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Preface

AAIM 2018 Co-chairs’ Message
On behalf of the Organizing Committees, it is our pleasure to welcome you to the

proceedings of the AAIM 2018, the 12th International Conference on Big Data
Computing and Communications, held in Dallas, USA, during December 3–4, 2018.
All submissions to this conference were carefully peer-reviewed, and were ranked
according to their original contribution, quality, presentation, and relevance to the
conference. Based on the review, 25 high-quality papers were accepted for presentation
and inclusion in the proceedings. We aim to attract and bring together researchers
working on algorithms, data structures, and their applications to share their latest
research results.

The organization of this conference would have been impossible without the
valuable help of many dedicated people. First of all, we would like to take this
opportunity to thank all the authors for their submissions. We also kindly thank all the
members of the Technical Program Committee who shared their valuable time and
made a great effort in providing us reviews in time. We hope you find the proceedings
interesting.

September 2018 Shaojie Tang
Ding-Zhu Du

David Woodruff
Sergiy Butenko
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Minimum Diameter k-Steiner Forest

Wei Ding1(B) and Ke Qiu2

1 Zhejiang University of Water Resources and Electric Power, Hangzhou 310018,
Zhejiang, China

dingweicumt@163.com
2 Department of Computer Science, Brock University, St. Catharines, Canada

kqiu@brocku.ca

Abstract. Given an edge-weighted undirected graph G = (V, E, w) and
a subset T ⊆ V of p terminals, a k-Steiner forest spanning all the ter-
minals in T includes k branches, where every branch is a Steiner tree.
The diameter of a k-Steiner forest is referred to as the maximum dis-
tance between two terminals of a branch. This paper studies the mini-
mum diameter k-Steiner forest problem (MDkSFP) and establishes the
relationship between MDkSFP and the absolute Steiner k-center problem
(ASkCP). We first obtain a 2-approximation to ASkCP by a dual approx-
imation algorithm and then achieve a 2-approximation to MDkSFP. Fur-
ther, we achieve a (better) 2ρ-approximation to MDkSFP, where ρ < 1
in general, by modifying the sites of centers and re-clustering all the
terminals.

Keywords: k-Steiner forest · Diameter · Modification

1 Introduction

Given an undirected graph G = (V,E) and a subset T ⊆ V of terminals, a
Steiner tree is referred to as a connected subgraph of G that spans all the termi-
nals in T [6]. A Steiner forest is a group of disjoint connected branches spanning
T , where every branch is a Steiner tree [1,2,5,7,11–14]. They have a wide variety
of applications in communication networks, computational biology, and etc. [6].

1.1 Related Results

Let G = (V,E,w) be an edge-weighted undirected graph, where V is the set of n
vertices, E is the set of m edges, and w(·) is an edge weight function w : E → R

+.
The cost of a Steiner forest is equal to the sum of all the weights of edges used
by the Steiner forest. Given a subset T ⊆ V of p terminals and an integer,
1 ≤ k ≤ p, the k-Steiner forest problem (kSFP) asks to find a Steiner forest
of minimum cost which contains at most k branches. In [11], Ravi presented a
primal-dual approximation algorithm with a factor of 2(1 − 1

p−k+1 ) for kSFP.
The generalized Steiner tree problem (GSTP) (also called the Steiner

forest problem (SFP)) is another version of Steiner forest problem. Given a
c© Springer Nature Switzerland AG 2018
S. Tang et al. (Eds.): AAIM 2018, LNCS 11343, pp. 1–11, 2018.
https://doi.org/10.1007/978-3-030-04618-7_1
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2 W. Ding and K. Qiu

collection D = {(si, ti) : 1 ≤ i ≤ K} of K terminal pairs, the aim of GSTP is
to find an edge subset F ⊆ E of minimum cost such that F contains an si-ti
path. Agrawal et al. [1] gave the first approximation algorithm with a factor of
2(1− 1

p ), where p is the number of terminals. Refer readers to [2,13,14] for related
results in special graphs. In [7], Hajiaghayi and Jain proposed the Steiner k-
forest problem (SkFP), which aims to find a subgraph of minimum cost such
that at least k ≤ K terminal pairs of D are connected. In [12], Segev and Segev
gave an O(n2/3 log K)-approximation algorithm by using Lagrangian relaxation
technique. Very recently, Dinitz [5] developed the best known approximation
algorithm with a factor of n

1
3 (7−4

√
2)+ε, where 1

3 (7 − 4
√

2) < 0.44772 and ε > 0
is an arbitrary constant.

The diameter of a tree or forest is referred to as the longest distance between
vertices (leaves) on the tree or forest. Hassin and Tamir [8] sought a minimum
diameter spanning tree problem (MDSTP) of G as well as the mini-
mum diameter k-forest problem (MDkFP). In [3], Bui et al. presented a
distributed algorithm for MDSTP, with time complexity of O(n) and message
complexity of O(mn). In [4], Ding and Qiu proposed the minimum diameter
Steiner tree (MDSTT), and gave an O(n log p)-time 2-approximation algo-
rithm and O(mn + n2 log n)-time exact algorithm.

1.2 Our Results

In the real-world problems, we are sometimes required to find a Steiner forest
spanning a subset of terminals with the aim of minimizing the maximum diame-
ter of all the branches. For instance, in a communication network with every link
having a delay, a set of clients are clustered into k groups arbitrarily and every
group of clients are interconnected by a Steiner tree, resulting in a k-Steiner
forest. The goal is to make the maximum delay between two clients as small as
possible. This problem can be modelled as the minimum diameter k-Steiner
forest problem (MDkSFP), which is formally defined in Sect. 2.1. To the best
of our knowledge, this paper is the first one to propose MDkSFP formally.

We first establish the relationship between MDkSFP and the absolute
Steiner k-center problem (ASkCP). ASkCP is NP-hard. We use the dual
approximation framework [9,10] to design a 2-approximation algorithm for
ASkCP. By clustering all the terminals into k groups with the 2-approximation
as the centers, we design an O(mp2 log m)-time 2-approximation algorithm for
MDkSFP. Further, we obtain a better approximation to ASkCP by modification.
By re-clustering all the terminals with the new approximation as the centers,
we develop an O(mp2 log m + n2p)-time 2ρ-approximation algorithm, where ρ is
the ratio of the diameter of the latter approximation to MDkSFP over that of
the former.

Organization. The rest of this paper is organized as follows. In Sect. 2, we
define ASkCP and MDkSFP formally, and also show the relationship between
ASkCP and MDkSFP. In Sect. 3, we give a dual approximation algorithm for
ASkCP. In Sect. 4, we first design a 2-approximation algorithm for MDkSFP and
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further develop a better approximation algorithm by modification. In Sect. 5, we
conclude the paper.

2 Preliminaries

2.1 Definitions and Notations

Let G = (V,E,w) be an edge-weighted undirected graph, where V =
{v1, v2, . . . , vn} is the set of n vertices, E is the set of m edges, and w : E → R

+

is a weight function on edges. Let T = {t1, t2, . . . , tp} ⊆ V be a subset of p
terminals in V . For any e ∈ E, we use P(e) to denote the set of continuum
points on e. Let P be the set of all the continuum points on edges of G. So,
P =

⋃
e∈E P(e). For any pair of vertices, vi, vj ∈ V , we use d(vi, vj) to denote the

vi-vj shortest path distance (SPD). Obviously, d(·) is a metric, i.e., d(vi, vi) = 0
and d(vi, vk) ≤ d(vi, vj)+d(vj , vk),∀i, j, k. Let M = (d)n×n be the n×n distance
matrix of shortest paths in G. We assume that M is available in this paper. Note
that we also use d(x, y) to denote the x-y SPD, for any two points, x and y. A
set of cardinality of k is called a k-set.

Given a k-set, X = {x1, x2, . . . , xk} ⊂ P, the distance from terminal ti to X ,
d(ti,X ), is referred to as the distance from ti to the closest facility in X , for any
1 ≤ i ≤ p. So, d(ti,X ) = min1≤j≤k d(ti, xj). The k-set, X , is called a absolute
Steiner k-center (ASkC). The maximum distance from terminals to X (ASkC) is
called the k-radius from T to X , denoted by r(T ,X ). Let X ∗ = {x∗

1, x
∗
2, . . . , x

∗
k}

denote an optimal ASkC, which minimizes the k-radius, and Cj be the subset of
terminals are assigned to x∗

j (i.e., x∗
j is the closest facility). We have

r(T ,X ) = max
1≤i≤p

d(ti,X ). (1)

and
r(T ,X ∗) = min

X⊂P
r(T ,X ). (2)

This paper first deals with the following problem.

Definition 1. Given an edge-weighted undirected graph G = (V,E,w), a sub-
set T ⊆ V of p terminals and a positive integer k ≥ 1, the goal of abso-
lute Steiner k-center problem (ASkCP) is to find an optimal k-set, X ∗ =
{x∗

1, x
∗
2, . . . , x

∗
k} ⊂ P, to minimize the k-radius.

The discrete (vertex) Steiner k-center problem (DSkCP) is the special
case of ASkCP, where the facilities are restricted to the vertices. Similarly, we
can define the discrete Steiner k-center (DSkC). Obviously, the ordinary abso-
lute k-center problem (AkCP) is the special case of ASkCP with T = V .
Besides, DS1C and AS1C are the special cases of DSkC and ASkC with k = 1,
respectively.

Let F denote a k-Steiner forest spanning all the terminals in T , and Fj denote
the j-th branch (Steiner tree). So, F =

⋃k
j=1 Fj . Note that the k branches are
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both edge-disjoint and vertex-disjoint. One is called a pseudo Steiner forest if it
has two branches having at least a common edge or vertex.

The diameter of branch Fj , diam(Fj), is referred to as the longest distance
between leaves of Fj . As every branch Fj is a Steiner tree, its diameter is also
the longest distance between terminals. Let dj(ti1 , ti2) denote the distance on
branch Fj between ti1 and ti2 . The diameter of a k-Steiner forest F , diam(F),
is referred to as the maximum diameter of branches. We have

diam(Fj) = max
ti1 ,ti2∈Fj ,ti1 �=ti2

dj(ti1 , ti2). (3)

and
diam(F) = max

1≤j≤k
diam(Fj). (4)

Since ASkCP and MDkSFP are trivial when p = 2, we focus on the cases
with p ≥ 3. On the other hand, the optimum is obvious (every branch contains
one terminal) when k = p. Therefore, we focus on the cases where k is (quite)
smaller than p in general.

Definition 2. Given an edge-weighted undirected graph G = (V,E,w), a subset
T ⊆ V of p terminals and a positive integer 1 ≤ k ≤ p, the minimum diame-
ter k-Steiner forest problem (MDkSFP) asks to find an optimal k-Steiner
forest, F∗, such that the diameter is minimized.

2.2 Fundamental Properties

Theorem 1 shows a sufficient condition of k-Steiner forest, which gives a method
of constructing a k-Steiner forest while avoiding a pseudo forest.

Theorem 1. Given a k-set with no duplicates, X = {x1, x2, . . . , xk} ⊂ P, we
let Tj ⊆ T be the set of terminals, which are closest to xj, for all 1 ≤ j ≤ k.
One shortest path tree (SPT) spanning Tj1 with xj1 as the origin and the
other SPT spanning Tj2 with xj2 as the origin are both edge-disjoint and vertex-
disjoint, for any j1 
= j2.

Theorem 2 is a necessary condition of minimum diameter k-Steiner forest,
which shows the relationship between MDkSFP and ASkCP. The proof of Theo-
rem 2 implies we can obtain a minimum diameter k-Steiner forest by first finding
an optimal ASkC and then computing a collection of SPT’s with the optimal
ASkC as the origins. First, we give Lemma 1.

Lemma 1. There are surely at least one facility x∗
j∗ ∈ X ∗ and at least two

terminals, ti∗
1
and ti∗

2
, such that d(ti∗

1
, x∗

j∗) = d(ti∗
2
, x∗

j∗) = r(T ,X ∗).

Theorem 2. diam(F∗) = 2 · r(T ,X ∗).
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3 Approximation to ASkCP

In this section, we study ASkCP in edge-weighted graph G = (V,E,w), and use
the dual approximation framework [9,10] to devise an approximation algorithm
with a factor of 2. Let opt be the optimal value (of k-radius), X ∗ and XA denote
an optimal solution and an algorithm solution with no duplicate, respectively.

Fig. 1. Illustration for the proof of Theorem3.

Procedure TEST1 plays an important role, where k terminals are selected
from T as a possible solution. Let X (Δ) denote the solution generated by
TEST1(Δ), where Δ > 0 is a given real number, and T record the unlabelled
terminals. Initially, set X (Δ) = ∅ and T = T . Every time one terminal t� is
selected arbitrarily as a facility, all unlabelled terminals t ∈ T satisfying that

Procedure TEST1(Δ):

Input: a graph G = (V, E, w) and distance matrix M ,
a set T ⊂ V of terminals, a positive real number Δ > 0;
Output: NO or YES with X (Δ).

Step 1: X (Δ) ← ∅; T ← T ;
Step 2: while |X (Δ)| < k and T �= ∅ do

Select a terminal t� arbitrarily from T ;
L(t�) ← {t ∈ T : d(t, t�) ≤ 2Δ};
T ← T \ L(t�); X (Δ) ← X (Δ) ∪ {t�};

end
Step 3: if T �= ∅ then Return NO;

else
if |X (Δ)| �= k then
Let X0 be a set of k − |X (Δ)| terminals,
selected arbitrarily from T \ X (Δ);
X (Δ) ← X (Δ) ∪ X0;

endif Return YES and X (Δ);
endif
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d(t, t�) ≤ 2Δ are labelled. This operation is repeated until |X (Δ)| = k or T = ∅.
If TEST1 ends with T 
= ∅, then TEST1 fails and returns NO. Otherwise, TEST1

can find a solution in the following way, and so returns YES. Since the solution is
a k-set, TEST1 needs to judge whether |X (Δ)| 
= k or not. If the former occurs,
then a set X0 of k−|X (Δ)| terminals are selected arbitrarily from T \X (Δ), and
the union of X0 and X (Δ) is output as a solution. Otherwise, it returns X (Δ).

Theorem 3. Given a graph G = (V,E,w) and a subset T ⊂ V of terminals,
if there is a k-set U ⊂ V with r(T ,U) ≤ Δ, then TEST1(Δ) can find a k-set
X ⊂ V with r(T ,X ) ≤ 2Δ in O(pk) time, for any Δ > 0 (see Fig. 1).

The main idea of our algorithm is to find an approximation, a k-set of T ,
to ASkCP in vertex-unweighted graphs, which is based on the fact that every
terminal can act as a facility. Based on TEST1, we design our approximation
algorithm ASkCP-ALG for ASpCP. By Theorem 3, we know that TEST1(opt)
returns YES as X ∗ satisfies that r(T ,X ∗) ≤ opt. However, we do not know the
value of opt beforehand. In order to find as small value of k-radius as possible
which makes TEST1 return YES, we need to get all the possible values of k-
radius. By Lemma 1, we have to discuss all the possible combinations of the
edge containing x∗

j∗ and two terminals, ti∗
1

and ti∗
2
. Given an edge e = {v′, v′′}

and two terminals, ti1 and ti2 , the corresponding two possible values of k-radius
are, see Fig. 2,

r′ =
1
2

(d(ti1 , v
′) + w(v′, v′′) + d(ti2 , v

′′)) , (5)

and
r′′ =

1
2

(d(ti1 , v
′′) + w(v′, v′′) + d(ti2 , v

′)) . (6)

So, the number of possible values of k-radius is 2 ·m
(
p
2

)
= mp(p−1). By deleting

duplicates of all the possible values and then arranging the values left into an
increasing sequence, l1 < l2 < · · · < lλ, where λ ≤ mp(p − 1), Step 1 of ASkCP-
ALG can be done in O(mp2 log m) time by sorting.

Fig. 2. Two possible values of k-radius for given ti1 , ti2 and edge e = {v′, v′′}.
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Obviously, TEST1(lλ) returns YES. Our task is to find the smallest one, ls∗ ,
from all the possible values ls, 1 ≤ s ≤ λ which make TEST1(ls) return YES.
In Step 2, we find ls∗ by applying a binary search to ls, 1 ≤ s ≤ λ. So, it is
sufficient to apply TEST1 O(log λ) times. Recall that applying TEST1 once takes
at most O(pk) time. Since λ ≤ mp(p − 1) and p ≤ n ≤ m, Step 2 takes at most
O(pk log m) time. Therefore, ASkCP-ALG takes at most O(mp2 log m) time. The
details of Step 2 are presented as follows. Our search begins with l1. If TEST1(l1)
outputs YES, then we claim that ls∗ = l1 and get an approximation XA = X (l1).
Otherwise, we find ls∗ by applying a binary search to l1, l2, . . . , lλ. Let LB and
UB be the lower bound and upper bound on the index s∗, respectively, and let
M = �LB+UB

2 . Initially, set LB = 1 and UB = λ. If TEST1(lM) outputs NO,
then M becomes a new lower bound on s∗ and UB is also its upper bound. If
TEST1(lM) outputs YES, then M becomes a new upper bound on s∗ and LB is
also its lower bound. Above operation is repeated until LB and UB become two
consecutive integer numbers. During the whole operation, TEST1(lLB) always
outputs NO while TEST1(lUB) always outputs YES. As a result, the final UB
is s∗. The binary search ends with an approximation, XA = X (ls∗), to ASkCP
in a vertex-unweighted graph G. According to above discussions, we obtain the
following theorem.

Algorithm ASkCP-ALG:

Input: a graph G = (V, E, w) and distance matrix M ,
a set T ⊂ V of terminals;
Output: a k-set XA.

Step 1: Delete duplicates of all the possible values of
k-radius, and then arrange the values left into
an increasing sequence, l1 < l2 < · · · < lλ.

Step 2: if TEST1(l1) = YES then Return X (l1);
else LB ← 1;UB ← λ;
while UB − LB �= 1 do

M ← 
LB+UB
2

�;
if TEST1(lM) = NO then LB ← M;
else UB ← M; endif

end Return X (lUB);
endif

Theorem 4. Given a graph G = (V,E,w) with n vertices and m edges, and
a set T ⊂ V of p terminals, ASkCP-ALG is a 2-approximation algorithm for
ASkCP in G, with time complexity of O(mp2 log m).
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4 Approximations to MDkSFP

In this section, we design a 2-approximation algorithm for MDkSFP, and further
develop an improved approximation algorithm with a factor of 2ρ, where ρ < 1
in general, based on the approximation to ASkCP.

4.1 A 2-Approximation Algorithm

In this subsection, we first get a better solution to the vertex-unweighted ASkCP
by modifying the algorithm solution of ASkCP-ALG, and then design an approx-
imation algorithm for MDkSFP based on the modification.

The algorithm solution, XA = {t�1, t
�
2, . . . , t

�
k}, produced by ASkCP-ALG is a

set of k terminals. Let Cj , 1 ≤ j ≤ k be the set of terminals which are labelled
when t�j is selected as a facility. In details, we cluster all the terminals with
t�1, t

�
2, . . . , t

�
k as centers. Let CA

j denote the cluster of terminals to which t�j is the
closest facility. Note that CA

j includes t�j . The maximum distance to t�j in CA
j

(resp. Cj) is denoted by r(CA
j ) (resp. r(Cj)). Lemma 2 implies that the multiset

{CA
j : 1 ≤ j ≤ k} is better than the multiset {Cj : 1 ≤ j ≤ k} with respect to

the value of k-radius.

Lemma 2. max1≤j≤k r(CA
j ) ≤ max1≤j≤k r(Cj).

Let FA
j be the SPT (branch) spanning CA

j with t�i as the origin. By Theo-
rem 1 and the definition of CA

j , we claim that all FA
j ,∀j are both edge-disjoint

and vertex-disjoint. Hence, the collection of
⋃k

j=1 FA
j forms a Steiner forest

(algorithm solution), denoted by FA. This leads to an approximation algorithm
MDkSFP-ALG for MDkSFP. Its performance analysis is shown in Theorem5. Let
ji be the index such that d(ti, t�ji) = min1≤j≤k d(ti, t�j ), for any 1 ≤ i ≤ p.

Algorithm MDkSFP-ALG:

Input: a graph G = (V, E, w) and distance matrix M ,
a set T ⊂ V of terminals;
Output: a Steiner forest FA.

Step 1: Call ASkCP-ALG to get XA = {t�
1, t

�
2, . . . , t

�
k};

CA
j ← ∅, 1 ≤ j ≤ k;

for i := 1 to p do
ji ← argmin1≤j≤k d(ti, t

�
j );

CA
ji ← CA

ji ∪ {i};
end

Step 2: for j := 1 to k do
Compute a SPT (branch) FA

j spanning CA
j ;

end

FA ←
⋃k

j=1 FA
j ; Return FA;
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Theorem 5. Given an edge-weighted graph G = (V,E,w) with n vertices and
m edges, and a set T ⊂ V of p terminals, MDkSFP-ALG can compute a 2-
approximation to MDkSFP in G within O(mp2 log m) time.

4.2 A Better Approximation Algorithm

The 2-approximation algorithm MDkSFP-ALG clusters all the terminals with
the algorithm solution of ASkCP-ALG as centers. The algorithm solution is
a set of k terminals, XA = {t�1, t

�
2, . . . , t

�
k}. However, the optimal solution,

X ∗ = {x∗
1, x

∗
2, . . . , x

∗
k}, is a set of k points. In this subsection, we improve the

performance of the solution to some extent by modifying k terminals to k points.
Let

∣
∣CA

j

∣
∣ = pj ,∀j. So, T =

⋃k
j=1 CA

j and p =
∑k

j=1 pj . For any CA
j , we use

Ding and Qiu’s algorithm [4] to compute the MDST of CA
j , where CA

j is the set
of terminals. By Lemma 3, we claim that the SPT spanning CA

j with the AS1C,
x�

j , as the origin is just the MDST of CA
j , while the SPT spanning CA

j with the
DS1C, t�j , as the origin is a 2-approximate MDST of CA

j .

Lemma 3 (see [4]). Given a graph G = (V,E,w) and a subset T ⊂ V of
terminals, the MDST is the SPT spanning T with the AS1C as the origin. In
addition, the SPT spanning T with the DS1C as the origin is a 2-approximate
MDST where the factor of 2 is tight.

The center of CA
j is perturbed from t�j to x�

j , for all 1 ≤ j ≤ k, resulting
in a better solution to ASkCP, denoted by XB = {x�

1, x
�
2, . . . , x

�
k}. It is certain

that t�j is closest to all the terminals in CA
j , but it is uncertain that x�

j is closest
to all of them. Therefore, if the MDST (a.k.a., the SPT with x�

j as the origin)
spanning CA

j is taken as one branch, then two different branches may have at
least a common edge. In other words, the resulting solution may be a pseudo
Steiner forest. Let FP

j denote the MDST spanning CA
j , and FP denote the union

of all FP
j ,∀j.

In order to avoid a pseudo solution, we re-cluster all the terminals with XB

as centers. Let CB
j be the cluster of terminals to which x�

j is the closest facility,
and let r(CB

j ) denote the maximum distance to x�
j in CB

j . The SPT spanning
CB

j with x�
j as the origin is taken as one branch, denoted by FB

j . By Theorem 1,
we conclude from the definition of CB

j that all FB
j , 1 ≤ j ≤ k are both edge-

disjoint and vertex-disjoint. As a consequence, all the branches FB
j ,∀j form a

Steiner forest, denoted by FB. Based on above discussions, we devise an improved
approximation algorithm MDkSFP-IMP for MDkSFP. Its performance analysis
is shown in Theorem 6. For any 1 ≤ s ≤ p, we let js be the index such that
d(ts, x�

js
) = min1≤j≤k d(ts, x�

j ).
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Algorithm MDkSFP-IMP:

Input: a graph G = (V, E, w) and distance matrix M ,
a set T ⊂ V of terminals;
Output: a Steiner forest FB.

Step 1: The same as MDkSFP-ALG;
Step 2: for j := 1 to k do

Use the Ding and Qiu’s algorithm in [4] to
compute the AS1C, x�

j , of CA
j ;

end
CB

j ← ∅, 1 ≤ j ≤ k;
for s := 1 to p do

js ← argmin1≤j≤k d(ts, x
�
j );

CB
js ← CB

js ∪ {s};
end

Step 3: for j := 1 to k do
Compute a SPT (branch) FB

j spanning CB
j ;

end

FB ←
⋃k

j=1 FB
j ; Return FB;

Theorem 6. Given a graph G = (V,E,w) with n vertices and m edges, and a
set T ⊂ V of p terminals, MDkSFP-IMP produces a possible better approximation
than MDkSFP-ALG within O(mp2 log m + n2p) time.

The proof of Theorem6 shows diam(FB) ≤ diam(FP) ≤ diam(FA).
MDkSFP-IMP can produce the exact values of diam(FA

j ) and diam(FB
j ), for

∀j, and further the values of diam(FA) and diam(FB). Let

ρ =
diam(FB)
diam(FA)

. (7)

Clearly, ρ ≤ 1. Recall that diam(FA) ≤ 2 · diam(F∗). Therefore,

diam(FB) = ρ · diam(FA) ≤ 2ρ · diam(F∗).

Corollary 1. The approximation factor of MDkSFP-IMP is 2ρ, where ρ is the
ratio of diam(FB) over diam(FA).

In most cases, ρ < 1. This is because ρ = 1 if and only if the center (point)
corresponding to the k-radius is at a terminal (vertex). Therefore, the approxi-
mation of MDkSFP-IMP improves that of MDkSFP-ALG by a factor of 2(1 − ρ).

5 Conclusions

This paper studied MDkSFP in undirected graphs and established the rela-
tionship between MDkSFP and ASkCP. First, we obtained an approximate
ASkC and then designed a 2-approximation algorithm for MDkSFP. Further,
we achieved a better approximate ASkC by modification, and then developed
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a 2ρ-approximation algorithm for MDkSFP, where ρ < 1 in general. Our algo-
rithm can be adapted to the version where the number of the branches of Steiner
forest is at most k instead of equal to k.

The performance ratio of the approximate ASkC is one of the major factors
that influence the performance ratio of our algorithm solution of MDkSFP. We
suggest to improve the approximation to MDkSFP by achieving a better approx-
imation to ASkCP, and conjecture that ASkCP could admit a ρ-approximation
algorithm with ρ < 2.
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Abstract. The goal of relation extraction is to obtain relational facts
from plain text, which can benefit a variety of natural language process-
ing tasks. To address the challenge of automatically labeling large-scale
training data, a distant supervision strategy is introduced to relation
extraction by heuristically aligning entity pairs in plain text with the
knowledge base. Unfortunately, the method is vulnerable to the noisy
label problem due to the incompletion of the exploited knowledge base.
Existing works focus on the specific algorithms, but few works summarize
the commonalities between different methods and the influencing factors
of these denoising mechanisms. In this paper, we propose three main
factors that impact the label denoising of distantly supervised relation
extraction, including labeling assumption, prior knowledge and confi-
dence level. In order to analyze how these factors influence the denoising
effectiveness, we build a unified neural framework with word, sentence
and label denoising modules for relation extraction. Then we conduct
experiments to evaluate and compare these factors according to ten neu-
ral schemes. In addition, we discuss the typical cases of these factors and
find that influential word-level prior knowledge and partial confidence for
distantly supervised labels can significantly affect the denoising perfor-
mance. These implicational findings can provide researchers with more
insight of distantly supervised relation extraction.

Keywords: Relation extraction · Distant supervision · Label denoising

1 Introduction

Relation extraction is an active research task in information extraction [7] and
natural language processing, which aims to predict the relation between two
entities mentioned in plain text. It can benefit a variety of artificial intelligence
tasks such as question answering [1], information search [16] and knowledge base
construction [22]. However, supervised learning for relation extraction requires
a large amount of annotated data, which is costly to obtain.

Therefore, a distant supervision [12] strategy for relation extraction is pro-
posed to automatically label large-scale training data by heuristically aligning
entity pairs in plain text with the Knowledge Base (KB). However, distant
supervision tends to have the noisy labeling problem due to the incompletion
c© Springer Nature Switzerland AG 2018
S. Tang et al. (Eds.): AAIM 2018, LNCS 11343, pp. 12–23, 2018.
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of the exploited KB. As shown in Fig. 1, for a relational triple born in(Donald
Trump,United States) in KB, all the sentences including two entities Donald
Trump and United States are labeled as the instances of relation born in, despite
the sentence “Donald Trump is the 45th president of the United States” fails to
express the relation. A similar noisy labeling problem exists in the entity pair
(Donald Trump,New York), thus it is a great challenge for distantly supervised
relation extraction.

Fig. 1. A case of distantly supervised relation extraction.

To handle the noisy labeling issue, many researchers have made great efforts
to distantly supervised relation extraction. Recently, deep learning and neural
networks have achieved an excellent performance on this task. Zeng et al. [19]
selected the most likely sentence for each entity pair as a valid instance to train
the neural model. Then Lin et al. [10] selected multiple valid sentences to predict
the relation by assigning higher weight for more informative sentences. Subse-
quently, Liu et al. [11] used a soft label as the ground-truth to correct the noisy
labels, which directly achieved label denoising. Further, we also investigate some
common methods that may affect the label denoising in relation extraction such
as word-level prior knowledge [3,21] and class imbalance [6,9].

On the whole, existing works focus on specific algorithms but fail to explore
the factors impacting the label denoising of neural relation extraction. Hence, we
did a lot of research and experiments and found there are some commonalities
between different denoising methods. In summary, we propose three fundamental
and influential factors as follows:

(1) Labeling assumption. We mainly consider two labeling assumptions: one-
valid-instance assumption and multiple-valid-instance assumption. Specifi-
cally, one-valid-instance assumption [18,19] indicates that we only choose the
most effective sentence within all the sentences that mention an entity pair
to predict the relation. Multiple-valid-instance assumption [4,10] assumes
that one-valid-instance assumption may lose a lot of information from the
neglected sentences, thus we select multiple informative sentences to benefit
the relation prediction. Based on these assumptions, we can achieve sentence
denoising at different levels with respect to the distantly supervised labels.
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(2) Prior knowledge. We regard prior knowledge as all the information about
the target in training instances, which are objective facts and independent of
the knowledge base. Generally speaking, distant supervision mainly depends
on informative prior knowledge in plain text. For instance, as shown in Fig. 1,
in addition to entity mentions Donald Trump, United States and New York,
the contextual words born and president are more important to relation
extraction than the other words such as the and was. There are a variety
of methods to capture influential prior knowledge, including feature engi-
neering [2,13,14], neural networks [4,10,19], attention-based models [3,21].
Thus, how to effectively obtain informative prior knowledge is a challenging
factor for relation extraction.

(3) Confidence level. We define two confidence levels – complete confidence
and partial confidence in Distantly Supervised (DS) labels. With respect
to complete confidence, we treat DS labels as the gold labels of relation
extractor, ignoring the effect of false negatives and false positives. As for
partial confidence, we hope to learn a new soft label [11] as the ground-truth
by partly trusting the DS labels. At this time, we will exploit the semantic
information obtained from the correct relational facts. For example, as shown
in Fig. 1, the sentence “Donald Trump was born in New York” will be labeled
as the instance of relation Place lived between two entities Donald Trump
and New York because the triple exists in KB, even it fails to describe the
relation. However, if we choose partial confidence in DS labels, we can correct
the noisy labels according to the similar semantic patterns (blue fonts) in
our corpora, and find the right relation Place of birth. Therefore, choosing
different confidence levels for DS labels is an important factor that impacts
the denoising work.

The main contributions of this paper are to:

(1) propose three main factors that impact the label denoising of distantly super-
vised relation extraction, including labeling assumption, prior knowledge and
confidence level.

(2) analyze these factors in a unified neural framework with word, sentence and
label denoising modules. Through the combination of different methods in
each module, we can test the denoising effectiveness of the proposed factors.

(3) conduct experiments to evaluate and compare these factors with ten neural
schemes, discuss the typical cases and discover that the important word-level
prior knowledge and partial confidence for distantly supervised labels can
remarkably improve the denoising effect.

The remainder of this paper is structured as follows. Section 2 describes our
proposed methodology in detail. Section 3 reports our experimental results and
analysis. Section 4 gives a conclusion of the whole paper.

2 Methodology

As shown in Fig. 2, in order to analyze the denoising impact of our proposed fac-
tors for relation extraction, we design a unified neural model and employ some
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typical methods to model the factors. With respect to two labeling assump-
tions, we use the corresponding labeling schemes to reduce the influence of noisy
sentences for each entity pair. To evaluate the prior knowledge factor, we also
use two methods to verify the word-level denoising performance. As for differ-
ent confidence levels, we respectively apply DS label (complete confidence) and
soft label (partial confidence) as the ground-truth of relation extractor. Besides,
based on the partial confidence idea, we propose a dynamic soft-label (DySoft)
method to gradually learn the corrected labels during training. By combining
three modules – word, sentence and label denoising, we build a neural relation
extraction framework in an end-to-end training way.

Fig. 2. An overview of our denoising framework for the proposed factors.

2.1 Labeling Assumption Factor

To analyze the labeling assumption factor, we consider two typical assumptions -
one-valid-instance and multiple-valid-instance. Following these assumptions, we
will achieve sentence denoising at different levels for each entity pair. For this
reason, we utilize a sentence denoising module to model the two assumptions.

One-valid-instance assumption requires our model to only extract the most
likely sentence for each entity pair to predict the relation. We follow the work
of Zeng et al. [19] to realize this assumption, which chooses the sentence of the
highest relation probability as the valid instance.

Multiple-valid-instance assumption will select multiple informative sentences
for each entity pair as the valid candidates. For this assumption, different algo-
rithms [4,5,10] are introduced to achieve sentence-level denoising. Our model
uses the effective selective attention mechanism [10], which can learn high weight
for the valid sentences and low weight for the noisy sentences.
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2.2 Prior Knowledge Factor

The denoising impact of the prior knowledge factor depends on the design of
network architecture. CNN [8,20], PCNN [10,19] and LSTM [17] are common
architectures to learn sentence representation, which can obtain the discrimi-
native word sequence information of a sentence. Further, an attention mecha-
nism [3,21] provides us with the insight to achieve word-level denoising. There-
fore, we define a word denoising module to analyze the prior knowledge factor.

Concretely, the widely used PCNN in relation extraction is used to learn the
sentence representation. Besides, we introduce a word attention method to learn
the importance of each word in an instance. To obtain the relatedness between
each word in the sentence and entity pair, we compute the attention weight αi

of the i-th word in a sentence as follows:

αi =
exp(ui)∑
k exp(uk)

(1)

ui = Ww tanh([wi, e1, e2]) + bw (2)

where wi, e1 and e2 are the embeddings of the i-th word, entity pair e1 and e2
in the sentence. Ww and bw are training parameters. Here we follow the work
of Huang et al. [3] to utilize the attention mechanism.

2.3 Confidence Level Factor

With respect to different confidence levels for Distantly Supervised (DS) labels,
we employ a complete confidence method and two partial confidence methods to
test the impact of this factor. We model the factor as the label denoising module
so that we can correct DS labels directly according to the partial confidence
schemes. Firstly, for complete confidence, we use DS labels as the gold labels
of relation extraction task. While for partial confidence, we reproduce a soft-
label [11] method to learn a new label, which combines the predicted relation
score and the DS labels via a static confidence vector.

In order to resolve the problem of statically presetting the confidence vector,
we propose a Dynamic Soft-label (DySoft) denoising method. Let c(τ)i denote
the i-th label confidence at the τ -th training step, then the soft label ŷ(τ) at the
τ -th training step is iteratively calculated as follows:

ŷ(τ) = arg max
i

{ c(τ−1)
i + p(τ)

i
∑

k c(τ−1)
k + p(τ)

k

} (3)

where p(τ) represents the relation score predicted by relation extraction model
at τ -th training step. The initial label confidence c(0) is fed with one-hot vector
y of the DS label y.

We simply learn the label confidence of the current training step by a linear
combination of previous label confidence and current relation score. The iteration
operation can model the correlation between label confidences at different train-
ing steps, and use preceding obtained soft labels to learn current new soft labels.
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Hence, our proposed dynamic soft-label method remains soft-label consistency
learning and gradually achieves label denoising during training.

3 Experiments

In this section, we conduct experiments to evaluate and compare the proposed
factors. By combining different denoising modules, we implement 10 relation
extraction schemes in Table 1, including 4 reproduction and 6 original schemes.

Table 1. Our denoising schemes for the proposed factors.

Methods One One+WA Multiple Multiple+WA

Complete confidence ONE [19] ONE+WA MUL [4,10,17] MUL+WA

Partial confidence +Soft [11] – +Soft [11] –

+DySoft +WA+DySoft +DySoft +WA+DySoft

For each column in Table 1, one-valid-instance and multiple-valid-instance
assumptions respectively correspond to ONE and MUL methods. With respect
to the prior knowledge factor, we use PCNN as the baseline to extract informative
prior knowledge, and Word Attention (WA) module is a selective operation for
word denoising. For each row in Table 1, complete confidence uses DS labels as
the ground-truth, and partial confidence uses Soft-label method [11] and our
proposed Dynamic Soft-label method (DySoft) as the gold labels.

3.1 Dataset and Evaluation

Our proposed factors are compared and evaluated on a widely used distantly
supervised relation extraction benchmark dataset, which was developed by
Riedel et al. [13] via aligning the plain text of the New York Times corpus with
relational triples of Freebase. The dataset has 52 relation classes and a non-
relation NA class. The training set includes 522,611 sentences, 281,270 entity
pairs and 18,252 relational facts. The test set includes 172,448 sentences, 96,678
entity pairs and 1,950 relational facts. Similar to previous work [5,10,11,19],
we adopt the held-out evaluation with aggregate precision-recall curves and top
N Precision (P@N). The held-out evaluation compares the predicted relations
of entity pairs with the distantly supervised relations without requiring human
evaluation. As for parameter settings, we follow the settings of Liu et al. [11].
Specially, our proposed soft label is utilized after 3 training epochs.

3.2 Result and Analysis

As shown in Fig. 3, the neural models significantly performs better than tradi-
tional feature-based models Mintz [12], MultiR [2] and MIMLRE [15]. All the
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methods in Fig. 3 have compete confidence in distantly supervised labels. Obvi-
ously, adding a word attention (WA) module is beneficial to both one-valid-
instance (ONE) and multiple-valid-instance (MUL) assumptions.

Fig. 3. Performance comparison of neural methods with feature-based methods.

From Fig. 4, we present the impact of different denoising modules. For both
ONE and MUL assumptions, the Soft-label [11] method performs well when the
recall is less than 0.3, but it declines notably when the recall is greater than 0.4.
Our proposed DySoft-label method performs stable and achieves higher precision
in the MUL assumption. In particular, combining word denoising (WA) with
label denoising (Soft-label) module fails to improve the baseline. Consider that
correcting labels may have a bad impact on the attention of prior knowledge,
we get that the combination effect of WA+DySoft scheme may be not as good
as we expect.

Fig. 4. Performance comparison of different denoising schemes.

For a clear comparison, Table 2 presents the precisions of a variety of models
for different recalls R = 0.1/0.2/0.3/0.4/0.5 and Average Precision (AP) which
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corresponds to the area under the precision-recall curve. Compared with the
neural baselines PCNN+ONE and PCNN+MUL which use DS labels as the
ground-truth, We can observe that adding WA or adding DySoft can achieve
the better performance than the other neural schemes. Next we will analyze the
effect of each factor in detail.

Table 2. Precisions of a variety of models for different recalls.

Method R 0.1 R 0.2 R 0.3 R 0.4 R 0.5 AP

Mintz [12] 0.399 0.286 0.168 - - 0.106

MultiR [2] 0.609 0.364 - - - 0.126

MIMLRE [15] 0.607 0.338 - - - 0.120

PCNN+ONE [19] 0.752 0.645 0.539 0.416 0.315 0.352

+WA 0.756 0.661 0.583 0.449 0.328 0.369

+Soft-label [11] 0.775 0.673 0.562 0.414 0.241 0.332

+DySoft-label 0.783 0.638 0.534 0.419 0.313 0.360

+WA+DySoft-label 0.768 0.646 0.522 0.430 0.318 0.358

PCNN+MUL [10] 0.699 0.641 0.548 0.439 0.338 0.365

+WA 0.783 0.672 0.554 0.444 0.346 0.382

+Soft-label [11] 0.777 0.682 0.553 0.390 0.225 0.331

+DySoft-label 0.762 0.668 0.584 0.481 0.358 0.370

+WA+DySoft-label 0.728 0.675 0.571 0.457 0.332 0.360

3.3 Effect of Labeling Assumption Factor

To test the effect of labeling assumption factor, we compare and evaluate two
typical assumptions – one-valid-instance assumption [19] and multiple-valid-
instance assumption [10]. Figure 4 shows that both assumptions bring an excel-
lent precision-recall performance, and multiple-valid-instance assumption per-
forms slightly better than one-valid-instance assumption due to the utilization of
more sentences. In particular, we find that the performance of both assumptions
is better than the report of Liu et al. [10] and the gap between two assumptions
is not as large as theirs. We owe the discriminative results to the CPU/GPU
hardware environment and code structure.

As multiple-valid-instance assumption has the effect on the entity pairs
which have multiple sentences, we compare and analyze the performance of two
assumptions on these entity pairs. Following the evaluation of Liu et al. [10],
we randomly select one, two and all sentences from the entity pairs which have
more than one sentence to conduct relation extraction. Table 3 presents top N
precision (P@N) of different settings for top 100/200/300 relational facts. We
discover that the whole performance of one-valid-instance and multiple-valid-
instance assumptions has 8% and 5% improvements compared with the reported
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Table 3. Top N precision (P@N) for relation extraction in the entity pairs with different
number of sentences.

Settings One Two All

P@N(%) 100 200 300 Mean 100 200 300 Mean 100 200 300 Mean

ONE 76.0 69.5 65.3 70.3 77.0 71.5 68.3 72.3 83.0 72.5 68.0 74.5

+WA 77.0 72.0 68.7 72.6 78.0 77.5 70.0 75.2 79.0 77.5 71.3 75.9

SATT 75.0 75.5 68.0 72.8 74.0 75.0 70.7 73.2 76.0 77.0 74.3 75.8

+WA 83.0 76.0 67.0 75.3 83.0 77.5 70.7 77.1 85.0 78.0 74.7 79.2

results of Liu et al. [10]. The average precision for different settings of multiple-
valid-instance assumption has 1% to 4% improvements compared with one-valid-
instance assumption, which is also less than the gap of 5% to 9% in previous
work [10]. Specially, the case study of labeling assumption for sentence-level
denoising has been reported [10], thus we omit it in our paper.

3.4 Effect of Prior Knowledge Factor

Since the denoising impact of the prior knowledge factor in neural networks is
usually invisible and directly reflected in model performance, we evaluate this
factor in the precision-recall curve and visualization of word attention. From
Fig. 4 and Table 2, we can find that adding a word-level denoising WA mechanism
can greatly benefit both ONE and MUL assumptions. Particularly, MUL+WA
model achieves the best AP performance compared with all the other models.
As shown in Table 2, combining WA mechanism makes the average precision
improve 3% and 4% for ONE and MUL baselines. These results demonstrate the
effectiveness of adding the word-level importance for the prior knowledge factor.

Table 4. Visualization of word attention.

Relation Instance

place of birth Roscoe LeeBrowne was born on May 2, 1925, in Woodbury .

place of death His most recent book is “Murder in Amsterdam : the death of
Theo Van Gogh and the limits of tolerance.”

company “I like Eli Manning,” the NBC football analyst John
Madden said in a conference call Thursday.

founder Still , some early investors like Peter Munk , the founder and
chairman of Barrick Gold, were skeptical at first.

Table 4 presents the visualization of word attention mechanism, the bold font
and size of a word denote its importance, the italic words are entity mentions.
For example, with respect to the instance of relation place of birth, the word born
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is assigned the highest weight, entity mentions Roscoe Lee Browne, Woodbury
and temporal word 1925 are also given higher weights than the other words
in the sentence. It is not difficult to find that the informative prior knowledge
can provide us with the clues to predict the relation of entity pairs. Therefore,
influential word-level prior knowledge is effective to improve the performance of
relation extraction.

3.5 Effect of Confidence Level Factor

As shown in Fig. 4 and Table 2, the different confidence levels can impact the
label denoising. Concretely, with respect to the partial confidence in DS labels,
both the Soft-label [11] and our proposed DySoft-label methods can improve
the performance of baselines. In addition, we give some typical cases of soft-
label corrections to check the label denoising of our proposed DySoft method in
Table 5.

Table 5. Case study of label denoising.

DS label Soft label Instance

NA nationality ..., said Gani Fawehinmi, one of Nigeria’s most
prominent awyers and a longtime campaigner
for good governance.

place lived place of birth And surely we must recognize Alton B. Parker,
born in Cortland, N.Y., who lost the 1904
election to another ...

company NA George W. Bush offered paeans to boyhood
home in Midland, Texas.

place lived place of death → NA He was Antonello da Messina, commonly called
Antonello, not da Messina.

Firstly, we find that the noisy labels of some false negatives can be corrected
by soft labels. For example, the relation between Gani Fawehinmi and Nigeria
is missed in Freebase, but we can correctly recognize their relation nationality.
For the instance of entity pair (Alton B. Parker, Cortland) which is labeled
as relation place lived, we can correct it with place of birth due to the high
label confidence of this relation. Furthermore, false positives can be identified
by label denoising method. For example, the instance of entity pair (George
W. Bush, Texas) fails to express the relation company, we will correct it with
NA relation. In particular, with respect to the last case, the instance also fails
to express the DS label place lived between entity pair (Antonello da Messina,
Messina). However, we observe that their label can be gradually corrected based
on our proposed DySoft-label method. At the beginning, the relation is firstly
corrected as place of death, then it is corrected as NA. The results show that
partial confidence in DS labels can achieve the label-level denoising of relation
extraction.
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4 Conclusions

In this paper, we propose three main factors – labeling assumption, prior knowl-
edge and confidence level that impact the label denoising of distantly super-
vised relation extraction. Moreover, we build a unified neural framework with
word, sentence and label denoising modules to analyze the effect of these fac-
tors. At last, we empirically evaluate and compare these factors based on ten
neural schemes. The experimental results demonstrate these factors can effec-
tively impact the label denoising of relation extraction. In summary, we find that
both typical labeling assumptions are effective for relation extraction. Further-
more, the prior knowledge factor can affect word-level denoising and improve
the model performance. Besides, we discover that partial confidence in distantly
supervised labels can reliably correct noisy labels. These findings are beneficial
to the further research of relation extraction.

In the future, we will explore the feasibility and interpretability of relation
extraction based on reinforcement learning and generative adversarial network
via the proposed factors.

Acknowledgements. This work is supported by National Natural Science Founda-
tion of China, 61602048, 61520106007, BUPT-SICE Excellent Graduate Students Inno-
vation Funds, 2016.
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Abstract. Let there be a set M of m parallel machines and a set J
of n jobs, where each job j takes pi,j time units on machine Mi. In
makespan minimization the goal is to schedule each job non-preemptively
on a machine such that the length of the schedule, the makespan, is
minimum. We investigate a generalization of makespan minimization
on unrelated parallel machines (R||Cmax) where J is partitioned into
b bags B = (B1, . . . , Bb), and no two jobs belonging to the same bag
can be scheduled on the same machine. First we present a simple b-
approximation algorithm for R||Cmax with bags (R|bag|Cmax). Two
machines Mi and Mi′ have the same machine type if pi,j = pi′,j for
all j ∈ J . We give a polynomial-time approximation scheme (PTAS)
for R|bag|Cmax with machine types where both the number of machine
types and bags are constant. This result infers the existence of a PTAS
for uniform parallel machines when the number of machine speeds and
number of bags are both constant. Then, we present a b/2-approximation
algorithm for the graph balancing problem with b ≥ 2 bags; the approx-
imation ratio is tight for b = 3 unless P = NP and this algorithm solves
the graph balancing problem with b = 2 bags in polynomial time. In addi-
tion, we present a polynomial-time algorithm for the restricted assign-
ment problem on uniform parallel machines when all the jobs have unit
length. To complement our algorithmic results, we show that when the
jobs have lengths 1 or 2 it is NP-hard to approximate the makespan with
approximation ratio less than 3/2 for both the restricted assignment and
graph balancing problems with b = 2 bags and b = 3 bags, respectively.
We also prove that makespan minimization on uniform parallel machines
with b = 2 bags is strongly NP-hard.

Keywords: Makespan minimization · Unrelated parallel machines
Approximation algorithms · Scheduling · Bag constraints

1 Introduction

Let M be a set of m unrelated parallel machines and J be a set of n jobs, where
job j has length or processing time pi,j ∈ Z

+ on machine Mi. In makespan min-
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imization, the goal is to schedule all the jobs on the machines so as to minimize
the length of the schedule—the makespan. Makespan minimization on unrelated
parallel machines is denoted as R||Cmax in the notation of Graham et al. [11].
Two extensively studied machine environments that are special cases of the
unrelated parallel machine environment are the identical and uniform parallel
machine environments: if the machines are identical then job j has the same
length pj ∈ Z

+ on any machine; and if the machines are uniform then each
machine Mi has a speed si ∈ Z

+ and job j has processing time pj/si on Mi.
We consider a generalization of R||Cmax where the jobs J are partitioned into

b sets B = (B1, B2, . . . , Bb) called bags, and any feasible solution must satisfy the
bag constraints: no two jobs from the same bag can be scheduled on the same
machine. This problem is called makespan minimization on unrelated parallel
machines with bags, and we denote it as R|bag|Cmax. Notice that if b = |J |, then
every job is in a distinct bag, and we get the classic setting R||Cmax. As discussed
in [7], the bag constraints appear in settings such as in the scheduling of tasks for
on-board computers in airplanes. That is, these systems have multiple processors
and it is required for some of the tasks to be scheduled on different processors so
that the airplane continues to operate safely even if one of the processors were
to fail. Thus, parallel machine scheduling problems where the bag constraints
are imposed are a kind of fault-tolerant scheduling that finds applications in
complex parallel systems where system stability is desired [4].

The best-known approximation algorithms for R||Cmax have approximation
ratio 2 [8,16,19], and it is NP-hard to approximate the makespan with approx-
imation ratio less than 3/2 [16]. Two special cases of R||Cmax have become of
recent interest to try to understand the 3/2-to-2 approximation gap for R||Cmax:

– Restricted Assignment Problem (P |Mj |Cmax). This is makespan minimiza-
tion on identical parallel machines (i.e., P ||Cmax) with the constraint that
some jobs are not eligible to be scheduled on some of the machines. That
is, for each job j ∈ J , there is a set Mj of machines where job j can be
scheduled. A schedule that assigns each job j to an eligible machine in Mj is
said to satisfy the eligibility constraints.

– Graph Balancing Problem (P |Mj , |Mj | ≤ 2|Cmax): This is a special case of
the restricted assignment problem where the number of eligible machines for
each job is at most 2. An alternate way to interpret an instance of this problem
is as a weighted multigraph where the jobs are edges and the machines are
vertices, and every edge must be directed to one of its endpoints so as to
minimize the maximum sum of the edge lengths directed toward a vertex.

We study variants of the above two problems with bag constraints. In addition to
this, we investigate R|bag|Cmax in the setting with so-called machine types. As
discussed by Gehrke et al. [10], a natural scenario in parallel machine scheduling
is where the machines are clusters of processors where each processor in a cluster
is of the same type, e.g. clusters of CPUs and/or GPUs. More formally, two
machines Mi and Mi′ have the same machine type if pi,j = pi′,j for all j ∈ J . We
study R|bag|Cmax with machine types, where the number δ of machine types is
constant.
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2 Related Work

For the restricted assignment problem with two different job lengths pj ∈ {α, β}
for each job j and α < β, there are approximation algorithms with approxi-
mation ratio slightly less than 2 [3,15], most notably a (2 − γ)-approximation
algorithm for some small value γ > 0 and a (2 − α/β)-approximation algo-
rithm, both by Chakrabarty et al. [3]. Jansen and Rohwedder [14] showed that
in quasi-polynomial time the restricted assignment problem can be approximated
within a factor 11/6 + ε of the optimum for any ε > 0. Ebenlendr et al. [6] pre-
sented a 7/4-approximation algorithm for the graph balancing problem. For the
graph balancing problem with two job lengths there are 3/2-approximation algo-
rithms [12,18], and there is no p-approximation algorithm with p < 3/2, unless
P = NP [1,6]. Jansen and Maack [13] presented an efficient PTAS for R||Cmax

with machine types when the number of machine types is constant. For more
literature on makespan minimization with machine types see [10,13].

Makespan minimization with bags is a type of conflict scheduling problem,
where two jobs conflict if two jobs from the same bag are scheduled on the
same machine. A natural way to model this type of conflict is with an incom-
patibility graph: there is a vertex for each job and an edge {j, j′} if jobs j
and j′ cannot be scheduled on the same machine. Then, makespan minimiza-
tion with bags is when the incompatibility graph consists of b disjoint cliques.
Bodlaender et al. [2] developed several results for P ||Cmax with incompatibility
graphs. In addition, Dokka et al. [5] considered a related, but generalized version
of P |bag|Cmax called the multi-level bottleneck assignment problem, and gave
a 2-approximation algorithm for three bags. For further discussion on related
variants of conflict scheduling refer to Sect. 1.3 of [4].

In 2017, Das and Wiese [4] presented a PTAS for P |bag|Cmax, and an 8-
approximation algorithm for the restricted assignment problem with bags in the
special case when for each bag Bk all the jobs j ∈ Bk have the same eligibility
constraints, i.e. each set of machines on which a job in Bk can be scheduled
is the same. For any ε > 0, Das and Wiese proved there is no

(
(log n)1/4−ε

)
-

approximation algorithm for the restricted assignment problem with bags, unless
NP ⊆ ZPTIME(2(log n)O(1)

).

3 Preliminaries

First, we give a couple of basic properties for R|bag|Cmax. If the num-
ber b of bags is one, at most one job can be scheduled on each machine.
Hence, we can solve R||Cmax with one bag in polynomial time as fol-
lows: build a weighted bipartite graph G = (J ∪ M,E), where E =
{(j, i) | job j can be scheduled on machine Mi}, and w(j, i) = pi,j for every
(j, i) ∈ E. Compute a maximum cardinality bottleneck matching M of G and for
each arc (j, i) ∈ M , schedule job j on machine Mi; there is no feasible solution
if any job is not scheduled. Thus, in the sequel we focus on R|bag|Cmax when
there are b > 1 bags.
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Property 1. For any schedule that satisfies the bag constraints with b bags, there
are at most b jobs scheduled on a machine.

For some of our algorithmic results, we employ a p-relaxed decision procedure
as given in Lenstra et al. [16]. Let U ∈ Z

+ be an upper bound on the optimal
makespan for some scheduling problem. We use binary search over the inter-
val [0, U ] to determine the smallest value d ∈ Z

+ for which the p-relaxed decision
algorithm produces a schedule, it either: computes a schedule with makespan at
most pd; or returns FAIL if there is no solution with value at most d. In the
binary search, if the p-relaxed decision algorithm returns FAIL then the value d
is increased, and if a schedule is returned the value d is decreased. If we keep
track of the schedule with minimum makespan found, after O(log U) iterations
the binary search guarantees that d ≤ OPT and a schedule with makespan at
most p · OPT is found. Therefore, if the overall p-relaxed decision procedure
takes polynomial time, this is a p-approximation algorithm.

4 Our Results

In Sect. 5 we provide a simple b-approximation algorithm for R|bag|Cmax. In
Sect. 6 we present a PTAS for R|bag|Cmax with machine types when there is a
fixed number of machine types and bags. As we will explain, this implies the exis-
tence of a PTAS for Q|bag|Cmax when both the number of machine speeds and
the number of bags are constant. Then, in Sect. 7 we give a b/2-approximation
algorithm for the graph balancing problem with b ≥ 2 bags, the approximation
ratio for this algorithm is tight for b = 3 unless P = NP and implies that the
graph balancing problem with b = 2 bags is solvable in polynomial time. Finally,
in Sect. 8 we show that the restricted assignment problem with bags when the
machines are uniform and every job has unit length (Q|bag, pj = 1,Mj |Cmax) is
polynomial-time solvable. As a note, we designed a O(m log m)-time algorithm
for P |bag|Cmax with b = 2 bags.

To complement our algorithmic results, we present a series of inapproxima-
bility and strong NP-hardness results in Sect. 9. We first show how to extend the
classic 3/2-inapproximability lower bound of Lenstra et al. [16] to the restricted
assignment problem with job lengths pj ∈ {1, 2} when there are b = 2 bags.
Then, we prove that there is no approximation algorithm with approximation
ratio less than 3/2 for the graph balancing problem with b = 3 bags and job
lengths pj ∈ {1, 2}, unless P = NP. Finally we show that Q|bag|Cmax with
b = 2 bags is strongly NP-hard.

5 A b-Approximation Algorithm for R|bag|Cmax

Let pmax = max1≤j≤n,1≤i≤m(pi,j). Our approximation algorithm uses binary
search and a b-relaxed decision procedure with U = pmaxn. For makespan esti-
mate d ≤ U , the idea is to treat each bag independently and simply schedule
the jobs j in each bag Bk ∈ B on machines Mi where pi,j ≤ d so that the bag
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constraints are satisfied. We do this by using a bipartite flow network N(B,P, d)
where there is a source s, a job node for each j ∈ J , a bag-machine node MBk,i

for each Mi ∈ M and Bk ∈ B, a machine node for every Mi ∈ M , and a sink t.
Do the following for each bag Bk ∈ B: for each j ∈ Bk, add an arc from s to
each job node j and set its capacity to 1. Next, for each j ∈ Bk and Mi ∈ M ,
if pi,j ≤ d, then add an arc from job node j to MBk,i with capacity 1. For each
Mi ∈ M and Bk ∈ B, add an arc from each bag-machine node MBk,i to machine
node Mi with capacity 1. Finally, from each machine node Mi ∈ M , add an arc
from Mi to t with capacity b. The b-relaxed decision algorithm is as follows.

1. Build flow network N(B,P, d) and compute an integral maximum flow f .
2. For each j ∈ Bk, if f(s, j) = 0 then return FAIL.
3. For each job j ∈ Bk, schedule j on machine Mi if f(j,Mk,i) = 1, and return

this schedule.

If an integral maximum flow is computed and all the arcs incident on s are
saturated, the jobs in bag Bk can be scheduled on the machines so as to satisfy
the bag constraints, and such that each job takes at most d time units.

Theorem 1. There is b-approximation algorithm for R|bag|Cmax.

6 A PTAS for R|bag|Cmax with a Constant Number
of Machine Types and Bags

Recall that two machines Mi and Mi′ have the same machine type if, for every
j ∈ J , pi,j = pi′,j . Let Nt(υ) be the number of machines of machine type υ, and
let δ be the number of machine types. Now we describe the PTAS. Compute
a b-approximate value ρ to the optimal makespan, so that ρ/b ≤ OPT ≤ ρ;
value ρ can be computed using the b-approximation algorithm in Sect. 5. Then
use binary search over the interval [ρ/b, ρ] to find the smallest value τ for which
the algorithm given below computes a schedule. Consider all possible schedules of
length τ . We can simplify the structure of these schedules so that there is only
a constant number of different load configurations for the machines (defined
below), while increasing the length of the schedule by a factor of at most (1 + ε)
for any constant ε > 0. This simplification will allow us to design a PTAS.

First subdivide the timeline of a schedule into units of length (τε)/b2 for some
constant ε > 0. Let the load configuration (
i,1, 
i,2, . . . , 
i,b) of machine Mi be
such that if job j from bag Bk is scheduled on Mi then (
i,k − 1)(τε)/b2 <
pi,j ≤ 
i,j · (τε)/b2. The number of possible values each 
i,k can take is at
most 1+� τ

τε
b2

� = 1+� b2

ε �, and so 
i,k ∈ {0, 1, 2, . . . , �b2/ε�}. As there are b values
in any load configuration, the number of possible load configurations is then
(1 + �b2/ε�)b =: D, a constant; label these load configurations 1, 2, . . . ,D. Let
vector (c1,1, c1,2, . . . , c1,D, c2,1, c2,2, . . . , c2,D, . . . , cδ,1, cδ,2, . . . , cδ,D) be a schedule
configuration, where cυ,μ is the number of machines with machine type υ that
have load configuration μ. There are m machines, so each cυ,μ ∈ {0, 1, . . . ,m}
and because there are δD many elements in a schedule configuration, the total
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possible number of schedule configurations is O(mδD), a polynomial function as
δ and D are constant. A schedule configuration is valid if

∑δ
υ=1

∑D
μ=1 cυ,μ = m,

and
∑D

μ=1 cυ,μ = Nt(υ), for υ = 1, 2, . . . , δ. For each valid schedule configuration
there are exactly m load configurations, one for each machine. That is, for each
cυ,μ > 0, assign load configuration μ to cυ,μ machines of machine type υ. Then,

the makespan of a valid schedule configuration is max1≤i≤m

{ ∑b
k=1 
i,k( τε

b2 )
}

.
We compute all valid schedule configurations for makespan τ and choose one

for which the jobs can be allocated to the machines according to that schedule
configuration. If there is a feasible schedule, at least one such schedule con-
figuration exists where for each j ∈ J with j ∈ Bk, there is a machine Mi

with pi,j ≤ 
i,k( τε
b2 ) ≤ � b2

ε �( τε
b2 ) where b2

ε ( τε
b2 ) = τ ≤ � b2

ε �( τε
b2 ). To find this

schedule we proceed as follows. For each valid schedule configuration, assign to
machine Mi a load configuration Li as described above. Then consider each
bag Bk, k = 1, 2, . . . , b, and build a bipartite graph Gk = (Bk ∪ M,Ek),
where Ek =

{
(j,Mi) | Mi ∈ M, j ∈ Bk, (
i,k − 1)

(
τε
b2

)
< pi,j ≤ 
i,k

(
τε
b2

)}
.

Compute a maximum matching of Gk, and for each arc (j,Mi) in the matching,
schedule j on Mi. Discard the schedule if at least one job of bag Bk is not sched-
uled. Otherwise, for k = 1, 2, . . . , b, a matching of size |Bk| is computed for Gk

and thus every job j ∈ Bk is scheduled. This will assign at most one job from
each bag Bk to each machine, so a feasible schedule is produced.

Let machine Mλ be a machine that finishes last in the schedule configu-
ration with minimum makespan τ∗ selected by the algorithm and let L∗

λ =
(
∗

λ,1, 

∗
λ,1, . . . , 


∗
λ,b) be its load configuration. Note that for each job j ∈ Bk on

Mλ, pλ,j ≤ 
∗
λ,k(τ∗ε)/b2, but pλ,j > (
∗

λ,k − 1)(τ∗ε)/b2 as otherwise there would
be another schedule configuration of lesser makespan where all the jobs can be
allocated to the machines. Since τ∗ ≥ OPT , then

∑

job j scheduled
on machine Mλ

pλ,j ≥ OPT >

b∑

k=1

max
{

(
∗
λ,k − 1)

τ∗ε
b2

, 0
}

.

Therefore,

∑

job j scheduled
on machine Mλ

pλ,j ≤
b∑

k=1


∗
λ,k

τ∗ε
b2

≤
b∑

k=1

max
{

(
∗
λ,k − 1)

τ∗ε
b2

, 0
}

+
b∑

k=1

τ∗ε
b2

< OPT +
b∑

k=1

τ∗ε
b2

,

and since ρ/b ≤ OPT ≤ τ∗ ≤ ρ, the makespan is at most

OPT +
b∑

k=1

τ∗ε
b2

= OPT +
(τ∗

b

)
ε ≤ OPT +

(ρ

b

)
ε ≤ (1 + ε)OPT.
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Theorem 2. There is a PTAS for R|bag|Cmax with machine types when both
the number b of bags and the number δ of machine types are constant.

Consider makespan minimization on uniform machines with bags
(Q|bag|Cmax). The processing time for a job on a machine depends on the speed
of the machine. Therefore, the number of machine types is in fact the number
of machine speeds.

Corollary 1. There is a PTAS for Q|bag|Cmax when both the number of distinct
machine speeds and the number of bags are constant.

7 A b/2-Approximation Algorithm for the Graph
Balancing Problem with b ≥ 2 Bags

Recall that in the graph balancing problem with bags the jobs and machines can
be represented as a weighted multigraph G = (V,E), where the jobs are edges
i.e. E =

⋃b
k=1 Bk, each edge e ∈ E has length pe ∈ Z

+, and the machines are
the vertices. We continue to use m and n to be the number of machines and
jobs, respectively. Let GBk

= (VBk
, Bk) where vertex v ∈ VBk

if v ∈ e ∈ Bk. We
call a maximally connected component of GBk

a bag component. A pseudoforest
is a collection of trees and graphs with at most one cycle called 1-trees.

Property 2. Consider the graph balancing problem with bags. If there is a feasi-
ble schedule S, then for every Bk ∈ B, GBk

is a pseudoforest.

In the sequel we assume that the input multigraph G satisfies the conditions
of Property 2. There are at most two possible orientations for a bag component
that is a 1-tree: direct each edge to a unique vertex along the cycle of the 1-
tree, and then direct all other edges away from the cycle. A tree T = (VT , ET )
however has at most |VT | possible orientations: select each vertex as the root of
the tree and direct all edges away from it. We use these facts in our algorithm.

We use binary search and a b/2-relaxed decision procedure as described in
Sect. 3 with U =

∑
e∈E pe to find the smallest value d ∈ Z

+ for which there is
a schedule with makespan at most (b/2)d that satisfies the bag constraints. If
the b/2-relaxed decision algorithm below returns FAIL, then there is no feasi-
ble schedule with makespan at most d for G; otherwise the algorithm computes
a feasible schedule with makespan at most (b/2)d. Let lL(u) be the load con-
tributed by the edge with the largest edge length directed toward vertex u in G;
hence lL(u) = 0 if no edge is directed toward u. We note that if lL(u) > d/2 then
no other edges with length larger than d/2 can be directed toward u without the
makespan exceeding d; we call an edge e a big edge when its length pe > d/2
and an edge is small if pe ≤ d/2.

The b/2-relaxed decision algorithm uses a set D to store the edges that
have been assigned a direction. Initially D = ∅ and if a schedule exists, at
the end D will contain all the edges in G. First, if any edge e ∈ E has length
larger than d return FAIL. While there is an edge in E \ D do the following.
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Compute a bag component C of G \ D and perform an expansion of C by using
the procedure described in Step (2) of the algorithm below. For each feasible
orientation of the edges in C an expansion forces edges away from vertices in
C if doing so does not violate the bag constraints and lL(u) + pe ≤ d for every
u ∈ C and edge e incident on u. The forcing of edges away “expands” C and this
process will continue “expanding” C until no more edges need to be forced in
a certain direction or infeasibility is determined. If an expansion is successfully
computed, directions for a set CE of edges is found and so we set D = D ∪ CE .
The process is then repeated if there are any undirected edges left in E \ D.
Otherwise, if no expansion was found another orientation for C is considered
and another expansion is computed. The algorithm returns FAIL if there are no
more orientations to try. We assume below that each lL(u) is updated as the
direction of edges are changed. Now we formally describe the algorithm.

1. Set D = ∅. If any edge e ∈ E has length pe > d, return FAIL.
2. While E \ D is not empty:

(a) Compute a bag component C of G \ D.
(b) Find a new orientation of the edges in C for which at most one edge from

each bag is directed to the same vertex and any two edges e, e′ directed to
the same vertex satisfy pe +pe′ ≤ d. If there are no more new orientations
to try for C return FAIL. Let Cυ be the set of vertices u where an edge
is directed toward u by this step.

(c) While there is a vertex u ∈ Cυ and undirected edge e = {u, v} in E \ D
where lL(u) + pe > d:
i. Direct e from u to v; then direct all edges of the same bag as e that

are reachable from v away from u. Add to Cυ all vertices whose loads
increased in this step.

ii. If any vertex w ∈ Cυ has two edges from the same bag directed
toward it or if there are two edges e and e′ directed toward w so that
pe + pe′ > d then reset all loads and edges directed by this iteration
of Step (2) and go to Step (2b).

(d) Let CE be the set of edges that were assigned a direction in Steps (2b)
and (2c). Set D = D ∪ CE .

3. Return schedule corresponding to the orientation of the edges.

The time complexity of this algorithm is O(n2m + mn2). Let C1, C2, . . . , Ch

be the bag components selected by the algorithm in Step (2a) in the order they
were chosen.

Lemma 1. If the expansion of Ch is attempted by the algorithm and it
returns FAIL, then there is no schedule with makespan at most d. Also, if the
algorithm produces a schedule, the makespan of the schedule is at most (b/2)d.

Theorem 3. There is a b/2-approximation algorithm for the graph balancing
problem with b ≥ 2 bags.
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8 A Polynomial-Time Algorithm
for Q|bag, pj = 1,Mj |Cmax

In this section we consider the restricted assignment problem on uniform par-
allel machines with bags where every job has the same length. Without loss of
generality we can assume that all the machines have speeds s1, . . . , sm ∈ Z

+.
Let the least common multiple of the speeds s1, . . . , sm be c. The above problem
is equivalent to when every job j ∈ J has length pj = c, so for convenience we
assume below that every job has length pj = c. Observe that since c is the least
common multiple of the speeds, pj/si is integral for all j ∈ J and i ∈ {1, . . . , m}.
We employ binary search with upper bound U = nc and a 1-relaxed decision
procedure to compute the smallest value d ∈ [1, nc] for which there is a sched-
ule with makespan at most d. Note that in the special case when there is one
bag for each job, our algorithm is exactly the algorithm of Lin and Li [17] for
Q|pj = 1,Mj |Cmax.

Let a conflict machine set for bag Bk be C(Bk) = {Mi ∈ M | ∃j, j′ ∈ Bk :
Mi ∈ Mj ∩ Mj′}, where Mj and Mj′ are the sets of machines where for jobs j
and j′ can be scheduled, respectively. As a result of this definition, if there
is a machine Mi /∈ C(Bk), then at most one job in Bk can be scheduled on
machine Mi. In our algorithm we first build a flow network N with a source s
and sink t as follows. First, there will be a job node for each job j ∈ J ; then for
each k = 1, . . . , b, create a conflict machine node for every machine M ′

i ∈ C(Bk),
and a machine node for each machine Mi ∈ M . To avoid ambiguity, we write
M ′

i whenever we refer to a conflict machine node of a machine Mi, and Mi when
we refer to the machine node for machine Mi. We add arcs as follows: add arcs
with capacity 1 from the source to each job node; if job j ∈ Bk can be scheduled
on machine Mi: (i) if Mi ∈ C(Bk) then add an arc from j to the machine conflict
node M ′

i of bag Bk with capacity 1, (ii) otherwise add an arc from j to machine
node Mi with capacity 1. Add an arc with flow capacity 1 from each machine
conflict node M ′

i to its corresponding machine node Mi and include an arc from
each machine node Mi to the sink with capacity �(sid)/c�.
Lemma 2. There is an integral flow f that saturates all the arcs incident on s
if and only if there is a feasible schedule with makespan at most d.

The 1-relaxed decision algorithm is the following: build the flow network N
described above and compute an integral maximum flow f ; if f does not saturate
at least one arc incident on the source, return FAIL; otherwise all the arcs incident
on the source are saturated, and for each job j ∈ J , schedule job j on machine i
if there is flow sent from job node j to machine node Mi.

Theorem 4. There is a polynomial-time algorithm for Q|bag, pj = 1,Mj |Cmax.

9 Inapproximability and Complexity

9.1 Restricted Assignment Problem with b = 2 Bags

To begin, we prove that restricted assignment problem with b = 2 bags where
the job lengths are either 1 or 2 has no approximation algorithm with approx-
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imation ratio less than 3/2, unless P = NP (Corollary 2). To do this we reduce
from the 3-dimensional matching problem ([SP1] in [9]). In the 3-dimensional
matching problem there are three disjoint sets X = {x1, x2, . . . , xm′}, Y =
{y1, . . . , ym′}, Z = {z1, . . . , zm′}, and a set T ⊆ X × Y × Z of triples, and
the goal is to determine whether there is a set T ′ ⊆ T containing m′ triples,
such that for any pair of triples (xk, yk, zk), (x�, y�, z�) ∈ T ′, xk = x�, yk = y�,
and zk = z�. We note that our reduction is similar to the one given by Lenstra et
al. [16], but their reduction assumes there are b = n bags.

Let us describe the reduction. For each triple t ∈ T where element z ∈ t and
z ∈ Z, create a machine Mt of type z. Next, each element in X ∪ Y is a job j,
where we place j in bag B1 if j ∈ X and in bag B2 if j ∈ Y ; j has pt,j = 1
on machine Mt if j ∈ t, and pt,j = ∞ otherwise. Let deg(z) be the number
of triples of T containing element z ∈ Z. Then for each element z ∈ Z, create
(deg(z) − 1) dummy jobs of type z, where each dummy job j takes 2 time units
on machines of type z, otherwise pt,j = ∞. Put all the dummy jobs in bag B1.

Theorem 5. It is NP-hard to decide whether there is a schedule with makespan
at most 2 for the restricted assignment problem with b = 2 bags when the jobs
have lengths either 1 or 2.

Corollary 2. There is no p-approximation algorithm with p < 3/2 for the
restricted assignment problem with b = 2 bags where the job lengths are either 1
or 2, unless P = NP.

9.2 Graph Balancing Problem with b = 3 Bags

In this section we show that when there are b ≥ 3 bags, it is NP-hard to approx-
imate the graph balancing problem with b bags with approximation ratio less
than 3/2. To do this we extend a reduction of Ebenlendr et al. [6], and reduce
from a variant of 3-SAT called At-Most-3-SAT(2L), which is known to be NP-
complete [1]. More precisely, let there be a propositional logic formula φ in con-
junctive normal form (CNF), where there are n′ boolean variables x1, . . . , xn′

and m′ clauses y1, y2, . . . , ym′ . There are at most three literals per clause, and
each literal (a variable or its negation) occurs at most twice in φ. This problem
asks if there is an assignment of values to the variables so that φ is satisfied.

Let us first briefly describe the original reduction. Create one vertex for each
clause yi, and two vertices, one for each literal of variable xi, xi and ¬xi; let the
former be called clause vertices and the latter be called literal vertices. For each
variable xi, add an edge {xi,¬xi} with length 2 called a tautologous edge; add
a self-loop on clause vertex yi with length 3 − |yi| if 3 − |yi| > 0, where |yi| is
the number of literals in clause yi. Finally, for each clause yi and literal lj , add
a clause edge {li, yi} if literal lj is in clause yi.

Now we describe our extension to this reduction that will assign each edge to
a bag. Create a modified version of G called G′, where, for each self loop incident
on a clause vertex yi in G, replace the self-loop with a new vertex y′

i and self
edge {yi, y

′
i} in G′; each self-edge in G′ corresponds to a self-loop in G.
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Lemma 3. There is an edge colouring of G′ that uses at most four colours η1,
η2, η3, η4, this colouring can be computed in polynomial time.

Proof. Assign colour η4 to all tautologous edges, then consider the subgraph G′′

of G′ consisting of the same vertices but only the uncoloured edges. Observe that
every edge in G′′ either has a literal vertex and a clause vertex as its endpoints
or is a self-edge with one endpoint that is a leaf, thus G′′ is bipartite. Since G′′

is bipartite and the maximum degree of any vertex in G′′ is three, there is an
edge colouring of G′′ using three colours η1, η2, η3, this edge colouring can be
computed in polynomial time. ��

Using Lemma 3 we can assign the edges in G to three bags: the edges coloured
in G′ using colours η1, η2, and η3 are placed in bags B1, B2, and B3, respectively.
Finally, place the edges coloured with η4 in any of the three bags.

Theorem 6. There is no p-approximation algorithm with p < 3/2 for the graph
balancing problem with b ≥ 3 bags where job lengths are either 1 or 2, unless
P = NP.

9.3 Q|bag|Cmax with b = 2 Bags

For P |bag|Cmax with b = 3 bags and Q|bag|Cmax with b = 2 bags, we
show that both are strongly NP-hard. We reduce from numerical 3-dimensional
matching ([SP16] in [9]), which is known to be NP-complete in the strong
sense. In the numerical 3-dimensional matching problem 3m′ elements are con-
tained in 3 disjoint sets X = {a1, a2, . . . , am′}, Y = {am′+1, . . . , a2m′}, Z =
{a2m′+1, . . . , a3m′}, and every element aj ∈ X ∪ Y ∪ Z has a size s(aj) ∈ Z

+.
Given a value β ∈ Z

+ the goal is to determine whether there are disjoint
triples A1, . . . , Am′ where each triple Ai contains exactly one element of X,
one element of Y , and one element of Z, such that

∑
aj∈Ai

s(aj) = β.
Notice that if an instance of P |bag|Cmax with b = 3 bags has exactly 3m jobs,

Property 1 implies that every machine in a feasible schedule processes 3 jobs. We
obtain a straightforward reduction from numerical 3-dimensional matching to
P |bag|Cmax with b = 3 bags: set m = m′, n = 3m′, every element aj ∈ X∪Y ∪Z
is a job j ∈ J with length pj = s(aj), and B1 = X, B2 = Y , and B3 = Z. This
reduction was independently presented by Dokka et al. [5].

Theorem 7 (Dokka et al. [5]). P |bag|Cmax with b = 3 bags is strongly NP-
hard.

When the machines are uniform we can eliminate the third bag necessary in
the above reduction. Instead n = 2m′, and associate each machine Mi with a
unique element zi ∈ Z and set the speed of Mi to si = (β − s(zi))/β.

Theorem 8. Q|bag|Cmax with b = 2 bags is strongly NP-hard.



Makespan Minimization on Unrelated Parallel Machines with a Few Bags 35

References

1. Asahiro, Y., Jansson, J., Miyano, E., Ono, H., Zenmyo, K.: Approximation algo-
rithms for the graph orientation minimizing the maximum weighted outdegree. J.
Comb. Optim. 22(1), 78–96 (2011)

2. Bodlaender, H., Jansen, K., Woeginger, G.: Scheduling with incompatible jobs.
Discret. Appl. Math. 55(3), 219–232 (1994)

3. Chakrabarty, D., Khanna, S., Li, S.: On (1, ε)-restricted assignment makespan
minimization. In: 26th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1087–1101 (2015)

4. Das, S., Wiese, A.: On minimizing the makespan when some jobs cannot be
assigned on the same machine. In: 24th Annual European Symposium on Algo-
rithms, LIPIcs, vol. 87, pp. 31:1–31:14 (2017)

5. Dokka, T., Kouvela, A., Spieksma, F.: Approximating the multi-level bottleneck
assignment problem. Oper. Res. Lett. 40, 282–286 (2012)
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Abstract. The channel assignment is an important problem with appli-
cations in optical networks. This problem was formulated to the L(p, 1)-
labeling of graphs by Griggs and Yeh. The r-dynamic coloring is a gen-
eralization of the L(1, 1)-labeling. An r-dynamic k-coloring of a graph G
is a proper k-coloring such that every vertex v is adjacent to at least
min{d(v), r} different colors. Denote χr(G) = min{k | G has an r-
dynamic k-coloring} and chr(G) = min{k | G has a list r-dynamic
k-coloring}. In this paper, we show upper bounds chr(G) ≤ r + 5 for
planar graphs G with g(G) ≥ 5 and r ≥ 15, chr(G) ≤ r + 10 for graphs
G with mad(G) < 10

3
.

Keywords: r-dynamic coloring · Planar graph
Maximum average degree · Girth

1 Introduction

The channel assignment problem is to assign channels to radio transmitters such
that close transmitters do not interfere with each other. In 1991, Roberts [17]
proposed to assign channels such that close transmitters receive different chan-
nels and very close transmitters receive channels that are at least two channels
apart. Motivated by this problem, Griggs and Yeh [6] introduced the L(2, 1)-
labeling problem where the transmitters are represented by vertices, the very
close transmitters are adjacent vertices and the close transmitters are vertices at
distance two. Later, the L(2, 1)-labeling problem was subsequently generalized to
the L(1, 1)-labeling problem. In this paper we are going to study the r-dynamic
coloring of graphs, which is an extension of L(1, 1)-labeling of graphs.

Let k, r be integers with k > 0, r > 0, [k] = {1, 2, · · · , k}. Let c be a
vertex coloring of G and then define c(V

′
) = {c(v)|v ∈ V

′} for V
′ ⊆ V (G).
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A (k, r)-coloring of a graph G is a proper k-coloring c such that |c(NG(v))| ≥
min{dG(v), r} for any v ∈ V (G). The condition |c(NG(v))| ≥ min{dG(v), r} for
any v ∈ V (G) is often referred to as the r-dynamic condition. Such coloring is
also called as an r-dynamic k-coloring. χr(G) = min{k | G has an r-dynamic
k-coloring} is called the r-dynamic chromatic number of G. The concept of
dynamic coloring was first introduced in [12,16]. It is also studied under the
name r-hued coloring [17–19].

The r-dynamic coloring is a generalization of the traditional vertex coloring
for which r = 1. By definition, the square coloring of a graph, which is equivalent
to the L(1, 1)-labeling, is the special case when r = Δ. For integer i > j > 0,
any (k, i)-coloring of G is also a (k, j)-coloring of G and so we have

χ(G) = χ1(G) ≤ χ2(G) ≤ · · · ≤ χr(G) ≤ · · · ≤ χΔ(G) = χ(G2).
The r-dynamic chromatic numbers of some classed of graphs are known. For

example, complete graphs, cycles, trees and complete bipartite graphs [11], K4-
minor free graphs [17], moon graphs [5,14]. In [4], χ2(G) ≤ 5 was shown for
planar graphs G. In [7], Jahanbekam et al. proved that χr(G) ≤ rΔ(G) + 1
for r ≥ 2, also they studied bounds on χr(G) for k-regular graphs in terms of
χ(G), the relationship between χr(G) and χ(G) when G has small diameter.
Wegner [20] conjectured that if G is a planar graph, then χΔ(G) ≤ Δ(G) + 5 if
4 ≤ Δ(G) ≤ 7, χΔ(G) ≤ �3Δ(G)/2� + 1 if Δ(G) ≥ 8.

A conjecture similar to the above Wegner’s conjecture is proposed in [17].

Conjecture 1. Let G be a planar graph, then χr(G) ≤ r + 3 if 1 ≤ r ≤ 2,
χr(G) ≤ r + 5 if 3 ≤ r ≤ 7, χr(G) ≤ �3r/2�+ if r ≥ 8.

Song et al. [18] proved the following theorem towards Conjecture 1, which is
a generalization of the case r = Δ in [2].

Theorem 1. If r ≥ 3 and G is a planar graph with g(G) ≥ 6, then χr(G) ≤ r+5.
A list assignment L for a graph G assigns to each vertex v ∈ V (G) a set L(v)

of acceptable colors. An L-coloring c of G is a proper vertex coloring such that
for every v ∈ V (G), c(v) ∈ L(v). G is L-colorable if G has an L-coloring.

A graph G is r-dynamically L-colorable if, for a list assignment L, G has an r-
dynamic coloring c such that c(v) ∈ L(v) for every v ∈ V (G). G is r-dynamically
k-choosable if G is r-dynamic L-colorable for any list assignment L satisfying
|L(v)| ≥ k for all v ∈ V (G). chr(G) = min{k|G is r-dynamic k-choosable}.
List r-dynamic coloring is an extension of r-dynamic coloring, where instead of
having the same set of colors, every vertex is assigned some set of colors and has
to be colored from it. In other words, r-dynamic coloring is a special case of list
r-dynamic coloring, so for any graph G, we have chr(G) ≥ χr(G).

A way to measure the sparseness of a graph G is through its girth g(G),
the length of a shortest cycle. Another way to measure the sparseness of a
graph G is through its maximum average degree mad(G), where mad(G) =
max{ 2|E(H)|

|V (H)| |H ⊆ G}. A straightforward consequence of Euler’s Formula is that

every planar graph G satisfies mad(G) < 2g(G)
g(G)−2 .

The list 2-dynamic chromatic numbers of some classed of graphs have been
studied. Kim et al. [8] proved that ch2(G) ≤ 5 for planar graphs G. Kim and
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Park [9] proved that ch2(G) ≤ 4 for graphs G with mad(G) < 8
3 , for planar

graphs G with g(G) ≥ 7. Loeb et al. [15] proved that for toroidal graphs G,
ch3(G) ≤ 10. More results on 3-dynamic coloring can be seen in [3,10,13,19].

In this paper, we prove the following two theorems.

Theorem 2. If r ≥ 15 and G is a planar graphs with g(G) ≥ 5, then chr(G) ≤
r + 5.

Theorem 3. If G is a graph with mad(G) < 10
3 , then chr(G) ≤ r + 10. In

particular, for every planar graph G with g(G) ≥ 5, we have chr(G) ≤ r + 10.

2 Terminology and Notations

A vertex of degree k (resp. at least k, at most k) will be called a k-vertex
(resp. k+-vertex, k−-vertex). Let ni(v) (ni+(v)) be the number of i-vertices (i+-
vertices) adjacent to v. For a 2-vertex v, the neighbors of v are called weak-
adjacent. A (d(v1), d(v2), · · · , d(vi))-vertex is an i-vertex whose neighbors are
degree of d(v1), d(v2), · · · , d(vi) respectively. Let k(i)-vertex be a k-vertex adja-
cent to i 2-vertices. Undefined notations are referred to [1].

The key method in our proofs is discharging, which relies on reducible con-
figurations. We call a configuration reducible if it cannot appear in a minimal
counterexample. A graph is minimal for a property if it satisfied the property
but none of its proper subgraph does.

Let V
′ ⊆ V (G) and let c be a partial r-dynamic L-coloring of G[V

′
]. V

′
is

the support of c, denoted by S(c). If c1, c2 are two partial dynamic L-coloring
of G such that S(c1) ⊆ S(c2) and c1(v) = c2(v) for any v ∈ S(c1), then c2 is an
extension of c1. Given a partial dynamic L-coloring c on V

′
, we define {c(v)} = ∅

for any v ∈ V − V
′

and c(NG(v)) =
⋃{c(z)|z ∈ NG(v)} for any vertex v ∈ V .

Define c[v] = {c(v)} if |c(NG(v))| ≥ r, c[v] = {c(v)}∪ c(NG(v)) otherwise. Thus,
it follows that |c[v]| ≤ r and we have the following claim [9].

Claim. Let c be a partial dynamic L-coloring of G with support S(c). For
any u /∈ S(c), and for any v ∈ NG(u), by the definition of c[v], we have
|c[v]| ≤min{d(v), r} and c[v] represents the colors that cannot be used as c(u) if
one wants to extend the support of c to include u. In other words, the colors in
L(u) − ⋃

v∈N(u) c[v] are available colors to define c(u) in extending the support
c from S(c) to S(c) ∪ {u}.

3 Proof of Theorem 2

We prove by contradiction. Let G be a minimal counterexample to Theorem 2.
Then there exist a list assignment L such that |L(v)| ≥ r+5 ≥ 20 for ∀v ∈ V (G)
and G is not r-dynamic L-colorable. By the minimality of G, any H ⊂ G is r-
dynamic L-colorable. We first prove that some configurations are reducible.

Let d(v) = k and N(v) = {v1, v2, · · · , vk}, d(v1) ≤ d(v2) ≤ · · · ≤ d(vk). Let
|F (v)| denote the number of colors cannot be used on v. Let v be a 3+-vertex,
vi ∈ N(v) and d(vi) = 2, then we denote N(vi) = {v, v

′
i}.
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Lemma 1. G has no 1−-vertex.

Proof. Assume that G has a 1−-vertex v. By the minimality of G, G − v has
a dynamic L-coloring c. Since |F (v)| ≤ r < r + 5, we can color v and thus we
extend the support of c to V (G), a contradiction.

Lemma 2. G has no adjacent 2-vertices.

Proof. Assume that G has two adjacent 2-vertex u and v. By the minimality of
G, G−{u, v} has a dynamic L-coloring. Since |F (u)| ≤ r +1, |F (v)| ≤ r +1, we
can color them. Thus, we extend the coloring of G−{u, v} to G, a contradiction.

Lemma 3

(1) G has no 3-vertex v such that d(v1) = 2 and d(v2) + d(v3) ≤ r + 3, or
d(v1) = 2 and d(vi) ≤ 3, where i = 2 or 3.

(2) G has no 3-vertex v such that d(v1) = 3 and d(v2) + d(v3) ≤ r + 1, d(v
′
1) +

d(v
′′
1 ) ≤ r + 2, where N(v1) = {v, v

′
1, v

′′
1 }.

Proof

(1) Assume that G has a 3-vertex v such that d(v1) = 2 and d(v2)+d(v3) ≤ r+3
or d(v1) = 2 and d(vi) ≤ 3, where i = 2 or 3. By the minimality of G,
G − vv1 has a dynamic L-coloring. We erase the colors on v and v1. Since
|F (v)| ≤ d(v2) + d(v3) + 1 ≤ r + 3 + 1, |F (v1)| ≤ r + 2, we can recolor v, v1
in turn, a contradiction.

(2) Assume that G has such a 3-vertex v. By the minimality of G, G−vv1 has a
dynamic L-coloring. We erase the colors on v, v1. Since |F (v1)| ≤ r+2+2 =
r+4, |F (v)| ≤ r+1+2 = r+3, we can recolor v1, v in turn, a contradiction.

Lemma 4

(1) G has no 4-vertex v such that d(v1) = d(v2) = 2 and v3 is a 2-vertex or a
3(1)-vertex.

(2) G has no 4-vertex v such that d(v1) = d(v2) = 2 and d(v3) + d(v4) ≤ r + 2.
(3) G has no 4-vertex v such that d(v1) = 2 and d(v2) + d(v3) + d(v4) ≤ r + 3.
(4) G has no 4-vertex v such that v1, v2 are 3(1)-vertices and d(v3)+d(v4) ≤ r.

Proof

(1) Assume that G has such a 4-vertex. By the minimality of G, G − vv1 has
a dynamic L-coloring. Let v

′
3 be the 2-neighbor of v3 if v3 is a 3(1)-vertex.

We erase the colors on vertices v, v1, v2 and v
′
3. Since |F (v)| ≤ r + 2 + 2,

|F (v1)| ≤ r+2, |F (v2)| ≤ r+2, we can recolor v, v1, v2 in turn. After v, v1, v2
are recolored, |F (v

′
3)| ≤ r + 3 and thus we can recolor it, a contradiction.

(2) Assume that G has a 4-vertex v such that d(v1) = d(v2) = 2 and d(v3) +
d(v4) ≤ r+2. By the minimality of G, G−vv1 has a dynamic L-coloring. We
erase the colors on vertices v, v1, v2. Since |F (v)| ≤ r+2+2, |F (v1)| ≤ r+2,
|F (v2)| ≤ r + 2, we can recolor v, v1, v2 in turn, a contradiction.
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(3) Assume that G has such a 4-vertex. By the minimality of G, G − vv1 has a
dynamic L-coloring. We erase the colors on vertices v and v1. Since |F (v)| ≤
r + 3 + 1, |F (v1)| ≤ r + 3, we can recolor v, v1 in turn, a contradiction.

(4) Assume that G has such a 4-vertex. By the minimality of G, G − vv1 has a
dynamic L-coloring. Let v′

i be the 2-neighbor of vi for i = 1, 2. We erase the
colors on vertices v, v1, v2, v′

1 and v′
2. Since |F (v1)| ≤ r +3, |F (v2)| ≤ r +3,

|F (v)| ≤ r + 2, we can recolor v1, v2, v in turn. After v1, v2, v are recolored,
|F (v′

1)| ≤ r + 3, |F (v′
2)| ≤ r + 3 and thus we can recolor v′

1 and v′
2, a

contradiction.

Lemma 5

(1) G has no 5-vertex v such that d(v1) = d(v2) = · · · = d(vk) = 2, d(vk+1) =
d(vk+2) = · · · = d(v4) = 3 and d(v5) ≤ k + 7, where 1 ≤ k ≤ 4.

(2) G has no 5-vertex v such that d(v1) = d(v2) = d(v3) = d(v4) = 2 and
d(v′

i) ≤ r − 1 for some i, where 1 ≤ i ≤ 4.
(3) G has no 5-vertex v such that d(v1) = d(v2) = d(v3) = 2, d(v4)+d(v5) ≤ r+1

and d(v′
i) ≤ r − 1 for some i, where 1 ≤ i ≤ 3.

Proof

(1) Assume that G has such a 5-vertex v. By the minimality of G, G − vv1
has a dynamic L-coloring. We erase the colors on v, v1, v2, · · · , vk. Since
|F (vi)| ≤ r + 5 − k for i = 1, 2, · · · , k, we can recolor v1, v2, · · · , vk. After
v1, v2, · · · , vk are recolored, |F (v)| ≤ k + 7 + 2k + 3(4 − k) = 19 and thus we
can recolor it, a contradiction.

(2) Without loss of generality, we assume that G has such a 5-vertex v such that
d(v1) = d(v2) = d(v3) = d(v4) = 2 and d(v′

1) ≤ r − 1. By the minimality of
G, G− vv1 has a dynamic L-coloring. We erase the colors on v, v1, v2, v3, v4.
Since |F (v)| ≤ r + 4, |F (v1)| ≤ r − 1 + 1, |F (v2)| ≤ r + 1, |F (v3)| ≤ r +
1, |F (v4)| ≤ r + 1, we can recolor v, v4, v3, v2, v1 in turn, a contradiction.

(3) Without loss of generality, we assume that G has such a 5-vertex v such
that d(v1) = d(v2) = d(v3) = 2, d(v4) + d(v5) ≤ r + 1 and d(v′

1) ≤ r − 1.
By the minimality of G, G − vv1 has a dynamic L-coloring. We erase the
colors on v, v1, v2, v3. Since |F (v)| ≤ r + 1 + 3, |F (v1)| ≤ r − 1 + 2, |F (v2)| ≤
r+2, |F (v3)| ≤ r+2. Thus, we can recolor v, v3, v2, v1 in turn, a contradiction.

Lemma 6

(1) G has no 6-vertex v such that d(v1) = d(v2) = · · · = d(vk) = 2, d(vk+1) =
d(vk+2) = · · · = d(v6) = 3 and d(v′

i) ≤ r − 1 for some i, where 1 ≤ i ≤ k,
3 ≤ k ≤ 6.

(2) G has no 6-vertex v such that d(v1) = d(v2) = · · · = d(v5) = 2, d(v6) ≤ r−1
and d(v′

i) ≤ r − 1, d(v′
j) ≤ r − 2 for some i, j, where 1 ≤ i �= j ≤ 5.

(3) G has no 6-vertex v such that d(v1) = d(v2) = · · · = d(v4) = 2, d(v5) +
d(v6) ≤ 11 and d(v′

i) ≤ r − 1 for some i, where 1 ≤ i ≤ 4.
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Proof

(1) Without loss of generality, we assume that G has such a 6-vertex v such that
d(v1) = d(v2) = · · · = d(vk) = 2, d(vk+1) = d(vk+2) = · · · = d(v6) = 3 and
d(v′

1) ≤ r − 1. By the minimality of G, G − vv1 has a dynamic L-coloring.
We erase the colors on v, v1, v2, v3. Since |F (v1)| ≤ r − 1 + 3, |F (v2)| ≤
r + 3, |F (v3) ≤ r + 3, we can recolor v3, v2, v1 in turn. After v1, v2, v3 are
recolored, |F (v)| ≤ 15. Thus, we can recolor it, a contraction.

(2) Without loss of generality, we assume that G has such a 6-vertex v such
that d(v1) = d(v2) = · · · = d(v5) = 2, d(v6) ≤ r − 1 and d(v

′
2) ≤ r − 1,

d(v′
1) ≤ r − 2. By the minimality of G, G − vv1 has a dynamic L-coloring.

We erase the colors on v, v1, v2, · · · , v5. Since |F (v)| ≤ r − 1 + 5, |F (v1)| ≤
r − 2 + 1, |F (v2)| ≤ r − 1 + 1, |F (v3) ≤ r + 1, |F (v4) ≤ r + 1, |F (v5) ≤ r + 1,
we can recolor v, v5, v4, v3, v2, v1 in turn, a contraction.

(3) Without loss of generality, we assume that G has such a 6-vertex v such
that d(v1) = d(v2) = · · · = d(v4) = 2, d(v5) + d(v6) ≤ 11 and d(v′

1) ≤ r − 1.
By the minimality of G, G − vv1 has a dynamic L-coloring. We erase the
colors on v, v1, v2, v3, v4. Since |F (v)| ≤ 15, |F (v1)| ≤ r − 1 + 2, |F (v2)| ≤
r + 2, |F (v3) ≤ r + 2, |F (v4) ≤ r + 2, we can recolor v4, v3, v2, v1, v in turn,
a contraction.

Lemma 7

(1) G has no 7-vertex v such that d(v1) = d(v2) = · · · = d(vk) = 2, d(vk+1) =
d(vk+2) = · · · = d(v7) = 3 and d(v′

i) ≤ r − 1 d(v′
j) ≤ r − 2, for some i, j,

where 1 ≤ i �= j ≤ k, 5 ≤ k ≤ 7.
(2) G has no 7-vertex v such that d(v1) = d(v2) = d(v6) = 2, d(v7) ≤ r − 2

and d(v′
i) ≤ r − 1, d(v′

j) ≤ r − 2, d(v′
k) ≤ r − 3 for some i, j, k, where

1 ≤ i, j, k ≤ 6.

Proof

(1) Without loss of generality, we assume that G has such a 7-vertex v such
that d(v1) = d(v2) = · · · = d(vk) = 2, d(vk+1) = d(vk+2) = · · · = d(v7) = 3
and d(v′

2) ≤ r − 1 d(v′
1) ≤ r − 2. By the minimality of G, G − vv1 has a

dynamic L-coloring. We erase the colors on v, v1, v2, · · · , v5. Since |F (v1)| ≤
r − 2 + 2, |F (v2)| ≤ r − 1 + 2, |F (v3) ≤ r + 2, |F (v4) ≤ r + 2, |F (v5) ≤ r + 2,
we can recolor v5, v4, v3, v2, v1 in turn. After vi are recolored, 1 ≤ i ≤ 5,
|F (v)| ≤ 16 and thus we can recolor it, a contradiction.

(2) Without loss of generality, we assume that G has a 7-vertex v such that
d(v1) = d(v2) = · · · = d(v6) = 2, d(v7) ≤ r − 2 and d(v′

3) ≤ r − 1, d(v′
2) ≤

r−2, d(v′
1) ≤ r−3. By the minimality of G, G−vv1 has a dynamic L-coloring.

We erase the colors on v, v1, v2, · · · , v6. Since |F (v)| ≤ r − 2 + 6, |F (v1)| ≤
r − 3 + 1, |F (v2)| ≤ r − 2 + 1, |F (v3)| ≤ r − 1 + 1, |F (v4)| ≤ r + 1, |F (v5)| ≤
r+1, |F (v6)| ≤ r+1, we can recolor v, v6, v5, · · · , v1 in turn, a contradiction.

Lemma 8. G has no 8-vertex v such that v1, v2, · · · , v7 are 2-vertices, d(v8) ≤ 5
and d(v′

i) ≤ r−3, d(v′
j) ≤ r−2, d(v′

k) ≤ r−1 for some i, j, k, where 1 ≤ i, j, k ≤ 7.

Proof. Without loss of generality, assume that G has a 8-vertex v such that
v1, v2, · · · , v7 are 2-vertices, d(v8) ≤ 5 and d(v′

1) ≤ r − 3, d(v′
2) ≤ r − 2, d(v′

3) ≤
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r − 1. By the minimality of G, G − vv1 has a dynamic L-coloring. We erase
the colors on v, v1, v2, · · · , v7. Since |F (v7)| ≤ r + 1, |F (v6)| ≤ r + 1, |F (v5)| ≤
r+1, |F (v4)| ≤ r+1, |F (v3)| ≤ r−1+1, |F (v2)| ≤ r−2+1, |F (v1)| ≤ r−3+1, we
can recolor v7, v6, · · · , v1 in turn. After v1, v2, · · · , v7 are recolored, |F (v)| ≤ 19
and thus we can recolor it, a contradiction.

Lemma 9. G has no 9-vertex v such that v1, v2, · · · , v9 are 2-vertices, and
d(v′

i) ≤ r − 4, d(v′
j) ≤ r − 3, d(v′

k) ≤ r − 2, d(v′
l) ≤ r − 1 for some i, j, k, l,

where 1 ≤ i, j, k, l ≤ 9.

Proof. Without loss of generality, assume that G has a 9-vertex v such that
v1, v2, · · · , v9 are 2-vertices and d(v′

1) ≤ r−4, d(v′
2) ≤ r−3, d(v′

3) ≤ r−2, d(v′
4) ≤

r − 1. By the minimality of G, G − vv1 has a dynamic L-coloring. We erase the
colors on v, v1, v2, · · · , v9. Since |F (v9)| ≤ r, |F (v8)| ≤ r, |F (v7)| ≤ r, |F (v6)| ≤
r, |F (v5)| ≤ r, |F (v4)| ≤ r−1, |F (v3)| ≤ r−2, |F (v2)| ≤ r−3, |F (v1)| ≤ r−4, we
can recolor v9, v7, · · · , v1 in turn. After v1, v2, · · · , v9 are recolored, |F (v)| ≤ 18
and thus we can recolor it, a contradiction.

Proof. Since G is a minimal counterexample, G is connected. We define a weight
function w by w(v) = 3

2d(v) − 5 for v ∈ V and w(f) = d(f) − 5 for f ∈ F . By
Euler’s formula |V | − |E| + |F | = 2 and formula

∑

v∈V

d(v) = 2|E| =
∑

f∈F

d(f), we

can derive
∑

x∈V ∪F

w(x) = −10. We then design appropriate discharging rules and

redistribute weights accordingly. Once the discharging is finished, a new weight
function w

′
is produced. During the process, the total sum of weights is kept

fixed. It follows that
∑

x∈V ∪F

w′(x) =
∑

x∈V ∪F

w(x) = −10. However, we will show

that after the discharging is complete, the new weight function w′(x) ≥ 0 for all
x ∈ V ∪ F . This leads to the following obvious contradiction

0 ≤
∑

x∈V ∪F

w′(x) =
∑

x∈V ∪F

w(x) = −10 < 0

In this section, let v be a 3-vertex and N(v) = {v1, v2, v3}. If d(v1) = 3
and d(v2) + d(v3) ≤ r + 1, then v is called a weak 3-vertex. If d(v1) = 3 and
d(v2) + d(v3) ≥ r + 3, then v is called a strong 3-vertex. A special face is a
5+-face [w1u1vu2w2 · · · ] such that d(u1) = d(u2) = 2, d(w1) ≥ 10, d(w2) ≥ 10
and 5 ≤ d(v) ≤ 9.

Discharging rules:

R1. Let f = [w1u1vu2w2 · · · ] be a special face. If d(f) ≥ 6, then f gives 1
2 to v.

If d(f) = 5, then big vertices w1 and w2 gives 1
4 to f along w1w2, respectively

and f gives 1
2 to v.

R2. Every 2-vertex receives 1 from each of its adjacent 3+-vertices.
R3. Every 3(1)-vertex receives 1

2 from each of its adjacent k-vertices, 4 ≤ k ≤ 9,
1 from each of its adjacent 10+-vertices;
Every 3(0)-vertex receives 1

6 from each of its adjacent k-vertices, 4 ≤ k ≤ 8, 1
2

from each of its adjacent k-vertices, 9 ≤ k ≤ r − 1, 1 from each of its adjacent
r+-vertices;
Every weak 3-vertex receives 1

6 from each of its ajacent strong 3-vertices.
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R4. Every 4-vertex receives 1
2 from each of its adjacent k-vertices, k = 8, 9, 1

from each of its adjacent k-vertices, 10 ≤ k ≤ r − 1, 7
6 from each of its adjacent

r+-vertices.
R5. Every 5-vertex receives 1

2 from each of its adjacent 9-vertices, 1 from each
of its adjacent 10+-vertices.
R6. Every 6-vertex receives 1

2 from each of its adjacent k-vertices, 9 ≤ k ≤ r−1,
1 from each of its adjacent r+-vertices, 1

6 from each of its weak adjacent r+-
vertices.
R7. Every 7-vertex receives 1

2 from each of its adjacent (r − 1)+-vertices.
Checking w′(f) ≥ 0, f ∈ F . If d(f) = 5, then w′(f) ≥min{5−5, 5−5+ 1

4 ×2−
1
2} = 0 by (R1). If d(f) ≥ 6, then w′(f) ≥min{d(f) − 5, d(f) − 5 − 1

2
d(f)
4 } > 0

by R1.
Checking w′(v) ≥ 0, v ∈ V . By Lemma 1, δ(G) ≥ 2.

Case d(v) = 2. By Lemma 2, n3+(v) = 2 and then by R2, w′(v) = 3−5+1×2 =
0.

Case d(v) = 3. By Lemma 3(1), 3-vertex is a 3(1)-vertex or a 3(0)-vertex.
Furthermore, if v is a 3(1)-vertex, then d(v2) ≥ 4, d(v3) ≥ 4 and d(v2) + d(v3) ≥
r +4 ≥ 19. Thus, v3 is a 10+-vertex. By R2 and R3, w′(v) ≥ − 1

2 −1+ 1
2 +1 = 0.

If v is a 3(0)-vertex and d(v1) = 3, d(v2) + d(v3) ≤ r + 1, by Lemma 3(2), v
is a weak 3-vertex, v1 is a strong 3-vertex, vi (i = 2, 3) are strong 3-vertices
or 4+-vertices. Thus, w′(v) ≥ − 1

2 + 1
6 × 3 = 0 by R3. If v is a 3(0)-vertex and

d(v1) = 3, d(v2)+d(v3) = r+2 ≥ 17, then v is neither a weak 3-vertex nor strong
3-vertex and v3 is a 9+-vertex. By R3, w′(v) ≥ − 1

2 + 1
2 = 0. If v is a 3(0)-vertex

and d(v1) = 3, d(v2) + d(v3) ≥ r + 3 ≥ 18, then v is a strong 3-vertex and v3 is a
9+-vertex. If d(v1) = d(v2) = 3, then d(v3) ≥ r and w′(v) ≥ − 1

2 − 1
6 × 2 + 1 > 0

by R3. Otherwise, w′(v) ≥ − 1
2 − 1

6 + 1
2 + 1

6 = 0 by R3. If d(vi) ≥ 4 for i = 1, 2, 3,
then w′(v) ≥ − 1

2 + 1
6 × 3 = 0 by R3.

Case d(v) = 4. By Lemma 4(1), n2(v) ≤ 2. Furthermore, if d(v1) = d(v2) = 2,
then v3, v4 cannot be 3(1)-vertices by Lemma 4(1) and d(v3)+d(v4) ≥ r+3 ≥ 18
by Lemma 4(2). Thus, if v3 is a 3(0)-vertex, then v4 is a r+-vertex. Moreover,
v3 and v4 are two 9+-vertices or v4 is a 10+-vertex. By R2-R4, w′(v) ≥min{1 −
1 × 2 − 1

6 + 7
6 , 1 − 1 × 2 + 1

2 × 2, 1 − 1 × 2 + 1} = 0. If n2(v) = 1, then by Lemma
4(3), d(v2) + d(v3) + d(v4) ≥ r + 4 ≥ 19. If d(v2) = d(v3) = 3, then d(v4) ≥ 13
and thus w′(v) ≥ 1 − 1 − 1

2 × 2 + 1 = 0 by R2-R4. If d(v2) = 3, d(v3) ≥ 4 and
d(v4) ≥ 4, then d(v4) ≥ 8 and thus w′(v) ≥ 1 − 1 − 1

2 + 1
2 = 0 by R2-R4. If

d(v2) ≥ 4 for i = 2, 3, 4, then w′(v) ≥ 1 − 1 = 0 by R2. If n2(v) = 0 and there
are at least two 3(1)-vertices, then by Lemma 4(4), d(v3) + d(v4) ≥ r + 1 ≥ 16.
If d(v3) = 3, then d(v4) ≥ 13 and thus w′(v) ≥ 1 − 1

2 × 3 + 1 > 0 by R3 and R4.
If d(v3) ≥ 4, d(v4) ≥ 4, then w′(v) ≥ 1 − 1

2 × 2 = 0 by (R3). If n2(v) = 0 and
there is at most one 3(1)-vertex, then w′(v) ≥ 1 − 1

2 − 1
6 × 3 = 0 by R3.

Case d(v) = 5. By Lemma 5(1), n2(v) ≤ 4. If n2(v) = 4, then by Lemma
5(1)(2), d(v5) ≥ 12 and d(v′

i) ≥ r for i = 1, 2, 3, 4. Thus, there are at least three
special faces and w′(v) ≥ 5

2 − 1 × 4 + 1 + 1
2 × 3 > 0 by R1, R2 and R5. If
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n2(v) = 3 and d(v4) = 3, then by Lemma 5(1), d(v5) ≥ 11 and thus w′(v) ≥
5
2−1×3− 1

2+1 = 0 by R2, R3 and R5. If n2(v) = 3 and d(v4) ≥ 4, then by Lemma
5(3), d(v4) + d(v5) ≥ r + 2 or d(v4) + d(v5) ≤ r + 1 and d(v′

i) ≥ r for i = 1, 2, 3.
If d(v4) + d(v5) ≥ r + 2 ≥ 17, then d(v5) ≥ 9. Thus, w′(v) ≥ 5

2 − 1 × 3 + 1
2 = 0

by R2 and R5. If d(v4) + d(v5) ≤ r + 1 and d(v′
i) ≥ r for i = 1, 2, 3, then v is

incident to at least one special face and w′(v) ≥ 5
2 − 1 × 3 + 1

2 = 0 by R1 and
R2. If n2(v) = 2 and d(v3) = d(v4) = 3, then by Lemma 5(1), d(v5) ≥ 10 and
thus w′(v) ≥ 5

2 − 1 × 2 − 1
2 × 2 + 1 > 0 by (R2), (R3) and (R5). If n2(v) = 2

and n3(v) ≤ 1, then w′(v) ≥ 5
2 − 1 × 2 − 1

2 = 0 by R2 and R3. If n2(v) = 1
and d(v2) = d(v3) = d(v4) = 3, then by Lemma 5(1), d(v5) ≥ 9 and thus
w′(v) ≥ 5

2 −1− 1
2 ×3+ 1

2 > 0 by R2, R3 and R5. If n2(v) = 1 and n3(v) ≤ 2, then
w′(v) ≥ 5

2 −1− 1
2 ×2 > 0 by R2 and R3. If n2(v) = 0, then w′(v) ≥ 5

2 − 1
2 ×5 = 0

by R3.

Case d(v) = 6. If n2(v) = 6, then by Lemma 6(1), d(v′
i) ≥ r for i = 1, 2, · · · , 6.

Thus, v is incident to six special faces and w′(v) ≥ 4 − 1 × 6 + 1
2 × 6 > 0 by R1

and R2. If n2(v) = 5 and d(v6) ≥ r, then w′(v) ≥ 4 − 1 × 5 + 1 = 0 by (R2) and
(R6). If n2(v) = 5 and d(v6) ≤ r −1, then by Lemma 6(2), v is weak adjacent to
at least four (r − 1)+-vertices and thus v is incident to at least two special faces.
Therefore, if 4 ≤ d(v6) ≤ r−1, then w′(v) ≥ 4−1×5+ 1

2 ×2 = 0 by R1 and R2. If
d(v6) = 3, then by Lemma 6(1), d(vi) ≥ r for i = 1, 2, · · · , 5. Thus, v is incident
to at least four special faces and w′(v) ≥ 4 − 1 × 5 − 1

2 + 1
2 × 4 > 0 by R1-R3.

If n2(v) = 4 and d(v5) + d(v6) ≥ 12, then d(v5) = 3 and d(v6) ≥ 9 or d(v5) ≥ 4
and d(v6) ≥ 4. Thus, w′(v) ≥ min{4 − 1 × 4 − 1

2 + 1
2 , 4 − 1 × 4} = 0 by R2,

(R3) and (R6). Let n2(v) = 4 and d(v5)+d(v6) ≤ 11. By Lemma 6(3), d(v′
i) ≥ r

for i = 1, 2, 3, 4 and thus v is incident to at least two special faces. Therefore,
w′(v) ≥ 4−1×4− 1

2 ×2+ 1
2 ×2 = 0 by R1-R3. If n2(v) = 3 and n3(v) = 3, then by

Lemma 6(1), d(v′
i) ≥ r for i = 1, 2, 3 and thus w′(v) ≥ 4−1×3− 1

2 ×3+ 1
6 ×3 = 0

by R2, R3 and R6. If n2(v) = 3 and n3(v) ≤ 2, then w′(v) ≥ 4−1×3− 1
2 ×2 = 0

by R2 and R3. If n2(v) ≤ 2, then w′(v) ≥ 4 − 1 × 2 − 1
2 × 4 = 0 by R2 and R3.

Case d(v) = 7. If n2(v) = 7, then by Lemma 7(1), v is weak adjacent to at least
six (r − 1)+-vertices and thus incident to at least five special faces. By R1 and
R2, w′(v) ≥ 11

2 − 1 × 7 + 1
2 × 5 > 0. If n2(v) = 6 and d(v7) = 3, then by Lemma

7(1), v is weak adjacent to at least five (r − 1)+-vertices and thus incident to
at least three special faces. By R1-R3, w′(v) ≥ 11

2 − 1 × 6 − 1
2 + 1

2 × 3 > 0. If
n2(v) = 6 and 4 ≤ d(v7) ≤ r − 2, then by Lemma 7(2), v is weak adjacent to at
least four (r − 2)+-vertices and thus incident to at least one special face. By R1
and R2, w′(v) ≥ 11

2 − 1 × 6 + 1
2 = 0. If n2(v) = 6 and d(v7) ≥ r − 1, then by R2

and R7, w′(v) ≥ 11
2 − 1× 6+ 1

2 = 0. If n2(v) = 5 and n3(v) = 2, then by Lemma
7(1), v is weak adjacent to at least four (r − 1)+-vertices and thus incident to at
least one special face. By R1-R3, w′(v) ≥ 11

2 −1×5− 1
2 ×2+ 1

2 = 0. If n2(v) = 5
and n3(v) ≤ 1, then by R2 and R3, w′(v) ≥ 11

2 − 1 × 5 − 1
2 = 0. If n2(v) ≤ 4,

then w′(v) ≥ 11
2 − 1 × 4 − 1

2 × 3 = 0 by R2 and R3.

Case d(v) = 8. If n2(v) = 8, then by Lemma 8, v is adjacent to at least
five (r − 2)+-vertices and thus incident to at least two special faces. By R1
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and R2, w′(v) ≥ 7 − 1 × 8 + 1
2 × 2 = 0. If n2(v) = 7, then by Lemma 8, v is

adjacent to at least five (r−2)+-vertices and thus incident to at least two special
faces. If 3 ≤ d(v8) ≤ 5 , then by R1-R3, w′(v) ≥ 7 − 1 × 7 − 1

2 + 1
2 × 2 > 0.

Otherwise, by R1-R3, w′(v) ≥ 7 − 1 × 7 = 0. If n2(v) ≤ 6, then by R2 and R3,
w′(v) ≥ 7 − 1 × 6 − 1

2 × 2 = 0.

Case d(v) = 9. If n2(v) = 9, then by Lemma 9, v is weak adjacent to at least
six (r − 3)+-vertices and thus incident to at least three special faces. By R1
and R2, w′(v) ≥ 17

2 − 1 × 9 + 1
2 × 3 > 0. If n2(v) ≤ 8, then by R2 and R3

w′(v) ≥ 17
2 − 1 × 8 − 1

2 = 0.

Case 10 ≤ d(v) ≤ r − 1. By R2-R7, v sends at most 1 to each of its neighbors
and thus w′(v) ≥ 3

2d(v) − 5 − d(v) ≥ 0.

Case d(v) ≥ r. By R2-R7, v sends at most 1 to each of its neighbors and at most
1
6 to each of its weak-adjacent neighbors. Hence, w′(v) ≥ 3

2d(v) − 5 − 7
6d(v) ≥ 0.

Hence, w′(x) ≥ 0 for all x ∈ V ∪ F after application the discharging rules.
Together with (1), this concludes the proof of Theorem 2.

4 Proof of Theorem 3

We prove by contradiction. Let G be a minimal counterexample to Theorem
3. Then there exist a list assignment L such that |L(v)| ≥ r + 10 for every
vertex v of G and G is not r-dynamic L-colorable. By the minimality of G, any
proper subgraph H of G is r-dynamic L-colorable. We first prove that some
configurations are reducible.

Let v be a 3-vertex and N(v) = {v1, v2, v3}. In this section, we say 3-vertex
v good if d(v1) = 3 and min{d(v2), d(v3)} ≥ 7. We say 3-vertex v is bad if
d(v1) = 3 and min{d(v2), d(v3)} ≤ 6.

Lemma 10

(1) G has no 1−-vertex v;
(2) G has no two adjacent 2-vertices u and v;
(3) G has no 3-vertex v adjacent to a 2-vertex v1 and a 8−-vertex v2;
(4) G has no 3-vertex v adjacent to a weak 3-vertex v1 and a 7−-vertex v2;
(5) G has no k-vertex v adjacent to k −2 2-vertices v1, v2, · · · , vk−2 and a (11−

k)−-vertex vk−1, where 4 ≤ k ≤ 8;
(6) G has no 4-vertex v adjacent to a 2-vertex v1, 3-vertex v2 and a 5−-vertex

v3;
(7) G has no 9-vertex v adjacent to eight 2-vertices v1, v2, · · · , v8.

Proof

(1) Assume that G has a 1−-vertex v. By the minimality of G, G − v has a
dynamic L-coloring c. Since |F (v)| ≤ r < r +10, we can color v and thus we
extend the support of c to V (G), a contradiction.
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(2) Assume that G has two adjacent 2-vertices u and v. By the minimality of
G, G−{u, v} has a dynamic L-coloring. Since |F (u)| ≤ r+1, |F (v)| ≤ r+1,
we can color them. Thus, we extend the coloring of G − {u, v} to G, a
contradiction.

(3) Assume that G has a 3-vertex v adjacent to a 2-vertex v1 and a 8−-vertex
v2. By the minimality of G, G− vv1 has a dynamic L-coloring. We erase the
colors on v and v1. Since |F (v)| ≤ r + 8 + 1 = r + 9, |F (v1)| ≤ r + 2, we can
color v and v1 in turn, a contradiction.

(4) Assume that G has a 3-vertex v adjacent to a weak 3-vertex v1 and a 7−-
vertex v2. By the minimality of G, G − vv1 has a dynamic L-coloring. We
erase the colors on v and v1. Since |F (v)| ≤ r + 7 + 2 = r + 9, |F (v1)| ≤
r + 6 + 2 = r + 8, we can color v and v1 in turn, a contradiction.

(5) Assume that G has a k-vertex v adjacent to k − 2 2-vertices v1, v2, · · · , vk−2

and a (11 − k)−-vertex vk−1, where 4 ≤ k ≤ 8. By the minimality of G, G −
vv1 has a dynamic L-coloring. We erase the colors on v and v1, v2, · · · , vk−2.
Since |F (v)| ≤ r +(11−k)+ (k −2) = r +9, we can color it. Then |F (vi)| ≤
r + 3 for each i = 1, 2, · · · k − 2, so we can color them, a contradiction.

(6) Assume that G has a 4-vertex v adjacent to a 2-vertex v1, 3-vertex v2 and a
5−-vertex v3. By the minimality of G, G−vv1 has a dynamic L-coloring. We
erase the colors on v and v1. Since |F (v)| ≤ r+5+3+1 = r+9, |F (v1)| ≤ r+3
forbidden colors, so we can color v and v1 in turn, a contradiction.

(7) Assume that G has a 9-vertex v adjacent to eight 2-vertices v1, v2, · · · , v8. By
the minimality of G, G − {v, v1, v2, · · · , v8} has a dynamic L-coloring. Since
|F (v)| ≤ r + 8, we can color it. Then |F (vi)| ≤ r + 2 for each i = 1, 2, · · · , 8,
so we can color them, a contradiction.

Proof. For v ∈ V (G), we define its initial weight w by w(v) = d(v). Let R1−R8
be eight discharging rules. We will use them and Lemma 4.1 to show that for
every vertex v, its final weight w′(v) ≥ 10

3 after the discharging finished. This
will leads to a contradiction.

Discharging Rules

R1. Every 3+-vertex sends 2
3 to each adjacent 2-vertex.

R2. Every good 3-vertex sends 1
3 to each adjacent bad 3-vertex.

R3. Every 4+-vertex sends 1
9 to each adjacent 3-vertex.

R4. Every 6+-vertex sends 1
18 to each adjacent 4(1)-vertex.

R5. Every 7-vertex sends 1
6 to each adjacent good 3-vertex.

R6. Every 7+-vertex sends 1
6 to each adjacent 5(3)-vertex.

R7. Every 8+-vertex sends 1
3 to each adjacent good 3-vertex and 4(2)-vertex.

R8. Every 9+-vertex sends 1
2 to each adjacent 3(1)-vertex.

By Lemma 10(1), we have δ(G) ≥ 2.

Case d(v) = 2. By Lemma 10(2), n3+(v) = 2 and then by R1, w′(v) = 2 + 2
3 ×

2 = 10
3 .

Case d(v) = 3. By Lemma 10(3), n2(v) ≤ 1. Moreover, if n2(v) = 1, then
n9+(v) = 2. By R2 and R8, w′(v) = 3 − 2

3 + 1
2 × 2 = 10

3 . If v is a (4+, 4+, 4+)-
vertex, then by R3, w′(v) ≥ 3 + 1

9 × 3 = 10
3 . If v is a (3, 4+, 4+)-vertex and its
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3-neighbor v1 has a 6−-neighbor other than v, then according to Lemma 10(4),
v is a (3, 8+, 8+)-vertex, which implies v is a good 3-vertex. By R2 and R7,
w′(v) ≥ 3 − 1

3 + 1
3 × 2 = 10

3 . Now we can assume v is a (3, 4+, 4+)-vertex and
its 3-neighbor v1 have two 7+-neighbors, i.e. v1 is a (3, 7+, 7+)-vertex. If v has a
6−-vertex other than v1, i.e. v is a bad 3-vertex, then by R2, w′(v) ≥ 3+ 1

3 = 10
3 .

Otherwise, v is a good 3-vertex, by R5 and R7, w′(v) ≥ 3 + 1
6 × 2 = 10

3 .

Case d(v) = 4. By Lemma 10(5), n2(v) ≤ 2. Moreover, if n2(v) = 2, then
n8+(v) = 2. By R1 and R7, w′(v) = 4 − 2

3 × 2 + 1
3 × 2 = 10

3 . If n2(v) = 1 and
n3(v) ≥ 1, then according to Lemma 10(6), n6+(v) = 2. By R1, R3 and R4,
w′(v) ≥ 4 − 2

3 − 1
9 + 1

18 × 2 = 10
3 . If n2(v) = 1 and n3(v) = 0, then by R1,

w′(v) ≥ 4 − 2
3 = 10

3 . If n2(v) = 0, then by R3, w′(v) ≥ 4 − 1
9 × 4 > 10

3 .

Case d(v) = 5. By Lemma 10(5), n2(v) ≤ 3. Moreover, if n2(v) = 3, then
n7+(v) = 2. By R1 and R6, w′(v) = 5 − 2

3 × 3 + 1
6 × 2 = 10

3 . If n2(v) ≤ 2, then
by R1 and R3, w′(v) ≥ 5 − 2

3 × 2 − 1
9 × 3 = 10

3 .

Case d(v) = 6. By Lemma 10(5), n2(v) ≤ 4. Moreover, if n2(v) = 4, then
n6+(v) = 2. By R1, w′(v) = 6 − 2

3 × 4 = 10
3 . If n2(v) ≤ 3, then by R1, R3 and

R4, w′(v) ≥ 6 − 2
3 × 3 − 1

9 × 3 > 10
3 .

Case d(v) = 7. By Lemma 10(5), n2(v) ≤ 5. Moreover, if n2(v) = 5, then
n5+(v) = 2. By R1 and R6, w′(v) ≥ 7 − 2

3 × 5 − 1
6 × 2 = 10

3 . If n2(v) ≤ 4, then
by R1 and R3-R6, w′(v) ≥ 7 − 2

3 × 4 − 1
6 × 3 > 10

3 .

Case d(v) = 8. By Lemma 10(5), n2(v) ≤ 6. Moreover, if n2(v) = 6, then
n4+(v) = 2. By R1, R4, R6 and R7, w′(v) ≥ 8− 2

3 ×6− 1
3 ×2 = 10

3 . If n2(v) ≤ 5,
then by R1 and R3, w′(v) ≥ 8 − 2

3 × 5 − 1
3 × 3 > 10

3 .

Case d(v) = 9. By Lemma 10(7), n2(v) ≤ 7. By R1-R8, v sends 2
3 to each of its 2-

neighbor and at most 1
2 to each of its 3+-neighbors, w′(v) ≥ 9− 2

3×7− 1
2×2 = 10

3 .

Case d(v) ≥ 10. By R1-R8, v sends at most 2
3 to each of its neighbors and then

w′(v) ≥ d(v) − 2
3 × d(v) ≥ 10

3 .
Hence, w′(v) ≥ 10

3 for all v ∈ V after application the discharging rules. As
a result, 10

3 |V (G)| ≤ Σv∈V w′(v) = Σv∈V w(v) = Σv∈V d(v) ≤ |V (G)|mad(G) <
10
3 |V (G)|. Consequently, we have chr(G) ≤ r + 10.

For every planar graph G, we have mad(G) < 2g(G)
g(G)−2 . Thus, every planar

graph G with girth g(G) ≥ 5 satisfies mad(G) ≥ 10
3 . This concludes the proof of

Theorem 3.
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Abstract. Viral marketing has become one of the most effective mar-
keting strategies. In the process of real commercialization, in order
to let some seed individuals know the products, companies can pro-
vide free samples to them. However, for some companies, especially
famous ones, they are more willing to offer coupons than give sam-
ples. In this paper, we consider the Profit Maximization problem with
Coupons (PM-C) in our new diffusion model named the Independent
Cascade Model with Coupons and Valuations (IC-CV). To solve this
problem, we propose the PMCA algorithm which can return a ( 1

3
− ε)-

approximate solution with at least 1 − 2n−l probability, and runs in
O(log(np) · mn3 log n(l log n + n log 2)/ε3) expected time. Further more,
during the analysis we provide a method to estimate the non-monotone
submodular function.

Keywords: Profit Maximization · Social network
Approximation algorithm

1 Introduction

Social network has become a hot topic nowadays with the opening of the new
industry of online networks. The diffusion of information such as the diffusion
of news, viewpoints, rumors, etc, has always been addressed theoretically by
researchers. The Influence Maximization (IM) problem is one of the fundamental
issue during the propagation process. In [1], Kempe et al. describe this optimiza-
tion problem: use a graph G = (V,E) to represent a social network where nodes
in V represent individuals in this network and edges represent the relationships
between individuals. Also give a positive integer k, the problem is to find k ini-
tially influenced nodes such that the expected number of influenced nodes after
the propagation is maximized under a certain diffusion model. Two basic diffu-
sion models we usually use are the Linear threshold (LT) and the Independent
Cascade (IC).
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There are several different approximation algorithms have been showed to
solve the influence maximization problem. The greedy approach [1] uses a monte
carlo method to estimate the expected influence, but the time complexity is
too huge to use in practical application. Then in [6], Borgs et al. proposed a
breakthrough method named the Reverse Influence Sampling (RIS ) method.
Their algorithm can return a (1 − 1/e − ε)-approximate solution in a practical
efficiency way. Borrowing ideas from RIS, Tang et al. present the TIM and the
IMM method [2,3] which can return a (1 − 1/e − ε)-approximate solution while
cutting down the computation costs.

In the marketing strategies, when it comes to selling products for companies,
price plays an important role in people’s decisions of adopting the product or
not, thus influence and adopting (then it brings profit to the company) are
two different problems. So under the real marketing scenario, the models are
always more complexity, and the IC or LT model can be extended to more new
propagation models. For instance, Zhu et al. [10] considered the relationship
between influence and profit, then showed a Balanced Influence and Profit (BIP)
under two price related models named the PR-I and the PR-L. To distinguish
whether an individual will actually adopt the product or just be influenced
by others, Lu et al. [5] formulate a valuation of the product for each person.
It proposed the problem of the Profit Maximization over social networks by
incorporating both prices and valuations, under a diffusion model called the
Linear Threshold Model with User Valuations (LT-V).

For the existing studies, no matter what they are aiming at (e.g. maximizing
the influence, maximizing the profit, minimizing the cost, etc.), almost all the
models assume that there is a set of individuals at the very beginning, usually
called the seed set, who adopt the information or product and can influence
their neighbors with some probabilities. So considering the initial motivation of
the diffusion, in the real world, a widely used strategy is providing free samples
[5,10,11,13]. But for companies, especially for famous companies, they would
prefer to issue coupons rather than give free samples [12,14].

Though the model of the Profit Maximization is enriched and perfected con-
tinuously, there are still not many constant algorithms been provided. Recently,
Zhang et al. [15] give a PMCE algorithm for the Profit Maximization with
Multiple Adoptions (PM2A) problem, which can get a 1

2 (1 − e2)-approximation
solution. They build the model under the situation that companies sale various
products given a budget and items’ profits, but the nature of PM2A is still an
Influence Maximization problem as they didn’t take the cost of initial activation
into account when estimating the profit. In the real market, giving free samples
or coupons, will lead to some loss of profit called seeding expense, so the profit
function is always not a monotone function.

In this paper, we consider the Profit Maximization problem with Coupons
(PM-C) in our new diffusion model named the Independent Cascade Model with
Coupons and Valuations (IC-CV). Our main contribution is:
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– We present PM-C problem a PMCA algorithm runs in O(log np · mn3 log n
(l log n + n log 2)/ε3) expected time and can return a (13 − ε)-approximate
solution with a high probability.

– We propose M-RR set which is more suitable under the LT-CV diffusion
model, by modifying the traditional RR set.

– We provide a method to estimate the profit function instead of calling the
value oracle while utilize the Local Search algorithm [4].

2 Preliminary

In this section, we will introduce a more realistic diffusion model in marketing
strategy, named the Independent Cascade model with Coupons and Valuations
(IC-CV), and give the definition of the PM-C problem.

When considering the marketing strategies in managing science, we always
describe the social network as a set of directed graph G = (V,E), where V is the
set of nodes representing users and E is the set of directed edges representing
relationships between users. Each edge e ∈ E is associated with an influence
probability p(e) defined by function p : E → [0, 1], if [i, j] /∈ E, then define
p([i, j]) = 0. Each node i ∈ V is associated with a valuation vi ≥ 0, and the
distribution function of vi is F (·) with domain [0, b]. Also, we assume that the
price of a product is p > 0 and the value of each coupon is c ∈ [0, p].

There are following assumptions in this social network:

1. We focus on the selling of one item in the network, and the price p of it will
not change in the propagation period. For convenience, we also assume that
the production cost will not change, so p can denote the profit of selling one
product if the coupons aren’t used.

2. The company select the initial individuals as potential customers just by
offering coupons. And furthermore, each of the coupon is of the same discount.
Since the price of each product will not be changed, we will use a constant c
to represent the value of the coupon in this paper. It is different from most of
the existing work in which they select the initial individuals by offering free
samples. Note that, if one who receive the coupon does not finally adopt the
product, then there is no actual expenditure for the company.

3. Each individual i has his own valuation vi of the product. The valuation for
not adopting is defined to be zero. One will purchase the product if the price
is not exceeding his own valuation, and will reject it otherwise. Following
the literature [5,16,17], we make the independent private value assumption,
under which the valuation of each user is drawn independently at random
from a certain distribution.

4. Only the person who have bought the product can propagate it.

2.1 The Diffusion Model

In this special social network, we will describe a diffusion model (named IC-CV)
which is an extension of the IC model that incorporate coupons and valuations.
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A diffusion under the IC-CV model proceeds in discrete time steps. Each node in
the graph can be in one of four states: inactive, active, influenced and adopting.
Initially, all nodes are inactive, and the propagation process as follows:

1. At timestamp 1, a seed set S is targeted (i.e., each node in S is given a
coupon with value c), and all nodes in S become active. Then the actual
price of the product for each seed node becomes p − c. For a node i ∈ S, its
state immediately transforms to adopting if vi ≥ p − c, otherwise, transforms
to influenced.

2. If node i’s adopting state first appears at timestamp t, then for each directed
edge e that points from i to an inactivate node j, i can activate j at timestamp
t+1 with p(e) probability. After timestamp t+1, i cannot activate any other
nodes.

3. Once a node i becomes activated, it immediately becomes adopting if vi ≥ p,
or it becomes influenced otherwise. The adopting (or influenced) nodes will
remain as adopters (or influenced).

4. The diffusion ends if no more nodes can change its state.

In this model, active nodes includes both influenced and adopting nodes. For
each node i ∈ V , let Pac(i|S) and Pad(i|S) respectively be the probabilities of i
being active and adopting at the end of the propagation process with S being the
seed set. Then, for each i ∈ S, we have Pac(i|S) = 1 and Pad(i|S) = 1−F (p−c).
And for each i ∈ V \ S, Pad(i|S) = Pac(i|S) · [1 − F (p)].

2.2 Problem Definition

Under the strategy that the company provides coupons to customs, the Profit
Maximization with Coupons (PM-C) problem can be defined as follows:

Definition 1. (Profit Maximization with Coupons) Given a social network G =
(V,E), a distributed function F (·), an edge weight p(e) ∈ [0, 1] for each edge
e ∈ E, and real numbers c, p with 0 ≤ c ≤ p. The problem is to find a seed set
S ∈ V , such that the expected total profit, denoted by π(S), is maximized.

Consider that at the end of the process, the profit of an adopting seed node is
p − c, and is p otherwise. Therefore, we have the following equations.

π(S) =
∑

i∈S

(p − c) · Pad(i|S) +
∑

i∈V −S

p · Pad(i|S)

= (p − c) · [1 − F (p − c)] · |S| + p · [1 − F (p)] ·
∑

i∈V \S

Pac(i|S)

For convenience, we denote
∑

i∈V −S

Pad(i|S) and
∑

i∈V \S

Pac(i|S) by Pad(S) and

Pac(S), respectively. It’s clear that the IM problem under the IC model is a
special case of the PM-C problem with c = 0, p = 1 and vi = 1 for each i ∈ V ,
which has been proved to be NP-hard. So we have the following hardness result.

Claim 1 The PM-C problem under the IC-CV model is NP-hard.
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2.3 Properties of π(S)

It is shown in [1] that a greedy algorithm can achieve (1 − 1/e)-approximation
by exploiting the monotonicity and submodularity properties of the influence
function. Submodularity and monotonicity are two key theoretical properties
for optimization problem and are defined as follows.

Given a ground set V , a set function f : 2V → R is monotone if f(S1) ≤
f(S2) for all subsets S1 ⊆ S2 ⊆ V . Also, the function is submodular if f(S1 ∪
{x}) − f(S1) ≥ f(S2 ∪ {x}) − f(S2) for all subsets S1 ⊆ S2 ⊆ V and all
x ∈ V \ S2. Intuitively, a function is submodular if it satisfies the diminishing
return property. This property states that the marginal gain from adding an
element to a set S is at least as high as the marginal gain from adding that
element to the superset T .

In order to make better analyses for profit function π(S), we will focus on
the submodularity and monotonicity of it.

Non-monotonicity. Unlike the conventional influence maximization problem,
the objective function π(·) is non-monotone under the IC-CV model. For a
simple example, let G = (V,E) be a directed graph with vertex set V = {1, 2, 3}
and edge set E = {(1, 2), (1, 3)}. The price of each product is p = 8 and the
value of each coupon is c = 2. Let v1 = 7, v2 = v3 = 9, p(1, 2) = 0.9 and
p(1, 3) = 0.8. If we choose S1 = {1} as the seed set, then the expected total
profit is π(S1) = (8−2)+8×0.9+8×0.8 = 19.6. If we choose S2 = {1, 2} as the
seed set, then the expected total profit is π(S2) = (8 − 2) × 2 + 8 × 0.8 = 18.4.
Note that S1 ⊂ S2 and π(S1) > π(S2), which indicates that π(·) non-monotone.

Submodularity. Consider the situation in the cascade process when a node i
has just changes its state to adopting, and starts to activate a neighbor j with
succeeding probability p([i, j]). If j is activated successfully, it will change its
state to adopting or influenced according to its valuation vj and price p. This
kind of random event can be viewed as being determined by flipping a coin
of bias p([i, j]) and allocating value vj according to a distribution function F (·)
randomly. Looking from the whole process, it obviously does not matter whether
we flip the coin at the moment i become adopting or at the beginning of the
whole process, also does not matter whether we allocate the valuation of j at
the moment j is activated successfully or at the beginning.

With all coins flipped and valuation allocated, we can view the process as
follows. Firstly, for each edge e ∈ E, we flip a coin with bias p(e), denote the
edge “live” with probability p(e), and “blocked” with probability 1− p(e). Then
for each node i ∈ V , we allocate value vi according to the distribute function
F (·). Therefore we can get a certain resulting graph and denote it as g.

When it comes to the random event whether a node i will adopt the product
or not after being active, it is just related to the numerical relationship between
vi and p − c if i is chosen as a seed node, or that of vi and p otherwise. Firstly,
if vi < p − c, then the probability of this event is F (p − c). In this case, i will
not adopt the product after being active regardless of the actual price is p or
p − c, and we call i a non-potential-adopter. Secondly, if p − c ≤ vi < p, then
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the probability is F (p) − F (p − c), in which case i will not adopt the product
if it is not a seed node, but will become adopting otherwise. Then we call i a
semi-potential-adopter in this case. Finally, if vi ≥ p, then the probability is
1 − F (p). In this case, i is certain to adopt the product after being active, and
we call i a potential-adopter.

After all the coins are flipped, the types of all the edges and nodes are deter-
ministic, so we can get a certain graph g. To describe which kind of nodes can
adopt the product under a fixed g, we will introduce the following definition and
claim.

Definition 2. (Live path) For a path under a certain graph g, if the initial
node is semi-potential-adopter or potential-adopter, all the remaining nodes are
potential-adopters, and all the edges are live, then we call the path a live path.
And for nodes i, j ∈ V , we say that i can “reach” j if there is a live path start
from i to j.

Claim 2. Under a certain graph g, a node i will adopt the product, if it is
reachable from a seed node in S.

Claim 3. The profit function π(S) is non-monotone and submodular.

3 Algorithm and Its Analysis

3.1 Framework

Now our problem is to maximize a nonnegative, non-monotone submodular func-
tion. Feige [4] give a deterministic local-search algorithm called LS which guar-
antees ( 13 − ε

n )-approximation while using value oracle access, that means, the
function value of a set S can be finded in an oracle. Though LS algorithm can
help to find the approximate solution, the computation of π(S) is #P-hard,
because the computation of Pac(i|S) is #P-hard [1].

So we need to use a function π̂(S) which can be computed in polynomial
time to estimate π(S). In general, our ideas of solving the PM-C problem are
showed as the following steps.

– π(S) Estimation. Using a method which is similar to the IMM method, we
consider a maximum coverage problem [8] and obtain a result π̂(S). Then use
π̂(S) to estimate π(S), such that for any S ∈ 2V , |π̂(S) − π(S)| ≤ ε

2 · OPT ,
OPT denotes the optimal solution of PM-C problem.

– Solve the PM-C problem. As π̂(S) is non-monotone and submodular,
use the Local Search algorithm to solve max

S∈2V
π̂(S). And we can show the

algorithm can return a (13 − ε)-approximate solution with a high probability.
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3.2 Estimation of π(S)

To estimate the profit function, we borrow ideas from the IMM technique [3]
and make some change according to the IC-CV model. IMM is an influence
maximization algorithm which has a practical high efficiency and returns a (1−
1/e − ε)-approximate solution with a high probability. We will first introduce
the following two concepts.

Definition 3. (Modified-Reverse Reachable Set) Let g be a resulting graph
obtained by removing each edge e in G with 1 − p(e) probability and allocating
vi to each i ∈ V according to F (·). Let i be a node in G, the Modified-Reverse
Reachable (M-RR) Set for i is the set of nodes that can reach i in g.

Definition 4. (Random M-RR set) Let G be the distribution of resulting graphs,
denote g as an instance sampled from G randomly. A random M-RR set is a M-
RR set generated on g (for a node selected uniformly at random from g).

Algorithm 1. M-RR Sets Generation (Generation)
Input: Graph G, R, and a positive integer θ.
Output: A set R with at least θ M-RR sets.
1: while do|R| < θ.
2: Generate a random M-RR set and insert it into R.
3: return R

Let R be the set of all random M-RR sets generated in Algorithm 1, i.e.,
R = {R1, R2, · · · , Rθ}. For any node set S, let xi (i ∈ [1, θ]) be a random
variable, its value is 1 if S ∩ Ri 
= ∅, and 0 otherwise. Let FR(S) denote the
fraction of M-RR sets in R covered by S, that is

FR(S) =
{Ri ∈ R | S ∩ Ri 
= ∅}

θ
=

1
θ

·
θ∑

i=1

xi

To show the relationship between M-RR sets and the probability for a node
of becoming adopting, we have the following lemma.

Lemma 1. For any node set S ⊆ V ,

E[FR(S)] = (Pad(S) + [1 − F (p − c)]|S|)/n. (1)

Denote π̂(S) = pnFR(S)−c[1−F (p−c)]|S|, then according to the former lemma,
it’s obvious that π̂(S) is an unbiased estimat of π(S).

Corollary 1. For any node set S ⊆ V , E[π̂(S)] = π(S).

Lemma 2. π̂(S) is a submodular function.
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Due to the submodularity of π̂(S), we can easily test that whether π̂(S) < 0
will appear under a fixed R. If π̂(S) < 0 holds for all single node set S, then
according to the property of submodular function that the marginal benefit
decrease, no matter how many nodes we add into S, π̂(S) < 0 always holds. In
this case we predicate the R is not a good sample and can reject it. So in all of
the proofs that follow, we always regard the R we use is “good”.

A Martingale View of Dependent M-RR Sets. Tang [3] shows that, for
R = {R1, R2, . . . , Rθ} and node set S, the random variable xi can establish a
connection with martingales. For any i ∈ [1, θ], E[xi|x1, x2, . . . , xi−1] = E[xi].
Let ρ = E[xi], and Mi =

∑i
j−1(xj − ρ). As M1,M2, . . . ,Mθ is a martingale [3],

then by the property of martingale we have the following frequently used lemma
which is similar with Chernoff bounds.

Lemma 3. ([3,7,9]) For any ε > 0,

Pr
[ θ∑

i=1

xi − θρ ≥ ε · θρ
]

≤ exp
(

− ε2

2 + 2
3ε

· θρ
)
,

Pr
[ θ∑

i=1

xi − θρ ≤ −ε · θρ
]

≤ exp
(

− ε2

2
· θρ

) (2)

Approximation Guarantees of Sampling Phase. We need to prove the
result we get from Algorithm 2 will not deviate significantly from π(S) when θ
is enough large. Using Lemma 2, we will show that if θ is sizable, the result we
obtain from Algorithm2 for any S ⊆ V is an accurate estimate of π(S).

Algorithm 2. Profit Estimation (P-E)
Input: A node set S, R = {R1, R2, . . . Rθ}, 0 < ε < 1.
Output: π̂(S).
1: Initialize a set FR(S) = ∅.
2: for i = 1 to θ do
3: FR(S) = FR(S) + min{|S(i)∩Rk|,1}

θ

4: Return π̂(S) = npFR(S) − c[1 − F (p − c)]|S|

Lemma 4. Let ε ≥ 0, suppose that θ satisfies

θ ≥
[8np + 4

3npε

ε2 · OPT
+

8n2pc[1 − F (p − c)]
ε2 · OPT 2

]
· (llnn + nln2 + ln2) (3)

then, for any node set S ⊆ V , |π̂(S) − π(S)| < ε
2 · OPT holds with at least

1 − n−l/2n probability.

Now we have prove that π̂(S) is a good estimation of π(S), and can be
computed in polynomial time by Algorithm2. So while ensuring that θ satisfies
Eq. (3), we will turn to solve the problem:

max π̂(S) = pnFR(S) − c[1 − F (p − c)|S|. (4)
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3.3 Use Local Search Algorithm to Solve Problem max π̂(S)

Algorithm 3. Local Search (LS)
Input: Graph G, R = {R1, R2, . . . Rθ}, 0 < ε < 1,
Output: A node set S ⊆ V that is a ( 1

3
− ε)-approximate solution for the problem of

maximizing π̂(S).
1: if For any node v ∈ V , max P-E({v}, R, ε)¡0 then
2: Set S = ∅
3: else
4: repeat
5: repeat
6: S = S ∪ {u}
7: until There is no node u ∈ V , s.t. P-E(S ∪{u}, R, ε) > (1+ ε

n2 )P-E(S, R, ε)
8: S = S \ {u}
9: until There is no node u ∈ S, s.t. P-E(S \ {u}, R, ε) > (1 + ε

n2 )P-E(S, R, ε)
10: Let S = arg max{P-E(S, R, ε), P-E(V \ S, R, ε)}
11: return S

In this section, we will provide a Local Search algorithm which can achieve a
( 13 − ε

n )-approximation solution for problem in Eq. (4). And then we will prove
that Algorithm 3 can return a (13 −ε)-approximate solution for the original PM-C
problem.

Theorem 1. Given a graph G, 0 < ε < 1, l > 0 and a set of M-RR set
R = {R1, R2, . . . Rθ} where θ satisfies Eq. (3), Algorithm3 returns a ( 13 − ε)-
approximate solution of the PM-C problem with at least 1 − n−l probability.

3.4 Estimation of θ

Notice that in the estimation of π(S) section, the number θ of random M-RR
set is required to satisfy Eq. (3) in order to guarantee the approximation. For
convenient we simplify Eq. (3) as θ ≥ λ1

OPT + λ2
OPT 2 , where

λ1 =
8np + 4

3npε

ε2
· (llnn + nln2 + ln2)

λ2 =
8n2pc[1 − F (p − c)]

ε2
· (llnn + nln2 + ln2)

(5)

But it is difficult to give θ directly according to Eq. (3) since OPT is unknown
ahead of time. So we aim to find a lower bound LB of OPT and then let
θ = λ1

LB + λ2
LB2 ≥ λ1

OPT + λ2
OPT 2 . To save the computation time of generating

random M-RR sets, LB should be as proximate to OPT as possible. To solve
this challenge, we will design a statistical treatment T (x), and make sure that
T (x) = false when OPT < x with high probability.
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Consider the value range of OPT , the worst case is we choose one seed
node and it can’t active any other nodes in V , then the expected profit is (p −
c)[1 − F (p − c)], and denote this value as A. And the best situation is that we
choose one seed node and it active all other nodes in V , the expected profit is
(p − c)[1 − F (p − c)] + p(n − 1)[1 − F (p)], and denote this value as B. Obviously
OPT ∈ [A,B], so we will find the lower bound of OPT by testing T (x) on an
enough large number of values of x in interval [A,B]. In Algorithm 4, the method
of bisection will be used. Algorithm 4 will keep calling Algorithm3 to provide
the method to implement T (x). So we have the following lemma.

Lemma 5. Let x ∈ [A,B], and ε′, δ1 ∈ [0, 1]. Suppose that we run Algorithm3
inputting a set R with θ′ random M-RR set, where

θ′ ≥
(4np + 4

3npε′

ε′2x
+

2n2pc[1 − F (p − c)]
ε′2x2

)(
log(

1
δ1

) + n log 2
)
. (6)

Let SA be the set outputted by Algorithm3. If OPT ≤ x, then with at least
1 − δ1 probability we have π̂(SA) < (1 + ε′)x.

Algorithm 4. OPT Estimation (O-E)
Input: Graph G, ε, l
Output: π̂(S).
1: Initialize R = ∅ and LB = A
2: Let ε′ =

√
2ε, t = �log2(B − A)�.

3: for i = 1 to t do
4: Let x = B−A

2i
+ A

5: Let θi =
λ′
1

x
+

λ′
2

x2 , where λ′
1 and λ′

2 are as defined in Eq. (7)
6: while |R| < θi do
7: Generate a random M-RR set and insert it into R.
8: Let Si =LS(G, R, ε)
9: if π̂(Si) ≥ (1 + ε′)x then

10: LB = π̂(Si)
1+ε′

11: return LB and R

In Algorithm 4, for given G, ε, p, c and l, we first set the initial set R = ∅
and the initial lower bound LB = A, then we keep dichotomise the value range
of OPT , that means we start a for loop with no more than t = �log2(B − A)
times.

In the i-th iteration, algorithm set x = B−A
2i +A and get θi = λ′

1
x + λ′

2
x2 , where

λ′
1 =

4np + 4
3npε′

ε′2 · (l log n + log t + n log 2)

λ′
2 =

2n2pc[1 − F (p − c)]
ε′2 · (l log n + log t + n log 2)

(7)
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Here θi is the smallest θ′ that satisfies Lemma 5 when δ1 = n−l/t. Then the
algorithm generate random M-RR sets and add them into R until |R| = θi.
After invoking Algorithm3 and get a node set Si, it use Algorithm 2 to compute
π̂(Si). By Lemma 5, if π̂(Si) ≥ (1 + ε′)x, we will have OPT ≥ x with at least
(1 − n−l

t )-probability. So once π̂(Si) ≥ (1 + ε′)x holds, we can stop the loop and
regard x as a lower bound of OPT . But in Algorithm4 we set π̂(Si)

1+ε′ as the lower
bound rather than x, next we will show that our choice is a tighter lower bound
than x.

Lemma 6. Let x, ε′, δ1 ∈ [0, 1], R, and SA be all as defined in Lemma 5. If
x ≤ OPT < 2x, then with at least 1 − δ1 probability we have OPT ≥ π̂(SA)

1+ε′ .

The previous discussion assume that π̂(Si) ≥ (1 + ε′)x holds in one iteration
in Algorithm 4. But if it doesn’t hold in all the t iterations, we set LB = A. Once
the lower bound LB is determined, the algorithm get θ = λ1

LB + λ2
LB2 where λ1

and λ2 are as defined in Eq. (5), then it generate more random M-RR sets and
add them into R until |R| = θ. In the end it return a collection of M-RR sets
R. Therefore we have the following theorem.

Theorem 2. With at least 1−n−l probability, Algorithm4 returns a set of ran-
dom M-RR sets R that satisfies |R| ≥ λ1

OPT + λ2
OPT2

, here λ1 and λ2 are as
defined in Eq. (5).

Furthermore, we will prove that LB is close to OPT with a relatively high
probability. Firstly we show that Algorithm4 will terminate the for loop after
the j-th iteration with a high probability in the following lemma.

Lemma 7. Let x, ε′, δ1 ∈ [0, 1], R, and SA be all as defined in Lemma 5, ε

is as defined in Lemma 3, set d ≥ 1. Then if OPT ≥ (1+ε′)2
1
3−ε

x holds, then the
probability that π̂(SA) ≤ (1 + ε′)x holds will not proceed δ1.

In addition, based on Lemma7, we have the following result.

Lemma 8. Let LB be as defined in Algorithm4, then with at least 1 − n−l

probability we have LB ≥ 1
3−ε

(1+ε′)2 · OPT (when δ1 = n−l

t ). Furthermore, when
n−l ≤ 1

2 , have

E[|(R)|] = O
(max{λ1, λ

′
1}(1 + ε′)2

OPT
+

max{λ2, λ
′
2}(1 + ε′)4

(OPT )2
)

As we can see in Lemma 8, we should try to minimize max{λ1, λ
′
1}(1 + ε′)2

and max{λ2, λ
′
2}(1 + ε′)4 in order to reduce the running time of generating M-

RR sets. But it is difficult due to the complex expressions of λ1, λ′
1, λ2, λ′

2. So
we roughly approximate with a simple function and set ε′ =

√
2ε as the optimal

choice of the function.
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Algorithm 5. PMCA
Input: Graph G, ε, l.
Output: A set S that is a ( 1

3
− ε)-approximate solution for PM-C problem with at

least 1 − 2n−l probability.
1: Let (LB,R)=O-E(G,ε,l)
2: Let θ = λ1

LB
+ λ2

LB2 , where λ1 and λ2 are as defined in Eq. (5)
3: R=Generation(G,R,θ)
4: SA =LS(G, R, ε)
5: return SA

3.5 Time Complexity

In this section, we will show the time complexity of the PMCA algorithm (Algo-
rithm5). In summary, the PMCA algorithm use Algorithm4 to generate a set
of M-RR set R, and then use Algorithm3 (the Local Search method) to find a
node set SA which can maximize π̂(S). According to Theorems 1 and 2, and the
union bound, PMCA algorithm can return a (13 −ε)-approximate solution to the
PM-C problem with at least 1 − 2n−l probability.

Theorem 3. The PMCA algorithm returns a (13 − ε)-approximate solution
for PM-C problem with at least 1 − 2n−l probability, and runs in O(log np ·
mn3 log n(l log n + n log 2)/ε3) expected time.
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Abstract. This paper presents a bicriteria approximation algorithm for
the minimum submodular cost partial multi-cover problem (SCPMC), the
goal of which is to find a minimum cost sub-collection of sets to fully
cover q percentage of total profit of all elements, where the cost on sub-
collections is a submodular function, and an element e with covering
requirement re is fully covered if it belongs to at least re picked sets.
Such a problem occurs naturally in a social network influence problem.

Assuming that the maximum covering requirement rmax = maxe re
is a constant and the cost function is nonnegative, monotone non-
decreasing, and submodular, we give the first (O(b/qε), (1−ε))-bicriteria
algorithm for SCPMC, the output of which fully covers at least (1− ε)q-
percentage of the total profit of all elements and the performance ratio
is O(b/qε), where b = maxe

(
fe
re

)
and fe is the number of sets containing

element e. In the case r ≡ 1, an (O(f/qε), 1 − ε)-bicriteria solution can
be achieved even when monotonicity requirement is dropped off from
the cost function, where f is the maximum number of sets containing a
common element.

Keywords: Partial cover · Multi-cover · Submodular cover
Bicriteria algorithm

1 Introduction

This paper studies the minimum submodular cost partial multi-cover problem
(SCPMC), which is a variant of the set cover problem. The minimum set cover
problem (SC) is one of the most important combinatorial optimization problems
in both the theoretical field and the application field, the goal of which is to
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find a sub-collection of sets with the minimum cost to cover all elements. There
are a lot of variants of the set cover problem. The minimum partial set cover
problem (PSC) is to find a minimum cost sub-collection of sets to cover at least
q-percentage of all elements. One motivation of PSC comes from the phenomenon
that in a real world, “satisfying all requirements” would be too costly or even
impossible, because of resource limitation or political policy. Another variant is
the minimum multi-cover problem (MC), which comes from the requirement of
fault tolerance in practice. In MC, each element e has a covering requirement
re, and the goal is to find a minimum cost sub-collection S ′ to fully cover all
elements, where element e is fully covered by S ′ if e belongs to at least re sets of
S ′. Another generalization of set cover is submodular cost set cover (SCSC), in
which the cost function on sub-collection of sets is submodular and the goal is to
find a set cover with the minimum cost. The SCPMC problem is a combination of
the above three problems, in which each element has a profit as well as a covering
requirement, the goal is to find a minimum submodular cost sub-collection of
sets such that the profit of fully covered elements is at least a fixed percentage
of the total profit.

The SCPMC problem has a background in influence problems of a social
network. In [35], Wang et al. proposed a positive dominating set problem (PDS)
under the following consideration. Suppose an opinion is to be injected into a
social network. A person will adopt the opinion if at least half of his friends
hold this opinion. The problem is to select the minimum number of individuals
to inject the opinion such that all people in the network will adopt the opinion
under the above influence mechanism. This problem is extremely hard [7] . But if
we only consider one-step influence, that is, we aim at the adoption of the opinion
in just one step of influence, then it can be viewed as an MC problem. In fact,
in the language of set cover, every individual is an element to be covered, and
every individual also corresponds to a set which covers all his friends (a person is
viewed as a friend of himself). The problem is to select the minimum number of
sets such that every individual v can be covered by at least �d(v)/2� sets, where
d(v) is the number of friends of v. This is exactly the MC problem. If we relax the
requirement such that only a fraction of individuals are to be influenced, then it
is the partial multi-cover problem [29], which is a special SCPMC problem.

1.1 Related Work

For SC, Hochbaum [13] gave an f–approximation algorithm based on LP round-
ing where f is the maximum number of sets containing a common element. Khot
and Regev [21] showed that SC cannot be approximated within f − ε for any
constant ε > 0 assuming unique games conjecture. Another classic result on SC
is that greedy strategy yields a ln Δ-approximation [9,17,26], where Δ is the
maximum cardinality of a set. Dinur and Steurer [5] showed that SC cannot
be approximated to (1 − o(1)) ln n unless P = NP , where n is the number of
elements.

Dobson [10] studied a generalization of MC, namely the minimum multi-set
multi-cover problem (MSMC), and gave an HK-approximation, where K is the
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maximum size of a multi-set (recall that HK ≈ ln K). Rajagopalan and Vazirani
[28] gave a greedy algorithm for MSMC achieving the same performance ratio,
using dual fitting analysis. For the minimum set k-cover problem in which the
covering requirement of every element is k, Berman et al. [2] gave a randomized
algorithm achieving expected performance ratio at most ln(Δ

k ). In fact, MSMC
is a special case of the covering integer program problem (CIP), which can be
modeled as min{cT x : Ax ≥ b, 0 ≤ x ≤ d, x ∈ Z}, where A is a non-negative
matrix, and c, b, d are positive vectors. There are large quantities of studies on
CIP [6,23,32]. In particular, Chekuri and Quanrud [4] obtained currently best
known approximation for CIP which depends logarithmically on the Δ0-sparsity
(the maximum number of nonzero entries in a column) and the Δ1-sparsity (the
maximum sum of entries in a column).

For PSC, Kearns [20] gave the first greedy algorithm achieving performance
ratio (2Hn + 3). Slav́ık [31] improved the ratio to Hmin{�qn�,Δ}, where q is the
desired covering ratio. Using primal dual method, Gandhi et al. [12] obtained
an f -approximation. Bar-Yehuda [1] studied a generalized version of the partial
cover problem in which each element has a profit. Using local ratio method, he
also obtained an f -approximation. Proposing an Lagrangian relaxation frame-
work, Konemann et al. [22] gave a (43 + ε)HΔ-approximation for the generalized
partial cover problem. A mixed partial cover problem (where the number of
covered elements is an integer but every element only needs to be fractionally
covered up to its requirement) is studied by Dinitz and Gupta [11].

From the above related work, it can be seen that both PSC and MC admit
performance ratios which match those best ratios for the classic set cover prob-
lem. However, combining partial cover with multi-cover seems to enormously
increase the difficulty of studies. Ran et al. [29] were the first to study approx-
imation algorithm for the minimum partial multi-cover problem (PMC). Using
greedy strategy and dual fitting analysis, they gave the first approximation algo-
rithm with a theoretically guaranteed performance ratio. However, this ratio is
meaningful only when the covering percentage q is very close to 1. In [30], Ran
et al. presented a simple greedy algorithm achieving performance ratio Δ. Recall
that in terms of Δ, greedy algorithm for Set Cover achieves performance ratio
ln Δ. So, ratio Δ for PMC is exponentially larger than the one for SC. In the
same paper, they also presented a local ratio algorithm which reveals an inter-
esting phenomenon which is called “shock wave phenomenon” in their paper:
the performance ratio is f for both PSC (that is, when r ≡ 1 which is the partial
single cover problem) and MC (that is, when q = 1 which is the full multi-cover
problem); however, when q is smaller than 1 by an arbitrarily small constant,
the ratio jumps abruptly to O(n).

It should be noticed that the Minimum k-Union problem (MkU) studied
by Chlamtác̆ et al. [8] is a special case of PMC. In an MkU problem, given a
hypergraph, the goal is to choose k hyperedges to minimize the number of vertices
in their union. It is equivalent to choosing the minimum number of vertices such
that the number of hyperedges which are completely contained in the chosen
vertex set is at least p. This is a PMC problem in which re = fe holds for each
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element e, where fe is the number of sets (or hyperedges) containing element
e. It is highly believed that MkU does not admit a better than polynomial
approximation ratio [8].

The submodular cost set cover problem was first proposed by Iwata and
Nagano [14]. They gave an f -approximation algorithm for nonnegative submod-
ular functions. In paper [24], Koufogiannakis and Young generalized set cover
constraint to arbitrary covering constraints and gave an f -approximation algo-
rithm for monotone non-decreasing nonnegative submodular functions. For other
submodular minimization problems with various constraints, refer to [15,16,19].
In particular, in paper [18], Kamiyama studied nonnegative submodular func-
tion minimization problem with covering type linear constraints and obtained an
approximation ratio depending on Γ1 (the maximum number of nonzero entries
in a row) and Γ2 (the second maximum number of nonzero entries in a row).
Notice that in [36], Wolsey studied the problem of minimizing a linear function
with the constraint that the cost (which is submodular) of the chosen set reaches
the maximum possible value (namely the cost of the whole element set). This
goal is different from the above problems whose goal is to minimize a submodular
cost.

In this paper we study approximation algorithms for the set cover problem
combining the submodular cost function with partial multi-cover constraint.

1.2 Our Contribution

We study the SCPMC problem with a profit on each element and the goal is to
find a minimum cost sub-collection of sets such that the profit of fully covered
elements is at least q-percentage of total profit. A randomized (O( b

qε ), 1 − ε)-
bicriteria algorithm is given, that is, the algorithm produces a solution covering
at least (1 − ε)q-percentage of the total covering requirement, and achieves per-
formance ratio O( b

qε ) with a high probability, where b = maxe

(
fe

re

)
, and fe is the

number of sets containing element e.
It should be noticed that SCPMC is not a submodular cost submodular

cover problem (SCSC): the profit of elements which are fully covered is not a
submodular function. Hence previous methods for SCSC can not be used.

Before presenting this algorithm, we show that a natural integer program for
SCPMC does not work since its integrality gap is arbitrarily large. Hence, to
obtain a good approximation, we propose a novel integer program. The relax-
ation of the integer program uses Lovász extension [25]. Our algorithm consists
of two stages of rounding. The first stage is a deterministic rounding. The sec-
ond stage is a random rounding, the analysis of which is based on an equivalent
expression of Lovász extension in view of expectation [3].

We show that for the special case when the covering requirement r ≡ 1 (the
special case is abbreviated as SCPSC), our method can be adapted to yield an
(O(f/qε), 1 − ε)-bicriteria algorithm, where f = max{fe : e ∈ E}, even when
monotonicity is dropped off from the requirement of the cost function.

This paper is organized as follows. In Sect. 2, we introduce formal definition of
the SCPMC problem, as well as some technical results. The bicriteria algorithm
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for SCPMC is presented and analyzed in Sect. 3. At the end of Sect. 3, we show
how to adapt the algorithm to deal with SCPSC without monotonicity. The last
section concludes the paper and discusses some future work. Because of limited
space, detailed proofs are omitted which can be found in [33].

2 Preliminaries

Definition 1 (Submodular Cost Partial Multi-Cover (SCPMC)). Sup-
pose E is an element set and S ⊆ 2E is a collection of subsets of E with⋃

S∈S S = E; each element e ∈ E has a positive covering requirement re and a
positive profit pe; cost function ρ0 : 2S 
→ R is defined on sub-collections of S,
which is nonnegative, monotone non-decreasing, and submodular. Given a con-
stant q ∈ (0, 1] called covering ratio, the SCPMC problem is to find a minimum
cost sub-collection S ′ such that

∑
e∼S′ pe ≥ qP , where P =

∑
e∈E pe is the total

profit, e ∼ S′ means that e is fully covered by S ′, that is, |{S ∈ S ′ : e ∈ S}| ≥ re.
An instance of SCPMC is denoted as (E,S, r, p, q, ρ0).

When rmax = 1, we call the problem a submodular cost partial set cover
problem (SCPSC). When the cost function is linear, that is, every set S ∈ S has
a cost cS and the cost of a sub-collection S ′ is ρ0(S ′) =

∑
S∈S′ cS , the problem

is exactly the minimum partial multi-cover problem (PMC).
An algorithm is a (σ, ζ)-bicriteria algorithm for SCPMC if the profit of fully

covered elements is at least ζqP and the cost of the sub-collection is at most σ
times that of the optimal cost.

Definition 2 (submodular function). Given a ground set E, a set function
ρ : 2E 
→ R is submodular if for any E′′ ⊆ E′ ⊆ E and E0 ⊆ E \ E′, we have

ρ(E′ ∪ E0) − ρ(E′) ≤ ρ(E′′ ∪ E0) − ρ(E′′). (1)

A set S ⊆ E can be indicated by its characteristic vector xS = (x1, . . . , xn),
where n = |E|, E = {e1, . . . , en}, and xi = 1 if ei ∈ S and xi = 0 if ei /∈ S. So,
in the following, we shall use notation {0, 1}n 
→ R to refer to a set function. An
important relaxation of a submodular function is the Lovász extension.

Definition 3 (Lovász extension [25]). For a set function ρ : {0, 1}n 
→ R,
the Lovász extension ρ̂ : Rn → R is defined as follows. For any vector x ∈ R

n,
order elements as ej1 , . . . , ejn such that xj1 ≥ xj2 ≥ ... ≥ xjn , where xji is the
coordinate of x indexed by eji . Let Ei = {ej1 , ej2 , ..., eji}. The value of ρ̂ at x is

ρ̂(x) =
n−1∑

i=1

(xji − xji+1)ρ(Ei) + xjnρ(En). (2)

The following is a relation between submodularity and convexity.

Theorem 1. A set function ρ is submodular if and only if its Lovász extension
ρ̂ is a convex function.
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The following is an equivalent expression of Lovász extension in range [0, 1]n.

Theorem 2 ([3]). Let ρ be a set function {0, 1}n 
→ R. The Lovász extension
ρ̂ of ρ in range [0, 1]n can be equivalently expressed as

ρ̂(x) = E
θ∈[0,1]

[ρ(xθ)] =
∫ 1

0

ρ(xθ)dθ, (3)

where E represent the expectation, xθ
i = 1 if xi ≥ θ and xθ

i = 0 otherwise.

We study SCPMC under the following assumptions.
(Assumption 1) The maximum covering requirement rmax = max{re : e ∈

E} has a constant upper bound.
(Assumption 2) Since submodular cost (full) multi-cover problem is already

studied in [14,24], we only consider the partial version, assuming that q < 1.

3 Approximation Algorithm for SCPMC

In this section, we study SCPMC. A natural idea to model the SCPMC problem
is to use the following integer programm:

min ρ0(x)

s.t.
∑

e: e∈E

peye ≥ qP,

∑

S: e∈S

xS ≥ reye, for any e ∈ E (4)

xS ∈ {0, 1} for S ∈ S
ye ∈ {0, 1} for e ∈ E

Here xS indicates whether set S is selected and ye indicates whether element e
is fully covered. The second constraint says that if ye = 1 then at least re sets
containing e must be selected and thus e is fully covered. However, the following
example shows that the integrality gap of the above program is arbitrarily large.

Example 1. Let E = {e1, e2}, S = {S1, S2, S3} with S1 = {e1}, S2 = {e2},
S3 = {e1, e2}, c(S1) = c(S2) = 1, c(S3) = M where M is a large positive
number, r(e1) = r(e2) = 2, p(e1) = p(e2) = 1, q = 1/2, and the cost function
ρ0(x) =

∑
S∈S c(S)xS . Then xS1 = xS2 = 1, xS3 = 0, ye1 = ye2 = 1/2 form a

feasible solution to the relaxation of (4) with objective value 2, while any integral
feasible solution to (4) has cost at least M + 1.

Hence, to obtain a good approximation, we need to find another program.
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3.1 Integer Program and Convex Relaxation

For an element e, an re-cover is a sub-collection A ⊆ S with |A| = re such
that e ∈ S for every S ∈ A. Denote by Ωe the family of all re-covers and
Ω =

⋃
e∈E Ωe. The following example illustrates these concepts.

Example 2. Let E = {e1, e2, e3}. S = {S1, S2, S3} with S1 = {e1, e2}, S2 = {e1,
e2, e3}, S3 = {e2, e3}, S4 = {e1, e3}, and r(e1) = 2, r(e2) = r(e3) = 1. For this
example, Ωe1 = {{S1, S2}, {S1, S4}, {S2, S4}}, Ωe2 = {{S1}, {S2}, {S3}}, Ωe3 =
{{S2}, {S3}, {S4}}, Ω = {{S1}, {S2}, {S3}, {S4}, {S1, S2}, {S1, S4}, {S2, S4}}.

Let ρ: 2Ω → R be the function on sub-families of Ω defined by

ρ(Ω′) = ρ0(
⋃

A∈Ω′
A) for Ω′ ⊆ Ω. (5)

For example, ρ({{S1}, {S1, S2}}) = ρ0({S1, S2}). The SCPMC problem can be
modeled as the following integer program:

min ρ(x)

s.t.
∑

e: e∈E

peye ≥ qP,

∑

A: A∈Ωe

xA ≥ ye, for any e ∈ E (6)

xA ∈ {0, 1} for A ∈ Ω

ye ∈ {0, 1} for e ∈ E

Here, xA indicates whether cover A is selected and ye indicates whether element
e is fully covered. The second constraint says that if ye = 1, then at least one
re-cover must be selected and thus e is fully covered.

Example 3. For the example in Example 2, suppose pei
≡ 1 for i = 1, 2, 3 and

q = 2/3. Consider a feasible solution to (6): xA1 = xA2 = 1 for A1 = {S1, S2},
A2 = {S2}, and xA = 0 for all other A ∈ Ω \ {A1,A2}, we have ye1 = ye2 = 1
and ye3 = 0. This feasible solution to (6) has objective value ρ({A1,A2}) =
ρ0(S1, S2), which corresponds to a feasible solution {S1, S2} to SCPMC with
the same cost. Conversely, for the feasible solution {S1, S2} to SCPMC, it is
natural to set xA1 = 1 and all other xA to be zeros. However, this is not a
feasible solution to (6). Nevertheless, one can construct a feasible solution to (6)
having the same cost by setting xA1 = xA2 = 1 and all other xA to be zeros.

In general, for a feasible solution S ′ to SCPMC, one can construct a feasible
solution to (6) as follows: for each element e which is fully covered by S ′, let
ye = 1 and let xAe

= 1 for exactly one re-cover Ae which contains re subsets of
S ′ (such Ae exists since e is fully covered by S ′); all other variables are set to
be zeros. Such a construction clearly results in a feasible solution to (6) whose
objective value is at most ρ0(S ′) (by the monotonicity of ρ0). So, (6) is indeed
a characterization of the SCPMC problem.

We can prove the following property of ρ.
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Lemma 3. If cost function ρ0 is nonnegative, monotone non-decreasing, and
submodular, then the function ρ defined in (5) is also nonnegative, monotone
non-decreasing, and submodular.

Remark 1. If ρ0 is nonnegative and submodular but is not monotone non-
decreasing, then ρ is not necessarily submodular.

Let ρ̂ be the Lovász extension of ρ. By Theorem 1, ρ̂ is convex. Relaxing (6),
we have the following convex program:

min ρ̂(x)

s.t.
∑

e: e∈E

peye ≥ qP,

∑

A: A∈Ωe

xA ≥ ye, for any e ∈ E (7)

xA ≥ 0 for A ∈ Ω

1 ≥ ye ≥ 0 for e ∈ E

It can be shown that this convex program is polynomial-time solvable. In
fact, using the fact that the Lovász extension of a submodular function coincides
with its convex closure, we can rewrite (7) as a linear program with exponential
number of variables. Writing out its dual program and constructing a separation
oracle (using an efficient algorithm for submodular function minimization), the
linear program can be solved in polynomial-time.

Since (7) is a relaxation of (6), we have optcp ≤ opt, where optcp is the optimal
(fractional) value of (7) and opt is the optimal (integer) value of (6) (which is
also the optimal value of SCPMC).

3.2 Rounding Algorithm

For a sub-collection S ′ ⊆ S, denote by C(S ′) the set of elements fully covered by
S ′. The algorithm is presented in Algorithm 1. Two parameters s, t are needed
which are chosen in Theorem 7 to guarantee the desired ratio with high proba-
bility. The rounding algorithm consists of two phases. In the first phase, a deter-
ministic rounding is executed to form a sub-collection S1. In the second phase,
a randomized rounding is executed to form a sub-collection S2. The output is
the union of S1 and S2.

3.3 Approximation Analysis

The following three lemmas show the performance of collections S1 and S2.

Lemma 4. For the collection of sets S1 computed by Algorithm 1, ρ0(S1) ≤
bs · optcp. Furthermore, all elements with y∗

e ≥ 1
s are fully covered by S1.

Lemma 5. For the collection of sets S2 computed by Algorithm 1, the expected
cost of S2 satisfies E[ρ0(S2)] ≤ bs ln( s

s−t )optcp.
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Algorithm 1. Algorithm for SCPMC
Input: An SCPMC instance (E, S, r, p, q, ρ0), two parameters s, t satisfying 1 < t <
s ≤ 1/q, and a real positive number ε < 1.
Output: A sub-collection S ′ which has total covering profit at least (1 − ε)qP .

1: Find an optimal solution (x∗, y∗) to (7).
2: S1 ← ∅, S2 ← ∅.
3: for all e with y∗

e ≥ 1
s
do

4: For each A ∈ Ωe with x∗
A ≥ 1

bs
, let x̂A ← 1.

5: end for
6: For all x∗

A which is not rounded up to 1, set x̂A ← 0.
7: S1 ← {S : S ∈ A with x̂A = 1}.
8: If S1 has total covering profit at least (1 − ε)qP then output S ′ ← S1 and stop.
9: E′ ← E − C(S1), q′ ← (qP − p(C(S1)))/P .

10: for i = 1 to bs ln( s
s−t

) do
11: Pick θ ∈ [0, 1] randomly uniformly.
12: For each remaining A with x∗

A ≥ θ, set x̂A ← 1 and S2 ← S2 ∪ {S : S ∈ A}.
13: end for
14: Output S ′ = S2 ∪ S2.

Lemma 6. For the collection of sets S2 computed by Algorithm1, the expected
profit of S2 satisfies E[p(S2)] ≥ tq′P , where q′ is the ratio defined in line 9 of
Algorithm 1.

It should be noticed that if we only care about an expected result, then we may
obtain a randomized algorithm producing a sub-collection S ′ with E[ρ0(S ′)] ≤
bs(1+ln s

s−t )opt and E[p(S ′)] ≥ qP . This can be achieved by modifying (1−ε)qP
in Line 8 of Algorithm 1 into qP . However, to obtain a randomized algorithm
with guaranteed performance with high probability is more complicated. We
can show that by choosing suitable parameters s and t, Algorithm 1 produces a
bicriteria solution with high probability.

Theorem 7. Setting s = 1/q and t = 1/
√

q, then with a high probability, Algo-
rithm 1 produces a (O( b

qε ), 1 − ε)-bicriteria solution, where b = maxe

(
f
re

)
.

3.4 Approximation Algorithm for SCPSC

As a corollary of Theorem 7, the minimum submodular cost partial set cover
problem (SCPSC for short, in which the covering requirement for each element
is one) admits a bicriteria randomized (O( f

qε ), 1 − ε)-bicriteria approximation,
where f = max{fe : e ∈ E}. In the following, we show that an adaptation of our
method can yield the same approximation for SCPSC even if the submodular
function ρ0 is non-monotone. The idea behind the adaptation is that in this case,
a natural constraint is sufficient (we do not need to use the more complicated re-
covers), and thus a technique similar to that in [14] dealing with non-monotone
submodular function can be used.
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Theorem 8. For any nonnegative submodular function (not necessarily mono-
tone non-decreasing), the SCPSC problem has a randomized (O( f

qε ), 1 − ε)-
bicriteria algorithm with high probability.

4 Conclusion

This paper gives a bicriteria approximation algorithm for the minimum submod-
ular cost partial multi-cover problem (SCPMC), which is based on a novel convex
program and turns out to be an (O( b

qε ), 1 − ε)-bicriteria approximation, where
b = maxe

(
fe

re

)
. Notice that for the MkU problem, b = 1. Hence our algorithm

gives an O( 1
qε , 1 − ε)-bicriteria approximation for MkU.

It should be noticed that the algorithm can be derandomized, using an obser-
vation that the number of distinct sub-collections for S2 is at most |Ω|, which is
polynomial under the assumption that rmax is a constant. However, a tricky prob-
lem is that good expectations of two properties (namely feasibility and guraran-
teed performance ratio) do not ensure the existence of a sub-collection satisfying
both good properties. Currently, we only obtained a bicriteria algorithm for
SCPMC. Is it possible to find an algorithm without violation?

Furthermore, our algorithm depends on the assumption that rmax is upper
bounded by a constant. How to deal with the problem without such an assump-
tion? These are problems deserving to be further explored.

References

1. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover
problem. J. Algorithms 39(2), 137–144 (2001)

2. Berman, P., DasGupta, B., Sontag, E.: Randomized approximation algorithms for
set multicover problems with applications to reverse engineering of protein and
gene networks. Discret. Appl. Math. 155(6–7), 733–749 (2007)

3. Chekuri, C., Ene, A.: Submodular cost allocation problem and applications. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 354–
366. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 30

4. Chekuri, C., Quanrud, K.: On approximating (sparse) covering integer programs.
ArXiv:1807.11538 [cs.DS]

5. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC 2014,
pp. 624–633. ACM, New York (2014)

6. Chen, A., Harris, D.G., Srinivasan, A.: Partial resampling to approximate cover-
ing integer programs. In: Proceedings of 27th ACM-SIAM SODA, pp. 1984–2003
(2016)

7. Chen, N.: On the approximability of influence in social networks. SIAM J. Discret.
Math. 23(3), 1400–1415 (2009)

8. Chlamtác̆, E., Dinitz, M., Makarychev, Y.: Minimizing the union: tight approxima-
tions for small set bipartite vertex expansion. In: SODA 2017, pp. 881–899. SIAM,
Philadelphia (2017)

9. Chvatal, V.: A greedy heuristic for the set covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

https://doi.org/10.1007/978-3-642-22006-7_30
http://arxiv.org/abs/1807.11538


72 Y. Shi et al.

10. Dobson, G.: Worst-case analysis of greedy heuristics for integer program with non-
negative data. Math. Oper. Res. 7(4), 515–531 (1982)

11. Dinitz, M., Gupta, A.: Packing interdiction and partial covering problems. In:
Goemans, M., Correa, J. (eds.) Integer Programming and Combinatorial Opti-
mization IPCO 2013. LNCS, vol. 7801. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36694-9 14

12. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial cov-
ering problems. J. Algorithms 53(1), 55–84 (2004)

13. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover
problems. SIAM J. Comput. 11(3), 555–556 (1982)

14. Iwata, S., Nagano, K.: Submodular function minimization under covering con-
straints. In: FOCS 2009, pp. 671–680. IEEE Computer Society (2009)

15. Iyer, R.K., Bilmes, J.A.: Submodular optimization with submodular cover and
submodular knapsack constraints. Adv. Neural Inf. Process. Syst. 26, 2436–2444
(2013)

16. Iyer, R.K., Jegelka, S., Bilmes, J.A.: Monotone closure of relaxed constraints in
submodular optimization: connections between minimization and maximization.
In: Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence,
pp. 360–369 (2014)

17. Johnson, D.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9(3), 256–278 (1974)

18. Kamiyama, N.: A note on submodular function minimization with covering type
linear constraints. Algorithmica 80(10), 2957–2971 (2018)

19. Kamiyama, N.: Submodular function minimization under a submodular set cov-
ering constraint. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20877-5 14

20. Kearns, M.: The Computational Complexity of Machine Learning. MIT Press,
Cambridge (1990)

21. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
J. Comput. Syst. Sci. 74(3), 335–349 (2008)

22. Konemann, J., Parekh, O., Segev, D.: A uinifed approach to approximating partial
covering problems. Algorithmica 59(4), 489–509 (2011)

23. Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing
integer programs. J. Comput. Syst. Sci. 71(4), 495–505 (2005). Preliminary version
in FOCS (2001)

24. Koufogiannakis, C., Young, N.: Greedy Δ-approximation algorithm for covering
with arbitrary constraints and submodular cost. Algorithmica 66(1), 113–152
(2013)

25. Lovász, L.: Submodular functions and convexity. In: Bachem, A., Korte, B.,
Grötschel, M. (eds.) Mathematical Programming the State of the Art. Springer,
Heidelberg (1983). https://doi.org/10.1007/978-3-642-68874-4 10

26. Lovász, L.: On the ratio of the optimal integral and fractional covers. Discret.
Math. 13(4), 383–390 (1975)

27. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and
Probabilistic Techniques in Algorithms and Data Analysis. The Press Syndicate of
the University of Cambridge, Cambridge (2005)

28. Rajagopalan, S., Vazirani, V.: Primal-dual RNC approximation algorithms for set
cover and covering integer programs. SIAM J. Comput. 28(2), 525–540 (1998)

29. Ran, Y., Zhang, Z., Du, H., Zhu, Y.: Approximation algorithm for partial positive
influence problem in social network. J. Comb. Optim. 33(2), 791–802 (2017)

https://doi.org/10.1007/978-3-642-36694-9_14
https://doi.org/10.1007/978-3-642-36694-9_14
https://doi.org/10.1007/978-3-642-20877-5_14
https://doi.org/10.1007/978-3-642-68874-4_10


Minimum Submodular Cost Partial Multi-Cover 73

30. Ran, Y., Shi, Y., Zhang, Z.: Local ratio method on partial set multi-cover. J. Comb.
Optim. 34(1), 302–313 (2017)

31. Slav́ık, P.: Improved performance of the greedy algorithm for partial cover. Inf.
Process. Lett. 64(5), 251–254 (1997)

32. Srinivasan, A.: An extension of the Lovsz local lemma, and its applications to
integer programming. SIAM J. Comput. 36(3), 609–634 (2006)

33. Shi, Y., Zhang, Z., Du, D.-Z.: Randomized bicriteria approximation algorithm
for minimum submodular cost partial multi-cover problem. https://arxiv.org/abs/
1701.05339

34. Shor, N.Z.: Cut-off method with space extension in convex programming problems.
Cybern. Syst. Anal. 13(1), 94–96 (1977)

35. Wang, F., et al.: On positive influence dominating sets in social networks. Theor.
Comput. Sci. 412, 265–269 (2011)

36. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2(4), 385–393 (1982)

https://arxiv.org/abs/1701.05339
https://arxiv.org/abs/1701.05339


A Novel Approach to Verifying Context
Free Properties of Programs

Nan Zhang1, Zhenhua Duan1(B), Cong Tian1, and Hongwei Du2

1 Institute of Computing Theory and Technology, and ISN Laboratory,
Xidian University, Xi’an 710071, China

zhhduan@mail.xidian.edu.cn
2 Department of Computer Science and Technology, Harbin Institute of Technology

Shenzhen Graduate School, Shenzhen 518055, China

Abstract. This paper proposes an approach to verifying programs
against context free properties. To this end, the system to be verified is
modeled by a program m in Modeling, Simulation and Verification Lan-
guage (MSVL), and the desired property is also specified by an MSVL
program m′. Then program m and formula ¬m′ are interpreted by means
of executing programs m and m′. If an acceptable execution path is gen-
erated, a counterexample is found, otherwise the property is valid. To
show how the proposed approach works, an example is given.

Keywords: Runtime verification · Model checking
Temporal logic · Automata

1 Introduction

To improve the correctness and reliability of software, model checking has been
widely used in both academia and industry. With the traditional automata-
theoretic model checking [5], a system S is modeled by an automaton A1 and
a desired property is specified by a temporal logic formula P ; then ¬P is con-
verted to an automaton A2. Further, the product automaton A of A1 and A2

is produced. If the language accepted by A is an empty set, the system S sat-
isfying the property is valid, otherwise a counterexample is found. With this
approach, LTL [10] and CTL [5] are widely used temporal logics for specifying
desired properties. However, both LTL and CTL are not full regular, so some full
regular properties such as interval related properties and periodically repeated
properties cannot be verified. To solve this problem, some full regular temporal
logics such as Propositional Projection Temporal Logic (PPTL) [7], Property
Specification Language (PSL) [1] and μ-Calculus [11] are used to specify desired
properties. As we can see, all the temporal logics we used cannot describe con-
text free properties. However, these properties are required to be verified in some
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circumstances. Accordingly, in this paper, we are motivated to employ Modeling,
Simulation and Verification Language (MSVL) [15] to specify desired properties
as well as the systems to be verified since MSVL is capable of expressing context
free properties.

To do so, a system to be verified is modeled by an MSVL program m, and
a desired property is also specified by an MSVL program m′. Further, program
m and formula ¬m′ are interpreted by means of executing programs m and m′.
Actually, if m and m′ can be reduced to their normal forms me ∧ ε ∨ ∨

i mci ∧
©mfi and m′

e∧ε∨∨
j m′

cj∧©m′
fj , respectively, then according to the evaluation

of me, mci, m′
e and m′

cj an execution state s of m∧¬m′ can be generated since
we assume each variable in m and m′ is well evaluated at the current state. This
process can repeatedly be conducted so as to produce at least one state sequence
〈s0, s1, . . .〉 with true or terminate with false. For the latter case, m satisfying
m′ is valid while for the former case, the state sequence is a counterexample. In
this way, a context free property can be verified by executing MSVL programs
m and m′ at code level.

The proposed approach is of three advantages: (1) it allows us to specify
desired context free properties in MSVL so as to verify a program w.r.t. the
property; (2) since both a property m′ and a system model m are expressed
in the same language MSVL, a new verification approach based on the Unified
Model Checking [8] can be employed; (3) the verification proceeds by executing
programs m and property m′ at code level in a synchronized and more efficient
way.

The contribution of the paper is as follows: (1) a novel approach to verifying
programs against context free properties is proposed; (2) an example is given to
illustrate how the proposed approach works; (3) a tool has been developed to
support the proposed approach.

The paper is organized as follows: in the next section, MSVL and traceable
automata are briefly introduced. In Sect. 3, the proposed approach to verifying
programs against context free properties is elaborated in detail. In Sect. 4, an
example is given to illustrate the verification process. Finally, conclusions are
drawn in Sect. 5.

2 Preliminaries

2.1 Modeling, Simulation and Verification Language

Modeling, Simulation and Verification Language (MSVL) is an executable subset
of Projection Temporal Logic (PTL) [7]. The following is a snapshot of the simple
kernel of MSVL. For more details, please refer to [7]. With MSVL, expressions
can be treated as terms and statements can be treated as formulas in PTL.
The arithmetic and boolean expressions of MSVL can be inductively defined as
follows:

e ::= n | x | © e | -© e | f(e1, . . . , en)
b ::= true | ¬b | b0 ∧ b1 | e0 = e1 | e0 < e1
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where n ∈ R, set of real numbers, and x ∈ V, set of variables. The f() is a state
function. The usual arithmetic operations such as +, −, ∗ and % can be viewed
as two-arity functions. One may refer to the value of a variable at the previous
state or the next one.

Some key statements of MSVL are inductively defined in Table 1. MSVL
supports structured programming and covers some basic control flow statements
such as sequential statement, conditional statement, while-loop statement and
so on. Further, MSVL also supports non-determinism and concurrent program-
ming since it includes selection, conjunction and parallel statements. Moreover,
a framing technique is introduced to improve the efficiency of programs and
synchronize communication for parallel processes. In addition, MSVL has been
extended in a variety of ways recently. For instance, multi-types including inte-
ger, float, string, char, pointer, array and struct, have been recently formalized
and implemented. Hence, typed variables and typed functions over the extended
data domain can be defined [13]. To interpret MSVL programs, the normal form
of MSVL programs has been defined in [7] and a compiler for MSVL has been
developed [14].

Table 1. MSVL statements
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Definition 1 (Normal Form of MSVL Programs). An MSVL program ϕ
is in normal form if

ϕ
def= (

∨k

i=1
ϕei ∧ empty) ∨ (

∨h

j=1
ϕcj ∧ ©ϕfj)

where k + h ≥ 1 and the following hold:

• ϕfj is an interval program, that is, one in which variables may refer to the
previous states but not beyond the first state of the current interval over which
the program is executed.

• each ϕcj and ϕei is either true or a state formula of the form p1 ∧ . . . ∧ pm
(m ≥ 1) such that each pl (1 ≤ l ≤ m) is either (x = e) with e ∈ D, x ∈ V,
or px, or ¬px.

2.2 Deterministic Traceable Automata

Deterministic Traceable Automata (DTA) [9] extends Deterministic Finite
Automata (DFA) with an unbounded state stack used to store partial history.
A DTA determines its next state transition based on its current state, current
input symbol and current symbol at the top of the stack. It has been proved that
the expressiveness of DTA falls in between DFA and Deterministic Pushdown
Automata (DPA). For more details, please refer to [9].

Definition 2 (Formal Definition of Deterministic Traceable Automa-
ton). A Deterministic Traceable Automaton A is a 5-tuple, (Q,Σ, δ, q0, F ), con-
sisting of a non-empty finite set of states Q = {q0, q1, . . . , qn}, a finite set of input
symbols called the alphabet Σ, a transition function δ : Q × Σ → Q ∪ {trace},
an initial or start state q0 ∈ Q and a non-empty set of final states F ⊆ Q.

Similar to non-deterministic finite automata, if transition function δ is modi-
fied as: Q × Σ → 2Q∪{trace}, such kind of traceable automata is called Non-
deterministic Traceable Automata (NTA).

Fig. 1. A diagram of a traceable automaton

A diagram of a traceable automaton is given in Fig. 1. A traceable automaton
consists of an input tape, a state stack and a finite control. It reads a given input
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string from left to right. Initially, the read head points to the leftmost symbol in
the input tape, the state stack is empty and the finite control is in initial state
q0. In each step, the finite control chooses an action s.t. current state q and input
symbol a:

1. If δ(q, a) = q′, push q into the stack, change the current state of the finite
control to state q′, and the read head moves to the right cell.

2. If δ(q, a) = trace and the stack is not empty, change the current state of the
finite control to the state p on the top of the stack, pop the stack, and the
head moves to the right cell. If δ(q, a) = trace and the stack is empty, halt
and reject the input string.

3. If a is a blank symbol, halt and accept the input string if current state q is a
final state in F , otherwise the input string is rejected.

4. If δ(q, a) is not defined, halt and reject the input string.

The language L(A) accepted by DTA A is the set of all the string accepted
by A. A DTA can also be displayed intuitively by a state diagram. Nodes in a
state diagram denote states or trace in the DTA. If δ(q, a) = p, there is an edge
labeled by the symbol a from node q to node p; if δ(q, a) = trace, there is an
edge labeled by the symbol a from node q to node trace. There may be several
trace nodes in a state diagram, indicating that the related next state needs to
be determined by the top state of the stack.

Example 1. A deterministic traceable automaton A = (Q,Σ, δ, q0, F ), where
Q = {q0, q1}, Σ = {0, 1}, F = {q0} and δ is defined as follows: δ(q0, 0) =
q1,δ(q1, 0) = q1 and δ(q1, 1) = trace.

The state diagram is given in Fig. 2. This DTA recognizes all the strings con-
sisting of balanced parentheses, where 0 denotes left parenthesis while 1 denotes
right parenthesis. Such language can be generated by the following Context Free
Grammar G[B]: B → 0B1 | BB | ε.

Fig. 2. The state diagram of Example 1

Now we use A to check whether S=“01001011” is a balanced parentheses
string. The process of state transitions is given in Fig. 3. At the beginning, the
DTA is in its start state q0 and the current input is 0 and the stack is empty. Since
δ(q0, 0) = q1, the finite control pushes q0 into the stack and the current state is
changed to q1. After that, the current symbol comes 1, since δ(q1, 1) = trace,
the current state is changed to the top state q0 of the stack, and q0 is popped.
When the last symbol has been scanned, the DTA is in state q0 which is a final
state, so string S is accepted.
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Fig. 3. The process of state transition of “01001011”

3 A Novel Approach to Verifying Context Free Properties

In this section, we propose a new approach to verifying context free properties.
Given a system S and a desired property P , we need check whether S satisfying
P is valid, denoted by S |= P . If we write an MSVL program m to implement
system S and another MSVL program m′ to characterize property P , the sat-
isfaction problem is converted to the problem of checking whether there is a
common model for program m and formula ¬m′. In order to execute program
m, the input values of variables in m are required. Therefore, dynamic symbolic
execution tool Cloud9 [3] and constraint solver Z3 [6] as well as static analysis
tools based on CEGAR [4] and CPAChecker [2] are employed to generate these
values.

To illustrate the proposed approach, some notations are needed. Let V ar(m)
and V ar(m′) denote the sets of all variables in m and m′, respectively. An
acceptable execution path (model) of an MSVL program is a non-empty finite
or infinite sequence 〈s0, s1, . . .〉 of states. Each state si is a map, si : V ar(m) ∪
V ar(m′) → D, where D is the data domain including integers, lists, sets etc. The
following is a skeleton of the checking algorithm.

Step 1: System S is implemented by an MSVL program m0, or translated
from a C program into m0 using tool C2M in MSV toolkit [12].

Step 2: The desired property P is also specified by an MSVL program m′
0.

Step 3: Transform mi and m′
i into their normal forms as follows:

mi = mi
e ∧ ε ∨

∨h

j=1
mi

cj ∧ ©mi
fj

m′
i = m′i

e ∧ ε ∨
∨l

j=1
m′i

cj ∧ ©m′i
fj

In the normal form, each disjunction represents a possible branch of program
execution. We choose one disjunction to generate current state si and program
mi+1 to be executed at the next state in the execution path. We make the
following assumption: truth values of all state formulas, m′i

e , m′i
cj , mi

e and mi
cj ,

in the normal forms can well be evaluated.
To reduce programs mi and m′

i, the following cases are taken into account:
Case 1: If mi

e is true, then a new state si is generated and the branch mi
e ∧ ε is

chosen. It means that system program m0 terminates at current state si, which
is defined as follows:

si : V ar(m) → D and si(v) = d iff mi
e → (v = d) for each v ∈ V ar(m).
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In this case, there are two possibilities:

(1.1) If mi
e implies m′i

e ∧ ∧l
j=1 ¬m′i

cj , then mi ∧ ¬m′
i can be reduced to the

following form. It tells us that the current execution path of m0 satisfies the
desired property.

mi ∧ ¬m′
i ⇒ ε ∧ ¬ ε ≡ false

(1.2) If mi
e implies ¬m′i

e ∧ m′i
cj0

∧ ∧
j �=j0

¬m′i
cj , then mi ∧ ¬m′

i can be reduced to
“empty”. It shows that the current execution path of m0 doesn’t satisfy the
desired property and a counterexample is found.

mi ∧ ¬m′
i ⇒ ε ∧ ¬ © m′i

fj0 ≡ ε

Case 2: If mi
cj is true, then a new state si is generated and branch mi

cj ∧ ©mi
fj

is chosen. It means that si is not the last state of program mi, in other word,
system program m0 doesn’t terminate at state si defined as follows:

si : V ar(m) → D and si(v) = d iff mi
cj → (v = d) for each v ∈ V ar(m).

In this case, there are also two possibilities:

(2.1) If mi
cj ∧ m′i

e ∧ ∧l
j=1 ¬m′i

cj is consistent, state si is extended as follows:

si : V ar(m) ∪ V ar(m′) → D and

si(v) = d iff mi
cj → (v = d) for each v ∈ V ar(m) and

si(v′) = d iff m′i
e → (v′ = d) for each v′ ∈ V ar(m′) \ V ar(m).

Thus, mi ∧ ¬m′
i is reduced to the following form. Whether m0 satisfies the

desired property depends on the future execution after current state si.

mi ∧ ¬m′
i ⇒ ©mi

fj ∧ ¬ ε ≡ © mi
fj ∧ © ¬false ≡ © ( mi

fj ∧ ¬ false)

≡ © ( mi+1 ∧ ¬ m′
i+1)

Let mi+1 be mi
fj , m′

i+1 be false and i := i + 1, then go to Step 3.

(2.2) If mi
cj ∧ ¬m′i

e ∧ m′i
cj0

∧ ∧
j �=j0

¬m′i
cj is consistent, state si is extended as

follows:

si : V ar(m) ∪ V ar(m′) → D and

si(v) = d iff mi
cj → (v = d) for each v ∈ V ar(m) and

si(v′) = d iff m′i
cj0 → (v′ = d) for each v′ ∈ V ar(m′) \ V ar(m).

Thus, mi ∧ ¬m′
i is reduced to the following form. Whether m0 satisfies the

desired property is up to the future execution after current state si.

mi ∧ ¬m′
i ⇒ ©mi

fj ∧ ¬ © m′i
fj0 ≡ © mi

fj ∧ © ¬ m′i
fj0 ≡ © ( mi

fj ∧ ¬ m′i
fj0)

≡ © ( mi+1 ∧ ¬ m′
i+1)

Let mi+1 be mi
fj , m′

i+1 be m′i
fj0

and i := i + 1, then go to Step 3.
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The runtime verification approach given above allows us to generate a
sequence of states by applying normal form transformation on MSVL programs
repeatedly. If an acceptable execution path can be found, it is actually a model
common to m and ¬m′. Then we can conclude that the system doesn’t satisfy
the property. In this case, the common model is actually a counterexample. If
for all possible inputs, m and ¬m′ have no any common model, the property is
valid.

4 Verification

In this section, to illustrate how to use the new method to verify whether a
program satisfies a desired property, Example 1 is presented to check whether a
string consists of balanced parentheses as shown in Sect. 2.2.

System Implementation. A program M checking whether a given string con-
sists of balanced parentheses (‘(’ denoted by 0 and ‘)’ denoted by 1) is presented
in this subsection. First, data structures and functions required by M are defined
as follows:

As shown in Table 2, in the struct StackNode, two data fields are defined: (1)
data: an item stored in the stack; (2) next: a pointer pointing to its previous node
in the linked list. In the struct LinkStack, two data fields are defined: (1) top: a
pointer pointing to the top element in the stack; (2) count: the current number
of elements in the stack. Moreover, two operations over stack are defined: (1)
push(LinkStack *s, char e): push the character e into stack s; (2) pop(LinkStack
*s, char RValue): remove the top element from stack s and store it in variable
RValue.

In program M , some variables are also required: (1) str: used to store the
input string; (2) c: the next character from the input string; (3) stk1: used to
store states of a traceable automaton; (4) t0: denotes the number of character
‘0’s which have been scanned; (5) t1: denotes the number of character ‘1’s which
have been scanned; (6) result1: used to indicate whether the input string is well
balanced. If it is 1, the string is balanced; otherwise it is not balanced with
result1=0 or uncertain with result1=2; (7) current st: used to record the current
state of the traceable automaton; (8) p: used to point to the next character in
the input string; (9) g: used to jump out of the loop when g=‘n’.

Armed with the above data structures, operations and variables, program
M is implemented as shown in Table 3. Initially, t0 and t1 are set to 0; result1
is assigned 2; stk1 points to a stack LinkStack with stk1.top being null and
stk1.count being 0; p points to the starting address of array str; g is assigned ‘y’;
and current st is set to 0 denoting starting state q0 of the traceable automaton.
Program M reads a string from the input stream and stores it into char array
str[]. Then it reads one character from str[] each time using pointer p. If the
character is 0, the current state is pushed into stack stk1 and t0 is increased by
1; if the character is 1 and the stack is not empty, the top state is popped and t1
is increased by 1; whereas if the character is 1 and the stack is empty, result1 is
assigned 0; if the character is neither 0 nor 1, result1 is assigned 0. If the stack is
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Table 2. Data structures and operations

Table 3. Implementation
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empty when the whole input string has been scanned, result1 is assigned 1 and
the string is accepted.

Property Characterization. In this subsection, a context free property is
specified.
Property 1: A strict embedded balanced parentheses string can be accepted by M .

In fact, a strict embedded balanced parentheses language can be generated
by a CFG G[B]: B → 0B1 | ε. Property 1 is described by M ′′ in MSVL as shown
in Table 4. The ebp-check() function implemented in a recursive manner (see
Table 4) checks whether a string represented by a char array str[begin..end ] con-
sists of strict embedded balanced parentheses. As we can see, during the execu-
tion of the function ebp-check(), whenever begin>end holds, RValue is assigned
1 indicating the input string is well balanced while begin<end and str[begin]
= 0 and str[end ] = 1 holds, ebp-check(str, begin+1, end -1, RValue) is called
recursively. In other cases, RValue is assigned 0 to indicate an error occurs. The
ebp-check() function is called in M ′′.

Table 4. Program M ′′ for Property 1

Program M can be viewed as the following form: M
def= F and (I;W ;R). F

is defined as statement frame(c, stk1, t0, t1, result1, current st, str, p,

g); I is defined as the statement in M from line 5 to 10; W is defined as the
while statement in M from line 11 to 30; R is defined as the statement in M
from line 31 to 33.

Verification of Property 1. Let M ′′ denote the program describing Property
1. Suppose that program M is executed with input string “0011”. Then the
verification proceeds as follows.
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[step 1] Transform M into its normal form.

M
def
= M0 ≡ M0c ∧ ©M0f

M0c ≡ t0 = 0 ∧ t1 = 0 ∧ result1 = 2 ∧ stk1 = (< null >, 0) ∧ current st = ′0 ′

∧p = &str ∧ g = ′y ′

M0f ≡ F ∧ (t0 = 0 ∧ t1 = 0 ∧ result1 = 2 ∧ stk1 = (< null >, 0) ∧ current st = ′0 ′

∧p = &str ∧ g = ′y ′ ∧ str = “0011′′ ∧ c := ∗p ∧ p := p + 1; W ; R)

[step 2] Transform M ′′ into its normal form.

M ′′ def
= M ′′

0 ≡ M ′′
0c ∧ ⊙

M ′′
0f

M ′′
0c ≡ (result1 �= 0 ∨ ebp-check(str, 0, strlen(str) − 1, RV alue) �= 1)

M ′′
0f ≡ �(result1 �= 0 ∨ ebp-check(str, 0, strlen(str) − 1, RV alue) �= 1)

[step 3] Choose one branch in the normal form of M to generate state s0 and
then reduce the normal form of M ′′ according to the assignments in the chosen
branch. Since M has only one branch, from M0c state s0 is defined by a set of
pairs as follows:

s0 = {(t0, 0), (t1, 0), (result1, 2), (stk1, (< null >, 0)), (current st, ′0 ′), (p,&str), (g, ′y ′)}

Thus, program M0f denoted by M1 is executed at the next state.

M1 ≡ F ∧ (t0 = 0 ∧ t1 = 0 ∧ result1 = 2 ∧ stk1 = (< null >, 0) ∧ current st = ′0 ′

∧p = &str ∧ g = ′y ′ ∧ str = “0011′′ ∧ c := ∗p ∧ p := p + 1; W ; R)

With the assignments in state s0, M ′′
0c is reduced to true, while ¬M ′′ is

reduced to ¬⊙
M ′′

0f ≡ ©¬M ′′
0f . Further, M ′′

0f denoted by M ′′
1 is executed at

the next state.
As we can see, since M ′′(denoted byM ′′

0 ) is

�(result1 �= 0 ∨ ebp-check(str, 0, strlen(str) − 1, RV alue) �= 1),

to reduce each M ′′
i (defined asM ′′

(i−1)f ) (i = 1, . . . , 7) into its normal form, we
always obtain the same form:

M ′′
i ≡ M ′′

ic ∧ ⊙
M ′′

if (mi-1)
M ′′

ic ≡ result1 �= 0 ∨ ebp-check(str, 0, strlen(str) − 1, RV alue) �= 1 (mi-2)
M ′′

if ≡ �(result1 �= 0 ∨ ebp-check(str, 0, strlen(str) − 1, RV alue) �= 1) (mi-3)

[step 4] Transform M1 into its normal form, we obtain the following:

M1
def
= M1c ∧ ©M1f

M1c ≡ t0 = 0 ∧ t1 = 0 ∧ result1 = 2 ∧ stk1 = (< null >, 0) ∧ current st = ′0 ′

∧p = &str ∧ g = ′y ′ ∧ str = “0011′′

M1f ≡ F ∧ (t0 = 0 ∧ t1 = 0 ∧ result1 = 2 ∧ stk1 = (< null >, 0) ∧ current st = ′0 ′

∧p = &str[1] ∧ g = ′y ′ ∧ str = “0011′′ ∧ c = ′0 ′ ∧ W ; R)
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[step 5] M ′′
1 is reduced into its normal form as shown in formulas (mi-1, mi-2,

mi-3).
[step 6] Choose one branch in the normal form of M1 to generate state s1 and
then reduce the normal form of M ′′

1 according to the assignments in the chosen
branch. Since M1 has only one branch, from M1c state s1 is defined by a set of
pairs as follows:

s1 ={(t0, 0), (t1, 0), (result1, 2), (stk1, (< null >, 0)), (current st, ′0 ′), (p,&str),
(g, ′y ′), (str, “0011′′)}

Thus, program M1f denoted by M2 is executed at the next state.

M2
def
= F ∧ (t0 = 0 ∧ t1 = 0 ∧ result1 = 2 ∧ stk1 = (< null >, 0) ∧ current st = ′0 ′

∧ p = &str[1] ∧ g = ′y ′ ∧ str = “0011′′ ∧ c = ′0 ′ ∧ W ; R)

With the assignments in state s1, M ′′
1c is reduced to true, while ¬M ′′

1 is
reduced to ¬⊙

M ′′
1f ≡ ©¬M ′′

1f . Further, M ′′
1f denoted by M ′′

2 is executed at
the next state.

Due to the limited space, we do not list the reduction process step by step.
In the same way as steps 1–3 and 4–6, we can generate states s2, s3, s4, s5 and
s6 given as follows by steps 7–9, 10–12, 13–15, 16–18, 19–21, respectively.

s2 = {(t0, 0), (t1, 0), (result1, 2), (stk1, (< null >, 0)), (current st, ′0 ′), (p,&str[1]),
(g, ′y ′), (str, “0011”), (c, ′0 ′)}

s3 = {(t0, 1), (t1, 0), (result1, 2), (stk1, (< ′0 ′, null >, 1)), (current st, ′1 ′), (p,&str[2]),
(g, ′y ′), (str, “0011”), (c, ′0 ′)}

s4 = {(t0, 2), (t1, 0), (result1, 2), (stk1, (< ′1 ′, ′0 ′, null >, 2)), (current st, ′1 ′), (p,&str[3]),
(g, ′y ′), (str, “0011”), (c, ′1 ′)}

s5 = {(t0, 2), (t1, 1), (result1, 2), (stk1, (< ′0 ′, null >, 1)), (current st, ′1 ′), (p,&str[4]),
(g, ′y ′), (str, “0011”), (c, ′1 ′)}

s6 = {(t0, 2), (t1, 2), (result1, 2), (stk1, (< null >, 0)), (current st, ′0 ′), (p,&str[5]),
(g, ′y ′), (str, “0011”), (c,′ \0′)}

Then program M6f denoted by M7 is executed at the next state.

M7
def
= F ∧ (t0 = 2 ∧ t1 = 2 ∧ result1 = 1 ∧ stk1 = (< null >, 0) ∧ current st = ′0 ′

∧ p = &str[5] ∧ g = ′y ′ ∧ str = “0011” ∧ c =′ \0′ ∧ ε)

With the assignments in state s6, M ′′
6c is reduced to true, while ¬M ′′

6 is
reduced to ¬⊙

M ′′
6f ≡ ©¬M ′′

6f . Further, M ′′
6f denoted by M ′′

7 is executed at
the next state.

[step 22] M7 is transformed into its normal form as follows.
M7

def
= M7c ∧ ε

M7c ≡ t0 = 2 ∧ t1 = 2 ∧ result1 = 1 ∧ stk1 = (< null >, 0) ∧ current st = ′0 ′

∧p = &str[5] ∧ g = ′y ′ ∧ str = “0011” ∧ c =′ \0′
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[step 23] M ′′
7 is reduced into its normal form as shown in formulas (mi-1, mi-2,

mi-3).
[step 24] Choose one branch in the normal form of M7 to generate state s7 and
then reduce the normal form of M ′′

7 according to the assignments in the chosen
branch. Since M7 has only one branch, from M ′′

7c state s7 is defined by a set of
pairs as follows:

s7 = {(t0, 2), (t1, 2), (result1, 1), (stk1, (< null >, 0)), (current st, ′0 ′), (p, &str[5]),

(g, ′y ′), (str, “0011”), (c,′ \0′)}

The program terminates at state s7. With the assignments in state s7, M ′′
7c

is reduced to true, while ¬M ′′
7 is reduced to ¬⊙

M ′′
7f ≡ ©¬M ′′

7f . Further,
M7 and ¬M ′′

7 ≡ false, which means that M satisfying Property 1 is valid.

5 Conclusion

This paper presents a novel approach to verifying programs against context free
properties by means of executing programs at code level. It allows us not only
to model a system but also to specify a temporal or context free property in
the same language MSVL. However, the verification inputs of programs have to
be generated by employing other methods including dynamic symbolic execution
and static analysis. In the future, we will investigate how to generate a reasonable
set of verification inputs by means of dynamic symbolic execution using Cloud9
[3] and constraint solver Z3 [6] as well as static analysis tools based on CEGAR
[4] and CPAChecker [2]. In addition, we will further improve the verification tool
so that more complex systems can be verified in a more efficient way.
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Abstract. A series of mixed perfect codes with minimal distances d = 3
has been constructed in term of the partitions of vector space over finite
field Fp by B.Lindström. In this paper the minimal distance of the dual
codes of a certain class of such perfect codes has been determined. As
an application of this result we constructed a series of good orthogonal
arrays with mixed levels and good inhomogeneous asymmetric quantum
codes.

Keywords: Partitions of finite vector spaces · Perfect mixed code
Minimal distance · Dual codes · Array · Asymmetric quantum code

1 Introduction

Let Ai(1 ≤ i ≤ s) be finite abelian groups and |Ai| = Ni, 2 ≤ N1 ≤ N2 ≤
. . . ≤ Ns, A = A1 ⊕ A2 ⊕ . . . ⊕ As, so each element of A can be expressed by
v = (v1, . . . , vs)(vi ∈ Ai). The Hamming weight of v is defined by

wt(v) = #{i : 1 ≤ i ≤ s, vi �= 0}.

For v = (v1, . . . , vs) and u = (u1, . . . , us) in A, the Hamming distance
between v and u is defined by

dH(v, u) = #{i : 1 ≤ i ≤ s, vi �= ui} = wt(v − u).

A mixed code C over A is a subset of A with size K = |C| ≥ 2. The minimal
distance of C is defined by

d = d(C) = min{dH(c, c′) : c, c′ ∈ C, c �= c′}.

If C is a subgroup of A, then d(C) = min{wt(c) : 0 �= c ∈ C}. We denote
(A,K, d) as the parameters of the mixed code C.

Mixed codes are one of the generalizations of classical codes where all Ai(1 ≤
i ≤ s) are the same finite group or finite field. One of the fundamental problems
is the same as in classical case: to construct mixed codes over a fixed group A
with larger size K and larger d(C).

To analogue the classical case, the following bounds are established in order
to judge the goodness of mixed codes.
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Lemma 1 ([1]). Suppose we have a mixed code C with parameters (A,K, d).
Then
(1) (Hamming bound)

|A|(= N1 . . . Ns) ≥ K · f([
d − 1

2
]).

where for integer l ≥ 0,

f(l) = 1 +
l∑

λ=1

∑

1≤i1<...<iλ≤s

(Ni1 − 1) . . . (Niλ
− 1)

is the size of a closed ball with radius l in A. The code C is called perfect if it
reaches the Hamming bound.
(2) (Singleton bound)

K ≤ N1N2 . . . Ns−d+1.

The code C is called MDS code if it reaches the Singleton bound.

A series of MDS mixed codes are constructed as algebraic-geometry codes in
[1] when Ai = F

di
q (1 ≤ i ≤ s) for a fixed finite field Fq. On the other hand, there

is an algebraic method to get perfect mixed codes with minimal distances d = 3
by so-called partition of finite vector spaces (see [4,5]).

Let p be a fixed prime number, n ≥ 1, Vi(1 ≤ i ≤ s) be subspaces of V = F
n
p ,

dimFp
Vi = ni ≥ 1(1 ≤ i ≤ s). We say that {V1, . . . , Vs} is a partition of V if

V \{0} is a disjoint union of Vi \{0}(1 ≤ i ≤ s). (One can define a partition into
subgroups for any finite abelian group G, but it is proved in [3] that if a finite
abelian group G have a partition into subgroups, then G should be an elementary
p-group so that G = F

n
p .) From the definition we know that if {V1, . . . , Vs} is a

partition of V = F
n
p , Vi = F

ni
p (1 ≤ i ≤ s), then

pn − 1 =
s∑

i=1

(pni − 1), namely, pn + s − 1 =
s∑

i=1

pni . (1)

Let Ai = F
ni
p (1 ≤ i ≤ s) be viewed as the subspaces Vi of V and A =

A1 ⊕ . . . ⊕ As. Now we consider the following Fp-linear mapping:

φ : A = A1 ⊕ A2 ⊕ . . . As −→ V = F
n
p

(v1, v2, . . . , vs) �−→ v1 + v2 + . . . + vs.

The kernel

C = ker(φ) = {(v1, . . . , vs) ∈ A : v1 + . . . + vs = 0}
is a linear code over A. It is easy to see that φ(A) = V , d(C) = 3, and K =
|C| = pk where

k = dim A − dim V =
s∑

i=1

ni − n. (2)
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Since

K · (1 +
s∑

i=1

(pni − 1)) = pk+n (by (1))

= pdimA = |A|, (by (2))

we know that C is a perfect mixed code with parameters (A,K, 3). We denote
this perfect code by C = C(V, π) where V = F

n
p and π = {V1, . . . , Vs} is the

partition of V .
For any fixed basis {v1, . . . , vn} of V = F

n
p , an element v of V can be

uniquely expressed as v = a1v1 + . . . + anvn(ai ∈ Fp). We identify v as the
vector v = (a1, . . . , an). In this way we have the normal inner product on V : for
v = (a1, . . . , an) and u = (b1, . . . , bn) in V , the inner product of v and u is

〈v, u〉 = vuT =
n∑

λ=1

aλbλ ∈ Fp.

For subspaces Vi = F
ni
p (1 ≤ i ≤ s) of V , the inner product on Vi is the

restriction of 〈·, ·〉 on Vi. Then we can define the inner product on A = A1 ⊕
A2⊕ . . .⊕As(Ai = F

ni
p ) as: for v = (v1, . . . , vs) and u = (u1, . . . , us)(vi, ui ∈ Ai),

〈v, u〉 =
s∑

i=1

(vi, ui) ∈ Fp.

Let C be a linear code over A, K = |C| = pk(k ≥ 1). The dual (linear) code
C⊥ of C is defined by

C⊥ = {v ∈ A : (v, c) = 0 for all c ∈ C}.

It is easy to see that |C⊥| = |A|
|C| = pdimA−k. To determine the minimal dis-

tance of C⊥ from the structure of C is one of the important problems in coding
theory which has not only theoretical interests, but also practical applications
in combinatorial designs (orthogonal arrays with different levels) and communi-
cation (quantum codes). It seems that there are only few mixed linear codes C
such that d(C⊥) have been determined.

In Sect. 2 of this paper we determine d(C⊥) for a class of perfect mixed codes
C with d(C) = 3 derived from a kind of specific partition of V = F

n
p . Then we will

show an application of our result in combinatorial design theory and quantum
code theory in Sect. 3.

2 Determination of d(C⊥)

In Sect. 1 we have shown that perfect mixed codes can be derived from partitions
of a vector space V = F

n
p . Many partitions of V have been constructed in past

30 years ([3–6] and the references therein). In this paper we consider a general
construction given in [6]. We will introduce this construction briefly.
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Let V be the finite field F
n
p . For a fixed basis {v1, . . . , vn} over Fp. We consider

Fpn as Fn
p by identifying v = a1v1+. . .+anvn ∈ Fpn(ai ∈ Fp) with (a1, . . . , an) ∈

F
n
p . Then we view any subspace W of V as a subset of the finite field Fpn , so

that for w1 and w2 in W we have their product w1w2 in V = Fpn .

Theorem 1 ([6], Theorem 3.1). Let V = F
n
p (= Fpn) and V = U ⊕ W where U

and W are subspaces of V . Suppose that

(1) dim W = s ≥ 1, W = Fps

(2) U has a subspace partition {U1, . . . , Ut} and dim Ui = di ≤ s for 1 ≤ i ≤ t

Then for each i(1 ≤ i ≤ t) and γ ∈ W \ {0} we can define a di-dimensional
subspace Uiγ of V such that π = {W,U,Uiγ(1 ≤ i ≤ t, γ ∈ W \ {0})} form a
partition of V .

Proof. Let {w1, w2, . . . , ws} be a basis of W = Fps , {ui1, . . . , uidi
} be a basis of

Ui(1 ≤ i ≤ t). Then for each γ ∈ W \ {0} and each i(1 ≤ i ≤ t), the di elements
Bi = {uij + γwj : 1 ≤ j ≤ di} of V are Fp-linear independent, where γwj be the
multiplication in W = Fps . Let Uiγ be the subspace of V spanned by Bi so that
dim Uiγ = di. It can be seen that π = {W,U,Uiγ(1 ≤ i ≤ t, γ ∈ W \ {0})} is a
partition of V (See the proof in [6]).

Now we have a perfect mixed linear code C(V, π) over

A = W ⊕ U ⊕ (
⊕

1≤i≤t,γ∈W\{0}
Uiγ)

with size K = pdimA−dimV , where

dim C = dimA − dim V

=
∑

1≤i≤t,γ∈W\{0}
dim Uiγ = (|W | − 1)

∑

1≤i≤t

di = (ps − 1)
t∑

i=1

di

and

C = C(V, π)

=

⎧
⎨

⎩(cw, cu, ciγ ; 1 ≤ i ≤ t, γ ∈ W \ {0}) ∈ A : cw + cu +
∑

1≤i≤t,γ∈W\{0}
ciγ = 0

⎫
⎬

⎭ .

In this section we show the following result.

Theorem 2. Let π be the partition of V = Fpn given by Theorem1, C⊥ be the
dual code of C = C(V, π). Then

d(C⊥) = min

{
ps, tps −

t∑

i=1

ps−di + 1

}

=

{
ps, if t ≥ 2,

ps − ∑t
i=1 ps−di + 1, if t = 1.

(3)
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Proof. Firstly we show that.

Lemma 2. For each i, j, γ where 1 ≤ i ≤ t, 1 ≤ j ≤ di, 0 �= γ ∈ W , let

vijγ = (−γwj ,−uij , 0, . . . , 0, uij + γwj , 0, . . . , 0)

Subspaces W U . . . Uiγ . . .

Components −γwj −uij 0 uij + γwj 0

where uij ∈ Ui ⊂ U , γ ∈ W \ {0} so that uij + γwj ∈ Ui,γ and −γwj ∈ W , as
shown in the table above. Then {vijγ : γ ∈ W \ {0}, 1 ≤ i ≤ t, 1 ≤ j ≤ di} is a
basis of C = C(V, π).

Proof. Since the number of {vijγ} is the same as dim C = (ps − 1)
∑t

i=1 di, we
only need to show that {vijγ} are linear independent.

Suppose that v =
∑

i,j,γ cijγvijγ = 0 for cijγ ∈ Fp. For any fixed i and γ, the

Uiγ-component of v is 0 =
∑di

j=1 cijγ(uij + γwj). Since {uij + γwj : 1 ≤ j ≤ di}
is a basis of Uiγ , we have cijγ = 0 for any i(1 ≤ i ≤ t), j(1 ≤ j ≤ di) and
γ ∈ W \ {0}. This completes the proof of Lemma 2.3.

Now we prove Theorem 2.2. Let c = (cw, cu, ciγ ; 1 ≤ i ≤ t, γ ∈ W \ {0}) be a
nonzero codeword in C⊥. From Lemma 2.2 we have

0 = 〈c, vijγ〉 = 〈cw,−γwj〉 + 〈cu,−uij〉 + 〈ciγ , uij + γwj〉.
Namely, for each γ ∈ W \ {0}, 1 ≤ i ≤ t and 1 ≤ j ≤ di we have

〈cw + γwj〉 + 〈cu, uij〉 = 〈ciγ , uij + γwj〉. (4)

(I) Assume cw = 0. Then

〈cu, uij〉 = 〈ciγ , uij + γwj〉(γ ∈ W \ {0}, 1 ≤ i ≤ t, 1 ≤ j ≤ di). (5)

If ciγ = 0 for some i and γ ∈ W \ {0}, by (5) we know that 〈cu, uij〉 = 0
for all j, 1 ≤ j ≤ di. And then 〈ciγ , uij + γwj〉 = 0 for all γ ∈ W \ {0} and
1 ≤ j ≤ di. Since {uij + γwj : 1 ≤ j ≤ di} is a basis of Uiγ , we get ciγ = 0 for
all γ ∈ W \ {0}.

If cu = 0, by (5) we get all ciγ = 0 and c would be zero. Therefore cu �= 0
and there exists some i such that ciγ �= 0 for all γ ∈ W \ {0}. This means that
wt(c) ≥ |W | = ps.

It is easy to construct c ∈ C⊥ such that wt(c) = ps. We can choose a fixed
i, and let cw = 0 and ckγ = 0 for all k �= i and γ ∈ W \ {0}. Choose arbitrary
cu �= 0. For each fixed γ ∈ W \ {0}, the equations in (5) uniquely determine
ciγ �= 0. Such codewords are of Hamming weight ps.

(II) Assume that cw �= 0. From (4) we know that if ciγ = ciγ′ = 0 for
γ, γ′ ∈ W \ {0}, γ �= γ′ and some i, then

〈cw, (γ − γ′)wj〉 = 0, ∀1 ≤ j ≤ di, (6)
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〈cu, uij〉 = −〈cw, γwj〉 = −〈cw, γ′wj〉, ∀1 ≤ j ≤ di.

Let π = γ − γ′ ∈ W \ {0} = F
∗
ps . The “times by π” operator

φπ : Fps −→ Fps

x �−→ πx

is invertible Fp-linear operator. We view cw and wj as vectors in W = F
s
p, then

πx = xAπ where Aπ is s × s invertible matrix over Fp. By (6) we have

0 = 〈cw, wjAπ〉 = cwAT
π wT

j = 〈cwAT
π , wj〉, ∀1 ≤ j ≤ di.

Since {wj : 1 ≤ j ≤ di} are linear independent, there are exactly ps−di elements
cwAT

π in W such that 〈cwAT
π , wj〉 = 0. Thus there are at most ps−di elements

γ ∈ W \ {0} such that ciγ = 0. Therefore for each i, there are at least ps − ps−di

elements γ ∈ W \ {0} such that ciγ �= 0. Then by cw �= 0 we get wt(c) ≥
1 +

∑t
i=1(p

s − ps−di) = tps − ∑t
i=1 ps−di + 1.

From the details in the proof we can construct a codeword c with weight
tps − ∑t

i=1 ps−di + 1. In fact, we can choose arbitrary cw �= 0, and let cu = 0.
Now we have

〈cw, γwj〉 = 〈ciγ , uij + γwj〉.
For fixed i and γ, using the fact that {uij + γwj} is a basis of Uiγ , we conclude
that the equation above uniquely determines the value of ciγ . And ciγ = 0 is
equivalent to 〈cw, γwj〉 = 0 for all j, 1 ≤ j ≤ di. The number of such γ is ps−di .
This gives a construction of a codeword c with weight tps − ∑t

i=1 ps−di + 1.
From (I) and (II) we conclude d(C⊥) = min{ps, tps − ∑t

i=1 ps−di + 1}.
For any partition W1, . . . ,Wr of W , we have a corresponding perfect mixed

linear code C0 over W . This induces a refinement of the partition π over V ,
say π′ : V = (∪1≤i≤rWr)

⋃
U

⋃
(∪1≤i≤t,γ∈W\{0}Uiγ), and a new perfect mixed

linear code C ′. The following theorem determines the minimal distance of C ′:

Theorem 3. Let π′ be the partition of V = Fpn given above, C ′⊥ be the dual
code of C ′ = C(V, π′). Then

d(C ′⊥) = min{ps, tps −
t∑

i=1

ps−di + d⊥}

where d⊥ = d(C⊥
0 ).

Proof. Let

vijγ = (0, . . . , 0,−γwj , 0, . . . , 0,−uij , 0, . . . , 0, uij + γwj , 0, . . . , 0)

Subspaces W1 . . . Wi . . . Wr U Uiγ . . .

Components 0 . . . −γwj . . . 0 −uij uij + γwj 0
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where −γwj belongs to some Wi(1 ≤ i ≤ r) as in the table above, and

vk = (v0
k, 0, . . . , 0)

where v0
k(k = 1, 2, . . .) is a basis of C0. Then vijγ and vk form a basis of C ′.

For a codeword c ∈ C ′⊥, let cH be the first r components of c, and write
c = (cH , cT ).

(I) If cH = 0, then 〈c, vijγ〉 = 0. By the proof in Theorem 2.3 we have
wt(c) ≥ ps.

(II) If cH �= 0, then by (c, vk) = 0 we have wt(cH) ≥ d⊥. By the same method
in the proof of Theorem 2.3, we can easily derive that wt(cT ) ≥ tps−∑t

i=1 ps−di .
So wt(c) ≥ tps − ∑t

i=1 ps−di + d⊥.
By the methods in the proof of Theorem3, we can construct examples show-

ing that the equality can be reached.

3 Applications

In this section we present two applications of Theorem 2.2. The first application
is in combinatorial design theory, to construct orthogonal array with mixed level.

Definition 1. Let Aj (1 ≤ j ≤ s) be finite sets, |Aj | = Nj, A = A1 ×A2 × . . .×
As, M = (aij)1≤i≤N,1≤j≤s be an N × s matrix where aij ∈ Aj. For each subset
I of {1, 2, . . . , s}, let MI = (aij)1≤i≤N,j∈I be the N × |I| submatrix of M . The
matrix M is called an orthogonal array with parameters (A,N, l)(l ≥ 1) if each
element c = (cj)j∈I in AI =

∏
j∈I Aj appears in the N rows of MI with exact

N
|AI | = N∏

j∈I Nj
times.

It is known in [2] that if Aj(1 ≤ j ≤ s) are abelian groups and C is an
additive code in A = A1 ⊕ . . . ⊕ As with parameters (A,K, d), then the K × s
matrix M consisted by all K codewords of C as rows, is an orthogonal array
with parameters (A,K, d⊥ −1) where d⊥ is the minimal distance of C⊥, the dual
code of C. From Theorems 1 and 2 we get the following result:

Theorem 4. Let V = F
n
p = U ⊕ W where U = F

n−s
p , W = F

s
p and U has a

subspace partition {U1, . . . , Ut}, dim Ui = di ≤ s(1 ≤ i ≤ t). Then there exist
orthogonal arrays with parameters (A,K, 2) and (A, pn, d⊥ − 1) where

A = F
s
p ⊕ F

n−s
p ⊕ G ⊕ . . . ⊕ G︸ ︷︷ ︸

ps−1 times

, G = F
d1
p ⊕ . . . ⊕ F

dt
p (7)

K = p(d1+...+dt)(p
s−1)

d⊥ =

{
ps, if t ≥ 2
ps − ∑t

i=1 ps−di + 1, if t = 1
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The second application of Theorem2 is in quantum code theory, to construct
asymmetric inhomogenous quantum codes (AIQC). Firstly we introduce basic
definitions and results on inhomogeneous quantum codes, see [8] for the detail.

Let Ai(1 ≤ i ≤ n) be finite abelian groups, |Ai| = qi and

A = A1 ⊕ A2 ⊕ . . . ⊕ An

be an abelian group with N = q1 . . . qn elements. We consider the N -dimensional
complex vector space

V = V1 ⊕ V2 ⊕ . . . ⊕ Vn, Vi = C
qi

For each Ai, let {|c〉 : c ∈ Ai} be a fixed orthonormal basis of Vi. Namely, for
c, c′ ∈ Ai,

〈c|c′〉 =

{
1, if c = c′

0, otherwise

where 〈, 〉 denotes the Hermitian inner product on complex vector space. Then
V has the orthonormal basis

{|c〉 = |c1c2 . . . cn〉 = |c1〉⊗|c2〉⊗. . .⊗|cn〉 : c = (c1, c2, . . . , cn) ∈ A = A1⊕A2⊕. . .⊕An}
(8)

and |ci〉 is called the ith qudit (quantum digit) of |c〉. An inhomogeneous quan-
tum state is a non-zero vector in V which is uniquely expressed by

|v〉 =
∑

c∈A

φ(c)|c〉 (φ(c) ∈ C)

Let Âi be the character group of Ai. It is well-known that there exists an
isomorphic Ai → Âi, bi �→ χbi

so that Âi = {χbi
: bi ∈ Ai}.

Now we introduce quantum errors. Each quantum error is an unitary opera-
tion acting on the complex vector space V . At each qudit we have two types of
errors X(ai) and Z(bi), ai, bi ∈ Ai acting on Vi = C

qi defined by their action on
the basis {|c〉 : c ∈ Ai} of Vi as

X(ai)|c〉 = |ai + c〉, Z(bi)|c〉 = χbi
(c)|c〉

On the quantum state space V = V1 ⊗ V2 ⊗ . . . ⊗ Vn, we have quantum error
operators X(a) and Z(b), a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ A defined
by their actions on the basis (8) as

X(a)|c〉 = X(a1)|c1〉 ⊗ X(a2)|c2〉 ⊗ . . . ⊗ X(an)|cn〉
= |a1 + c1〉 ⊗ |a2 + c2〉 ⊗ . . . ⊗ |an + cn〉 = |a + c〉

Z(b)|c〉 = Z(b1)|c〉 ⊗ Z(b2)|c2〉 ⊗ . . . ⊗ Z(bn)|cn〉
= χb1(c1)|c1〉 ⊗ χb2(c2)|c2〉 ⊗ . . . ⊗ χbn

(cn)|cn〉 = χb(c)|c〉
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Let m be the exponent of A, namely, m is the smallest positive integer such
that ma = 0 for all a ∈ A. Let ω = e

2πi
m . Then the set

En = {wλX(a)Z(b) : λ ∈ {0, 1, . . . ,m}, a, b ∈ A}

is a nonabelian group with m|A|2 = mN2 elements, called the quantum error
group of V .

For each quantum error e = wλX(a)Z(b) we define the X-weight WX(e) and
Z-weight WZ(e) by

WX(e) = WH(a) = #{i : 1 ≤ i ≤ n, ai �= 0}

WZ(e) = WH(b) = #{i : 1 ≤ i ≤ n, bi �= 0}
and for positive integers dX and dZ we define the subset S(dX , dZ) of En by

S(dX , dZ) = {e ∈ En : WX(e) ≤ dX − 1, and WZ(e) ≤ dZ − 1}

Definition 2. An subgroup Q of A is called an asymmetric inhomogenous quan-
tum code (AIQC) with parameters ((A,K, dX/dZ)) if K = |Q| and for each
e ∈ S(dX , dZ) and |v〉, |v′〉 ∈ Q such that 〈v|v′〉 = 0, we have 〈v|e|v′〉 = 0.

One important method to construct good AIQCs is the stablizer method (see
[7] for homogenous case, [8] for symmetric case and [9] for general asymmetric
and inhomogenous case). With this method, an AIQC can be constructed by a
classical additive mixed code as shown in the following result:

Lemma 3 ([9], Theorem 3.2). Let Ai(1 ≤ i ≤ s) be finite abelian groups,
A = A1⊕A2⊕. . .⊕As. If there exist mixed additive codes C1 and C2 with param-
eters (A,K1, d1) and (A,K2, d2) respectively and C⊥

2 ⊂ C1, then there exists an
asymmetric inhomogenous quantum code Q with parameters ((A, K1K2

|A| , dX/dZ))
where

dX = min{wH(c) : c ∈ C2 \ C⊥
1 }

dZ = min{wH(c) : c ∈ C1 \ C⊥
2 }

From Theorems 1, 2 and Lemma 3 we constructed the following AIQC by
taking C1 = C, C2 = C⊥:

Theorem 5. Let V = F
n
p = U ⊕ W where U = F

n−s
p , W = F

s
p and U has a

subspace partition {U1, . . . , Ut}, dim Ui = di ≤ s(1 ≤ i ≤ t). Let A be the additive
group defined by 8. Then there exists an asymmetric inhomogenous quantum code
with parameters ((A, 1, dX/dZ)) where dX = 3 and

dZ =

{
ps, if t ≥ 2
ps − ∑t

i=1 ps−di + 1, if t = 1
(9)

By using the results on partition of finite vector space given in [3,6], many series
of good AIQCs can be obtained by Theorem5.
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Abstract. The problem of item selling with the objective of maximizing
the revenue is studied. Given a seller with k types of items and n single-
minded buyers, i.e., each buyer is only interested in a particular bundle
of items, to maximize the revenue, the seller must carefully assign some
amount of bundles to each buyer with respect to the buyer’s accepted
price. Each buyer bi is associated with a value function vi(·) such that
vi(x) is the accepted unit bundle price bi is willing to pay for x bundles.
We show that the single-minded item selling problem is NP-hard. More-
over, we give an O(

√
k)-approximation algorithm. For the online version,

i.e., the buyers come one by one and the decision on each buyer must
be made before the arrival of the next buyer, an O(

√
k · (log h + log k))-

competitive algorithm is achieved, where h is the highest unit item price
among all buyers.

1 Introduction

The selling problems is a common scenario in financial markets and is motivated
by certain real goods selling situations in economics. For instance, an investor
wants to sell his shares in order to maximize the revenue. The prices of shares
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fluctuate over time, and one may only know the shares’ prices in history but not
their future prices. At a specific time point, an investor needs to decide whether
he should sell some shares and if so, the number of shares to sell.

Item selling involves two parties, sellers and buyers. The sellers want to sell
a set of items, at some specific prices, and the buyers will buy the items if
their prices are acceptable. The objective is to maximize the total revenue of
the seller. To meet such an objective, prices of the items may need to be care-
fully adjusted to suit the different expectations of the buyers who have different
required amounts, and/or at different occasions, etc. If a buyer’s accepted price
is lower than the designated price of an item, the buyer will reject the deal;
otherwise, he will accept the deal.

Problem Statement
The seller has k types of items I = {1, 2, . . . , k} and the amount of items in type
i is mi. There is a group of n buyers B = {b1, b2, . . . , bn} who are interested in
buying these items. Assume that the buyers are single-minded, i.e., each buyer
bi ∈ B is only interested in a particular subset (bundle) Bi ⊆ I of items. When
buyer bi buys x bundles of Bi, the amount of each item j ∈ Bi sold to bi is
x. Each buyer bi is associated with a value function vi(·) such that vi(x) is the
accepted unit price buyer bi is willing to pay for buying x bundles of Bi. Note
that the interested bundles of different buyers may be different and the unit
bundle prices of different bundles may not be comparable. Let wi(x) be the unit
item price of buyer bi, i.e., wi(x) = vi(x)/|Bi|, where |Bi| is the size of the
bundle Bi. Via wi(.), bundles sold to different buyers are comparable. Denote
A = {x1, x2, . . . , xn} be an assignment such that xi bundles of Bi is assigned to
buyer bi with the unit bundle price vi(xi). The total revenue of the assignment
A is

n∑

i=1

xi · vi(xi) =
n∑

i=1

xi · |Bi| · wi(xi).

The objective of the item selling problem is to maximize the revenue by
assigning a certain amount of bundles to each buyer at his accepted unit price.

Related Works
Item selling is a realistic and important problem in computational economics,
and the aim is to devise fast algorithms to give the optimal, or a reasonably
good approximate, selling scheme.

On the seller’s side, both multiple types of items and single type of items
have been considered. For each type of item, the amount may be unlimited
[1,5,10], or bounded [2,6,12]. As for the buyers’ behaviors, there are mainly
three models that have been considered: single-minded [3,4,6,13] (each user is
interested only in a particular set of items), unit-demand [1,2,5] (each user will
buy at most one item in total) and envy-free [6,10] (after the assignment, no user
would prefer to be assigned a different set of items with the designated prices;
loosely speaking, each user is happy with his/her purchase). Previous works have
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considered different combinations of the behavior of the seller and that of the
buyer (e.g., envy-free pricing for single-minded buyers when there is unlimited
supply [6]).

For the online version of the selling problem, a fundamental problem called
one-way trading has been very well studied over the years. The one-way trading
problem was introduced by El-Yaniv et al. [9], and the objective is to maximize
the seller’s revenue by selling some amount of a product to a sequence of buy-
ers. Given the upper bound M and lower bound m of the accepted price, an
O(log(M/m))-competitive algorithm was given in [9]; moreover, the algorithm
was proved to be optimal by a derived matching lower bound. Fujiwara et al.
[11] have studied the one-way trading problem under the assumption that the
input prices follow some given probability distribution. If the given distribution
satisfies the monotone hazard rate, Chin et al. [8] showed that one-way trading
can be approximated within a constant factor. Without the knowledge of the
upper bound and lower bound of the accepted price, Chin et al. [7] gave an
O(log r∗(log(2) r∗) . . . (log(i−1) r∗)(log(i) r∗)1+ε)-competitive algorithm, where r∗

is the ratio between the highest price and the lowest price in the buyer’s sequence
and i is any positive integer. Moreover, the lower bound of such unbounded
one-way trading was proved to be Ω(log r∗(log(2) r∗) . . . (log(i−1) r∗)(log(i) r∗)).
For multiple types of items and single-minded buyers, Zhang et al. gave an
O(

√
k · log h · log k)-competitive algorithm in [13], where k is the number of item

types and h is the highest unit price among all buyers.

Our Contributions
In this paper, we consider both the offline version and the online version of
the single-minded item selling problem. For the offline version, the item selling
problem is proved to be NP-hard in Sect. 2. Furthermore, we show in Sect. 3 that
this selling problem can be approximated within a factor of O(

√
k), where k is

the number of item types. For the online version, we present an algorithm with
the competitive ratio O(

√
k ·(log h+log k)) in Sect. 4, where h is the highest unit

item price among all buyers, which improves the previous O(
√

k · log h · log k)-
competitive algorithm in [13].

2 Hardness of the Selling Problem

In this section, we show that the item selling problem studied in this paper is
NP-hard.

Theorem 1. The item selling problem is NP-complete.

Proof. Clearly, the item selling problem is in NP. The NP-hardness of the item
selling problem is via the reduction from the 3-partition problem, which is
described as follows. Given a multiset S of n = 3p positive integers, a1, a2, . . . , a3p

with a total sum of pB, where B/4 < aj < B/2 for j = 1, . . . , 3p, can S be par-
titioned into p triplets S1, S2, . . . , Sp such that the sum of the numbers in each
subset is equal to B? The subsets S1, S2, . . . , Sp must form a partition of S in
the sense that they are disjoint and they cover S.
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Fig. 1. The construction in the reduction from 3-partition problem to item selling
problem.

For the reduction, we first form one type of item it with amount B for
each triplet St for t = 1, . . . , p. For each element aj (j = 1, . . . , 3p), we form
a set of p users uj,t for all t = 1, . . . , p. See Fig. 1. For each user uj,t, we set
its value functions as vj,t(1) = . . . = vj,t(aj − 1) = 0 and vj,t(aj) = 1. We
further form a new type of item ip+j with amount B, and set the user uj,t’s
bundle of interest to be Iuj,t

= {it, ip+j}. In addition, we form a new user uj ,
and set its bundle of interest to be just Iuj

= {ip+j}, and its value functions as
vj(1) = . . . = vj(B−aj −1) = 0 and vj(B−aj) = B. We note that in total, there
are 4p items and 3p(p + 1) users in the construction. Note that all these value
functions are step value functions, i.e., vi(x) = vi(�x�). So, fractional bundles
are allowed to be assigned to users.

Now suppose that there is a partition of p triplets S1, S2, . . . , Sm such that
the sum of the numbers in each subset is equal to B. For the type of item ip+j

(j = 1, . . . , 3p), we assign B − aj bundles to user uj , and assign the other aj

bundles to the corresponding user uj,t, where the triplet St contains aj . In such a
way, the sale of the type of item ip+j contributes (B−aj)B+aj . For each triplet
St = {aj1 , aj2 , aj3} in the partition, we assign aj1 bundles to user uj1,t, assign
zero bundles to user uj1,t̄ where t̄ is any value of 1, . . . , p not equal to t, assign aj2

bundles to user uj2,t, assign zero bundles to user uj2,t̄, assign aj3 bundles to user
uj3,t, and assign zero bundles to user uj3,t̄, respectively. We also set item it to be
sold to exactly these three users uj1,t, uj2,t, and uj3,t. In such a way, the sale of
each type of item it contributes B values to the revenue. Consequently, the total
revenue obtained is pB +

∑3p
j=1((B −aj)B +aj) = pB +

∑3p
j=1(B

2 −ajB +aj) =
pB + 3pB2 − (pB)B + pB = 2pB2 + 2pB. Then we have a solution for the item
selling problem with total revenue at least pB2.

For the proof of the reverse direction, we suppose that the total revenue
of the item selling problem is at least 2pB2 + 2pB. For the type of item ip+j

(j = 1, . . . , 3p), to maximize the revenue, we need to assign B−aj bundles to user
uj , and assign the other aj bundles to certain user uj,t so that the maximum
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revenue obtained from item type ip+j is (B − aj)B + aj
1. Consequently, the

maximum revenue which can be attained from item types ip+1, ip+2, . . . , ip+3p is∑3p
j=1((B−aj)B+aj) =

∑3p
j=1(B

2−ajB+aj) = 3pB2−(pB)B+pB = 2pB2+pB.
Moreover, the maximum revenue obtained from each item type it (t = 1, . . . , p)
is at most B, which occurs when each unit of item it contribute one in value.
To make this happen, the B units of item it has to be partitioned by a subset
of S. Since each item ip+j (j = 1, . . . , 3p) corresponds to one aj for a specific
subscript j for obtaining revenue of aj , the maximum revenue for all item types
ip+j (j = 1, . . . , 3p) results in the selection of all aj for j = 1, . . . , 3p. These 3p
numbers of aj ’s have to be used to partitioned all amounts for item types it for
t = 1, . . . , p. Thus the partition in the capacities of all item types it (t = 1, . . . , p)
forms a partition for S such that the sum of those aj ’s in the capacity of each
item type it is equal to B. Since B/4 < aj < B/2 for each aj , the capacity
amount B of each item type it is partitioned by exactly three aj ’s. Thus the
partition we obtained above is a 3-partition. This completes our proof. ��

3 Approximation Algorithms

Let h = max{wi(x)} be the highest unit item price among all buyers bi and
amounts x of bundles. We assume that h is known to the algorithm. Let w̄i(x)
be the step unit item price such that

w̄i(x) =
h

2j
if

h

2j
≤ wi(x) <

h

2j−1
.

Fact 1. wi(x)/2 < w̄i(x) ≤ wi(x) for any buyer bi and any amount x.

Let OPT be the optimal solution w.r.t. the original value function vi(·) (or
the original unit item value function wi(·)). Let OPT be the optimal solution
w.r.t. the step unit item value function w̄i(·).
Lemma 1. OPT/2 < OPT ≤ OPT .

Proof. If we directly implement the optimal assignment w.r.t. wi(·), a feasible
assignment A for the step unit item price function w̄i(·) can be achieved. From
Fact 1, the revenue achieved from such feasible assignment A is at least OPT/2
and at most OPT . Let A denote the revenue of the assignment A, we have
OPT/2 < A ≤ OPT . On the other hand, A is upper bounded by the optimal
revenue on OPT since A is a feasible assignment w.r.t. w̄i(·). So, A ≤ OPT .
Note that wi(x)/2 < w̄i(x) ≤ wi(x) for any i and x, we have OPT ≤ OPT .

Combining the above statements, this lemma is correct. ��

1 Although fractional value is allowed, however, when the value of B is large enough,
to maximize the revenue, the number of bundles assigned to users must be integers.
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Lemma 1 gives us a heuristic that if considering just the step value function,
the decrease of the optimal revenue is not too much, which is at least half of the
optimal revenue for the original value function. Therefore, in the next part, we
consider the step unit item value function w̄i(·), which can be easily achieved
from the value function vi(·).

Given the highest unit item value h among all interested bundles, the number
of different values of w̄i(·) is at most �log h�. Let Ci,j = {x|w̄i(x) = h/2j} denote
the set of amount of bundles Bi with step unit item price h/2j . If the unit item
price is non-increasing or non-decreasing, which are reasonable assumptions in
reality, Ci,j is continuous. In this work, any kind of value function is allowed and
thus, Ci,j might not be continuous.

Let (i, j) be the pair of bundle Bi with the unit item price h/2j and denote
(i, j, �) be the assignment such that selling � bundles Bi with the unit item price
h/2j .

Given the buyer set B and the value functions for each buyer, a näıve idea
is to assign some bundles to the buyer with the highest revenue. By this idea,
even with smaller unit item price, a bundle with larger size may have a higher
revenue. For example, suppose that the amount of each item is 1, buyer bi>k’s
bundle Bi = I and its value function vi(x) = k for any x. Note that k is the
number of item types in I. Buyer set B contains other buyers bj such that
Bj = {j} for j ∈ [1, .., k] and vj(x) = k − ε. In this case, the revenue from this
idea is k while the optimal revenue is k · (k − ε). The approximation ratio of this
idea is quite bad and close to k.

We may consider instead assigning bundles according to their unit item price.
The performance of this idea however is still not good. For example, suppose that
the amount of each item is 1, buyer b1’s bundle B1 = {1} and its unit item price
is w1(x) = k for any x, while another buyer b2’s bundle B2 = I and its unit item
price is w2(x) = k − ε for any x. Hence, the revenue of such idea is k while the
optimal revenue is k · (k − ε). The approximation of this idea still approaches k.

The above two greedy approaches can be regarded as two extreme ideas and
do not consider the size of the assigned bundles. We combine them together and
derive a new selection criterion, the product of the revenue and the unit item
price. Formally speaking, for buyer bi, consider the values of

w̄i(x) · vi(x) = (w̄i(x))2 · |Bi|.

The algorithm is described as follows.

Theorem 2. Given the step value function w̄i(·), the approximation ratio of the
above algorithm is O(

√
k).

Proof. Let ALG and OPT be the revenue from Algorithm 1 and the optimal
solution w.r.t. the step value function w̄i(·).

The optimal solution can be seen as assigning bundles to buyers one by one
following the ordered sequence after line 1 of the algorithm. For two buyers bi and
bi′ , if Bi

⋂
Bi′ 
= ∅, assigning item to buyer bi may block assigning items to buyer
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Algorithm 1. Selling bundles to single-minded buyers
1: Sort the pairs (i, j) according to the values (w̄i(x))2 · |Bi|. � The order is

arbitrary for the same values from different buyers.
2: Let rt be the remaining amount of item t. Initially, rt = mt for all t ∈ I.
3: while the sorted sequence is not empty do
4: Select the highest one from the sequence, let (i, j) be such pair.
5: if Bi is not assigned in previous steps then
6: if min{rt|t ∈ Bi} ≥ min{x|x ∈ Ci,j} then
7: Set the assignment to be (i, j, max{x|x ∈ Ci,j , x ≤ min{rt|t ∈ Bi}})
8: Update the remaining amount of items in Bi.
9: end if

10: else
11: Let (i, j′, �′) be the assignment on Bi in previous steps.
12: if min{rt|t ∈ Bi} + �′ ≥ min{x|x ∈ Ci,j} and

13: h/2j · max{x|x ∈ Ci,j , x ≤ min{rt|t ∈ Bi} + �′} ≥ √
k · h/2j′ · �′ then

14: Re-assign Bi by (i, j, max{x|x ∈ Ci,j , x ≤ min{rt|t ∈ Bi} + �′}).
15: Update the remaining amount of items in Bi.
16: end if
17: end if
18: end while

bi′ . Thus, an assignment (i, j, �) from the algorithm may block some assignments
in the optimal solution, which are behind (i, j, �) in the sorted sequence.

Since each tiny piece of item can block at most one bundle, a tiny amount of
Bi may block at most |Bi| assignments. W.l.o.g., suppose (ip, jp) (p = 1, . . . , t)
are the blocked assignments. and thus, t ≤ |Bi|. Let wi = h/2j and wip = h/2jp ,
which are the step unit item prices. The unit revenue on (i, j) is wi · |Bi| and the
unit revenue on blocked bundles is at most

∑t
i=1 wip · |Bip |. The ratio between∑t

i=1 wip · |Bip | and wi · |Bi| can be roughly regarded as the approximation ratio
of the algorithm. Note that (ip, jp) is behind (i, j) in the sorted sequence, thus,
w2

i · |Bi| ≥ (wip)
2 · |Bip |. Let w′

ip
≥ wip satisfyingt (wi)2 · |Bi| = (w′

ip
)2 · |Bip |.

∑t
p=1 wip · |Bip |

wi · |Bi| ≤
∑t

p=1 w′
ip

· |Bip |
wi · |Bi| =

t∑

p=1

w′
ip

· |Bip |
wi · |Bi| =

t∑

p=1

wi

w′
ip

(1)

≤
√√√√t ·

t∑

p=1

(
wi

w′
ip

)2 =

√√√√t ·
t∑

p=1

|Bip |
|Bi| (2)

≤
√√√√

t∑

p=1

|Bip | (3)

≤
√

k (4)

Inequality (2) holds due to the Cauchy-Schwartz inequality, inequality (3) holds
since each item in Bi may block at most one bundle in the optimal solution and
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thus |Bi| ≥ t, inequality (4) holds since the total size of disjoint bundles in the
optimal solution is at most k.

From the above analysis, we can see that the ratio between the revenue from
the blocked bundles of the optimal solution and the revenue from the algorithm
is upper bounded by

√
k. However, for a bundle, say Bi, the previous assignment

may be re-assigned by some latter assignment with higher revenue but lower unit
item value. According to the algorithm, this case happens only when the revenue
from the latter assignment is at least

√
k times the former one.

Let (i, j1, �1), (i, j2, �2), . . . , (i, jt, �t) be the assignments for buyer bi by the
algorithm during the execution. Let y1, y2, . . . yt be the revenues received from
these assignments. As mentioned before, revenues from the assigned bundles in
the optimal solution and blocked by the assignment (i, js, �s) between (i, js, �s)
and (i, js+1, �s+1) is at most

√
k · ys, which is upper bounded by ys+1.

Therefore, revenues from the bundles in the optimal solution and blocked
by the assignment on buyer bi before (i, jt, �t) is at most yt, while the optimal
revenue blocked by (i, jt, �t) is at most

√
k ·yt. Thus, the optimal revenue blocked

by the assignment on buyer bi is at most O(
√

k) · yt. Note that the optimal
solution may assign some bundles to buyer bi. From the previous analysis, the
optimal revenue on buyer bi is also upper bounded by

√
k · yt.

Therefore, the approximation ratio of the algorithm is O(
√

k). ��
Combining Lemma 1 and Theorem 2, we have the following conclusion.

Theorem 3. The approximation ratio of Algorithm 1 is O(
√

k).

4 Online Algorithm

In the online version of the selling problem, buyers come to the seller one by one
and each buyer’s information is only known to the seller upon his arrival. When
a buyer comes, a decision of selling some amount of bundles with designated
price must be made immediately before the arrival of the next buyer. Suppose
the highest unit item value is known to the seller. This assumption is reasonable
in reality where the seller knows the possible highest value but has no idea about
the information of each buyer.

The approximation algorithm in the last section gives us a heuristic to design
an online algorithm by considering the value of wi(x)·vi(x) for each coming buyer
bi. Given the highest unit item price h, the maximal possible value is h2 ·k, where
k is the number of item types.

According to Lemma 1, the optimal revenue w.r.t. the step value function
is at least half of the original optimal revenue. Similar to the approximation
algorithm in the last section, when a buyer comes, his value function will be
modified to be a ‘step value function’ according to the highest unit value h.
Formally speaking,

w̄i(x) =
h

2j
if

h

2j
≤ wi(x) <

h

2j−1
.



106 F. Y. L. Chin et al.

Such modification can be done easily and in the latter part, we assume the value
functions are ‘step value functions’.

For each item i, its amount mi is evenly partitioned into �2 log h + log k�
levels, say level 1, level 2, . . . , etc. Let ri,j be the available amount of item i
in level j. Initially, ri,j = mi

�2 log h+log k� . In the algorithm, items in level j can

be only assigned to bundles with the value no less than k·h2

2j . Thus, the higher
the value, the more levels can be assigned. Let ri,j =

∑�2 log h+log k�
�=j ri,� be the

available amount of item i which can be assigned to bundles with value h2 ·k/2j .
Let Ri,j = min{ri′,j |i′ ∈ Bi} be the maximal amount of bundles which can be
assigned to buyer bi with value h2 · k/2j .

For each buyer bi, any value (h/2j′
)2 · |Bi| belongs to one range (h2 ·k/2j , h2 ·

k/2j−1], and each range contains at most one value. Thus, given a unit price h/2j′

of buyer bi, its corresponding level j can be immediately achieved. Let pi(j) be
buyer bi’s unit price w.r.t. level j, in the above case, pi(j) = h/2j′

. Denote Ci,j to
be the set of amount of bundles Bi at level j, i.e., pi(j) ∈ (h2 · k/2j , h2 · k/2j−1].

For each coming buyer, Algorithm 2 greedily determines the price and amount
so as to maximize the revenue in the partition framework.

Algorithm 2. Assigning bundles for a coming buyer bi

1: if
⋃

j{x|x ∈ Ci,j , x ≤ Ri,j} �= ∅ then

2: Let � = arg maxj max{x|x ∈ Ci,j , x ≤ Ri,j} · pi(j).
3: Assign max{x|x ∈ Ci,�, x ≤ Ri,�} bundles with the unit item price pi(�).
4: Modify Available Amount of Items.
5: end if

As mentioned before, the available amount of items in level � can be used for
bundles with value no less than h2 ·k/2�. In other words, the assigned bundle with
value no less than h2 · k/2� can use the availsable amount in level �′ ≥ �. Thus,
the amount max{x|x ∈ Ci,�, x ≤ Ri,�} of bundles is justified. When assigning
bundles, the available amounts at lower numbered levels will be used first and
when the amounts at lower numbered levels run out, the amounts at higher
numbered levels will be used. More precisely, we use level � first, and then level
� + 1, level � + 2, and so on.

The procedure of modifying the amount at each affected levels is shown in
Algorithm 3.

After handling the sequence of buyers, let ALG and OPT be the revenue
received from the online algorithm and the optimal algorithm respectively. There
are two cases in the final configuration after handling all buyers.

– Ri,j = 0. For buyer bi with unit price pi(j), levels higher than j are full.
– Ri,j > 0. For buyer bi with unit price pi(j), levels higher than j are not full.

Let ALG1 be the assignments w.r.t. the first case.
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Algorithm 3. Modify Available Amount of Items
1: for each item j ∈ Bi do
2: Let s = arg mint{rj,� − rj,t ≥ max{x|x ∈ Ci,�, x ≤ Ri,�}}.
3: for p = � to s − 1 do
4: rj,p = 0.
5: end for
6: rj,s = rj,� − rj,t − max{x|x ∈ Ci,�, x ≤ Ri,�}.
7: for p = � to s do
8: rj,p = rj,� − max{x|x ∈ Ci,�, x ≤ Ri,�}.
9: end for

10: end for

In the optimal assignment, buyer bi gets some bundles Bi with the unit item
price wi. Suppose it belongs to level j. Consider the case that there exists an
item � ∈ Bi such that r�,j = 0, i.e., the amount of bundles in Bi at level j is full.
Note that r�,j is the value from the online algorithm. Let OPT1 be the revenue
of the optimal assignment w.r.t. this case, and let OPT2 be the revenue of the
remaining optimal assignment. Thus, OPT = OPT1 + OPT2.

If Bi

⋂
Bj 
= ∅, the assignment on Bi by the online algorithm may block

the assignment on Bj by the optimal solution, where i = j or i 
= j. Denote
(i, j, �) be an assignment on buyer bi at level j with amount �. W.l.o.g., let
f = (i, j, �) ∈ ALG1, and let F be the blocked bundles by the optimal assignment
at the same level j. Note that the value of f may not be the largest in this level,
however, other values in this level are at most twice of the value of f , i.e.,
w2

q · |Bq| ≤ 2 · (pi(j))2 · |Bi| for any (iq, jq, �q) ∈ F at this level. Similar to the
analysis in Sect. 3, we enlarge the unit item price of other bundles such that the
value is equal to twice the value on f , i.e.,

(wq)2 · |Bq| ≤ (w′
q)

2 · |Bq| = 2 · (pi(j))2 · |Bi|.

The ratio between the revenues in F and f is

∑
q∈F wq · |Bq|
pi(j) · |Bi| ≤

∑
q∈F w′

q · |Bq|
pi(j) · |Bi| =

∑

q∈F

w′
q · |Bq|

pi(j) · |Bi| = 2 ·
∑

p∈F

pi(j)
w′

q

(5)

≤ 2 ·
√√√√t ·

∑

q∈F

(
pi(j)
w′

q

)2 = 2 ·
√√√√t ·

∑

q∈F

|Bq|
2 · |Bi| (6)

≤
√

2 ·
∑

q∈F

|Bq| (7)

≤
√

2k (8)

Let fi be the assigned bundle by the online algorithm at some level j and
let Fi be the assigned bundles by the optimal algorithm at the same level but
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blocked by fi. From the above analysis, the revenue on
⋃

fi is at least O(1/
√

k)
of the optimal revenue on

⋃
Fi.

In the optimal solution, each assignment may belonging to some level j′

(j′ > j). Similar to the above analysis, we may also increase the unit item price
of these bundles and prove that the revenue at level j′ and belongs to OPT1 is
at most O(

√
k) times the revenue at level j by the online algorithm. Since there

are O(log h + log k) levels, we have the following conclusion.

Theorem 4. OPT1 = O(
√

k · (log h + log k)) · ALG1.

Now we analyze the remaining assignment in OPT2. Let f ∈ OPT2 be an
assignment for buyer bi in the optimal solution and belongs to level j.

Fact 2. If f ∈ OPT2, some amount of bundles Bi must be assigned by the online
algorithm.

Proof. In the final configuration, level j is not full w.r.t. the bundle Bi. Thus,
when buyer bi comes, the online algorithm must assign some amount of Bi to
buyer bi. ��

– Suppose the corresponding level after the assignment of Bi by the online
algorithm is not full, i.e., Ri,j 
= 0. According to the greedy approach, the
revenue received on Bi by the online algorithm is no less than the revenued
received by the optimal solution.

– Suppose the corresponding level, say level j′, after the assignment of Bi by the
online algorithm is full. In this case, such assignment is the last one at level j′

for bundle Bi. From the online algorithm, assigning bundles at level j is also
a candidate assignment. In this case, assigning at level j makes Ri,j = 0, but
the received revenue is no more than the assignment at level j′. According
to the algorithm, such assignment at level j does not have a higher revenue
on Bi. Thus, if we replace the assignment on Bi and make level j full, the
revenue does not increase but the assignment f in the optimal solution will
be switched to OPT1.
Let TEMP be the configuration that replace all such assignments. It can
be seen that TEMP ≤ ALG. Some optimal assignments will be switched to
OPT1. From the analysis of the previous case, the revenues of the remaining
assignments which belong to OPT2 are no more than the revenues from the
same buyers by the online algorithm.

Now, we conclude that

Theorem 5. OPT = O(
√

k · (log h + log k)) · ALG.

Proof. OPT = OPT1 + OPT2 = OPT ′
1 + OPT ′

2, where OPT ′
1 contains the

assignments after switching some assignment from OPT2 to OPT1 and OPT ′
2 is

the remaining assignment in OPT2. From the previous analysis,

OPT ′
2 ≤ ALG.
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According to Theorem 4,

OPT ′
1 = O(

√
k · (log h + log k)) · TEMP ≤ O(

√
k · (log h + log k)) · ALG.

Combining the above inequalities, we have

OPT = OPT ′
1 + OPT ′

2 = O(
√

k · (log h + log k)) · ALG.

��
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Abstract. In this paper, we document the results of a detailed imple-
mentation study of two different algorithms for checking real (linear) and
integer feasibility in a conjunction of Unit Two Variable per Inequality
(UTVPI) constraints. Recall that a UTVPI constraint is a linear rela-
tionship of the form: a · xi + b · xj ≤ cij , where a, b ∈ {−1, 0, 1}. A
conjunction of UTVPI constraints is called a UTVPI constraint system
(UCS). UTVPI constraints subsume difference constraints. Unlike dif-
ference constraints, the linear and integer feasibilities for UCSs do not
coincide. UCSs find applications in a number of different domains such
as abstract interpretation, packing, and covering. There exist several
algorithms for UCS linear feasibility and integer feasibility with various
running times. We will focus on the linear feasibility algorithms in [19]
(LF1) and [13] (LF2). We also focus on the integer feasibility algorithms
in [18] (IF1) and [13] (IF2). We compare our implementations to the
Yices SMT solver [17] running linear real arithmetic (QF LRA) and lin-
ear integer arithmetic (QF LIA). Our experiments indicate that LF1 is
moderately superior to LF2 in terms of time, and that IF1 is vastly
superior to IF2 in terms of time. Additionally on small inputs the Yices
Solver performs better than the implemented algorithms, however the
implemented algorithms perform much better on larger inputs.

1 Introduction

This paper is concerned with an empirical analysis of algorithms for checking
linear and integer feasibilities of a Unit Two Variable per Inequality (UTVPI)
constraint system (UCS). Briefly, a UTVPI constraint is a linear relationship
of the form: a · xi + b · xj ≤ cij , where a, b ∈ {−1, 0, 1}. A conjunction of such
constraints is called a UCS and can be represented in matrix form as: A · x ≤ c.
Let n represent the number of variables in A · x ≤ c, and let m represent the
number of constraints.

If either a or b is 0, then the constraint is said to be an absolute constraint;
otherwise, it is said to be a relative constraint. If a = −b, then the constraint is
c© Springer Nature Switzerland AG 2018
S. Tang et al. (Eds.): AAIM 2018, LNCS 11343, pp. 111–123, 2018.
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said to be a difference constraint. Difference constraints are widely used to model
specifications in real-time scheduling [9,10], image processing [8], and program
verification [6].

Definition 1. The linear feasibility (LF) problem for UTVPI constraints is:
Given a UCS A · x ≤ c, does it have a real (linear) solution?

Definition 2. The integer feasibility (IF) problem for UTVPI constraints is:
Given a UCS A · x ≤ c, does it have an integer solution?

The following example illustrates why the LF and IF problems are distinct
for UCSs.

Example 1. Integer feasibility in a UCS immediately implies linear feasibility;
the converse is not true. For instance, consider the UCS defined by the following
constraints:

x1 + x2 ≤ 1 −x1 + x2 ≤ 0
x1 − x2 ≤ 0 −x1 − x2 ≤ −1 (1)

Note that these are equivalent to x1 = x2 and x1 + x2 = 1. Thus, it is clear
that System (1) has no lattice point (integer) solution. However, it contains the
fractional point (12 ,

1
2 ) and is thus non-empty.

Definition 3. We divide UCSs into the following categories:

1. F0: UCSs that are not linearly feasible.
2. F1: UCSs that are linearly feasible but not integrally feasible.
3. F2: UCSs that are integrally feasible.

UTVPI constraints occur in a number of problem domains including, but
not limited to, program verification [13], abstract interpretation [7,14], real-time
scheduling [9], and operations research. Indeed, many software and hardware
verification queries are naturally expressed using this fragment of integer linear
arithmetic, i.e., the case in which the solution of a UTVPI system is required
to be integral. We note that when the goal is to model indices of an array or
queues in hardware or software, rational solutions are unacceptable [13]. Other
application areas include spatial databases [16] and theorem proving.

Both the LF and IF problems have been widely studied in the literature.
For the LF problem, we refer the interested reader to [13,14,19] and for the IF
problem we refer to [4,11–13,15].

The chief contributions of this paper are a detailed implementation profile
of the LF1 [19] and LF2 [13] algorithms for the LF problem and the IF1 [18]
and IF2 [13] algorithms for the IF problem. We also compare these implementa-
tions to the Yices SMT Solver [17]. We note that we used the flags QF LIA and
QF RIA for our experiments. Note that QF RDL and QF IDL apply to differ-
ence logic only, i.e., UTVPI constraints are not permitted. This paper assumes
familiarity with the detailed constructions and algorithms in these papers.
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The rest of this paper is organized as follows: In Sect. 2, we discuss the
two linear feasibility algorithms analyzed in this paper. Section 3 describes our
experimental setup. Section 4 documents our observations. We conclude in Sect. 5
by summarizing our contributions and identifying avenues for future research.

2 Linear Feasibility Algorithms

In this section, we describe the linear feasibility algorithms compared in this
paper.

2.1 Linear Feasibility Algorithm LF1

We now briefly describe the linear feasibility algorithm from [19].
Corresponding to the input UCS, Algorithm LF1 constructs a constraint

network N as defined in [19].
This constraint network utilizes different types of edges:

1. White edges (xi

cij
xj): these correspond to constraints of the form xi +xj ≤

cij .

2. Black edges (xi

cij
xj): these correspond to constraints of the form −xi−xj ≤

cij .

3. Gray edges (xi

cij
xj) and (xi

cij
xj): these correspond to constraints of the

form xi − xj ≤ cij and −xi + xj ≤ cij respectively.

Example 2. The UCS (2) corresponds to the constraint network in Fig. 1.
Note that the edges of weight 63 in Fig. 1 are to ensure that every vertex is

reachable from x0 by a path of any type. The weight of these edges is (2·n+1)·C

Fig. 1. Example constraint network.
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where C is the largest absolute weight of any edge in the original graph. Thus,
for Fig. 1 this is (2 ·4+1) · |−7| = 63. This large weight ensures that no negative
weight gray cycles are added to the graph by the introduction of these edges.

Each valid path in N has type t ∈ { , , , }, if it can be reduced to a
single edge of type t.

Definition 4. A shortest white path between xi and xj is a white path between
xi and xj with minimum weight.

We define shortest black path and shortest gray path similarly.
Algorithm LF1 maintains four distance labels for each vertex, xi, viz.,

1. di : This label corresponds to a path that reduces to an edge of the form
(x0

c
xi). In fact, it is the weight of the current shortest gray path from x0

to xi.

2. di : This label corresponds to a path that reduces to an edge of the form
(xi

c
x0). In fact, it is the weight of the current shortest gray path from xi

to x0.

3. di : This label corresponds to a path that reduces to an edge of the form
(x0

c
xi). In fact, it is the weight of the current shortest white path from x0

to xi.

4. di : This label corresponds to a path that reduces to an edge of the form
(x0

c
xi). In fact, it is the weight of the current shortest black path from x0

to xi.

Algorithm LF1 is based on a modified version of Bellman-Ford. The key
differences are as follows:

1. Algorithm LF1 has 2 ·n rounds of relaxation to account for longer refutations.
2. Four distance labels are maintained for each vertex to account for all possible

path types.
3. When relaxing an edge between xi and xj , Algorithm LF1 updates up to four

distance labels (two corresponding to xi and two corresponding to xj).

Once edge relaxation is completed, Algorithm LF1 either returns a feasible
linear solution or a certificate of infeasibility.

1. If the input UCS is feasible, the algorithm returns a feasible half-integral

solution. This solution is constructed by assigning di − di

2 to xi for each i =
1 . . . n.

2. If the input UCS is infeasible, the algorithm returns a negative weight gray
cycle. This cycle is obtained by backtracking from an edge which, when
relaxed, still causes distance labels to update.

A worked example of this algorithm will be in the journal version of this
paper.
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2.2 Linear Feasibility Algorithm from LF2

We now briefly describe the linear feasibility algorithm from [13].
Algorithm LF2 converts the UCS into an equivalent system of difference

constraints. Each constraint is converted as follows:

1. Each constraint of the form xi + xj ≤ cij becomes x+
i − x−

j ≤ cij and −x−
i +

x+
j ≤ cij .

2. Each constraint of the form xi − xj ≤ cij becomes x+
i − x+

j ≤ cij and −x−
i +

x−
j ≤ cij .

3. Each constraint of the form −xi + xj ≤ cij becomes x−
i − x−

j ≤ cij and
−x+

i + x+
j ≤ cij .

4. Each constraint of the form −xi − xj ≤ cij becomes x−
i − x+

j ≤ cij and
−x+

i + x−
j ≤ cij .

5. Each constraint of the form xi ≤ cij becomes x+
i − x−

i ≤ 2 · cij .
6. Each constraint of the form −xi ≤ cij becomes x−

i − x+
i ≤ 2 · cij .

Algorithm LF2 then runs the Bellman-Ford algorithm on the directed graph
G corresponding to the constructed system of difference constraints. The algo-
rithm maintains a single distance label for each vertex. The distance label for
the vertex x+

i is d+i , and for the vertex x−
i , it is d−

i .

Example 3. Figure 2 shows the graph corresponding to System (3).

Fig. 2. Example graph.

Once edge relaxation is completed, Algorithm LF2 either returns a feasible
linear solution or a certificate of infeasibility.
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1. If the input UCS is feasible, the algorithm returns a feasible half-integral
solution. This solution is constructed by assigning d+

i −d−
i

2 to xi for each i =
1 . . . n.

2. If the input UCS is infeasible, the algorithm returns a negative cycle. This
cycle is obtained by backtracking from an edge which, when relaxed, still
causes distance labels to update.

A worked example for this algorithm will be in the journal version of this
paper.

3 Empirical Study

In this section, we describe the implementation of the algorithms, and the speci-
fications of the system used to obtain our results. Details on the Algorithms can
be found in Sect. 2.

3.1 Experimental Setup

Algorithm timing was performed within the implementations themselves,
via calls to the GNU/Linux clock gettime() function, specifying use of the
CLOCK MONOTONIC RAW system clock. In this way, the running time
requirements of each portion of each implementation could be analyzed sepa-
rately. Space requirements for the entirety of each implementation were deter-
mined using the GNU/Linux usr/bin/time command, using its %M format con-
version.

Each implementation was compiled with Intel ICC 15.0.2, using the -fast
optimization flag. All implementations were executed on an HP SL230 high
performance computing node running Red Hat Enterprise Linux Server 6.7 and
configured with dual Intel 2.6 GHz Xeon E5-2650 V2 processors, each featuring
20 MB of cache. All implementations were allocated 64 GB of 1866 MHz RAM.

3.2 Implemented Algorithms

Both LF1/IF1 and LF2/IF2 were implemented in C, utilizing adjacency lists to
represent graph structures. In the case of LF1/IF1, the edges from the source
vertex to every other vertex were omitted, except in the case of absolute con-
straints added to the system. Predecessor labels for non-source vertices with
associated absolute constraints were initialized to the edges resulting from these
constraints, and distance labels were initialized to the weights of these edges. Pre-
decessor labels for non-source vertices without associated absolute constraints
were initially set null, and distance labels were initialized to the weight that the
omitted edges would have had. This poses no danger, as the weight of source
node edges not associated with absolute constraints is set in such a way that
these edges cannot be part of a negative cost cycle.
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In the case of LF2/IF2, a Bellman-Ford implementation was used to deter-
mine linear feasibility, since LF1, as presented in [19], is organized analogously to
this algorithm. The Johnson All-Pairs algorithm is used to determine an integral
solution when IF2 determines that such a solution exists [5].

The model generation algorithm within IF2 was integrated directly into the
Johnson All-Pairs implementation. Thus, the transitive and tight closure C∗ did
not need to be represented in the form of a data structure in order to generate
an integral solution. This eliminates IF2’s O(n2) space complexity term, leav-
ing a space complexity of O(m + n). This was accomplished by organizing the
Johnson All-Pairs implementation such that it would process the original set of
constraints C in the same order as the model generation algorithm processes
C∗. Whenever an edge within C∗ is discovered, it is immediately used to modify
bounds, then forgotten.

A number of different means by which the LF portions of these algorithms
could be further optimized have been explored. Implementations of both algo-
rithms were made where the relaxation loop in the LF portion of each implemen-
tation follows the FIFO Label-Correcting Algorithm given in [1]. These imple-
mentations also check the entire predecessor structure for negative cost cycles
every

√
2 · n passes through the graph.

Where LF2 uses vertices that each contain only one distance label, these
modifications follow the approach given in [1] directly. In the case of LF1, each
vertex contains four distance labels. Thus, the queue structure stores a combina-
tion of vertex and distance label type updated. As a result, only edge relaxations
that could lead to further distance label updates are conducted in the next pass
through the graph.

A couple of variations of another mechanism were also implemented. “Cycle-
originator” tokens were added to each vertex data structure. These tokens are
initialized to a vertex’s first predecessor edge and then propagated along edges
during the relaxation process. Two different methods of propagation were used
(CO1 and CO2) and these are described in detail later in this section. In this way,
each cycle-originator can move through the predecessor structure as it develops.
If a given cycle-originator token makes its way back to its original vertex, then
we have a possible negative cost cycle. The algorithm then backtracks through
the predecessor structure from that point. This determines if a negative cost
cycle has actually been detected.

The first variation on the cycle-originator mechanism, here referred to as
CO1, sets all vertex cycle-originators equal to predecessors after the first pass
through the graph. In subsequent passes, this variation passes a cycle-originator
down a relaxed edge in the predecessor structure whenever that edge relaxation
leads to a distance label update. This variation works well with the linearly
infeasible UCSs used for profiling in this work. However, it has not been proven
to work in any particular situation.

The second variation, here referred to as CO2, sets a vertex’s cycle-originator
edge equal to its predecessor edge after an edge relaxation leads to a change in a
vertex’s predecessor edge. Whenever an edge relaxation leads to a distance label
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update without a change in the vertex’s predecessor edge, the cycle-originator at
the head of the relaxed edge is set equal to that at its tail. Since all predecessor
edges are initially set null, this does not require any special handling at the
beginning of system relaxation.

If a negative cost cycle is formed in the predecessor structure, and if the
cycle stays constant as the distance labels of constituent vertices continue to
decrease, then the CO2 mechanism is guaranteed to detect this cycle. At least
the final edge added to the predecessor structure cycle will be represented as a
cycle-originator and will then be passed through the predecessor structure, back
to where it started, as the edges within the cycle continue to be relaxed.

This scenario of a negative cost cycle being formed within the predecessor
structure, then remaining unchanged, can at least be guaranteed to occur in
the case that there is only one possible negative cost cycle within a system of
inequalities. However, the CO2 mechanism failed in the vast majority of linearly
infeasible input systems used for profiling in this work.

There was little difference between how the cycle-originator mechanisms were
implemented in the two algorithm implementations. Since cycle-originator tokens
must be compared against predecessor labels, there must be equal numbers of
each associated with each vertex. As such, the vertices in the LF1 implementation
each have four, and the vertices in the LF2 implementation each have one. In
both variations, the Backtrack() implementation used with each algorithm
can detect when it backtracks to the source vertex and will then undo its work,
as these mechanisms may lead to false positives.

The code used to implement these algorithms can be found at [3].

4 Empirical Results

In this section, we provide the results of our empirical analysis.
We tested multiple variations of the algorithms. These variations are as fol-

lows:

1. IF1: the integer feasibility algorithm from [19].
2. IF2: the integer feasibility algorithm from [13].
3. IF3: The Yices SMT Solver using linear integer arithmetic (QF LIA) [17].
4. LF1: the linear feasibility algorithm from [19].
5. LF2: the linear feasibility algorithm from [13].
6. LF3: The Yices SMT Solver using linear real arithmetic (QF LRA) [17].
7. LF1C: the linear feasibility algorithm from [19] optimized using cycle origi-

nators.
8. LF1F: the linear feasibility algorithm from [19] optimized using the FIFO

label correcting algorithm.
9. LF2C: the linear feasibility algorithm from [13] optimized using cycle origi-

nators.
10. LF2F: the linear feasibility algorithm from [13] optimized using the FIFO

label correcting algorithm.
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Since a UCS can contain non-difference constraints, for example x1 +x2 ≤ 4,
using real difference logic (QF RDL) or integer difference logic (QF IDL) is not
sufficient to solve the constraint systems used.

These algorithms were tested on both sparse and dense constraint networks.
These networks were randomly generated using the UTVPI generator found at
[2]. The following types of networks were generated:

1. Constraint networks with no negative gray cycles.
2. Constraint networks with a single negative gray 3-cycle.
3. Constraint networks with a single long negative gray cycle.
4. Constraint networks with many negative gray 3-cycles.
5. Constraint networks with 10 medium length gray cycles.

The sizes of the generated networks are detailed in Table 1.

Table 1. Size of generated constraint networks.

# of variables 256 1024 4096 8192 16384

# of constraints (sparse) 20,000 30, 000 40,000 50,000 60,000

# of constraints (dense) 80,000 120,000 160,000 200,000 240,000

Long cycle length 256 1024 4096 8192 16384

# of short cycles 16 32 64 90 128

Medium cycle length 16 32 64 90 128

Fig. 3. Running times for networks with no negative gray cycles.

Figures 3 through 7 show the running times of the algorithms examined in this
paper both with and without optimizations. Since Figs. 4 through 7 deal with
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Fig. 4. Running times for networks with one negative gray 3-cycle.

Fig. 5. Running times for networks with one large negative gray cycle.

Fig. 6. Running times for networks with many negative gray 3-cycles.
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Fig. 7. Running times for networks with ten medium length negative gray cycles.

linearly infeasible systems we do not include the running time of the integer
feasibility algorithms in those graphs.

Based on the data in this section, we can draw the following conclusions:

1. Without optimization, LF1 runs faster than LF2, on average, in all cases.
2. Both optimizations drastically reduced the running time of both algorithms

and resulted in much closer running times.
3. In most cases both optimizations resulted in similar running times. However,

cycles originators yielded noticeably faster running times on graphs with a
single large negative cycle.

4. On small networks (256 variables), Yices runs faster than either LF1 or LF2.
However, performance quickly drops off. On networks with 8, 192 variables
Yices often fails to complete, and Yices never completes computation on
networks with 16, 384 variables.

5 Conclusion

In this paper, we documented our observations regarding empirical analyses of
algorithms for the LF and IF problems in UTVPI constraints. In particular,
we profiled the algorithms in [19] (LF1) and [18] (IF1) vis-a-vis the algorithms
in [13] (LF2 and IF2) and the Yices SMT solver [17]. Our experiments indi-
cated that for the LF problem, LF1 outperforms LF2 in all cases. In the case
of the IF problem, the IF1 and IF2 outperform each other in different situa-
tions. Including time to read the input file and construct each algorithm’s UCS
representation, then combining time requirements of the LF and IF algorithms,
LF1/IF1 and LF2/IF2 run in very similar amounts of time. The Yices SMT
solver outperformed both algorithms on small networks, however on larger net-
works LF1/IF1 and LF2/IF2 outperformed Yices with Yices failing to complete
computation on the largest networks.
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We intend to continue our empirical analysis by studying various classes of
UTVPI constraints characterized by feasibility, infeasibility, and the length of a
negative certificate (see [18,19]).
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Abstract. Crowdsourcing has been proven to be a useful tool for solv-
ing the tasks hard for computers. Due to workers’ uneven qualities, it
is crucial to model their reliabilities for computing effective task assign-
ment plans and producing accurate estimations of truths. However, exist-
ing reliability models either cannot accurately estimate workers’ fine-
grained reliabilities or require external information like text description.
In this paper, we consider dividing tasks into clusters (i.e., topics) based
on workers’ behaviors, then propose a Bayesian latent topic model for
describing the topic distributions and workers’ topical-level expertise.
We further present an online task assignment scheme which incorpo-
rates the latent topic model to dynamically assign each incoming worker
a set of tasks with the Maximum Expected Gain (MEG). The experi-
mental results demonstrate that our method can significantly decrease
the number of task assignments and achieve higher accuracy than the
state-of-the-art approaches.

Keywords: Crowdsourcing · Latent topic model
Online task assignment · Truth discovery

1 Introduction

In recent years, crowdsourcing has emerged as a promising paradigm which lever-
ages the wisdom of crowds to solve the tasks that are hard for computers, such as
image tagging [19] and sentiment analysis [11]. The popular platforms, like AMT
[5] and CrowdFlower [4], also enable the tasks requester to access the crowds con-
veniently. However, crowdsourcing still suffers from critical data quality problem
since workers are not always trustable [9]. In fact, Vuurens et al. pointed out
that only 55% of workers are proper workers whose average precision is only
75%, and 39% of workers are spammers [18]. Thus, the quality control problem
has attracted much attention from both academia and industry.
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To improve the quality of crowdsourced data, a widely adopted strategy is
adding redundancy by distributing each task to multiple workers and aggre-
gating noisy answers to infer correct answers (i.e., truths) [6]. In this standard
workflow, an accurate reliability model that describes workers’ expertise levels
on different tasks can significantly benefit the task assignment process and the
truth discovery process. Existing work often treats workers’ reliabilities as single
values (worker probability, WP) but overlooks workers’ fine-grained reliabilities.
Given WP’s limitation, some research employs the confusion matrix (CM) that
models a worker’s probability of answering a when the truth is d. Also, the latent
domain model (LDM) tries to capture the domain-level reliability by dividing
them into latent domains based on their text description. A significant drawback
of CM and LDM is that the reliability model they learned may not be accurate
since a worker can show uneven quality on a set of tasks with the same truth or
same task description. For example, the BlueBird dataset is collected by asking
39 workers to provide judgments for 108 images that whether a given image con-
tains a duck. Suppose the correct judgments of the images are known, we can use
39 workers’ correctness on an image as this image’s features. Then we perform
dimension reduction on the images’ features to reduce the dimensionality from
39 to 2. In Fig. 1, we plot the images based on their reduced features and use red
diamonds/blue dots to represent the images with truths YES/NO. We further
run the k-means algorithm with parameter k = 4 on the reduced features and
plot the cluster boundaries with different background colors. By this means, we
can easily distinguish that there exists finer clustering structure among the tasks
with the same truth or text description.

Intuitively, we can utilize workers’ behaviors to divide tasks into latent topics
and estimate workers’ topical-level expertise. Therefore, we present a novel latent
topic model which assumes there exist hidden topics among the tasks, and a
worker shows the same reliability on the tasks belonging to the same topic. In this
paper, we consider a crowdsourcing system where there exists a crowdsourcing
platform, a set of task requesters, and a set of crowdsourcing workers (as shown
in Fig. 2). We focus on the online task assignment problem where workers arrive
online, and the platform can only assign tasks to a worker upon arrival. Based on
the proposed latent topic model, we can estimate a task’s topic distribution from
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currently collected answers and further predict a worker’s answering behavior on
this task. Then we propose an adaptive quality-aware task assignment scheme
that dynamically assigns each incoming worker a set of tasks with Maximum
Expected Gain (MEG). In summary, three main contributions of this work are
as follows:

(1) To the best of our knowledge, we are the first to utilize the latent topic
model to design online task assignment scheme that dynamically estimates
the topic distribution of tasks and makes predictions for workers’ answering
behaviours.

(2) We employ a Bayesian latent topic model that utilizes workers’ answering
behaviors to divide tasks into topics, estimates workers’ topical-level exper-
tise, and propose an online task assignment scheme that dynamically assigns
each incoming worker a set of tasks with Maximum Expected Gain.

(3) We empirically show that the proposed online task assignment scheme can
significantly outperform the state-of-the-art approaches by achieving higher
accuracy with fewer number of assignments.

2 Problem Statement

2.1 Data Model

We assume that each target/golden task t has Bt candidate answers Ct =
{ct,b}Bt

b=1 and one correct answer dt (i.e., truth). Let T = {t1, t2, · · · , tM} be a set
of M target tasks published by the task requesters and let T ′ = {t′1, t

′
2, · · · , t′M ′}

be the M ′ golden tasks with known truths that the platform maintains. Given
the truths of the target tasks are unknown a priori, we record the estimated
truths of the target tasks with {d∗

t |t ∈ T }. As in literature [15], the platform
can estimate the reliabilities of workers by assigning golden tasks to them in
the forms of qualification tests or hidden tests. Assuming that there exists a set
of N workers W = {w1, w2, · · · , wN}, we use notation A to store the currently
collected answers for the target tasks and use notation A′ to record workers’
answers for the golden tasks. Also, we use notation πt

ai
(πt

a′
i
), πw

ai
(πw

a′
i
) to rep-

resent the associated task and the provider of a given answer ai(a′
i) ∈ A(A′).

Based on the latent topic model, we assume that there exist K latent topics
and each task t has an unknown topic distribution φt = {φt,k}K

k=1 recording
the possibility that it belongs to each topic. Workers’ topical-level expertise is
stored in matrix R = {rn,k}N,K

n=1,k=1 and each element rn,k represents worker
wn’s accuracy on the tasks belonging to the k-th topic.

2.2 Quality-Aware Online Task Assignment

In the online task assignment phase, an incoming worker w will first announce the
maximum number of tasks he will accept this time, namely capacity sw. Given
the current answer set Ac and workers’ topical-level expertise, we can compute
the current distribution matrix of task tm, denoted by Qc

t = {qc
m,k,b}

K,Btm

k=1,b=1. In
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this matrix, an element qc
m,k,b represents the possibility that the truth of task tm

is b and this task belongs to the k-th topic. Thus, we can compute the possibility
that the truth of task tm is b by summarizing all the elements associated with
the subscript b, formally:

∑K
k=1 qc

m,k,b. Then we output the estimated truths by
selecting the answers with the maximum possibilities of being the truths. Letting
Qc = {Qc

1, Q
c
2, · · · , Qc

M} denote the current distribution matrices of all tasks, the
accuracy of the estimated truths can be computed by:

F(Qc) =

∑M
m=1 maxb∈[1,Btm ]

(∑K
k=1 qc

m,k,b

)

M
(1)

In this paper, we focus on the online task assignment problem. Let Vw denote
the tasks assigned for worker w and let QVw denote the updated distribution
matrix after collecting worker w’s answers for the tasks in Vw. The goal of online
task assignment is to choose an optimal set of unfinished tasks, namely V ∗

w , that
maximizes the accuracy of estimated truths after collecting w’s answers for these
tasks. We formally define the quality-aware online task assignment problem as:

Definition 1 (Quality-aware Online Task Assignment). When a worker
w announces his capacity sw, given the workers’ topical-level expertise R, the
current answer set Ac, and the current distribution matrices Qc, the problem of
quality-aware online task assignment is to choose the optimal task set V ∗

w with
no more than sw tasks such that V ∗

w = arg maxVw
F(QVw).

3 Latent Topic Estimation

In this section, we first demonstrate our parameter estimation method based on
the Gibbs-EM algorithm, then propose our model selection criterion.

3.1 Bayesian Latent Topic Model

The inputs of the Bayesian latent topic model (BLTM) are M ′ golden tasks
T ′ = {t′1, t

′
2, · · · , t′M ′}, N workers W = {w1, w2, · · · , wN}, topic number K, and

workers’ correctness on the golden tasks X. The outputs of BLTM are tasks’ topic
distribution {φt}t=M ′

t=1 , workers’ topical-level expertise R = {rn,k}N,K
n=1,k=1. We

use α to denote the Dirichlet hyper-parameters of latent topic distributions and
use zi to denote the latent topics of the tasks. In the following, we will describe
the generative processes of the latent topics and the topical-level expertise.

Latent Topics. We assume that there exist K task clusters, namely topics, in
the crowdsourcing system. Letting {φt}t=M ′

t=1 denote the topic distributions of
tasks, we assume that for each task t, its topic distribution φt is drawn from a
Dirichlet distribution with parameters α = {αk}K

k=1.

Topical-Level Expertise. By assuming that a worker maintains the same reli-
ability level on the tasks belonging to the same topic, we model each worker w’s
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expertise as a K-dimensional vector {rw,k}K
k=1, where each element rw,k denotes

worker w’s reliability level on the k-th topic. By assuming that the wrong answers
are uniformly distributed, the possibility that worker w submits answer a for a
task t belonging to the k-th topic is:

p(a|zt = k, dt = b, rw,k) = (rw,k)δ(a−b) · (
1 − rw,k

Bt − 1
)1−δ(a−b) (2)

In Eq. 2, we use notation δ(·) to represent the Kronecker function which
equals 1 if the input is 0, and 0 otherwise.

3.2 Parameter Estimation

Given the observations X, the objective of the proposed model is to learn the
optimal model parameters (α, R) which maximize the likelihood of observing X.
However, it is intractable to directly compute the likelihood p(X|α, R) . Thus,
we employ Gibbs-EM [13] to find the optimal model parameters by iteratively
sampling latent variables and updating the parameters.

In the E-step, we employ a Gibbs sampler to sequentially sample each latent
variables zi from the distribution over this variable given the observations and
all other latent variables. Let the subscript ¬i denote a set of data with the i-th
element being excluded. The conditional posterior of latent variable zi can be
computed as:

p(zi = k|Z¬i,X,α, R) =
p(Z,X|α, R) )
p(Z¬i,X|α, R)

∝ p(Z,X|α, R) )
p(Z¬i,X¬i|α, R)

(3)

Based on the chain rule, we can factorize the term p(Z,X|α, R) into the
product of two factors, formally: p(Z,X|α, R) = p(Z|α) · p(X|Z,R) . Given
the Dirichlet-Multinomial conjugacy, we can sequentially sample zi by:

p(zi = k|Z¬i,X,α, R) ∝ (nπt
ai

,zi + αzi
) · rxi

πw
ai

,zi
· (1 − rπw

ai
,zi

)1−xi (4)

In the M-step, we update the model parameters (α, R) with sampled latent
variables. Letting {Z(s)}S

s=1 be the generated latent variables, we can use New-
ton’s method to update the Dirichlet hyper-parameters α. Letting α0 be the sum
of all elements in α, letting n

(r)
tm

be the sum of topic labels assigned to task tm,
and letting n

(s)
tm,k be the times that a task tm was assigned with k-th topic labels

in the s-th round samples, we can compute the gradient of the log-likelihood
p(Z|α) by:

gαk
=

S∑

s=1

M∑

m=1

Ψ(α0) − Ψ(n(s)
tm

+ α0) + Ψ(n(s)
tm,k + αk) − Ψ(αk) (5)

With the following Hessian matrix:

hjk =
S∑

s=1

M∑

m=1

Ψ ′(α0)−Ψ ′(n(s)
tm

+α0)+δ(j −k)
(
Ψ ′(n(s)

tm,k + αk) − Ψ ′(αk)
)

, (6)
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we can finally update the hyper-parameters α by αnew = αold −H−1gα . For the
model parameters R, we update a worker w’s topical-level expertise on the k-th
topic by: rw,k = nw,k,1 +1

nw,k,0 +nw,k,1 +2 .

3.3 Model Selection

In the following, we describe our criterion for determining the number of topics.
Based on the integrated completed likelihood (ICL) [7], the proposed metric
computes the expectation of the joint probability of the observations and latent
variables. Formally, the ICL value of a fixed K can be computed by:

ICL(K) = log
∫

(α ,R)

p(X,Z|α, R) p(α, R) dαdR (7)

We follow an approximation strategy as described in [1] that replaces the
latent variables by their MAP estimations, which is: Ẑ = arg maxZ p(Z|X, α̂, R̂) .
Given that p(X,Z|α, R) can be factorized into the product of p(X|Z,R) and
p(Z|α) , we employ the Bayesian information criterion (BIC) to approximate
each term and obtain a BIC-like approximation for ICL:

ICL(K) � log p(Ẑ|α̂) + log p(X|Ẑ, R̂) − K

2
log|X| − K

2

N∑

n=1

log|Xwn
| (8)

In Eq. 8, we use notation |Xwn
| to denote the number of answers that worker

wn has submitted.

4 Online Task Assignment

In this section, we first describe the computation process of the current distribu-
tion matrix, then propose a quality-aware online task assignment (OTA) scheme
based on LTM.

4.1 Computing Current Distribution Matrix

Given the workers’ topical-level expertise and their answers for task t, we can
compute the current distribution matrix Qc

t = {qc
t,k,b}

K,Bt

k=1,b=1 where a matrix
element qc

t,k,b represents the posterior probability that topic is k and truth is
b, formally qc

m,k,b = p(zt = k, dt = b|A(t), R) . Given the fact that p(A(t)|R)
is a constant term, the formal equation can be transformed to qc

m,k,b ∝ p(zt =
k, dt = b, A(t)|R) . Letting Xt|b denote the correctness of answers A(t) given truth
b, qc

m,k,b can be obtained by:

qc
m,k,b = p(dt = b, zt = k) p(Xt|b|R, zt = k) p(A(t)|dt = b, zt = k,Xt|b) (9)

In Eq. 9, factors p(dt = b, zt = k) represents the prior probability that a task
with truth b belongs to the k-th topic and can be estimated from workers’ answers
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for golden tasks. Combining the Eq. 2 and the definition of topical-level expertise,
we can compute the matrix element by:

qc
t,k,b ∝ p(dt = b, zt = k)

∏

ai∈A(t)

(rπw
ai

,k)δ(ai−b) ·
(

1 − rπw
ai

,k

Bt − 1

)1−δ(ai−b)

(10)

Truth Inference. Given the current distribution matrix Qc
t , we select the

answer with the highest probability to be the truth as the estimated truth dt.
Formally, the estimated truth is chosen by:

d∗
t = arg max

b∈[1,Bt]

p(dt = b|A(t), R) = arg max
b∈[1,Bt]

K∑

k=1

qc
t,k,b (11)

4.2 Adaptive Task Assignment

In this following, we will demonstrate our online task assign assignment scheme
that follows the principle of Maximum Expected Gain (MEG) with a block
parameter Thres.

Maximum Expected Gain. The MEG principle first estimates the expected
gain in accuracy if a worker is assigned to complete a given task, then allocates
the tasks with maximum expected gains (≥ Thres) to this worker. Assuming
that worker w has been assigned with a target task t, the worker is required
to provide an answer at,w for this task. Letting Qat,w denote the updated dis-
tribution matrix when worker w provides answer at,w, the expected accuracy
G(t, w) which represents the weighted sum of the estimated truth’s accuracy
when worker w providing different answers can be computed by:

G(t, w) =
∑

at,w∈[1,Bt]

p(at,w|A(t), {rw,k}K
k=1) · F(Qat,w) (12)

In Eq. 12, the first term p(at,w|A(t), {rw,k}K
k=1) can be obtained by enumer-

ating all possible combinations (zt, dt) and summarizing the joint probabilities
p(at,w, zt, dt|A(t), {rw,k}K

k=1) , which is:

p(at,w|rest) =
K∑

k=1

Bt∑

b=1

p(at,w|zt = k, dt = b, rw,k) · qc
t,k,b (13)

With the previous defined topical-level expertise model, we can further
replace the term p(at,w|zt = k, dt = b, rw,k) with (rπw

ai
,k)δ(at,w−dt) ·

(
1− rπw

ai
,k

Bt − 1 )1−δ(at,w−dt).
In Eq. 10, we show that an element qc

t,k,b is in proportion to the product of
the (zt = k, dt = b)’s prior and workers’ conditional probabilities of providing
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their answer when task t belongs to the k-th topic. Based on this, we can update
the distribution matrix by:

q
at,w

t,k,b ∝ qc
t,k,b · p(at,w|zt = k, dt = b, rw,k) (14)

Recall that the sum of the elements in a distribution matrix Qc
t equals to 1, we

can normalize the updated distribution matrix with the following equation:

q
at,w

t,k,b =
qc
t,k,b · p(at,w|zt = k, dt = b, rw,k)

∑K
k=1

∑Bt

b=1 qc
t,k,b · p(at,w|zt = k, dt = b, rw,k)

, (15)

where the denominator is the term p(at,w|A(t), {rw,k}K
k=1) . Given Eqs. 1 and 11,

the expected accuracy can be computed by:

G(t, w) =
∑

at,w

p(at,w|A(t), {rw,k}K
k=1) · arg max

b

K∑

k=1

q
at,w

t,k,b (16)

Based on Eq. 15, we can integrate out the term p(at,w|A(t), {rw,k}K
k=1) and

obtain the following equation:

G(t, w) =
∑

at,w

max
b

K∑

k=1

qc
t,k,b · (rπw

ai
,k)δ(at,w−b) ·

(
1 − rπw

ai
,k

Bt − 1

)1−δ(at,w−b)

(17)

5 Experiments

In this section, we first describe our experimental setup, then evaluate our online
task assignment scheme in two aspects: accuracy and the number of assignments.

5.1 Experimental Setup

Datasets. To evaluate the performance of our model, we run experiments on
four real-world datasets: Fact1, BlueBird [19], Valence [17], and WSD [17]. As
shown in Table 1, we list the model selection results on the original datasets.
The model selection process on the original BlueBird dataset is shown in Fig. 3.
By plotting the ICL values associated with different K, we can see that the ICL
value first grows when K increases, then falls after reaching the peak value, i.e.,
−2221. Therefore, we can say that the K = 4 is the best choice for the Blue-
bird dataset. Likewise, we compare the ICL values on the other three datasets
and select their optimal topic numbers. In our experiments, we employ a boot-
strapping method as described in [22] to simulate the golden tasks and workers’
answers on the golden tasks. We assume that each worker has answered M ′ = 40
golden tasks in the past. Thus, we simulate 1000 training sets for each dataset,
where each contains workers’ answers for 40 simulated tasks. By employing the
random permutation model as in [2] to permutate the arrival order, we run online
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Table 1. Description of the datasets

Dataset Properties

#Tasks #Users #Per-task

answers

Sparsity #Topics ICL

BlueBird 108 39 39 0 4 −2221

Fact 550 91 5.08 0.9440 2 −647

Valence 100 38 10 0.7368 2 −549

WSD 177 34 10 0.7058 2 −213

-2650

-2550

-2450

-2350

-2250

 1  2  3  4  5  6  7  8  9  10

IC
L

#Topics (K)

Fig. 3. ICL values on Bluebird

task assignment experiments for our methods and baselines, then evaluate the
schemes by their average performance over 1000 rounds.

Baseline Methods. For the evaluation of our OTA scheme, we compared MEG-
LTM with three baselines: (1) RR-MV, (2) CrowdDQS, and (3) QASCA. The
simple baseline RR-MV treats workers as equal and distributes tasks evenly
among the workers. CrowdDQS employs WP to model workers’ reliabilities and
computes the maximum potential gain that an incoming worker can achieve on
each task to dynamically assign tasks for this workers. In our experiments, we
run QASCA with CM model since it can better capture workers’ fine-grained
reliabilities than the WP model.

Evaluation Metrics. We evaluate our OTA scheme and three baselines in terms
of accuracy and the number of assignments. Accuracy denotes the proportion of
correctly inferred tasks among all the target tasks, and we use the number of
assignments to record the number of votes that an OTA scheme collects in an
experiment.

Experiment Workflow. To evaluate an OTA scheme on a dataset with fixed
worker capacity, we first run its reliability estimation module on the boot-
strapped training set, then perform OTA schemes under the worker capacity
constraint, and finally evaluate the OTA schemes in terms of accuracy and the
number of assignments. In the experiments, we set the block parameter Thres
to 0.001 for the schemes which dynamically allocate tasks based on estimated
gains.

5.2 Performance of Online Task Assignment

We plot the accuracy of each algorithm in Fig. 4 and plot the number of assign-
ments in Fig. 5. In Figs. 4(a) and 5(a), we compare the performance of the OTA
schemes on the BlueBird dataset when the worker capacity varies from 10 to 100.
In Fig. 4(a), we notice that the accuracy of MEG-LTM first increases rapidly
when capacity increases and then slowly increases when capacity exceeds 30.
From Fig. 5(a), we can observe that the assignment number of MEG-LTM first
increases when workers’ capacity is less than 30 and then become stable. One

1 https://sites.google.com/site/crowdscale2013/shared-task/task-fact-eval.

https://sites.google.com/site/crowdscale2013/shared-task/task-fact-eval
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possible reason is that when the capacity grows from 10 to 30, the number of
answers that collected for each task is still small. In that case, enabling workers to
contribute more answers can significantly improve the overall accuracy of aggre-
gated answers, which means the proposed method MEG-LTM will only block a
few assignments. However, when workers’ capacity exceeds 30, the high-quality
workers are allocated with more tasks which significantly improves the overall
accuracy. In this case, low-quality workers are blocked from taking assignments.
Thus, the overall accuracy and the assignment number of MEG-LTM becomes
stable when the capacity exceeds 30. We notice that the proposed method MEG-
LTM shows obvious advantages than two baselines CrowdDQS and RR-MV.
MEG-LTM can also utilize significantly fewer assignments to achieve slightly
lower accuracy than QASCA. In particular, MEG-LTM uses only 505.5 assign-
ments (70.8% fewer than QASCA) and achieves 89.72% overall accuracy (0.89%
lower than QASCA) when the worker capacity is 100. When comparing MEG-
LTM with the second best baseline CrowdDQS, MEG-LTM shows significant
advantages in both accuracy and the assignment number. In detail, MEG-LTM
achieves 4.15% higher accuracy than CrowdDQS with 26.80% assignments and
achieves 14.28% higher accuracy than RR-MV with only 12.96% assignments
when the worker capacity is 30. While comparing the proposed method MEG-
LTM with three baselines on the other three datasets, we notice that MEG-LTM
outperforms all baselines in both accuracy and the number of assignments.
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Fig. 4. Accuracy w.r.t. capacity
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Fig. 5. Number of assignments w.r.t. capacity

6 Related Work

There has been extensive work that incorporates worker expertise into task
assignment and truth discovery. In the following, we will begin with current task
assignment schemes that employ different reliability models, then discuss the
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application of reliability model in truth discovery. The idea of task assignment
is to assign appropriate tasks to workers and improve the quality of estimated
truths. CDAS [11] employes the WP model and dynamically estimates workers’
quality. CrowdDQS [8] also employs the WP model, and it dynamically chooses
to issue more golden tasks to a worker for reliability estimation or to assign
target tasks to collect data. QASCA [23] conducts the task assignment by allo-
cating the tasks with maximum accuracy (or f1-score) gains to each incoming
worker. Unlike previous OTA schemes, DOCS [21] utilizes the existing knowledge
base to divide tasks into latent domains, and further conducts task assignments
based on workers’ domain-level expertise. Researchers have also proposed var-
ious truth discovery approaches that utilize different reliability models. Based
on the WP model, Yin et al. [20] employed an EM algorithm to learn work-
ers’ reliabilities and the truths. Dong et al. [10] conducted truth discovery by
exploiting the confidence interval. To capture the fine-grained expertise, some
work [14,16] employed the CM models to describe workers’ behaviors under dif-
ferent truths. Some other work [12,19] utilized the task information (e.g., text
description) to divide tasks into latent domains and further estimate workers’
domain-level expertise. Also, Du et. al. [3] considered the co-clustering structure
in a crowdsourcing system and tried to estimate workers’ expertise on different
task clusters.

7 Conclusion

In this paper, we studied the application of the latent topic model in the online
task assignment problem. We propose a novel Bayesian latent topic model
that utilizes workers’ behavior to capture the underlying clustering structure
of crowdsourcing tasks. Then we present a novel online task assignment scheme,
namely MEG-LTM, to incorporate the Bayesian latent topic model to compute
assignment plans. The experimental results show that MEG-LTM can signifi-
cantly outperform the state-of-the-art approaches by achieving higher accuracy
with fewer number of assignments.
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Abstract. In this paper we study the scheduling problem with calibra-
tion and time slot cost. In this model, the machine has to be calibrated
to run a job and the calibration remains valid for a fixed time period of
length T , after which it must be recalibrated before running more jobs.
On the other hand, a certain cost will be incurred when the machine
executes a job and the cost is determined by the time slots occupied by
the job in the schedule. We work on the jobs with release times, dead-
lines and identical processing times. The objective is to schedule the
jobs on a single machine and minimize the total cost while calibrating
the machine at most K times. We propose dynamic programmings for
different scenarios of this problem, as well as a greedy algorithm for the
non-calibration version of this problem.

1 Introduction and Related Work

The scheduling with calibrations was originally motivated from the Integrated
Stockpile Evaluation (ISE) program which requires expensive calibrations to
test nuclear weapons periodically [4]. This motivation can be extended to the
scenarios where the machines need to be calibrated periodically to ensure high-
quality products, which has many industrial applications, including robotics and
digital cameras [3,10,14]. In this calibration model, the machine must be cali-
brated before it runs a job. When the machine is calibrated at time t, it stays
in calibrated status for a fixed time period of length T , after which it must be
recalibrated to continue running the jobs. The time interval [t, t + T ] is referred
to as the calibration interval. In the ideal model, calibrating a machine is instan-
taneous, meaning that the machine could continue running the job immediately
after being calibrated and the machine can switch from uncalibrated to cali-
brated status instantaneously.
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There are few theoretical results about scheduling with calibrations. In 2013,
Bender et al. [2] proposed a theoretical framework for scheduling with cali-
brations. They considered jobs of unit processing time with release times and
deadlines, aiming at minimizing the total number of calibrations. In the single-
machine setting, they proposed a greedy, optimal, polynomial-time algorithm
called Lazy-Binning, and for the multiple machine setting, they showed that
the Lazy-Binning algorithm on multiple machines is 2-approximation, while the
complexity status of this problem still remains open. Fineman and Sheridan [7]
generalized the problem with resource-augmentation [9] and considered the jobs
with non-unit processing times on multiple machines. They showed the relation-
ship of the problem with the classical machine-minimization problem [12]. Angel
et al. [1] developed different results on several generalizations of this problem,
including many calibration types and calibration activation time. Chau et al.
[5] worked on the trade-off between weighted flow time and calibration cost for
unit-time jobs and gave both online approximation results and offline optimal
result for this problem. They gave several online approximation results on differ-
ent settings of single or multiple machines for weighted or unweighted jobs and
also a dynamic programming for the offline problem.

On the other hand, for the classical scheduling problem without calibration,
Wan and Qi [13] introduce time slot cost into the objective function, in which
the time is discretized into many time slots by unit length and whenever a job
is scheduled during a time slot, a certain cost must be incurred. For example,
the price of electricity can be different over time, as well as the availability of
electricity. Later research of integrating the objective with time slot cost can be
found in [6,15,16].

In this paper, we work on the scheduling problem with the consideration of
both calibrations on the machine and the time slot cost. Instead of integrating
the objective with these two aspects, we investigated the problem on a single
machine aiming to minimize the total time slot cost with a limited number of
calibrations. Especially we study the problem of jobs for several cases (Sect. 2).
We first propose a dynamic programming approach to solve the problem for the
jobs of identical processing time (Sect. 2.1). Then we show an improved dynamic
programming approach when the jobs are agreeable and have identical processing
time (Sect. 2.2). At last, for the special case where the time slot function is
monotonic we show that the running time of the dynamic programming can be
further reduced (Sect. 2.3). Moreover, for the problem without the consideration
of calibration, we propose an efficient greedy algorithm for jobs of arbitrary
processing times (Sect. 3).

The main contribution of this work is to extend the dynamic programming
technique from Chau et al. [5]. The foundation of the dynamic programming
approach in both our work and their work is that once we fix the schedule of
one job, we are able the divide the problem into several sub-problems. And such
a job is the job of the smallest weight in their work since the optimal schedule
follows Smallest-Weight-First scheduling policy when the available time slots are
predetermined. Similarly, in our work such a job is the job of the latest deadline,
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as the optimal schedule follows EDF (Earliest-Deadline-First) scheduling policy.
Moreover, in our work, we extend the model to consider jobs of non-unit identical
processing times.

Formulation. We are given a set J of n jobs, where each job j ∈ J has release
time rj , deadline dj , processing time pj . For each job j ∈ J , we call Ij = (rj , dj ]
the time interval of job j. In this paper, we work on the scenario where jobs have
identical processing time, i.e. pj = p,∀j ∈ J where p is a constant. We consider
the schedule on a single machine which can be trusted to run a job only when it is
calibrated. The calibration remains valid for a consecutive time period of length
T once started. In this model, time is divided into many unit slots, and we denote
the time interval (t−1, t] as time slot t. During each time slot, the machine could
process a job by one unit of workload, and each time slot t is associated with a
non-negative cost c(t), i.e. when the machine executes a job during time slot t, it
will incur the cost c(t). A feasible solution includes the schedule of calibrations
(i.e. when to start a calibration) and the schedule of jobs (i.e. when to start a
job). The objective is to schedule all the jobs on a single machine such that each
job is scheduled during its time interval non-preemptively, so as to minimize the
total time slot cost while calibrating the machine at most K times where K is
input. The problem is denoted as 1|rj , dj , pj = p, T,K|

∑
t c(t), according to the

classical three-field notation [8].
Let interval I0 = (minj∈J rj ,maxj∈J dj ] be the time horizon of the schedule

and let L = maxj∈J dj − minj∈J rj be the length of the time horizon. Without
loss of generality we assume L ≥ P where P =

∑
j∈J pj . We assume all the

inputs are integers and in any feasible solution both the calibration and a job
should start at a time which is an integer.

As a matter of fact, once the available time slots are predetermined, the
schedule of jobs can be obtained by applying Earliest-Deadline-First (EDF)
scheduling algorithm, which always assigns the job of earliest deadline from the
pending jobs to the current available time slot.

2 Slot Cost with Calibration

In this section, we work on the problem on a single machine with the considera-
tion of calibrations on the machine. We consider the jobs of identical processing
time p and aim to find a schedule on single machine so as to minimize the total
time slot cost while calibrating the machine at most K times where K is input.
Note that, depending on the input, it might happen that p � T or p � T where
in the latter case we would have to start multiple calibrations in order to finish
one job, and hence it might happen that K � n.

Let Ψ = {t | minj∈J rj ≤ t ≤ maxj∈J dj} be the set of possible starting time
or completion time of the jobs. In the following, we assume jobs are sorted by
non-decreasing order of their deadlines and assume that the index of the jobs
starts from 1.
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Lemma 1 (EDF). There exists a feasible schedule such that for any two jobs
i, j with i < j (i.e. di ≤ dj), if ri ≤ tj then ti ≤ tj where ti, tj are the corre-
sponding starting time of jobs i and j in the schedule respectively.

Lemma 1 relies on the swap of the (partial) schedule of job i and j, which works
in the preemptive setting when we swap the execution of jobs i and j by one unit,
and requires that pi = pj in the non-preemptive setting. The proof of Lemma1
can be found in the full version (Fig. 1).

Fig. 1. An illustration for the proof of Lemma 1. When we swap the schedule of the
two jobs, the new schedule follows Earliest-Deadline-First rule

Distinct Release Time and Deadline Property on Single Machine. As we
consider the schedule on a single machine, any two jobs cannot be scheduled
at the same time slot. Hence, without loss of generality, we assume that job
release times are distinct and that job deadlines are distinct. Formally, for any
pair of jobs i, j ∈ J , if ri = rj and di ≤ dj , then we increase rj by 1, i.e.
rj ← rj + 1. A similar argument applies to job deadlines.

2.1 Jobs of Identical Processing Times

We first focus on the jobs of identical processing times where the problem is
denoted as 1|rj , dj , pj = p, T,K|

∑
t c(t). In the following, we propose a dynamic

programming approach.

Definition 1. Let J(j, t1, t2) = {i | t1 − p ≤ ri < t2, i ≤ j, i ∈ J} be the set of
jobs that are released during time interval [t1 − p, t2) whose index is at most j
where t1, t2 ∈ Ψ and j ∈ J . We define f(j, t1, t2, u1, u2, k) to be the minimum
total time slot cost in the partial optimal schedule that completes jobs J(j, t1, t2)
during interval (t1, t2] with at most k calibrations providing that the machine has
already been calibrated during time intervals (t1, t1 + u1] and (t2 − u2, t2] where
u1, u2 ∈ [0, T ], k ∈ [0,K].

We look for the optimal schedule in which no two calibrations overlap with
each other, while in the proposed dynamic programming approach, we allow
the overlap of the calibrations. Note that Lemma1 works in this model. In the
dynamic programming, we test every possibility of the schedule of job j, and
assume that job j ∈ J(j, t1, t2) starts at time t in the optimal schedule, then, we
divide the remaining jobs into two subsets, J(j − 1, t1, t) and J(j − 1, t + p, t2).
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For any job i from J(j−1, t1, t), it must be scheduled before job j in the optimal
schedule, because otherwise scheduling job i after job j will violate Lemma 1.
Moreover, all jobs of J(j − 1, t + p, t2) must be scheduled after job j in the
optimal schedule because they are released as late as t. Therefore, the problem
can be divided into two sub-problems: scheduling jobs J(j − 1, t1, t) during time
interval (t1, t] and scheduling jobs J(j−1, t+p, t2) during time interval (t+p, t2]
(Fig. 2).

(a) (b)

Fig. 2. Illustration of the dynamic programming in Proposition 1. (a) Shows the parti-
tion of the sub-problems while (b) shows a series of k0 calibrations to cover the interval
(at, bt].

Proposition 1. Let F = f(j, t1, t2, u1, u2, k). For the base cases, if J(j, t1, t2) =
∅, we have F ← 0 and if j 
∈ J(j, t1, t2) we have F ← f(j − 1, t1, t2, u1, u2, k).
Let Q = {t | t ∈ [t1, t2 − p] ∩ [rj , dj − p]} be the set of possible starting times
of job j. If Q = ∅ we have F ← ∞, and if t1 + u1 ≥ t2 − u2 we have F =
mint∈Q f(j −1, t1, t, t− t1, 0, 0)+f(j −1, t+p, t2, t2 − t−p, 0, 0)+

∑p
z=1 c(t+z).

Otherwise, we have F = mint∈Q
∑p

z=1 c(t + z)+
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f(j − 1, t1, t, t − t1, 0, 0)
+ f(j − 1, t + p, t2, t1 + u1 − t − p, u2, k), if t ∈ [t1, t1 + u1 − p]
f(j − 1, t1, t, u1, t + u2 − t2, k)
+ f(j − 1, t + p, t2, t2 − t − p, 0, 0), if t ∈ [t2 − u2, t2 − p]
mincond. f(j − 1, t1, t, u1,max{t − t′, 0}, k′)
+ f(j − 1, t + p, t2,max{t∗, 0}, u2, k − k0 − k′), if t ∈ (t1 + u1 − p, t2 − u2)

where t∗ = t′ + k0T − t − p and cond. stands for k′ ∈ [0, k − k0], t′ ∈ [t1, t2) ∩
(at − T, at] and k0 =  bt−t′

T �, at = max{t, t1 + u1}, bt = min{t + p, t2 − u2}.

Proof. Note that we allow the overlap of the calibrations in the dynamic pro-
gramming. If J(j, t1, t2) = ∅, nothing needs to be done. If j 
∈ J(j, t1, t2), we
would have J(j, t1, t2) = J(j − 1, t1, t2).

The main focus of the dynamic programming is to try every possibility of
the starting time of job j, as well as the starting time of the calibrations that
job j occupies. Suppose job j starts at time t in the optimal schedule. Combined
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with the fact that job j is scheduled during time interval (t1, t2] in the optimal
schedule, we have t ∈ [t1, t2 − p] and t ∈ [rj , dj − p]. Therefore set Q indeed
contains all such possible starting times of job j. If Q = ∅, it is impossible to
schedule job j, hence we have F ← ∞. If t1 + u1 ≥ t2 − u2, we would have
(t1, t2] ⊆ (t1, t1 + u1] ∪ (t2 − u2, t2], in other words the machine is completely
calibrated during time interval (t1, t2]. Therefore, we only need to schedule job j
at time t and reduce the problem to sub-problems: scheduling jobs J(j − 1, t1, t)
in time interval (t1, t] and jobs J(j − 1, t + p, t2) in time interval (t + p, t2] (as
argued earlier). And for both intervals, the machine is completely calibrated.

Case 1. t ∈ [t1, t1 + u1 − p]. In this case the interval [t, t + p] is completely
contained in the interval [t1, t1 + u1]. Therefore, it is not necessary to start
a new calibration to cover the interval [t, t + p] and we just reduce to sub-
problems. For the sub-problem of jobs J(j − 1, t1, t) during interval (t1, t],
the machine is completely calibrated during interval (t1, t], hence we allocate
all the k calibrations to the other sub-problem. For the sub-problem of jobs
J(j − 1, t + p, t2) during interval (t + p, t2], the calibrated intervals are (t +
p, t1 + u1] and (t2 − u2, t2].
Case 2. t ∈ [t2 −u2, t2 − p]. This case is symmetric with Case 1. in the sense
that the interval [t, t + p] is completely contained in the interval [t2 − u2, t2].
Therefore, we just reduce to sub-problems and reserve all the k calibrations
to the sub-problem of jobs J(j −1, t1, t), in which the calibrated intervals are
(t1, t1 +u1] and (t2 −u2, t]. For the sub-problem of jobs J(j − 1, t+ p, t2), the
machine is completely calibrated during interval (t + p, t2].
Case 3. t ∈ (t1+u1−p, t2−u2). In this case we have to start new calibrations
to schedule job j at time t because (t, t + p] \ ((t1, t1 + u1] ∪ (t2 − u2, t2]) 
= ∅
due to t1 + u1 < t2 − u2. By definition, we have (at, bt] = (t, t + p] \ ((t1, t1 +
u1] ∪ (t2 − u2, t2]) 
= ∅, i.e. (at, bt] denotes the interval in which the machine
has not (but have to) been calibrated. In case the length of the interval (at, bt]
is larger than T , we would have to start more than one calibration to cover
interval (at, bt]. Suppose in the optimal schedule, job j starts at time t and
set O contains all the calibrations that intersect with interval (at, bt]. We sort
the calibrations in O by the increasing order of their starting time. Let t′ be
the starting time of the first calibration in O. Then we have t′ ∈ (at − T, at].
If t′ + T < bt, we would have |O| > 1. Then, for the second calibration in O,
it must start at time t′ + T because otherwise time slot t′ + T + 1 will not
be calibrated due to the fact that no two calibrations in the optimal schedule
overlap with each other. Therefore, the calibrations in O must be consecutive,
i.e. there is no gap between any two consecutive calibrations. As a result, we
would have |O| = k0 where k0 =  bt−t′

T �. Moreover, besides interval (at, bt],
the machine is also calibrated in intervals (t′, at] and (bt, t′ + k0T ] by the
calibrations in O. In the dynamic programming, we try every possibility of
t′ from [t1, t2) ∩ (at − T, at] to start the calibrations and then reduce to sub-
problems. For the sub-problem of jobs J(j − 1, t1, t), we try every possibility
of the number of calibrations that are allocated to cover the interval (t1, t],
i.e. k′ ∈ [0, k − k0]. And we allocate the remaining k − k0 − k′ calibrations to
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the other sub-problem of jobs J(j − 1, t + p, t2). Finally, we would reach the
optimal schedule since we have tried every possibility of the values t′ and k′.

If none of the above three cases is possible, it is impossible to feasibly schedule
job j, hence we would set F to be infinity. ��

Time Complexity. Note that the computation of
∑p

z=1 c(t + z) for a fixed value
t will takes O(1) time if we use the date structure of prefix sum array. The table
size of the dynamic programming is O(nKT 2L2) and computation for each sub-
problem takes O(KTL) steps for enumerating the values t, t′, k′ in the last case.
In total, the time complexity is O(nK2T 3L3).

2.2 Agreeable Jobs of Identical Processing Times

In this section, we restrict the problem to a special set of jobs, agreeable jobs.
Job set J is called agreeable if for any two jobs i, j ∈ J it satisfies the property
that ri < rj implies di ≤ dj . In other words, earlier released jobs have earlier
deadlines. Lemma 1 implies that the optimal schedule preserves the order of jobs
(non-decreasing order of deadlines) as the jobs are agreeable. We still assume all
jobs have identical processing times and further propose an improved dynamic
programming approach to solve the problem.

Definition 2. We define F (j, k, t) to be the minimum total time slot cost of
the partial schedule that completes jobs {1, 2, . . . , j} before time t with at most
k calibrations, where j ∈ J, k ∈ [0,K], t ∈ Ψ . Let f(i, j, t1, t2) be the minimum
total time slot cost to schedule jobs {i, i + 1, . . . , j} during time interval (t1, t2]
given that the machine has been calibrated during interval (t1, t2], where i, j ∈
J, t1, t2 ∈ Ψ .

Proposition 2. If i > j we have f(i, j, t1, t2) ← 0, and if (j + 1 − i)p > t2 − t1
or [t1, t2 − p] ∩ [rj , dj − p] = ∅ we have f(i, j, t1, t2) ← ∞. Otherwise,

f(i, j, t1, t2) = min
{

f(i + 1, j, t1 + p, t2) +
∑p

z=1 c(t1 + z), if t1 ∈ [ri, di − p]
f(i, j, t1 + 1, t2)

Proof. If i > j, no job needs to be considered by definition, hence we have
f(i, j, t1, t2) ← 0. If (j+1−i)p > t2−t1, time slots in interval (t1, t2] is insufficient
to schedule jobs {i, i+1, . . . , j}, and if [t1, t2−p]∩ [rj , dj −p] = ∅ job j cannot be
scheduled during time interval (t1, t2], therefore we have f(i, j, t1, t2) ← ∞. The
main focus of the dynamic programming is to determine the starting time of job
i in the optimal schedule. In the optimal schedule, job i either starts at time t1
or after time t1. If job i starts at time t1, we would have t1 ∈ [ri, di − p]. Since
the optimal schedule preserves the order of jobs, the remaining jobs {i+1, . . . , j}
have to be finished during interval (t1+p, t2], therefore we reduce to sub-problem
f(i + 1, j, t1 + p, t2). If job i starts after time t1, we just reduce to sub problem
f(i, j, t1 +1, t2) since no job will be scheduled in time slot t1 +1. The recurrence
equation is correct as we have tested every possibility of the schedule of job i. ��
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Proposition 3. If j = 0 we have F (j, k, t) ← 0, and if j > kT or rj + p > t we
have F (j, k, t) ← ∞. Otherwise,

F (j, k, t) = min
{

mini∈[1,j],k′∈[1,k] F (i − 1, k − k′, t − k′T ) + f(i, j, t − k′T, t)
F (j, k, t − 1)

The main focus of the dynamic programming in Proposition 3 is to identify a
maximal set of consecutive calibrations (an amount of k′ calibrations covering
interval (t−k′T, t]) satisfying that the last calibration finishes at time t and then
identify the first job (job i) that is totally scheduled during these calibrations.
We put the proof of Proposition 3 in full version.

Time Complexity. The dynamic programming in Proposition 3 takes O(n2K2L)
in which the table size of F (j, k, t) is bounded by O(nKL) and the recurrence
equation takes O(nK) steps. For the dynamic programming in Proposition 2, the
table size of f(i, j, t1, t2) is bounded by O(n2L2), while it can be further reduced
to O(n2LKT ) because t2 − t1 ≤ KT . Moreover, the recurrence equation takes
O(1) steps to compute each value of f(i, j, t1, t2), hence the time complexity is
O(n2KTL). In total the time complexity is O(n2LK(K + T )).

2.3 Monotonic Time Slot Cost Function

In this part, we investigate the case that the slot cost function is monotonic over
time. Without loss of generality, we would assume that the slot cost function
is monotonic non-decreasing, as the analysis for the other case (monotonic non-
increasing) is symmetric when we consider the time horizon from large to small.
In other words, the earlier a job is scheduled, the smaller cost it will incur. We
propose an improved dynamic programming approach for the case when the job
set J is agreeable and all jobs have identical processing times.

Note that the optimal schedule preserves the order of jobs for agreeable jobs
by Lemma 1. For each job j ∈ J , we define τj = maxi∈[1,j]{ri + (j − i)p}, then
τj indicates the earliest time that job j could start in any feasible schedule
preserving the order of jobs.

We define calibration block to be a set of maximal consecutive calibrations
such that there is no gap between any two consecutive calibrations in this set
(i.e. the calibration starts immediately after the previous calibration finishes).
Then we show that for each calibration block in the optimal schedule, the last
job, say job j, that is scheduled in this block starts at τj in the optimal sched-
ule. Therefore, we propose a dynamic programming approach which identifies
the calibration block in the optimal schedule, as well as the last job in each
calibration block.

Lemma 2. There exists an optimal schedule such that for each calibration block,
job j starts at time τj where job j is the last job of the calibration block.

Proof. In the following we show how to transform an optimal schedule into
another optimal schedule that meets the statement. Consider an optimal sched-
ule σ and a calibration block B in which the last job j starts at time tj such
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that tj > τj . Let t be the latest idle time slot before time tj (note that time slot
t refers to interval (t − 1, t] and time slot t is not necessarily to be calibrated),
i.e. there is a job which starts at time t and let job i be the job starting at time
t. Then we claim that for each job j′ ∈ J ′, we have tj′ > τj′ where tj′ is the
starting time of job j′ in the schedule σ and J ′ = {i, i + 1, . . . , j}. To prove
the claim, if tj′ ≤ τj′ for some job j′ ∈ J ′, we would have a contradiction that
tj = tj′ + (j − j′)p ≤ τj′ + (j − j′)p ≤ τj , where the first equality holds because
jobs {j′, j′ + 1, . . . , j} are scheduled consecutively due to the definition of t and
the last inequality holds because the definition of τj and also τj′ = ri + (j′ − i)p
for some job i ∈ [1, j′] by definition. Hence, the claim is true.

Regrading the feasibility of jobs, advancing each job in J ′ by one unit time
will result in another feasible schedule because of the above claim. Therefore, if
time slot t is calibrated, we would obtain another optimal schedule by applying
the above advancing process. Otherwise, time slot t is not calibrated. We would
obtain another optimal schedule by advancing both jobs in J ′ and all the cali-
brations in the calibration block B by one unit time. Consequently, by repeating
such advancing process we would eventually obtain another optimal schedule
which meets the statement. ��

Definition 3. We define f(i, j, k) to be the minimum total time slot cost to
schedule jobs {i, i + 1, . . . , j} during time interval I ′ given that the machine is
completely calibrated during interval I ′ where I ′ = (τj + p − kT, τj + p] and
i, j ∈ J , k ∈ [0,K]. We define F (j, k) to be the minimum total time slot cost of
the schedule that completes jobs {1, 2, . . . , j} with at most k calibrations where
k ∈ [0,K] and j ∈ J .

First, we show the Computation of f(i, j, k). As the optimal schedule pre-
serves the order of jobs, we could calculate the starting time of each job of
J ′ directly where J ′ = {i, i + 1, . . . , j}. For each job j′ ∈ J ′, we define
tj′ to be the starting time of job j′ in the optimal schedule. Then we have
ti = max{τi, t0} where t0 = τj + p − kT , and for j′ ∈ J ′ \ {i} we have
tj′ = max{τj′ , tj′−1 + p}. By definition τj′ is the earliest possible time that
job j′ could start. We would have f(i, j, k) ← ∞ if ∃j′ ∈ J ′, tj′ + p > dj′

and otherwise f(i, j, k) ←
∑

j′∈J ′
∑p

z=1 c(tj′ + z). Note that the computation
of

∑p
z=1 c(t + z) for a fixed value t takes O(1) time if we use the date struc-

ture of prefix sum array. The computation of tj′ takes O(n) time, and hence the
computation of each value f(i, j, k) takes O(n) time.

Proposition 4. If j = 0 we have F (j, k) ← 0, and if jp > kT we have F (j, k) ←
∞. Otherwise,

F (j, k) = min
cond.

{F (i − 1, k − k′) + f(i, j, k′)}

where cond. stands for i ∈ [1, j], k′ ∈ [1, k], τi−1 ≤ τj − k′T and we would regard
τ0 = −∞.
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Proof. In the dynamic programming, we maintain the invariant that job j is
the last job of a calibration block. Then job j starts at time τj by Lemma 2.
Let B be the calibration block in the optimal schedule in which job j is the
last job in this block. Suppose there are k′ calibrations in calibration block B,
then the block will cover interval (τj + p − k′T, τj + p]. Then we test every
possibility of the number of jobs that are scheduled during calibration block B.
Let job i ∈ [1, j] be the earliest job that is scheduled in calibration block B in
the optimal schedule. Then for job i − 1 (if i − 1 > 0), it should finish before
time t0 where t0 = τj + p − k′T according to the definition of calibration block.
Therefore, we would have τi−1 + p ≤ t0, i.e. τi−1 ≤ τj − k′T . In the dynamic
programming, we test every possible value of k′ from [1, k] and every possible
value of i from [1, j] such that τi−1 ≤ τj −k′T , and then reduce to sub-problems
F (i − 1, k − k′) and f(i, j, k′) by scheduling jobs {i, i + 1, . . . , j} during time
interval (τj + p − k′T, τj + p]. The dynamic programming is correct because we
have tested every possible value of i and k′. ��

Time Complexity. The table size of f(i, j, k) is O(Kn2) and computation of
each value of f(i, j, k) takes O(n) time as argued before. The table size of
F (j, k) is O(Kn) and computation of each value F (j, k) in Proposition 4 takes
O(nK) steps. Hence in total, the time complexity of the dynamic programming
is O(Kn2(n + K)).

3 Slot Cost Without Calibration for General Jobs

In this section, we investigate the problem without the consideration of the cali-
brations on the machines, i.e. the machine is available at any time. We consider
general jobs with preemption (can be interrupted during execution and resumed
later) where each job could have arbitrary processing time on the condition
that P =

∑
j∈J pj ≤ L = maxj∈J dj − minj∈J rj . The problem is denoted as

1|rj , dj , pj , pmtn|
∑

t c(t). We propose a greedy algorithm to solve this problem.

Fig. 3. An illustration

We first show that the problem can be solved by weighted maximum matching
over a bipartite graph. Then we propose an improved method. The bipartite
graph is constructed as follows. For each job j ∈ J , we create a total amount
of pj copies of vertices that corresponds to job j and let J be the collection
of all job vertices. In total, we have |J | =

∑
j∈J pj job vertices. Let set T be
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the set of all available time slots, and for each time slot we create one vertice,
in total we have T = maxj∈J dj − minj∈J rj time slot vertices. Bipartite graph
G = (J , T , E) is a graph over vertices J and T where for each vertice j′ from
J and each vertice t′ from T , if the interval of job j covers time slot t′ (where j
is the job that corresponds to vertice j′), then set E contains an edge e = (j′, t′)
with weight we = c(t′). An illustration of the graph is shown in Fig. 3.

A maximum matching of graph G that contains P edges corresponds to a
feasible schedule to the original problem, as we could assign the time slots to
the jobs according to the edges in the matching. Hence, the minimum weighted
bipartite matching corresponds to the optimal schedule of the original problem.
The minimum weighted bipartite matching can be solved via classical Hungarian
algorithm, while in the following we propose a faster algorithm, based on matroid
theory.

Definition 4. Let M = (T ,F) be a set system where F is a collection of set
X ⊆ T such that there exists a matching of bipartite graph G = (J , T , E)
covering the vertices in X.

By definition, set system M is a transversal matroid [11].
Theorem 1. Set system M is a transversal matroid.

Definition 5. For any matching of bipartite graph G = (J , T , E), the set of
time slots X is called non-wasting where X are the vertices covered by the match-
ing and X ⊆ T .

By definition, a matching of bipartite graph G = (J , T , E) corresponds to a set
of non-wasting time slots X, and also corresponds to a partial schedule such that
each time slot from X is occupied by some job in the schedule. Since set system
M is a matroid, we could obtain the optimal solution by adding the time slots
(from cheap to expansive) into a candidate list while maintaining the property
that the set of time slots in the candidate list is non-wasting.

The following algorithm gives the optimal solution.

Algorithm 1. Greedy Algorithm
1: Sort the time slots T from cheap to expensive
2: Q ← ∅
3: for t ∈ T do
4: if Q ∪ {t} is non-wasting then
5: Q ← Q ∪ {t}
6: end if
7: end for

Lemma 3. Given a subset X ⊆ T of time slots, the Earliest-Deadline-First
(EDF) algorithm can be applied to check whether X is non-wasting in linear
time.

Combined with Lemma 3, we are able to obtain the optimal schedule in O(nL)
time where L = maxj∈J dj − minj∈J rj .
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4 Conclusion

We studied the scheduling problem with the consideration of both calibrations on
the machine and time slot cost. We propose dynamic programmings for different
scenarios of this problem, as well as a greedy algorithm for the non-calibration
version of this problem. For the future work, it is challenging to tackle the open
problem about the complexity status of the basic calibration model proposed
by Bender et al. [2]. And it is also worth working on the preemptive jobs for
arbitrary processing times.
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Abstract. The power domination problem of the graph comes from how
to choose the node location problem of the least phase measurement units
in the electric power system. In the actual electric power system, because
of the difference in the cost of phase measurement units at different
nodes, it is more practical to study the power domination problem with
the weighted graph. In this paper, we present a dynamic programming
style linear-time algorithm for k-power domination problem in weighted
trees.

Keywords: Power domination · Weighted trees
Linear time algorithm · Dynamic programming

1 Introduction

Let G = (V,E) be a simple graph with vertex set V = V (G) and edge set
E = E(G). A simple graph means an undirected graph without multiple edges
or loops. The open neighborhood of a vertex v ∈ V is the set NG(v) = {u ∈
V |uv ∈ E}, and the closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}. A
dominating set of graph G is a set D ⊆ V such that for each u ∈ V \ D, there
exists an x ∈ D adjacent to u. The domination number of G, denoted by γ(G),
is the minimum cardinality amongst all dominating sets of G.

Modern society is inseparable from electricity. Electric power companies need
to continuously monitor their systems in the process of delivering electrical
energy. One way is to put the phase measurement units at the selected loca-
tion in their system. How to save the number of phase measurement units is
very attractive for the electric power companies, as introduced in [3]. In 2002,
Haynes et al. [12] described the power system monitoring as a graph theoreti-
cal problem. The original definition of power domination was simplified to the
following definition independently in [9–11,13].
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Definition 1. Let G = (V,E) be a graph. A set D ⊆ V is a power dominating
set (abbreviated as PDS) of G if and only if all vertices of G have messages
either by Observation Rule 1 (abbreviated as OR 1) initially or by Observation
Rule 2 (abbreviated as OR 2) recursively.

OR 1. A vertex v ∈ D sends a message to itself and all its neighbors. We
say that v observes itself and all its neighbors.

OR 2. If an observed vertex v has only one unobserved neighbor u, then v
will send a message to u. We say that v observes u.

Let G = (V,E) be a graph and D be a subset of V . For i ≥ 0, we define by
P i
G(D) the set of vertices observed by D at step i by the following rules:

(1) P 0
G(D) = NG[D];

(2) P i+1
G (D) = ∪{NG[v] : v ∈ P i

G(D) such that |NG[v] \ P i
G(D)| ≤ 1}.

Note that for any integer i ≥ 0, we have P i
G(D) ⊆ P i+1

G (D) ⊆ V ; if D
is a power domination set of G, then there is a minimal integer i0 such that
P i0
G (D) = V . Hence P j

G(D) = P i0
G (D) for every j ≥ i0 and we accordingly define

P∞
G (D) = P i0

G (D).
Chang et al. [6] generalized the power domination to k-power domination

replacing OR 2 with the following observation rule: If an observed vertex v has
at most k unobserved neighbors, then v will send a message to all its unobserved
neighbors. The definition of k-power dominating set is given below.

Definition 2. Let G = (V,E) be a graph, D ⊆ V , integer k ≥ 0. We define by
P i
G,k(D) the set of vertices observed by D at step i. If P∞

G,k(D) = V , We call D
a k-power dominating set (abbreviated as kPDS) of G. The recursive formula
is as follows:

(1) P 0
G,k(D) = NG[D];

(2) P i+1
G,k (D) = ∪{NG[v] : v ∈ P i

G,k(D) such that |NG[v] \ P i
G,k(D)| ≤ k}.

The k-power domination number of G, denoted by γp,k(G), is the minimum
cardinality of a k-power dominating set of G. When k = 0, the k-power domina-
tion is usual domination. When k = 1, the k-power domination is usual power
domination.

Let G = (V,E,w) be a weighted graph, where w is a function from V to
positive real numbers. Let w(D) =

∑
v∈D w(v) be the weight of D for any

subset D of V . The weighted k-power domination number, denoted by γw
kp(G),

is defined as γw
kp(G) = min{w(D) | D is a k-power dominating set of G}. The

weighted k-power domination problem is to determine the k-power domination
number of any weighted graph. When the weight of each vertex of the graph G is
equal to 1, the problem of weighted k-power domination problem is the k-power
domination problem.

Aazami [1,2] proves the NP-hardness of power domination problem on gen-
eral graphs. Liao and Lee [13] explored an efficient algorithm for power dom-
ination problem on interval graphs. Haynes [12] gives a linear time algorithm
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for k-power domination problem on trees. In [14], a linear-time algorithm for
power domination on weighted trees was given. Many kinds of weighted domina-
tion problems were studied by some scholars, see [4,5,7,8,15–17,19,20]. In this
paper, we will study a linear-time algorithm for k-power domination problem on
weighted trees.

Let T = (V,E,w) be a weighted tree with n vertices. It is well known that
the vertices of T have an ordering v1, v2, · · · , vn such that for each 1 ≤ i ≤ n−1,
vi is adjacent to exactly one vj with j > i. The ordering is call a tree ordering of
the tree, where the only neighbor vj with j > i is called the father of vi and vi
is a child of vj . For each 1 ≤ i ≤ n−1, the father of vi is denoted by F (vi) = vj .
For technical reasons, we assume that F (vn) = vn.

Suppose that T is a (weighted) tree rooted at r (denoted by (T, r)). We make
use of the fact that the class of (weighted) rooted tree can be constructed recur-
sively from copies of the single vertex K1, using only one rule of composition,
which combines two trees (T1, r1) and (T2, r2) by adding an edge between r1
and r2 and calling r1 the root of the resulting larger tree T . We denote this as
follows: (T, r1) = (T1, r1) ◦ (T2, r2) (Fig. 1).

Fig. 1. (T, r1) = (T1, r1) ◦ (T2, r2)

Definition 3. For a given weighed tree T = (V,E,w) rooted at r, and integer
k ≥ 0. For any 1 ≤ p ≤ k, T p called the extended tree of T if V (T p) = V (T ) ∪
{v1, v2, · · · , vp}, E(T p) = E(T )∪{v1r, v2r, · · · , vpr} and w(vi) = 1 for 0 ≤ i ≤ p.
v1, · · · , vp are called the extended children of r in T p (Fig. 2).

Fig. 2. The tree T and the tree T p
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Definition 4. For a given weighed tree T = (V,E,w) rooted at r, and integer
k ≥ 0, D ⊆ V (T ). Let p, q be integers satisfying 0 ≤ p, q ≤ k. Define the following
relationships on tree and vertex subset.
[a] = {(T,D,w) | D is a kPDS of T and r ∈ D};
[b]p = {(T,D,w) | D is a kPDS of T p, but not of T p+1 and r /∈ D};
[c]q = {(T,D,w) | D is not a kPDS of T and T − r, but if a message is given
to r in advance, then all vertices of T will get message and there are exactly q
children observed by r.}

Here are two examples of the above concepts.

Example 1.1. For the sake of simplicity, we assume that the weight of each
vertex is equal to one and k = 2, p = 1. D = {v1, v3}. The structure of the tree
T is as follows (Fig. 3).

Fig. 3. Example of [b]1 with k = 2 and D = {v1, v3}.

By OR 1, v1, v3, v7, v8 have message initially (see Fig. 4).

Fig. 4. P 0
T,2(D) = {v1, v3, v7, v8}.
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Then, v1, v2, v3, v4, v7, v8, v10 have message by OR 2 at the first time (see
Fig. 5A).

Fig. 5. A (left) P 1
T,2(D) = {v1, v2, v3, v4, v7, v8, v10} and B (right) P 3

T1,2(D) = V (T 1).

Since k = 2, the root v10 can send message to its two unobserved neighbors.
So, D is a kPDS of the extended tree T 1 (see Fig. 5B), but it is not a kPDS of
the extended tree T 2. Hence, (T, {v1, v3}, w) ∈ [b]1.

Example 1.2. For the sake of simplicity, we also assume that the weight of
each vertex is equal to one and k = 2, q = 1. D = {v1}. The structure of the
tree T is as follows (Fig. 6).

Fig. 6. Example of [c]1 with k = 2 and D = {v1}.
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By OR 1, v1, v5 have message initially (Fig. 7).

Fig. 7. P 0
T,2(D) = {v1, v5}.

As k = 2, we can’t go further. So, D is not a kPDS of T and T − v7. But
if a message is given to v7 in advance, then P 2

T,2(D) = V (T ) and v6 is observed
by v7. (see Fig. 8). Hence, (T, {v1}, w) ∈ [c]1.

Fig. 8. Example of [c]1 with k = 2.

Definition 5. For a given weighed tree T = (V,E,w), and integer k ≥ 0, D ⊆
V (T ). Let p, q be an integer satisfying 0 ≤ p, q ≤ k.

(1) ra(T, r) := min{w(D)|(T,D) ∈ [a]};
(2) rbp(T, r) := min{w(D)|(T,D) ∈ [b]p};
(3) rcq(T, r) := min{w(D)|(T,D) ∈ [c]q}.
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By the above definitions, it i.e. easy to know

Lemma 1. For a given weighed tree T = (V,E,w), and integer k ≥ 0, D ⊆
V (T ). then

rwkp(T ) = min{ra(T, r), rb0(T, r), rb1(T, r), · · · , rbk(T, r)}.

2 Main Theorem and Its Proof

The following lemmas give the key steps for solving the k-power domination
problem on the weighted tree. We borrow the method proposed by Wimer [18].

Lemma 2. [a] = [a] ◦ [a] ∪ [a] ◦ (∪k
l=0[b]l) ∪ [a] ◦ (∪k

h=0[c]h).

Proof. Let (T,D) = (T1,D1) ◦ (T2,D2), where D1 ⊆ V (T1),D2 ⊆ V (T2), D1 ∪
D2 = D. Suppose that r1(= r) is the root of T1 and r2 is the root of T2 and
r1r2 ∈ E(T ). We first show that [a] ◦ [a] ∪ [a] ◦ (∪k

l=0[b]l) ∪ [a] ◦ (∪k
h=0[c]h) ⊆ [a].

(i) If (T1,D1, w) ∈ [a] and (T2,D2, w) ∈ [a], both V (T1) and V (T2) can receive
message independently. Note that r1(= r) is in D = D1∪D2. Thus, [a]◦[a] ⊆
[a].

(ii) If (T1,D1, w) ∈ [a] and (T2,D2, w) ∈ [b]l(0 ≤ l ≤ k), both V (T1) and V (T2)
can also receive message independently. Note that r1(= r) is in D = D1∪D2.
Thus, [a] ◦ (∪k

l=0[b]l) ⊆ [a].
(iii) If (T1,D1, w) ∈ [a] and (T2,D2, w) ∈ [c]h(0 ≤ h ≤ k), according to OR 1,

r2 receives the message from r1 initially since r1 ∈ D1 and r1r2 ∈ E(T ).
Then according to the definition of [c]q, we know that all vertices of T2 can
be observed at last. As r(= r1) is in D, we have [a] ◦ (∪k

h=0[c]h) ⊆ [a].

Now we prove that [a] ⊆ [a] ◦ [a] ∪ [a] ◦ (∪k
l=0[b]l) ∪ [a] ◦ (∪k

h=0[c]h). Since
(T,D,w) ∈ [a], we know that r(= r1) ∈ D and hence r ∈ D1. Since there is only
one edge r1r2 connecting the tree T1 and the tree T2 and r1 ∈ D1 = D ∩ V (T1),
T1 does not need to obtain message from the T2. Hence, D1 is a kPDS of T1, i.e.
(T1,D1, w) ∈ [a]. Consider D2 = D ∩ V (T2) below. When r2 ∈ D, it is obvious
that (T2,D2, w) ∈ [a]. When r2 /∈ D, we discuss the following two cases.

case(I) r2 can be observed by some child in T2.
It means that there is no message exchange between T1 and T2. Since
D is a kPDS of T and r2 /∈ D2, D2 must be a kPDS of T p

2 for some
p ∈ {0, 1, · · · , k}, i.e., (T2,D2, w) ∈ [b]p satisfies 0 ≤ p ≤ k.

case(II) r2 cannot be observed by its children in T2.
Since r2 cannot be observed by its children in T2, D2 is not a kPDS of
T2. But D is a kPDS of T and by OR 1, r2 is observed by r initially.
It means that (T2,D2, w) ∈ [c]q for some q ∈ {0, 1, · · · , k}.

In summary, [a] = [a] ◦ [a] ∪ [a] ◦ (∪k
l=0[b]l) ∪ [a] ◦ (∪k

h=0[c]h). 	
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Lemma 3. Let p be an integer satisfying 0 ≤ p ≤ k.

[b]p = [c]k−p ◦ [a] ∪ [c]k−p ◦ (∪k
l=1[b]l) ∪ [b]p ◦ [a]∪[b]p ◦ (∪k

t=0[b]t) ∪ [b]p+1 ◦ (∪k
h=0[c]h).

Proof. Let (T,D) = (T1,D1) ◦ (T2,D2), where D1 ⊆ V (T1),D2 ⊆ V (T2), D1 ∪
D2 = D. Suppose that r1(= r) is the root of T1 and r2 is the root of T2 and
r1r2 ∈ E(T ). We first show that [c]k−p ◦ [a] ∪ [c]k−p ◦ (∪k

l=1[b]l) ∪ [b]p ◦ [a] ∪ [b]p ◦
(∪k

t=1[b]t) ∪ [b]p+1 ◦ (∪k
h=0[c]h) ⊆ [b]p.

(i) If (T1,D1, w) ∈ [c]k−p and (T2,D2, w) ∈ [a]. according to OR 1, r1 receives
the message from r2 initially since r2 ∈ D2 and r1r2 ∈ E(T ). Then according
to the definition of [c]k−p, there are exactly k − p children observed by
r1(= r), and all vertices of T1 can be observed at last. Since (T2,D2, w) ∈ [a],
all vertices of T2 are observed by D2. There are exactly p extended children
of r which can be observed by r(= r1). So D is a kPDS of T p but not
of T p+1 for some p ∈ {0, 1, · · · , k}, i.e., (T,D,w) ∈ [b]p with 0 ≤ p ≤ k
(Definition 3). That is [c]k−p ◦ [a] ⊆ [b]p.

(ii) If (T1,D1, w) ∈ [c]k−p and (T2,D2, w) ∈ [b]l(1 ≤ l ≤ k). For 1 ≤ l ≤ k,
according to OR 1 and definition of [b]l, D2 is a kPDS of T l

2(1 ≤ l ≤ k),
so r1 receives the message from V (T2). And then also according to the
definition of [c]k−p, there are exactly k −p children observed by r1(= r), all
vertices of T1 and T can be observed at last. There are exactly p extended
children of r which can be observed by r(= r1), so D is a kPDS of T p, but
not of T p+1 for p ∈ {0, 1, · · · , k}, i.e., (T,D,w) ∈ [b]p satisfies 0 ≤ p ≤ k
(Definition 3). That is [c]k−p ◦ (∪k

l=1[b]l) ⊆ [b]p.
(iii) If (T1,D1, w) ∈ [b]p and (T2,D2, w) ∈ [a], both V (T1) and V (T2) can receive

message independently. So D is a kPDS of T , and there are exactly p
extended children of r which can be observed by r(= r1), D is a kPDS of
T p but not of T p+1 for some p ∈ {0, 1, · · · , k}, i.e., (T,D,w) ∈ [b]p with
0 ≤ p ≤ k (Definition 3). Thus, [b]p ◦ [a] ⊆ [b]p.

(iv) If (T1,D1, w) ∈ [b]p and (T2,D2, w) ∈ [b]t(0 ≤ t ≤ k). both V (T1) and
V (T2) can receive message independently. Also there are exactly p extended
children of r can be observed by r(= r1), D is a kPDS of T p but not of
T p+1 for some p ∈ {0, 1, · · · , k}, i.e., (T,D,w) ∈ [b]p with 0 ≤ p ≤ k
(Definition 3). Thus, [b]p ◦ (∪k

t=1[b]t) ⊆ [b]p.
(v) If (T1,D1, w) ∈ [b]p+1 and (T2,D2, w) ∈ [c]h(0 ≤ h ≤ k), according to

OR 1 and definition of [b]p+1, D1 is a kPDS of T p+1
1 , so r2 receives the

message from r1. There are exactly p extended children of r which can
be observed by r(= r1), D is a kPDS of T p but not of T p+1 for some
p ∈ {0, 1, · · · , k}, i.e., (T,D,w) ∈ [b]p satisfies 0 ≤ p ≤ k (Definition 3).
Thus, [b]p+1 ◦ (∪k

h=0[c]h) ⊆ [b]p.

Now we show that [b]p ⊆ [c]k−p ◦ [a] ∪ [c]k−p ◦ (∪k
l=1[b]l) ∪ [b]p ◦ [a] ∪ [b]p ◦

(∪k
t=1[b]t)∪ [b]p+1 ◦ (∪k

h=0[c]h). Keep in mind, (T,D) = (T1,D1)◦ (T2,D2), which
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has D1 ⊆ V (T1),D2 ⊆ V (T2), D1 ∪ D2 = D, r(= r1) /∈ D. We divide two cases
to discuss D2 as follows.

case(I) D2 is a kPDS of T2.
Suppose (T2,D2, w) ∈ [a]. Then the root r = r1 of T has two ways
to get message. One way is that r is observed by r2, the other way is
that it is observed by its children in T1. If r cannot get message from
its children in T1, since D is a kPDS of T p, but not of T p+1, there
are exactly k − p children of r1 observed by r(= r1). It means that
(T1,D1, w) ∈ [c]k−p. Suppose that r obtains message from its children
in T1. Note that r2 ∈ D2 and hence r1 does not need to pass message
to r2. Since D is a kPDS of T p, but not of T p+1 and r(= r1) /∈ D, it is
known that D1 is a kPDS of T p

1 , but not of T p+1
1 . Note that = r1 /∈ D1.

Hence, (T1,D1, w) ∈ [b]p.
Suppose (T2,D2, w) ∈ [b]l(1 ≤ l ≤ k). Similarly, r has two ways
to get message and we have the conclusion (T1,D1, w) ∈ [c]k−p or
(T1,D1, w) ∈ [b]p. The proof is similar to the case of (T2,D2, w) ∈ [a].
The detail is left to readers.
Suppose (T2,D2, w) ∈ [b]0. Both V (T1) and V (T2) can receive message
independently. Therefore, r(= r1) is only observed by its children in T1.
So, (T1,D1, w) ∈ [b]p.

case(II) D2 is not a kPDS of T2.
We know that r(= r1) /∈ D1 and D2 is not a kPDS of T2. If r2 can get
message from r(= r1), then all vertices of T2 can be observed at last.
Otherwise it is a contradiction that D is not a kPDS of T . So it means
if a message is given to r2 in advance, then all vertices of T2 will get
message. That is, (T2,D2, w) ∈ [c]h(0 ≤ h ≤ k). on the other hand, since
r(= r1) /∈ D1, we know that (T1,D1, w) /∈ [a], considering that r(= r1)
still needs to send message to r2, so there must be (T1,D1, w) ∈ [b]p+1.

In summary, [b]p = [c]k−p ◦ [a] ∪ [c]k−p ◦ (∪k
l=1[b]l) ∪ [b]p ◦ [a] ∪ [b]p ◦ (∪k

t=1[b]t) ∪
[b]p+1 ◦ (∪k

h=0[c]h). 	

Lemma 4. Let q be an integer satisfying 0 ≤ q ≤ k.

[c]q = [c]q−1 ◦ (∪k
h=0[c]h) ∪ [c]q ◦ [b]0.

Proof. Let (T,D) = (T1,D1) ◦ (T2,D2), where D1 ⊆ V (T1),D2 ⊆ V (T2), D1 ∪
D2 = D. We first show that [c]q−1 ◦ (∪k

h=0[c]h) ∪ [c]q ◦ [b]0 ⊆ [c]q.

(i) If (T1,D1, w) ∈ [c]q−1 and (T2,D2, w) ∈ [c]h(0 ≤ h ≤ k), according to the
definition of [c]q−1, there are exactly q − 1 children observed by r1(= r) in
T1 if a message is given to r in advance. As r1r2 ∈ E(T ), there are exactly
q children observed by r1(= r) in T . That is [c]q−1 ◦ (∪k

h=0[c]h) ⊆ [c]q.
(ii) If (T1,D1, w) ∈ [c]q and (T2,D2, w) ∈ [b]0, according to the definition of [c]q,

there are exactly q children observed by r1(= r) in T1 if a message is given
to r in advance. By the definition of [b]0, r2 can be observed by its children
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in T@. So there are exactly q children observed by r1(= r) in T if a message
is given to r in advance. That is, [c]q ◦ [b]0 ⊆ [c]q.

Now we show that [c]q ⊆ [c]q−1 ◦ (∪k
h=0[c]h) ∪ [c]q ◦ [b]0. For (T,D,w) ∈ [c]q,

according to the definition of [c]q, r is necessary to send message to q children
who have not been observed. Note that (T,D) = (T1,D1) ◦ (T2,D2), D1 ⊆
V (T1),D2 ⊆ V (T2), D1 ∪ D2 = D.

case(I) If r2 is one of the q children of r who have not been observed.

Since (T,D,w) ∈ [c]q, all vertices of T2 can be observed if r2 is given
a message in advance. So there must be (T2,D2, w) ∈ [c]h(1 ≤ h ≤ k).
Except that r2, r still needs to send message to the q − 1 children in T1

if r1 is given a message in advance, so (T1,D1, w) ∈ [c]q−1.
case(II) If r2 is not one of the q children of r who have not been observed.

Then, D2 is kPDS of T2 and r2 cannot send message to r1. So,
(T2,D2, w) ∈ [b]0. r(= r1) must send message to its q children in T1

if r has message in advance. Then, (T1,D1, w) ∈ [c]q.

In summary, [c]q = [c]q−1 ◦ (∪k
h=0[c]h) ∪ [c]q ◦ [b]0. 	


Therefore, according to Lemmas 2–4, we conclude that

Theorem 5. For a weighted tree T , we have that:
[a] = [a] ◦ [a] ∪ [a] ◦ (∪k

l=0[b]l) ∪ [a] ◦ (∪k
h=0[c]h);

[b]p = [c]k−p ◦ [a] ∪ [c]k−p ◦ (∪k
l=1[b]l) ∪ [b]p ◦ [a] ∪ [b]p ◦ (∪k

t=0[b]t) ∪ [b]p+1 ◦
(∪k

h=0[c]h).(0 ≤ p ≤ k);
[c]q = [c]q−1 ◦ (∪k

h=0[c]h) ∪ [c]q ◦ [b]0.(0 ≤ q ≤ k).

Based on the conclusion of Theorem 5, an effective algorithm for solving the
k-power domination problem in weighted tree T = (V,E,w) is given below.

For any vi ∈ V, define the dynamic programming vector as follows:
(ra(vi), rb(vi), rc(vi)), where rb(vi), rc(vi) respectively correspond to a (k + 1)-
dimensional vector. rbt(vi), rct(vi) represents the value of each t-th dimension.

The algorithm input includes a known tree sequence {v1, v2, · · · , vn} and the
algorithm starts from an independent set {v1, v2, · · · , vn}. The initial algorithm
vector is: {w(vi),∞, 0,∞}, ∞ indicates that each dimension has the value ∞,
0,∞ means the value of rc0(vi) is 0, and other dimensions has the value ∞.
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Now, we are ready to present the algorithm.

Algorithm 1. WKPDT(Weighted k-Power Domination in Trees)
Input: A weighted tree T = (V, E, w) with a tree ordering v1, v2, · · · , vn.
Output: γw

kp(T ).

1 for i := 1 to n do

2 ra(vi) ← w(vi) ;

3 rb(vi) ← ∞ ;

4 rc(vi) ← ∞ ;

5 end
6 for j := 1 to n − 1 do

7 Minbp = min(rb(vi));

8 Mincp = min(rc(vi));

9 vi = F (vj);
10 ra(vi) = ra(vi) + min{ra(vj), Minbp, Mincp};
11 rc0 (vi) = rc0 (vi) + rb0 (vi);
12 rbk (vi) = min{rc0 (vi)+ ra(vj), r

c0 (vi)+Minbp, rbk (vi)+ ra(vj), r
bs (vi)+Mincp};

13 for t := 0 to k do

14 if t < k then
15 rbt (vi) = min{rck−t (vi) + ra(vj), r

ck−t (vi) + Minbp, rbt (vi) +

ra(vj), r
bt (vi) + Minbp, rbt+1 (vi) + Minbp};

16 end

17 if t > 0 then
18 rct (vi) = min{rct−1 (vi) + Minbp, rct (vi) + rb0(vi)};
19 end

20 end

21 end
22 return rwkp(T ) = min{ra(vn), rb0(vn), rb1(vn), · · · , rbk(vn)};

From the above argument, we can obtain the following theorem.

Theorem 6. Algorithm WKPDT can output the weighted k-power domination
number of any weighted tree T = (V,E,w) in linear time O(m + n), where
n = |V | and m = |E|.
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Abstract. Rumor Blocking, an important optimization problem in
social network, has been extensively studied in the literature. Given
social network G = (V, E) and rumor seed set A, the goal is asking
for k protector seeds that protect the largest expected number of social
individuals by truth. However, the source of rumor is always uncertain,
rather than being predicted or being known in advance in the real situ-
ations, while rumor spreads like wildfire on the Internet.

This paper presents General Rumor Blocking with unpredicted rumor
seed set (randomized A) and various personal profits while being pro-
tected (weights of nodes in V ). We first show that the objective function
of this problem is non-decreasing and submodular, and thus a (1 − 1/e)
approximate solution can be returned by greedy approach. We then pro-
pose an efficient random algorithm R-GRB which returns a (1−1/e− ε)
approximate solution with at least 1 − n−� probability. We show that
it runs in O

(
m(n − r)(k log(n − r) + � log n)/ε2

)
expected time, where

m = |E|, n = |V |, r = |A| and k is the number of protector seeds.

Keywords: Rumor Blocking · Random algorithm
Greedy approach · Martingale

1 Introduction

In the last few decades, the tremendous development of the Internet creates large-
scale communication platforms, such as WeChat and Twitter. Each platform can
be modeled as a social network which is a graph of relationships and interactions
within a group of individuals. People communicate their information, ideas with
each other on the social networks. The networks make communications more
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easier and bring great benefit to the society. But in some case they also bring
harm. For instance, in July 2017, a rumor that Yao Ming was arrested for drug
abuse circulated widely in Twitter and Weibo. Although it has been clarified,
this rumor brings serious impacts on Yao Ming’s personal life and even Chinese
Basketball Association’s reputation. In fact, similar rumors appear on social
networks from time to time and they may make significant inroads into the
population. Therefore, it is necessary to research effective strategies to block the
diffusion of a rumor.

Most of Rumor Blocking problems are considered in the independent cascade
(IC) model, which is formulated by Kempe et al. [8]. The (IC) model captures the
intuition that influence can spread stochastically through a network. Specifically,
this model can be described as a directed edge-weighted graph G = (V,E) with
n nodes and m edges. There is a weight puv on each edge euv, representing
the probability that the process spreads along this edge from u to v. Influence
spreads via a random process that begins at a set of seed nodes. Each node, once
activated, has a chance of subsequently activating its neighbors. Its information
diffusion process looks like cascades starting with a set of seed users. Note that
when two opposing information (truth and rumor) diffuse in a network, a user
is likely to believe and spread the information arriving first. One of effective
strategies for rumor containment is to select a certain number of protector seeds
to compete against the rumor by spreading truth. Due to limits of budget, the
number of protector seeds cannot be very large. A natural problem is how to
select k seeds to maximize the number of users protected by the truth.

1.1 Related Works

The work related to the Rumor Blocking problems is the study of competi-
tive influence diffusion. Some researchers concentrate on the case that there is
only one decision-maker, such as [2,13]. Budak et al. [3] firstly study influence
limitation problem under competing campaigns and they show that the prob-
lem is NP-hard. He et al. [7] study information blocking maximization (IBM)
under competitive linear threshold (CLT) diffusion model. Fan et al. [5] and [6]
proposed two new models of competitive influence diffusion and study rumor
containment maximization problem. The approach used most often is to prove
the monotone increasing property and submodularity of an objective function
and then apply the classic greedy algorithm to obtain a 1 − 1/e-approximation
solution [10]. But due to the massive size and the randomness of a probabilistic
diffusion model, the calculation of its objective function often very complicated.
Thus running greedy algorithm on it is computationally expensive. Inspired by
the reverse algorithm ideas proposed in [1], and [14], Tong et al. [16] present
an efficient randomized algorithm for the rumor blocking problem which runs in
O(km lnn

δ2 ) expected time and provides a (1−1/e−δ)-approximation with a high
probability. Competitive influence diffusion is also studied in game environments
where multiple decision-makers try to maximize their own objectives, like [12].

The paper is organized as follows. Section 2 presents General Rumor Blocking
problem and depicts a greedy algorithm which returns a (1 − 1/e)-approximate
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solution. In Sect. 3, we propose an efficient random algorithm R-GRB for General
Rumor Blocking problem. By using the tools of reverse methods and martingale’s
approaches, we analyze the approximate ratio and time complexity.

2 General Rumor Blocking Problem

2.1 Problem Definition

Let G = (V,E) be a directed social network, which contains n nodes and m
directed edges. Let r and k be two parameters. For each node v ∈ V , we denote
wv ∈ [ 1

n−r , 1] as individual v’s personal interest for the rumor information, as
well as the personal profit (while being protected). For each edge euv ∈ E, denote
puv ∈ [0, 1] as an influence (protected or infected) probability.

Suppose that the rumor seed set is unpredicted and uncertain in advance. Let
A = {A|A ⊆ V, |A| = r} be the collection of random rumor seed sets. Without
loss of generality, assume that there is a probability distribution over A.

Our goal is asking for a protector seed set B such that |B| ≤ k and it
maximizes the expected the social profit σ(B). To be specific, we firstly denote
IA,g(B) as the set of nodes protected by B in an outcome g with a rumor seed
set A, i.e.,

IA,g(B) = {v | tgpu(B) < tgru(A) < +∞}.

Then the objective function σ(B) is defined as

σ(B) =
∑

A∈A
Pr[A]

∑

g

Pr[g]
∑

v∈IA,g(B)

wv.

From the above definition, σ(B) tends to increase with the expansion of protector
seed set B. Besides, the marginal utility of σ(B) is decreasing. Thus we obtain
the following observation.

Obsersation 1. The objective function σ(·) of the novel rumor blocking problem
is non-decreasing and submodular.

2.2 Greedy Algorithm

Since the original Rumor Blocking problem [3] is NP-hard, it is clear that General
Rumor Blocking problem is also NP-hard. However, we observe the submodu-
larity of the objective function σ(B), thus we can use greedy approach [10] to
obtain a (1 − 1/e)-approximate solution.

Lemma 1. The General Rumor Blocking problem can obtain a (1−1/e) approx-
imate solution by the greedy algorithm.
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Algorithm 1. Greedy Algorithm for General Rumor Blocking
Input: a directed graph G = (V, E), a parameter k, a probability distribution over

A.
Output: a protector seed set B.

1: Initialize: B = ∅, σ(∅) = 0;
2: for i = 1 to k do
3: B = B ∪ arg maxu∈V \A (σ(B ∪ {u}) − σ(B));

4: return B.

3 Random Algorithm and Theoretical Analysis

This section provides an efficient random algorithm R-GRB for General Rumor
Blocking. At the beginning, we introduce several key definitions.

3.1 Definitions and Properties

Definition 1. (Random Reverse Protected Set)
A random Reverse Protected (RP) set R is generated by executing the fol-

lowing three steps:

1. randomly sample a size-r rumor seed set A from A, and then sample an
outcome g by removing each edge euv in G with 1 − puv probability;

2. select a target v ∈ V \ Ar with Pr[v] = wv∑
u∈V \A wu

probability;
3. take the node set RA,g(v) = {u | tguv < tgrv(A) < +∞}.

Intuitively, RA,g(v) consists of nodes that is capable of protecting the target
v while the rumor seed set is A and the outcome is g. For any protector seed set
B, denote x(B,RA,g(v)) and hA,g(B, v) as follows:

x(B,RA,g(v)) =
{

1, B ∩ RA,g(v) �= ∅;
0, otherwise. hA,g(B, v) =

{
1, v ∈ IA,g(B);
0, otherwise.

Note that x(B,RA,g(v)) = 1 if there exists a protector seed u0 ∈ B and u0 is
capable of protecting the target v while the rumor seed set is A and the outcome
is g. That is, x(B,RA,g(v)) = 1 if the target v can be protected by B, which
implies hA,g(B, v) = 1, vice versa.

Obsersation 2. The random variable x(B,RA,g(v)) = 1 iff hA,g(B, v) = 1.

Now consider a protector seed set B and a collection R = {R1, . . . , Rρ} which
consists of ρ random RP sets. Note that each Ri corresponds to an independent
rumor seed set Ai and outcome gi. For any Ai, denote w(Ai) =

∑
u∈V \Ai

wu

and define fR(B) with respect to R and B as follows:

fR(B) =
1
ρ

∑

Ri∈R
w(Ai) · x(B,Ri).

The following lemma, with the proof presented in the Appendix, illustrates that
fR(B) is non-decreasing and submodular.
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Lemma 2. For any collection R of random RP sets, the function fR(·) is non-
decreasing and submodular.

Consider the relations between E[fR(B)] and σ(B), we have

Lemma 3. For any protector seed set B,

E[fR(B)] = σ(B),

where the expectation of fR(B) is taken over the randomness in R.

Proof. Based on the linearity of expectation, we have

E[fR(B)] =
1
ρ

∑

Ri∈R
E[w(Ai) · x(B,Ri)] = E[w(Ai) · x(B,Ri)],

According to the process of generating a random RP set in Definition 1, we
obtain that the probability of sampling a RP set Ri is

Pr[Ri] = Pr[Ai] · Pr[gi] · Pr[vi] = Pr[Ai] · Pr[gi] · wvi∑
u∈V \Ai

wu
.

Let P be a set consisting of all possible RP sets. We have

E[w(Ai) · x(B,Ri)] =
∑

Ai

Pr[Ai]
∑

gi

Pr[gi]
∑

vi∈V \Ai

x(B,Ri) · wvi
.

Due to Observation 1, that is x(B,Ri) = 1 if and only if hAi,gi
(B, vi) = 1. We

have

E[fR(B)] =
∑

Ai

Pr[Ai]
∑

gi

Pr[gi]
∑

vi∈V \Ai

hAi,gi
(B, vi) · wvi

=
∑

A

Pr[A]
∑

g

Pr[g]
∑

v∈IA,g(B)

wv = σ(B),

implying the lemma. 	

Accordingly, the random variable fR(B) over R can be used as an estima-

tor of σ(B). In order to ensure the accuracy of this estimation, we introduce
martingales [4] and their related properties [4].

Definition 2 (Martingale). A martingale is a sequence of random variables
Y1, Y2, Y3, · · · such that E[|Yi|] < +∞ and E[Yi | Y1, . . . , Yi−1] = Yi−1 for any i.

Property 1 (Martingale’s Property). Let Y1, Y2, Y3, . . . be a martingale, such
that |Y1| ≤ a, |Yj | − |Yj−1| ≤ a for each j ∈ {2, . . . , i}, and

Var[Y1] +
i∑

j=2

Var[Yj | Y1, . . . , Yj−1] ≤ b.

Then for any γ > 0,

Pr[Yi − E[Yi] ≥ γ] ≤ exp
(

− γ2

2
3aγ + 2b

)
; Pr[Yi − E[Yi] ≤ −γ] ≤ exp

(
−γ2

2b

)
.
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Algorithm 2. Node Selection (the 2nd stage of R-GRB)
Input: a sampling result R = {R1, · · · , Rρ}, a parameter k.
Output: a protector seed set B̃.

1: Initialize: B̃ = ∅
2: for i = 1 to k do
3: B̃ = B̃ ∪ arg maxu∈V \B̃ fR(B̃ ∪ {u}) − fR(B̃)

4: return B̃.

Consider the collection of random RP sets R = {R1, · · · , Rρ}. Let B be any
protector seed set and let q = E[w(Ai) · x(B,Ri)]. From the proof of Lemma3,
q = σ(B). We construct a sequence of random variables

Zi =
i∑

j=1

(w(Aj) · x(B,Rj) − q), i = 1, 2, . . . , ρ.

By the properties of random RP sets, we can verify the following lemma.

Lemma 4. The sequence of random variables Z1, · · · , Zρ is a martingale and
for any ε > 0, we have

Pr

[
ρ∑

i=1

(w(Ai) · x(B,Ri) − ρq ≥ ε · ρq

]
≤ exp

(
− ε2

(2 + 2
3ε)(n − r)

· ρq

)
; (1)

Pr

[
ρ∑

i=1

(w(Ai) · x(B,Ri)) − ρq ≤ −ε · ρq

]
≤ exp

(
− ε2

2(n − r)
· ρq

)
. (2)

The proof of Lemma 4 is presented in the Appendix.

3.2 Random Algorithm for General Rumor Blocking

This section presents R-GRB algorithm that is inspired by ideas of IMM algo-
rithm [15]. Basically, the R-GRB contains two stages:

– Sampling of random RP sets. This stage iteratively generates random
RP sets until reaches a certain stopping instruction. Then collect these RP
sets into a set R.

– Node Selection. This stage adopts greedy algorithm for maximizing
weighted coverage and it derives a size-k node set B̃ that covers a consid-
erable large weight of RP-sets in R.

Node Selection. Algorithm 2 provides the pseudo-code of the second stage of
R-GRB algorithm. Assume that R = {R1, · · · , Rρ} is the collection of random
RP sets generated by the sampling stage. Based on Lemma 2, fR(B) is non-
decreasing and submodular. One can see that the greed algorithm is a (1−1/e)-
approximate algorithm to find a size-k node set maximizing fR(·).
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The remainer of this section will confirm the minimum number of RP sets in
R and show that the output of R-GRB B̃ guarantees a (1−1/e−ε)-approximate
solution with high probability, while the number ρ = |R| is greater than some
certain number.

Consider the General Rumor Blocking on G = (V,E). We denote B∗ as the
optimal solution and denote by OPT= σ(B∗) the optimal value. Let � be a
probability indicator. For any ε1, ε2 ∈ (0, 1) and any δ1, δ2 ∈ (0, 1), we define

ρ1 =
2(n − r) log(1/δ1)

ε21 · OPT
, ρ2 =

(2 + 2
3ε2)(n − r) log

((
n
k

)
/δ2

)

ε22 · OPT
.

Let R be a size-ρ set of random RP sets. Since fR(B) = 1
ρ

∑
Ri∈R(

w(Ai) · x(B,Ri)
)

and σ(B) = E[fR(B)]. That is, the random variable
1
ρ

∑
Ri∈R

(
w(Ai) · (B,Ri)

)
over R is an estimator of σ(B). To ensure the accu-

racies of this estimation and our algorithm, ρ needs to be sufficiently large. The
following lemma and theorem consider this issue.

Lemma 5. If the number of random RP sets in the sampling result R of R-GRB
algorithm suffices that ρ ≥ ρ1,

fR(B̃) ≥ (1 − 1/e)(1 − ε1)OPT

holds with at least 1 − δ1 probability.

The proof of Lemma 5 is presented in the Appendix.

Theorem 1. If the number of random RP sets in the sampling result R suffices
that ρ ≥ max{ρ1, ρ2}, Algorithm2, the second stage of R-NRB, returns a (1 −
1/e−ε) approximate solution of the Novel Rumor Blocking problem with at least
1 − n−� probability.

Proof. Let ε2, δ2 ∈ (0, 1), ε2 = ε − (1 − 1/e)ε1, δ2 + δ1 ≤ n−�. From Lemma 5,
we know that if ρ ≥ ρ1,

fR(B̃) ≥ (1 − 1/e)(1 − ε1)OPT

holds with at least (1−δ1) probability. Note that (1−δ1)(1−δ2) > 1−(δ1+δ2) ≥
1 − n−�. The theorem holds if we can show that when ρ ≥ ρ2,

Pr[σ(B̃) − fR(B̃) ≥ −ε2 · OPT] ≥ 1 − δ2. (3)

To prove the inequality 3, it is sufficient to show that if ρ ≥ ρ2,

Pr[fR(B̃) − σ(B̃) ≥ ε2 · OPT] ≤ δ2.

Based on Lemmas 3 and 4, we can verify that if ρ ≥ ρ2, for any size-k protector
seed set B,

Pr[fR(B) − σ(B) ≥ ε2 · OPT] ≤ δ2

/(
n

k

)
.

Thus the theorem is proved. 	
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Algorithm 3. Sampling of Random RP Sets (the first stage of R-NRB)
Input: a directed network G = (V, E), parameters k, r, ε and �.
Output: a set R of random RP sets.

1: Initialize: R = ∅, NPT= 1, ε0 =
√

2ε
2: μ0 = (2 + 2

3
ε0) · (n − r) · (

log
(

n
k

) − log δ0
)
ε−2
0

3: μ̃ = (4 − 2/e) · (2 − 1/e + 1
3
ε) ·(n − r) · (

log
(

n
k

)
+ log(n�) + log 2

)
ε−2

4: for i = 1 to log2(n − r) − 1 do
5: ξi = (n − r) · 2−i, ρi = μ0/ξi

6: while |R| ≤ ρi do
7: generate a random RP set and put it into R;

8: Bi = Algorithm 2 (R, k)
9: if fR(Bi) ≥ (1 + ε0) · ξi then

10: NPT = fR(Bi)/(1 + ε0)
11: break;

12: ρ = μ̃/NPT;
13: while |R| ≤ ρ do
14: generate a random RP set and put it into R;

15: return R.

According to Theorem 1, Algorithm 2 can obtain a (1 − 1/e − ε) approxi-
mate solution for novel rumor blocking problem with high probability when the
number of random RP sets in the sampling result R s.t. ρ ≥ max{ρ1, ρ2}. To
minimize ρ as far as possible, let δ1 = δ2 = 1/(2n�) and ε1 = ε2 = ε/(2 − 1/e).
Denote

ρ̃ =
(4 − 2/e)(2 − 1/e + ε/3)(n − r)

(
log

(
n
k

)
+ log(2n�)

)

ε2 · OPT
,

and μ̃ = ρ̃ · OPT. It can be verified that ρ̃ ≥ max{ρ1, ρ2}.
Unfortunately, it is NP-hard to obtain the OPT of the General Rumor Block-

ing problem. In the next section, we find a lower bound of the optimal solution
called NPT, instead of real OPT and use ρ = μ̃/NPT ≥ max{ρ1, ρ2} to be the
number of random RP sets in the sampling result R.

In the end of this section, we show the time complexity of the second stage
of R-GRB.

Lemma 6. Algorithm2 runs in O(
∑

R∈R |R|) time.

The proof of Lemma 6 is presented in the Appendix.

Sampling of Random RP Sets. Let ε0 ∈ (0, 1) and δ0 = n−�/ log2(n − r).
Algorithm 3 (Sampling phase), the first stage of R-GRB, aims to generate a set
R with a sufficiently large number of random RP sets, |R| ≥ ρ̃ = μ̃/OPT .
Since it is hard to obtain the real OPT, the algorithm searches various lower
bounds of OPT by constantly generating random RP sets and repeatedly calling
Algorithm 2 (Node Selection). When the lower bound is sufficiently precise, it
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stops generating and calling. The final |R| can be identified by iterations of the
for-loop, the lower bound NPT and parameters μ̃, μ0.

As for the generation of a random RP set R, we adopt reverse Breath First
Search (BFS) algorithm [9]. First we randomly select a rumor seed set A and
select a target node v with Pr[v] = wv/(

∑
u∈V \A wu) probability. Then we use

reverse BFS algorithm to search nodes until one rumor seed is visited, then put
these nodes into R.

Note that the random RP sets generated by Algorithm 3 are not independent.
It is because the generation of the ith random RP set is dependent on whether
the first i − 1 random RP sets can estimate a satisfactory lower bound of OPT.
As a result, we adopt martingale method on the theoretical analysis of R-GRB
algorithm. The rest of this section will show the theoretical rationality and the
time complexity of Algorithm 3.

Theorem 2. Algorithm3 returns a sampling result R with |R| ≥ μ̃/OPT with
at least 1 − n−� probability.

Proof. Consider the ith round of the for-loop in Algorithm3. Observe that in
ith round, R is a collection of random RP sets with

|R| ≥ ρi =
μ0

ξi
=

(2 + 2
3ε0)(n − r)

(
log

(
n
k

) − log(δ0)
)

ε20 · ξi
.

Bi is the output of calling Algorithm2 on R.

Claim 1. If OPT < ξi, Pr[fR(Bi) ≥ (1 + ε0) · ξi] ≤ δ0.
The proof of Claim 1 is presented in the Appendix.

Claim 2. If OPT ≥ ξi, Pr[OPT ≥ fR(Bi)/(1 + ε0)] ≥ 1 − δ0.
The proof of Claim 2 is presented in the Appendix.
These two claims can imply the correctness of the theorem. To see this, let

i∗ = �log2 ((n − r)/OPT), then ξj > OPT for each j ∈ {1, . . . , i∗ − 1} and
ξj ≤ OPT for j ≥ i∗. First, Claim 1 implies that Algorithm3 terminates its
for-loop before the i∗th iteration with at most (i∗ − 1) · δ0 probability. Note that
when the algorithm enters into the jth for loop with j ≥ i∗, we have ξj ≤ OPT.
Then by Claim 2, NPT = fR(B̃)/(1+ε0) ≥ OPT with at most log2(n−r)−i∗+1
probability. Overall, NPT can be derived from the teminate condition (line 11-13
of the Algorithm 3) to be a lower bound of OPT with at least 1− log2(n− r) · δ0
probability. Thus Algorithm3 can return a sampling result R with |R| ≥ μ̃/OPT
probability and the theorem holds. 	


In the rest of this section we analyse the time complexity of Algorithm 3
(Sampling phase). The analysis will be in progress from the time of generating
a random RP set, the expected time of generating the sampling result R to the
expected time of calling Algorithm 2.

At the beginning, we focus on the time of generating one random RP set.
Recall that we use reverse BFS to search each incoming neighbor and related
edge constantly until one rumor seed being visited. Let G[R] be the subgraph
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induced by the nodes in R. Denote by d(R) the number of edges in the induce
subgraph G[R]. Note that G[R] is a connected graph and |R| ≤ d(R)+1. Thus we
need to visit d(R) edges to generate RP set R, that is, we need E[d(R)] expected
time to generate a random RP set. Then the upper bound of E[d(R)] can be
verified by the following lemma with the proof presented in the Appendix.

Lemma 7
E[d(R)] ≤ m · OPT.

In the following, we discuss the expected time of generating random RP sets
and calling Algorithm 2 in Algorithm 3.

For generating random RP sets, by Lemma 7, it requires E[d(R)] ≤ m · OPT
time to obtain one random RP set. As for the expected number of RP sets in the
final sampling result R, we observe that |R| = max{μ0/ξit , μ̃/NPT}, where it is
the stopping iteration of the for-loop and ξit ≤ NPT ≤ OPT. Thus the expected
number

E[|R|] = O

(
max{μ0, μ̃}

OPT

)
= O

(
(n − r)(k log(n − r) + � log n)/ε2

OPT

)
, (4)

where the last equation holds by magnifying values of μ0 and μ̃. Recall that
generate one random RP set requires E[d(R)] time. Thus the expected time
of generating the sampling result R is E[

∑
R∈R d(R)]. However the number of

random RP sets in R are dependent on terminate condition of Algorithm3, it is
not trivial to obtain that

E[
∑

R∈R
d(R)] = E[|R|] · E[d(R)]. (5)

We can verify the equality 5 by introducing another property of martingale [18].

Property 2. Let Y1, Y2, . . . be a martingale and τ < +∞ be a random variable
such that the event τ = i is independent of Y1, . . . Yi−1. Then we have

E[Yτ ] = E[Y1].

By the inequality 4 and Lemma 7, the expected time of generating R is

E[
∑

R∈R
d(R)] = E[|R|] · E[d(R)] = O

(
m(n − r)(k log(n − r) + � log n)/ε2

)
.

Then for calling Algorithm2, based on Lemma 6, and for any RP set R, the
induced subgraph G[R] is connected, implying |R| ≤ d(R) + 1. Thus

O

(
E[

∑

R∈R
|R|]

)
= O

(
E[

∑

R∈R
d(R)]

)
= O

(
m(n − r)(k log(n − r) + � log n)/ε2

)
.

In summary, the following theorem holds.

Theorem 3. Algorithm3 runs in O
(
m(n − r)(k log(n − r) + � log n)/ε2

)

expected time.
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Summary of R-GRB. From the preceding two sections, we have known that
R-NRB firstly executes Algorithm 3 to obtain a sampling R of random RP sets,
then inserts the sampling result R into Algorithm 2 to obtain an approximate
protector seed set B̃. Based on Theorems 1, 2 and 3, we obtain the final theorem.

Theorem 4. R-GRB algorithm returns a (1 − 1/e − ε) approximate solution
with at least 1 − n−� probability and its expected running time is

O
(
m(n − r)(k log(n − r) + � log n)/ε2

)
.

4 Contributions

In this paper we present General Rumor Blocking problem with an unpredicted
rumor seed set (randomized A) and various personal profits while being protected
(weights of nodes in V ), where A is the rumor seed set, V is the node set of the
social network G = (V,E). We first show that the objective function is non-
decreasing and submodular, and thus a (1 − 1/e) approximate solution can be
returned by a greedy approach. Inspired by the reverse algorithm ideas in [15], we
then propose an efficient random algorithm R-GRB which returns a (1−1/e−ε)
approximate solution with at least 1 − n−� probability. Futher, we show that it
runs in O

(
m(n − r)(k log(n − r) + � log n)/ε2

)
expected time, where r = |A|

and k is the number of protector seeds.

Appendix

Proof of Lemma 2. First, we show the monotonicity. For any node set B and
any protector seed u /∈ B, we have

fR(B ∪ {u}) − fR(B) =
1
ρ

∑

Ri∈R
w(Ai) · (x(B ∪ {u}, Ri) − x(B,Ri)) .

Since x(B,Ri) = 1 leads to x(B ∪{u}) = 1, fR(B ∪{u})−fR(B) ≥ 0. It implies
the monotonicity.

Then, we show the submodularity. For any pair of B1, B2 with B1 ⊆ B2 and
u /∈ B2, we have

(fR(B1 ∪ {u}) − fR(B1)) − (fR(B2 ∪ {u}) − fR(B2))

=
1

ρ

∑

Ri∈R
w(Ai)[(x(B1 ∪ {u}, Ri) − x(B1, Ri)) − (x(B2 ∪ {u}, Ri) − x(B2, Ri))]

Observe that if x(B2 ∪ {u}, Ri) − x(B2, Ri) = 1, B2 ∩ Ri = ∅ and u ∈ Ri. Then
B1 ∩ Ri = ∅ and u ∈ Ri, implying that x(B1 ∪ {u}) − x(B1, Ri) = 1. Thus,

(fR(B1 ∪ {u}) − fR(B1)) − (fR(B2 ∪ {u}) − fR(B2)) ≥ 0.
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The submodularity follows. 	

Proof of Lemma 4. We first show that the sequence Z1, . . . , Zρ is a martingale.
Since Zi =

∑i
j=1(w(Aj) · x(B,Rj)) − q), we have E[Zi] = 0 and E[|Zi|] < +∞.

Based on the process of generating random RP sets, we can observe that the
value of x(B,Ri) is independent of x(B,R1), . . . , x(B,Ri−1). Therefore,

E[Zi | Z1, · · · , Zi−1] = E[Zi−1 + w(Ai) · x(B,Ri) − q | Z1, · · · , Zi−1]

= Zi−1 + E[w(Ai) · x(B,Ri)] − q = Zi−1,

implying that Z1, · · · , Zρ is a martingale.
Then we find the value of a and b in the conditions of Martingale’s Property

respect with Z1, · · · , Zρ. Recall that w(Ai) =
∑

u∈V \Ai
wu and wu ∈ [ 1

n−r , 1] for
any u. Since

|Z1| = |w(A1) ·x(B, R1)−q| ≤ n−r and |Zj −Zj−1| = |w(Aj) ·x(B, Rj)−q| ≤ n−r

for each j ∈ {2, . . . , i}, we can set a = n−r. Based on the properties of variance
and Zρ =

∑ρ
j=1(w(Aj) · x(B,Rj) − q), we can set b = (n − r) · ρq. It is because

Var[Z1] +
ρ∑

j=2

Var[Zj | Z1, · · · , Zj−1] =
ρ∑

j=1

Var[w(Aj) · x(B,Rj)]

=
ρ∑

j=1

{E[(w(Aj) · x(B,Rj))2] − (
E[w(Aj) · x(B,Rj)]

)2}

≤
ρ∑

j=1

{E[(n − r) · w(Aj) · x(B,Rj)] − 0} ≤ (n − r) · ρq,

where the second inequality from the end holds from the facts that w(Ai) ≤ n−r
and x2(B,Rj) = x(B,Rj). Applying Martingale’s Property, one can see that
inequalities (1) and (2) hold. 	

Proof of Lemma 5. Let B̃ be the solution of Algorithm 2 (Node Selection).
Let B∗ be the optimal solution. Based on the greedy approach in Algorithm2,
we have

fR(B̃) ≥ (1 − 1/e) · fR(B∗).

In the sequel we show that if ρ ≥ ρ1, Pr[fR(B∗) ≤ (1 − ε1) · OPT] ≤ δ1.
The result means that Pr[fR(B∗) ≥ (1 − ε1) · OPT] ≥ 1 − δ1, and thus

fR(B̃) ≥ (1 − 1/e)(1 − ε1) · OPT holds with at least 1 − δ1 probability when
ρ ≥ ρ1, implying the lemma.

By Lemmas 3 and 4, we can verify that if ρ > ρ1, the following inequality
holds.

Pr[fR(B∗) ≤ (1 − ε1) · OPT] ≤ δ1. (6)

Consider the sampling result R of R-NRB algorithm. First, for any Ri ∈
R, we denote by x(B∗, Ri) a random variable such that x(B∗, Ri) = 1 if
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B∗ ∩ Ri �= ∅ and x(B∗, Ri) = 0 otherwise. Based on Lemma 4, the sequence
of Zi =

∑i
j=1

(
w(Ai) · x(B∗, Ri) − q∗), i ∈ {1, . . . , ρ} is a martingale. Let

q∗ = E[fR(B∗)]. By Lemma 3, q∗ = σ(B∗) = OPT. We have

Pr [fR(B∗) ≤ (1 − ε1) · OPT] = Pr

[
1
ρ

∑

Ri∈R
w(Ai) · x(B∗, Ri) ≤ (1 − ε1) · q∗

]

= Pr

[
∑

Ri∈R
w(Ai) · x(B∗, Ri) − ρq∗ ≤ −ε1 · ρq∗

]
.

By the inequality (2) of Lemma 4 and ρ ≥ ρ1,

Pr

[
∑

Ri∈R
w(Ai) · x(B∗, Ri) − ρq∗ ≤ −ε1 · ρq∗

]

≤ exp
(

− ε21
2(n − r)

· ρq∗
)

≤ exp
(

− ε21
2(n − r)

· ρ1q
∗
)

= δ1.

Thus the inequality 6 holds. This completes the proof of the lemma. 	

Proof of Lemma 6

Proof. Let R = {R1, . . . , Rρ} be an input of Algorithm2 and let |R| be the
number of nodes in a random RP set R. Recall that Algorithm 2 is a greedy
process which returns a protector seed set B̃ by maximizing the marginal utility
of fR(·). Due to

fR(B) =
1
ρ

∑

Ri∈R
(w(Ai) · x(B,Ri)),

it is clear that Algorithm 2 is equivalent to the greedy approach for a maximum
weighted coverage problem. We have known that the time complexity of greedy
approach for the maximum weighted coverage is O(

∑
R∈R |R|) in [17]. Thus,

Algorithm 2 runs in O(
∑

R∈R |R|) time. 	


Proof of Claim 1. We prove Claim 1 by showing that if OPT< ξi,

Pr[fR(B) ≥ (1 + ε0) · ξi] ≤ δ0

/(
n

k

)
,

for any size-k set B.
Based on Lemma 4, the sequence Zd =

∑d
j=1

(
w(Aj) · x(B,Rj)

)
, d ∈

{1, . . . , ρi} is a martingale. Denote q = E[fR(B)]. It is clear that

Pr[fR(B) ≥ (1 + ε0) · ξi]
= Pr [ρi · fR(B) − ρiq ≥ ((1 + ε0) · ξi)/q) − 1) · ρiq]

≤ exp
(

− ζ2

(2 + 2
3ζ)(n − r)

· ρiq

)
,
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where ζ = (1+ ε0) · ξi/q −1 and the last inequality holds from the inequality (1)
of Lemma 4. By Lemma 3, q = σ(B) ≤ OPT < ξi, we have ζ = (1+ε0)·ξi/q−1 >
ε0 · ξi/q > ε0. Then the right side of above inequality

= exp
(

− ζ

(2/ζ + 2
3 )(n − r)

· ρiq

)
< exp

(
− ε0 · ξi/q

(2/ε0 + 2
3 )(n − r)

· ρiq

)
.

Since ρ ≥ μ0/ξi, the right side of above inequality

≤ exp
(

− ε0

(2/ε0 + 2
3 )(n − r)

· μ0

)
= δ0

/(
n

k

)
.

Thus the Claim 1 is proved. 	

Proof of Claim 2. We prove Claim 2 by showing that if OPT ≥ ξi,

Pr[OPT < fR(B)/(1 + ε0)] ≤ δ0

/(
n

k

)
.

for any size-k set B. Based on Lemma 4, the sequence Zd =
∑d

j=1(w(Aj) ·
x(B,Rj)), d ∈ {1, . . . , ρ} is a martingale. Recall that fR(B) =
1
ρ

∑
Ri∈R

(
w(Ai) · x(B,Ri)

)
and denote q = E[fR(B)] < OPT. It is clear that

Pr[OPT < fR(B)/(1 + ε0)] = Pr[ρ · fR(B) − ρ · OPT > ε0 · ρ · OPT]
≤ Pr [ρ · fR(B) − ρq ≥ (ε0 · OPT/q) · ρq] .

By inequality (1) of Lemma 4 and q < OPT,

Pr [ρ · fR(B) − ρq ≥ (ε0 · OPT/q) · ρq] ≤ exp

(
− (ε0 · OPT/q)2

(2 + 2
3
(ε0 · OPT/q))(n − r)

· ρq

)

= exp

(
− ε20 · OPT2

(2q + 2
3
ε0 · OPT)(n − r)

· ρ

)
< exp

(
− ε20 · OPT

(2 + 2
3
ε0)(n − r)

· ρ

)
.

By ρ ≥ μ0/ξi and OPT ≥ ξi, the right side of above inequality

exp
(

− ε20 · OPT
(2 + 2

3ε0)(n − r)
· ρ

)

≤ exp

(
−ε20 · OPT · (2 + 2

3ε0) · (n − r) · log
((

n
k

)
/δ0

)

(2 + 2
3ε0) · (n − r) · ε20 · ξi

)
≤ δ0

/(
n

k

)
.

Thus, the Claim 2 holds. 	

Proof of Lemma 7. Denote by v̂ a random node is subjected to some proba-
bility distribution V with Pr∗[v̂]. Let Pr∗[v̂] = d(v̂)

2m , where d(v̂) is the in-degree
of v̂ in G and m is the number of edges in G. For any random node v̂, denote
by pv̂ the probability that v̂ is covered by a random RP set. Let ϕ(v̂, R) be a
function as follows:

ϕ(v̂, R) =
{

1, v̂ ∈ R;
0, otherwise.
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Recall that for any protector seed set B, x(B,R) = 1 if B∩R �= ∅ and x(B,R) =
0 otherwise. P is a collection consisting of all possible RP sets. Then we obtain
that

E[d(R)] ≤
∑

R∈P
Pr[R]

∑

v̂∈R

d(v̂)

=
∑

R∈P
Pr[R]

∑

v̂∈V

d(v̂) · ϕ(v̂, R)

=
∑

v̂∈V

d(v̂)
∑

R∈P
Pr[R] · x({v̂}, R),

where the last inequality holds from the fact that ϕ(v̂, R) = 1 if and only if
x(v̂, R) = 1. Recall the Definition 1 (Random RP Set), assume that the sampled
rumor seed set is A, then the target v is selected with Pr[v] = wv

w(A)
. Since

w(Ai) =
∑

u∈V \Ai
wu ≥ (n − r) · 1

n−r = 1, the right side of above inequality

≤
∑

v̂∈V

d(v̂)
∑

A,g,v̂∈V \A

Pr[A] Pr[g] Pr[v̂] · w(A) · x({v̂}, R)

=
∑

v̂∈V

d(v̂)
∑

A

Pr[A]
∑

g

Pr[g]
∑

u∈IA,g({v̂})
wu

=
∑

v̂∈V

d(v̂) · σ({v̂}) ≤ m · OPT,

where the first and second equalities can be derived from the proof of Lemma3.
Then the last inequality holds by

∑
v̂∈V d(v̂) = m and σ({v̂}) ≤ OPT, Therefore

the lemma holds. 	
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Abstract. The explosive growth of communication device and user data
has stressed the dense Long Term Evolution Advanced (LTE-A) network.
In order to relieve communication congestion in high-load base stations
(BSs) in the downlink network, it is necessary for network operators to
balance these loads meanwhile guarantee the quality of service (QoS). In
this work, a robust Min − Max generalized linear fractional program-
ming (GLFP) model about power optimization under QoS constraints is
established for load balancing, where signal coverage and user access are
mathematically described by sigmod function and softmax function,
respectively. Since GLFP is a well-known NP-hard problem, a heuris-
tic algorithm named generalized bisection method (GBM) is proposed
and its time complexity is at most O(MN2 log W

ε
). Simulation results

demonstrate the effectiveness and rapidity of the proposed algorithm.

Keywords: Power optimization · Load balancing
LTE-A network · Robust optimization

1 Introduction

With the rapid and remarkable growth of user equipment (UE), the explosive
data traffic driven by various applications such as voice and video has stressed
the enormous and dense Long Term Evolution Advanced (LTE-A) network in
recent years [1]. In order to ensure the quality of service (QoS) of users, the
conventional design principle of the downlink network is to guarantee the signal
coverage of base station (BS) and reduce the interference of different signals.

Nevertheless, engineering approaches such as increasing bandwidth to expand
system capacity or enhancing transmit power of some BSs with poor measured
performance will cause serious load unbalanced and traffic congestion, which
will ultimately deteriorate the system performance and reduce global network
quality inevitably due to unbalanced distribution of user position and number.
Additionally, the prevalent user access rule in LTE-A network is to associate
with the specific BS providing the maximum received signal strength (Max-
RSS) [2]. As a consequence, transmit power of total BSs should be considered
c© Springer Nature Switzerland AG 2018
S. Tang et al. (Eds.): AAIM 2018, LNCS 11343, pp. 177–189, 2018.
https://doi.org/10.1007/978-3-030-04618-7_15
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comprehensively to approach a trade-off between the load balancing and QoS of
users.

Present works shown below have provided numbers of excellent contributions
to load balancing. Based on the signal-to-interference-plus-noise ratio (SINR)
prediction and UE measurement, an engineering method for load estimation and
balancing after hand over (HO) is presented by [3]. Moreover, various emerging
access technologies such as Wi-Fi, Wireless Local Area Network (WLAN) and
millimeter wave (mmWave) are also proved as effective ways to balance load [4–
6]. Meanwhile, there are also numbers of researches to balance loads by optimized
method. A cell offset optimization framework for load balancing in heterogeneous
networks is presented in [7]. Achieving load balancing by optimal user association
scheme in heterogeneous cellular networks is presented by [8] and the logarithmic
utility formulation is adopted by researchers as objective function to approach
the fairness of loads.

Different from previous work neglecting the relationship between user asso-
ciation scheme and received signal strength in LTE-A network, we originally
make mathematical descriptions for signal coverage probability and user access
probability based on the actual scene. In addition, the fairness of loads adopts
a robust Min − Max optimization rather than a log function, where reliev-
ing load of the most clogged BS benefits to reduce traffic congestion. Then for
load balancing, we establish a Min − Max generalized linear fractional pro-
gramming (GLFP) model about power optimization under the constraints of
users’ QoS including signal coverage quality and interference performance. The
GLFP model is well-known NP-hard for summation terms more than three [9].
Therefore, a generalized bisection method (GBM) is proposed to approach a
good feasible solution. Specifically, its basic idea is to decline the upper bound
by solving a tighter problem and enhance the lower bound by solving a more
relaxed problem. These two problems are both linear feasibility problem and
easily solved. Moreover, the time complexity of GBM is O(MN2 log W

ε ) in the
worst case.

The rest of this paper is organized as follows. The robust optimization model
for load balancing is established in Sect. 2. Algorithm GBM is designed and the
time complexity of it is provided in Sect. 3. Ultimately, the simulation results
and numerical analysis are presented in Sect. 4.

2 Problem Formulation

Considering the downlink network in LTE-A system illustrated in Fig. 1, there
are N base stations (BSs) and M hot spots (HSs) in the region, where the set
of BSs and HSs are denoted by B = {1, 2, 3, · · · , N} and S = {1, 2, 3, · · · ,M},
respectively. Let Si and Bj denote the position of HS i and BS j respectively,
then the distance between them is dij = ‖Si − Bj‖22. Then transmit power (TP)
of BS Bj and received power (RP) of Si from Bj are respectively denoted by Pj

and Pij in Watt dimension, where the power P in Watt is converted by power

P dB in dB via P = 10
PdB

10 . In addition, the relation between transmit power
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Pj and receive power Pij is formulated as Pij = Pjhij , where hij is the channel
gain between HS i and BS j and is easily calculated by numbers of mature radio
propagation model, such as Okumura Model and Hata Model [10–12].

Fig. 1. N BSs and M HSs in the LTE-A downlink network

The calculation of traffic loads of these N BSs should consider the user
amount of each HS Si and the detail association between users and BSs. Firstly,
let wi denote the user amount of Si since the distribution of user number is
not uniform in practice. Moreover, it’s assumed that users in each Si will be
associated to the same BS and the detail access scheme of each user convention-
ally follows the conventional criterion of Max-RSS in LTE-A network. Namely,
the users at HS i will associate to the strongest signal from BS j if the RP
P dB

ij is the maximum strength among these BSs. Then the access phenomenon
is mathematically expressed by the indicator function about P dB

ij as follows.

χ{PdB
ij =max

k
PdB

ik } =

{
1, P dB

ij ≥ P dB
ik , ∀k

0, Otherwise
(1)

Since the indicator function 1 of user access is discrete and the maximum
function is inconvenient to optimize, a softmax function about Pij formed as 2
is introduced to approach it. The 2 relaxes the binary range of χ{PdB

ij =max
k

PdB
ik }

to the interval from 0 to 1, which meets the value range of probability. Moreover,
qij is a monotonically increasing function of P dB

ij , which meets that the stronger

RP, the higher user access probability. The equation
N∑

k=1

qik = 1,∀i is equivalent

that users in each HS can all definitely associate to only one BS. Then qij is
regarded as the probability of users in HS i accessing to BS j.

qij =
eλqPdB

ij

N∑
k=1

eλqPdB
ik

(2)



180 J. Gui et al.

The positive factor λq > 0 in 2 doesn’t affect the order of P dB
ij . In detail, the rela-

tionship between access probability qij and P dB
ij is illustrated in Fig. 2. Clearly,

the larger λq, the bigger gaps between the maximum and minimum of P dB
ij .

In order to uniform the unit of power, qij is converted to the function of P dB
ij

formed as Eq. 3.

Fig. 2. The relationship between softmax function qij and P dB
ij with different λp

qij =
P

10
ln 10λq

ij

N∑
k=1

P
10

ln 10λq

ik

=
Pij

N∑
k=1

Pik

(3)

The default value of λq in 3 is set to ln 10
10 for the convenience of model analysis.

Based on the definition of user amount and user access probability, the load
expectation of BS j is calculated by 4.

yj =
M∑
i=1

wiqij =
M∑
i=1

wiPij

N∑
k=1

Pik

=
M∑
i=1

wihijPj

N∑
k=1

hikPk

(4)

Generally, the high load at some BSs may increase the energy consumption
of them and reduce resource utilization in the downlink network. To balance
these loads, minimizing the maximum load yj is imperative and the Min−Max
optimization is a robust scheme. Therefore, the objective function about tramit

power Pj is min
P1,P2,··· ,PN

max
j

M∑
i=1

wihijPj

N∑

k=1
hikPk

.

However, the power optimization for load balancing should consider the
demand of users’ QoS including the improvement of signal coverage and the
decline of signal interference at the same time.
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On the one hand, the signal coverage mainly depends on the strength of RP
and a given empirical threshold P dB

0 . Then the coverage quality of user i covered
by BS j is indicated as the indicator function of P dB

ij − P dB
0 ≥ 0 as 5.

χ{PdB
ij −PdB

0 ≥0} =

{
1, P dB

ij − P dB
0 ≥ 0

0, Otherwise
(5)

which implies that users in HS i are covered by BS j if RP P dB
ij should be greater

than the threshold P dB
0 . Similar to the approximation of 1, the discrete function

χ{PdB
ij −PdB

0 ≥0} is approximated by the sigmod function of P dB
ij formed as 6

pij =
1

1 + e−λp(PdB
ij −PdB

0 )
(6)

where λp > 0 is the gradient control factor at origin because of

∂pij

∂P dB
ij

|PdB
ij =0 =

λp

4
(7)

The growth trend of pij from zero to one with a larger λp is faster, illustrated
in Fig. 3.

Fig. 3. The sigmod function of P dB
ij − P dB

0 with different λp

Therefore, the sigmod function with big enough λp solves the discontinuity
of the indicator function well and it’s also very relevant to the actual situation.
Moreover, pij is a monotonically increasing function of P dB

ij , which implies that
the stronger RP, the higher probability of being covered. Meanwhile, pij = 1

2 if
P dB

ij = P dB
0 , indicating that the threshold P dB

0 is the critical power value for
judging signal coverage. In order to enhance the coverage probability, 8 should
be guaranteed and aij is the threshold of network coverage performance.

pij =
hijPj

P0 + hijPj
≥ aij ,∀i, j ⇐⇒ Pj ≥ max

i

aijP0

hij(1 − aij)
,∀j (8)
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On the other hand, the signal interference is traditionally measured by the
signal-to-interference-plus-noise ratio (SINR) in wireless network. The interfer-
ence strength of signal from BS j to HS i will be weaker if the SINR between
them is bigger. Then the SINR between HS i and BS j is denoted by rij and
formulated as 9.

rij =

Received singal︷ ︸︸ ︷
Pjhij

N∑
k �=j

Pkhik

︸ ︷︷ ︸
interference from other cells

+ δ2︸︷︷︸
system noise

(9)

The numerator in 9 is received signal Pij in Watt and the denominator is inter-
ference from other cells and additive white Gaussian noise (AWGN), respectively.
In order to reduce the interference, 10 should be also satisfied and bij in 10 is
the threshold of SINR performance between BS j to HS i.

rij =
hijPj

N∑
k �=j

hikPk + δ2
≥ bij ,∀i, j ⇐⇒ −hijPj + bij

N∑
k �=j

hikPk + bijδ
2 ≤ 0,∀i, j

(10)
Consequently, a Min − Max optimization model about transmit power

P1, P2, · · · , PN of BSs under the users’ QoS constraints is established as model
(I) for load balancing.

min
P1,P2,··· ,PN

max
j

M∑
i=1

wihijPj

N∑
k=1

hikPk

s.t. Pj ≥ max
i

aijP0
hij(1−aij)

, ∀j (1)

−hijPj + bij

N∑
k �=j

hikPk + bijδ
2 ≤ 0, ∀i, j (2) (I)

0 ≤ Pj ≤ Pmax, ∀j

The objective function in model (I) is to balance the loads of BSs and the
linear constraints in model (I) is to guarantee the users’ QoS. In detail, the con-
straint (1) in model (I) is to guarantee the signal coverage quality corresponding
to 8 and the constraint (2) is to reduce the signal interference strength corre-
sponding to 10. Moreover, the lower bound of each decision variable Pj is zero
and its upper bound is Pmax, which is the maximum transmit power of BS.
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Obviously, the constraint (1) in model (I) is integrated into the lower bound
of decision variables Pj and the model (I) is simplified as model (II).

min
P1,P2,··· ,PN

max
j

M∑
i=1

wihijPj

N∑
k=1

hikPk

s.t. −hijPj + bij

N∑
k �=j

hikPk + bijδ
2 ≤ 0, ∀i, j (II)

max
i

aijP0
hij(1−aij)

≤ Pj ≤ Pmax, ∀j

The model (II) is a Min − Max generalized linear fractional programming
(GLFP) model and it’s NP-hard when M ≥ 3. However, larger M is more
significant in actual network.

3 Algorithm

In this section, a heuristic algorithm named Generalized Bisection Method
(GBM) is designed for model (II). The basic idea and time complexity of it are
presented as follows.

The model (II) is hard to solve mainly because of the Min − Max optimiza-

tion and the nonconvex objetive function
M∑
i=1

wihijPj

N∑

k=1
hikPk

. Inspired by the ordinary

Bisection Method proposed in [13], a scalar variable t is introduced to eliminate

the effect of Min − Max optimization model. Let t = max
j

M∑
i=1

wihijPj

N∑

k=1
hikPk

, then

M∑
i=1

wihijPj

N∑
k=1

hikPk

− t ≤ 0, ∀j (11)

The model (II) is transformed as

min t

s.t.
M∑
i=1

wihijPj

N∑

k=1
hikPk

≤ t, ∀j (1)

−hijPj + bij

N∑
k �=j

hikPk + bijδ
2 ≤ 0, ∀i, j (2) (III)

max
i

aijP0
hij(1−aij)

≤ Pj ≤ Pmax, ∀j

where the constraint (1) in model (III) is too complex to solve and the ordinary
Bisection Method doesn’t work now.
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Since it’s hard to solve model (III) directly, GBM is designed by solving
two linear optimization models to approach the optimal solution of model (III).
Specifically, the constraint (1) in model (III) is tighted as

wihijPj

N∑
k=1

hikPk

≤ t

M
⇐⇒ wihijPj − t

M

N∑
k=1

hikPk ≤ 0,∀i, j (12)

because the constraint (1) in model (III) will be satisfied if linear inequalities
12 have feasible solutions. Therefore, the feasible solution of model (III) can be
found if the tighted model (IV) is feasible.

min t

s.t. wihijPj − t
M

N∑
k=1

hikPk ≤ 0, ∀i, j (1)

−hijPj + bij

N∑
k �=j

hikPk + bijδ
2 ≤ 0, ∀i, j (2) (IV )

max
i

aijP0
hij(1−aij)

≤ Pj ≤ Pmax, ∀j

On the contrary, the constraint (1) in model (III) is relaxed as

wihijPj

N∑
k=1

hikPk

≤ t ⇐⇒ wihijPj − t

N∑
k=1

hikPk ≤ 0,∀i, j (13)

because wihijPj

N∑

k=1
hikPk

≥ 0,∀i, j. The model (III) will be infeasible if the relaxed

model (V) formed as (V) has no feasible solutions.

min t

s.t. wihijPj − t
N∑

k=1

hikPk ≤ 0, ∀i, j (1)

−hijPj + bij

N∑
k �=j

hikPk + bijδ
2 ≤ 0, ∀i, j (2) (V )

max
i

aijP0
hij(1−aij)

≤ Pj ≤ Pmax, ∀j

Totally, model (IV) and (V) are both linear feasibility problems which can
be easily solved with a fixed t. Additionally, the initial upper and lower bound

of t in model (III) are W =
M∑
i

wi and 0, respectively. Then let t be the midpoint

of the upper bound and lower bound and solving model (IV) and (V) in each
iteration.

There are four possible combinations for the two solutions. Firstly, model (IV)
and (V) are both infeasible, then t is two small to find anyone feasible solution.
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Hence, the lower bound of t should be enhanced because original model (III) is
also infeasible in this case. Secondly, the model (IV) and (V) are both feasible,
then the optimal solution of model (III) may be found with a smaller t and
the upper bound of t should be declined in this case. Thirdly, model (IV) is
infeasible while model (V) is feasible, then the constraint (2) in model (III) is
also satisfied with the feasible solution P ∗ in model (V). However, the objective
value in model (III) calculated by P ∗ may not lower than the current t in this
iteration, therefore, the upper bound of t should be declined to a smaller value
between the calculated value with P ∗ and the current t. Lastly, model (IV) is
feasible while model (V) is infeasible. This situation can’t appear because the
solution space of model (IV) is a subset of the solution space of model (V).

Therefore, the upper bound of t will be declined and the lower bound of
t will be enhanced after multiple iterations. A good feasible solution of model
(III) will be eventually obtained when the upper and lower bounds are relatively
closed. Conclusively, the pseudo code of GBM is shown as follows. where ε > 0
is a control factor of solution precision.

Algorithm 1. GBM

Input: t = 0, t =
M∑

i

wi = W , tolerance ε > 0.

Output: The optimal solution P ∗ and optimal value f∗.
1: while t − t > ε do

2: t := t+t
2

.
3: Solve the linear feasibility problem (IV) with the fixed t.
4: if (III) is feasible and P ∗ is the feasible solution of it then

5: t := max
j

M∑

i=1

wihijP ∗
j

N∑

k=1
hikP ∗

k

.

6: else
7: Solve the linear feasibility problem (V) with the fixed t.
8: if (IV) is feasible and P ∗ is the feasible solution of it then

9: t := min{max
j

M∑

i=1

wihijP ∗
j

N∑

k=1
hikP ∗

k

, t}.

10: else
11: t := t

12: return P ∗ and f∗ = max
j

M∑

i=1

wihijP ∗
j

N∑

k=1
hikP ∗

k

The time complexity of GBM depends on the amount of iteration which is

at most �log2(
W
ε )	, where W =

M∑
i

wi. In each iteration, judging the feasibility

of model (IV) and model (V) cost totally at most O(MN2) time complexity
because the amount of inequalities is MN meanwhile the feasible judgment of an
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inequality requires O(N) basic operations. Therefore, the total time complexity
of GBM is O(MN2 ∗ �log2(

W
ε )	) = O(MN2 log W

ε ).

4 Performance Simulation

To verify the validity and rapidity of GBM , numerical simulation experiments
implemented by MATLAB r2015b with 2.4 GHz CPU and 32 core processors are
presented in this section. The first subsection is the system parameters of these
simulation experiments including the parameters of wireless network topology
and ratio propagation model. The second subsection is to analyse the validity
of GBM from the perspective of the change of BS amount N and total user
amout W , respectively. Moreover, a detail load distribution example will be also
presented in this subsection as a supplementary explanation. The last part is to
verify the O(MN2 log W

ε ) time complexity of GBM .

4.1 Simulation Parameters

The simulation parameters of these random experiments are listed in Table 1.
The simulation wireless network is made up by some HSs, BSs and users. And
HS amount M , BS amount N and total user amount W are a random integer
from 10 to 50, 10 to 100 and 100 to 1000, respectively. Moreover, the maximum
transmit power Pmax = 15 dB and the adopted ratio propagation model refers to
the distribution of frequency bands and empirical parameters in actual network.
Additionally, the tolerance ε = 10−8.

Table 1. Simulation parameters

Parameters Value

HS amount (M) 10–50

BS amount (N) 10–100

Total user amount (W) 100–1000

Maximum transmit power (dB) 15

Frequency (f:Hz) 1800–2600

Distance between BSs and HSs (d:km) 0.0833–1.4142

Attenuation coefficient in free space (a) 20–30

Building blockage factor (b) 20

Propagation model 32.45 + a * lgd + b * lg(f)
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4.2 The Calculation Validity Analysis

Figure 4 illustrates the final load distribution based on algorithm GBM with
M = 20, N = 100,W = 1000. The blue line in this figure represents the absolute
equilibrium value (AEV ) because W

N = 1000
100 = 100. Since the problem needs to

satisfy user’s QoS, AEV is almost impossible to achieve. Therefore, the load of
some BSs will be higher than AEV , as red bars shown in this figure. On the
contrary, green bars represent the lower load of BSs. It can be clearly seen that
under the action of GBM , there is no excessive load on one BS and other BSs
are idle.

Fig. 4. The load distribution based on GBM with M = 20, N = 100, W = 1000 (Color
figure online)

Furthermore, in order to observe the difference between the optimal value
of GBM and AEV , Figs. 5 and 6 show the effects of parameters N and W on
the performance of GBM , respectively. In Fig. 5, AEV is inversely proportional

Fig. 5. The comparison between GBM
and AEV as N increases with W = 1000

Fig. 6. The comparison between GBM
and AEV as W increases with N = 20
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to N because W is fixed to 1000 in these groups of experiments. Then AEV =
W
N = 1000

N becomes smaller as N increases. Although the optimal values of GBM
with different M are all bigger than AEV , their trends are roughly the same as
AEV . In Fig. 6, AEV is proportional to W because N is fixed to 20 in these
groups of experiments. AEV = W

N = W
20 becomes bigger as W increases. There

is still a certain gap between GBM and AEV in this figure. At the same time,
the target value after GBM optimization is very far from the worst case when
all loads are concentrated on only one BS.

4.3 The Calculation Rapidity Analysis

In order to verify the rapidity of GBM , two groups of complementary simulations
are executed and the results of them are illustrated in Figs. 7 and 8, respectively.
The aims of them is to investigate the relationship between the actual running
time t of GBM and M and the relationship between t and N , respectively.
Moreover, W is set to 1000 in these two groups of simulations and their actual
running time are all not more than 1 min (60 s), especially for N = 100,M = 50.
Additionally, comparing Figs. 7 and 8, the trends of lines t−M with different N
are all approximately linear while the trends of lines t−N are visually quadratic,
which provide strong support for O(MN2 log W

ε ) time complexity of GBM .

Fig. 7. The actual running time of
GBM with the increasement of M

Fig. 8. The actual running time of
GBM with the increasement of N

5 Conclusion

In this paper, load balancing problem meeting users’ Qos demand is considered
in LTE-A network. Signal coverage and user access are both formed as a math-
ematical description via sigmod and softmax function, respectively. Moreover,
a Min − Max GLFP model with the constraints of users’ QoS is established
to balance the traffic load of BS in LTE-A network. However, GLFP is a well-
known NP-hard problem with more than three summation items. Therefore,
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GBM algorithm is designed by constantly solving a tightproblem and a relaxed
problem. These two problems are linear feasibility problems and their solutions
can be easily approached. Moreover, the time complexity of GBM is proved
as O(MN2 log W

ε ) where ε is a given solution accuracy. Ultimately, simulation
results verify the effectiveness and rapidity of GBM .

Acknowledgments. Thanks to China Mobile Group Beijing Company Limited
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Abstract. Access Control Lists (ACLs) are an essential security com-
ponent in network routers. ACLs can be geometrically modeled as a
two-dimensional black and white grid; our interest is in the most effi-
cient way to represent such a grid. The more general problem is that
of Rectangle Rule Lists (RRLs), which is finding the least number of
rectangles needed to generate a given pattern. The scope of this paper
focuses on a restricted version of RRLs in which only rectangles that
span the length or width of the grid are considered. Applegate et al.’s
paper “Compressing Rectilinear Pictures and Minimizing Access Control
Lists” gives an algorithm for finding an optimal solutions for strip-rule
RRLs in O(n3) time, where n is the total number of rows and columns in
the grid. Following the structure of Applegate et al.’s algorithm, we sim-
plify the solution, remove redundancies in data structures, and exploit
overlapping sub-problems in order to achieve an optimal solution for
strip-rule RRLs in O(n2 log n) time.

1 Introduction

We consider the following problem of generating patterns by drawing rectangles.
A target pattern is given as a grid of black and white cells. We begin with a
white grid and place solid black or white rectangles, each rectangle covering
any previously placed rectangles. Placing arbitrary sized rectangles makes the
problem NP-hard, so we consider only placing rectangles that extend either the
full height or width of the grid. Our goal is to find the smallest number of
rectangles required to create the target pattern.

1.1 Problem Definition

Define a pattern P to be an nR by nC grid of black and white squares. Let
n = nR+nC . A rectangle strip-rule on P is either a black or white rectangle that
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https://doi.org/10.1007/978-3-030-04618-7_16
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extends from one side of the pattern to the opposite side. Precisely, a rectangle
in P is either a set of contiguous rows of P or a set of contiguous columns of P .

A rectangle strip-rule list (a RSRL) that generates P is an ordered list of
rectangle strip-rules, that when applied in order to a blank (white) grid the size
of P creates the target pattern. See Fig. 1 for an example of a pattern generated
by a RSRL.

Fig. 1. A pattern generated by a RSRL of 3 elements.

We say a pattern P is a strip-rule pattern if there is a RSRL that generates P .
Note that not every pattern P is a strip-rule pattern. See Fig. 2 for an example
of a pattern that is not a strip-rule pattern.

Fig. 2. The 2×2 checkerboard: an example of a pattern that is not a strip-rule pattern.

An RSRL is considered optimal if it has the minimum number of rectangle
strip-rules of any RSRL that generates P .

1.2 Problem Background

Rectilinear Pictures and Access Control Lists. The method of stacking
rectangles to create patterns has applications in both graphics and network
routers. A common method for drawing graphics is to allow the user to repeatedly
apply a rectangle tool to a blank canvas (see Xfig or PowerPoint). Each rectangle
is of a solid color and covers everything in a defined rectangular region. This
sequence of drawn rectangles can be represented by a rectangle rule list (RRL).
The problem of finding the minimum length RRL needed to create a given
pattern is a generalization of the RSRL problem we explore.

Alternatively, instead of being given an nR by nC grid as input, one can start
with the numbers nR and nC , and a list of m rules. The goal is to find a shortest
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list that gives the same pattern as the input list. As shown in an extended version
of Applegate et al. [1] available on some of the paper authors’ homepages, it is
possible to construct the nR by nC grid in time O(nR · nC + m2).

One important application of RRLs is in access routers. An internet service
provider might use access control lists (ACLs) on network router line cards
in order to choose whether to forward or drop a packet based on the sending
or receiving IP address. This decision could be answered by checking a two-
dimensional Boolean array based on the sender and receiver IP addresses. This
problem can be translated into a restricted version of our RRL problem (as
explained below). An in-depth discussion of this translation and its properties
is provided in detail in Applegate et al.’s paper [1]. Briefly, the idea in ACL
minimization is to construct a given grid of size 2w by 2w, indexed by binary
strings from 0w to 1w. Rectangles allowed on this grid are defined by a pair of
binary strings (y, z) and cover any squares whose indices have y and z as a prefix
respectively.

Related Work. Unfortunately, the general problem of finding minimum length
RRLs has been shown to be NP-hard by Applegate et al. [1]. Instead, we work
on a restricted version of the problem in which any rectangle rules applied must
extend either the height or width of the original pattern and only black or white
rectangles are allowed. This 2-color strip-rule problem was originally posed in [1],
where an optimal solution is given in O(n3)-time. Applegate et al. [1] obtains an
optimal solution to the strip-rule version of the ACL problem with a similar (but
more complicated) O(wn3)-time algorithm. A 1.5 ratio approximation algorithm
is given for the problem in O(n2)-time. While there exist numerous results related
to various other restricted problems regarding RRLs, we know of no other work
related to this 2-color strip-rule problem.

ACL can be used in firewalls [7]. Kang et al. [7] introduces axioms with the
goal of creating and analyzing algorithms for optimizing the rewriting of rules
in Software Defined Networks. Liu et al. [9] considers classifiers in dimensions
higher than two, which reduce to either ACL or RRL lists in dimension two. They
propose and experimentally evaluate heuristics without performance guarantees,
as well as relate these classifiers to the Firewall Decision Diagrams of Gouda
and Liu [5]. Pao and Lu [12], and Comerford et al. [3] also consider higher
dimensional classification based on rectangle rules. Kang et al. [6] and Zhang
et al. [15] introduce more general rule-minimization problems. Sun and Kim
[13] uses rule minimization as a start for a solution to an extended problem.
Efficiently removing redundant rules has been proposed in Sun and Kim [14].

The complexity of finding minimum length ACLs in two dimensions is still
unknown, but with an arbitrary number of dimensions, this problem is NP-hard
according to Kang et al. [8]. Applegate et al. [1] gives a O(min(m1/3,OPT 1/2))-
approximation algorithm for finding minimum length RRLs, where m is the
length of the input RRL. This is still the best published ratio.

Daly et al. [4] provides heuristics for higher-dimensional ACL and RRL min-
imization (reference [4] calls the ACLs minimization prefix-ACL, while range-
ACL is their terminology for finding minimum length RRLs), on the way improv-
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ing the approximation ratios provided by Applegate et al. [1] for ACLs mini-
mization. The approximation algorithms of [4] and [1] use as a subroutine the
strip-rule version that we study.

Our Results. Using the structure defined in Applegate et al.’s [1] O(n3) exact
algorithm for 2-color RSRLs, we give an improved O(n2 log n) exact algorithm
for the RSRL problem. Given the similar structures of the RRL and ACL opti-
mal solutions given by [1], we expect our solution can be extended to improve the
running time of an exact algorithm for the strip-rule ACL problem from O(wn3)
to O(wn2 log n). As strip-rule ACLs occur in a high percentage of ACL mini-
mization cases [1], this is one reason to study RSRL. Another two reasons are:
we believe RSRL is a natural problem, and RSRL is used in the approximation
algorithms for RRL minimization.

Our result is obtained by digging deeper into the structure of the dynamic
programming of Applegate et al. [1] combined with the use of geometric data
structures to speed up the process. We use fast two-dimensional orthogonal range
queries, using existing data structures (a time bound of O(log n) time per query
being textbook material [2]).

2 Preliminaries

We begin by exploring the strategies and tools for finding an optimal RSRL.
The Pick-Up-Sticks algorithm will detail the basic structure used to find an
RSRL, but not necessarily an optimal RSRL. Then we will explain the concept of
equivalence classes, which can be grouped into “segments”. All of these concepts
will be put together in our algorithm for finding an optimal solution.

2.1 The Maximum Pick-Up-Sticks (MPUS) Algorithm

As proposed by Applegate et al.’s paper, we can build an algorithm for find-
ing whether a pattern is a strip-rule pattern and, if so, finding an RSRL that
generates it.

The Pick-Up-Sticks (PUS) Algorithm. The Pick-Up-Sticks algorithm of
Applegate et al. [1] is an algorithm for generating a RSRL of a pattern P if such
a list exists. The idea is to pick up monochromatic rows and columns in order
to build the RSRL backwards. Every time we pick a row or column, we color it
gray.

Let P be a black and white pattern. We define a column or row in P as being
pseudo-monochromatic if it is composed of only gray and white cells or black
and gray cells. Note that monochromatic columns and rows are also pseudo-
monochromatic. The Pick-Up-Sticks algorithm builds an RSRL as follows:

While there are still black cells, choose a pseudo-monochromatic column or
row and color all its cells gray. After a row or column is colored gray, add a
rectangle that corresponds to covering that row or column with whatever non-
gray color was left in that row or column to the beginning of our RSRL. Note
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that, in our problem definition, we begin applying RSRLs with a white grid, so
we can stop picking up sticks when no black cells exist. If, on the other hand,
we modify the problem to begin with a grid of some fourth color, then we would
only stop picking up sticks when all cells are gray. There may be a difference
of one rule between optimum solutions to these two problems (white initial grid
or some fourth color initial grid) with the same target pattern. For the sake of
symmetry, from now on we use this modified version of the problem. The method
works with minor modifications for the original version.

The algorithm may not succeed, as it may not find a pseudo-monochromatic
column or row. If the algorithm does end in an all-gray grid, then the algorithm
has “picked up” the rectangles of the RSRL in reverse order. Figure 3 gives a
representation of one possible execution of the Pick-Up-Sticks algorithm and
Fig. 4 shows the generation of the original pattern from the resultant RSRL.

Fig. 3. The execution of the Pick-Up-Sticks algorithm on a strip-rule pattern.

The Pick-Up-Sticks algorithm is guaranteed to generate an RSRL if one exists
(see below), but it is not necessarily an optimal RSRL of minimum length. At
any stage of the algorithm there could be more than one option on which row
or column to pick up. Different choices can lead to different sizes of RSRLs. In
the next sections we will discuss on how Applegate et al.’s paper narrows down
the number of choices for each stage in order to find an optimal RSRL.

Theorem 1 (part of Theorem 3.1 of Applegate et al. [1]). A black and
white pattern P is a strip-rule pattern if and only if the Pick-Up-Sticks algorithm
results in a grid with all of its cells gray. In that case, the reverse list of picked
up rows and columns is a RSRL for P .

Improving by Picking Maximal Sticks. One important observation by
Applegate et al.’s paper on the Pick-Up-Sticks (PUS) algorithm is that there can
be no harm in always using maximal strip-rules. A maximal strip-rule is a strip-
rule that picks up a maximal contiguous sequences of pseudo-monochromatic
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Fig. 4. The RSRL generated by the execution of the MPUS algorithm on the pattern
of the Fig. 3.

rows or columns. Following Applegate et al. [1], we call such a contiguous
sequence a block.

This is possible because replacing a non-maximal strip-rule by the maximal
one that contains it does not affect the pseudo-monochromaticity of any later
rule. Hence, we may always use the Maximal Pick-Up-Sticks (MPUS) algorithm
instead of the Pick-Up-Sticks (PUS) algorithm. In this new algorithm, once we
choose the pseudo-monochromatic column (or row) to pick, we pick the maximal
contiguous set of pseudo-monochromatic columns (or rows, respectively) that
contains it.

2.2 Equivalence Classes

We now introduce the concept of equivalence classes of rows, as used by Apple-
gate et al.’s paper. This definition will allow us to give structure on the order in
which columns and rows should be picked up during an execution of MPUS in
order to find an optimal RSRL.

Definition and Properties. Given a pattern P , we define two rows or columns
as being in the same equivalence class if and only if they are both of the same
type (row or column) and their cells have the exact same colors in P , in the
same order; that is, they are identical.

We will denote a column equivalence class in a pattern P as being Cx, where
x is the number of black cells in the original pattern. Analogously, we will denote
Ry as being the row class with y black cells in the original pattern. See Fig. 5
for an example of a pattern and its equivalence classes. It follows from the
monotonicity property (Theorem2 below) that all the columns in Cx are identical
in all positions, for all x, and the same property holds for all the rows of Ry, for
all y.
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Fig. 5. Equivalence classes of a black and white pattern P .

Theorem 2 (part of Theorem 3.1 of Applegate et al. [1]). (Monotonicity
Property) Let P be a black and white pattern. P is a strip-rule pattern if and
only if the two equivalent properties hold:

(i) For any color c ∈ {black, white}, the rows of P are hierarchical: given any
two rows of P , the set of columns where c is present in the first row either
contains or is contained in the set of columns where c is present in the
second.

(ii) The same property of item (i) holds with the roles of row and column
switched.

Note that every row and column belongs to exactly one equivalence class.
Also, if two columns belong to an equivalence class in the beginning of the
MPUS algorithm, then they will remain of the same class until one of them
is picked up by the algorithm. This is since picking up other columns does not
change these two columns at all, while picking up rows modify these two columns
in exactly the same way. The same property holds for two rows that belong to
an equivalence class.

We also define an equivalence class as being active during the execution of
the MPUS algorithm if some member of that class is pseudo-monochromatic but
not all gray. We will use the next proposition.

Proposition 1 (Applegate et al. [1], Observation 6. on page 1070).
During the execution of the MPUS algorithm on a black and white strip-rule
pattern, there are always exactly two active classes at any given time. The two
active classes are either a row and a column class of the same color or both
classes of the same kind (rows or columns), being one of each color.

The intuition on why this happens is that in order for a new class to become
active, all the members of an old active class need to be picked up.

Embedded Rows and Columns. We can start improving the MPUS algo-
rithm by introducing the concept described by Applegate et al.’s paper as embed-
ded rows and columns. This will allow us to pick up more rows and columns using
the same number of rectangles.
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First, we will define the concept of an embedded column or row at a given
stage of the MPUS algorithm. Given a point during the execution of the MPUS
algorithm, let b be a column of an active equivalence class B. Let a1 be the first
column to the left of b that does not belong to B and has not yet been picked
up. Similarly, let a2 be the first column to the right of b that does not belong
to B and has not yet been picked up. We say that b is embedded in equivalence
class A if both a1 and a2 belong to that class A. The definition is analogous for
rows. Note that columns can be embedded only in column classes and rows only
in row classes. See Fig. 6 for an example.

Fig. 6. Example of a pattern P where one member of C0, the second column, is embed-
ded in C2.

If during the execution of the MPUS algorithm we have the option to pick up
two column-blocks that embed a set of columns of another active class, then we
can pick up the two column-blocks that embed the third one with two rectangles
and then the embedded one, totaling three rectangles. However, it is better to
pick the embedded block first with one rectangle, and then pick the two blocks
that were previously embedding it with only one rectangle, thus using a total of
two rectangles for the same set of columns. As an example, in Fig. 6, one cannot
benefit by picking up the first and the third column, when one can pick up first
the second column, followed by picking up the block of the first three columns.

Equivalence Classes Ordering. As we pick up all the members of a column
class, we change the rows of the pattern. Since the other columns remain intact,
the new class to become active must be a row class. By using the same argument
for row classes, we see that whenever we pick up all the members of a class, the
next class to become active is of the opposite type. This is formally stated below.

Proposition 2 (Implicit in Applegate et al. [1]). For a pattern P of two
colors, if one picks up all columns of an active class and does not make all the
grid gray, then a row class of the opposite color becomes active. If one picks up
all rows of an active class and does not make all the grid gray, then a column
class of the opposite color becomes active.

We can order the equivalence classes of both rows and columns in a given
pattern P by the number of black cells on it. In that ordering, we can see from
the proposition below that all the rows that two consecutive column classes differ
form exactly an equivalence class. This holds analogously for columns.
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Proposition 3 (Implicit in Applegate et al. [1]). Let i be such that 1 ≤
i < NC and j be such that 1 ≤ j < NR.

(a) Let Si be the set of rows that have white cells on the intersections of the
columns of Cxi

and black cells in the intersection of the columns of Cxi+1 .
Then Si is a row class (Si ∈ R).

(b) Let Sj be the set of columns that have white cells on the intersections of the
rows of Ryj

and black cells in the intersection of the columns of Ryj+1 . Then
Sj is a column class (Sj ∈ C).

This can be used to prove:

Proposition 4. The number of row classes and the number of column classes
differ by at most one; that is |NR − NC | ≤ 1.

Using that information, we can set up the following ordering for the equiva-
lence classes:

1. Start with the column class with only white cells. If this class does not exist,
then start with the row class with only black cells (the existence of this row
class follows immediately from the monotonicity property – Theorem2 in the
Appendix).

2. Alternate columns and rows, putting the columns in ascending order of black
cells and the rows in descending order of black cells.

Let Cx0 , Cx1 , . . . , Cx(NC−1) , CxNC
be the ascending ordering of column

classes by the number of black cells. Let Ry0 , Ry1 , . . . , Ry(NR−1) , RyNR

be the ascending ordering of row classes by the number of black
cells. Using the rules above, we should get an ordering such as
Cx0 , RyNR

, Cx1 , Ry(NR−1) , . . . , Ry1 , Cx(NC−1) , Ry0 , CxNC
(alternating row and col-

umn classes). This array may start and/or end with row equivalence classes,
instead of columns as above.

Proposition 5. There is an array E1, E2, . . ., EN of equivalence classes that
respect the following property: Given a and b such that 1 ≤ a < b ≤ N , if Ea and
Eb are the active classes, then for every c such that 1 ≤ c < a or b < c ≤ N , Ec

has already been picked up. Also, if b = a + 1, then either Ea ∈ R and Eb ∈ C
or Ea ∈ C and Eb ∈ R. Moreover, none of the columns/rows of a class Ec for
a < c < b are pseudo-monochromatic.

We omit the proof for lack of space. We will call this ordering the hierarchical
array of the pattern P . The hierarchical array is a useful extension of Observation
5 on page 1070 of Applegate et al. [1].

We will also refer to this ordering of equivalence classes as E1, E2, . . . , EN .
That is, if the hierarchical array starts with a column, then E1 = Cx0 , E2 =
RyNR

, E3 = Cx1 , and so on, and if the hierarchical array starts with a row, then
E1 = RyNR

, E2 = Cx0 , E3 = Ry(NR−1) , and so on. Note that NC , the number of
column classes, is at most nC , the number of columns, and the same property
holds for rows.
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2.3 Segments

During MPUS, there are always two active classes. A “segment” succinctly rep-
resents the blocks that are available for pick up while a certain pair of classes
are active. These segments can be translated into nodes of a graph (the segment
graph that is discussed in detail later), that can be used for finding an opti-
mal solution, as described below. Note that our representation of segments is a
slightly condensed version of the one described in the original Applegate et al.’s
paper [1]. The difference is that the original definition is a five tuple with two
redundant elements.

Definition and Properties. Whenever a new class becomes active during the
execution of the MPUS algorithm on a pattern P , we will define a segment
S as being a tuple of three elements (Ex, Ey, U), where Ex and Ey are the
active equivalence classes and U is the subset of members (rows or columns) left
unpicked of Ey (U ⊆ Ey).

Proposition 6. Let E1, E2, . . ., EN be the hierarchical array of a pattern.
Given a and b such that 1 ≤ a < b ≤ N it is possible to know what colors
correspond to each active class of (Ea,Eb).

We omit the proof. It is not here where the running time is improved.
We can represent the sequence of actions of the MPUS execution as

a sequence of segments, as described in this paragraph. Given the pick-up
order obtained through the execution of the MPUS, let’s create a segment
(E0, EN , EN ) for the starting state of pattern P and a segment (Ex, Ey, U),
U ⊆ Ey, for every time a new class Ex becomes active; we say that the RSRL
includes the segment whenever such a segment becomes active during the MPUS
execution corresponding to the RSRL.

Since Ex is the new class, all of the members of Ex are still in the pattern.
Ey, in the other hand, is a class that was already active. It may have some of
its members already picked up. We store that information in U by maintaining
the members that have not been picked up yet. Note also that any classes that
are between Ex and Ey in the hierarchical array of P have not become active
yet, resulting in the fact that all of their members are still there. At the same
time, members that come before and after the interval delimited by Ex and Ey

have all been picked up. Hence, for each one of those segments that are created
whenever a class becomes active it is possible to reconstruct the pattern at that
moment of the execution of the MPUS algorithm.

Segment Branching. Applegate et al.’s paper [1] shows that if we are looking
for an optimal solution, then we can narrow down the number of segments sig-
nificantly by reducing the number of options into which a segment can branch
to two.

Suppose a minimum-length RSRL for a strip-rule pattern P includes the
segment S = (Ex, Ey, U) and that to get to the next segment, if it exists, we
pick up all members of Ex (possibly picking up some members of U ⊆ Ey) while
at least one member of U remains active.
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– If U ⊆ Ey has a member that is not embedded in Ex, then there exists a
minimum-length RSRL that includes the segment S = (Ex, Ey, U) and that
to get to the next segment you pick up all the members of U ⊆ Ey that are
embedded in Ex, followed by picking all members of Ex.

– If all members of U ⊆ Ey are embedded in Ex, then there exists another
minimum-length RSRL that includes the segment S = (Ex, Ey, U) and that
to get to the next segment you pick up all the members of U ⊆ Ey (thus,
finishing picking up every member of Ey in the pattern). Note that in this
case, one can get to the next segment by picking up all the members of U ⊆ Ey

first.

The same property holds with the roles of Ex and U switched. In this case,
we assume the next segment from S, if it exists, is originally reached by picking
up all members of U ⊆ Ey. Intuitively, this happens because we can always
pick embedded members at no extra cost, if one is to pick all the blocks of the
embedding class.

Proposition 7 (statement 2(a) of Lemma 4.2 of Applegate et al. [1]).
Suppose we have two sets Ux and Uy of active blocks of the two active classes Ex

and Ey. Suppose there is an optimal solution that completely picks up Ex before
completely picking up Ey. Then there also exists an optimal solution that picks
up all embedded members of Ey before picking up Ex.

Moreover, suppose we have two sets Ux and Uy of active blocks of the two
active classes Ex and Ey. To finish picking up blocks (except at the very end),
we must reach the situation that either Ex or Ey are not active anymore; say
Ex becomes not active, while Ey is still active. Picking up any block from the
class Ey that is not embedded in Ex can be done, without loss of optimality,
later. So we can assume that only the members of Uy that are embedded in Ex

are picked up while Ex is active.
Note also that for every segment we can pick the latest class that became

active or the oldest, a total of two options. We can then say that every segment
will branch into two other segments. In both cases, we can determine the next
segment reached by eliminating every embedded member of the class not being
picked up, followed by eliminating every member of the class being picked up.
The only exception to this occurs when we pick every embedded member of the
class not being picked up we end up picking all of its members, thus already
reaching a new segment. In that case, the original segment branches into only
one segment, instead of two.

Note that there could be a segment that does not have any next segment. In
this case, the segment is a segment at the very end of MPUS execution. If we
pick up any of either class, then we will obtain an all-gray grid and the algorithm
will be over. Also, note that for this to happen we must have that Ex and Ey

are next to each other in the hierarchy array, and picking-up one of them will
also result in picking-up the other one.

Segment Graph. We build a “segment graph” using the segments as nodes, as
described by the following structure proposed by Applegate et al. [1]:
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– Start with the segment (E0, EN , EN ), that represents the grid as it is in the
very beginning of the MPUS algorithm. This will be the starting node.

– For every node (segment) in the graph, generate the two segments (possibly
one, as described in the previous subsection) that it branches into and add a
directed edge from it to the new generated nodes. There will be one segment
for each of the two options of picking up the newest or the oldest of the two
classes in the segment. In both cases, we can determine the next segment
reached by eliminating every embedded member of the class not being picked
up, followed by eliminating every member of the class being picked up.

– Define the cost for each edge as the number of rules in the MPUS algorithm
used to go from one segment to another.

– Create an artificial node corresponds to an all-gray grid. This will be the end
node of the graph. Every time a segment has its two classes adjacent to each
other in the hierarchy array, create an edge from it to this all-gray grid node.
This edge should have cost one (since we solve the modified version); if we
were to solve the original version, then this edge should have cost zero if the
members of the classes of the segment were white and one otherwise.

Because of what was discussed in the Segments Branching section, at least
one of the paths from the starting node to the end node of the graph will be a
minimum-length RSRL. Note that having (EN , E0, E0) as the starting node will
lead to a graph that represents the same possible steps for the MPUS because
it also represents the same starting pattern. Note also that some nodes may be
reached by more than one node. Every node will only branch into nodes that
correspond to patterns with a smaller number of total of columns and rows. This
implies that there are no cycles in this graph.

We say that one segment reaches another if there is a path in this graph from
that segment to the other one. The distance from one segment to another is the
sum of the costs of the edges that compose the path between them, if such a
path exists. One very important property of this graph is that if two segments
(Ex, Ey, U) and (Ex, Ey, U

′) are reachable from the starting node of the graph,
then either U ⊆ U ′ or U ′ ⊆ U .

Lemma 1 (Containment Lemma – Lemma 4.3 of Applegate et al. [1]).
Let S and S′ be two segments on the same equivalence classes (in the same

order). Then either U ⊆ U ′ or U ′ ⊆ U .

Intuitively, this follows from the fact that we have a strict ordering on the
equivalence classes that could embed columns in U . See Applegate et al.’s paper
[1] for a rigorous inductive proof of this lemma. We will see that this implies
that the number of nodes in this graph is O(n2), where n is the number of rows
and columns in the original pattern.

3 Algorithm

The flow of our algorithm closely follows that of the O(n3) algorithm given by
Applegate et al. We similarly create a segment graph of the reachable states in a
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MPUS of the pattern. However, we create this graph faster by grouping similar
segments into S-groups, which can be processed together.

3.1 Setup

We begin by reading the input pattern into an equivalence class list and creating
the first node in our segment graph.

Equivalence Class List. We are given as input an nR × nC grid of black and
white cells. Assign each of the rows an index from 1 to nR from top to bottom,
similarly each column, an index from 1 to nC from left to right. Group rows and
columns into equivalence classes and order the classes by number of black cells
as previously described in the Subsect. 2.2. Precisely, construct the hierarchical
array:

Cx0 , RyNR
, Cx1 , Ry(NR−1) , . . . , Ry1 , Cx(NC−1) , Ry0 , CxNC

(this array may start and/or end with row equivalence classes, instead of columns
as above).

We will need to determine from a range of column indexes which columns are
also in a range of equivalence classes, and the similar question with rows instead
of columns. A data structure such as an orthogonal range tree [2] accomplishes
these queries in O(log n) time with O(n log n) space and setup time.

S-Group. Define an S-group (E1, E2) (for equivalence classes E1 and E2, where
the order of E1 and E2 in the tuple above matters) to be a collection of all
segments {C1, C2, U

′} such that C1 = E1 and C2 = E2. To completely represent
each of these segments, an S-group (E1, E2) maintains a list of segments S and
a master list U . This list U will be used to keep track of each of the segment’s
individual list (the list U ′ of this segment), as described below. This allows
each segment to be stored in constant space, while the S-group gets stored in
O(|E1| + |E2|) space.

The list U contains the index of every member of E2 ordered such that for
every segment {E1, E2, U

′} in the S-group, the first |U ′| members of U comprise
the same set as U ′. Such an ordering is guaranteed to exist by the Containment
Lemma 1. We generate this ordering by noting that indexes appearing in more
segments appear earlier in the list U .

The list S of segments maintained by the S-group, keeps these segments
ordered by the size of their set U ′. Each segment si will have three values, u(si),
d(si), and p(si). Set u = |U ′|. The field d gives the minimum number of sticks
required to reach the state of segment starting from the original pattern. We
want to maintain the shortest path to each node, so we use the value p to store
a reference to the segment right before this one on this path.

Origin S-Group. We begin with the S-group (E1, E2) with U = E2 and S
comprised of a single segment (u, d, p) = (|E2|, 0, null), where E2 represents
the set of all the members of E2. The classes E1 and E2 are the first and last
members of the hierarchical array. We will explore outwards from this S-group
in a breadth-first fashion, enumerating all reachable segments. The graph on the
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S-groups is guaranteed to be acyclic because the number of picked up classes is
strictly increasing along each edge. This graph with S-groups implicitly stores
all the useful information of the segment graph.

3.2 Finding the Next S-Group

Suppose we have some S-group (E1, E2) with associated lists U and S. Without
loss of generality we will assume E1 to be a column class. We wish to generate all
S-groups reachable from this S-group. The two S-groups immediately reachable
from this S-group correspond to completely removing either class E1 or E2.

To determine the cost of removing a class Ei from a segment sj , we count
how many members of E3−i can be picked up for free, as described in detail later.
If two members of Ei may be picked up with the same stick while E1 and E2

are the active classes, then we will call the two members contiguous. It follows
from Proposition 5 that a pair of columns is contiguous in an S-group (E1, E2)
if every column between them is either already picked up or of type E1 or E2.

Before the class Ei can be removed from a segment (E1, E2, U
′) (all the

members of the class being picked up), we pick up every embedded member
of E3−i. To determine the cost of moving to the next segment, we must count
how many of the embedded columns are also contiguous. Then any embedded
columns must be removed from either the set U ′ (if E1 is removed) or E1 (if
U ′ is removed) in the next segment and, by doing this for all segments, in the
next S-group. In fact, we process one S-group at a time, and obtain segments of
another at most two S-groups, as explained below.

Because E1 and E2 are not symmetric (E2 comes with its set U), we will
describe the process of removing classes E1 and E2 separately.

Remove E1. Let E3 be the equivalence class adjacent to E1 in the equivalence
class list, which has not yet been removed. The S-group corresponding to the
result of removing E1 will be (E3, E2) with lists Û and Ŝ.

Count Contiguous Consecutive Pairs of Columns of E1. To determine the dis-
tances to the segments of the next S-group, we must count the number of con-
tiguous E1 ranges.

To do so, we must determine the range of equivalence classes which have not
yet been picked up. Let E1 be the column class Ca. If E2 is also a column class,
then call it Cb. If E2 is a row class, then Cb is the column class adjacent to E2

in the equivalence class list that has already been picked up. We assume a < b,
with the other case being symmetric. By Proposition 5, a column class Ci has
not been picked up if and only if i ∈ (a, b).

For each pair of adjacent members of E1 we check to see if they are contigu-
ous. Precisely, for each member ei ∈ E1, we query our column range tree for
members in the range [a+ 1, b− 1] with index in the range [ei, ei+1], where ei+1

is the column of Ei that has the smallest index among those with index higher
than ei (ei+1 is the next column of Ei after ei). Let c be the number of pairs
of consecutive members of E1 which are also contiguous. The value (|E1| − c)
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corresponds to the number of sticks required to completely remove E1 after any
embedded columns of E2 are picked up.

Get Embedded E2 Blocks. If E2 is also a column class, then we must count and
remove any members of E2 embedded in E1. Similar to the way we checked
that columns of E1 were contiguous, we will check if adjacent columns of E1 are
both contiguous and contain columns of E2. In order to accurately keep track
of the cost to remove these embedded columns we must give each embedded
column a tag based on which two columns surrounded the embedded column.
Two members of E2 can be picked up with the same stick if and only if they
have the same tag.

When an embedded column is found, tag it with the index of the E1 column
to its left. Then add this column to a list, B, sorted by the column’s index. After
we have found all of the embedded columns, we are ready to generate Û and Ŝ.

Build the Next S-Group. Begin with Û as an empty list. We also need a set T to
keep track of which tags have been accounted for. Iterate through U , searching
for each member m of U in the set of embedded columns, B. If m �∈ B, then
append m to the end of Û . Otherwise add m’s tag value to the set T if it is
not already there. Once we have checked all of the members U ′ in a segment si
(U ′ being the first u(si) elements of U), add a new segment ŝi to Ŝ with the
following values: u(ŝi) = |Û |, d(ŝi) = d(si) + |T | + |E1| − c, and p(ŝi) = si (note
that |Û | and |T | are computed for the sets Û and T exactly when having finished
processing the last element of U ′ while iterating through U ; Û and T can change
later on). If Ŝ already contains a segment ŝj with u(ŝj) = u(ŝi), then keep only
the segment with shorter distance d in the set Ŝ, and remove the other one. As
an aside, one can see that if we do not remove duplicates, if two segments from
the same S-group si and sj have u(si) > u(sj), then u(ŝi) ≥ u(ŝj), which is used
in the proof of the Containment Lemma1.

Remove E2. Let E3 be the equivalence class adjacent to E2 in the equivalence
class list, which has not yet been removed. The S-group corresponding to the
result of removing E2 will be (E3, E1) with lists Û (whose elements are members
of the class E1) and Ŝ.

Count Contiguous Consecutive Pairs of Rows/Columns of E2. To count con-
tiguous ranges of E2, we must count the contiguous ranges within each seg-
ment separately. We use a counter c, initially set to 0. Fortunately, if a pair of
rows/columns is contiguous in one segment then it is also contiguous in all larger
(with bigger value of u) segments. For each index uj ∈ U , insert uj into a sorted
list of indexes, I. Get the predecessor and successor of uj in I and check if these
ranges from uj to its neighbors are contiguous. If either of these ranges exists
and is contiguous, then this column can be picked up for free. If not, we incre-
ment our cost counter c. Once we have iterated over the first u(si) blocks, we
save the state of our counter in a value ci = c. This value corresponds to the cost
to completely pick up the rows/columns in the segment si after any embedded
members of E1 have been picked up. Proceed (with c possibly increasing) until
we finish the list U .



Faster Compression of Patterns to Rectangle Rule Lists 205

Get Embedded E1 Blocks. If E2 is also a column class, then we must count and
remove the embedded columns of E1. Each segment could have a unique number
of embedded columns, where the larger the segment, the more columns can be
embedded and the smaller the resulting segment will be in the next S-group. As
an aside, this is an argument used in the proof of the Containment Lemma1. To
generate the ordering of Û and the values in Ŝ and we must carefully count the
embedded columns.

We iterate through the columns of U , keeping track of which columns are
embedded and will get picked up. To help us with this task, we start with a sorted
list V of the indexes of E1, an empty list for Û , and a counter d, initialized to
d = 0, to measure the number of required sticks. Also start with B, a set of
columns of E1, initialized as the empty set.

Similar to the way we counted contiguous blocks, for each column ui ∈ U
we insert ui into a sorted list of indexes I. Get the predecessor and successor
of ui in I, called uj and uk respectively, if they exist (in which case j < i and
k < i). Use range search to check if uj and ui are contiguous, and if ui and uk

are contiguous; if a pair does not exist, then treat it as not being contiguous. If
neither of these two pairs is contiguous, then do nothing. If exactly one of these
pairs is contiguous, then use binary search in V to obtain the set of columns
of E1 embedded between the pair, add this set to B, and increment d. If both
of these pairs are contiguous, then use binary search to determine if there are
elements of E1 (defined earlier as all the columns of class E1) between uj and
ui and between ui and uk; in which case we increment d. After we have iterated
through u(si) columns of U , it is time to add to Û and create a new segment
ŝi ∈ Ŝ with the following values: u(ŝi) = |V | − |B|, d(ŝi) = d(si) + d + ci,
and p(ŝi) = si. Remove all of the members of B from V , then add all of these
members to the beginning of Û . Reset B to be the empty set. Continue iterating
through U .

Once we have finished iterating through U , add the remaining elements in V
to the beginning of Û .

Build the Next S-Group. If E2 is a row class, then Û = E1 and Ŝ contains
one segment ŝ. To find ŝ, we iterate over each segment si ∈ S looking for the
segment si with minimum value d(si)+ci. ŝ has the following values: u(ŝ) = |E1|,
d(ŝ) = d(si) + ci, and p(ŝ) = si.

If E2 is a column class, Û and Ŝ were created while we found embedded
columns.

3.3 Merging Identical S-Groups

Once we have generated a new S-group (E1, E2) we add it to a two-dimensional
table, where the row is determined by E1’s index in the original list of equivalence
classes, and the column similarly determined from E2’s index.

If an S-group (E1, E2) already exists, then we must merge the two S-groups.
Given two (E1, E2) S-groups, G1 = {U1, S1} and G2 = {U2, S2}, we will compute
a new S-group, G3 = {U3, S3}, that encompasses both of these S-groups which
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will then get stored in our table. We iterate through both G1 and G2 concurrently
in order to create G3, as described below. We start with U3 and S3 being empty.

Merge S1 and S2, maintaining the ordering based on u. Iterate through each
si in this merged list. Let Sj be the list which contains si. Remove elements
from the start of Uj , adding them to the end of U3 until |U3| = u(si). (Do not
add a value to U3 if it is already in U3.) This works because of the Containment
Lemma 1. (As an aside, the proof in Applegate et al. [1] of the Containment
Lemma relies on proving the fact that all the values of u(s) with s ∈ S1 are at
most the minimum of the values of u(s) with s ∈ S2, or vice versa.) Add si to
S3. If G1 and G2 both have segments such that u(sa) = u(sb), then choose the
segment of smaller distance to add to S3.

3.4 Finding an Optimum RSRL

While we build the graph on S-groups, we keep track of the segment which is
a valid endpoint of the smallest distance. We define a valid endpoint to be a
segment which is completely gray (this is since we solve the modified version
of the problem; for the original problem, we would have a segment which is
completely white and gray). A segment (E1, E2) is an endpoint if E1 = E2.
(In the original version, we also have the case where E1 and E2 are adjacent
in the equivalence class list and the cell where E1 and E2 intersect is white in
the original pattern.) Then once the graph on S-groups is finished, we build a
path to the valid endpoint using the values stored in p. This path will give an
optimal order to remove equivalence classes, which can then be translated into
an optimal list of rectangle strip-rules.

This algorithms returns an optimum solution, as follows from all the discus-
sion above.

4 Time and Space Complexity

In this section we will show the time and space complexity of the previously
defined algorithm is O(nN log n) and O(nN) respectively – where N is the
number of equivalence classes and n is the number of rows and columns in the
original pattern. The ideas of our proof are partially taken from a more complete
version of Applegate et al. [1], which showed the number of reachable segments
to be in O(n2). Indeed, our contribution is a faster way of processing a segment,
cutting down this processing time down from O(n) to O(log n).

Following Applegate et al. [1], we will show that if the complexity for an
S-group (Ea, Eb) is in O(|Ea|+ |Eb|), then the overall complexity of all S-groups
is O(nN). For each S-group, add the first term of its complexity, O(|Ea|), to
one two-dimensional array, and its second, O(|Eb|), to a second array – each at
location (Ea, Eb). ⎡

⎢⎢⎢⎣

E1 E1 . . . E1

E2 E2 . . . E2

...
...

. . .
...

EN EN . . . EN

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

E1 E2 . . . EN

E1 E2 . . . EN

...
...

. . .
...

E1 E2 . . . EN

⎤
⎥⎥⎥⎦
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By noting that the sum of all members of all equivalence classes equals the
total number of rows and columns, we get

∑N
i=0 |Ei| = n. The sum of the columns

in the first matrix and the sum of the rows in the second matrix both equal n.
The sum of all terms in both matrices is 2nN , so the complexity of all S-groups
is in O(nN).

The space complexity of the algorithm is determined by the sizes of the lists
storing the S-groups. Each S-group maintains a list U , which holds members of
Eb, and is therefore in O(|Eb|). The list S contains all segments. Each segment
is guaranteed to have a unique size u, and the values of u are positive values at
most |Eb|. The complexity of each segment is constant, so we again have O(|Eb|).
As we have previously shown, since each segment is in O(|Ea|+ |Eb|), the overall
space complexity is O(nN).

Each operation we perform on an S-group (Ea, Eb) happens in time either
O(|Ea| log n) or O(|Eb| log n), as indeed every “check” from the algorithm’s
description takes time O(log n), after O(n log n) initialization of the range search
data structure or the ordered list represented by a balanced binary tree. So the
runtime for processing the equivalence class list is O(nN log n).

Since reading the input takes O(n2) time and N is in O(n) (this follows
immediately from Theorem 2), we relax our bounds and say our space complexity
is O(n2) and the overall runtime is O(n2 log n).

5 Conclusions

As noted in Norige et al. [10,11], these solutions do not generalize to dimensions
higher than two. This is the most interesting open question, in our opinion.

We believe that range trees can be replaced by ad-hoc methods to obtain a
O(n2) algorithm for exact RRL strip-rule minimization. The savings of O(log n)
in running time comes at the expense of a more complicated algorithm which
we decided not to present.
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Abstract. A ridesharing system mitigates traffic congestion and car
pollution by allowing passengers to share their travel cost with others.
Nowadays, with the development of the smartphone technology, dynamic
ridesharing systems enable passengers request a car anytime and any-
where. This paper mainly considers the problems of how to allocate pas-
sengers to drivers, how to charge the passengers and how to design fea-
sible schedules for the driver in such online environment. The allocation
problem is modeled as an online weighted matching problem with the
graph changing over time. Firstly, we give a fair pricing method which
is easy to be understood and accepted by the passengers. We develop a
greedy algorithm called LiqMax Gre for the purpose of maximizing liq-
uidity. The schedule problem which is similar with the hamiltonian path
problem is NP-hard and we design a heuristic nearest neighbor algorithm
to solve it.

1 Introduction

The widespread use of private cars has brought great convenience to our life
compared with the public transport, but it also raises a lot of challenges, such as
traffic congestion and environment pollution. Taxicab seems to be a good choice,
but it is usually expensive. On the other hand, however, there are often many
empty seats in a taxicab or a private car, resulting in a waste of seat resources.
Thus, the demand for ridesharing has increased sharply in recent years [4]. A
ridesharing system aims to bring together people with similar itineraries and
time schedules, and offer rides for them [1,6]. It has generated more and more
interest in recent years.

Researches on ridesharing systems, such as [13,16], usually considered offline
scenarios, where the requests are reported to the platform in advance. However,
with the development of wireless networks and the proliferation of smartphones,
the online scenarios, where a passenger submits a request dynamically and the
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ridesharing system responds to the request within a limited time, are more com-
mon in practice. These new characteristics makes the system more convenient.
However, it also brings more challenges to the design of an efficient ridesharing
system as well.

In a ridesharing system, drivers and passengers usually have their own trip
plan, that is, different origins and destinations, different departure time and
arrival time limits. Different allocations result in rather different trip schedules
which result in rather different detours. The ridesharing system has to take
all of these into consideration and give an effective allocation design for their
customers. There are different criterions for efficiency.

Liquidity is an important criterion for efficiency. It aims to satisfy as many
customers as possible, which is very important to attract more people to partic-
ipate in ridesharing.

In a real ridesharing situation, it is natural to consider the consumers are
rational and want to be charged fairly. When different passengers are allocated
to even the same driver, it results in rather different route designs. The detour
problem is complex which means even only one passenger changes her origin or
destination, the whole route design may change widely.

To charge the passengers fairly, we first need to figure out their influences
to the route results. It is not as simple as it seems. For convenience and sim-
plification, consider the route design in ridesharing as one kind of the travel
salesman problems. Even in the classical TSP, a tiny change in travel points
brings significant differences to the results.

1.1 Challenges

As have been showed above, allocation and pricing are the most important and
basic parts in the ridesharing system which require special and elaborate designs.

For the allocation, we want to make the system efficient. How to measure the
efficiency? How to achieve the efficiency goal? Liquidity criterion can be modeled
as a kind of bipartite matching. Different from traditional bipartite matching, a
driver can be allocated to several passengers as long as there are available seats
in her car. It brings challenges to the design.

For the pricing, we want to charge the passengers fairly and make sure the
driver be budget-balanced at the same time. It is complex to design and measure
the fairness of the pricing method with desirable properties.

Besides that, when the online dynamic ridesharing system is considered, the
significant challenge is that, the input data, i.e., the request of the users, are
revealed over time. If a new request is accepted, the system needs to allocate
a driver to it. It needs to design a new schedule which satisfies not only the
constraints of this new request, but also the constraints of the requests the
driver is maintaining.

How to do the matching between the passengers and the drivers in the online
situation? How to design a feasible schedule for the drivers in real-time? How
to fairly charge each passenger with the constraint that their payment doesn’t
exceed the cost without ridesharing? What’s more, as the passengers are usually
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sensitive to the price, the pricing method should be easy to understood and
accepted.

1.2 Our Contributions

i. We model the matching process as an online weighted matching problem [9]
with the whole graph changing over time. That is different from existing
works.

ii. For pricing design, we give a sectional charging method where each active
passenger shares the cost of each section of distance proportional to their
requesting distances. This design is based on the feasible schedule design.
It achieve fairness in some straight-forward aspects. That is, one’s payment
is mainly decided by their travel distance. It is easy to be understood and
accepted by the passengers.

iii. For the liquidity maximization, we give a greedy algorithm for the online
matching and prove that the competitive ratio is 1

λ+1 , where λ is the maxi-
mal number of passengers a car can take.

iv. For schedule design, we give a Nearest Neighbour Schedule for the schedule
problem where the driver always drives to the nearest positions contained in
the active requests. We also make such feasible schedule satisfy the guarantee
of non-negative utility for each participant.

The rest of the paper is organized as follows. We briefly review the related
work in Sect. 2. In Sect. 3, We introduce the model of the dynamic ridesharing
system, and give some important definitions. In Sect. 4, we present our detailed
designs, including a charging method, a matching algorithms and a schedule
algorithm. Finally, we conclude this paper in Sect. 5.

2 Related Work

The problem of dynamic ridesharing has been extensively studied in recent
years [15,18,19]. Riquelme et al. focused on the incentives of both drivers and
passengers [2,8]. They build a queueing-theoretic economic model and stud-
ied optimal pricing strategies for ridesharing platform. Kleiner et al. designed a
mechanism for dynamic ridesharing based on parallel auctions [12]. They are the
first to present an auction-based solution for dynamic ridesharing system. Kamar
and Horvitz present a methodology for determining ridesharing formation and
a fair payment mechanism for the ridesharing platform. Zhao et al. studied the
well known VCG mechanism and prove it results in a very high deficit [20]. They
then proposed an inefficient mechanism but with deficit control and considered
a VCG mechanism with two-sided reserve prices. Fang et al. studied the pricing
and subsidies in ridesharing [5].

How to design an efficient schedule for a car also attracts a lot of atten-
tion. Santos and Xavier focused on the dynamic taxi sharing with time windows
problem and showed its NP-Hardness by reducing the metric hamiltonian path
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problem to it [17]. They gave a greedy randomized adaptive search procedure to
solve it. Huang et al. introduced two approaches: Branch-And-Bound and Mixed
Integer Programming algorithms [7]. Then, they gave a kinetic tree structure to
maintain the previous computations. However, he failed to consider the budget
constraint of passengers.

In this paper, we mostly focus on the allocation of cars to passengers, which
can be modeled as an online matching problem. Previously, plenty of works have
been done in this real-time situation. Karp et al. introduced the online bipar-
tite matching in 1990 and introduced a Ranking algorithm, which can achieve a
competitive ratio of 1 − 1/e [11]. Kalyanasundaram and Pruhs studied an online
weighted greedy matching problem which chooses the available point with the
largest weight to handle the current request [9]. They proved that the Farthest
Neighbour algorithm produce a matching of weight at least 1/3 the maximum
weight perfect matching and the bound is tight. Blum et al. studied the mar-
ket clearing problem, which can be modeled as a matching problem [3]. They
considered two objects: profit and liquidity. Adwords problem is also a general-
ization of the online bipartite matching problem where each advertiser puts in
a set of bid values for keywords and a budget, representing the maximum he
can afford [14]. Kalyanasundaram and Pruhs found the trade-off between the
bid and unspent budget and proposed a Balance algorithm [10]. Except the
greedy algorithm, A Balance algorithm is introduced, which matches a key-
word with the advertiser which has spent the least fraction of its budget so far.
This is an optimal algorithm for online b-Matching problem, a special case of
the Adwords problems [10,14].

3 Preliminaries

In this section, we present the model of a dynamic ridesharing system and give
some related definitions. To make our paper easy to follow, we list the frequently
used notations in Table 1.

3.1 Ridesharing System Overview

We consider a ridesharing system with a central platform, a set of regis-
tered drivers D = {D1,D2, ...,DM} and a set of registered passengers P =
{P1, P2, ..., PN}. All drivers and passengers are called participants in this
ridesharing system. With the registration of the participants, such as genders,
ages, etc, the central platform can combine the participants from more aspects.
Thus, the user experience can be improved.

In this paper, we focus on providing services for passengers. The drivers and
the central platform are on the same side and the drivers only follow schedules
made by the platform to serve the passengers. We divide the total time into T
time slots, i.e., T = {1, 2, ..., T}. Requests arrive over a sequence of time slots.
Let si and di indicate the origin and destination of passenger i respectively.
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Table 1. Frequently used notations

Notation Remark

D Set of cars

P Set of passengers

T Set of time slots

ri The request of passenger i

si The origin of passenger i

di The destination of passenger i

t1i The departure time limit of passenger i

t2i The arrival time limit of passenger i

Ci The collaborator tuple of driver i

Let t1i and t2i indicate the departure time and arrival time limits respectively.
Then, a request ri of passenger i is denoted as ri = {si, di, t

1
i , t

2
i }. When a request

r arrives at time t ∈ T, the platform determines whether to select a car to serve
her. A framework is shown in Fig. 1.

Request for a 
car

Match the 
request with a 

driver

Passenger DriversCentral Platform

Charge a fee
Re-schedule 
and offer a 

ride

Fig. 1. A ridesharing system framework

With the help of the map application, the distance between any two locations
can be calculated. Denote this distance function as Dis(loc1, loc2) ∈ R

+ and the
time cost can be estimated as T (loc1, loc2) ∈ R

+. We make an assumption that
the time cost between two locations can be calculated as well and the time map
function is denoted as T (loc1, loc2) ∈ R

+.
We assume both of the distance function and the time function are symmet-

ric. Let a denote the unit cost in distance for a driver and b denote the payment
of unit distance without ridesharing for a passenger. Thus, for a passenger Pi,
her monetary utility of participating in the ridesharing is

U(Pi) = b ∗ Dis(si, di) − Payi,

Payi is her payment to this platform. For a driver, his monetary utility is

U(Di) =
∑

i∈{passengers carried}
Payi − a ∗ (driving distance).
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We define the system utility as the total saving vechile miles compared with no
ridesharing. An efficient ridesharing system should promise each participant a
non-negative monetary utility.

For a driver, in the setting of no ridesharing, he takes passengers one by
one. However, in the setting of ridesharing, he can pick up a passenger and then
drivers to another starting point and picks up another passenger, rather than
deliveries the first passenger immediately. Our object is to design a ridesharing
system aiming at maximizing the liquidity.

3.2 Basic Definitions

Definition 1 (Active Request). We call a request r = {s, d, t1, t2} is active
between the time when it is accepted or matched with a driver and the time when
this passenger is travelled to her destination.

Definition 2 (Collaborator Tuple). Several passengers with active requests
are set to be in the same collaborator tuple if they share the same car. The
collaborator tuple of driver i is denoted as Ci.

Definition 3 (Active Driver). We call a driver is active when his car con-
tains empty seats. The information of an active driver is denoted as Di =
{loci,Ci, schedule, ηi}, where loci is his current location and ηi indicates the
number of empty seats. A schedule is a sorted list of locations he will travel.
For example, if this driver has l active requests r1, r2, ..., rl now, his schedule
may look like loc, s1, s2, ..., sl, d1, d2, ..., dl where loc is the current location of the
driver.

A schedule is feasible if it satisfies all the constraints of passengers in the
collaborator tuple. i.e.,

∀Pj ∈ C, t0 + T (loc, sj) ≤ t1j

∀Pj ∈ C, t0 + T (loc, dj) ≤ t2j

In addition, the starting point of each passenger should be head of his destination
and each participant should earn a non-negative monetary utility. The most
thorny and important part of a dynamic ridesharing system is how to match
passengers with cars and how to design a best feasible schedule. We also design
an elaborate charging method to ensure a fair share of traveling expenses. The
details are given in the next section.

4 System Design

In this section, we propose our detailed design for matching passengers with
drivers, scheduling the drivers and fairly charging the passengers.
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o1 o2 o3 d1 o4 d3 d2 d4

o5d3 o4 d4 d5 d2

A new request
 at t0

21 3 4
5 6 7 8 9 10

t0 Time line

Fig. 2. Pricing example

Algorithm 1. CalPayment

Input : A schedule (x0(= loc), x1, ..., x2l), Request profiles of a collaborator
tuple {r1, r2, ..., rl}, Budgets of the passengers {b1, b2, b3, . . . , bl}.

Output: Payment of each passenger

1 (dis1, dis2, ..., disl)=(Dis(s1, d1), Dis(s2, d2), ... , Dis(sl, dl));
2 (c1, c2, ..., cl) = (0, 0, ..., 0);
3 for i = 1 to i = 2l do
4 Dis = Dis(xi−1, xi);
5 for each active ri do

6 ci = ci + bi ∗ disi∑

all active i
disi

× Dis;

7 bi = bi − ci;

8 if xi represents some dj then
9 set rj inactive;

10 return c1, c2, ..., cl;

4.1 Pricing

In this subsection, we give a method to fairly calculate each passenger’s payment
to the driver. We first give an example (Fig. 2) to explain our charging method.

The driver at the location loc1 has a collaborator tuple {P1, P2, P3, P4}
and a feasible schedule (loc1, s1, s2, s3, d1, s4, d3, d2, d4). At position loc2, she
is allocated a new request r5 = {s5, d5, t

1
5, t

2
5}. Then his schedule is updated.

Assume the new schedule is (loc2, d3, s5, s4, d4, d5, d2). We separate the driving
cost among the passengers whose request is active. Each passenger pays the
money proportional to his distance between starting point and destination in
his request.

We give Algorithm 1 to calculate each passenger’s payment. Passenger i’ bud-
get is bi. Remaining budget is the amount a passenger can afford for his rest
travel. With this charging method, a feasible schedule should not only satisfy
the time constraints but also guarantee a non-negative utility for each partici-
pant. In the next section, we will give the method to allocate passengers with
drivers and design feasible schedules for them.
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4.2 Allocating and Scheduling

Whenever a request comes, the platform tries to provide a driver for the passen-
ger. We model this process as an online match. At time t, assume there is a new
request rt = {st, dt, t1, t2} and an available drivers set Dt = {dt

1, d
t
2, . . . , d

t
n}. For

the purpose of writing convenience, we omit t here in the case of no confusion,
i.e., r = {s, d, t1, t2} and D = {d1, d2, . . . , dn}. To solve this online matching
problem, we should solve two sub-problems, i.e.,

– When can a passenger’s request be accepted?
– How to do an optimal allocation, or an allocation with guaranteed perfor-

mance in the online setting?

4.3 When to Accept a Request?

Assume at time t0, there is a passenger and a driver, denoted as P and D. The
request of passenger P is r = {s, d, t1, t2} and the information of driver D is
{loc,C, schedule, λ}. Assume C consists of u+ v passengers and their remaining
budgets are b1, b2, . . . , bu+v respectively. The first u passengers have been picked
up but haven’t arrived and the last v passengers are still waiting for the car.
Denote the starting points of waiting passengers as su+1, su+2, . . . , su+v and all
the destinations as d1, d2, . . . , du, . . . , du+v.

A schedule is a permutation of these positions, including initial position loc
of the driver and positions in the requests. If there exists a permutation of
these positions satisfying all constraints, this passenger can be matched with
this driver. Denote all positions (including the initial position of the driver and
the starting points, the destinations of the drivers’ requests) as

x0, x1, . . . , xu, xu+1, . . . , xu+v+1, xu+v+2, . . . , xu+2v+2,

where xi, i = 1, . . . , u + v + 1 stands for the destination, xi, i = 0, u + v +
2, . . . , u + 2v + 2 stands for the starting point. xu+v+1, xu+2v+2 are the starting
point and destination of the new passenger’s request. A schedule is equivalent
to a permutation

<0, σ(1), . . . , σ(u + 2v + 2)>

of
<0, 1, . . . , u + 2v + 2>.

Under the assumption of knowing the travel time relationship of the positions
in a map, the time series of this schedule is

<tσ(0), tσ(1), . . . , tσ(u+2v+2)>

correspondingly, where we set σ(0) = 0.
We show this problem formally,

min
σ

tσ(u+2v+2)
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subject to

tσ(i) =
i−1∑

j=0

T (xσ(j), xσ(j+1)) ∀i (1)

tu+i > tu+i+v+1, ∀i = 1, 2, ..., v + 1 (2)

ti < t2i , ∀i = 1, 2, ..., u + v + 1 (3)

tu+2+i < t1u+2+i, ∀i = v, ..., 2v (4)
CalPayment(schedule) ≤ (b1, ..., bu+v+1), (5)

where function T defines the travel time relationship corresponding to positions.
Constraint (2) restricts the order of the starting point and the destination. Con-
straint (3)(4) meet the time constraints in the requests. Constraint (5) guarantees
a non-negative utility for each passenger.

This problem can be reduced to the well-known hamiltonian path prob-
lem [17] which an NP-Hard problem. Here we introduce a Nearest Neighbour
heuristic algorithm Mechanism 2, which picks the next vertex closest to current
vertex and does not violate the precedence constraint. If it can’t meet the con-
straint (5), the procedure terminates and returns false.

In each iteration we choose a nearest position from the current position and
calculate the corresponding cost, allocate it to all passengers. If it exhausts a pas-
senger’s budget, the procedure terminates and returns false. After the iteration,
it will check other constraints.

Whether a passenger can be allocated has been decided, then, which driver
should be matched with this passenger? In the following designs, we want to
maximize the liquidity and the utility respectively.

4.4 How to Make an Optimal Allocation?

Allocating a car to the passenger can be modeled as a bipartite matching natu-
rally. Let G be a dynamic graph with one bipartition designated as the drivers,
and the other bipartition designated as the passengers. A new request arrives
along with incident edges. An incident edge indicates that a passenger can be
matched with a driver. In most of the existing literatures, graphs are studied as
static objects, while graphs are subject to discrete changes in a dynamic setting.
However, in this paper, this problem is far more complicated than before. With
the changing of a driver’s schedule, the incident edges with remaining passengers
change as well.

Liquidity Maximization: We design the algorithm LiqMax Gre to maximize
the liquidity.

Theorem 1. The LiqMax Gre algorithm has a competitive ratio of 1
λ+1 ,

where λ is the maximum number of passengers a car can take.
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Algorithm 2. Scheduler

Input : locations (x0, x1, . . . , xu+2v+2), request profile of a collaborator tuple
{r1, r2, . . . , ru+v+1}, remaining budget (b1, b2, . . . , bu+v+1)

Output: Schedule result

1 (dis1, dis2, . . . , disu+v+1)=(Dis(s1, d1), Dis(s2, d2), . . . , Dis(su+v+1, du+v+1));
2 for i = 1 to u + v + 1 do
3 active(i) = true;

4 Loc = 0 = σ(0);
5 for i = 1 to u + 2v + 2 do
6 choose the nearest unvisited feasible neighbour xσ(i) of position xLoc;
7 tσ(i)=tLoc + T (xσ(i), xLoc);
8 Loc = σ(i);
9 Dis = Dis(xσ(i−1), xσ(i));

10 for each active rj do

11 cj = cj + bj ∗ disj∑

all active i
disj

× Dis;

12 if cj > bj then
13 return false;

14 if xLoc is the destination of some rk then
15 active(k) = false;

16 for i = 1 to u + v + 1 do
17 if ti > t2i then
18 return false;

19 for i = v to 2v do
20 if tu+2+i > t1u+2+i then
21 return false;

22 return σ, < xσ(0), xσ(1), . . . , xσ(u+2v+2) >

Algorithm 3. LiqMax Gre

Input : All participants’ profiles
Output: Matching Result

1 When the next passenger P ∈ P arrives:
2 Match P to any available driver(if any);
3 update the schedules of drivers;

Proof. The competitive ratio is used to compare the performance of online algo-
rithm with the performance of the optimal algorithm. The definition of the
competitive ratio is:

min−→r ,σ

W (−→r , σ)
W ∗(−→r , σ)
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where −→r and σ are the profiles of all requests and their arriving order respec-
tively. W is the result of our algorithm and W ∗ is the optimal result.

Assume in the maximum matching, the matched passenger set is

SP = {P1, P2, ..., Pn}
and the matched driver set is

SD = {D1,D2, ...,Dm}.

So the optimal algorithm returns n. LiqMax Gre outputs x. Denote the
matched passenger set as S

1
P and its complement is denoted as S

2
P . The cor-

responding driver is denoted as S
1
D and S

2
D, where the drivers in S

1
D is matched

with some passengers in S
1
P . Then we have:

S
1
P ∪ S

2
P = SP , S

1
D ∪ S

2
D = SD.

Let |S1P | = x, then

x

λ
≤ |S1D| ≤ x.

The inequality holds because a car can take at least one passenger and up to λ
passengers. Since |S1P |+ |S2P | = n, then |S2P | = n−x. These passengers fail to be
matched because the drivers matched with them in the maximum matching are
matched with passengers in S

1
P in our algorithm. So we have S

1
D ≥ n−x

λ , then
x ≥ n−x

λ . So we have x ≥ n
λ+1 .

We have proved that the competitive ratio is 1
λ+1 .

5 Conclusion

In this paper, we have studied the dynamic ridesharing problem, where a pas-
senger requests for a car at any time and any position. We have designed a
charging method, a schedule algorithm and two allocation algorithms. In the
charging method, active passengers share the driving cost proportional to their
distances. It is easy to be understood and accepted by the passengers. In the
schedule algorithm, we always choose the nearest position from the current posi-
tion. Our objectives are maximizing the liquidity. We have proposed an algorithm
LiqMax Gre, which can achieve a competitive ratio of 1

λ .
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Abstract. Given an undirected complete weighted graph G = (V, E)
with nonnegative weight function obeying the triangle inequality, a set
{C1, C2, . . . , Ck} of cycles is called a cycle cover if V ⊆ ⋃k

i=1 V (Ci) and
its cost is given by the maximum weight of the cycles. The Minimum
Cycle Cover Problem (MCCP) aims to find a cycle cover of cost at most λ
with the minimum number of cycles. We propose new LP relaxations for
MCCP as well as its variants, called the Minimum Path Cover Problem
(MPCP) and the Minimum Tree Cover Problem, where the cycles are
replaced by paths or trees. Moreover, we give new LP relaxations for
a special case of the rooted version of MCCP/MPCP and show that
these LP relaxations have significantly better integrality gaps than the
previous relaxations.

Keywords: Vehicle routing · Cycle cover · Path cover
Approximation algorithm · Integrality gap

1 Introduction

Given an undirected complete graph G = (V,E) with metric weight function
w : V ×V → IN that is nonnegative, symmetric and obeys the triangle inequality,
a set {C1, C2, . . . , Ck} of cycles is called a cycle cover if V ⊆ ⋃k

i=1 V (Ci) and
the cost of a cycle cover is given by the maximum weight of the cycles. The goal
of the Minimum Cycle Cover Problem (MCCP) is to find a cycle cover of cost
at most λ with the minimum number of cycles. By replacing the cycles with
paths and trees we obtain the Minimum Path Cover Problem (MPCP) and the
Minimum Tree Cover Problem (MTCP), respectively.

When the vertices represent customers to be served by a fleet of vehi-
cles and the cycles or paths correspond to the travel routes of the vehi-
cles, MCCP and MPCP are exactly the most fundamental model of vehicle
routing problems (VRPs) [8,15]. These problems and their variants (min-max
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cycle/path/tree cover problem, rooted minimum cycle/path/tree cover prob-
lem etc.) have attracted considerable research attention due to their widespread
applications in both operations research and computer science communities.
Typical applications include mail and newspaper delivery [5], nurse station loca-
tion [4], disaster relief efforts routing [3], distance-constrained vehicle routing
[14], data gathering and wireless recharging in wireless sensor networks [17],
multi-vehicle scheduling problem [2,10], political districting [9], and so on.

Due to the NP-Completeness of the Hamiltonian Cycle/Path Problem [7],
the problems MCCP/MPCP cannot be approximated within a ratio less than
2 unless P=NP. The results in [14] imply that MTCP has an inapproximability
lower bound of 3/2. Therefore, it is unlikely that these problems admit PTASes.

Arkin et al. [1] first presented a 3-approximation algorithm for both MTCP
and MPCP, which implies a 6-approximation algorithm for MCCP by a simple
edge-doubling strategy. Khani and Salavatipour [11] derived an improved 5/2-
approximation algorithm for MTCP, which implies a 5-approximation algorithm
for MCCP. Yu and Liu [19] showed that a ρ-approximation algorithm for the well-
known Traveling Salesman Problem can be transformed into a 4ρ-approximation
algorithm for MCCP. They also proposed a matching-based 14/3-approximation
algorithm for MCCP, which was improved to an algorithm with approximation
ratio 32/7 by Yu et al. [20].

In the rooted version of MCCP (MTCP), called Rooted MCCP (Rooted
MTCP), there is a depot r ∈ V and each cycle (tree) in the cycle cover (tree
cover) has to contain r. The Rooted MPCP can be defined similarly except that
this time each path is required not only to contain r but also to start from r. The
above-mentioned inapproximability results for MCCP/MPCP/MTCP also apply
to their rooted versions. Nagarajan and Ravi [13] showed that Rooted MCCP and
Rooted MPCP are within a factor of two in terms of approximability. Nagarajan
and Ravi [12,13] developed an O(min{log n, log λ})-approximation algorithm for
Rooted MPCP, which was improved to O(min{log n, log λ

log log λ}) by Friggstad and
Swamy [6]. Whether Rooted MCCP/MPCP admits a constant-factor approx-
imation algorithm is a major open problem in this area (see Nagarajan and
Ravi [14]).

However, constant-factor approximation algorithms are proposed for a special
case, called the Rooted MCCP/MPCP on a tree, where G is the metric closure
of a weighted tree graph T . For Rooted MCCP on a tree, Nagarajan and Ravi
[14] developed a 2-approximation algorithm showed an inapproximability lower
bound of 3/2. For Rooted MPCP on a tree, Nagarajan and Ravi [12] devised a
4-approximation algorithm.

We note that most of the existing algorithms are purely combinatorial algo-
rithms. In contrast, there are few results on algorithms based on the integer
programming formulations and their linear programming relaxations. LP-based
approaches (e.g. LP-rounding, primal-dual method) are powerful techniques on
the design of approximation algorithms for many combinatorial optimization
problems [16]. The success of an LP-based algorithm relies crucially on the inte-
grality gap of the LP relaxations on the problem in study. As a result, the first
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step to derive an efficient LP-based algorithm is to come up with an linear pro-
gramming relaxation with provable good integrality gaps.

For Rooted MPCP, the above-mentioned results in [12,13] and [6] also
imply that the integrality gap of a natural set-covering LP relaxation is at
most O(min{log n, log λ}) and O(min{log n, log λ

log log λ}), respectively. For Rooted
MPCP on a tree, Nagarajan and Ravi [12] proved that the integrality gap of
the same LP relaxation has an upper bound of 64. Nagarajan and Ravi [13]
considered similar set-covering LP relaxations for MPCP and Rooted MCCP on
a tree and showed that the integrality gaps are at most 17 and 20, respectively.
Therefore, there is a large gap between the best available approximation ratios
and the best upper bounds on the integrality gap for (Rooted) MCCP/MPCP.

In this paper, we significantly narrow these gaps by giving new LP relaxations
whose integrality gaps almost match the best available approximation algorithms
for MCCP/MPCP/MTCP and Rooted MCCP/MPCP on a tree. To be specific,
we obtain an LP relaxation for MCCP with integrality gap at most 6 and an LP
relaxation for MPCP/MTCP whose integrality gap is bounded by 4. For Rooted
MCCP on a tree we derive an LP relaxation with integrality gap at most 5/2 and
for Rooted MPCP on a tree we propose an LP relaxation with integrality gap
no more than 5. We achieve these results by exploiting the problem structure
and adding powerful valid inequalities in the new relaxations.

The rest of the paper is organized as follows. We formally state the
problem and give some preliminary results in Sect. 2. In Sect. 3 we treat
Rooted MCCP/MPCP on a tree, which is followed by the discussion on
MCCP/MPCP/MTCP in Sect. 4.

2 Preliminaries

Given an undirected weighted graph G = (V,E) with vertex set V and edge set
E, w(e) denotes the weight or length of edge e. If e = (u, v), we also use w(u, v)
to denote the weight of e. For B > 0, G[B] denotes the subgraph of G obtained
by removing all the edges in E with weight greater than B. For a subgraph G′

of G, the graph obtained by adding some copies of the edges in G′ is called a
multi-subgraph of G. For a (multi-)subgraph H (e.g. tree, cycle, path) of G, let
V (H), E(H) be the vertex set and edge set of H, respectively. The weight of
H is defined as w(H) =

∑
e∈E(H) w(e). If H is a multi-subgraph, E(H) is a

multi-set of edges and the edges appearing multiple times contribute multiply to∑
e∈E(H) w(e). If H is connected, let MST (H) be the minimum spanning tree

on V (H) and its weight w(MST (H)) is simplified to wT (H).
A cycle C is also called a tour on V (C). A cycle (tree) that contains some

special vertex r ∈ V , called the depot, is referred to as an r-cycle (r-tree).
An r-path is a path starting from r. A set {C1, . . . , Ck} of cycles is called an
cycle cover if V ⊆ ⋃k

i=1 V (Ci). And the cost of this cycle cover is defined as
max1≤i≤k w(Ci), i.e., the maximum weight of the cycles. If each Ci is an r-cycle,
{C1, . . . , Ck} is called anr -cycle cover. By replacing cycles with paths (trees)
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we can define path cover (tree cover) or r -path cover (r-tree cover) and their
cost similarly.

We formally state the problems to be studied as follows.
In the Minimum Cycle Cover Problem (MCCP), we are given λ > 0, an

undirected complete graph G = (V,E) and a metric weight function w : E → IN
that is nonnegative, symmetric and obeys the triangle inequality, the aim is to
find a cycle cover of cost at most λ with the minimum number of cycles.

For the Rooted Minimum Cycle Cover Problem (RMCCP), a depot r ∈ V
is specified in addition to the input of MCCP, and the goal is to find an r-cycle
cover of cost at most λ with the minimum number of cycles.

By replacing the cycles in MCCP with paths, we obtain the Minimum Path
Cover Problem (MPCP). Similarly, the Rooted Minimum Path Cover Problem
(RMPCP) is derived by substituting r-paths for r-cycles in RMCCP.

The RMCCP on a tree (RMPCP on a tree) is a special case of RMCCP
(RMPCP) where G is the metric closure of a weighted tree T = (V,E). For an
edge e (a vertex u) and a vertex v in T , v is called below e (u) if the unique path
from r to v passes e (u). A set V ′ ⊆ V of vertices is called below e (u) if each
vertex in V ′ is below e (u).

Given an instance of MCCP (MPCP) or its rooted version, we call each
cycle (path) in the optimal solution an optimum cycle (path). By the trian-
gle inequality, we can assume w.l.o.g that any two optimum cycles (paths) are
vertex-disjoint. We use n to denote the number of vertices of G. If (IP) is an
integer programming formulation for the MCCP (MPCP) or its rooted version,
we denote by OPTIP the optimal value of (IP). OPTLP is defined similarly for
an LP relaxation (LP) for the problem.

The following cycle-splitting result on breaking a long cycle into a series of
short paths is very useful. The basic idea is to add the edges greedily to a path
along the cycle and throw out the last edge once this path has a length more
than the target value.

Lemma 1. [1,5,18] Given a tour C on V ′ and B > 0, we can split the tour
into �w(C)

B � paths of length at most B such that each vertex is located at exactly
one path in O(|V ′|) time.

3 Tree Metric

In this section we deal with RMCCP/RMPCP on a tree. We present new LP
relaxations for both problems with integrality gaps at most 5/2 and 5, respec-
tively. In contrast, the upper bounds on the integrality gaps of the LP relaxations
in [12,13] are 20 for RMCCP on a tree and 64 for RMPCP on a tree. Moreover,
we also give an example to show that the integrality gaps of both LP relaxations
we proposed are at least 2.

3.1 Rooted Minimum Cycle Cover

Given an instance of RMCCP consisting of G = (V,E) with depot r and λ > 0,
let C be the set of all r-cycles of length at most λ. Nararajan and Ravi [13]
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investigated the following set-covering integer programming (IPC) for RMCCP,
in which a binary variable xC is associated with each r-cycle C ∈ C.

min
∑

C∈C
xC

s.t.
∑

C∈C:v∈V (C)

xC ≥ 1, ∀v ∈ V \ {r} (IPC)

xC ∈ {0, 1}, ∀C ∈ C,

where the first constraint is to ensure that each non-depot vertex is covered by
at least one r-cycle in C. The corresponding LP relaxation (LPC) is obtained by
neglecting the integral constraints on the variables.

min
∑

C∈C
xC

s.t.
∑

C∈C:v∈V (C)

xC ≥ 1, ∀v ∈ V \ {r} (LPC)

xC ≥ 0, ∀C ∈ C,

Note that the constraints xC ≤ 1 for all C ∈ C is unnecessary due to the first
constraint and the minimization objective.

Nagarajan and Ravi [13] proved that the integrality gap of (LPC) is at most
O(min{log n, log λ}) for the general RMCCP and is bounded by 20 for RMCCP
on a tree T = (V,E). As noted by Nagarajan and Ravi [13,14], we can assume
without loss of generality that T is a binary tree rooted at r (otherwise one can
add some dummy vertices and zero-weight edges).

A crucial concept in their proof on the tree metric is so-called heavy cluster,
which is a set of vertices F ⊆ V such that the induced subgraph of F is connected
and all the vertices in F cannot be covered by a single r-cycle in C. They obtained
the following results.

Lemma 2. [13,14] (i)There is a polynomial algorithm that finds k disjoint heavy
clusters F1, . . . , Fk ⊆ V and uses at most 2k + 1 r-cycles in C to cover all the
vertices in T ; (ii)If there exist k disjoint heavy clusters F1, . . . , Fk ⊆ V in the
tree T , the minimum number of r-cycles in C required to cover

⋃k
i=1 Fi is at least

k + 1.

This lemma implies straightforwardly the 2-approximation algorithm for
RMCCP on a tree in [13,14]. In what follows we derive a new integer program-
ming formulation for RMCCP on a tree by heavily using the tree structure and
show that the integrality gap of the corresponding LP relaxation has an upper
bound of 5/2.

First, it can be seen that for RMCCP on a tree, an r-cycle is a multi-subgraph
of T that consists of two copies of the edges of some r-tree of T . As a consequence,
covering all the vertices in T is equivalent to covering at least twice all the edges.
So we can replace the first constraint in (IPC) by
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∑

C∈C:e∈E(C)

xC ≥ 2, ∀e ∈ E.

(For e = (r, v), xC = 2 for the r-cycle C = r e v e r.)
Let F1, . . . , Fk ⊆ V be the heavy clusters in Lemma 2(i) and ne be the number

of heavy clusters in F1, . . . , Fk that are below e. By Lemma 2(ii) we know that
there are at least ne+1 optimum r-cycles each of which contains two copies of the
edge e due to the tree structure. Then the above inequality can be strengthened
to ∑

C∈C:e∈E(C)

xC ≥ 2(ne + 1), ∀e ∈ E.

Therefore, our new integer programming (IPC-T) and its LP relaxation
(LPC-T) for RMCCP on a tree are described below.

min
∑

C∈C
xC

s.t.
∑

C∈C:e∈E(C)

xC ≥ 2(ne + 1), ∀e ∈ E (IPC − T )

xC ∈ {0, 1}, ∀C ∈ C

min
∑

C∈C
xC

s.t.
∑

C∈C:e∈E(C)

xC ≥ 2(ne + 1), ∀e ∈ E (LPC − T )

0 ≤ xC ≤ 1, ∀C ∈ C
This new LP relaxation has much better integrality gap than (LPC) while

the proof is also simpler than that in [13].

Theorem 1. The integrality gap of (LPC-T) is at most 5/2.

Proof. Suppose (x∗
C)C∈C is an optimal solution to (LPC-T) and OPTLPC−T =∑

C∈C x∗
C is the optimal value.

By the first constraint of (LPC-T) corresponding to any edge e we have

OPTLPC−T =
∑

C∈C
x∗

C ≥ 1
2

∑

C∈C:e∈E(C)

x∗
C ≥ ne + 1 ≥ 1, (1)

where the first inequality follows from the fact that each C ∈ C contains two
copies of edges used by it and the second inequality is due to the constraints of
(LPC-T). We distinguish two cases.

Case 1. ne = 0 for any e ∈ E. Since T is a binary tree, the depot r has
two possible children u1, u2. Set ei = (r, ui)(i = 1, 2). Let Tei

be the r-tree
of T consisting of ei and the subtree rooted at ui. Since nei

= 0, we know
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that w(Tei
) ≤ λ

2 and T can be covered by at most two r-cycles C1, C2, where
Ci(i = 1, 2) is obtained by doubling the edges in Tei

. Therefore we have a feasible
integral solution to (IPC-T) of objective value at most 2 ≤ 2OPTLPC−T , where
the inequality follows from (1).

Case 2. There exists some edge ẽ with nẽ ≥ 1, which implies k ≥ 1. Then the
first constraint of (LPC-T) corresponding to ẽ leads to

OPTLPC−T ≥ 1
2

∑

C∈C:ẽ∈E(C)

x∗
C ≥ nẽ + 1 ≥ 2.

Multiply by w(e) in the first constraint of (LPC-T) and take the summation
over all e ∈ E , we obtain

∑

e∈E

2(ne + 1)w(e) ≤
∑

e∈E

⎛

⎝
∑

C∈C:e∈E(C)

x∗
C

⎞

⎠ w(e)

=
∑

C∈C
x∗

Cw(C)

≤ λ
∑

C∈C
x∗

C = λOPTLPC−T , (2)

where the first equality holds by exchanging the order of the two summations
and the last inequality follows from the definition of C.

On the other hand, for i = 1, . . . , k, by definition the induced subgraph of Fi,
denoted by T [Fi], is actually a subtree of T . Let vi ∈ Fi be the highest vertex
in Fi. We obtain an r-cycle Ci by doubling the edges in the r-tree consisting of
T [Fi] and the unique path from r to vi. Let E′ ⊆ E be the set of edges used
by C1, . . . , Ck. For each e ∈ E′, it is used at most 2(ne + 1) times by the cycles
C1, . . . , Ck, where 2ne is due to the heavy clusters below it and if e happens to
be in some T [Fi] it appears two more times in Ci. Since Fi is a heavy cluster,
we have w(Ci) ≥ λ. Then

kλ ≤
k∑

i=1

w(Ci) ≤
∑

e∈E′
2(ne + 1)w(e) ≤

∑

e∈E

2(ne + 1)w(e) ≤ λOPTLPC−T ,

where the last inequality follows from (2). This implies k ≤ OPTLPC−T . Com-
bining this inequality with OPTLPC−T ≥ 2 and Lemma 2(i), we have a feasible
integral solution to (IPC-T) with objective value at most

2k + 1 ≤ 2k + 1

max{2, k}OPTLPC−T ≤
(

2 +
1

max{2, k}
)

OPTLPC−T ≤ 5

2
OPTLPC−T .

3.2 Rooted Minimum Path Cover

Given an instance of RMPCP, let P be the set of all r-paths of length at most
λ. Nagarajan and Ravi [12] considered the following path-version of (IPC) for
RMPCP, in which a binary variable xP is associated with each r-path P ∈ P.
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min
∑

P∈P
xP

s.t.
∑

P∈P:v∈V (P )

xP ≥ 1, ∀v ∈ V \ {r} (IPP )

xP ∈ {0, 1}, ∀P ∈ P.

The corresponding LP relaxation (LPP) is obtained by dropping the integral
constraints on the variables.

min
∑

P∈P
xP

s.t.
∑

P∈P:v∈V (P )

xP ≥ 1, ∀v ∈ V \ {r} (LPP )

xP ≥ 0, ∀P ∈ P
Let (IPC’) and (LPC’) be the integer programming and its LP relaxation

obtained by replacing the parameter λ with 2λ in (IPC) and (LPC), respectively.
It follows that OPTIPP ≤ 2OPTIPC′ since each r-cycle of length at most 2λ
can be broken into two r-paths of length at most λ by removing one edge in the
middle. On the other hand, it holds that OPTLPC′ ≤ OPTLPP because each
r-paths of length at most λ can be turned into an r-cycle of length at most 2λ
by doubling all the edges. Therefore, an upper bound α of the integrality gap
for (LPC) implies an upper bound of 2α of the integrality gap for (LPP). By the
results in [6,13], the integrality gap of (LPP) is at most O(min{log n, log λ

log log λ})
for the general RMPCP and can be bounded by a constant (more exactly, 40)
for RMPCP on a tree T = (V,E). As before, we assume that T is a binary tree
rooted at r.

Next we derive an LP relaxation for RMPCP on a tree with an integrality gap
of at most 5. Similar to the tour-version problem, Nagarajan and Ravi [12] define
a heavy cluster to be a set of vertices F ⊆ V such that the induced subgraph of
F is connected and all the vertices in F cannot be covered by a single r-path in
P. They proposed a 4-approximation algorithm based on the following results.

Lemma 3. [12] (i)There is a polynomial algorithm that finds k disjoint heavy
clusters F1, . . . , Fk ⊆ V and uses at most 2k + 1 r-paths in P to cover all the
vertices in T ; (ii)If there are k disjoint heavy clusters F1, . . . , Fk ⊆ V in the tree
T , the minimum number of r-paths in P required to cover

⋃k
i=1 Fi is at least


k+1
2 � + 1.

As in the previous section, our new integer programming replaces the first
constraint in (IPP) with

∑

P∈P:e∈E(P )

xP ≥ 1, ∀e ∈ E.

Note that in this new constraint the right-hand side is changed to 1, since for
RMPCP on a tree an r-path P is obtained by doubling all the edges of the r-tree
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induced by V (P ) except those on the unique path from r to the farthest vertex
in V (P ).

Let F1, . . . , Fk ⊆ V be the heavy clusters in Lemma 3 and ne be the number
of heavy clusters in F1, . . . , Fk that are below e. By Lemma 3(ii) we known that
there are at least 
ne+1

2 � + 1 optimum r-paths that pass the edge e due to the
tree structure. Then the above inequality can be strengthened to

∑

P∈P:e∈E(P )

xP ≥
⌊

ne + 1
2

⌋

+ 1, ∀e ∈ E.

So our new integer programming (IPP-T) and its LP relaxation (LPP-T) are
given as follows.

min
∑

P∈P
xP

s.t.
∑

P∈P:e∈E(P )

xP ≥
⌊

ne + 1
2

⌋

+ 1, ∀e ∈ E (IPP − T )

xP ∈ {0, 1}, ∀P ∈ P,

min
∑

P∈P
xP

s.t.
∑

P∈P:e∈E(P )

xP ≥
⌊

ne + 1
2

⌋

+ 1, ∀e ∈ E (LPP − T )

0 ≤ xP ≤ 1, ∀P ∈ P
Now we can show an upper bound on the integrality gap of (LPP-T).

Theorem 2. The integrality gap of (LPP-T) is at most 5.

Proof. Suppose (x∗
P )P∈P is an optimal solution to (LPP-T) and OPTLPP−T =∑

P∈P x∗
P is the optimal value.

By the first constraint of (LPP-T) corresponding to any edge e we deduce
that

OPTLPP−T =
∑

P∈P
x∗

P ≥ 1
2

∑

P∈P:e∈E(P )

x∗
P ≥ 1

2

(⌊
ne + 1

2

⌋

+ 1
)

≥ 1
2
, (3)

where the first inequality follows from the fact that each P ∈ P contains at most
two copies of edges used by it. We consider two cases.

Case 1. ne = 0 for any e ∈ E. Since T is a binary tree, we assume that u1, u2

be the possible children of the depot r and set ei = (r, ui)(i = 1, 2). Let Tei

be the r-tree of T consisting of ei and the subtree rooted at ui. Since nei
= 0,

we know that all the vertices in Tei
can be covered by an r-path in P and T

can be covered by at most two r-paths. In other words, we derive a feasible
integral solution to (IPP-T) of objective value at most 2 ≤ 4OPTLPP−T , where
the inequality follows from (3).
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Case 2. There exists some edge ẽ with nẽ ≥ 1, which implies k ≥ 1. Then the
first constraint of (LPP-T) corresponding to ẽ implies

OPTLPP−T ≥ 1
2

(⌊
ne + 1

2

⌋

+ 1
)

≥ 1.

Multiply by w(e) in the first constraint of (LPP-T) and take the summation over
all e ∈ E, we obtain

∑

e∈E

(ne

2
+ 1

)
w(e) ≤

∑

e∈E

(⌊
ne + 1

2

⌋

+ 1
)

w(e)

≤
∑

e∈E

⎛

⎝
∑

P∈P:e∈E(P )

x∗
P

⎞

⎠ w(e)

=
∑

P∈P
x∗

P w(P )

≤ λ
∑

P∈P
x∗

P = λOPTLPP−T , (4)

where the first equality holds by exchanging the order of the two summations
and the last inequality follows from the definition of P.

On the other hand, for i = 1, . . . , k let vi be the highest vertex in Fi and Ti

be the r-tree consisting of T [Fi] and the path from r to vi. By doubling all the
edges in Ti except those on the path from r to the farthest vertex in Fi we can
generate an r-path Pi. Let E′ ⊆ E be the set of edges used by P1, . . . , Pk. For
each e ∈ E′, it is used at most ne + 2 times by the paths P1, . . . , Pk, where ne is
due to the heavy clusters below it and if e happens to be in some T [Fi] it may
appear two more times in Pi. Since Fi is a heavy cluster, we have w(Pi) ≥ λ.
Then

kλ ≤
k∑

i=1

w(Pi) ≤
∑

e∈E′
(ne + 2)w(e) ≤

∑

e∈E

(ne + 2)w(e) ≤ 2λOPTLPP−T ,

where the last inequality follows from (4). So we have k ≤ 2OPTLPP−T . Com-
bining this inequality with OPTLPP−T ≥ 1 and Lemma 3(i), we have a feasible
integral solution to (IPP-T) with objective value at most

2k + 1 ≤ 2k + 1

max
{
1, k

2

}OPTLPP−T ≤
(
4 +

2

max{2, k}
)
OPTLPP−T ≤ 5OPTLPP−T .

3.3 A Lower Bound on the Integrality Gap

Consider a star consisting of the depot r and n + 1 leaves. All the n + 1 edges
have unit weight. Set λ = 2n. It can be seen that OPTIPC−T = OPTIPP−T = 2.
For i = 1, . . . , n + 1, let Ci be the r-cycle visiting all the leaves except the ith
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leaf. We have a solution to (LPC-T) by setting xC1 = · · · = xCn+1 = 1
n and

xC = 0 for all C ∈ C \ {C1, . . . , Cn+1}. This solution is feasible for (LPC-T)
since there are exactly n r-cycles from C1, . . . , Cn+1 covering the ith leaf for
each i = 1, . . . , n + 1. The objective value of this solution is n+1

n ≥ OPTLPC−T ,
which implies that the integrality gap of (LPC-T) is at least 2 for sufficiently
large n.

Similarly, if we define Pi as the r-path visiting all the leaves except the ith
leaf one can show that the integrality gap of (LPP-T) cannot be smaller than 2.

4 General Metric

In this section we give new LP relaxations for the general MCCP/MPCP/MTCP.
Our LP relaxation for MCCP has an integrality gap of at most 6 and the inte-
grality gap of the LP relaxations for MPCP/MTCP is bounded by 4. Previously,
Nagarajan and Ravi [12,13] showed an upper bound of 17 on the integrality gap
of the unrooted version of (LPP) where P is redefined as the set of all paths of
length no more than λ.

The details on the LP relaxations for MCCP/MPCP/MTCP will be pre-
sented in the full version of our paper.
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Computation of Kullback-Leibler
Divergence Between Labeled Stochastic
Systems with Non-identical State Spaces

Krishnendu Ghosh(B)
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Abstract. Model checking of biological systems is computational inten-
sive because of state explosion. Model reduction is one of the direc-
tions that has been addressed for state explosion. Formal modeling of
biological pathways leads to additional challenges given that biological
pathways are multiscale and stochastic. Model abstractions incorporat-
ing multiscale biological processes are represented as labeled stochastic
systems. Kullback-Leibler divergence is computed to measure the close-
ness of stochastic systems. A fixed point polynomial time algorithm is
presented to compute Kullback-Leibler divergence with an approxima-
tion when comparing labeled stochastic systems with non-identical state
spaces.

Keywords: Preorder relation · Algorithm
Kullback-Leibler divergence

1 Introduction

Formal modeling in systems biology has been an active research area in recent
years [4,6,22]. Formal methods such as model checking have been used as a
querying mechanism by posing biological queries in temporal logics to the model,
a finite state machine (FSM) representing biological processes. One of the chal-
lenges in model checking [8] is the state explosion problem. Recent advances
in research have addressed the state explosion problem [12,20]. Biological pro-
cesses are multiscale and stochastic. Multiscale processes execute at different
orders of time scale. For example, communication between molecular processes
with cellular processes. Modeling biological processes with a system of differen-
tial equations is unstable given there is imprecise and incomplete information
with regards to the concentration of the chemicals (biochemicals) in a system.
The interactions of biological processes operating at different time scales create
a large state space if the lowest time scale is the reference of the system. We
motivate the construction of a multiscale system that incorporates stochasticity
with the following example.
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Motivational example [14]: Consider four biochemical pathways, A,B, C and D
with chemicals V,W,X, Y and Z:

A : X
ε→ Y.

B : Y
M→ X + Z.

C : Y
N→ X + V.

D : Y
P→ X + W.

The notation, Cs
α→ Cp denotes a set of substrates, Cs in the presence of a

catalyst (chemical), α produces a set of products, Cp. Also, α ∈ {M,N,P, ε}
where M,N,P denotes catalysts and ε represents the absence of a catalyst.

Fig. 1. Finite state machine representing identical partial ordering of pathways A,B, C
and D represented by edge labels a,b,c and d, respectively. (A) System of pathways
with 9 states (B) System of pathways with 3 states.

Figure 1 shows two FSMs with different state space sizes for pathways, The
FSMs represent pathways A,B, C and D. The concentrations of the chemicals
are in moles. The initial state, S contains one mole of the chemicals X,M,N and
P . In Fig. 1(A), the transition with label a represents pathway A being executed
and consuming 0.25 mol of chemical, X. Similarly, transitions with labels b, c,
and d represent execution of pathways, B, C and D, respectively. Each transition
represents consumption of 0.25 mol of the substrate during a reaction. Pathways,
B, C and D execute nondeterministically after completion of pathway A executing
three times successively. Also, the exact concentration of the chemicals is often
not known initially. Assume, the concentration of X is 0.75 mol and 0.5 mol in
Fig. 1(A) and (B). The concentration of X ∈ A in Fig. 1(A) is higher than in
Fig. 1(B) and the rate of reaction is faster in A than B, C and D. Modeling
chemical reactions is challenging because data of the rate of reactions and initial
concentrations of chemicals are often imprecise. Assigning probabilities on the
edges of the FSMs is a way to quantify imprecise data in the model. The states
store concentrations of the chemicals produced or consumed. Each transition
represents a time step for execution of a pathway. The order of execution of
pathways without the repeats of execution in a path in Fig. 1(A) and (B) is
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identical. For example, the three successive transitions labeled, a in Fig. 1(A)
can be collapsed to one transition similar to collapsing two successive labels of
a in Fig. 1(B). Hence, the state between successive transitions labeled with a in
Fig. 1(A) is not present in Fig. 1(B). The FSMs of Fig. 1(A) and (B) represent
identical partial ordering of the pathways but the number of states is different.
The exact concentrations of the chemicals are not known, so the edges have
probabilities in the form p1x and p2y where x ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and y ∈
{1, 2, 3, 4, 5}. It is clear that the FSMs represent the same order of execution in a
path but the details are different because the size of state spaces of the FSMs are
different. In this work, we seek to answer the query, “Are the probabilistic FSMs
representing the multiscale pathways (dis-)similar by a numerical quantity, x?”.
The question is addressed by computing the Kullback-Leibler Divergence (KLD)
on the two FSMs. KLD is computed on same state space. The state space are
different because of the repetitions of edge labels, repeats in the FSM. A notion of
read equivalence is introduced for computation of KLD on the same state space.
A preorder relation is constructed to identify the partial ordering of the pathways
represented by the edge labels of the FSMs in Fig. 1(A)–(B). We consider only
the edge labels of the FSM to evaluate the identifiability of the partial ordering of
pathways. Stochastic structures are created for the comparison and computation
of KLD. The objectives of this work are: (i) Identification of partial ordering of
pathways (without repeats) on the FSMs representing a system of pathways and,
(ii) compute the KLD on the probabilities stored in the edge labels of the FSMs.
The goal of this work is to identify the model that has the least number of states
among several models that represent the biochemical pathways. The model with
the least number of states will not be detailed but computationally, it will be less
intensive. To the best of our knowledge, this is the first work that has addressed
computation of KLD using a preorder relation on probabilistic structures. KLD
as a metric can be used on structures that have identical state space. This work
addresses constructing an identical state space on two probabilistic structures
with different state spaces by defining a preorder relation.

2 Background and Related Work

In this section, we review the literature on algorithms computing bisimulations,
asynchronous modeling, temporal logics on probabilistic systems, distances or
approximations on stochastic systems and related formal modeling in systems
biology. These different theories form the foundations of our work. Computing
bisimulations on finite state machines has been an active research area. The Par-
tition algorithm [19] constructed equivalence classes and addressed computation
of the states that are bisimilar. Identically labeled states occurring successively
in a path of finite state machines has been referred as stuttering and computa-
tion of stuttering bisimulations have been reported [16]. A O(mlogn) algorithm,
where n is the number of states and m is the transitions, have been constructed
to compute stuttering equivalence and branching bismulations [17].
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An polynomial time algorithm for computating equivalence of labeled Markov
chain had been constructed [11] but trace refinement on Markov decision pro-
cess has been proved to be undecidable [13]. A general class of metrics between
Markov chains based on behaviour is introduced [9]. A survey of approximat-
ing metrics on probabilistic bisimulations is published [1]. Model reduction of
continuous time stochastic systems using approximations based on Wasserstein
metrics [25] has been performed. Bisimilarity of probabilistic systems was com-
puted by P-hard reduction of the monotone circuit problem [7]. Metric-based
[10] state space reduction for Markov chains, when solved as a bilinear program
and the threshold problem, have been proven to be in PSPACE and NP-hard [2].

A synctactic Markovian bisimulation based probabilistic bisimulation over
the structure of chemical reaction network in polynomial time has been con-
structed [5]. A model representing multiscale processes and a fixed point algo-
rithm for computation of preorder relationship on FSM have been reported [14].
Construction of model abstractions for study of the processes at difference levels
of granularity have been stated [24]. A survey on model reduction for large scale
biological models has been reported [23].

3 Preliminaries

Definition 1. (Labeled transition system (LTS)) Given a set of propositions,
AP being the set of labels for states and E , a set of labels for edges,a labeled
state transition system is defined as M = 〈S0, S, E, Le, L〉 where,

1. S is the set of states.
2. S0 ⊆ S is the initial set of states.
3. E ⊆ S × S is the transition relation.
4. L : S → 2AP where L is the labeling function that labels each state with a

subset from the set, AP .
5. Le : E → E is an edge-labeling function.

The state based definition of the stochastic structures such as discrete time
Markov chain [3] is:

Definition 2. (Discrete Time Markov Chain (DTMC)) a discrete-time Markov
chain is a tuple: Mm〈S, S0, ιinit, P, L〉 where:

– S is a finite set of states.
– S0 is the set of initial states.
– P : S × S → [0, 1], where P represents the probability matrix and∑

s,s′∈S

P(s, s′) = 1.

– ιinit : S → [0, 1] where
∑

s∈S

ιinit(s) = 1 is the initial distribution.

– L : S → 2AP , where L is a labeling function and AP the set of atomic
propositions.
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Definition 3. (Labeled Probabilistic System (LPS)) a LPS is a tuple, W =
〈S, S0, ιinit, P, Le, L,E〉 where:

– 〈S, S0, ιinit, P, L〉 is DTMC.
– Le : S × S → E where, E is the set of edge labels.

For simplicity, each edge label on the probabilitic structure will be a pair,
〈p, a〉 where p is the probability of the action, a ∈ A. The reading is an action,
a from a state, s ∈ S is assigned a probability, p.

Kullback-Leibler divergence [18] or relative entropy is a non-symmetric mea-
sure between two probability distributions.

Definition 4. (Kullback-Leibler Divergence (KLD)) Kullback-Leibler diver-
gence [18] or relative entropy is a non-symmetric measure between two probability
distributions. Formally, [21]: Given P and Q be two probability distributions over
the random variable X, the KLD is denoted by H(P‖Q) of P with respect to Q
is, H(P‖Q) =

∑

x∈X

P (x)log
P (x)
Q(x)

H(P‖Q) is not a metric because H(P‖Q) �= H(Q‖P ).

4 Formalization of Stochastic Multiscale Processes

The description of a mechanistic formal model for a sequence of chemical
reactions is represented by a LTS. The following is the model stated [15]:
Given (1) a set C of chemicals, (2) for each chemical C ∈ C a finite set
of numbers, 0, 1, . . . , k where k ∈ N represent the number of moles for
each chemical C and (3) a set of edge labels, E ∪ {ε}. An edge label is
of the form, 〈Â1, Â2, . . . , Âks, B̂1, B̂2, . . . , B̂kp, Rate,Cat, Inh, RType〉 where
Â1, Â2, . . . , Âks and B̂1, B̂2, . . . , B̂kp represent concentration of substrates and
products for a reaction, respectively.

Rate is represents the rate of reaction. Cat and Inh are the set of chemicals
representing catalyst and inhibitor, respectively. RType is the type of reaction
such as endothermic and exothermic. ks, kp ∈ N and e ∈ E represents a reaction.
ε represents no reaction taking place. It is used to maintain the totality of the
LTS. We assume that a reaction with forward and backward rate of reactions
are modeled as two different reactions.

The LTS, M = 〈S, S0, E, Le, L〉 representation of a system of chemical reac-
tions is given by: The labels of the state: AP is the set of all the atomic formulas
c0 = 0, c1 = 1, or ci = k for all C ∈ C, i ∈ N. The atomic formula represent
the molar concentration of a chemical. The states contain concentrations of all
the chemicals in the system and are represented by the atomic formulas of each
chemical that are true in the state.

S0 is the set of initial states of the LTS. An initial state contains concentration
of all the chemicals before any reaction. Hence, | S0 |= 1.
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A labeled transition is represented, s
e−→ s′ where e ∈ E and s, s′ ∈ S. A

labeled transition is represented, s
e−→ s′. A transition represents a reaction is

taking place and the consumption(production) of substrates(products) is based
on the x, number of moles to be consumed in a unit of time. A transition also
represents a time step in a reaction. The number of moles consumed or produced
is computed using conservation of mass action. As stated earlier, edge label ε
represents no reaction. A reaction takes places only if there is minimal amount
of substrates available. The label on state, s′ contains the concentration of the
substrates and products after the reaction. There is no self loop on the states
that have atleast one reaction that is not ε.

The conversion of the LTS representing the system of chemical reactions to
a LPS is the following: The state labels are identical, but the edge labels on the
LPS have additional information in the form of probabilities. The edge label,e
of LTS is mapped to an edge label in the form of a pair, 〈e, p〉. In the LPS,
the set of edge labels which are pairs is denoted by E. The pair corresponds
the reaction represented by e ∈ E and executes with a probability of p. If s
is the state from where the reactions begin, the sum of probabilities in all the
outgoing edge labels,s e−→ sk,where k ∈ N, in LPS is 1. The reading is there
can be multiple reactions,e1, e2, . . . ek from s to states, sk that can take place
from the chemicals from state, s and each reaction can occur with probability
of p1, p2, . . . , pk, respectively. The LPS may not be total because the probability
of ε transition of LTS is zero.

A path in a LPS is a finite or infinite sequence σ = s0
α0−→ s1

α1−→ . . ..
The sequence of reaction is the sequence of edge labels. For an edge, w in a
LPS W, let Π(w) be the set of paths starting with w, and let Π(W) be the
set of all paths in LPS W. We use variable πw for an element of Π(w). A
prefix of length m of a path πw1 , beginning from edge, w1 is a finite sequence,
πm

w1
= w0,1, w1,1, . . . , wm−1,1 where m ∈ N.

5 Computation of KLD on LPSs

We use the following notation for the computation of KLD on LPSs. A LPS is
stated as Wi = 〈S, S0, ιinit, P, Le, L, E〉 where i = 1, 2. The edge labels of W is
w,a pair 〈e, p〉 where p is the probability, e is the label representing reaction and
E is the set of reaction labels in W unless stated otherwise.

A path in LPS is a finite or infinite sequence σ = s0
α0−→ s1

α1−→ . . . where
s0, s1, . . . are the states. The sequence of reactions is given by e0, e1, . . . from the
sequence of edge labels,w0, w1, . . .. In the description, we will focus on the reac-
tion labels and the corresponding probability will be the corresponding index.
For example, the probabilites for the sequence of reactions, e0, e1, . . . is p0, p1, . . ..
Notation, an edge, w ∈ W will be the reaction label in w which is e. Therefore,
for an edge w ∈ W, let Π(e) be the set of paths starting with e, and let Π(W)
be the set of all paths in LPS W. Si, Ei and let Π(Wi) denote the set of states,
edges and paths in Wi for i = 1, 2. We use variable πe for an element of Π(e).
A prefix of length m of a path πe1 , beginning from edge, e1 is a finite sequence,
πm

e1
= e0,1, e1,1, . . . , em−1,1 where m ∈ N.
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The outline for the computation of KLS on two LPSs is:

1. Given two LTSs, M1 and M2, construct LPSs, W1 and W2, respectively.
2. Compute preorder on the edge labels (without successive repetitions) of the

LPSs
3. While computing the preoder, compute the KLD on the same sequence of

reactions (paths) of the LPSs.

Definition 5. (Read) For an infinite path, π = e0, e1, e2, e3, . . . in a LPS W,
α0, α1, α2, . . . denotes the sequence of reaction labels in π. The read of a path is
the subsequence of reaction labels π̃ = α0, αi1 , αi2 where 0 ≤ i1 ≤ i2 ≤ . . ., αij

is in π̃ iff αij �= αij−1 and α0 �= αi1 .

A finite path segment σ = e0 � e1 � e2 � e3 . . . → em � . . ., is identically
labeled (il) if the reactions are identical. We explicitly allow m = 0; in that case

we write e0 � e0. Notation e0
+� e′ means that for some m ≥ 0, e0 � em � e′,

and Le(e0) �= Le(e′).

Definition 6. The compact probability, Pc(e, e′) between two edges is computed
by the following equations dependent on the label of the successive edges.

Pc(e, e′) =

{
P (e, e′) if, e �= e′

P (e) × P (e1) × · · · P (ek)if e � e1 � . . . , ek � e′

The compact probability for an il path fragment is computed by the products
of the probabilities.

Definition 7. (Read equivalence on paths) Paths π1 ∈ Π(W1), π2 ∈ Π(W2)
are said to be read equivalent iff their reads are identical. This is denoted by
π1 ≡r π2.

Definition 8. (Read equivalence on reactions) Given two LPSs, W1 and W2,
the relation read on edges (≡r) is defined on reaction labels, e1 ∈ E1 and e2 ∈ E2.
e1 ≡r e2 if and only if the following conditions hold:

1. L(e1) = Le(e2).
2. For all paths, πe1 ∈ Π(e1) ∃ a path πe2 ∈ Π(e2) such that πe1 ≡r πe2 .
3. For all paths, πe2 ∈ Π(e2) ∃ a path πe1 ∈ Π(e1) such that πe1 ≡r πe2 .

The compact probabilities computed from the probabilities of il path on W1

and W2 by Definitions 6, 5 and 8.

Definition 9. A relation, Re defined on the edges of W1 and W2 is given by
(e1, e2) ∈ Re, e1 ∈ E1 and e2 ∈ E2 where, Le(e1) = Le(e2).

Definition 10. (Predecessor) The subset of ordered pairs, Predecessor
Predr(Y ) is defined from the set of ordered pairs, (e1, e2) ∈ Re rep-
resented by the Y is: Predr(Y ) = {(e1, e2) ∈ Y | ∀e′

1, e1 �
e′
1 implies ∃ an il-path fragment e2 � . . . � em,2 � e′

2,∀i ≤ m, (e1, ei,2) ∈
Y ∧ (e′

1, e
′
2) ∈ Y, and ∀e′

2, e2 � e′
2 implies ∃ an il path-fragment e1 � . . . �

em,1 � e′
1,∀i ≤ m(ei,1, e2) ∈ Y ∧ (e′

1, e
′
2) ∈ Y }.
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The operators, Fst and Snd are defined on Re to extract the abscissa and
ordinates. Pre is a function defined on the reaction label,e and returns the non-
identical predecessors of a reaction label, e′ in the sequence of reactions labels.
An example: Fst(e1, e2) = e1 and Snd(e1, e2) = e2. The algorithm computes the
KLD on the edge labels of W1 and W2. The edge labels contain probabilities.
The algorithm is based on fixed point computation on two probabilistic labeled
structures that have identical read. A requirement for computation of KLD is
that the state space is the same for the two probabilistic structures. The input
of the algorithm is Re as stated earlier. H(W1‖W2) is the KLD value of W1

with respect to W2. The algorithm shows the computation of H(W1‖W2) but
the same algorithm can be used to compute H(W2‖W1).

Algorithm 1. Fixed Point Computation of KL Divergence on LPSs
Input: Set of Ordered Pairs,Re

Output: Set of ordered pairs in the greatest fixed point,Y∞.
1: Y := Re;
2: Y ′ := 0;
3: H(W1‖W2) = 0;
4: while (Y �= Y ′)
5: {
6: Y ′ := Y ;
7: Y := Y ∩ Predr(Y );
8: H(W1‖W2) =

H(W1 || W2) + Pc(Fst(Y ), P re(Fst(Y ))log( Pc(Fst(Y ),Pre(Fst(Y )))
Pc(Snd(Y ),Pre(Snd(Y )))

9: }
10: Y∞ = Y ′

Algorithm 1 terminates: The loop that begins in line (4) takes a finite number
of steps,i ∈ N for the algorithm to terminate because there is a finite number of
ordered pairs of edges in Re.

Claim: The algorithm computes the fixed point, i.e. Y = Predr(Y ). Let
Y∞ be the set of ordered pairs at the end of the loop and Y∞ = Y ′ = Y .
By definition of the set, Y ′ = {(e1, e2) | e1 ∈ E1, e2 ∈ E2, Le(e1) = Le(e2)}.
For every (e1, e2) ∈ Y ′ implies (e1, e2) ∈ Y because at the end of the loop,
Y∞ = Y ′ = Y . According to the statement in line (6) in the algorithm, every
(e1, e2) ∈ Y implies (e1, e2) ∈ Predr(Y ). Each (e1, e2) ∈ Predr(Y ) implies
through Definition 10 that (e1, e2) ∈ Y . Therefore, Y = Predr(Y ).

The time complexity of the algorithm is O(m2) where m =| Re |. In the
worst case, the set of ordered pairs in Predr(Y ) is constructed by removing a
pair (e1, e2) at a time. The while loop iterates m times over m computations in
Predr(Y ). The above algorithm computing the greatest fixed point is based on
the following recursive relation, Yi defined on the ordered pairs (e1, e2):

Yi+1 = Yi ∩Predr(Yi), where Y0 = {(e1, e2) | Le(e1) = Le(e2)}. The greatest
fixed point is the first i ∈ N such that Y∞ = Yi+1 = Yi. The algorithm is
constructed inductively for read equivalence on the paths of the LPSs. The errors
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in the computation of (dis-)similarity by the fixed point algorithm are defined
as: Auto-Path (A-Path) error and Co-Path(C-Path) error. Errors occur in the
computation of the probabilities when two paths are compared in the algorithm.

A-Path error: occurs when KLD on two read equivalent paths are computed
in the algorithm with one of the paths, being an il path and the other not
an il path. The A-Path error is added to the KLD value and is computed by
plog p

Pc(p1,...,pk)
where p is the probability of the non-il path and Pc(p1, . . . , pk)

represents the compact probability of the il path. A-path error quantifies the
error for substituting the il path in the computation of read equivalence.

C-Path error: occurs when two il paths are read equivalent. The error is com-
puted by Pc(p1, . . . , pk)log Pc(p1,...,pk)

Pc(p′
1,...,p′

m) where Pc(p1, . . . , pk) and Pc(p′
1, . . . , p

′
m)

are the compact probabilities for il paths, π and π′.
The total error for a read of length one, ξ = A-Path error + C-Path error.

Theorem 1. For every read in W1 and W2, the computation of H(W1‖W2) is
within the total error of ξ.

Proof. By computation of H(W1‖W2) in the Algorithm 1 for a read and defini-
tion of total error, the maximum error is ξ.

Theorem 2. Given a total error, ξ there exists a read between W1 and W2 such
that H(W1‖W2) = Pc(Fst(Y ), P re(Fst(Y ))log( Pc(Fst(Y ),Pre(Fst(Y )))

Pc(Snd(Y ),Pre(Snd(Y ))) .

Proof. By construction and definition of ξ, there exists a read between W1 and
W2 which has a total error of ξ. The KLD of the read is

H(W1‖W2) = Pc(Fst(Y ), P re(Fst(Y ))log( Pc(Fst(Y ),Pre(Fst(Y )))
Pc(Snd(Y ),Pre(Snd(Y ))) .

By similar reasoning, Theorems 1 and 2 is true for H(W2‖W1).

6 Conclusion

The work focussed on the mechanistic approach to construct a multiscale and
stochastic model of a system of chemical reactions. The formalism addressed
uncertainty in data and in the model. The approximation in the form of prod-
ucts of probabilities of identically labeled fragments in the KLD computation was
computed to fulfil the computation of KLD of two LPS with an identical state
space. Error analysis of the algorithm provided quantification of the approxima-
tion of the algorithm in the comparing the two LPSs. The formalism provided a
methodology to compare two models with similar ordering of reactions.
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Abstract. We consider a barrier coverage problem with heterogeneous
mobile sensors where the sensors are located on a line and the goal is
to move the sensors so that a given line segment, called the barrier, is
covered by the sensors. We focus on an important generalization of the
classical model where the cost of moving a sensor equals the weighted
travel distance and the sensor weights are arbitrary. For the objective of
minimizing the maximum cost of moving a sensor, it was recently shown
that the problem is NP-hard when the sensing ranges are arbitrary. In
contrast, Chen et al. give an O(n2 log n) algorithm for the problem with
uniform weights and arbitrary sensing ranges. Xiao shows that restrict-
ing the problem to uniform sensing ranges but allowing arbitrary sensor
weights can also be solved exactly in time O(n2 log n log log n), raising
the question whether other restrictions can be solved in time polynomial
in the size of the instance. In this paper, we show that a natural restric-
tion in which sensors must preserve their relative ordering (the sensors
move on rails, for example) but the sensors have arbitrary sensing ranges
and weights can be solved in time (n2 log3 n). Due to the combinatori-
ally rich set of configurations of the optimal solution for our problem, our
algorithm uses the general parametric search method of Megiddo which
parameterizes a feasibility test algorithm. Interestingly, it is not easy
to design an efficient feasibility test algorithm for the order preserving
problem. We overcome the difficulties using the concept of critical budget
values and employing standard computational geometry techniques.

1 Introduction and Problem Definition

Barrier coverage is an effective approach to ensure that access to a certain area
is monitored by a set of sensors. Rather than deploying a large number of simple
sensors in the area of interest, barrier coverage deploys a small number of mobile
sensors that monitor the perimeter around the area.

Kumar et al. [7,8] were among the first to investigate barrier coverage prob-
lems. Their work has motivated many researchers who have looked at a broad
range of problems in different topologies and with different objective functions.
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Perhaps one of the simplest geometric settings is to cover a barrier represented by
a line segment, using mobile sensors that can travel only along the line contain-
ing the segment. But even in this setting, the problem is not trivial. Czyzowicz
et al. [4] were the first to propose this problem with the aim of minimizing the
maximum travel distance for the sensors. They describe a natural algorithm that
outputs an optimal solution in time O(n2) for the problem where sensors have
identical covering ranges. Chen et al. later improved this complexity to O(n log n)
[3]. They were the first to show that the version with sensors that have arbitrary
covering ranges can also be solved in polynomial time, in O(n2 log n) time. Their
contribution is significant since for a long time, no polynomial time algorithm
for this problem was known. Their solution uses the powerful general technique
of parametric optimization that we have also employed here.

A different variation of barrier coverage was proposed in a paper by Bar-Noy
et al. [1], where the goal is not only to optimize the movement of the sensors,
but also their coverage range which is variable. We note that in the Bar-Noy et
al. paper, the cost of moving sensors is uniform. Other geometric settings have
also been proposed. For example, Bhattacharya et al. consider the problem of
covering the perimeter of a planar region and sensors move from the interior of
the region to the boundary [2].

In this paper, we extend the results known so far for a natural generalization
of the problem that was recently proposed in the PhD thesis of Zhang [10], where
the moving cost for a sensor equals the weighted travel distance for the sensor.
Unlike the problem in which the weight for all sensors is one, Xiao Zhang shows
in his thesis that the weighted barrier coverage problem is NP-hard. He then
shows that weighted barrier coverage can be solved in time polynomial in the
problem size if the sensors have the same covering range, and he asks whether a
different constraint on weighted barrier coverage in which sensors must maintain
their relative ordering on the line but the sensing ranges are arbitrary, can also
be solved exactly in time polynomial in the size of the input.

In this paper, we answer this question in the affirmative. We first propose a
greedy feasibility test for the problem with arbitrary sensor weights and covering
ranges, in which we are given a value λ and we need to determine if there exists a
feasible solution that covers the barrier so that no sensor needs to pay a moving
cost larger than λ. The constraint on the relative ordering of sensors helps to
prove that the feasibility test is correct, but otherwise it introduces a number of
technical difficulties which we were able to overcome using simple and elegant
computational geometry concepts.

We use the feasibility test algorithm to give a polynomial time algorithm
for the optimization version of the order preserving weighted barrier coverage
problem using the parametric optimization method of Megiddo. The feasibility
test receives for input a value λ and returns “yes” if it is possible to cover the
barrier in such a way that no sensor has a moving cost larger than λ, otherwise
it returns “no”. We execute the feasibility test in parametric form (the input λ
is an unknown parameter). We simulate the execution of the feasibility test on
the optimal solution λ∗ of the problem at every step of the algorithm that uses
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the unknown parameter λ∗ in a comparison with a deterministic value by calling
the feasibility test with a an appropriate constant value for λ.

However, the application of the parametric optimization method on the
weighted barrier problem is not straightforward. In particular, the feasibility test
does not always correctly emulate the decisions that the feasibility test would
take if λ∗ would have been known. This problem appears in the case of uniform
sensor weights as well [3]. The authors overcome this problem by extending their
feasibility test to determine whether the optimal cost is strictly smaller than a
given value. We argue that, for the weighted version, the feasibility test can also
be extended to distinguish strict inequalities, however the solution is different
than for the problem with uniform weights. The parametric search procedure is
a general method that has been applied for many problems. For our problem
as well as for many of the variations we mentioned earlier, the currently known
characterizations of the optimal solution are too rich combinatorially and para-
metric search seems the only approach that given efficient algorithms. It would
be interesting to study whether other properties of the optimal solution are
discovered so that we can extend our algorithmic toolbox for minmax barrier
coverage.

To summarize, we feel that our contributions in this paper are significant in
several ways.

– We contribute to an important yet little studied problem. Barrier coverage
problems with weighted sensors and arbitrary covering ranges are very nat-
ural extensions of the barrier coverage problems studied so far, but very few
algorithms exists in the literature concerning such problems.

– We solve the feasibility test efficiently and we give a first parametric opti-
mization algorithm that runs in time polynomial in the number of sensors.

– We propose an effective data structure that allows us to handle constraints on
the relative ordering of sensors when both the weight and the sensing ranges
are arbitrary; this data structure may be useful in other similar contexts.

Problem definition:

Input:
− Barrier represented by the line segment [0, L] with L > 0.
− A set of n sensors located on the line. Each sensor i has a known initial

location xi on the line, a covering range ri, and a weight wi. The sensors
are indexed in the order they appear on the line, in other words, xi ≤ xi+1

for all i ∈ {1, . . . , n − 1}.
Output:

− Final positions yi for each sensor i so that every point on the barrier is
covered by some sensor and the relative order of the sensors on the line
is preserved. More precisely, ∀x ∈ [0, L]∃i ∈ {1, . . . , n}|x − yi| ≤ ri and
yi ≤ yi+1 for all i ∈ {1, . . . , n − 1}.

Measure: Minimize the maximum weighted travel distance, or

min( max
1≤i≤n

wi|xi − yi|).
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2 The Decision Version of the Order Preserving Barrier
Coverage Problem

Solving the decision version of the order preserving barrier coverage problem
with weighted sensors plays a central role in our approach to solve the problem.
In the decision problem, we test the feasibility of the optimization version of the
problem. We are given a weighted barrier problem instance consisting of a set
of sensors and a barrier as defined in Sect. 1 and a positive value λ. We need to
determine whether it is possible to move the sensors to cover the barrier so that
the weighted travel distance for any sensor is not larger than λ.

We propose a natural greedy algorithm for this feasibility test that runs
in time O(n log n) after a preprocessing step taking O(n log n) time, where n
represents the number of sensors. After preprocessing is completed, the algorithm
runs n iterations attempting to move the sensors one by one starting with sensor
1, in order to cover points on the barrier from left to right.

Consider iteration i of the algorithm, where 1 ≤ i ≤ n. The algorithm main-
tains a sub-interval containing the origin which consists of points on the barrier
that are covered by sensors strictly from set {1, . . . , i}. We note that there may
exist sensors with an index larger than i that cover points in this sub-interval,
but we ignore such sensors at this stage. We denote by qi(λ) the rightmost point
of the sub-interval of covered points obtained at the end of iteration i. The sub-
interval is maximal, therefore qi(λ) is maximum. We define q0(λ) = 0, thus when
the algorithm starts, the entire barrier is considered uncovered.

Figure 1 illustrates a configuration of sensors and of covered barrier points at
the start of iteration i. The set of covered barrier points is interval [0, qi−1(λ)]
which was obtained in previous iterations. The figure shows the initial position
xi of sensor i and the final positions and covering ranges of sensors denoted
i1, i2, . . . , il that were used by the algorithm to extend the covered region in
previous iterations. At iteration i, the algorithm determines if sensor i can extend
the coverage of the barrier to interval [0, qi(λ)] where qi(λ) ≥ qi−1(λ) and qi(λ)
is maximum.

If the barrier coverage can be extended, sensor i may be moved to the left
or to the right, depending on the value ri of the covering range of sensor i. We
note that the movement of sensor i is constrained by the relative order of the
sensors and this order must be maintained. Figure 1 depicts three regions on the
barrier.

– Region A may contain sensors with an index larger that il for which the cost
λ was insufficient to allow the covered area of the barrier to be extended.
Possibly, some of these sensors have been moved to the final position yil of
sensor il, the last sensor used by the algorithm to extend the barrier coverage,
only to allow sensor il to reach point yil . Other sensors in region A may
have not been moved at all from their initial positions. These sensors cannot
constrain the movement of sensor i even if i moves to the left because sensor
i does not need to travel to the left of point qi−1(λ).
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– Region B may contain sensors with an index larger that il but smaller than
i. Again, such sensors were not moved during previous iterations of the algo-
rithm. However, these sensors may constrain the movement of sensor i if i
needs to move to the left.

– Finally, region C contains sensors with index larger than i which may con-
strain the movement of sensor i when i needs to move to the right.

Fig. 1. Sensors and covered barrier points at the start of iteration i of the feasibility
test algorithm

We can interpret the cost value λ in the feasibility test as a budget that
allows sensor i to be moved. Let Yi(λ) be the set of points that sensor i can
reach when given budget λ with the constraint that the relative order of the
sensors is maintained while sensor i moves. Thus, part of budget λ is used to
pay for moving other sensors in regions B or C if necessary. Let Qi(λ) be the
set of locations for sensor i that can extend the interval [0, qi−1(λ)] of covered
barrier points at the start of iteration i. Formally, Qi(λ) = {yi : yi(λ) − ri ≤
qi−1(λ) ≤ yi(λ) + ri}. Thus sensor i can extend the coverage of the barrier in
iteration i if Yi(λ) ∩ Qi(λ) �= ∅. The following relation defines the rightmost
endpoint of the portion of the barrier covered by the sensors from set {1, . . . , i}.

qi(λ) =

⎧
⎨

⎩

max
yi∈Yi(λ)∩Qi(λ)

(yi + ri) , if Yi(λ) ∩ Qi(λ) �= ∅

qi−1(λ), otherwise.
(1)

To complete the description of the feasibility test algorithm, we need to
explain how to compute the interval Qi(λ) of points reachable by sensor i. We
first present a procedure which executes in O(n) time and, in Sect. 2.2, we show
that the complexity of this procedure can be reduced to O(log2 n) using prepro-
cessing.

2.1 Computing the Order Preserving Sensor Movement

Without loss of generality, consider that sensor i moves to the right, and suppose
there exits another sensor j to the right of i. In order to preserve the relative
ordering of the sensors, if sensor i moves to a location x > xj , sensor j needs
to maintain the same location with sensor i, therefore the true cost of moving
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sensor i to a location x > xj is max{wi(x − xi), wj(x − xj)}. Notice that, if
wj ≤ wi, the cost of moving sensor i dominates that of moving sensor j.

When wj > wi, the cost of moving sensor i can be dominated by the cost
of moving sensor j if budget λ is sufficiently large. We can compute the critical
value for the budget, denoted λi,j , so that if λ ≥ λi,j , then the cost of moving
sensor j dominates the cost of moving sensor i. We have,

λi,j = |xj − xi| wjwi

wj − wi
. (2)

We can generalize this example to consider all sensors to the right of sensor i.
Then the true cost of moving sensor i to the right on the point with coordinate
x, which we denote Zi(x), is given by the following relation.

Zi(x) = max{wj(x − xj) : i ≤ j ≤ n and xj ≤ x}. (3)

Given a value λ for the moving cost of sensor i, we can compute the farthest
point y+

i (λ) to the right of i that sensor i can move to, possibly displacing other
sensors to preserve order so that the moving cost of i is no larger than λ.

y+
i (λ) = min

i≤j≤n

(
λ

wj
+ xj

)

. (4)

Similarly, we can compute the farthest point to the left that sensor i can move
given budget λ. We can therefore state the following theorem.

Theorem 1. The set Qi(λ) of points that can be reached by sensor i while pre-
serving the relative order of sensors so that none of the sensor moved incurs
a moving cost larger than λ can be obtained, in a straightforward way, in time
O(n).

We describe the algorithm for feasibility test in Algorithm 1. It is not diffi-
cult to see that the complexity of this algorithm is O(n2) if we compute Qi(λ)
according to Theorem 1.

Before we discuss a more efficient implementation of the feasibility test algo-
rithm, we argue its correctness. We state the following theorem.

Theorem 2. Algorithm1 returns YES if and only if there exists a feasible cover
of the barrier with cost no larger than λ.

Proof. (⇒) Suppose the algorithm returns YES. Since the algorithm computes
a cover in this case, it follows that such a cover must exist.

(⇐) The proof of this statement relies on the following lemma which can be
shown by induction over i. The proof of the lemma is omitted for brevity. The
lemma formalizes the fact that the greedy step in the feasibility test is actually
optimal.

Lemma 1. Let Y ′ = (y′
j)1≤j≤n be an arbitrary vector of final sensor positions so

that the moving cost of any sensor is no larger than λ. For any i ∈ {1, . . . , n},
let [0, q′

i] be the interval containing 0 covered by the set {1, . . . , i} of sensors
positioned according to Y ′. Let [0, qi(λ)] be the interval containing 0 covered by
the same set of sensors according to Algorithm1. Then [0, q′

i] ⊆ [0, qi(λ)].
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Algorithm 1. Feasibility test
Data: n sensors with initial positions xi, weights wi, and sensor ranges ri,

1 ≤ i ≤ n,
Barrier [0, L],
Cost λ.
Result: YES if the barrier can be completely covered by moving each sensor i

to point yi so that yi ≤ yi+1 ∀1 ≤ i < n and the moving cost for each
sensor is no larger than λ

NO otherwise

1 q0(λ) ← 0
2 S ← ∅ // Set S contains sensors that have not been moved and may

constrain the movement of the current sensor to the left

3 for i ← 1 to n do
4 Compute the set Qi(λ) of points reachable by i
5 if interval i can extend the coverage according to Eq. (1) then
6 Compute qi(λ) and yi

7 else
8 S ← S ∪ {i}
9 yi = xi, qi(λ) = qi−1(λ).

10 end

11 end
12 if qn(λ) ≥ L then
13 return YES; output yi for 1 ≤ i ≤ n
14 else
15 return NO
16 end

2.2 Computing the Order Preserving Sensor Movement Efficiently

Consider Fig. 2 representing the cost of moving sensor i to the right at the
location represented by the x axis. The order preserving cost of moving sensor
i to the right is determined by the upper envelope of the linear costs for every
sensor j ≥ i (see Eq. (3)).

Using the concept of critical budget values in Eq. (2) from the previous
section, and a technique similar to that used by Tamir et al. [6], we can com-
pute this upper envelope in O(n) time. We notice that, if the upper envelope is
determined by sensors i, j1, j2, . . ., then the critical budget values are ordered as
follows: λi,j1 < λj1,j2 < . . .. If we store this ordered sequence of critical budget
values, we can obtain the farthest point y+

i (λ) reachable by sensor i in O(log n)
time rather than O(n) time as in Sect. 2.1. Unfortunately, the construction of
the upper envelope needs to be performed for each choice of i and the complexity
of the feasibility test algorithm remains O(n2).

However, we can precompute a segment tree data structure [5] to store this
upper envelope at each node of the structure. The segment tree consists of a
balanced binary tree with n leaves, with one leaf for each sensor (see Fig. 3).
Each internal node of the structure contains the upper envelope of the moving
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Fig. 2. The cost Zi(x) of moving sensor i to the right on location x while preserving
the relative order of all sensors encountered by i

Fig. 3. (a) A segment tree storing the upper envelope of sensor moving costs; (b) Upper
envelopes stored at nodes α1, α2, . . .

costs for the sensors that are descendants of the node. For example, in Fig. 3,
node α contains the upper envelope of moving costs for sensors {1, . . . , 4}.

It can be shown that constructing this data structure takes O(n log n) time
and space. Consider now computing the farthest point reachable by sensor i
using this structure. Let α1, α2, . . . , αt be the O(log n) nodes in the segment
tree covering the set {i, . . . , n} of leaves. The upper envelope function stored at
every αs node where s ∈ {1, . . . , t}, starts always on the x axis, but may interact
with the envelopes from adjacent nodes. We compute the intersection of line λ
with each envelope using binary search as described earlier, then we select the
leftmost intersection point as answer. Since there are O(log n) such envelopes,
the entire procedure takes O(log2 n) time. We state the following theorem.

Theorem 3. Algorithm1 uses O(n log2 n) time and O(n log n) space.
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3 Optimization Algorithm

In this section, we describe our parameterization of the feasibility test in Algo-
rithm1, using the general template proposed by Megiddo [9]. The idea is to
run the feasibility test algorithm using the cost of the cover, λ, as an unknown
parameter. The objective is to simulate the execution of the feasibility test as if
λ = λ∗, the cost of the optimal solution to the order preserving weighted barrier
coverage problem. Every time the algorithm compares value λ with some quan-
tity (for example with the weighted distance required to move some sensor to
cover the leftmost point of the barrier), we use the feasibility test to resolve the
comparison as if parameter λ represented the cost of the optimal solution, λ∗.
We will show how to resolve comparisons with a feasibility test shortly.

During the iterations of the parameterized version of Algorithm1, we main-
tain a range of candidate values for λ∗, λ∗ ∈ (λmin, λmax]. This interval may be
refined by subsequent feasibility tests. Once we process the last interval in the
sequence, we solve the equation q(λ) = L. The solution of the equation together
with the best upper bound λmax gives us the value for λ∗, which we then back-
substitute in the data structure used by the algorithm to represent the solution.
In this way, we obtain the actual movement of all sensors in the optimal solution.

We discuss next the steps of the algorithm in more detail. We introduce the
notion of interval i to refer to the set of points covered by sensor i; in its initial
position, interval i corresponds to interval [xi − ri, xi + ri]. We call points xi − ri

and xi + ri the left endpoint and the right endpoint of interval i respectively.
We consider iteration i of the algorithm when we test if interval i can cover the
leftmost barrier point that was left uncovered after the first i − 1 iterations. We
denote this point by qi−1(λ). We can show by induction over i that qi(λ) is a
non-decreasing linear function of λ for λ ∈ (λmin, λmax]. Depending on the initial
position of interval i relative to this point, we distinguish three cases. We show
later how these cases can be distinguished using the feasibility test algorithm.

3.1 Case A: Interval i Is to the Left of qi−1(λ)

In this case, interval i in its original position is to the left of the leftmost uncov-
ered point on the barrier, xi+ri < qi−1(λ) (see Fig. 4). We will use the feasibility
test algorithm with actual values for λ to determine whether interval i covers
some points on the barrier in the optimal solution or not.

Fig. 4. Covering interval i is to the left of barrier point qi−1(λ)



Order Preserving Barrier Coverage with Weighted Sensors on a Line 253

Recall that in Sect. 2.2, we describe a segment tree and an ordered list of
critical budget values which allows us to answer the feasibility test in O(n log2 n)
time. Since we may use the feasibility test at least once per iteration, we do not
need to use the segment tree in the parameterized version of the feasibility test.
We can simply build the complete upper envelope for the sensors in set {i, . . . , n}
in time O(n) as argued at the start of Sect. 2.2. We can now identify the linear
piece on the upper envelope that intersects λ∗ as follows.

We select a critical budget value λjs,js+1 following the binary search routine,
and we test whether λ∗ ≤ λjs,js+1 . The test can be resolved by comparing
λjs,js+1 with the intervals λmin and λmax. In case λmin ≤ λjs,js+1 ≤ λmax, we
run Algorithm1 with λ = λjs,js+1 . If the test is positive, then we know that
λ∗ ≤ λjs,js+1 and we select a smaller critical value in the binary search procedure,
otherwise we select a larger critical value. Every time we run the feasibility test,
we update the ranges λmin or λmax.

At the end of this procedure which uses O(log n) feasibility tests with actual
values, we have identified the linear function that determines how far sensor i
can move given budget λ∗. We denote this function yi(λ). We now need to decide
whether interval i can reach point qi−1(λ). This can be determined easily from
the two functions linear in λ, yi and qi−1.

Fig. 5. Deciding if sensor i covers point qi−1(λ) in the optimal solution

Figure 5 illustrates the three possible situations. In case (a), sensor i does
not cover point qi−1(λ) in the optimal solution, therefore sensor i is not moved.
We update qi(λ) = qi−1(λ). In case (c), sensor i covers point qi−1(λ). We update
qi(λ) = yi(λ) and we record the new position of sensor i as yi(λ) − ri. In Case
(b), we run another feasibility test with value λ′ and based on the answer, we
reduce the case to either alternative (a) or (c).

To save space, the description for cases B and C is omitted, but will appear
in the full version of the paper.

There is one important difference from the procedure executed in Case A.
Consider the case when the linear functions yi and qi−1 intersect precisely at
line λmax. In this situation, we do not know if λ∗ = λmax, in which case sensor
i is moved to cover the barrier, or if λ∗ < λmax, in which case sensor i is not
moved.
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We can use a procedure similar to that of Chen et al. [3] to determine the
strict inequality above. When we determine, for example, the furthest reachable
point of sensor i at iteration i of the feasibility test, we can test for equality or
strict inequality by comparing the farthest reachable point by sensor i with the
rightmost uncovered barrier point.

Based on the comments we made so far about our optimization algorithm,
we state the following theorem.

Theorem 4. The time complexity of the algorithm to solve the optimization
version of the order preserving weighted barrier coverage problem is O(n2 log3 n)
and the space complexity is O(n log n).

4 Conclusion

We study an interesting generalization of the barrier coverage problem on a line
where sensors are not identical. Besides having arbitrary covering ranges, sensors
have different weights that define their moving cost. However, the mobility of the
sensors is restricted: their original relative order must be maintained. In practice,
such a constraint is motivated by applications where the mobile agents travel
on rails. We give the first polynomial time algorithm for the order preserving
barrier coverage problem for sensors with arbitrary weights and arbitrary cover-
ing ranges. Our algorithm is very close in time complexity with that of Chen et
al. for the barrier problem with uniform weights [3].

Our work opens up a several new directions for research. First, we ask whether
relaxing the order preservation constraint to some degree can still be solved
efficiently. Second, other barrier coverage models such as the planar model [2]
can be extended to include sensor weights, a requirement which we feel is natural
for many practical applications.
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Abstract. Recently, station-free Bike sharing as an environment-
friendly transportation alternative has received wide adoption in many
cities due to its flexibility of allowing bike parking at anywhere. How
to incentivize users to park bikes at desired locations that match bike
demands - a problem which we refer to as a rebalancing problem - has
emerged as a new and interesting challenge. In this paper, we propose
a solution under a crowdsourcing framework where users report their
original destinations and the bike sharing platform assigns proper relo-
cation tasks to them. We first prove two impossibility results: (1) finding
an optimal solution to the bike rebalancing problem is NP-hard, and
(2) there is no approximate mechanism with bounded approximation
ratio that is both truthful and budget-feasible. Therefore, we design a
two-stage heuristic mechanism which selects an independent set of loca-
tions in the first stage and allocates tasks to users in the second stage.
We show analytically that the mechanism satisfies location truthfulness,
budget feasibility and individual rationality. In addition, extensive exper-
iments are conducted to demonstrate the effectiveness of our mechanism.
To the best of our knowledge, we are the first to address 2-D location
truthfulness in the perspective of mechanism design.

Keywords: Location truthfulness · Bike sharing · Mechanism design

1 Introduction

Bike sharing as a convenient, health-promoting, and eco-friendly form of trans-
portation, has been widely adopted in more than 1000 cities across the world [1].
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It substantially contributes to the reduction of traffic congestion and air pollu-
tion. In recent years, a new type of bike sharing, called station-free bike sharing,
has been deployed in many cities1 and attracted increasing attention.

Compared with traditional bike sharing, users of a station-free bike sharing
system can pick up and drop off bikes at any valid locations rather than at desig-
nated stations. This new system brings new challenges. The foremost challenge
is a more serious imbalance of bike distribution as compared to the traditional
bike sharing, due to the much less restriction on parking locations and the asym-
metry of bike demand. For instance, suppose a hospital is short of bikes while a
nearby shopping mall has many redundant bikes. Without a proper rebalancing
mechanism, subsequent shoppers would still go to the shopping mall to park for
convenience, leading to a more and more serious imbalance.

To tackle this problem, a plausible solution is to design an incentive mecha-
nism to motivate users to park their bikes in desirable locations. However, there
are two challenges. First, there is a limited budget for the bike sharing platform
to use as the incentive, and hence it should be used to the maximal efficiency.
Second, there is a continuum of possible parking locations and a large number
of bikes, making computation tractability a practical issue.

This paper addresses the bike rebalancing problem and our main contribu-
tions are as follows:

– We characterize the imbalance between bike demand and supply using the
Kullback-Leibler (KL) divergence, and formulate an optimization problem
under a crowdsourcing framework.

– Pertaining to this model, we prove two impossibility results: (1) the opti-
mization problem is NP-hard, and the traditional VCG mechanism cannot
be applied; (2) there is no truthful and budget-feasible mechanism for this
problem that can achieve a bounded approximation ratio.

– Thus, we propose a two-stage heuristic mechanism as an alternative solution,
which achieves both location truthfulness, budget feasibility, and individual
rationality. To the best of our knowledge, we are the first to study the 2-D
location truthfulness in the perspective of mechanism design.

– We conduct experiments using real-world data, and demonstrate the effec-
tiveness of our mechanism as a viable solution.

2 Related Work

Optimizing bike sharing systems has attracted much research effort [2–4]. For
station-based bike sharing, Singla et al. [5] proposed a crowdsourcing mechanism
that incentivizes users in the bike repositioning process, where users report their
destination stations and the system provides an offer that consists of recom-
mended stations and corresponding incentives. Ghosh et al. [1] generated repo-
sitioning tasks with trailers using an optimization method. For station-free bike
sharing, a deep reinforcement learning algorithm is proposed in [6]. In that work,

1 https://mobike.com/cn/about/.

https://mobike.com/cn/about/
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the platform learns to determine the payment based on their behaviors. It takes
spatial and temporal features into consideration, but the proposed mechanism
does not guarantee truthfulness. In contrast, our work achieves truthfulness and
budget feasibility simultaneously.

In the field of crowdsourcing [7] and crowdsensing [8], a large body of works
study the allocation and payment of spatial tasks [9,10], and especially some
papers take the quality into consideration [8,11] which are similar to our work
in a sense. In these works, users report their cost for tasks directly, but in reality,
users may not know their exact cost. In our work, users only need to report their
respective destinations, which would be a more practical approach.

3 The Model

In the bike rebalancing problem as illustrated in Fig. 1, there is a set of n users
N = {1, 2, 3, · · · , n}, and a set of m discrete locations M = {1, 2, 3, · · · ,m}. We
assumed that the demand distribution D(l) at all the locations l ∈ M and the
current bike distribution A0 are known to the system (e.g., through the mobile
apps and GPS), where A0 means the set of the existing parked bikes and their
respective locations. In this model, each user i who uses a bike needs to indicate
or report her intended destination di on the map. The destinations of users are
continuous in the 2-D area, but locations of tasks M are discrete points, each of
which indexes a grid (see Fig. 1). We focus on bikes that are being in use and
have not been parked (the parked ones are accounted for by A0).

Fig. 1. Bike rebalancing problem: existing (parked) bikes, in-use bikes (to be parked),
and locations (grids) for parking tasks.

As explained earlier, serious imbalance of bike distribution can happen if all
the users park their bikes exactly at their destinations. Hence, the bike sharing
platform would like to allocate a system-desired location li (rather than di) to
user i for her to park her bike in order to match demand of bikes. In return, the
platform offers an incentive pi to user i if she takes that task. We employ an
crowdsourcing framework as follows. Each location l ∈ M corresponds to a task
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and each user i ∈ N reports her destination as her bid. The distance between
any two points x and y is denoted by Hxy and can be retrieved by the platform.
The cost of user i for parking her bike at location li rather than her intended
destination di is denoted by Ci or Cdili = c ∗ Hdili , where the constant c is the
unit travel cost. Hence, the utility of user i who takes a task of location li is
ui = pi − Ci. In addition, we assume that a user does not accept a task whose
location is outside range h of di, where h is a constant.

The platform has a budget B, within which it aims to design a mechanism
to allocate desirable locations to users for balancing the demand and supply of
bikes. The mechanism should satisfy the following properties:

– Location truthfulness: the utility of each user bidding truthfully should be no
less than the utility of misreporting, i.e., ui(di, d−i) ≥ ui(d′

i, d−i),∀d′
i �= di.

– Budget feasibility : the payment to all users should not exceed the budget
limitation,

∑
i pi ≤ B.

– Computational efficiency : the algorithm should terminate in polynomial time.
– Individual rationality : the utility of any user should be nonnegative, i.e., pi ≥

Ci.

3.1 Problem Formulation

We characterize the imbalance of bike distribution using KL divergence, which
measures the expected logarithmic difference between two probability distribu-
tion X and Y , as defined by

KL(X||Y ) =
∑

i

X(i)log
X(i)
Y (i)

.

The smaller the KL divergence is, the smaller the gap between X and Y is, and
KL(X||Y ) = 0 means that X and Y are identical probability distributions. In
our case, we substitute Q(l) = D(l)∑

l′∈M D(l′) for X(i) (demand), and |A(l)|
|A| for Y (i)

(supply), where A is the set of all the parked bikes including existing bikes and
bikes with allocated tasks, and A(l) is defined the same way but for location l
only. We assume |A0(l)| > 0 for all locations2 to avoid singularity.

Thus, the KL-divergence is

KL(A) =
∑

l

Q(l)log
Q(l)|A|
|A(l)| (1)

where we omit Q on the left hand side for notational convenience. Now, let Ai

denote the set of all the parked bikes before user i parks her bike. If user i takes
the task of parking a bike at location li, then we have

KL(Ai ∪ (i, li)) =
∑

l �=li

Q(l)log
Q(l)(|Ai| + 1)

|Ai(l)| + Q(li)log
Q(li)(|Ai| + 1)

|Ai(li)| + 1
(2)

2 This is generally ensured as long as a grid is not too small.
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In this work, our goal is to minimize the imbalance of bike distribution,
namely the KL divergence, so we define the contribution of user i as the difference
between KL(Ai) and KL(Ai ∪ (i, li)). Based on Eq. (1) and (2), we have

ξi = KL(Ai) − KL(Ai ∪ (i, li))

= log
|Ai|

|Ai| + 1
+ Q(li)log

|Ai(li)| + 1
|Ai(li)| .

Denote

ξ1i = log
|Ai|

|Ai| + 1
, ξ2i = Q(li)log

|Ai(li)| + 1
|Ai(li)| .

We can observe that the sum of the first item only depends on the total number
of users |N |. Since our objective is to minimize the KL divergence, which is the
total contribution of all the users, we can omit the first term ξ1i because the sum
of ξ1i is a constant. Thus, we let ξi = ξ2i in the following. Moreover, note that
the sequence of task allocation influences users’ contribution, because Ai(li) and
Ai are evolving when we sequentially calculate each user’s contribution.

Based on the above, the bike rebalancing problem can be formulated as:

max ξ =
∑

i∈U ξi (3)
s.t.

∑
i∈U pi ≤ B

pi ≥ Cdili ∀i ∈ U

where U is the subset of users that are chosen to park in particular locations
(namely, to perform parking tasks), pi is the payment given to user i, which
should be no less than her cost of performing the task. For users who are not
selected (i.e., N \ U), they can just park at their intended destinations and the
system does not allocate tasks to them.

3.2 NP-hardness

We prove that the problem (3) is NP-hard.

Theorem 1. The bike rebalancing problem is NP-hard.

Proof. We prove the decision version of the bike rebalancing problem is NP-hard.
In the decision version, the question is whether there exists a subset of items U
that satisfies both

∑
i∈U ξi ≥ K and

∑
i∈U pi ≤ B for a given constant K.

We use reduction to NP-hardness from the 0-1 knapsack problem which is a
classic NP-complete problem, and is defined as follows.

Definition 1 (An Instance of 0-1 Knapsack Problem). Given a set of n
items, each with a positive weight wi and a positive value vi. Given a maximum
weight capacity W and a constant K, the question is whether there exists a subset
of items U that satisfies

∑
i∈U vi ≥ K and

∑
i∈U wi ≤ W .
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We simplify the decision version of our problem to an instance where the
acceptable range h is small enough such that there is only one choice of l̂i for
each user i and all the l̂i’s are non-overlapping. Thus, the quantities vi, wi,
and W in the 0-1 knapsack problem correspond to ξi, pi, and B in our case,
respectively. Hence, the solution to the instance of the 0-1 knapsack problem
is exactly the solution to the instance of our problem. In addition, the above
reduction ends in polynomial time, which completes the proof. 	


4 Impossibility of Approximate Mechanisms

Theorem 1 shows that VCG mechanism is unusable due to the exponential time
complexity of finding an optimal solution. One possible direction is to make use
of the available results in [14,15] where the authors proposed budget-feasible
approximate mechanisms for submodular functions which are defined as follows:

Definition 2 [17]. A function V : 2[n] → R+ is submodular if V (S ∪ {i}) −
V (S) ≥ V (T ∪ {i}) − V (T ),∀S ⊆ T .

In short, it means that the marginal contribution of a user decreases when
the chosen user set becomes larger. However, our problem does not satisfy sub-
modularity: when the set of chosen users expands from S to T , the (additional)
user i’s marginal contribution may increase because the user i may have multi-
ple choices of tasks and the task allocated to her (and hence her contribution)
may change when S changes to T . Therefore, the mechanisms introduced in
[14,15] cannot be directly used. In fact, we prove that there does not exist an
approximate mechanism with bounded approximation ratio for our problem.

Fig. 2. An example showing impossibility where circles denote users and boxes denote
tasks.

Theorem 2. There is no approximate mechanism with a bounded approxima-
tion ratio that is truthful, budget-feasible and individually rational simultaneously
for the bike rebalancing problem.
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Proof. Let us consider an example shown in Fig. 2, where the bid of location has
been easily converted to the bid of cost by calculating the distance. The bidding
profile is x = {(B+ε,∞), (ε, B), (∞, B+ε)}, where ε can be any positive number
less than B. ξa and ξb are the contribution of fulfilling task a and b respectively,
and ξb

ξa
can be arbitrarily large. In the optimal solution, location b should be

allocated to user 2, leading to a total contribution of ξb. We now show that
any truthful, budget feasible and individually rational mechanism can achieve
at most a total contribution of ξa.

Assume for the purpose of contradiction that there exists a mechanism f
that satisfies these properties and guarantees a bounded approximation ratio.
Let’s consider the case of bidding profile y = {(B + ε,∞), (ε, B + ε), (∞, B + ε)},
where user 2 declares B + ε instead for location b. In this case, the optimal
solution will allocate location a to user 2, so does the mechanism f . The reason
is that (1) if f allocates location b to user 2, the cost of user 2 is above B,
so it is neither budget feasible nor individually rational, and (2) if none of the
locations a and b is allocated to user 2, then the total contribution is 0, and thus
f can not guarantee a bounded approximation ratio. Given this allocation, to
achieve truthfulness, the payment to user 2 for parking at location a has to be B
because, otherwise, user 2 can misreport B for location a. Now, we can compare
the bidding profiles x and y. In the case of y, the utility of user 2 is B − ε. In
the case of x, if mechanism f allocates location b to user 2, the utility of user
2 is at most 0, so she has incentive to misreport B + ε for location b to change
the bidding profile into y to get better utility. Therefore, to ensure truthfulness,
mechanism f has two choices in the case of x: allocating location a to user 2 or
allocating nothing. In either case, the approximation ratio of total contribution
is OPT∑

l∈M ξi
≥ ξb

ξa
which can be arbitrarily large. Therefore, the mechanism cannot

guarantee bounded approximation ratio, which constitutes the contradiction. 	


5 A Two-Stage Incentive Mechanism

Due to the impossibility result of approximate mechanisms, we propose a heuris-
tic mechanism in this section for the bike rebalancing problem.

The main idea is to convert the problem into a submodular problem and
then employ techniques for submodular functions. We choose some representa-
tive locations that are not overlapping, and restrict each user to choose one of
these locations or none (not participating). This way, the function of total contri-
bution becomes a submodular function. Note that this method is not impractical
because in the real world there are typically some sparse locations that are short
of bikes, such as subway stations or residential areas.

However, there are still two challenges in designing a heuristic mechanism:
(1) the selection of locations is a maximum weighted independent set problem,
which is an NP-complete problem [16], and (2) allocating tasks to users to achieve
truthfulness and budget feasibility simultaneously is a difficult problem.

We propose a two-stage incentive mechanism. In the first stage, we construct
a conflict network among locations by adding an edge of two locations if the
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Algorithm 1. The Two-stage Mechanism
Input: N , M , A0, Q = {Q(1), Q(2), · · · , Q(m)}, set of bids d = {d1, d2, · · · dn}, and

the conflict network G = (V, E, W ).

Output: set of winning allocation (i, li) ∈ U , and payment pi, for winning user i.

1: Ul ← ∅, L ← ∅, TC ← 0, Nl ← 0;

2: for l ∈ V , i ∈ N do

3: if Hdil ≤ h then

4: Nl ← Nl ∪ i;

5: end if

6: end for

7: for l ∈ V do

8: ξl(A0) = Q(l) log
|A0(l)|+1

|A0(l)| ;

9: end for

10: Sort locations based on the contribution ξl(A0) into a list M ′ in descending order;

11: while M ′ �= ∅ do

12: Let l′ be the head of the list, and Gl′ be the neighbor set of l′;
13: L ← L ∪ {l′}, M ′ ← M ′\{Gl′ ∪ l′};
14: end while

15: for l ∈ L do

16: Bl =
|Nl|·B∑
l′∈L |Nl′ | ;

17: Sort users in set Nl into a list N ′
l based on Cdil in nondecreasing order, and let

j be the head of N ′
l ;

18: while Cdj l ≤ Bl
|Ul|+1

do

19: Ul ← Ul ∪ (j, l), N ′
l ← N ′

l\i;

20: Let j be the new head of N ′
l ;

21: end while

22: for (i, l) ∈ Ul do

23: pi = min{Cdj l,
Bl

|Ul| };
24: end for

25: end for

distance between them is no more than 2h, and we assign the weight of each
location to be the contribution of the first user who parks at the location. Then,
we use a greedy method to find the maximum weighted independent set of loca-
tions. In the second stage, the budget is divided for selected locations, and users
are chosen for each location using the critical price mechanism. The complete
procedure is presented in Algorithm 1.

In Algorithm 1, line 2–6 is to determine the candidates that are adjacent to
each location. Line 7–14 determines a maximum weighted independent set of
locations and proportionally divides the budget to each location based on the
number of users. Line 15–25 is to find the optimal set of winners in a greedy
manner for each location, where the critical price min{Cdj l,

Bl

|Ul|} is used as the
payment for the first unselected user j.

In the following, we prove four important properties of our proposed mech-
anism: truthfulness, individual rationality, budget feasibility and computation
efficiency. For proving truthfulness, we give a definition of symmetric modular
function and a lemma presented below.
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Definition 3 [17]. A function V : 2[n] → R+ is symmetric submodular if there
exist r1 ≥ · · · ≥ rn ≥ 0, such that V (S) =

∑|s|
i=1 ri.

Intuitively, a function is symmetric if the value of the function is only deter-
mined by the cardinality of the set, and it is submodular if the marginal value
is monotonously non-increasing.

Lemma 1 [14]. For a symmetric submodular function with a given budget, the
above mechanism of determining winners (line 17–24) is truthful.

Theorem 3. The two-stage incentive mechanism is location truthful.

Proof. In the first stage, it’s obvious that users cannot manipulate the selected
locations because the sorting of locations only relies on the condition of locations
rather than the bids of users. So, let user i be a candidate of location l, if she
misreports her destination d′

i �= di, it must fall into one of following cases:
Case 1: Hd′

il
> h. In this case, user i either becomes a candidate of another

location l′ �= l, or fails to be a candidate. In the former scenario, based on
the non-overlapping characteristic between different selected locations, we have
Hdil′ > h, so it’s beyond the acceptable range of user i. In the latter scenario,
we easily have that user i’s utility ui(d′

i, d−i) = 0 ≤ ui(di, d−i).
Case 2: Hd′

il
≤ h and d′

i �= di. In this case, we use Lemma 1. Due to the
monotonicity of function log x+1

x , if Sl ⊆ Tl, we have

ξl(Sl ∪ {i}) − ξl(Sl) = Q(l) log
|A0(l)| + |Sl| + 1

|A0(l)| + |Sl|
≥ Q(l) log

|A0(l)| + |Sl| + |Tl\Sl| + 1
|A0(l)| + |Sl| + |Tl\Sl|

= Q(l) log
|A0(l)| + |Tl| + 1

|A0(l)| − Q(l) log
|A0(l)| + |Tl|

|A0(l)|
= ξl(Tl ∪ {i}) − ξl(Tl).

Moreover, the function of total contribution ξl = Q(l) log |A0(l)|+|Ul|
|A0(l)| depends on

cardinality only. Therefore, the contribution of a single location is a symmetric
submodular function, and by Lemma1, the above mechanism is truthful. 	

Theorem 4. The two-stage incentive mechanism satisfies individual rationality.

Proof. For an unselected user i, her payment and cost are both zero, so the utility
ui = pi − Ci = 0. For a winning user i, by the line 18 in the algorithm, we have
Ci ≤ Bl

|Ul| , and by the nondecreasing order of N ′
l , we can get Ci ≤ Cj , where j is

the first unselected user. Therefore, we have that ui = min{Cj ,
Bl

|Ul|} − Ci ≥ 0.	


Theorem 5. The algorithm of the two-stage incentive mechanism has a
polynomial-time computation complexity.
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Proof. The complexity of allocating users to adjacent locations (line 3–7) is
O(|V | · |N |). The operation of sorting locations (line 10) is O(|V | · log |V |). The
computation complexity of determining winners for single location (line 17–24)
is O(|Nl| · log |Nl|), so for all selected locations, it’s at most O(|N | · log |N |). Since
we have |N | > log |V | and |V | > log |N | in reality, the overall complexity of the
two-stage mechanism is O(|V | · |N |). 	

Theorem 6. The two-stage incentive mechanism is budget feasible.

Proof. In the mechanism, the given budget is divided for each selected location,
so we only need to prove the mechanism for each single location is budget feasible.
For location l and the set of selected users Al, the price is min{Cdj l,

Bl

|Ul|} where
j is the first unselected user, so we have

∑

i∈N

pi =
∑

l∈L

min{Cdj l,
Bl

|Ul| } · |Ul|

≤
∑

l∈L

Bl

|Ul| · |Ul|

= B

which proves the budget feasibility. 	


6 Performance Evaluation

We evaluate the effectiveness of our proposed mechanism using a real-world
dataset from Mobike3, which is a popular bike sharing company in China. We
build a simulator that generates parking users and demand users based on the
dataset of Beijing city from 10th to 14th May 2017.

The parameter values are set as follows. The cost of unit distance for each
user is c = 1RMB/km, and the maximum acceptable range h = 2 km. Unless
otherwise specified, the number of existing bikes is 4000, the number of parking
users is 1700, and the number of demand is 5000. We perform each experiment
for 30 times and present the average value.

Three mechanisms are compared: our proposed two-stage heuristic mecha-
nism (TSH), a randomized mechanism (RAN) and a randomized mechanism
with selected locations (RAN-SL). In RAN, one user is chosen randomly in each
round, and the platform picks all of nearby locations with higher demand than
her affiliated location, then randomly chooses one to allocate to the user and
pays her the maximum possible cost pi = c ∗ h for performing that task. RAN-
SL is similar to TSH in that it selects an independent set of locations the same
way as in our mechanism. However, the platform randomly chooses a location
and a candidate user for that location in each round, and the payment for each
task is also the maximum cost pi = c ∗ h.

3 https://mobike.com/global/.

https://mobike.com/global/
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We use successful service ratio (SSR) as the evaluation metric, which is
defined as the proportion of demand that is satisfied, formally,

SSR =
∑

l∈M min{D(l), |A0(l)| + |Ul|}
∑

l∈M D(l)
.

Fig. 3. Comparison on SSR with vary-
ing budget.

Fig. 4. The effect of the number of
parking users.

The comparison of the successful service ratio (SSR) with varying budgets is
illustrated in Fig. 3. We observe that SSR of all the three methods increases with
the increase of budget until a threshold value. This is because all the candidate
users have been selected and there is a remaining budget. Our method TSH
outperforms the other methods in general. In addition, we see that the threshold
of our method is about 2000 whereas the threshold of RAN and RAN-SL is about
3000, which indicates the budget-saving advantage of our mechanism (Fig. 4).

7 Conclusion

In this paper, we have studied the bike rebalancing problem in station-free bike
sharing. We have proved two impossibility results for optimal and approximate
mechanisms, respectively. Therefore, we have proposed a two-stage heuristic
mechanism as an alternative solution, and showed that it is effective and out-
performs other choices through our extensive experiments based on a real-world
dataset. In future work, we plan to explicitly incorporate the temporal factor
into an online model, and conduct pilot experiments in a real city.
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Abstract. Amixed shop is to process a mixture of a set of flow-shop jobs
and a set of open-shop jobs. Mixed shops are in general much harder than
flow-shops and open-shops, and have been studied since the 1980’s. We
consider the three machine proportionate mixed shop problem denoted
as M3 | prpt | Cmax, in which each job has equal processing times on
all three machines. Koulamas and Kyparisis (Eur J Oper Res 243:70–
74, 2015) showed that the problem is solvable in polynomial time in
some very special cases; for the non-solvable case, they proposed a 5/3-
approximation algorithm. In this paper, we present an improved 4/3-
approximation algorithm and show that this ratio of 4/3 is asymptoti-
cally tight; when the largest job is a flow-shop job, we present a fully
polynomial-time approximation scheme (FPTAS). On the negative side,
while the F3 | prpt | Cmax problem is polynomial-time solvable, we show
an interesting hardness result that adding one open-shop job to the job
set makes the problem NP-hard if this open-shop job is larger than any
flow-shop job.

Keywords: Scheduling · Mixed shop · Proportionate
Approximation algorithm
Fully polynomial-time approximation scheme

1 Introduction

We study in this paper the following three-machine proportionate mixed shop,
denoted as M3 | prpt | Cmax in the three-field notation [4]. Given three machines
M1,M2,M3 and a set J = F ∪ O of jobs, where F = {J1, J2, . . . , J�} and O =
{J�+1, J�+2, . . . , Jn}, each job Ji ∈ F needs to be processed non-preemptively
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through M1,M2,M3 sequentially with a processing time pi on each machine
and each job Ji ∈ O needs to be processed non-preemptively on M1,M2,M3 in
any machine order with a processing time qi on each machine. The scheduling
constraint is usual in that at every time point a job can be processed by at most
one machine and a machine can process at most one job. The objective is to
minimize the maximum job completion time, i.e., the makespan.

The jobs of F are referred to as flow-shop jobs and the jobs of O are called
open-shop jobs. The mixed shop is to process such a mixture of a set of flow-
shop jobs and a set of open-shop jobs. We assume without loss of generality that
p1 ≥ p2 ≥ . . . ≥ p� and q�+1 ≥ q�+2 ≥ . . . ≥ qn.

Mixed shops have many real-life applications and have been studied since
the 1980’s. The scheduling of medical tests in an outpatient health care facility
and the scheduling of classes/exams in an academic institution are two typical
examples, where the patients (students, respectively) must complete a number
of medical tests (academic activities, respectively); some of these activities must
be done in the same sequential order while the others can be finished in any
order; and the time-spans for all these activities should not overlap with each
other. The proportionate shops were also introduced in the 1980’s [11] and they
are one of the most specialized shops with respect to the job processing times
which have received many studies [12].

Masuda et al. [10] and Strusevich [16] considered the two-machine mixed shop
problem to minimize the makespan, i.e., M2 || Cmax; they both showed that
the problem is polynomial time solvable. Shakhlevich and Sotskov [14] studied
mixed shops for processing two jobs with an arbitrary regular objective function.
Brucker [1] surveyed the known results on the mixed shop problems either with
two machines or for processing two jobs. Shakhlevich et al. [13] studied the mixed
shop problems with more than two machines for processing more than two jobs,
with or without preemption. Shakhlevich et al. [15] reviewed the complexity
results on the mixed shop problems with three or more machines for processing
a constant number of jobs.

When O = ∅, the M3 | prpt | Cmax problem reduces to the F3 | prpt | Cmax

problem, which is solvable in polynomial time [2]. When F = ∅, the problem
reduces to the O3 | prpt | Cmax problem, which is ordinary (or called weakly)
NP-hard [8]. It follows that the M3 | prpt | Cmax problem is at least ordinary NP-
hard. Recently, Koulamas and Kyparisis [7] showed that for some very special
cases, the M3 | prpt | Cmax problem is solvable in polynomial time; for the non-
solvable case, they showed an absolute performance bound of 2max{p1, q�+1}
and presented a 5/3-approximation algorithm.

In this paper, we design an improved 4/3-approximation algorithm for (the
non-solvable case of) the M3 | prpt | Cmax problem, and show that the per-
formance ratio of 4/3 is asymptotically tight. When the largest job is a flow-
shop job, that is p1 ≥ q�+1, we present a fully polynomial-time approximation
scheme (FPTAS). On the negative side, while the F3 | prpt | Cmax problem is
polynomial-time solvable, we show an interesting hardness result that adding
one single open-shop job to the job set makes the problem NP-hard if this open-
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shop job is larger than any flow-shop job. We construct the reduction from the
well-known Partition problem [3].

The rest of the paper is organized as follows. In Sect. 2, we introduce some
notations and present a lower bound on the optimal makespan C∗

max. We present
in Sect. 3 the FPTAS for the M3 | prpt | Cmax problem when p1 ≥ q�+1. The
4/3-approximation algorithm for the case where p1 < q�+1 is presented in Sect. 4,
and the performance ratio of 4/3 is shown to be asymptotically tight. We show
in Sect. 5 that, when there is only one open-shop job Jn and p1 < qn, the
M3 | prpt | Cmax problem is NP-hard, through a reduction from the Partition
problem. We conclude the paper with some remarks in Sect. 6.

2 Preliminaries

For any subset of jobs X ⊆ F , the total processing time of the jobs of X on one
machine is denoted as

P (X ) =
∑

Ji∈X
pi.

For any subset of jobs Y ⊆ O, the total processing time of the jobs of Y on one
machine is denoted as

Q(Y) =
∑

Ji∈Y
qi.

The set minus operation J \ {J} for a single job J ∈ J is abbreviated as J \ J
throughout the paper.

Given that the load (i.e., the total job processing time) of each machine is
P (F) + Q(O), the job J�+1 has to be processed by all three machines, and one
needs to process all the flow-shop jobs of F , the following lower bound on the
optimum C∗

max is established [2,7]:

C∗
max ≥ max{P (F) + Q(O), 3q�+1, 2p1 + P (F)}. (1)

3 An FPTAS for the Case Where p1 ≥ q�+1

In this section, we design an approximation algorithm A(ε) for the M3 | prpt |
Cmax problem when p1 ≥ q�+1, for any given ε > 0. The algorithm A(ε) produces
a schedule π with its makespan Cπ

max < (1 + ε)C∗
max, and its running time is

polynomial in both n and 1/ε.
Consider a bipartition {A,B} of the job set O = {J�+1, J�+2, . . . , Jn}, i.e., A∪

B = O and A∩B = ∅. Throughout the paper, a part of the bipartition is allowed
to be empty. The following procedure Proc(A,B,F) produces a schedule π:

1. the jobs of F are processed in the longest processing time (LPT) order on all
three machines, and every job is processed first on M1, then on M2, lastly on
M3;

2. the jobs of A are processed in the LPT order on all three machines, and every
one is processed first on M2, then on M3, lastly on M1;
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3. the jobs of B are processed in the LPT order on all three machines, and every
one is processed first on M3, then on M1, lastly on M2; and

4. the machine M1 processes (the jobs of) F first, then B, lastly A, denoted as
〈F ,B,A〉;

5. the machine M2 processes A first, then F , lastly B, denoted as 〈A,F ,B〉;
6. the machine M3 processes B first, then A, lastly F , denoted as 〈B,A,F〉.
Proc(A,B,F) runs in O(n log n) time to produce the schedule π, of which an
illustration is shown in Fig. 1.

Fig. 1. An illustration of the schedule π produced by Proc(A, B, F), where {A, B} is
a bipartition of the set O and the jobs of each of A, B, F are processed in the LPT
order on all three machines.

The following two lemmas state that if both Q(A) ≤ p1 and Q(B) ≤ p1, or
both Q(A) ≥ p1 and Q(B) ≥ p1, then the schedule π produced by Proc(A,B,F)
is optimal. Due to the space limit, we refer the readers to our arXiv submission [9]
for the detailed proofs.

Lemma 1 [9]. If both Q(A) ≤ p1 and Q(B) ≤ p1, then the schedule π produced
by Proc(A,B,F) is optimal, with its makespan Cπ

max = C∗
max = 2p1 + P (F).

Lemma 2 [9]. If both Q(A) ≥ p1 and Q(B) ≥ p1, then the schedule π produced
by Proc(A,B,F) is optimal, with its makespan Cπ

max = C∗
max = P (F) + Q(O).

Now we are ready to present the approximation algorithm A(ε), for any ε > 0.
In the first step, we check whether Q(O) ≤ p1 or not. If Q(O) ≤ p1, then we

run Proc(O, ∅,F) to construct a schedule π and terminate the algorithm. The
schedule π is optimal by Lemma1.

In the second step, the algorithm A(ε) constructs an instance of the Knap-
sack problem [3], in which there is an item corresponding to the job Ji ∈ O,
also denoted as Ji. The item Ji has a profit qi and a size qi. The capacity of the
knapsack is p1. The Min-Knapsack problem is to find a subset of items of min-
imum profit that cannot be packed into the knapsack, and it admits an FPTAS
[6]. The algorithm A(ε) runs a (1 + ε)-approximation algorithm for the Min-
Knapsack problem to obtain a job subset A. It then runs Proc(A,O \ A,F)
to construct a schedule, denoted as π1.

The Max-Knapsack problem is to find a subset of items of maximum profit
that can be packed into the knapsack, and it admits an FPTAS, too [5]. In the
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third step, the algorithm A(ε) runs a (1 − ε)-approximation algorithm for the
Max-Knapsack problem to obtain a job subset B. Then it runs Proc(O \
B,B,F) to construct a schedule, denoted as π2.

The algorithm A(ε) outputs the schedule with a smaller makespan between
π1 and π2. A high-level description of the algorithm A(ε) is provided in Fig. 2.

Fig. 2. A high-level description of the algorithm A(ε).

In the following performance analysis, we assume without of loss of generality
that Q(O) > p1. We have the following (in-)equalities inside the algorithm A(ε):

OPT1 = min{Q(X ) | X ⊆ O, Q(X ) > p1}; (2)
p1 < Q(A) ≤ (1 + ε)OPT1; (3)

OPT2 = max{Q(Y) | Y ⊆ O, Q(Y) ≤ p1}; (4)
p1 ≥ Q(B) ≥ (1 − ε)OPT2, (5)

where OPT1 (OPT2, respectively) is the optimum to the constructed Min-
Knapsack (Max-Knapsack, respectively) problem.

Lemma 3. In the algorithm A(ε), if Q(O \ A) ≤ p1 − εOPT1, then for any
bipartition {X ,Y} of the job set O, Q(X ) > p1 implies Q(Y) ≤ p1.

Proof. Note that the job subset A is computed in Step 2.1 of the algorithm
A(ε), and it satisfies Eq. (3). By the definition of OPT1 in Eq. (2) and using
Eq. (3), we have Q(X ) ≥ OPT1 ≥ Q(A) − εOPT1. Furthermore, from the
fact that Q(O) = Q(X ) + Q(Y) = Q(A) + Q(O \ A) and the assumption that
Q(O \ A) ≤ p1 − εOPT1, we have
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Q(Y) = Q(A) + Q(O \ A) − Q(X )
≤ Q(A) + Q(O \ A) − (Q(A) − εOPT1)
= Q(O \ A) + εOPT1

≤ p1 − εOPT1 + εOPT1

= p1.

This finishes the proof of the lemma. ��
Lemma 4. In the algorithm A(ε), if Q(O \ A) ≤ p1 − εOPT1, then C∗

max ≥
P (F) + Q(O) + p1 − OPT2.

Proof. Consider an arbitrary optimal schedule π∗ that achieves the makespan
C∗

max. Note that the flow-shop job J1 is first processed on the machine M1, then
on machine M2, and last on machine M3.

In the schedule π∗, let Si and Ci be the start processing time and the finish
processing time of the job J1 on the machine Mi, respectively, for i = 1, 2, 3.
On the machine M2, let J 1 = O1 ∪ F1 denote the subset of jobs processed
before J1, and J 2 = O2 ∪F2 denote the subset of jobs processed after J1, where
{O1,O2} is a bipartition of the job set O and {F1,F2} is a bipartition of the
job set F \ J1. Also, let δ1 and δ2 denote the total amount of machine idle time
for M2 before processing J1 and after processing J1, respectively (see Fig. 3 for
an illustration).

Fig. 3. An illustration of an optimal schedule π∗, in which J 1 and J 2 are the subsets
of jobs processed on M2 before J1 and after J1, respectively; δ1 and δ2 are the total
amount of machine idle time for M2 before processing J1 and after processing J1,
respectively.

Note that F = J1 ∪ F1 ∪ F2 is the set of flow-shop jobs. The job J1 and the
jobs of F1 should be finished before time S2 on the machine M1, and the job J1

and the jobs of F2 can only be started after time C2 on the machine M3. That
is,

p1 + P (F1) ≤ S2 (6)

and
p1 + P (F2) ≤ C∗

max − C2. (7)
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If Q(O1) ≤ p1, then we have Q(O1) ≤ OPT2 by the definition of OPT2 in
Eq. (4). Combining this with Eq. (6), we achieve that δ1 = S2−P (F1)−Q(O1) ≥
p1 − OPT2.

If Q(O1) > p1, then we have Q(O2) ≤ p1 by Lemma3. Hence, Q(O2) ≤
OPT2 by the definition of OPT2 in Eq. (4). Combining this with Eq. (7), we
achieve that δ2 = C∗

max − C2 − P (F2) − Q(O2) ≥ p1 − OPT2.
The last two paragraphs prove that δ1 + δ2 ≥ p1 − OPT2. Therefore,

C∗
max = Q(O1) + P (F1) + δ1 + p1 + Q(O2) + P (F2) + δ2

= P (F) + Q(O) + δ1 + δ2

≥ P (F) + Q(O) + p1 − OPT2.

This finishes the proof of the lemma. ��
Lemma 5. In the algorithm A(ε), if Q(O \ A) ≤ p1 − εOPT1, then Cπ2

max <
(1 + ε)C∗

max.

Proof. Denote B = O \ B. Note that the job set B computed in Step 3.1 of
the algorithm A(ε) satisfies p1 ≥ Q(B) ≥ (1 − ε)OPT2, and the schedule π2 is
constructed by Proc(B,B,F). We distinguish the following two cases according
to the value of Q(B).

Case 1. Q(B) ≤ p1. In this case, the schedule π2 is optimal by Lemma1.
Case 2. Q(B) > p1. The schedule π2 constructed by Proc(B,B,F) has the

following properties (see Fig. 4 for an illustration):

Fig. 4. An illustration of the schedule π2 constructed by Proc(B, B, F) in Case 2,
where Q(B) ≤ p1 and Q(B) > p1. The machines M1 and M2 do not idle; the machine
M3 may idle between processing the job set B and the job set B and may idle between
processing the job set B and the job set F . M3 starts processing the job set F at time
p1 + Q(B).

1. The jobs are processed consecutively on the machine M1 since J1 is the largest
job. The completion time of M1 is thus Cπ2

1 = Q(O) + P (F).
2. The jobs are processed consecutively on the machine M2 due to Q(B) ≤ p1

and Q(B) > p1. The completion time of M2 is thus Cπ2

2 = Q(O) + P (F).
3. The machine M3 starts processing the job set F consecutively at time p1 +

Q(B) due to Q(B) ≤ p1. The completion time of M3 is Cπ2

3 = P (F) + p1 +
Q(B).
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Note that Cπ2

3 = P (F)+ p1+Q(B) ≥ P (F)+Q(B)+Q(B) = Q(O)+P (F),
implying Cπ2

max = P (F)+ p1+Q(B). Combining Eq. (5) with Lemma4, we have

Cπ2

max = P (F) + p1 + Q(B)
= P (F) + Q(O) + p1 − Q(B)
≤ P (F) + Q(O) + p1 − (1 − ε)OPT2

≤ C∗
max + εOPT2

< (1 + ε)C∗
max,

where the last inequality is due to OPT2 ≤ p1 < C∗
max. This finishes the proof

of the lemma. ��
Lemma 6. In the algorithm A(ε), if p1−εOPT1 < Q(O\A) < p1, then Cπ1

max <
(1 + ε)C∗

max.

Proof. Denote A = O \ A. Note that the job set A computed in Step 2.1 of
the algorithm A(ε) satisfies p1 < Q(A) ≤ (1 + ε)OPT1, and the schedule π1 is
constructed by Proc(A,A,F).

By a similar argument as in Case 2 in the proof of Lemma5, replacing the
two job sets B,B by the two job sets A,A, we conclude that the makespan of the
schedule π1 is achieved on the machine M3, Cπ1

max = P (F) +Q(O) + p1 − Q(A).
Combining Eq. (1) with the assumption that p1 − εOPT1 < Q(A), we have

Cπ1

max < P (F) + Q(O) + εOPT1 ≤ C∗
max + εOPT1 < (1 + ε)C∗

max,

where the last inequality follows from OPT1 ≤ Q(O) ≤ C∗
max. This finishes the

proof of the lemma. ��
Theorem 1. The algorithm A(ε) is a Poly(n, 1/ε)-time (1 + ε)-approximation
for the problem M3 | prpt | Cmax when p1 ≥ q�+1.

Proof. First of all, the procedure Proc(X ,Y,F) on a bipartition {X ,Y} of the
job set O takes O(n log n) time. Recall that the job set A is computed by a (1+ε)-
approximation for the Min-Knapsack problem, which takes a polynomial time
in both n and 1/ε; the other job set B is computed by a (1 − ε)-approximation
for the Max-Knapsack problem, which also takes a polynomial time in both
n and 1/ε. The total running time of the algorithm A(ε) is thus polynomial in
both n and 1/ε too.

When Q(O) ≤ p1, or the job set O\A computed in Step 2.1 of the algorithm
A1(ε) has total processing time not less than p1, the schedule constructed in the
algorithm A(ε) is optimal by Lemmas 1 and 2. When Q(O\A) < p1, the smaller
makespan between the two schedules π1 and π2 constructed by the algorithm
A(ε) is less than (1 + ε) of the optimum by Lemmas 5 and 6. Therefore, the
algorithm A(ε) has a worst-case performance ratio of (1 + ε). This finishes the
proof of the theorem. ��
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4 A 4/3-Approximation for the Case Where p1 < q�+1

In this section, we present a 4/3-approximation algorithm for the M3 | prpt |
Cmax problem when p1 < q�+1, and we show that this ratio of 4/3 is asymptoti-
cally tight.

Theorem 2. When p1 < q�+1, the M3 | prpt | Cmax problem admits an
O(n log n)-time 4/3-approximation algorithm.

Proof. Consider first the case where there are at least two open-shop jobs. Con-
struct a permutation schedule π in which the job processing order for M1 is
〈J�+3, . . . , Jn,F , J�+1, J�+2〉, where the jobs of F are processed in the LPT order;
the job processing order for M2 is 〈J�+2, J�+3, . . . , Jn,F , J�+1〉; the job process-
ing order for M3 is 〈J�+1, J�+2, J�+3, . . . , Jn,F〉. See Fig. 5 for an illustration,
where the start processing time for J�+3 on M2 is q�+1, and the start processing
time for J�+3 on M3 is 2q�+1. One can check that the schedule π is feasible when
p1 < q�+1, and it can be constructed in O(n log n) time.

Fig. 5. A feasible schedule π for the M3 | prpt | Cmax problem with p1 < q�+1.

The makespan of the schedule π is Cπ
max = P (F) + Q(O) + q�+1 − q�+2.

Combining this with Eq. (1), we have

Cπ
max ≤ P (F) + Q(O) + q�+1 ≤ 4

3
C∗

max.

When there is only one open-shop job J�+1, construct a permutation schedule
π in which the job processing order for M1 is 〈F , J�+1〉, where the jobs of F are
processed in the LPT order; the job processing order for M2 is 〈F , J�+1〉; the
job processing order for M3 is 〈J�+1,F〉. If P (F) ≤ q�+1, then π has makespan
3q�+1 and thus is optimal. If P (F) > q�+1, then π has makespan Cπ

max ≤ 2q�+1+
P (F) ≤ 4

3C∗
max. This finishes the proof of the theorem. ��

Remark 1. Construct an instance in which pi = 1
�−1 for all i = 1, 2, . . . , �, q�+1 =

1 and qi = 1
n−�−2 for all i = �+2, �+3, . . . , n. Then for this instance, the schedule

π constructed in the proof of Theorem2 has makespan Cπ
max = 4 + 1

�−1 ; an
optimal schedule has makespan C∗

max = 3+ 1
�−1 + 1

n−�−2 (see for an illustration
in Fig. 6). This suggests that the approximation ratio of 4/3 is asymptotically
tight for the algorithm in the proof of Theorem2.
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Fig. 6. An optimal schedule for the constructed instance of the M3 | prpt | Cmax

problem, in which pi = 1
�−1

for all i = 1, 2, . . . , n, q�+1 = 1 and qi = 1
n−�−2

for all
i = � + 2, � + 3, . . . , n.

5 NP-Hardness for the Case Where O = {Jn}
and p1 < qn

In this section, we show that the M3 | prpt | Cmax problem with only one
open-shop job is already NP-hard if this open-shop job is larger than any flow-
shop job. We prove the NP-hardness through a reduction from the Partition
problem [3], which is a well-known NP-complete problem.

Theorem 3. The M3 | prpt | Cmax problem with only one open-shop job is
NP-hard if this open-shop job is larger than any flow-shop job.

Proof. An instance of the Partition problem consists of a set S =
{a1, a2, a3, . . . , am} where each ai is a positive integer and a1+a2+. . .+am = 2B,
and the query is whether or not S can be partitioned into two parts such that
each part sums to exactly B.

Let x > B, and we assume that a1 ≥ a2 ≥ . . . ≥ am.
We construct an instance of the M3 | prpt | Cmax problem as follows: there

are in total m+ 2 flow-shop jobs, and their processing times are p1 = x, p2 = x,
and pi+2 = ai for i = 1, 2, . . . , m; there is only one open-shop job with processing
time qm+3 = B + 2x. Note that the total number of jobs is n = m + 3, and one
sees that the open-shop job is larger than any flow-shop job.

If the set S can be partitioned into two parts S1 and S2 such that each part
sums to exactly B, then we let J 1 = J1 ∪ {Ji | ai ∈ B1} and J 2 = J2 ∪ {Ji |
ai ∈ B2}. We construct a permutation schedule π in which the job processing
order for M1 is 〈J 1,J 2, Jm+3〉, where the jobs of J 1 and the jobs of J 2 are
processed in the LPT order, respectively; the job processing order for M2 is
〈J 1, Jm+3,J 2〉; the job processing order for M3 is 〈Jm+3,J 1,J 2〉. See Fig. 7
for an illustration, in which J1 starts at time 0 on M1, starts at time x on M2,
and starts at time B + 2x on M3; J2 starts at time B + x on M1, starts at time
2B+4x on M2, and starts at time 2B+5x on M3; Jm+3 starts at time 0 on M3,
starts at time B + 2x on M2, and starts at time 2B + 4x on M1. The feasibility
is trivial and its makespan is Cπ

max = 3B + 6x, suggesting the optimality.
Conversely, if the optimal makespan for the constructed instance is

3B + 6x = 3qm+3, then we will show next that S admits a partition into two
equal parts.
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Fig. 7. A feasible schedule π for the constructed instance of the M3 | prpt | Cmax

problem, when the set S can be partitioned into two equal parts S1 and S2. The
partition of the flow-shop jobs {J 1, J 2} is correspondingly constructed. In the schedule,
the jobs of J 1 and the jobs of J 2 are processed in the LPT order, respectively.

Firstly, we see that the second machine processing the open-shop job Jm+3

cannot be M1, since otherwise M1 has to process all the jobs of F before Jm+3,
leading to a makespan greater than 3B +6x; the second machine processing the
open-shop job Jm+3 cannot be M3 either, since otherwise M3 has no room to
process any job of F before Jm+3, leading to a makespan larger than 3B + 6x
too. Therefore, the second machine processing the open-shop job Jm+3 has to
be M2, see Fig. 8 for an illustration.

Fig. 8. An illustration of an optimal schedule for the constructed instance of the M3 |
prpt | Cmax problem with O = {Jm+3} and qm+3 = B+2x. Its makespan is 3B+6x =
3qm+3.

Denote the job subsets processed before and after the job Jm+3 on M2 as F1

and F2, respectively. Since x > B, neither of F1 and F2 may contain both J1

and J2, which have processing times x. It follows that F1 and F2 each contains
exactly one of J1 and J2, and subsequently P (F1) = P (F2) = B+x. Therefore,
the jobs of J 1 \ {J1, J2} have a total processing time of exactly B, suggesting a
subset of S sums to exactly B. This finishes the proof of the theorem. ��

6 Concluding Remarks

In this paper, we studied the three-machine proportionate mixed shop problem
M3 | prpt | Cmax. We presented first an FPTAS for the case where p1 ≥ q�+1; and
then proposed a 4/3-approximation algorithm for the other case where p1 < q�+1,



Approximation Algorithms and a Hardness Result 279

for which we also showed that the performance ratio of 4/3 is asymptotically
tight. The F3 | prpt | Cmax problem is polynomial-time solvable; we showed an
interesting hardness result that adding only one open-shop job to the job set
makes the problem NP-hard if the open-shop job is larger than any flow-shop
job.

We believe that when p1 < q�+1, the M3 | prpt | Cmax problem can be
better approximated than 4/3, and an FPTAS is perhaps possible. Nevertheless,
a first step towards such an FPTAS is to design an FPTAS for the special case
where there is only one open-shop job and the open-shop job is larger than any
flow-shop job.
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Abstract. Our goal is to develop a general algorithm design technique
for a certain type of heuristic algorithms, so that it provably applies to
a large class of hard problems. A heuristic algorithm provides a correct
decision for most inputs, but may fail on some. We focus on the case when
failure means that the algorithm does not return any answer, rather than
returning a wrong result. This type of failure is represented by a “don’t
know” answer. Such algorithms are called errorless heuristics. Their
advantage is that whenever the algorithm returns any answer (other than
“don’t know”), the answer is guaranteed to be correct.

A reasonable quality measure for heuristics is the failure rate over the
set of n-bit instances. When no efficient exact algorithm is available for a
problem, then, ideally, we would like one with vanishing failure rate. We
show, however, that this is hard to achieve: unless a complexity theoretic
hypothesis fails (albeit less standard than P �=NP), some NP-complete
problems cannot have a polynomial-time errorless heuristic algorithm
with any vanishing failure rate.

On the other hand, as a key result, we prove that vanishing, even expo-
nentially small, failure rate is achievable, if we use a somewhat different
accounting scheme to count the failures. This is based on special sets,
that we call α-spheres, which are the images of the n-bit strings under
a bijective, polynomial-time computable and polynomial-time invertible
encoding function α. The α-spheres form a partition of all binary strings,
with similar properties as the sets of n-bit strings.

Our main result is that polynomial-time errorless heuristic algorithms
exist, with exponentially low failure rates on the α-spheres, for a large
class of decision problems. This class includes, surprisingly, all known
intuitively natural NP-complete problems. Furthermore, the proof of the
main theorem actually supplies a general scheme to construct the desired
encoding and the errorless heuristic.
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1 Introduction and Motivation

When a hard task is intractable to solve exactly, it is reasonable to try a heuristic
algorithm, hoping that it will provide a correct decision for most inputs, but
possibly not for all.

The quality of such heuristics can be measured by the success rate, that is,
the fraction of inputs on which correct decision is guaranteed. On the rest of the
instances the algorithm may return an incorrect decision, or no decision at all.
If an algorithm never returns a wrong answer, only correct decisions, or possibly
no decision at all (failure), then it is called errorless heuristic. In this paper we
focus on this type of polynomial-time heuristics for decision problems.

The standard way to measure the success rate is to count the number of
correct decisions on the set of n-bit strings. If the algorithm fails on rn inputs,
out of all n-bit strings, then the failure rate is rn/2n, or, equivalently, the success
rate is 1−rn/2n. If no exact polynomial time algorithm is available for a decision
problem, then, ideally, we look for an approximation with exponentially small
failure rate, that is, rn/2n ≤ cn, for some constant c < 1.

Unfortunately, this ideal case is unlikely to be achievable, even if we are sat-
isfied with any vanishing failure rate, which does not have to be exponentially
small. We show in Sect. 4 that not all NP-complete problems have polynomial-
time errorless heuristics with vanishing failure rates, unless a complexity theo-
retic hypothesis fails, albeit a less standard one than P�=NP.

On the other hand, we prove that vanishing, even exponentially small, failure
rate is achievable, if we use a somewhat different accounting scheme to count
the failures. Specifically, we define sets, called α-spheres, which are defined by a
bijective encoding α : {0, 1}∗ �→ {0, 1}∗ of strings, such that both α and α−1 are
computable in polynomial time. An α-sphere, denoted by S(α), is the image of
the n-bit strings under α, that is, S

(α)
n = {α(x) | |x| = n}. This set system has

many similarities to the set system of n bit strings: the α-sphere S
(α)
n has size

2n, they form a partition of {0, 1}∗, the mapping between n-bit strings and the
elements of S

(α)
n is 1–1, it does not change string lengths more than polynomially,

and the mapping is computable and invertible in polynomial time. Therefore,
α(x) can be viewed as a feasible one-to-one re-encoding of the input x.

Our main result is that polynomial-time errorless heuristic algorithms do
exist, with exponentially low failure rates on α-spheres, for a large class of deci-
sion problems. This class, surprisingly, includes all known intuitively natural
NP-complete problems. Furthermore, the proof of the main theorem actually
supplies a general method to construct the desired encoding and the errorless
heuristic, thus providing a novel algorithm design technique.

To further motivate our approach, let us briefly review the area of heuristic
algorithms. These algorithms come in two primary flavors:

1. Algorithms that may err on some inputs. These algorithms are
required to run in polynomial time, provide an answer to all inputs, but may
return a wrong answer on some inputs. The key issue here is the error frequency:
on how many instances can the answer be wrong, out of the total of 2n n-bit
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instances? (Note: we distinguish this error frequency from the error rate, by
which we mean the relative frequency of errors.) Unfortunately, aiming at low
error frequencies runs into conflict with widely accepted hypotheses in complex-
ity theory. For a survey, see Hemaspaandra and Williams [7]. For example, it has
been known for a long time that achieving polynomially bounded error frequency
is impossible, unless P = NP. Subexponentially bounded error frequency is still
known to imply highly unlikely complexity class collapses.

How about then exponential error frequency? Note that it can still yield an
exponentially low error rate. For instance, a 2n/2 error frequency yields an error
rate of 2n/2/2n = 2−n/2. Is that not good enough? The answer is that this task
already turns “too easy:” it allows meaningless trivial heuristics. For example, if
we pad an n-bit input x to x0n, so that its length becomes N = 2n, and apply
the trivial heuristic that accepts all inputs, then the error rate on the padded
language is at most 2N/2/2N = 2−N/2. Of course, it does not produce the same
error rate when mapped back to the original problem. But often just the strong
asymmetry of yes- or no-instances in the original language can already lead to
similar trivial cases, without the need for padding, which occurs even in natural
tasks. For example, regarding the well known Hamiltonian Circuit problem
in graphs, one can prove1 that all but an exponentially small fraction of n-
vertex graphs have a Hamiltonian circuit. Thus, the “accept everything” trivial
heuristic works with exponentially low error rate for this natural problem. Such a
trivial heuristic is not meaningful, as it ignores the very structure we are looking
for. This motivates a stronger class of heuristics, which excludes any error, but
allows “don’t know” answers, as explained below.

2. Errorless heuristics. These polynomial time algorithms never output
a wrong decision, but may fail on some inputs (returning “don’t know”). The
error rate is zero, since no error is allowed, but there may be a nonzero failure
rate. Observe that in the errorless case one cannot simply use a trivial heuristic,
capitalizing on the strong asymmetry of yes- or no-instances. It would unavoid-
ably lead to errors, which are not allowed here at all. That is, the algorithm
has to correctly know when to say “don’t know,” which may be nontrivial to
achieve. These schemes have intimate connections to average-case complexity,
for a survey see Bogdanov and Trevisan [3].

Note, however, that the failure rate can depend on which sets of strings are
used for reference. The traditional metric is to count the failures relative to all
2n bit strings of length n. Let us call the latter sets the spheres of radius n,
denoted by Sn. Nothing forces us, however, to use the Sn as reference sets. If α
is a bijection on all strings, then we may just as well count the failures on the
same sized sets α(Sn). If both α and α−1 are computable in polynomial time,
then we call it a p-isomorphic encoding. Observe that such a transformation
cannot hide much complexity. It preserves the sphere sizes, the sets α(Sn) form
a partition of {0, 1}∗, the mapping between n-bit strings and the elements of
S
(α)
n is 1–1, it does not change string lengths more than polynomially, and the

mapping is computable and invertible in polynomial time. Therefore, α(x) can

1 Non-trivially, using methods from random graph theory, see, e.g., Bollobas [4].
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be viewed as a feasible one-to-one re-encoding of the input x. But it may still
alter the failure rate, because |α(Sn)| = |Sn| does not imply that the two sets
have the same number of “don’t know”-instances, even though the entire set of
“don’t know”-instances, of course, remains the same.

Our approach can be characterized as an errorless heuristic, which achieves
exponentially low failure rate, capitalizing on an appropriate p-isomorphic encod-
ing of the input. The class of languages for which it is possible forms a new com-
plexity class, which we call Roughly Polynomial Time, abbreviated RoughP.
The main result is that RoughP contains the family of paddable languages,
which is a large class, including all known intuitively natural NP-complete prob-
lems.

2 Notations and Definitions

Set IN = {0, 1, 2, . . .}. The length of a bit string x is denoted by |x|. The length
of the empty string is 0. If a string x is of the form x = uu for some u ∈ {0, 1}∗,
then x is called symmetric, otherwise it is asymmetric. A language L ⊆ {0, 1}∗

is called trivial if L = ∅ or L = {0, 1}∗, otherwise it is called nontrivial. We
only consider decidable languages throughout the paper, without repeating this
condition each time.

Definition 1 (p-isomorphic encoding). A function α : {0, 1}∗ �→ {0, 1}∗ is
called a polynomial time isomorphic (p-isomorphic) encoding, if it is a bijection,
computable in polynomial time, and its inverse is also computable in polynomial
time.

Definition 2 (Sphere, α-sphere). For any n ∈ IN, the set Sn = {x ∈
{0, 1}∗ | |x| = n} is called the sphere of radius n. For a p-isomorphic encod-
ing α, the set S

(α)
n = α(Sn) = {α(x) |x ∈ Sn} is called α-sphere (of radius

n).

The system of α-spheres will be used as an “accounting scheme” for the failure
rate of the errorless heuristic. The standard metric is to count the failures on
the set of n-bit strings. Our accounting scheme is somewhat more lenient, but
still has quite natural properties: each α-sphere S

(α)
n has size 2n, they form a

partition of {0, 1}∗, the mapping between n-bit strings and the elements of S
(α)
n is

1–1, α does not change string lengths more than polynomially, and the mapping
is computable and invertible in polynomial time, making it just a feasible re-
encoding of strings.

Now we can define the complexity class RoughP, the family of languages
that are accepted in roughly polynomial time.

Definition 3 (RoughP). Let L ⊆ {0, 1}∗ be a language. We say that L ∈
RoughP, if there exist a p-isomorphic encoding α, and a polynomial time algo-
rithm A : {0, 1}∗ �→ {accept, reject, ⊥}, such that the following hold:
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(i) A correctly decides L, as an errorless heuristic. That is, it never outputs a
wrong decision: if A accepts a string x, then x ∈ L always holds, and if A
rejects x, then always x /∈ L.

(ii) Besides accept/reject, A may output the special sign ⊥, meaning “don’t
know” (failure). This can occur, however, only for an exponentially vanishing
fraction of strings in S

(α)
n . That is, there exist a constant c with 0 ≤ c < 1,

such that for every n ∈ IN

|S(α)
n ∩ {x | A(x) = ⊥}|

|S(α)
n |

≤ cn. (1)

Remark: It follows directly from the definition that P ⊆ RoughP, since for
L ∈ P we can always choose for A the polynomial time algorithm that decides
L, and use α(x) = x.

A concept that will be important in our treatment is the paddability of a
language. This notion originally gained significance from the role it played in
connection with the well known Isomorphism Conjecture of Berman and Hart-
manis [2]. The conjecture states that all NP-complete languages are polynomial
time isomorphic (p-isomorphic, for short), see [2]. (Note that a p-isomorphism
between languages is not the same as our p-isomorphic encoding in Definition 1,
because the latter does not depend on a particular language.)

Informally, a language is paddable, if in any instance we can encode arbitrary
additional information, without changing the membership of the instance in the
language. Moreover, both the encoding and unique decoding can be carried out
in polynomial time. To the author’s knowledge, all practical/natural decision
tasks (whether in NP or not) can be represented by paddable languages2.

A further important fact is that all known languages that represent intuitively
natural NP-complete problems are paddable. While there are constructions in
NP that are conjectured to lead to non-paddable languages, they arise via diag-
onalization, and do not represent any natural problem. Among the equivalent
formal definitions of paddability we use the following:

Definition 4 (Paddability). A language L ⊆ {0, 1}∗ is called paddable, if
there exists a polynomial time computable padding function pad : {0, 1}∗ ×
{0, 1}∗ �→ {0, 1}∗ and a polynomial time computable decoding function dec :
{0, 1}∗ �→ {0, 1}∗, such that for every x, y ∈ {0, 1}∗ the following hold:

(i) pad(x, y) ∈ L if and only if x ∈ L.
(ii) dec(pad(x, y)) = y.

2 This does not mean that every language that represents a practical problem is nec-
essarily paddable. For example, it is known that polynomially sparse (nonempty)
languages are not paddable (see, e.g., [6], Theorem 7.15), yet they may still represent
practical problems. We only say that, to our knowledge, for any practical/natural
problem it is possible to construct a paddable representation, not excluding that
there may be other, non-paddable representations, as well.
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3 Main Result: All Paddable Languages Are in RoughP

As our main result, we prove that all paddable languages have polynomial-time
errorless heuristics, with exponentially small failure rates on the system of α-
spheres, for an appropriate p-isomorphic encoding α. In other words, they are
all in RoughP.

Theorem 1. If L ⊆ {0, 1}∗ is a paddable language, then L ∈ RoughP. Fur-
thermore, for paddable languages, the constant c in (ii) of Definition 3 can be
chosen as c = 1/

√
2.

Proof. If L is trivial3 then L ∈ P ⊆ RoughP, so it is enough to consider a
nontrivial L. For any string x = x1 . . . xn ∈ {0, 1}∗, define w(x) as the number
of 1-bits in x, which we refer to as the weight of x.

Using the paddable language L, we define an auxiliary language H ⊆ {0, 1}∗

by
H = {xx | x ∈ L} ∪ {x | w(x) is odd}. (2)

To show that H has useful properties, let us also define a polynomial time
computable auxiliary function u : {0, 1}∗ �→ {0, 1}∗. Fix two strings w0 /∈ L,
w1 ∈ L (they always exist for nontrivial L), and define u as follows:

u(z) =

⎧
⎨

⎩

x if z = xx for x ∈ {0, 1}∗

w0 if z is asymmetric and w(z) is even
w1 if w(z) is odd

Recall that a string z is called symmetric if z = xx for some x ∈ {0, 1}∗,
otherwise z is asymmetric. Symmetry can be easily checked in polynomial time
by comparing the two halves of the string (if it has even length, which is obviously
necessary for symmetry). Now we prove some properties of H that we are going
to use in the sequel.

(a) L has a ≤P
m (polynomial time many-one) reduction to H. Observe that

x ∈ L if and only if xx ∈ H. (Note that w(xx) is always even, so xx ∈ H
can only occur through the first set on the right-hand side of (2).) Thus, the
reduction can be implemented by the function f : {0, 1}∗ �→ {0, 1}∗ defined
by f(x) = xx, which is clearly computable in polynomial time.

(b) H has a ≤P
m reduction to L. It can be implemented by the function g :

{0, 1}∗ �→ {0, 1}∗ defined as g(z) = u(z). To see that it is indeed a ≤P
m

reduction, consider first z ∈ H. Then either z = xx with x ∈ L, or w(z)
is odd. In the first case u(z) = x ∈ L, in the second case u(z) = w1 ∈ L.
Therefore, z ∈ H implies u(z) ∈ L. Consider now z /∈ H. In this case w(z)
must be even. Then there are two possibilities: (1) z is asymmetric. Since
w(z) is even, we have u(z) = w0 /∈ L. (2) z = xx for some x ∈ {0, 1}∗,

3 Recall that L is called trivial if either L = ∅ or L = {0, 1}∗. Observe that a trivial
language formally satisfies Definition 4, via the functions pad(x, y) = y and dec(z) =
z.
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but x /∈ L. Then u(z) = x /∈ L, so in either case we obtain that z /∈ H
implies u(z) /∈ L. Thus, noting the polynomial time computability of u(z),
we indeed get a ≤P

m reduction of H to L.
(c) H is paddable. Using that L is paddable by assumption, let pad(x, y) be

a padding function for L, with decoding function dec(z). Then a padding
function for H can be defined as

pad′(z, y) = pad(u(z), y) pad(u(z), y). (3)

To see that it satisfies Definition 4, take first z ∈ H. Then there are two
possibilities:

(α) z = xx for some x ∈ L, leading to u(z) = x. Then pad(u(z), y) =
pad(x, y) ∈ L, due to x ∈ L, from which pad′(z, y) = pad(x, y)pad(x, y) ∈
H follows.
(β) w(z) is odd, so u(z) = w1. Then pad(u(z), y) = pad(w1, y) ∈ L, due
to w1 ∈ L, resulting in pad′(z, y) = pad(w1, y)pad(w1, y) ∈ H.

Now take z /∈ H. Then there are again two possibilities:
(α) z = xx, but x /∈ L. In this case u(z) = x, yielding
pad′(z, y) = pad(x, y)pad(x, y). Since pad(x, y) /∈ L, due to x /∈ L, and
w(pad(x, y)pad(x, y)) is always even, therefore, pad′(z, y) /∈ H.
(β) z �= xx for any x, but w(z) is even. Then we get u(z) = w0,
which gives pad′(z, y) = pad(w0, y)pad(w0, y). Since pad(w0, y) /∈ L,
due to w0 /∈ L, and w(pad(w0, y)pad(w0, y)) is always even, therefore,
pad′(z, y) /∈ H.

Thus, we indeed have pad′(z, y) ∈ H if and only if z ∈ H. To get a decoding
function dec′ for H, define

dec′(z) = dec(u(z)). (4)

We need to show that dec′(pad′(v, y)) = y holds for any v, y ∈ {0, 1}∗.
Observe that (3) and the definition of u imply

u(pad′(v, y)) = pad(u(v), y).

Using this, and (4), we get

dec′(pad′(v, y)) = dec(u(pad′(v, y))
︸ ︷︷ ︸

pad(u(v),y)

) = dec(pad(u(v), y)) = y,

where the last equality follows from (ii) in Definition 4. Thus, the function
dec′ indeed carries out correct decoding for pad′.

Now we know that both L and H are paddable. Furthermore, we have shown
that they are both ≤P

m reducible to the other. Therefore, it follows from the well
known and fundamental results of Berman and Hartmanis [2] that there is a
p-isomorphism between H and L. That is, there exists a bijection ϕ : {0, 1}∗ �→
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{0, 1}∗, such that both ϕ and ϕ−1 are computable in polynomial time, and for
every x ∈ {0, 1}∗ it holds that x ∈ L if and only if ϕ(x) ∈ H.

Let us define the p-isomorphic encoding α by α(x) = ϕ−1(x), and define the
algorithm A by

A(x) =

⎧
⎨

⎩

accept if w(ϕ(x)) is odd
reject if w(ϕ(x)) is even and ϕ(x) is asymmetric
⊥ if ϕ(x) is symmetric.

(5)

Next we show that this α and A together satisfy Definition 3:

– The function α is a p-isomorphic encoding: it is a bijection, plus both α and
α−1 are computable in polynomial time, due to the same properties of ϕ.

– The algorithm A runs in polynomial time, as ϕ is computable in polynomial
time, likewise the symmetry and the parity of the weight of any string can be
checked in polynomial time.

– A is an errorless heuristic for L, that is, A correctly decides L, whenever
A(x) �= ⊥. Indeed, if A accepts, then w(ϕ(x)) is odd. This means, ϕ(x) ∈ H.
Then, due to the properties of ϕ, it must hold that x ∈ L. Similarly, if A
rejects, then w(ϕ(x)) is even and ϕ(x) is asymmetric. This implies ϕ(x) /∈ H,
yielding x /∈ L. Thus, condition (i) in Definition 3 is satisfied.

– Finally, it remains to prove condition (ii) in Definition 3. Let F = {z | A(z) =
⊥} be the set where A fails. We need to prove that there is a constant c < 1,
with

|S(α)
n ∩ F |
|S(α)

n |
≤ cn.

From (5) we know that A(z) = ⊥ if and only if ϕ(z) is symmetric. Let Y be
the set of all symmetric strings in {0, 1}∗, then F = {z |ϕ(z) ∈ Y }. Consider
now the set S

(α)
n ∩ F . The α-sphere S

(α)
n contains all strings of the form α(x)

with |x| = n. Among these, those strings z belong to F , for which ϕ(z) ∈ Y
also holds. Therefore, we can write

S(α)
n ∩ F = {z | z = α(x), |x| = n, ϕ(z) ∈ Y }.

Observe that if z = α(x), then ϕ(z) = x, since α = ϕ−1. This gives us

S(α)
n ∩ F = {z | z = α(x), |x| = n, x ∈ Y } = {α(x) | |x| = n, x ∈ Y }.

The number of symmetric strings among all n-bit strings is 2n/2, if n is even,
as the first half already determines a symmetric string. If n is odd, then their
number is 0. This yields |S(α)

n ∩ F | ≤ 2n/2. Taking into account that, due to
the bijective property of α, we have |S(α)

n | = |Sn| = 2n, the bound

|S(α)
n ∩ F |
|S(α)

n |
≤ 2n/2

2n
=

(
1√
2

)n

follows. Thus, with the choice of c = 1/
√

2 < 1 we can indeed satisfy condition
(ii) in Definition 3, completing the proof.

♠
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3.1 Viewing the Proof as an Algorithm Design Technique

The proof of Theorem 1 actually provides a way to efficiently construct the p-
isomorphic encoding α, and the algorithm A. Once the p-isomorphism ϕ, and
its inverse ϕ−1 are available, α is expressed as α = ϕ−1, and A is given by
(5). In order to obtain ϕ and ϕ−1, recall that we constructed the ≤P

m reduc-
tions f, g between L and H, as well as the padding/decoding function pair
(pad′,dec′) for H, using the padding/decoding function pair (pad,dec) which
is assumed available for L. Having the six polynomial time computable func-
tions f, g,pad,dec,pad′,dec′, we can then obtain the p-isomorphism ϕ and its
inverse ϕ−1 via the method of Berman and Hartmanis [2] (see also the textbook
description of Du and Ko [6], Theorem 7.14). The obtained functions ϕ,ϕ−1

also determine the encoding α, via α = ϕ−1. While the construction of ϕ,ϕ−1 is
nontrivial, it can be carried out in polynomial time. With all this, our solution
provides a rather general, novel algorithm design technique for approximat-
ing decision problems, which can be applied to any paddable language. Note
that even though the expression (5) for the algorithm A may appear deceptively
simple, in fact it can represent a rather complex polynomial time algorithm,
since the function ϕ may be complicated.

4 Hardness Results

First we address the question: is it possible that every NP-complete problem
has a polynomial-time errorless heuristic with vanishing failure rate? In this
section we consider the standard sense for such heuristics, that is, the error rate
is measured over the n-bit strings. Furthermore, we do not require here that the
failure rate vanishes exponentially, it can tend to 0 arbitrarily. In this sense, can
we expect the universal approximability of NP-complete problems?

Having this level of efficiency for all NP-complete problems appears quite
unlikely. Interestingly, however, it is not known to conflict with the “stan-
dard” hypotheses of complexity theory, including P�=NP, NP�=co-NP, E�=NE,
EXP�=NEXP, NP�=PSPACE, NP�=EXP, NP�⊆P/poly, P=BPP, PH does
not collapse, etc. There is, however, a (somewhat less standard) hypothesis,
which already rules it out. It comes from the theory of resource bounded mea-
sure, for a survey see Lutz and Mayordomo [9]. In this theory a central con-
jecture is that the so called p-measure of NP, denoted by μp(NP), is nonzero.
Informally, this means that NP-languages within E = ∪c>0DTIME(2cn) do not
constitute a negligible subset. The μp(NP) �= 0 conjecture can be viewed as a
stronger form of the P �= NP conjecture, as μp(NP) �= 0 implies P �= NP, but
the reverse implication is not known.

Lemma 1. If μp(NP) �= 0, then there is a language in NP which does not have
a polynomial-time errorless heuristic with vanishing failure rate.

Proof. An infinite and co-infinite language L is called P-bi-immune, if for every
infinite L0 ∈ P it holds that L0 �⊆ L and L0 �⊆ L. In other words, neither L, nor
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L can have an infinite subset in P. It is known that the hypothesis μp(NP) �= 0
implies the existence of a P-bi-immune language in NP, see Mayordomo [10].
Assuming μp(NP) �= 0, pick a P-bi-immune language L ∈ NP. If every NP-
language has a polynomial-time errorless heuristic algorithm with vanishing fail-
ure rate, then L must have one, too, let A be this algorithm. Let A be the set on
which A accepts. Then A ∈ P, since A runs in polynomial time. Furthermore,
since A is an errorless heuristic, it never accepts falsely, so A ⊆ L. Similarly,
let B be the set where A rejects. Again, B ∈ P, as A runs in polynomial time,
and B ⊆ L, due to that A never rejects falsely. By the vanishing failure rate
requirement A ∪ B must be infinite. Therefore, at least one of A,B is infinite,
so either L or L has an infinite subset in P. Thus, L cannot be P-bi-immune, a
contradiction, proving the claim.

♠
Remarks

1. The proof shows that if NP contains a P-bi-immune language, then Lemma 1
would hold unconditionally, without assuming μp(NP) �= 0. While it is not
known whether NP contains a P-bi-immune language, nevertheless, there is
some evidence which supports that it does: Hemaspaandra and Zimand [8]
prove that relative to a random oracle NP contains a P-bi-immune language,
with probability 1.

2. The P-bi-immune language in NP, based on the μp(NP) �= 0 hypothesis, does
not arise, however, from a natural problem, in the intuitive sense of the word.
To the author’s knowledge, no hypothesis is known that would rule out the
existence of polynomial-time errorless heuristics with vanishing failure rate
for all natural NP-complete problems. Instead of the informal (and slippery)
notion of “natural” we could refer to paddable NP-complete languages, since
they contain all the known intuitively natural ones. Apparently, no hypothesis
rules out that they are all approximable in the sense we consider here.

Another related question worth looking into is this: which is the smallest
mainstream complexity class that provably does not have universal approxima-
bility in our sense, without assuming any unproven hypothesis? We can prove
the following:

Lemma 2. There is a language in L ∈ E = ∪c>0DTIME(2cn), such that L does
not have a polynomial-time errorless heuristic with vanishing failure rate.

Proof. We can re-use the proof of Lemma 1, with the only modification that E
is known to unconditionally contain a P-bi-immune language (see Balcàzar and
Schöning [1]).

♠
Regarding our new class RoughP, Lemma 1 implies that if μp(NP) �= 0,

then NP �⊆ RoughP. However, μp(NP) �= 0 is not known. Without that, how
hard is it to decide the NP ⊆?RoughP question? Observe that while there are
plenty of natural problems that are provably in NP−P, assuming the set is not
empty, the situation is different with NP − RoughP. The reason is that any
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L ∈ NP − RoughP must be non-paddable, by Theorem 1, and, of course, be
outside P. Such languages in NP are in short supply. In fact, it is not known
if NP − P contains any non-paddable language at all, assuming only P �= NP.
The point is that deciding the NP ⊆?RoughP question in either direction is
likely to be hard, because in either case it resolves a long-standing, mainstream
complexity class separation.

Lemma 3. If NP �⊆ RoughP, then P �= NP. If NP ⊆ RoughP, then NP �=
EXP, where EXP = ∪c>0DTIME(2nc

).

Proof. The first implication follows from P ⊆ RoughP. The second claim is
implied by Lemma 2, along with E ⊆ EXP.

♠
Remark: Note that NP ⊆ RoughP also implies NP �= E, but that is not an
open problem, as NP �= E has been known for a long time (see Book [5]). But
NP ⊆ E is not known, in contrast to NP ⊆ EXP.

5 Discussion

We have introduced the complexity class RoughP, and shown that it contains a
large family of languages, including all known intuitively natural NP-complete
problems. This means, they can all be approximated by efficient algorithms in
the relaxed sense we have defined: by a polynomial time errorless heuristic with
exponentially vanishing failure rate over the α-spheres.

It is natural to contemplate: how this relates to the standard metric, where
we measure the failure rate of an errorless heuristic over n-bit strings? Our
intuition is this: whenever the “don’t know” instances congregate around the
bottom of the α-spheres, i.e., they gravitate towards the shorter strings in the
α-sphere, then we can expect high standard failure rate, as the failures that
belong to some S

(α)
N with N > n may fill up a large part of Sn. If, however, the

failure instances are well spread within every α-sphere, then we may expect an
exponentially small failure rate for the standard setting, similar to what we have
over the α-spheres. Could we somehow force a near-uniform distribution of the
failure instances over each α-sphere? We might perhaps capitalize on the fact
that neither the algorithm A nor the p-isomorphic encoding α are determined
uniquely by the language. We may also transform the original language, replacing
L(x) with L(f(x)), where f is some p-isomorphic encoding that we can choose.
If f(x) behaves in a pseudo-random way, then it may provide sufficient mixing
to spread the failure instances appropriately.

Thus, it appears, there is room for improvement. We do not expect, however,
that such attempts can always produce low failure rate with the standard metric
for NP-complete languages, even though apparently nothing excludes this for the
natural problems, represented by paddable languages. Nevertheless, we expect
that for many specific problems it is still achievable, leading to good errorless
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heuristics for a number of tasks, for which no such schemes have been known
before.

Let us also mention a further point: our approach may provide some con-
tribution to explain the curious observation that fine-tuned algorithms often
exhibit better performance in practice than what follows from their theoretical
analysis. For example, carefully engineered modern SAT solvers routinely (and
successfully!) attack industrial SAT instances with millions of variables, despite
the conjectured exponential worst-case running time, as pointed out by Vardi
[11]. We might ponder that they (unwittingly) implement a strategy that is
equivalent (or close) to some fine-tuned RoughP algorithm. At least we already
know that the latter must exist for the known natural NP-complete problems,
including SAT.

As a final note, let us mention that a nontraditional aspect of our approach
is that it builds on complexity theoretical concepts (padding, p-isomorphism) to
derive a positive and constructive result in algorithm design. This is somewhat
unusual, because algorithm design and complexity theory view the same world
from complementary perspectives: algorithm design aims at creating efficient
algorithms, while complexity theory explores the limitations of what can be
achieved. In this sense, they are the yin and yang of the algorithms universe.
Our approach tries to bring them together, in order to create a new, general
purpose algorithm design technique for approximating decision problems, with
a certain sense of efficiency, yet avoiding conflict with any known concept of
intractability.
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Păun, G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical Com-
puter Science: Entering the 21st Century, pp. 83–101. World Scientific (2001)

10. Mayordomo, E.: Almost every set in exponential time is P-bi-immune. Theor. Com-
put. Sci. 136(2), 487–506 (1994)

11. Vardi, M.Y.: Boolean satisfiability: theory and engineering. Commun. ACM 57(3),
5 (2014)



Community-Based Acceptance
Probability Maximization for Target

Users on Social Networks

Ruidong Yan1, Yuqing Zhu2, Deying Li1(B), and Yongcai Wang1

1 School of Information, Renmin University of China, Beijing 100872, China
{yanruidong,deyingli,ycw}@ruc.edu.cn

2 Department of Computer Science, California State University at Los Angeles,
Los Angeles, CA 90032, USA
yuqing.zhu@calstatela.edu

Abstract. Social influence problems, such as Influence Maximization
(IM), have been widely studied. But a key challenge remains: How does
a company select a small size seed set such that the acceptance proba-
bility of target users is maximized? In this paper, we first propose the
Acceptance Probability Maximization (APM) problem, i.e., selecting a
small size seed set S such that the acceptance probability of target users
T is maximized. Then we use classical Independent Cascade (IC) model
as basic information diffusion model. Based on this model, we prove that
APM is NP-hard and the objective function is monotone non-decreasing
as well as submodular. Considering community structure of social net-
works, we transform APM to Maximum Weight Hitting Set (MWHS)
problem. Next, we develop a pipage rounding algorithm whose approx-
imation ratio is (1 − 1/e). Finally, we evaluate our algorithms by sim-
ulations on real-life social networks. Experimental results validate the
performance of the proposed algorithm.

Keywords: Social influence · Community structure
Seed selection · Submodularity · Approximate algorithm

1 Introduction

In recent years, with the rapid development of the internet and computer tech-
nology, some significant social networks have been widely integrated into our
daily life, such as Facebook, Twitter and Google+. These online social networks
have become significant platforms for disseminating useful content such as news,
ideas, opinions, innovations, interests, etc. In viral market, Influence Maximiza-
tion (IM) has been extensively studied. This research has been found useful in
market recommendations through the powerful word-of-mouth effect in social
networks. Specifically, a company launches a kind novel product and wants to
market it by social network. Due to limited budget, it can only choose a small
number of initial clients (seeds) to use it (by giving them free samples). The
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company hopes that these initial clients like this product and recommend it to
their friends on the social network. Similarly, their friends influence their friends
of friends and so on. Finally, the company wants to maximize the number of
clients who adopt the products.

However, in some scenarios, one may consider the maximizing acceptance
probability of target users. Specifically, assume each user on social network has
a potential value for a company. The company pay more attention to the users
with higher potential value. We call these higher value users as target users
(Selecting them as seeds requires very high cost since they are influential and
authoritative). Intuitively, the company will benefit a great deal if it can maxi-
mize acceptance probability of target users. In this situation, the company aims
at finding an optimal seed set within a budget such that the sum of acceptance
probability of target users is maximized. We call this problem as Acceptance
Probability Maximization (APM). It’s obvious that IM problem is different from
APM problem. The former selects a seed set from all nodes in network within a
budget such that the expected number of nodes influenced by seed set through
information diffusion is maximized. However, the latter selects a seed set from
all nodes except target nodes within a budget such that the sum of acceptance
probability of target users is maximized.

In fact, this problem is challenging. Intuitively, it should select global influen-
tial users or target users’ neighbors as seeds. However, this intuitive choice may
not be effective: (1) Target users are far away from global influential nodes. The
influence from global influential nodes is less than it from local influential nodes
that are close to target users. (2) Although target users’ neighbors have highly
influence on target users, it is impossible to choose all the neighbors of target
users as seeds with restriction of small size seed set. Considering these two points,
we should focus on local (community) influential nodes. Further, APM can be
applied to most applications, such as personalized services, targeted advertising,
targeted information dissemination, recommendation system, etc.

To the best of our knowledge, only a few studies focus on APM problem even
though it plays an essential role in viral marketing. The similar studies have been
done, such as [6,13]. Guo et al. [6] propose a problem to find the top-k most
influential nodes to a given user. They develop a simple greedy algorithm. We
expand their work and solve APM from different perspective. In [13], Yang et
al. advocate recommendation support for active friending, where a user actively
specifies a friending target. In other worlds, to maximize the probability that the
friending target would accept an invitation from the source user. The difference
between APM and previous works are: (1) Instead of [6,13], APM has multiple
target users; (2) APM requires the acceptance probability instead of expected
number of influenced nodes. We summarize main contributions as follows:

– We propose the Acceptance Probability Maximization (APM) problem and
prove it’s NP-hard. And we show that computing APM is #p − hard.

– We prove objective function is monotone non-decreasing and submodular.
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– Considering community structure of social networks, we transform APM to
Maximum Weight Hitting Set (MWHS) problem. Then we propose a pipage
rounding algorithm for APM and prove approximation ratio is (1 − 1/e).

– We run the proposed algorithm and compare with other existing methods.

The rest of this paper is organized as follows. In Sect. 2, we introduce related
work. In Sect. 3, influence diffusion model is presented. In Sect. 4, we state prob-
lem description. In Sect. 5, we show the properties of objective function. Algo-
rithm is designed in Sect. 6. The experiment results are shown in Sect. 7. We
draw our conclusions in Sect. 8.

2 Related Work

Kempe et al. [8] model viral marketing as a discrete optimization problem, which
is named Influence Maximization (IM). They propose a greedy algorithm with
(1− 1/e)-performance ratio since the function is submodular under Independent
Cascade (IC) or Linear Threshold (LT) model. Previous researches without tar-
get users, which cannot be directly transplanted to APM, such as [9]. In [9],
Kuhnle et al. consider Threshold Activation Problem (TAP) which finds a min-
imum size set triggering expected activation of at a certain threshold. They
exploit the bicriteria nature of solutions to TAP and control the running time
by a parameter.

The related work involves the target users such as [2,10,11,14]. In [14], Zhou
et al. study a new problem: Give an activatable set A and a targeted set T ,
finding the k nodes in A with the maximal influence in T . They give a greedy
algorithm with guarantee of (1 − 1/e). In [10], Song et al. formalize the problem
targeted influence maximization in social networks and adopt a login model
where each user is associated with a login probability and he can be influenced
by his neighbors only when he is online. Moreover, they develop a sampling based
algorithm that returns a (1−1/e−ε)-approximate solution. In [11], Temitope et
al. extend the fundamental Influence Maximisation (IM) problem with respect
to a set of target users on a social network. In doing so, they formulate the
Minimal Influencer for Target Users (MITU) problem and compare with state
of the art algorithms. Unfortunately, they don’t have any theoretical analysis.
In [2], Chang et al. study a novel problem: Given a period of promotion time and
a set of target users, each of which can be activated by its neighbors multiple
times, they aim at maximizing the total acceptance frequency of these target
users by initially selecting k most influential seeds. They propose a generalized
diffusion model called the Multiple Independence Cascade (MIC) and a greedy
algorithm for solving this problem.

3 Influence Diffusion Model

We briefly introduce influence diffusion model: Independent Cascade (IC) model.
Given a social network G = (V,E,w), where V represents node set, E ⊆ V × V
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represents edge set, and wuv of edge (u, v) denotes the probability that node u
can activate v successfully. We call a node as active if it adopts the products or
information from other nodes, inactive otherwise. Influence propagation process
unfolds discrete time steps ti, (i = 0, 1, . . .). Initial seed set St0 = S. Let Sti

denote active nodes in time step ti, and each node u in Sti has single chance to
activate each inactive neighbor v through its out-edge with probability wuv at
time step ti+1. Repeat this process until no more new nodes can be activated.
A node can only switch from inactive to active, but not in the reverse direction.

4 Preliminaries and Problem Description

4.1 Preliminaries

A set function f is monotone increasing if f(A) ≤ f(B) whenever A ⊆ B.
Submodular functions have a natural diminishing returns property. If V is a
finite set, a submodular function is a set function f : 2V → �, where 2V denotes
the power set of V , which satisfies the following condition: for every A ⊆ B ⊆ V
and x ∈ V \B, f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B).

Further, we introduce some basic definitions for later discussion. Set cover [7]:
Given a ground set U = {u1, u2, . . . , un} and a collection of subsets of C =
{C1, . . . , Cm}. The set cover problem is to identify the smallest sub-collection
C ′ from C such that C ′ covers all elements in U , i.e.,

⋃
Ci∈C′ Ci = U .

s-t connectedness [12]: Given a directed graph G and arbitrary two nodes s
and t. The s-t connectedness finds number of subgraphs of G in which there is a
directed path from s to t.

4.2 Problem Description

Given a directed social network G = (V,E,w), an information diffusion model
M, a target users set T = {T1, T2, . . . , Tq}, and a positive integer budget b,
where V denotes all users, E ⊆ V × V denotes the relationships between users,
and wuv of edge (u, v) means the probability that u activates v successfully. We
assume that the acceptance probability of a node v is equal to the v’s activation
probability. We define the acceptance probability of a node v ∈ V when given a
seed set S under IC model as follow

PrM(v, S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if v ∈ S

0, if N in(v) = ∅
1−

∏

u∈Nin(v)

(1 − PrM(u, S)wuv), otherwise.
(1)

where N in(v) is the set of in-neighbors of v and PrM(u, S)wuv represents the
probability u successfully activates v under the diffusion model M (IC model).
As we can clearly see the acceptance probability of a node v depends on the
acceptance probability of its in-neighbors u. Then we define the acceptance
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probability for target users v ∈ T from seed set S under the diffusion model
as

PrM(T, S) =
∑

v∈T

PrM(v, S). (2)

Now, we can formally define the Acceptance Probability Maximization (APM).
Given a social network G = (V,E,w), a target users set T , an information
diffusion model M, and a positive integer budget b, APM aims to find a seed
set S∗ such that

S∗ = arg max
S⊆V \T,|S|=b

PrM(T, S). (3)

In particular, we omit the subscript M if the context is clear.

5 Properties of APM

We show the properties of APM problem as following theorems.

Theorem 1. APM problem is NP-hard under the IC model even if |T | = 1.

Proof. We prove it with reduction from the set cover problem [7]. We construct
a new network G′ = (V ′, E′, w′). V ′ includes three parts: (1) Create a node
Ci for each Ci; (2) Create a node uj for each uj ; (3) Create a target node T .
E′ is defined as follows. If Ci contains uj , then add a directed edge (Ci, uj)
from node Ci to node uj with w′

Ciuj
= 1. Moreover, for each node uj , add a

directed edge (uj , T ) from node uj to node T with w′
ujT = p. Obviously, the

above transformation can be done in polynomial time.
We prove that there is a subset C ′ ⊆ C covering all nodes in U in the set cover

problem if and only if there is a solution with acceptance probability 1−(1−p)|U |1

when selecting b = |C ′| nodes as seeds. We first prove the sufficient condition.
If there exists a subset C ′ covering all node in U , which obtains acceptance
probability 1−(1−p)|U | for target nodes. We then prove the necessary condition.
If there exists a seed set C ′ with |C ′| = b obtaining acceptance probability
1 − (1 − p)|U |, then C ′ must covering all nodes in U . If the set cover problem
is solvable, then APM problem is also solvable. As we all know, the former is
NP-hard, therefore the latter is also NP-hard.

Theorem 2. Given a seed set S and a target set T , computing acceptance prob-
ability from seed set S to target set T is #p − hard under the IC model.

Proof. We prove this theorem with reduction from a classical #p − complete
problem named s-t connectedness [12]. For simplicity, we let T = {z}. We assign
the probability of each edge as 0.5 to guarantee each subgraph with equal prob-
ability. Therefore it’s straightforward to see that s-t connectedness is equivalent
to compute the path probability from s to t.
1 Notice that 1 − (1 − p)|U| is maximum probability of T under the IC model.
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Let Pr(T, S,G) denote the acceptance probability of T from a given seed set
S on G under the IC model. First, let S = {s} and wuv = 0.5 for all (u, v) ∈ E.
Therefore P1 = Pr(T, S,G). Next, we add a new node z′ and two directed edges
(z′, z) with wz′z = 0.5 and (t, z′) with wtz′ = 1, obtaining a new graph G′. Then,
we compute P2 = Pr(T, S,G′). Therefore, P2−P1 = (1−P1) ·Pr(t, s) ·wtz′ ·wz′z,
which is related to the probability Pr(t, s) that s is connected to t. As we all
know, s-t connectedness is #p−complete and thus theorem follows immediately.

Theorem 3. The objective function (3) is monotone non-decreasing and sub-
modular under the IC model.

Proof. Obviously, increasing the seed nodes does not reduce the objective func-
tion value, so we omit its proof. We show that Pr(T, S) is submodular. Consider
following two cases.

Case 1: If A = B, for an arbitrary node v, then Pr(T,A∪{v})−Pr(T,A) =
Pr(T,B ∪ {v}) − Pr(T,B) always stands.

Case 2: If A ⊂ B, let �Av = Pr(T,A ∪ v) − Pr(T,A) denote the marginal
influence on the target nodes that are not already in the union

⋃

u∈A

Pr(T, u).

Let �Bv = Pr(T,B ∪v)−Pr(T,B) denote the marginal influence on the target
nodes that are not in the union

⋃

u∈B

Pr(T, u). Obviously, �Av is no less than

�Bv, that is, Pr(T,A∪v)−Pr(T,A) ≥ Pr(T,B∪v)−Pr(T,B) which Pr(T, S)
is submodular with respect to S.

6 Algorithm

From Theorem 2, computing the APM is #p − hard. Therefore we need to find
an approximate method to calculate it. Intuitively, computing APM in local
structures, such as communities, allows efficient computation. Further, in each
community, constructs a local tree structure [3] and approximates local influence
diffusion to the target nodes.

Give a social network G = (V,E,w), a community set C = {C1, C2, . . . , Cm}
where

⋃
1≤j≤m Cj = V , a target user set T = {T1, T2, . . . , Tq} and a positive

integer budget b. For a path Path(u, v) =< u = p1, p2, . . . , pl = v > from u to
v in Cj , we define the probability of this path as P(u, v) =

∏i=l−1
i=1 wpipi+1 . If u

successfully activates v through path Path(u, v), u must activate all the nodes
along this path. Let PathCj

(u, v) denote the set of all paths from u to v in Cj .

Definition 1. (Maximum Influence Path (MIP)). For a community Cj, we
define MIPCj

(u, v) from u to v in Cj as

MIPCj
(u, v) = arg max

Path(u,v)
{P(u, v)|Path(u, v) ∈ PathCj

(u, v)}. (4)

Note that if we transform wuv to 1/wuv for each edge (u, v), MIPCj
(u, v) is

equivalent to the shortest path from u to v in Cj . The shortest path problem has
polynomial time algorithms, e.g., Floyd-Warshall and Dijkstra algorithms. For
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a target node v ∈ T , we create a tree structure which is the union of MIPs to v,
to estimate the acceptance probability to v from other nodes. Moreover, we use
a threshold θ to delete MIPs which have small probabilities.

Definition 2. (Maximum Acceptance Probability Tree (MAPT)). For a thresh-
old θ, the maximum acceptance probability tree of a target node v ∈ T in Cj,
MAPT (v, θ), is

MAPT (v, θ) =
⋃

u∈Cj ,MIPCj(u,v)≥θ

MIPCj
(u, v). (5)

In fact, we assume that the influences only propagate within communities and
their propagation in these communities are independent of each other. With this
assumption, we can calculate the acceptance probability that v ∈ T is activated
when given a seed set S exactly. Considering community structure that plays
a vital role in propagation [1,4], we transform APM problem into Maximum
Weight Hitting Set (MWHS) problem.

Definition 3. (Maximum Weight Hitting Set (MWHS)). Given an element set
V , a family of subsets C ⊆ 2V , a weight function w : C �→ �+, and a positive
integer b. MWHS finds a subset S ⊆ V and |S| = b such that maximizes the
total weight of subsets in C hit by S. (S hits C, which means S ∩ C �= ∅.)

Let S denote seed set. We should do following two steps so that APM can be
transformed into MWHS. (1) We say that seed set S hits community Cj if seed
set S

⋂ Cj �= ∅. (2) Let wj = w(Cj) =
∑

v∈Cj ,Sj∈Cj
Pr(v, Sj), where Sj is the set

of seed nodes in community Cj and Pr(v, Sj) is probability that Sj activates v
successfully. Now, we formalize APM as following integer programming.

max H(v) =
m∑

j=1

wj · min{1,
∑

i∈Cj

vi}

s.t.
∑

vi∈V \T

vi = b (6)

vi ∈ {0, 1},vi ∈ V \T, i = 1, . . . , |V \T |.
where vi = 1 if vi ∈ S or vi = 0 otherwise. We label all nodes except the
target nodes from 1 to |V \T | and i ∈ Cj denotes the node label belonging to the
community Cj . Note that vi = 0 or 1, H(v) =

∑m
j=1 wj · min{1,

∑
i∈Cj

vi} can
rewrite as F (v) =

∑m
j=1 wj · (1 − ∏

i∈Cj
(1 − vi)). Therefore we have

max F (v) =
m∑

j=1

wj · (1 −
∏

i∈Cj

(1 − vi))

s.t.
∑

vi∈V \T

vi = b (7)

vi ∈ {0, 1},vi ∈ V \T, i = 1, . . . , |V \T |.
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We consider the relaxed problem of (6), i.e., 0 ≤ vi ≤ 1. This relaxed problem
can be found an optimal solution in polynomial time [5]. Based on this, we
propose the pipage rounding algorithm for APM to obtain an integer solution.

Algorithm 1. Pipage Rounding Algorithm (PRA)
Input: G = (V, E, w), a community set C = {C1, . . . , Cm}, a target user set T =

{T1, . . . , Tq}, a parameter θ, a inter budget b and an influence diffusion model M.
Output: seed set S.
1: Find an optimal solution S = {v1, . . . , vb} to relaxed problem;
2: S ← S;
3: for each community Cl do
4: if there exists a target node v ∈ Cl then
5: Create MAPT (v, θ);
6: while S has an non-integral component do
7: Choose 0 < vk, vj < 1 in MAPT (v, θ);
8: Define S(ε) by

vi(ε) =

⎧
⎪⎨

⎪⎩

vi, if i �= k, j,

vj + ε, if i = j,

vk − ε, if i = k;

9: Let ε1 ← min{vj , 1 − vk};
10: Let ε2 ← min{1 − vj , vk};
11: end while
12: if F (S(−ε1)) ≥ F (S(ε2)) then
13: S ← S(−ε1);
14: else
15: S ← S(ε2);
16: end if
17: end if
18: end for
19: return S.

Round one or two non-integer components of optimal solution to relaxed
problem in each iteration, which does not cause the objective function value
decreasing. We have following theorem.

Theorem 4. The approximation ratio of Algorithm1 is (1 − 1/e).

Proof (Proof of Theorem 4). Let S denote the optimal solution to relaxed prob-
lem and round the S to get an integer solution SI for (6). Since F (S(ε)) is
convex with respect to ε, max{F (S(−ε1)), F (S(ε2))} ≥ F (S) if ε1, ε2 > 0.
Thus, the value of F (S) is non-decreasing in the loop of Algorithm1. Therefore,
F (SI) ≥ F (S). We note that SI has only integer components, and F (SI) =
H(SI). According to [5], it follows that H(SI) = F (SI) ≥ F (S) ≥ (1 − 1

e )H(S).

Let us analyze the complexity of the Algorithm 1. Finding an optimal solution
to relaxed problem can be done in O(|V |m) on G. The loop from line 3 to 18 at
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most runs O(m) times. In each iteration, there are at most q target users. The
inner loop runs at most b times. Therefore, the time complexity is O(|V |m+mqb).

7 Experiments

In this section, we evaluate our algorithm on real-life networks. We first describe
the datasets and experiment setup, and then show the results. Furthermore, we
compare with other popular approaches.

7.1 Experiment Setup

Datasets: We use three real-life networks with various scale from (SNAP)2.
Table 1 provides the details of these datasets. Further, ‘CC’ represents clustering
coefficient and ‘#Community’ represents the number of communities. Note that
Amazon and Youtube are undirected networks. Therefore we transform these
two undirected networks into directed networks. Specifically, for an undirected
edge (u, v) on Amazon and Youtube networks, we randomly generate a directed
edge (u, v) or (v, u) with probability of 0.5 respectively. According to [3], we let
θ = 0.03 in all experiments.

Table 1. The statistics of data sets

Dataset #Node #Edge CC #Community

E-mail 1K 25.6K 0.399 42

Amazon 334.8K 925.8K 0.396 75K

Youtube 1134.8K 2987.6K 0.080 8K

E-mail. This network is generated using email data from a large European
research institution. Each node represents a researcher and each directed edge
(u, v) means that u sent at least one email to v.

Amazon. It is based on Customers Who Bought This Item Also Bought feature
of the Amazon website. Each node is a product. If a product u is frequently
co-purchased with product v, thus there is an edge (u, v) between u and v.

Youtube. This network is a video-sharing social network. Each node is a user
on network. Users form friendship if they share same videos.

2 http://snap.stanford.edu/data.

http://snap.stanford.edu/data
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Comparison Methods: To compare with existing methods, other methods
are as comparison methods: Local Cascade Algorithm (LCA) [6] and Greedy
Algorithm (GA) [14]. Our pipage rounding algorithm is abbreviated as PRA.

Random (RAN) means that it randomly selects seed nodes.

Local Cascade Algorithm (LCA) [6]. LCA constructs a local cascade com-
munity consists of only the shortest paths between each node and the target
node, then restricts computations within the shortest path community.

Greedy Algorithm (GA) [14]. The influence spread of seed set S in the
targeted set T ⊆ V is the expected number of activated nodes in T by S.
And the greedy algorithm iteratively selects a new seed v that maximizes the
incremental change of function, to be included into the seed set S, until b seeds
are selected.
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Fig. 1. The total acceptance probability of target users under IC model: target users
set size |T | = 1000 on Amazon and Youtube networks or |T | = 500 on E-mail network,
w = 0.5 or w = TRI, θ = 0.03 and b = 30.

7.2 Results

The Acceptance Probability of Target Users: We calculate the total accep-
tance probability of target users when |T | = 1000 or |T | = 500 and b = 30 on
each network with different methods. Figure 1 illustrates the results. The hori-
zontal axis represents the names of social networks. The vertical axis represents
the total acceptance probability of target users. We compare RAN, PRA, LCA
and GA where RAN means randomly selecting seed nodes. In both subfigures,
total acceptance probabilities of target users show similar trends on each net-
work. Specifically, on each network, total acceptance probabilities satisfy follow-
ing relationship: RAN<LCA<GA<PRA. On the other hand, instead of utilizing
Monte-Carlo simulation, it indicates MAPT is a more effective approximation
to calculate the acceptance probability than other methods. In Fig. 1(a), we



Community-Based APM for Target Users on Social Networks 303

let w = 0.5. PRA is 8.19%–13.01% more than GA, 12.87%–16.44% more than
LCA, and 68.42%–72.60% more than RAN. In Fig. 1(b), we let w = TRI3. PRA
is 6.60%–7.38% more than GA, 9.43%–11.48% more than LCA, and 72.39%–
75.47% more than RAN. Although GA has higher acceptance probability than
LCA, it’s too time consuming in experiments.

Seeds Size vs. Acceptance Probability of Target Users: In this part, for
PRA, we analyze how the number of seeds affects the acceptance probability
of target users when given a target user set in a fixed community. In fact, we
randomly choose |T | = 1000 nodes on Amazon and Youtube networks as tar-
get users and choose a fixed community whose target users size is greater than
50. In particular, we randomly choose |T | = 500 on Email network and select a
community whose target users size is greater than 40. Figure 2 shows the results.
The horizontal and vertical axis indicate seeds size and acceptance probability of
target users in the fixed community, respectively. Note that all methods (PRA,
LCA, GA and RAN) show the property of diminishing marginal return. More
precisely, acceptance probability sharply increases when seed size increases from
|S| = 1 to |S| = 5. While it increases slowly from |S| = 5 to |S| = 10. Our PRA
method is the best and RAN is the worst one because it has performance guaran-
tee as we analyzed before. RAN randomly selecting seeds with high probability
can not activate target users that leads to its worst.
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Fig. 2. The relationship between total acceptance probability of target users and seeds
size on each network under the IC model: w = 0.5 for Email network and w = TRI
for Amazon and Youtube networks, |T | > 50 in a fixed community for Amazon and
Youtube networks, |T | > 40 in a fixed community for Email network, θ = 0.03.

8 Conclusion

In this paper, we study a novel problem called Acceptance Probability Maximiza-
tion (APM) problem that finds a small size seed set such that the acceptance
3 We uniformly at random select a probability from {0.1, 0.3, 0.5}.
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probability of target users is maximized. Based on IC model, we show APM is
NP-hard and compute it is #p−hard. And we prove objective function satisfies
monotonicity and submodularity. Considering the community structure of social
networks, we transform our APM problem into MWHS problem. We develop a
pipage rounding algorithm which has a (1−1/e) approximation ratio. In order to
evaluate our proposed methods, extensive experiments have been conducted. The
experiment results show that our method outperforms comparison approaches.
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Abstract. Knowledge graph (KG) embedding aims to project the orig-
inal KG into a low-dimensional embedding vector space, so as to facil-
itate the completion of KGs and the application of KGs in other AI
fields. Most existing models preserve certain proximity property of KGs
in the embedding space, such as the first/second-order proximity and the
sequence-aware higher-order proximity. However, the ubiquitous similar-
ity relationship among different sequences has rarely been discussed. In
this paper, we propose an unified framework to preserve the subgraph-
aware proximity in the embedding space, holding that the sequences
within a subgraph generally imply similar pattern. To analyze the impact
of different composition of sequences on the subgraph-aware proximity,
we classify the subgraphs into relation subgraph and complete subgraph
based on the composition of their sequences. Accordingly, we provide
three methods for KG sequence embedding module: (1) Simply adding
the involved relations of the sequence in relation subgraph; (2) Recurrent
neural networks for the sequences in complete subgraph; (3) Dilated RNN
to match the special structure of KG sequences in complete subgraph.
Empirically, we evaluate the proposed framework on the KG comple-
tion tasks of link prediction and entity classification. The results show
that our framework performs better than the baselines by preserving the
subgraph-aware proximity. Especially, exploring the special structure of
KG sequences can further improve the performance.

Keywords: Knowledge graph completion · Embedding learning
Subgraph-aware proximity

1 Introduction

Knowledge graphs (KGs) are sub-collections of human knowledge, which are
composed of entities as nodes and relations as edges. The facts in KGs are usu-
ally stored in triples of RDF form, i.e., (s, r, o) where s and o are the subject
entity and object entity respectively, r is the relation between them. The abun-
dant structured data contained in KGs can significantly boost the researches
in diverse AI fields, including but not limited to decision-making, information
retrieval and question answering [9]. However, despite enormous efforts in KG
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maintenance, KGs still suffer from incompleteness. Instead of completing a KG
based on symbol and logic, KG embedding models project the entities and rela-
tions of the KG into a low-dimensional embedding vector space, where knowledge
reasoning can be conducted via algebraic operations.

In general, KG embedding models are supposed to preserve certain proximity
property of the original KG in the embedding space. Particularly, since relations
in KGs usually contain rich semantic meanings, the proximity definition is also
different from it in general graphs, where edges only serve as topological links
between nodes. To begin with, the first-order proximity, which is originally pro-
posed to describe the pairwise similarity between two directly linked nodes in
general graphs, has been modified in KGs. Specifically, it describes the simi-
larity between the two entities in a triple based on the semantic meanings of
the relation. For example, translation-based KG embedding models [3,12,14,21]
compare the similarity between the translated subject entity s+r and the object
entity o. Neural network-based ones [2,15,18] view the relation as a weight factor
in the comparison of the two entities. In addition, graph embedding models [19]
and [20] use the second-order proximity to measure the similarity of two nodes
according to their shared neighborhoods. Furthermore, [17] and [10] preserve
higher order proximity by maximizing the probability of the query node given
the past known ones along a single sequence, which can be view as sequence-
aware higher-order proximity. However, the similarity relationship among dif-
ferent sequences has rarely been discussed.

In this paper, we propose an unified framework to preserve the subgraph-
aware higher-order proximity in the embedding space, which describes the sim-
ilarity among different sequences within the same subgraph. As Fig. 1 shows,
our framework contains three major modules. In the subgraph pre-extraction
module, we extract a subgraph for each triple in the KG, including the triple
itself and a number of multi-hop sequences obtained by random walk. Since
both relation sequence and complete sequence (relation & entity sequence) are
used in previous work [7,13], we also classify the subgraphs into relation sub-
graph and complete subgraph according to the composition of their sequences.
Accordingly, we provide three methods for the following KG sequence embed-
ding module ψ, which reflect the different understanding of the KG sequence
structure: (1) Adding the involved relations of the KG sequences in relation
subgraph; (2) Using traditional RNN to compute the sequence embeddings in
complete subgraph, considering that complete KG sequences contain complete
semantic meanings just as sentence sequences in plain text; (3) Transforming
RNN to dilated RNN, where a dilated recurrent skip connection is designed
to match the special structure of complete KG sequences, i.e., a complete KG
sequence is composed of alternating entities and relations and organized in an
orderly form. Then, we compute the proximity scores in the embedding space.
In our framework, the training objective is originally formulated based on the
conditional probability of a triple given the corresponding multi-hop sequences
within the same subgraph. It is further simplified as a hinge loss based on the fact
that the proximity score of the real subgraph is higher than the corresponding
negative one.
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Fig. 1. The framework of KG embedding based on subgraph-aware proximity

We empirically evaluate the resulting embeddings of SA-KGE on two stan-
dard tasks of KG completion: link prediction and entity classification. The
detailed comparison and analysis show that (i) The approaches under the frame-
work of SA-KGE performs better than the baselines; (ii) The approaches based
on complete subgraph are superior to the relation subgraph based one; (iii) Pre-
serving the special structure of KG sequences is beneficial for KG embedding
and further improves the performance of KG completion tasks.

The main contributions of this paper are summarized as follows:

– We propose an unified KG embedding framework to learn the subgraph-aware
proximity of KGs, so as to preserve the ubiquitous inter-sequence similarity
in the embedding space.

– We compare and analyze three methods for KG sequence embedding, which
enables us get deep insight into the structure of KG sequences. Particularly,
the orderly organizing form of KG sequences are supposed to be concerned.

– We empirically demonstrate that our framework are effective for KG com-
pletion tasks, especially when using complete subgraph and considering the
special structure of KG sequences.

2 Related Work

The first-order proximity is originally used in general graphs [9], where the edges
are homogeneous. However, considering KGs are multi-relational graphs, the
relations between entities usually have different semantic meanings. As a result,
the similarity between two directly linked entities should be measured based
on the relation between them, which can be viewed as a modified first-order
proximity. Both the translation-based embedding models [3,12,14,21,22] and
the neural network-based models [2,15,18] fall into this category. In TransE
[3], the first-order proximity is formulated as a distance measure between the
translated subject entity s + r and the object entity o. The following models
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[12,14,21] project entities or relations into different spaces, so as to alleviate
the problem that TransE cannot deal with complex relations. Meanwhile, [22] is
another improvement with entity descriptions. The neural network-based models
treat the relation as a weight factor in the similarity comparison between the
subject and object entities. Specifically, [2] compares the similarity of the two
entities after projecting the relation to them. [18] represents the relation as a
tensor and computes how likely the two entities are after a neural network. In
[15], a deep neural network is used to process the connection of the subject entity
and the relation, whose outputs are compared with the object entity.

The second-order proximity is a supplement to the first-order proximity,
which is used to obtain the similarity between two nodes with missing link. The
graph embedding models [19,20] jointly use the above two proximity criterions.
In addition, [10,17] extend skip-gram architecture to graphs, preserving higher-
order proximity of nodes along a single sequence. However, the above related
models rarely concern the similarity relationship among different sequences. In
this paper, we focus on the subgraph-aware higher-order proximity that describes
the inter-sequence proximity within each subgraph. It is worth noting that
PTransE [13] uses the relation sequences to replace the direct relation of the
score function, indicating that the relation sequences are similar to the direct
relation. This is closely related to our framework with relation subgraph. Thus
we make a comparison with PTransE in the experiment.

3 Methodology

In this section, we first give the formal definition of the subgraph-aware prox-
imity. Then, we introduce the overall framework of SA-KGE, followed by the
instantiation of the KG sequence embedding module and some other implemen-
tation details of the proposed framework.

Let us begin with some common notations. A KG is denoted as G = (E ,R),
where E and R respectively represent the entity set and the relations set. Each
fact in G is stored as a triple (s, r, o), where s, o ∈ E are the subject and object
entities respectively, and r ∈ R is the relation between them. The proposed SA-
KGE aims to preserve the subgraph-aware proximity of a KG into the embedding
space by the following mapping: ei → ei ∈ R

d ∀ei ∈ E and rj → rj ∈ R
d ∀rj ∈ R.

3.1 Definition of Subgraph-Aware Proximity

For a triple (s, r, o), there are a set of multi-hop sequences between the subject
entity s and the object entity o, denoted as Sso = {π1, · · · , πi, · · · , πK}. The sub-
graph Gso is composed of the one-hop sequence τso and the multi-hop sequence
set Sso, i.e., Gso = τso ∪Sso. The multi-hop sequences used in previous KG com-
pletion models include relation sequence [13] and relation & entity sequence [7].
Similarly, to analyze the impact of different composition of sequences on SA-
KGE, we classify the subgraphs into relation subgraph and complete sub-
graph according to the composition of their sequences. In relation subgraph, the
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one-hop sequence τso = r and the multi-hop sequence πi = {r1, · · · , rj , · · · , rl}
with rj ∈ R and l as the hop number. In addition to relation subgraph, we also
discuss the complete subgraph whose sequences are composed of both relations
and entities, i.e., the one-hop sequence τso = (s, r, o) and the multi-hop sequence
πi = {s, r1, e1, · · · , rj , ej , · · · , rl, o} with rj ∈ R and ej ∈ E .

As the subgraph Fig. 1 shows, the multi-hop sequences generally indicate
the similar semantic meanings of the one-hop sequence, no matter considering
the relation subgraph or the complete subgraph. We formally define the above
subgraph-aware proximity as follows:

Definition 1. For a subgraph Gso = τso∪Sso corresponding to the triple (s, r, o),
the subgraph-aware proximity describes the similarity between the multi-hop
sequences in the set Sso and the one hop sequence τso.

3.2 Overall Framework of SA-KGE

In the framework of SA-KGE, we aim to learn the embeddings of the entities
and relations in a KG, and preserve the subgraph-aware proximity in the learned
embeddings. Since the multi-hop sequences usually reflect the inference pattern
of the one-hop sequence, we can use the conditional probability of the one-hop
sequence given the corresponding multi-hop sequences within the same subgraph
to formulate the subgraph-aware proximity. Hence the objective of the framework
is to find the optimal parameters by maximizing the following log-likelihood
conditional probability

θ̂ = arg max
θ

∑

Gso∈G
log p (τso|Sso, θ) (1)

where θ denotes the parameters to be optimized, including the embeddings of
entities and relations in the KG as well as the weight parameters of the frame-
work. The conditional probability p (τso|Sso, θ) can be formulated over all the
one-hop sequences of the subgraphs in the KG as follows

p (τso|Sso, θ) =
exp

(
g (τso,Sso)

)
∑

Gxy∈G exp
(
g (τxy,Sso)

) . (2)

where the subgraph-aware score function g(τso,Sso) measures the similarity
between the one-hop sequence τso and the multi-hop sequences of Sso in the
embedding space. τxy is the one-hop sequence of arbitrary subgraph Gxy ∈ G.
Since the number of subgraphs of the KG can reach billions, it is intractable
to compute the conditional probability p (τso|Sso, θ). To solve this problem, we
resort to the hinge loss [6] which is widely used in previous KG embedding
models. Thereby, we obtain the loss function for the subgraph Gso

L(Gso) =
∑

(τ ′
so,S′

so)∈Δ′
Gso

max
[
0, γ1 − g (τso,Sso) + g (τ ′

so,S ′
so)

]
(3)
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where max[0, ·] indicates the hinge loss, Δ′
Gso

is the set of negative subgraphs
with some components of Gso randomly replaced, and γ1 is a predefined margin.

Furthermore, the framework is flexible to incorporate the first-order prox-
imity that specializes in learning the similarity relationship within triples. Let
φ(s, r, o) denote the first-order proximity score function, the loss function of the
triple (s, r, o) is

L(s, r, o) =
∑

(s′,r′,o′)∈Δ′
(s,r,o)

max
[
0, γ2 − φ(s, r, o) + φ(s′, r′, o′)

]
(4)

where Δ′
(s,r,o) indicates the set of negative triples with one of the three compo-

nents randomly replaces. Finally, we get the loss function of the framework by
combining Eqs. (3) and (4) over the KG

L =
∑

Gso∈G

(
α · L(Gso) + β · L(s, r, o)

)
(5)

where α and β are adjustable weight coefficients of the two loss function, and
(s, r, o) is the corresponding triple of the subgraph Gso.

As Fig. 1 shows, the framework of SA-KGE includes three major modules.
First, subgraph pre-extraction module extracts the multi-hop sequences for each
triple of the KG by random walk. Next is the KG sequence embedding mod-
ule, whose inputs are the initialized embeddings of all the components of each
sequence, and outputs are the sequence embeddings. Finally, in the proximity
calculation module, the score functions of the subgraph-aware proximity and the
first-order proximity are computed respectively based on the sequence embed-
dings and the embeddings of each component of the triple. Next, we will intro-
duce the specific methods for KG sequence embedding module and some other
implementation details of the framework.

3.3 KG Sequence Embedding Module

In this section, we introduce three methods for representing KG sequences as
embeddings, such that the proximity score g(τso,Sso) can be computed in the
embedding space.

ADD for Relation Subgraph. In relation subgraph, the subgraph-aware
proximity degenerates to the similarity between the direct relation r and each
multi-hop sequence πi = {r1, · · · , rj , · · · , rl} in S. The embedding of the one-hop
sequence is r, which is the embedding of the direct relation. Since the length
of relation multi-hop sequences is only half of the corresponding complete ones
and all the components are relations, we can obtain the embedding of πi ∈ S by
simply adding all the relations of the sequence as in Fig. 2(a)

πi =
1
l

l∑

j=1

rj (6)
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Fig. 2. The methods for KG sequence embedding module ψ. (a) ADD for relation
subgraph; (b) RNN for complete subgraph; (c) DilatedRNN for complete subgraph.

RNN for Complete Subgraph. In complete subgraph, KG sequences usually
imply complete semantic meanings just like sentence sequences in plain text. As
a result, we can use the methods for sentence sequence embedding to deal with
KG sequences, such as RNN which is widely used in linguistic model. As shown
in Fig. 2(b), the hidden state of RNN is computed according to

ht = δ(Uxt + Wht−1) (7)

where xt is the embedding vector of the t-th component of the input sequence
πi = {s, r1, e1, · · · , rj , ej , · · · , rl, o}, U and W denote weight matrixes, ht and
ht−1 are the hidden states of the steps t and t−1 respectively, δ is the activation
function. The embedding of πi is the average of the hidden states of each step

πi =
1
T

T∑

j=1

hj (8)

where T denotes the total number of components in πi.

DilatedRNN for Complete Subgraph. Furthermore, we notice that KG
sequences have some special properties that distinguish them from sentence
sequences. Specifically, a KG sequence is organized in a orderly form of “entity,
relation, entity, relation, ..., entity”, which can be decomposed into an entity
subsequence and a relation subsequence. Each subsequence has relatively inde-
pendent dependencies. Considering the special structure of KG sequences, we
incorporate dilated RNN [5] and design a dilated recurrent skip connection archi-
tectures to match the structure.

As show in Fig. 2(c), the dilated RNN in our paper contains two hidden layers
and an output layer. The first hidden layer is designed to learn the independent
dependencies by setting the dilation ratio p(1) to 2, such that the connections are
within each subsequence, and there is no connection between them. Actually, we
get the embedding results of the two subsequences at the last two timestamps.
The hidden state in the first hidden layer is computed according to

h
(1)
t = δ

(
U1xt + W1h

(1)

t−p(1)

)
(9)
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where xt is the embedding vector of the t-th component of the input sequence
πi = {s, r1, e1, · · · , rj , ej , · · · , rl, o}, U1 and W1 denote weight matrixes of the
first hidden layer, h

(1)
t and h

(1)

t−p(1) are the hidden states of the steps t and t−p(1)

respectively, δ is the activation function.
The second hidden layer can be used to learn the dependencies of larger scale,

whose dilation ratio p(2) is 4. We compute the hidden state according to

h
(2)
t = δ

(
U2h

(1)
t + W2h

(2)

t−p(2)

)
(10)

where the notations are similar with Eq. (9). By now, the dependencies are still
within each subsequence. To learn the interaction between relations and entities,
we add connections between relation and entity timestamps at the output layer
as in Fig. 2(c). The embedding of πi is the output of the last step

πi = δ(Wrh
(2)
T−1 + Weh

(2)
T ) (11)

where Wr and We are the weight matrixes respectively corresponding to the
relation and entity timestamps, h

(2)
T−1 and h

(2)
T are respectively the hidden states

of second hidden layer at T − 1 and T steps, δ denotes the activation function.

3.4 Other Implementation Details

In this section, we give some implementation details of SA-KGE in our experi-
ment. First, We compute the proximity score g(τso,Sso) with the following Log-
SumExp function

g (τso,Sso) = log

(
K∑

i=1

exp (f (τso, πi))

)
(12)

where f(τso, πi) measures the similarity between the one-hop sequence τso and
the multi-hop sequence πi. All the similarity measure functions are applicable,
such as distance similarity and cosine similarity. In our experiment, we use inner
product to compute the similarity with the embeddings normalized

f (τso, πi) = τᵀ
soπi . (13)

As for the negative subgraph set Δ′
Gso

in Eq. (3), it can be constructed by
replacing arbitrary components of Gso. To simplify, we choose to only replace the
components of the one-hop sequence. Additionally, any score function of the KG
embedding models based on the first-order proximity is feasible for φ(s, r, o). In
our experiment, we use the following translation-based score function

φ(s, r, o) = ‖s + r − o‖Ln
(14)

where ‖·‖Ln
is the Ln-distance measure with n as 1 or 2.
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4 Experiment

In this section, we evaluate SA-KGE on two standard KG completion tasks: Link
Prediction and Entity Classification. The task of link prediction is conducted on
FB15k, which is a subset of the typical large-scale knowledge base Freebase
[1]. FB15k contains 14,951 entities and 1,345 relations. The dataset of entity
classification is extracted from FB15k as in [22] and renamed as EN15k in [8].
EN15k contains the entity types with the frequency of the top 50 and remove
the type of common/topic which every entity has. The related 13,445 entities
are randomly split into 12,113 entities as the training set and 1,332 entities as
the test set.

4.1 Link Prediction

Link prediction aims to complete the triple (s, r, o) when one of the components
is missing, including two subtasks of entity prediction and relation prediction.

Protocols and Parameters. For a test triple, We fill up the missing position
with each candidate entity in the entity set E or each relation in the relation set
R. The confidence score of each candidate triple is computed according to:

G(s, r, o) = g(τso,Sso) + φ(s, r, o) (15)

where g(τso,Sso) and φ(s, r, o) measures the subgraph-aware proximity and the
first-order proximity respectively.

Then, we rank the confidence scores and record the ranking value of the
correct candidate for each test triple. The evaluation metrics are the same as
in [11,13]. For entity prediction, the evaluation metrics are Mean Rank of the
correct candidates and the proportion of the correct candidates ranked in top
10 (Hits@10). For relation prediction, we report the results of Mean Rank and
Hits@1, considering that the total number of relations is relatively small. Besides
the above “Raw” results, we also report “Filter” results by filtering out all the
valid candidate triples before ranking [3].

In the subtask of entity prediction, from Eq. (15) we know that the multi-hop
sequences for each candidate triple are necessary for computing confidence score,
which is impractical since we have to iterate all candidate entities of the KG. In
practice, we use the re-rank method in [13] to simplify. In particular, we first use
Eq. (14) to rank the candidate entities and select the top 500. Then, we re-rank
the selected entities according to Eq. (15).

The hyper-parameters are determined by the Mean Rank of validation
dataset, including learning rate λ, margins γ1 and γ2, embedding dimension
d and the dissimilarity measure Ln in Eq. (14). The settings of the hyper-
parameters for each KG sequence embedding method are: ADD: λ = 0.005,
γ1 = 0.3, γ2 = 0.5, d = 50 and Ln = L2; RNN: λ = 0.001, γ1 = 0.3, γ2 = 0.3,
d = 50 and Ln = L2; dilated-RNN: λ = 0.001, γ1 = 0.2, γ2 = 0.3, d = 50 and
Ln = L2. In addition, for fair comparison, we set the maximum hop number
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Table 1. Entity prediction results.

Metric Mean Rank Hits@10(%)

Raw Filter Raw Filter

SE [4] 273 162 28.8 39.8

SME (linear) [2] 274 154 30.7 40.8

SME (bilinear) [2] 284 158 31.3 41.3

TransE [3] 243 125 34.9 47.1

TransH [21] 212 87 45.7 64.4

TransR [14] 198 77 48.2 68.7

PTransE [13] 207 58 51.4 84.6

SA-KGE-ADD 210 52 51.5 85.0

SA-KGE-RNN 161 55 51.7 84.7

SA-KGE-dilatedRNN 160 53 60.7 84.9

lmax as 3 for both our framework and the baseline PTransE [13]. The activation
function used in our experiment is sigmoid. The weight coefficients α and β in
the loss function of Eq. (5) are both set to 1.

Result Analysis. The overall entity prediction results and detailed “Filter”
results based on the mapping property of relations are respectively reported
in Tables 1 and 2. The experiment results show that our framework performs
better than other baselines on both Mean Rank and Hits@10. Moreover, SA-
KGE-RNN and SA-KGE-dilatedRNN based on the complete subgraph improve
the Mean Rank of “Raw” setting by a large margin, demonstrating that complete
semantic meanings are essential for the similarity comparison of sequences. SA-
KGE-dilatedRNN performs best since its architecture is capable to learn the
special structure of KG sequences. Additionally, the performance of SA-KGE-
ADD is close to PTransE, since they all focus on the similarity relationship
between relation sequences.

Table 3 shows the relation prediction results, from where we observe that
all the approaches, including our framework and PTransE, that consider the
inter-sequence similarity within subgraphs provide relatively good performance.
Furthermore, SA-KGE-RNN and SA-KGE-dilatedRNN based on the complete
subgraph performs better than other approaches, which indicates that retaining
the entities of subgraphs is also beneficial for relation prediction.

4.2 Entity Classification

Entity classification aims to predict the missing entity types, which is also a
standard task of KG completion.
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Table 2. Detailed results on FB15k by mapping properties of relation types. (%)

Tasks Predicting head entities (Hits@10) Predicting tail entities (Hits@10)

1-to-1 1-to-M M-to-1 M-to-M 1-to-1 1-to-M M-to-1 M-to-M

SE [4] 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME (linear) [2] 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3

SME (bilinear) [2] 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE [3] 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

TransH [21] 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2

TransR [14] 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1

PTransE [13] 90.1 92.0 58.7 86.1 90.7 70.7 87.5 88.7

SA-KGE-ADD 90.1 92.3 58.6 86.3 91.2 71.0 87.2 88.7

SA-KGE-RNN 92.3 91.5 61.1 86.5 92.2 73.9 88.1 89.0

SA-KGE-dilatedRNN 91.4 93.0 61.3 86.7 91.8 74.0 90.1 89.0

Table 3. Relation prediction results.

Metric Mean Rank Hits@1(%)

Raw Filter Raw Filter

TransE [3] 2.8 2.5 65.1 84.3

PTransE [13] 1.8 1.4 68.5 94.0

SA-KGE-ADD 1.8 1.3 68.5 94.2

SA-KGE-RNN 1.7 1.3 69.8 93.8

SA-KGE-dilatedRNN 1.7 1.3 69.6 94.3

Table 4. Entity classification results.

Metric FB15k

TransE [3] 87.9

DKRL [22] 90.1

PTransE [13] 86.7

node2vec [10] 63.2

SA-KGE-ADD 86.6

SA-KGE-RNN 88.5

SA-KGE-dRNN 89.3

Protocols and Parameters. Entity classification is essentially a multi-label
classification problem, which can be decomposed to multiple binary classifica-
tion tasks according to the one-versus-rest setting as in [16,22]. Specifically, we
utilize Logistic Regression [22] as classifier for fair comparison with baselines. In
addition, we use the evaluation metric of Mean Average Precision (MAP), which
is the mean of average precision over all entity types [11,16].

Result Analysis. The results of entity classification is listed in Table 4. The
results show that our framework achieves better results than TransE [3] based
on the first-order proximity and node2vec [10] based on higher-order proximity
along single sequence. This indicates that learning the inter-sequence proximity
within subgraphs are significant for KG embedding. In addition, DKRL performs
slightly better than SA-KGE-dilatedRNN. It may because DKRL utilizes entity
descriptions which are highly related to entity types.
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5 Conclusion and Future Work

In this paper, we propose an unified framework of SA-KGE to learn the
subgraph-aware proximity, which describes similarity relationship among differ-
ent sequences within a subgraph. Furthermore, the framework can be combined
with the first-order proximity based models, so as to preserve more compre-
hensive property of KGs in the embedding space. By incorporating different
KG sequence embedding methods, we show that framework is open to exist-
ing models. The experiment results of the two KG completion tasks show that
the proposed framework can largely promote KG embedding by preserving the
subgraph-aware proximity. We tend to use the complete subgraph since both rela-
tions and entities are indispensable for the exact semantic meanings of sequences.
Moreover, the exploration of the special structure of KG sequences also improves
the performance.
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