagine you walk on a very crowded street and you are not able to move
forward very fast”), with models (e.g., “playing” particle model with students) or
with applications of the formula to a problem (e.g., “The current in this circuit is too
high. Because of that we have to integrate a bigger series resistor”). The language
at this level is very close to everyday language. Furthermore, analogies and models
used at this level always focus on some aspects of the formula; others are left out.
This corresponds to the definition of representations in general presented before:
different representations give different information about the represented thing.
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On the one hand, this model helps to describe the way teachers speak about
formulas. On the other hand, it helps to demonstrate how much information is
contained in a formula. In this way, it can help to foster the sensibility for the large
amount of decoding that students have to cope with when they want to understand a
physical formula.

4.7 Implications for Teaching

Representations, either objective, pictorial, verbal, or pure mathematical ones,
are an important part of physics and physics lessons as they are embodied in
physical methods, techniques, and communication processes. The previous chapters
show that if students are able to interpret, adapt, construct, and connect different
representations, a better understanding of physics is possible. Thus, we come up
with three main conclusions for teaching physics including a special approach for
representations.

4.7.1 Use of Multimodal Representations

Generally students should learn how to gain information from different representa-
tions and how to use multimodal representations as a part of learning physics. This
includes understanding the characteristic of representations to only focus on some
aspects of an object or topic and that different representations are necessary to see
a complete picture of it. Therefore, a variety of different modes of representations
should be introduced and worked with in physics class.

4.7.2 Change of Representations

There are two general principles to embed change of representations in physics
lessons. On the one hand, the teacher could present different representations and
connect them with each other. On the other hand, students themselves should
learn actively how to use different representations and how to translate between
them. For this Prediger and Wessel (2012, p. 30) recommend different activities for
mathematics lessons that can similarly be performed in physics lessons:

• Change from one representation to another. (e.g., Describe an experimental
situation which the given graph could be a result from.)

• Organize different representations content wise. (e.g., Group all pictures, descrip-
tions, graphs, and formulas according their type of motion.)
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• Check/correct two representations for the same content. (e.g., Tina drew the
following graph related to the given formula. Change the graph that it fits to
the formula.)

• Explain why two representations do not refer to the same content. (e.g., Paul
found the following formula that describes the given situation. Explain why it
does not fit. How must it be changed?)

• Investigate relations or characteristics by changing to another representation.
(e.g., Which of the cars whose movement is described with the help of the
following table has a higher acceleration? Find out with the help of a graph.)

• Explain how to recognize structures or characteristics in different representa-
tions. (e.g., How do you recognize which material is a better electrical conductor
with the help of these graphs?)

• Collect and reflect different representations of a content. (e.g., Collect all kinds
of representations which illustrate Ohm’s law.)

• Change in one representation and describe consequences for other representa-
tions. (e.g., Investigate with the help of the formula how the refraction angle
changes when the arrival angle of the light is doubled. Which consequences
follow in the picture that shows the path of the light?)

In this context of changing between representations, especially the connection
to verbal language should be stressed. Waldrip et al. (2010) sum up and emphasize
the consequences of Lemke (2002, 2004): “students need repeated opportunities to
translate disciplinary understandings into natural language, even if such translations
can only ever be partial rather than complete, because of the abstractness of the
scientific forms of representation” (Waldrip et al. 2010, p. 68). This claim is
enhanced by the cited studies about students’ difficulties to understand formulas
conceptually (cf. Sect. 4.5).

4.7.3 Explicitly Learning About Representations

As described above some authors demand explicit teaching about representations.
This includes not only knowing how to construct representations and gain in-
formation from representations but also to reflect about it: “Students need to
be more actively engaged in constructing and interpreting representations by
actively discussing the properties of representations, including their strengths and
limitations” (Waldrip et al. 2010, p. 70). This claim leads to a metarepresentational
competence students should achieve. Based on how diSessa (2004, p. 293) describes
the elements of a metarepresentational competence, activities during class can be the
following:

• Invent or design own representations.
• Judge the adequacy and suitability of representations, also concerning different

tasks.
• Discuss the purposes of representations generally and in specific contexts.
• Explain what specific representations mean and how they transport this meaning.
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4.8 Conclusion

To sum up, researchers and teachers should pay particular attention to representa-
tions in physics lessons. On the one hand, they play an important role in specific
communicational processes within the discipline. On the other hand, they have the
potential to improve learning and to gain a differentiated view of a topic. Therefore
it is important for educators firstly to decide consciously which representations they
use for teaching a specific topic, which means which kind of representation fulfills
the purpose of their teaching the best. Secondly they should think about how to
connect representations to each other and thirdly have a lot of situations in lessons
in which they discuss the characteristics, the advantages, and the disadvantages of
representations with their students.
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Chapter 5
What Is Learned About the Roles
of Mathematics in Physics While
Learning Physics Concepts? A
Mathematics Sensitive Look at Physics
Teaching and Learning

Olaf Krey

5.1 Introduction

Physics is part of the human attempt to find the laws that govern nature. Doing
physics implies a lot of activities, e.g.:

• Observing and experimenting
• Describing systems (identifying relevant entities and the relations between them)
• Establishing cause and effect relationships
• Defining observables and taking measurements
• Analysing relationships between observables in a lab
• Quantifying and mathematizing these relationships (thereby expressing them in

a more precise way)
• Analysing the (mathematical) expressions and producing testable statements

about the real or at least lab world or even predicting “new” entities in the real
world

• Trying to systematize a body of knowledge, presented mathematically, etc.

This list is not exhaustive, but one would easily agree that all the items on this
list are part of the “physics game”. There are very different conceptions about
the epistemology of physics (e.g. Losee 2001; Wenning 2009). Depending on a
specific author’s background, the field of physics, the physicist or the historical
time under consideration, there are, of course, different emphases, but all of these
approaches consider mathematics and experiments as core elements of today’s
physics endeavour.

O. Krey (�)
Universität Augsburg, Augsburg, Germany
e-mail: olaf.krey@physik.uni-augsburg.de

© Springer Nature Switzerland AG 2019
G. Pospiech et al. (eds.), Mathematics in Physics Education,
https://doi.org/10.1007/978-3-030-04627-9_5

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04627-9_5&domain=pdf
mailto:olaf.krey@physik.uni-augsburg.de
https://doi.org/10.1007/978-3-030-04627-9_5


104 O. Krey

In science education the role of experiment in physics has been considered
extensively (e.g. Hegarty-Hazel 1990; Leach and Paulson 1999; Lunetta et al. 2007),
and aspects from the philosophy and history of physics concerning the use and value
of experiments have found its way into the mainstream discussions of the science
education community (e.g. the explorative and affirmative style of experimentation
(Steinle 1998)). Unfortunately, this is not the case for the role of mathematics, which
has simply not been a popular field of research until recently. The interplay between
experiments and mathematization in physics and the implications for teaching and
learning physics – despite a few exceptions (see contribution by Mäntyla and
Proonen) – are even less investigated.

For decades the nature of science has been a highly valued field of science
education research and is today considered to be an important aspect of scientific
literacy. However, in general the discussion culminates in lists of items that sum-
marize important characteristics learners should know about the nature of science
(Lederman et al. 2002; McComas et al. 1998; Osborne et al. 2003; Rutherford and
Ahlgren 1990). None of them includes the role of mathematics in (any acceptable)
depth (cf. Krey 2012). Accordingly, well-developed physics units that help teaching
about the role of mathematics are rare to find, although there are thoughtfully
developed teaching units offering great potential for teaching physics content and
aspects of the nature of physics at the same time (e.g. the HIPST case studies
(Höttecke 2012)).

This is in line with many students’ (and teachers’) views of using mathematics in
physics as a rather artificial, distant, algorithmic activity not leaving much space
for creativity, controversial discourse or individual taste. It is not unlikely that
the way we use mathematics in our physics lessons contributes strongly to the
naïve realistic view of physical theories as simplified descriptions of reality that
is well documented for students and teachers in the literature (e.g. Abd-El-Khalick
2012). From this perspective, the lack of research about the role of mathematics in
learning and teaching physics may have covered an influential factor for an adequate
understanding of the nature of physics. Over the years, research in the field of
teaching and learning about the nature of science has validated the assumption that
aspects of the nature of science had to be addressed explicitly and reflectively in
order to be learnt efficiently (e.g. Abd-El-Khalick and Lederman 2000). It can be
assumed that the same holds to be true for teaching and learning about the role of
mathematics in physics.

The twofold aim of this paper is (a) to help clarify the roles of mathematics
in (learning) physics, not by means of an abstract philosophical analysis but by
two case studies about (i) uniform motion and (ii) image formation by thin lenses
and (b) to exemplify how intentionally or unintentionally teaching about the roles
of mathematics in physics occurs in the average physics classroom. I have chosen
the two cases to illustrate an inductive and a deductive way of teaching. By doing
so, the author wishes to draw attention to the fact that learning about the roles of
mathematics in physics occurs (usually implicitly) at most of our physics lessons
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and most likely shapes our students’ views on the nature of (learning) physics. To
make this point, the case studies are used to illustrate certain characteristics of the
use of mathematics in physics. Although they have been chosen to cover equations
from different epistemological categories, the case studies are not everything that
could or should be said about the use of mathematics in physics. It is not the aim
of this chapter to come up with another list of possible characteristics of the use of
mathematics in physics. Therefore, I will not even make an attempt to generate a
complete list of those features. My modest aim is to illustrate a few of the messages
(potentially and/or implicitly) inherent in average physics lessons. I thereby hope
to help develop sensitivity towards potential learning opportunities for our students.
Before considering the two cases, a more elaborated framework allowing to frame
the chosen cases and to guide their analysis is necessary.

5.1.1 Thinking About the Roles of Mathematics in (Learning)
Physics: A Basic Framework

As shown on the left side of Fig. 5.1, the author of this paper makes use of a
more or less consensual distinction between reality (R) and mathematical theory
(MT) (as suggested by, e.g. Ludwig 1985). This distinction is made for analytical
purposes, and it can be discussed whether the separation of the two is adequate and
empirically valid. Accepting this distinction allows to define a physical theory (PT)
as a mapping (∼) between reality and mathematical theory: PT = R(∼)MT. (For
details, see Ludwig 1985, 1990.) Obviously, mathematics can stand for itself, as an
artificial creation by the human mind without a direct relation to the real world (pure
mathematics). The world can also be considered independently of any mathematical
theory, and humans can engage with this real world in many ways. Without going
into further details, it becomes obvious that from this point of view, a large part of
physics can be considered as the venture of building bridges between mathematics
(MT) and the real word (R). This broad perspective allows to recognize otherwise
isolated findings as aspects of a greater common – the attempt to build bridges
between R and MT.

Ludwig’s simple approach (PT = R(∼)MT) serves well as an integrating
perspective for many more elaborated descriptions of the roles of mathematics
in physics. One of the limitations of this approach has been pointed out by
philosophers (Cartwright 1983) and physicists, e.g. Einstein, who states: “As far
as the laws of mathematics refer to reality, they are not certain; and as far as
they are certain, they do not refer to reality” (Einstein 2002). That’s why on the
right side of Fig. 5.1, a pre-mathematical model (M) is included. Elements of
this simplified (e.g. by selection, isolation, idealization) model are the entities to
which mathematical structures are mapped. Refining Ludwig’s approach I therefore
suggest to consider two mappings (−) and (*), one between the real world and the
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Fig. 5.1 Physics as building and walking on bridges between mathematics and (models of) the
real world by the use of algebraic and graphical mathematical representation

pre-mathematical model (−) and a second one between the pre-mathematical model
and mathematics (*). In total we have PT = R(−)M(*)MT = R(∼)MT.1 From the
world of mathematics, the (arguably) two most important forms of representation
(algebraic and graphical) have been selected to exemplify translations between them
(straight arrows) as well as constructive and interpretive activities (straight and
circular arrows) that go along with their usage.

This model is not meant to describe physics as a human activity as a whole. (I
honestly doubt this is possible.) Its purpose here is to provide a framework for this
chapter. Another weakness of this model is its lack to specifically address further im-
portant aspects, e.g. concerning the role of experiments or more precisely the great
epistemological gap between experimental data and their algebraic representation
(Falk 1990). This is something to keep in mind.

As mentioned before, this primary framework is a rather broad one, allow-
ing to frame otherwise quite different attempts to describe how mappings be-
tween mathematics and the real word are established in science education. The
mathematics-physics interplay can be described in many helpful ways, focusing on
different aspects. (For a reconstruction of interplay patterns based on middle school
physics classroom evidence, see Lehavi et al. 2017; for an overview on modelling
concepts, see Pospiech in this book; for a related framework assuming a “physical-
mathematical model” to be essential for an in-depth analysis of using mathematics
in learning physics, see Uhden et al. 2012.)

1Ludwig is aware of this complexity and his approach is much more detailed than can be explicated
here. (For details see Ludwig 1985, 1990.)
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The way bridges between mathematics and the real world are built and used
in physics instruction has been identified as a matter of concern quite early.
Wagenschein likens the learners’ empty recall of physics equations to “paper
flowers” (Wagenschein 1995); others articulate their impression of physics being
destroyed/decomposed/ripped by calculation (“zerrechnete Physik”, Dittmann et al.
1989). More recently a distinction between a technical dimension and a structural
dimension of mathematics in physics (Karam 2014) roughly corresponding with
low-level and more elaborated mathematical activities on the student side (Krey
2012) has been suggested. The technical dimension refers to an instrumental role of
mathematics, to mathematics as a calculation tool which implies a procedural focus
on practices such as to blindly use equations for solving quantitative problems, to
focus on algorithmic manipulation, etc. The structural dimension in contrary refers
to an organizational role of mathematics, to mathematics as a reasoning instrument
which suggests the focus on physical interpretation of mathematical representations
and the derivation of equations from physical principles, etc. (cf. Karam 2014; Krey
2012).

A very simple and widely spread distinction (with far-reaching consequences)
can be made between an inductive and a deductive approach to teaching physics
content. An inductive approach starts from observations (real world), while a
deductive approach starts from already established (e.g. algebraically represented)
laws and principles. Although these are general teaching patterns not necessarily
referring to a quantitative relationship to be taught, for this article the implications
of their application are of interest as far as these patterns are used to frame ways to
the laws of physics, usually represented mathematically (e.g. as an equation).

Working out more elaborated patterns of the mathematics-physics interplay in
physics education is necessary to better understand how a misrepresentation of the
roles of mathematics in physics can be avoided. On the one hand, this knowledge
is likely to be more useful for (future) physics teachers than for actual physics
learners, and at the same time, in-depth philosophical considerations about the
role of mathematics in physics tend to become difficult and challenging, perhaps
too difficult for the average high school learner. On the other hand, it is rather
simple to define certain features that can also serve as fields of reflection for
physics learners (Krey 2012). Here are a few questions that more or less directly
lead to these features and provide first opportunities for learners to learn to
appreciate the use of mathematics in physics: How do mathematical representations
influence cognitive load? How does mathematics contribute to the exactness of
physics? How can mathematics influence information exchange (communication) in
physics? How is the certainty and objectivity/intersubjectivity of physics knowledge
influenced? At what cost do we apply mathematics in physics? It has been
shown that students have an inappropriate understanding of all the above questions
(Krey 2012).

Karam and Krey (2015) suggest that physics equations can be categorized
according to their (subjective) epistemological status. This leads to four categories:
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principles (e.g.
∑ �p = const.), definitions (e.g. �p = m�v), empirical regularities

(e.g. Balmer’s formula) and derivations (e.g. a = v2/r). It is reasonable to assume
that teaching and learning (about) physics equations implicitly or explicitly always
go hand in hand with an underlying message about the roles of mathematics in
physics. However, the message can be very different depending on what category
a certain equation belongs to, e.g. whether it was introduced via an inductive or
deductive way.

Since it must be assumed that most of the knowledge about the nature of science
is taught and learned implicitly, the message sent by an inductive approach needs
to be considered more carefully, and perhaps some explicit measures have to be
taken to avoid a misrepresentation (see case study 1 on uniform motion). This
becomes even more clear by (a) recognizing the fact that only a few equations can be
obtained by a deductive approach (derivation) in secondary school physics and (b)
knowing about a certain tendency by teachers to choose an inductive approach over a
deductive one, even if a deductive one is easily accessible.2 When physics equations
are involved in the teaching of physics, deductions are often used in simple ways,
e.g. to predict the final velocity of a falling object based on the equation for free
fall. In contrast, the equation for free fall (or accelerated motion in general) itself is
obtained by an inductive approach. From this, the introduced equation likely appears
as the summarized and generalized result of a longer learning-teaching sequence, the
only important “fact” of the lesson.

Although there is no empirical evidence (since a study focusing on the actual
use of mathematics in the secondary classroom has not been conducted yet), it can
be considered as common ground that the above-mentioned technical dimension
of using mathematics in physics is by far over-represented. Calculation in the
sense of given-sought problems calling for a plug and chug strategy and the
corresponding low-level activities are assumed to be a widespread practice. For
example, more recently learners’ physics problem-solving has been observed, and
their activities could often be described in a calculation frame (Bing and Redish
2009) or as following a recursive plug and chug strategy (Tuminaro and Redish
2007). Furthermore, analysing pupils’ beliefs about the role of mathematics in
physics supports the assumption of having experienced a lot of low-level activities
in school (Krey 2012). Although this problem is known for decades, it has not been
addressed efficiently so far. However, a few attempts to develop future teachers’
awareness about the problem as well as their equation-related pedagogical content
knowledge (Shulman 1986) have been suggested, implemented and evaluated (e.g.
Karam and Krey 2015).

“We do students a disservice by treating conceptual understanding as separate
from the use of mathematical notations” (Sherin 2001). This chapter is written in

2See Redfors et al. in this book for examples of deductive elements in physics textbooks that are not
used by the teachers. Although there are many examples where equations could be deduced from
theoretical or mathematical considerations in high school (Snell’s law, centripetal acceleration,
etc.), it is rather hard to find many examples for equations that could be dealt with in middle school
(e.g. total resistance in series and parallel circuit).
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the spirit of this quotation. The modest objective for this article is not to offer a
solution for the mentioned problems, but rather provide a rather small contribution
to a desired future solution, a small step on a long way to go. The author suggests
that teaching physics, whether we are aware of it or not, at the same time means
(at least implicitly) teaching about the role of mathematics in physics. In what
follows, two cases covering content of most, if not all, secondary physics curricula
are considered: uniform motion and image formation by thin (converging) lenses.
These cases are used to identify a few of the messages usually sent implicitly
to our students and to point out aspects of the mathematics-physics interplay
that could be discussed explicitly in the physics classroom in some cases, but
at least inform the teacher about a few implications and potentials of her or his
everyday physics teaching. For this purpose, an inductive approach of introducing an
equation (uniform motion) is complemented by a derivation of the thin lens equation
(deductive approach). The author’s hope is that the roles of mathematics in learning
and teaching physics become clearer and a step towards a better balance between
the technical and the structural role of mathematics can be envisioned. The way we
use mathematics may play a decisive role in how our students perceive the nature of
physics, and this is why I argue that any view about the nature of physics that does
not consider the roles of mathematics is incomplete and missing one of the essential
aspects.

By going through the two cases, typical, not necessarily observed, teaching
scenarios are described from a meta-perspective. After considering a certain aspect
of the teaching and learning about uniform motion or image formation, a potentially
important or interesting insight about the roles of mathematics in physics is
highlighted in a shaded box. The collection of these possible (and sometimes
obvious) insights relates to the above-mentioned fields of reflection; by the help
of which, one may find a way to help students learn about the roles of mathematics
in physics explicitly and reflectively, as suggested for other aspects of the nature of
science.

5.2 Case Study 1: Uniform Motion

Usually during their first year of science or physics in secondary school, pupils deal
with motions. They learn to distinguish between straight line and curvilinear motion
(rotary, circular, oscillatory motion) as well as between uniform and accelerated
motion. The most simple (straight line uniform) motion is then analysed in more
detail. While semi-quantitative approaches are possible and a helpful intermediate
step, sooner or later, pupils start to measure distances and times and display and
evaluate a functional dependency (see Box 5.1).

In Box 5.1 the widely used inductive approach to teaching physics at school
(see Fig. 5.2) is exemplified. This inductive way of teaching usually starts with a
real-world problem, phenomenon, a specific situation or process that is potentially
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Fig. 5.2 Inductive way of
teaching physics

observe

compare

idealise

select isolate

search for relationship

measure

define

algebraic formulation

interpreting equation

interesting to be investigated. The process under consideration (e.g. the motion of an
air bubble) is observed in more detail; relevant aspects are identified by comparison
and isolated. Usually an observable is identified or defined to allow measurement.
In measurements numerical data are produced (quantification), which (often but not
necessarily via a graphical representation) lead to an algebraic statement, usually
an equation (mathematization). The specific situation is encapsulated in a diagram
or equation. However, the equation stands for much more than just this specific
situation from which it was obtained, e.g. represents all uniform motions (with
velocity v). In total, a generalization is made and a mathematical statement usually
is the end result.3 Thereby, the gap between the real world and the world of
mathematics has been bridged (cf., Fig. 5.1).

Mathematisation comes with generalisation and downgrades specific situa-
tions to examples of a more general insight.4

3Further examples of equations that are likely to be introduced inductively include x(t) = vt
(uniform motion), x(t) = 1

2 at2 (accelerated linear motion), R = U
I

= const. (Ohm’s law),
R =  l

A
(Pouillet’s law), Q = mc
T (heat equation), etc.

4Depending on your perspective, you may wish to emphasize the epistemological upgrade in terms
of generality, width of applicability, elegance and simplicity that comes with the mathematical
formulation of physical knowledge about the world. However, focusing on the concrete problem
(e.g. the motion of an air bubble) from which this exploration started, this specific problem is
downplayed and loses its relative importance as it becomes an example of a class of processes with
many other processes in this class that are basically the same in that they are just one of many
examples for a uniform motion. While none of these perspectives is more correct than the other, I
doubt that many young learners can truly appreciate the (surely valid) upgrade at a first encounter.
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Box 5.1: Uniform Motion

Task Using the given glass tube filled with coloured water, investigate the
motion of the air bubble in the tube, when one end is lifted a bit. 

Expectations and Objectives Write down what kind of motion you expect.
Give reasons!  

________________________________________________________________________________________
________________________________________________________________________________________

Materials/Equipment glass tube filled with coloured water, marker pen, stop watch, ruler

Procedure Lift one end of the tube a little, so that the air bubble takes at least 30s from one end to another.
Mark the position of the air bubble every 5s (marker pen). Take measures of the total distances travelled (total 
displacement) after 5s, 10s, 15s, ... 

Observations and Measurements
in s 0 5 10 15 20 25 30 35 40

in cm 0 5,4 11,2 16,9 22,7 28,6 34,3 40,2 46,1

observations: ______________________________________________________________

Data Analysis and Conclusion
1. Plot the measured distances over time. 2. Summarize your findings mathematically. 

For every time and the related distance we have 

.

This can be described as a uniform motion, since the 
air bubble travels approximately the same distance 
every 5s. The velocity therefore is constant. 

To experts this feature of generality that comes with equations is what makes
them “icons of knowledge” (Bais 2005), important nodes in an expert’s widely
branching web of knowledge. For learners, however, equations can (and often do)
become isolated facts that are considered to be the only really important message,
which leads to an “obsession” with formulas (Schecker 1985). For example, v = x

t

(v – velocity, x – displacement, t – time) is what is usually remembered, after
the teaching/learning path described above. This can already be seen as a seed for
the common practice of the subsequent instrumental use of equations described in
the literature as calculation framing (Bing and Redish 2009) and recursive plug
and chug (Tuminaro and Redish 2007), which are part of the technical dimension
(Karam 2014) of the use of mathematics in physics, characterized by low-level
activities (Krey 2012).

The above-illustrated inductive approach certainly is a valid one that also has its
parallels in the history of physics as well as today’s research. However, in school
physics this approach is probably over-represented. Reasons (among others) can be
seen in the assumed learners’ lack of mathematical prerequisites that would allow
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for alternatives (See Karam, Uhden, & Höttecke in this volume to clarify the validity
of this assumption.) or the relatively easy planning by the teacher for given-sought
scheme problems.

By teaching along this pattern, an implicit message about the role of mathematics
in physics, and therefore the nature of physics, is delivered. This message may
include the false (or at least one-sided) impressions that, e.g.:

• Experiments are the beginning of any knowledge generation process in physics.
• The main function of mathematics is to summarize experimental results and

allow for calculations.
• Quantification and mathematization are more or less the same.
• Mathematics describes reality, using artificial signs and symbols.
• Making use of mathematics means to make statements in a largely arbitrary

language to describe insights more easily to be expressed in our natural language.

That all the above-mentioned statements are problematic is well documented in
the literature (Cartwright 1983; Koponen and Mäntylä 2006; Krey 2012).

However, there are valid lessons to be learned here as well. As mentioned before,
in the example above, it is the formula v = x

t
(v – velocity, x – displacement,

t – time) that is usually remembered by pupils. Quite often the equation stands for
both the definition of velocity and the characterization of a uniform motion. From a
teacher’s perspective, this can be an intermediate step, but not a satisfying end result.
The equation above is the definition of an average velocity for the time interval
[0; t], and for learners it is an additional step to understand that v = x

t
= const.

is what makes this equation an appropriate description for a uniform motion. Even
more precise would be a quantification like “for all t”. This implies that the initially
learned concept of velocity over the years becomes more refined, and formerly
ignored or unseen details become accentuated and perhaps more meaningful. The
language of mathematics in which statements about velocity are made allows (and
forces) to express these refinements carefully. The distinction between momentary
(limit concept) and average velocity (ratio concept) shows how this differentiation
process occurs conceptually and mathematically.

Mathematization requires and induces conceptual precision.

In the above example as well as in many other cases collecting data in table,
representing them graphically and expressing regularities algebraically (and perhaps
even retranslating into common language) are a quite common strategy. It develops
pupils’ abilities to deal with different types of representations. Learners can
experience (often implicitly) that different representations have certain advantages
and disadvantages. For example, a certain kind of relationship between observables
may be recognized easier in a graph than in a table; an equation allows to chunk
different dependencies between observables. The lesson to be learned:
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Different mathematical representations (of the same content) allow access to
information in different ways and therefore make one aspect easier accessible
than others.

To embrace this message fully, an understanding of (mathematical) representa-
tions, their different strength and weaknesses and their coordination in case multiple
representations are used is required (Ainsworth 2006). However, at least in German
physics lessons and especially in lab work activities, the three-step approach table-
graph-equation to collect, visualize and summarize measurement readings often
becomes a ritual instead of a rational choice. (See Geyer and Kuske-Janßen in this
volume for a more detailed description of translation activities.) This again gives
very good reason to students to think about the use of mathematics as something
static, ritualized and algorithmic rather than a creative, question-driven and goal-
oriented process.

The example of the introduction of the concept of constant velocity and uniform
motion hopefully made visible a few of the usually missed learning opportunities
about the role of mathematics in physics as a vital part of the nature of physics. Three
non-trivial insights were emphasized. If made explicit to learners, those insights
might be able to initiate thought processes that perhaps over several years in school
may help to develop a more appropriate view on the role(s) of mathematics in
physics.

In what follows, another basic example that is part of every secondary physics
curriculum is considered. This example helps to illustrate other aspects of an attempt
to establish a connection between the real world and the world of mathematics. As
it is one of the rare cases in secondary school physics making use of a deductive
approach, the example is meant to complement the view of mathematics as a mere
language used to express experimental results more precisely and more efficiently
as suggested implicitly by the inductive approach. For this purpose we consider a
second field of physics, namely, ray optics and more specifically the magnification
equation and the thin lens equation.

5.3 Case Study 2: Image Formation by Thin (Converging)
Lenses

There are two equations that usually are presented to the students when teaching
about ray optics and image formation by thin lenses. The magnification equation
hi

ho
= di

do
and the thin lens equation 1

f
= 1

do
+ 1

di
are usually considered for convex

lenses (h – height, d – distance to lens, o – object, i – image, f – focal length).
Although they are closely related to one another, for many students they are two
isolated facts that have to be learned. In the case of the lens equation, an immediate
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interpretation is difficult, as the form of the equation is pretty unfamiliar to a learner
of school physics. This may explain part of the difficulties to understand the full
meaning of these equations and the relation between them.

5.3.1 Towards the Magnification Equation

A teaching sequence could start with an explorative experimental setting from which
students learn that for a given object distance (do), a sharp image formation on the
screen is only possible for a certain image distance (di). They may also come up
with the hypothesis that the size of a sharp image (image height, hi) is somehow
related to the object distance (do). A more explanative experimental approach may
follow in which the relation between object distance (do), object height (ho), image
distance (di) and image height (hi) is investigated. Sooner or later pupils usually can
be convinced that hi

ho
= di

do
is a valid statement. So far everything that has been said

about the role of mathematics in the case of an inductive approach before can be said
here as well. A pattern is found within the measurements and students express that
pattern more precisely by means of the magnification equation. However, something
is different here already. The equation is valid only for a specific constellation, the
case of a sharp image formation. That is why we usually write it as a proportion,
knowing that the kind of continuity that can be found in the equation describing a
uniform motion (x = vt) is not a part of the package so to speak. At a first glance
however, it would be totally acceptable to write hi = ho

do
di, and wishful thinking

may suggest that for a given object height and object distance, any image height
may be realized by adjusting the image distance (screen position). From a purely
mathematical point of view, it is no problem to consider a function hi(di), and there is
no reason why one would assume that the domain of this function would not be R+,
the positive real numbers. And given the formal analogy between the two equations

x(t) = v · t and hi (di) =
(

ho

do

)
· di , it is (from a mathematics point of view)

surprising that the application for describing natural phenomena requires different
constraints to more or less the same mathematical concept. For the physicist this
may not be of much surprise, but for pupils this seems worth to be made explicit,
as it points to an important feature of doing physics and the interplay between
mathematics and physics.

The often seemingly perfect mapping between real world and mathematics is
not a guaranteed given and it is by far not self-evident.

In the example discussed, the mathematical structure is more comprehensive
than the real-world situation does require. However, at least there is a mathematical
structure that does fit our needs.
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5.3.2 Towards the Thin Lens Equation

The second equation in the field of ray optics and image formation by thin lenses
(lens equation) is usually motivated by the question about how image distance and
object distance relate to one another for a given lens. A possible activity for students
is presented in Box 5.2.

Box 5.2: Thin Lens Equation – Part 1

The photo shows a candle and a sharp inverted image of 
the candle appearing at a screen behind the converging 
lens. 

Investigate for this lens (and two other converging lenses) 
how the image distance depends on the object distance. 

Generalize the relationship you discovered in terms of a 
functional dependency.

By doing a few explorative experimental moves, which is an important part of
finding a problem solution, pupils usually find a few regularities. For example, they
will find that by placing the candle too close to the lens (do ≤ f ), a sharp image
formation cannot be observed on the screen. They may remember from constructing
ray diagrams that a virtual image is formed. For candle positions outside the focal
length (do > f ), one finds that when moving the candle (object) closer to the lens,
the image location will move away from the lens. So both the location of the object
and the image move in the same direction.

For further investigation there are at least two different strategies available –
an inductive experimental strategy and a deductive mathematical strategy. From my
experience most pupils and (also students at university) will follow the experimental
approach, which is not much of a surprise, since as mentioned before, this is what
happens in physics lessons quite often, when a physical law is introduced. (One
could argue that it is simply more fun to do an experiment. Well, I think this could
be true, but what we consider to be fun is learned, at least to a large extent.) They
vary the object distance, perhaps in 1 cm steps, and make measurements of the
related image distance. For a converging lens (f = 5cm), this may lead to the table
of measurements and their graphical representation presented in Box 5.3.

This way, no doubt, a regularity is found, and by plotting the graphs for different
lenses, one may obtain a more general statement about the relationship. A few
students may perhaps be convinced quickly that this is a linear relation by only
considering object distances not too close to the focal length, which is not surprising,
since most relations we consider in school physics are linear ones.
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Box 5.3: Measurement Readings and Plot Showing the Relation Between do
and di

in cm in cm
6,0 30,0
7,0 17,5
8,0 13,4
9,0 11,2
10,0 10,0
11,0 9,3
12,0 8,5
13,0 8,2
14,0 7,8
15,0 7,5

Those who make it to a more appropriate graph would be happy that they have
found and documented a relation in an empirical way. How one could express
the regularity found in an algebraic representation is a question that also bears an
opportunity to learn about physics. Physicists strive for understanding – often by
investigating specific phenomena in an experimental setting – and describe relations
in mathematical terms, but in the end they want to have general laws from which
they can form explanations and predictions. As Feynman puts it:

First we have an observation, then we have numbers that we measure, then we
have a law which summarizes all the numbers. But the real glory of science
is that we can find a way of thinking such that the law is evident. (Feynman et
al. 1964; 26-3)

This is a rather deep reason for why a structural role of mathematics is essential
for physicists, implying that mathematical representations help to make logical
deductions which provide “a way of thinking such that the law is evident” and
therefore are essential tools for the analysis of natural phenomena. This rather
philosophical approach can be reduced to a more pragmatic argument that perhaps
is more suitable to convince learners of the helpfulness of a deductive mathematical
strategy, at least in the context of our example, as new measurements have to be
taken for every lens and for every new object distance that has not been investi-
gated before. This also points to an interesting feature of the physics enterprise.
Apparently, on one hand asking “Why?”, the search for reason and understanding is
what keeps physicists going. On the other hand, however, their knowledge is a huge
collection of how observables are related. And of course, this web of knowledge
is structured, and there are statements of different epistemological and hierarchical
status that allow to form explanations and predictions (cf. the different epistemo-
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logical categories for physics equations described in the framework section), but
whether this is the same as an answer to the question “Why?” can be argued.

Box 5.4 shows the main steps in deriving the lens equation from prior knowledge
including mainly (a) the magnification equation,5 (b) the ability to read and mentally
manipulate ray diagrams, and (c) the fact that light travels in a straight line. The –
in this case geometrical – representation of the situation allows an analysis and
extended mental manipulation. Without visualizing the situation in a geometrically
“correct” way, it is much more difficult to identify meaningful relations between the
relevant observables.

Mathematical representations (e.g. geometrical diagrams, tables, graphs,
equations, symbols) materialise abstract ideas (entities and the relations
between them). These ideas can be manipulated (literally) (Fischer 2006) and
therefore serve as external cognitive tools.

As mentioned before, the derivation of the thin lens equation is one of the rather
rare opportunities to demonstrate a deductive way to generate knowledge in the sec-
ondary physics classroom. Based on already established knowledge, a geometrical
representation is generated, analysed and combined with already established pieces
of knowledge represented algebraically (magnification equation). Through purely
mathematical reasoning, a “new” equation is produced and interpreted. Perhaps
predictions based on the derived equation are made and tested by experiment
(Fig. 5.3).

Fig. 5.3 Deductive way of
teaching physics

experiment/ observation

extended or new knowledge
(equation)

interpretation

prediction

combination

established knowledge
physics equation(s)

analysis

5Of course, the magnification equation can also be derived by using the intercept theorem, which
shows the deep structural equivalence between geometry and light propagation based on the ray
model of light, which allows the mapping between relevant aspects of the real world and geometric
entities.
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Box 5.4: Thin Lens Equation

Ray diagram  

The necessary translation from the real world situation to this diagram is not an easy task. 
Physics knowledge and mathematical representational ability have to be coordinated in order 
to come up with a helpful representation.  

 

An analysis by geometrical means  

1. Since the measure of each interior angle in ∆  is  equal  to  the  measure  of  the 
corresponding angle in ∆ , the two triangles are similar.  

2. The intercept theorem applies, since  ́und ́  are parallels. We can therefore establish a 
relation between , − , ℎ, ℎ.  

 

Finding an algebraic form of representation and combine it with prior knowledge 

The intercept theorem gives 
ℎ

ℎ
=

−
. With the magnification equation 

ℎ

ℎ
=  we get  

=
−
∴ = ( − )∴ − =− ∴ =

−
 .  

 

The result of the suggested derivation isdi=
dof
do−f
. Most textbooks, however,

will present 1
f =

1
do
+ 1
di
as the lens equation. While the first is a direct

answer to the problem/question that motivated the investigation, the latter seems
to satisfy a purely aesthetic concern. It’s a matter of taste to prefer a certain kind
of simplicity here – and that actually is a bit of a surprise. Aesthetics and taste
sometimes function as guiding principles or at least are influential to the physicist’s
work. This indeed is astonishing to most learners but also clearly indicates that
physics is a human enterprise. The more so, as this aesthetic concern is not related
to experimental equipment or phenomena that can be beautiful as well but to
mathematical representations used in physics.
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Aesthetical aspects are influential to the physicist’s work.

Of course, going through this derivation can be a challenge for pupils – for
some of them, it involves barriers too high to overcome by themselves. For most
students the connection between the symbols and their meaning can get lost, and
they blindly follow the manipulation of mathematical symbols. In a way that is
not much of a surprise, since this is another great feature of using mathematics
in physics. The signs themselves are meaningless; they only carry the meaning
that has been explicitly ascribed to them. To be meaningful these signs need to
be embedded in a natural language, and they and the results achieved by their
manipulation cannot be more precise than the precision with which one can say what
these signs actually mean. By the use of the mathematical mechanism, one only has
to be diligent in executing the manipulations to keep the same level of precision
without actually thinking about it. Interpreting the manipulated equation, however,
does require deeper thought (cf. von Weizsäcker 2004, p. 90). It is this conservation
of the real-world relations within the mathematical calculus that allows the tool-like
use of mathematics in physics. Whether this can be understood at all or whether
one simply has to get used to it is not my concern here. However, I argue that to
know about the roles and functions that mathematics plays in physics gives a more
complete understanding of the nature of physics.

The mathematical calculus that comes with a physics theory allows to find
logical implications without content-related deeper thought (reduction of
cognitive load). The derived statements are as precise as the definitions of
all observables and operations allows them to be.

For the learner, lost in translation, the interpretation of the derived equation is
of particular importance. Sometimes, and especially for younger pupils, it might be
necessary or extremely helpful to demonstrate and check the validity of the new
(intermediate) equation by prediction and experimental test.

In school we usually end here and one can wonder if all this is worth it. However,
as far as I can see, by going through the whole process and pointing out the more or
less obvious features of the use of mathematics in physics, by relating the world
of mathematics to the experimental world and by bringing together experiences
in manipulating the experimental setting and mathematical analysis, we create a
learning opportunity worthwhile. This may help to make the thin lens equation not
just another “paper flower” (Wagenschein 1995, S. 288) but the meaningful peak of
a challenging learning path.
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5.3.3 The Thin Lens Equation: Beyond the Secondary School
Physics Curriculum

What follows goes beyond the average physics school curriculum, but illustrates an-
other important feature of the use of mathematics in physics. This feature becomes
visible by considering the implications of an already constructed mathematical
representation, which sometimes helps to suggest new insights about the real world.

Above we only considered the case of f < do which lead to a first quadrant branch
of a hyperbola. By connecting the plotted measurement readings to a continuous
graph, the idealization of “continuity” was already applied (and the usefulness
of irrational values for the object and image distances was assumed, although
those measurement readings obviously do not occur). But otherwise, the branch
of the hyperbola conserves the observations made: do −→ f =⇒ di −→ ∞,
do = 2f =⇒ di = 2f, do −→ ∞ =⇒ di−→f. Exploring the derived thin lens
equation di = dof

do−f
from a mathematical point of view reveals that there must be a

second branch of the hyperbola for f > do. A first part of this branch (f > do > 0) turns
out to describe the formation of virtual images, for which is di < 0 by convention. So
the full consideration of the mathematical solution suggests the existence of a real
world entity – virtual images in this case. And also the second part of this hyperbola
branch (do < 0, dotted line in Fig. 5.4) turns out to have a meaningful interpretation
for the image formation for virtual objects.

Fig. 5.4 Different parts of the hyperbola describing image formation for real objects and real
images (first quadrant), but also for real objects and virtual images (fourth quadrant) and virtual
objects (second quadrant)
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Mathematical descriptions can suggest the existence of real world entities or
relations.

I am not suggesting that this has to become a necessary curricular content in high
school physics or that this would correspond to a historical development; it does
not. However, I consider this case to be a helpful example to illustrate an important
feature of the mathematics physics interplay. While there are other correspondences
that may help to point towards that feature (e.g. Snell’s law of refraction and the
critical angle), it is hard to find a historically valid and authentic example (such as
the prediction of the positron) that can be discussed easily in a high school physics
classroom.

5.4 Summary

Within an analytic framework based on Ludwig’s conception of a physical theory
that allows to view physics as an attempt to build bridges between the real world
and the world of mathematics, two cases have been looked at in more detail, the
uniform motion and the image formation by thin lenses. This helped to see more
clearly which problems and potentials building and using these bridges may provide.
The inductive way of introducing a physics equation and (even more so) the less
usual deductive way (see Redfors et al. in this volume) are full of more or less
implicit messages sent to our students (un)intentionally by the teacher.6 The explicit
consideration or even discussion of these messages bears great potential for learning
about the role of mathematics in physics and therefore about the nature of science.
It may be considered wishful thinking by some and a plausible hypothesis by others
that using mathematics in physics is not necessarily a barrier for learning or limited
to routine activities used in given-sought problems but actually a great cognitive
tool that allows for analysis and understanding of physics. Perhaps we could even
assume that the way we use mathematics in the physics classroom could have a
direct influence on the content learning and conceptual understanding of physics.
Physics is a difficult subject, and the use of mathematics does not make it easier, but

6It should be clarified that by no means the author intends to argue for a more deductive and against
inductive teaching sequences. Both of them have their advantages and disadvantages. They are
adequate to situations, outcomes and learners or they are not. For example, an arranged deductive
way of introducing a law of physics (even the lens equation the way it was presented) can lead to
lots of low-level activities on the learners’ side and simply illustrate bad teaching. Furthermore,
both approaches can help teach valuable lessons about the nature of science in general as well
as the role of mathematics in (learning) physics more specifically. What the author wishes to say
though, is that both approaches to teaching differ in the learning opportunities they can potentially
provide with regards to the mathematics-physics-interplay.
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it might well be possible that by learning about the nature of physics and about the
role mathematics plays within this human endeavour, physics is perceived as more
meaningful. If this article helped to generate or elaborate an idea of how the general
roles of mathematics in physics can be found or identified in an everyday physics
classroom – perhaps sometimes by verbalizing the obvious, the author would be
delighted.
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Part II
Learning Mathematization



Chapter 6
Blending Physical Knowledge
with Mathematical Form in Physics
Problem Solving

Mark Eichenlaub and Edward F. Redish

6.1 Introduction

Physicists and educators have long held problem-solving to be one of the key tools to
help students understand physics (Meltzer and Otero 2015). If problem-solving is a
bridge to expert-like understanding, we should find ways to let students experience
expert-like thinking in as many dimensions as possible while working problems.
This includes learning new physical concepts and mathematical techniques, because
experts and novices differ greatly in the amount of physics and math they know.
But experts also diverge from novices in their problem-solving strategies, their
patterns of metacognition (Schoenfeld and Sloane 2016), their epistemological
stances towards their work (and abilities to negotiate between various stances),
their conception of what mathematical entities are, and their expectations for how to
derive meaning from their work. These differences between experts and novices are
part of a “hidden curriculum” that students need to learn as they progress in physics,
but which we rarely teach explicitly (Redish et al. 2010).

In particular, researchers have singled out math as a particular sticking point in
problem solving in introductory physics. Much of the existing research seeks to
document student understanding, or misunderstanding, of particular mathematical
tools, such as differentiation or coordinate systems. Our teaching experience shows
that even when students appear to have mastered the appropriate tools in previous
classes, they may still struggle to use those tools effectively in physics problems.
In previous work, one of us (Redish and Kuo 2015) laid out an argument that this
is largely because the ways that physicists make meaning with mathematics are
unfamiliar to students. Even if they are skilled with the manipulations of algebra
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and calculus, students’ expectations about how to interpret variables may lead them
astray. For example, many students, given a problem about test charges and electric
fields, will say that changing the magnitude of a test charge changes the magnitude
of the electric field it measures. They reason from the equation E = F/q that if q
increases, E decreases. The students understand the math involved well, but don’t
account for the way the force on a charge changes with the charge – there was
a hidden functional dependence they did not see because physics culture assumes
the reader will associate every symbol (in this case, F) to its physical meaning. That
would make the functional dependence of F on q clear, but students don’t yet expect
to have to find this physical meaning when solving problems. The challenge for
educators is to create problems and problem-solving environments that encourage
students to search for physical meaning in mathematics.

In creating problems, educators often separate “qualitative” problems that test
and build intuition from “quantitative” problems to develop mathematical skills
(Hsu et al. 2004), indicating an implicit assumption that these are separate faculties
that are used and developed individually. We believe that for experts, intuition
and mathematics are not insulated from each other, or even cleanly separable.
Instead, they reinforce each other; intuition is often connected to mathematics and
mathematics is understood partially via intuition. While solving a problem, an
expert will blend mathematical forms such as equations (or abstracted properties
of equations), with intuitive conceptual schema to create richer mental spaces than
those derived from formal mathematics alone.

For an example of this blending of intuition and mathematical form, we look
at Sherin (2001)’s description of “symbolic forms”, a class of blended intuitive-
formal conceptual structures that experts (and in Sherin’s case, second-year physics
students) use to understand equations. To introduce symbolic forms, we’ll take an
example from Sherin, who describes two students thinking about a ball falling
through the atmosphere at terminal velocity. The students intuitively understand
that air drag and gravity are both acting on the ball, but balance each other out,
leaving no net acceleration. In Sherin’s account, the students activate a conceptual
schema for “balancing” of competing influences. This balancing schema could
potentially match many different physical scenarios, or even everyday scenarios,
such as expenses balancing out income when breaking even financially, but here
it is called on to understand air drag and gravity. The students then associate the
balancing schema with the abstracted symbol template for equations � = �, where
each square represents one of the two balancing influences. The students know that
they are looking for an equation with an expression related to gravity on one side
and an expression related to air drag on the other. The students’ work on a specific
equation is then informed by this pairing of the intuition behind balancing with the
symbolic template. The combined intuition and formal structure are collectively a
symbolic form. Sherin identified 21 symbolic forms in his data corpus; our purpose
here is to use them as one example of blended intuitive and formal thinking that is
found in experts and potentially in students as well.
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Symbolic forms are not a complete account of how physicists make meaning
with equations. The example of failed meaning-making in the eq. E = F/q, cited
earlier, involves the correct use of the symbolic form Sherin identified as “prop-”,
where a schema related to “if one goes up, the other goes down” is blended with
the symbol template

[
...

...x...

]
, but this symbolic form alone wasn’t enough to lead

students to the right answer.
We cannot give a full account of all the ways experts bring meaning into

equations, but as a second example, we consider experts’ ontology of equations,
i.e., the types of objects equations are in experts’ conceptual schemas. For example,
here are a few examples of physicists writing about the relation between the Yukawa

potential, V (r) = qe−mr

r
and the Coulomb potential, V (r) = q

r
.

In the limit of m → 0 the Yukawa potential becomes the Coulomb or gravitational
potential . . . (Heile 2015)

. . . if we choose . . . m0 = 0, the potential reduces to the Coulomb potential energy . . .

(Townsend 2000) [source uses m0 in place of m]
We can take the limit α → 0 and recover the Coulomb potential. (Hassani 2013) (source

uses α in place of m)
The Coulomb potential of electromagnetism is an example of a Yukawa potential . . .

(Wikipedia 2016)
We see ...that if the mass m of the mediating particle vanishes, the force produced will

obey the 1/r2 law. If you trace back over our derivation, you will see that this comes from
the fact that the Lagrangian density for the simplest field theory involves two powers of the
spacetime derivative . . . (Zee 2010)

In some cases, physicists see themselves as enacting a change in the Yukawa
potential. They or their reader actively “take the limit” or “choose m = 0”. Other
times, the Yukawa potential changes, but there’s no clear agent involved. It may
“become” or “reduce to” the Coulomb potential and the mass may “vanish”, but no
entity is identified as enacting the change. In contrast to these dynamic descriptions,
the relationship can also be described statically. Nothing in particular is happening
when the Coulomb potential “is an example of” the Yukawa potential.

This is just a sampling of physicists’ language on the topic. The details of how
they describe the Yukawa potential-Coulomb potential relationship may depend on
both the physicist and the context of what they’re communicating in complicated
ways. Our goal here is simply to illustrate that there is a significant diversity of
ways to conceptualize of an equation.

These examples come from professional, graduate, and upper-division under-
graduate material, where such a diversity of conceptualizations of equations is
commonplace. By contrast, in introductory physics textbooks, equations are usually
treated as static entities to be scrutinized.

Outside the nucleus the nuclear force is negligible, and the potential is given by Coulomb’s
law, U(r) = +k(2e)(Ze)/r, . . . (Tipler and Mosca 2007).
Coulomb’s law can be written in vector form . . . F̃12 = k

Q1Q2
r2
21

r̂21 . . . (Giancoli 2000).

The electric force acting on a point charge q1 as a result of the presence of a second point
charge q2 is given by Coulomb’s Law: F = kq1q2

r2 = q1q2
4π∈0r2 (Nave 2017).
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The main exception we have observed to this “equations as static entities”
ontology is in descriptions of formal operations on equations. These descriptions
come up during derivations (e.g. “differentiate with respect to t”, “set them equal
to each other”, etc.). Also, equations are sometimes described as active entities, for
example “Coulomb’s law describes a force of infinite range which obeys the inverse
square law” (Nave 2017) in that they “describe” things, but this does not represent
the same diversity of conceptions we saw with regard to the Coulomb and Yukawa
potentials.

This mostly-static view of equations stands in contrast to introductory physics
sources’ descriptions of the physical quantities the equations represent

We can divide up a charge distribution into infinitesimal charges . . . (Giancoli 2000)

The force exerted by one point charge on another acts along the line joining the charges. It
varies inversely as the square of the distance separating the charges and is proportional to
the product of the charges. (Tipler and Mosca 2007)

In describing the force, field, or charges associated with Coulomb’s law, intro-
ductory textbooks use both agentive language (“We can divide”) and non-agentive
(“The force . . . .acts . . . ”). The second quotation here also mixes dynamic (“varies
inversely . . . ”) with static (“is proportional to . . . ”) language in the same sentence.
So while a diversity of ontological viewpoints are generally considered acceptable
for thinking about physics in introductory settings, this seems to apply much more
to physical quantities than to equations. As we move to more expert settings, the
equations themselves take on the same diversity of ontologies.

Sfard (1991)’s notion of conceiving of functions as either objects or processes is
similar to ours, but here we consider “process” views where the equation itself is
changing, as opposed to Sfard’s notion of a static function which describes change
when inputs transform into outputs. Our point here is simply to illustrate one more
small piece of the diversity in expert conceptual systems used to make mathematics
physically meaningful. This piece, like symbolic forms, is never explicitly taught.
It is a part of the hidden curriculum, and something we can try to find evolving in
students as they progress towards expertise.

Based on an exploratory analysis of problem-solving interviews, we suggest that
students, in the right circumstances, use a large and diverse arsenal of productive,
sophisticated, and creative ways to conceptualize physics problem-solving. They
do not always access these resources when they would be productive, and many
of the difficulties students experience with using math in physics are not so much
difficulties of having the appropriate tools, but of applying them appropriately.
While much of the hidden curriculum will need to be learned via years of
enculturation in the physics community, there are entire swaths of it that don’t need
to be explicitly taught so much as activated. Small interventions that encourage
students to use specific problem-solving strategies, can, in some cases, greatly
enhance students’ access to productive ways of thinking about mathematical tools
that are rarely explicitly taught.
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The strategies we’re investigating are commonplace, well-known to physicists,
and generally well-regarded components of effective problem-solving. They include
examining special and extreme cases, dimensional analysis, and estimation. Our
contribution to understanding these strategies is to suggest that their scope can be
very broad. They can be used at different stages of problem-solving and in different
ways. We also give examples of how students use these strategies to construct
meaning from mathematical expressions in ways similar to how experts do it.

6.2 Theoretical Framework: Resources, Framing,
and Epistemic Games

Our analysis is situated in the resource model (Hammer 2000; Redish 2004). In this
framework, students don’t have monolithic conceptual understandings; they have
many small pieces of knowledge, or resources, that they can call on while solving
a problem. When solving a problem, students will activate various resources and
construct a solution based on them. If students don’t solve a problem correctly, it
may be that they don’t have the appropriate resources, or that they do, but aren’t
activating them in that context. In the previous example of a test charge and the
measured electric field, students did activate resources relating to understanding
inverse mathematical relationships (including the prop- symbolic form), but did not
activate resources related to the functional dependence of force. Whether or not
students activate a resource can depend on how they associate it with other resources
they are using, so in a future problem, students might improve their performance if
they’ve learned to activate resources related to functional dependence when they see
questions about forces in electromagnetism.

The issue is not so simple, though. The students in question were all able to recite
the mantra “the electric field is independent of the test charge”. In this sense, they
knew the answer to the problem, but they didn’t call on this knowledge, or if they
did, didn’t apply it. In addition to resources related to manipulating mathematical
equations and resources related to intuitive understanding of physics, students also
have “epistemological resources”, resources related to how they seek to obtain and
justify knowledge (Hammer and Elby 2003).

A student who uses an equation because it makes intuitive sense may come
to the same answer as a student who uses an equation they found in a textbook
they consider authoritative, but the way they are thinking about knowledge is very
different; they are using different epistemological resources. The students who an-
swer the test charge problem incorrectly are probably not activating epistemological
resources related to interpreting each variable physically, or resources related to
finding concordance between memorized facts (such as the electric field being
independent of the charge) and the results of reasoning based on equations.
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To understand why students sometimes use one set of epistemological resources
and sometimes another, we use the lens of epistemological framing (Bing and
Redish 2009). Because we could potentially use any resource at our disposal (i.e.
every fact, technique, or type of reasoning we can conceive of) on a given problem,
the space of problem-solving strategies we have to search through to find one
effective approach is extremely large. We begin by narrowing the problem down
to a certain type of problem, and then search through the resources we associate
with that type. Calling on a physical principle to solve a problem requires activating
different epistemological resources than using an equation does, and those resources
often are associated with different epistemological framing (Gupta and Elby 2011;
Kuo et al. 2013). Students who answered that changing the magnitude of a test
charge changes the magnitude of the measured electric field may have entered a
“calculation” frame, and didn’t remember or pay attention to their knowledge that
the electric field is independent of the test charge because they didn’t frame the task
as one in which physical principles are relevant.

Moving towards expertise in problem solving is as much about using what
resources you have effectively as it is about picking up new resources. As students
work physics problems, they need to learn not only new content, but new ways of
relating to the content. They need to be able to choose productive epistemological
frames and activate appropriate resources. All of these are difficult tasks that live
mostly in the hidden curriculum.

Analyses of problem solving often break the task down into a series of steps.
Sometimes this is prescriptive, as when textbooks list a series of steps to make in
solving a problem. For example, Redish et al. (2010) describes a textbook with the
following scaffold for problem solving

Model! – Make simplifying assumptions.

Visualize! – Draw a pictorial representation.

Solve! – Do the math.

Assess! – Check your result has the correct units, is reasonable, and answers the question

and gives an example where the method failed. The textbook posed a question
asking us to find the volume occupied by the water evaporated after sweating
during exercise. The solution manual followed each step, finding that the volume
was simply the volume of an ideal gas with the appropriate number of molecules,
ignoring that the evaporated water will, by convection and diffusion, spread out over
a very large volume. The textbook’s solution manual follows each individual step,
but nonetheless comes to a nonsensical answer to a problem by failing to “tell the
story of the problem”. From this example, Redish finds

Tying the analysis to a rubric – a formal set of mapped rules . . . does not help if it does
not also activate an intuitive sense of meaning by tying the problem to all we know and
recognize about a system

We also view problem-solving as a series of steps, but not as steps for students to
follow. Instead, the steps are a framework for researchers to understand how students
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solve problems. This approach is common in physics education research. For
example, in analyzing student difficulties using math in physics, Wilcox et al. (2013)
proposed the ACER framework, which consists of Activation of the tool, Construc-
tion of the model, Execution of the mathematics, and Reflection on the result.

Whereas a prescriptive problem-solving script tells students to follow precise
steps in a given order, Wilcox et al. write, “...we are not suggesting that all physics
problems are solved in some clearly organized fashion, but a well articulated,
complete solution involves all components of the ACER framework.” That is,
having the framework allows the researchers to narrow their focus and identify
specific tasks students are struggling with, rather than simply bemoaning that they
can’t apply math appropriately. In that paper, Wilcox et al. found that students’
resources for the technique of taking a Taylor expansion weren’t activated by the
appropriate signal, which was one variable of interest being very much smaller than
another, and suggested that problems be written to focus on building this particular
association for students between signal and mathematical technique.

Frameworks like ACER are effective at picking out specific technical steps that
students don’t take in problem-solving. Our interest here is broader, including
student epistemologies, attitudes towards mathematics, conceptualization of the
entities involved, and other aspects of the hidden curriculum. The framework of
epistemic games is a flexible one that allows analysis of both problem-solving
moves and the motivations behind them.

We have previously discussed epistemological frames in problem-solving. Fram-
ing is a general feature in psychology, and when we work in a particular frame
it often cues a script for how that type of activity typically goes, which sets
expectations for what will happen next and what sorts of actions are appropriate
(Goffman 1974).

An epistemic game is a script (with additional structure to be described below)
that allows us to understand the moves students make in problem solving (Tuminaro
and Redish 2007). As we watch students solving problems, we assign their problem-
solving to some particular epistemic game, which we take to structure the types of
resources they call on and the order in which they use them. An epistemic game
will generally have a particular epistemological frame associated with it, but adds
additional structure. The viability of epistemic games as an analysis framework
stems from its psychological plausibility via the connection to psychological scripts
and that, when Tuminaro and Redish (2007) analyzed student problem solving, they
found that certain epistemic games were repeated many times on different problems
and in different circumstances. The term “epistemic game” comes from Collins and
Ferguson (1993), although the version we use here is that of Tuminaro and Redish
(2007).

In an epistemic game, as in games like solitaire or chess, one or several players
make moves. These moves might be mathematical moves, such as add the same
quantity to both sides of the equation, conversational moves, such as offer a reason
supporting your position, or physical moves, such as draw a picture of the situation.
Because players can make various types of moves, analyzing the moves lets us focus
on different aspects of the hidden curriculum in problem-solving.
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As the players of an epistemic game make moves, they gradually fill out an
epistemological form, a template for what the solution to the problem should look
like, which may be physical or verbal. Finally, players either reach the e-game’s
stopping condition and decide they are done, or else switch to a different game or
give up on the solution attempt.

Tuminaro and Redish identified six common games that students play during
problem solving, such as recursive plug-and-chug, in which students identify a
formula and put values into it without interpreting the results, and mapping meaning
to mathematics, which describes the problem-solving process in which students
analyze the physics of a situation, turn their analysis into equations, manipulate
the equations, and then turn the result into a new physical understanding.

Students use e-games to guide their inquiry, and their (generally unconscious)
choices for what e-game to play have large effects on their problem-solving process.
Different games have different rules about what sort of evidence is salient, what sort
of moves are allowed, what type of arguments to give, and what it means to be
done with a problem. When students get stuck on a problem or come to answers
that don’t make sense from the viewpoint of experts, they often have resources that
would allow them to solve the problem, but never access them because they are not
included in the current frame (Tuminaro and Redish 2007; Bing and Redish 2012).

We do not consider playing an epistemic game favorable or unfavorable; that
depends on which epistemic game and how appropriate it is to the situation.
Epistemic games also aren’t confined to students; experts play them as well, and do
it very effectively. For example, in his short paper “A Model of Leptons” Weinberg
[1967] searches for an equation to describe leptons and their interactions. The
method is to list various properties the equation should have—what symmetries it
has, what types of solutions to avoid, etc. Each such consideration can be translated
into a particular feature that the final equation should have, and by combining a
sufficient number of features, only one equation is left that satisfies them all—
the final equation derived for leptons and their interactions. Weinberg is playing
an epistemic game we call “significant features”. This is a game used to generate
solutions to a given problem (as opposed to evaluating a proposed solution). To play,
one lists relevant significant features a solution ought to have, such as a maximum at
a certain place, or matching a certain symbolic form. Each feature is translated into a
formal constraint or piece of the sought solution, such as the derivative being zero at
the maximum or a symbolic template which matches the symbolic form appearing
in the equation. As the player discovers more features and their associated forms,
they gradually fill out the equation (or plot or other form) they are seeking. The
game ends when they either decide they have completely specified the answer to the
problem or decide that they don’t know enough features to do so.

In Sherin (2001)’s work, two students decide that under constant acceleration
the equation for velocity as a function of time is either υ(t) = υ0 + at or υ(t) =
υ0 + 1

2at2, but cannot decide between the two. Sherin analyzes this as using the
“base plus change” symbolic form. Students conceptualize the situation as velocity
starting at some given value, then changing to a new value, and realize that this maps
onto the symbolic template � + 
. The symbolic form doesn’t distinguish between
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the terms at and 1
2at2 as “changes” to map onto 
 in the symbolic template. Both

are positive (for positive acceleration and time) and indicate an object speeding up.
Sherin’s analysis is that using only a symbolic form isn’t enough for students to
determine the correct equation. We agree, and add that the students are playing
the same “significant features” game that Weinberg did in building a model of
leptons. They begin with a feature they want to the solution to have – matching
the conceptual schema of base + change, and translate that into a mathematical
form – the �+ 
 symbol template. Although they ran out of features to finish
constraining their answer to the one correct answer, they were nonetheless playing
the same epistemic game, just with very different material and at different levels
of expertise.

6.3 Data and Analysis

The students we interviewed were enrolled in an introductory physics for life
science course at the University of Maryland. Most are juniors, with some sopho-
mores and seniors. The course prerequisites include one semester each of calculus,
probability, chemistry, and two semesters of biology. Students are mixed between
having taken physics in high school and not.

This is a population of relative novices in physics, but who have taken from 5
to 12 college science courses before taking this one; they generally have strong ex-
pectations about how science courses and problem-solving in them work, which the
instructor (Redish) routinely challenges. (See (Redish et al. 2014) for more details
on the creation and principles behind the course.) All interviews used a think-aloud
protocol, encouraging students to write and articulate their thoughts at all times
as they solved problems. Some interviews were one-on-one with the interviewer
(Eichenlaub) and others were group interviews in which the interviewer was present
but participated minimally, with occasional small interventions designed to prompt
use of specific problem-solving strategies. We conducted a total of 24 hour-long
interviews with 23 different students enrolled in the first of two semesters of this
course.

With these interviews, we were interested in the breadth of approaches and
conceptualizations students take in problem solving, including whether and how
they blend physical intuition with mathematical formalism and how they conceive
of variables, parameters, and entire equations. We chose problems and problem-
solving strategies that we hoped would elicit epistemic games with a strong interplay
of intuition and formalism. Our goal was to bring out a diversity of interesting
conceptual systems in students’ solution attempts. The strategies we investigated
were examine extreme or special cases, dimensional analysis, and estimation,
chosen especially because they are all familiar parts of an expert physicist’s toolkit,
but are not always taught explicitly at the introductory level.
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We wanted to make fine-grained analysis of small, interesting incidents in
our interviews, so we took video of the interviews ensuring that the field of
view captured all students (for group interviews) or student and interviewer (for
one-on-one interviews) so that we could reference speech, gesture, and other expres-
sions. Students wrote on a whiteboard, which we photographed at the interview’s
conclusion.

Our goal in analyzing these interviews was to generate hypotheses about
cognitively-rich ways that students can interact with math and physics. This was
exploratory analysis, not confirmatory, so the results we present here are case studies
to be examined in more detail in the future. Our focus was on finding particularly
interesting moments throughout the problem-solving sessions, including moments
of blended mathematical/intuitive sensemaking and moments that show how stu-
dents conceive of the mathematical entities they’re working with. To that end, we
reviewed the videos highlighting incidents that stood out to us, then discussed them
together to generate hypotheses regarding student conceptualizations that interested
us. Here we present those hypotheses along with descriptions of the incidents that
we watched while generating them.

Below, we describe each strategy and report briefly on how students in our
interviews took up the strategy before discussing, through the lens of epistemic
games, specific cognitive aspects of problem-solving that these strategies elicited.

6.3.1 Extreme and Special Cases

Most physical systems we examine in problem solving have one or more free
parameters that enter the problem. For example, in trying to find the effective spring
constant of two springs connected in series to form a single combined spring, the
individual spring constants are such parameters. If we set one of these parameters
to its largest or smallest possible value, we’re looking at an extreme case. So for
springs in series, we could set the second spring constant to be infinite, in which
case it is completely rigid, does not contribute at all to the stretching of the combined
spring, and the effective spring constant would simply be that of the other spring.
Using this fact to try to understand something about the general situation is a
strategy we call “extreme case” reasoning. We might also consider the case where
the two spring constants are equal. Then each spring stretches the same amount, the
total stretch is twice as much as the stretch of an individual spring, and the effective
spring constant is half that of an individual spring. We call this “special case”
reasoning. The two are almost the same, but extreme cases have been discussed
independently in the literature, so we identify them as separate but closely-related
reasoning strategies.

Clement and Stephens (2009) studied extreme cases in a grade school setting,
finding that looking at the extreme case helps students build vivid, dynamic mental
imagery, consistently leading to better intuitive understanding of physics scenarios.
Used in quantitative problem solving, extreme cases not only boost our intuition,
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but also allow us to connect that intuition to equations we’ve generated or are
considering. Our accuracy and intuition for thinking about extreme cases has led
physicists to make their study a standard problem-solving tool (Morin 2008).
Nearing (2003) elaborated on why extreme cases lead to better intuition in his
undergraduate textbook on mathematical physics

How do you learn intuition?

When you’ve finished a problem and your answer agrees with the back of the book or with
your friends or even a teacher, you’re not done. The way to get an intuitive understanding
of the mathematics and of the physics is to analyze your solution thoroughly. Does it make
sense? There are almost always several parameters that enter the problem, so what happens
to your solution when you push these parameters to their limits? In a mechanics problem,
what if one mass is much larger than another? Does your solution do the right thing? In
electromagnetism, if you make a couple of parameters equal to each other does it reduce
everything to a simple, special case? When you’re doing a surface integral should the answer
be positive or negative and does your answer agree?

When you address these questions to every problem you ever solve, you do several things.
First, you’ll find your own mistakes before someone else does. Second, you acquire an
intuition about how the equations ought to behave and how the world that they describe
ought to behave. Third, It makes all your later efforts easier because you will then have
some clue about why the equations work the way they do. It reifies the algebra.

Extreme cases, to Nearing, are not about the physics situation alone or the
mathematical expression alone, but a way of bridging the two into a unified
qualitative and quantitative understanding of physics.

In a prototypical use of the extreme or special case reasoning, students first derive
an expression, in terms of parameters of the problem, that is a potential solution to
the problem. For example, they might find the acceleration of a block in terms of
various masses, angles, and coefficients of friction involved. They then use their
physical intuition for extreme cases to evaluate this potential solution.

This evaluative use can be analyzed as a “sanity check” epistemic game. This
game begins after students generate a candidate solution to a problem, and is used
to test whether the solution makes sense. The prototypical moves of the game are

1. Identify a feature which the candidate solution intuitively ought to have.
2. Check whether the candidate solution has this feature.
3. If it does, identify a new feature the solution ought to have. If it does not, either

reject the solution and start over, or enter a new epistemic game to determine
why the solution and feature do not match.

4. Continue playing the game until you can’t think of any more features or are
satisfied with your confidence in the candidate solution.

When playing the sanity check game with the extreme case strategy, these moves
could look like this:

1. Identify a physical variable in the problem.
2. Imagine it becoming extremely large, extremely small, or some special value that

stands out.
3. Intuitively identify the behavior of the system in this case.
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4. Analyze the same limit of expression in the potential solution.
5. Compare the results of (3) and (4) for consistency. If they are consistent,

confidence in the solution increases. If they are inconsistent, choose a new e-
game to figure out whether it is your intuition or the mathematical expression
that is incorrect.

6. Repeat for other variables in the problem.

This game encourages students to repeatedly compare a mathematical expression
with a physical intuition, and so promises to be a good place to learn about how
students use math to inform physical understanding and vice versa.

Although we’ve outlined a canonical version of the game above, physicists use
extreme cases in many other ways. The snippets from physicists discussing the
relation between the Yukawa and Coulomb potentials in Sect. 6.1 discuss sending a
parameter (α) to an extreme (zero), but instead of examining the physical behavior
of a system in this limit, they discuss an equation itself simplifying to a different
equation.

Further, in many cases beyond the introductory classroom, we can only find
analytic solutions for the limiting cases of an equation, so studying the asymptotic
behavior of otherwise intractable physical systems has become the most common
analytical approach in modern mathematical physics (Bender and Orszag 1999). As
a result, extreme cases and special cases lead to a host of useful tools, resources,
and intuitions for physicists, including for example perturbation theory and the
WKB method. The power of this game is one of the reasons that the predilection of
introductory students to “put numbers in right away” (thereby reducing the problem
to one that looks more like “just math”) is often counter-productive.

In interviews, we gave students several problems where we expected the extreme
cases game to be useful: the half-Atwood machine (Fig. 6.1), the electric field
on the axis of a ring of charge, springs in series and parallel, and the area of
an ellipse.

In every case, we found that students have strong and accurate physical intuitions
for the extreme or special cases. In some circumstances, students consistently
spontaneously play the sanity check game using special case reasoning. For
example, every student interviewed on the ellipse problem (Fig. 6.2) considered the

Fig. 6.1 The half-Atwood
problem: A block of mass M
is attached to a block of mass
m via a massless string strung
over a pulley as shown. The
setup is frictionless. What is
the acceleration of the block
m?

M

m
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a

b

Which of these could be a formula for the area of the ellipse shown?

A = πa2

A = πb2

A = πab

A = π(a+b)

A a+b= π
2

2

Fig. 6.2 The ellipse problem

special case a = b, a circle, and used it to evaluate the given answers. No students,
on the other hand, spontaneously checked the extreme case b → 0, however, when
prompted by the interviewer to consider “a long, skinny ellipse”, most did use this
extreme case to answer the question correctly.

Extreme/special case reasoning also proved consistently valuable to students
answering the half-Atwood problem (Fig. 6.1) and to students finding the electric
field on the axis of a ring of charge.

The students in our interviews found this strategy less effective when asked to
determine the effective spring constant of two springs connected in series. Asked
to consider this problem without being prompted to think of extreme cases, Lizzie,
Myra, and Lelia (pseudonyms) had the following discussion

1. Lelia: What’s Hooke’s law again? Oh yeah, T is this. [writes an equation for
Hooke’s law] So in this. The length would technically be twice as long.

2. Lizzie: oh for the two.
3. Lelia: technically this k coefficient would be twice as long as one of them.
4. Lizzie: yeah [erases board and writes T = k
L].
5. Lelia: so I think k-series would be them added together. Cause I remember I

remember from.
6. Lizzie: the homework.
7. Lelia: yeah there’s two connected the new k coefficient is twice as much, I

think.
8. Lizzie: we have two k’s. [all writing equations involving k, T, and 
L].
9. Lizzie: k-series would be k-one plus k-two.

10. Lelia: yeah, that’s what I’m thinking.
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Lizzie, Lelia, and Myra (did not speak above) associate higher spring constants
with more length of the spring, leading them to conclude that springs in series have
an a spring constant that adds. After working on other problems for 20 minutes, they
returned to the springs, and the interviewer asked what would happen if one spring
were much stiffer than the other

1. Lizzie: the stretch, the easy one would stretch a lot.
2. Lelia: and the hard one would stretch a little bit, so the total stretch would be

mostly due to the softer spring. So i mean again I guess k-constant would be the
softer one.

3. Lizzie: but the hard one would still contribute a little bit.
4. Lelia: yeah, but we don’t know. I don’t know how much, you know what

percentage.
5. Myra: can we like divide it by the number of springs?
6. Lelia: like k-one plus k-two divided by two or something?
7. Lizzie: or n?
8. Myra: cause I’m thinking because if one is way easier to stretch and the other

one is not stretching at all, but each spring is still contributing some stretching,
so then you divide it by the number of springs.

Their physical intuition is correct, but in the remaining time, they are unable to
match their intuition to an equation, and ultimately revert to their original answer of
keff = k1 + k2. Although their effort to play extreme cases didn’t result in a correct
equation, they did make correct conclusions about the mathematical form of the
answer, specifically that the effective constant should be (very nearly) the same as
that of the softer spring, and they consistently attempted to match physical intuition
to equations. However, without a clear mapping from spring constants onto physical
stiffness, it was difficult for them to find a correct equation.

6.3.2 The Dimensional Analysis Game

There are several strategies based on the idea that if two physical quantities are
equal, they must have the same dimensions. We refer to these strategies collectively
as “dimensional analysis”, and they are taught extensively at the introductory level
(Robinett 2015), while also remaining of professional interest to physicists for more
than a century (Bridgman 1922). A prototypical example of playing the sanity check
epistemic game for evaluating a formula using dimensional analysis would be

1. Find an equation that may be a solution to a given problem.
2. Evaluate the physical dimensions of each term on the left side of the equation.
3. Multiply the dimensions of all terms on the left hand side together to get the

dimensions of the entire left hand side.
4. Repeat (2) and (3) for the right hand side.
5. Compare the dimensions of each side of the equation. If they are the same, the

equation may be correct. If they are not, the equation is incorrect.
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This game allows students to catch some mistakes in their answers. Students in
our sample played dimensional analysis readily on questions that specifically asked
about dimensions, for example asking which of a set of four formulas could be the
surface area of an object, but also occasionally used it productively in questions
aimed at understanding functional relationships. For example, when asked,

Sixteen students are sharing N large cheese pizzas. Assuming that the students share the
pizza evenly, which expression gives the number of students each pizza must feed?

many students had difficulty choosing between the expressions N/16 and 16/N,
among other distractors. Two interviewees noted that the number 16 had units of
students, and because the answer they were looking for had units of students, the
choice must be 16/N.

Our data set was not set up to investigate the more elaborate dimensional analysis
game in which students are asked to use the dimensions of relevant variables
to explicitly construct formulas, or pieces of formulas, in cases where the full
analytical derivation is too long, complicated, or intractable to be useful (Robinett
2015), although we believe this game would be interesting to research in the
future. Constructing a formula from elemental pieces, as well as understanding an
incomplete formula which contains scaling information but cannot be numerically
evaluated, may lead to rich student cognition.

6.3.3 Estimation

By estimation, we mean integrating personal knowledge, a corpus of memorized
numbers, and approximation heuristics to obtain order-of-magnitude estimates of
interesting quantities, either in physics or in everyday scenarios. Like dimensional
analysis and examining extreme cases, estimation is a highly valued in the physics
community and in physics education, which have a culture of “Fermi estimates”,
“back of the envelope” calculations, and “order of magnitude” estimates. For ex-
ample, The Physics Teacher publishes a “Fermi Question” in each issue (Weinstein
2018), and several universities have undergraduate courses in estimation (Phinney,
Chiang).

We chose to investigate estimation because performing estimates generally
requires students to think about their everyday experience and find methods of
quantifying it, often while building equations that multiply various such terms
together. Thus, it forces students to use intuition and a formal understanding of
mathematics simultaneously.

A case study by Modir et al. (2014) established an estimation epistemic game
involving six moves,

1. Problematize
2. Propose method
3. What to remember
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4. See if parts are enough
5. Pure calculations
6. Evaluation

and documented how a student estimated the energy in a hurricane by going rapidly
forward and backward between these moves.

In one of our interviews, a group of four students, Amelia, Zane, Jean, and Chris,
attempt to estimate the time it would take a submersible submarine to sink to the
bottom of the ocean. The group agreed to assume the ocean was 1000 m deep,
and Jean calculated a descent time of about 14 s by assuming the sphere fell with
ordinary gravitational acceleration. Several group members challenged the notion
that the submersible would accelerate during its descent and proposed it would
instead fall at terminal velocity, but never reached consensus before the following
exchange

1. Amelia: Well if you think about it based on the previous situation that we
said, we said it was at a thousand meters (Jean: mmhmm) the force was two
thousand newtons. Fourteen seconds technically could be legible just because a
thousand meters isn’t really a lot. We have a really heavy (Zane: that’s true) like
submersible, so it kind of makes sense in that situation.

2. Zane: let’s go with it.
3. Jean: go with the...
4. Zane: fourteen seconds, yeah.
5. Amelia: It all depends on like, all these variables. With these variables it would

make sense that it would be dropping that fast.
6. Jean: And we’re assuming there’s no um, buoyant force, no viscous force.

Although Zane called on counterintuitions several minutes before this exchange
(“it’s not going to hit, you know, a hundred thousand miles per hour at the
bottom.”), and repeatedly argued against the constant acceleration approach, the
group decided that their calculation “kind of makes sense”, ultimately accepting
a highly unreasonable answer. Despite their incorrect conclusion, we see in this
passage group members calling on a sense of whether numbers are reasonable for
a given physical situation, questioning the relation between unknown parameters
and quantities of interest, and examining the simplifying physical assumptions
that go into their reasoning. At the conclusion of the interview, the interviewer
mentioned that their conclusion had the submersible reaching the ocean floor at
roughly 300 miles per hour, and the group burst out laughing. It may be that the
group’s considerable efforts at sense-making failed largely due to an unfamiliarity
with the relevant units, as well as neglecting to convert them into more everyday
terms.

In this incident, we see a group negotiating what physical effects to model
mathematically and what to ignore. This skill is essential to all physical modeling.
For example, in introductory physics we often model the flight of a thrown ball
using only a uniform gravitational force, giving a parabolic trajectory. In doing so,
we ignore aerodynamic drag, other aerodynamic effects (e.g. lift), nonuniformity



6 Blending Physical Knowledge with Mathematical Form in Physics Problem Solving 143

of the gravitational field, inertial forces due to Earth’s rotation, magnetization of
the ball in Earth’s magnetic field, the Yarkovsky effect (black-body radiation is
red/blue shifted in the ball’s reference frame due to its rotation, cause a net torque),
momentum imparted by sunlight the ball absorbs or reflects, transfer of material
in and out of the ball’s surface, and many other effects. Some of these can be
important or not for a ball, depending on the accuracy we want and the parameters
of the situation. Others are effectively never important for a ball thrown on Earth,
but are relevant for, e.g. dust particles in space. Physicists often estimate the sizes
of such effects to see whether they belong in more complete and explicit model. By
improving student estimation skills, we also empower them to build better-informed
mathematical models, and to understand the extent of those models’ applicability.

6.4 The Nature of Equations

In physics education, there has been considerable effort to understand the different
ways that students view equations epistemologically (Airey and Linder 2009), e.g.
whether they ought to map closely to phenomena or be treated formally, be accepted
as given by authority or derived from fundamental principles, and their relationship
to modeling. Here, we are interested in a different type of view of equations: their
ontology, or what types of object they’re considered to be.

Earlier, using the example of physicists discussing the Yukawa and Coulomb
potentials, we suggested that there is a variety of ways that physicists conceive
of the equations they’re working with. Physicists in different contexts speaking
to different audiences sometimes thought of equations as dynamic objects, with
one equation transforming into another, and other times thought of them as static,
with one equation being a special case of another. Additionally, when equations
changed, sometimes it was the speaker or the audience actively making the change,
and sometimes the equation changed without a specific agent being identified.

The three problem-solving strategies introduced so far all call on students to
think about equations in new ways—to hold them accountable to common sense
(estimation) and to check various features of them (dimensions and special cases).
We might wonder whether interacting with equations in certain ways changes the
conceptualization that students have of equations.

In watching students play epistemic games with mathematics, we saw a diversity
of conceptualizations of equations emerge. For example, Alma, in working the
ellipse problem, checked the special case a = b with reference to the formula

A = π
(

a+b
2

)2

. . . so a plus b squared over two squared times two is four plus b that would be 2 ab. b
squared plus yeah. Okay. Yeah. Okay. So then you would have r squared plus two r squared
plus r squared which equals pi four r squared over four, so I guess it’s a plus b over two
cause you’re taking the average. Oh, it’s like you’re turning into a circle. That’s cool. Yeah.
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When Alma checked the special case, she described the ellipse as “turning into a
circle”, but she didn’t make this reference while working with a geometric object.
Instead, she made it while working with an equation. In other words, the ellipse was
“turning into a circle” in that it became the formula for the area of a circle when
a = b = r. This dynamic picture of an equation mirrors the language that a Yukawa
potential “becomes the Coulomb” potential in an extreme case. She was working
with the formula, but instead of saying that the formula turns into a formula for a
circle, she said “you’re turning it into a circle”, referencing a geometric object (the
circle) while working with a non-geometric object (the formula). We suggest that
for Alma, in this moment, there was no significant distinction between the formula
and the object it describes, which, if correct, shows a very strong example of binding
meaning to an equation.

Similarly, Amelia was examining the equation N(t) = N0e−t/τ for the number
N of particles remaining when they decay over time t with a time constant τ .
(The interview protocol for this series of interviews is not available because the
interviewer asked the questions verbally, writing equations out by hand on a
whiteboard. Videos of these interviews for scholarly review may be available on
request.) In examining the special case where half of the original number of particles
remain, Amelia described actively changing equations via procedural language,
such as “I divide each side by the initial amount. I el-en [take the natural logarithm
of] each side”, but she also described changing equations not according to any fixed
procedural rules, “I changed the equation, if I’m doing this logic, because I don’t
remember what the half life equation is off the top of my head. So I rewrote the
equation to say that Q(t) is equal to one half times the initial amount times e to the
negative t. t referring to just time...”

In both cases, the agency in changing the equation lies in Amelia herself. In
the first case, she follows formal manipulations. In the second, she is “doing this
by logic”, presumably a reference to some mix of common sense, intuition, and
mathematical reasoning, as a contrast to memorization. She created an entirely new
equation based off a template from the old one, assigning specific physical meaning
to each term she created.

Students can take varied stances towards the types of objects that equations are
while manipulating, creating, and interpreting them in many contexts, not simply
in the context of the strategies we investigated. We believe this menagerie of
conceptualizations of equations and interactions with them is especially rich in these
epistemic games that play out with these strategies due to their requirements to blend
symbology and physical meaning.

6.5 Blending and Sensemaking

In most frameworks to analyze student use of mathematics, there is a step in which
the student manipulates the equations. For example, in ACER, this step is Execution
of the mathematics, described as
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Transforming the math structures (e.g., unevaluated integrals) in the construction compo-
nent into relevant mathematical expressions (e.g., evaluated integrals) is often necessary
to uncover solutions. Each mathematical tool requires a specific set of steps and basic
knowledge. For example, executing a Taylor approximation may require knowledge of
common expansion templates (e.g., sinx ≈ x + x3/3! + . . . ) and how to adapt these
templates to the mathematical model developed previously. Alternatively, one might need
to know how to compute derivatives of complex functions. The mathematical procedures
performed in this component are not, at least to experts, context free. In addition to
employing base mathematical skills, experts maintain awareness of the meaning of each
symbol in the expression (e.g., which symbols are constants when taking derivatives).

Although this description indicates that the operations are not purely formal,
and that the problem-solver needs to remember the context and meaning of the
symbols, the steps on which we understand the equations’ emergent meaning and
match them to physical understanding are separate steps from the steps of symbolic
manipulation under these frameworks.

Research on the manipulation step has mostly focused on the difficulties that
students have in making manipulations or on the procedural resources they use while
manipulating equations (for example, thinking of physically sliding a variable from
the numerator of one side of an equation to the denominator of another) (Wittmann
and Black 2015).

Experts use individual mathematical manipulations as sources of physical sense-
making. Kustusch et al. (2014) studied physics professors solving a thermodynamics
problem that involved taking partial derivatives. There were many choices for
which derivatives to take, and experts used physical insight into the derivatives’
meaning to guide their choices. In a review of the literature on mathematical
sensemaking inside the mathematical manipulation steps of problem-solving, Kuo
et al. (2013) found “no studies that focused upon the mathematical processing
step in quantitative problem solving or described alternatives to using equations
as computational tools.” The same authors then contrasted two students, one who
describes a kinematic formula in terms of its meaning via a symbolic form, another
who saw the formula essentially as a black-box tool, and found that these students
performed the mathematical manipulations in a problem using that kinematic
concept differently. The student who understood the formula via a symbolic form
was able to blend mathematical and physical reasoning to take a shortcut solution
to the problem, while the other student was not.

If we value this sort of blended sensemaking, we should find ways to encourage it
in students. We believe extreme-case reasoning is one way to do this. In order to use
extreme case reasoning, students must think about formulas and physical systems
simultaneously, and as a result, they find new and creative ways of conceptualizing
and manipulating equations.

For example, Myra, while considering the “springs in series” problem, has
written T

k1
+ T

k2
= 
Ltotal = Tsum

kseries
and below it T

k1
+ T

k2
= T

kseries
on her whiteboard,

saying

I’m thinking that if you apply a constant force, for k-one will give like this amount of length
plus k-two will give like this amount of length, then that’s like the total amount of length of
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the series, which equals to k over T-series. And that makes sense to me. I just don’t know
how you would like not put the T in the equation.

Although the group did not take up her method and she soon abandoned it,
Myra’s expression was correct, and a short algebra step away from the desired
solution. In generating this expression, Myra didn’t start with basic definitions and
follow a purely formal procedure. Instead, she blended her conceptual understand-
ing of stretching with the mathematical formalism while manipulating mathematical
expressions.

Shortly before, Lelia stated, “and both would contribute just like one would
contribute like one would have less change than the other. They’d still both probably
be a part of the stretch.”

Myra’s key insight was to translate this “both contributing” intuition into a
symbolic form (Sherin 2001), a basic template for an equation, along with a meaning
used to understand entire classes of equations that build on that template. Here, Myra
uses what Sherin identifies as the “parts of a whole” template, [� + �+ ...].

Myra fits Lelia’s idea about both springs contributing stretch onto this template
via the heuristic equation stretch1 + stretch2 = stretchtotal. Then, using the definition
of a spring constant, which contains a variable 
L for the stretch of the spring, Myra
substitutes in the stretch of each spring, making each term physically meaningful as
she does, obtaining T

k1
+ T

k2
= T

kseries
.

In a separate instance, Bert was working on the half-Atwood problem. His
solution had a sign error, a = mg

m−M
instead of the correct a = mg

m+M
, due to an

inconsistency in how he set up his coordinate system.The interviewer introduced
and scaffolded the extreme and special case game for Bert, who readily took it up,
discovering that his solution had the blocks reversing direction based on their mass,
which he rejected as intuitively incorrect. Instead of reworking the entire problem
from scratch, Bert tried making small modifications to his answer to eliminate the
problem, for example introducing an absolute value in the denominator to keep it
from changing signs. As he continued introducing and testing new solutions, he
looked at M−m

mg as a potential solution, considered the extreme case where M � m,
and said

So then this is super big that’s super small. [pauses, draws a minus sign on M in the
numerator] Still doesn’t make sense. Still not working. Cause one of these [the masses]
are big then it’s gonna be big acceleration. That’s not what should happen. Should be as
this one grows [points to M] it gets smaller, so like that has to be in the denominator.

In suggesting that M must go in the denominator, Bert has repurposed the ex-
treme cases game. Instead of evaluating potential solutions, he is placing constraints
on what the unknown correct solution must look like. Like Myra, he blends his
physical intuition and symbolic forms to achieve this.

The symbol template Bert uses is a division template, along with a conceptual
schema about inverse proportionality. It is a schema where as one quantity increases,
another decreases, but in the extreme case it shows that as one quantity grows very
large, another becomes very small.
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In applying this symbolic form, Bert begins with his intuitive understanding
that very large, heavy objects are difficult to move and blends in his formal
understanding of inverse proportionality to creatively generate a new instance of
the extreme case game.

Bert did not wind up solving the problem; he rejected the correct solution on the
mistaken grounds that it was symmetric with respect to interchange of m and M, but
despite not coming to a complete solution, he generated unique insights as well as a
partial solution by renegotiating his relationships to the equation he was searching
for while playing the extreme case game.

6.6 Implications for Instruction

It is common to see backsliding in surveys of student epistemologies over the course
of introductory physics. For most courses, students on average exit their college
physics course with less-favorable beliefs about how to learn physics than they
had when they entered (Redish et al. 1998; Adams et al. 2006). As epistemologies
are tied to problem solving strategies (Ataide and Greca this volume), it’s likely
that students’ conceptions of the role of mathematics and their approaches toward
using it also deteriorate over most year-long introductory sequences. This means that
although we observed surprising and expert-like strategies in our problem-solving
interviews, we need to be wary of the possibility that our classes lead to students
using these strategies less and less with time.

The reward and feedback structures in many introductory courses focus on
evaluating whether a student can perform a certain calculation correctly. This
includes grades on homework and exams, and in many circumstances, the verbal
feedback students receive from instructors, for example that in “initiate-response-
evaluate” questioning (Mehan 1979). In most of the episodes we’ve cited in this
chapter, students wouldn’t have received positive feedback from such systems. Bert
didn’t get the correct answer when he found creative new applications of extreme
case reasoning. Myra blended her physical intuitions with formal mathematics in
a symbolic form to get an expression equivalent to the correct answer for how
springs add, but her group didn’t take it up, and they left the interview without
having reached a consensus on the correct answer. Alma, when checking the special
case of a circular ellipse, used a dynamic ontology of the equation to reinforce her
understanding of the test she was performing, but wasn’t able to distinguish two
answers which both passed that test, and she wound up choosing the wrong answer.
Each time, the students were displaying expert-like problem-solving behaviors that
we might not expect to see in introductory courses, but because they didn’t come
to the correct final conclusion, in many classrooms they wouldn’t have received
points on a test, heard their teachers praise, reiterate, extend on, or dive more deeply
into the reasoning, or seen their peers enthusiastically take up the same methods.
Because the type of feedback students receive can significantly affect their attitude
toward learning (Carlone et al. 2014; Russ et al. 2009), this lack of positive feedback
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when trying expert-like strategies could easily quench students’ fledgling attempts
at useful, general ways of solving problems and understanding physics.

It isn’t surprising that the techniques that work for experts in problem solving
are less effective for novices. Learning to use tools takes practice. Riding a bicycle
is much faster and more efficient than walking once you know how to do it, but
it can be wobbly, frightening, and even dangerous at first. If we want students not
only to try out strategies such as testing special cases or blending intuition and
formalism through symbolic forms, they need a freedom to fail, encouragement to
try out new ways of thinking, and positive reinforcement when they do so. Spike
and Finkelstein (2016), studying recitation sections, found that the extent to which
TAs do these things depends on their beliefs about the goals of instruction. When
instructors expand their goals beyond seeing students perform calculations correctly
(whether quantitative or qualitative) and value the growth of new and useful ways of
thinking, classrooms environments can take the seeds of expert-like thought we’ve
observed here and nurture them.

In our own courses, these observations have led us to two ways of encouraging
new problem-solving behaviors. The first is asking questions which focus on
evaluating the meaning of formulas, as opposed to using them as black boxes. For
example, a problem from the textbook by Serway and Jewett (2004) reads

Consider a gas at a temperature of 3500 K whose atoms can occupy only two energy levels
separated by 1.5 eV . . . Determine the ratio of the number of atoms in the higher energy
level to the number in the lower energy level.

The solution involves using the formula for the Boltzmann factor as a black box
tool. To encourage different ways of reasoning about the formula, in a class one of
us (Redish) taught recently, a quiz question asked

When a membrane allows one kind of ion to pass through and not another, a concentration
difference can lead to an electric potential difference developing across the membrane.
For example, if the concentration of NaCl on one side of a membrane is c1 = 10mM and
c2 = 2mM on the other, letting only Na+ ions through (and not Cl-) will build up a potential
difference across the membrane. This is controlled by the equation that says that the electric
potential energy, q
V, balances the concentration difference effects via the Boltzmann
factor thus:

c1

c2
= e

−q
V
kBT

For a given set of concentrations (c1 and c2 fixed) would you expect increasing the
temperature to increase, decrease, or leave the Nernst potential, 
V, unaffected?

This question encourages students to reason about the functional form of the
Boltzmann factor, perhaps by imagining extreme cases or using symbolic forms.
It also encourages students to think of T not as a fixed entity, but as a parameter that
can be tuned to change both the physical behavior of a system and the numerical
value in an equation.

In addition to asking questions that encourage students to reason about formulas
instead of apply them in order to get the right answer, we also ask questions
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that encourage students to reflect on formulas without the need to extract a final
correct or incorrect answer. For example, in one of our recitation exercises, students
are asked to construct their own equation to describe when a worm will begin to
suffocate as we scale up its size (reducing its surface area to volume ratio) (Redish
and Cooke 2013). We then ask students,

Our analysis in [the previous part] was a modeling analysis. An organism like an earthworm
might grow in two ways: by just getting longer or isometrically – by scaling up all its
dimensions. What can you say about the growth of an earthworm by these two methods as
a result of your analysis in [the previous part]? Does a worm have a maximum size? If so,
in what sense? If so, find it.

These more open-ended and reflective questions ask students to use formulas -
formulas they have constructed - for interpretation and coming to new inferences,
both about physical systems and about the mathematical properties of equations.

Throughout this chapter, we have searched for a number of creative ways students
approach problems, including thinking about the extreme cases, conceptualizing
parameters in different ways, and using equations for estimation. In interviews,
students do all these things, but they can easily lead the student seemingly
nowhere—no correct answer to a question, no encouragement from an instructor,
no adoption by peers. To encourage students to try out useful but difficult-to-master
new strategies, we continue refining the way we ask questions and attend to student
thinking during instruction.
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Chapter 7
Theorems-in-Action for Problem-Solving
and Epistemic Views on the Relationship
Between Physics and Mathematics
Among Preservice Physics Teachers

Ileana M. Greca and Ana Raquel Pereira de Ataíde

7.1 Introduction

The most frequent complaints voiced by physics teachers, at all levels, are that their
students miscomprehend concepts in physics because of weak mathematical skills
(Pietrocola 2010; Redish and Kuo 2015), which is seen as one of the principal causes
for academic failure. Nevertheless, although mathematical skills are necessary for
a full understanding of physics, they are not enough in themselves to guarantee
success at physics (Hudson and McIntiry 1977). Moreover, although in some cases
students do not in fact master the necessary skills at mathematics, recent research in
physics teaching has revealed other possible diagnoses. For example, Romer (1993),
Lozano and Cárdenas (2002), Martinez Torregrosa et al. (2006), and Redish and Kuo
(2015) all discussed the need to teach students how to read mathematical symbols
and equations in physics contexts and to interpret them because, as stressed by
Redish (2005), even though mathematics may be the language of science, “maths-in-
physics is a distinct dialect of that language.” As discussed in this book by Karam,
Uhden, and Höttecke using their historical genesis, the way physicists make use of
some basic mathematical concepts is specific to physics.

Other problems are to do with the ideas students have of the relationship between
physics and mathematics, an interplay that is not presented with sufficient clarity
for students. These ideas lead to misunderstandings such as seeing mathematics
only as a mere instrument for physics, as the teachers themselves may describe it.
This type of thoughts make students believe that they need to know no more than
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the equation and its solution, to solve problems in physics, or that they can use
equations without any direct association with the principles of physics; i.e., there is
no need to understand equations in the context of physics before they are applied
(Redish et al. 1998; Adams et al. 2006; Sherin 2006; Mason and Singh 2010).
Pietrocola (2002, 2010), based on philosophy and history of science, discussed
how the relationship between mathematics and physics might influence its teaching
and learning. Dormert et al. (2007) described the epistemological components of
students’ mind-sets in their understanding of physics equations, finding that the
most recurrent mind-sets were how to use an equation to solve problems and how
to recognize what the symbols in an equation represent. These results are similar
to those found by Redish et al. (1998) on the expectations of introductory physics
students regarding equations, who merely used mathematics, it appeared, as a way
of calculating numbers.

Using the historical framework provided by Michel Paty for the relationship
between mathematics and physics, we studied how the epistemological views
of students influenced the way they solved physics problems (Ataide and Greca
2013, 2017). In a case study with undergraduate physics students, we were able
to identify (adapting a classification proposed by Karam 2007) three categories
related with student views on the role of mathematics in the construction of a
physical theory (tool, language, and structure) that correlate with their salient
feature in the strategies they used in problem-solving (operational mathematics,
conceptualization, and mathematical reasoning). So, students who see mathematics
as a mere tool for physics use mathematics as a technique and tend to solve problems
by trial and error. Their epistemic views also appear to influence their learning and
understanding of physics concepts, because problem-solving is the main activity in
the physics classroom.

In this chapter, we present our attempt to understand and to detect the mental
“rules” that seem to be behind the way students solve physics problems. With these
rules in mind, we prepared a questionnaire with 15 (Likert-type scale) items that
may help instructors to detect the behavior of students in relation to problem-solving
before their instruction, knowledge that may be useful for designing their classes.

7.2 Theoretical Framework

In this section, we present the theoretical framework used to determine the cognitive
aspects involved in the interrelationship between mathematics and physics when
students try to understand physics concepts and, in particular, when they solve
problems in physics. Our framework is based on the model proposed by Greca and
Moreira (2002) that includes Johnson-Laird’s mental model theory and Vergnaud’s
theory of conceptual fields.

In Johnson-Laird’s theory of mental models (1983), the mental models are
determined and concrete idiosyncratic cognitive structures operating in the working
memory of the individual who wishes to understand, to explain, and to predict a
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specific situation or process, and that act as structural analogues of this situation
or process. We can understand them as “simulations” of such situations, similar
to analogical computers simulating a physical system (Greca and Moreira 2000).
They are characterized as dynamic structures generated to solve particular (often
new) situations and incomplete ones. They are recursively modified or updated
whenever the individual users detect a mismatch between the predictions generated
by the models and external events or detect new information to input into the model,
depending on the use they wish to make of it. Hence, these mental models are called
“working models” – “disposable” representations the main role of which is their
functionality.

As these mental models are “disposable” representations, there is a need to find
some way to define the more stable knowledge in the mind of the individual.
To do so, we adopt the model proposed by Greca and Moreira (2002), which
articulates mental models with the theory of conceptual fields of Gérard Vergnaud.
According to the theory of conceptual fields, the knowledge that a subject has is
organized into conceptual fields, mastery over which is only achieved over a long
period of time, and comes from experience, maturity, and learning. A conceptual
field can be defined as an informal and heterogeneous set of problems, situations,
concepts, relations, structures, content, and thought operations connected to each
other and probably intertwined during the acquisition process (Vergnaud 1982).
The conceptual field is therefore the way people organize their knowledge over
a set of situations that they consider to be related, through the competencies and
conceptions they acquire when they face those situations. So, in a certain conceptual
field, there may be a wide variety of situations, and individual knowledge is shaped
by situations that are repeatedly encountered and gradually mastered. A learning
process that is especially true in the initial situations where individuals accord
meaning to concepts and procedures that they wish to learn (Vergnaud 1990).
According to Vergnaud, in a problem situation, a concept never appears in isolation,
but is articulated with others that, according to the individual, belong in a particular
conceptual field. Thus, learning a concept is understood as a broad cognitive process
that is related to the number of problem situations that the individual experiences,
through which sense is attributed to that concept.

Although mastery of these situations will shape individual knowledge, the sense
attributed to a situation by the individual is not in the situation itself, but in the
relation between the situation and the internal representation in the mind of the
individual. The internal representation for Vergnaud depended on the schemes that
the individual forms. These schemes (see Fig. 7.1) are the invariant organization of
behavior in a given class of situations (Greca and Moreira 2002). The cognitive
elements that lead to individual action should be researched in relation with
the schemes. A scheme is a universal construct, an efficient means with which
to address a whole range of situations. It can generate different sequences of
action, information collection, and control, depending on the characteristics of each
situation. So, it is not the behavior in similar situations that is invariant or universal,
but the organization of that behavior (1998, p. 172).
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Fig. 7.1 Composition of schemes

The knowledge-in-action of an individual is contained in the operative invariants
(theorems-in-action and concepts-in-action) of the schemes. Concepts-in-action
allow the subject to organize the world in categories and to pick up from this
world the relevant information according with the situation and the schemes he
has. Theorems-in-action are propositions that may be true or false, concerning those
concepts-in-action.

These operative invariants form the essential link between theory and practice,
because the system of concepts-in-action and the underlying theorems-in-action
determined the perception, the search, and the selection of information that is
available to the individual. In-action means that they are useful for the individual to
deal with situations and are therefore mainly implicit. Unless they become explicit,
the operational invariants are conceptualized in the hidden part of the iceberg of
conceptualization. Nonetheless, they can gradually become real scientific concepts
and theorems, and the educational activities are fundamentally to help students
to build explicit and scientifically accepted concepts and theorems from implicit
knowledge.

There is a dialectical relation between concepts-in-action and theorems-in-
action, since concepts are ingredients of theorems and theorems are properties that
give concepts their contents. For example, let us think of the situation of moving
an object over a surface. An individual without any physics training would not
identify all the forces involved in the situation and would also say that the object
will stop when the application of the force ceases, because in the schemes of that
individual for this class of situations, neither are the concepts-in-action of friction
and acceleration present, nor is an appropriate theorem-in-action for the relation
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between force and speed. So, he cannot “see” these elements in the situation.
In contrast, we expect that after following a subject about mechanics, students
should recognize the different forces that appear in the situation and solve problems
using certain laws. After instruction, the students should begin to incorporate some
“ideas” about the different forces and their relation with acceleration, speed, etc.
in the schemes that they form around these classes of situations. Nevertheless, the
individual may not be able to define properly the physics concepts that are involved,
because a concept-in-action is not a scientific concept, just as a theorem-in-action is
not a true theorem.

Summing up, in this theory, the knowledge people have for doing things, their
procedural knowledge, is organized into schemes, mainly composed of concepts-in-
action and theorems-in-action. Concepts-in-action guide our perception and allow
us to identify the objects that are considered relevant for acting in the set of
situations we face, and the theorems-in-action are the rules that allow our mind
to act on those objects. If considered similar situations, then the individual will
apply the same schemes, with the same concepts-in-action and theorems-in-action.
For example, for solving problems in kinematics, students may have a scheme in
which there are some concepts-in-action related to speed, distance, and time that
at the same time are the “objects” the student will see in the situation. Also, the
scheme has to include some theorems-in-action (generally rules for solving these
kinds of problems and also formulas). If the students identify that a problem is a
“kinematic” problem, they will apply this scheme. But, students will not apply the
same scheme, if identifying the problem as belonging to another class of situation
that is not “kinematic.” That difference can explain why students very often fail
to use a similar “process” to solve problems that are, from the point of view of
physics, identical – for example, a block in free fall, blocks connected by a rope,
and blocks on a ramp. For many students, they belong to different schemes and
different concepts, and theorems-in-action are applied. A similar process happens
with the relationship between mathematics and physics. For students, elements of
mathematics (knowledge of how to solve equations, to understand a graph, etc.)
are very often included in different schemes than those needed to solve physics
problems. For example, Planinic et al. show in this book the competences and
difficulties of high school students at transferring their knowledge of graphs when
presented with similar situations but framed within different contexts, math context
and physics context. The same happens with many other mathematical concepts.
As teachers, we very often take it for granted that if students have learnt to solve a
differential equation, they can solve it anywhere. Nevertheless, students will not
share this view, because they appear to have different schemes for differential
equations for math or for physics. It is also worth stressing, as Bing and Redish
(2007) pointed out, that in general the mathematical elements cannot simply be
transported into physics but have to be framed by the physical concepts, an aspect
that is not usually stressed in physics classes.

As individuals face different situations, the schemes they hold can become more
complex or may be necessary to create new ones, if they fail to understand those
situations successfully or to resolve them. So, schemes may be little pieces or big
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pieces depending on the kind of situations we face. Experts, for example, may have
more comprehensive schemes. But also in this case, their schemes depend on the
situations they have faced, generally related to their area of expertise. For example,
a physicist working with electromagnetism in situations involving electrons would
apply different knowledge-in-action than another physicist working with quantum
mechanics.

As previously mentioned, the knowledge contained in the schemes is mainly
implicit. The knowledge they contain must progressively become explicit, so as
to be able to discuss it and thereby to convert this knowledge for action into
knowledge for thinking. And in this process, the individual begins to conform true
concepts. According to Vergnaud, a concept gradually acquires implicit meaning for
an individual through situations and problems, because it is from these situations and
problems that the properties constituting the concepts-in-action and the theorems-
in-action of an individual will be abstracted. However, these operative invariants
have to be explicitly expressed, before the individual can reason with them, through
their different representations, and in this way, these invariants start to form true
concepts. In fact, modeling, as described by Pospiech in the framing chapter, can be
understood as one of the possible mechanisms of explaining concepts and theorems-
in-action, an indispensable stage for the acquisition of true scientific concepts. In
modeling a situation, students should choose the entities that will be part of the
model and establish the relationships between them, which will serve as the basis
for the equations that describe it. In this process, they necessarily have to explain
the concepts and theorems-in-action that they possess.

Now, the question is how to modify the existing schemes and how to create new
ones. For these processes, we used the articulation of mental models and Vergnaud
schemes proposed by Greca and Moreira (2002). Accordingly, while the schemes
remain as structures in the long-term memory, with their theorems-in-action and
concepts-in-action, whenever new situations are encountered, the individual will
generate mental models, representations in the short-term memory, that are useful
at solving certain tasks.

The relation between mental models and schemes is dialogic. If the situation is
known, the individual will not have to construct mental models, once the concepts
and theorems-in-action are activated in the schemes of the long-term memory for
solving it. But if the situation is perceived as unknown, the individual will need to
construct mental models to make inferences and predictions, so as to understand
and to master the situation, because the solution strategies are not automated. And
these mental models are constructed on the basis of the knowledge the individual
already has in other schemes. But, the comparison between the results of the mental
models and the actual result of the situation can lead to changes in the invariants
of the individual. These changes occur when the individual systematically seeks
consistency between internal thinking and data from the outside world (Greca and
Moreira 2002). This process is exemplified in Fig. 7.2.

When students are challenged with situations that they understand as new ones,
they create mental models. Their mental models may be not correct, and, as teachers,
we can help them to change it. But this change in a mental model will not necessarily



7 Theorems-in-Action for Problem-Solving and Epistemic Views. . . 159

Fig. 7.2 Relation between schemes and mental models when encountering new situation

mean that the student will automatically apply it or, equally, that the student
will have changed schemes. If that change is to happen, it is necessary to have
encountered several new situations and to have applied the approach (that may not
be correct but is useful) repeatedly and successfully. This can explain why students
need time for adopting new techniques for solving problems (Roorda et al. 2015).
Another possibility is the use of the strategies proposed by Eichenlaub and Redish
in their chapter and detected by Lehavi et al. (2017) analyzing teaching patterns in
expert high school physics teachers, such as “examine the extreme cases” and “think
about the dimensions”. These strategies demand that students move systematically
from their known schemes and explicitly address the possible mismatches between
the solutions that their own mental models produce and the way the world behaves.
These strategies appear to be useful especially for the development of appropriate
schemes in relation to the physical understanding of mathematical expressions.

Thus, the relation between mental models and schemes is on a continuum,
because, in new situations, the individual will construct mental models and in
situations that have similarities with those already known, the individual will use
stable schemes built from unstable mental models.

It is worth noting that the notion of scheme has some points in common with the
resource framework, proposed by Hammer (2000), although in Vergnaud’s theory,
which also explains concept formation, schemes do not need to be small. Also, for
our framework, epistemological resources are not a different kind of representation.
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They are theorems-in-action included in the schemes that students have developed
for problem-solving in each specific area. Of course, as some physics contents have
been taught for many years, i.e., mechanics, it is easier and saves time for students
when applying the rules generated in that area to new physics contents.

During the process of learning physics, students develop a series of schemes
on both physical and mathematical content. As problem situations are the main
activity in physics classrooms, students will have also developed schemes for
problem-solving that should include concepts and theorems-in-action related both
to physics and to mathematics, as problem-solving in physics applies mathematical
formulations. This knowledge-in-action would have been generated as the students
gradually appropriated the different conceptual fields linked to areas of physics.

The research questions that guided our study were:

(a) What is the knowledge-in-action – and, particularly, the theorems-in-action –
that preservice physics students mobilize when solving problems in physics?

(b) Are these theorems-in-action related to the epistemological views they hold of
the role of mathematics in physics?

In this chapter, we will show the theorems-in-action that we have detected in
relation to problem-solving in physics and how those theorems relate to the most
striking features of students in solving physics-based problems. In the next section,
we will present the methodology used to do so.

7.3 Methodology

We conducted a qualitative research study, with two groups of students on the degree
course for training high-school school physics teachers at the State University of
Paraíba. This degree has a duration of eight semesters. The first group consisted
of eight students following the final year degree (veteran students, VS) during
the second semester of 2010. The second group was composed of 17 students,
enrolled in the second year, during the first semester of 2016 (new students, S).
Data collection was done during individual problem-solving sessions in which we
used verbal protocols for the identification of mental models.

In verbal protocols, the individuals are expected to express their thoughts out
aloud that pass through their minds in the course of the task, and the data obtained
is used, in conjunction with theoretical assumptions to generate hypotheses and to
draw conclusions on the cognitive products and processes. In our case, the task
that the students had to perform was problem-solving, and within our framework,
we drew inferences on possible mental models and, subsequently, inferences on
concepts and theorems-in-action, as indicated below.

The sessions were recorded on video and had the mediation of the researcher,
in order to stimulate student comments, so as to facilitate the identification of the
operative invariants (theorems-in-action and concepts-in-action) used during the
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activity. The problems used during the interviews were similar to those at the end of
each chapter of a standard physics textbook.

Data analysis was done through detailed scrutiny of both the written and the
verbal documentation of each student, obtained during the problem resolution
sessions. We conducted a separate study for each student. First, we sought to
determine the mental models used for each problem. To do so, we separated the
different parts of the documentation, highlighting key concepts and phrases that
appeared to show the way that each student had understood the problem and
approached its solution. With this information, we composed an initial sketch of
the mental model. Then, the sketch was compared with drawings and writings and
with the answers the student had given in the interview. This process gave us the
possibility to better define the working model that the student was using for solving
each problem.

After this process, we observed whether and how the working models detected
were modified for each problem. In other words, as stated in the theoretical
framework, the individual has to construct specific mental models to solve a new
situation (each problem). But, as the students move from problem to problem,
it is possible to identify ideas and propositions that remain intact even when the
models are modified. Hence, we inferred that such propositions were theorems-in-
action, once they had great stability in the cognitive structure of each student and,
supposedly, guided the construction and use of mental models.

The theorems-in-action related to problem-solving that were identified for the
group of students in the first phase of the study through the problem-solving sessions
were related with the views of the role of mathematics in physics presented by the
students, which were identified through direct questioning and have been presented
in a previous study (Ataíde and Greca 2013). These views, adapted from those of
Karam (2007), were:

• Tool: Mathematics is used by physics as a facilitator of the numerical calcula-
tions.

• Language: Mathematics is a translator of physical thought to the world, a mere
manifestation of physics, with the task of representing it in an understandable
way.

• Structure: Mathematics appears as a physical structuring of thought itself.

With the group of students that was the focus of the second phase of the study, in
addition to the identification of theorems-in-action, we also used a questionnaire
(Likert scale), constructed with statements relating to some of the theorems-in-
action that were detected, described in more detail later on. The results of the
problem sessions and questionnaire were later compared, to verify the validity of
the questionnaire. The questionnaire was then administered to a broader survey of
80 students.
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7.4 Results and Discussion

7.4.1 Inferring Theorems-in-Action During Problem-Solving

As indicated above, theorems-in-action for problem-solving are related to strategies
and attitudes that guide this process. We identified these theorems-in-action for
each of the students. Before proceeding, we will recall the categories that we
used to characterize the most significant strategies that our students have applied
when solving problems in previous studies and that we suppose are associated with
theorems-in-action (Ataíde and Greca 2013).

• Operational mathematics (OM) – Students who use mathematics as a technique
and who tend to solve problems by trial and error

• Conceptualization (C) – Students who favor conceptual understanding and try,
not always successfully, to form a link between the concepts and the maths to be
used in problem-solving

• Mathematical reasoning (MR) – Students who use mathematical reasoning that
is coherent with the situation outlined in the resolution of problems, although
they may not work properly with the mathematical techniques

From the analysis, it was observed that eight students applied, in general, the
following theorems-in-action in their attempts to find a solution:

• The resolution begins with the explanation of the problem.
• Solving the problem requires a search for meaning between the equations and

concepts.
• The result obtained by following a structured sequence is unquestionable.

The students who presented these theorems-in-action always detailed the
problem in greater depth before they began to solve it. Their main characteristic
concerning how to solve problems can be described as mathematical reasoning.
Regarding their epistemological view, all except one appeared to have a view of
mathematics as a framework for physics, and, in fact, their theorems-in-action
appeared to be based on a structure that expressed a junction between theoretical
definitions and mathematical equations.

In what follows, we present some replies from these students in response to
questions concerning the procedures used to solve the problems, which contributed
to this interpretation.

To solve a problem I like to know the behavior of each variable and how it appears in the
equation that represents the mathematical model to explain the phenomenon ... (S54)

The concepts involved in the problem need to be understood and have a meaning within
the equation, if not, we do not understand the physics involved in the problem ... (S60)

For nine other students, the theorems-in-action detected in their process of
problem-solving appear as a guide toward a detailed conceptual understanding of
the problem before using the equations to find a result. The conceptualizations of
these students are their most striking feature during problem-solving, most of whom
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were categorized as having a view of mathematics as either translation or a language
of physics. It should be noted that a small number of these students (two students)
tended to leave the mathematical treatment in the background and, in some cases,
were not always confident with the mathematical techniques.

The main theorems-in-action detected in the attempts of these students to find a
solution can be expressed in the following form:

• The resolution begins with a detailed reading and pictorial representation and
explanation of the problem.

• The resolution is facilitated by figures and graphs.
• The resolution requires identification and characterization of the variables in-

volved.
• The resolution requires the placement of equations and its explanation of use.
• The resolution requires manipulation of equations.

I always start the resolution reading and explaining the problem .... (S11)
Solving conceptual issues is more difficult than questions with direct numerical data,

but I understand the concepts better when I see it that way .... (S17)

Another eight students applied theorems-in-action in which mathematical
operationality was evident. They have to know the equations, manipulate them,
and reach an end result, if they are to solve the problems. Overall, the members of
this group have many conceptual shortcomings, both in the areas of physical and
mathematical. Most of these students have a view of mathematics as a tool at the
service of physics, and the main feature of their problem-solving is the operational
application of mathematical formulas.

The main theorems-in-action detected in the attempts to find a solution were:

• The resolution begins with the equations.
• The resolution is facilitated with charts and graphs.
• Solving problems requires manipulation of equations appropriate to the available

data.

I always try to fit the data to the equations, I also know that when we master the
mathematical techniques we solve the problem faster .... (S59)

When I master the maths of the problem it becomes easier. If I don’t quite understand
the problem, I replace the values and solve it.... (S61)

Although included in this group because of how they address problem-solving,
two veteran students appeared to act in this way for contrary reasons to those
of the other students. Their confidence with the mathematical techniques stands
out when asked to solve problems. It should be noted that even when there are
conceptual errors, their strong mathematical knowledge can help them to overcome
these misconceptions. For example, one of them (VS19), when trying to explain the
meaning of the heat generated by a temperature difference, referred to the inexact
differential associated with heat in the formalization of the first law and stated that
this differential indicates that the heat is characterized by its existence in a process
and not in a body.

In Table 7.1, we present a summary of the results.
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Table 7.1 Summarization of the results obtained from the problem-solving sessions

Students

View of the role of
mathematics in
physics

Most striking
feature in
problem-solving Theorems-in-action

VS15, S4, S9, S16,
S18, S54, S60

Structure Mathematical
reasoning

The attempt to find a solution
begins with the explanation of the
problem
Solving the problem requires
searching for meaning between the
equations and concepts
The result obtained by following a
structured sequence is
unquestionable

VS18, S5, S11,
S13, S17, S55, S62

Translator Conceptualization The attempt to find a solution
begins with a detailed reading and
pictorial representation and
explanation of the problem
The solution is facilitated by charts
and graphs
The solution requires identification
and characterization of the variables
involved
The solution requires the placement
of equations and its explanation of
use
The solution requires manipulation
of equations

VS17, VS20,
VS22, S12, S59,
S61

Tool Operational
mathematics

The resolution begins with the
equations

The resolution is facilitated with
graphic figures
Solving the problem requires
manipulation of the appropriate
equations in relation to the available
data

VS16, VS19 Structure Operational
mathematics

The attempt to find a solution
begins with the equations
The solution requires manipulation
of the equations
The result obtained by following a
structured sequence is
unquestionable

(continued)
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Table 7.1 (continued)

Students

View of the role of
mathematics in
physics

Most striking
feature in
problem-solving Theorems-in-action

S15 Tool Mathematical
reasoning

The attempt to find a solution
begins with the explanation of the
problem
Solving problems requires
manipulation of equations
appropriate to the available data
The solution is facilitated with
charts and graphs
The solution requires identification
and characterization of the variables
that are involved
Solving the problem involves a
search for meaning between the
equations and the concepts

VS13, S29 Tool Conceptualization The attempt to find a solution
begins with the equations
The solution is facilitated with
charts and graphs
Solving the problems requires the
manipulation of appropriate
equations in relation to the available
data
The solution begins with the
explanation of the problem

From this sample, only 32% of the students appear to have theorems-in-action
that manage to address an appropriate relationship between mathematics and
physics. Most of the veteran students appear to have theorems-in-action that guide
an instrumental use of mathematics. It is worth stressing that these students were
studying thermodynamics and the math required to solve the problems proposed
is more complex than the math needed for the other students, who were studying
optics. In fact, these veteran students showed that although they had mastered the
mathematical techniques of differential calculus (Ataide and Greca 2012), their use
reflected an instrumental understanding (Uhden and Pospiech 2013).

The theorems-in-action identified during the problem-solving coincided with the
features of epistemic games1 detected by Tuminaro and Redish (2007):

1It is worth stressing the similarities between epistemic games and theorems-in-action. Neverthe-
less, it must be noted that theorems-in-action can be used to understand many other cognitive
behaviors, not only the ones related to problem-solving, which appears to be the case of the idea
of epistemic games.
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• The theorems-in-action that best characterize mathematical reasoning are very
similar to the epistemic game “mapping meaning to mathematics.”

• Those relating to conceptualization are very similar with the epistemic games
“physical mechanism” and “pictorial analysis.”

• Those related to operational mathematics are very similar with the epistemic
recursive game “plug-and-chug.”

The epistemological views of students on the role of mathematics in physics
seem to be, for most of the students, related to theorems-in-action consistent with
those views: the students who consider mathematics as a structure for physics tend
to be guided, in solving problems, by theorems-in-action with solutions that can be
characterized as mathematical reasoning; those who merely consider mathematics
as a language for the phenomena and laws tend to use theorems-in-action that can
characterize the resolution of problems as conceptualization; and, lastly, those who
understand that mathematics is only a tool use theorems-in-action that identify a
mathematical operationality of action. Thus, in 20 of the 25 students (80%), their
views about the role of mathematics in physics seem to “materialize” into theorems-
in-action that guide these students in their problem-solving techniques.

So, these results point toward epistemological views behind the ways students
solve problems, which relate to the role of mathematics in physics that correlate
with the abovementioned strategies. It is very likely that ideas about the relationship
between mathematics and physics and theorems-in-action for problem-solving have
been developed at the same time in the learning process of students and mutually
reinforced. It is worth stressing that the theorems-in-action for problem-solving and
the epistemic views appear to be independent of the course or the complexity of the
physical and mathematical concepts that are involved.

Finally, related to the theoretical framework, we realized every solution of a
problem situation involved a change in mental models, even when the theorems-
in-action remained unchanged. That finding is in agreement with the theories
that underlie our proposal, the idea that mental models are unstable elements in
short-term memory, while theorems-in-action are part of schemes in the long-
term memory (Greca and Moreira 2002). So, several specific activities explicitly
addressing the relationship between physics and mathematics have to be done, in
order to achieve lasting change in the theorems-in-action of students.

7.5 A Questionnaire to Detect the View of the Role
of Mathematics in Physics and the Most Striking
Features of Problem-Solving

Detection of theorems-in-action is a complicated process. However, as shown
in the previous section, the process of detection yields information for teachers
that is relevant to the design of appropriate teaching strategies for students. So,
we attempted to develop a user-friendly instrument to administer, a Likert-type
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questionnaire, from the theorems-in-action that were inferred. The construction of
this instrument will be described as well as the validation process.

The questionnaire consists of a set of 15 positive statements (the final version
appears in Appendix), related to three specific topics that respond to our goal:
(a) the role of mathematics in physics (three statements); the strategies used in
solving physics-based problems (nine statements); and (c) about the performance
and difficulties in curriculum components of physics.

The nine items of Part B of the questionnaire were generated from the theorems-
in-action detected for solving problems and indicated in the previous session. For
each of the categories (mathematical reasoning, conceptualizing, and operational
mathematics), we chose what in our opinion are the three most characteristic
theorems-in-action.

The questionnaire was scored so that, for the 4 to 15 affirmations, the value is (5)
for the option “Strongly agree,” (4) to “Agree,” (3) to “Neither agree nor Disagree,”
(2) to “Disagree,” and (1) to “Strongly disagree.” The students were expected to
choose only one option for the first three statements.

A trial questionnaire (to verify respondent understanding of the meaning of
the words, to avoid misinterpretation, and to employ affirmative language) was
administered to five high school physics teachers. They pinpointed the difficulties
that high school students would have when responding to the questionnaire. It was
also tested with ten students of the Degree in Physics, who did not participate in the
survey but who answered the questionnaire.

With the suggested changes, the final version of the questionnaire was admin-
istered to 80 students following the degree course for high-school school physics
teachers at the State University of Paraíba in the first semester of 2016, among whom
the 17 students mentioned in the previous section.

After the questionnaire had been administered, the data were coded and passed by
a statistical analysis. The internal consistency analysis (Cronbach’s alpha) yielded
a value of 0.65, which is considered reasonable in social science research.

Regarding the coding of results, responses were grouped, creating new variables
that allow us to analyze the obtained data. Statements 4–12 related to the strategies
used to solve physics problems generated by the following subscale.

• The students who had the highest sum in statements 4, 5, and 6 were categorized
as “operational mathematics” problem solvers (value 1).

• Those with the highest result of the sum in statements 7, 8, and 9 were
characterized as “conceptualizing” problem solvers (value 3).

• Those with the highest sum value to statements 10, 11, and 12 were characterized
as “mathematical reasoning” problem solvers (value 5).

The values 2 and 4 were used for those cases where there was overlap between
the sums, considering that the students shared characteristics of both categories.
Thus, where they coincide with the highest values, the sum of items 4, 5, and 6 with
the sum of items 7, 8, and 9, the student was assigned a value of 2, and if the sum of
items 7, 8, and 9 overlapped with 10, 11, and 12, they obtained a value of 4. If they
overlapped three sums, they were left without a category.
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Table 7.2 Total number of matches (bold letter) of the most striking feature in resolving the
problems detected in problem-solving sessions and the answers to the questionnaire.

Most striking feature in problem-solving (identified in problem-solving
sessions) versus most striking feature in problem-solving (identified in
questionnaire) MR C OM

MR (value 5) 2 0 0
MR/C (value 4) 1 2 0
C (value 3) 3 5 0
OM/C (value 2) 0 0 1
OM (value 1) 1 0 2

MR mathematical reasoning, C conceptualization, OM operational mathematics

Table 7.3 Total number of matches (bold letter) between views of the role of mathematics in
physics detected in problem-solving sessions and the answers to the questionnaire

View of the role of mathematics in physics (identified in
problem-solving sessions) versus view of the role of
mathematics in physics (identified in questionnaire) Structure Translator Tool

Structure 6 1 2
Translator 0 5 0
Tool 0 0 3

We compared the results obtained by the two strategies for the group of 17
students (2nd phase), in order to determine the validity of the questionnaire. For the
most striking feature in solving problems, we realized that the responses obtained
with the two strategies (resolution sessions and responses to the Likert scale) for
the group of students under analysis were quite consistent, as they coincided almost
exactly for the 13 students in a universe of 17 students, i.e., a 76% match (see Table
7.2). In relation to epistemological view, where the students were asked to choose
only one of the three statements, we obtained an 82% level of coincidence (see Table
7.3).

This degree of coincidence appears to indicate that the questionnaire may be
a resource that could be used to identify the views of students regarding the role
of mathematics in physics and to characterize how they solve problems with a
high degree of reliability. This fact is very important for physics teaching as, if
such features may be identified before proposing problem-solving situations, the
teacher may refer the students to situations that lead them to rethink their positions.
Nevertheless, other samples should be used to check the results of this study.

7.6 Conclusions and Implications for Physics Teaching

In physics teaching a very important point and the focus of this study is the
relation between the solution of problems and the viewpoint that students have
of the role of mathematics in the construction of physical knowledge. Although
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these epistemological views or their influence on learning physics are not widely
discussed in science education research, they seem to influence the way students
approach learning in physics and specifically problem-solving activities. This idea
is reinforced in this study.

In relation specifically to problem-solving, the epistemological views of students
on the role of mathematics in physics seem to be, for most of them, associated
with theorems-in-action consistent with those views, i.e., these views appear to
“materialize” into theorems-in-action that guide how these students face problem-
solving (Ataide 2013). It is striking that almost 25% of the students of this sample,
who are studying to become physics teachers, see mathematics just as a tool for
physics and use it only as a problem-solving technique, most of the time solving
problems by trial and error. As Hansson et al. argue in their chapter, the approach
that merely makes use of mathematics in an instrumental way is reinforced by
textbooks, and the instrumental use of mathematics may even be strengthened by
future teachers, such as the ones shown in this research who use it in that way.

In this work we have also presented a questionnaire to measure the relations
between the epistemological views of students on the Degree in Physics (teacher
training) and strategies (theorems-in-action) that they use to solve physics problems
with reasonable internal consistency. The questionnaire results have also been
validated by comparing them with the results of other analyses. Although the
questionnaire should be improved and validated with larger groups, its most
important aspect is that it could be used both in research and in physics teaching,
for teachers who wish to improve their understanding of their students.

It is important to note that the participants of this study were following a teacher
training degree and the views found in this study are likely to be consolidated.
Following the PCK model proposed in the chapter by Pospiech et al., these views
may influence their orientation toward teaching. They may therefore pass them on,
either implicitly or explicitly, to their high school students. It therefore appears
necessary not only to work on appropriate techniques to solve problems but also
in an explicit way to discuss the epistemological views that students hold of the
role of mathematics in the construction of physical knowledge, in order to change
those views on the relationship between physics and mathematics that appear to
be unproductive views. Some of the strategies proposed in this book could be
useful in this sense. For example, the explicit teaching of modeling techniques, as
proposed by Pospiech, or the use of history, as in the examples advanced by Karam,
Uhden, and Höttecke, show that there is no direct and straightforward application of
mathematics simply as a tool in physics.

We should, nevertheless, warn of the complexity involved in understanding the
relations between physics and mathematics and more specifically their influence
on physics teaching and our understanding of student thinking processes when
performing tasks such as problem-solving. Those aspects may incite new research
initiatives and are a rich topic for science education and, in particular, for physics
teaching.
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A.1 Appendix: Questionnaire (Likert Scale)

This questionnaire is a data collection instrument from a survey that aims to identify
relations between epistemological views on the role of mathematics in physics and
strategies used in problem-solving.

A.1.1 Identification

Name:_____________________________________________________________
Registration number: ______________ Semester that you are attending:

___________

A.1.2 About the Role of Mathematics in Physics

(Select one option)

1. Mathematics is an instrument that is used in physics to solve problems.
2. Math works for physics as a language that helps describe and translate the

problems.
3. Math is a structure for physics; both are interrelated in such a way that

mathematics is crucial in the construction of the concepts and theories of physics.

A.1.3 The Strategies Used in Solving Physics Problems

4. Equations are the first step in solving a physics problem.

( ) Strongly agree ( ) Agree ( ) Neither agree nor disagree ( ) Disagree ( )
Strongly disagree

5. The manipulation of equations is essential to solve a physics problem.

( ) Strongly agree ( ) Agree ( ) Neither agree nor disagree ( ) Disagree ( )
Strongly disagree

6. Adjust the equations to available data is essential to solving physics problems.

( ) Strongly agree ( ) Agree ( ) Neither agree nor disagree ( ) Disagree ( )
Strongly disagree

7. The use of charts and graphs facilitates the resolution of a problem.

( ) Strongly agree ( ) Agree ( ) Neither agree nor disagree ( ) Disagree ( )
Strongly disagree
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8. Before solving a physics problem, you need to know how to explain it.

( ) Strongly agree ( ) Agree ( ) Neither agree nor disagree ( ) Disagree ( )
Strongly disagree

9. A detailed reading, with representation through charts and problem explanation,
is essential to its resolution.

( ) Strongly agree ( ) Agree ( ) Neither agree nor disagree ( ) Disagree ( )
Strongly disagree

10. The identification and characterization of the variables involved in a problem
are of fundamental importance for its resolution.

( ) Strongly agree ( ) Agree ( ) Neither agree nor disagree ( ) Disagree ( )
Strongly disagree

11. Solving a problem requires the placement of equations and an explanation of
its use.

( ) Strongly agree ( ) Agree ( ) Neither agree nor disagree ( ) Disagree ( )
Strongly disagree

12. It is of fundamental importance in solving a physics problem to build meaning
between equations and concepts, so as to understand how they are related.

( ) Strongly agree ( ) Agree ( ) Neither agree nor disagree ( ) Disagree ( )
Strongly disagree

A.1.4 About the Performance and Difficulties in Curriculum
Components of Physics

13. I have no difficulty with physics, and my performance in this curriculum
component is very good.

( ) Strongly agree ( ) Agree ( ) Neither agree nor disagree ( ) Disagree ( )
Strongly disagree

14. I have difficulty with the understanding of the concepts of physics, and my
performance in this curriculum component is weak.

( ) Strongly agree ( ) Agree ( ) Neither agree nor disagree ( ) Disagree ( )
Strongly disagree

15. I have difficulty with math, and my performance in curriculum components of
physics is weak.

( ) Strongly agree ( ) Agree ( ) Neither agree nor disagree ( ) Disagree ( )
Strongly disagree
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In T. Greczyło & E. Dębowska (Eds.), Key competences in physics teaching and learning (pp.
95–104). Wrocław/Cham: Springer.

Lozano, S. R., & Cárdenas, S. (2002). Some learning problems concerning the
use of symbolic language in physics. Science & Education, 11(6), 589–599.
https://doi.org/10.1023/A:1019643420896.

Martínez-Torregrosa, J., López-Gay, R., & Gras-Martí, A. (2006). Mathematics in physics
education: Scanning the historical evolution of the differential to find a more appropriate
model for teaching differential calculus in physics. Science & Education, 15(5), 447–462.
https://doi.org/10.1007/s11191-005-0258-y.

http://dx.doi.org/10.1103/PhysRevSTPER.2.010101
http://dx.doi.org/10.1007/s11191-012-9492-2
http://dx.doi.org/10.1063/1.2508683
http://dx.doi.org/10.5617/nordina.389
http://dx.doi.org/10.1007/978-3-319-44887-9_5
http://dx.doi.org/10.1080/095006900289976
http://dx.doi.org/10.1119/1.19520
http://dx.doi.org/10.1119/1.10823
http://dx.doi.org/10.1023/A:1019643420896
http://dx.doi.org/10.1007/s11191-005-0258-y


7 Theorems-in-Action for Problem-Solving and Epistemic Views. . . 173

Mason, A., & Singh, C. (2010). Surveying graduate students’ attitudes and approaches to
problem solving. Physical Review Special Topics—Physics Education Research, 6(2), 1–16.
https://doi.org/10.1103/PhysRevSTPER.6.020124.

Pietrocola, M. A. (2002). Matemática como estruturante do conhecimento físico. Caderno
Brasileiro De Ensino De Física, 19(1), 89–109.

Pietrocola, M. (2010). Mathematics structural language of physics thought. In M. Vicentini & E.
Sassi (Eds.), Connecting research in physics education with teacher education (pp. 35–48).
New Delhi: Angus & Grapher Publishers.

Planinic et al. (this book). Student understanding of graphs in physics and mathematics.
Pospiech, G. (this book). Mathematics and physics their interplay and its relevance for teaching.
Redish, E. (2005). Problem solving and the use of math in physics courses. Invited talk presented

at the conference, world view on physics education in 2005: focusing on change, Delhi. http://
www.physics.umd.edu/perg/papers/redish/IndiaMath.pdf

Redish, E. F., & Kuo, E. (2015). Language of physics, language of math: Disci-
plinary culture and dynamic epistemology. Science & Education, 24(5–6), 561–590.
https://doi.org/10.1007/s11191-015-9749-7.

Redish, E. F., Saul, J. M., & Steinberg, R. N. (1998). Student expectations in introductory physics.
American Journal of Physics, 66(3), 212–224. https://doi.org/10.1119/1.18847.

Romer, R. H. (1993). Reading the equations and confronting the phenomena: The de-
lights and dilemmas of physics teaching. American Journal of Physics, 61(2), 128–142.
https://doi.org/10.1119/1.17327.

Roorda, G., Vos, P., & Goedhart, M. J. (2015). An actor-oriented transfer perspective on
high school students’ development of the use of procedures to solve problems on rate
of change. International Journal of Science and Mathematics Education, 13(4), 863–889.
https://doi.org/10.1007/s10763-013-9501-1.

Sherin, B. (2006). Common sense clarified: The role of intuitive knowledge in
physics problem solving. Journal of Research in Science Teaching, 43(6), 535–555.
https://doi.org/10.1002/tea.20136.

Tuminaro, J., & Redish, E. F. (2007). Elements of a cognitive model of physics problem solving:
Epistemic games. Physical Review Special Topics-Physics Education Research, 3(2), 1–22.
https://doi.org/10.1103/PhysRevSTPER.3.020101.

Uhden, O., & Pospiech, G. (2013). Die physikalische Bedeutung der mathematischen Beschrei-
bung – Anregungen und Aufgaben fur einen neuen Umgang mit der Mathematik. Praxis der
Naturwissenschaften – Physik in der Schule, 62(2), 13–18.

Vergnaud, G. (1982). A classification of cognitive tasks and operations of thought involved in
addition and subtraction problems. In T. Carpenter, J. Moser, & T. Romberg (Eds.), Addition
and subtraction. A cognitive perspective (pp. 39–59). Hillsdale, N.J: Lawrence Erlbaum.

Vergnaud, G. (1990). La théorie des champs conceptuels. Récherches en Didactique dês Mathé-
matiques, 10(2–3), 133–170.

http://dx.doi.org/10.1103/PhysRevSTPER.6.020124
http://www.physics.umd.edu/perg/papers/redish/IndiaMath.pdf
http://dx.doi.org/10.1007/s11191-015-9749-7
http://dx.doi.org/10.1119/1.18847
http://dx.doi.org/10.1119/1.17327
http://dx.doi.org/10.1007/s10763-013-9501-1
http://dx.doi.org/10.1002/tea.20136
http://dx.doi.org/10.1103/PhysRevSTPER.3.020101


Chapter 8
Learning to Use Formulas and Variables
for Constructing Computer Models in
Lower Secondary Physics Education

Onne van Buuren and André Heck

8.1 Introduction

The main goal of physics is to understand physical processes, that is, the behaviour
of physical systems. An important aspect of physical processes is the covariation
between the involved quantities. The mathematical counterparts of these physical
quantities are variables. The laws of nature that govern the behaviour of these
quantities are represented by mathematical formulas. Therefore, the mathematical
concepts of formula and variable, and skills involving these two concepts, are
important in physics education.

The mathematical skills of young secondary students are limited, however. Even
solving simple equations, in which all but one of the variables has been replaced
by numbers, can be cumbersome for them. It is even more difficult for students
to solve physics problems in generic ways, in which the variables represent truly
varying quantities: it often exceeds their mathematical capabilities. Therefore, it
is not surprising that in school practice, most attention is paid to the solving of
problems in which the main task is to calculate only one constant value, or one
mean value, or one momentary value of some physical quantity. To reach this goal, it
usually suffices to replace as many symbols in the formulas as possible by numbers
and then solve the resulting equations. In this way, the idea is strengthened that
each symbol in the formula represents only one, known or unknown, number. It
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may also contribute to the well-known tendency of students to view a mathematical
expression not as a proper answer to a question (see, e.g. Booth 1984, 1988). For
students, there is little reason to consider variations of quantities and the way in
which such variations are related.

Usually, only situations are considered in which there is some sort of equilibrium
and all quantities are constant or, when there are varying quantities, in which varying
quantities can be replaced by one single number. An example of a situation in which
most quantities have become constant is the case of an object that has been falling
for a period of time, long enough for an equilibrium of gravity and air friction to
have set in; as a consequence, the velocity has become constant. In school practice
and in textbooks, little attention is paid to the initial phases of this movement, in
which there is no equilibrium and in which air friction and velocity are changing.

A typical example of the reduction of a varying quantity into one average
number in school practice is the problem of a car, accelerating from some initial
to some final velocity in some interval of time. When asked to calculate the distance
travelled, many young students do not use the average velocity, but only the final
velocity or initial velocity in their calculations. Apparently, young students are
not sufficiently aware of the changing nature of the velocity in this situation. In
interviews that we held with young students, they often stated that they did not
understand the term “average velocity” in such situations. After an explanation that
this single and constant velocity replaces the changing velocity in the real situation,
they understood it better but also made clear that they would then prefer the term
“replacement velocity”.

Part of the mathematical limitations of students can be overcome by using com-
puters for doing the calculations. This is the case with computational modelling and
with analysing experimental data with the help of ICT. By doing the calculations,
the computer facilitates the study of subjects that have a complexity surpassing the
mathematical capabilities of the students. Variations of variables come to the fore in
this approach, and it is no longer necessary to reduce a situation into one equation in
which each symbol stands for only one number. Results of the computations are not
restricted to some numeric values but can be whole functions, presented as graphs.
Because the computer does the calculations, the students’ focus can be less directed
towards the process character of the formula (in the mathematical sense of the word)
and more on the object character. As a consequence, students get an overview over
the whole problem situation and how this situation changes in time. Questions about
how a process depends on initial values and on values of the involved parameters
become more important. This especially holds when students are involved in the
construction of the computer models.

With this in mind, Van Buuren (2014) started a design study with the goal to
develop and test a learning path on modelling that is (1) integrated into the Dutch
physics curriculum (currently for the first 2 1/2 years), (2) fits in the standard
curriculum as much as possible, and (3) starts from the initial phases of physics
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education, grade 8 (age, 13–14 years). The three most important pedagogical goals
for the modelling learning path were that students

• learn how to use and create models themselves;
• get a better understanding of the relation between physics and the real world;
• can get some understanding via computer-based modelling of the physics of more

complex and more dynamic situations than they can obtain by the traditional
pencil-and-paper-based methods.

For becoming proficient in the modelling process, many (sub)competencies are
required, including, for instance, competencies to specify a systemic structure as a
set of related objects for a given problem situation, competencies to set up a physics-
based mathematical model from the real model, representational fluency, and critical
thinking with regard to interpretation and validation of model results. In this chapter
we only discuss the demands that modelling puts on students’ understanding of the
mathematical notion of variable and formula. Thereto, we first explain the modelling
approach we have used and subsequently discuss the pros and cons of this approach
and how it affected the students’ understanding of variable and formula.

8.2 Graphical Modelling as a Modelling Approach

We chose the graphical system dynamics approach developed by Forrester (1961)
as a modelling approach, because of its wide range of applications to phenomena
that can be modelled as systems whose states change over time and because
it was considered by an advisory committee (Savelsbergh 2008) an appropriate
candidate for a modelling approach in new Dutch secondary mathematics and
science curricula. Henceforth, we refer to this approach as graphical modelling.
With the term modelling, the entire modelling process outlined in Fig. 8.1 is
addressed. This picture was derived from proposals for the renewal of Dutch science
curricula, stating that

the student must be able to analyse a situation in a realistic context and reduce it to a
manageable problem, translate this into a model, generate outcomes, interpret the outcomes,
and test and evaluate the model.

Several computer environments exist in which this graphical approach can be im-
plemented. Examples are Modus (Klieme and Maichle 1991), STELLA (Chonacki
2004; Steed 1992), Co-Lab (Van Joolingen et al. 2005), and Coach 6 (Heck et al.
2009). These systems all adhere to the same basic principle: the students specify
models drawn as graphical structures that can be executed (simulated). Research
(see, e.g. Angell et al. 2008; Sander et al. 2002; Zwickl et al. 2015) indicates
that combining experimentation and modelling helps students make connections
between the concrete realistic situations that are modelled and the more abstract
models and model outputs. With this in mind, we selected the Coach environment
because it is one of the few integrated computer learning and multimedia authoring
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Fig. 8.1 The model of the ICT-supported physical-mathematical modelling process used by Van
Buuren (2014) and annotated to point at the main relevant aspects. The statement in the lower-right
corner is a quotation of a student about modelling

environments in which computer modelling can be combined with measurements
through video and/or sensors and with model-based computer animation. A practical
advantage is that Coach is available at the majority of Dutch secondary schools.

In a graphical model, the variables and relationships between variables are
visually represented as a system of icons in a diagram. Five types of variables can be
distinguished: (1) stock (or state) variables, (2) flow variables, (3) the independent
variable (which by default is time in most modelling tools), (4) auxiliary variables,
and (5) constants. The icons used in the Coach environment, except the one for the
independent variable, are shown in Fig. 8.2. The type of a variable is not an intrinsic
property, but follows from its role in the equations and can actually be manifold.
A graphical model can be built on the computer by adding the suitable icons. Flow
variables, auxiliary variables, and constants must be defined by entering adequate
formulas and values. The difference equations (or differential equations) by which
stock variables are defined are not entered as formulas; however, they follow directly
from the flow icons that are connected to the stock icons. Only the initial value for
the stock variable must be entered.

Several researchers (e.g. Niedderer et al. 1991) have suggested that the visual
representations in graphical models provide students with an opportunity to express
their own conceptual understanding of physical phenomena and can help to shift the
focus from learning and working with mathematical formulas to more qualitative
conceptual reasoning. Forrester (1961, p. 81) considered such a diagram as “an
intermediate transition between a verbal description and a set of equations”. Its main
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Fig. 8.2 Graphical model in Coach for the radiation of energy by an object with heat capacity C

and an area of 1 m2. The corresponding equations are the difference equation 
E = −P · 
t and
the relations T = E/C and P = σ ·T 4. In graphical models, a stock variable (E) is represented by
a rectangle and a flow variable (P ) by a circle on a thick arrow. Each stock variable needs an initial
value. Variables and constants that are not part of a difference equation are referred to as auxiliary
variables (T ) and constants (C and σ ) and are represented by two types of circles. Connectors (thin
arrows) indicate which variables are used to define a particular variable. The independent variable,
time t , is not visualized in this model by default

goal is to communicate the causal assumptions and the main features of the model,
in a way comprehensible to people with less mathematics education (cf., Lane
2008). Understanding of difference equations would not be required. The diagrams
representing the difference equations often can be understood metaphorically, as
material flows into and out of stocks. Research has shown that students using an
environment for graphical modelling can indeed reason qualitatively and intuitively
about systems (Doerr 1996) and that graphical modelling seems to be effective for
learning to reason with complex structures (Van Borkulo 2009). Schecker (1998)
reported that half of his students after a mechanics course with STELLA were able
to construct a qualitative causal reasoning chain on a new subject.

However, graphical modelling is not without problems in education practice, and
many authors reported on difficulties that students have, especially when designing
or adapting graphical models (see, e.g. Lane 2008; Ormel 2010; Van Borkulo 2009;
Van Buuren et al. 2011, 2012; Westra 2008). Groesser (2012) pointed out that the
information provided by system dynamics models can benefit only students who
are familiar with system dynamics methodology and who are thus able to read
and interpret graphical models. Van Buuren et al. (2015) found that students can
use a given graphical model to reason about a situation to which they are already
somewhat familiar but that these students are not able to build a graphical model
themselves if they do not sufficiently understand the relation between the icons
and the underlying mathematical equations. For novice graphical modellers, the
hiding of mathematical details may even be counterproductive. Many a student is
not sufficiently aware of the presence of the time step 
t in the difference equations.
The fact that for a stock no formula but only the initial value must be entered
may contribute to the misconception that a stock is not defined by a formula at
all. And even if the use of difference equations may be avoided, students still need
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the ability to use formulas for variables that are defined by direct relations1 instead
of difference equations.

Van Buuren et al. (2012) found that many grade 9 students had difficulties using
direct relations in graphical computer models. These students tried to define a
variable in a graphical model by means of numbers or by means of expressions
consisting of numbers only, and not by formulas consisting of symbols. They
understood the calculation process on a numerical level, but they had problems
with the (re)creation and use of formulas in which the variables are symbolized. A
concrete example is a modelling exercise in which students must define the variable
for the amount of interest A due to a constant interest rate of 2.4% per year and an
amount of money S on the savings account that not only changes because of interest
but also because of irregular deposits, where the initial value of S is 150 Euros.
Students defined A as 0.024 · 150, which is a constant, instead of 0.024 · S, which
is a variable expression. Another example is discussed in more detail in Sect. 8.5.

We advocate that instead of looking at a graphical model as graphical expression
of a mental model that is turned into a quantitative computer model after entering
the required relations, one can also consider it as a way of expressing the meaning
of equations and of the structures of equations. In this perspective, worked out
by Van Buuren (2014) in his modelling learning path, equations form the starting
point for model construction, and the stock-flow diagram clarifies the meaning of
the equations. In this modelling approach, the relations between the variables, i.e.
the difference equations and direct relations, are the dominant building blocks of
models, instead of the individual variables. We are of opinion that this fits better
to the existing physics curriculum, in which formulas are introduced and used
almost from the beginning: it connects to an already existing conceptual network
and may enhance the development of mental models. Central to what Van Buuren
calls the relation approach are the link between a difference equation and a stock-
flow diagram and the interpretation of connectors as indicating structures of direct
relations.

8.3 What Is a Formula in the Eyes of Students?

In the previous section, we noted that many young students have limited notions
of variable and formula. Variables appear to be seen as having only one value in a
certain situation, whether this value is known or yet unknown. Formulas appear to
be used as merely providing general rules for doing calculations with such fixed
variables. In other words, formulas are mainly used in the operational, process-
oriented sense and less in a relational sense, that is, in a perspective where formulas
are seen as mathematical objects that can be manipulated. We refer to Heck and Van

1By a direct relation, we mean a mathematical relationship between symbolized quantities in which
at least one quantity can be isolated and written as a closed form expression of the other quantities.
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Buuren (this volume) for a brief discussion of the process-object duality and the
difficulties that students at all educational levels have in coping with this duality.
This confusion has its roots early in the school career. When one asks lower
secondary students about variables, formulas, equations, and simple calculations,
many of them only have a vague understanding of these notions. As one well-
achieving grade 9 student put it in a small-scale interview: “I have never understood
what exactly a formula is”. As we argued in Sect. 8.1, the uncertainty of students
is strengthened by the way formulas and variables are used in exercises in physics
education without much discussion of terminology.

To study students’ notions, Van Buuren et al. (2011) explored what lower
secondary students call a formula. They asked in three grade 9 (age, 14–15 years)
physics classes, labelled 9A, 9B, and 9C, the simple question whether y = 7×8+27
is a formula or not, and they gave five options: “yes”, “I think so, but I’m not sure”,
“I am in doubt”, “I don’t think so, but I’m not sure”, and “no”. The results are shown
in Table 8.1.

The results seem mixed: the answers in class 9B clearly deviate from the answers
given in the other two classes. But this can be explained: the mathematics teacher
of class 9B had discussed formula notation and function notation a week before,
but such discussion had not taken place in the other classes. What it shows is that
discussing such a subject makes a huge difference for students.

In a second study in 2012, the same question was given to 506 grade 9 students
(age, 14–15 years) from 19 classes of 11 teachers at 6 schools spread around the
Netherlands. The question was also given to 63 grade 10 students (age, 15–16 years)
from 4 classes at 2 schools. All students were in the upper general secondary
education stream or in the preuniversity stream. Because of the larger amount of
data, results of the question are presented graphically in Fig. 8.3. The horizontal
axis is used for the different classes. Grades of these classes are labelled “9” and
“10”, respectively. General secondary stream classes and preuniversity classes are
labelled “G” and “U”. The negative vertical axis, with lower bars, is used for the
percentage of students per class who think that the expression is not a formula
(although they may not be sure about it); the positive vertical axis, with upper bars,
gives the percentage of students per class who are of opinion that it is a formula
(even if they are not sure about it). If in one class both the upper and lower bar are
short, this is an indication that there is much insecurity in this class. If in one class
the upper and lower bar have approximately equal length, this is an indication that
there is little consensus in the class about what a formula is. Figure 8.3 illustrates

Table 8.1 Results of the question “y = 7 × 8 + 27 Is a formula, according to you?”

Class “Yes” and “I think so, but I’m not sure” “No” and “I don’t think so, but I’m not sure”

9A (28) 68% 21%

9B (28) 28% 64%

9C (28) 67% 13%

The number in brackets is the number of respondents
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Fig. 8.3 Percentages of students in 23 classes who consider the expression y = 7×8+27 to be a a
formula (positive vertical axis) or not (negative vertical axis). The classes are labelled by the grade
and its type (general or preuniversity, labelled “G” and “U”, respectively). This diagram illustrates
the lack of consensus about the notion of formula across physics classes in the Netherlands

that the student confusion about the notion of formula exists at many schools, even
at upper secondary level.

Van Buuren et al. (2011) also asked students in the aforementioned classes 9A
and 9C to classify the mathematical statements shown in Fig. 8.4 as formulas or
not. It illustrates that the notion of formula was diverse for the students. The equal
sign apparently was not required to consider an expression as a formula: many
students called m/V a formula, too. The results may indicate that the understanding
of the notion of variable of many a student is on the level of polyvalent name
and placeholder: they apparently consider a mathematical statement as a formula
whenever one can calculate something with it and at least one variable is present,
but not necessarily an equal sign. For example, a = 172 is considered a formula by
approximately 40% of these students. Similar findings about students understanding
of formulas and equations have been reported by other researchers (Godfrey
and Thomas 2008; Hansson and Grevholm 2003). Student answers on the same
questions in the second study, amongst 506 grade 9 students, exhibited similar
patterns (as illustrated in Fig. 8.3). Many factors may influence the amount of
consensus within one physics class. To mention a few, the interest for physics or
for mathematics in a class, the textbooks that are used, the amount of peer influence
with a class, and the mathematics teacher. We found differences between different
classes that were taught by the same physics teacher. But we also found indications
that explicit attention by the teacher to the subject can be effective. One teacher
explicitly demanded that his students would always write down the “formula” and
subsequently the “calculation”. In this way, students apparently became more aware
of the difference between a formula and a calculation. In three out of four of his
classes, there was relatively much consensus amongst the students. We concluded
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Fig. 8.4 Percentages of students, of two different grade 9 classes from one school (9A and 9C),
who consider the expressions on the horizontal axis as a formula. This diagram shows amongst
other things that many students consider m/V as a formula, in spite of the lack of an equal sign,
and also that many students consider the expression a = 172 as a formula

that providing students with operational definitions of formula and variable might
be effective. We decided to incorporate such definitions in the modelling learning
path.

We think that the preference of lower secondary students to consider formulas
and equations in a calculation perspective may be related to their gradual process
of coming to grips with what is called “generalized arithmetic” in mathematics
education. When variables are introduced in school algebra, students mostly learn
to work with mathematical expressions like 2x + 1, and they are told that x is
not one specific number here but can represent any number (even though it is
sometimes restricted to a small set of numbers—therefore the term “polyvalent
name”). However, when working with the expression 2x+1, one thinks of x as some
specific but unspecified element of a number set: for example, when the equation
2x +1 = 0 must be solved, x really is one specific, albeit yet unknown element. For
students, it is often not clear when x can be seen as generic, unspecified, or specific.
Yet, this will not be their first and only encounter with ambiguity in mathematical
thinking; Byers (2007) gives other mathematical examples where ambiguity plays a
central creative role.

Let us look at an example from physics, which we will use again in Sect. 8.6:
the vertical free fall of an object of mass m dropped at height y with zero speed
and hitting the ground with speed vhit. The law of conservation of energy implies
that mgy + 1

2mv2 = k, for some constant k and constant of gravity g, whatever
the height y of the object and the speed v at this height is. The law holds for any
situation during the free fall motion, i.e. for any pair (y, v). Yet one applies the law
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in this problem to two specific situations: when the object is released at height h,
then y = h, v = 0 and one gets mgh = k; when the object hits the ground y =
0, v = vhit and 1

2mv2
hit = k. Equality gives mgh = 1

2mv2
hit, which can be rewritten

as vhit = √
2gh. During the algebraic manipulation, the symbols stand for specific

values of context-related quantities. In this sense, the last formula allows one to
compute the speed with which the object hits the ground when it released at the
given height h; many a student can hardly wait to plug in numbers. But vhit = √

2gh

can also be considered as a functional relationship between two physical quantities.
In this case, the height h represents any release height. Thus one can think of h in
vhit = √

2gh as a specific and general number, and probably it is best to have these
interpretations simultaneously in mind during the problem-solving activity.

The reason that we will come back to this physics example in Sect. 8.6 is that
in school practice the formula v = √

2gh is problematic because the speed v and
the height h in this formula are actually connected with different moments in time,
namely, when the object hits the ground and when it is released. But students often
forget this and think of speed at height h. They also tend to forget that this formula
only holds when the object is dropped with zero speed. The assumptions, and thus
the binding of the formula with the real context, as well as the link with the law of
conservation of energy get lost. Sloppy use of formulas in relation to their physical
meanings quickly leads to wrong interpretations; it probably explains mistakes made
in exams where this formula occurred. An ICT-supported investigation of a similar
context, namely, a bouncing ball, serves in Sect. 8.6 as an example of how ICT
can help student keep an eye on the context and the whole motion. It will support
our opinion that graphical modelling can help students become more proficient
in dealing with the general-specific ambiguity and appreciate the strength of this
because variables and formulas are then used in a way in which the varying and
therefore general character of the variables comes to the fore.

8.4 Design of the Modelling Learning Path

For computer modelling, students must acquire many (sub)competencies. Van
Buuren (2014) categorized these competencies into five intertwined partial learning
paths that focus on (1) the modelling software, (2) graphs, (3) variables and
formulas, (4) the elements of graphical models, and (5) the evaluation and nature
of models. Here, we only describe the partial path on variables and formulas, and
we focus on the mathematical notions required for modelling.

In the usual approach to graphical modelling, the five types of variables are
considered as the building blocks of a graphical model, and the way they are linked
to each other reflects a mental model that must be turned into a quantitative computer
model. As we have argued in Sect. 8.2, this approach to graphical modelling leads
to serious problems when we want our students to construct models. Therefore, we
chose a relation approach to graphical modelling. In this approach, the mathematical
relations between the variables are the dominant building blocks. Two types of
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formulas can be distinguished: difference equations and direct relations. Model
conceptualisation starts with establishing the equations. This can be done by (1) se-
lecting already known laws of physics, (2) doing experiments and deriving equations
from the results, or (3) constructing the equations. The second, experimental way,
requires function-fit abilities from students. They must learn how to determine
mathematical functions that can describe experimental data. The third, construction
way, demands more abilities and insight with respect to mathematization. We focus
on the first and third way of establishing equations.

With respect to the development of proper notions of variables and formulas, we
consider the following five goals important for our learning path:

(1) Students must learn to construct simple formulas themselves. Therefore, (word)
formulas are never just given to our students but are constructed, starting
with comprehensible situations and calculations with simple numbers. These
are subsequently generalized into word formulas, by replacing the numbers
by words and, subsequently, symbols. In exercises, students are asked to
practise with construction of formulas for simple, concrete cases. We expect
this approach to support the development of students’ level of understanding
of the variables in the formula to the level of generalized number. Examples of
formulas at this level of understanding are the relation between mass, volume,
and density of some substance and Ohm’s law relating voltage, resistance, and
current. These formulas have a general character, although the variables in these
formulas usually are not varying.

(2) Students must learn to distinguish between finite difference equations and direct
relations. Thereto, 
-notation is used from the first difference equation, early
on in the learning path. For direct relations, the term “direct formula” is used,
and for difference equations, the term “
-formula” is introduced. The reason
for using terms that both contain the word “formula” is that, otherwise, many
students think that one of these two is not a formula at all, as we found in a pilot
project (Van Buuren et al. 2011).

(3) For modelling purposes, students must learn to distinguish between a formula
(consisting of variables), an equation (in which the remaining variables only
have to be determined), and a “simple” calculation. We defined a formula as a
relation between at least two symbolized physical quantities. Simultaneously,
an equation is introduced as a relation containing only one symbolized quantity
of which the value is actually fixed but yet must be determined, by solving
the equation. In case this quantity already is isolated, and the other side of the
equation only consists of numbers, the relation is called a simple calculation.
How these definitions are introduced in the textbook is shown in Fig. 8.5.
Students first apply these definitions in exercises and, subsequently, in all
modelling tasks on the learning path. Note that these are operational definitions
meant to guide the students in their first steps in using algebra in a physics
context.

(4) Students must understand the process of numerical integration. Numerical
integration can be introduced early on the learning path. At this stage, the
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1. A formula provides a (computational) relation between two or more different physical quanti-
ties.

2. These physical quantities are abbreviated, for surveyability. The abbreviations are called ‘sym-
bols’.

3. The values of the physical quantities are not all fixed in advance.
4. In most computer programs, only one physical quantity can appear at the left side of an equal

sign. That must be the physical quantity that is going to be calculated by the computer program.

You, as a human being, usually start an exercise by filling in numbers into the formula. For

example, R = 5Ω and U = 3V can be entered into the formula R =
U
I
. We get 5 =

3
I
. This,

we will call an equation. At this point, the value of I actually is fixed, but this value is still
unknown. An equation can be solved, that is: we can search and find the value for the unknown

quantity. For example, the above equation can be transformed into I =
3
5
. What ’s left is a

simple calculation that can be carried out easily.

Fig. 8.5 This text is used in the instructional materials to provide students with operational
definitions of formula, equation and simple calculation (original in Dutch)

integrand is a rate of change that is given in graphical and tabular format as
a function of time. This can support students’ notion of variable as varying
object, because students must explicitly deal with variables of which the values
are changing during the process. At a later stage, an integrand is used that for
each step of the integration process must be calculated. In order to understand
this process, students perform several steps of this process on a numerical level,
i.e. by doing calculations by hand.

(5) Students must develop a notion of variable on the level of varying object.
A step towards this notion can be made with the help of ICT. Students are
asked to elaborate an experiment in which the same calculation must be made
many times. For the calculations in the computer learning environment, a
direct relation is used. For each calculation, the variables can be considered as
isolated numbers, but from one calculation to another, students are dealing with
variables that clearly change. As final step towards the notion of varying object,
formal definitions of variable, as a symbolized varying quantity, and constant, as
a quantity that is not changing, are given to the students. In exercises, students
practice distinguishing between variables and constants. In these exercises,
attention is paid to the fact that quantities that are constant in one situation can
be variable in another. An example of such a quantity is the electrical resistance
of a light bulb.

The steps towards these goals were distributed over the entire curriculum over
various contexts, as is shown in Table 8.2.
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Table 8.2 Overview of the implementation of the partial learning path on variables and formulas,
distributed over the entire curriculum

Module title Content regarding formulas and variables

Second year of secondary education (grade 8; age, 13–14 years)

Doing research Introduction of the notion of physical quantity as a measurable
property of an object

Density First word formula

First direct relation

Velocity First 
-formula

Process of numerical integration for the graph of a varying quantity

Introduction of the equivalence between an expression consisting of
numbers only and its outcome, a single number

Forces and bridges Two new direct relations

Energy and power Second 
-formula

Third year of secondary education (grade 9; age, 14–15 years)

Resistance and Two new direct relations

conductance Operational definitions of formula, equation, and simple calculation

Step towards the notion of varying quantity: Use of a direct relation
in software for doing calculations on data from tabulated values

The vacuum pump Process of numerical integration on a numerical level

Introduction of operational definitions of variable and constant

(Re)construction of simple direct relations

Formal introduction of process of numerical integration

First explicit use of a direct relation in a computer model

Sound Practising with the concepts of variable and constant

Second use of a direct relation in a computer model

Introduction of networks of direct relations in graphical models

Force and movement Construction of a simple 
-formula for a new realistic situation

Integration of all elements required for graphical modelling

Construction of a model based on known equations

8.5 Investigating Student Conceptions and Use of Formula

In order to investigate student notions of formula and their abilities to use formulas
and variables for constructing computer models, Van Buuren (2014) did classroom
observations, made screen and audio recordings of student dyads and triads working
on ICT tasks and modelling tasks, collected computer results, and collected the
answers of students on questions of the regular tests that were taken during the cur-
riculum. The classroom observations often led to small-scale in-depth interviews;
the test questions were specially developed to investigate students’ notions and
abilities.

Table 8.3 shows the results of a question from a regular test in which students in
the first months of grade 9 were asked to classify expressions as formula, equation,
or simple calculation, according to the operational definitions that were given to
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Table 8.3 Students’ classifications of mathematical expressions in physics contexts (in percent-
age)

Expression Simple calculation Equation Formula No answer

Version 1


x = 27.8 · 5.2 60 25 12 4

12 = ρ · 3.2 21 60 8 12

P = 
E/
t 15 9 74 2

Fz = m · 9.8 6 50 34 10

Version 2

ρ = 23/7 76 12 10 2

120 = vav · 8.7 26 52 12 10


E = P · 
t 2 19 79 0

m = Fz/9.8 19 40 21 20

Results from the two versions of the regular test after the module Resistance and Conductance.
In this test, grade 9 students were asked to classify the expressions from the first column of
this table as simple calculation, equation, or formula. Version 1 was given to 52 students, and
version 2 was given to 42 students. In the columns 2 to 5 is shown how students classified the
expressions. Correct classifications (in the operational definitions used) are in bold

them. The majority of students could grasp these notions, although some students
had some difficulty distinguishing between simple calculation and equation, and
other students probably were troubled by the alternative conception that a formula
must consist of symbols only. These results were confirmed in small-scale student
interviews.
Results of the tests after a next module showed that the vast majority of grade
9 students could distinguish between variable and constant. Most errors occurred
with a quantity that was constant in one situation, but of which the value could be
different in an entirely different situation.

These improved notions of students of variable and formula had a positive effect
on their performance in modelling tasks, and this performance improved during the
year. The first indications of this improved performance were the results from the
same test questions as used earlier by Van Buuren et al. (2012) in the context of a
student task to model a vacuum pump. The fraction of students that understood the
calculation process of this model on a numerical level had hardly changed: this time
too, around 60% were able to perform several cycles of this calculation process by
hand. But the fraction of the students that was able to (re)construct a formula and
use this formula for defining a variable in the computer model increased from 16%
to 36%, and the quality of incorrect answers was much better. Almost no students
tried to define this variable by means of numbers instead of a formula anymore.
Yet, although most students could distinguish constants and variables, and could
understand that a formula must contain variables, not all students were able to
apply these notions in all circumstances. Many students did not realize that varying
quantities in computer models must be defined by formulas in order to be variable.
The notions of simple calculation and constant and of formula and variable must yet
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be coupled. The following typical classroom conversation between a physics teacher
(T) and student (S) in the context of a graphical model of a system consisting of a
vessel and an air pump illustrated how this coupling can be achieved. What had
happened just before was that the student had entered 0.1 ∗ 500 as definition for the
variable Npump in a mathematical model equation instead of the required expression
0.1 ∗ Ntot, where Npump and Ntot stand for the number of gas molecules in a pump
and in the vessel plus pump, respectively (the number 500 is the first value of Ntot).

T: “If you enter 0.1 ∗ 500, do you have a formula, an equation, or a simple calculation?”
S: “A simple calculation, I think.”
T: “A simple calculation. Is its outcome a variable or a constant?”
S: “A constant”
T: “Okay”
S: “and it must not be a constant.”
T: “It must not be a constant.”
S: “But, I am thinking, how can this be done?”

What followed was a discussion on the use of symbols in order to make the
expression more general. What this excerpt shows is not only the confusion of the
student but also that an early careful introduction of the notion of simple calculation,
constant, and variable helped the teacher to create a conceptual conflict in the
student’s mind and a need for a formula consisting of variables represented by
symbols. Even more important is that the operational definitions of formula and
variable provided the students and the teacher with a language to communicate
in. At the end of grade 9, almost all students used formulas for defining varying
quantities in computer models.

8.6 Long-Term Effects of the Modelling Learning Path

Recently, the lower secondary modelling learning path has been extended into the
beginning of the first year of upper secondary education (grade 10) with a module
on dynamics. The combination of modelling and ICT-supported experimentation
enabled to further shift attention from calculations with formulas to manipulations
of graphs of whole functions. Via ICT, students can create models and analyse
experimental data. They learn to make function fits of measured data, they use
the computer for calculations by defining the variables that must be calculated by
formulas, and they let the computer calculate derivatives of whole graphs instead of
using tangents to determine momentary values of this derivative only. In this way,
functions are gradually changed into objects that can be manipulated and discussed
as a whole. Results of the research on this extension of the modelling learning
path must still be thoroughly analysed. However, because the researcher is also the
teacher of these students, we already have indications of possible long-term effects
of the modelling learning path. Here, we give an example of these indications from
an activity in grade 11 (age, 16–17 years) on conservation of energy.
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In upper secondary education, the law of conservation of mechanical energy is
often written as

1

2
mv2

1 + mgh1 = 1

2
mv2

2 + mgh2.

In this formula, m is the mass of a moving object, g is the acceleration of gravity,
and v and h are the velocity and height of the object. The term 1

2mv2 is the
kinetic energy of the object and mgh is the potential energy. The indices 1 and
2 are labels that indicate two different moments in time. Written in this way,
energy conservation is already transformed from a formula that describes variables
v and h that continuously change in time into a relation between two pairs of
momentary values. Novice learners often do not realize that two situations are
involved and realize even less that the energies are continuous functions of time.
Students often forget to use the indices 1 and 2 or forget the meaning of these
indices, and regularly they erroneously mix up moments. Video measurements and
data analysis in physics software enable students to work with all quantities and
relations between these quantities, including the energies, as functions of time. The
task for the grade 11 students was to make a video of a bouncing ball and to analyse
the resulting movement with respect to all variables: velocity, height, kinetic energy,
potential energy, and the sum of kinetic and potential energy. This task used to be
very difficult for most students who had not followed the modelling learning path.
Especially, they did not understand that the kinetic energy and potential energy are
variables and must be defined by means of formulas. Students who followed the
modelling learning path clearly needed less assistance from the teacher, even though
the learning path that they followed had not yet finished. Figures 8.6 and 8.7 show
typical graphs made by students in the Coach environment.

In order to be able to analyse the motion of the ball in this way, students first
must understand the concept of derivative, they must be able to define the variable
energies by means of adequate formulas in the computer program, and they must
understand the effects of measurement noise as a result of minor flaws in the
measurements and of noise as a result of digitalization. This digital noise demands
some mathematical understanding. But when students are sufficiently able to use
the computer for these purposes, they can study

• the relation between the height of the ball and the velocity: explain why
the velocity changes suddenly, and investigate whether the movement can be
considered as free fall when the ball is not in contact with the floor by determining
the acceleration; and

• the energies: explain that the mechanical energy is constant at each moment
between a pair of bounces (and learn to deal with the effects of noise), see that
the sum of kinetic and potential energy is minimal when the ball hits the floor and
explain where this energy has gone, and determine how much energy is dissipated
during a hit.



8 Learning to Use Formulas and Variables in Computer Modelling 191

1,5
1,4
1,3
1,2
1,1
1,0
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0,0

0,0 0,5 1,0 1,5 2,0 2,5

t (s)

v (m/s)h (m)

3,0

3,5
3,0
2,5
2,0
1,5
1,0
0,5
0,0
−0,5
−1,0
−1,5
−2,0
−2,5
−3,0
−3,5

Fig. 8.6 Results of a video measurement by students of a bouncing ball. The quantity on the left
axis is the height h of the ball, and the dots in the graph of h are the actual measurements. The
symbol v on the right axis represents the computed velocity of the ball. The students have used the
option “Derivative” in Coach to compute this velocity

32

30

28
26

24

22

20
18
16

14
12

10

8
6

4

2
0
0,0 0,5 1,0 1,5 2,0 2,5 3,0

t (s)

Ek (mJ)
Ep (mJ)
Esum (mJ)

Fig. 8.7 The kinetic energy Ek , potential energy Ep , and the sum Esum of Ek and Ep of the
bouncing ball from Fig. 8.5 as functions of time



192 O. van Buuren and A. Heck

In other words, computer-based video measurements and data analysis enable
students to investigate the whole motion, that is, to study all relations between all
variables as functions of time. Computer-based modelling offers similar advantages.

An extra advantage of modelling can be the absence of noise, but a disadvantage
is that modelling the loss of energy is rather difficult: it requires embedding of
discrete events in the system dynamics-based modelling environment or modelling
of the motion during the bounce phase (Heck et al. 2010). In order to investigate
whether students really learn from such a task, as a pilot, we did short student
interviews in which we asked the students whether they considered this task as
instructive and what they had learned from it. Answers of the students were
encouraging, like the one quoted below:

We definitely think that we understand the subject better now. The graphs of the energies
provide us with a clear overview of how the energy changes during the bouncing process.
Normally, you make calculations for only one point and that does not give you an image of
how things are changing. This overview has helped us to understand the subject.

Another student explicitly mentions the role of the formula (in the sense of the
law of physics):

When I do practical work with Coach, I do understand the formula better because I make
up everything myself and therefore understand the effects of the formula.

Of course, the effects of graphical modelling and analysing experiments with
ICT on student learning and understanding must be investigated more thoroughly,
but the answers of these students show us in which direction to look for learning
effects.

8.7 Conclusions

Providing students with operational definitions of formula and variable can help
students to develop a notion of formula on a more generic level and a notion
of variable as varying object. As we have shown, students can understand these
definitions, and these definitions provide teacher and student with a useful language
for discussing notions of variable and formula.

We found that students’ modelling abilities improved by these notions, but we
also had clear indications that modelling and analysis of experiments with the help
of ICT can contribute to a the development of more general notions of formula and
variable and can help students develop a better, more general, and more dynamic
understanding of the laws of physics.

We advise teachers to pay more attention to the varying nature of many quantities
in physics, at an early stage in the physics curriculum.
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Chapter 9
Graph in Physics Education: From
Representation to Conceptual
Understanding

Alberto Stefanel

The language of science is an integration of different representation instruments,
including words, pictures, equations, and graphs. Graphs have a fundamental role in
physics and in physics education. A wide literature in physics education evidenced
the difficulties of students in reading, constructing, and interpreting graphs. The
use of sensors connected to the computer opened new learning opportunities in that
area of concern, aimed at constructing physics concept and developing graphing
competencies. Two studies will be discussed regarding the role of graphs acquired
in real time for learning. The first study regards students aged 15–16 exploring
motion with sonar ranger sensor. Their learning is compared with those of first year
university students and a group of prospective middle school teachers. The second
study concerns secondary school students learning by analyzing light diffraction
pattern acquired with sensors. Students were involved in inquiry-based laboratories
following the suggestions of a research-based educational proposal concerning the
specific topic considered. Monitoring the students’ learning path with tutorials, it
was possible to highlight the role of real-time graphs and of the active learning
environment: for developing graphing skills and competencies, for connecting the
processes underlying the phenomenon observed and the specific features of the
graph acquired in real time, for promoting the construction of the capability to
attribute physical meaning to the formalism, and for activating conceptual models
of processes and phenomena.
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9.1 Introduction

Science language integrates and interlaces different representations: words, di-
agrams, pictures, graphs, maps, equations, tables, charts, and other forms of
visualization and formalization (Lemke 2003). These different representations are a
fundamental part of science not only as communicating tools but also because they
contribute to define the nature of science itself, as well as to science understanding
(Windschitl et al. 2008). The multi-representation plays, in fact, an important
epistemic role in the development of science (Fisher et al. 2011; Gilbert 2007;
Wainer 1992) and physics (Guttersrud and Angell 2014). Graphical representation is
a powerful effective tool for synthetic data rendering and representation of relations
between physical quantities (Fan 2015) and for data interpretation (Klein 2001;
Tufte 2001) giving access to the “revelation of the complex” (Tufte 2001). Physicists
plot a graph to obtain a clear picture of the data, obtaining a synthetic overview
of these data, revealing aspects that might not be obvious from a table, as well as
regions of interest suggesting further analysis (Deacon 1999), or evidence for review
and modify their theory (Glazer 2011).

This role and value of the graphing have always been stressed in the teaching of
physics, although it is often assumed that students should develop graphing abilities
by osmosis. Since several years already in the teaching of other scientific disciplines
at all education levels, more and more importance has been given to the development
of skills related to the construction, reading, and interpretation of graphs (Lemke
2003).

Rather than developing such skills for those who will undertake science-based
degrees and careers, the focus has been on developing basic skills for the literacy
of the twenty-first-century citizen: working with data, organizing it in tables
and graphs, making inferences from data, and finding trends and support claims
and evaluation (American Association for the Advancement of Science 1993;
European Commission 1995; Fan 2015; National Research Council 1996). The
use of graphical tools has become the subject of development in the scientific
teaching since graphs play a dominant role in the inquiry process and are tools used
to analyze and display quantitative relationships. Therefore, graphing competence
is a fundamental requirement for doing inquiry and a major component both in
science and math education activating inquiry-based learning strategies (Glazer
2011; National Council of Teachers of Mathematics 2000).

Despite the importance of graphic representation, researches on students’ learn-
ing in physics, in science, and in math highlighted the ineffectiveness of the
traditional transmissive teaching in building graphing skills (Beichner 1994; Duit
2009; McDermott et al. 1987, 2000; Shah et al. 2005; Thornton and Sokoloff 1998;
Trowbridge and McDermott 1980, 1981) and in the use of the mathematical compe-
tencies for such objectives (Curcio 1987; Leinhardt et al. 1990; Meltzer 2002). As
McDermott observed “the ability to relate actual motions and their graphical repre-
sentations does not automatically develop with acquisition of simple graphing skills,
such as plotting points, reading coordinates and finding slopes” (McDermott 1993).
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The use of Real-Time graphical representation in educational Laboratory (RTL)
made possible to develop effective active educative strategies to improve the
competence of students in graphing at different levels and in the understanding
of the physical processes through graphics (Linn et al. 1987; Mokros and Tinker
1987; Sokoloff et al. 2004; Thornton and Sokoloff 1990, 1998), as well as in
modeling these processes (Angell et al. 2008; Glazer 2011; Guttersrud and Angell
2014; Hofstein and Lunetta 2004). Many questions remain open concerning the
role of RTL graphs for conceptual learning: in connecting a phenomenon and
the representation of the physical quantities describing it (e.g., position in the
case of the motion of a body, temperature considering the heating of a system),
in connecting data and construction of the phenomenological laws describing
processes, and in creating bridges from the descriptive-phenomenological level to
that of interpretation.

About this problem area, the present contribution aims to highlight the following
research questions:

RQ. 1. In which way could RTL (a) activate conceptual understanding, (b) promote
graphing competencies, (c) develop formal thinking, and (d) construct physical
meaning of the mathematical representation of physical quantities and relation
between them?

RQ. 2. Concerning the process of constructing the law of a phenomenon: (a)
what are the students’ representations and models activated? (b) What are their
difficulties?

Two studies will be discussed regarding the role of RTL graph for learning. In
the first, learning of students aged 15–16 exploring motion with sonar ranger sensor
(Michelini 2010; Michelini et al. 2002) is compared with those of university students
of the first year of the agricultural degrees and a group of prospective middle school
teachers. The second study concerns secondary school students learning by analyz-
ing optical diffraction pattern acquired with on-line sensors (Michelini et al. 2014).

The next sessions discuss the research results on graphing, introducing the
theoretical framework, the main assumptions, and the choices at the base of the
studies presented. The research contexts and instruments will be then briefly
presented, stressing the strategies adopted in using real-time graphs. The core of
the paper documents the two studies regarding the role of RTL sensors for learning,
concluding with the main outcomes and answers to the research questions.

9.2 Theoretical Framework

Graphing may occur in two main contexts: inquiry and reading (Friel et al. 2001).
In an inquiry context, individuals engage in empirical investigation of actual data,
where they produce and/or analyze data, interpret their own data and results, and
report findings and conclusions. In reading contexts, people are data consumers,
also when they are requested to make hypotheses or to read data. Many perceptual
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and conceptual aspects are involved in facing a graph. According to Bertin (1983),
three steps occur immediately when reading a graph: (A) external identification, the
reader perceives the external factors of the graph (e.g., the title, axis labels, and
scales); (B) internal identification, the reader perceives the internal factors, as the
bars, lines, or dots representing data; and (C) perception of correspondences, the
reader combines the details identified via stages (A) and (B) to capture information
displayed in the graph.

Graph comprehension or interpretation (according to the author) is defined as the
ability of a reader to derive or obtain meaning from graphs created by themselves
or others (Curcio 1987; Glazer 2011). Different reviews (Friel et al. 1997; Glazer
2011) summarized the graph comprehension into three levels, as synthesis of many
researchers (Bertin 1983; Brussolo 2010; Costas 2010; Trowbridge and McDermott
1981):

(L1) An elementary level – reading data or extracting immediate information by the
graph

(L2) An intermediate level – reading between the data, requiring almost a logical
inference to find relationships between data, as, for instance, reducing data
categories, finding points with value greater than an assigned one (or than a
certain value), confronting slopes, without referring to the specific meaning of
the slopes

(L3) Advanced/overall level – to read beyond the data, as, for instance, reducing all
data to a single statement/relationship (Bertin 1983; Carswell 1992); synthesis
or integration of most or all the data (Carswell 1992); extrapolation from the
data; extending, predicting, or inferring from the representation; answering to
questions requiring prior knowledge (Curcio 1987; Friel et al. 1997, 2001; Glazer
2011; Wainer 1992); and interpreting relationship between data or determining
values of the data conveyed in the graph

Gal (2002) unified the first two levels.
The graph comprehension level can be affected by different factors related both

to the graph itself, to the context of the graph, to the reading task, and to the reader.
Examples of these factors can be the purpose for using a graph and the context
in which the represented data are situated, the perceptual features of the graph,
the request of reading variables, performing a computation (sum/differences of
values; mean value; comparison between values, derive a relation), and identifying
or comparing trends on the basis of qualitative or quantitative information (Friel et
al. 1997). The reader’s epistemic beliefs in attributing physical meaning to formal
entities (Von Korff and Rebello 2013) as well as his prior knowledge strongly affect
the comprehension of a graph (Glazer 2011): previous knowledge or difficulties on
graphing (Shah et al. 2005); prior theory/beliefs concerning the context related to the
graph, in particular dealing with data contradicting hypotheses or with anomalous
data (Chinn and Brewer 1993); and prior knowledge of the content displayed in the
graphs or explanatory skills. The salience of the different aspects of prior knowledge
with respect to graph comprehension seems affected by grade or age differences,
younger children showing a greater need for knowledge about the “concrete,”
visible, explicit aspects of a graph. The most salient prior knowledge is the ensemble
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of the mathematical concepts needed to read a graph and to extract information
from it, independently by age (Aberg-Bengtsson and Ottosson 2006; Curcio 1987;
Leinhardt et al. 1990). According to their model of data theory, Chinn and Brewer
(1993, 2001) showed that students are more likely to notice problems encountering
data inconsistent with their theory than data confirming their theory. This occurs
when a student is able to elaborate an alternative conception capable to explain data.
If they are unable to do so or are firmly convinced of their conception, they typically
refuse anomalous data (Chinn and Brewer 1993), also when the anomalies evidently
contradict students’ previews (Champagne and Gunstone 1985; Park et al. 2001).
Considering familiar data on which they have consistent expectation, students more
frequently show a global vision of the graph and tend to describe more frequently
the global trend of data. On the contrary analyzing unfamiliar data, they tend to
consider local features and aspects of the graph (Shah 2002; Shah and Hoeffner
2002). The familiarity with data and content of a graph can influence both novice
and expert interpretation of data, suggesting that the graph interpretation is strongly
context dependent in any case (Roth and Bowen 2003).

Researchers highlighted that students have trouble making connections between
graphs and other representations, as data sets and tables, algebraic functions, and
other types of graphs (Friel et al. 1997; Roth and Lee 2004). Moreover, in general
very few students show the transfer of reading graph skills from math to other
contexts (Planinic et al. 2013), being line graphs the most difficult for students
(McDonald-Ross 1977; Padilla et al. 1986; Shah and Carpenter 1995). To construct
a line graph, students need to be able to draw and scale axes, assign variables to
axes, and plot points. To interpret a line graph, the skills needed are determination
of point coordinates, use of line best fit, interpolation and extrapolation, or stating
a relationship between variables. In the specific case of time evolution of physical
quantities, students must connect a specific graph to the graphs correlated; as, for
instance, from the position vs time (x vs t) graph, construct the velocity vs time
(v vs t) graph and acceleration vs time (a vs t) graph (McDermott et al. 1987).
Students seem more able to represent correctly the slope of a linear graph than to
individuate the correct value of intercept, also when they do not possess previous
mathematical instruction (Hattikudur et al. 2012). Moreover, when they can choose,
they tend to use more frequently formulas than graph to extract information (Knuth
2000; Planinic et al. 2013). In experimental lab setting analyzing straight-line graphs
derived from their own data, students have been able to achieve a considerable de-
velopment toward a concept of slope, or gradient, and how it relates to the concept of
proportionality, but they continue to demonstrate a great resistance to applying their
mathematical knowledge to physics (Woolnough 2000). In that process, many young
students characterize as proportionality each increasing relation (Pospiech 2015).

McDermott (McDermott et al. 1987), in the context of kinematics, evidenced
the difficulties in discriminating between slope and height of a graph or between
quantity variation and quantity value, as well in interpreting changes of a quantity
and change in slope, and tendencies observed also in other contexts (Trowbridge
and McDermott, 1980, 1981). The difficulties in interpreting kinematic graphs seem
more related to a lack of understanding or applying physics concepts than a lack in
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mathematical knowledge (Planinic et al. 2013). Another area of concern regards the
connection of graphical representation with the real world. Some aspects evidenced
in studies are found in distinguishing real-world trajectory and position-time graph
or in representing negative velocity. The difficulties in connecting graph and real-
world interlace with difficulties in connecting the graphs of derived quantities, as,
for instance, matching the graphs v vs t and a vs t with the behavior of the graph x
vs t (McDermott et al. 1987; Suri and Clarke 2009).

New technologies and real-time-based laboratory (RTL) opened new educational
opportunities for IBL approaches (Krajcik and Layman 1993; McDermott 1991;
Sokoloff et al. 2004) that enable the implementation of active learning-based
laboratory to develop physical concepts (Michelini 1988, 2006, 2010; Michelini
et al. 2014; Sassi 1996; Thornton and Sokoloff 1990) and mathematical concepts
(Educational Studies in Mathematics 2004; Hale 2000). The research outcomes on
RTL showed improvement of students’ comprehension of graphs (at all level of age)
and conceptual understanding of physics (Krajcik and Layman 1993; Stefanel et al.
2002; Svec 1995; Thornton 2004; Thornton and Sokoloff 1998).

RTL is particularly effective to develop reading skills of the graph x vs t (90–
100% of cases), of the graph v vs t (80%), and of the graph a vs t (56%),
as well as conceptual understanding of kinematical quantities and development
of graphics problem-solving competencies (Svec 1995). There is evidence that
students interpret graphs more readily than they can read, even when they lack the
appropriate interpretative competencies (Michelini et al. 2002; Shah et al. 2005).

Typically, novices and low-level students tend to show a local view of RTL
graphs, emphasizing, for example, the presence of experimental irregularities
blurring the vision of the global trend (Corni et al. 2005; Testa et al. 2002).

These outcomes show that RTL graphs can become, in appropriate learning
environments, powerful resources for learning physical concepts and activating and
developing important skills, based on a deep, rich, and generative (if intuitive and
sometimes limited) understanding of representation (diSessa and Sherin 2000). A
graph provides, in fact, a bridge between more abstract mathematical representation
and its physical meaning (Deacon 1999). Extending Vygotsky (1962), we can
suppose that the RTL graphs help students to develop the concepts related to
the phenomenon explored, as is the case when a child uses words he or she
is helped to develop concepts. According to Sokoloff and Thornton (Thornton
2004; Thornton and Sokoloff 1990, 1998), RTL offer the opportunity to design
and activate learning environments encouraging students to use and interlace the
multiple representations constituting the science language (Jones 1993; Lemke
2003). In addition we can hypothesize that the Prevision-Experiment-Comparison
(PEC) strategy (Theodorakakos and Psillos 2010) activates the process to make
explicit students’ conceptions, through which the inchoate (intuitive or naive)
understandings within their (mind/brain) system are made available to the system
itself, namely, the verbally mediated, conscious processing through which an
individual becomes aware of his or her own beliefs (Karmiloff-Smith 1988).

Finally, we hypothesize that the real-time graph can be a tool that allows to build
formal thinking (Bisdikian and Psillos 2002; Michelini 2006), that is, the acquisition
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of networks which assigns meaning to symbolic elements and which allows students
to explore and interpret the world through the formal instruments of physics
(Michelini 2010; Michelini et al. 2010). In the following, this important aspect
will be investigated analyzing: how students connect the features characterizing a
RTL graph to the specific characteristic of the phenomenon studied (e.g., critical
points, phases, slope); how they extract information from the graph and use these
to construct new quantities (e.g., velocity of the represented quantity change);
how they go in-depth in the graph understanding, as well as how they analyze
interpolations whose meaning is constructed using an IBL approach; or how they
construct a fit of data on the base of theoretical hypotheses.

9.3 Instruments and Methods

9.3.1 The Research Environment

The researches discussed here regard the students’ learning paths when they face
the conceptual knots related to each of the specific phenomenological context
considered, in an inquiry-based educational environment (McDermott 1991, 1993;
McDermott et al. 1987, 2000; Michelini 2010). Students explore phenomena and
face the related conceptual problems in learning environments named Conceptual
Lab for Operative Exploration (CLOE) (Michelini 2006; Michelini et al. 2010;
Stefanel et al. 2002), where a researcher drives the interaction with and between
students adopting a methodology based on Rogers’s reflection interviews (Lumbelli
1996). On the base of this methodology, the questions asked by students become
questions asked to them, to which they answer with phenomenological explorations
or simple experiments. The concepts introduced by them are re-examined using
the words and the ways they used themselves. The researcher follows the students’
reasoning and learning path in the construction of concepts. Each step is the base
for the further exploration to build a new conceptual step. The students’ learning
paths are activated and monitored by IBL tutorials (McDermott 1991; McDermott
et al. 2000): promoting preview and reasoning on phenomena, according to a PEC
strategy (Sokoloff et al. 2004; Theodorakakos and Psillos 2010), and stimulating
the passage from the phenomenological level to interpretation, starting from the
distinction between the considered phenomenon, the process involved, and its ex-
planation (Michelini 2006). This promotes that students’ conceptual gains become
explicit through inscriptional practices (Woolnough 2000; Wu and Krajcik 2006)
and sharing knowledges by negotiation of meaning (Griffiths and Guile 2003; Von
Korff and Rebello 2013; Wellington and Osborne 2001).

The researcher, conducting a CLOE lab, follows the students’ suggestion and
lines of reasoning having as reference the layout of research-based educational
proposals framed in the Duit’s model of educational reconstruction (Duit et al. 2005)
and designed in a vertical perspective (Costas 2010; Michelini 2010; Suri and Clarke



202 A. Stefanel

2009). All these proposals involve students directly in the operative exploration of
a specific phenomenology and constructing their conceptual understanding. In that
learning process, algebraic and graphical mathematical representation of variables
are used for a formalized description of phenomena, as tools for the imaginative
reduction of physical concepts (Michelini et al. 2010).

9.3.2 RTL Graphs Exploring Motion

First, a study on students’ learning about the motion graphs is discussed, as an
example of the role of RTL in the process of construction of physical concepts
and in their formal representation. A proposal in vertical perspective on motion
was designed (Brussolo 2010; Michelini 2010) and contextualized in the safety
perspective (Mossenta et al. 2014) and in sport (Bradamante et al. 2004). Here
we consider the following sequence of two steps based on the use of an on-line
commercial sensor (Corni et al. 2005; Michelini et al. 2002; Sassi et al. 2005) to
analyze two situations: (EA) a person moving in front of the sensor and (EB) a free
motion of a toy car launched on a horizontal plane. The analysis of the first situation,
after a preliminary informal observation of how the position detected by the sensor
is translated in a graph, proposed four situations, involving a person walking: (EA1)
away from the sensor, (EA2) at different speeds, (EA3) approaching the sensor,
and (EA4) moving first away from the sensor, then stopping, finally approaching
the sensor. Every situation has been monitored with an IBL tutorial. Each tutorial
first presents a problem situation, asking students to individuate reference frame,
trajectory, and type of motion, to make a preview on the expected graph x vs t
(in the case of EA1 also v vs t and in the case of EB also a vs t), to perform
the experiment, and to report the observed graph, comparing it with the preview
graph and discussing analogies and differences. They read the graph, extracting
information such as the starting and final positions and times, the displacement,
and the mean velocity, to identify the different phases of the motion, to interpolate,
or to fit data obtaining the analytical form of the time evolution of the quantity
considered, individuating values and physical meanings of the parameters involved.

The focus will be here on the first stage of the construction and analysis of the
graphical representation of time evolution of kinematical variables, considering a
sample consisting of 134 individuals, of different age, level, and type of school,
including a small group of prospective teachers, to individuate parameters of com-
parison and indications of possible dependence from subjects’ age and formation:

• Three groups of students 15–16 years old (grade-10), from three Italian high
schools:

– The first group (mentioned as LM below), consisting of N = 18 students
of a high school (scientific lyceum) in Udine in Northern Italy, considered
high level by school teachers, with the exception of two students but still
positive. The physics teacher had already dealt with the basic concepts of
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kinematics, adopting a transmissive method without using the laboratory; the
math teacher adopted a calculus-based approach and had already dealt with the
basic elements of the Cartesian representation of the straight line and parabola.

– The second (LF) consisting of N = 25 students of a scientific lyceum in
Crotone in Southern Italy. The math teacher considered the students of middle-
low level. Students faced the representation of the straight and the parabola
with a formal approach but have no previous knowledge in physics.

– The third (IG) consisting of N = 22 students of a Technical Institute for
Commerce in Gemona, a little minor town close to Austria/Slovenian borders.
The math/physics teacher considered students of low level, with few cases of
sufficient level, and had dealt with the basic concepts of motion without using
laboratory and analytical geometry with a transmissive approach.

• Another group composed of two subgroups of 14 and 33 (AG – N = 47) first
year university students of the agricultural-food sciences degrees in Udine. From
pretest, the level was middle-low in physics, in math, and in graphing skills.
Everyone studied the basics of analytical geometry at school and only half had
basic knowledge in kinematics.

• The last group included N = 22 prospective teachers of mathematics and sciences
in middle school, all graduated in natural science or biology attending a special
course for initial preparation (PT group hereafter).

Each group followed the same sequence of experiments EA and EB in 2–3 h of
free/not compulsory activity, based on RTL approach described before and using
the same tutorials, with few differences specified in the following. In particular, the
passage from the graphical representation to the data interpolation was addressed in
differentiated ways with the different groups involved in the research, as discussed
later. Some changes also will be indicated in the data tables concerning the samples
number, because not all attended the full activities proposed on motion. The first
group (LM) faced preliminarily a two-question pretest concerning the construction
of the equation of the straight line for two points assigned and the equation of
the vertical axis parabola for three points assigned, asking values and geometrical
meaning of each coefficient involved.

9.3.3 Measuring with On-Line Sensors and Analyzing Light
Diffraction Pattern

As a second example of the role of RTL graph for learning, a study will be discussed
on how students analyze a single-slit diffraction distribution, acquired by the USB
apparatus LUCEGRAFO (Gervasio and Micheliani 2009). Unlike the previous one
concerning the time evolution of physical quantities, in this case, the RTL graph
represents the light intensity I vs the position x of measurement, transverse with
respect to the direction of the light and of the slit. Another interesting difference
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is the task: students were asked to extract information from the graph, drawing
new derived graphs and constructing the formal relationship between the quantities
represented.

The analysis presented here is part of the approach developed in other researches
on the study of optical diffraction with the use of on-line sensors (Michelini et
al. 2014). This approach is based on the analysis of optical diffraction patterns
produced by laser light diffracted by a single slit and collected on a screen at a
large distance from the slit. First students explore qualitatively the diffraction pattern
collected on a white screen, to identify its global characteristics and to predict
the associated light intensity distribution. Then they acquire with on-line sensors
the distribution I vs x and analyze it quantitatively, by identifying characterizing
regularities: (a–b) the linear correlation between minima/maxima positions and
order number and (c) the inverse quadratic correlation between angular position XM
and intensity IM of maxima. Students discuss the inadequacy of the geometric model
to interpret the experimental distribution and formulate a wave hypothesis on the
nature of light. Students can interpret the experimental pattern fitting experimental
data with a model based on the Huygens principle.

Here we focus on the following steps activated by the suggestion and stimuli
of the IBL tutorial: (1) predicting the intensity of the light diffracted by a single slit
according to the position, (2) experimenting and comparing with the expected graph,
and (3) analyzing the experimental distribution, building the relations (a) –(b) –(c)
above.

The sample considered here included 168 students of grade 11, aged 16–17,
distributed in 8 groups of a scientific lyceum of Treviso, a Northern Italy town.
The schoolteachers evaluate students of middle-high level. Students knew the basis
of the study of a function and had already addressed qualitatively light interference
(Young experiment).

9.3.4 Methodology of Analysis

The students’ answers/sentences to the tutorial questions were transcribed and ana-
lyzed by keywords and concepts included, according to our research questions. The
categories were then defined and identified operatively, a posteriori, representing
qualitatively different ways to conceptualize the situation considered (Niedderer
1989), according to the criteria of qualitative research (Denzin and Lincoln 2011;
Erickson 1998), and defined operatively through the students’ sentences. Students’
drawings and formal constructions have been categorized according to the under-
lying conceptual models, here defined as mental construction about a piece of the
physical world or mental representation of the processes producing the phenomenon
observed (Nersessian 2007; Perkins and Grotzer 2000; Scott et al. 2007; Windschitl
et al. 2008). In some cases, it was possible to specify the category in which to include
a response or a graph from the verbal description made by individual students during
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Table 9.1 General criteria for the analysis of motion graphs

Graph Criteria

x vs t The position increases
from an initial value to
a final one

Slope of the graph Presence of an
acceleration phase
and a deceleration one

Concavities
envisaged in
these phases

v vs t Peak in
correspondence of the
push phase and
gradual decrease for
the free motion

Zero speed at the
beginning and at the
end

Different slopes
between push phase
and free motion phase

Time
correspondence
with x vs t graph

a vs t Positive peak at push
stage

Negative constant a in
free motion phase

Time
correspondence
with x/v vs t
graphs

the educational labs sessions. Considering how students used the formalism, some
connection will be made to the epistemic games of Tuminaro and Redish (2007).

In the following, only line graphs will be considered, representing one variable
as function of another one. In the case of motion kinematic graphs, the relative, but
distinct, representations of x, v, vs t will be considered. Table 9.1 summarizes the
general criteria of analysis for these graphs.

For all the graphs, the following elements were also analyzed:

(a) Presence of sharp points vs emphasis on continuous/smooth trend, to distin-
guish a mathematical abstract approach to a more physical approach where the
changes of the physical quantities are continuous.

(b) Presence or absence of experimental noise and artifacts, in order to identify
the emphasis on the iconic/pictorial representation of the observed graphs
compared to the predicted ones.

(c) Attention to aspects of the first order describing general trend (i.e., increas-
ing/decreasing graph) or to aspects of the second order, characterizing the
specific graph (i.e., different slopes, concavities).

(d) Presence or absence of the units, as an indicator of awareness of what is rep-
resented, and of the scales, to distinguish qualitative vs quantitative predictions
and comparisons. For v vs t and a vs t graphs, this indicator connects to the time
correspondence of x vs t graph and these derived graphs.

In the case of motion data, each category of analysis will be documented with
absolute frequency and percentage, even for small groups, to facilitate comparisons
(sum 100% because of approximation).

The analysis of the representations of the diffraction light distribution has been
made taking into account: the previewed global trend of the distribution (linear,
decreasing by law of power, bell shape; presence of maxima and minima), the ratio
between the intensity of the central and the lateral one, and any analytical report
used to interpolate/fit the data in the case of derivate graphs. Mathematical features
have been treated as subordinate characterizing aspects such as the presence of
discontinuities.
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In discussing the representations of the experimental graphs, we will refer to a
relation of direct proportionality when a rectilinear graph passes to the origin and a
linear relation when the intercept is other than the zero.

9.4 Analysis of Pretest of the Group LM

As anticipated, a pretest on the basic concepts of analytical geometry was proposed
to the group of high school students LM. When asked to find the equation of the
straight line for two points assigned [points (1,5; 2) and (−2; −1)], 16/18 (89%)
students used an analytical approach, and 2/18 (11%) used a graphic approach. In
the analytical approach, two strategies can be identified to determine the coefficients
m and q of the equation:

y = mx + q. (9.1)

In the first, used by ten students (56%), the m-value determined as slope (Δy/Δx)
was inserted into Eq. (9.1), obtaining the q value by replacing the coordinates of one
of the points. According to the second strategy, six students (33%), having inserted
the coordinates of the given points in the expression (9.1), solved the equation
system in m and q by substitution method. Only the first strategy corresponded to
that used by students analyzing motion graphs. In the majority of cases (15/18 to
83%), both of these strategies led to the expected m-value and in 13 cases (72%)
to get the equation of the searched line. Following the graphical approach, the two
students drew the line in a Cartesian reference and estimated by eye the values of m
and q (each 1), without checking the correctness of that estimation.

For half the sample, the meaning of m was the slope of the straight line; for
one the angle was formed by the straight line with the x-axis. There is a significant
correlation between determining the correct value of m and the attribution of its
geometric meaning (r = 0,62, p < 0.001). The attribution of a meaning to q is less
frequent; in fact only seven answered: associating q to the y value of the intercept
(2/7) and to the intercept point itself (5/7).

When asked to determine the equation of the vertical axis parabola passing
through three points assigned [points: (0; 0) (1; 2) (2; 1)], 17 students (94%) drew
the parabola graph and 15 (83%) also set the equation system in a, b, and c by
inserting the known point coordinates in the equation:

y = a x2 + b x + c (9.2)

The values obtained for the coefficients a and c correspond to the expected values
in nine cases (50%) (a = −3/2 = −1.5, c = 0), while only six (33%) obtained the
expected value of b (b = 7/2 = 3.5) and the expected equation of the parabola. The
other three skipped the request.



9 Graph in Physics Education: From Representation to Conceptual Understanding 207

Among those who did not get the expected results, the following errors occurred:
reversal of a formula (5/18), shifting a term from a side to the other of an equation
(2/18 – the two students performed the same error searching the equation of the
straight line), and square power lift (1/18). All these errors seem technical but are
just an evidence of a lack of understanding on the geometrical/algebraic role of the
quantities managed.

The students were able to assign a geometric meaning more frequently to the
coefficient a (14/18–78%: “concavity” or “direction” of the parabola) than to
the other coefficients (7/18–39%: c, intersection with the y-axis; 4/18–22%: b,
correlated to the vertex of the parabola). The greater propensity of students to
identify the slope of the straight line rather than its intercept (Hattikudur et al. 2012)
and the first coefficient of the parabola seem to be linked to the greater aptitude to
attribute geometric meaning to coefficient characterizing a curve. There is a positive
correlation between the attribution of meaning to the coefficients and the correctness
of these coefficient values reported.

The typical algorithmic-computational often followed by students uncomfortably
or worse with mistakes, usually attributed to a weakness in algebraic calculation,
seems to be more related to the lack of attribution of meaning to the entities with
which students operate and of the procedures used. In another perspective, the
technical approach usually followed by student with poor results hides a structural
deficiency (Pospiech 2018). This is also linked to the fact that nobody used the
graphs of the parabola drawn to address/guide or simplify the algebraic resolution
of the exercise, or to verify the results obtained, or to predict the expected results.
Rather, the opposite is true that there was no review of the calculations even
when there were obvious differences between the obtained values and the graphical
representation. According to Knuth (2000) and Redish (2005), students seem to
perceive the graph and its analytical/formal representation as separate entities, as
in the Recursive Plug-and-Chug game more than in the Pictorial Analysis one of
Tuminaro and Redish (2007).

9.5 The Role of Real-Time Graphs to Understand Motion

9.5.1 Walking in Front of a Sensor: Analysis and Discussion
of Data

This section summarizes the data on how persons of our sample analyzed the
kinematic graphs for the motion of a person walking away from a sensor. Figure
9.1 synthetizes the categories of representation of graph x vs t.

The first category (GA category) includes increasing curves with steps or
irregularities, as an expectation on how the walking person steps could affect the
graph. The second category (GB) includes math graphs with straight increasing
line (GB1), eventually connected as broken curve with an initial (GB2) and/or
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Fig. 9.1 Walking away from a sensor: Categories of graph x vs t

A person walking: distribution of representation categories of the graph x vs t
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Fig. 9.2 Distribution of the graph x vs t categories for the person walking

a final stationary phase (GB3). All the GB graphs represent idealized uniform
motions. The third category (GC) corresponds to the expected smooth graph with
initial/final stationary phases and a constant/quasi-constant slope phase in between.
It corresponds to a uniform/quasi-uniform motion with two accelerated phases,
corresponding to smooth changes of speed.

The graphs designed as prevision were more often of the math category GB
(see Fig. 9.2). The prevalence of this type of graph characterizes the lyceum
secondary students, where the formal footprint given by the math teacher emerges
(group LF). The frequency of the GC category is relevant, though not prevalent,
for the university students (group AG) and for the prospective teachers (group
PT), all of the bio-agricultural area, and characterizes them for the emphasis on
the continuous variation of the variables. The GA typology characterizes students
with low graphing competence both in math and physics (group IG). In the
representations of the observed graphs, the GC category of representation prevailed,
as expected, but there was a significant presence of GB3 math graphs (Fig. 9.2).
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Some indicators, as scales and unit, are important to understand the conceptual
process of students (Michelini et al. 2010). Unlike almost all of the preview graphs,
the representation of the observed graphs was accompanied by units (in 62% of
cases) and scales on the position/vertical axis (53%, with a peak of 70% for the LF
group) and to a lesser extent on the time t axis (43%). Another important indicator
of the processes activated was that the majority of persons (from 58% to 62% in
each group) represented the observed and the predicted graphs with different slopes.
Moreover, the different slopes were among the major differences quoted (over 55%),
when comparing the preview graph with the experimental one. The comparison pro-
cess activated reasoning based on the slopes of the curves, because it is recognized
as the most characterizing geometrical (formal) parameters of these curves. This
approach is quite similar to that of the Physical Mechanism game (Wenger 1999).
This is consistent with what was previously observed about the greater students’
propensity to identify the role of the angular coefficient of a straight line.

Other aspects emerged in the comparison are the following: presence of initial
and final phases and/or experimental noise (“irregular,” “not uniform” graph).

The reasoning based on the slopes of the curves activated by this first PEC and
graph analysis sequence has led between 80% and 100% of the subjects of all the
groups to make predictions on the graphs that were adequate for phases of the
motions considered, for slopes and for concavities, when they were requested face
the other tasks concerning the walking person, explored immediately after the first
task.

A skill-building process was then activated in the use of the graphs and the
correlation between the time evolution of the position of a body in motion and the
type of body motion realized. The recognition of the iconic characteristics of the
graph (e.g., sudden slope changes rather than continuous variations) has triggered
the identification of critical instants and phases in which the observed phenomenon
occurs and the recognition of processes underlying it (e.g., push at the beginning
of the motion, stationarity linked to the uniformity of the walk). Almost the entire
sample (between 86% and 100%) demonstrated basic level skills in reading graphs
(such as reading initial and final positions and times of the motion) and intermediate
level skills (such as the distance 
x and the corresponding time interval 
t). The
majority of the persons of each group were able to evaluate derived quantities as
the mean velocity v, which without any explicit indication was evaluated often as
the ratio 
x/
t of the values of 
x and 
t determined, a resonating procedure
with that used by LM students to obtain the angular coefficient of a straight line.
Alongside this, the use of units was more frequent indicating the value of the speed
(in 78% of cases) than other quantities, probably because it is considered the more
important quantity to communicate. Finally, a significant impact was produced also
in overcoming well-known difficulties (McDermott et al. 2000; Vygotsky 1962;
Wainer 1992) regarding the distinction between trajectory and time graph (in 70%
of cases) and the distinction between and evaluation of position, displacement, and
velocity (between 70% and 80%).

Students analyzed the motion using the fit tools available in the software of
acquisition. Almost the entire sample (between 92% and 100%) was able to use of
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the linear fit of the type x = A t + B to determine an appropriate expression of time
law for the observed motion. When asked to indicate the physical meaning of the
first coefficient A among respondents (78% of total), 50% identified coefficient A
with the velocity of the person and another 28% reported the geometric meaning
(slope) of this coefficient, particularly in LM group with which the geometric
aspect was emphasized in the test. The competence to attribute a meaning to the
interpolation coefficients is a further gain generated by the conceptual process
triggered by interaction with the RTL graphs: half of the sample was able to
distinguish the three planes simultaneously involved (algebraic/analytic, geometric,
physical). For the others, this process, while activated, remained partially open, as
an unclosed Mapping Meanings to Mathematic game (Tuminaro and Redish 2007).

9.5.2 Motion of the Toy Car: x vs t Graph

This section regards the analysis of the tutorial filled by students exploring the free
motion of the toy car launched on a horizontal plane and moving far away from the
sensor (step EB of the motion path).

Figure 9.3 shows the categories of the preview graphs representing the time
evolution of the car position (x vs t graph), from which emerges the predominance
(88%) of the first three categories, including the most obvious or first-order features
of the motion observed, that is, initial/final stationary phases and a gradual increase
of the position in between.

This is a result of the transfer process activated by the analysis of the RTL graphs
related to the walking movement (EA experiment), as specified in the following.
The graphs categorized as GPA show a smooth behavior, two stationary portions
connected by an oblique straight line, with similar concavity even if with opposite
sign. The GPA graphs are a transposition for the car motion of the GC graphs for
the walking motion (Fig. 9.1), underlying the conjecture that the characteristic of
the motion of the toy car could be very similar to that of the walking person. The
preview graphs of the mathematic GPB category include a linear variation of the
position of the toy car, with discontinuity in the velocity at start and stop, and
have been drawn as a transfer of the GB graph observed for the walk (Fig. 9.1).
Graphs of the GPC category represent the expected behavior, with a sudden change

Fig. 9.3 Motion of a toy car moving on a horizontal plane: categories of x vs t graphs
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and then a gradual decreasing of the slope, corresponding, respectively, to the
sudden acceleration at the push stage and to the uniform accelerated free motion
phase. A preview graph GPC highlights a transfer process of graph types GC
for the walking case and a personal re-elaboration to adapt for the car motion.
The GPD category, which accounts for 13% of the whole sample, included four
different subtypes: curve growing, irregular (seven cases of IG) or concave (three
cases of lyceum), a decreasing curve with regular variations, symmetrical with
respect to the graph GPA (four cases of LF and PT groups), and first increasing
and then decreasing curve (three cases of IG). Different causes underlying the
frequent preview of a uniform motion, implemented at different formal level in the
GPA and GPB graphs, are as follows: emphasis and school habits in considering
only/prevalently linear relations; the students’ tendency to use these relations to
describe any growing monotone relationship (Pospiech 2015); and the tendency,
even historically documented, to identify an accelerated motion with a motion at the
same speed as the end (Trowbridge and McDermott 1980).

The presence of all categories characterizes lyceum students, predominating
mathematical graphs for the lyceum students of the LF group, which still reveals
the role of the formal approach of the math schoolteacher. The prevalence of
the GPA category and the absence of the GPB and GPD categories characterize
university students and prospective teachers of agro-bio area (AG and PT groups).
The presence of GPD graphs characterizes the IG group, without previous graphing
formation.

As expected, the representations of the observed graphs included only two
categories, the GPA and the GPC, as summarized in Fig. 9.4. Typically, in
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the representation of the observed graphs, experimental noise was emphasized.
Moreover, units and scales on axes were more frequently reported (63% in total,
with peaks over 80% for the two LF and PT groups) than in the preview graphs
(38%). Twenty-four percent represented the observed graph with slopes other than
the preview one, without indicating units and scale.

Unexpectedly, the GPA category is prevalent in the representation of the observed
graphs, as in the preview ones. In the 74 individuals (55%) representing the observed
graph as a GPA type, 43 adopted an analogous representation in the preview, 17
gave a GPB-mathematical representation, 10 used a GPD graph (growing curve),
and finally 4 used a GPC representation. Students’ explanations can be grouped
into three types: emphasis on “equality/analogy/similarity” of the preview/observed
graphs, especially indicated by those who adopted in the two cases a GPA graph;
failure to predict a phase of initial stasis, given by those who drew a GPB graph
as prevision; and wrong preview (“dissimilarity in the graphs”), given by those
who predicted a GPD graph (“the system does not go back” or “does not stop
immediately”).

There is an increase in the percentage of students who used the expected GPC
representation (from 14% to 44%). Between the 59 subjects adopting a GPC
representation: 14 (6 lyceum students, 6 of AG, and 2 PT) drew similar preview
graphs, 28 (16 of AG and 10 PT) adopted a GPA type, 8 (of which 5 of LS and 3 IG)
used GPB representation, and 9 (7 of IG and 2 of lyceum) adopted a GPD preview
representation.

Discussing similarities and differences between the preview graph and the
observed one, the reasons given to explain changes in 1/3 of the cases concerned
mathematical aspects not adequately represented (concavities, different gradients).
The remaining 2/3 of the cases students stressed the failure to foresee an aspect of
the physical phenomenon (type of acceleration, not uniform motion). Only in two
cases (PT), the mathematical and physical aspects (concavity and acceleration) were
explicitly related.

Three different conceptual paths can be identified:

(A) Students adopting the GPC representation framed the salient aspects of the
experimental graph in a conceptual framework, even when there was emphasis
on iconic reproduction of the experimental irregularities, as in the case of
most IG students’ representations. In fact, it is not necessarily true that
the reproduction of the observed graph includes all salient aspects of the
graph, as in the case of students representing a GPC preview graph and a
GPA observed graph. From the observations that the students themselves did
in comparing graphs, the correlation of the features of the observed graph
with the motion performed seems to be the decisive step to activate the
transition from a descriptive-qualitative representation to an interpretative-
quantitative one.
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(B) The GPA typology was an intermediate step between student preview and
the more appropriate GPC representation, for students skipping the predic-
tion or making a prediction too far (e.g., GPD type) from what was then
observed.

(C) Students adopting a GPA category both for preview and observed graph
activated a confirmation model (Champagne and Gunstone 1985; Park et
al. 2001; Shah 2002), based on the uniform motion, where only the first-
order features found place (the initial/final stasis phase, the positive slope).
The second-order differences, characterizing the specific motion (different
concavities/different acceleration and slowdown times), did not find meaning
in this simplified model and so did not activate revision.

Table 9.2 confirms the widespread competence in graph reading and evaluating
derived quantities for over 93%, with the exception for the students of the LF group
not answering or evaluating 
t as the difference between the activating/stopping
times of data acquisition, as already noted in other contexts (Stefanel et al.
2002). To estimate the mean speed of the toy car, the majority of students
used the expression vm = 
x/
t and only few students (two of LS and six of
IG) used the expression vm = x/t, determining the lowest frequencies shown in
the Table 9.2.

As anticipated, the delicate shift from graphic representation to quadratic data
interpolation was addressed in different ways with the different groups. With the IG
and PT groups, it was started asking if the speed of the car was always the same.
All the answers to that question were negative, with motivations as the followings:
“No, first it accelerates and then slows down”, “Friction makes it slow down”.

Discarding the possibility to find an adequate linear interpolation, four prospec-
tive teachers of the PT group suggested that the car would move at constant

Table 9.2 Reading graph and evaluation of derived quantities: initial Xi, final Xf , positions, initial
ti, final tf times; displacement 
x and the related time interval 
t; mean velocity

LM LF IG AG PT TOT

N = 18 N = 25 N = 22 N = 47 N = 22 N = 134

Reading variables 18 19 21 46 21 125

(Xi, Xf , ti, tf) 100% 76% 95% 98% 95% 93%
Evaluating variations 18 19 19 46 20 122

(
x, 
t) 100% 76% 86% 98% 91% 91%
Mean speed of the 18 14 18 46 20 116

toy car 100% 60% 82% 98% 91% 87%
Units 14 8 8 44 20 94

78% 32% 36% 94% 91% 70%
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acceleration, adding in two cases that the expected equation should be of the type:

x = 1

2
a t2 + vot + xo. (9.3)

This hypothesis once shared has become the patrimony of the entire PT group.
Since the recognition of the uniform acceleration was the key for hypothesizing

a quadratic relationship, an interpretative approach was proposed to the other
students’ groups. After reading the graph, it was required to explain why the toy car
stops and if the force that determines the stop is constant, and then to individuate the
type of motion. Almost all the students stated that the car stops “for friction,” “for
the friction force” over 2/3 of LM students, and almost half of AG added that this
force was constant. Only few students concluded that the expected law had to be
of form Eq. (9.3), but the other students gained immediately the same expectation.
Again, what may be called a domino effect has been observed: when only a single
student makes explicit the conceptual path to solve a problem, an interpretative
challenge upon which an entire class had previously been interrogated, this result
becomes a patrimony of all (Michelini 2006). This approach activated a mapping
meanings game (Tuminaro and Redish 2007).

Students, after the interpolation of data with a curve of the type

x = A t2 + B t + C, (9.4)

correctly reported the value of the first coefficient of interpolation (88%), with
slightly lower percentages for LS and IG groups (Table 9.3). The almost total

Table 9.3 Frequencies with which the value and the physical meaning of the first coefficient A of
the interpolation (9.4) were indicated (for the different groups, not including students elapsed the
section)

LM LF IG AG PT TOT

N = 18 N = 25 N = 22 N = 47 N = 22 N = 134

Coefficient A Value 16 21 17 46 20 118

89% 84% 77% 98% 91% 88%
Units 4 1 5

18% 2% 4%
Physical meaning Concavity 11 5 13 24

61% 20% 59% 18%
A = 2a 2 2

A = 2a 11% 2
A = a/2 2 6 3 33 12 50

11% 24% 14% 70% 55% 27%
A = a 1 12 10 6 33

6% 48% 21% 27% 24%
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absence of units is a sign of a deficit in the attribution of physical meaning to the
interpolation coefficients.

When asked to indicate this physics meaning (see the lower half of Table
9.3), the upper secondary students more often indicated the geometric meaning
(concavity/width), as mostly LM students were probably affected by the initial test.
Less frequently, the physical meaning was indicated (associated with acceleration,
as in LS students). The majority of university students gave the proper physical
interpretation of coefficient A. The explicit correlation between physical meaning of
the coefficient A and its geometric meaning emerged only in the future teachers’ PT
group. The evident correlation to the formative level makes this point particularly
relevant to define a learning progression.

9.5.3 Motion of the Toy Car: Representation and Analysis
of the Graph v vs t

Figure 9.5 exemplifies the different typologies of the v vs t graphs grouped in terms
of the following seven categories:

GV1 – graph providing the main elements of the expected one: a sudden step at
increasing speed at the thrust, a successive phase with a lower gradient, during
the free motion up to the arrest

GV2 – triangular graph, with similar slopes, without correlation with the graph x vs
t

GV3 – bell-shaped graph with the maximum correlated to the push phase of the
graph x vs t

GV4 – bell-shaped graph with the maximum corresponding to the final stage of
stasis in the graph x vs t (often emphasizing different slopes)

GV5 – trapezoidal graph, with a constant velocity phase at the end of the push phase,
with temporal correlation with the graph x vs t

GV6 – linear graph, for the pushing phase only
GV7 – downward graph at the free motion stage

Fig. 9.5 Representation categories of the v vs t graphs for the motion of the toy machine (below
in each figure), reported with the corresponding graphs x vs t (above) to appreciate how and if the
temporal correlation between graphs was implemented
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Car moving: distribution of the representation of v vs t
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Fig. 9.6 Distribution of the representations of the v vs t graph, before (preview) and after
(observation) observing the graph on the screen of the computer

Figure 9.5 GV1–GV3 graphs cover 56% of the total, as shown in Fig. 9.6. The
majority of the representations (60%) were of GV1, 3, 5, and 7 categories sharing
time correlation with the graph x vs t, promoted effectively by the format of the
graphs one over the other as in the examples of Fig. 9.5. A similar percentage
represented the different slopes for the push phase and for the free movement.
These aspects were often correlated (r = 0.33, p < 0.05), evidencing a great gain
in constructing graphs of the time evolution of physical quantities related with an
observed phenomenon.

Three distributions characterized the groups of high school students. In the
LM group, three types of graphs prevailed: GV1 and GV3, in which the time
correspondence with the graph x vs t (10/18) was emphasized and GV6, where only
the push phase is represented, as explained by the students itself (5/18). The LF
group is characterized by the mathematical typologies GV2 and GV5 (12/25) and
limited attention to time correlation with the graph x vs t. For the IG group, the
three qualitative types GV3, GV4, and GV7 (16/22) prevailed. A wide dispersion
and different modes (GV3 and GV1) characterize AG and PT representations.

In the representations of the observed graphs, both these aspects increased
about 10%, emphasized in the GV1 category prevalent for all groups. Often, the
representation of the observed graph modified or completed that of the predicted
one, with better time correlation, care in differentiating the slopes, and presence of
experimental noise (“the curve is broken, less homogenous”). Discussing analogy
and differences between previews and observed v vs t graph, the individuals of the
sample evidenced more frequently first order similarity/equality as the overall trend
and less frequently second order but more specific differences of the graph (absence
of a part, different slopes) or the type of motion (uniform accelerations).
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Among the 16 students (11 of LS and 5 of AG) who eluded the representation of
the preview graph, only one adequately reproduced the observed graph, evidencing
the relevance of the preview phase to activate the skill to represent the iconic
features of a graph related to the salient aspects of a phenomenon, as emerged from
some student interviews. This capacity is not automatically activated observing the
experimental graph in itself, but it requires an interpretative substrate that can be
prepared by the preview phase.

The determination of the linear interpolation of the v vs t graph for the motion
phase was proposed only to the groups LM and PT. All persons of both groups
reported an appropriate value for the first coefficient, although without unit. When
asked to specify the physical meaning of this coefficient, in the LM group, 3/18
(17%) identified such coefficient with the acceleration and other 10/18 (56%) indi-
cated its geometric meaning (angular coefficient/slope of x vs t graph or concavity
of the x vs t graph). In the PT group the corresponding fractions were 8/22 (36%)
and 12/22 (77%), of which 9 added also the geometric-mathematical meaning. The
interpolation analysis favored the PT’s understanding of its physical meaning. For
the majority of LM students, this recognition was triggered suggesting to analyze
the characteristics of the motion, changing the initial speed. The recognition of
the independency of acceleration by the initial conditions brought 12/18 (67%) to
evaluate the car acceleration as average on repeated proofs, obtaining a value in the
expected range and including units and an adequate uncertainty (7/18–39%).

9.5.4 Motion of the Toy Car: a vs t Graph

The representation of the graph a vs t was proposed to all groups except LF.
Figure 9.7 exemplifies the six categories of representation: GA1, (expected graph)
a positive peak, corresponding to the thrust phase, and a negative constant part,
associated with or almost uniform acceleration for the free motion; GA2, a line
at a constant negative value, representing only the free motion phase; GA3, (math

Fig. 9.7 Graph a vs t and corresponding graphs x vs t and v vs t for the toy car motion
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type) broken line, with a positive peak and a negative one corresponding to the two
phases; GA4, smooth graph with a positive peak, approximatively associated to the
push phase and a successive negative part, not always ending with zero value, only
partially connected with free motion phase; GA5, positive asymmetrical bell-shaped
graph, often with zero accelerations at the beginning and at the end, with the peak
corresponding to the peak of the velocity graph; and GA6, linear growing graph.

In the previewed graphs (see Fig. 9.8), though with some differentiation, the
most represented typology was the GA5, which underlies the idea that velocity
and acceleration evolve alike. In most cases, the preview graphs were temporally
correlated to the graphs x vs t and v vs t (i.e., the discontinuity in the trends matched
on the timing axis; the peak of the a vs t graph coincided with the maximum change
of the graph v vs t), in most cases (from almost all 17/18 for LM, to 19/22 for PT, to
32/47 for AG), with the exception of IG (5/22).

In the representations of the observed graphs, all typologies of representation
included a phase with negative acceleration and tended to emphasize temporal
correlation with the graphs x vs t and v vs t, with significant increments compared
to what observed in sect. 5.4 for the groups LM and IG. A correlation between the
ways to represent the observed graph v vs t and the typology of the previewed graph
a vs t, very significant for LM (r = 0.63, p < 0,01) and in any case significant for IG
(r = 0.35, p < 0,05), was observed. These are significant indicators of the impact of
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the RTL also on the comprehension of the graph a vs t, usually more problematic
(Svec 1995), with differences related to the competences of the involved groups.

9.6 Student Analysis of the Light Intensity of a Diffraction
Pattern

This section regards how students represented graphs of the intensity distribution of
the light diffracted by a single slit and analyzed the experimental graph acquired
with on-line sensors (Gervasio and Micheliani 2009; Michelini et al. 2010). At
the end of a qualitative exploration of the light diffraction pattern, students were
requested to represent the preview graphs they expected to detect before a quantita-
tive measurement. Table 9.4 exemplifies the categories of representation of the light
distribution previewed. The DB1 and DB2 types have the same root DB sharing the
alternation of maximum and minimum and an intensity of the central peak similar
to that of the secondary peaks, being quite different concerning continuity. Another
discontinuity, not differentiated here, regards few representations of minima as
cusps.

All the categories DA and DB graphs correspond to a point/bar drawing of
the diffraction pattern and a description of graphs highlighting the decreasing of
intensity from the center of the figure and in half of cases also the presence of min-
ima/maxima. The DB2 discontinuous graphs represent the light distribution pattern
represented by a set of isolated points. This means that all the DA and DB represen-
tations are quite coherent with the model of the phenomenon shown to the students.

In the case of the representations of DC, DD, and DE categories, a differentiation
must be done: half of the students adopted coherently these representations, having
drawn the diffraction figure as a continuous image evidencing that “intensity pro-
gressively decreases” toward the ends and the other half represented adequately the
diffraction pattern as a sequence of points or segments but incoherently describing
that pattern as “rarefaction of light” and representing graphically the light intensity
distribution as in DC, DD, and DE pictures.

Figure 9.9 shows the distribution of these categories, evidencing a shift from the
prevailing preview categories DB and DC, to the predominant observed category
DA. Categories DB and DC appear also as categories of the observed graph in few
cases (12% in total), as result of a single-element revision and an accommodation
of incoherencies evidenced before. Typically two paths emerged: from the DC or
DD typologies, where only the central peak was expected, to the DB typology
representing minima and from the type DD in which the central peak was a
cusp or divergent to the DC type representing a smooth curve, though not the
secondary peaks. Moreover, the observed graphs were smooth lines. The category
DB2 disappeared as well as the other kind of discontinuity as cusps or sharp points
(Fig. 9.9).

Compared to preview graphs, there was usually (but not always) more precise
reproduction of relevant details, such as the ratio of central peak width and intensity
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Table 9.4 Categories of drawing of the light intensity distribution related to a diffraction pattern

Cat Example Description
DA Expected graph, characterized by central peak

almost three times higher than the other maxima

DB1 Graph characterized by peaks of equal/almost equal
value (the intensity of the central maximum is
equal or just greater than the intensity of others)

DB2
Discontinuous graph made by isolated point or
vertical line corresponding to the maxima, with
analogous trend of DB1

DC Bell-shaped graph, characterized by a single peak
in any case extended to cover also side peaks.
Within this category also graphs where the intensity
of light suddenly becomes 0 beyond a certain
distance from the center of the peak

DD Sharp/cusp/asymptote graph, where the graph is
always concave (reverse power type) and the
central maximum is a cusp
Within this category also graphs with the only right
branch

DE
Broken/triangular curve, with a sharp point
corresponding to the maximum. Within this
category also graphs including only the right branch

vs the first-order peaks, as well as the downward trend of secondary peaks intensity
and minima/maxima equidistance. The drawing in Fig. 9.10 is an example of the
better formal representation of the 2/3 of the observed graphs, compared to those of
preview.

The review process triggered an approach to the physical meaning of the graph
features, with greater connection to the observed physical phenomenon and better
understanding of the behavior of the represented quantities, as well as better, formal,
and quantitative representation.
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Fig. 9.10 Representation of the observed graph, performed according to cat. DA, compared with
the DB graph drawn as prevision by the same student during the preview phase

Comparing the graphs, almost all the students indicated in which way their
predicted graph differed from the observed one (3/5 the different relative intensity,
rather than 2/5 the presence of the minima), always emphasizing also the expected
aspects (“I did the graph is right, except the height of the lateral peaks intensity”;
“In the initial graph there is no maxima and minima, but it was symmetrical”).

At the request of designing the data analysis of distribution I vs x acquired in
the experimental lab, the students proposed to read and collect the values of the
following quantities: position and intensity in 2/3 of the cases of the maxima, in
1/3 of the minima (75% in total); only “maxima and minima position” (10%);
only “intensity” (7%); parameters of the central peak, such as width, intensity
(5%). Moreover, 1/3 of the students also stated among which magnitudes they were
seeking to find some relationship (being I vs x the most frequently cited) without
any preview of the formal form expected. In each class group, all meaningful
relationships have been proposed, making it possible to share individual projects
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to realize a common analysis of the distribution I vs x, overcoming the limits shown
by these less-accustomed students to experimental work.

After collecting light intensity distribution with sensors in the lab, students could
analyze this distribution based on a shared project of analysis. All the graphs of the
derived quantities showed the variables represented (in this case rightly without
units because constructed as non-dimensional quantities). Ninety percent of the
sample obtained the expected linear relationship between the angular position of the
minima and the order number M; 75% identified the correct relationship between
order number M and angular position of the maximum, differentiating the cases by
M > 0 and those at M < 0; while 12% traced a single line, forcing the fit to pass
the origin. In all cases, these analyses required expertise both in reading the graph’s
punctual values and in constructing a graph from the values obtained. In the face
of this significant outcome, only a small fraction (15%) correlated the slope of the
straight line obtained with the λ/a ratio, as, for instance, students studied in the case
of Young experiment. That means that when the expected relation was linear, almost
all of the students were able to determine an appropriate interpolation of the data,
even in the absence of a physical model as reference.

The finding of the expected relationship between position and intensity of the
maxima was obtained by 60% of the students, following either a trial procedure by
first graphing IM vs 1/XM and then I vs 1/XM

2 or directly graphing IM vs 1/ XM
2,

based on the hypothesis of a trend similar to that of the light intensity dependence
on distances from a point source. Forty percent of the sample showed difficulties in
hypothesizing other relations than 1/X. To go beyond these minimal tools, it requires
to develop alternative models that can be triggered by analogical reasoning, as the
1/X2 hypothesis.

9.7 Outcomes

The following discussion synthesizes the main outcomes of the two studies pre-
sented.

The way to represent a RTL graph is influenced by the different skills and
characterizes the different approaches to the content of groups involved, especially
in the previewing phase. Students more accustomed to a formal approach (whether
by setting of their teachers or by type of school) tend to draw mathematical graphs
representing ideal phenomena (see also (Corni et al. 2005)). Students and teachers
of the bio-agricultural area tend to emphasize the continuity in variation of the
variables, typical of the way of looking at the phenomena of this area of studies.
Representations catching qualitatively some mathematical aspects associated with
physical meaning are typical of students with weak formal skills.

Despite these differences, most of the representations of the graphs observed
shared almost the following four common characteristics for all groups:

• Reproducing the peculiar aspects of experimental graphs. The representation of
motion graphs in most cases (till 80% to 90% for most known phenomena)
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reproduced the peculiarities of the time evolution of the kinematic quantities. The
reproductions of the light distribution of the diffraction patterns are continuous
and characterizing adequately the central peak with respect to the others and the
decreasing of the secondary maxima. On the contrary, some students (10–15%)
observing a graph do not activate in itself the capability to reproduce the main
features of a graph.

• Indication of the units and scales on the axes and time correlation. In the majority
of the drawing representing the observed graph on motion, axes included units
and scales, with the prevalence of the scale on the y-axis, which is more
significant for understanding the observed phenomenon (Michelini 2006). The
representations of the graphs x, v, a vs t, one over the other (Figs. 9.5 and 9.7), are
in 60% of cases temporally correlated, aligning the discontinuities in the trends,
the peaks in a graph (e.g., a vs t), and the main variation in the other (e.g., v vs t).

• Focus on slope of graph. Most of the drawings representing the observed graphs
emphasized the agreement or disagreement between the slopes of predicted and
observed graphs. Compared to the preview, the expected slope is one of the main
differences evidenced.

• Emphasis on experimental noise. Most of the representations of the observed
graphs emphasize experimental noise (“the curve is broken,” “irregular,” “un-
even”), to distinguish it from frequently expected regular mathematics (especially
in the first preview and in the simplest cases).

The combination of all these elements points out that the representation of an
observed RTL graph underlies the activation of a mental model, rather than being
a trivial iconic reproduction of a line observed on the screen; also when there is
emphasis on the experimental noise or experimental features, that could suggest
a reproductive doing. In the absence of an appropriate conceptual model of the
phenomenon observed, it is very difficult to reproduce the significant features of
an experimental graph (Chinn and Brewer 2001).

The models activated by RTL showed a high level of formalization based on the
connection of graphical features (e.g., slope) and physical quantities (e.g., velocity).
At the same time, it emerged that many students used only linear functions, and they
were not able to master continuity vs discontinuity.

Students can overcome these limits by reading from the graphs the values of
critical points that are significant for individuating phases of motion, constructing
new variables from these values to obtain variables characterizing the phenomenon
and to perform analysis based on interpolation or better fitting these models through
their algebraic/analytical forms. Simple elaborations such as determining velocity
from the x vs t graph activate the use of mathematical constructs, common and
resonant for some students of our samples with those they used in math. For
example, the expression of the angular coefficient of a straight line m = 
y/
x
found transposition, use, and meaning in physics in the expression v = 
x/
t,
with which students evaluated the speed from a graph. The attribution of physical
meaning to the coefficient of an equation fitting (based on theory) or interpolating
(based on mathematics) in RTL graphs plays a very important role. A significant
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correlation was observed between the attribution of meaning to the coefficients
of the interpolation and the determination of the values of such coefficients, both
constructing relations by paper and pen and reporting equations through software
instruments. The computational difficulties of many students or their tendency to
perform inconclusive or worse algorithmic-computational approaches seem to be
more related to the lack of attribution of meaning to the entities with which they
operate than to a deficit in algebraic calculation itself. Additionally, students favor
the algebraic calculus-based resolution of the exercises proposed in math courses
by not activating an effective connection to the graphic representation. Rather, the
opposite evidence occurred: obvious differences between results obtained and drawn
graphs did not trigger always revision. The strategy adopted in dealing with RTL
graphs flipped this way by favoring the construction of the meaning of the graph, to
which giving analytical expression starting from the analysis of the graph itself. This
process develops and activates the tendency of students of our samples to recognize
more frequently the meaning of the coefficient characterizing an algebraic curve (the
angular coefficient of a straight line (Hattikudur et al. 2012), the first coefficient of
a quadratic relation) than the meaning of the other coefficients, as in the recalled
correlations speed/slope and concavity/acceleration in the case of kinematic graphs.

The ownership of the three aspects simultaneously involved in a RTL graph
(algebraic/analytic, geometric, physical), known as one of the more difficult to reach
(Redish 2005), differentiates significantly the diverse groups involved in the study
on motion. The activation and distinction of the three aspects emerged in some
prospective teachers of the PT group also after the first PEC sequence. In the other
prospective teachers and in all students (both from high school and university), the
first PEC cycle in the study on motion activated an explicit connection between
algebraic/analytical structures and their geometrical meaning, being the physics in
the background explicitly evidenced by the increasing of the units on axes and
connection between related graphs. Only few physical models were hypothesized
by students in algebraic/analytical forms (see, for instance, the hypothesis of an
inverse quadratic relation for light intensity in the case of diffraction).

This process was very important, because the formal structures and the algo-
rithmic procedures are often dealt with by students only as mathematical entities,
without taking into account, or neglecting altogether, their physical meaning or
origin (Pospiech 2015).

As discussed in the beginning, the observation of a RTL graph enabled models.
These can preexist the experimental exploration or more often are adaptation or
modification of an existing model. The changes are very effective, when a person
faces for the first time a new phenomenon, such as diffraction was for most of our
sample, or a new way to look at a daily phenomenon, as the analysis of the walk
with RTL has been for many persons. After this initial phase that often caused a
strong revision process (sometimes with overload attention to experimental noise
or features), an adaptation process occurs, when analyzing new situations. As seen
in the case of the sequence of the walking person in front of a sensor, after the
first stage, in fact, more often the reproduction of graph observed in the successive
stages was a change/completion of the graph drawn in the prevision phase. The
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representations of the observed graphs underlined the adaptation of a preexisting
model, in which a modified aspect present in the reproduction of the graph was
partially framed in the model of a person. The new model became a property of
the subject when he activates a process to make explicit that model (Karmiloff-
Smith 1988), without which a preexisting pattern was confirmed even with obvious
differences between predicted/observed graphs.

Considering important or predominantly only first-order elements (i.e., the
presence of an initial and a final rest stage, a moving away phase, a positive/negative
slope of the curve), the second-order differences (slope variations vs constant slope,
smooth vs suddenly concavity, suddenly acceleration vs constant deceleration) be-
came ineffective in activating an immediate revision process. This in part explains,
why, in the student comparison comments, the similarities or equalities related to the
global trend of the graphs predominate, rather than the differences, almost always
local but characterizing the specific type of motion.

An identified dissimilarity must find place in a new model to enhance progress
in learning (Chinn and Brewer 1993). The construction of a new model can
be effectively developed correlating the observed graph with the motion taken,
activating the reading and analysis of the graph by phases delimited by critical
instants (when changing the external conditions such as at start/end of the motion).
At the same time, it has been seen that also the first PEC sequence related to the
experiment of a person walking in front of a sensor and the subsequent analysis
of the graph impacted on the capacity to predict appropriate x vs t graphs, in the
subsequent explored situations, as well as to predict significant aspects of the v vs t
and a vs t. Important skills in reading and building L1-elementary, L2-intermediate,
and L3-advanced graphing levels have been developed by almost all of the sample
in parallel to competencies in correlating a specific motion to the corresponding
graph x vs t. In the study of diffraction, analogous roles played the reflection on
quantities to be detected, on relation between variables to be studied, and the sharing
of hypotheses to construct a common analysis, negotiated by all the students of a
class.

The outcomes of the researches here presented indicated that active learning
strategies based on RTL, the review and comparison process, and reading graph and
construct relation between quantities can contribute to activate or to develop models
that help the graph interpretation for a conceptual construction, both for high-level
students and for students with lesser basic skills. The previous competences affected
the level of formalization of the models activated and the role in the interpretation of
the graph. The preview phase plays an important role in activating an interpretative
framework or almost a substrate on which the features of a graph can find meaning
in the students’ models.

Both researches showed that some students put in the field only direct or (less
frequently) inverse proportionality as mathematical instruments. Both high school
and university students performed the analysis of a graph in particular facing a new
phenomenon and in some cases to describe generic growing or decreasing monotone
relationships. The construction of these elementary mathematical instruments in the
first cycle school seems to activate a strong imprinting that affects the capability
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of many students to develop a more complete and complex mathematical baggage.
The analysis of RTL graphs can help in this perspective, activating an interpretative
framework and the connection between formal constructs and their physical mean-
ing.

9.8 Conclusion

In this paper, two studies have been discussed on how the use of graphs acquired in
real time with on-line sensors can activate learning or how they develop graphing
competencies that intertwine with the understanding of the concepts involved. The
use of on-line sensor systems enabled the implementation of IBL-based learning ap-
proaches based on PEC strategies. The first research covered the learning processes
of 60 students aged 15–16 on motion and compared with those of 47 university
students of the first year of agricultural degrees and a group of 22 prospective middle
school teachers. The second case involved a sample of 168 high school students
aged 16–17, engaged in single-slit diffraction analysis. The analysis of tutorials has
allowed to document students’ learning processes activated by RTL graphs.

With regard to the first research question (RQ1), it emerges that RTL graphs pro-
duce the imaginative transduction of phenomena in graphs, revealing the physical
process at the base of phenomena and opening bridges toward both its interpretation
and its description in terms of algebraic/analytical expressions.

This process activates effective learning under the condition that the construction
of a conceptual framework in which characterizing elements of a graph found
physical meaning.

The comparison between the expected graph and the graph observed shows the
development and modification of this framework, as well as providing tools for
previewing graph related to new phenomena, as well as skills to preview adequate
features for the temporal evolution of derivative quantities. To read the graphs to
identify critical instants and analyze the phases delimited by these instants favors
the link between phenomenon, its formalized description using physical quantities.
The development of graphing skill and mathematical knowledge becomes active
knowledge to read and interpret the world. The link between the graph and concrete
contexts activated by RTL is important not only for young students, in agreement
with Curcio (1987), but also to support a learning progression at every age, because
these activate reasoning processes resonant with the ways people look at graph
representations and thus allow to attack the conceptual learning difficulties typical
of the contexts explored.

Concerning the second research question RQ2, students of our samples have
been able to work with linear models on data collected with RTL. It has also been
observed that there is a positive correlation between the attribution of meaning to
the coefficients of an interpolation and the determination of the values of these
coefficients. The development of alternative models that are supported by the
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geometric elements of a graph and intuitive physical model is important to go
beyond linear models.

The results of the present work enrich and are coherent with that quoted in
literature and confirm many of that obtained in previous researches on how students
learn from graphs acquired in real time (Corni et al. 2005; Michelini 2006, 2010;
Michelini et al. 2010, 2014; Stefanel et al. 2002). At the same time, future work will
be needed to reinforce some conclusions that can appear too weak or too related to
the samples considered.
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Chapter 10
Comparing Student Understanding
of Graphs in Physics and Mathematics

Maja Planinic, Ana Susac, Lana Ivanjek, and Željka Milin Šipuš

10.1 Introduction and Background

Research suggests that many students at high school or introductory university
level lack the ability to understand and interpret graphs. This has been documented
in several physics education studies (e.g., McDermott et al. 1987; Brasell and
Rowe 1993; Beichner 1994; Forster 2004; Araujo et al. 2008; Nguyen and Rebello
2011; Christensen and Thompson 2012), as well as mathematics education studies
(Dreyfus and Eisenberg 1990; Leinhardt et al. 1990; Swatton and Taylor 1994;
Graham and Sharp 1999; Kerslake 1981; Hadjidemetriou and Williams 2002; Habre
and Abboud 2006). Student difficulties with calculating and interpreting slope of a
graph and area under a graph were common.

The concept of slope (gradient) is very important for physics since many physical
quantities are defined as gradients (e.g., velocity, acceleration) and represented with
line graphs. The concept of slope is also important for mathematics as a necessary
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prerequisite for the development of the concept of derivation. Students study line
graph slope in both mathematics and physics, but because of the differences in
contexts, they may not necessarily realize that they are studying the same concept.

Student difficulties concerning the interpretation of the area under a graph may
be even stronger than those concerning graph slope, since interpretation of slope
is usually more emphasized by school mathematics and physics teaching than the
interpretation of area under a graph. Yet, the area interpretation, with the idea of
accumulation of infinitesimal quantities, underlies the concept of definite integral,
important for both mathematics and physics teaching.

Student difficulties with graphs were identified through both physics and mathe-
matics education research. Most of the research on student understanding of graphs
in physics was done in the context of kinematics, because of the very broad use of
graphical representations in kinematics. Students were found to have difficulties
with linking the graph and the verbal descriptions of a given event and with
understanding graphs as symbolic representations of relationships among variables
(Brasell and Rowe 1993; Beichner 1994). They often have trouble discriminating
the slope and height of a graph and interpret changes in height as changes in
slope (McDermott et al. 1987; Beichner 1994). Many students are unable to choose
which feature of the graph represents the information that is needed to answer the
question (e.g., they calculate slope when they should have been calculating the area)
(McDermott et al. 1987; Beichner 1994). Very few students seem to be able to
interpret the area under an a vs. t graph as a change in velocity, whereas they have
far less problems interpreting the area under a v vs. t graph as a distance travelled
(Beichner 1994). Some of the research in mathematics education was also based
on kinematics motion graphs and had similar general findings (Graham and Sharp
1999; Kerslake 1981), while studies in purely mathematical context have in addition
shown that student understanding of mathematical concepts (such as functions)
tends to be typically algebraic and not visual. Visual information, including graphs,
seems to be more difficult for students to learn and is considered by them to be less
mathematical (Dreyfus and Eisenberg 1990; Habre and Abboud 2006).

Student difficulties with graphs are sometimes classified as interval-point confu-
sions, slope-height confusions, and iconic confusions (Leinhardt et al. 1990). The
iconic confusion is usually characteristic of younger students, although traces of it
can also be found in older populations, sometimes even university students (Mc-
Dermott et al. 1987; Beichner 1994). It consists in students’ incorrect interpretation
of the graph as an actual picture of the motion. Students who show this difficulty
will tend to interpret, for example, a curved v vs. t graph as representing the motion
along a curved trajectory. Such students do not yet see the graph as a symbolic
representation of an abstract relationship between the variables on its axis but as a
concrete picture of body’s motion. It is therefore difficult for them to see why the
graph should change if the variables on the axes change, and they will generally
expect the graph to remain the same.

The slope-height confusion happens when students mistake the height of the
graph for its slope (McDermott et al. 1987; Beichner 1994; Leinhardt et al. 1990).
For example, when asked to reason about the slope of a graph, students sometimes
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just read off the y coordinate (the height of the graph at the point of interest). If they
observe, for example, the constant diminishing of the y coordinate of the graph,
they usually conclude that the slope of the graph shows the same behavior (e.g., the
slope of the straight line constantly diminishes, because the y coordinate constantly
diminishes).

The interval-point confusion refers to the cases where students focus on a single
point of the graph when they should be using an interval. This difficulty will be
displayed, for example, when students attempt to determine the slope of a graph
from one point only, instead of choosing two points and calculating Δy/Δx. Slope-
height and interval-point confusions are quite common among students at high
school and university level (McDermott et al. 1987; Beichner 1994; Forster 2004;
Leinhardt et al. 1990; Hadjidemetriou and Williams 2002; Wemyss and van Kampen
2013). Overall, the findings of both physics and mathematics education research
are rather similar and point to the presence of similar student difficulties in both
domains.

The important issue of transfer of knowledge between mathematics and physics
(usually expected to occur from mathematics to physics) was also tackled in several
studies on graphs (Christensen and Thompson 2012; Wemyss and van Kampen
2013; Woolnough 2000), with mostly negative results. It was suggested in one of
the studies that most secondary students, even those who do well in mathematics
and physics, do not make substantial links between the two domains and that
some students may even think that it is not appropriate to transfer concepts from
mathematics to physics (Woolnough 2000). For transfer to occur, it is necessary that
students possess the required mathematical knowledge, but this is not always the
case, especially when advanced concepts such as derivative or integral are concerned
(Nguyen and Rebello 2011; Christensen and Thompson 2012). The problem of
transfer of knowledge between mathematics and physics was addressed in cognitive
psychology, unrelated to graphs. One study that investigated interdomain transfer
between isomorphic topics in algebra and physics (kinematics) found very high
transfer from algebra to physics, but almost no transfer from physics to algebra,
and suggested that “transfer from physics to other domains is blocked by the
embedding of physics equations within a specific content domain” (Bassok and
Holyoak 1989). The problem of domain specificity of knowledge is not limited
to physics; it is also present in mathematics. Michelsen (2005) suggests that it
is not just the mathematical formalism that presents a barrier in learning physics
but that the problem lies in the missing link between mathematics and physics. He
suggests that the mathematical domain should be expanded by using examples from
physics and from everyday life contexts in mathematics teaching, in order to solve
the problem of domain specificity. In such an expanded domain, modeling of real-
life situations could be a way of bridging the gap between mathematics and physics.
We will take a closer look at the key issue of transfer of learning from theoretical
viewpoint in the following chapter.
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10.2 Theoretical Framework

Transfer of learning is usually defined as the ability to extend what has been learned
in one context to new contexts (Bransford et al. 1999) and is sometimes regarded
as one of the ultimate goals of education. Hammer et al. (2005) suggest that it
would generally be more appropriate to speak of activation of cognitive resources
than of transfer, since knowledge and reasoning abilities are comprised of many
resources that may, or may not, be activated in a particular context. They oppose
the view of knowledge and abilities as objects which are acquired, manipulated, and
transferred as intact units, with the exception of locally coherent sets of resources
which activate together and possess internal structural stability. Such cognitive units,
whose mechanism of stability is structural rather than contextual, can be viewed as
transferable (Hammer et al. 2005). In our opinion, students’ concepts of the graph
slope and of the area under a graph can be examples of such transferable units in
cases when they are well formed and stable.

Whether or not transfer will happen depends not only on the presence or absence
of relevant resources but also on students’ framing of the situation (Hammer et al.
2005). Framing means that students have to interpret what is going on in a certain
situation or in a certain problem and decide accordingly which resources to use or
which epistemic game to play (Tuminaro and Redish 2007). In physics education we
usually expect students to transfer their mathematical knowledge from mathematics
to physics. There are several reasons why the expected transfer could fail: either the
required resource does not exist, or the resource exists, but is not activated due to
the wrong framing of the problem, or the resource is activated, but its mapping to
the problem is not appropriate (Tuminaro 2004). Research suggests that transfer is
more likely to happen when students have seen the given idea in at least two separate
contexts or when they receive metacognitive scaffolding (Bransford et al. 1999).

Many studies that have looked for transfer of knowledge have usually come up
with mostly negative results, which may be due, among other things, also to the
design of those studies (Bransford and Schwartz 1999). Bransford and Schwartz
(1999) have suggested to shift the view on transfer from the direct application
perspective (successful application of knowledge acquired in one context to similar
problems in different contexts) to a more dynamical view of preparation for future
learning (PFL). The PFL perspective can be demonstrated through questions about
and approaches to the new problem, which were shaped and influenced by the
previous learning, even if students are not able to completely solve the new problem.
The PFL perspective is very important for learning, because it reveals more about
students’ useful learning trajectories than the direct application perspective. The
focus is not only on what students can or cannot directly transfer and solve but
whether students are able to learn while they transfer. In this way transfer can be
considered a dynamical way of reconstructing knowledge (Cui 2006) rather than
just an application of previously acquired knowledge in a different situation. This
dynamical view of transfer is in agreement with knowledge-as-elements perspective,
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because it assumes activation of different knowledge elements in a new context and
dynamical creation of the response on the spot.

Theories of transfer of knowledge are based upon the idea that knowledge
can be transferred from one situation to another and linked with a new situation
(Potgieter et al. 2008). Some researchers disagree and argue that learners’ mental
processes are structured by the context and the implemented activities and tools
(Lave 1988). Teachers often expect students to rise above the context, but that is not
easy for students. Recognizing mathematics in a different context requires good
understanding of the context (which is often missing), along with mathematical
knowledge (Potgieter et al. 2008). To investigate transfer of knowledge in more
detail, some comparative studies in mathematics and physics were conducted and
produced interesting results.

10.3 Results of Comparative Studies on Graphs
in Mathematics and Physics

Few studies attempted to compare student reasoning difficulties about graphs in
different contexts and domains (Wemyss and van Kampen 2013; Woolnough 2000).
Such comparison, on the other hand, can provide interesting and important insights
in student knowledge and learning and the issue of possible transfer between
domains. An example is the study of Wemyss and van Kampen (2013), in which
first-year university students solved three different context problems including line
graphs, found that the number of students’ correct answers to a problem involving
water level vs. time graph, which students had not encountered in the formal
educational setting before, was much higher than the number of correct answers
to the supposedly more familiar problem of determining the speed of object from
a distance-time graph. The reason for students’ poorer performance on physics
problems was attributed to students’ reliance on learned procedures in physics
(e.g., use of formulas). This study also found evidence that students’ mathematical
knowledge of slope does not guarantee their success on problems involving slope in
kinematics.

In our first study on graphs (Planinic et al. 2012), we compared second-year high
school students’ (N = 114) understanding of the line graph slope in the domains
of physics and mathematics. Student answers to two pairs of parallel (isomorphic)
questions regarding line graph slope from mathematics and physics (kinematics)
were analyzed and compared. Also, a sample (N = 90) of Croatian physics teachers
were asked to rank the isomorphic questions according to their expected difficulty
for students. Physics teachers largely thought that the physics questions would be
easier for students because they were regarded as less abstract than the mathematics
questions. Many also expressed the belief that the lack of mathematical knowledge
would present the main problem for students when solving physics questions. It was
found however that, contrary to the prevalent belief of physics teachers, students
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did better on mathematics than on physics questions. The main source of student
difficulties with the concept of line graph slope in physics seemed not to be their lack
of mathematical knowledge but rather their lack of ability to interpret the meaning
of the line graph slope in physics context. Many students successfully solved the
mathematical questions but were unable to solve parallel physics questions or used
different strategies for solving analogous mathematics and physics problems. It was
observed that the transfer of knowledge from mathematics to physics did not always
occur, even though many students possessed the needed mathematical knowledge.
(Interestingly, beside the expected transfer from mathematics to physics, which was
relatively weak, some occasional cases of transfer from physics to mathematics were
also observed.) Also, the same student difficulty known as slope-height confusion
was detected in both domains, but it occurred far more frequently in physics than in
mathematics (about twice as often).

After this study it was natural to pose the question about the reason for the
observed higher difficulty of physics questions relative to parallel mathematics
questions: Is the higher difficulty of physics questions the consequence of students’
lack of relevant physics conceptual knowledge, or would the same effect be
observed to the same extent also in parallel questions situated in different contexts,
which did not require additional content knowledge? We attempted to investigate
this issue by using sets of three parallel (isomorphic) questions and to analyze
and compare item difficulties as well as student strategies in different domains.
The three domains were mathematics without context, physics (kinematics), and
mathematics in contexts other than physics, which did not require additional
conceptual knowledge. Eight such sets of parallel (isomorphic) mathematics,
physics, and other context questions about graphs were developed by the authors
and administered to 385 first-year students at Faculty of Science, University of
Zagreb in Zagreb, Croatia, and later also to 417 first-year students at University
of Vienna. Students were either prospective physics or mathematics teachers or
prospective physicists or mathematicians. Students were tested at the beginning
of the first semester, before any formal instruction on graphs, so their knowledge
on graphs came only from high school mathematics and physics instruction. Five
sets of questions referred to the concept of graph slope and three to the concept
of area under a graph. Four sets were in a multiple choice format, and four sets
were open-ended (the whole test can be accessed through the link in reference
(http://journals.aps.org/prstper/supplemental/10.1103/PhysRevSTPER.9.020103/Pl
aninic_TEST_PRST_PER.pdf)). In addition to choosing the correct answer in
multiple choice questions, or providing the answer in open-ended questions,
students were asked to provide explanations for their answers and/or necessary
calculations where appropriate, so that insight into the underlying student reasoning
could be obtained. Rasch analysis (Linacre 2006, n.d.; Bond and Fox 2001) was
performed to evaluate the functioning of the test and obtain linear measures of
item difficulties. Both sets of data (Croatian and Austrian students) seemed to fit
the Rasch model. The functioning of the test as a whole for Croatian students
was found to be satisfactory with very high item reliability (0.99) and somewhat
lower, but satisfactory, person reliability (0.85) and Cronbach alpha (0.88) (Planinic
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et al. 2013). For Austrian students the test functioned similarly: item reliability was
found to be 0.99, person reliability 0.86 and Cronbach alpha 0.90 (Ivanjek et al.
2015). The analysis of item fit showed that no test items in either data set were
degrading for measurement (all had infit and outfit MNSQ values within the range
of 0.5–1.5). The point-biserial correlations of items were all positive and greater
than 0.3 (Planinic et al. 2013; Ivanjek et al. 2015). It can be concluded that all
items worked together in defining the underlying variable (student understanding
of graphs) and that a reliable scale of item difficulties was obtained for the items in
the test, which allowed further analysis of difficulties of different groups of items.
Interestingly, parallel questions of the same set usually differed quite significantly in
difficulty.

In order to compare the difficulties of items in each investigated context,
the average values of item difficulties over three different domains (mathematics
without context, physics, mathematics in context) and two investigated concepts
(slope, area) were calculated. The comparison of average difficulties of slope and
area items for the two samples is presented in Fig. 10.1. Since in Rasch analysis the
average difficulty of items in the test is usually assigned the value of zero logits,
positive values in the graph indicate higher than average difficulty (harder items)
and negative values lower than average difficulty (easier items).

The comparison of the results of the two samples indicated the stability of the
construct of the test. Although some differences in the performance of students in
the two groups were noticed, the general trends were the same. For both groups of
students, it was noticed that mathematics without context was the easiest domain.
Adding context to questions generally had the effect of increasing the difficulty.
Kinematics was found to be a difficult context for the students in both samples, in
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Fig. 10.1 Average difficulties of slope and area items in three different domains for the two groups
of students – students from University of Zagreb and from University of Vienna (M stands for
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bars indicate the combined uncertainties of each average value
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spite of the presumed students’ familiarity with the type of questions (kinematics
questions used in the test were of the type that is often used in physics teaching,
whereas other context questions were typically new to students). When comparing
student understanding of slope and area, it was found that, on the average, slope
seemed to be better understood. It was also found to be more homogenous – the
differences between domains were less pronounced than in the case of area under a
graph. Interpretation of area in kinematics and other context was the most difficult
aspect of graph interpretation for the students in the both samples (Fig. 10.1).
The difficulty of the concept of area under a graph differs dramatically between
mathematics on one side and physics and other contexts on the other. This is
consistent with the findings of Nguyen and Rebello (2011) that very few students
are able to apply this concept in physics problems.

Another aspect of the study conducted on Croatian sample was the analysis of
students’ strategies and expressed difficulties, obtained through the analysis of their
explanations and procedures provided with the answers to questions (Ivanjek et al.
2016). The main findings can be summarized as follows:

1. Strategies used on parallel questions are often context-dependent and domain-
specific. The preferred strategy on physics questions seems to be the use of
physics formulas.

Only a small fraction of students typically used the same strategy on all three
questions of the same set of questions, although some have used the same strategy
on two of the three questions. It seems that in many cases, students perceived the
questions from the same set as different and approached them in different ways.
The strategy that was used usually depended on the domain and the context of the
problem.

It seems that if students acquire domain-specific procedures for solving a certain
class of problems (such as determining the slope of the straight line in mathematics
with the use of mathematical formulas or calculating acceleration in physics with
the use of physics formulas), they will tend to stick to those procedures and will
generally not seem to recognize the mathematical similarity of the problems in
different domains. This may be an indication of the absence of transfer of knowledge
between the domains, but it could also be a consequence of students’ different
learning experiences in different school subjects, where they had implicitly learned
that each discipline has its own language and conventions and that they have to
answer questions in the way that the particular discipline requires. How students
framed the problem (Hammer et al. 2005) may have determined their choice of
strategy for its solving.

Even though students demonstrated that they were capable of using different
strategies for reasoning about graphs, the preferred strategy in physics domain
tended to be the use of kinematics formulas. On all area problems and some slope
problems, students chose the use of formulas as the main strategy for solving
physics problems. The application of the incorrect or inappropriate formulas led
them to many incorrect conclusions on physics questions, even on the questions
where calculations were not necessary. At the same time, it was not uncommon
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for students to give correct answers to parallel questions in mathematics and other
contexts domains, demonstrating that they were able to reason correctly about the
same problem in a different context. The very extensive use of the formula a = v/t
on the test indicates, for example, that many students may not have understood the
very meaning of the concept of acceleration (as the rate of change of velocity) and
therefore cannot be expected to understand its representation as the slope of the v vs.
t graph. All these findings suggest that students not only have problems with graph
interpretation but also with the understanding of the meaning and applicability of
physics formulas.

2. Students use a wider spectrum of strategies on other context problems than on
physics problems. Other context problems could be potentially useful in physics
and mathematics teaching.

Other context problems seemed to activate more of students’ cognitive resources,
and students displayed a wider variety of strategies on those problems than on
physics problems. Some students came to the idea that multiplication is needed
and others to calculate the area under a graph on other context questions by using
some form of dimensional analysis. Dimensional analysis is an approach primarily
developed in physics, but surprisingly students did not use the same approach on
physics questions.

Many of the student approaches to other context problems could have helped
them to solve physics problems as well, but the reliance on formulas as the primary
strategy in physics prevented students from using other approaches of which they
were capable. Some instances of transfer of knowledge in the sense of preparation
for future learning were evidenced in students’ use of knowledge and techniques
(e.g., dimensional analysis, modeling), acquired in one domain (usually physics), in
some other domain (usually other context questions). Some students seemed to think
more creatively and used more of the available resources on other context questions
than on physics questions, where they seemed to be bound too much by how they
perceived the conventions of the discipline. Other context problems could therefore
be a potentially useful tool in teaching of both mathematics and physics.

3. Students show similar difficulties with graph interpretation in all domains, but
there are differences between their understanding of graph slope and area under
a graph.

The same patterns of naïve reasoning (slope-height confusion and interval-point
confusion) were present in all three domains, but not equally often in each one of
them (more frequently in physics than mathematics domain). This is something that
we had already noticed in a previous study on high school students’ understanding
of line graph slope (Planinic et al. 2012).

However, differences were found in students’ understanding of the concepts
of slope and area and their interpretation. Student explanations on mathematics
slope items revealed that for many students, slope may not be more than the vague
notion of how steep a straight line is, sometimes identified with the angle that the
straight line forms with one of the coordinate axis. In problems which demand only
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qualitative comparison of slopes, this may often be enough to produce the correct
answer. However, when it comes to calculating slope, this vague idea no longer
helps. Even though students did not do too well on determining slope in mathematics
domain, they did even worse in other domains. The percentage of Croatian students
in the study who knew how to determine slope mathematically (54%) was roughly
the same as was found in two other studies on first-year university students
(Beichner 1994; Wemyss and van Kampen 2013), whereas the respective percentage
for Austrian students was somewhat higher (66%). Calculation of slope, as some
other studies also suggest (Hadjidemetriou and Williams 2002), may be the most
difficult aspect of the concept of slope.

An important aspect of the understanding of the concept of slope is the
understanding of the meaning of negative slope. Negative slope is obviously more
difficult to understand than positive slope. It seems that students who used vague
explanations of negative slope on the basis of graph appearance (e.g., “straight line
is going down”) do not fully understand the concept but have some visual rule for
recognizing it.

When it comes to area under a graph, most students know how to determine it,
but the interpretation of the meaning of that area seems to be a much bigger problem.
Few students seem to be able to interpret areas under graphs in new situations.
Unlike slope, whose meaning is more often discussed during teaching, and which
is encountered in a greater variety of situations than the area under a graph,
interpretation of area seems to be limited to a few isolated examples in physics and
learned without sufficient understanding and without necessary reasoning required
to transfer that knowledge to other situations. It is interesting that students are more
likely to come to the correct interpretation of area in other context questions than in
physics, because in physics they often seem to be blocked in their thinking by their
overreliance on physics formulas.

10.4 Conclusions and Implications for Teaching

We have attempted through several studies to compare student performance on
mathematically similar problems in different domains. The results suggest that
students interpret graphs best in mathematics without context. Even though math-
ematics questions appear more abstract, they are more direct and require less
processing of information and less conceptual understanding than parallel physics
(kinematics) questions. Kinematics was found to be a difficult context for students,
even though it was rather extensively covered in high school. It can be concluded
that context generally seems to increase the difficulty of items. Context added to
the mathematical slope or area problem will usually increase the cognitive demand
on the students, acting as an additional barrier in the problem, and will therefore
also increase the difficulty of the item. The only exception may be very familiar
contexts for students. Teachers should realize that it is very important to work on
students’ conceptual understanding and interpretation of physical and mathematical
quantities as well as on building stronger links between the two subjects.
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Many physics teachers attribute student difficulties with graphs in physics to their
presumed lack of mathematical knowledge. But even if students have the needed
mathematical knowledge, which was generally the case in our studies (although
some problems were noticed in that area too), the transfer to a different domain is
not guaranteed. The interpretation of the mathematical quantities in physics or in
other contexts is a crucial step which most students in our sample were not able
to perform. Some cases of transfer of the problem-solving strategies from physics
to other contexts were found on the area items (e.g., dimensional analysis). During
teaching of kinematics, the interpretation of slope is usually much more emphasized
than the interpretation of area under a graph. An important implication for physics
teaching is that we should work more on building student reasoning which leads
toward the interpretation of area (which is essentially the idea of integral) and not
only provides ready-made interpretation for specific cases in physics. That could
also help later to strengthen student understanding of the concept of a definite and
indefinite integral in mathematics.

Student reasoning about problems is often very much bound by the contexts and
conventions of the disciplines in which their knowledge was acquired. The observed
dependence of student strategies on the domain and context of the questions seems
to support the knowledge-in-pieces framework, which explains this dependence
through context-dependent activation of cognitive resources and the importance of
framing. Students seemed to think more freely and creatively, and to transfer more
of their knowledge, in problems which in their perception probably did not fall in the
category of either physics or mathematics (other context problems). Other context
problems may have a potential to expose and develop student reasoning more than
the standard domain-specific mathematics and physics questions. They should be
used more, in both mathematics and physics teaching. Both disciplines should
work more on establishing links between common concepts and procedures in
mathematics and physics and promote their integration in students’ minds to a much
larger extent than is the case now. Students’ almost exclusive reliance on formulas
in physics presents, in our opinion, an important obstacle for the development
of students’ deeper reasoning in physics and sometimes even an obstacle for the
application of their already existing knowledge and reasoning developed in other
domains.

The comparison of the results of Croatian and Austrian students has confirmed
the stability of the test and its relevance beyond just Croatian educational system.
Currently we continue the research on graphs on other groups of students, besides
physics and mathematics students, using also other techniques, such as eye tracking.
Some preliminary results suggest better success of nonspecialist groups of univer-
sity students (e.g., psychology students) on qualitative than quantitative slope and
area questions and higher transfer of strategies from physics to finance problems for
physics students.
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On the basis of our findings, we can summarize some teaching recommendations
that might help in the effort of building stronger and more unified student knowledge
about graphs:

• Use of other context problems in both mathematics and physics teaching
• Use of multiple strategies on graph problems, which can help remove emphasis

from the use of physics formulas as the primary strategy
• Promoting conceptual understanding of graph slope and area in both mathematics

and physics teaching
• Building better understanding of the meaning and applicability of physics

formulas (and their graphical interpretations where possible)
• Encouraging transfer between mathematics and physics by using and linking

different contexts when teaching graphs (e.g., using kinematics examples in
mathematics teaching and relating kinematics graphs and formulas to their
mathematical origin and meaning in physics teaching)

• Strengthening and operationalizing student understanding of the concept of slope
and its calculation (the practice of drawing the rise and run triangle on a line
graph – Steigungsdreieck in German – seems to help for calculation of slope)

• Promoting interpretation of area under a graph in physics teaching wherever
possible by leading students to the idea of accumulation

The presented findings confirm once again that human knowledge is very com-
plex and multifaceted. Students’ answers to questions and problems are influenced
by the context and formulation of the question, students’ framing of the question,
the procedures and conventions of the domain in which a certain piece of knowledge
was first acquired, the existing or missing links between the domains, as well as
many other factors. Using many contexts during teaching and constantly building
and strengthening links between different domains could be a good way to building
stronger student knowledge. This could help education efforts in both mathematics
and physics.
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Chapter 11
Combining Physics and Mathematics
Learning: Discovering the Latitude
in Pre-service Subject Teacher Education

Terhi Mäntylä and Jaska Poranen

11.1 Introduction

Most physics teachers in Finland teach mathematics and vice versa. This situation
is rather natural, because physics and mathematics have substantial overlapping
knowledge, although knowledge has a different role in the disciplines and the
disciplines often approach and apply the knowledge differently. Therefore, it is
essential for a teacher that he/she is able to operate fluently on both subjects,
knows the common ground of the subjects, and at the same time knows the
differences between the subjects—for example, the epistemological differences and
different goals and targets of the subjects. In physics teaching, the mathematics
is an integral part of the subject, particularly the deeper one goes into the subject
of physics. In mathematics teaching, the area of physics offers fruitful examples
and implications for mathematical concepts. However, occasionally, instead of dis-
cussing mathematics in physics or physics in mathematics, it is fruitful to encounter
situations where both subjects are needed without the other being a subordinate
to the other—particularly nowadays, when interdisciplinary or multidisciplinary
teaching approaches (e.g. Barton and Smith 2000) are becoming more general in
curricula. For example, in the latest reform of Finnish national core curriculum of
basic education, multidisciplinary learning modules are one issue to be taken into
account in teaching (Opetushallitus 2015a). Similar reforms have also taken place
in the national core curriculum of general upper secondary schools (Opetushallitus
2015b).

An obligatory course entitled “multidisciplinary thinking” has been added, where
the boundaries of two subjects overlap in order to develop upper secondary school
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students’ creative and critical thinking. In this course, a real-life phenomenon is the
starting point of teaching and is examined from the perspective of different school
subjects. These reforms appear to share many features with the multidisciplinary
approach or interdisciplinary teaching, with a concentration on real-life phenomena
or problems and where knowledge of different disciplines is needed and applied.
The challenge with interdisciplinary teaching is that the learning often remains
shallow and fragmented (Applebee et al. 2007; Feng 2012). The interdisciplinary
approach could lend some new perspectives to traditional mathematics and physics
teaching, and it could complement teaching and learning of the subjects in a
valuable manner. Here, we concentrate on an example from pre-service physics and
mathematics teacher education, where both physical and mathematical knowledge
are needed and where they are not subordinate to each other; instead both are applied
in an interrelated manner. Simultaneously, the example demonstrates what is needed
in order to use the interdisciplinary approach meaningfully.

11.2 Background

11.2.1 Physics and Mathematics

Physics and mathematics are, in many cases, profoundly interrelated, as is exempli-
fied in the historical development of these disciplines (Pietrocola 2008). In physics,
the distinction between physical and mathematical knowledge is often impossible;
therefore, it is appropriate to discuss, for example, physical-mathematical models
(Uhden et al. 2012). The deep understanding of physical concepts is not possible
without the mathematical meanings and formalism involved and defining them.
However, it is possible to recognize the different levels of mathematization (Uhden
et al. 2012; Karam and Mäntylä 2015) or different phases of mathematization
(Mäntylä and Hämäläinen 2015) in different cases of physical concepts.

Ataíde and Greca (2013) have classified three stages of the relationship between
physics and mathematics: (1) Mathematics is used to bridge the physical objects
and phenomena of the real world to the idealized and abstract world of physical
structures. This is particularly done using geometry. (2) Mathematics is the language
that physics uses in describing the world. (3) Mathematics and mathematical
structures have a profound role in forming physics knowledge in guiding this
knowledge formation process. The stages show also the different epistemological
roles that mathematics can play in physics. Ataide’s and Greca’s (Ataíde and
Greca 2019) research of problem-solving in physics highlights that the epistemic
views students have affect their problem-solving strategies in physics and that the
epistemological role of mathematics in physics knowledge construction should be
explicitly discussed in teacher education.

The teaching of physics without mathematics is impossible; the further physics is
studied the more important and profound the role mathematics plays in it. However,
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mathematics in physics is rather different from ‘pure’ mathematics (Redish 2006).
Therefore, good performance in mathematics class does not automatically lead to
good performance in physics class.

In mathematics teaching, physics offers real-world situations, where mathemati-
cal modelling can be applied (Uhden et al. 2012). There are also didactical solutions,
where mathematics is heavily rooted in physical grounds and the emphasis is
on mathematical modelling (Radtka 2015). Senn-Fennell (2000) discusses the
mathematization of the world—most different disciplines use mathematics or have
a robust mathematical base (e.g. physics, chemistry, medicine, ecology, sociology);
therefore, a fluent mathematical communication is a necessity. He states that
at school, students should become competent in using mathematical (technical)
language (Senn-Fennell 2000). Thus, mathematics teachers should be good at
‘speaking mathematics’, that is, using correct concepts and formulations.

The specific pedagogical content knowledge (PCK) focusing on the relationship
between physics and mathematics could offer some valuable insights. Pospiech,
Eylon, Bagno, and Lehavi (Pospiech et al. 2019) have suggested a PCK model
for addressing this issue based on an interview study of experienced teachers.
They found that teachers differed in terms of their teaching principles and teaching
strategies. For example, certain teachers preferred to begin with teaching the
physical concepts before introducing the mathematical treatment of the topic
(concept-related), while some preferred to approach the learning of the topic
from its mathematical formulation (math-related). For some, the teaching began
from concrete and mathematical aspects that appeared as a means to apply to
ideas of physics. The examination-specific teaching strategies revealed that certain
teachers emphasized technical aspects of the mathematics interplay in physics
(technical-oriented) and others, for example, emphasized the use and understanding
of concepts (concept-related). The results of Pospiech et al. (2019) show that
even experienced teachers have, for certain aspects, limited views of the role of
mathematics in physics.

11.2.2 Designing Teaching for Combining Physics
and Mathematics Knowledge

The starting point for interdisciplinary teaching is that real-life phenomena or
problems seldom fall into the knowledge base of one discipline; instead under-
standing them often requires knowledge of several disciplines. The important
requirement for interdisciplinary teaching is that it requires applying knowledge and
methods of different disciplines (Spelt et al. 2009). Often, there is a unifying idea
or phenomenon, which is examined from the perspective of different disciplines
(multidisciplinary teaching). The danger in this is that the perspectives do not
coincide and what is learned includes bits and pieces of knowledge of different
disciplines that do not form a coherent whole (Barton and Smith 2000). Therefore,
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it is important to design teaching, where the interdisciplinary aspects complement
each other and thus make it possible for a learner to form a coherent whole of the
idea or phenomenon under inspection.

In interdisciplinary approach in particular, it can be expected that the learning
does not follow a chronological path, nor can the teaching sequence be designed as
a chronological, continuous path. Therefore, the idea of the exemplary in teaching
suggested by Wagenschein (2000) provides a fruitful framework for designing
teaching. The exemplary in teaching implies that the teacher chooses an interesting
example, which also enables one to learn essential knowledge and skills and that
is thoroughly handled in teaching, even if it leaves gaps in the so-called continuous
path of learning. It is believed that profound learning of the chosen example provides
more satisfaction to the learner and provides such skills to the learner that she
is able to fulfil any important gaps later if necessary. The framework, where the
example is examined profoundly, fits into interdisciplinary teaching in order to
leave time to combine different perspectives from different disciplines. In addition,
the interdisciplinary thinking should develop during few carefully chosen examples
instead of implementing different projects without time to build coherent wholes
and reflect on them.

11.2.3 Teaching Design: Discovering the Latitude During
the Autumn Equinox

The latitude of a place X on the Earth (see Fig. 11.1) is defined as the angle between
a plumb from the point X and the plane of the equator (see, e.g. Karttunen et al.
1984, 25). If we know that angle, we also know the parallel of the latitude.

During the autumn equinox, the Sun is in the zenith position above some point
(E) at the equator (or the spring equinox). In particular, let an observer be at a point
(place) X on the northern side of the Earth when the Sun is in the south. Then, point
E is the intersection of the meridian, which goes through point X and the equator. If
place X is, for example, the Finnish town Tampere, that intersection point E appears
to be somewhere on the borderline between Congo and Ruanda, close to the Congo
River. In the year 2015, the date of the autumn equinox was 23 September, and the
Sun was then in the south 13:18 h in the horizon of Tampere.

On grounds of the astronomical and physical facts above, we can think up of a
measurement system to find the latitude of the point X in the following manner, for
example, the next figure provides an understanding of the measurement system (Fig.
11.1). By examining Fig. 11.1 geometrically, we see that as corresponding angles,
the angle EOX is equal to the angle NKX, because the lines a and b are parallel.
Then, by measuring the length of stave (KX) and its shadow (XN), we can determine
the angle NKX. This angle equals the latitude of point X.

There appear to be mainly geometric elements in Fig. 11.1: points, a circle,
lines, particularly parallel lines, angles, etc. However, the real meaning of Fig. 11.1
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Fig. 11.1 The main conceptual elements in discovering the latitude (the angle EOX) of place X
through the measurement on the Earth of the angle NKX in the right-angled triangle NKX. (Of
course, for example, the length of the stave and the length of the radius of the Earth cannot be in
any reasonable scale here)

comes from the possibility of physical interpretation of these elements. With the
geometrical points in our circle, we can model the location of cities or some other
places on the Earth’s surface—for example, standing straight in place X on the
Earth’s surface implies that we are standing straight on a (geometric) horizontal
plane, that is, on the plane which is perpendicular to the zenith line OX and
which has just one common point X with the earth (sphere). Figure 11.1 comprises
(geometrically) a cross-section of the Earth along the meridian through the point X,
and, of course, that is the reason why in Fig. 11.1, it depicts a horizon line, etc.

As is evident from Fig. 11.1, there is a natural and reasonable interplay between
geometry and physics. The geometry there reflects or models the real world. For
example, putting a stave physically in balance on the ground (at the place X) means
that geometrically we place it at a right angle to the horizon plane/horizon line. In
Fig. 11.1, this is described with the segment KX. The Sun is somewhere far away
in the space. But we know experimentally that it reaches its highest daily position
above the horizon in the same direction always, which is called the south; on the
other hand, there are certain physical reasons for this phenomenon. This is why we
have made the cross-section along the so-called meridian in Fig. 11.1. Further, we
know by experience that if we put, for example, two staves vertically on the floor,
their shadows on the floor caused by the sunlight will be parallel. Observations like
these give us grounds to model the sunlight geometrically using parallel lines. The
reason for shadows is that light proceeds directly and therefore is blocked by an
opaque object.

There are several rather simple astronomical measurements that one can apply
and where the disciplines of physics (astrophysics) and mathematics (geometry)
are combined in an interrelated manner. For example, Camino and Gangui (2012)
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have also developed a similar instruction sequence for discovering the latitude.
Eratosthenes was the first who obtained a rather accurate determination of the
Earth’s circumference using similar knowledge of the solstice and the Sun’s rays
in the third century BC (Bekeris et al. 2011; de Hosson and Décamp 2014). Similar
measurements like that of Eratosthenes are used at schools (Božić and Ducloy 2008;
Bekeris et al. 2011) and in teacher education (de Hosson and Décamp 2014).

11.3 Methodology

The interest here is to see how pre-service physics and mathematics teachers
combine the knowledge of physics and mathematics and still preserve the distinct
features of these disciplines. The research questions are related to discovering the
latitude:

1. How do pre-service teachers explain and justify the discovery of the latitude from
a:

(a) Mathematical perspective?
(b) Physical perspective?

2. How are physics and mathematics interrelated in pre-service physics teachers’
reports?

3. How do they evaluate the applicability of the task at the school level?

11.3.1 Context and Participants

The context of the study was a course on subject didactics (5 cr), which is part of
pre-service teachers’ pedagogical studies (60 cr) in School of Education. One credit
(cr) approximately equals 27 h of work. This course is the first course on subject
didactics, and the current study was conducted before the pre-service teachers’ first
teaching practice. The course lasted for 1 semester (14 weeks) and included 50 h of
seminars and approximately 80 h of independent work, for example, seminar diary
and 6 assignments on various aspects of teaching science and mathematics. The case
of this study is one of those six assignments.

The participants of the study are 21 pre-service teachers from the University
of Tampere and Tampere University of Technology. There were three pre-service
teachers, whose major subject (field of engineering or information science) was not
a subject taught at school. However, they are classified according to the subjects
taught at school. Thus 15 of the pre-service teachers had mathematics, 4 had
physics, and 2 had chemistry as their major subject to be taught at school. Those
who had chemistry as a major subject also had physics and mathematics as their
minor subjects to be taught at school, and those who had physics as a major had
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mathematics as a minor subject to be taught at school. Ten of the mathematics
major students had physics as a minor subject to be taught at school, and one had
chemistry. There were four mathematics major students, who did not have physics
(or chemistry) as a subject to be taught at school. Overall, 16 pre-service teachers
out of 21 (76%) had both physics and mathematics as their subjects to be taught at
school1.

11.3.2 Task

We assigned a measuring task of Tampere’s latitude to our students:

Put vertically a stave on the horizontal level going through the point X on the Earth, that is,
on a floor, on a field, etc., during the autumn equinox. At the moment the Sun is in the south,
you have to measure the length of the shadow of your stave. Now, you have a right-angled
triangle whose legs are the lengths of the shadow and the stave. Draw it on paper on some
suitable scale and measure the angle opposite to the length of the shadow (or calculate it
using trigonometry). This angle is the latitude of the point X.

We also asked them to explain and justify why the measurement and its result
gives us the latitude of Tampere. This required explaining why the angle EOX = the
angle NKX (see Fig. 11.1). Further, students also had to contemplate how such a
task could be used at school and what could be a suitable context (school subject,
school level) for it. The reason for this was to make the shift from the learner’s
perspective to teacher’s perspective easier. Figure 11.1 presented earlier was also
included in the task. However, the knowledge that the lines a and b are parallel was
added afterwards for this article.

We conducted a seminar on 22 September 2015. We went to the park next to
the university to do the measurement at 13:18 h. In their measurements, students
mainly either used themselves and measured the length of their own shadows (Fig.
11.2 left) or a pencil on paper and its shadow (Fig. 11.2 right).

11.3.3 Data and Analysis

This is a case study concerning how pre-service science and mathematics teachers
are able to explain and justify an interdisciplinary phenomenon of discovering the
latitude. The data comprises 21 students’ reports of the assignment of discovering
the latitude of Tampere. The students consented to the use of their reports. The
length of the reports varied from one page (only one student) to three pages, and the
average length of reports was two pages.

1In Finland, the major subject to be taught at school is studied in minimum 120 cr, and the minor
subject(s) is studied minimum 60 cr (1 cr = 1 ects = 26.7 h of studying).
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Fig. 11.2 Pre-service teachers doing the measurement. On left, the shadow of a student is
measured. On the right, the shadow of a pen is measured

As an analysis method of reports, content analysis was applied because it allows
the examination of relative frequencies of topics of interest across written data
(Cohen et al. 2007). First, students’ reports were read through several times. Related
descriptions and notions were written down and were further reduced, thereby
resulting in a coding sheet. Next, students’ reports were coded and compared with
each other, and categories of mathematical and physical explanations were formed
on the basis of the most evident similarities and differences. The features that were
paid most careful attention to and that were coded included (1) the use of mathemat-
ical justifications, (2) the description and explanation of the physical situation and
measurement, and (3) how these necessary parts are interrelated in students’ reports.
As it was discussed earlier, the distinction between mathematical and physical
knowledge is not often clear or even necessary. However, here the distinction
is made: the knowledge is physical if it involves a real-life situation or typical
empirical methodology or tradition of physics; the knowledge is mathematical if it
does not directly include or require any real-life situation (i.e. instead of a shadow’s
length, a student is using line XN). The mathematical knowledge here includes the
general semantic structure and principles of geometry and trigonometry, and the
mathematical justifications do not require any specific physical or other system.
After this iterative process, categories of mathematical and physical explanations
and justifications were created. The other author crosschecked the entire data using
the coding sheet. The inter-rater agreement of 84% was considered adequately good.

In order to evaluate the overall quality of the report, the different categories were
scored and added together. The score table is presented in Table 11.5. The scores
varied between 4 and 17. Because of the wide spread of the overall scores and the
differences in the quality of reports, we chose to divide the overall quality into four
different categories. Three categories would have been too rough, and there were no
grounds for five categories.
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In addition, the students had to reflect on how this kind of task of measuring
latitude could work in actual school settings. The school level and the subjects that
students believed to be appropriate were categorized. Further, if a student reflected
on the task to the goals of national curriculum or a method to implement it in actual
instruction, it was recognised from the reports.

11.4 Results

Next, the results of analysis of 21 reports are presented and discussed.

11.4.1 Mathematical Description

Students had to explain why the measurement yields the latitude of Tampere. From
the mathematical perspective, students had to justify why the angle EOX = the
angle NKX using Fig. 11.1 for help. Four different subcategories of mathematical
justification were created and are presented in Table 11.1.

Absent Student has not justified why the angle obtained from the measurement
equals to the latitude of Tampere.

Trigonometry Is Evident from the Figure Student just states either that with the
help of trigonometry, the obtained angle equals to the latitude or that it is evident
from the figure (Fig. 11.1):

Generally, the latitude gives the location of the given point (Tampere in this case) on the
Earth’s surface from the equator. The forming acute angle corresponding to the length of
the shadow is exactly of the same degree as the angle of the triangle which is drawn into
the centre of the earth (see Fig. 11.1). This is easy to justify by trigonometry using the
properties of the vertical angle and the right-angled triangle. (S13)

Table 11.1 Categories of mathematical explanations

Category Science majors (N = 6) Mathematics majors (N = 15) All (N = 21)

Mathematical justification
Absent 33% (2) – 10% (2)
Trigonometry/evident
from figure

– 27% (4) 19% (4)

Similar triangles 50% (3) 20% (3) 29% (6)
Parallel lines,
corresponding angles

17% (1) 60% (9) 48% (10)

Equation of
latitude/protractor

67% (4) 67% (10) 67% (14)
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We see from the Figure that the latitude, that is, the angle O, and the angle K formed by the
pencil [= “stave”] and its shadow are of the same size. (S10)

Similar Triangles Student states that the triangles EOX and NKX are similar
without actually justifying the statement:

By analysing the figure, we find by means of trigonometry that the right-angled triangles
OKB’ and KNX, which is formed by the pencil placed vertically on the ground, and of its
shadow, are similar. (S3)

Parallel Lines and Corresponding Angles Student justifies why the obtained
angle equals to the latitude using parallel lines and corresponding angles:

Let us denote by the letter B the intersection of the line, which is continued from the segment
XN, and the ray of sunlight a. The triangles XNK and XBO are congruent (angle-angle):

1. The angles OXB and NXK are right angles and are thus equal.
2. The segments NK and OB are parallel (two rays of sunlight a and b); therefore the

segment KO meets them in the same angle. Thus, the angles NKX and XOB are equal.
Therefore, the triangles are congruent.2 (S8)

It was also checked, if the student had explicitly stated, how the latitude was
obtained from the measurement, that is, did the student present the trigonometric
equation for calculating the latitude or stated it using a protractor (last row of Table
11.1).

The latitude of the point X corresponds to the angle XOB, that is, to the angle NKX. Let us
measure the lengths of the pencil (XK) and its shadow (XN). The desired angle

∠(XOB) = arctan
(XN)

(XK)
= arctan

T he length of the shadow

T he length of the pencil
. (S8)

As evident from Table 11.1, it was not easy for our students to find this geometric
explanation even though they had the illustration of Fig. 11.1 in use. Only 48%
of the students provided an adequate mathematical justification. It was also seen
that science major students struggled more in providing an appropriate justification
(17%). One-third of the students did not explain how they calculated or solved the
angle corresponding to the latitude from the measurement results.

11.4.2 Physical Description

The examination of the task required several physical aspects from students (Table
11.2). First, the physical situation required explanation. The following were the
aspects of the physical situation that required explanation:

Defining the Latitude It is the object of the task, and, naturally, it is expected that
a careful explanation be provided:

2Two comments: (1) Although the mathematical justification is correct, there is also unnecessary
information. (2) The student uses the term congruent, although the term similar is the appropriate
one.



11 Combining Physics and Mathematics Learning: Discovering the Latitude. . . 257

Table 11.2 Categories of physical explanations

Category Science majors (N = 6) Mathematics majors (N = 15) All (N = 21)

Physical situation
Defining latitude 50% (3) 40% (6) 43% (9)
Justification of measurement time

Absent 17% (1) 27% (4) 24% (5)
Directly from the task 33% (2) 27% (4) 29% (6)
Explicitly discussed 50% (3) 47% (7) 48% (10)

Parallel sunrays 17% (1) 40% (6) 33% (7)
Earth’s flat surface 33% (2) 33% (5) 33% (7)
Shadow 17% (1) 7% (1) 10% (2)
Measurement
Can be replicated 67% (4) 60% (9) 62% (13)
Results

No results – 7% (1) 5% (1)
One result 50% (3) 53% (8) 52% (11)
Two results 33% (2) 40% (6) 38% (8)
Several results,
average value

17% (1) – 5% (1)

Examination of results
Comparison to real value 100% (6) 73% (11) 81% (17)
Discussion of factors
influencing the result

33% (2) 33% (5) 33% (7)

The latitude of the point X means the angle between the zenith line OX, which goes through
it and the centre of the Earth, and the equatorial line, which goes through the centre of the
Earth. (S9)

Justification of Measurement Time The reason for conducting the measurement
at midday during the autumn equinox is important to ensure that the measurement
produces sensible results. This also gives meaning to the physical/astronomical
context. Three subcategories – Absent, Directly from the Task and Explicitly
Discussed – were formed:

Absent The measurement time is not justified.

Directly from the Task Student has copied the text from the assignment but has
not pondered it more deeply.

Explicitly Discussed Student provides an explicit justification for the reason of
conducting the measurement during autumn equinox:

Because the axis of the Earth is inclined relative to the Sun at approximately 23.4 degrees,
we cannot see directly from the Sun which is our latitude. [ . . . ] If we would measure the
angle between the rays of sunlight and the surface of the Earth during the summer solstice,
when the Sun is in the south, we would get as a result the measure of 90 degrees—the
latitude +23.4 degrees; during the winter solstice, the result would be 90 degrees—the
latitude –23.4 degrees.
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During the autumn equinox (and the spring equinox), the Earth is in a such position that
measuring in the midday the angle between the rays of sunlight and the surface of the Earth
gives us exactly our latitude. [ . . . ]. The angle of altitude of the Sun is then the latitude,
because then the angle between the axis of the rotation of the earth and the line defined by
the earth and the Sun is normal. Practically, this means that in the pole area the Sun shines
exactly from the horizon (90 degrees latitude).

If we then begin to move from the pole along the surface of the Earth towards the Sun, we
move directly along the meridian. Simultaneously, we remain in the position where the Sun
shines from its highest position. Therefore, the Sun shines from the south if we are coming
from the North Pole. The angle decreases exactly in relation to latitude parallel to where we
are (in reality, the Earth’s shape is ellipsoid, not a sphere). On the 0 parallel of latitude, we
are on the equator and during the autumn equinox (and spring equinox), the Sun shines at
midday exactly from the zenith.3 (S1)

Parallel Sunrays The astronomical scales are not easy to understand, and the Sun
is treated as a point source, particularly by the students at school. Therefore, an
explanation of parallel Sun’s rays is expected from future teachers, that is, the
explanation for why the lines a and b (Fig. 11.1) are parallel:

The Sun is very far away from the Earth, so we can approximate that its rays are parallel.
(S15)

Earth’s Flat Surface The surface is assumed to be flat, or the student is stating
that unevenness or inclination of the surface might have caused some error in the
measurement:

The road where I put the paper was not necessarily quite horizontal. (S14)

Shadow The measurement is based on measuring the length of a shadow. This
offers an opportunity to discuss the behaviour of light:

Some objects, say a pencil or a lamp post, generate a shadow.4 The object and its shadow
are measured and interpreted as two sides of a triangle. (S16)

Measurement Next, the aspects of measurement were categorized to Can Be
Replicated and Results:

Can Be Replicated The student has described the measurement process in such a
detailed manner that someone else with similar base knowledge can replicate the
measurement. This is the general ‘thumb rule’ of describing measurements. Most
often, the reason for not fulfilling the criteria for this category was that the student
did not explicitly state that the pen, etc. should be orthogonal to the Earth’s surface.
One student dangled a pen attached to a string in order for it to be orthogonal towards
the surface.

Results There were three distinct subcategories of measurement results:

3Although the measurement time is explained, there is a misconception: the latitude is confused
with the altitude of the Sun.
4The forming of the shadow is not explicitly connected to the straightforward path of the sunlight.
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No Results The student describes the procedure of measurement and discovering
the latitude but lacks the actual measurement.

One Result The student makes one measurement and calculates the latitude based
on the measurement results.

Two Results The student has two values for the latitude from the measurement of
two different objects.

Several Results, Average Value The student has several different measurements
for different objects. The value of the latitude is the average value based on the
measurement results. This is the physical way of doing measurements in school
settings and minimizes errors compared to a single measurement result.

Examination of Results The final category of physical explanations is the exami-
nation of results with two subcategories Comparison to Real Value and Discussion
of Factors Influencing the Result:

Comparison to Real Value The student has compared the obtained latitude to
the actual value of Tampere’s latitude. In some cases, the source of the latitude’s
value is not revealed, but in most cases, students ‘Googled’ the actual latitude of
Tampere. Some students also calculated the deviation between the obtained results
and Tampere’s latitude.

Discussion of Factors Influencing the Result The student has contemplated
the different factors affecting the obtained result, such as the accuracy of the
measurement.

The results presented in Table 11.2 show that, overall, the physical explanations
were slightly more challenging to students than mathematical ones. Only 43%
discussed what is implied by the identified latitude. One student with a physics
background put effort in discussing the different types of latitudes—geocentric and
geodetic ones; he also calculated from the obtained value the geodetic latitude. Less
than half (48%) discussed why the measurement is conducted at midday during the
autumn equinox. Parallel rays are essential for the measurement design and only
one-third of the students discussed it. Here, the mathematics major students were
more likely to explain this (40% compared to 17%).

Only one student had conducted the measurement and its treatise in a proper
manner; most students were satisfied in one (52%) or two (38%) results. In case of
two results, they were treated separately, and the average value was not calculated.
One student was so interested in the task that he repeated the measurement in
St. Petersburg during his vacation. One-third of the students contemplated the
factors influencing the result, such as (in the order of commonness) the accuracy
of measurement, the orthogonality of the pen towards the surface (using the plumb
line is suggested), uneven or inclined surface, and that the atmosphere bends the
light a little.

Students managed best in describing the measurement in such a manner that it
can be replicated (62%) and almost all (81%) compared the obtained latitude to the
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actual latitude of Tampere. The four mathematics majors who did not compare the
obtained value were those who also relied only on one measurement result.

11.4.3 Interplay of Physics and Mathematics in Students’
Reports

Next, the reports were examined as a whole. The interest was to see how students
describe the process of discovering the latitude of Tampere and if in their descrip-
tions either the physical or the mathematical language is emphasized. The main
emphasis was placed on the description of the situation, because in describing the
measurement, the physical aspect is naturally rather strong. Four different categories
were formed (Table 11.3):

Only Physical Description The report concentrates on describing the physical
situation and the measurement, thus leaving the mathematical treatment at a vague
level.

Only Mathematical Description The physical situation is described in a mathe-
matical manner, and the description of measurement fulfils the minimum require-
ment. The mathematical aspect is clearly emphasized.

Both, but Separately The mathematical and physical aspects are discussed in
separate paragraphs, and the overlaps are not obvious.

Both in a Combined Manner In the description of the situation, the mathematical
and physical aspects are interrelated in an inseparable manner. The report proceeds
in a seamless manner.

Table 11.3 shows that approximately half of the students’ reports (52%) indicate
that physical and mathematical language and aspects are combined seamlessly.
However, half of the science major students concentrated only on the physical
aspects of the task. One-third of the mathematics major students had both aspects,
but they were not able to combine them. One mathematics major student, who
did not have any science minor subjects, described mainly the mathematics of the
situation.

Table 11.3 Categories of intertwinement of mathematical and physical descriptions

Category Science majors (N = 6) Mathematics majors (N = 15) All (N = 21)

Only physical
description

50% (3) 7% (1) 19% (4)

Only mathematical
description

– 7% (1) 5% (1)

Both, but separately – 33% (5) 24% (5)
Both in combined
manner

50% (3) 53% (8) 52% (11)
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11.4.4 Overall Quality of Reports

Finally, the overall quality of describing the process of discovering the latitude of
Tampere was evaluated. The different categories presented in Tables 11.1, 11.2, and
11.3 were scored. The scoring is presented in Table 11.5. The maximum score was
18 points. The reports were classified into four different categories according to
their overall scores (see Table 11.4):

Poor The report does not meet the requirements. The latitude is obtained, but
the fruitful mathematical and physical aspects are omitted. Thus, students in this
category have not yet begun to think and argue like teachers.

Moderate There are already necessary pieces of information, but overall the report
is still fragmented or deficient.

Good The students already have a rather good sense of necessary knowledge, and
they argue it in a reasonable manner. The versatility of the report shows that the
teachers’ perspective has begun to form.

Excellent The reports treat the task in a versatile manner but simultaneously in a
coherent and balanced manner. The level of explanation is at the level necessary for
a teacher.

As is evident from Table 11.4, the students are scattered rather evenly into
different categories. One has to bear in mind that most of the students are still
quite new to the teaching and, therefore, are not experienced in explaining what
a necessary skill is for a teacher. In their subject studies, the explanations and
justifications of the solution processes are rarely required; instead, often only the
correct solutions are emphasized. In the reports (classified into the Good and
Excellent categories, in all except one report, the physical and mathematical aspects
were treated in a balanced and interrelated manner; in reports classified as Poor, the
interrelated treatment of physical and mathematical aspects was lacking.

11.4.5 Applicability of Task in School

All students evaluated that this task could be applied to school. Twelve students
stated that depending on the manner in which it is implemented, it could be done

Table 11.4 Categories of the overall quality of reports

Category of quality score Science majors (N = 6) Mathematics majors (N = 15) All (N = 21)

Poor 4–6 33% (2) 13% (2) 19% (4)
Moderate 7–9 33% (2) 27% (4) 29% (6)
Good 10–12 – 47% (7) 33% (7)
Excellent 13–18 33% (2) 13% (2) 19% (4)
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Table 11.5 The scoring of
students’ reports. Maximum
score is 18 points

Category Score

Mathematical justification
Absent 0
Trigonometry/evident from figure 1
Similar triangles 2
Parallel lines, corresponding angles 3
Equation of latitude/protractor 1
Physical situation
Defining latitude 1
Justification of measurement time
Absent 0
Directly from the task 1
Explicitly discussed 2
Parallel sunrays 1
Earth’s flat surface 1
Shadow 1
Measurement
Can be replicated 1
Results
No results 0
One result 1
Two results 2
Several results, average value 3
Examination of results
Comparison to real value 1
Discussion on factors influencing the result 1
Only physical description 0
Only mathematical description 0
Both, but separately 1
Both, combined 2

either in lower or upper secondary school. Some of them could also see this task
done in elementary school. Six students said that the task could be implemented
only in lower secondary school and two said that it could be implemented in upper
secondary school.

Students had also to think about which school subject lesson the task could
be implemented as part of. All except one believed that it could be done within
two to four different subject lessons. The most common school subjects were
mathematics (20), physics (15), and geography (14); ten students suggested that the
task combines these three subjects. One student suggested combining history, and
one stated physical education (orienteering) to augment the task. There was also a
suggestion to expand it further:
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It can be done in small groups or as whole group demonstration. It can be augmented as
a part of process drama to bigger school project. You can add, for example, a trip to the
observatory. (S21)

Further, students also recognized the interdisciplinary potential of the task:

The phenomenon can be examined from different disciplinary viewpoints. The pupil sees
how one can determine important knowledge through simple methods and calculations and
how geometry can be applied in real life. (S18)

Every subject has its own viewpoint on the topic and it would be interesting to combine
them as a whole. (S13)

11.5 Discussion

From the mathematical perspective, approximately half of the pre-service teachers’
explanations in the reports were far from what is expected from a teacher, although
the required subject content of mathematics was not particularly difficult. This was
regardless of the amount of support and scaffolding given to pre-service teachers in
the tasks, for example, the geometric construction in Fig. 11.1. This is also evident
from the lack of precise mathematical language or in the ability to understand what
counts as the mathematical explanation of why the angles NKX and EOX are equal.
This suggests that more efforts in speaking and writing mathematics should be put in
mathematics teacher education in a manner discussed by Senn-Fennell (2000). Here,
the results also suggest a difference between the science and mathematics major stu-
dents: only 1 out of 6 science (17%) students provided adequate mathematical jus-
tification, and in the case of mathematics students, 9 out of 15 (60%) managed this.

Overall, the physical perspective in explaining and justifying the discovery of
the latitude was weaker in students’ reports. The essential concept of latitude
was explained by less than half of the students, and other important features of
the situation (shadow, etc.), which are the premises of the measurement or the
factors influencing the measurement results, were either not recognized or not seen
necessary in most of the reports. Only one student presented an appropriate method
to treat measurement results, and almost all students were satisfied with either one or
two separate measurement results. It is possible that this happened because the pre-
service teachers have just entered the world of mathematics and science education
and they have barely begun their process of shifting from learners to teachers. This
implies that they have to begin playing a more active role in constructing scientific
explanations and knowing what is required in these explanations.

Approximately half of the students managed to combine the mathematical and
physical description in an interrelated manner. One-fourth provided only a physical
or mathematical description, and one-fourth of the students provided both but in a
separate manner. Although the pre-service teachers’ PCK on this issue is not directly
examined, instead, the representation of the subject matter content knowledge is
emphasized more; in this context, there is a resemblance with the results of Pospiech
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et al. (2019)—for example, in presenting only the physical description resembles
the case of concept-related views of teaching strategies. The pre-service teachers’
views of the different roles of physics and mathematics can affect the manner in
which they represented their reports; based on the reports, the views were not yet
very developed. Therefore, in teacher education, the PCK model for mathematics
in physics teaching proposed by Pospiech et al. (2019) could provide structure
for discussing the interplay. However, there were also very good reports, where
the interplay of physics and mathematics was in balance and a coherent story of
discovering the latitude of Tampere was presented. This is a sign that the selected
example fulfils the exemplary and interdisciplinary requirements set for it. It also
inspired some of the pre-service teachers:

I have to admit that these exemplary tasks truly inspires one to use creativity in designing
tasks. The tasks are fun and very instructive compared to the mechanical and “boring”
textbook tasks. (S11)

Fun and functional method (S19)

The measurement was in my opinion a great way to combine the topics of different subjects.
They support each other extremely well in the measurement. I have never done such
measurement; therefore, it was very interesting measurement for a student of my age. (S20)

There was no drastic difference between science and mathematics major students,
which implies that, in this case, the major subject was not overemphasized in
students’ reports.

The interplay of physics and mathematics in the example is identified in the
first stage in Ataíde’s and Greca’s (2013) classification: the real-world situation is
abstracted to geometric construction. This stage was the first in history of physics
and mathematics where mathematics began growing as an inherent part of physics.
Most pre-service teachers recognize this and believe that the example could be
applied at lower secondary level or even at elementary level. The task given to
students did not require them to reflect on the relationship between physics and
mathematics, but some of them did it:

The task trains both the skills of physics and mathematics. The task also interrelates
mathematics and physics usefully in everyday life. It also helps to bring the space closer
to concrete. (S21)

Perhaps, as Ataide and Greca (Ataíde and Greca 2019) have suggested, an explicit
instruction on the epistemological roles of physics and mathematics, in this case,
could improve students’ skills of meaningfully applying physics and mathematics
knowledge in a combined manner.

11.6 Conclusion

The selected activity of discovering the latitude of Tampere enables the meaningful,
interdisciplinary teaching: knowledge of physics and mathematics has to be applied
and combined; consequently, experience and understanding about the real-world
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phenomena (autumn equinox), concepts (latitude), and objects (Earth and Sun)
increase. Pre-service teachers also see that this example could be applied at school,
combining the subjects of mathematics, physics, geography, and even history.
However, it appears that the approach is rather new to students, and many of them
could have benefited from additional support from either the instructors or their
peers. Most of these pre-service teachers will be teaching both mathematics and
physics, and it is essential for them to be able to bridge the gap between these
subjects, because in real life, these subjects are often deeply interrelated.
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Part III
Teaching Mathematization



Chapter 12
Role of Teachers as Facilitators of the
Interplay Physics and Mathematics

Gesche Pospiech, Bat-Sheva Eylon, Esther Bagno, and Yaron Lehavi

12.1 Introduction

Doing physics is unthinkable without mathematical elements and structures to
describe and predict physical processes. Therefore, not only in higher education
or high school but also at secondary school the fundamental structural role of
mathematics in physics should be taught and learned. However, many lecturers at
college or university complain about rote calculation with plug’n chug techniques
that are applied by students and do not further physics understanding. These
views were confirmed in many studies on students’ problem-solving strategies
with physical-mathematical problems. So the question arises what happens in
the corresponding teaching-learning processes as early as in physics lessons of
secondary school. In this context the role of teachers comes into play. Teachers,
their stances and their teaching methods play the decisive role for learning as is
confirmed by many studies. The specific knowledge teachers need for identifying
their goals, for shaping their lessons and the instructional strategies and assessing
the learning progress of their students is summarized in the pedagogical content
knowledge (PCK).

Concerning mathematics education, it was found that high content knowledge
and high pedagogical content knowledge (PCK) of teachers were positively related
to better learning success among their students (Baumert and Kunter 2013). Studies
with prospective physics teachers indicated that pedagogical content knowledge is
indeed a special body of knowledge (Riese 2010). It may be correlated with content
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knowledge but is nevertheless different and specific for physics teachers implying
that it is also not only pedagogical knowledge as teachers of other subjects do not
show elements of PCK for physics teachers (Riese 2010).

As the interplay of mathematics and physics covers a special aspect of physics
teaching relating two school subjects, it seemed appropriate to establish a specific
PCK model. This should rely on generally accepted models of PCK in physics but
allow for defining the necessary specific knowledge of teachers in the interrelation
of mathematics and physics. This normative determination of a PCK-phys-math-
interplay model then provides the hull containing different aspects or categories.
The next step would be to explore what could reasonably be expected from teachers
concerning insight into the interplay and its realization in teaching. The benchmark
for this would be the views, experiences and knowledge of teachers with many
years of teaching experience and with special qualifications. This would provide
an empirical basis for filling the normative hull with content.

12.2 Theoretical Background

The goal of this section is to specify a known and acknowledged model of PCK with
respect to teaching the interplay of mathematics and physics.

12.2.1 General Aspects of the Role of Mathematics in Physics

An important source for shaping the sought PCK-model is a theoretical view on the
role of mathematics. Pietrocola (2008) distinguished a technical and a structural
role. In a further refinement, Ataide and Greca (2013) also added the role of
mathematics as language of physics. This is insofar an important category as it
allows for a more fine-grained analysis of procedures in teaching: the role of
mathematics as language refers mainly to representations. Their appropriate use is
clearly beyond the purely technical role but on the other hand does not yet arrive
at a deeply structural insight, e.g. for derivations, deductions or exploitation of
analogies. So the role of mathematics as a language of physics plays an intermediate
role between the technical and the structural role. For a more detailed description,
see the contribution “Framework of Mathematization in Physics from a Teaching
Perspective” in this book.

These distinctions allow to frame not only the knowledge of teachers but
also their deeper convictions and viewpoints that guide their overall shaping of
instruction. We want to explore these convictions and possible relations to the
teachers’ description of instructions. The questions are: What views and attitudes
do teachers have? How do teachers realize their views in the classroom?
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12.2.2 Views, Knowledge and Teaching

Generally not only cognitive aspects play an important role for learning on all
levels but also epistemic or affective viewpoints (see, e.g. Bodin and Winberg
2012). As we have seen, we can distinguish several roles of mathematics in
physics: technical, as a language and structural. The relative weight of these aspects
depends on the individual teacher and might influence his or her students. Therefore
epistemic views underlying the teachers’ views on the interplay and their choice of
teaching patterns are important for thinking about physics teaching. This relation
was confirmed in a study finding that traditionally oriented teachers tend to view the
role of mathematics as instrumental, whereas more conceptually oriented teachers
viewed mathematics as the language of physics and as suitable to derive models
or new insights into physics, corresponding to the structural role (Mulhall and
Gunstone 2007).

Concerning the importance of the structural role, it could be shown that the
conscious “self-made” connection between the physical phenomenon and the math-
ematical model in kinematics offers great learning opportunities for teacher students
with respect to their view on the interplay (Carrejo and Marshall 2007). According
to a study with 34 teacher students, “a strong relationship between students’ problem
solving strategy and their epistemological perception to the role mathematics plays
in physics, learning and understanding physics, and solving problems in physics”
exists (Al-Omari and Miqdadi 2014). Similar studies were conducted by Başkan
et al. (2010) and Ataide and Greca (2013). They identified three types of teacher
students with a certain alignment of their attitudes towards the role of mathematics
in physics and their problem-solving strategies (see contribution in this book). In
a quantitative study, it was found that prospective teachers prefer a constructivist
stance on mathematical-physical modeling (Fazio and Spagnolo 2008). However, it
is not clear how teacher students reflect their views on the interplay of mathematics
and physics in a concrete teaching sequence. That the merging is difficult was seen
in a case study where it was observed that the conceptions and actual teaching
practices of teachers might diverge (Freitas et al. 2004).

In order to shape the teaching-learning process, teachers have also to be aware
of the students’ ideas. Only if they know the typical difficulties, they can think of
appropriate teaching strategies and implement them. In a study by Khalili (2016),
the teachers stated that they achieve the best results by abandoning the “number
crunching” and instead emphasizing careful explaining and reasoning as well of the
mathematical operations as of the physical processes. These teachers were focussing
on structural elements of the interplay.

The findings of these studies mostly concerned small groups of teacher students
and hence still need confirmation with respect to completeness and reliability.
So additional studies will be necessary in order to reach the ultimate goal to
find ways of promoting the understanding and practice of future teachers. As
experience is an important component of the teachers’ professionalization, it is an
interesting question how experience is shaping the teachers’ views, their knowledge
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of students’ ideas and how they are framing it and how this corresponds to their daily
practice. In order to get a feeling in which direction the teacher students should
develop their competences during their teaching career, we explored the views of
experienced teachers on the interplay physics with mathematics. As a first step, we
defined and detailed a PCK-model and then validated it with the help of interviews
with teachers.

12.2.3 PCK-Model for Teaching Mathematics in Physics

The definition of teachers’ PCK is the first step towards a systematic description
of teachers’ views, knowledge and experience. The construction of a frame of PCK
has proven to be fruitful for domain-specific characterization of teachers’ views and
their teaching strategies. Nevertheless, there are many models of PCK in physics
with different focus and elements depending on the goals of research (Gramzow
et al. 2013). A model in agreement with most authors is the model of Magnusson
(Magnusson et al. (1999), modified by Etkina (2010)). As PCK cannot be separated
from the content area (Loughran et al. 2012), we adapt this model slightly to the
topic of mathematics and physics. Even if mathematics is no separate explicit
topic in physics education, the teaching of the interplay mathematics and physics
nevertheless requires considerable care. If we look at this special area, the need
arises to capture the necessary specific competences, e.g. the distinction of technical
and structural role of mathematics. A suitably modified model will serve as the
starting point for the study of teachers’ PCK (see the introductory chapter). We
highlight its most important elements in Fig. 12.1 adding the feature of experience.
Besides profound explicit knowledge, teachers command rich experience. This
consists of implicit knowledge which is not described but condensed in stories about
what is working in class and how to adapt the teaching goals and strategies flexibly
with differing students.

In addition we also take into account a PCK model of mathematics education.
Inspection of the PCK model proposed by COACTIV (Baumert and Kunter 2013)
shows that there are some parallels. The COACTIV-model contains – similar to the
Magnusson model – students’ cognitions and curriculum but distinguishes between
knowledge of short-term and of long-term teaching strategies as well as insight into
overarching aspects of teaching mathematics such as the role of representations.
This implies quite a strong focus on teaching strategies with an extension on more
general aspects of teaching. Merging both PCK models by inserting the additional
category of “Teaching Principles” into the Magnusson model, we arrived at a
more detailed model of pedagogical content knowledge specific for the interplay
of mathematics and physics in physics lessons (see Fig. 12.2). This model should
mirror the competence and reflection of teachers by distinguishing and interrelating
several facets of PCK: the overarching views and attitudes, the general teaching
principles informed by the conception of teachers about the learning process and
the detailed teaching strategies partly clarified by concrete examples from class
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Curriculum Students’ Ideas

Teaching principles
Teaching strategies

and knowledge
Experience

Views: Orientation toward 

teaching mathematics in physics

Fig. 12.1 General model of teachers’ PCK based on the model of Magnusson. It is slightly
modified by stressing the interrelation of teachers’ views and their experience and knowledge.
The foundation of the teaching and the epistemic views of teachers are included in “Orientation
towards Teaching the interplay”. This is in interrelation with their experience and knowledge that
is shown in the choice of instructional strategies which focus on the technical or structural role,
respectively. Furthermore the requirements by the curriculum and the awareness of students’ ideas
play an additional role

(Loughran et al. 2012). Furthermore the model includes the teachers’ perception
of students’ views and learning. The most important feature is the interrelation of
linking the abstract definition and understanding of PCK to the actual practices of
experienced teachers.

12.3 Research Questions

The goal of the study presented here was to find evidence of the described PCK-
model and to characterize experienced teachers’ views on the role of mathematics
and their teaching physics as basis for further studies and developments in teacher
education and professional development. So the research questions are:

1. Can the PCK-model be confirmed in the interviews?
2. How can the teachers be characterized according to

(a) their teaching principles?
(b) their teaching strategies and realized teaching patterns?
(c) their awareness of students’ knowledge and attitudes?
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Fig. 12.2 The specification of the PCK-model with more details especially concerning teaching
strategies. The aspect “Knowledge of Assessment” only is indicated as it is contained in the
Magnusson model but not treated in this study. In elaborating on this model, we see an interrelation
between the overall “views” of teachers and their knowledge about what is required by the
curriculum and their individual preferences. The overall “views” influence on the basis of the
general “Orientation towards Teaching” the individual “Teaching Principles”. These on their part
contribute to the choice of “successful teaching strategies”, which on the other hand are influenced
by the requirements of the “Curriculum” and the teachers’ awareness of “Students’ Views”. Even
if the “Teaching Principles” are informed by the “Orientation towards Teaching” they are also
shaped by experience, especially the perception of students’ views, competence and knowledge.
The indicated details serve as a starting point for deriving the categories used for analysis of the
interviews (see Sect. 12.4.2.1)

12.4 Design and Method of Study

In order to learn about the teachers’ views and attitudes towards the interplay
of mathematics and physics, an interview study has been conducted in Israel (8
teachers) and Germany (15 teachers). Mostly very experienced and distinguished
teachers have participated in the interviews. The semi-structured interviews fol-
lowed a guideline with seven questions. The first question addressed very generally
the teacher’s personal view on the role of mathematics in physics teaching. Other
questions focused on the support or hindrance of mathematics for understanding
physics or vice versa. In addition the teachers’ views on students’ difficulties and
their corresponding instructional strategies were asked for. In order to contextualize
the theoretical answers, the teachers should also describe concrete examples from
their lessons.
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The teachers received the questions one week in advance so that they had
the opportunity of thinking about them and preparing answers. They took this
chance with only one exception. The interviews took 30 to 60 minutes. From the
interviews it can sometimes be seen how intense the preparation has been. They
were audiotaped and completely transcribed.

The results of the interviews of the Israeli teachers have been published elsewhere
(Lehavi et al. 2015). From their interviews and additional classroom observations,
guiding strategies could be identified, named as “patterns”. Four patterns that teach-
ers realized in the classroom could be identified: construction pattern, exploration
pattern, application pattern and broadening pattern (Lehavi et al. 2017). These
are explicitly included into the model described above as the realization of these
patterns is in close relation to the teaching principles and more general strategies
(see Fig. 12.2).

12.4.1 Description of Participants

During the study 15 teachers (male as well as female) have been interviewed. In one
interview the teacher did not agree with the audiotaping, while in another interview,
the audiotaping did not work. Therefore the interviews with 13 teachers remained
for analysis.

Two of the teachers could be called master teachers because of their role and
official functions, e. g. in curriculum development. The 11 other teachers were
all very expert teachers with at least 15 years of teaching experience, some even
more than 30 years. All teachers have the license to teach physics in secondary
school including high school. However, some teachers specialized either in lower
secondary school or in high school (see Table 12.2). They also had as a second sub-
ject mathematics, meaning that they also have the license for teaching mathematics
in secondary school including high school.

All the teachers had a very similar teacher education in which the focus was on
good explaining, on clear structure of instruction and close monitoring of students’
progress with high expectations of their success in assessments. The fulfillment of
curriculum was very important for them all.

12.4.2 Procedure of Analysis

Interviews were analysed with qualitative content analysis. The free R-package
RQDA together with simple basic functions of R (version 3.2.3–4) was used.
This software allows the use of main categories, subcategories and the codings
themselves. In a first step, main categories from the description of the chosen PCK
model were defined deductively and refined by subcategories and codings. During
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the coding process, some subcategories and codings were added inductively from
the data.

The category system was discussed several times with members of the group,
refined and made more precise. After a first coding of the material, the descriptions
of some codes were adapted and clarified which led to a recoding of some of the
codings resulting in a bigger coherence. In the end there results a system of 10 main
categories, 22 subcategories belonging to 8 of the main categories and comprising
98 codings. These codings are described in a coding manual and illustrated by an
anchor example. Overall there are about 1100 coded text fragments, partially double
coded.

12.4.2.1 Description of Main Categories

For analysis the main categories as given in the PCK model above are described (see
Fig. 12.2).

The main categories mirroring the general views of teachers on the interplay
are:

• Role of Mathematics in Physics
• Teaching Principles

These categories are related to the “Orientation towards Teaching” of the PCK-
model of Magnusson but have been distinguished here (see Sect. 12.2.3). The
Teaching Principles rely on the deeper convictions and thus serve as an intermediate
step between those and the more specific teaching strategies. Hence they guide the
teaching as a whole. The preference of certain aspects of the interplay is coded into
the following main categories:

• Technical role
• Structural role
• Mathematics as language

These categories describe the teachers’ view on these roles with a strong relation
to their teaching. They are not as general as both categories above but do not yet
form a strategy for lessons even if they may be regarded as a basis for the choice of
“General Strategies”, related to teaching patterns, identified by Lehavi et al. (2017).
In a further step, they influence on a more concrete level the specific teaching
strategies actually used. These teaching strategies may correspond to the technical
or to the structural role as well as the role of mathematics as a language. They are
attributed to

• Teaching strategies

These strategies are used by teachers to introduce and facilitate the use of mathe-
matics. Here strategies can be distinguished that are being described as more general
underlying strategies and very specific strategies applying to concrete examples
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which are closely related to topics from the curriculum. Concrete examples are
coded in the category:

• Curriculum

In describing their strategies, teachers also discuss the views and competences of
students (“Students’ Views”), resulting in the following main categories:

• Students’ Views on Mathematics as problem
• Students’ Views on Mathematics as supporting
• Students’ Attitudes

Herewith it has to be stressed that these categories refer to the teachers’ views on
the students’ thinking.

12.5 Results of Data Analysis

First the results are described before they are interpreted in the following section.
The most interesting results concerning

• Views on the interplay mathematics and physics
• Preferred teaching strategies
• Awareness of students’ knowledge and attitudes

are presented.

12.5.1 General Observations

The interviews had a clear focus as can be seen in the distribution of codings
among the main categories. Most coded statements belong to: “teaching strategies”,
“curriculum” and “perceived problems of students in applying mathematics” (see
Fig. 12.3). This may partly be caused by the incitation in the interviews to support
possibly general statements with concrete examples from own lessons as one
aim was to shed light on the relation between views and their realization in
the classroom. Only relatively few statements are related to possible support or
increasing the understanding by application of mathematical elements in physics,
although this topic has been explicitly addressed in the interview questions. One
of the master teachers has a number of codings clearly above average. Four other
teachers also have many codings, the other less codings (mainly connected with
shorter interviews).
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Fig. 12.3 Number of codings per main category

12.5.2 Analysis of Special Viewpoints

The analysis of the data is led by the different aspects of the role of mathematics in
physics as described in Sect. (12.2.1). These serve as pivotal elements.

As the duration of the interviews varies quite significantly, the teachers have a
very different number of statements and hence codings (Fig. 12.4). Therefore we
base the analysis not on the absolute numbers of codings but on the percentage
of specific codings in relation to the total number of codings for each teacher. This
reflects more the importance of a certain point for the individual teacher and prevents
that a teacher with overall many statements dominates the interpretation of results.

12.5.2.1 Views on the Interplay of Mathematics and Physics

The basis of teaching is the “Orientation towards Teaching” (see Fig. 12.1) com-
prising teachers’ beliefs about content and goals of teaching. Therefore the teachers
were first asked about their “Views on the role of mathematics in physics” and
corresponding “Teaching principles”.

Generally all the interviewed teachers regard the interplay as important for
physics and also for teaching physics at least at high school. In analysing their
views in more detail, we see that both teachers 13 and 8 give the most extensive and
multifaceted view on the role of mathematics in physics and emphasize its structural
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role. Also teachers 14, 3 and 7 mention a variety of different aspects. Some teachers
(teachers 4, 5, 9) stress the technical role of mathematics as an ancillary science

.. For me mathematics is, I say it always so nicely . . . . . . that it is an ancillary science.
[teacher4]

On the whole a gap is seen between the very general view that mathematics is
important (stated by all teachers) and more precisely what role mathematics plays
in the physical method (elaborated on by 7 out of 13 teachers). Interestingly, only
three teachers (teachers 3, 13, 14) mention “prediction” as one of the traits of the
mathematical description of physics.

One aspect is that one can arrive from qualitative statements, e.g. “the more – the more” at
exact quantitative predictions by calculating something. [teacher 14]

The structural role implies that mathematics might be a support of physics and,
e.g. can help to derive new insights. But only about half of the teachers mention
these aspects explicitly. What seems more at hand for them is the necessity and
possibility of the physical interpretation of mathematical elements, the function of
mathematics as a language:

. . . diagrams as such. Out of them you can gain a lot. E. g. when I recognize – in the s(t)
diagram – and know that the slope is a measure for velocity, . . . . [teacher2]

Nearly all teachers stress this for the interpretation of diagrams but only about
half of them also for formula and units. Only two teachers (2, 13) appear to be
conscious of all these facets.

Only one of the teachers (13) addresses all aspects of the role of mathematics and
is the only one to explicitly mention the use of analogies in terms of mathematics:
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Table 12.1 Percentage of statements concerning the role of mathematics in physics and method
of physics in relation to all codings per teacher

Teacher 2 3 4 5 6 7 8 9 10 11 12 13 14

Percentage 9 16 10 7 11 15 20 14 9 1 4 25 16

In the end they [formula and diagram] are also a help in recognizing analogical structures
because the mathematical structures reveal analogies because of the stringent formalized
language. [teacher13]

12.5.2.2 Teaching Principles

In order to find possible characteristics of teachers and their teaching, we refer
to their statements concerning the guiding teaching principles which also imply
general teaching goals.

In the following it is assumed that teachers with a deeper reflection refer more
often to the different roles of mathematics in physics at several points of the
interview, e.g. in describing teaching strategies. As the interviews differ in length,
hence also in the overall number of codings per teacher, this effect should be
removed in comparing teachers with respect of the weight they gave to the role of
mathematics in physics. Therefore as a simple measure, the number of codings of
the general role of mathematics and physics is related to all codings in the interview
of a teacher (Table 12.1). This number varies significantly among the teachers. One
of the master teachers (teacher13) has a bigger percentage (25%) of “reflective”
statements, i.e., statements in the main categories “Role of mathematics” and
“Teaching principles” than the other teachers. But also the teacher mainly teaching
at high school level (teacher8) shows above-average percentage (20%). However,
these numbers can only be hints that, e. g. the “master teachers”, as perhaps might
be expected, tend to show more awareness of the complexity of the interplay.

Overall it can be observed that most teachers (9 out of 13) explicitly mentioned
building the relation between mathematics and physics as a goal. In order to refine
this general teaching goal, additional codings are introduced: “concept-related”,
“math-related” or “application-related”. Then the teachers are grouped according
to how many (measured in percentage) of each teacher’s statements refer to the
respective focus. If more than half of their statements concerning the teaching
principles belong to one coding, these are grouped accordingly. Four groups can
be identified tentatively:

concept-related: This teaching principle is characterized by statements such as
“I like it more first to induce an understanding before I treat it with math.” Two
teachers mention such a viewpoint more often and regard it especially important
to first treat the concepts before they go to the mathematical description. The
focus lies on the physics side with some structural elements of the interplay.

math-related: This teaching principle is characterized by statements such as
“I always try to explain it again and again starting from math. So that they
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understand it there also.” Also two teachers make the use of mathematics very
strong. These teachers tend to stress the technical role, but this does not imply
that they neglect the structural or language aspect.

application-related: This is the biggest group of teachers. Six out of 13 pro-
nounce especially the importance of relating physics to applications or visualiza-
tion, e. g. by statements like “It is important that the practical aspect of physics
does not fall short.” Often the motivation of students and shaping the learning
process from the concrete are the reason for this aspect.

multifaceted: Three teachers show no specific focus in their goals but seem to
cover several aspects equally.

Besides describing these teaching principles, some teachers (4/13) also allude to
philosophical viewpoints, in the sense that a physics world view should be reached
at the end of high school. One of the master teachers makes this point very strong.

Relating this analysis to the theoretical background from Sect. 12.2.1, it can be
noticed that the structural role in the sense of balancing mathematics and physics
occurs from time to time in the interviews but does not seem to be dominant among
the teachers.

Patterns

Concerning physics teaching Lehavi et al. (2015) identified teaching patterns
mentioned by teachers in describing their practices in physics lessons. Therefore
the question arose if those teaching patterns could also be retrieved in the interviews
analysed here. Indeed some teachers of the interviewed sample mentioned similar
patterns. Of course the small sample does not allow to deduce how often these are
used in general but only if they might occur. The most often pattern mentioned by
teachers is the “Construction” pattern as often a formula is being derived by means
of an experiment. Five teachers also use the “Exploration” pattern. Especially one
teacher very explicitly reflects on the problems of teaching when using mathematics
with respect to limiting cases going beyond “Anschauung”:

. . . That both [limits] will not be reached, even if it approaches more and more and that
these are rather limiting cases and mathematical models which do not at all agree with the
practice. [teacher7]

The “Broadening” pattern is described by three teachers. Four teachers mention
the “Application” pattern (where it can be assumed that more teachers really use
it in class). Only teacher 13 has described all four patterns. From the definition of
the patterns, one could say that the “Broadening” and the “Exploration” patterns are
especially well suited to transport the structural role of mathematics for physics.

Broadening The teachers mention that similar arguments or techniques, most
often the use of “area under graph” or “proportionality”, can be transferred to
other physics contexts.
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Table 12.2 Characterization of teachers. Here the teaching principles are given in the first four
columns. It is also indicated if the teachers are master teachers and who is teaching only in lower
secondary school or only in high school (last three columns). We also indicated whether they
mentioned examples of using a “Broadening” or “Exploration” pattern (see section “Patterns”)

Teacher Concept Math Appl. Mult.fac. B/E-Pattern Master Only lower Only high

Teacher2 x x

Teacher3 x

Teacher4 x

Teacher5 x

Teacher6 x

Teacher7 x x x

Teacher8 x x x

Teacher9 x

Teacher10 x x

Teacher11 x x

Teacher12 x x x

Teacher13 x x x

Teacher14 x x x

Exploration Some teachers use mathematics for exploring limits: “v → c”,
“V → 0” in order to arrive at results they cannot get by an experiment. Another
strategy concerns the appropriate use of the electronic calculator where the
students should recognize the nature of regression in evaluating measuring data.

Construction This pattern is mostly used for deriving formula from experiments
via use of different representations, as a rule resulting in a proportionality.

On the whole the data show how complex the interaction between the teachers’
teaching principles and goals and their views towards the general role of mathemat-
ics and physics is (Table 12.2). From the statements it becomes obvious that the
teachers as practitioners very strongly relate their general opinions to their teaching
experiences and vice versa.

12.5.2.3 Teaching Strategies

An important element of the PCK is the knowledge of successful teaching strategies.
From the interview material, it evolved that it makes sense to distinguish more
general strategies and their concretized forms, in the following called “specific
teaching strategies”.

The teachers describe as well their general strategies which can partly be
attributed to the patterns identified by Lehavi et al. (2015) as some specific
strategies, sometimes even the precise instruction sequence.
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General Strategies

Under “General Strategies” we understand that the teachers describe their general
procedures resulting from their teaching principles. They give hints to their focus in
selecting or shaping the specific instruction from a more elevated perspective. They
address, e. g. the proportionality and how they are introducing and using it, or they
describe how they are balancing mathematical techniques and physical concepts.

In this context some teachers describe their strategies with a focus on technical
aspects (teachers 10, 2, 3, 5, 7), e.g.

It is quite important that the basics are well founded, and then I think it [use of math] won’t
hinder anything. [teacher 2]

or with a focus on concepts first (teachers 13, 6, 9).

not only calculating, and not only describing [teacher 6]

Some teachers describe as well more technical and also conceptual-oriented
strategies (teachers 11, 12, 14, 4, 8)

Drawing diagrams and then deriving from these that e. g. distance corresponds to the area
under the curve in the velocity-time diagram. [teacher12]

On the whole it can be inferred that most teachers value highly the development
of routine with their students in order that the students master the mathematical
techniques and are sure in selected types of reasoning, mostly concerning propor-
tionality. The extensive treatment of proportionality is due to the requirements of
the curriculum, but it also serves as an example for reasoning mathematically and
relating mathematical results to physics.

Specific Strategies

Here the teachers describe how they shape their lessons regarding the use of
mathematics. Again we perform the analysis in the light of Sect. 12.2.1. Overall
the teachers show a broad range of different strategies where it became nevertheless
obvious that each teacher has his or her own preferences. A strategy mentioned by
all teachers is, e.g. the use of diagrams:

Then it makes sense if I use diagrams. [teacher4]

Also many teachers use the electronic calculator, as it opens new ways for
teaching and reduces the requirements of technical-mathematical abilities on the
side of students.

A very common feature is the procedure “deriving formula from experiments”
(corresponding to the “Construction” pattern) as this is considered the most
appropriate way to enable students to connect the abstract formula with concrete
experience. This approach has the potential of demonstrating the structural aspect of
the interplay. Teachers with high reflection and regard of the structural role also tend
to state more often that they use strategies such as “making meaning of formula” or
“qualitative reasoning”.



284 G. Pospiech et al.

That mathematics also has a communicative function was addressed by three
teachers (teachers 2, 9, 6):

.. graphical forms anyway, mathematical elements, and also to describe things by words,
that plays a role. [teacher 6]

So some teachers make explicit use of language for imparting the relation
between mathematics and physics.

Besides calculating during problem-solving – which would correspond to the
technical aspect – some teachers also adopt the strategy of letting the students
calculate numerical examples in order to enhance understanding:

When you are doing calculations here from time to time where the student realises: ‘o. k. at
the term scheme there is this quantum jump. Then this number results, this frequency and I
can assign this to the colours.’ [teacher8]

This strategy might focus on the technical aspect but nevertheless could enhance
insight into the predictive power of mathematics for physics.

Starting from these descriptions, preferences of teachers could be identified that
make up their “style of teaching”. It is determined by their individual emphasis,
their environment (mainly the students, resp., the grades they are teaching) and the
requirements of the curriculum. Teachers try to support students’ learning also by
sticking to few repeated strategies in order to concentrate on certain competences.
We characterize these repeated strategies according to our framework.

Technically oriented: Especially many answers relating to technically oriented
strategies were given by five teachers (10, 11, 13, 2, 8). An example would refer
to the use of units considered important by some teachers:

.. because of that I make quite a point of discussing the units, that they really see there must
emerge e. g. a force. [teacher2]

Representation-oriented: Strategies, taking into account the function of math-
ematics as a language (use of language, of graphs or different representations),
were described above average by three teachers (11, 6, 9):

. . . let the students run, the students measure the times by themselves and we represent
it graphically on the calculator; then they see by means of the curve that it is indeed so.
[teacher 6]

Conceptual-oriented: Six teachers (13, 14, 3, 4, 7, 5) focus above all on
strategies stressing the use and understanding of concepts. These are often set
into relation to real-life applications, or the role of math is made clear by use of
analogies:

Mathematically you need a proportionality factor and then I do not ask: “ How could we
name it?” but: “What could it be in reality?”. [teacher 3]

or

Many analogical examples in physics: v ∼ t for the uniform motion, m ∼ V for density,
change of length ∼change of temperature or to original length. [ teacher 7]
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These somehow characteristic strategies may be interwoven, e. g. teacher 12
does not show a specific pattern in the answers. Furthermore, it can be noticed
that statements on general and specific strategies do not completely agree in each
case. This can be due to differences in the interpretation of statements or some
discrepancy between the general opinions of teachers and the realization in class.
Sometimes a “shift” is observed from conceptual general strategies to technical
specific strategies or to a focus on representations (mathematics as a language) with
teachers (6, 8, 9, 11). However, a consistency along the levels of strategies can be
seen with four teachers (2, 4, 10, 14). In the case of teachers (3, 5, 7), the specific
strategies tend more to the conceptual side, whereas the general strategies seem to
be more on the technical side. This can be an artefact of the coding of the handling
of “proportionality”.

Herewith we have to state also a caveat as the sample was very small and teachers
might adapt to the classes, e.g. they might distinguish their teaching style between
beginners’ lessons and lessons on high school level.

12.5.2.4 Awareness of Students’ Views and Knowledge

The description of the students’ views and prior knowledge focusses mainly on
the problems students have with the application of mathematics in physics, mainly
technical difficulties but also difficulties in the transfer and structural role of
mathematics. The positive aspects are mentioned also but by far less (see Fig. 12.3).
Also emotional aspects are considered by the teachers.

Problems

The teachers observe their students very carefully. Those teachers with a long expe-
rience and the master teachers tend more often to state more general problems such
as a cognitive overload by the complexity of bringing together the mathematical as
well as physical aspects, especially when also the calculator comes into play. Here
some teachers stress that the interplay and combination are indeed very complex for
students and hence its implementation needs time:

There you notice that it is unfamiliar to the children and that it needs a certain exercise and
a certain time until some insight is reached. [teacher 14]

On the whole there are no big differences between the teachers. However, most
aspects were stated by teacher 12 who is following the most explicitly math-related
teaching principle.

Most teachers complain – as might be expected – generally about the lack of
knowledge or technical problems, mainly the rearranging of formula or inappropri-
ate use of routines in solving physics problems. They also state that there is not a
sufficient coordination between the physics and the math curriculum. But at some
occasions, they even see it as an advantage or at least as a chance that in physics
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they can introduce some mathematical elements – regression, functions or similar –
in a concrete way thus enabling the students to make experiences before the abstract
treatment in mathematics lessons later on. Here the electronic calculator opens up
new possibilities.

Some teachers observe the lack of physical understanding in handling math:

They often describe a relation, but without giving a reason how they arrive at the relation.
[teacher10]

or

But to do this by themselves, to come up on their own with the idea of doing what, that is
very, very difficult for the students. [teacher14]

Only one teacher sees the complication in an unsufficient understanding of
formula and its relation to the physical world:

If they cannot imagine anything with this quotient, then they fail at those places where no
calculation is done. [teacher5]

Also the important validation of results is often not done by students:

There, at many places, the students are very uncritical towards their own results. [teacher12]

So only some teachers clearly mention difficulties of students on the structural
side.

Positive Aspects

Also if teachers often complain of the students’ problems, sometimes there are other
observations:

But then the students have auch a good knowledge that you can simply use such
things [meant: proportionality] [teacher12]

From this quotation we get to the positive aspects of mathematics. Teachers
mention that at a certain stage, the students have developed a routine that gives
them kind of assurance that they can cope with the requirements and have some
basic competence in solving physics problems. As formula are unambiguous, they
can be a help for memorizing. Especially graphs are quite easy for the students to
remember.

Mostly in high school, the teachers stress that besides physics instruction,
students should also have an advanced level in mathematics as this mostly helps
in developing the thinking skills necessary for physics:

.. I find it an advantage because – according to experience – the students from the advanced
course in mathematics can better draw these logical connections as those from the arts or
creative subjects, . . . [teacher2]

So teachers often stress the necessity of certain logical or mathematical abilities
of students they should bring as prerequisite into the lessons.
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Emotional Aspects

The teachers also describe emotions students can have towards the application of
mathematics in physics. One teacher (11) sees the emotions quite differentiated,
on the positive as well as on the negative side. Three teachers (teachers 14, 10, 8)
mention more positive than negative aspects. On the negative side, they most often
notice rejection, such that mathematics is boring or that students just cannot cope
with it and do not want to do it. On the other hand, as soon as some routine is
developed, students might see the possibility of calculation as advantage, or they
get insight into the usefulness of mathematics in physics.

Students’ Interest

All the teachers are eager to find ways how they could motivate students, which
topics they could choose or how they could show the relevance of physics as a
whole and the role of mathematics in detail.

That one should teach physics in schools always related to applications. you first arrive
at qualitative statements. If I want to examine exactly how this is related, the force of the
magnetic field as a function of the number of turns, . . . in some places you can arrive only
with the help of equations at insights .. only by this theoretical pursuit, by dealing with
these theoretical equations we came to these findings, which subsequently can be checked
in practice, . . . Now you can see on the basis of this equation [ Thomson’s formula] what
needs to be changed in this resonant circuit. [teacher14]

Herewith they adapt the strategies to the abilities of the given class.

12.5.3 Characterization of Single Teachers

The detailed analysis above indicates the interrelation of the personal views, the
requirements of curriculum and the difficulties to achieve certain levels with the
given classes influencing the realized teaching. As the sample is small, the picture
is not yet very clear but shows a variability and hints to necessary compromises
teachers have to make. Furthermore it proved to be difficult of getting a complete
and consistent account in the interviews. Therefore in this section, some teachers
are characterized showing that they nevertheless have developed for themselves a
coherent principle for teaching.

12.5.3.1 Master Teacher: Structural-Oriented Teaching Principle and
Strategies

The master teacher has a high level of theoretical reflection and stresses that lessons,
especially the use of mathematics, should contribute to a physical world view. In
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his strategies it is important to him that the students relate knowledge of different
topics. He weighs his goals and chooses the strategies accordingly. Concerning the
students he is aware of possible cognitive overload and sees that they tend to focus
on calculating and neglecting the transfer.

12.5.3.2 Teacher with Focus on Technical Aspects

Mathematics is seen as important in teaching physics because mathematical proce-
dures are needed for calculating or for representations. In that the teacher regards
graphs as important, also as a possibility of visualization. On the whole he sees
a calculation as a prerequisite of understanding physical relations. The teacher
perceives that students prefer calculating with routines and avoid explaining or
reasoning and mentions the lack of knowledge in the basics of mathematics.
Therefore he tends to provide the students with instrumental aids for mastering the
procedures. Aside from this he regards applications as important for motivation.

On the whole the teacher shows a coherent reasoning in his views, teaching
principles and strategies.

12.5.3.3 Teacher with Focus on Representational Aspects

The teacher views mathematics as important but stresses that the physics has to be in
the centre of teaching. In derivations or evaluating experiments, the mathematics is
a tool with a permanent relation to the physics content. Mathematically formulated
laws are being derived from the physical process with careful reasoning. Therefore
verbal explanations play an increasingly important role. In contrast to calculating
with a formula, only reasoning and explaining show if the students understood the
physics. On the other hand, the students should master the mathematical procedures,
know basic function diagrams and be able to apply them, e.g. for regressions. This
implies that the students should not only calculate something but also reflect on the
result and validate it.

So on the whole the teacher emphasizes the complementing roles of mathematics:
as tool for calculating, the importance of relation to physics including explaining
and representations.

12.6 Interpretation of Results and Conclusion

What can we learn from these interviews with experienced teachers? Before we
answer this question, we want to give two caveats.

First of all because of the low number of participants, we want to stress that
only some hints can be derived which should be explored in subsequent studies.
Secondly, one has to be careful to infer from a good PCK that the teachers have
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corresponding success in their teaching as, e.g. measured in students’ learning (see,
e.g. Cauet et al. 2015; Kirschner et al. 2016). This can only be verified by separate
tests and analyses.

However, some insights can be gained. In the views of the teachers, mathematics
as a tool or an instrument in physics is prevalent. But the teachers also share the view
that mathematics could contribute to the understanding of physics. Aside from this
general remark, we observe a broad continuous spectrum of views and strategies.
We were interested if we could find indications that teachers elaborating on the role
of mathematics in physics, especially the structural role, also show a specific pattern
in choosing teaching strategies and enacting them. This could not be confirmed.

With many teachers working as practitioners, the views remain quite focussed
on practical teaching, shaped by the everyday practice and what is required by
curriculum and what can be reached with the given class. The complex interrelation
of their experiences, the explicit knowledge and the individual views form an
amalgam determining the actual teaching practice. So often we see a reduced
awareness of structural aspects in teaching. Only few teachers stay aware of the
broadness and the whole complexity of the role of mathematics in physics beyond
the daily routine. These are mostly master teachers or teachers often teaching the
last classes before the final school leaving exam (“Abitur”).

In lower secondary school and even in high school, the teachers mainly struggle
with the students’ mathematical-technical abilities. They often see it as their first
task to ensure the necessary technical competences and procedural knowledge as a
presupposition of more conceptual aspects. But even in this stage, some teachers
emphasize that the mathematical techniques have always to be connected to the
physics. This is very important to them and relates to the so-called perceptual
knowledge which combines the mastery of procedures with conceptual insight
(Brahmia 2014). Some teachers even have the impression that intuitive physical
understanding or mathematical knowledge gets blocked during the school career.
This could be due to a higher degree of formalization or to the fact that the
interplay of mathematics and physics gets more and more involved as the curriculum
develops.

The higher the mathematical and cognitive abilities of the students are, the more
the teachers focus on structural connection between mathematics and physics or
treat deeper aspects of the interplay. However, it also happens that teachers state
that teaching structural aspects is sometimes difficult because of students abilities.
In Sect. 12.5.3.2 we have an indication that some teachers just apply technical or
instrumental teaching as it seems to be the most adequate for their students. So in
an actual classroom, it cannot be expected to conclude from the observations to
the complete background of the teacher as he or she will proceed according to the
possibilities of her students. The other way around, we also see from the analyses
that sometimes the theoretical awareness or the intentions are more structural
oriented than visible in everyday teaching.

On the whole we see the views of the teachers are shaped strongly by their
experiences. Therefore it will be necessary to develop materials that enable students
as well as teachers to fully exploit their competences in order to broaden their
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experience, e. g. by providing materials allowing to go beyond the technical level
and inviting to include more structural aspects in the teaching. From some teachers
we can learn how they try to adopt those strategies and to increase flexibility in
thinking with their students.

So the developed model of PCK proved to be suitable for catching the different
strategies of teachers with their knowledge, shaped by their experience. We found
some characterization of the teachers and their teaching, but because of the low
number of participants, these cannot be generalized.

What is open? We see that the teachers are aware of the students’ difficulties and
their attitudes. But what do students really learn and what would be possible in a
general classroom? Do students gain additional insights, motivation or knowledge
and capabilities if teachers are using patterns with more structural-oriented elements
in a more conscious way? Those are important questions which have to be answered
in future research.
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Chapter 13
A Case Study of the Role of Mathematics
in Physics Textbooks and in Associated
Lessons

Lena Hansson, Örjan Hansson, Kristina Juter, and Andreas Redfors

13.1 Introduction and Background

In relation to the teaching of physics, mathematics skills among students are widely
discussed (cf. Uhden et al. 2012). For example, the TIMSS advance study discusses
the decrease in students’ mathematics knowledge as an explanation for the decline
in Swedish students’ results in physics (Angell et al. 2011). Despite this, research
focusing directly on the role of mathematics in ordinary physics classrooms is
scarce. In Hansson et al. (2015), we presented an analysis of different organisational
forms of physics teaching: lectures, problem-solving in groups and labwork. For this
purpose, we developed an analytical model where the focus is on communicated
relations between Theoretical models, Reality and Mathematics (Hansson et al.
2015; Redfors et al. 2016). The reason for this was to make it possible to analyse
the role of mathematics in connection to how theoretical models are communicated
in relation to other entities in the teaching of physics.

Theoretical models and the complex relation between them and reality are central
for the scientific research process. Observations and experiments are by necessity
embedded in theory and therefore “theory laden” (Hanson 1958). Empirical and the-
oretical work is thus interwoven leading to construction, confirmation or refinement
of theories and theoretical models. This is an interactive process of discussions,
experiments and observations made within the science community (Adúriz-Bravo
2012; Giere 1988; Koponen 2007). Communicating this in physics class is part of
making the nature of science (Erduran and Dagher 2014; Lederman 2007) explicit,
which has been found central for the teaching of science.
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The theoretical models of physics are in most cases framed in mathematics, and
mathematics is sometimes described as the language of physics (Pask 2003). In this
sense the central role of mathematics could be viewed as part of the nature of physics
(see also Krey 2019, chapter in this book). This, in combination with the problems
students are reported to have handling the mathematics in the physics classroom in
productive ways (cf. Planinić et al. 2019 chapter in this book), makes this a central
topic for further studies. This has also previously been pointed out by, for example,
Karam (2014) who emphasises the importance of more research on “the role of
mathematics in physics from the teaching perspective – a facet rather overlooked in
current physics education research” (p. 1). It is also emphasised that mathematical
concepts are used in a different way in physics and in mathematics (Karam et al.
2019, chapter in this book). At the same time, we want to keep in mind the research
showing the importance of focusing on discussions of relations between theoretical
models and observations of the real world for students’ meaning making (Hansson
et al. 2015).

The aim of this chapter is to further develop the framework from Redfors et al.
(2016) and test the framework in a case study focused on synchronous analysis of
textbook sections and associated physics lessons. The results are discussed both in
terms of relations made between Theoretical models, Reality and Mathematics in the
physics textbook1 and by the teacher and in regard to opportunities and constrains
of the developed framework.

13.2 Design of the Study

13.2.1 Data and Context for the Study

The study is executed in the context of Swedish upper-secondary physics. Upper-
secondary school in Sweden is a voluntary school of 3 years following the 9-year
compulsory school, i.e. school years 10–12. Physics is in Swedish upper-secondary
school studied by students in the Natural Science programme and the Technology
programme. These programmes are studied by just under 20% (Skolverket 2016)
of the upper-secondary students. There is a national physics curriculum (Skolverket
2012), where aims and content are established for the physics courses. However,
there are no textbooks sanctioned by the authorities, and the teacher has a far-
reaching responsibility to plan the teaching following the aims set by the authorities.
Most teachers use textbooks in their teaching (e.g. Nelson 2006), for example,
a majority of the teachers often use the students’ textbooks when planning their
teaching (Frejd 2012; Bachmann 2005; Sánchez and Valcárcel 1999). In this chapter,
a developed model for analysis of physics teaching and textbooks is tested through a

1Gottfridsson, D, Jonasson, U, & Lindfors, T. Nexus – Fysik A & B, Malmö: Gleerups.
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synchronised analysis of two sections of a physics textbook and associated physics
lessons.

The first section is about the introduction of a chapter called “Energy” introduc-
ing students to the energy concept, the work concept, different forms of energy
(potential and kinetic energy) and the energy principle. This is covered in five
pages in the textbook, covering text, figures, images, as well as solved and unsolved
problems. The associated lesson is from the first physics course in year one in an
upper-secondary class with students from both the Science and the Technology
programmes. During this lesson, the teacher covers (more or less) the content
presented in the textbook.

The second section is about introduction and teaching of a unit on electro-
magnetism starting with electric fields, which was partly covered in the preceding
physics course. Hence, the teacher sometimes refers back to what they did in a
previous year. The unit is covered in 12 pages in the textbook, with text, figures,
images, as well as solved and unsolved problems. The associated lessons are from a
third-year class of students in the Science programme.

13.3 The Theoretical Framework

In Redfors et al. (2016), we presented and discussed the uses of an analytical model
based on relations made between Reality, Theoretical models and Mathematics,
during classroom communication. An analysis of classroom conversation was
presented in Hansson et al. (2015) where results were presented on how students
and teachers communicated relations between the three entities Reality, Theoretical
models and Mathematics (see Fig. 13.1). Hence, the focus of the analysis was on
the links made between the three entities, and the framework was used to analyse
different organisational forms: lectures, problem-solving in groups and labwork.

In this previously published model, we made distinctions concerning whether
mathematics was used in a technical or structural way (Karam 2014; Pietrocola
2008; Uhden et al. 2012). In this chapter, we present a further developed model,
where we also make distinctions within the Reality and the Theoretical model
entities. These additional discriminations evolved from the analysis presented in
this chapter but are also related to earlier work as described below.

Fig. 13.1
Reality-Theoretical
models-Mathematics in
physics teaching. (Adapted
from Hansson et al. 2015) 2

Theoretical models

Reality Mathematics
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Reality refers to objects or phenomena (or observations of them) in the real world.
Here we differentiate between Reality (R) and Reality School (RS), the latter with
two subcategories.

13.3.1 Reality (R)

Reality is used in a broad sense comprising well-known objects, phenomena and
events of which students have experiences in their everyday life. This category
includes situations such as determining changes in breaking distance if the speed
limit is changed or costs for energy in a home depending on different habits and
decisions.

13.3.2 Reality School (RSr/a)

There are two different types of Reality School in the model: Reality School-reduced
and Reality School-altered.

Reality School-reduced (RSr) is a form of “reduced reality” often encountered
in physics teaching, where factors influencing the real-world phenomenon are held
constant, minimised or disregarded, e.g. a frictionless air track to study motion. It
also encompasses phenomena only observed (or observed for the first time) during
demonstrations and labwork, sometimes through the use of complex measuring
equipment, i.e. objects and events usually not part of the students’ everyday lives.
When categorised as RSr, there is no starting from or reference to real-world
situations, but the focus is entirely on the idealized situation.

Reality School-altered (RSa) includes situations from everyday life (outside the
physic classroom). However, the given and/or sought information is something
normally not known or asked for. An example of this is when questions are asked on
how much work is done when a certain amount of force (given in Newton) is applied
when pushing a sledge. This category thus has similarities to the category Reality
in respect of the situations as such but differs in the information at hand or in the
questions asked. Thus, through the given and/or sought information, the situation
is formed in a specific way – away from Reality and instead altered into a school
(physics) reality.

There are similarities between reduced and altered reality – both are constructed
in the context of physics teaching for specific purposes different from those of the
everyday life or the life as a citizen. This is why we present them as subcategories
to the category Reality School.

Furthermore, R, RSr and RSa have been used with an internal structure dis-
tinguishing between recalled and systematically described realities following the
description in Triantafillou et al. (2016), based on Bliss et al. (1983).
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13.3.3 Recall Experience, R1, RSr1, and RSa1

The text/discussion makes reference to students’ everyday life (school) experiences.
An object or an event from everyday or school life is mentioned (often as a
motivation or background), but not explained or elaborated on.

13.3.4 Systematic Description, R2, RSr2, and RSa2

The text/discussion makes reference to a systematic description, e.g. demonstration
of an instrument’s operation, necessary conditions for an experiment or measure-
ments in everyday life (or school experience).

Theoretical models refer to a semantic view of theoretical models in physics
and concepts related to them (Hansson et al. 2015 and references therein). The
theoretical models could be formulated with or without use of mathematics. In
this chapter, we introduce a distinction between an instrumental approach and
a relational approach to theoretical models in line with what Skemp (1976)
introduced for mathematics. Johansson et al. (2016) have previously found how
an instrumental physics culture is dominating a higher physics quantum mechanics
course. In that case, this was coupled to a classroom discourse where “calculating
physics” dominated.

13.3.5 Instrumental Approach to Theoretical Models: TM1

Constituents of the theoretical model (concepts, representations) are used without
focusing on describing or motivating the theoretical model. For example, concepts
or formulas are used without making the theoretical context explicit. Instead, the
focus is on using the model for a specific purpose.

13.3.6 Relational Approach to Theoretical Models: TM2

The theoretical model with connected concepts and representations is present in the
discussion. Meaning making on a systemic level is made possible for the learners.
For example, from the textbook “We usually symbolise the field with field lines.
Field lines show how a positive test charge would move if placed in the field. Where
the electric field is strong the field lines will be closely spaced”.

Mathematics refers to mathematical concepts, theorems, representations, math-
ematical reasoning and methods. Words used in a purely everyday manner such as
“most” and “part of” are not included.
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Fig. 13.2 Depicts the
analysis framework for
relations between
Reality/Reality School,
Theoretical models and
Mathematics in physics
teaching. It is adapted from
Hansson et al. (2015) and
developed.

M-R

R-TM TM-M

Theoretical modelsTM1 
or TM2

RealityR(Sr/a)1 or 
R(Sr/a)2

MathematicsM1 
or M2

13.3.7 Technical Use of Mathematics (M1)

Technical use of mathematics indicates that mathematics is viewed as a “calculation
tool” with an instrumental use of mathematics as a consequence (Karam 2014;
Pietrocola 2008; Uhden et al. 2012). M1 is often but not always coupled to TM1.

13.3.8 Structural Use of Mathematics (M2)

Structural use of mathematics means that mathematics is used as a “reasoning
instrument” and that there is an emphasis on interpretations or consequences and
on using logical reasoning (Karam 2014; Pietrocola 2008; Uhden et al. 2012).

In Fig. 13.2 the developed framework is depicted through a schematic diagram
showing the links with the distinctions described above within each of the three
entities in the ternary perspective on physics teaching.

13.4 Results

Results from the analysis of two sections of a physics textbook and the associated
physics lessons are presented below.

13.4.1 Example 1: The Energy Principle, Work and Potential
and Kinetic Energy

The textbook covers the energy principle, work, potential energy and kinetic energy
in five pages, including tasks, and this is the start of a chapter called energy (chapter
in the textbook). Previously Hansson et al. (2015) showed how the teacher and the
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students communicated around the content of these book pages. In this chapter, we
will put those results in relation to the results from a similar analysis of the textbook.
The focus will be on relations between Reality, Theoretical model and Mathematics
(Fig. 13.2).

13.4.2 Introduction to the Energy Concept and the Energy
Principle

13.4.2.1 The Textbook

The chapter in the textbook is introduced with a qualitative description of the
energy concept, the energy transformation and the energy principle. Mainly relations
between the Theoretical model and Reality are communicated in this introduction.
Relations between Theoretical models and Reality are communicated, for example,
when the model description of the energy principle (TM2) is linked to the
description of experience from the real world (R1) (see Table 13.1).

After the introduction there is a section called “Energy types” with deeper
explanations of the introduced concepts and phenomena and where the energy
principle is covered. The energy principle (Theoretical model) is qualitatively
described without direct links to neither Reality nor Mathematics. The reader also
gets to know that different units can be used such as joule (expressed as the most
important unit abbreviated J), newton metres, calories or kilowatt hours, but the
relations between them are not discussed. The energy principle is written with words
within a frame, which marks its importance.

Table 13.1 Communicated relations between Theoretical models (TM), Mathematics (M) and
Reality (R) in the introduction of the chapter

Textbook Categories

Energy is a basic concept in all of science. At each event energy is transformed, not
only when the lights are on or cars collide but also when thoughts are thought and
buds burst. Energy is constantly converted between different forms. The total
amount of energy cannot be changed but only moved from one place to another.
Most of the energy on earth comes from the sun. The sun’s energy-rich rays heat
our planet to make it habitable. Since different parts of the earth are warming to
different extents, winds and ocean currents also occur. A small portion of the
sunlight is captured by the green plants that store the energy in chemical form.
When we and other animals eat the plants or their fruits, a part of the energy is
transferred to us so we can live.

R1, TM2
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13.4.2.2 Teachers’ Lecture

In the teacher’s lecture, she starts by telling the students that the lesson is about
energy and the conservation of energy, without explicitly mentioning the energy
principle but talking about transformation of energy in, for example, eating and
running (TM2). A student mentions the energy principle explicitly, and some others
associate energy with wind, the sun and nuclear power (R1). The teacher does
not make explicit use of the students’ examples in her explanations of the energy
principle or of energy transformation, for example, in a windmill. The relation
communicated by the teacher between the energy principle and Reality is mainly
implicit. The teachers’ introduction where she presents the content presented so far
has a duration of 5 min, and the corresponding text in the textbook is two thirds of
a page in total.

13.4.2.3 The Textbook vs Teachers’ Lecture

The text is analysed as mainly communicating relations between R1 and TM2 for
this part. The teacher, on the other hand, is only linking R1 and TM2 implicitly as
in the example mentioned.

13.4.3 High-Quality and Low-Quality Energy

High-quality and low-quality energy is the next section of the textbook. The concept
exergy is introduced and defined as the useful part of the energy and as the amount
of kinetic energy that is possible to extract from the energy form at hand (TM2, R1).
There is a description of how the usefulness often is measured in percent where the
usefulness is the relation between the exergy and the total amount of energy. A
relation between the Theoretical model and Mathematics is communicated (TM2,
M2), and it is shown how mathematics can be used structurally to reason about
high-quality and low-quality energy forms. It is taken for granted that the students
know what “the relation between” means mathematically and that they understand
the concept of percentage (“For high-quality energy forms, the part of exergy is near
a hundred percent”, TM2, M2). No part of the text in the textbook is highlighted in a
box or otherwise. The teacher does not mention high-quality and low-quality energy
or exergy in her lecture.

In summary in this section, the textbook communicates relations between TM2
and R1 and relations between TM2 and M2. The teacher, as said above, does not
deal with the content of this section.
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13.4.4 Work

In the following sections of the textbook, the concepts “work”, “potential energy”
and “kinetic energy” are dealt with in this order. Here the teacher departs from
the order in the book and deals with potential energy first, followed by a routine
problem; after that the concept “work” is dealt with followed by kinetic energy.
When all formulas are written on the whiteboard (approximately 3 min have been
used introducing the formulas), they are used to solve different kinds of problems.
The following presentation takes a starting point in the textbook, but we also do
some comparisons with communication during the teacher’s lesson where these
concepts were introduced.

13.4.4.1 The Textbook

The section of the book dealing with the concept “work” starts out with a definition
of work (Table 13.2). Here a relation between Theoretical model (TM2) and Reality
School (objects that are moved, RSr1) is communicated (TM2, RSr1 in Table 13.2).
However, the emphasis is on Theoretical model/concept (TM2). In a box (marked
with * in Table 13.2), to the right of the written definition, the word “Work”
is used as a heading, and then the correlation between work, force and distance
follows in a formula. Here a relation between Theoretical model and Mathematics
is communicated (TM1, M1 in Table 13.2). Mathematics is used in a technical way –
the reader is told how to calculate the work, but the text does not include reasons
for this. Also, there are no units mentioned for F and s, only for W. If all units were
mentioned, the logic of the formula would have been more apparent.

The book then continues with two examples of solved problems. In the first
problem, Helen helps Jonas to push start the car. She pushes the car with 400 N
for 12 metres, and then the car starts (RSa2). The questions asked are how much
work Helen uses to push the car and what becomes of the performed work. The
solution of the problem starts out stating the formula to use (the one written in a box
on the previous page) (R2, TM1), it is said that the distance (12 m) and the force

Table 13.2 Description of work in the textbook used

Textbook Categories

Work TM2, RSr1
If a force moves an object a certain distance, the force will transfer a certain
amount of energy. We say that the force is doing work. Work is denoted by Wa
Work* TM1, M1
Wa = F · s

where F is the force and s is the distance that the force operates. F and s should
always be measured in the same direction. The unit of work is Newton metre
abbreviated Nm. 1 Nm = 1 J



302 L. Hansson et al.

(400 N) are known, and then the work is calculated using the formula. This we
argue is an activity where the relation between Theoretical model and Mathematics
is in focus, more specifically with a focus on a technical use of mathematics (TM1,
M1). It is shown how the given values are put into the formula. Then it is said that
the work generates kinetic energy for the car. The next assignment is similar to the
first, with the difference that the person pulls a sledge diagonally upwards. Thus,
the component in the direction of the movement needs to be calculated. It is shown
in the book that the force needed to calculate the work is given by multiplying the
force in the cord with cosine for the angle, and this is further explained by a figure
with force arrows (M2).

In both examples, it can be said that there is a relation communicated between
Theoretical model (TM1) and Reality (RSa2). The examples are descriptions of
events that could happen in reality, but it is still an “altered reality”, a reality where
people are depicted to know forces in amounts of Newton needed to push a car or
to pull a sledge. And a reality where people, of an unknown reason (reasons are not
given in the assignment in the book), are interested in knowing how much work (in
a physics sense) they perform. In the solution to the assignment in the book, it is
not communicated how you could know whether the reached result is reasonable
or what the result could be used for. What is communicated to the reader, however,
is the central importance of being able to determine the force, i.e. an instrumental
approach to theoretical models.

In sum in the introduction to work, TM2 is emphasised in the textbook. However,
in the solved examples, the relations focused by the book in this section are between
TM1, M1/M2 and RSa2 (altered).

13.4.4.2 The Lesson

As said above the teacher deals with potential energy before she deals with work.
She does the transition through an example where she is calculating the potential
energy of a 5 kg weight and then lifts the weight from the floor to her counter and
says that work is done when you change the energy (TM1, RSr1). Then the concept
work is introduced by her writing a definition and a formula on the whiteboard and
telling the students that F and s need to have the same direction (TM1). She gives the
classical example that no work is done, in a physics meaning, when you are walking
around carrying a weight, even though you are getting tired doing so. However, she
does not work further on the link to Reality by, for example, discussing why you
are getting tired or how you can justify the choice of definition (TM1, R1). Instead
the teacher turns to showing how to do a decomposition of a vector (M1). Then
she turns to define kinetic energy as described below, after which she demonstrates
an example where a car is braking and the work done is calculated (TM1, RSa2).
This is another example of an altered reality. The large picture is that the focus of
the classroom communication is on the relationship between Theoretical models
(TM1) and Mathematics (M1). Mathematics is used in a technical way (how the
work is calculated and how you decompose a vector in components).
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13.4.4.3 The Textbook vs the Teachers’ Lecture

In summary the classroom communication has the same focus as the book (a
formula in a box emphasises how you are supposed to perform the calculations, not
why this works or how the results from the calculations are related to the reality).
The relations focused by the teacher for this section is between TM1, M1 and
R1/RSa2. Similar to the book, she communicates with an instrumental use of models
applied in real-world situations. However, the focus on TM2 in the beginning of the
section in the textbook is not present in the lesson.

13.4.5 Potential and Kinetic Energy

13.4.5.1 Textbook

After the two examples, a section about potential energy follows in the book. In this
section, a relation between Reality (R1) and Theoretical model is communicated
at first, but very fast the text leaves this relation and instead turns to a focus
on the relation between Theoretical model and Mathematics. With the help of
mathematics, a formula is derived in a structural manner (TM2-M2). Also “zero-
level” is introduced. The formula is finally placed (similar to what was described
above) in a box, a procedure that serves as a way to communicate the importance
of the mathematical shape of the Theoretical model. The goal of the text seems to
be formulas in boxes (TM1). The section about kinetic energy is structured in a
similar way. The formula for kinetic energy (TM2) is derived from earlier relations
(M2). And then also this formula ends up in a box. After that three solved example
assignments follow.

In the first example, the energy principle is used in a simple situation of adding
kinetic and potential energy of a falling stone in an altered realistic context (RSa2-
TM2). In the second example, Mats is swinging. It is told that he starts stationary
from 2.0 m above the lowest point of the ground level of the swing. The problem
is about what velocity Mats has when passing the lowest point. Several relations
are communicated in the problem and the associated solution. At first a relation
between an altered Reality (RSa2) (a person swinging) and Theoretical model
(TM2-M2) (the energy principle and the concepts potential and kinetic energy) is
communicated. This is done by starting out with the statement, referring to the law
of energy, i.e. “the total amount of energy is always the same”. It is stated that: “We
choose to put the zero-level in the lowest point of the swing”, and it is also stated
the values for h “before” and “after” and v “before”. Then the book states that the
values are to be inserted in the relation:

mghbef ore + mv2
bef ore

2
= mghaf ter + mv2

af ter

2

and by division eliminate m and finally determine vafter.
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Here to some extent, a structural use of mathematics (M2) is communicated
through reasoning about the assignment using mathematics. However also a tech-
nical focus is present, showing how values are inserted into the formula and, e.g.
how you should eliminate m (M1). Also in the third example, several relations
are communicated. In the beginning of the solution, a relation between reality and
model is communicated, followed by a focus on the model where it is also related
to mathematics as a way of reasoning (structural use of mathematics). At last the
relation between model and reality is returned to. After these solved examples, the
book continues with assignments for students to work with.

13.4.5.2 Lesson

In the teachers’ introduction of potential energy, she introduces the concept zero-
level but does not show how the formula (W = mgh) could be derived (as was the
case in the textbook). Instead she only writes the formula on the whiteboard without
giving any justification (TM1). Thus, she does not take the chance for structural use
of mathematics that the book invites to (though rather shortly). Through this way
of teaching, the teacher is, even more than the book, emphasising an instrumental
approach to theoretical models and a technical use of mathematics. The latter
is emphasised by an example (routine problem) where she puts numbers into a
formula, but due to the object being at the zero-level (RSr2), no calculation is really
necessary which was actually pointed out by a student saying that the answer is zero
due to the zero-level. The teacher writes 5 · 9.82 · 0 = 0 anyway.

In a similar way, the formula for kinetic energy is written on the whiteboard
without justifying it (TM1), while the book is deriving it. The only comment to
the formula given by the teacher is about how v2 should be understood (M1). An
example is given of how the formula can be used (TM1). The example is about
a car with the mass 1000 kg that drives with a velocity of 90 km/h. To some
extent a relation about reality (cars that drive) and the model (kinetic energy) is
communicated but only in passing. The focus is not on what the model describes
or why it could be useful to know the car’s kinetic energy but instead on how the
kinetic energy can be calculated by the use of the formula (R2, TM1, M1). That
the relation between model and reality was secondary to the relation between model
and mathematics (technical use) during the lesson was underlined by the teacher
giving an answer with four digits of accuracy. She ended the lesson with asking the
students if they had airbags in their cars and had a short discussion (about 1 min)
about force distribution depending on distance. Here a relation between Theoretical
model (TM2) and Reality (R2) is communicated.

13.4.5.3 The Textbook vs the Teachers’ Lecture

In summary, the textbook has a stronger emphasis on relational and structural
aspects of the models (TM2) and mathematics (M2), respectively, than the teacher



13 A Case Study of the Role of Mathematics in Physics Textbooks. . . 305

has. She mainly focuses on technical use of mathematics (M1) in an instrumental ap-
proach to models (TM1). Systematic descriptions of reality (R2), is communicated
in both contexts, but also altered reality (RSa2) in the textbook.

13.4.6 Example 2: Electromagnetism

This section is about textbook coverage and teaching of electric fields during
two lessons in a physics class during the third year of the Science programme.
The textbook is dealt with at two occasions in a classroom lecture (40 min)
and a problem-solving session (80 min). A discussion on links made between
Mathematics, Theoretical models and Reality in the communication during these
lessons can be found in Hansson et al. (2015). Here the focus is a comparative
analysis of textbook and teaching using the extended model presented above.

13.4.7 Electromagnetism and Electric Fields

13.4.7.1 The Textbook

“Electric fields” is the first section in the textbook of a chapter on Electromagnetism.
In the introduction to the chapter, the importance of electromagnetism in concurrent
societies is stressed – “Many are unaware of the importance of Electromagnetism in
society”. The page is dominated by a picture of a singer using a microphone and a
chain of technical apparatus utilising electromagnetism, from microphone through
CD and hard disks to loudspeakers. Generators and transformers in connection
to production and transportation of electricity are discussed. The introduction
exclusively contains references to Reality (R) and Reality School-reduced (RSr) and
Theoretical models (TM1). The links to reality comprise sound from a loudspeaker
(R1), electromagnets transforming an electric signal to sound (RSr1). Theoretical
models are used instrumentally (TM1): concepts like electric and potential energy,
magnetic fields and electricity are mentioned.

The first section after the introduction is “Electric Fields” (3 pages). It starts with
an introductory text followed by a solved exemplary problem. A representation from
a theoretical model is depicted at the top of the page. It shows examples of charges
with electric field lines (TM1). It is analysed as TM2 and RSr1 for the display
of unidentifiable objects called “plates” and “ring”. Electric fields are related to
transformer stations (RSr1) with shielded walls, but no explanations relating to the
effects of shielding in reality. The text discusses appliances where electric charges
are accelerated and directed through the use of electric fields (TM2). It is also stated
that the course covers only homogenous fields and cases where a charged particle
has a velocity component perpendicular to the field (TM2).



306 L. Hansson et al.

In the solved example, the problem is about electrons in an electron tube,
hence a connection to Reality School, but in a systematic way (RSr2) in the
formulation of the problem. The solution to the problem on the other hand does
not specify the theoretical model explicitly (TM1), and the mathematical treatment
becomes technical (M1), with no variables explained, and a bare mentioning of real
components (RSr1). However, a qualitative reasoning comparing forces generated
by gravitation and electric field strength including kinetic energy is classified as
TM2.

13.4.7.2 The Lesson

The teacher starts the lesson with a demonstration of electric fields in a parallel
capacitor. The students were shown a parallel-plate capacitor charged by a hand-
powered generator. The teacher asked the students why the spark appears, and they
concluded that the capacitor wants to equalise the charges. The voltage required for
a spark was shown and that the spark occurred more often and with less required
voltage when the distance between the plates decreased, “Is this logical?” asked the
teacher, thus directing attention to relationships between Reality School (RSr2) and
structural use of mathematics (M2). The teacher connected implicitly to theoretical
models (TM1) by calculating the field strength required for the capacitor in the
demonstration, using formula E = U/d in a structural way (M2). The analysis of
this part concludes that links were made between RSr2, TM1, and M2.

The teacher drew a parallel-plate capacitor on the whiteboard that emphasised
a theoretical model-based reasoning (TM2) (see Fig. 13.3) and asked “Will it
[the electron] move at a constant speed or accelerate? And why?” The students
were uncertain, and the teacher pointed out that there is an electric force acting
downwards but no force acting upwards and explained that there is a net force,
which will make the electron accelerate. The teacher and students’ reasoning was
now focused on the relation between Reality School (RSr) and Theoretical models
with an emphasis on a relational use of Theoretical models (TM2). The teacher
draws attention to that they now can use the formulas F = ma and (E = F/Q and

Fig. 13.3 Figure drawn of an
electron in an electric field on
the whiteboard by the teacher

– – – – – – – – – –

+    +    +    +    +    +    +    +    +    +
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write) F = EQ, noticing, “F is the force that the electron senses in the electric field”
indicating the force vector in Fig. 13.3.

13.4.7.3 The Textbook vs Teachers’ Lecture

The teacher diverged from the introduction of the section in the textbook by starting
directly with a demonstration of a capacitor, whereas the textbook begins with
students’ everyday experiences of electromagnetism (R).

The textbook illustrates field lines and makes links to both Reality and Reality
School-reduced, i.e. between electrons and charged objects (TM2-RSr1), and in
real-world applications like inkjet printers (TM1-R1). The classroom demonstration
links the theoretical constructs only to Reality School-reduced in encompassing
phenomena observed through the use of objects and measuring equipment that is
not part of the students’ everyday lives, but it treats Reality School in a systematic
way (TM, RSr2).

13.4.8 Projectile Motion in Electric Fields

13.4.8.1 Textbook

The following text is about projectile motion in electric fields (see Table 13.3).
An introductory text describes how an electric charge is influenced by an electric
field (TM2). The text relates to reality (RSr1) in comparing to the effects from a
gravitational field on an object in projectile motion. The text states that both cases
result in a path that can be described by a parabola; the analogy is not discussed or
explained (TM1, M1).

The page is dominated by a schematic figure depicting an inkjet printer (R1)
with four named objects: ink patron, charged electrode, deflecting plates and paper.
Except for the paper, the three objects are categorised as RSr2. The figure caption
explains how droplets of ink are accelerated towards the paper and directed. The
book relates to a familiar object for the students, inkjet printers (R1), and the figure
depicts through a schematic diagram how droplets can be controlled by electric
fields, represented by field lines (RSr2, TM1).

Thereafter the text describes three central components in an oscilloscope: an
electron canon, a guiding system (deflecting plates) and a fluorescent screen. The
function of the components is described in a text with references to Reality School
and Theoretical models (see Table 13.3).

The following page contains a solved problem. The problem is related to
Theoretical Models (TM2), but notice that the RSr relations above are not mentioned
in the problem. In contrast to the above, the problem has no figures or references
to reality explaining how the sought deflection and direction should be understood.
The solution uses relations not explicitly present in the text that allows space for
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Table 13.3 Text in the textbook about projectile motion in electric fields

Textbook Categories

When an electric charge is in an electric field, it will be accelerated in the
direction of the field. Perpendicular to the field the velocity will be unaffected

TM2, M2

This is similar to the situation for a projectile motion where an object is
accelerated towards the ground by gravitation but keeps its velocity parallel to
the ground. Just like the projectile motion, the path for the charge in an electric
field will be a parabola

RSr1, TM1

Figure caption
In an inkjet printer, small charged droplets are accelerated in the direction of the
paper. On the way, they pass an electric field deflecting them vertically. The
computer manages the potential between the plates so that each drop arrives
where it is supposed to

RSr2, TM1

An oscilloscope has three different components, an electron canon, a guiding
system and a fluorescent screen. The electron canon accelerates the electrons so
that they have a high velocity straightforward. The guiding system decides how
much the electrons should be deflected using the electric fields. One directs the
electrons’ motion sidewise, the other heightwise. The electron beam sweeps the
whole time from right to left since the voltage over the electric field is varied. On
the oscilloscope, you can adjust the sweep speed. At the same time, the voltage
over the other field will decide how much up or down the beam should hit the
screen. When the electrons reach the fluorescent screen, the hit point lights up.

RSr2, TM1

a qualitative reasoning about the theoretical model (TM2) and structural use of
mathematics (M2). However, the textbook’s way of presenting this formula seems
primarily to entice technical use of mathematics and formulas.

13.4.8.2 The Lesson

After the demonstration the teacher discussed projectile motions in electric fields
and solved a problem directly related to the textbook example during most of the
first lecture (see Table 13.4). The task formulated by the teacher was:

In an electric field the field strength is 200 V/m. An electron is fired into the field moving at
the velocity 2 Mm/s. The field is 15 cm long.

(a) Determine the deflection in y-direction.
(b) At what angle does it exit [out of the field] in the y-direction?

Before formulating the task, the teacher drew a figure in which an electron is
fired into an electric field. She asked the students how the electron will move when
it enters the field. The students suggested that the electron will travel in a projectile
motion, which the teacher sketched and continued (Fig. 13.4):

Teacher: The electron will move in a curve or projectile motion, along a parabolic
trajectory we might say. Compare with Chap. 1, was it? So, we must apply the parabolic
trajectory again but in electric fields. And what was important when you calculate projectile
trajectories? (TM1)

Student: Velocity.

http://dx.doi.org/10.1007/978-3-030-04627-9_1
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Table 13.4 Analysis of textbook example on electrons in an electric field

Textbook Categories

An electron enters a 15-cm-long homogenous electric field with the velocity
3.5 Mm/s. The electric field strength is 140 V/m directed perpendicular to the
direction of the electron

TM2, M2

a) How much is the electron deflected by the field?
b) What direction does the electron have when it leaves the field?

a) We start by calculating how long the electron will be in the field. We calculate
only perpendicularly to the field and denote this with index v.
sv = νv · t ⇒ t = sv

νv
= 0,15

3,5·106 s ≈ 4, 29· 10−8 s

To be able to calculate the deflection, we need to calculate the acceleration
a = F

m
= q·E

m
= 1,602·10−19·140

9,1·10−31 m/s2 ≈ 2, 46· 1013 m/s2

Then we calculate the deflection in the direction of the field according to

s = at2

2 = 2,46·1015·(4,29·10−8)2

2 m ≈ 0, 023 m
Answer: The electron is deflected 2.3 cm
b) The velocity perpendicular to the field is unchanged 3.5 Mm/s.
In the direction of the field, we get v = a·t = 2.46·1013 · 4.29·
10−8 m/s = 1,055 Mm/s
The direction we get as

tan α = ν
νv

= 1,055·106

3,5·106 ⇒ α ≈ 16, 8
0

Answer: The electron is deflected 17◦ in the electric field

TM1, M1

Fig. 13.4 An electron in an
electric field. (Figure drawn
by the teacher)

– – – – – – – – – –

+    +    +    +    +    +    +    +    +    +

y

Teacher: Velocity. Expand!
Student: In different directions.
Teacher: That’s right, x-direction and y-direction for themselves (TM1). We have

already established that it accelerated in the y-direction. How was it in the x-direction then?
Student: It is constant.
Teacher: Yes, good!

The teacher continued to write the formulas E = U/d and F = Eq before she
formulated the first part (a) of the task. Thus, appropriate formulas were given before
the task (TM1), in contrast to the book’s introduction of the task. The figure the
teacher drew illustrates the plate capacitor in the demonstration and thus links RSr2
to TM1, in contrast to the textbook example that emphasises TM2 and M2 explicitly
including the electric field.
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The teacher conducted a dialogue with the students and invited them to reflect
on the subject. The emphasis was on reasoning linked to theoretical models (TM2-
RSr2) with technical use of formulas (M1). Then the teacher continues with the next
part (b) of the task:

T: We will now determine the angle of it when it exits (the teacher marks the angle, see Fig.
13.5.) If we compare with the beginning when it ran in parallel [with the plates], what is the
angle, then, when it bends?

S: When it leaves the field?
T: Yes.

The teacher’s reasoning was directed by an instrumental use of the theoretical
model (TM1), which is limited in relations between velocity concept and tangent
vector (TM1, M1) to the parabolic trajectory. The total velocity was not talked
about as a tangent vector at different points of the parabolic path. The focus was
on components in the “x- and y-direction”.

Another student stated that they knew the velocity. The teacher agreed and drew
(Fig. 13.6) and continued her reasoning:

T: If we can find out the velocity of the [electron] in the x-direction and y-direction when it
just gets out of the field, then we can with a little trigonometry to find out the angle too; we
may call it alpha. How do we do that?

The teacher clarified their reasoning about velocity and the marked angle with an
illustration (Fig. 13.6). The teacher argued that the angle α can be determined by the
formation of a triangle where a technical representation of the problem is in focus
(M1) – instead of describing how the components of forces act on the electron using
a structural approach connected to the theoretical model.

– – – – – – – – – –

+    +    +    +    +    +    +    +    +    +

y

Fig. 13.5 An electron in an electric field. (Adjusted figure drawn by the teacher)

Fig. 13.6 The teacher’s
drawing of velocity vector
components Vx = 2 Mm/s 

Vx

Vy

V

α
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Fig. 13.7 The teacher’s
corrected drawing of the
velocity vector components

vy

vx

v

One student then suggested that they should use “acceleration times time”. The
teacher calculated vy = v0 + at = 0 + 3.5 · 1013 · 7.5 · 10−8 m/s ≈ 2,637,750 m/s
≈ 2.64 Mm/s.

T: Did you all get that? So, from the beginning when it came into the field, it had in the
y-direction the velocity 0 m/s. Then it accelerates downwards. Then, just when it comes
out, the velocity is instead 2.64 m/s.

The teacher replaced Fig. 13.6 with a parallelogram of forces (see Fig. 13.7).
Commenting “it should look like this if you’re picky”. The reasoning now related
to TM and illustrated the components of the resultant force, but in an instrumental
way (TM1).

The teacher pointed out that they can use the Pythagorean theorem to calculate
the total velocity. One student stated that they could use the tangent and the teacher
stayed with a technical approach and wrote vy/vx = tan α, 9.8/15 = tan α and
α = 22.8 degrees (M1).

When the task is completed, the teacher asked: “What use could we have for all
this? Can you think of anything, or is it hard?” The students related to their reality
(R1) and mentioned “old” TVs and inkjet printers, both of which are mentioned
in the textbook, so it is not totally clear if they are independently thinking of their
everyday lives. The teacher confirmed the mentioned applications and commented
on how electric fields are used in these two cases.

13.4.8.3 The Textbook vs Teachers’ Lecture

One may notice that there are clear differences between the textbook and the
teacher’s reasoning in relation to the first described problem. The argumentation
in the textbook is based on the existence of a field direction; the electron moves
perpendicular to the field direction, and, to make this clear, the textbook uses an
index v on the variables sv (speed) and vv (velocity). While the teacher communi-
cated the context in terms of x-direction and y-direction and made use of variables
vx and vy and emphasised that “the electron moves parallel to the plates” (RSr2)
not explicitly relating the movement to the field direction, the teacher conducted
reasoning related to a technical mathematical context (M1) and instrumental use
of Theoretical Models (TM1) in more or less directly connecting M1 to Reality
School (RSr2). Also, in the textbook’s formulation of the task, you are asked to
calculate the “direction” of the electron when it leaves the field. Thus, it makes an
implicit connection to the vector concept but leaves the interpretation of the concept
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of “direction” to the reader, enabling a more structural reasoning. In the teacher’s
phrasing, it has a more technical framing (M1). It is stated that there is an angle to
calculate with reference to the plates (see Fig. 13.5).

13.5 Discussion

In this chapter, we have described a framework for analysing relations between
Theoretical models, Reality and Mathematics. The framework has been developed
from an earlier version presented in Hansson et al. (2015) and Redfors et al. (2016).
The developed framework has been tested on textbook sections and on associated
physics lessons. The focus on relations between Theoretical models, Reality and
Mathematics in classrooms as well as textbook analysis has been rare in the research
literature. This is the case even though the communication of these relations is of
central importance for the teaching of physics and more specifically the possibilities
and constrains for a meaningful learning for students. The here presented fine-tuned
framework aims at contributing to the research field in this respect.

Using the analysis framework makes it possible, as has previously been shown,
to shed light on what and how different relations are communicated during different
kinds of physics lessons and as shown in this chapter also what and how the same
relations are communicated in physics textbooks. From this kind of analysis, we
can get information, for example, about the amount of time spent at communicating
different relations during a physics lesson. We have earlier shown how the relation
between Theoretical models and Mathematics was more frequently communicated
than the relation between Theoretical models and Reality (cf. Hansson et al. (2015)).
This could be viewed to be a problem in relation to students’ meaning making. We
also found in that study that the teacher frequently communicated a technical use of
mathematics (M1); this was the case not only in problem-solving situations (which
has been shown in previous research as well) but also during labwork and during
teacher-led lessons (Hansson et al. 2015). The analysis described in this chapter
showed that the textbook has a more pronounced structural use of mathematics (M2)
compared to the teacher. The major difference here is that the book deduces and
proves formulas, whereas the teacher mainly uses them.

In this chapter, the analysis framework has been further developed to include
possibilities to distinguish between instrumental (TM1) and relational approaches
(TM2) to theoretical models. The results presented in this chapter show that the
investigated textbook more often communicates relational approaches to theoretical
models (TM2) compared to the teacher. The teacher frequently communicated an
instrumental approach to theoretical models (TM1). This is the case when she
introduced formulas as a kind of recipe to be used to calculate quantities or solve
problems, without focusing why the formula is valid or how it is connected to other
concepts, relations or the overall theoretical model.

However, we argue the textbook invites teachers and students to such an
instrumental approach to models through, for example, its way of highlighting
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formulas. Formulas are accentuated in specific squares on the pages communicating
their importance and the formulas as the goal of the text – an instrumental emphasis
(TM1). Hence, in highlighting formulas and not the underlying theoretical models,
the textbook invites to an instrumental approach to theoretical models, and the
teacher in instances follows this path. An example is that one section of the text
(about energy and exergy), which does not result in a formula, was excluded by the
teacher in her presentation.

Furthermore, in the theoretical framework presented here, we have included
possibilities to distinguish between Reality and Reality School (including reduced
and altered reality) and between whether reality was only mentioned (recall
experience) and whether the real-world phenomenon was referred to in detail and
developed upon (systematic description). The analysis gives that when some form
of reality is referred to, it is most often a reduced reality (RSr) or an altered
reality (RSa). While the reduced reality refers to idealised labwork situations, an
altered reality refers to a reality in which people ask questions and/or know things
not normally asked for or known in an everyday situation. This is important in
relation to possibilities and constrains in relation to students meaning making. Of
course, referring to known situations of interest for students could be one way to
increase interest and the perceived importance of science. But, when the reality
referred to is an altered reality, these possibilities run the risk of being lost and
could instead have negative consequences for students. For example, in a study of
students’ perspectives on PISA science assignments, Serder and Jakobsson (2015)
show how “students’ positioning themselves as being different from and opposed to
the fictional pictured students who appear in the backstories of the test” (p. 833). We
argue that many of the reality situations discussed in this chapter (from the textbook
and from the lessons) run the same risk.

The references to Reality School differ for the two investigated courses. It is
most often Reality School-altered (RSa) for the first course (first-year class), while
in the second course (third-year class), references to Reality School-reduced (RSr)
dominate. Notice that the Reality School referred to in the second course, often, is
a systematic description (RSr2). This also applies to the teacher, who in this sense
often seems to follow the book. In the case of the introduction of electric fields in
the second course, the textbook relates to everyday reality (R), i.e. inkjet printers.
But the inkjet printer is described by a component diagram, categorised as Reality
School-reduced with a systematic description (RSr2), and the teacher takes it from
there and relates mainly to RSr2 in her effort to communicate the abstract content
of the theoretical model and link it to something more tangible, i.e. in using parallel
plates to demonstrate electric discharges, but without further reference to reality (R).

In working to introduce the electric field chapter, the teacher invites the students
to discuss relations between the introduced concepts. She interacts with the students
and in doing so induces a general discussion. However, in this she relates mostly
instrumentally to Theoretical models (TM1) and uses Mathematics technically (M1)
helping the students to find the correct mathematics and formulas. She is also,
together with the textbook, leading the students to a foremost technical use of
mathematics and instrumental approach to theoretical models for their learning
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process. An interesting example is the presentation of the case of a moving electron
in an electric field, where the textbook refers to a relational approach to theoretical
models (TM2) by focusing on the path of the electron in relation to the direction
of the electric field lines in an effort to connect a structural use of mathematics
(M2) to a relational use of theoretical models (TM2). Here, the teacher instead
focuses on the context of the problem and talks about the path of the electron
in relation to the alignment of the plates, hence linking a systematic approach to
a reduced Reality School (RSr2) directly to structural use of mathematics (M2),
placing the communication in a more instrumental way concerning the theoretical
model. This transfers the problem to a mathematical context that the students might
more easily master (cf. chapter by Planinić et al. (2019)) but does not facilitate their
understanding of the physics in context.

The developed framework has been found useful when it comes to classroom as
well as textbook analysis. The fine-tuning of the Theoretical model and the Reality
entities makes it possible to focusing different relations of interest in the specific
situation. In the case described here, we can see that the teacher has an overall
instrumental approach to theoretical models, and the book also to some extent
invites to such an approach. This is an example of how the framework could be
used for comparisons of different presentations of physics content knowledge. In
the case presented here, textbook-teacher comparisons were made, but also teacher-
teacher or textbook-textbook comparisons are of course possible. It is of course also
possible to in a specific analysis exclude the differentiations done here concerning
an entity or focus solely on relations made between the two of them. In such a
way, our intention is that the framework should enable analysis with different (but
related) focuses in the future.

13.6 Implications for Teaching

The specific results presented here could point to interesting issues to take into
consideration for textbook authors and publishers. The case described here shows
how invitations to an instrumental approach to theoretical models in textbooks
could be a path followed (and even strengthened) by teachers. In the same way,
the results presented here strengthen previous research in other contexts (e.g. Serder
and Jakobsson 2015) on the necessity to discuss consequences for students of the
everyday contexts related to in the teaching of science. In the case described here,
we mostly see reality references in respect of Reality School (reduced or altered),
which underlines the importance of this discussion also in the context of textbooks
and teachers’ presentations during physics lessons.

Even though this case study has to be followed by studies of other textbooks and
teachers, the results presented here raise the issue of how textbook authors could
strengthen the invitations to more relational approaches to theoretical models. In
the same way, teachers could be made aware of their choices and uses of textbooks.
Analysis of textbooks as well as teachers’ own practice, with the starting point
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in the suggested framework, could be a tool for teachers to shed light on when
relations between the three entities (Theoretical models, Reality and Mathematics)
are communicated and not communicated. As pointed out above, it is possible for
the teacher to focus on any combination of the three entities and stress differentiation
when that is of interest for a specific situation.

The framework makes possible comparisons between textbook and teacher
as described here but also between textbook-textbook and teacher-teacher. The
case study described here as well as in Hansson et al. (2015) could be used as
example analyses. These cases could be a starting point for preservice and in-
service teachers’ own analysis of relevant textbooks and/or lessons. It makes it
possible to analyse consequences of categorisation of statements (R1-2, RS1-2,
M1-2, TM1-2) by teachers and in textbooks for class communication. The focus
of such analyses can be on all aspects of the triangle of analysis in Fig. 13.2 or
on any combination of the eight entities described above. This kind of activities,
as part of physics teacher education and professional development, could be a way
for teachers to raise their awareness of relations communicated between Theoretical
models, Reality and Mathematics. The here presented model could be used to study
the implementation of teaching recommendations. For instance, recommendations
are described in the chapter by Planinić et al. (2019) in this book. Different ways
of addressing and linking the three corners of the triangle of analysis are likely to
promote communication and learning in differing ways for the students. Such an
awareness could be an important starting point for teachers to act to change her/his
traditional teaching focus in desirable directions.
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Chapter 14
Starting with Physics: A Problem-Solving
Activity for High-School Students
Connecting Physics and Mathematics

E. Bagno, H. Berger, E. Magen, C. Polingher, Y. Lehavi, and B. Eylon

14.1 Introduction

The interrelations between physics and mathematics in the learning of high-school
physics are manifested in several aspects of physics teaching (Sherin 2001; Bing
and Redish 2009; Uhden et al. 2012; Karam 2014; Redish and Kuo 2015). These
interrelations, used by teachers, have been conceptualized into four “phys-math
patterns,” each of which addresses different teaching goals (Pospiech and Oese
2014; Lehavi et al. 2015, 2017; Pospiech and Geyer 2016). The phys-math patterns
reflect how teachers “travel” in their teaching between the two domains and within
each of them, always starting from the physics domain. One of these patterns, the
“application pattern,” describes how teachers employ the phys-math interrelations in
problem-solving – an endeavor that occupies much of high-school physics teachers’
time and attention. Here we focus mainly on this pattern.
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Research on the problem-solving habits of high-school physics students shows
that students often start solving problems by using mathematical manipulations or
by looking for seemingly relevant formulae (Mason and Singh 2010; Kim and Pak
2002; Van Heuvelen 1991; Byun and Lee 2014; Heller and Heller 2010). Research
also indicates that a technical use of formulae may decrement the development of
students’ understanding of physics (Bagno et al. 2008; Karam 2014).

Chi and her collaborators (Chi et al. 1981) report on a fundamental difference
between how experts and novices address problem-solving. For example, they
found that novices tend to sort problems according to their surface features (e.g.,
blocks on inclined planes), whereas experts sort them according to the underlying
physics principles. Chi et al. claim that “experts in physics problem solving,
engage in qualitative analysis of the problem prior to working with the appropriate
equations . . . and . . . this method of solution for the experts occurs because the early
phase of problem solving (the qualitative analysis) involves the activation and
confirmation of an appropriate principle-oriented knowledge structure, a “schema.”
Apparently, qualitative analysis of a problem by using physics terms and principles
is an essential skill that can assist high-school physics students in narrowing the gap
between how they approach a problem in physics and how experts do it.

Here we describe the “Starting with Physics” activity, which attempts to activate
the “principle-oriented knowledge structures” mentioned above. Students are asked
to carry out an activity by focusing on the use of appropriate physics concepts and
principles together with their mathematical manifestations (e.g., graphs and their
descriptions) and to delay the use of formulas and other technical mathematical
manipulations. Our goal is to stress, in the context of problem-solving, the power
of a concise set of physics principles for explaining a phenomenon described in a
problem, before using mathematical manipulations and techniques.

Another important goal that guided us in the design of this activity is an attempt
to build a “learner-centered activity” supporting students’ learning. In this regard
we used the knowledge integration (KI) perspective on learning, (Linn and Eylon
2006), according to which learners build their knowledge when teachers stimulate
four learning processes:

1. Eliciting prior knowledge: learners become aware of their preexisting knowledge
2. Adding new ideas: learners are introduced to ideas that are new to them. These

ideas may originate from various sources such as a teacher, a textbook, a peer, or
the Internet.

3. Developing criteria to evaluate ideas: questions and tests that the learners use
to determine whether they consider the ideas as acceptable. Examples of such
criteria are whether the origin of the new ideas is reliable (i.e., based on scientific
principles) and whether contradictions exist within the ideas acquired or between
them and the ideas that are already known to the learner.

4. Sorting out and reflecting: this is a metacognitive learning process in which
learners reflect on and differentiate between their preexisting ideas and the newly
acquired ones based on specific criteria.

The four processes do not necessarily appear one after another and not always
in the same order. These learning processes formed the basis for designing the



14 Starting with Physics: A Problem-Solving Activity for High-School. . . 319

procedure through which our activity was carried out. However, many other teaching
methods can promote these learning processes (e.g., peer instruction, context-rich
problems).

The research literature reports on a large number of empirical studies, investi-
gating the relationships between designs of such teaching methods that attempt to
promote KI and learning outcomes (Linn and Eylon 2011).

We carried out a study in the context of implementing the activity in high-
school physics classes. The research in this study was aimed at examining students’
reasoning throughout the activity and their reflections regarding how the activity
contributed to their learning. In addition, we investigated teachers’ views regarding
the activity and its contribution to physics learning.

The following sections describe the activity, the study, and teachers’ views.

14.2 The “Starting with Physics” Activity

One of the main goals of physics instruction is to promote students’ “physics under-
standing,” as manifested in their ability to describe a phenomenon qualitatively and
explain it by using physics concepts and principles. However, the usual structure
of a standard physics problem allows students to have an “escape route” from this
important goal. A problem in physics often consists of a paragraph describing a
phenomenon, followed by a set of questions. Both experienced physics teachers
and physics education researchers agree that students tend not to thoroughly
read the introductory paragraph nor try to understand the problem. Instead, they
turn to formulas and mathematical manipulations that seem relevant to them,
without examining whether they are valid in explaining the phenomenon under
consideration.

The “Starting with Physics” activity was designed as follows:

(a) Students receive only the first part of the problem consisting of a textual
description of the phenomenon and the relevant mathematical information,
without any subsequent questions. Thus, they are prompted to address the
problem conceptually first with nothing to calculate.

(b) At the beginning of the activity, students are asked to divide the phenomenon
into events and to describe and explain each event by using physical concepts
and principles without using equations.

(c) Then, students are asked to list the physical concepts and principles on which
they based each event’s description and explanation.

Figure 14.1 shows an example of the “Starting with Physics” activity in the
context of electrostatics. Based on the KI perspective, we implemented the activity
in a four-phase learning cycle. The cycle consists of “individual work” in which
each student fills in the table in Fig. 14.1. In order to save class time, this phase
may be carried out as homework. This is followed by a “group work” phase
that usually takes place in class. The students work in small groups on the same
activity, evaluate their individual work, add new ideas, and reach a consensus (or
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The motion of a charged particle between charged plates

1. Individual work

Many electric systems (for example, a particle acceleration system) contain charged 
plates similar to the system shown below. 

The system contains three charged plates A, B
and C parallel to each other. The distance 
between plates A and B is different from the 
distance between plates B and C. There is a 
small hole in the center of plate B (see the 
illustration, but assume that the plates are much 
larger than the distances between them).

The attached graph describes the electric 
potential between the plates.

Consider the following phenomenon:
A negatively charged particle is released from rest at the center of plate A and it starts 
moving.
Fill in the table below according to the following:

a. If possible, divide the phenomenon into events that differ from each other
regarding the nature of the moving particles, the acting forces, and more. For 
each event indicate its starting and ending points. Use as much as possible 
diagrams, graphs, or illustrations. If needed, add rows to the table.

b. The "physics" of each event must include a description of the event and its 
explanation using physical concepts and principles (do not use equations).

c. List, in a separate column, the physical concepts and principles on which you 
based the event's description and explanation.

Events "Starting with Physics"
1 2 3 4 5 6

Start End Describe and 
explain the event 

by using 
physical

concepts and 
principles

List the 
physical

concepts and 
principles

Diagrams

Event
I

Event
II

2.  Group work
Discuss your individual work with your friends. If necessary, modify your table.
3. Whole-class discussion 
Group work is discussed under the teacher’s guidance.
4.  Individual reflection
If you were helped by the activity, describe how.

–100

100

0.25 0.50 0.75 1.00 X(m)

A B C

V(V)

–200

Fig. 14.1 The “Starting with Physics” activity
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have a disagreement). The next phase is a “whole-class discussion” in which a
representative of each group presents to the plenum the group’s consensus as well
as any disagreements; all the issues raised in the group work are discussed, under
the teacher’s guidance, and the class formulates a summary. The activity culminates
in “individual reflection” in which each student individually accounts for what he or
she has learned during the activity.

As can be seen, the design of this activity balances “problematizing” and
“structuring” two complementary mechanisms of scaffolding problem-solving:

(1) Structuring a task refers to reducing its complexity and limiting the choices
of the problem-solver. (2) Problematizing directs one’s attention to aspects that one
might otherwise overlook. Instruction should be balanced between structuring and
problematizing so that tasks will be manageable to learners yet challenging and
engaging (Reiser 2004; Yerushalmi and Eylon 2016). In our study, this activity (see
Fig. 14.1) was carried out by two experienced 12th grade teachers with 31 students.

14.3 Research on Students’ Use of Physical Concepts
and Principles in Performing the Activity

14.3.1 Research Questions

We studied students’ answers in the table, focusing on the following questions:

1. How did students in this activity use the physical concepts and principles in
describing and explaining the events in a phenomenon? (From column 4 in the
table)

2. How did students list the physical concepts and principles on which they based
each event’s description and explanation? (From column 5 in the table)

14.3.2 Methodology

The phenomenon in the activity exemplifies two apparently different events that
share the same underlying physical principles. The two events are not identical,
since in the first event the electric charge moves from a low potential to a high
potential, whereas in the second event it moves from a high potential to a low
potential. This information is conveyed by a graph (see Fig. 14.1) and leads
to differences between the description and explanation of the two events in the
direction of the electric field, the electric force, the acceleration, and the velocity
of the charge (column 4 in Fig. 14.1).

However, the list of the physical concepts and principles should be the same
(column 5 in Fig. 14.1).
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Our considerations in the content analysis of the students’ answers in the table
were based on the answers written by a top-level student (see Fig. 14.2). This student
focused mainly on the following two aspects:

1. The connections between physical concepts and principles
2. The connections between mathematics and physics

We will indicate below how the above two aspects were manifested in the
paragraph written by this top-level student.

(a) Graph V(x) has a constant slope, and therefore, the electric field is uniform.
(b) The force exerted on the particle is constant because the electric field is

constant.
(c) The electric field is directed to the left due to the higher electric potential at

plate B.
(d) Since the particle is negatively charged, the electric force acting on it is directed

toward plate B.
(e) Due to this force, the particle moves with constant acceleration, and its speed

increases.

Manifestations of the Two Aspects in the Paragraph Statement (a) in this
paragraph – Graph V(x) has a constant slope – is a mathematical statement leading
to a physical conclusion – . . . the electric field is uniform. This conclusion is
followed in statement (b) by a sequence of physical concepts, starting with the
relationship between the field and the force and then the electric charge – the force
exerted on the particle is constant because the electric field is constant.

In statement (c) the direction of the electric field is determined by referring
back to the graph (a mathematical representation) – the electric field is directed
to the left due to the higher electric potential at plate B. Next, in statement (d) an
important relationship exists between three central physical concepts (field, force,
and charge) – since the particle is negatively charged, the electric force acting on it
is directed toward plate B. Finally, in statement (e), the student relates to dynamics
and kinematic concepts and concepts within kinematics – due to this force, the
particle moves with constant acceleration, and its speed increases.

14.3.3 Findings on Research Question 1

How did students in this activity use physical concepts and principles in describing
and explaining events in a phenomenon?

The findings are based on all students’ answers in column 4 of the table in Fig.
14.1.
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1. Most of the students’ statements dealt with the two aspects mentioned
above: the connections between physical concepts and the connections
between mathematics and physics.

Students took advantage of the mathematics in the connections between physics and
mathematics to enhance their understanding of physics; they formed connections
between concepts or ideas within physics (either within a domain such as
electrostatics or between domains such as kinematics and dynamics). In this
respect, they employed what we termed “a phys-math exploration pattern,”
characterized by beginning with a certain physical phenomenon or system; then
a mathematical representation is studied, and finally, the ramifications of the
mathematical analysis for the case in hand are discussed with new physical
insights (Lehavi et al. 2015).

2. Students realized physics-related similarities between seemingly different
events.

This was reflected by the fact that most students used the same concepts and
principles in describing the two events. Moreover, the findings regarding their
individual reflections, described below, indicate that they were cognizant of this.

3. There was a progression from the description of the first event to that of the
second one.

About 70% of the students described and explained the second event, in a more
general manner than the first event. This finding was more frequent among top-
level students: The events are similar; however, the directions of the forces are
opposite.

14.3.4 Findings on Research Question 2

How did students list physical concepts and principles on which they based each
event’s description and explanation?

The findings are based on all students’ answers in column 5 of the table in Fig.
14.1

1. Most of the students used the same principles for the two apparently
different events.

In most of the students’ tables, the list of the physical concepts and principles was
the same for the two events. Some of the students did not even bother to write the
same concepts and principles again for the second event. Some left the relevant
box in the table empty and noted that it should be the same. Further support
for this finding comes from the “whole-class discussion” in one of the classes.
When the classroom summary was formulated under the teacher’s guidance, the
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students suggested leaving the box of the concepts and principles for the second
event empty, since it is identical to that of the first event.

2. Some students summarized, in the second event, the whole sequence of rea-
soning by a concept map representing the connections between underlying
physical concepts and principles (typical of top-level students).

This is exemplified in column 5 of Fig. 14.2. In addition, this particular student also
described the acceleration by representing it in a graph.

14.4 Research on Students’ Views on the “Starting
with Physics” Activity

14.4.1 Research Questions

1. How did students, in their individual reflections, refer to the goals of the activity
and its contribution to their learning?

2. What congruence can be found between the students’ individual reflections and
their use of concepts and principles in performing the activity?

14.4.2 Methodology

The data for this analysis originates from students’ individual reflections on the
activity.

Whereas the first part of the activity involved team learning and whole-class
discussions, the individual reflection required students to report on what they
had learned from the activity. In order to enable the students to come up with a
variety of ideas, the individual reflection was phrased in an open manner: “If you
were helped by the activity, describe how.”

We started the analysis by dividing students’ reflections into statements. All
together, we identified 50 statements. In the analysis, we looked for congruency
between students’ reflective statements and their answers in the tables. Accordingly,
the analysis was guided in a top-down manner and referred to the following:

1. Reflections about connections and their congruence with the ones students wrote
in column 4 of the tables

2. Reflections about physical relationships and their congruence with the ones
students wrote in column 5 of the tables

3. Other ideas that students brought up

Note that some of the statements provided information on more than one of the
three foci of reflection.
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14.4.3 Findings on Research Questions 1 and 2

1. Reflections about connections: Of the 50 reflective statements, about 50% dealt
with connections. The different types of connections that were found in column
4 of the tables were also found in students’ reflections.

The following are some examples:

• Connections between physics and mathematics: About 25% of the statements
dealt with the ways by which the students understood the physical meaning of
the mathematical representations.

– I understood that the slope of the graph can also indicate whether the field is
constant.

– I understood that the gradient is the derivative of the potential.
– The activity helped me understand the meaning of the formula: E = −ΔV/Δx.
– The activity helped me mainly in better understanding graphs and in relating

to and connecting between a graph and an event.

• Connections between concepts or ideas within a physics domain and/or
between physics domains: About 20% of the statements dealt with different
aspects of physical connections.

– It helped me in better understanding the relationship between distance,
potential, and the field.

– I understood that the field is the slope of the potential.
– It helped me understand how the potential affects the forces acting on a

charged particle.
– It clarified for me that a relationship exists between the potential, the field, the

force, the acceleration, and the velocity.

2. Reflections about physical principles: About 20% of the statements dealt with
physical principles resembling those we found in column 5 of the table.

• It helped me to better understand the motion of a charged particle in an
electric field.

• It clarified for me that a relationship exists between the potential, the field, the
force, the acceleration, and the velocity.

3. Reflections dealing with metacognitive issues: About 50% of the statements
dealt with different types of metacognitive issues:

• Understanding the goals of the activity and how they are promoted by its
structure:

– I was helped by the activity. I now better understood the material that we
learned and how one can describe and analyze better an exercise before
starting to solve it.
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– Yes, I better understood the theory as well as interpreting and understand-
ing a graph.

– Yes, the activity enhanced my understanding of how many events and parts
are in a problem and what happens to the particle in each part.

• Promotion of various learning capabilities:

– It underscored the rule that one should always check the given information
in order to verify what really occurred.

– How to analyze a situation according to a graph of V vs. x and what
consequences can be derived from this graph.

• Realizing the relationships between the studied topics:

– Yes, the activity summarized for me the materials studied and connected all
the relevant topics.

14.5 Summary of Research on Students

In studying students’ use of concepts and principles in the activity, we found that
the activity achieved its goal: students indeed engaged in physics during the activity
rather than “jumping” to formulae and technical mathematical manipulations. Most
of their statements actually dealt with various types of connections: the connections
between physical concepts and the connections between mathematics and physics.
We also found that students managed to describe the two apparently different events
similarly and some of them even provided a more comprehensive and general
description in the transition from the first event to the second one.

In studying students’ views concerning the activity, we found that students,
in their individual reflections, mentioned explicitly the formation of connections
between physics and mathematics, between concepts or ideas within a physics
domain, and/or between physics domains. They also referred to the important
role of physics principles in describing events. Interestingly, we also found in
students’ reflections different types of metacognitive issues such as how the activity
contributed to their learning capabilities.

14.6 Teachers’ Reports on Using the Activity in Their
Practice

Two important questions are to what extent and how is this activity useful for
teachers in their practice and what did teachers think about its contribution to
learning physics. We had an opportunity to examine these questions in the context
of professional development programs for teachers in which they were introduced to
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several “learner-centered” activities. They implemented the activities in their classes
and brought materials from their classes (such as students’ answers in responding
to questions on the activities) for collaborative reflections with their peers. This
“evidence-based” approach is a powerful method for teachers’ learning and impacts
teachers’ practice (Berger et al. 2008; Harrison et al. 2008; Eylon et al. 2008).

We audiotaped the discussions and also interviewed several teachers. Most
teachers rated the “Starting with Physics” activity as the highest one. The teachers
referred to both the physics learning aspect and to various phases of the activity.

A common finding is that the teachers found that the activity contributes to their
practice and to students’ learning of physics. They also reported the importance of
carrying out the different phases. In addition, their reports indicate that this activity
can be used in various formats and in different physics domains (e.g., mechanics,
electrostatics), and therefore, it provides ample opportunities for teachers to use it in
their practice on a regular basis. The following are some examples from reports of
three teachers who participated in these professional development programs: Ella,
Ziva, and Tibi (all pseudonyms).

Ella became convinced that the activity has a real impact on her students’ ability
to relate physical principles to the events in a problem. She also pointed out that each
of the phases has its own importance. In her words: “In the individual work, each
student is forced to expose his or her own knowledge, whereas in the group work,
they learn from each other; in the class discussion, the teacher helps them to correct
mistakes that are found during the activity.” Ella also reported that, “Decomposing
a complex situation into several events and dealing with each of them separately
simplifies the activity for most of the students.”

Ziva was very enthusiastic about this activity as well. She uses it in her classes
on a regular basis. In order to save class time, she usually asks her students to
perform the individual phase at home. In an interview held with Ziva, she said: “This
activity, which I am so attached to, no doubt caused a new language to develop
in my classes. This language includes, for example, the term ‘event’. This word
is now familiar to my students in the context of problem solving. I find myself
solving with my students complex problems by decomposing them into their events.
I even started to include tasks such as ‘decompose the problem into its events and
give the event an appropriate title’ in my exams. Ninety percent of the exams are
better organized now. I think that this organization has to do with my explicit
request to relate to each event separately.” Ziva claimed that the activity enables
her to emphasize the common underlying physical principles of apparently different
problems: “Usually I spend a whole lesson solving each of the very similar problems
I gave for homework. My students insist on it. With this activity, they leave me alone,
since they realize that you can solve many problems by using the same ideas; and it
serves as a supporting framework for problem solving in physics.”

Another teacher Tibi reported that in analyzing his students’ worksheets he found
that the group discussions had greatly contributed to students’ understanding. He
also said that in the “whole-class discussion” phase, his students easily realized the
similarity between this electrostatics problem and other problems from mechanics,
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having the same underlying principles. He suggested that it is necessary to carry it
out with students several times in order to bring about its habitual use.

Indeed, in an interview held with Tibi, several years after the professional
development program, he said that he uses the activity regularly in his classes in the
following format: he invites students to write on the blackboard their descriptions
of the events, and he encourages others to justify the descriptions. Tibi also said that
he encourages his students to reflect on the activity and to express explicitly what
ideas they have learned during the activity and what still remains unclear. In his
words: “Describing the underlying physics of the problem, before they start with the
formulas and going back to the physics after they have finished with the formulas,
is so important. This resembles debugging.”

We also found other teachers’ views that were similar to those illustrated here.
Teachers used the activity in a wide range of formats that they found were feasible
and useful for their students.

14.7 Discussion and Implications

In this paper we described an activity that aims to promote students’ ability
to describe and explain a phenomenon qualitatively by using physical concepts
and principles rather than engaging in technical mathematical manipulations. The
“Starting with Physics” activity was very effective in activating “principle-oriented
knowledge structures” (Chi et al. 1981). Instead of technically misusing the phys-
math relationships, students focused on physics concepts and principles and their
relations to mathematical aspects.

Research on implementing the activity in physics high-school classes indicated
that in carrying out the activity, most of the students managed to describe the two
apparently different events similarly. They referred to various types of connections
between physics concepts and principles and connections between physics and
mathematics. Furthermore, some of the students’ responses may indicate that they
use mathematical ideas (e.g., the slope of the electric potential as an indicator of
the electric field) rather than technics when analyzing a physical event. Such a
perspective (an exploration phys-math pattern rather than an application one) was
found to characterize more expert teachers (Lehavi et al. 2015). This positive finding
may encourage further research on examining in detail the above described activity
and models for its implementation in frameworks such as professional learning
communities of teachers.

In their reflections the students explicitly mentioned different types of connec-
tions as well as the role of physical principles in describing events. They also
referred to metacognitive issues. In particular, students mentioned the rationale
underlying the activity’s design and its important contribution to their learning. In a
more detailed analysis of students’ actual work in the table and their reflections (not
reported here), we found congruency between their answers and their views. Some
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students even suggested that activities of this kind should be encouraged by giving
them extra credit.

This activity was highly appreciated by physics teachers. They claimed that
it emphasizes the common underlying physical principles of apparently different
problems and supports problem-solving in physics. However, it is necessary to carry
it out with students several times in order to bring about its habitual use. Since this
activity is generic, it is suitable for many standard A level physics problems. We
already have a large pool of problems in the format of this activity filled out by
teachers and tried out by many students.

Several directions can be explored in future research: What can be learned from
the data that students bring from the individual work to the peer discussion and
from the discourse that follows? How do students evolve in their ability to fill in the
tables in the activity correctly and exhaustively (i.e., use properly all the relevant
concepts and their interrelations)? What impact may such an activity have on low
grades students?

Such studies can enable one to better understand the underlying mechanisms
leading to student and teacher learning in the context of this activity.
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Chapter 15
Taking the Phys-Math Interplay
from Research into Practice

Yaron Lehavi, Roni Mualem, Esther Bagno, Bat-Sheva Eylon,
and Gesche Pospiech

15.1 Introduction

15.1.1 The “Phys-Math” Interplay

Although physics and mathematics can be regarded as autonomous distinct
disciplines, physics, since its modern evolution, has been considered to be heavily
interrelated with mathematics. Hence, as students’ learning of physics evolves
with age, they become increasingly more acquainted with this Phys-Math interplay
and its many facets and thus encounter its complexity and unique features. This,
as was shown from research, presents difficulties for many students at various
levels. Current research indicates that learners, at different ages and levels, lack
the ability to construct the mathematical models of physical processes or to
describe the physical meaning of mathematical constructs. Bagno et al. (2007)
found that high school students face difficulties in describing the physical meaning
of formulae. Interestingly, difficulties in constructing equations to match situations
described in words were also found at higher learning levels (engineering majors)
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(Clement et al. 1981). Rebmann and Viennot (1994) discussed the difficulty of many
university physics students in applying and interpreting algebraic sign conventions
consistently in a variety of topics.

Research in the context of DC circuits showed that skills in correctly using
mathematics in problem-solving do not guarantee proper qualitative reasoning by
both high school students and their teachers (Cohen et al. 1983). Baumert et
al. (2010) have shown that teachers’ mathematical knowledge highly reflects the
quality of their explanations.

In the past, mathematics within a physics education context was mainly examined
within the context of problem-solving (Bagno et al. 2007; Redish and Smith 2008).
However, the above-mentioned findings may indicate that there is more to it and
that the context of physics teaching involves an interplay between physics and
mathematics, which is worthy of being the subject of research in the context of
physics education. Indeed, some researchers pointed out that there is a blending of
conceptual and formal mathematical reasoning during the mathematical processing
stage (Kuo et al. 2013; Hull et al. 2013).

In this respect, our previous studies on expert high school physics teachers’ views
with regard to the “Phys-Math” interplay and the ways by which they implement it
revealed that they employ specific paths in their teaching strategies when navigating
back and forth between the two domains. Our findings indicate that teachers practice
the use of Phys-Math interplay in order to foster different teaching goals. When
following such practice, the teachers employ different specific “patterns” that follow
different “steps” between physics and mathematics and within each domain. Each of
these patterns serves different teaching goals in the general PCK framework (Lehavi
et al. 2013, 2015, 2016a, b). We have identified four such patterns, each of which
serves different teaching goals as well as practices (Table 15.1).

Here we will focus on the construction pattern and we will exemplify two Phys-
Math teaching strategies that are aligned with this pattern:

Table 15.1 Phys-Math patterns, teaching goals, and teaching practices

Pattern The teaching goal The teaching practices

A. Exploration To demonstrate how Phys-Math is
used to explore the behavior of
physical systems

Exploring, within mathematics,
ramifications for the physical system:
borders (of validity, of
approximation), extreme cases,
among others

B. Construction To demonstrate how Phys-Math is
used in constructing a model for
physical systems

Constructing and developing (from
experiments or from first principles)
mathematical tools to describe and
analyze physical phenomena

C. Broadening To demonstrate how Phys-Math can
be used in broadening the scope of a
physical context

Adopting a bird’s-eye view and
employing general laws of physics,
symmetries, similarities, and
analogies

D. Application To demonstrate how Phys-Math aids
in problem-solving

Employing already known laws and
mathematical representations in
problem-solving
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(A) A strategy according to which students employ visual representations of
processes and arrive step-by-step from a description of a phenomenon to its
mathematical representation. This strategy, called Visual Mathematics (VM),
will be demonstrated here in two contexts: mechanics, where it was already
shown to be successful (Mualem and Eylon 2010), and in the context of
teaching energy.

(B) A strategy by which students construct their mathematical representations
based on empirical results. We will demonstrate how formulae describing a
change in energy (its decrease or increase) in a specific process that follows the
principles laid down by Joule, in his famous mechanical equivalent of the heat
experiment, can be constructed from experiments.

15.1.2 Construction Pattern Strategy I: Visual Mathematics

The Phys-Math interplay, previously described, can be regarded as the bridge
between qualitative thinking and mathematical quantitative thinking with regard to
a given physical situation. Students first encounter this challenge at the junior high
school (JHS) level when they are asked to employ Newton’s laws in addressing real-
life situations. Here we will describe a strategy designed to guide the students in
predicting and explaining everyday phenomena and situations using tools of visual
representations and Visual Mathematics (in the form of vectors and free-body force
diagrams).

The need to develop a teaching strategy in order to assist students in developing
mathematical representations of physical situations is based on various studies
indicating students’ difficulties in this aspect (Hake 1998; Minstrell 1983; Redish
1999; Halloun and Hestenes 1985; McDermott 1984).

It was suggested that mathematics can even inhibit students’ qualitative under-
standing in these domains. It was demonstrated that many high school students use
a “Plug and Chug” technique: they read the question, they search for the correct
mathematical formula and perform the needed manipulation, and finally, they check
the solution in the back of the textbook.

Consequently, many physics education researchers emphasize the importance
of acquiring some qualitative understanding of basic concepts in physics as early
as during middle school and suggest that these concepts be taught within familiar
everyday contexts (Pugh 2004).

15.1.2.1 The Conceptual Framework

The Visual Mathematics (VM) strategy in the context of introductory mechanics
at the junior high school (JHS) level was developed in order to enable students
to analyze everyday situations by using physical terms and applying a qualitative
understanding of Newton’s laws. It also aims at changing students’ interest in
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physics and their views regarding its importance. In order to apply the VM strategy,
we chose a systemic approach to teach mechanics which focuses on the concepts of
interaction and systems.

15.1.2.2 The Systemic Approach Used to Teach Newton’s Laws

The systemic approach begins with the concept of “interaction,” recommended by
several physics educators (Reif 1995; Karplus 2003), and emphasizes the concept of
a system. Later, the concept of force and Newton’s third law are introduced, arriving,
finally, at the laws of motion (Newton’s first and second laws). At the first stage,
the students are encouraged to analyze the interactions between components of the
entire system before focusing on a specific object. This approach is especially useful
in analyzing complex situations, as well as ill-defined problems that characterize
authentic situations familiar to students.

The VM strategy, corresponding to the systemic approach, provides a method to
subdivide a problem-solving procedure into simple successive steps that are easy
to follow. By following these steps, the students strengthen their understanding of
how Newton’s laws should be applied to analyze a physical situation such as that
of a donkey pulling a wagon and how such an application leads to constructing a
mathematical model of a mechanical phenomenon.

Next, we will describe and exemplify the VM strategy as it was used in teaching
Newton’s laws and then demonstrate how it can also be implemented in teaching
energy.

15.1.2.3 Applying the VM Strategy in Teaching Newtonian Mechanics

The VM strategy consists of the following sub-step instructions:

(A) System characterization:

A1. Illustrate the situation by a block diagram in which the blocks represent
the components of the system.

A2. Represent (via a table) all of the interactions between objects within the
system.

(B) From systems to forces:

B1. Mark all the pairs of forces and the direction of each force in the block
diagram using the table of interactions.

B2. Select an object and all the forces (represented by arrows) that act on it
using the block diagram. Indicate for each force the object that exerts it.

(C) Forces and motion (applied repeatedly to each object chosen in B.2):

C.1 Assign a magnitude value to each force (depending on the arrow’s length)
according to the given situation and Newton’s first or second law.
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C.2 Write down the proper equations for the given situation.

Let us demonstrate the VM strategy for a situation in which a car pulls a wagon
but they are not moving. The students are asked to explain why the car is not moving.
The steps of the VM strategy are illustrated below (Fig. 15.1).

In the first step – a physics step – the students are asked to represent a real-
life situation by a block diagram and then describe it in an interactions table.
The sub-step B.1 emphasizes Newton’s third law (N3) using schematic vector
representations of the block diagram – a blending of physics and mathematics.
When proceeding to step B.2, the students are asked to ensure that all the forces
that act on the selected object (car) appear and they must indicate, by marking them,

Fig. 15.1 The full Visual Mathematics strategy. Note that the order of the blocks in the block
diagram corresponds to a real situation
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Fig. 15.2 The VM strategy for mechanical problems

the objects that exert each of these forces – again a Phys-Math combination. The
relative magnitudes of the forces that act on the object from the different interactions
are considered in step C.1, thus reinforcing the quantitative nature of the Phys-
Math interplay. Finally, in step C.2 the students arrive at the corresponding formal
representation of Newton’s laws of motion.

This strategy, which encourages students to distinguish between forces and
motion, enables the students to link, via Newton’s second and first laws, between
the two. It also fosters students’ mathematical formulation of complex situations
by (a) deducing forces from motion conditions as described above; (b) deducing
motion characteristics from a force diagram; and (c) predicting, by using Newton’s
laws, what will happen in a situation, by observing the outcome and explaining it
(POE – Predict, Observe, and Explain). In our example, the wagon motion condition
is given (it does not move) → hence, the net force along each axis should equal
to zero → Newton’s first law dictates that the arrows along each axis should be
of equal length in opposite directions →∑

F = 0.1 One can see how the VM
strategy leads students to go, step-by-step, from the phenomenon’s description to
its mathematical formulation. Each of these steps demonstrates how physics and
mathematics are interrelated and how an understanding of mathematical concepts
can enhance students’ understanding of physics.

Figure 15.2 summarizes the VM strategy employed for using Newton’s laws in
solving mechanical problems.

1Vector notation was left out due to the student’s age.
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15.1.2.4 The Teaching Approach

The VM strategy requires a specific teaching sequence consisting of presenting the
conceptual framework and the qualitative strategy in a combined manner. During
the teaching process, several selected situations, illustrated as caricatures (see Fig.
15.1), are analyzed several times. The students carry out an analysis corresponding
to the conceptual level that they have reached, until they can perform the complete
analysis and can employ all the concepts learned in the program (a spiral analysis).

Some cases are chosen to motivate the introduction of additional concepts
necessary to analyze the situations, using the strategy as a platform for introducing
new concepts (e.g., friction).

The following example illustrates how this Phys-Math interplay process enables
students to gain meaningful learning even when they have not yet studied all the
principles and basic concepts: Consider a situation described below (Fig. 15.3).
Before introducing friction, the force diagram is constructed as described in (a).
This diagram leads to the conclusion that the dog should move to the left, which is
inconsistent with the actual situation. This apparent inconsistency creates the need
to introduce friction (b).

Fig. 15.3 A partial force diagram leads to inconsistency with the actual situation, hence forcing
the addition of friction
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Fig. 15.4 A small balloon is allowed to move along a straight line when the air filling it is released.
Explain why a half-filled balloon is not moving, whereas a fully filled balloon does

15.1.2.5 Visual Mathematics and Problem-Solving

In a previous study, the teaching approach described above was found to foster
JHS students’ problem-solving performances (Mualem and Eylon 2010). This study
examined how the teaching method contributed to students’ ability to explain and
predict phenomena by employing Newton’s laws. The study encompassed pre- and
post-knowledge questionnaires, administered to junior high school (JHS) (n = 460)
and pre- and post-interviews with students (n = 69).

The findings indicate that there was a significant improvement in students’
performances in providing explanations and predictions with regard to given
phenomena. Moreover, the gain in students’ performances in solving Force Concept
Inventory (FCI) items sometimes exceeded that of older and more experienced
students.2

When reexamining the research findings from a Visual Mathematics’ point of
view, one may gain an additional insight for new possible research questions that
might rise from the new VM point of view. Consider, for example, the following
transcript, extracted from a pre- and post-instruction interview with a typical ninth
grader, who tackled the following question: Predict and explain what will happen to
the balloon in Fig. 15.4 when the air is released from it.

In the interview before the instruction, the student answered: “The balloon will
go this way (left) because the air that is released is pushing it.” Then, the student
was asked to explain why a half-filled balloon will not move. The student’s answer
was “There is not enough power now so the balloon is not moving.”

In the interview after the instruction, the student used physics terms and force
diagrams to explain the situation: “Because there is an interaction...the air exerts a
force on the balloon this way (points to the correct direction). It will move if the
pushing force is greater than the friction force . . . .”

And when the student was asked “Suppose you release the balloon but it doesn’t
move?” His answer was “the friction force can exert a force up to a certain

2This was reported by Redish et al. for university-level students.
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magnitude and when you have a larger magnitude the object will move . . . but
here this didn’t happen . . . so the balloon didn’t move.”

Whereas in the pre-interviews the student exhibited only intuitive reasoning,
in the post-interviews he also used physical terms and force diagrams, namely, a
physical language. This student, like many others in the research, exhibited a more
expert-like performance.

In addition to this improvement, the student also exhibited an ability to provide a
quantitative judgment of the situation by comparing the magnitudes of the forces
and canceling out their total sum. This example clearly demonstrated that the
student acquired a new proficiency: an ability to examine phenomena by employing
an intuitive mathematical point of view – a clear Phys-Math skill. Such a gain
encouraged us to adapt Visual Mathematics for a new context: teaching energy.3

15.1.3 Applying a Visual Mathematics Strategy for Teaching
Energy

In this section we will demonstrate how the Visual Mathematics strategy can be
applied to contexts other than mechanics by showing how it could be adapted in the
context of teaching energy.

Since there are many approaches to teaching energy, we will first describe
the one for which we adapted the VM strategy – a common approach used in
our schools. We will then outline how the VM strategy can be used in order to
arrive at a mathematical formulation of energy considerations with regard to certain
phenomena.

15.1.3.1 Background: The Energy Change Approach

Energy poses a great challenge for curriculum designers, who attempt to arrive at
coherent and consistent teaching, since its meaning and special language are far
from being agreed upon (Bevilacqua 2014; Lehavi and Eylon 2018). This is mostly
manifested by the lack of a consensus with regard to what is energy and what is
meant by energy types/forms, conversion/transformation, transfer, and conservation.
From a scientific perspective, science emphasizes the changes in the value of energy
in analyzing processes which, unlike the value of energy itself, can be absolutely
determined.4

Thus, a change in the quantity of energy is measurable and thus, it is of physical
importance (Reif 1967, p. 202; Reif 1965, p. 129; Quinn 2014, p. 18).

3This adaptation was not yet tested.
4The value of energy does not appear in the first law of thermodynamics – only its quantitative
changes.
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This equivocal nature of energy led us to construct an approach that focuses on
processes and the quantitative change in the energy values that can be attributed
to them, rather than on the concept of energy as it describes a static state (Eylon
and Lehavi 2010; Lehavi et al. 2014; Lehavi and Eylon 2018). This approach
enabled us to develop a spiral, coherent, and consistent curriculum for teaching
energy from the seventh to ninth grade in Israel. The resulting curriculum employs
only a quantitative description of changes in energy – its increase or decrease –
in providing meaning to the traditional energy vocabulary (energy “types/forms,”
“transfer,” “transformations,” and conservation). According to this interpretation,
the usual terms height energy, elastic energy, and kinetic energy, among others,
do not represent different “energies” but, rather, provide labels that can remind
one of the different types of processes through which the energy of an object has
been increased or decreased. The quantitative nature of the energy change approach
motivated us to try to integrate the VM strategy within it.

15.1.3.2 The Didactics of the Energy Change Approach

From a didactic perspective, the energy change approach aims at drawing students’
attention to the following5:

I. Systems and various processes occurring within them and between them.
II. The fact that some systems have a unique feature: changes within their borders

seem to be never correlated with changes outside their borders (isolated
systems).

III. The fact that processes can be characterized quantitatively by changes in certain
observable/measurable variables.

IV. The fact that changes in the variable values occur simultaneously and, for some
variables, in an opposite direction.

V. The fact that temperature change accompanies all processes and therefore it
can be used (jointly with a standard body) to define an entity (energy change).
Thus, the measured change in energy attributed to different processes enables
one to compare quantitatively between them.6

VI. The fact that an energy increase/decrease can provide the traditional vocabu-
lary (energy “types,” “transfer,” “transformations,” and conservation) with a
quantitative interpretation.

These aspects of energy, and especially the last one, suggest that Visual Mathe-
matics has the potential to significantly improve the “energy change” approach for
teaching energy.

5This order is not compulsory.
6This follows Joule’s approach, according to which one can attribute a measurable quantity for
different processes by the same operation: measuring the maximal change in the temperature of a
standard body that each process can cause.
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15.1.3.3 Employing Visual Mathematics in Teaching Energy Change

The Visual Mathematics strategy is based on the idea that one of the tools used to
correlate physics and mathematics is a symbolic visualization of physical concepts.
In VM this idea is used in such a way that the visualization also has quantitative
features and therefore lends itself to mathematical manipulations. A good example,
which was demonstrated above, is the arrow’s representation of force.

With regard to teaching energy concepts, the VM strategy aims at systematically
structuring energy change as a quantitative, measurable concept that lends itself to
mathematical investigation. Similar to the case of mechanics, the energy change
approach emphasizes the concepts of system and interactions. However, an energy
description of phenomena differs from the Newtonian description in a few important
aspects: (A) The interactions do not necessarily involve forces; (B) the effect of the
interactions on all the interacting objects cannot be separated (if energy conservation
is considered); (C) the energy description focuses on processes rather than on
situations; (D) it may involve the surrounding of objects (e.g., air or even empty
space); and (E) the spatial arrangement (up-down, left-right, among others) is not
relevant (energy is not a vector). These differences require some adaptations in
employing the VM strategy and its symbols. For example, following aspect (B)
the interaction arrows here are double headed. We also added symbols for processes
and energy increase/decrease.

The VM strategy adapted for energy teaching will adhere to the following
sequence of steps:

1. Tell the “story” of actual events.
2. Choose the system of interacting objects.
3. Mark the arrows that indicate the interaction(s), and add to them the observ-

able/measurable changes.
4. Describe the process by the changing variables.
5. Add arrows of energy increase/decrease.
6. Relate energy quantitative changes (based on empirical results such as those

described in the next section) to the observable characterizing variables.7

7. Add formulae to each energy increase/decrease (use the plus/minus signs).
8. If the system is isolated, sum the formulae to zero.

Figure 15.5 illustrates how such a strategy can be applied to the process of light
absorption.

As one can see, some of the representations are directly borrowed from the
Newtonian VM strategy, whereas others have been adapted or added. For example,
objects are represented by blocks in both cases; the length of an arrow as an indicator
of force magnitude is replaced here by the length of a wide arrow that indicates
the magnitude of the energy change (its increase or decrease). The zero net force

7This means that for each change in a specific variable, the students will be able to relate to the
corresponding change in the amount of energy. No formula is required at this stage.
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Fig. 15.5 A full description of a derivation of a mathematical representation of energy conserva-
tion

required by Newton’s first law is manifested by the zero net change in energy
dictated by the energy conservation law.

The idea to begin from a phenomenon and construct step-by-step the mathemati-
cal formulation is maintained here similar to the Newtonian case. Here the idea of a
system and its boundaries are put forward, keeping in mind the energy conservation.
After arriving at the law of energy conservation, it can be used, similar to Newton’s
laws of motion, as a monitoring tool: whenever this law is doubted, the students are
encouraged to rethink their analysis of the phenomenon at hand and check whether
they left out some process and its corresponding change in energy. The full energy
change diagram may help students arrive at the energy conservation formula.8

8Bear in mind that, according to the teaching approach, the value of the energy change correspond-
ing to each process is experimentally predetermined.
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15.2 Construction Pattern Strategy II: Constructing
Formulae from Experiments

15.2.1 The Phys-Math Didactics of Joule’s Experiment

As is well known, James Prescott Joule’s experiments enabled him to find quanti-
tative relationships between temperature change and other phenomena: electrical,
chemical, and mechanical (Joule 1850). These experiments allowed him not only
to generate a conceptual unification of various phenomena, otherwise considered
to be disconnected, but also to provide a formal mathematical description of the
relations he discovered. These principles of Joule’s approach, which provided the
grounds for our understanding of the concept of energy change as a measure of
processes of different types, can assist teachers in justifying the use of the language
of energy in analyzing phenomena that belong to different domains of science. The
great importance of Joule’s conclusion with regard to the generality of his standard
measure of different phenomena and the corresponding mathematical representation
renders reproducing his main empirical conclusions in a teaching context highly
desirable.9

From a science education perspective, the inclusion of Joule-like experiments
follows the call to present energy as a measurable quantity (Millar 2014, p. 196).
Thus, the energy change approach described above follows Joule’s spirit and uses
the heating phenomenon as a standard against which one can compare the results
of measuring different processes related to disparate phenomena. Specifically,
performing an experiment similar to Joule’s famous paddle wheel experiment can
demonstrate that (A) a mechanical process – a height decrease – could be regarded
as a heating phenomenon and thus equivalent to other such phenomena and (B)
measuring the temperature rise in such an experiment can result in mathematical
formula.10 A very simple device enabled us to relate quantitatively, through the
process of heating a “standard” body, a change in energy to changes in the variables
that characterize the change in height. The results of such an experiment were used
to arrive experimentally at the known mathematical relations between the change in
the amount of energy and the changes in such variables (Lehavi et al. 2016a, b).

As described above, the Phys-Math didactics follow certain tracks that involve
making leaps between physics and mathematics. We will present here how such a
process was presented to junior high as well as high school teachers participating in
several workshops (N = 105 in four workshops). In constructing these workshops,

9Surprisingly, performing Joule-like experiments, which are crucial for quantifying energy change
in different phenomena and hence for laying the ground for energy conservation, was excluded
from many school physics curricula (Bécu-Robinault and Tiberghien 1998). This occurred despite
the recognized importance of Joule’s experiments for teaching the subject of thermodynamics
(Sichau 2000).
10This equivalence between mechanical and nonmechanical processes cannot be deduced from
mechanical laws (Arons 1999).
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we took into consideration the finding from our previous research that all Phys-Math
teaching patterns began from physics and hence, the initial challenge for the teachers
participating in our workshops was to find and test as many ways as they could come
up with to change the reading of a thermometer. We then discussed with the teachers
the possibility of using heating (not heat) as a means of comparing quantitatively
different processes, and we suggested naming the entity thus measured as an
energy change (an operational definition).11 We discussed with them whether the
existence of a linear relationship between 
T and an energy change is a reasonable
assumption, since one would expect that carrying out the same process twice will
result in double the temperature rise. We suggested interpreting this as “the change
in energy in the second process is twice as much as that in the first one.” With regard
to Joule’s paddle wheel experiment, the linear relationship between 
T and energy
change means that dropping the same load twice from the same height (as Joule
did) will result in double the temperature rise.12 We then introduced the device (the
“mini-Joule meter”) we developed for measuring the heating caused by a descending
small plastic bottle of water used as a weight and asked the participants to conduct
the experiment.13

The teachers performed the experiment in small groups by first dropping a
constant weight from different heights and then dropping different weights from
a constant height. We specifically refrained from providing the participants with
any standard measuring instrument such as a standard ruler or a beam balance. As
a result, each group invented its own standards of measuring height and mass. The
teachers were then asked to summarize their results in graphical representations.
The results of such an experiment are presented in Fig. 15.6.

The teachers were also asked to arrive at a formula from the graphical represen-
tations.

Several Phys-Math-related topics were then discussed:

I. How should the dots representing the empirical results be connected?
II. What is the mathematical meaning of the linear fit?

III. What are the physical ramifications of the linear fit?
IV. What are the physical ramifications of the units’ insensitivity of the linear fit?
V. What is the difference between the variable 
h, which changes during each

measurement, and the total 
h and m, which change across sequential mea-
surements?

VI. How can we combine two linear relationships into one formula?

11Interestingly, no one (according to our experience so far) suggested falling as one of these
processes.
12Of course this requires that the heated standard body be well isolated.
13The heart of our device lies in using a wine bottle cork with a digital thermometer inserted in
it. When the cork revolves around the thermometer, friction heats up the metallic probe of the
thermometer and the sensor within it. The “standard” object is the thermometer probe (instead of
a fixed amount of water in Joule’s original experiment), and the cork plays the same role as the
paddles. It also serves as a very good insulator.
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Fig. 15.6 Measuring energy change via 
T in a Joule-like experiment. Note the choice of
arbitrary units

In addition, the following observations were suggested to explain the interplay
between the two domains of physics and mathematics:

(A) The idea that the temperature change in a standard body can be agreed upon as
a measure of the change in the quantity of energy when this body is heated by
some process and that this belongs entirely to the physics domain.

(B) Experiments, which also belong to the physics domain, will always provide a
finite number of results. Hence, “connecting the dots” by a linear (or any other)
fit provides a “leap” to the domain of mathematics. This leap enables one to
perform mathematical manipulations suited for continuous variables.

(C) In mathematics, a linear graphic representation (or any other functional
representation) has general features that are not sensitive to the chosen units.
Therefore, obtaining a good linear fit to the experimental results by groups that
employed different units may allow one to conclude that these results could be
regarded as a general law of nature.

(D) The following conclusions belong to the Phys-Math domain:

(a) A change in temperature (a physical quantity) was directly proportional (a
mathematical statement) to both the change in height and the mass of the
falling body (physics).

(b) The conclusion that 
E = W·
h (where W denotes the weight of the
descending object) is a valid mathematical statement about our physical
understanding of nature.

15.2.2 Ramifications for Teachers’ PCK

The two construction strategies might be considered in the context of physics
teachers’ PCK with regard to the unique domain within physics education – the
Phys-Math domain. The Phys-Math PCK framework, adapted from Magnusson et
al. (1999) and Etkina’s (2010) frameworks (see Fig. 15.7) may assist teachers in:
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Fig. 15.7 The adapted Phys-Math PCK framework

(a) Helping students develop “science process” skills.
(b) Representing a particular body of knowledge.
(c) Transmitting the facts of science.
(d) Facilitating the development of scientific knowledge by confronting students

with contexts to explain that challenge with regard to students’ naïve concepts.
(e) Involving students in investigating solutions to problems.
(f) Representing science as an inquiry process.

The two examples described above, of constructing, via a Phys-Math interplay
that follows a certain pattern, a mathematical representation of physical phenomena,
carry with it some important values for teachers’ PCK. These examples belong
to different parts of the adapted Phys-Math PCK framework (Lehavi et al. 2017).
Whereas the Visual Mathematics strategy may be related to knowledge regarding
students and successful teaching strategies, the empirical-based formula construc-
tion can also be related to the teachers’ knowledge regarding content (see Fig. 15.7).

The positive results of using the Visual Mathematics strategy in the context of
mechanics and the experience we attained with the formula construction procedure
may assist us in fostering a systematic development of teachers’ Phys-Math PCK
(Pospiech et al. 2015). This may make teachers more aware of the role that
the Phys-Math interplay plays beyond being merely a tool for solving problems
in physics. We therefore highly recommend incorporating similar activities into
teachers’ training.

15.3 Summary

As mentioned before, many students use the “Plug and Chug” approach and actually
“bypass” many of the teaching objectives relevant to the Phys-Math interplay. The
next step is to apply this approach with high school students (see Fig. 15.8).
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Fig. 15.8 Students’ “Plug and Chug” problem-solving strategy as an incomplete Phys-Math
interplay

However, the students may miss learning the relationships between the physical
and mathematical themes of a certain problem, and they may have difficulties in
subdividing a problem into subproblems, each of which may be handled using dif-
ferent physical laws and their corresponding mathematical representations. Without
a good knowledge of the various ways to navigate between the two disciplines
(the “patterns”) and the different goals they serve, students may have difficulties in
monitoring their solution for a certain problem and in attaining the physical meaning
of its solution.

If we want high school students to achieve meaningful learning, we must develop
their Phys-Math interplay abilities, as described in Fig. 15.8.
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Chapter 16
Algodoo as a Microworld: Informally
Linking Mathematics and Physics

Elias Euler and Bor Gregorcic

16.1 Introduction

This chapter uses two case studies of high school and undergraduate students
interacting with a two-dimensional sandbox modelling software, Algodoo, to show
how physics students can make use of the mathematical representations offered by
the software in unconventional yet meaningful ways. We show how affordances
of the technology-supported learning environment allow the emergence of student
creative engagement at the intersection of mathematics and physics. In terms of
learning, the activities studied here are relevant in two central ways: (1) they open
up alternative conceptual learning pathways for students by allowing them to access
and engage with the content in original, self-directed and creative ways; (2) in doing
this, the studied activities carry significant potential to motivate students and support
their intrinsic interests.

Much of the existing research focused on digital learning environments in
physics education comprises investigations of simulation software, such as the
studies which examine PhET simulations (Perkins et al. 2006; Wieman et al. 2008),
GeoGebra simulations (Arnone et al. 2017) or Physlets (Dancy et al. 2002). For this
chapter, we consider simulations as those digital learning environments which allow
students to interact with pre-built models of real or hypothesized situations (National
Research Council 2011). As such, simulations are typically designed around a
specific phenomenon or set of phenomena so as to provide students with access
to particular disciplinary concepts. Much of the research into the use of simulations
has produced strong support for their benefit to learning in many different contexts
(for a comprehensive review, see Plass and Schwartz 2014).
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By way of contrast, we choose in this chapter to investigate the unique learning
opportunities afforded by a less phenomenon-specific digital learning environment,
Algodoo. In doing so, we make use of the notion of Papertian microworlds (1980),
a term which refers to digital environments which offer more opportunities for
creativity and invention than what is typically offered by simulation software (Plass
and Schwartz 2014). While simulations tend to allow users to explore the effects of a
set of parameters within the given phenomenon, microworlds provide users with the
freedom to build their own environments and phenomena, making possible a wider
range of scenarios within the same software. As Laurillard (2002, p. 162) explains,
people who use simulations are ‘controlling a system that someone else has built’,
while those using microworlds are ‘building their own runnable system’.

In our investigation of the learning afforded by software such as Algodoo, we
examine two cases of students using Algodoo on an interactive whiteboard (IWB)
to carry out physics tasks. In particular, we examine how the students in both of
these cases make creative use of the mathematical representations available within
Algodoo as they reason about physics phenomena. We assert that it is precisely
the way in which Algodoo seems to function as a microworld, which we refer
to as its ‘microworldiness’, which enables the students to utilize mathematical
representations in their playful1 yet meaningful exploration of physics phenomena.
By this we mean that the interactional and representational affordances of Algodoo
which align with the characteristics of a microworld seem to allow the students in
our cases to create and manipulate mathematical representations in ways that are
both unconventional and also productive from a physics education perspective.

With the two cases presented in this chapter, we also examine how Algodoo
and similar digital learning environments might be a useful way for mathematical
representations to become interesting and meaningful for students as they engage
with physics. Our analysis shows that, while using Algodoo, students can interact
with mathematical representations in spontaneous, playful ways. Digital learning
environments like Algodoo may, thereby, provide potentially motivating alternatives
for students to make connections between the physical world and the formalisms we
use to describe it.

We begin by reflecting on what it means to informally learn physics, followed by
a brief review of the instructional philosophy of microworlds advocated by Seymour
Papert in his book, Mindstorms (1980). Thereafter, we detail some of the features
of Algodoo, highlighting some of the options the software offers for generating
mathematical representations. Finally, we present the two cases of students using
Algodoo to show that, when used in an appropriate manner, Algodoo appears to
function as a microworld by supporting students in their creative implementation of
mathematical representations.

1Playful is used in this chapter to mean voluntary, intrinsically motivating (pleasurable for its own
sake) and/or creativity-driven (inspired by Rieber 1996).
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16.2 Learning Formal Ideas in Informal Ways

By mastering the many mathematical representations used in physics (Van Heuvelen
1991), physicists can employ a diverse range mathematical tools such as force
vectors, motion diagrams and graphs to conceptualize phenomena in terms of formal
physics models and to appropriately solve problems (Hestenes 1992). Through their
commitment to internalizing how nature is described by their discipline, physicists
cultivate, among other things, a mathematically enhanced perspective towards the
phenomena that they encounter. However, and perhaps not unexpectedly, this is not
necessarily the case for most students while they learn physics. For students who are
not adequately familiar with – or at least not confident in – the formal, mathemat-
ically intensive concepts of physics, the techniques used by physicists to describe
the world are often not readily compatible with the students’ daily experience of
phenomena. There exists for such students a significant difference between how
they perceive the world and the way in which physics canonically represents it using
formal mathematics. Indeed, students’ difficulties with navigating this difference are
a common interest for physics education researchers, as evidenced by this very book
or, found for example, in McDermott et al.’s (1987) famous discussion of students’
difficulties when attempting to interpret kinematics graphs and relating them to their
real-world counterparts.

In response to the sometimes-unnavigable disparity between the physical world
and the mathematics which physicists use to describe it, many students gain access
to the implications of formal physics concepts by other means than an explicit
application of mathematics. This can be seen in students’ informal cultural exposure
to speed and speedometers from cars. Today, the notion of a speedometer can be
called upon by physics students as they make sense of velocity and acceleration,
something which was impossible for either Galileo or Newton to do in the time
before speedometers were invented. Students who grow up in a culture where the
enforcement of speed limits is a common occurrence, where a car’s top speed is
listed in advertisements and where they can ride in a car with an omnipresent visual
display of their speed have a corpus of informal experiences which they can and,
certainly do, involve in their reasoning with physics concepts such as velocity and
acceleration.

In his book Mindstorms, Papert (1980) argued that the informal learning culture
surrounding students is what provides them with the necessary materials with which
they can construct their understanding of the world and incorporate them into
their understanding of formal physics models. Thus, when the topic of velocity
is discussed in a physics context, students from a speedometer-rich culture need
not first conceptualize the idea of ‘speed-in-general’ to begin to become familiar
with the concept in the formal physics sense. Such students are able to come to the
physics classroom already equipped with the materials from their culture (in this
example, their experiences around speedometers) with which they can build new
understanding. Surely it should be noted that, as with any previously constructed
understanding that students bring to a physics classroom, an everyday experience
with speedometers neither certifies that students will automatically intuit physics,



358 E. Euler and B. Gregorcic

nor does it ensure that students will contextualize their understanding of kinematic
quantities in the manner consistent with the discipline of physics (Trowbridge and
McDermott 1980, 1981).

Nonetheless, in this chapter we explore how, as an environment rich in mathe-
matical representations, Algodoo can provide resources to students which might act
in a similar manner to the speedometer, providing them with access to materials
which they can recruit in the construction of their own understanding of physics.
We suggest that when combined with appropriate instructional approaches, Algodoo
can not only expose students to mathematical ideas as they are used in physics
but can also provide an environment for students where they are able to engage
in playful inquiry and draw on mathematical representations in a spontaneous
and nonthreatening way. Similar to how speedometers can be used as materials
for conceptualizing velocity and acceleration in a physics context, the carefully
crafted mathematical representations provided within Algodoo can be spontaneously
recruited as rich materials in students’ inquiry into physical phenomena.

16.3 Papert and Microworlds

After observing how young students tended to struggle with reasoning in terms
of systematic procedures (necessary for tasks such as ordering beads in all pos-
sible combinations along a string), Seymour Papert argued in favour of creating
environments rich in the necessary materials for students ‘to build powerful,
concrete ways to think about problems involving systematicity’ (1980, p. 22). In
Mindstorms, he presented a family of computer languages called LOGO systems
(typically involving small programmable robots) as an example of an educational
programming language that could enrich the learning environment to promote
logical and systematic thinking skills in young students. Papert argued that LOGO
systems could provide students with a sufficiently enticing environment for them to
develop, in a relatively intuitive and spontaneous way, a mathematical language to
communicate with computers. Just as learners of French might immerse themselves
in the French language by visiting France, he suggests learners of mathematics could
immerse themselves in the ‘Mathland’ (p. 6) cultivated in the LOGO systems.

Papert intended to provide students with an arena where they could explore
formal topics in informal ways. By including what he characterized as microworlds,
Papert aimed to make computer programming and even the formalisms of New-
tonian mechanics accessible to students. In contrast to what he considered the
often ineffective and ingenuine approaches taken by much of traditional education,
Papert believed that the use of microworlds would result in ‘Piagetian learning’ or
informal ‘learning without being taught’ (p. 7). He believed that this could be done
by providing arenas which were rich in the building blocks needed for students to
explore, create and experience formal concepts for themselves. In order to motivate
and facilitate the students’ learning process, Papert argued that microworlds needed
to allow students to become active builders in the environment and support them in
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taking the initiative to engage creatively with the provided materials. The role of a
microworld was thus twofold: it needed to (1) offer the correct materials for students
to recruit and (2) provide a space where students could be inspired to create with
these materials.

In arguing for builder-focused microworlds, Papert developed what is referred
to as a constructionist perspective on learning. This constructionist approach places
explicit emphasis on the students’ act of building – or constructing – as a means of
learning. In this way, the constructionist perspective can be seen as a special case of
the broader, more commonly known perspective of constructivism.

In the time since Mindstorms, a body of research has amassed examining
the function of microworlds. Abelson and diSessa (1980) quickly adopted the
LOGO systems in the teaching of advanced mathematics in the Logo Group of
the MIT Artificial Intelligence Laboratory, and the term ‘microworld’ has persisted
in the education research community in the many years since (e.g. diSessa 1988;
Jimoyiannis and Komis 2001; Mayer et al. 2003; Miller et al. 1999). However,
somewhat contrary to Papert’s optimistic view of microworlds, many of the modern
reports suggest that more is needed than an environment that simply provides
opportunities for exploratory learning if achievement of specific learning goals
is desired. Many researchers claim there is a need for some imposed structure
of activities or curriculum around a microworld for the environment to become
educationally useful (Rieber 2005; White 1984). For example, research has shown
that, while using LOGO systems, many students do not spontaneously generate the
powerful ideas that Papert had intended unless the microworld is used within a
context that is ‘well engineered and targeted at well-defined learning objectives’
(Miller et al. 1999; referring to work such as Pea and Kurland 1984; Clements
1986, 1990; Klahr and Carver 1988; Lehrer et al. 1989). Even the definition of a
microworld, and how the concept of microworlds compares to simulations or games,
is not without contention in the literature. Rieber (1996) discusses the classification
of microworlds, suggesting that a learning environment can be regarded as a
microworld if it acts as such for a particular learner:

In a sense, then, it is the learner who determines whether a learning environment should
be considered a microworld since successful microworlds rely and build on an individual’s
own natural tendencies toward learning. It is possible for a learning environment to be a
microworld for one person but not for another. (p. 46)

For Rieber, a learning environment should be considered as a microworld in
its specific use within a particular context. It is precisely this user-subjective
perspective on microworlds that we use in this chapter: whether or not Algodoo
can be unanimously identified as a microworld for all students, we illustrate how
the software acts as a microworld for certain students as they use it on an IWB,
particularly when dealing with mathematical concepts in a physics context.

In this chapter we present two cases where, aligned with Papert’s criteria for
a digital microworld, Algodoo seems to (1) offer a diversity of mathematical
materials – especially in the form of dynamic mathematical representations – and
(2) provide an arena within which students are inspired to explore and create with
these materials as they engage with physics phenomena.
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16.4 Algodoo

Algodoo (www.algodoo.com) is a two-dimensional sandbox software which was
inspired, at least in part, by Papert’s constructionist approach to learning (Gregorcic
and Bodin 2017). At first glance, Algodoo resembles other digital drawing software
such as Microsoft Paint, Corel Draw or Adobe Illustrator in that it contains various
toolbars for creating objects of different geometrical shapes, colours and sizes.
However, unlike these other digital drawing platforms, Algodoo allows users to press
play and has the user-drawn objects dynamically interact. These objects will bounce
off each other, roll around, swing from ropes, etc. Thus, users are able to create
scenes by using a diverse set of available construction elements within Algodoo,
which include physics-relevant elements such as springs, axles, motors, thrusters,
ropes and fastening tools. These scenes typically contain constructions ranging from
simple systems (e.g. spring-mass pendula, balls rolling down the slopes or two-body
gravitational systems) to more elaborate ones (e.g. suspension bridges, cars and
engine transmission systems). When users create systems of objects within Algodoo
and press the play button, the scenes they have built then evolve in accordance with
Newtonian mechanics in two dimensions.

Unlike mathematics modelling tools such as Modellus and Matlab, which feature
an exposed, editable architecture, Algodoo is not designed for users to easily
change every aspect of the rules governing the virtual world. For example, while
users can turn gravity or air resistance off, the underlying mechanics of object
interaction cannot be altered from a two-dimensional Newtonian system. Indeed,
some researchers might see this algorithmic opacity as a hindrance to students’
learning of how to model (Hestenes 1995); however, others argue that Algodoo
retains a level of semi-transparency for students that allows them the opportunity
to create and manipulate a virtual world without requiring the prior knowledge of
programming (Gregorcic and Bodin 2017). In doing so, Algodoo can facilitate new
and potentially beneficial experiences in a digital learning environment for those
users without fluency in coding languages (Euler and Gregorcic 2018; Gregorcic
2016). In fact, Algodoo appears to be an intuitive program for students at both high
schools and universities, so much so that these students can, in a matter of minutes,
start engaging in creative activities even when they use the software for the first
time (Gregorcic et al. 2017a). Algodoo’s ease-of-access is a key component in our
consideration of it functioning as a microworld.

The other important characteristic of Algodoo is that it provides, through visual
and interactive means, a range of dynamic representations which have been shown
by research to contribute to effective physics learning (e.g. Rosengrant et al. 2009).
In what follows, we discuss Algodoo’s capability for representing mathematical
concepts. Specifically, we emphasize the utility of combining Algodoo and an
IWB, which can provide students with a collaborative space for engaging with
mathematical and physics concepts.

http://www.algodoo.com
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16.4.1 Representations Afforded by Algodoo

Algodoo, like any other computer-based model of phenomena or modelling system,
is built up from formal mathematical relationships in its source code. The software
can track the motion of the objects created within it, therefore allowing it to display
quantities such as momentum, force, velocity and position. This is due to the fact
that these quantities are part of the internal structure that manifests in the external
user interface (Plass and Schwartz 2014).

Algodoo dynamically updates visual representations in real time (i.e. while the
microworld runs), which allows users to access and manipulate physical quantities
describing virtual objects in ways that would be impossible to achieve in a
traditional physics laboratory, in a classroom or in everyday life. Nonetheless, while
including these mathematical aspects, the Algodoo environment still retains many
characteristics of the world students experience every day. In the software, users can
grab, move and even throw virtual objects, which can then be observed to bounce off
each other, slide, tumble and generally behave in ways that most people can relate
to their everyday experiences with real-world objects.

By including mathematical representations (e.g. Fig. 16.1) of quantities like
dynamic vector arrows (e.g. velocity, momentum and force), numbers and sliders
representing values of physics-relevant quantities (e.g. density, restitution, coeffi-

Fig. 16.1 Two examples of the representations provided by Algodoo, namely, the ‘Velocities’ tab
(left) and a graph from the ‘Show Plot’ function (right) (In the Velocity tab, sliders for changing the
speed, angle, velocity (x), velocity (y) and angular velocity are provided along with a wheel which
displays the angle of velocity and checkboxes for displaying vectors (for velocity, momentum and
forces) on the selected object(s). In the graph, various quantities can be assigned to the axes, and
the options are provided to display the title (‘speed/time’ in this case), the axes and the legends.
The slider-labelled ‘time span’ allows the user to select the length of time to include (from the most
recent ‘run’ of the simulation), while the slider-labelled ‘Smoothing’ allows the user to smooth the
graph of the data.)
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cient of friction) and plots of quantities (e.g. kinetic energy vs. time, x-position vs.
y-position) alongside the visually accessible virtual world, Algodoo superimposes
formal physics and mathematical ideas onto a more familiar world of physical,
albeit simulated, interactions. Algodoo provides opportunities for students to explore
and engage in open-ended and creative tasks where they can experience physics-
relevant, mathematical ideas in action and interact with physics content in new
pedagogical ways which are not typically available. For example, students can
observe the forces acting within a suspension bridge, which they may have built
themselves, by selecting to display Algodoo’s overlay of dynamically changing
force vectors on top of the bridge itself.

The close interplay of the mathematical representations within an intuitively
manipulable virtual world gives students and instructors access to a rich collection
of meaning-making resources. These resources can be employed to help students
develop a better understanding of the meanings embedded in mathematical repre-
sentations that are used in physics and may even encourage them to make use of
these representations in their communication of physics ideas.

The creative potential of Algodoo appears to be significantly enhanced when used
in combination with a large touch screen, such as an interactive whiteboard (IWB)
(Gregorcic 2015a). The IWB provides students with common perceptual ground
which they can visually appreciate in small groups (Roth and Lawless 2002) and
which they can refer to using environmentally coupled hand gestures (Goodwin
2007; Gregorcic et al. 2017b). This allows students to engage with Algodoo in
collaborative exploration and communication (Mellingsæter and Bungum 2015).
The affordances of the Algodoo-IWB setup for multimodal communication allow
students to address conceptually interesting ideas even when their knowledge of
corresponding vocabulary is limited. Where they struggle to find words to express
meaning, they can resort to gestures, such as pointing to patterns and values on the
screen (Gregorcic et al. 2017b). The pronounced gestural and interactional compo-
nents of student communication in front of the IWB can also provide researchers
with a better insight into students’ meaning-making than paying attention to their
speech alone (Euler and Gregorcic 2018; Gregorcic et al. 2017b).

16.5 The Cases

In order to illustrate how the Algodoo-IWB setup can provide new opportunities for
students to learn how to appropriately use mathematical representations in playful
(yet useful) ways, we present two cases of open-ended physics activities which
utilized the Algodoo-IWB setup: (1) one where students threw planets into orbits
and (2) another where students rolled an object down a ramp. The data for both
of these cases was video recorded in a small room with researchers (referred to as
instructors) present to act as the facilitators of the activity, to push the students to
further clarify their thinking out loud, and/or to aid the students with any technical
difficulties with Algodoo or the IWB.
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In order to present the data in a manner which captures both the speech of the stu-
dents and also their gestural activity, we include a multimodal transcript (Bezemer
and Mavers 2011) comprising written excerpts of talk2 and line illustrations drawn
from frames of the video data (which are occasionally augmented by close-ups of
the relevant Algodoo menus). Each line of the transcript is numbered and labelled
with the speaker or actor responsible for the speech or action contained in the line
(‘S1’ to ‘S5’ for Student 1 to Student 5, respectively; and ‘In’ for the instructors).
Actions such as gestures or manipulations of the IWB are included as italicized text
in [brackets] and represented visually by illustration when useful. In the section that
follows, each excerpt of transcript is followed by a summary of the what was said
and done by the students to make explicit the things we wish to highlight from the
students’ interactions.

While the physics content varies between the two data sets presented here,
we will show how in both instances, the presence of representational options
within Algodoo led students to coordinate their discussion and creative inputs
around complex mathematical representations in ways which we can appreciate as
appropriate for the learning of physics. While exploiting the open, microworld-like
nature of Algodoo, students were able to creatively link mathematics and physics
through their informal use of mathematical representations.

16.5.1 Case 1: Vector-Sense in Orbital Motion
with the ‘Velocity’ Tab

Our first case comes from a data set collected as part of a previous study on the
use of IWBs in astronomy instruction (Gregorcic 2015a) where small groups of
high school students used the Algodoo-IWB setup to explore celestial motion. The
students were presented a scene in Algodoo which involved a central circular body
with an attractive potential – representing a star or planet in an astronomical system.
The students used the Algodoo-IWB setup to qualitatively investigate Kepler’s
laws of planetary motion (Gregorcic et al. 2015, 2017b), specifically following the
prompt to explore how relatively smaller bodies behave in the vicinity of the larger
central massive body. The students drew planet-like or moon-like objects and, by
swiping on the IWB, threw these objects into orbit around the star-like object located
in the centre of the scene. It was also possible for the students to send objects into
orbit by pausing the simulation, placing the object at the desired radius away from
the central circle, assigning a velocity to the object and then running the simulation.
Some groups chose to display the force vectors or velocity vectors of the objects as
these objects orbited the central object (referred to hereafter as the ‘Sun’). Gregorcic
designed the Kepler’s laws scene in Algodoo to provide students with ‘hands-on

2The data collection session for Case 1 originally took place in Slovenian, but we have translated
the speech into English for the purposes of this chapter.
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[access] to [the] otherwise experimentally inaccessible topic’ of orbital mechanics
(2015a, p. 515).

Analysis of the data collected in these sessions has previously focused on social
and embodied aspects of students’ learning of physics concepts with the IWB-
Algodoo setup (Gregorcic 2015a, b; Gregorcic et al. 2017b). For the analysis
presented in this chapter, we instead focus on the students’ engagement with
mathematical representations of velocity.

We begin by highlighting an excerpt from a session where a group of three
students – who we refer to as Student 1 (S1), Student 2 (S2) and Student 3 (S3),
along with the Instructor (In) – try to send an object into orbit by setting its initial
velocity within the ‘Velocities’ tab in the drop-down menu (while the simulation is
paused). They estimate the initial conditions (radius and velocity) necessary to send
the object into orbit by comparing them to that of an already orbiting object from
before. They press the play button and then watch as the newly launched object
collides with another object that was already orbiting the Sun. The collision sends
the new object out of the frame of view and pushes the original object into a new
orbit around the Sun. While the new object is sent out of the frame of view, its
Velocity menu remains open in Algodoo. We include sections of the transcript to
illustrate the informal exploration that took place after the students first observe the
collision.

1 S2: Okay . . .

2 S1: Aha!
3 In: What happened now?
4 S1: This one’s trajectory changed, but it remained constant.
5 S1: And it’s losing speed.
6 S2: No, it’s not losing speed.
7 S1: [points to the slider for speed] (Fig. 16.2)
8 S1: One of them is losing speed.
9 S2: Yeah, yeah. That one.
10 S1: Yeah, that one, yeah. That one that is going away.
11 In: Ah, now you’re looking at that one!

Excerpt Summary In this exchange, we see the students make sense of the
behaviour of the two objects after the collision. They notice how the originally
orbiting object has been pushed into a new, stable orbit – which Student 1 refers to
as being ‘constant’ (line 4) and which we take to mean stable in time (self-repeating
on a closed trajectory). Noticing how the Velocity tab is displaying a decreasing
speed, the students quickly come to realize that the Velocity tab is still showing
data for the runaway object, which is now out of sight, past the edge of the view in
Algodoo.
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Fig. 16.2 Student 1 (left, with Student 2, middle, and Student 3, right) points to the moving
slider labelled Speed within the Velocity tab as he emphasizes that one of the objects is ‘losing
speed’ (line 6) (It should be noted that the values for Speed, Angle, etc. in the Velocity tab are an
approximate recreation and do not necessarily reflect the exact values seen by the students during
the session. These values are ‘unrealistic’ for objects on planetary scales, but their usefulness holds
in their proportions to one another and their qualitative changes over time.)

(continued from above)

12 S3: Turn its angle, so it will come back.
13 S1: [laughs]
14 S2: [starts dragging the Angle slider to the right, changing the angle at

which the runaway planet is travelling]
15 In: You can also turn the little wheel if you want to turn the angle. There,

on the right side
16 S1: And let’s add some speed . . . Or not. It’s already coming back!

[performs a U-turn gesture in front of the IWB] (Fig. 16.3)
17 In: So, you noticed something interesting.
18 S1: So, now it’s slowly coming back into orbit. Because it’s becoming

faster. [points to the speed slider, where the value is increasing]
19 S3: Yes.
20 S2: Yes.

Excerpt Summary Here, Student 3 suggests that they ‘turn [the planet’s] angle’
(line 12) in order to bring it back into sight. Student 2 then drags the Angle slider
to the right to change the angle at which the planet is travelling, and the instructor
suggests that he can also use the Wheel to change the angle. After Student 2 changes
the angle, Student 1 initially wants to alter the object’s speed as well but changes
his mind as he watches the angle spontaneously rotate with the motion of the planet.
He interprets the changing angle as the planet reversing direction and he gestures
with his hand in a U-turn motion. He also notices that the Speed slider is moving
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Fig. 16.3 Student 1 gestures in front of the IWB with a U-turn gesture (downwards) as he
vocalizes that the runaway planet is ‘already coming back’ (line 16). Student 3 points towards
the wheel of the velocity menu as it turns with the changing trajectory of the planet

to the right, which he interprets as meaning that the object’s speed is increasing. He
explains this as the object ‘slowly coming back into orbit’ (line 18), and the other
two students agree.

(continued from above)

21 In: Coming into orbit, what does that mean?
22 S3: Closer . . .

23 S1: Closer to the [Sun].
24 S2: Actually, it is already kind of in orbit, unless it will crash into it.

Because it . . . because it is attracting it. It means it will . . . [starts
gesturing a large curve in the air]

25 S1: Just a moment. Considering it was travelling away from this object and
it was losing speed . . .

26 S2: Yes, it was.
27 S1: And there was no resistance . . .

28 S2: It was in orbit from the beginning, but . . .
29 In: Okay. Okay. Interesting observation. It was flying away. It was losing

speed.
30 S2: It was losing speed and it had no resistance.
31 S2: Yes, but that’s normal. If you have a body out here and a gravitational

force between them, and there is no other force, and you don’t
accelerate [the body out there], its speed will get smaller until it will
turn around and travel the other way. [mimics the motion of a planet
moving away from the Sun and then back towards it with his hand]
(Fig. 16.4)
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Fig. 16.4 Student 2 gestures to show the movement of a planet as it is accelerated by the Sun. We
can interpret this explanation as one that uses a Newtonian model of Sun-planet interaction

32 S2: Which is interesting, but . . . I mean, it’s interesting . . .

33 S1: Yeah, I get it.

Excerpt Summary Here, the students engage in a discussion about orbital motion
and the underlying mechanisms that govern the changes in an object’s velocity.
While Student 1 first has an issue with the slowing down of a planet in a frictionless
environment, Student 2 is able to explain how the object’s behaviour makes sense
in a system with gravitational force (line 31, which we interpret as a Newtonian
perspective). Student 2 supports his argumentation with environmentally coupled
hand gestures, symbolizing the movement of the planet and the direction of forces
(Fig. 16.4).

(continued from above)

34 S1: Aha, okay, now its angle started changing, which means . . . [starts
repositioning himself in front of the IWB, pointing to the Velocity tab]
(Fig. 16.5)

35 In: Oh, yes, now you are observing that body just through [the Velocity
tab].

36 S2: Yeah, um . . . Good point.
37 S1: [laughs]
38 S2: [uses the Zoom tool to zoom out, revealing more of the space around

the Sun]
39 S1: Here it is. [notices the runaway planet on the left side of the Sun, close

to the edge of the screen]
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Fig. 16.5 Student 1 notices the changing velocity of the runaway object in the Velocity tab. He
repositions himself in front of the IWB and points to the changing Angle slider

40 S2: It’s here. [pointing to the runaway planet]
41 S1: Let’s do it by hand.
42 S2: Let’s zoom out more. Can we zoom out more?
43 S1: No.
44 In: This is the most zoomed out it can be.
45 S1: Quickly. [turns the angle wheel CW, in the direction towards the Sun]
46 S2: But now we are changing its things again.
47 S1: [drags the speed slider to the right and the planet starts travelling

faster towards the Sun]
48 S2: It is going to crash directly into it.
49 S1: [adjusting the direction using the angle wheel] So now it is already

growing. [watches as the speed slider spontaneously moves to the right]

Excerpt Summary Again, Student 1 notices an increased rate of change in the
object’s angle of velocity by watching the Velocity tab, all while the planet remains
outside the field of view in the scene. The instructor points out that the students
are interpreting the motion of the planet by just looking at the values in Velocity
tab, to which the students respond by zooming out to find the object (now on the
left side of the Sun) just as it is about to fly out of the field of view. Student 1
quickly manipulates the object’s velocity by changing the angle (turning the wheel
CW towards the Sun) and then increasing its speed (by dragging the Speed slider
to the right). Finally, he watches the object and its Velocity tab simultaneously and
notices that the Speed slider continues to move to the right as the object accelerates
towards the Sun.
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In the excerpts of transcript presented above, we see that, although the students
originally speculated that the runaway object was lost after the collision, they
noticed that the velocity of the runaway object changed in a way that suggested
it would return if they kept waiting (meaning that the runaway object was in some
type of orbit). Despite the object being absent from the frame of view in Algodoo,
the students were able to track the motion of the object through the Velocity tab
still open from before the ‘play’ button was pressed. They watched the Speed slider
move and the Angle wheel rotate, interpreting them to understand that the runaway
object was slowing down and turning back towards the Sun. The students were
then able to propose explanations (which we identify as consistent with a formal,
Newtonian model) for the patterns of motion seen in the Velocity tab. In the end,
they located the runaway object in a zoomed-out field of view and manipulated its
velocity so that it started moving back directly towards the Sun.

16.5.1.1 Analysis of Case 1

The case included above is an example of how a group of students creatively used
one of the representations within Algodoo, namely, the Velocity tab, in a playful,
unconventional way, which we can see was still meaningful from a physics learning
perspective. From this case, we discern two functions for which students used the
Velocity tab: (1) as a tool for manipulating (or setting) the velocity of an object and
(2) as a representation which was recruited in making sense of the motion of an
object.

The first function of the Velocity tab, as a tool for manipulating the velocity
of an object, can be seen initially when the students used the Velocity tab to put
a newly created object into motion (giving the object an initial velocity before
hitting play). Then, once the collision had sent the object far away from the Sun,
the students used the Velocity tab to manipulate the object’s motion dynamically
(with Algodoo running). This manipulation appeared in two instances: first as
Student 1 changed the angle of the object’s velocity (line 14) and again when the
same student redirected the object towards the Sun (lines 45–49). In all of these
instances, the presence of Algodoo’s Velocity tab, which allowed the students to
set and manipulate the velocity of the object with sliders and a wheel, provided
an opportunity for the students to engage with the orbital task creatively. More
traditional approaches to the learning of orbital motion often do not provide such
a means for interacting with objects’ velocities as they relate to orbits. In this case,
the students were able to test their own ideas of orbital mechanics, giving them
ownership of the result, all while they utilized a mathematically rich interface. The
manner in which the Velocity tab was used as a dynamic tool for the manipulation
of velocity showcases our first concrete example of Algodoo’s microworldiness: the
software seems to have provided the students with mathematically rich materials
while also allowing the students to be creative and self-directed in their activities.

The second role that the Velocity tab played in the presented case was that of a
representation recruited in making sense of the motion of an object. During most of
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the episode, the Velocity tab served as a monitoring device for the orbiting object
outside the field of view of the scene. Formally, the velocity vector of an object in
two dimensions can be expressed in terms of speed and angle (magnitude and radial
direction) or as the sum of the x- and y-components of the velocity. Interestingly,
in the Algodoo environment, the students sent an object into motion and observed
its components, interpreting the motion of the runaway object intuitively as they
tracked the changes in the angle and speed. Thus, even without being prompted to
discuss vector magnitudes or components, the students were able to demonstrate
fluency (at least, partially) of vector sense in relation to two-dimensional motion.
The presence of the Velocity tab allowed the students to spontaneously move
between a familiar, informal experience of motion (the visual movement of the
object on the IWB surface) and a formal mathematized representation of motion
(within the sliders and wheel of the Velocity tab). Indeed, the limited field of vision
in Algodoo, which made the students unable to watch the object’s motion as they
would normally, along with the persistence of the Velocity tab, which provided
them with a dynamically updated rendition of the runaway object’s velocity data,
encouraged the students to interpret and make creative use of the mathematical
representation made available by the software.

Though the significance of the dynamically changing information on the Velocity
tab was not initially appreciated by the students, as they began to make sense of
what was happening, they were able to interpret the motion of the runaway planet
from the controls in the tab, translating the information of the sliders and wheel
into more familiar, everyday language of gesture and speech. We see this when the
students noticed one of the objects ‘losing speed’ (line 5), after which Student 1
started making sense of the changing angle and slowly increasing velocity of the
runaway planet with an explanatory gesture (line 16). Student 1 reinterpreted the
information within the Velocity tab with a gesture, transforming the meaning carried
in the software into a dynamic mode of expression.3 He then engaged with the
Velocity tab as a source of information about the motion of the runaway object until
he is able to demonstrate his interpretation of what is going on in a more conceptual
way (see Fig. 16.3).

Beyond functioning in the two ways described above, the Algodoo-IWB learning
environment was successful in encouraging students to spontaneously produce an
explanatory model for the patterns of motion. This can be seen when Student 1
questioned the motion of the runaway object (line 25). Student 2 responded by
proposing an explanation for the patterns of motion consistent with a Newtonian
model of orbital motion (line 31). Student 2’s interpretation of the patterns seen on
the Velocity tab gave rise to explanatory talk and gesture about the behaviour of
orbiting objects in general. In this way, the Velocity tab within Algodoo appears
to have behaved as a point of departure for further inquiry, providing some

3This process of transforming meaning from one mode of expression to another is sometimes
referred to as transduction in multimodality circles (Jewitt et al. 2016). For a discussion of how
transduction may be a key concept in physics learning, see Volkwyn et al. (2018).
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mathematical materials which students were compelled to observe and explain in
a science-like discussion (Etkina 2015; Gregorcic et al. 2017b).

This can be taken to demonstrate, in a slightly different manner, how Algodoo
can act as a microworld for students. That is, the students were inspired by the
setup and the activity to not only explore and create within the mathematically
rich environment but to also begin taking science-like approaches to solving the
problems they encountered (Gregorcic et al. 2017b). Consequently, a case might
be made for how microworlds like Algodoo can offer alternative ways to promote
both the learning of nuanced content knowledge at the intersection of mathematics
and physics and also the adoption of the behavioural patterns used by scientists, all
while promoting active engagement and creativity.

We see from Case 1 that, when using Algodoo, students can use mathematical
representations in a creative way, therein becoming inspired to discover how a
physical system works. The students’ use of the mathematical materials provided
by Algodoo was both playful – due to Algodoo’s open-ended, creativity-driven
structure – and meaningful for their understanding of the physics formalisms that
underpinned the activity. It is precisely this richness of the digital environment,
the way in which Algodoo is an explorable sandbox populated by mathematically
rigorous representations, which seems to have made possible the unique, meaningful
interaction presented above.

Indeed, in the case presented here, the particular affordances of Algodoo that
resulted in students’ meaningful use of mathematical representations were paired
with an instructional strategy of open-ended – but task-based – inquiry and
exploration with some guidance from an instructor. Throughout the activity, the
instructor engaged with the students to help direct them in their exploration. If the
students had simply been given the Kepler’s law scene without any instruction or
guiding activity, it is unlikely that they would consistently end up manipulating the
velocity in such fruitful ways. Nonetheless, the above case shows an instance where
the microworldiness of Algodoo contributed to a group of students’ creative inquiry
while at the same time engaging them with formal representations of motion.

16.5.2 Case 2: Graphical Representations in Kinematics
with ‘Show Plot’

We now present the second case to illustrate the potential for Algodoo to promote
creative and meaningful use of mathematical representations. This case focuses on
pairs of students that used Algodoo in an activity alongside a physical ramp and
a hockey puck on a table (hereafter referred to as the ramp-puck setup, see Fig.
16.6). The data collection comprised six students, all of whom were selected on
a volunteer basis and observed pairwise on separate occasions (i.e. three separate
groups of two students). Like the session in Case 1, the participating students were
provided with an IWB running Algodoo; however, to foster a direct link between
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Fig. 16.6 The ramp-puck setup used by the students in Case 2 alongside Algodoo running on an
IWB. The ‘height’ (above the table) and the ‘distance’ (horizontally along the floor from the edge
of the table) are labelled

digital and physical learning environments, the students were asked to use Algodoo
in parallel with the physical ramp-puck setup while answering a specific physics
prompt. Specifically, the students were asked to convince the researchers of the
relationship between (1) the height above the table from which the puck is released
on the ramp and (2) the horizontal distance from the edge of the table which the
puck travels before hitting the ground.

Each of the pairs of students were part of a larger, three-part session where
they (1) familiarized themselves with the functions of the Algodoo (a duration of
approximately 1 h), (2) completed the ramp activity (1 h) and then (3) concluded
with a short discussion about their impression of Algodoo and the activity as a whole
(30 min). As in Case 1, these sessions were all video recorded and transcribed for
analysis.4

The original aim of the study was to examine how students use Algodoo in
combination with real experiments when faced with a physics task (Euler and
Gregorcic 2018). However, as in Case 1, we have found examples within the data
of students engaging with a variety of mathematical representations. We can see
some of the students coordinating physical observations and mathematical ideas
within Algodoo in a manner that suggests the digital environment encourages the
meaningful use of mathematical representations. The particular excerpt that we
present here shows how one pair of students, referred to as Student 4 (S4) and
Student 5 (S5), used the ‘Show Plot’ tool to quantify aspects of the puck’s motion
in a virtual model of the ramp-puck setup they had created. The excerpt we present
here illustrates how the students can recruit and interpret graphical representations
in Algodoo, as they attempt to quantify a physics phenomenon.

4For Case 2, the sessions were conducted in English, though the native language of both of the
students was Swedish.
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Fig. 16.7 Student 5 (right,
with Student 4, left) rotating
the ramp portion of the
ramp-puck model to the
desired angle. Here, the
horizontal rectangle functions
as a virtual table, the tilted
rectangle functions as a
virtual ramp and the circle
functions as a virtual puck. In
this scene, as opposed to the
scene in Case 1, the ground is
represented by a horizontal
plane towards the bottom of
the screen and gravity acts
vertically downwards

Case 2 begins as the students finish setting up the virtual model of the ramp-puck
experiment in Algodoo. They place two rectangular objects (representing the ramp
and the table) and the circular object (the puck) in such a spatial arrangement that
when they press the play button, the puck rolls down the ramp, continues off the
table and then hits the ground below (Fig. 16.7). The students then try to address the
prompt by finding a way in which they can measure the distance the puck travels
horizontally from the edge of the table before hitting the ground.

After constructing the virtual ramp-puck setup, the students run the scene to
check the function of their model. The circle successfully rolls down and off the
rectangles before hitting the ground. The students immediately wish to measure the
distance that the puck travels from the edge of the horizontal rectangle, but Algodoo
does not include a purpose-built distance measuring tool. Student 4 stumbles upon
the Show Plot tool. He opens the Show Plot tool and explores its possibilities for
representing plots of various physical quantities for the selected object (the virtual
puck in this case) in the form of a two-dimensional graph. He discovers that Algodoo
allows you to plot different quantities on the horizontal and vertical axis of the
displayed coordinate system.

50 S4: [sets the vertical axis to ‘Position (y) and then the horizontal axis to
Position (x)]

51 S5: [drags the corner of the graph window to make it smaller and then
moves the window to the left so they can watch the circle’s motion as
it rolls down the ramp]

52 S5: Something like that.
53 S4: And start?
54 S5: Yeah.

Excerpt Summary In the first part in of the excerpt, the students look for a way
to quantify the movement of the puck, in particular, to put a numerical value on the
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distance the puck travels off the edge of the table. By exploring the options provided
by Algodoo, the students discover the Show Plot tool. Student 4 then interacts with
the plotting tool to select the appropriate axes labels (the x-position and y-position
of the virtual puck), and Student 5 positions the graph window in such a way that
they can simultaneously observe both the virtual experiment and the plot.

(continued from above)

55 S4: [presses the play button and they watch the puck move with the data
being drawn in the graph window simultaneously] (Fig. 16.8)

56 S5: And let’s see. If we look closer at this . . . [leans in to examine the
graph]

57 S4: Here. [points to the point on the graph corresponding to where he
thinks the circle hit the ground]

58 S5: Yeah there. [pointing to the same point as S4]
59 S5: We can see that we have to look at it from here. [touches the point on

the graph which he interprets as where the circle left the table] to there.
[touching the point on the graph corresponding to where they agreed
the circle hit the ground]

60 S4: Hits the ground there. That’s what we need to get.
61 S5: Yeah, we want to know the distance here? [gestures to show the length

from the end of the physical table in the room and looks to the
interviewers for confirmation]

62 In: Mhm.
63 S5: Yeah. Uh . . . [pauses for a long time to examine the graph]

Fig. 16.8 The students examine the scene after watching the circle roll down the ramp and off the
table. The graph displays a plot of the circle’s motion
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Excerpt Summary In the second part of the episode, the students have just run the
simulation and noted its outcome by observing the movement of the puck, as well
as the self-drawing graph in parallel. They continue by interpreting the graph. They
start to relate characteristic points on the graph to spatial locations in the Algodoo
scene, as well as in the physical experiment that is set up in the room next to the
IWB. They identify the distance of interest and point out what they interpret as the
corresponding distance on the graph.

(continued from above)

64 S5: I’m trying to figure out why is there a zero here? [points along the
y-axis of the graph] ‘Cause we started way up here [points to the upper
left corner of the graph], and where does this graph place the zero?
How does this software determine where the origin is?

65 In: Mhm. Is there a question?
66 S5: Uh, I think so, I’m not . . . [drags the corner of the graph window to

make it larger], I don’t really know how to look at this graph to
determine . . . I mean here it says 10 meters, there. [points to the
rightmost label of the x-axis]

67 In: So, what is this graph displaying really?
68 S5: The y-position [gestures up and down the IWB] and the x-position.

[gestures left and right along the IWB] (Fig. 16.9)
69 In: Mhm.

Fig. 16.9 Student 5 gestures to describe what each of the axes is displaying. He describes that the
y-axis displays the y-position of the circle (gesturing up and down), while the x-axis displays the
x-position of the circle (gesturing left and right)



376 E. Euler and B. Gregorcic

70 S5: But what I can’t really see is where the x-position zero point is.
That should be there. [points to the origin in the graph window]
But it doesn’t show much more [taps around in the graph space to see
what selecting the axes does then traces the graphed path of the ball in
the plot to select various data points]

71 In: Can you say from the graph where the x-position zero is? [pauses]
So, this graph, what does this graph represent? Like in other words,
what would you say this graph represents? ‘Cause you can have
velocity versus time graphs. You can have x versus time graphs, but
this is a y versus x graph

72 S5: Yeah it describes exactly where the ball has been. It shows the path
of the ball.

73 In: Mhm! So, in space, right?
74 S5: In space, yes.
75 In: So, I think you can actually see where the x-zero is then.
76 S5: Yeah when it starts rolling on the other one . . . [grabs the graph

window and drags it out of the way of the ramp] When it starts rolling
on that one. [points to the intersection of the ramp rectangle and the
table rectangle] (Fig. 16.10)

77 In: And where would you like it to be?
78 S4: Here. [points to the top right corner of the tilted rectangle] (Fig. 16.11)
79 S5: No [drags the graph window out of the way]. We want it on the end

there [points to the end of the horizontal rectangle]

Fig. 16.10 Student 5 points
to the intersection of the ramp
rectangle (the tipped
rectangle) and the table
rectangle (the horizontal
rectangle) to indicate the
location in the scene which he
interprets as the position of
the x = 0 line of the graph
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Fig. 16.11 Student 4 points to the position he thinks would be best for the x = 0 position at the
top of the tilted rectangle (left image). Student 5 disagrees and points to the point he thinks they
should place the x = 0, at the end of the horizontal rectangle (right image)

Excerpt Summary In this exchange, the students try to make sense of the position
of the origin of the coordinate system used to describe the position of the puck.
The instructors encourage them to interpret from the existing plot of the puck’s
motion, where the origin (zero) is currently placed and where they would like it to
be. Student 4 proposes that the desired placement of zero for the x-coordinate would
be the edge of the table (due to the convenience of reading off the distance from the
edge of the table at which the puck first hits the ground). After line 79, with some
technical help from the instructors, the students reposition the objects in Algodoo
so that the right edge of the horizontal rectangle (the virtual table) is positioned at
x = 0. This is done since Algodoo does not allow the user to move the origin of the
built-in reference frame, which is fixed to the background of the scene.

(after positioning the virtual setup as desired)

80 S4: [presses start and watches as the ball rolls down again, tracing a path
on the graph similar to the one before, but with the axes reposition
as they wanted]

81 S5: [presses pause] Then we can find . . . [traces finger along the data in
the graph from top left to bottom right, stopping where the circle hit the
ground] the x-position! Point 75 meters (Fig. 16.12)

Excerpt Summary In this last excerpt from Case 2, the students manage to assign
a numeric value to the horizontal distance the rolling puck travelled before it first
hits the ground. They do this by touching the location in the graph where the tracked
object (the virtual puck) appears to have first bounced and then reading the x-value
of its position from the built-in graph examining tool (Fig. 16.12).
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Fig. 16.12 shows Student 5 tracing the data in the graph (of the shifted setup where the y-axis is
more conveniently placed) with his finger until he finds the point where the circle hits the ground.
He is then able to read off the value for the horizontal distance from the x-coordinate of the dynamic
graph label

In the student dialogue from Case 2, we see that the students stumbled upon the
Show Plot tool in Algodoo and then tried to figure out how to place the origin of
their graph in a useful position for their measurement purposes. In order to figure
out how to move the axes to where they wanted, the students first had to interpret
what the graph was showing so that they could understand how Algodoo had placed
the origin for them (the origin is fixed by default to the background in Algodoo, and
they had to move their virtual setup so that axes were aligned with the desired part
of their ramp-puck model).

16.5.2.1 Analysis of Case 2

In Case 2, the students engaged with the Algodoo-IWB setup to mathematize the
motion of a puck in a graph. Despite the physics content being different from that in
Case 1, we use the students’ interaction in Case 2 to highlight how Algodoo appeared
to act as a microworld for the students by providing them with mathematical
material to draw upon in a meaningful, if slightly unconventional, exploration of
a physics phenomenon.

With the Show Plot tool in Algodoo, the two students in Case 2 made use of a
graph in a somewhat atypical manner: that is, to measure the horizontal distance
travelled by the puck after leaving the table within their Algodoo scene. As they
might have used a meter stick to measure the physical distance that the puck travels
in the non-virtual ramp-puck setup, the students used a graph within Algodoo to
plot the position of their virtual puck (the circle) and read off the x-value from
this graph as the x-component of its plotted motion. This implementation of the
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graphical representation is interesting in that the students measured a quantity with
the graph rather than populating the graph with data measured by another tool. This
is made possible in digital environments like Algodoo due to the fact that these
programs are necessarily built up from mathematics. Algodoo was already tracking
the position of the circle in relation to the background of the scene, so, for the
students in Case 2, it was simply a matter of finding a way to display the position of
the circle in a graph for their use.

However, their imaginative use of the Show Plot tool still required them to
employ the mathematical representation correctly. In order for their graph to display
the position of the circle, the students first had to select the appropriate quantities
for each of the axes. Student 4 chose axes labels of Position (y) and Position (x),
changing them from the default labels of Speed and Time. Even though Algodoo
generated an option for graphical mathematical representation for the students, they
were still required to engage with the representation enough to responsibly select an
appropriate version of the graph for their given situation. The students had to tailor
the mathematical representation so that it could be used in their unconventional
implementation. This is our first example from Case 2 of how the microworldiness
of Algodoo allowed the students to use mathematical representations in a creative yet
meaningful manner: the software provided the students with mathematical materials
in the form of a graphical tool, which they implemented in their own creative
problem-solving.

The other way in which Algodoo’s microworld-like behaviour appears to have
afforded unique opportunities to the students is in how it constrained their actual
construction a model of the ramp-puck setup. While the transcript above focuses
on the students’ use of the Show Plot tool, the students’ mathematization within
Algodoo began even before the excerpts of line 50, when the students geometrized
the ramp-puck setup into the virtual space. The students first had to interpret the
parts of the physical experiment (the ramp, the table and the puck) as simple
geometrical entities, spatially organized in the Algodoo scene so as to result in a
simple geometrical model of the experiment. This meant that the students needed to
make creative, physicist-like decisions about how to simplify the three-dimensional
problem into a two-dimensional collection of simple shapes.

Furthermore, as the students overlaid the graph of the circle’s motion in the
Algodoo scene, they then needed to interpret the interactions of the objects within
their model in terms of how they related to the mathematical representation. In his
choice to plot the horizontal and vertical position of the circle in a graph, Student
4 effectively produced an abstract, mathematized version of the puck’s trajectory.
However, since the graph did not display some of the main visual features of the
scene itself (i.e. the ramp rectangle, the table rectangle, the circle or the ground),
the students were presented with the challenge of interpreting how the plotted data
related to the virtual ramp-puck model. For example, the location of the edge of the
table, which was particularly important for determining the distance of interest, was
not explicitly represented in the graph itself. This led the students to explore the
connection between the mathematical representation and the phenomenon which it
represented. They do this by first running the simulation and then realizing that the



380 E. Euler and B. Gregorcic

axes of their plot were not where they wanted. Eventually, the students were likely
able to relate specific points of the graph to places in the virtual setup in part due to
the proximity and simultaneity of the representations (topics discussed in depth in
work such as Ainsworth 2006).

We see in Case 2 how the Show Plot tool, while being used as a quantification
tool for measuring horizontal distance, also involved the students in a purposeful
coordination of a geometrical representation (the virtual ramp-puck model) and
mathematical representation (the graph) of a physical experiment (the real ramp-
puck setup). As we saw with Case 1, the student activity in Case 2 around the given
prompt showcases how users of Algodoo can make creative yet meaningful use of
the representations within the digital environment. The students were creatively
engaged not only as they explored a novel physics phenomenon but also as
they generated a geometrical model of a real experiment. They were involved
in the tailoring of a mathematical representation of motion, and, by creatively
leveraging the affordances of the Algodoo-IWB setup, they were able to determine
the desired distance and continue with their task. This suggests that such Algodoo-
IWB setups might be used for a variety of tasks, by a variety of students, to support
student creativity and fluency in formal and mathematical representations of physics
phenomena.

16.6 Discussion and Implications for Instruction

By appropriately encouraging and guiding students in environments such as
Algodoo, those software that are rich in the mathematical materials with which
users can build and have experiences, it may be possible for instructors to help
students attain a better conceptual understanding of physics and to help them relate
those conceptual understandings to mathematical formalisms. The cases presented
in this chapter are used to show how the open structure of Algodoo inspired students
to informally create and explore with formal mathematical representations.

16.6.1 Algodoo as a Tool for Conceptual Learning

We recognize Algodoo as a potentially valuable tool for expanding the possible
ways in which students can engage with mathematics in physics contexts. The
software allows the object of learning to be presented to students as something
around which they can safely and inventively build an understanding of physics
phenomena. Especially when paired with large touchscreen displays such as an
IWB, students using Algodoo may be able to experience physics phenomena
through mathematical representations in much the same way that they can begin to
experience velocity and acceleration in our speedometer-rich culture. By bringing
mathematical representations to life within the dynamic system of a virtual world,
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digital learning environments like Algodoo might better construe representations
as part of – and intrinsically related to – observable phenomena, thereby also
making representations and the phenomena they represent available to students as
objects of inquiry. In a way, students using Algodoo can observe how mathematical
representations behave much like one observes an experiment.

Put in another way, Algodoo seems to function as conceptual stepping stone
between physical phenomena and mathematical formalisms. This is an idea that
we have explored in previous research (Euler and Gregorcic 2018), wherein we
specifically examined how students transitioned between using a physical laboratory
setup, a digital model they created in Algodoo, and mathematical representations
related to both the physical and digital environments. In this work, while building on
Hestenes’s (1992) mathematical modelling games and diSessa’s (1988) discussion
of the functions of educational technology, we interpret the role of Algodoo as one
of a semi-formalism: that is, a conceptual intermediary between the experiences of
the physical world and the formal models used in physics.

Furthermore, while much of Papert’s work – and the well-known work of his
colleague, Piaget – focused on learning in young children, we argue that Algodoo
and other open-ended software have the potential to be a learning tool for a wide
variety of students spanning many age groups. By providing a creative arena that
adapts to the exploration and creativity of each user, Algodoo not only provides
novice learners with alternative means for accessing physics but also allows more
experienced learners to further develop, assess and/or verify their understanding of
the interplay of physics and mathematics concepts. We suggest that Algodoo can be
useful for physics learners from primary school through university.

16.6.2 Student Motivation and Interest

The processes discussed in this chapter are relevant not only from a conceptual
learning perspective but also as a way of providing students with nonthreatening
opportunities to approach problems in self-directed ways. The studied setup seems
to have fostered exploratory behaviour even in novice users. This suggests that
Algodoo and similar software could have potential for engaging learners in the early
stages of mathematization through novel and less threatening ways than traditional
instruction. In both cases presented here, we see that by giving students control to
create and choose among the many available mathematical representations within
Algodoo, as opposed to insisting that they use the ‘most appropriate’ representation
for the task, the activity that results can be student-directed and playful in nature
while at the same time meaningful from the perspective of conceptual learning.

This aligns well with prior research on the use of Algodoo in physics education,
which has shown that it can be used in ways that promote the engagement and
interest of students who do not consider themselves particularly savvy with physics
(Gregorcic et al. 2017a). There is also a growing body of examples of Algodoo
use wherein students from various backgrounds seem to consistently explore
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conceptual physics content in playful ways (Euler and Gregorcic 2018; Gregorcic
et al. 2017b; Rådahl 2017). In addition to these published reports, our extensive
anecdotal experience with the use of the software with a geographically diverse
population of preservice and in-service physics teachers suggests that the visual
clarity, user-friendliness and open-endedness of the software are usually met with
great enthusiasm, particularly by preservice teachers.

16.6.3 Concluding Remarks

It is sometimes easy to be impressed with a new technology to the point of
overestimating its utility in the classroom. It is worth noting that there exists much
debate around the usefulness of open-ended technologies which align with the
constructionist ideas of microworlds. This is especially the case among cognitivists
who claim that exploratory learning places too much of a load on the cognitive
processes of students (see such arguments as Hmelo-Silver et al. 2007; Kirschner et
al. 2006; Sweller et al. 2007). Nonetheless, we hold that if the learning activities
are appropriately framed (e.g. as playful inquiry with instructor guidance and
specified tasks), the microworldiness of Algodoo seems to provide students with
meaningful opportunities to engage with mathematical concepts, which they might
have found as prohibitively challenging or uninspiring in traditional classroom
or laboratory circumstances. As we stressed earlier, an open-ended software may
not be sufficient on its own to ensure that powerful ideas are learned. However,
as the cases in this chapter illustrate, when software such as Algodoo is paired
with some intentional structure in the activity, students can still be creative – and
self-directed – in their activities to the extent that they make meaningful use of
mathematical representations. While further research is needed to find the optimal
use of technologies, such as Algodoo, which may function as microworlds for
students in the learning of physics, these digital tools seem to be potentially valuable
in the way that they can (1) help students to coordinate physics concepts with
mathematical representations and (2) foster student motivation in inviting avenues
for playful exploration. As such, it represents a unique and exciting class of digital
resources for the teaching and learning of physics across many levels of education.
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