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Abstract. This paper studies the equilibrium states that can be reached
in a network design game via natural game dynamics. First, we show that
an arbitrarily interleaved sequence of arrivals and departures of players
can lead to a polynomially inefficient solution at equilibrium. This implies
that the central controller must have some control over the timing of
agent arrivals and departures in order to ensure efficiency of the system
at equilibrium. Indeed, we give a complementary result showing that if
the central controller is allowed to restore equilibrium after every set of
arrivals/departures via improving moves, the eventual equilibrium states
reached have exponentially better efficiency.

1 Introduction

In multi-agent systems where different agents have competing objectives, it is
well-known that selfish behavior leads to suboptimal system performance at
equilibrium. The Price of Anarchy (POA) and the Price of Stability (POS), which
respectively correspond to the worst and best equilibrium states, are widely used
in the literature to quantify this suboptimality relative to an optimal solution
designed by a central authority. If these two measures are close to each other, they

Part of this work was done when all the authors were visiting Microsoft Research
- Redmond. Partial support for this work was provided by the following grants: S.
Chawla from NSF grants CCF-1101429 and CCF-1320854; S. Naor from ISF grant
1585/15 and BSF grant 2014414; D. Panigrahi from NSF grants CCF-1527084 and
CCF-1535972, an NSF CAREER Award CCF-1750140, and faculty research awards
from Google and Yahoo; M. Singh from NSF grant CCF-1717947; S. Umboh from
ERC consolidator grant 617951 and NSF grant CCF-1320854.

© Springer Nature Switzerland AG 2018

G. Christodoulou and T. Harks (Eds.): WINE 2018, LNCS 11316, pp. 80-95, 2018.
https://doi.org/10.1007/978-3-030-04612-5_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04612-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-04612-5_6

Timing Matters: Online Dynamics in Broadcast Games 81

provide a satisfactory understanding of the quality of stable states the system is
expected to reach. However when these measures differ significantly, the system
can exhibit multiple equilibria with highly varying performance. But, which of
these equilibria can be achieved in actual game dynamics? More generally, what
is the minimal guidance by a central authority that can guarantee near-optimal
system performance in equilibrium?

In this paper, we study these questions in the context of a game that exhibits
a particularly rich set of equilibria, namely the broadcast game. A broadcast
game is defined on a rooted undirected graph with costs on edges. Every vertex
in the graph has an agent whose goal is to select a routing path to the root
that minimizes her own cost. The cost of every edge is shared equally among
all agents using it, and the cost of an agent is the sum of her cost shares along
the edges in her path to the root. The system is in Nash equilibrium (or NE) if
no agent can lower her own cost by unilaterally changing her routing path. The
cost of an equilibrium is the total cost of all edges used by at least one agent.
The quality of equilibria is measured with respect to the social optimum, which
for broadcast games is the minimum spanning tree (MST) of the graph.

Broadcast games are a kind of potential games and the existence of NE in
any instance can be proved through a potential function argument, originally
given by Rosenthal [34] (see also Monderer and Shapley [30]). Anshelevich et al.
[4] observed that different NE in broadcast games can exhibit vastly different
performance: the POA can be as large as £2(n) whereas the POS (a concept they
introduced to show this gap) is bounded by O(logn); here n denotes the number
of vertices in the graph.® A long line of work (e.g., [10,19,27,28]) subsequently
improved the PoS bound to O(1).

Given this divergence of bounds, Chekuri et al. [13] posed the question of ana-
lyzing the quality of equilibria that are actually reachable via natural dynamics—
a sequence of single agent moves where the moving agent always chooses a new
path that strictly decreases her cost relative to her current path. We call such
moves “improving moves” or “best response moves”, depending on whether they
merely lower the agent’s cost or are optimal for the agent given the current state
of the system. It follows from the potential function argument of Rosenthal [34]
that any such sequence of moves will eventually converge to NE.

Chekuri et al. [13] considered the following restricted two-stage process: in
the first stage, starting with an empty graph, agents arrive sequentially in arbi-
trary order and choose their respective best response paths upon arrival; in the
second stage, agents make improving moves? in arbitrary order until they reach
equilibrium. They showed that the equilibria reachable through this process have
a cost of O(y/nlog?n) times the MST, a significant improvement over the POA
bound. This bound was subsequently improved to O(log®n) for the same two-
stage process by Charikar et al. [11].

! The full version of this paper [12] provides examples illustrating these bounds.
2 Observe that when an agent arrives or makes an improving move, paths of other
agents may become suboptimal for them.



82 S. Chawla et al.

The Dynamic Price of Stability. These previous works motivate extending the
notion of the price of stability to online dynamics. In the static (or “one shot”)
version of our problem, in which players are initially in an empty configuration,
the central planner can force the players into any configuration, in particular
the one realizing the price of stability. In the dynamic case, however, the central
planner cannot do so since some players have already chosen a route. Thus, the
central planner has to offer existing players a better strategy, so as to incentivize
changes. Informally, the dynamic price of stability is the cost of a solution in
equilibrium resulting from online dynamics, while allowing for algorithmic inter-
vention by the central planner. The notion of dynamic price of stability can be
applied to any game in which one needs to characterize which equilibria can be
reached via online dynamics, while minimizing the power of intervention of the
central planner. It would be very interesting to find further applications of this
new notion.

One way to restate Charikar et al.’s result is that the dynamic PoS is poly-
logarithmic when all arrivals happen before any improving moves. But, what if
some agents make improving moves before all of the other agents have arrived,
i.e., the sequence of improving moves is interleaved with arrivals? Unfortunately,
the analyses presented in [13] and [11] strongly build on the fact that all agents
arrive upfront and remain in the system thereafter, and agents must wait for
everyone to arrive before making any changes to their strategies. Charikar et
al. posed the question of analyzing dynamics in which arrivals and improving
moves are interleaved as a “tantalizing and difficult” open problem. In the decade
following their work, in spite of tremendous progress in POS bounds for broad-
cast games, no progress has been made on understanding more general game
dynamics.?

More General Dynamics. Since the work of Chekuri et al., our work is the
first to study more general dynamics of the broadcast game. We consider two
kinds of extensions to the two-stage process. First, we consider systems with
churn where agents arrive as well as depart over time. Second, we allow multiple
interleaved stages of arrivals, departures, and improving moves. Our first result
shows that if we make a minimal change to the two-stage dynamics studied
above, namely adding departures to the first stage, then it is possible to reach
an equilibrium that is polynomial (in n) worse than the social optimum, placing
it in the same regime as the POA bound. To the best of our knowledge, this is
the first polynomial lower bound for any game dynamics for broadcast games.

Theorem 1. For any large enough integer m, there exists an instance of the
broadcast game with n vertices and a sequence of arrivals and departures that
terminates in an NE of cost Q(nl/B) times that of the minimum spanning tree
on all the vertices.

3 Charikar et al. also studied a variant where arrivals happen in uniformly random
order and are interleaved with adversarially ordered best response moves. For this
setting, they were able to prove an upper bound of O(y/n polylogn) on the quality
of the equilibria reached, but did not present any lower bounds.
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It is important to observe that since we allow departures, not all vertices
have agents at the end of the game. This creates two candidates for OPT: the
optimal Steiner tree on the remaining agents, or the MST on all vertices.* The
former leads to trivial and uninteresting lower bounds (see the full version); so,
we use the MST as OPT in this paper. This choice of a weaker optimum makes
for a stronger lower bound.

The Power of Intervention. Given the above lower bound, a natural question is
whether some limited intervention from a central planner can lead to a better
outcome for the game. At one extreme, if the central planner is allowed to suggest
a strategy to every player simultaneously, then any NE, in particular the best
one corresponding to the POS of O(1), can be achieved. This level of control
is unrealistic. A more reasonable level of control is for the central planner to
suggest improving moves to players one by one; importantly, any such move
should lower the corresponding agent’s current cost share, otherwise the player
has no incentive to follow the planner’s suggestion.

What about the timing of such interventions? As our lower bound demon-
strates, if the timing of interventions is completely adversarial, in particular if no
interventions are allowed during the initial arrival/departure phase, the system
can end up in a poor NE. To get around this lower bound, we consider dynamics
where the central planner is allowed to make a series of improving moves after
every adversarial arrival/departure. Observe that the sequence of arrivals and
departures can still be ordered adversarially, and indeed can depend on the pre-
vious algorithmic interventions. We call such dynamics equilibrium-preserving
(EQ-P) dynamics because the central planner restores the system to a good equi-
librium after every adversarial arrival/departure.

Specifically, the EQ-P dynamics starts from an empty configuration and con-
tinues in epochs. At the beginning of each epoch the system is at equilibrium.
The epoch begins with an arrival or departure, followed by a series of improving
moves to restore equilibrium. Once equilibrium is restored, the epoch ends. Our
analysis, in fact, allows for multiple simultaneous arrivals® at the beginning of an
epoch, and multiple departures at any point of time during the epoch. Formally,
we define three different kinds of moves within an epoch:

1. (Arrivals.) A set of new players arrive and each picks a best response path
with respect to the configuration reached at the end of the previous epoch.
(The choice of the set of arrivals is adversarial.)

2. (Departures.) A set of players departs the system. (Choice of departing
players is adversarial.)

4 Another bound is the optimal Steiner tree on all vertices for which an agent arrived

at some point in the dynamics. Since we can assume metric costs, we can restrict
our attention to these vertices and then MST cost is within a factor of two of the cost
of optimal Steiner tree.
Note that although arrivals within a single epoch are simultaneous in that every
arriving player picks a best response path with respect to the equilibrium state at
the beginning of the epoch, arrivals in different epochs are sequential. In this sense
our model captures sequential arrivals with interleaved improving moves.
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3. (Equilibrium Restoration.) The central authority offers players strategies
that can improve their (shared) connection costs. This step continues till
equilibrium is restored to the system.

Our second result shows that this limited level of central intervention is
sufficient to guarantee a NE with exponentially better performance:

Theorem 2. FEvery instance of the broadcast game using EQ-P dynamics con-
verges to an NE of cost O(logn) times that of the minimum spanning tree on
all the vertices.

Observe that, as for our lower bound result, we compare the performance of
EQ-P dynamics to the MST on all vertices® and not the optimal Steiner tree on
the vertices that remain in the system. The two benchmarks are identical when
there are no departures but the MST benchmark can potentially be much weaker
when there are many departures. However, as mentioned earlier, the Steiner
tree benchmark is not interesting because it leads to trivial polynomial lower
bounds (see the full version [12]). Furthermore that the guarantee provided by
the above theorem holds at the end of every epoch as compared against the MST
over vertices that have arrived up to the end of that epoch, not including future
arrivals. A natural open question is whether a polylogarithmic dynamic PoS can
be achieved through less algorithmic intervention relative to EQ-P dynamics, for
example, by allowing players to make best response moves instead of improving
moves.

Technical Challenges. The broadcast game exhibits a rich set of equilibria and
a far richer set of intermediate states of the system. For example, whereas the
set of agent strategies (paths) in any equilibrium of the game always forms a
tree,” intermediate states, even those reached by a series of best response moves,
can contain a complex structure of interconnected cycles. A major impediment
to analyzing dynamics is that it is extremely challenging to maintain any struc-
tural invariant on intermediate states. Our work overcomes this challenge by
algorithmically maintaining such a structural invariant. Whenever the struc-
tural invariant is broken by arrivals or departures, we restore it algorithmically.
Importantly, we show that this can always be achieved through a sequence of
1MPToOVINg Moves.

Our structural invariant is a charging of the cost of a state (i.e. collection
of paths) against a family of partitions of the underlying graph. Each partition
corresponds to a solution to the dual of the standard MST linear program. As
such, our charging scheme can be interpreted as a dual fitting approach. One
challenge in carrying out this approach is that as agents arrive and leave, our
analysis must allow for the dual to become grossly infeasible at intermediate
states, which in turn results in very expensive intermediate (non-equilibrium)

5 Because of this comparison against the MST, we prefer the term “broadcast game”
for this setting, rather than the “multicast game”.

" The existence of a cycle would imply that one of the agents can improve her cost
share by switching to a different path and the current state is not an equilibrium.
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states. At the crux of our argument is a careful construction of improving moves
that ensures that the system cycles between a small set of states of which the
stable ones correspond to feasible duals.

Related Work. We have already mentioned the long line of work on improving
PoS bounds for broadcast games [4,10,19,27], and the game dynamics studied
by Chekuri et al. [13] and Charikar et al. [11]. A different approach was taken
by Balcan et al. [6], who considered the problem of influencing the dynam-
ics of broadcast games so as to achieve socially efficient equilibria. In their
model, players use expert learning, choosing between a best response expert and
a central authority expert suggesting (near-)optimal global behavior. Broad-
cast games belong to a broader class called network design games (see, e.g.,
[2,4,9,10,14,15,18,20,26,28]), which in turn, are a special case of the widely
studied congestion and potential games (see, e.g., [1,7,17,24,29,30,33-35]).

The analysis of game dynamics in this paper crucially relies on the construc-
tion of a hierarchial family of multiple dual solutions. This method of analysis
has been highly influential in designing online algorithms for network design
problems. Implicit use of this method dates back to the work of Imase and Wax-
man [25] on online Steiner trees and a subsequent line of work of Awerbuch et
al. [5], Berman and Coulston [8], Naor et al. [31]. More recently, this method has
been explicitly employed in solving a range of node and edge-weighted Steiner
network design problems in the online setting [3,16,21-23,32]. In terms of the
exact techniques, perhaps the closest to our work is that of Umboh [36], who uses
hierarchical tree embeddings to analyze greedy-like online algorithms for network
design problems. In contrast to these applications in competitive analysis where
decisions are irrevocable, game dynamics allows temporary overcharging of dual
solutions, which we crucially use in this paper.

Organization of the Paper. We present a proof of our lower bound (Theorem 1)
in Sect. 2, and a proof of our upper bound (Theorem2) in Sect.3. Due to lack
of space, we defer most of the proofs to the full version [12].

2 Lower Bound

In this section, we will show that if arrivals and departures are allowed at non
equilibrium states, then no dynamics can lead to a good equilibrium (Theorem 1).

We construct a family of lower bound instances parameterized by an inte-
ger m > 1. The mth instance uses the metric induced by weighted graph G,
(see Fig.1). The vertex set of this graph consists of a root r and m + 1 lay-
ers VO ..., V™. For 1 < i < m, layer V' consists of m clusters Ci, ... ,C!
each of which is a clique over m vertices. We use v;k to denote the k-th ver-
tex of C’;; recall that each of 4, j, and k take on integral values in [m]. Layer
VY also consists of m? vertices, which are labeled v;{k for j,k € [m], but there
are no edges between these vertices. The vertices of V™ are called end vertices,
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a2

VO Vl V2 V3 V4

Fig. 1. Example for m = 4. Auxiliary vertices are in red, end vertices are in blue. Ovals
represent clusters. Intra-cluster edges are shown as dashed edges. The two bold paths
starting from the same cluster successively diverge into different clusters and converge
into the same cluster on their way to the root.

and those of VO are called auriliary vertices. Observe that the graph G,, has
n=m?(m + 1) + 1 vertices in all.

Next, we describe the edges. Each pair of vertices within the same cluster C’;
is connected by an edge of length 1/m for all layers except V°. The remaining
edges in the graph connect vertices in neighboring layers and are all of length 1.
Each auxiliary vertex UO ', in Vg is connected to the root and to its corresponding
vertex fuj . in layer 1. For 1 <4< m—1, we have an edge (v: v, k,vk 1) for each
Jk €m ] In other words, the vertices of the j-th cluster in layer ¢ are connected
to the k-th vertices of the clusters in layer i 4+ 1; in particular, the k-th vertex
of the j-th cluster in layer ¢ is connected to the j-th vertex of the k-th cluster
in layer 7 + 1. For example, see the edges leaving the first (top) cluster of V; in
Fig. 1. Observe that there are exactly m?(m + 1) inter-layer edges, and exactly
m3(m — 1)/2 intra-cluster edges.

Observe that each end vertex v}, has a unique path Pj to the root that
consists of only inter-layer edges (see Fig. 1). We call these paths canonical paths.
Note that each inter-layer edge belongs to exactly one canonical path. In other

words, the set of inter-layer edges is a disjoint union of all the canonical paths
Pj.

The Cost of the Final Equilibrium. Before describing the sequence of arrivals
and departures of terminals, let us analyze the final equilibrium state and its cost
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relative to the optimal cost. Let OPT denote the cost of the minimum spanning
tree over all vertices in GG,,. Observe that this is an upper bound on the cost of
any optimal solution at the end. The final state following our sequence of arrivals
and departures, denoted %, consists of m players situated at every end vertex
v}, in layer m; each player uses the canonical path Pjj to route to the root.
The following lemma shows that this is an equilibrium state with a polynomially
larger cost relative to OPT.

Lemma 1. State .F is an equilibrium and the cost of F is 2(m) OPT.

Sequence of Arrivals and Departures The sequence is constructed in m phases,
each phase consisting of m? rounds, one per end vertex v}, and indexed by (4, k).
Informally, the objective of each phase is to add one more terminal at each of
the end vertices v7. Within round (j, k) in a phase, we use a set of “temporary”
terminals whose sole aim is to force the terminal at vi, that arrives at the end
of the round to choose the canonical path as its best response. The temporary
terminals are introduced at intermediate vertices along the canonical path during
the round, and removed at the end of the round.

Formally, let < be an arbitrary total order on the pairs (j, k). The sequence
o is constructed to maintain the following invariant: at the end of round (j, k) of
phase ¢, there will be £ players on v, for (', k") < (J, k), and £ — 1 players on
the remaining end vertices. Furthermore, each player on v} uses the path P; .

We now specify the subsequence for each round. Consider round (j,k) of
phase ¢. For simplicity of notation, we use v’ to denote the vertex of V¢ on
P; . We also use P’ to denote the segment of P; starting at v* and ending at
the root. The round consists of m + 1 iterations. In iteration 0 < i < m — 1,
m? players arrive at v’. In iteration ¢ = m, one player arrives at v™. Finally,
the players on v°,...,v™ ! depart. We can now show using induction over the
terminal arrivals, that for every terminal the best-response path on arrival is the
segment of the canonical path connecting it to the root.

Lemma 2. Consider a terminal arriving at vertex v' n iteration i of round
(J, k) in phase £. The be_st-response path of the terminal to the root is the segment
of its canonical path P*.

Lemma 2 shows that the sequence of arrivals and departures above terminates
in the final state %, which costs 2(m) OPT by Lemma 1. Since m is polynomial
in the number of vertices, Theorem 1 follows.

3 EQ-P Dynamics

In this section and the next, we describe and analyze EQ-P dynamics for the
broadcast game. We first set up our notation and terminology, and prove some
basic structural properties that are used in the rest of the paper. Let G = (V, E)
be a complete graph, |V| = n, with metric costs ¢ : V x V — R, defined on
the edges. We assume without loss of generality that every vertex has a unique
agent (a.k.a. terminal) residing at it. Agents arrive and depart over time. Since
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edge costs satisfy the triangle inequality, before an agent arrives, no other agents
route their paths via the vertex corresponding to this agent. Indeed, we assume
that our intervention algorithm has no knowledge of vertices corresponding to
agents that are yet to arrive. However, if an agent already in the system departs,
other agents may continue to route their paths via its vertex, and the vertex
remains in the graph. At any point of time during the process, our algorithm
only considers the subgraph induced over vertices whose agents have arrived
prior to that time. We call a vertex active if the agent at that vertex is still in
the system.

The graph G is revealed via an online process that is divided into epochs
(indexed by time ¢). At the start of epoch ¢, the set of vertices in G that have
already appeared is denoted by V;. We denote the set of active terminals among
them by A; C V;. Each terminal v € A; has a current routing path p, connecting
it to the common root r. The cost share of v along this path is the sum of v’s
cost share over the edges in the path, where the cost of an edge is equally shared
between all terminals currently using it. In the EQ-P scenario, we further enforce
the invariant that the set of paths p, are in NE, i.e., no terminal has an incentive
to unilaterally deviate to a different routing path.

The routing at any time ¢ is defined to be the set of routing paths (p,)veca,-
A best response path of a terminal v with respect to a routing, denoted p}, is a
path from v to r with the minimum shared cost if v were to move to this path. If
there are multiple such paths, we break ties in favor of paths having fewer edges
with no terminal other than v using them. Note that this may not break all ties,
in which case, any of these paths can be designated as the best response path.
A terminal v € A is said to have an improving move with respect to a routing if
by moving from its current path p, to a new path g, strictly decreases v’s cost
share. Given a routing, its potential [34] is defined to be & = > Zi\f:l Ce /1,
where N, is the number of agents using e. A standard argument shows that any
improving move decreases the potential by a value which is uniformly bounded
away from zero, resulting in a finite convergence of our dynamics. The following
well-known lemma states that in equilibrium, the routing paths form a tree.

Lemma 3. In equilibrium, the routing paths of a broadcast game form a tree.

Each epoch t is divided into several phases. The first phase consists of an
arrival or departure event. In the former case, a new set of terminals U; C V'\
arrive, and the cost of all edges incident on terminals in U, is revealed. Each
new terminal u € U, chooses a best response routing path p,. In the latter
case, a set of terminals leave, thereby removing the corresponding vertices from
the set of terminals A;. (Note that the corresponding vertices remain in V;.)
Lemma 6 establishes that the structure of the set of routing paths after arrivals
or departures remains a tree.

Both arrival and departure events lead to changes in the cost shares of edges.
In the EQ-P scenario, this might lead to a violation of the equilibrium state that
was being previously maintained. In this case, the system performs a sequence of
improving moves, in each of which a terminal changes its routing path in order
to reduce its cost share.
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Improving moves may temporarily create cycles in the collection of routing
paths {p,}vea,. We order and group improving moves into contiguous blocks
or phases such that every phase ends with the routing paths forming a tree.
Furthermore, the trees at the beginning and end of the phase differ in a single
pair of edges. The collection of moves in each such phase is called a tree-follow
move.

Definition 1 (Tree-follow move). A tree-follow move from u to v in T is a
sequence of improving moves that start with routing tree T and end with routing
tree T' =T \ (u, parent(u)) U (u,v), where parent(u) is the parent vertex of u in
T. Observe that each terminal in the subtree rooted at w in T reroutes its path
to the root according to T".

Because of departure events, the routing tree may contain non-terminal ver-
tices as Steiner vertices. It is convenient to extend the notion of an improving
move to vertices that are not terminals. Let w ¢ A be a non-terminal vertex.
We say that w has an improving move if the following properties hold: (1) There
exists a terminal v whose routing path p, includes w; let p,, denote the segment
of p, between w and r; (2) There exists a path ¢, between w and r such that if
v were to retain its current routing path from v to w but move from p,, to ¢,
then the cost share of v would strictly decrease.

A priori, it is not clear whether improving moves can always be grouped into
tree-follow moves. In Lemma 7, we show that in every routing tree T which is
not in equilibrium, there exists a sequence of improving moves that collectively
form the tree-follow move from u to v for some vertices v and v. When there are
multiple such moves, we use a careful charging scheme to identify the order in
which tree-follow moves should be implemented. (See Algorithm SELECT TREE
MOVE defined at the end of this section.)

Since every vertex in a tree has a unique path to the root, it suffices to
specify the tree itself in lieu of all of the routing paths. Henceforth, we will use
T; to denote the tree induced by {p, }veca, without explicitly specifying the paths
themselves.

EQ-P Dynamics

1. Initialization. t =1, Vo = {r}, To = {r}, Ao = 0.
2. Fort=1,2,...
— (Arrivals.) Let U; be the set of terminals arriving. Let A; «— A;_1 U
U;. For each v € Uy, let p, = p} where p}, is the best response path
of v with respect to T3_1. Let T} = Ti—1 Uper, D5
— (Departures.) Let D; be the set of terminals departing. Let A; =
At \ Dt~ Let Tt = UUEAtpU'
— (Tree Follow Moves.) While T; is not in equilibrium:
Use algorithm SELECT TREE MOVE to determine a tree-follow move
to implement in 7T3; let this be a move from u to v, and let parent(u)
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denote the parent of u in T;. Implement the sequence of improving
moves for this tree-follow move to obtain the new routing tree T} «—
T \ (u, parent(u)) U (u,v).

Charging Scheme. In proving the upper bound for EQ-P dynamics, we use a dual
charging scheme to bound the cost of the routing tree. We define the dual and
the corresponding lower bound on the optimal cost next. We call a partition
P = (51, -+ ,Sm) of the vertex set V a level-j dual for an integer j if it satisfies
the following:

— P is a partition: UgepS =V, and for any S,, S, € P, S, NS, = 0.

— The components have bounded diameter: for any S € P, and any vertices
r,y €8, c(x,y) < 27.

— The components are far from each other: there exists a “center” s; in each
component S;, such that for all S,, Sy € P, c(s4,s) > 2971,

We use the term cuts to denote the components S of the partition. The lemma
below follows immediately from the observation that any spanning tree over V'
must connect the centers of all cuts in a level-j dual P.

Lemma 4. For any level-j dual P, the cost of the minimum spanning tree OPT
is at least 2971 (|P| —1).

In order to bound the cost of an equilibrium resulting from EQ-P, we relate
the cost of the edges used in the solution to a family of duals. Let IT = {P;},ez
denote a family of partitions, where P; is a level-j dual.

Our charging scheme for routing solutions that form a tree proceeds as fol-
lows. Every vertex in the routing tree is responsible for the cost of its parent
edge. Consider an edge e = (v, parent(v)) with length in [2/72 29+3) for some
j € Z. We charge the cost of this edge to the cut in the level-j dual that contains
v: § € P; such that v € S. Our goal is to show that every cut gets charged a
small number of times, and use the following well-known property (see the full
version for a proof).

Lemma 5. Suppose that our charging scheme charges each cut in the family IT
at most once. Then the cost of the solution is at most O(logn)OPT.

For much of our analysis, we will assume that the dual family IT is provided
to us. In the full version, we discuss how to construct this family algorithmically
as terminals arrive online.

Classification of a Tree Routing. We classify the tree routings reachable via EQ-
P dynamics into one of four states depending on the charging structure defined
by the solution. We remark that not all tree routings are reachable via EQ-P
dynamics, indeed even the set of equilibria obtained is smaller than the set of
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all equilibria. Let T" be a routing tree for some set of active terminals A. We say
a vertex u is a leaf (non-leaf) if it is a leaf (non-leaf) in T. Note that all leaves
must be terminals, but a non-leaf vertex may or may not be a terminal.

1. BALANCED-EQUILIBRIUM: In this state, no terminal (and therefore, no non-
terminal vertex in 7') has an improving move. Furthermore, every cut is
charged at most once. (Note that not every NE is a BALANCED-EQUILIBRIUM
state.)

2. BALANCED: In this state, some terminals (and potentially non-terminals) may
have improving moves, but every cut is charged at most once.

3. LEAF-UNBALANCED: In this state, every cut is charged by at most one non-
leaf vertex (and any number of leaf terminals). (Recall that leaf vertices in
the routing tree are necessarily terminals.)

4. NON-LEAF-UNBALANCED: In this state, all but one of the cuts are charged by
at most one non-leaf vertex (and any number of leaf terminals). The excep-
tional cut, that we denote by S*, is charged by at most two non-leaf vertices,
say u and v (and any number of leaf terminals). One of these, u or v, must
be the last vertex to have made a (tree-follow) move.

Note: BALANCED-EQUILIBRIUM C BALANCED C LEAF-UNBALANCED C NON-
LEAF-UNBALANCED, where A C B implies that a routing tree in state A is
also in state B.

Selecting a Tree-Follow Move. To define the tree-follow move performed in a non-
equilibrium tree state T', we establish a system of priorities among the improving
tree moves based on the current state of the routing tree. A tree follow move of
u to v is said to be a leaf mowve if v is a leaf in T, and a non-leaf move otherwise.

Algorithm SELECT TREE MOVE

1. BALANCED-EQUILIBRIUM: No terminal has an improving move. The sys-
tem can deviate from an equilibrium state only via arrivals or departure
events.

2. BALANCED: In this state, for any vertex u that has an improving tree
move, move u to the closest vertex to which it has an improving move.

3. LEAF-UNBALANCED:

(a) If there exists a leaf terminal u with a non-leaf move, then make any
such move for u.

(b) Else, if there exists a non-leaf vertex u with a non-leaf move then
move u to the closest such non-leaf v.

(c) Else, if there exists a non-leaf vertex u and a leaf terminal v such
that v and v are charging the same dual cut, then move u to v. If
there are multiple such leaf terminals v, then make any such move.

(d) Else, make any improving move. (This will necessarily be a leaf-to-leaf
move by exclusion of the previous three cases.)
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4. NON-LEAF-UNBALANCED: Let u and v be the non-leaf vertices that are
charging the special cut S*. If v has an improving move to v then move
u, else move v, in either case to the closest vertex to which they have an
improving move.

The validity of the algorithm depends on two claims. The first shows that
whenever a cut is being charged by a leaf and a non-leaf, at least one of these
two vertices has an improving move to the other. In this case, we can find a
valid tree-move for Step (3c) of SELECT TREE MOVE. The second shows that in
a NON-LEAF-UNBALANCED state, whenever a cut is being charged by two non-
leaves, at least one of these two vertices has an improving move to the other; we
can then find a valid tree-move for Step (4) of SELECT TREE MOVE.

3.1 Analysis of EQ-P Dynamics

We now given an outline of the proof of Theorem 2. Our argument hinges on a
closure property: the epoch starts with the routing tree being in the BALANCED-
EQUILIBRIUM state; Lemma 7 argues that whenever the current routing tree is
not in equilibrium, at least one improving move exists, and we can use algorithm
SELECT TREE MOVE to make a move; Lemma 8 then shows that for the moves
made by algorithm SELECT TREE MOVE, the routing tree remains in one of the
four states defined above, in particular, it is always in a NON-LEAF-UNBALANCED
state. The epoch ends when the routing tree re-enters a BALANCED-EQUILIBRIUM
state. At this point, by definition, each dual cut is charged at most once, and
therefore, by Lemma the cost of the routing tree is bounded, and Theorem 2
follows. We must also argue termination of the sequence of moves, but this
follows directly from a standard potential argument based on the fact that all
our moves are improving moves. The following lemmas capture the essence of
our argument.

Observation 1. In EQ-P dynamics the routing paths at the end of every phase
form a tree.

Lemma 6. After the arrival or departure of a set of terminals in an BALANCED-
EQUILIBRIUM state, the routing tree T remains in a LEAF-UNBALANCED state.

Lemma 7. If the routing tree is not in equilibrium, then at least one improving
tree-follow move exists.

Lemma 8. Let T be the routing tree for which we make an improving tree-move
in Step (3) of algorithm EQ-P.

(i) If T is in a BALANCED state but not in a BALANCED-EQUILIBRIUM state,
then after the move selected in Step (2) of SELECT TREE MOVE, the resulting
tree is in a NON-LEAF-UNBALANCED state.
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(i) If T is in a LEAF-UNBALANCED state, then after the move selected in

Step (3) of SELECT TREE MOVE, the resulting tree is in a NON-LEAF-
UNBALANCED state.

(i) If T is in a NON-LEAF-UNBALANCED state, then after the move selected

in Step (4) of SELECT TREE MOVE, the resulting tree is in a NON-LEAF-
UNBALANCED state.
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