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Preface

This volume contains the papers and extended abstracts presented at the 14th Con-
ference on Web and Internet Economics (WINE 2018) held from Saturday, December
15 to Monday, December 17, 2018 in Oxford at St. Anne’s College.

Over almost 20 years, researchers in theoretical computer science, artificial intelli-
gence, and economics have joined forces to tackle problems involving incentives and
computation. These problems are of particular importance in application areas like the
Web and the Internet that involve large and diverse populations.

The Conference on Web and Internet Economics (WINE) is an interdisciplinary
forum for the exchange of ideas and scientific progress on incentives and computation
arising from these various fields. WINE 2018 built on the success of the Conference on
Web and Internet Economics series (named Workshop on Internet and Network Eco-
nomics until 2013), which was held annually from 2005 to 2018.

The Program Committee, consisting of 37 top researchers from the field, reviewed
119 submissions and decided to accept 36 papers. Each paper had three reviews, with
additional reviews solicited as needed. We are very grateful to the Program Committee
for their insightful reviews and discussions.

The review process was conducted entirely electronically via Easy Chair – we
gratefully acknowledge this support. We also thank Springer for providing the pro-
ceedings and offering support for the best paper award.

The program included four invited talks by leading researchers in the field: Anna
Karlin (University of Washington, USA), Paul Klemperer (University of Oxford, UK),
Stefano Leonardi (Sapienza University of Rome, Italy), and Noam Nisan (Hebrew
University of Jerusalem, Israel).

A special thanks go to the general chair, Paul Goldberg, to Francisco J. Marmolejo
for maintaining the website, and to the organizers at St. Anne’s College who provided
the conference facilities. We gratefully acknowledge the sponsorship by Google and
Microsoft. Last but not the least, we thank Yiannis Giannakopoulos for chairing the
poster sessions.

October 2018 George Christodoulou
Tobias Harks
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Ordinal Approximation for Social Choice,
Matching, and Facility Location Problems

Given Candidate Positions

Elliot Anshelevich(B) and Wennan Zhu(B)

Rensselaer Polytechnic Institute, Troy, NY, USA
eanshel@cs.rpi.edu, zhuw5@rpi.edu

Abstract. In this work we consider general facility location and social
choice problems, in which sets of agents A and facilities F are located
in a metric space, and our goal is to assign agents to facilities (as well as
choose which facilities to open) in order to optimize the social cost. We
form new algorithms to do this in the presence of only ordinal informa-
tion, i.e., when the true costs or distances from the agents to the facilities
are unknown, and only the ordinal preferences of the agents for the facil-
ities are available. The main difference between our work and previous
work in this area is that while we assume that only ordinal information
about agent preferences is known, we know the exact locations of the
possible facilities F . Due to this extra information about the facilities,
we are able to form powerful algorithms which have small distortion,
i.e., perform almost as well as omniscient algorithms but use only ordi-
nal information about agent preferences. For example, we present natural
social choice mechanisms for choosing a single facility to open with dis-
tortion of at most 3 for minimizing both the total and the median social
cost; this factor is provably the best possible. We analyze many general
problems including matching, k-center, and k-median, and present black-
box reductions from omniscient approximation algorithms with approxi-
mation factor β to ordinal algorithms with approximation factor 1 + 2β;
doing this gives new ordinal algorithms for many important problems,
and establishes a toolkit for analyzing such problems in the future.

1 Introduction

Many important problems involve assigning agents to facilities. For example,
assigning patients to hospitals, students to universities, people to houses, etc.
The target of assignment problems is usually to minimize social cost or maximize
social welfare. When we consider the social cost of assignment problems, it is
natural to assume the agents prefer facilities that are “closer” to them in some
sense, thus the social cost of an agent is often represented by the distance between
the agent and the facility it is assigned to. Besides the cost of distances, there are
many other cost functions and constraints for different problems; for example,
in the capacitated facility assignment problem, each facility has a maximum
number of agents it can accommodate.
c© Springer Nature Switzerland AG 2018
G. Christodoulou and T. Harks (Eds.): WINE 2018, LNCS 11316, pp. 3–20, 2018.
https://doi.org/10.1007/978-3-030-04612-5_1
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4 E. Anshelevich and W. Zhu

In this work we consider general facility location problems, in which sets of
agents A and facilities F are located in a metric space, and our goal is to assign
agents to facilities (as well as choose which facilities to open) so that agents are
assigned to facilities which are close to them. For example, F may be possible
locations for opening new stores, and the goal may be that all agents have a store
near them, or that the sum of agent distances to the stores they are assigned to
is small, etc. This setting also captures many social choice problems, in which
the facilities correspond to candidates, and the goal would be to choose a single
candidate (and assign all agents to this candidate) so that the distances from
the agents to the chosen candidate are small. Here the distances correspond to
spatial preferences, i.e., the metric space represents the ideological space in which
a more preferred candidate would be closer to me; see [2,17] for discussion of
such spatial preferences in social choice. Our setting also captures matching and
many related problems, in which we would open all facilities, but are only able
to assign one agent to each facility, thus forming a matching between agents and
facilities; facilities here could correspond to houses or items, for example.

If the distances between agents and facilities are known, then we can calcu-
late the optimal solution for these assignment problems. Note that many of the
facility location problems are NP-Complete, but at least it is possible to compute
optimum assignments of agents to facilities (or the optimum candidates to select
for social choice settings) given unlimited computational resources. For many
of the settings we mentioned above, however, it is unlikely that we know the
exact distances from the agents to the facilities. For social choice these distances
would correspond to the cardinal preferences of voters for candidates, for exam-
ple, “My cost for candidate X winning is exactly 2.35”. It is far more common
that only ordinal preferences of the agents for the candidates are known, i.e., “I
prefer X to Y”. Similarly, when trying to form a matching, or even in general
facility location problems where we survey the agents to find out their prefer-
ences, it is much easier to elicit ordinal preferences (“I prefer to be matched with
X over Y”) over precise numerical preferences. These observations have recently
led to a large body of work using the utilitarian approach, in which we assume
that some latent numerical costs or utilities exist, but we only know the ordinal
preferences of the agents, not their underlying numerical costs. See for example
[2,3,10,15,20,22,28] for the social choice setting, [1,4–6] for matching and other
graph problems, and [12] for facility location. These works focus on measuring
the distortion of various algorithms: a measure of how well an algorithm behaves
when using only ordinal information, as compared to the optimum algorithm
which has access to the true underlying numerical information. More formally,
the distortion [2,27] of an assignment is defined as the worst-case ratio of its
social cost to the social cost of the optimal solution.

As in the work mentioned above, we assume that only ordinal information
about the distances between agents and facilities is known. However, although
the locations and numerical preferences of the agents are usually difficult to
obtain, the locations of facilities are mostly public information. The locations of
political candidates in ideological space can be reasonably well estimated based
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on their voting records and public statements. When forming a survey about
new stores to open, we may not know exactly how much the customers would
prefer one store over the other since the customer locations may be private, but
the locations of the possible stores themselves are public knowledge. The main
difference between our work and previous work in this area is that we assume:

While only ordinal information about agent preferences is known, we know the
exact locations of the possible facilities F .

As we discuss below, this extra information about the locations of the facil-
ities relative to each other allows us to produce much stronger algorithms, and
show much nicer bounds on distortion. In fact, in many cases, we do not even
need the full information about the locations of the facilities. The main message
of this paper is that having a small amount of information about the candidates
in social choice settings, or the facilities in facility location, allows us to obtain
solutions which are provably close to optimal for a large class of problems even
though the only information we have about the agent preferences is ordinal, and
thus it is impossible (even given unlimited computational resources) to compute
the true optimum solution.

Our Contributions. We begin by looking at the social choice setting, in which
we have a set of n agents A and m candidates F in a metric space, and we
are given an ordinal ranking of each agent for the candidates. This setting was
considered in e.g., [2,3,15,20,22,23,28]. In particular, for the objective of min-
imizing the total distance from the agents to the chosen candidate, [2] showed
that Copeland and similar voting mechanisms always have distortion of at most
5, while no deterministic voting mechanism can achieve a worst-case distortion
of less than 3. Finding a deterministic mechanism with distortion less than 5
has been an open problem for several years [22]. In this paper, we show that if
we know the exact locations of the candidates in addition to the ordinal ranking
of the agents, then there is a simple algorithm which achieves a distortion of
3, and no better bound is possible. In other words, while we do not know the
true distances from agents to candidates, we can compute an outcome which is a
3-approximation no matter what the true distances are, as long as they are con-
sistent with the ordinal preferences given to us. Moreover, this approximation is
possible even if for each agent we are only given their favorite (i.e., top-choice)
candidate: there is no need for the agents to submit a full preference ranking
over all the alternatives.

We also study other objective functions in addition to minimizing the total
distance from agents to the chosen alternative. We give a natural determin-
istic voting mechanism which has distortion at most 3 for objectives such as
minimizing the median voter cost, the egalitarian objective of minimizing max-
imum voter cost, and many other objectives. This mechanism achieves all these
approximation guarantees simultaneously, and moreover it does not need the
exact locations of the candidates: it suffices to be given an ordinal ranking of
the distances from each candidate to each other candidate. In other words, this
mechanism is especially suitable for the case when candidates are a subset of
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voters, as our mechanism will obtain the ordinal ranking of each voter for all the
candidates, and this is the only information which would be required. Note that
[2] proved that no deterministic mechanism can achieve a distortion of better
than 5 for the median objective; the reason why we are able to achieve a dis-
tortion of 3 here is precisely because we also know how each candidate ranks all
the other candidates, in addition to how each voter ranks all the candidates.

We then proceed to our general facility assignment model. We are given a
set of agents and a set of facilities in a metric space. The distances between
facilities are given, but the distances between agents and facilities are unknown;
instead we only know ordinal preferences of agents over facilities which are con-
sistent with the true underlying distances. There could be arbitrary constraints
on the assignment, such as facility capacities, or constraints enforcing that some
agents cannot be (or must be) assigned to the same facility, etc. A valid assign-
ment is to assign each agent to a facility without violating the constraints. We
consider many different social cost functions to optimize. For a general class of
cost functions (essentially ones which are monotone and subadditive), we give a
black-box reduction which converts an algorithm for the omniscient version of
this problem (i.e., the version where the true distances are known) to an ordinal
algorithm with small distortion. Specifically, if we have an omniscient algorithm
which always produces an assignment which is a β-approximation to the opti-
mum, then using it we can create an ordinal algorithm which only knows the
ordinal preferences of the agents instead of their true distances to the facilities,
but has distortion of at most 1 + 2β.

Many well-known problems fall into our facility assignment model; Table 1
summarizes some of our results. For example, classic facility location with facility
costs, minimum weight bipartite matching, egalitarian bipartite matching, k-
center, and k-median are all special cases. In particular our results show that
if we are given unbounded computational resources, then it is always possible
to form an assignment with distortion of at most 3 for these problems, and no
better bound is possible simply due to the fact that we do not possess all the
relevant information to compute the true optimum. This is a large improvement
over previously known distortion bounds: for minimum cost ordinal matching
the best-known distortion bound is n using random serial dictatorship [12]; by
using the knowledge of facility locations we are able to reduce this approximation
ratio to 3.

Discussion and Related Work. Ordinal approximation for the minimum
social cost (or maximum social welfare) with underlying utilities/distances
between agents and alternatives has been studied in many settings including
social choice [2,3,10,13,15,20,22,27,28], matchings [4–6,8,12,16,21], secretary
problems [25], participatory budgeting [7], general graph problems [1,4] and
many other models in recent years. The general assumption of the ordinal set-
ting is that we only have the ordinal preferences of agents over alternatives, and
the goal is to form a solution that has close to optimal social cost. There are dif-
ferent models: social choice, matching, facility location, etc.; different objectives:
minimizing social cost, maximizing social welfare, total cost objective, median
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Table 1. Best known distortion of polynomial-time algorithms in different settings.
“Omniscient” stands for the setting where all the distances between agents and facili-
ties are known, and the numbers represent the best-known approximation ratios. The
second column represent our setting, in which the ordinal preferences of the agents,
and the numerical distances between facilities are known. The last column represents
the pure ordinal setting in which only the agent ordinal preferences are known, but the
distances between facilities are unknown; this setting has been previously studied, and
we include the known lower bounds on the possible distortion in parentheses, including
some which we prove in the full version of this paper.

Omniscient:
full
distances

Agents’
ordinal
prefs and
facility
locations

Only
agents’
ordinal
prefs (lower
bounds)

Total (sum) social choice 1 3 5 (3)

Median social choice 1 3 5 (5)

Min weight bipartite matching 1 3 n (3

Egalitarian bipartite matching 1 3 - (2)

Facility location 1.488 [26] 3.976 ∞ (∞)

k-center 2 [24] 5 - (-)

k-median 2.675 [11] 6.35 - (Ω(n))

objective, egalitarian objective, etc.; different assumptions on utility or cost func-
tions: unit-sum, unit-range, metric space, etc. In this paper, we study general
facility assignment problems in a metric space, and assume that the ordinal pref-
erences of agents over alternatives are given. Unlike previous work on this topic,
we also assume the locations of the alternatives are known; we show that this
extra information enables us to achieve much better approximation ratios than
in the pure ordinal setting for many problems.

The distortion of social choice functions was first introduced in [27], to
describe the ratio between the total utility of the optimal candidate and the
candidate selected by a mechanism using only ordinal preferences. [2,22,28] stud-
ied the distortion of social choice functions in a metric space; the assumption
that the underlying numerical costs have this metric property allows for much
better results than more general costs. In particular, for the objective of min-
imizing the total distance from the agents to the chosen candidate, the above
papers were able to show good distortion bounds for many well-known mecha-
nisms, in particular a bound of 5 for Copeland [2], a bound of O(ln m) for Single
Transferable Vote (STV) [28], and many others. In addition, [2] proved that
no deterministic mechanism can have worst-case distortion better than 3, and
[28] showed that all scoring rules for m-candidates have a distortion of at least
1 + 2

√
ln m − 1. Goel et al. [22] showed that Ranked Pairs, and the Schulze rule

have a worst-case distortion of at least 5, and the expected worst-case distortion
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of any (weighted)-tournament rule is at least 3. They also introduced the notion
of “fairness” of social choice rules, and discussed the fairness ratio of Copeland,
Randomized Dictatorship, and a general class of cost functions. Finding a deter-
ministic mechanism with distortion less than 5 has been an open problem for
several years. In this paper, we show that if we know the exact locations of the
candidates in addition to the ordinal ranking of the agents, then there is a simple
algorithm which achieves a distortion of 3, and no better bound is possible.

While the above work, as well as our paper, only focuses on deterministic algo-
rithms, the distortion of randomized algorithms in social choice has also been
considered, see for example [3,18,20,23]. In a slightly different flavor of result,
[14,15] consider the special case where candidates are randomly and indepen-
dently drawn from the set of voters. While we leave the analysis of randomized
algorithms which know the location of the facilities to future work, and consider
the worst-case candidate locations, it is worth pointing out that our determinis-
tic algorithm achieves a distortion of 3, which is also the best known distortion
bound for any randomized mechanism which only knows the ordinal preferences
of the agents. Similarly, another common goal is to form truthful mechanisms
with small distortion for matching and social choice, as in [5,12,20]; we focus
on general mechanisms in this paper in order to understand the limitations of
knowing only certain kinds of ordinal information, and leave the goal of forming
truthful mechanisms for future work.

For the median objective of social choice problems, [2] showed that Copeland
gives a distortion of at most 5, while no deterministic mechanism can achieve
a distortion of better than 5. [3] also gave a randomized algorithm that has a
distortion of at most 4. In this paper, we are able to improve this bound to a
tight worst-case distortion of 3 by a deterministic mechanism, because we also
know how each candidate ranks all the other candidates, in addition to how each
voter ranks all the candidates.

The distortion of matching in a metric space has received far less attention
than social choice questions. [4–6] analyzed maximum-weight metric matching;
the maximization objective makes this problem far easier, and even choosing a
uniformly random matching yields a distortion of a small constant. This is very
different from our goal of computing a minimum-cost matching, for which no
ordinal approximations better than Ω(n) are known. [12] studied facility assign-
ment problems in a metric space; they considered the problem with or without
resource augmentation, and the cases without augmentation are exactly the min-
imum weight bipartite matching problem. [12] showed that the approximation
ratio of random serial dictatorship (RSD) is at most n, and gave a lower bound of
2n −1 for the approximation ratio of serial dictatorship (SD), and a lower bound
of n0.26 for RSD. Their results are the best known ordinal approximations for
this problem. In this paper, we are able to give a tight 3-approximation for the
minimum weight matching problem, given the locations of facilities in addition
to the agents’ ordinal preferences.
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2 Distortion of Social Choice Mechanisms

For the social choice problems studied in this paper, we let A = {1, 2, . . . , n}
be a set of agents, and let F = {F1, F2, . . . , Fm} be a set of alternatives, which
we will also refer to sometimes as candidates or facilities. We will typically use i
and j to refer to agents and W,X, Y, Z to refer to alternatives. Let S be the set
of total orders on the set of alternatives F . Every agent i ∈ A has a preference
ranking σ ∈ S; by X �i Y we will mean that X is preferred over Y in ranking
σ. Although we assume that each agent has a total order of preference over
the alternatives and that this order is known to us, for many of our results
it is only necessary that the top choice of each agent is known. We say X is
i’s top choice if i prefers X to every other alternative in F . We call the vector
σ = (σ1, . . . , σn) ∈ Sn a preference profile. We say that an alternative X pairwise
defeats Y if |{i ∈ A : X �i Y }| > n

2 . The goal is to choose a single winning
alternative.

Cardinal Metric Costs. In this work we take the utilitarian view, and
assume that the ordinal preferences σ are derived from underlying (latent) car-
dinal agent costs. Formally, we assume that there exists an arbitrary metric
d : (A ∪ F)2 → R≥0 on the set of agents and alternatives. The cost incurred by
agent i of alternative X being selected is represented by d(i,X), which is the
distance between i and X. Such spatial preferences are relatively common and
well-motivated, see for example [2,17] and the references therein. The underlying
distances d(i,X) are unknown, but unlike most previous work we do assume the
distances between alternatives are given. The distance between two alternatives
X and Y is denoted by l(X,Y ). We say that d is consistent with l if ∀X, Y ∈ F ,
d(X,Y ) = l(X,Y ).

The metric costs d naturally give rise to a preference profile. We say that d
is consistent with σ if ∀i ∈ A, ∀X, Y ∈ F , if d(i,X) < d(i, Y ), then X �i Y .
It means that the cost of X is less than the cost of Y for agent i, so agent i
prefers X over Y . As described above, we know exactly the distances l and the
preferences σ, but do not know the true costs d which give rise to σ. Let D(σ, l)
be the set of metrics that are consistent with σ and l; we know that one of the
metrics from this possibly infinite space captures the true costs, but do not know
which one.

Social Cost Distortion. We study several objective functions for social cost
in this paper. First, the most common notion of social cost is the sum objective
function, defined as SC∑(X,A) =

∑
i∈A d(i,X). We also study the median

objective function, SCmed(X,A) = medi∈A(d(i,X)), as well as the egalitarian
objective and many others (see Sect. 2.2). We use the notion of distortion to
quantify the quality of an alternative in the worst case, similar to the notation
in [10,27]. For any alternative W , we define the distortion of W as the ratio
between the social cost of W and the optimal alternative:
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dist∑(W,σ, l) = sup
d∈D(σ,l)

SC∑(W,A)
minX∈F SC∑(X,A)

distmed(W,σ, l) = sup
d∈D(σ,l)

SCmed(W,A)
minX∈F SCmed(X, A)

In other words, saying that the distortion of W is at most 3 means that, no
matter what the true costs d are (as long as they are consistent with the σ and
l which we know), it must be that the social cost of W is within a factor of 3 of
the true optimum alternative, which is impossible to compute without knowing
the true costs. Because of this, a small distortion value means that there is no
need to obtain the true agent costs, and the ordinal information σ (together with
information l about the alternatives) is enough to form a good solution.

A social choice function f on A and F takes σ and l as input, and returns
the winning alternative. We say the distortion of f is the same as the distortion
of the winning alternative chosen by f on σ and l. In other words, the distortion
of a social choice mechanism f on a profile σ and facility distances l is the worst-
case ratio between the social cost of W = f(σ, l), and the social cost of the true
optimal alternative.

2.1 Distortion of Total Social Cost

In this section, we study the sum objective and provide a deterministic algorithm
that gives a distortion of at most 3. According to [2], the lower bound on the
distortion for deterministic social choice functions with only ordinal preferences
(without knowing l) is 3. This occurs in the simple example with 2 alternatives
which are tied with approximately half preferring each one. No matter which one
is chosen, the true optimum could be the other one, and its social cost can be as
much as 3 times better. Because the example in Theorem 3 from [2] only has two
alternatives, knowing l does not provide any extra information, and thus that
example also provides a lower bound of 3 in our setting, although we assume the
distances l between facilities are known in this paper. Therefore, our mechanism
achieves the best possible distortion in this setting. Note that if we only have
ordinal preferences of the agents without the distances between facilities, then
the best known approach so far is Copeland, which gives a distortion at most 5.
Thus our results establish that by knowing the distances l between alternatives,
it is possible to reduce the distortion from 5 to 3, and no better deterministic
mechanism is possible.

In the following algorithm, we generate a set of projected agents as follows:
Given agents A, alternatives F , and the preference profile σ, for each agent i
denote alternative Xi as i’s top choice. Then we create a new agent ĩ at the
location of Xi in the metric space; consequently, ∀ Y ∈ F , d(̃i, Y ) = d(Xi, Y ).
Denote the set of the new agents as Ã = {1̃, 2̃, . . . , ñ}. For any metric d consistent
with l, d(̃i, Y ) = d(Xi, Y ) = l(Xi, Y ), so the distances between agents in Ã and
alternatives in F are known to us, unlike the true distances between A and F .
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Algorithm 1. Algorithm for the minimum total social cost.
Generate projected agent set Ã. For each alternative X ∈ F , calculate the total
social cost on Ã by choosing X, i.e., SC∑(X, Ã) =

∑
ĩ∈Ã d(̃i, X)=

∑
ĩ∈Ã l(̃i, X).

Final Output: Return the alternative W that has the minimum social cost
SC∑(W, Ã) .

Theorem 1. The distortion of Algorithm 1 for minimum total social cost on A
is at most 3.

The proof of this is in fact a special case of our Theorem 11 for facility assign-
ment, although it has a particularly nice clean form in this special case. We
include it in the full version for completeness. Full proofs for all our results can
be found in the full version of this paper at https://arxiv.org/abs/1805.03103.

2.2 Distortion of Median Social Cost

In this section, we study the median objective function, and provide a deter-
ministic mechanism that gives a distortion of at most 3. Recall that we define
the median social cost of an alternative X as SCmed(X, A) = medi∈A(d(i,X)).
We will refer to this as med(X) when d and A are fixed. If n is even, we define
median to be the (n

2 + 1)th smallest value of the distances. Note that no deter-
ministic mechanism which only knows ordinal preferences can have worst-case
distortion better than 5 (Theorem 14 in [2]). With known distances between
facilities, we are able to provide a natural social choice function with distortion
of 3, which is also provably the best possible distortion in our setting (consider
the example in Theorem 3 from [2] again). Moreover, our social choice function
only uses ordinal information about the alternatives, and not the full distances
l; in particular as long as we have ordinal preferences of each alternative for each
other alternative (and thus a total order of the distances from each alternative
to the others), then our mechanism will work properly. Such ordinal information
may be easier to obtain than full distances l; for example candidates can rank all
the other candidates. In particular, given agents with ordinal preferences such
that the candidates are a subset of the agents, our mechanism will always form
an outcome with small distortion, even if we do not know the distances l.

Note that using only agents’ top choices over alternatives and the distances
between alternatives, as Algorithm 1 does for the total social cost objective, is
not enough to give a worst-case distortion of 3 for the median objective (see
the full version). We will use the following Lemmas from [2] in the proof of our
algorithm:

Lemma 2. For any two alternatives W and Y , we have med(W ) ≤ med(Y ) +
d(Y,W ). [Lemma 11 in [2]]

Lemma 3. For any two alternatives Y and P , if P pairwise defeats (or pairwise
ties) Y , then med(Y ) ≥ d(Y,P )

2 . [Proved in Theorem 16 in [2]]

https://arxiv.org/abs/1805.03103
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Lemma 4. Let W,Y be an alternatives ∈ F , if W pairwise defeats (or pairwise
ties) Y , then med(W ) ≤ 3med(Y ). [Proved in Theorem 8 in [2]]

The main easy insight which we use in the formation of our algorithm comes
from the following lemma.

Lemma 5. For any three alternatives W , Y , and P , if P pairwise defeats (or
pairwise ties) Y , and d(Y,W ) ≤ d(Y, P ), then med(W ) ≤ 3med(Y ).

Proof. By Lemma 2, med(W ) ≤ med(Y ) + d(Y,W ). By Lemma 3, med(Y ) ≥
d(Y,P )

2 . And we know that d(Y, P ) ≥ d(Y,W ), thus med(W ) ≤ med(Y ) +
d(Y,W ) ≤ med(Y ) + d(Y, P ) ≤ med(Y ) + 2med(Y ) ≤ 3med(Y ). 
�

We use a natural Condorcet-consistent algorithm to approximate the mini-
mum median social cost with the agents’ preference rankings σ and the ordinal
preferences of every alternative over other alternatives. First, create the major-
ity graph G = (F , E), i.e., a graph with alternatives as vertices and an edge
(Y,Z) ∈ E if Y pairwise defeats or pairwise ties Z. If a Condorcet winner (i.e.
an alternative which pairwise defeats all others) exists, then we return it imme-
diately.

Otherwise, we consider each pair of alternatives. By Lemma 4, if the edge
(W,Y ) ∈ E, then med(W ) ≤ 3med(Y ). When considering an alternative pair
W,Y , if (W,Y ) �∈ E and we know that there exists another alternative P which
meets the conditions of Lemma 5, then we add an edge (W,Y ) to G. It is not
difficult to see that whenever the edge (W,Y ) is in our graph, this means that
med(W ) ≤ 3med(Y ). As we prove below, at the end of this process there always
exists at least one alternative which has edges to all the other alternatives, and
thus the distortion obtained from selecting it is at most 3, no matter which
alternative is the true optimal one.

Note that from the ordinal preferences of alternatives over each other, we
can get a partial order of distances between the alternatives. Denote this partial
order as , i.e., we say that d(W,Y )  d(W,Z) if we know that W prefers Y to
Z (we do not have information about strict preference). This is the information
we have on hand: we only know the partial order of distances between pairs of
alternatives which share an alternative in common. Note, however, that if there
exists a cycle in this partial order, i.e., d(Y1, Y2)  d(Y2, Y3)  d(Y3, Y4)  · · · 
d(Yk, Y1)  d(Y1, Y2), then this implies that all the distances in the cycle are
actually equal, and thus we can also add the relations d(Y1, Y2) � d(Y2, Y3) �
d(Y3, Y4) � · · · � d(Yk, Y1) � d(Y1, Y2). Such cycles are easy to detect (e.g., by
forming a graph with a node for every alternative pair and then searching for
cycles), and thus we can assume that whenever a cycle exists in our partial order,
then for every pair of distances d(W,Y ) and d(W,Z) in the cycle, we have both
d(W,Y )  d(W,Z) and d(W,Y ) � d(W,Z).

Lemma 6. Consider the modified majority graph G = (F , E) at any point dur-
ing Algorithm 2. For any edge (W,Y ) ∈ E, we have that med(W ) ≤ 3med(Y ).
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Algorithm 2. Algorithm for the minimum median social cost.
If there is a Condorcet winner W , return W as the winner.

forall the alternative pairs W, Y do
if (W, Y ) �∈ E or (Y, W ) �∈ E then

WLOG, suppose (Y, W ) exists, but (W, Y ) does not exist.
if there exists an alternative P , such that we have d(Y, W ) � d(Y, P ) in
our partial order information, and P pairwise defeats (or ties) Y then

Add edge (W, Y ) to E;
continue;

end

end

end
There must exist an alternative W such that ∀Y ∈ F − {W}, (W, Y ) ∈ E.
Return W as the winner.

Lemma 7. At the end of Algorithm 2, there must exist an alternative W such
that ∀Y ∈ F − {W}, (W,Y ) ∈ E.

Theorem 8. The distortion of Algorithm 2 for minimum median social cost is
at most 3.

Proof. If there is a Condorcet winner, by Lemma 4, the distortion is at most
3. Otherwise, by Lemma 7, the algorithm always returns a winner. Suppose it
returns alternative W as the winner, by Lemma 6, W has a distortion at most
3 with any alternative X as the optimal solution. 
�

Generalizing Median: Percentile Distortion
Instead of just considering the median objective, we also consider a more general
objective: the α-percentile social cost. Let α-PC(Y ) denote the value from the
set {d(i, Y ) : i ∈ A}, that α fraction of the values lie below α-PC(Y ). Thus
median is a special case when α = 1

2 , med(Y ) = 1
2 -PC(Y ). It was shown in [2]

Theorem 17 that the worst-case distortion when α ∈ [0, 1
2 ] in that setting (only

have agent’s ordinal preferences over alternatives) is unbounded, and the same
example shows α ∈ [0, 1

2 ] in our setting is also unbounded. However, we are able
to give a distortion of 3 for α ∈ [12 , 1] in this paper, while for the setting in [2], the
lower bound for distortion when α ∈ [12 , 2

3 ] is 5. The reason is that the ordinal
preferences between alternatives are also available in our setting. We show in
the full version that Algorithm 2 gives a distortion of at most 3 not only for the
median objective, but also for the general α-percentile objective with 1

2 ≤ α ≤ 1,
because all the lemmas we used to prove the conclusion for the median objective
can be generalized to α-percentile.

Theorem 9. The distortion of Algorithm 2 for the α-PC objective social cost
with 1

2 ≤ α ≤ 1 is at most 3.
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Algorithm 2 and the Total Social Cost
Although Algorithm 2 is designed for the median objective, it also performs quite
well for the sum objective. Interestingly, the distortion of this algorithm for the
minimum total social cost is at most 5, which is the same as Copeland (the best
known deterministic algorithm with no knowledge of candidate preferences).
Thus this algorithm gives a distortion of 3 for median (and in fact for all α-
percentile objectives) and distortion of 5 for sum simultaneously. In settings
where we are not sure which objectives to optimize, or ones where we care both
about the total social good, and about fairness, this social choice mechanism
provides the best of both worlds. The following theorem is proved in the full
version.

Theorem 10. The distortion of Algorithm 2 for minimum total social cost is
at most 5, and this bound is tight.

3 Facility Assignment Problems

The mechanism we used for approximation of total social cost in Theorem 1
can be applied to far more general problems. In this section, we describe a
set of facility assignment problems that fit in this framework. As before, let
A = {1, 2, . . . , n} be a set of agents, and F = {F1, F2, . . . , Fm} be a set of
facilities, with each agent i having a preference ranking σi over the facilities,
and σ = (σ1, . . . , σn).

As in the social choice model, we assume that there exists an arbitrary
unknown metric d : (A ∪ F)2 → R≥0 on the set of agents and facilities. The
distances d(i, Fj) between agents and facilities are unknown, but the ordinal
preferences σ and the distances l between facilities are given. Let D(σ, l) be the
set of metrics consistent with σ and l, as defined previously in Sect. 2.

Unlike for social choice, our goal is now to choose which facilities to open, and
which agents should be assigned to which facilities. Formally, we must choose
an assignment x : A → F , where x(i) is the facility that i is assigned to. Every
i ∈ A must be assigned to one (and only one) facility in F ; other than that,
there could be arbitrary constraints on the assignment. Here are some examples
of constraints which fall into our framework: each facility Fi has a capacity ci,
which is the maximum number of agents that can be assigned to Fi; at least (or
at most) p facilities should have agents assigned to them; agents i and j must
be (or must not be) assigned to the same facility, etc. The social choice model
is a special case of this one with the constraint that exactly one facility must
be opened, and all agents must be assigned to it. Note that the constraints are
only on the assignment, and independent of the metric space d. An assignment
x is valid if it satisfies all constraints. Let X be the set of all valid assignments.

The Cost Function of Assignments. The cost of an assignment x consists
of two parts. The first part is the distance cost between agents and facilities.
∀i ∈ A, let si denote the distance between i and the facility it is assigned to,
i.e., si = d(i, x(i)). For a given metric d and assignment x, let s(x, d) denote the



Ordinal Approximation for Social Choice, Matching, and Facility Location 15

vector of distances between each i ∈ A and x(i), i.e., s(x, d) = (s1, s2, . . . , sn).
Let cd : Rn

≥0 → R≥0 be a cost function that takes a vector of distances as input.
For example, this could simply sum up all the distances, take the maximum
distance for an egalitarian objective, etc. To be as general as possible, instead of
fixing a specific function cd we consider the set of distance cost functions that are
monotone nondecreasing and subadditive. Formally, cd is monotonically nonde-
creasing means that for any vectors s and s′ such that s ≤ s′ componentwise, we
have that cd(s) ≤ cd(s′). Any reasonable cost function should satisfy this prop-
erty if agents desire to be assigned to closer facilities. cd being subadditive means
that for any vectors s and s′, we have that cd(s + s′) ≤ cd(s) + cd(s′). While not
all functions are subadditive, many important ones are, as they represent the
concept of “economies of scale”, a common property of realistic costs.

The second part of the assignment cost is the facility cost. Let cf (x) denote
the facility cost for assignment x. cf can be an arbitrary function over the assign-
ments, for example, the opening cost of facilities, the penalty (or reward) for
assigning certain agents to the same facility, etc. Our framework includes all
such functions, and thus is quite general, as we discuss below. The main compo-
nents needed for our framework to work is that the function cf does not depend
on the distances, only on x, and that the function cd is subadditive.

The total cost c(x, d) of an assignment x is the sum of the distance cost
and the facility cost, i.e. c(x, d) = cd(s(x, d)) + cf (x). We study algorithms to
approximate the minimum cost assignment given only agents’ ordinal preferences
over facilities, and the distances between facilities, as described above.

Social Cost Distortion. As for social choice, we use the notion of distortion to
measure the quality of an assignment in the worst case, similar to the notation in
[10,27]. For any assignment x, we define the distortion of x as the ratio between
the social cost of x and the optimal assignment:

dist(x, σ, l) = sup
d∈D(σ,l)

c(x, d)
minx′∈X c(x′, d)

A social choice function f on A and F takes σ and l as input, and returns a
valid assignment on A and F . We say the distortion of f on σ and l is the same
as the distortion of the assignment returned by f . In other words, the distortion
of an assignment function f on a profile σ and facility distances l is the worst-
case ratio between the social cost of x = f(σ, l), and the social cost of the true
optimal assignment, to obtain which we would need the true distances d.

Approximation Ratio of Omniscient Algorithms. Consider omniscient
algorithms which know the true numerical distances between agents and facilities
for the facility assignment problems, in other words, the metric d. In some sense,
the goal of our work is to determine when algorithms with only limited infor-
mation can compete with such omniscient algorithms. With the full distances
information, we can of course obtain the optimal assignment using brute force,
while for our algorithms with limited knowledge this is impossible even given
unlimited computational resources. Nevertheless, we are also interested in what
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is possible to achieve if we restrict ourselves to polynomial time. To differenti-
ate traditional approximation algorithms from algorithms with small distortion,
suppose that an omniscient approximation algorithm f̃ returns assignment x.
Then we denote the approximation ratio of a valid assignment x as:

ratio(x) =
c(x, d)

minx′∈X c(x′, d)

Thus we say the approximation ratio of an omniscient algorithm f̃ is β if for
any input of the problem, the assignment x returned by f̃ has ratio(x) ≤ β.

3.1 Examples of Facility Assignment Problems

The total social cost problem we discussed in Sect. 2.1 is a special case of the
facility assignment problem such that the constraint is only one facility (alter-
native) is chosen, and all agents are assigned to it. For any assignment x, the
facility cost function cf (x) = 0, and the distance cost function cd(s(x, d)) is the
sum of distances from the winning alternative to all agents in the metric d. cd is
monotone and additive (thus subadditive). Here are some other examples that
fit into our framework:

Minimum Weight Metric Bipartite Matching. Given a set of agents A
and a set of facilities F such that |A| = |F| = n. G = (A,F , E) is an undirected
complete bipartite graph. The facilities and agents lie in a metric space d. The
weight of each edge (i, F ) ∈ E is the distance between i and F , w(i, F ) =
d(i, F ). The goal is to find a minimum weight perfect matching of the bipartite
graph given only ordinal information. We can also consider Egalitarian bipartite
matching, where the goal is to find a perfect matching such that maximum
edge weight (instead of the total weight) in the matching is minimized [9]. Here
cd(s(x, d)) is the maximum edge weight in the assignment.

Metric Facility Location. In this problem, one is given a set of agents A and
a set of facilities F such that |A| = n, |F| = m. The facilities and agents lie in
a metric space d. Each facility Fj ∈ F has an opening cost fj . Each agent is
assigned to a facility; in different versions there may be capacities on the number
of agents assigned to a facility, lower bounds on the number of agents assigned
to a facility, or various other constraints [19]. The goal is to find a subset of
facilities F̂ ⊆ F to open, so that the sum of opening costs for facilities in F̂ and
total distance of the assignment is minimized.

k-center and k-median. The goal in the classic k-center problem is to open
a set of k facilities, with each agent assigned to the closest one. The optimal
solution is the subset of F̂ which minimizes maxi∈A d(i, x(i)). In k-median, the
goal is to minimize the sum of distances of agents to the facilities instead of the
maximum distance. This problem can be thought of as a multi-winner election, in
which we elect a committee of k candidates, and the quality of this committee for
a voter depends on how well the closest candidate on the committee represents
that voter.
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3.2 Distortion of Facility Assignment Problems

Given agents A = {1, 2, . . . , n} and facilities F = {F1, F2, . . . , Fm}, suppose
facility F ′ is i’s top choice in F . We create a new agent ĩ at the location of F ′

in the metric space. Consequently, ∀F ∈ F , d(̃i, F ) = d(F ′, F ). Denote the set
of the new agents as Ã = {1̃, 2̃, . . . , ñ}.

The original assignment problem is on agents A and facilities F , and only
ordinal preferences of agents in A over facilities are given. The projected problem
is on agents Ã and facilities F , and we know the actual distances between agents
in Ã and facilities F , since we know the distances l between facilities. The
constraints and costs cd and cf remain the same for both the original and the
projected problem; the only difference is in the distances d. Our main result is
that if we have a β-approximation assignment to the minimum assignment cost
on the projected problem, then we can get an assignment that has a distortion
of 2β + 1 for the original problem in polynomial time.

Theorem 11. Given a valid assignment x̃ for the projected problem on Ã and
F , with ratio(x̃) ≤ β, the assignment x(i) = x̃(̃i) has distortion of at most
(1 + 2β) for original assignment problem on A and F .

Proof. First, x̃ is a valid assignment for the projected problem on Ã and F , so
x must also be a valid assignment for the original problem on A and F . This is
because the constraints are only on the assignment, and are independent of the
metric space d. For the same reason, the facility cost of x equals the facility cost
of x̃, cf (x) = cf (x̃).

Now consider the distance cost of x. Let x∗ denote the optimal assignment
for the original problem. ∀i ∈ A, let si = d(i, x(i)), ti = d(i, ĩ), bi = d(̃i, x(i)).
Similarly, let s∗

i = d(i, x∗(i)), b∗
i = d(̃i, x∗(i)).

For any agent i and facility x(i), by triangle inequality,

si = d(i, x(i)) ≤ d(i, ĩ) + d(̃i, x(i)) = ti + bi

Because cd is monotonically nondecreasing and subadditive,

cd(s1, s2, . . . , sn) ≤ cd(t1 + b1, t2 + b2, . . . , tn + bn)
≤ cd(t1, t2, . . . , tn) + cd(b1, b2, . . . , bn)

Therefore, the cost of our assignment x is bounded as follows:

cf (x) + cd(s(x, d)) = cf (x) + cd(s1, s2, . . . , sn)
= cf (x̃) + cd(s1, s2, . . . , sn)
≤ cf (x̃) + cd(t1, t2, . . . , tn) + cd(b1, b2, . . . , bn)

Because ĩ is located at i’s top choice facility, and x∗(i) is a facility, we thus
know that ti ≤ s∗

i , and by monotonicity cd(t1, t2, . . . , tn) ≤ cd(s∗
1, s

∗
2, . . . , s

∗
n).

Thus,

cf (x) + cd(s(x, d)) ≤ cf (x̃) + cd(t1, t2, . . . , tn) + cd(b1, b2, . . . , bn)
≤ cf (x̃) + cd(s∗

1, s
∗
2, . . . , s

∗
n) + cd(b1, b2, . . . , bn)
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We know that x̃ is a β-approximation to the optimum assignment for the
projected problem. Its total cost is exactly cf (x̃) + cd(b1, b2, . . . , bn), since the
distance from ĩ to x̃(̃i) = x(i) is exactly bi. Now consider another assignment for
the projected problem, in which ĩ is assigned to x∗(i). The cost of this assignment
is cf (x∗) + cd(b∗

1, b
∗
2, . . . , b

∗
n), by definition of b∗

i . Since x̃ is a β-approximation,
we therefore know that

cf (x̃) + cd(b1, b2, . . . , bn) ≤ βcf (x∗) + βcd(b∗
1, b

∗
2, . . . , b

∗
n),

and thus

cf (x) + cd(s(x, d)) ≤ cf (x̃) + cd(s∗
1, s

∗
2, . . . , s

∗
n) + cd(b1, b2, . . . , bn)

≤ cd(s∗
1, s

∗
2, . . . , s

∗
n) + βcf (x∗) + βcd(b∗

1, b
∗
2, . . . , b

∗
n)

For any agent i and facility x∗(i) in x∗, by triangle inequality,

b∗
i = d(̃i, x∗(i)) ≤ d(i, x∗(i)) + d(i, ĩ) ≤ 2d(i, x∗(i)) = 2s∗

i

d(i, ĩ) ≤ d(i, x∗(i)) above since ĩ is located at the closest facility to i. Because cd

is monotone and subadditive, we also have that

cd(b∗
1, b

∗
2, . . . , b

∗
n) ≤ cd(2s∗

1, 2s∗
2, . . . , 2s∗

n) ≤ 2cd(s∗
1, s

∗
2, . . . , s

∗
n)

Putting everything together,

cf (x) + cd(s(x, d)) ≤ cd(s∗
1, s

∗
2, . . . , s

∗
n) + βcf (x∗) + βcd(b∗

1, b
∗
2, . . . , b

∗
n)

≤ βcf (x∗) + cd(s∗
1, s

∗
2, . . . , s

∗
n) + 2βcd(s∗

1, s
∗
2, . . . , s

∗
n)

= βcf (x∗) + (1 + 2β)cd(s∗
1, s

∗
2, . . . , s

∗
n)

≤ (1 + 2β)(cf (x∗) + cd(s(x∗, d))) 
�
Note that the above theorem immediately implies that if we are only con-

cerned with what is possible to achieve given limited ordinal information in addi-
tion to distances between facilities, and are not worried about our algorithms
running in polynomial time, then we can always form an assignment with dis-
tortion of at most 3 from knowing only σ and l. This is because we can solve the
projected problem with brute force, and then we have β = 1. This bound of 3
is tight for many facility assignment problems: consider for example an instance
of min-cost metric matching with two agents and two facilities, with both pre-
ferring F1 to F2. One of the agents has distance to F1 of 0, and one is located
halfway between F1 and F2, but since we only have ordinal information we do
not know which agent is which. If we assign the wrong agent to F1, then we end
up with distortion of 3, and it is impossible to do better for any deterministic
mechanism.

If on the other hand we want to form poly-time algorithms with small
distortion, the above theorem gives a black-box reduction: if we have a β-
approximation algorithm for the omniscient case, then we can form a 1 + 2β-
distortion algorithm for the ordinal case. Actually, we get a 1+2β-distortion for
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the distance cost, and a β-distortion for the facility cost, which is shown in the
second-to-last line of the proof for Theorem 11. This leads to the following (see
the full version):

Corollary 12. We can achieve the following distortion in polynomial time:

1. At most 3 for the minimum weight bipartite matching problem.
2. At most 3 for Egalitarian bipartite matching.
3. At most 3.976 for the facility location problem (1.488-approximation for the

facility cost, and 3.976-approximation for the distance cost).
4. At most 5 for the k-center problem.
5. At most 6.35 for the k-median problem.

Note that the median function, unlike sum and maximum, is not subadditive,
and thus does not fit into our framework. In fact, while both min-cost and egal-
itarian matching problems have algorithms with small distortion in our setting,
the same is not possible for forming a matching where the objective function is
the cost of the median edge: see the full version for a lower bound.

Acknowledgements. We thank Onkar Bhardwaj for discussion of the lower bound
example for the k-median problem. This work was partially supported by NSF award
CCF-1527497.
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Abstract. In two-player games on graphs, the players move a token
through a graph to produce an infinite path, which determines the win-
ner or payoff of the game. Such games are central in formal verification
since they model the interaction between a non-terminating system and
its environment. We study bidding games in which the players bid for the
right to move the token. Two bidding rules have been defined. In Rich-
man bidding, in each round, the players simultaneously submit bids, and
the higher bidder moves the token and pays the other player. Poorman
bidding is similar except that the winner of the bidding pays the “bank”
rather than the other player. While poorman reachability games have
been studied before, we present, for the first time, results on infinite-
duration poorman games. A central quantity in these games is the ratio
between the two players’ initial budgets. The questions we study concern
a necessary and sufficient ratio with which a player can achieve a goal.
For reachability objectives, such threshold ratios are known to exist for
both bidding rules. We show that the properties of poorman reachability
games extend to complex qualitative objectives such as parity, similarly
to the Richman case. Our most interesting results concern quantitative
poorman games, namely poorman mean-payoff games, where we con-
struct optimal strategies depending on the initial ratio, by showing a
connection with random-turn based games. The connection in itself is
interesting, because it does not hold for reachability poorman games.
We also solve the complexity problems that arise in poorman bidding
games.

1 Introduction

Two-player infinite-duration games on graphs are a central class of games in for-
mal verification [3] and have deep connections to foundations of logic [35]. They
are used to model the interaction between a system and its environment, and
the problem of synthesizing a correct system then reduces to finding a winning
strategy in a graph game [33]. Theoretically, they have been widely studied.
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For example, the problem of deciding the winner in a parity game is a rare
problem that is in NP and coNP [22], not known to be in P, and for which a
quasi-polynomial algorithm was only recently discovered [11].

A graph game proceeds by placing a token on a vertex in the graph, which
the players move throughout the graph to produce an infinite path (“play”)
π. The game is zero-sum and π determines the winner or payoff. Two ways to
classify graph games are according to the type of objectives of the players, and
according to the mode of moving the token. For example, in reachability games,
the objective of Player 1 is to reach a designated vertex t, and the objective of
Player 2 is to avoid t. An infinite play π is winning for Player 1 iff it visits t.
The simplest mode of moving is turn based: the vertices are partitioned between
the two players and whenever the token reaches a vertex that is controlled by a
player, he decides how to move the token.

We study a new mode of moving in infinite-duration games, which is called
bidding, and in which the players bid for the right to move the token. The bidding
mode of moving was introduced in [27,28] for reachability games, where two
bidding rules were defined. The first bidding rule, called Richman rule (named
after David Richman), is as follows: Each player has a budget, and before each
move, the players submit bids simultaneously, where a bid is legal if it does not
exceed the available budget. The player who bids higher wins the bidding, pays
the bid to other player, and moves the token. The second bidding rule, which
we focus on in this paper and which is called poorman bidding in [27], is similar
except that the winner of the bidding pays the “bank” rather than the other
player. Thus, the bid is deducted from his budget and the money is lost. Note
that while the sum of budgets is constant in Richman games, in poorman games,
the sum of budgets shrinks as the game proceeds.

Bidding for moving is a general concept that is relevant in any setting in which
a scheduler needs to decide the order in which selfish agents perform actions.
For example, in a multi-process system, a scheduler decides the order in which
the processes execute. Allowing the processes to bid for moving is one method
to resolve this conflict, and it ensures that processes never starve, a property
that is called fairness. Systems that use internal currency to prevent free-riding
are called “scrip systems” [24], and are popular in databases for example. Other
examples in which bidding for moving can be used to determine agent ordering
include multi-rounded negotiations [36], sequential auctions [29], and local search
for Nash equilibria [19].

Poorman bidding is appropriate in modeling settings in which the agents pay
the scheduler to gain priority. In order to accept payment, a scheduler needs to be
a selfish entity. An example of such a scheduler appears in Blockchain technology
like the one used in Bitcoin or Etherium. As another example, when the agents
are buyers in a sequential auction, the scheduler models the auctioneer, and the
agents’ winning bids are its revenue [21]. An advantage of the poorman rule
over the Richman rule is that their definition is easier to generalize to other
important domains such as multi-player games, where the restriction of fixed
sum of budgets in Richman bidding, is an obstacle.
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A central quantity in bidding games is the ratio of the players’ initial budgets.
Formally, let Bi ∈ IR≥0, for i ∈ {1, 2}, be Player i’s initial budget. The total
initial budget is B = B1 + B2 and Player i’s initial ratio is Bi/B. The first
question that arises in the context of bidding games is a necessary and sufficient
initial ratio for a player to guarantee winning. For reachability games, it was
shown in [27,28] that such threshold ratios exist in every Richman and poorman
reachability game: for every vertex v there is a ratio Th(v) ∈ [0, 1] such that (1)
if Player 1’s initial ratio exceeds Th(v), he can guarantee winning, and (2) if his
initial ratio is less than Th(v), Player 2 can guarantee winning. This is a central
property of the game, which is a form of determinacy, and shows that no ties
can occur1.

An interesting probabilistic connection was observed in [27,28] for reachabil-
ity Richman games. For r ∈ [0, 1], the random turn-based game that corresponds
to a game G w.r.t. r, denoted RTBr(G), is a special case of stochastic game [17] in
which, rather than bidding for moving, in each round, independently, Player 1
is chosen to move with probability r and Player 2 moves with the remaining
probability of 1 − r. The probabilistic connection is the following: the probabil-
ity with which Player 1 can guarantee reaching his target in the uniform game
RTB0.5(G) from a vertex v equals 1−Th(v) in G. Random-turn based games have
been extensively studied (see for example the seminal paper [32]). For poorman
reachability games, no such probabilistic connection is known. Moreover, such a
connection is unlikely to exist since there are finite poorman games with irra-
tional threshold ratios. The lack of a probabilistic connection makes poorman
games technically more complicated.

More interesting, from the synthesis and logic perspective, are infinite win-
ning conditions, but they have only been studied in the Richman setting previ-
ously [5]. We show, for the first time, existence of threshold ratios in qualitative
poorman games with infinite winning conditions such as parity. The proof tech-
nique is similar to the one for Richman bidding: we show a linear reduction from
poorman games with qualitative objectives to poorman reachability games.

Things get more interesting in poorman mean-payoff games, which are quan-
titative games; an infinite play π of the game is associated with a payoff c ∈ IR≥0,
which is Player 1’s reward and Player 2’s cost. Accordingly, we refer to the players
in a mean-payoff game as Max and Min. The payoff of π is determined according
to the weights it traverses and, as in the previous games, the bids are only used
to determine whose turn it is to move. The central question in these games is:
Given a value c ∈ Q, what is the initial ratio that is necessary and sufficient for
Max to guarantee a payoff of c? More formally, we say that c is the value with
respect to a ratio r ∈ [0, 1] if for every ε > 0, we have (1) when Max’s initial
ratio is r + ε, he can guarantee a payoff of at least c, and (2) intuitively, Max
cannot hope for more: if Max’s initial ratio is r − ε, then Min can guarantee a
payoff of at most c.

1 When the initial budget of Player 1 is exactly Th(v), the winner of the game depends
on how we resolve draws in biddings, and our results hold for any tie-breaking
mechanism.



24 G. Avni et al.

Our most technically-involved contribution is a construction of optimal
strategies in poorman mean-payoff games, which depend on the initial ratio
r ∈ [0, 1]. The crux of the solution is reasoning about strongly-connected games:
we first reason on the bottom strongly-connected components of a game graph
and extend the solution by, intuitively, playing a reachability game in the rest of
the graph. Before describing our solution, let us highlight an interesting differ-
ence between Richman and poorman rules. With Richman bidding, it is shown
in [5] that a strongly-connected Richman mean-payoff game has a value that
does not depend on the initial ratio and only on the structure of the game.
It thus seems reasonable to guess that the initial ratio would not matter with
poorman bidding as well. We show, however, that this is not the case; the higher
Max’s initial ratio is, the higher the payoff he can guarantee. We demonstrate
this phenomenon with the following simple game. Technically, each vertex in
a mean-payoff game is labeled by a weight. Consider an infinite play π. The
energy of a prefix πn of length n of π, denoted E(πn), is the sum of the weights
it traverses. The payoff of π is lim infn→∞ E(πn)/n.

Example 1. Consider the mean-payoff bidding game that is depicted in Figure 1,
where for convenience the weights are placed on the edges rather than the ver-
tices. We take the viewpoint of Min in this example. We consider the case of
r = 1

2 , and claim that the value with respect to r = 1
2 is 0. Note that the players’

choices upon winning a bid in the game are obvious, and the difficulty in devis-
ing a strategy is finding the right bids. Intuitively, Min copies Max’s strategy.
Suppose, for example, that Min starts with a budget of 1 + ε and Max starts
with 1, for some ε > 0. A strategy for Min that ensures a payoff of 0 is based on
a stack of numbers as follows: In round i, if the stack is empty Min bids ε · 2−i,
and otherwise the first number of the stack. If Min wins, he removes the first
number on the stack (if non-empty). If Max wins, Min pushes Max’s winning
bid on the stack. It is not hard to show that Min never bids higher than the
available budget. Also, we can show that every Max win is eventually matched,
thus Min’s queue empties infinitely often and the energy hits 0 infinitely often.
Since we use lim inf in the definition of the payoff, Min guarantees a non-positive
payoff. Showing that Max can guarantee a non-negative payoff with an initial
ratio of 1

2 + ε is harder, and a proof for the general case can be found in Sect. 4
(Theorem 3).

We show that the value c decreases with Max’s initial ratio r. We set r = 1
3 .

Suppose, for example, that Min’s initial budget is 2+ ε and Max’s initial budget
is 1. We claim that Min can guarantee a payoff of −1/3. His strategy is similar
to the one above, only that whenever Max wins with b, Min pushes b to the
stack twice. Now, every Max win is matched by two Min wins, and the claim
follows. ��

In order to solve strongly-connected poorman mean-payoff games, we identify
a probabilistic connection for these games. Consider such a game G and a ratio
r ∈ [0, 1]. Recall that RTBr(G) is a random turn-based game in which Max chooses
the next move with probability r and Min with probability 1 − r. The game
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1 −1

Fig. 1. A mean-payoff game.

1 −1 −1 −2

v1 v2 v3 v4

Fig. 2. A second mean-payoff game.

RTBr(G) is a stochastic mean-payoff game, and its value, denoted MP(RTBr(G)),
is the optimal expected payoff that the players can guarantee. The probabilistic
connection we show is that the value in G with respect to r equals the value
MP(RTBr(G)).

Reachability games tend to be simpler than mean-payoff games, thus we
find the existence of a probabilistic connection in poorman mean-payoff games
surprising given the inexistence of such a connection for poorman reachability
games. A corollary of the result is that poorman mean-payoff games with initial
ratio 0.5 are essentially equivalent to mean-payoff Richman games (see details
in Remark 1). We are not aware of previous such connections between the two
bidding rules.

Finally, we address, for the first time, complexity issues in poorman games;
namely, we study the problem of finding threshold ratios in poorman games.

Due to lack of space, some proofs can be found in the full version [6].

Further Related Work. Beyond the works that are directly relevant to us,
which we have compared to above, we list previous work on Richman games.
To the best of our knowledge, since their introduction, poorman games have not
been studied. Motivated by recreational games, e.g., bidding chess [9,26], discrete
bidding games are studied in [18], where the money is divided into chips, so a
bid cannot be arbitrarily small unlike the bidding games we study. Non-zero-sum
two-player Richman games were recently studied in [23].

2 Preliminaries

A graph game is played on a directed graph G = 〈V,E〉, where V is a finite set
of vertices and E ⊆ V × V is a set of edges. The neighbors of a vertex v ∈ V ,
denoted N(v), is the set of vertices {u ∈ V : 〈v, u〉 ∈ E}, and we say that
G has out-degree 2 if for every v ∈ V , we have |N(v)| = 2. A path in G is a
finite or infinite sequence of vertices v1, v2, . . . such that for every i ≥ 1, we have
〈vi, vi+1〉 ∈ E.

Objectives. An objective O is a set of infinite paths. In reachability games,
Player 1 has a target vertex vR and an infinite path is winning for him if it
visits vR. In parity games each vertex has a parity index in {1, . . . , d}, and an
infinite path is winning for Player 1 iff the maximal parity index that is visited
infinitely often is odd. We also consider games that are played on a weighted
graph 〈V,E,w〉, where w : V → Q. Consider an infinite path π = v1, v2, . . ..
For n ∈ IN, we use πn to denote the prefix of length n of π. We call the sum of
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weights that πn traverses the energy of the game, denoted E(πn). Thus, E(πn) =∑
1≤j<n w(vj). In energy games, the goal of Player 1 is to keep the energy level

positive, thus he wins an infinite path iff for every n ∈ IN, we have E(πn) > 0.
Unlike the previous objectives, a path in a mean-payoff game is associated with
a payoff, which is Player 1’s reward and Player 2’s cost. Accordingly, in mean-
payoff games, we refer to Player 1 as Min and Player 2 as Max. We define the
payoff of π to be lim infn→∞ 1

nE(πn). We say that Max wins an infinite path of
a mean-payoff game if the payoff is non-negative.

Strategies and Plays. A strategy prescribes to a player which action to take
in a game, given a finite history of the game, where we define these two notions
below. For example, in turn-based games, a strategy takes as input, the sequence
of vertices that were visited so far, and it outputs the next vertex to move to. In
bidding games, histories and strategies are more complicated as they maintain
the information about the bids and winners of the bids. A strategy prescribes
an action 〈b, v〉, where b is a bid that does not exceed the available budget and
v is a vertex to move to upon winning. The winner of the bidding is the player
who bids higher, where we assume there is some mechanism to resolve draws,
and our results are not affected by what the mechanism is. More formally, for
i ∈ {1, 2}, let Bi be the initial budgets of Player i, and, for a finite history
π, let Wi(π) be the sum of Player i winning bids throughout π. In Richman
bidding, the winner of a bidding pays the loser, thus Player 1’s budget following
π is B1 − W1 + W2. In poorman bidding, the winner pays the “bank”, thus
Player 1’s budget following π is B1 − W1. Note that in poorman bidding, the
loser’s budget does not change following a bidding. An initial vertex together
with two strategies for the players determine a unique infinite play π for the
game. The vertices that π visits form an infinite path path(π). Player 1 wins π
according to an objective O iff path(π) ∈ O. We call a strategy f winning for
Player 1 if for every strategy g of Player 2 the play they determine satisfies O.
Winning strategies for Player 2 are defined dually. For more formal definitions
see the full version.

Definition 1 (Initial ratio). Suppose the initial budget of Player i is Bi, for
i ∈ {1, 2}, then the total initial budget is B = B1 + B2 and Player i’s initial
ratio is Bi/B. We assume B > 0.

The first question that arrises in the context of bidding games asks what is
the necessary and sufficient initial ratio to guarantee an objective. We generalize
the definition in [27,28]:

Definition 2 (Threshold ratios). Consider a poorman or Richman game G,
a vertex v, and an initial ratio r and objective O for Player 1. The threshold
ratio in v, denoted Th(v), is a ratio in [0, 1] such that if r > Th(v), then Player 1
has a winning strategy that guarantees O is satisfied, and if r < Th(v), then
Player 2 has a winning strategy that violates O.

Recall that we say that Max wins a mean-payoff game G = 〈V,E,w〉 if
the mean-payoff value is non-negative. Finding Th(v) for a vertex v in G thus
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answers the question of what is the minimal ratio of the initial budget that
guarantees winning. A more refined question asks what is the optimal payoff
Max can guarantee with an initial ratio r. Formally, for a constant c ∈ Q, let Gc

be the mean-payoff game that is obtained from G by decreasing all weights by c.

Definition 3 (Mean-payoff values). Consider a mean-payoff game G =
〈V,E,w〉 and a ratio r ∈ [0, 1]. The value of G with respect to c, denoted
MPr(G, v), is such that Th(v) = r in Gc.

Random Turn-Based Games. In a 2.5-player game the vertices of the graph
are partitioned between two players and a nature player. As in turn-based games,
whenever the game reaches a vertex of Player i, for i = 1, 2, he choses how the
game proceeds, and whenever the game reaches a vertex v that is controlled by
nature, the next vertex is chosen according to a probability distribution that
depends only on v. For more details see the full version.

Consider a game G = 〈V,E〉. The random-turn based game with ratio r ∈
[0, 1] that is associated with G is a 2.5-player game that intuitively simulates the
fact that Player 1 chooses the next move with probability r and Player 2 chooses
with probability 1 − r. Formally, we define RTBr(G) = 〈V1, V2, VN , E,Pr, w〉,
where each vertex in V is split into three vertices, each controlled by a different
player, thus for α ∈ {1, 2, N}, we have Vα = {vα : v ∈ V }, nature vertices
simulate the fact that Player 1 chooses the next move with probability r, thus
Pr[vN , v1] = r = 1 − Pr[vN , v2], and reaching a vertex that is controlled by one
of the two players means that he chooses the next move, thus E = {〈vα, uN 〉 :
〈v, u〉 ∈ E and α ∈ {1, 2}}. When G is weighted, then the weights of v1, v2, and
vN equal that of v.

The value of a 2.5-player game is a well-known to exist. We give an intuitive
definition below and refer the reader for more details in the full version.

Definition 4 (Values). Let r ∈ [0, 1]. For a qualitative game G, the value of
RTBr(G), denoted val(RTBr(G)), is the probability that Player 1 wins when he
plays optimally. For a mean-payoff game G, the mean-payoff value of RTBr(G),
denoted MP(RTBr(G)), is the maximal expected payoff Max obtains when he plays
optimally.

3 Poorman Parity Games

For qualitative objectives, poorman games have mostly similar properties to the
corresponding Richman games. We start with reachability objectives, which were
studied in [27,28]. The objective they study is slightly different than ours. We
call their objective double-reachability: both players have targets and the game
ends once one of the targets is reached. As we show below, for our purposes,
the variants are equivalent since there are no draws in finite-state poorman and
Richman double-reachability games.

Consider a double-reachability game G = 〈V,E, u1, u2〉, where, for i = 1, 2,
the target of Player i is ui. In both Richman and poorman bidding, trivially
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Player 1 wins in u1 with any initial budget and Player 2 wins in u2 with any
initial budget, thus Th(u1) = 0 and Th(u2) = 1. For v ∈ V , let v+, v− ∈ N(v) be
such that, for every v′ ∈ N(v), we have Th(v−) ≤ Th(v′) ≤ Th(v+).

Theorem 1 [27,28]. Threshold ratios exist in Richman and poorman reachabil-
ity games. Moreover, consider a double-reachability game G = 〈V,E, u1, u2〉. In
Richman bidding, for v ∈ V \{u1, u2}, we have Th(v) = 1

2

(
Th(v+)+Th(v−)

)
, and

it follows that Th(v) = val(RTB0.5(G, v)) and that Th(v) is a rational number. In
poorman bidding, for v ∈ V \ {u1, u2}, we have Th(v) = Th(v+)/

(
1 − Th(v−) +

Th(v+)
)
.

We continue to study poorman games with richer objectives.

Theorem 2. Poorman parity games are linearly reducible to poorman reacha-
bility games. Specifically, threshold ratios exist in poorman parity games.

Proof. The crux of the proof is to show that in a bottom strongly-connected
component (BSCC, for short) of G, one of the players wins with every initial
budget. Thus, the threshold ratios for vertices in BSCCs are either 0 or 1. For
the rest of the vertices, we construct a reachability game in which a player’s goal
is to reach a BSCC that is “winning” for him. The details can be found in the
full version. ��

4 Poorman Mean-Payoff Games

This section consists of our most technically challenging contribution. We con-
struct optimal strategies for the players in poorman mean-payoff games. The
crux of the solution regards strongly-connected mean-payoff games, which we
develop in the first three sub-sections.

Consider a strongly-connected game G and an initial ratio r ∈ [0, 1]. It is not
hard to see that Theorem 2 implies that the value in G w.r.t. r does not depend
on the initial vertex. We write MPr(G) to denote the value of G w.r.t. r. We
show the following probabilistic connection: the value MPr(G) equals the value
MP(RTBr(G)) of the random turn-based mean-payoff game RTBr(G) in which Max
chooses the next move with probability r and Min with probability 1 − r.

4.1 Warm Up: Solving a Simple Game

In this section we solve a simple game through which we demonstrate the ideas
of the general case. Recall that in an energy game, Min wins a finite play if
the sum of weights it traverses, a.k.a. the energy, is 0 and Max wins an infinite
play in which the energy stays positive throughout the play. Consider the game
depicted in Fig. 1 and view the game as an energy game. It is shown in [27] that
if the initial energy is k ∈ IN, then Max wins iff his initial ratio exceeds k+2

2k+2 .
We describe an alternative proof for the first implication.
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We need several definitions. For k ∈ IN, let Sk be the square of area k2. In
Fig. 3, we depict S5. We split Sk into unit-area boxes such that each of its sides
contains k boxes. A diagonal in Sk splits it into a smaller black triangle and a
larger white one. For k ∈ IN, we respectively denote by tk and Tk the areas of
the smaller black triangle and the larger white triangle of Sk. For example, we
have t5 = 10 and T5 = 15, and in general tk = k(k−1)

2 and Tk = k(k+1)
2 .

2 3 4 5 6
tk 1 3 6 10 15
Tk 3 6 10 15 21

. . .

Fig. 3. The square S5 with area 25 and the sizes of some triangles.

Suppose the game starts with energy κ ∈ IN. We show that Max wins when
his ratio exceeds (κ + 2)/(2κ + 2), which equals Tκ+1/(κ + 1)2. For ease of
presentation, it is convenient to assume that the players’ ratios add up to 1+ ε0,
Max’s initial ratio is Tκ+1

(κ+1)2 + ε0, and Min’s initial ratio is tκ+1
(κ+1)2 . For j ≥ 0, we

think of εj as Max’s slush fund in the j-th round of the game, though its role
here is somewhat less significant than in Theorem 1. Consider a play π. We think
of changes in energy throughout π and changes in budget ratio as representing
two walks on two sequences. The energy sequence is IN and the budget sequence
is {tk/Sk : k ∈ IN}, with the natural order in the two sets. We show a strategy
for Max that maintains the invariant that whenever the energy is k ∈ IN, then
Max’s ratio is greater than Tk+1/(k+1)2. That is, whenever Max wins a bidding,
both sequences take a “step up” and when he loses, both sequences take a “step
down”.

We describe Max’s strategy. Upon winning a bidding, Max chooses the +1
edge and we assume Min chooses the −1 edge. The challenge is to find the right
bids. Suppose the energy level is k at the j-th round. Thus, Max and Min’s ratio
are respectively Tk+1/(k + 1)2 + εj and tk+1/(k + 1)2. In other words, Min owns
tk+1 boxes and Max owns a bit more than Tk+1 boxes. Max’s bid consists of two
parts. Max bids 1/(k + 1)2 + εj/2, or in other words, a single box and half of
his slush fund. We first show how the strategy maintains the invariant and then
how it guarantees that an energy of 0 is never reached. Suppose first that Max
wins the bidding. The total number of boxes decreases by one to (k+1)2 −1, his
slush fund is cut by half, and Min’s budget is unchanged. Thus, Max’s ratio of
the budget is more than (Tk+1 − 1)/

(
(k + 1)2 − 1

)
, which equals Tk+2/(k + 2)2.

In other words, after normalization, Max owns more than Tk+2 boxes and Min
owns tk+2 boxes; the budget sequence takes a step up, matching the increase
of 1 in the energy. The other case is when Min wins the bidding, the energy
decreases by 1, and we show that the budget sequences takes a step down. Since
Max bids more than one box, Min overbids, and in the worst case, he bids 1
box. Max’s new ratio is more than Tk+1/((k + 1)2 − 1) = Tk/k2. For example,
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let k = 4. Following a Max win, Max’s ratio is T5−1
t5+T5−1 = 15−1

25−1 = 21
36 = T6

t6+T6

and upon losing, Max’s ratio is 15
25−1 = 10

16 = T4
t4+T4

.
We conclude by showing that the energy never reaches 0 by showing that the

walk on the budget sequence never reaches the first element. Suppose the energy
is k = 1 in the j-th round, thus according to the invariant, Max’s ratio is 3

4 + εj

and Min’s ratio is 1
4 . Recall that Max bids 1

(k+1)2 + εj/2 at energy k, thus he
bids 1

4 + εj/2 at energy 1, and necessarily wins the bidding, implying that the
energy increases.

4.2 Defining a Richer Budget Sequence

The game studied in the previous section is very simple. In this section we
generalize the budget sequence that is used there so that we can handle arbi-
trary strongly-connected graphs. We proceed in two steps. Note that the budget
sequence that is used in the previous section tends to 0.5 as the initial energy
increases. It can thus be used for an initial ratio r = 0.5. The first generalization
allows us to deal with r �= 0.5. Recall the geometric intuition in the previous
section. For some k ∈ IN, Min owns the smaller black triangle tk and Max’s
owns the larger white triangle Tk. The total area of the square is tk + Tk. Let
μ, ν ∈ Q>0. We generalize the sequence by setting Min’s budget to be μ black
triangles and Max’s budget to be ν white triangles. The total budget, or area,
is thus μ · tk + ν · Tk and Max’s initial ratio is r = ν·Tk

ν·Tk+μ·tk
. For example, set

k = 5, μ = 2, and ν = 3. Then, Min has 2 · t5 = 2 · 10 boxes and Max has
3 · T5 = 3 · 15 boxes. It is nice to note the following property, which can of
course be generalized: a Min win with a bid of 2 results in a step down, indeed

3T5
2t5+3T5−2 = 3·15

2·10+3·15−2 = 3·T4
2·t4+3·T4

, and a Max win with a bid of 3 results in a
step up, indeed 3·T5−3

2·t5+3·T5−3 = 3·T6
2·t6+3·T6

.
We make a second generalization. Rather than restricting to a discrete

domain in which k gets values in IN, we replace k with a variable x whose domain
is the real numbers. We define a function Rr : IR → IR by Rr(x) = ν·Tx

μ·tx+ν·Tx
.

Note that limx→∞ Rr(x) = ν
μ+ν , and that the limit is reached from above.

We describe the intuition of how the following lemma is used. A play is going
to induce a walk on a budget sequence B ⊆ IR. Max’s strategy will ensure that
whenever the walk reaches x ∈ B, Max’s ratio is greater than Rr(x). In the
first part of the lemma Min bids μ · y, wins the bidding, and the walk proceeds
down y steps. In the second part, Max bids ν · y, wins the bidding, and the walk
proceeds up y steps. The proof can be found in the full version.

Lemma 1. Consider μ, ν ∈ Q>0 and 0 < y ≤ 1 such that μ > ν · y when ν > μ
and ν > μ · y when μ > ν. Then, for every x ≥ 1 both of the following hold

ν · Tx

μ · tx + ν · Tx − μ · y
≤ ν · Tx−y

μ · tx−y + ν · Tx−y
and

ν · Tx − ν · y

μ · tx + ν · Tx − ν · y
≤ ν · Tx+y

μ · tx+y + ν · Tx+y
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4.3 The Potential and Strength of Vertices

In an arbitrary strongly-connected game the bids in the different vertices cannot
be the same. In this section we develop a technique to determine the “impor-
tance” of a node v, which we call its strength and measures how high the bid
should be in v compared with the other nodes.

Consider a strongly-connected game G = 〈V,E,w〉 and r ∈ [0, 1]. Recall that
RTBr(G) is a random-turn based game in which Max chooses the next move with
probability r and Min with probability 1 − r. A positional strategy is a strategy
that always chooses the same action (edge) in a vertex. It is well known that
there exist optimal positional strategies for both players in 2.5-player mean-
payoff games.

Consider two optimal positional strategies f and g in RTBr(G), for Min and
Max, respectively. For a vertex v ∈ V , let v−, v+ ∈ V be such that f(vMin) = v−

and g(vMax) = v+. We assume w.l.o.g. that MP(RTBr(G)) = 0. The potential of
v, denoted Potr(v), is a known concept in probabilistic models and its existence
is guaranteed [34]. The strength of v is denoted Str(v).

Potr(v) =
ν · Potr(v+) + μ · Potr(v−)

μ + ν
+ w(v) and

Str(v) = νμ · Potr(v+) − Potr(v−)
μ + ν

There are optimal strategies for which Potr(v−) ≤ Potr(v′) ≤ Potr(v+), for
every v′ ∈ N(v), which can be found for example using the strategy iteration
algorithm.

Consider a finite path π = v1, . . . , vn in G. We intuitively think of π as a play,
where for every 1 ≤ i < n, the bid of Max in vi is St(vi) and he moves to v+

i

upon winning. Thus, if vi+1 = v+
i , we say that Max won in vi, and if vi+1 �= v+

i ,
we say that Max lost in vi. Let W (π) and L(π) respectively be the indices in
which Max wins and loses in π. We call Max wins investments and Max loses
gains, where intuitively he invests in increasing the energy and gains a higher
ratio of the budget whenever the energy decreases. Let G(π) and I(π) be the
sum of gains and investments in π, respectively, thus G(π) =

∑
i∈L(π) St(vi) and

I(π) =
∑

i∈W (π) St(vi). Recall that the energy of π is E(π) =
∑

1≤i<n w(vi).
The following lemma connects the strength, potential, and energy. Its proof can
be found in the full version.

Lemma 2. Consider a strongly-connected game G, a ratio r = ν
μ+ν ∈ (0, 1) such

that MP(RTBr(G)) = 0, and a finite path π in G from v to u. Then, Potr(v) −
Potr(u) ≤ E(π) + G(π)/μ − I(π)/ν.

4.4 Putting it All Together

In this section we combine the ingredients developed in the previous sections to
solve arbitrary strongly-connected mean-payoff games.
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Theorem 3. Consider a strongly-connected poorman mean-payoff game G and
a ratio r ∈ [0, 1]. The value of G with respect to r equals the value of the random-
turn based mean-payoff game RTBr(G) in which Max chooses the next move with
probability r, thus MPr(G) = MP(RTBr(G)).

Proof. We assume w.l.o.g. that MP(RTBr(G)) = 0 since otherwise we decrease
this value from all weights. Also, the case where r ∈ {0, 1} is easy since RTBr(G)
is a graph and in G, one of the players can win all biddings. Thus, we assume
r ∈ (0, 1). Recall that MP(π) = lim infn→∞

E(πn)
n . We show a Max strategy

that, when the game starts from a vertex v ∈ V and with an initial ratio of
r + ε, guarantees that the energy is bounded below by a constant, which implies
MP(π) ≥ 0. Showing such a strategy for Max suffices to prove MPr(G) = 0 since
our definition for payoff favors Min.

Before we describe Max’s strategy, we need several definitions. Let S =
maxv∈V |St(v)| and r = ν

ν+μ . We choose 0 < β ≤ 1 such that β · ν · S < 1
and β · μ · ν · S < μ

ν . Let B = {β · i : i ∈ IN}. We choose x0 ∈ B such that
Max’s ratio is greater than Rr(x0), which is possible since Rr tends to 1 − r
from above. Suppose Max is playing according to the strategy we describe below
and Min is playing according to some strategy. The play induces a walk on B,
which we refer to as the budget walk. Max’s strategy guarantees the following:

Invariant: Whenever the budget walk reaches an x ∈ B, then Max’s ratio is
greater than Rr(x).

The walk starts in x0 and the invariant holds initially due to our choice of
x0. Suppose the token is placed on the vertex v ∈ V and the walk reaches x.
Max bids St(v) · β · μ · ν · (Dr(x))−1, where Dr(x) is the denominator of Rr(x),
and he moves to v+ upon winning. If Max loses, the walk proceeds down to
x − ν · St(v) · β, and by Lemma 1, the invariant is maintained. If Max wins, the
walk proceeds up to x + μ · St(v) · β, and by the other part of Lemma 1, and the
invariant is maintained.

In the full version we show the following.

Claim. The budget walk is bounded: For every Min strategy, the budget walk
never reaches x = 1.

Claim. The energy throughout a play is bounded from below. Formally, there
exists a constant c ∈ IR such that for every Min strategy and a finite play π, we
have E(π) ≥ c.

Consider a finite play π. We view π as a sequence of vertices in G. Recall that
the budget walk starts at x0, and that G(π) and I(π) represent sums of strength
of vertices. Suppose the budget walk reaches x following the play π, then x =
x0 − G(π) · ν · β + I(π) · μ · β. Recall that for every v ∈ V , we have St(v) ≥ −S.
Rephrasing Lemma 2, we have −G(π)·ν+I(π)·μ

ν·μ ≤ 2S + E(π). Thus, x−x0
βμν ≤ 2S +

E(π). By the claim above x ≥ 1. It follows that 1−x0
βμν − 2S ≤ E(π), and we are

done. ��
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Remark 1. An interesting connection between poorman and Richman biddings
arrises from Theorem 3. Consider a strongly-connected mean-payoff game G.
For an initial ratio r ∈ [0, 1], let MPr

P(G) denote the value of G with respect
to r with poorman bidding. It is shown in [5] that the value with Richman
bidding does not depend on r, thus we denote it by MPR(G). Moreover, MPR(G)
equals the value in the RTB in which the players are selected uniformly, thus
MPR(G) = MP(RTB0.5(G)). Our results show that poorman games with initial ratio
0.5 coincide with Richman games. Indeed, we have MPR(G) = MP0.5

P (G). To the
best of our knowledge such a connection between the two bidding rules has not
been identified before.

4.5 Extention to General Mean-Payoff Gamesf

We extend the solution in the previous sections to general graphs in a similar
manner to the qualitative case; we first reason about the BSCCs of the graph
and then construct an appropriate reachability game on the rest of the vertices.
Formally, a generalized reachability game is H = 〈V,E, 〈ui, ri〉1≤i≤m〉, where, for
1 ≤ i ≤ m, we have ui ∈ V . Player 1 wins a path in H iff it visits some ui and
when it visits ui, Player 1’s ratio is at least ri. Consider a poorman mean-payoff
game G = 〈V,E,w〉. Recall that, for a vertex v ∈ V , the ratio Th(v) is a necessary
and sufficient initial ratio to guarantee a payoff of 0. Let S be a BSCC of G and
let GS be the restriction of G to S. If there is an r ∈ [0, 1] such that MPr(GS) = 0,
then by Theorem 3, for v ∈ S, we have Th(v) = r. Otherwise, either Th(v) = 0 or
Th(v) = 1. We obtain the generalized reachability game that corresponds with G
by replacing every BSCC S in G with a pair 〈uS , r〉. It is not hard to generalize
the proof of Theorem 1 to generalized reachability poorman games and obtain
the following.

Theorem 4. The threshold ratios in a poorman mean-payoff game G coincide
with the threshold ratios in the generalized reachability game that corresponds to
G.

5 Computational Complexity

We study the complexity of finding the threshold ratios in poorman games. We
formalize this search problem as the following decision problem.

THRESH-BUD. Given a bidding game G, a vertex v, and a ratio r ∈ [0, 1]∩Q,
decide whether Th(v) ≥ r.

Theorem 5. For poorman parity games, THRESH-BUD is in PSPACE. For
poorman mean-payoff games, it is in PSPACE, for strongly-connected games, it is
in NP and coNP, and for strongly-connected games with out-degree 2, THRESH-
BUD is in P.
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Proof. To show membership in PSPACE for parity games, we guess the optimal
moves for the two players. To verify the guess, we construct a program of the
existential theory of the reals that uses the relation between the threshold ratios
that is described in Theorem 1. Deciding whether such a program has a solution is
known to be in PSPACE [12]. For mean-payoff games, membership in PSPACE is
obtained similarly: We reduce the problem of solving general strongly-connected
games, to solving 2.5-player mean-payoff games. The more challenging case is
the solution for strongly-connected games with out-degree 2. There, we observe
that the 2.5-player game is actually an MDP, which we can solve in polynomial
time. See details in the full version. ��

6 Discussion

We studied for the first time infinite-duration poorman bidding games. We show
the existence of threshold ratios for poorman games with qualitative objectives
and give, to the best of our knowledge, the first complexity upper bounds on
finding threshold ratios. For poorman mean-payoff games, we construct optimal
strategies with respect to the initial ratio of the budgets and show a probabilistic
connection for these games.

Historically, poorman bidding has been studied less than Richman bidding,
but the reason was technical difficulty, not lack of motivation. On the contrary,
we believe that poorman bidding is as motivated as Richman bidding, if not
more so, particularly since they are easier to generalize. Poorman bidding has
been less approachable since, e.g., poorman reachability games do not necessarily
have rational threshold ratios. We expect that the structure we find here, namely
the probabilistic connection for poorman bidding, will make these game more
approachable and assist in introducing concepts like multiple-players, recharging
stations, and partial information to bidding games, which are hard to add to
Richman bidding.

This work belongs to a line of works that transfer concepts and ideas between
the areas of formal verification and algorithmic game theory [31]. Examples of
works in the intersection of the two fields include logics for specifying multi-
agent systems [2,15,30], studies of equilibria in games related to synthesis and
repair problems [1,13,14,20], non-zero-sum games in formal verification [10,16],
and applying concepts from formal methods to resource allocation games such
as rich specifications [8], efficient reasoning about very large games [4,25], and
a dynamic selection of resources [7].
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Abstract. We study a variant of Vickrey’s classic bottleneck model. In
our model there are n agents and each agent strategically chooses when
to join a first-come-first-served observable queue. Agents dislike stand-
ing in line and they take actions in discrete time steps: we assume that
each agent has a cost of 1 for every time step he waits before joining the
queue and a cost of w > 1 for every time step he waits in the queue. At
each time step a single agent can be processed. Before each time step,
every agent observes the queue and strategically decides whether or not
to join, with the goal of minimizing his expected cost.

In this paper we focus on symmetric strategies which are arguably
more natural as they require less coordination. This brings up the follow-
ing twist to the usual price of anarchy question: what is the main source
for the inefficiency of symmetric equilibria? is it the players’ strategic
behavior or the lack of coordination?

We present results for two different parameter regimes that are quali-
tatively very different: (i) when w is fixed and n grows, we prove a tight
bound of 2 and show that the entire loss is due to the players’ selfish
behavior (ii) when n is fixed and w grows, we prove a tight bound of
Θ

(√
w
n

)
and show that it is mainly due to lack of coordination: the

same order of magnitude of loss is suffered by any symmetric profile.

1 Introduction

William Vickrey is well known for his fundamental contributions to Mechanism
Design, including the celebrated second price auction. However, his contribu-
tions were not limited to Mechanism Design. In a seminal paper from 1969,
Vickrey [31] identifies bottlenecks as a significant reason for traffic congestion.
Bottlenecks are short road segments with a fixed capacity. Once the capacity is
reached a queue is formed. Vickrey presents a rush hour model – there are many
employees that need to get to work around the same time, all need to cross the
same bridge. It is assumed that they have some cost associated with each minute
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they arrive early to work and a potentially different cost associated with each
minute they arrive late to work. Moreover, they have a different (and usually
higher cost) for every minute they wait in traffic. Given these costs the employ-
ees need to decide when to leave for work in order to minimize their total cost.
Similar timing decisions appear in many other situations: e.g., deciding when to
go to the doctor or when to enter a traffic intersection.

Vickrey’s paper has inspired a line of work analyzing variants of this model
both in economics and transportation theory (for example, [1,3,5]). Vickrey,
as common in the literature, assumes that the population is continuous. This
assumption considerably simplifies the analysis and is motivated by the observa-
tion that in large populations the externalities that any single agent is imposing
on the rest are negligible. The clear downside of this assumption is that it fails to
model scenarios with relatively small population. Moreover, models of discrete
and continuous populations can behave differently, as the analysis of the price
of anarchy (PoA) in routing games with high-degree polynomials demonstrated.
Specifically, while for continuous population the PoA is linear in the degree, it
is exponential for discrete population ([4,28,29]).

Unlike Vickrey, we study a discrete population model. One of the choices we
need to make is whether the agents observe the state of the traffic or not (this
makes no difference in Vickrey’s model where the population is modeled as a
continuum). The few works that did study discrete variants of Vickrey’s model
(for example [23,26]), all made the assumption that no traffic information is
provided (i.e., the queue is unobservable). However, technological advancements
such as webcams that are installed over bridges, as well as mobile apps that
provide information regarding traffic, call for focusing the analysis around the
case that commuters do have some aggregate information on the state of traffic,
e.g., they observe the length of the queue. Hence, in our model we assume that
the agents do observe the traffic’s state (i.e., observable queue).

Our Model. We study a stylized variant of Vickrey’s model to allow us to focus
on two issues that were not explored in the original model: a discrete population
and an observable queue.1 Formally, we have n agents that, starting at time 0,
need to get a service which is offered by a first-come-first-served queue. Time
progresses in discrete steps and in each step, each agent needs to decide whether
to enter the queue at that time step or stay outside. When multiple agents
decide to enter the queue simultaneously, they are ordered by a uniform random
permutation. In our model, agents observe everything, and in particular, they
observe the length of the queue and the set of agents that have not joined it yet.

For each agent, starting at time 0, the cost per time step for waiting before
joining the queue is normalized to 1, and the cost per time step for waiting in
the queue is w > 1 (agents dislike waiting in the queue). At each time step a
single agent can be processed.

Our model is inspired by traffic related scenarios similar to Vickrey’s rush
hour scenario, such as the following one: the first game of the 2018 NBA finals
1 Our minor simplifications of Vickrey’s model include an assumption that the agents

can only join the queue after some starting time.
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at the Oracle Arena has just ended, and the audience wants to get home to
San Francisco. To get home they should all cross the Bay Bridge that has a
limited capacity (a bottleneck). While each person wants to get home as soon as
possible, he dislikes standing in traffic. So, he should strategically decide when to
leave the stadium and try to cross the bridge, aiming to minimize his discomfort.
Hanging out around the stadium is an option that is costly, but not as much
as standing in traffic. Fortunately for the audience, there are cameras installed
over the bridge and apps that constantly broadcast the traffic state, and they
can observe it and make their decision accordingly.

Solution Concept. As our game is symmetric and all agents are ex-ante the
same, we focus on equilibria in symmetric randomized strategies that are anony-
mous. In such profiles all agents play the same randomized strategy that does not
depend on the identities of the other agents. Observe that as agents are sym-
metric, equilibrium in asymmetric strategies requires different agents to play
differently although they are ex-ante symmetric. This requires the agents to
coordinate on which strategy each of them will play. Thus, symmetric strategies
are arguably more natural than other, more general, strategies2.

Moreover, our focus will be on stationary strategies that do not depend on the
time step, but rather only on the state – the number of agents that are outside
the queue as well as the number of agents that are in the queue. More formally,
we consider symmetric Nash equilibria in anonymous stationary strategies, or
symmetric strategies for short. Under such strategies, for any state there is some
defined probability of entering the queue, and that probability is used by all
agents. In the full version we prove that such equilibria always exist.

The discrete population and discrete time assumptions make the analysis of
our model quite challenging. In particular computing equilibrium strategies for a
game with n agents requires solving n polynomial equations of degrees increasing
from 1 to n. Otsubo and Rapoport [26] are among the few that studied discrete
population variants of Vickrey’s model. They have only provided a complicated
algorithm to numerically compute symmetric mixed Nash equilibrium rather
than obtaining closed-form expressions.

Other approaches that were taken include analyzing the fluid limit of the
system [18], and computing an equilibrium for the continuous time model by
solving differential equations [19]. We take a different approach and instead
of explicitly computing a symmetric equilibrium, present asymptotically tight
upper and lower bounds on the social cost of any symmetric equilibrium.3

Our Results. We study the efficiency of symmetric equilibria in terms of the
social cost, which is simply the sum of the players’ costs. We present bounds
that hold for any symmetric equilibria, any n and any w.4 Thus, we establish
2 Similar argument in favor of symmetric strategies is made in [26].
3 Doing so alleviates the need to precisely compute symmetric equilibria and the need

to determine if the game has a unique symmetric equilibrium or not.
4 While we prove bounds that hold for any n and any w (see Theorems 11 and 12) our

focus in the presentation is on the asymptotic social cost of symmetric equilibria,
when either w or n gets large.
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tight asymptotic price of stability and price of anarchy results for symmetric
equilibria. Moreover, our lower bounds imply price of anarchy lower bounds for
general Nash equilibria.5

We first analyze the ratio between the social cost of any symmetric equi-
librium and the social cost of the optimal solution. We observe that whenever
1 < w ≤ 2 (the cost of waiting one time step in line is at most twice the cost of
waiting outside), the unique symmetric equilibrium is for all agents to enter the
queue immediately, and the total social cost is w ·n·(n−1)/2. On the other hand,
when agents enter sequentially, the social cost is only n ·(n−1)/2 (this is also the
minimal social cost when we do not impose any restrictions on the strategies, in
particular the strategies can be non-anonymous and non-stationary.)

Thus, in this case the ratio between the social costs of the unique symmetric
equilibrium and the optimal solution is w ≤ 2. Loosely speaking a similar bound
of 2 also holds when we take a fixed w << n, but the proof is much more
involved. A bit more formally, we prove the following result:

Theorem 1. Fix w > 2. As n approaches infinity the ratio between the social
costs of any symmetric equilibrium and the optimal solution is approaching 2.

Usually in scenarios such as commuting to work or deciding when to head
to the bridge after a game, the number of agents is relatively large while the
normalized cost of waiting a unit of time in traffic, w, is relatively small. Theorem
1 tells us that in such cases the loss of efficiency in a symmetric Nash equilibrium
is constant and relatively low, only 2.

We next consider the other extreme parameter regime, where the cost w is
large relative to n. Such scenarios might arise in cases where either people do
not care so much about getting the service early (for example, taking a routine
medical check-up or running some non-urgent bureaucratic errand) or they have
an arbitrary high cost for arriving simultaneously with others to receive the
service. For example, one can think of a traffic intersection as providing a service
for which simultaneous entry might cause an accident and has a very high cost.
For the regime that n is small relative to w we obtain qualitatively different
results than those for the regime that n is large relative to w. This provides an
additional confirmation for the value of studying models of discrete population.

Theorem 2. Fix n. As w approaches infinity the ratio between the social costs of
any symmetric equilibrium and the (unrestricted) optimal solution is approaching
2 · √

w
n , up to an additive term of O( 1√

n
).

The theorem shows that when w is significantly greater than n, the multiplica-
tive efficiency loss is very high (grows asymptotically as

√
w). Essentially, the

issue with symmetric equilibria is that when the cost of standing in line is very
high, the players are so horrified at the prospect of waiting in the queue that
they enter the queue at a very low probability. Thus, the service is actually

5 Similarly to the “Fully Mixed Nash Equilibrium Conjecture” [9] we suspect that in
our game symmetric equilibria are in fact the worst equilibria.
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idle most of the time. To reduce this kind of inefficiency, society came up with
symmetry breaking mechanisms such as traffic lights or doctors appointments
(see [6]), which provide a much needed coordination. Such a coordination mech-
anism induces a sequential order of entry, no player ever waits in the queue and
the social cost is minimal. Moreover, for large w (w > 2n), this is actually an
(asymmetric) equilibrium.

Theorem 2 shows that symmetric equilibria are highly inefficient, but what
is the main source of the inefficiency of symmetric equilibria: is it the players’
strategic behavior or is it the lack of coordination imposed by symmetric strate-
gies? As far as we know, no prior work has tried to separate between the loss
of efficiency of symmetric equilibria due to strategic behavior and due to the
symmetry requirement. To answer this question we bound the cost of the sym-
metric optimal solution and provide bounds on the ratio between the cost of
any symmetric equilibrium and the symmetric optimal solution. We derive two
different asymptotic bounds, depending on whether n or w are fixed.

Theorem 3. Fix w > 2. As n approaches infinity the ratio between the social
costs of any symmetric equilibrium and the symmetric optimal solution is
approaching 2.

In fact, as the ratio between the social costs of any symmetric equilibrium and
the optimal solution is also approaching 2, this implies that as n increases the
social cost of the symmetric optimal solution is approaching the social cost of the
optimal solution, and both have essentially the same gap from any symmetric
equilibrium. Thus, for this case, we conclude that the main source of inefficiency
of symmetric Nash equilibria is the strategic selfish behavior of the players.

When considering the regime in which n is fixed but large, while w grows to
infinity, a different picture emerges. Intuitively, since the cost of having two or
more agents entering the queue simultaneously is so large, to avoid this cost, any
profile of symmetric strategies must use entry probabilities that are low enough
to ensure that the expected number of agents that join the queue at each step
is much lower than 1. As a result, the agents will wait for a long time before
anyone enters the queue, which implies a high social cost.

This creates a large gap between the social costs of the symmetric optimal
solution and the (unrestricted) optimal solution. Interestingly, the gap is of the
same magnitude as the gap between the worst symmetric equilibrium and the
optimal solution. We show:

Theorem 4. Fix n. As w approaches infinity the ratio between the social costs
of any symmetric equilibrium and the symmetric optimal solution is approaching
3

2
√
2

≈ 1.06, up to an additive term of O( 1√
n
).

Recall that Theorem 2 is showing that as w approaches infinity the ratio
between the social costs of any symmetric equilibrium and the optimal solu-
tion is approaching 2 · √

w
n . When we combine the two theorems we conclude

that in the case that w goes to infinity, the main source of inefficiency of the
symmetric Nash equilibrium is the lack of coordination in symmetric randomized
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strategies. Nevertheless, there is still some small constant loss that does not van-
ish and is due to incentives, yet it dwarfs compared to the loss of 2 · √w

n (which
tends to infinity as w grows to infinity) that is due to lack of coordination.

Related Work. Bottleneck models were studied in both the traffic science lit-
erature and the economics literature. Arnott et al. [1] provide economic analysis
of Vickrey’s bottleneck model and also consider how tolls can reduce the cost
associated with strategic behavior in such models. Later papers extended the
model to handle more general pricing schemes (for example [3,7]). In [2] Arnott
et al. consider giving traffic information to commuters in a continuous popula-
tion model in which commuters need to choose when to leave and which route to
take. The new twist is that travel time is affected by unexpected events such as
accidents or bad weather that the commuters can get information about. Arnott
et al. reach the conclusion that providing the commuters perfect information
about these unpredictable events can eliminate the inefficiency resulting from
them. Other variants of the model that were studied more recently include: het-
erogeneous commuters [30] and the effects of congested bottlenecks on the roads
leading to them [21].

The literature on strategic queuing is also related to the current paper. In
his seminal paper, Naor was the first to introduce both economic and strategic
considerations into the queuing literature [25]. Up till then queuing theory mainly
focused on the efficiency of queues. The most well known model in classic queuing
theory is the M/M/1 queue model, where there is one server and the jobs arrive
according to a Poisson distribution and have an exponentially distributed service
time. According to Naor’s model, the service has a price and the “jobs” need
to decide whether to join the queue or not. This gave rise to a new area called
strategic queuing which studies the users’ behavior in different queuing systems
under various assumptions (see [12,13] for extensive surveys).

In general, the literature on strategic queuing has traditionally focused on
models of unobservable queues as these are easier to analyze (see Chap. 2 of
[12] for a survey of recent works on observable queues). Hassin and Roet-Green
[15] bridge the gap between observable queues and non-observable queues by
presenting and analyzing a natural model in which the agents have the option to
pay to see the length of the queue. Most of the works in strategic queuing (both
on observable and unobservable queues) consider games in which each player
arrives at some time and needs to immediately decide whether to join the queue
or not. In this setting, the paper of Kerner [20] applies a solution concept similar
to ours in studying symmetric equilibrium joining probabilities for an M/G/1
observable queue.

The more elaborate model in which the player’s strategy is to choose an
arrival time with the goal of minimizing his waiting time was first suggested in
[11] for unobservable queues. [11] studied a model in which agents can choose
to join the queue before its opening time (early arrivals) while later [14] showed
that the efficiency of the equilibrium can be sometimes increased by disallowing
early arrivals. Discrete time and discrete population versions of this model were
later studied in [22,27] that concentrated on symmetric mixed Nash equilibria
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for this unobservable queue model. A recent work [24] studies a setting in which
while the queue is unobservable the service provider can observe the queue and
give the agents some information regarding the queue.

A specific line of papers in strategic queuing which is similar both in intuition
and in formalism to our model is on the so called “concert queuing game”. This
game was first defined in [18] and was later studied in follow up papers such as
[17,19]. In this game concert attendants wish to get home as soon as possible
once the concert ends but they dislike standing in traffic. The main distinctions
between the concert queuing game and our model are in the assumptions on the
observability of the queue and its processing time (in our model, processing time
is fixed, while in the other model it is distributed according to some distribution).
In each of [18] and [19] the authors use different analysis techniques to establish
a bound of 2 on the price of anarchy for their model.

The strategic queuing literature includes a few papers dealing with price of
anarchy. The first one was [16] which studied the price of anarchy of a multi
server system where the players strategically choose which (unobservable) queue
to join. In [10] Gilboa-Freedman et al. provide a price of anarchy bound for
Naor’s model [25] where the queue is observable but the strategy of each player
is limited to the one-time decision whether to join the queue or not.

The paper of Fiat et al. [8] also considers strategic entry by selfish players
– players that need to broadcast on a joint channel. The model in that paper
is fundamentally different than ours, as simultaneous entry results in all players
failing to enter the channel, rather than a formation of a queue as in our model.

Paper Outline. We start by formally presenting our model and some useful
observations. Next, in Sect. 3 we study the two player case as a warm-up. We
then present our upper and lower bounds on the cost of any symmetric equilibria
in Sect. 4, Theorems 1 and 2 follow from these results. Finally, we present bounds
for the social cost of symmetric optimal strategies in Sect. 5, Theorems 3 and 4
follow from these bounds.

2 Model and Preliminaries

There is a set N of n identical agents and time is discrete. At every time step t
the following sequence takes place:

– Each agent decides whether or not to enter the queue (possibly using ran-
domization).

– After the agents make their decisions, all agents that have decided to enter
the queue are added to the end of the queue in a random order.

– If the queue is not empty then the first agent in the queue is processed. The
rest of the agents in the queue incur a cost of w > 1.

– Every agent outside the queue incurs a cost of 1.

The goal of each agent is to minimize his expected cost. We use G(n;w) to
denote a game with n ≥ 2 agents and waiting cost per unit of w > 1.
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In general, a strategy of an agent needs to specify the probability of entry at
each history, such a history specifies the time, the realized action of each agent
at every prior time, and the randomization results whenever multiple agents that
enter at the same time are ordered at the end of the queue. Our focus in this
paper is on anonymous stationary strategies – strategies that do not depend on
the time step or the identity of agents, such strategies will only depend on a
summary statistics specified by the (anonymized) state of our game. A state of
our game is defined as a pair (m, k), where there are m ≥ 1 agents that are still
outside the queue and k ≥ 0 agents in the queue, and m + k ≤ n. We formally
define anonymous stationary strategies as follows:

Definition 1. (anonymous stationary strategies in G(n;w)). A strategy
of an agent is an anonymous stationary strategy if for any history it specifies
a probability that an agent enters the queue that is only a function of the state
(m, k). We denote that probability of entry at a state (m, k) by qm,k ∈ [0, 1] and
the probability at state (n, 0) by qn.

We use S = (S1, S2, . . . , Sn) to denote a profile of strategies. A profile S of
anonymous stationary strategies is symmetric if all players use the same strategy
(Si = Sj for every i, j ∈ N). We are interested in Nash equilibria of the game, in
such equilibria each player minimizes his cost, given the strategies of the others.
In the full version we discuss general strategies and show that if a profile is
an equilibrium with respect to anonymous stationary strategies, it is also an
equilibrium with respect to any arbitrary strategies that might depend on the
time or on the identities of the agents. For this reason, for the rest of the paper
we will only consider deviations to anonymous stationary strategies.

We denote the expected cost of every player in a symmetric equilibrium S
in the game G(n;w) by cn,w(S). When w and S are clear from the context we
simplify the notation to cn. We denote the social cost of strategy profile S by
Cn,w(S) = n · cn,w(S). As we will see, it is useful to extend this notation to
sub-games as well. We denote the sub-game that starts with a state (m, k) by
G(m, k;w). For a symmetric equilibrium S we denote the cost of each of the m
players that are outside the queue by cw(m, k;S). When S and w are clear from
the context we will use the shorter notation c(m, k). With this notation we have
that cn,w(S) = c(n, 0).

2.1 Basic Observations

If at state (m, k) a player enters with a non-trivial probability qm,k ∈ (0, 1) then
he must be indifferent between entering and waiting at that step. Otherwise, the
player will choose to either enter the queue or wait with probability one. Our
analysis of the social cost of symmetric Nash Equilibria heavily depends on this
observation. Thus, it is useful to first work out the expressions for a cost of a
player i that joins the queue with probability 1 at state (m, k) and the cost of
player i that joins the queue with probability 0 at state (m, k). We define the two
costs as c1(m, k; q) and c0(m, k; q) respectively, where we assume that in state
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(m, k) all the players but i enter with probability q and at any other state all
the players play according to some symmetric strategy profile S. We now give
expressions for the two costs for every symmetric profile S:

Observation 5. For every w > 1, q ∈ [0, 1], m ≥ 1 and k ≥ 0: c1(m, k; q) =
m − 1

2 · q · w + k · w.

Observation 6. For every q ∈ [0, 1], m ≥ 1 and k ≥ 1:

c0(m, 0; q) =
1

1 − (1 − q)m−1
+

1
1 − (1 − q)m−1

·
m−1∑

i=1

(
m − 1

i

)
qi · (1 − q)m−1−i · c(m − i, i − 1;S)

c0(m, k; q) = 1 +
m−1∑

i=0

(
m − 1

i

)
qi · (1 − q)m−1−i · c(m − i, k + i − 1;S)

Next, we claim that a symmetric equilibrium always exists. This is not a
priori clear as our strategies cannot be easily defined as a mix of pure anonymous
stationary strategies.

Theorem 7. Fix any n ≥ 2 and w > 1. There exists a symmetric equilibrium
in anonymous stationary strategies in the game G(n;w).

We observe that for small values of w (w ≤ 2) the unique symmetric equilib-
rium outcome is for all players to enter immediately.

Observation 8. For any n ≥ 2. If w ∈ [1, 2] then in the game G(n;w) the
unique symmetric equilibrium with anonymous stationary strategies is for all
agents to enter with probability qn = 1 and the social cost is w · n(n − 1)

2 .

We focus our equilibrium analysis on the case that w > 2. We now show that
when w > 2 it is no longer the case that a player in a symmetric equilibrium
prefers to join the queue with probability 1. Furthermore, in case the queue is
empty, deterministically not entering the queue is also not a best response to
the strategies of others in a symmetric equilibrium.

Observation 9. For any n ≥ 2, w > 2 and for any (m, k) such that m+k ≤ n,
m ≥ 2 and k ≥ 0, in any symmetric equilibrium 0 ≤ qm,k < 1 and 0 < qm,0 < 1.

The following observation characterizes the cost of symmetric Nash equilibria
based on the observations above:

Observation 10. Fix w > 2 and n ≥ 2. Given a symmetric equilibrium in the
game G(n;w), the cost of some player i which is outside the queue in the state
(m, k) satisfies the following:

– For m ≤ n it holds that c1(m, 0; qm) = c0(m, 0; qm).
– For k ≥ 1, if qm,k ∈ (0, 1) then c(m, k) = c0(m, k; qm,k) = c1(m, k; qm,k).

Otherwise, qm,k = 0 and c(m, k) = c0(m, k; 0).
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3 Warm-Up - The 2 Players Case

To get some intuition it is instructive to consider first the simple case of only
2 players. For this case we obtain an exact expression for the players’ costs in
the unique symmetric equilibrium. Note that a single player will always join the
queue (q1,0 = 1) and for this reason c(1, 0) = 0. Now, to compute a symmetric
equilibrium we only need to compute the probability that the agents enter when
both are still outside (q2,0).

Claim. For n = 2 players, if w > 2, there exists a unique symmetric equilibrium
S in anonymous stationary strategies in which each player plays the strategy:
q2,0 =

√
2/w, q1,0 = 1. The social cost for both players is C2,w(S) =

√
2w.

We compare the cost at Nash equilibrium against the cost of the optimal
solution. For two players, the cost of the optimal solution is simply 1 as one of
the players will enter first and pay a cost of 0 and the other will enter second
and pay a cost of 1. This implies the following corollary:

Corollary 1. In the game G(2;w) the ratio between the social costs of the
unique6 symmetric Nash equilibrium and optimal solution is

√
2w.

This relatively large gap that grows with w leads us to ask what is the source
of this gap – is it due to strategic behavior, or to the lack of coordination imposed
by symmetric strategies? To answer this question we compute the minimal cost
when all agents are required to use the same strategy and use anonymous sta-
tionary strategies, which are not necessarily an equilibrium. We note that even
just for 2 players computing the optimal symmetric solution is simple yet not
completely trivial, as it requires computing the minimum of a function which is
the ratio of two polynomials. As the number of players increases this becomes
more complicated and hence instead of directly computing the optimal symmet-
ric strategy we will compute bounds on its cost.

As in the Nash equilibrium, once an agent is the only one outside, he clearly
enters immediately. Thus, we only need to compute the probability of each agent
entering, assuming both agents are outside (denoted p2).

Claim. For n = 2 players, if w > 1, the symmetric anonymous stationary strat-
egy that minimizes the social cost is: p2 =

√
2w − 1− 1

w − 1 and p1 = 1. The social
cost for this profile is OPT (2, w) = w +1√

2w − 1+ 1
.

The following corollary is easily derived from the above claim:

Corollary 2. In the game G(2;w) the ratio between the social costs of the
unique symmetric Nash equilibrium and optimal solution in symmetric strate-
gies is approaching 2 as w approaches infinity.
6 Note that when w > 2 the two players game admits exactly three equilibria: the

two optimal equilibria in which one player enters after the other, and the symmetric
random equilibrium we discussed. Thus, our result is both a price of anarchy result
for unrestricted equilibria and a price of stability result for symmetric equilibria.
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We conclude that for large values of w, there is a huge loss for insisting on
symmetric profiles: the optimal cost grows from 1 in an asymmetric optimum,
to about

√
w
2 in the symmetric optimum. An additional, much smaller, loss of

factor 2 comes from further requiring the symmetric profile to be an equilibrium.
Our goal in this paper is to understand the source of inefficiency of symmetric
Nash equilibria for any n. We present a separation between the cost ratio of
symmetric Nash equilibria and the symmetric optimal solution when n is fixed
and w is large and the case that w is fixed but n is large.

4 Bounds on the Cost of Symmetric Nash Equilibria

In this section we provide bounds on the cost of symmetric Nash equilibria in
any profile of anonymous stationary strategies, these bounds hold for any n and
any w. We present two types of bounds, each will be tight for a different regime
of the parameters n and w, and we use these bounds to prove Theorems 1 and
2. We first present a bound that is useful when w is relatively small compared
to n.

Theorem 11. For every w > 2, n ≥ 2 and symmetric equilibrium S:

n − 1 ≤ cn,w(S) ≤ n + w · O(ln(n))

Clearly the above bound is asymptotically tight whenever w = o( n
ln(n) ). This

implies that when w = o( n
ln(n) ), for a sufficiently large value of n, the social

cost of any symmetric equilibrium is about n2. Denote by SC(n,w) the social
cost of the optimal solution. Recall that in the optimal solution the players enter
sequentially and hence the cost of the optimal solution is SC(n,w) = n(n−1)/2.
The ratio between the cost of any Nash equilibrium and the cost of an optimal
solution is essentially 2, proving Theorem 1. Formally:

Corollary 3. For every fixed w > 2 and every ε > 0 there exists nw
0 (ε) such

that for any n > nw
0 (ε) for every symmetric equilibrium S it holds that

2 ≤ Cn,w(S)/SC(n,w) ≤ 2 + ε

Next, we give a different bound which will be tight for the case of large enough
n, and w that goes to infinity. We show that the social cost of any symmetric
equilibrium is essentially approaching n · √w · n. Formally:

Theorem 12. For every w > 2, n ≥ 2 and any symmetric equilibrium S:

(1 − εn(w))
n−1 ·

√
w · n − w · 2 lnn ≤ cn,w(S) ≤ e

e − 1
· n + (1 + εn(w)) ·

√
w · n + 2w

√
n − 1

for some decreasing function εn(w) ≤ 1 that for any fixed n, converges to 0.

In this case if n = o(
√

w) we get that the social cost of any symmetric
equilibrium is about n · √

w · n and hence the ratio between the costs of any
symmetric equilibrium and the optimal solution (which has cost of n(n − 1)/2)
is approaching 2 · √

w
n , proving Theorem 2:
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Corollary 4. Fix any ε > 0. There exists n0(ε) such that for any n > n0(ε)
there exist wn(ε) such that for any w > wn(ε) it holds that for any symmetric
equilibrium S:

(2 − ε)
√

w

n
≤ Cn,w(S)

SC(n,w)
≤ (2 + ε)

√
w

n

5 Bounds on the Cost of Symmetric Optimal Solutions

In this section we provide bounds on the optimal symmetric cost, this is the
minimal cost when agents are restricted to play symmetric anonymous stationary
strategies, but not necessarily equilibrium strategies. That is, for w > 1 and
n ≥ 2, the optimal cost OPT (n,w) = infS Cn,w(S), the infimum is taken over
all profiles S of symmetric profiles of anonymous stationary strategies.

It is easy to see that since the cost of waiting in the queue is greater than
the cost of waiting outside (w > 1) it is socially suboptimal to direct an agent to
enter when the queue is not empty. Thus, when considering an optimal symmetric
strategy in the game G(n;w) we can restrict ourselves to strategies that define
an entrance probability pm for every number of players 1 ≤ m ≤ n such that the
queue is empty and there are m agents outside the queue.

Providing a closed form expression for the optimal symmetric cost for the
game G(n;w) is very challenging as it requires minimizing a function which is
the ratio of two polynomials each of degree n − 1. Hence, we compute lower
and upper bounds on the optimal symmetric cost instead. As in the case of the
symmetric equilibrium we provide different bounds for the case that w is fixed
and n goes to infinity and for the case that n is fixed and w goes to infinity:

Theorem 13. OPT (n,w) is bounded as follows:

– Fix any w > 2 and any ε > 0. There exists nw
0 (ε) such that for any n > nw

0 (ε)
it holds that

n(n − 1)
2

≤ OPT (n,w) ≤ (1 + ε)
n(n − 1)

2

– Fix any n ≥ 2 and any ε > 0. There exists wn
1 (ε) such that for any w > wn

1 (ε)
it holds that

(1 − ε)
√

2w · 2
3
(n − 1)

√
n − 1 ≤ OPT (n,w) ≤ (1 + ε)

√
2w ·

(
2
3
n
√

n +
√

n

)

From the theorem we derive two corollaries about the asymptotic cost of
OPT (n,w). Our first corollary shows that for fixed w > 2, the symmetric optimal
cost grows asymptotically the same as the cost of the optimal schedule, when
n grows large. This implies that in this case the source of the inefficiency of
the symmetric equilibrium is only due to strategic behavior, and not lack of
coordination.
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Corollary 5. For every fixed w > 2 and every ε > 0 there exists nw
0 (ε) such

that for any n > nw
0 (ε) it holds that 1 ≤ OPT (n,w)/SC(n,w) ≤ 1 + ε.

Combining the previous corollary together with Corollary 3 establishes the
proof of Theorem 3. Thus, we have that for every fixed w > 2 and every
ε > 0 there exists nw

0 (ε) such that for any n > nw
0 (ε) it holds that 2 − ε ≤

Cn,w(S)/OPT (n,w) ≤ 2 + ε.
For the case that n is large enough and w is greater than n we get that the

cost of a symmetric optimal solution is about 2
√
2

3 · n · √
w · n. Recall that for

the same case by Theorem 12 we have that the social cost of any symmetric
Nash equilibrium is about n · √

w · n. Thus, we have that in this case the ratio
between the cost of any symmetric equilibrium and the symmetric optimal cost
converges to 3

2
√
2

≈ 1.06, which proves Theorem 4. This means that in the case
that w is relatively larger than n the lack of coordination is playing a major role
in deteriorating the efficiency of symmetric equilibria. This explains why in such
cases, it is common that measures are taken to increase coordination and help
boost social welfare. Formally, In the full version we show that:

Corollary 6. Fix any δ > 0. There exists n0(δ) such that for any n > n0(δ)
there exist wn(δ) such that for any w > wn(δ) it holds that for any symmetric
equilibrium S

(1 − δ)
3

2
√

2
≤ Cn,w(S)

OPT (n,w)
≤ (1 + δ)

3
2
√

2
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Abstract. Our aim is to design mechanisms that motivate all agents
to reveal their predictions truthfully and promptly. For myopic agents,
proper scoring rules induce truthfulness. However, when agents have mul-
tiple opportunities for revealing information, and take into account long-
term effects of their actions, deception and reticence may appear. Such
situations have been described in the literature. No simple rules exist
to distinguish between the truthful and the untruthful situations, and a
determination has been done in isolated cases only. This is of relevance
to prediction markets, where the market value is a common prediction,
and more generally in informal public prediction forums, such as stock-
market estimates by analysts. We describe three different mechanisms
that are strategy-proof with non-myopic considerations, and show that
one of them, a discounted market scoring rule, meets all our require-
ments from a mechanism in almost all prediction settings. To illustrate,
we extensively analyze a prediction setting with continuous outcomes,
and show how our suggested mechanism restores prompt truthfulness
where incumbent mechanisms fail.

1 Introduction

Mechanisms that motivate all agents to reveal their information truthfully and
promptly are desirable in many situations.

Consider, for example, the estimation of company earnings by stock-market
analysts, a longstanding Wall Street institution. Publicly-traded companies
announce their earnings for the latest quarter or year, on dates set well in
advance. Each company is typically covered by several stock-market analysts,
the larger ones by dozens. These analysts issue reports containing predictions
of a company’s future earnings. The timing of such predictions ranges from sev-
eral years to days before earnings announcement, and every analyst typically
updates his prediction several times in the interval. A consensus calculated from
all predictions in force may be viewed on several popular finance websites. Not
least, the analysts themselves are aware of, and are no doubt influenced by the
actions and opinions of their peers.

In essence, this earnings estimation functions as a public prediction forum
with an evolving consensus, that terminates when a company announces its true
earnings for the forecast period, which we call the outcome. It acts as a sort of
c© Springer Nature Switzerland AG 2018
G. Christodoulou and T. Harks (Eds.): WINE 2018, LNCS 11316, pp. 51–65, 2018.
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advisory forum for the public of investors, and this public’s interest is best served
if analysts share their information and judgement truthfully and promptly.

Prediction markets are public prediction forums organized as markets. A de-
facto standard for organizing prediction markets is due to Hanson (2003), using
a market scoring rule. In such a market, probability estimates are rewarded by a
proper scoring rule an amount S(p, r), where p is a probability distribution of the
outcome, and r is the outcome. A trader in Hanson’s markets not only makes
her probability estimate public, she changes the market price to it. She then
stands to be rewarded by the market maker for her prediction (when the outcome
becomes known), but she also commits to compensate the previous trader for his
prediction. Her total compensation is therefore the difference S(p, r) − S(p′, r)
where p′ is the replaced market prediction. When the logarithmic scoring rule
(S(p, r) = log pr)1 is used in a prediction market, the mechanism is called LMSR
(Logarithmic Market Scoring Rule). Hanson also demonstrated how a market
maker can facilitate such an LMSR market and provide liquidity by selling and
buying shares of each outcome.

Proper scoring rules, are, by definition, incentive compatible for myopic
agents. That is, an agent maximizes her expected score by announcing her true
belief, provided longer-term effects of the prediction, if any, are ignored. The
incremental, market variation of the scoring rule does not affect this incentive
compatibility, because the previous agent’s score does not depend on the current
prediction.

When an agent is not myopic, and does take into account all consequences
of her action, truthfulness will, in many cases, not be her optimal strategy,
and incentive compatibility is lost. Such scenarios have been described in the
literature, and our paper adds many further examples. As we will show, the
damage to incentive compatibility caused by long-term strategic considerations
is extensive, and it is a priori unclear whether any remedy is available.

Our aim is the design of mechanisms for rewarding predictions that are
strategy-proof. We demonstrate the problem with proper scoring rules, as often
leading to reticence or deception. We formulate criteria for determining which
prediction settings are truthful, and apply these criteria for a complete classifi-
cation of the important class of prediction settings with normal and lognormal
signals. We suggest three strategy-proof mechanisms, and identify one of them,
discounting, as having all desirable properties. We prove the applicability and
effectiveness of the discounting mechanism.

1.1 The Problem with Scoring Rules

A scoring rule S : Δ(R)×R �→ R scores a prediction p, representing a probability
distribution of the outcome, a value S(p, r) when the outcome is r. An agent
whose belief of the outcome distribution is q has score expectation S(p, q) :=
Er∼q S(p, r) for prediction p. A proper scoring rule is one for which S(q, q) ≥
S(p, q) for every p, q ∈ Δ(R), so that predicting one’s true belief has maximal

1 We use the notation px for the density of distribution p at x.
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score expectation. A strictly proper scoring rule is one where the inequality is
tight only for p = q. The logarithmic scoring rule S(p, r) = log pr, and the
quadratic (a.k.a. Brier) scoring rule S(p, r) = 2pr − p · p − 1 are examples of
strictly proper scoring rules. More background on scoring rules may be found,
e.g., in Gneiting and Raftery (2007).

The following generic example illustrates the problem when non-myopic con-
siderations apply.

Example 1. The public wants to predict a variable, whose outcome is x. Every
signal of x is, i.i.d., x + ε with probability 1/2, and x − ε with probability 1/2. ε
is unknown. There is an expert, who gets private signals. The public gets public
signals.

On Sunday, expert gets a signal. On Monday, the public gets a signal. On
Tuesday, expert gets another signal. On Wednesday, outcome x is revealed.

Question: Should expert reveal his information truthfully on Sunday?
Answer: No. Whoever sees two different truthful signals is able to calculate

the outcome x = (x + ε)/2 + (x − ε)/2 exactly. For any distribution of ε, and
for the logarithmic and almost2 every other scoring rule, the expert should not
tell the truth on Sunday. This prevents the 50% probability that the market will
know x on Monday, preserving a 75% probability that the expert can announce
x on Tuesday.

The canonical case, to which this example belongs, is “Alice-Bob-Alice”,
where Alice speaks before and after Bob’s single speaking opportunity, both are
awarded by a proper scoring rule for each prediction, and both maximize their
total score. Chen et al. (2010) as well as Chen and Waggoner (2016) studied
situations where several agents, each having private information, are given more
than one opportunity to make a public prediction. The situations are reducible
to the Alice-Bob-Alice game. The proper scoring rule assures that each will tell
the truth on their last prediction, and the open question is whether Alice, when
going first, will tell the truth, lie, or keep her silence. Chen et al. (2010) make
the key observation that truthfulness is optimal if, in a different setup, namely,
a single-prediction Alice-Bob game where Alice chooses whether to go first or
second, she will always prefer going first. Building on that insight, Chen and
Waggoner (2016) show that when the players’ information is what they define as
“perfect informational substitutes”, they will predict truthfully and as early as
allowed, when they are “perfect informational complements”, they will predict
truthfully and as late as allowed, while when players are neither substitutes
nor complements, untruthfulness can and will occur. While this characterization
is helpful, few concrete cases have been settled. The most significant of those
was to show that when signals are independent conditional on the outcome,
and the logarithmic scoring rule (LMSR) is used, the signals are informational
substitutes, meaning that in such a case, Alice will reveal all her information
truthfully in her first round.
2 The example is true for the logarithmic scoring rule because its scores are unbounded.

Every scoring rule that values exact predictions over inexact ones sufficiently will
do.
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A strategy-proof mechanism of the Alice-Bob-Alice setting easily generalizes
to a strategy-proof mechanism for any number of experts and prediction order,
because whenever an expert (call her Alice) makes more than one prediction,
one can roll together all experts making predictions between Alice’s successive
predictions into one expert (call him Bob), who shares their information3. This
is formally proved in Proposition 5.

1.2 Goals of the Mechanism

We seek a mechanism with several desirable traits.

1. Truthfulness: The mechanism should motivate all experts to make truthful
predictions, that is, to reveal their true subjective distributions of the out-
come. At minimum, this means that truth-telling should be a best-response
to truth-telling by all other experts, according to the player’s beliefs at the
time of prediction, i.e., it is a perfect Bayesian equilibrium.4

An untruthful mechanism may still be locally truthful by which we mean that
infinitesimal variations from the truth are suboptimal, but telling a sufficiently
big lie may be advantageous.

2. Full Disclosure: All information possessed by the experts should be dis-
closed. This means that every expert makes a (truthful) prediction some time
after getting his last signal. Otherwise, the information on the outcome pos-
sessed in that last signal would never reach the public.

3. Promptness: Experts should reveal their signals by a truthful public predic-
tion as soon as the prediction schedule allows, and make an updated predic-
tion whenever receiving a new signal, again, at the earliest opportunity. We
shall require a strong preference for promptness. Indifference to timing shall
not count as prompt.

4. Bounded Loss: Hanson (2003) notes that in his market scoring rule mecha-
nism, the market maker effectively subsidizes traders to motivate their truth-
fulness, and he shows that market maker’s expected loss due to that is
bounded. We seek mechanisms that achieve this property.

1.3 Our Results

We propose three different incentive mechanisms, all of which are based on
proper scoring rules, all of which achieve truthfulness, and the third and last
also achieves promptness. They are

1. Group prediction: All agents receive the final prediction’s (non-
incremental) score. Since all agents have a stake in the final prediction, all will

3 Chen et al. (2010) use the same construction to generalize from Alice-Bob-Alice to
a finite-players game.

4 Note that the ideal of truth-telling as dominant strategy is not attainable here,
because if a player is aware of another player’s distortion, the correct Bayesian
response is to compensate for the distortion.
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reveal their information truthfully. On the negative side, they are not moti-
vated to be prompt about it. Another problem is freeloaders, since agents
with no information can participate and gain without contributing anything.

2. Enforce single prediction: Score each of agent’s prediction with an incre-
mental scoring rule, and award each agent the minimum score. Agents are
therefore motivated to predict once only, since having made a prediction, a
further prediction can only lower their reward expectation. With a proper
scoring rule, this assures incentive compatibility with truthfulness. Agents
are not motivated to be prompt, but instead need to find the optimal timing
to make their single prediction. A major drawback is that when agents receive
a time-varying signal, they will not reveal all their information.

3. Discounting: Discount each of agent’s incremental prediction scores by a
monotonically increasing factor of the time. The idea is that if signals are
not informational substitutes, they will become ones if a sufficiently steep
negative time gradient is applied. When successful, this mechanism achieves
the ideal result of motivating all agents to reveal their information truthfully
and promptly, including when they receive time-varying signals.
We show that, under some light conditions, discounting will always work
unless signals are perfectly correlated, i.e., have a deterministic relation given
the outcome (as in Example 1).

Table 1 summarizes how the incumbent mechanism, and our three proposed
mechanisms, measure up against each of the traits we described as desirable in
the previous section.

We thoroughly investigate the Alice-Bob-Alice game (and, by extension,
multi-player, multi-signal games) with both the logarithmic and the quadratic
(Brier) scoring rule, when player signals have a multivariate normal distribution
or a multivariate lognormal distribution.

These distributions are among the best-known continuous distributions and
naturally arise in many situations. They are characterized, inter alia, by the
correlation coefficient (ρ ∈ [−1, 1]) between Alice’s and Bob’s signals. When
the logarithmic scoring rule is used, we find that when these signals are too
well-correlated (whether positively or negatively), prompt truthfulness is not
optimal. On the other hand, if the correlation is low, the game will be truthful
and prompt. This includes the case ρ = 0, where, as is well-known, the sig-
nals are conditionally independent, confirming the Chen et al. (2010) result for
conditionally independent signals.

However, when the quadratic scoring rule, one of the oldest and most com-
monly used scoring rules, is used with these multivariate distributions, it is never
truthful for repeated predictions.

In all settings with either the logarithmic or the quadratic scoring rules, we
show that our discounting mechanism restores prompt truthfulness, with the
single exception of perfect correlation (|ρ| = 1) of the players’ signals.

We make the observation that information aggregation works differently in
the presence of a common-knowledge prior than where the prior is unknown.
(The fact that agents have a common prior does not necessarily mean that
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they know what it is). Whenever there exists a public prediction forum, as for
earnings estimates described above, or a market, the initial running consensus
or the initial market price serves as a common-knowledge prior. On the other
hand, if players do not know what their common prior is, even if they have one,
their behavior is as if they have no common prior.

We show that the discounting mechanism can be effectively implemented
with an automated market maker, as in Hanson’s markets, thus showing that it
may be practically applied in prediction markets.

1.4 Related Literature

Scoring rules have a long history, going back to De Finetti (1937), Brier (1950)
and Good (1952). Proper scoring rules are often used for incentive-compatible
belief elicitation of risk-neutral agents. Market scoring rules for prediction mar-
kets were introduced by Hanson (2003).

The role of Chen et al. (2010) (which is based on earlier papers Chen et al.
(2007) and Dimitrov and Sami (2008)) and Chen and Waggoner (2016) in investi-
gating the strategy-proofness of prediction markets was already described. Gao
et al. (2013) and Kong and Schoenebeck (2018) resolve some more scenarios.
Conitzer (2009) embarks on a program similar to ours, citing mechanism design
as a guiding principle. Accordingly, he strives to achieve the Revelation Principle,
where all experts announce their private information to some organizing entity
that makes the appropriate Bayesian aggregation. As we discuss in Sect. 2.2
below, we do not share that vision: Experts often do not know what part of
their belief stems from truly private information, and even when they do, they
cannot afford to go on record with a prediction which is not their best judge-
ment. His “Group-Rewarding Information Mechanism” is similar to our Group
Prediction mechanism, and its lack of fairness is pointed out. Conitzer does not
propose a mechanism that achieves prompt truthfulness.

Chen et al. (2010) also suggest discounting, that “reduces the opportunity for
bluffing”, in their words, but does not prevent it (Sect. 9.1), so their discounting
mechanism does not achieve our basic requirement of truthfulness. The reason is
that their formulation is different from ours, applying same discount to before and
after scores. On the other hand, we discount every prediction score according
to the time its prediction was made. The difference is crucial, because theirs
does not result in a true market scoring rule, as defined by Hanson (2003). In
consequence, our Sect. 2.4, on which our results rest, as well as our Sect. 5.2, do
not apply to their formulation.

We shall occasionally rely on well-known facts of the normal and the mul-
tivariate normal distributions. The reader will find the basis for these in, e.g.,
Tong (2012).

To keep this paper short, we omitted some proofs, and other details. The
reader will find a full version, including all proofs, in Ban (2018). The rest of
this paper is organized as follows: In Sect. 2 we formulate the problem. In Sect. 3
we investigate which predictions settings are already truthful and prompt. In
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Sect. 4 we offer strategy-proof mechanisms, and show how they can solve the
gaps we have found. In Sect. 5 we summarize and offer concluding remarks.

2 Problem Formulation

2.1 Basics

Two players, Alice and Bob, make public predictions of a real parameter λ, whose
prior distribution is π. The outcome x will be revealed after all predictions have
been made. A prediction consists of revealing one’s belief of the distribution of
λ. Assume all agents take others’ predictions as truthful. All agents (Alice, Bob,
and the public) are Bayesian, and each prediction causes them to update their
beliefs, i.e. the posterior distribution, of λ.5

The posterior beliefs are distributions of the parameter λ which are inferred
from priors and likelihood functions using Bayesian techniques. In our discussion
we find it more convenient and succinct to represent beliefs, without loss of
generality, by a real number, rather than by a probability distribution. We use
the fact that, in Bayesian analysis, when the likelihood functions belong to some
family of distributions (e.g. exponential), all posterior beliefs belong to another
family of distributions (Gamma distribution for the exponential family) Q(Y ) ∈
Δ(λ), called the conjugate prior of the first family. Y is a set of real parameters
of the inferred distribution Q. We will assume models where, one, and only one
of these parameters is dependent on previous predictions, while the rest Y \ {x}
is known from the model, the timing and the identity of the believer, but does
not depend on any previous prediction. An example illustrates this:

Example 2. Assume Alice’s belief of λ to be normally distributed N(μA, 1/τA)
where μA is the mean and τA the accuracy (i.e. inverse of the variance), and
Bob’s is N(μB , 1/τB) and independent of Alice’s. τA and τB are set by the
model and are commonly known. Assume an uninformative prior. Using well-
known aggregation rules for independent normal observations, if Alice announces
μA, Bob’s belief changes to the normally distributed N(μAB , 1/τAB), where

μAB =
τAμA + τBμB

τA + τB

τAB = τA + τB

Notice that τAB can be calculated without knowing any of the means μA, μB ,
while μAB can be evaluated once μA and μB is known.

In this context we are therefore able to describe a prediction by a single
real number (the mean) rather than by a probability distribution. We shall say

5 This formulation is different from the mechanism of prediction markets, but equiva-
lent to it. In prediction markets, an agent replaces the current market prediction by
his own. In our formulation, the agent merely announces a prediction, which, assum-
ing the agent is truthful, becomes the market prediction by Bayesian inference. This
is because all rational agents reach the same beliefs from the same data.
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that Alice’s prior belief A1 is μA and Bob’s prior belief B1 is μB . After Alice
makes her prediction, Bob’s belief changes to μAB . After Alice and Bob both
make a prediction, the public’s belief is μAB . In context, these statements are
unambiguously equivalent to specifying the probability distributions in full.

The prior π may be uninformative, assigning equal probabilities to all pos-
sibilities6, or, if not, as also representable by a parameter. For example, if Alice
and Bob participate in a prediction market, the prior parameter is the market
value before Alice’s first prediction.

Time is discrete, t = 0, 1, 2, . . . , T , with T the time the outcome is known.
At, Bt, Ct ∈ R are, respectively, Alice’s, Bob’s and the public’s (or market’s)
beliefs at time t. At t = 1, A1, B1, C1 are their respective prior beliefs. Any
prediction takes place at t > 1. t = 0 is “pre-prior” time, when players beliefs
are equal to their private signals, so that A0, B0 are respectively, Alice and Bob’s
private signals. At t = 1, each player is additionally aware of the public prior C1,
so that A1 is an inference from A0 and C1 while B1 is an inference from B0 and
C1. If the public prior is uninformative, then we have A0 = A1 and B0 = B1.
In other words, the players’ priors equal their private signals. For completeness,
we define C0 = C1.

To avoid degenerate exceptions, we assume the players’ signals are informa-
tive. This means that A1 �= C1 and B1 �= C1.

The signals have a common-knowledge joint distribution f(a, b;λ) conditional
on the parameter

f(a, b;λ) := Pr(A1 = a,B1 = b|λ)

The order of predictions is Alice, Bob, then Alice again, and then the outcome
x is revealed.

A twice-differentiable, w.r.t. λ, proper scoring rule S(p, λ) incrementally
rewards each prediction made, i.e., if a player’s prediction changed the public’s
belief from p′ to p, the player’s reward for this prediction, calculated when x is
known, is S(p, x) − S(p′, x). Each player seeks to maximize their total reward.

As the scoring rule is proper, Bob will tell the truth on his only prediction,
and Alice will tell the truth on her second and last prediction. The remaining
question is whether Alice will tell the truth on her first prediction. More accu-
rately, the question is of equilibrium: If Bob is truthful, and Bob and the public
take Alice’s predictions as truthful, is truth-telling Alice’s best response?

2.2 Knowledge Model

As will be shown, the players behavior is affected by their common-knowledge
prior, by which we mean a belief distribution which is explicitly known to both
players and from which each inferred his or her current belief. That the common
prior is commonly known is significant, because it is quite possible, and even
6 Technically, an uninformative prior may be envisioned as the limit of a uniform or

normal distribution as the variance goes to infinity.
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likely, that the players share a prior but do not know what it is. For example, in
predicting a poll, Alice and Bob may be basing themselves on knowledge of how
their acquaintances voted, but they may not know which acquaintances they
have in common. Or, they both may be basing themselves on a paper they read,
but neither is aware that the other has read it. If the players do not know what
their common prior is, they cannot infer anything from having one, and their
behavior is as if they have an uninformative prior.

In prediction markets, and more generally in public prediction forums where
all communication is done in public, the common-knowledge prior is known.
In the context of this paper, it is the initial market value C1 (or, equivalently,
distribution π), when the Alice-Bob-Alice game starts.

2.3 Inferences from Predictions

Assume that inference functions are invertible, so that if a player’s prediction
is known, her signal can be computed. If Alice announces A1 = a, the pos-
terior outcome distribution can be calculated from her marginal distribution,
fA(a;λ) := Pr(A1 = a|λ) =

∫ ∞
−∞ f(a, b′;λ)db′. Mark it g(a).

g(a)λ = Pr(λ|A1 = a) =
πλfA(a;λ)

∫ ∞
−∞ πλ′fA(a;λ′)dλ′ (1)

Similarly, if Alice announces A1 = a, and Bob privately observes B1 = b,
Bob’s posterior outcome is inferred from f(a, b;λ). It will become the public
prediction when Bob announces it. Mark it h(a, b).

h(a, b)λ = Pr(λ|A1 = a,B1 = b) =
πλf(a, b;λ)

∫ ∞
−∞ πλ′f(a, b;λ′)dλ′ (2)

2.4 Maximizing the Reward

How does Alice maximize her total reward for both her predictions? And is
this maximum achieved by telling the truth on both predictions? We will show
that Alice maximizes her reward by minimizing Bob’s reward, and therefore is
truthful if truth minimizes Bob’s reward.

Proposition 1. Alice maximizes her expected total reward by making a first
prediction that minimizes Bob’s expected reward, where expectations are taken
according to Alice’s beliefs on her first prediction.

Proof. The proof of this proposition is in the full version Ban (2018).

Corollary 1. If a truthful first prediction minimizes Alice’s expectation of Bob’s
reward, i.e., if

E
b∼B1|(A1=a)

E
λ∼h(a,b)

ΠB(λ; a, â, b) =
{

E
b∼B1|(A1=a)

s(h(â, b), h(a, b))
}
− s(g(â), g(a))

is minimized at â = a, then truth is Alice’s best policy.
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3 Which Prediction Settings Are Already Truthful?

We described in Example 1 an elementary setting that is not truthful, and a
handful of other settings have been settled either way in the literature. But in
the landscape of prediction settings that are of interest, the coverage has been
very sparse. Beyond Chen and Waggoner (2016)’s criterion of “Informational
Substitutes”, which does not amount to an explicit algorithm7, we have no pro-
cedure to settle any given case, and the problem remains opaque.

With the results we derived in Sect. 2.4, we now have such procedures. In the
full version Ban (2018) we apply them to classify settings belonging to two of the
most commonly-met continuous distributions: the multivariate normal distribu-
tion and the multivariate lognormal distribution, and the two most commonly
used scoring rules: the Logarithmic and the Brier/Quadratic.

See details and results in Sect. 3 of the full version Ban (2018).

4 Strategy-Proof Mechanisms

4.1 Group Prediction

Our first strategy-proof mechanism scores the last prediction made by a proper
scoring rule, and awards the score to each of the participating experts.

Proposition 2. Let x be the outcome, and let the last prediction made before the
outcome is revealed be distribution p. Then the mechanism that awards S(p, x)
to each participating player, where S is a proper scoring rule, is truthful. Fur-
thermore, the mechanism elicits full disclosure.

Proof. The proof of this proposition is in the full version Ban (2018).

The mechanism does not motivate promptness, which we defined as a strong
preference: Players may predict as late as possible without harming their welfare.

Another drawback is unfairness: The mechanism awards all experts the same,
regardless of their contribution. Indeed, a so-called expert who has no informa-
tion of his own may reap the same reward as other experts by simply repeating
the current public prediction. This means that, unless the number of experts
is bounded, the mechanism is not loss-bounded. Attempts to fix this would be
counterproductive, compromising truthfulness. For example, rewarding nothing
to “predictions” that merely repeat the public prediction, will motivate an unin-
formed expert to pretend knowledge by “tweaking” the current public prediction.

7 A submodularity property is required of the signal lattice, in a context described in
their article.



Strategy-Proof Incentives for Predictions 61

Table 1. Mechanism score card

Mechanism Truthful Full disclosure Prompt Bounded loss

Market scoring rule × � × �
Group prediction � � × ×
Enforce single prediction � × × �
Discounting � � � �

4.2 Enforce Single Prediction

Since multiple predictions are the source of the potential for manipulation, a
mechanism that prevents that would restore general truthfulness.

Proposition 3. Let S be a proper scoring rule. The mechanism that scores each
prediction with the increment S(p, x) − S(p′, x), where p is the predicted distri-
bution and p′ the previous public prediction, and rewards each expert with the
minimum score out of all her predictions, is truthful.

Proof. Once an expert has made a prediction, a further prediction may only
lower her reward expectation and so is not optimal. Since incremental, proper
scoring rules are truthful with a single prediction, the mechanism is truthful. ��

While this mechanism is truthful, and loss-bounded, it does not motivate
promptness. Every expert needs to figure out the best time to make his single
prediction, given other players’ strategies, resulting in a Bayes-Nash equilibrium.
As Azar et al. (2016) show, this can be complex. Furthermore, full disclosure is
not assured, since experts may choose to make a prediction before getting their
final signal.

4.3 Discounting

The last, and, we will argue, the most successful mechanism we suggest for
incentive compatibility is discounting.

Discounting essentially uses a proper market scoring rule. As explained in the
Introduction, for a proper scoring rule S(p, r), the market scoring rule scores a
prediction p S(p, r) − S(p′, r) where p′ is the outcome distribution that was
replaced by p, and r is the outcome. Now any scoring rule can be scaled by an
arbitrary constant k and remain proper. Furthermore, kS(p, r)−k′S(p′, r) where
k, k′ may be different, is also proper. Generally, we can employ a time-varying
scale factor k(t) ∈ R>0, and use the proper scoring rule k(t)S(p, r), where t is
the time (which may be the elapsed time from some base, or an integer counter
of events) of announcement of p. Discounting means choosing k(t) that is weakly
decreasing in t, whence we get a discounted scoring rule D(p, r, t) := k(t)S(p, r),
where t is the time of prediction p. When t′ < t is the time replaced prediction
p′ was made, the discounted market scoring rule for prediction p is
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D(p, r, t) − D(p′, r, t′) = k(t)S(p, r) − k(t′)S(p′, r)

The idea of discounting is that, if without discounting Alice’s optimal strategy
is to hide or distort information on her first prediction, in order to reap a bigger
benefit on her second prediction, her calculus will change if a sufficiently steep
discount, motivating earlier predictions, is imposed on her reward.

We must be careful to use non-positive scoring rules with the discounting
mechanism. Otherwise a possibility exists that the discounted scoring rule will
have negative expectation for a prediction, creating a situation in which a player
will prefer not predicting to making a truthful prediction. On the other hand,
for non-positive scoring rules, S(p, r) ≤ 0, so that, whenever 0 ≤ k(t) ≤ k(t′)

k(t)S(p, r) − k(t′)S(p′, r) ≥ k′(t)[S(p, r) − S(p′, r)]

So, if our original scoring rule had positive expectation, so does our discounted
one.

Note that the logarithmic scoring rule log pr and quadratic scoring rule 2pr −
p ·p−1, which we have analyzed, are non-positive. Any scoring rule can be made
non-positive by affine transform.

Remark 1. Non-positive scoring rules suffer from an artefact that is the mir-
ror image of positive ones: Experts have positive score expectation ([k(t) −
k(t′)]S(p, r)) for merely repeating the current prediction, and so will do so even
if they have no information. In fact, the mechanism can offer them this “reward”
automatically, sparing them the need to make an empty prediction. While this
is ugly, its effect is minor, and the expected loss is still bounded by −k(t)S(p, r)
at any time t. As in other cases, attempts to mend this would be counterpro-
ductive. E.g., if we deduct the “unearned” [k(t) − k(t′)]S(p, r) from every score,
we will compromise truthfulness, as this reverts to the discounting mechanism
proposed in Chen et al. (2010).

Proposition 4. Using the notation of Sect. 2.3, if S is a non-positive scoring
rule, and there exists K such that

K ≥
E

b∼B1|(A1=a)

[
S(h(a, b), h(a, b) − S(h(â, b), h(a, b))

]

S(g(a), g(a)) − S(g(â), g(a))
(3)

for every A1 = a and every possible â, then the game is promptly truthful with a
discount factor k(t) that satisfies k(t1)/k(t2) ≥ K, where t1 is the time of Alice’s
first prediction and t2 is the time of the second.

Proof. If (3) is satisfied, scoring rule k(t)S(p, r) satisfies Corollary 1. ��
From Proposition 4, we state sufficient conditions for discounting to succeed.
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Corollary 2. If

1. S is a non-positive strictly proper scoring rule, and
2. E

b∼B1|(A1=a)

[
S(h(a, b), h(a, b) − S(h(â, b), h(a, b))

]
is bounded for every a, â

– In particular, if S is the quadratic scoring rule, or any other bounded
scoring rule, and

3. The right-hand side of (3) is bounded when â → ±∞, and

4. limâ→a

∂2

∂â2 S(h(â, b), h(a, b))

∂2

∂â2 S(g(â), g(a))
exists for every a, b.

Then there exists a discount factor effective at restoring truthfulness.

Proof. As S is strictly proper, and the nominator of (3) is bounded, (3) can be
unbounded only at infinity or at â = a. At â = a, (3) evaluates to 0

0 , so we invoke
L’Hôpital’s rule to find the limit. By the definition of a proper score rule, first
derivatives again evaluate to 0

0 , so invoke L’Hôpital again for second derivatives.
��

In Sect. 4.3 of the full version Ban (2018), we show that discounting can
restore truthfulness in the untruthful settings found in Sect. 3.

Finally, we can formulate a proposition for the prompt truthfulness of a
general prediction forum.

Proposition 5. The public and a set of experts predict a parameter λ. Let there
be a fixed schedule in [0, T ] specifying when experts and public receive signals,
and experts may make a prediction. Agents may receive multiple signals, and
experts may have multiple prediction opportunities.

Then the forum is generally truthful and prompt with a discount function
k(t) ∈ R>0 that makes all Alice-Bob-Alice subgames in the schedule truthful
and prompt. These subgames are all occurrences where any expert, identified as
“Alice”, has two consecutive prediction opportunities, and all experts who makes
predictions in between are rolled into a single player identified as “Bob”.

Proof. The proof of this proposition is in the full version Ban (2018).

5 Discussion

5.1 Conclusions

We showed that using proper scoring rules for rewarding predictions often leads
to reticence or deception. We formulated criteria for determining which pre-
diction settings are truthful, and made a complete classification of the class
of prediction settings with normal and lognormal signals, under the logarithmic
and quadratic scoring rules. We suggested three new strategy-proof mechanisms,
and identified one of them, discounting, as having all desirable properties, and
proved the applicability and effectiveness of the discounting mechanism.
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5.2 A Market Maker for the Discounting Mechanism

Hanson (2003) has shown that every market scoring rule can be implemented
by an automated market maker, who provides liquidity, and is willing to make
any fair trade in shares of the form “pay $1 if outcome is r”, for every r. This
applies to our discounting mechanism for the logarithmic scoring rule, which, as
noted, takes the form of a market scoring rule for S(p, r) = k(t) log pr.

Applying Hanson’s explanations to our case, if at t there is an inventory s of
shares sr for every r, the instantaneous share price is

m(sr) = e
sr

k(t)
/∫ ∞

−∞
e

sx
k(t) dx

Assuming an infinitesimal trade path, this induces a cost function C(s, t). The
cost of a trade changing the inventory from s to s′ at t′, is

C(s′, t′) − C(s, t) := k(t′) log
∫ ∞

−∞
e

s′
x

k(t′) dx − k(t) log
∫ ∞

−∞
e

sx
k(t) dx

Since k(t) is weakly decreasing in t, differentiating the above expression with
respect to t′ shows that the more any trade with the automated market maker
is delayed, the higher its cost.
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Abstract. Given a data-set of consumer behaviour, the Revealed Pref-
erence Graph succinctly encodes inferred relative preferences between
observed outcomes as a directed graph. Not all graphs can be constructed
as revealed preference graphs when the market dimension is fixed. This
paper solves the open problem of determining exactly which graphs are
attainable as revealed preference graphs in d-dimensional markets. This
is achieved via an exact characterization which closely ties the feasibility
of the graph to the Matrix Sign Rank of its signed adjacency matrix.
The paper also shows that when the preference relations form a partially
ordered set with order-dimension k, the graph is attainable as a revealed
preference graph in a k-dimensional market.

Keywords: Revealed preference · Matrix sign rank · Partial order

1 Introduction

In standard economic analysis and mechanism design, it is often assumed that
the agents’ valuation functions are known a priori, or more commonly, a prob-
ability distribution over possible agent types is assumed to be known. However,
in practice, we may only observe the prices which are set, and the subsequent
behaviour of the agents. Assuming the agents act rationally, and that their utility
functions are restricted to some well-defined class, information about the relative
values attributed to various outcomes may be inferred by simply observing the
agents’ behaviour at various prices. This idea was first pioneered by Samuelson
in 1938 [23], and a large body of work has followed. See [24] for a thorough
survey on the subject. The concept came to be known as revealed preference:
when an agent chooses different outcomes given different prices, she is (under
some assumptions) revealing that one is preferable to the other.

Though this may seem natural at first, the implementation of these ideas has
required much mathematical development for the description, characterization,
and computation of the revealed preferences. In the model originally studied
by Samuelson, the agent is assumed to have an underlying valuation function
and a fixed budget. She seeks to choose the collection of goods which has the
largest value while satisfying her budget constraint at the current prices. This
c© Springer Nature Switzerland AG 2018
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https://doi.org/10.1007/978-3-030-04612-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04612-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-04612-5_5


Revealed Preference Dimension via Matrix Sign Rank 67

is the most common formulation, though others exist (see e.g. [11]). This paper,
however, deals only with the standard model.

The market consists of d distinct, separable goods, and a collection of goods
(or bundle) is denoted as a vector x ∈ R

d
≥0, where the i-th coordinate of x rep-

resents the quantity of the i-th good. The prices are linear, and are described by
a vector p ∈ R

d
≥0 such that the price of a bundle x is given by the inner product

〈p,x〉. In this model, a bundle x is revealed preferred to a bundle y if at current
prices p, the agent chose x, but y was more affordable, i.e. 〈p,x〉 ≥ 〈p,y〉. Since
the agent is assumed to be maximizing value within a budget constraint, y must
be less valuable than x.

Samuelson originally asked whether revealed preferences may be used to ver-
ify whether an agent’s behaviour is consistent with the model assumptions: if
an agent’s behaviour is contradictory, then one must conclude that the model
assumption is incorrect. He first conjectured a simple test, which was confirmed
to be correct in special cases by Rose [21], but disproved in the general case.
Houthakker [19] proposed a stronger test of “cyclical consistency” and proved
its correctness non-constructively in our setting. The most famous result is given
by Afriat [1], where he shows a slightly more general result, and gives explicit
constructions of the valuation function as a certificate for consistency. The notion
of cyclical consistency has since been called the “Strong/Generalized Axiom of
Revealed Preference” (SARP/GARP), and is used to this day in many empirical
settings [16,25,26], including as bidding rules in combinatorial auction mecha-
nisms, to deter non-truthful bidding practices [3,4,12,17]. We will not delve into
the details of the axioms of revealed preference, but a thorough survey may be
found at [24]. It is however helpful to be familiar with the concept of a revealed
preference graph, which is defined below. A more familiar treatment to economic
audiences is given in [10].

Revealed Preference Graphs: Recall that in Samuelson’s model, an agent
may choose goods from the consumption space R

d
≥0, and seeks to choose the

bundle x∗ which maximizes her valuation v(x) subject to the budget constraint
〈p,x〉 ≤ 1, up to re-scaling. Suppose now that we make n observations of this
agent at different price points p1, p2, . . . , pn ∈ R

d
≥0, and that at prices pi, her

optimal bundle was xi. If her behaviour is rational, then whenever 〈pi,xi〉 ≥
〈pi,xj〉, she must value xi greater than xj since the latter was affordable when
the former was chosen. Thus, she has revealed that xi is preferable to xj .

These preference relations may be modelled as a directed graph: let G be a
graph on vertex set {1, . . . , n}, and add an edge directed from i to j if xi is
revealed preferred to xj . Thus, (i, j) ∈ G if and only if 〈pi,xi〉 ≥ 〈pi,xj〉. This
graph is implicit in the proofs of Afriat, and the notion of cyclical consistency
is equivalent to requiring that G not contain any directed cycles. In general, a
preference graph inferred from observations need not be acyclic.

Most uses of revealed preference as bidding rules in combinatorial auctions
(cited above) rely on testing properties of this revealed preference graph. In
past work [7,8], we have asked whether such tests, e.g. the minimum feedback
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vertex set, are efficiently computable. We concluded that for this one test, its
computational complexity is in fact dependent on the market dimension d: when
the dimension of the pi and xj vectors is fixed, but the number of observations
is unbounded, then the class of observable graphs is restricted, and the com-
putational complexity of some problems may depend on the parameter d. For
example, it was shown by Deb and Pai [13] that when d = n, every directed
graph on n vertices is observable over R

n, but that for all fixed d, there exist
exponentially large graphs which can not be observed in d dimensions.

This past work has led us to asking whether one could characterize the class
of preference graphs observable in the market R

d for some fixed d. In fact, this
question had been posed as an open problem by Echenique [10].

Question: For a fixed dimension d, which directed graphs may be observed as
revealed-preference graphs on bundles in R

d?
This paper answers this question by giving an exact characterization of all

graphs observable over R
d, given in terms of the matrix sign rank of signed adja-

cency matrices. The notion of matrix sign rank deals with the existence of low-
rank matrices whose entries satisfy certain sign constraints; see [6] for an intro-
duction. More formally, the matrix sign rank of a sign matrix S ∈ {0,+,−}n×m

is defined as the least rank real-valued matrix M ∈ R
n×m whose entries have

the same signs as the entries in S. Matrix sign rank has been influential in many
fields, including complexity theory and learning theory. Seminal lower bounds
in communication complexity [15] and circuit complexity [20] rely on using the
matrix sign rank of a problem to measure its hardness, whereas linear clas-
sification algorithms benefit from low-dimensional embeddings of classification
problems, as given by sign-rank [2,9,22].

Summary of the Results. To answer the above question, we introduce the
notion of RP dimension, defined as follows: Given a directed graph G, what is
the least d such that G may be observed as a preference graph over R

d?
In this paper, we give an exact characterization of the set of graphs with

RP dimension d, for all d ≥ 1. We show that, for a given graph, it can be
realized as preference observations over R

d if and only if its signed adjacency
matrix has sign-rank at most d + 1. Thus, the RP dimension of the graph G
is exactly the sign-rank of its signed adjacency matrix, minus one. In fact, this
paper shows that determining the RP dimension of directed graphs is equivalent
to determining the sign rank of a large class of sign matrices, a problem which
is known to be NP-hard [6].

This paper also considers the special case of directed graphs which represent
partially ordered sets, or posets. We show that the RP dimension is at most
the order-dimension of the poset, and that this bound is tight when the order-
dimension is at most 3. However, there exist posets of arbitrarily large order-
dimension, which can be realized in R

3.
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2 Model, Preliminaries, and Summary of Results

This section formally lays out the concepts introduced above. As discussed in
the introduction, it is assumed that an agent is observed repeatedly in a market.
Faced with price-vector p ∈ R

d
≥0, she chooses the item which maximizes her

valuation subject to a budget constraint. Thus, she chooses x∗ as the bundle
which maximizes v(x) subject to 〈p,x〉 ≤ 1. Assume that on the i-th obser-
vation, the agent was faced with prices pi, and chose the bundle xi. Then we
have that xi is revealed preferred to xj if 〈pi,xi〉 ≥ 〈pi,xj〉, since xj must
have been affordable when xi was chosen. Given a collection of observations
(p1,x1), (p2,x2), . . . , (pn,xn), we may construct a directed preference graph G
on vertex set {1, . . . , n} with an edge from i to j if xi is revealed preferred to xj .

This paper, however, does not deal with constructing preference graphs from
data sets, but rather of constructing data sets from preference graphs. Thus, we
introduce the notion of the realization of a preference graph:

Definition 1 (RP realization). Let G = (V,E) be a directed graph with
vertices labelled {1, . . . , n}, and let X := {(p1,x1), . . . , (pn,xn)} be pairs of
vertices in R

d such that pi ≥ 0 for all i ≤ n. Then X is said to RP-realize
G if for all 1 ≤ i, j ≤ n, the directed edge (i, j) is present in G if and only if
〈pi,xi〉 > 〈pi,xj〉.

Note that we require strict inequality to induce preference. This is purely
for mathematical convenience, and is not standard in the definitions of revealed
preference. Since we are only considering the existence of the realization, rather
than the realization itself, this is assumed without loss of generality. We also
define a notion of weak RP realization, which we will show is equivalent.

Definition 2 (Weak RP realization). As above, let G = (V,E) be a directed
graph with vertices labelled {1, . . . , n}, and let X := {(p1,x1), . . . , (pn,xn)} be
pairs of vertices in R

d such that 〈pi,1〉 > 0 for all i ≤ n, where 1 = (1, 1, 1, . . . ).
Then X is said to weakly RP-realize G if for all 1 ≤ i, j ≤ n, the directed edge
(i, j) is present in G if and only if 〈pi,xi〉 > 〈pi,xj〉.

The difference between RP realization and weak RP realization is the restric-
tion on the possible p vectors. We will show below that these two notions of RP
realization are equivalent in the following sense: given a graph G and an integer
d, there exists an RP realization of G in R

d if and only if there exists a weak
RP realization in R

d.
It is natural to ask whether an RP realization is possible, and whether this

depends on the value of d. In fact, it was shown by Dep and Pai [13] that when
d = n, a realization is always possible. (Simply set xi to be the i-th standard
basis vector, and set (pi)j = 0 if (i, j) ∈ G, 1 if i = j, and 2 if (i, j) /∈ G.) We
wish to determine the minimum value of d for which this is possible. Thus, we
introduce the notion of RP dimension.

Definition 3 (RP dimension). Let G = (V,E) be a directed graph on n
vertices. Then the RP dimension of G, (denoted RPDim(G)) is the minimum d
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such that there exists an RP realization of G in R
d. We denote as RevPrefDim

the computational problem of computing RPDim(G) for a given di-graph G.

As mentioned above, we will show that the RP dimension does not change
if the RP realization is allowed to be weak. We will be characterizing the RP
dimension of candidate preference graphs by the sign-rank of an associated sign
matrix. We define below the notion of realization for sign matrices, and define
sign rank as the minimum rank of a realization:

Definition 4 (Matrix sign realization). Let M ∈ {+,−, 0}n×m be an n×m
matrix whose entries are given by the symbols +, −, and 0. Let A ∈ R

n×m be
an n×m real-valued matrix. Then A is a matrix sign realization of M if Aij > 0
whenever Mij = +, Aij < 0 whenever Mij = −, and Aij = 0 whenever Mij = 0.

Definition 5 (Matrix sign-rank). Let M ∈ {+,−, 0}n×m, then the sign-
rank of M , (denoted SgnRnk(M)) is the minimum r such that there exists a
matrix sign realization A of M with rank r. We denote as MatSgnRnk the
computational problem of finding SgnRnk(M) for a given matrix M .

Finally we will show that when the preference graph is induced by a partially
ordered set or poset, the RP dimension of the graph is related to properties of
the poset. Partially ordered sets have been the subject of much study, and many
textbooks on the matter make for a good introduction (see e.g. [18]). Below is a
formal definition, included for completeness.

Definition 6 (Partially-ordered set (Poset)). Let S be some (finite) ground
set, and let � be a transitive, acyclic, and irreflexive, binary relation on S. That
is, for all a, b, c ∈ S, a � a, and if a � b and b � c, then a � c. 1 Then the pair
(S,�) is termed a partially-ordered set, or poset. The poset may also be seen as a
directed graph G = (S,�), which must be acyclic and transitively closed. A total
order is a poset whose underlying undirected graph is complete. Alternatively, a
total order is the poset induced by a ranking of the elements of S.

Every partial order is the intersection of some total orders. The order dimen-
sion of a poset captures the least number of total orders needed to realize it.

Definition 7 (Order dimension). Let (S,�) be a poset, and O = {�1

, . . . , �k} be k distinct total orders on S. Then O realizes the poset (S,�)
if for all a, b ∈ S, a � b if and only if a �i b for all 1 ≤ i ≤ k. The order
dimension of (S,�) is the minimum k such that there exists a collection of k
total orders which realize �.

2.1 Results

We formally state here the results of this paper and outlines of their proofs. The
proofs in full technical detail will be presented in the next sections. The main
1 These two conditions imply that the relation must be acyclic.
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goal is to show that for each directed graph G, there exists an associated sign
matrix M such that RPDim(G) = SgnRnk(M) − 1.

For simplicity of notation, though, we extend all directed graphs with a fully-
dominated and fully-dominating node as follows: given a directed graph G, let
G+ be the graph obtained by adding two nodes s and t to G, and for all v ∈ G,
adding an edge (s, v) and an edge (v, t) to G, plus the edge (s, t).

Finally, for a directed graph G, we define its signed adjacency matrix M(G)
as follows: M(G)ij is 0 if i = j, +1 if (i, j) ∈ G, and −1 otherwise. This allows
us to formally state the first, and most important result:

Theorem 1. For all G, RPDim(G) = RPDim(G+) = SgnRnk(M(G+)) − 1.

To show this, we first constructively show that any RP realization in d dimen-
sions implies a sign-rank realization with rank d+1. Next, we argue that a sign-
rank realization of M(G+) with rank r implies a weak RP realization in r − 1
dimensions. Using the following lemma, we conclude the theorem:

Lemma 1. A graph G admits an RP realization with vectors in R
d if and only

if it admits a weak RP realization with vectors in R
d.

As a special case, we consider the case of partially ordered sets.
We begin by showing first that the order-dimension of the poset is an upper-

bound on the RP dimension.

Theorem 2. Let (S,�) be a poset with order-dimension k, a and let G = (S,�)
be the associated directed graph. Then RPDim(G) ≤ k.

This is shown by first introducing the “dominance ordering” interpretation
of order dimension, and then embedding the elements of the partial order in such
a way as to achieve such an ordering. A dominance ordering is simply a partial
order on points in R

k, where x � y if and only if xi ≥ yi for all 1 ≤ i ≤ k. This
naturally has order dimension at most k, since it suffices to sort the points by
their positing in each of the k dimensions.

Unfortunately, the converse does not hold. We show first that for k sufficiently
small, order dimension and RP dimension are equal, but bad examples exist for
large order dimension.

Theorem 3. Let (S,�) be a poset with order-dimension k, a and let G = (S,�)
be the associated directed graph. Then RPDim(G) ≥ min{k, 3}. Furthermore, for
all k ≥ 3, there exist posets G = (S,�) of order-dimension k, but RPDim(G) = 3.

3 RP Dimension and Sign Rank – Proof of Theorem1

In this section, we prove Theorem 1, as was outlined in Sect. 2.1. We begin by
showing the equivalence of RP realization and weak RP realization, given by
Definitions 1 and 2, respectively. Thus, we wish to prove Lemma 1. The proof
of this lemma effectively reduces to transforming a cone into the cone spanned
by the standard basis vectors, though we have included a careful analysis, which
allows us to greatly reduce the technical burden of proving Theorem 1.
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Lemma 1. A graph G admits an RP realization with vectors in R
d if and only

if it admits a weak RP realization with vectors in R
d.

Proof. An RP realization is by definition a weak RP realization, so one direction
of the implication follows trivially. It suffices to show that the existence of a
weak RP realization implies the existence of an RP realization, which we will do
constructively. Let X := {(p1,x1), . . . , (pn,xn)} be the d-dimensional vectors
which weakly realize G. In other words, (i, j) ∈ G if and only if 〈pi,xi〉 > 〈pi,xj〉.
Let b1, b2, . . . , bd−1 be a basis for the space orthogonal to the all-ones vector 1.
Thus, 〈1, bi〉 = 0 for all i, and B = {1, b1, b2, . . . , bd−1} is a basis for R

d.
We wish to express the p vectors as positive combinations of the b vectors,

and thus restrict them to lie in a cone. This will allow us to map the rays of the
cone to the standard basis vectors, and get the desired “strong” RP realization.
Since B is a basis, we can express pi =

∑d−1
j=0 αi

jbj for all i and j, where b0 = 1.
We have chosen the bi’s as orthogonal to 1, and by assumption 〈1,pi〉 > 0
for all i. Hence, αi

0 > 0 for all i, and we define ε = min{α1
0, . . . , α

n
0 } > 0.

However, for all j �= 0, we may have αi
j negative. To this end, define λj =

min{−1, α1
j , α

2
j , . . . , α

n
j } for all 1 ≤ j ≤ d − 1. Hence, αi

j − λj ≥ 0 for all i

and j. We now define a slightly modified basis B̂ = {b1, . . . , bd−1, b̂d}, where
b̂d = ε1 +

∑d−1
j=1 λjbj . In this new basis, we can express

pi = αi
0
ε · b̂d +

d−1∑

j=1

bj ·
(
αi

j − αi
0λj

ε

)
(1)

Recall that λj < 0 and αi
0 ≥ ε, so αi

0λj

ε ≤ λj , and thus αi
j − αi

0λj

ε ≥ αi
j − λj > 0,

by construction. Thus, not only is B̂ a basis for R
d, but the pi vectors are non-

negative combinations of the basis vectors.
It remains, then to construct a linear map which goes between the standard

basis and the basis B̂. Let B be the matrix whose columns are the vectors of B̂,
and note that for the j-th standard basis vector ej , we have Bej = bj , for all
1 ≤ j ≤ d, setting bd := b̂d. Therefore, B−1bj = ej for all 1 ≤ j ≤ d. Since we
have shown that the p vectors are non-negative combinations of the B̂ vectors,
we may conclude that for all i, B−1pi has all non-negative entries. Furthermore,

〈
B−1pi, B

Txj

〉
= (B−1pi)

TBTxj = pT
i (B−1)TBTxj = 〈pi,xj〉 (2)

Therefore, setting p̂i = B−1pi, and x̂j = BTxj , we have that 〈p̂i, x̂j〉 > 0 if and
only if 〈pi,xj〉 > 0, so X̂ := {(p̂1, x̂1), . . . , (p̂n, x̂n)} are d-dimensional vectors
which strongly realize G, as desired. 	


To complete the proof of the theorem, it remains to construct low-rank sign
matrices for preference graphs which have low-dimensional RP realizations, and
construct low-dimensional weak RP realizations when the augmented directed
graph has a sign-incidence matrix with low sign rank. We begin by recalling
the definition of the augmented preference graph: For any directed graph G, let
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G+ be constructed by appending two nodes s and t to G, adding the directed
edge (s, t), and for all v ∈ G, adding the directed edges (s, v) and (v, t). We
begin by observing that the addition of these two extra nodes does not affect
the RP dimension of the graph:

Claim. RPDim(G) = RPDim(G+).

Proof. Let d := RPDim(G) and d′ := RPDim(G+). Clearly, RPDim(G) ≤ d′,
since it suffices to remove the vectors representing the s and t nodes from any
realization of G+ in d′ dimensions. It remains to show RPDim(G+) ≤ d. We
say a vector x = (x1, . . . , xd) dominates y = (y1, . . . , yd) if xi ≥ yi for all
1 ≤ i ≤ d. Now, let X := {(p1,x1), . . . , (pn,xn)} be the d-dimensional vectors
which realize G. Assume that the realization is a standard realization, as in
Definition 1, as opposed to a weak one. Then we must have that if xi dominates
xj , there is an (i, j) edge in G.

Now, the collection x1, . . . ,xn is finite, and so there must exist vectors xs

and xt such that xs dominates xi and xi dominates xt for all 1 ≤ i ≤ n. It
suffices to set ps = pt = 1, and this gives a d-dimensional realization of G+, as
desired. 	


Now that we have shown that G and G+ have the same sign-rank, we may
introduce the signed adjacency matrix. For any graph G on the vertex set
{1, . . . , s}, let M(G) be defined as

M(G)ij =

⎧
⎪⎨

⎪⎩

0 if i = j

+ if (i, j) ∈ G

− if (i, j) /∈ G

(3)

In what follows, we show that if RPDim(G+) = d, then SgnRnk(M(G+)) ≤ d+1,
and if SgnRnk(M(G+)) = r, then there is a weak RP realization for G+ in r − 1
dimensions. Both of those directions will be shown constructively, following a
similar construction. We begin by showing the first direction:

Lemma 2. SgnRnk(M(G+)) ≤ RPDim(G+) + 1.

Proof. Let X := {(p1,x1), . . . , (pn,xn)} be the d-dimensional vectors which
realize G+, that is for all i, j ∈ V (G), (i, j) ∈ E(G) if and only if 〈pi,xi〉 >
〈pi,xj〉. We construct the following matrix: let A(X ) be the n × n-dimensional
matrix whose entries are given by A(X )ij = 〈pi,xi − xj〉 for all i, j ≤ n. Observe
that we have chosen the entries of M(G) to be exactly the signs of the entries
of A(X ). Thus, it suffices to show that A(X ) has rank at most d + 1, which will
imply that M(G) has sign-rank at most d + 1. Indeed,

A(X ) =

⎡

⎢
⎢
⎢
⎣

← p1 → 〈p1,x1〉
← p2 → 〈p2,x2〉

...
...

← pn → 〈pn,xn〉

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
n×(d+1)

·

⎡

⎢
⎢
⎣

↑ ↑ ↑
−x1 −x2 · · · −xn

↓ ↓ ↓
1 1 · · · 1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
(d+1)×n

(4)
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Since the inner-dimension of the product is d + 1, this implies that A(X ) has
rank at most d + 1, as desired. 	


We will use this same construction to show the converse. The extension G+

is required to ensure that this is possible, and that the vectors do indeed form a
weak RP realization.

Lemma 3. RPDim(G+) ≤ SgnRnk(M(G+)) − 1.

Proof. Let A be some rank-r realization of M(G+). Assume without loss of
generality that the first and second rows and columns of M(G+) are associated
to the dominating and dominated vertices, respectively. Thus, M(G+) has the
form

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 + + + + · · ·
− 0 − − − · · ·
− + 0 ∗ ∗ · · ·
− + ∗ 0 ∗ · · ·
...

...
...

...
. . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Thus, letting Ai be the i-th row of A, we have that A1 − A2 is an all-positive
vector. Since A has rank r, we may set a1 = A1 − A2, and extend it to a basis
A = {a1,a2, . . . ,ar} for the rows of A. Let R be the r × n matrix whose rows
are the vectors of A, and let L be the matrix of coefficients such that A = LR.
Note that scaling the columns of A is the same as scaling the columns of R,
and this scaling process does not affect the rank of the matrix. Furthermore, if
the scaling factors are positive, then the sign pattern is unaffected. Thus, we
may assume without loss of generality that a1 = 1, by rescaling column j by
1/(a1[j]) > 0, for all j. (We are using square brackets to denote the entries of
the vector.) Thus, we may interpret the entries of L and R as in Eq. (4). Now, if
the i-th row of L is given by the vector �i, we set pi := �i[1..r − 1], and assume
〈pi,xi〉 = �i[r]. Furthermore, if the j-th column of R is given by (rj , 1), then we
set xj = −rj . Since the diagonal entries of M(G+) are zero, we must have that
1 · 〈pi,xi〉 + 〈pi,−xi〉 = 0, which is consistent.

Thus, we have vectors pi and xj in R
r−1 such that 〈pi,xi〉 > 〈pi,xj〉 if and

only if (i, j) ∈ G+. It suffices to transform these vectors to ensure 〈1,pi〉 > 0
for all i. Recall that we have assumed that G+ contains the edges (1, i) and
(i, 2) for all 3 ≤ i ≤ n. Thus, we must have 〈pi,xi〉 ≤ 〈pi,x1〉 and 〈pi,xi〉 >
〈pi,x2〉. Therefore, 〈pi,x1 − x2〉 > 0 for all i ≥ 3. Similarly to the proof of
Lemma 1, we will use this to find an appropriate linear transformation for the
p and x vectors. Let Q be any invertible matrix such that Q(x1 − x2) = 1.
Then, setting p̂i := (Q−1)Tpi, and x̂j := Qxj , we have 〈pi,xj〉 = 〈p̂i, x̂j〉, and
0 < 〈p̂i, x̂1 − x̂2〉 = 〈p̂i,1〉. Thus, we have constructed a weak RP realization
for G+ in r − 1 dimensions. 	


We claim that this completes the proof of Theorem 1: Lemma 1 ensures that
a weak realization is possible if and only if a “strong” one is, the above Claim
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ensures that RPDim(G+) = RPDim(G), these two facts along with Lemma 2
imply that RPDim(G) ≤ SgnRnk(M(G+))−1, and finally, Lemma 3 implies that
RPDim(G) ≥ SgnRnk(M(G+)) − 1, from which we conclude Theorem 1.

4 RP Dimension and Order Dimension – Proofs of
Theorems 2 and 3

In this section, we prove Theorems 2 and 3, as was outlined in Sect. 2.1. We begin
by defining the notion of a dominance order, and noting the natural interpreta-
tion of dimension as order dimension. Recall from Sect. 3 the notion of vector
dominance: where we say x dominates y if it is at least as great in each coor-
dinate. This is denoted x ≥ y. A standard form of geometrically-defined partial
orders is a vector-dominance partial order: Given a set of vectors x1, . . . , xn, we
set i � j if and only if xi ≥ xj . It is easy to check that this relation is transitive
and acyclic. We remark that the vector-dominance poset induced by points in
R

d has order dimension at most d: For all 1 ≤ j ≤ d, set the j-th total order
to be the ordering of the n points with respect to their j-th coordinate. Then
i � j if and only if all d total orders agree on the relative ordering of xi and
xj . The converse also holds: if a partial order has order-dimension k, then it can
be expressed as a vector-dominance poset in R

k. We will formalize this fact and
extend it to show Theorem 2.

Proof (of Theorem 2). Let (S,�) be a poset with order-dimension k, a and let
G = (S,�) be the associated directed graph. We wish to show RPDim(G) ≤ k.

Let �1, . . . , �k be the k total orders which realize �. Note that each total
order �i induces a ranking σi on the elements of S, such that a �i b if and only
if σi(a) > σi(b). Assume without loss of generality that σi maps the elements
of S to {1, . . . , |S|}. Then the usual dominance embedding of (S,�) is given by
mapping each a ∈ S to φ(a) := σ(a) := (σ1(a), σ2(a), . . . , σk(a)). Now, a � b if
and only if φ(a) dominates φ(b).

For the purposes of RP-dimension, we need a rescaled embedding. If k = 1,
then (S,�) is a total order, and setting xi = σ(i), pi = 1 will suffice. Other-
wise, define ψ(a) := (kσ1(a), kσ2(a), . . . , kσk(a)). Since k ≥ 2, this maintains the
dominance ordering of φ. Now, if we set xi = ψ(i), and

pi =
(

1
kσ1(i) ,

1
kσ2(i) , . . . ,

1
kσk(i)

)

then we get 〈pi,xi〉 = k. Furthermore, letting yi
j = (. . . , 0, kσj(i)+1, 0, . . . ), we

have
〈
pi,y

i
j

〉
= k for all 1 ≤ j ≤ k. Therefore, the hyperplane normal to pi,

passing through xi, will also pass through yi
j for all j. Since the σ values are

presumed to be positive integers, this means that xi = ψ(i) can only be revealed-
preferred to xj = ψ(j) if xi dominates xj .

Thus, we have constructed a set of vectors in R
k which realizes G = (S,�),

which allows us to conclude that RPDim(G) ≤ k. 	
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It remains to prove Theorem 3, that is that for k = 1, 2, or 3, posets of order
dimension k have RP dimension k, but that for all k ≥ 3, there exists a poset of
order dimension k but order dimension 3. We begin by showing this first part:

Lemma 4. A poset has RP dimension 1 or 2 if and only if it has order dimen-
sion 1 or 2, respectively.

Proof. Note that an RP realization in R
1 is simply a total order on the players,

since we have (i, j) ∈ G if and only if pixi > pixj . Since we need pi > 0, we have
(i, j) ∈ G if and only if xi > xj , and therefore, the values of x1, . . . , xn induce
a total order on the elements. Thus, any graph has RP dimension 1 if and only
if it is a poset of order dimension 1, namely, a total order.

Thus, we conclude that a poset of order dimension 2 must have RP dimension
equal to 2. It remains to show that a poset with RP dimension 2 must have order
dimension 2. It is known that a poset has order dimension 2 if and only if the
complement of its comparability graph is also a comparability graph [5]. In our
terms, a poset (S,�) has order dimension 2 if and only if (a) at least one pair of
elements is not comparable, i.e. there is some x, y ∈ S such that neither x � y
nor y � x, and (b) there exists a partial order �′ on S whose comparable pairs
are exactly those which are non-comparable in (S,�). Thus, for any two x, y ∈ S,
we must have exactly one of x ≺ y, x � y, x ≺′ y, and x �′ y hold. Therefore,
to show that a partial order with RP dimension 2 must have order dimension 2,
we must construct a partial order on its non-comparable pairs.

Let X := {(p1,x1), . . . , (pn,xn)} be the 2-dimensional vectors which real-
ize (S,�), that is for all i, j ∈ S, i � j if and only if 〈pi,xi〉 > 〈pi,xj〉. Further-
more, denote xi = (xi, yi) and pi = (pi, qi) for all 1 ≤ i ≤ n. Recall also that we
have assumed pi

j ≥ 0 for all 1 ≤ i ≤ n and j = 1, 2. For every pair i, j such that
neither i � j nor j � i, we say i �′ j if xi > xj , and j �′ i otherwise. This is
clearly acyclic, it remains to show that the relation is transitive.

Let x1,p1,x2,p2,x3,p3 be such that 〈pi,xj〉 ≥ 〈pi,xi〉 for all j �= i, and
x1 > x2 > x3. This implies that 1 �′ 2 �′ 3. We wish to show that 1 �′ 3. It
is clear that x1 > x3, so it remains to show that both 〈p1,x3〉 ≥ 〈p1,x1〉, and
〈p3,x1〉 ≥ 〈p3,x3〉. We may assume without loss of generality that pi > 0 for
i = 1, 2, 3, since we may slightly rotate the space, and so we may assume without
loss of generality that pi = 1 for i = 1, 2, 3, since scaling p does not affect the
induced preferences. Thus, 〈pi,xj〉 = xj + qiyj for all i, j. Now, x1 > x2, but
x2 + q1y2 > x1 + q1y1, so we must have y1 < y2. Similarly, we get y2 < y3.
Furthermore, we have

x1 + q2y1 > x2 + q2y2
− x1 + q1y1 < x2 + q1y2
⇒ (q2 − q1)y1 > (q2 − q1)y2

(5)

but y1 < y2, so we conclude q2 < q1. Similarly, we have q3 < q2. Now, since
q1 > q2 but y2 < y3, we have that

x3 + q2y3 ≥ x2 + q2y2 =⇒ x3 + q1y3 ≥ x2 + q1y2 (6)
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But we know that x2 + q1y2 ≥ x1 + q1y1, so we have that 〈p1,x3〉 ≥ 〈p1,x1〉.
The converse inequality is shown similarly, and thus we may conclude that the
relation �′ is a partial order.

Since any two elements are comparable in � if and only if they are not
comparable in �′, we conclude that the order dimension of � is at most 2. Since
its RP dimension is not 1, it must have order dimension exactly 2, as desired. 	


With this lemma in hand, we conclude that if a poset has order dimension
3, it must have RP dimension 3, as its RP dimension is at most 3, but it cannot
have dimension 1 or 2. Thus, we have proved the first half of Theorem3. It
remains to show that for all k ≥ 3, there exist posets with order dimension k,
but RP dimension 3.

The family of standard posets S2, S3, . . . is a sequence of posets such that
Sk has order dimension k, and ground set of size 2k. (See e.g. [14]) They are
defined as follows: The ground set for Sk is labelled 1, 2, . . . , k, 1′, 2′, . . . , k′,
and we have i′ � j for all i �= j. No pair i′, j′ or i, j is comparable.

We will show that Gk = (Sk,�k) has RP dimension 3 for all k ≥ 3. Let H :=
{x ∈ R

3 : 〈1,x〉 = 0}, the plane normal to the all-ones vector in R
3, and let SH

be the unit circle in H centered at the origin. Thus, SH = {x ∈ H : ‖x‖2 = 1}.
Finally, let a1, . . . , an be n equally spaced points along the circumference of SH .
We will use these to construct our realization of (Sk,�k) in R

3. For all i ≤ k, set
xi = (2+ε)ai, and xi′ = 1−ai, where ε > 0 will be chosen later. Set pi = 1−ai,
and pi′ = 1 + ai. Since the ai’s are unit vectors, we have that 〈ai,aj〉 < 1 if
i �= j, and = 1 if i = j.

We have 〈pi,xj〉 = (2+ε) 〈1,aj〉−(2+ε) 〈ai,aj〉. The left hand term is 0, and
the right hand term is minimized when i = j. Thus, xi is not revealed preferred
to xj for all j �= i. Furthermore, 〈pi,xj′〉 = 〈1 − ai,1 − aj〉 = 〈1,1〉 + 〈ai,aj〉,
since 〈1,aj〉 = 0 for all j. Thus, xi is not revealed preferred to xj′ for all j.

Now, 〈pi′ ,xi′〉 = 〈1 + ai,1 − ai〉 = 〈1,1〉 − 〈ai,ai〉 = 2, whereas 〈pi′ ,xj〉 =
(2+ε) 〈1 + ai,aj〉 = (2+ε) 〈ai,aj〉. Thus, if we choose ε > 0 sufficiently small, we
have that xi′ is revealed preferred to xj for all j �= i, but not to xi. Furthermore,
〈pi′ ,xj′〉 = 3 − 〈ai,aj〉, which is minimized when i = j, so xi′ is not revealed
preferred to xj′ for all j �= i.

Therefore, we have shown that our choice of pi’s and xj ’s is a valid RP
realization of (Sk,�k) in R

3 for all k ≥ 3. Thus, we have demonstrated the
existence of partial orders with order dimension k but RP dimension 3, for all
k ≥ 3, hence concluding the proof of Theorem3.

5 Further Work

This paper does not address the computational complexity of computing the RP
dimension of a given graph, and this is left as an open problem for future work.
Below is a summary of the computational complexity of matrix sign rank, and
what this implies for RP dimension.
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Complexity of Matrix Sign Rank. Recall that the problem of computing
RP dimension is denoted RevPrefDim, and the problem of computing matrix
sign rank, MatSgnRnk. It is known [6] that MatSgnRnk in full generality
is complete for the existential theory of the reals: the problem of determining
whether a system of polynomial equalities and inequalities has a feasible solution
over the reals. This complexity class, often denoted “∃R”, is known to lie between
NP and PSPACE. In fact, it is ∃R-complete to determine whether a matrix has
sign rank at most 3. However, this hardness result only holds when the sign
matrix is allowed to have arbitrarily many zero entries in each row and column.
When sign matrices are constrained to have no 0 entries, MatSgnRnk is known
only to be NP-hard. (Again, [6]). It is not known whether MatSgnRnk lies in
NP in this restricted setting, though we think this is unlikely.

This paper shows that the RevPrefDim problem is equivalent to computing
the sign rank of signed adjacency matrices, which are a (large) subclass of sign
matrices with exactly one zero in each row and column. Note that replacing a
row containing a single zero entry with two copies, replacing the zero with a
+ in one copy, and a − in the other, does not affect the sign rank. Therefore,
RevPrefDim is a special case of MatSgnRnk in the restricted setting, and
thus it cannot be a harder problem.

We leave as an open problem determining whether RevPrefDim is itself
NP-hard, and whether it is equivalent to MatSgnRnk on +,− matrices.

Acknowledgements. I would like to thank Ruta Mehta, Adrian Vetta, and Siddharth
Barman, for their insightful discussion in the initial stages of work.
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Abstract. This paper studies the equilibrium states that can be reached
in a network design game via natural game dynamics. First, we show that
an arbitrarily interleaved sequence of arrivals and departures of players
can lead to a polynomially inefficient solution at equilibrium. This implies
that the central controller must have some control over the timing of
agent arrivals and departures in order to ensure efficiency of the system
at equilibrium. Indeed, we give a complementary result showing that if
the central controller is allowed to restore equilibrium after every set of
arrivals/departures via improving moves, the eventual equilibrium states
reached have exponentially better efficiency.

1 Introduction

In multi-agent systems where different agents have competing objectives, it is
well-known that selfish behavior leads to suboptimal system performance at
equilibrium. The Price of Anarchy (PoA) and the Price of Stability (PoS), which
respectively correspond to the worst and best equilibrium states, are widely used
in the literature to quantify this suboptimality relative to an optimal solution
designed by a central authority. If these two measures are close to each other, they
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provide a satisfactory understanding of the quality of stable states the system is
expected to reach. However when these measures differ significantly, the system
can exhibit multiple equilibria with highly varying performance. But, which of
these equilibria can be achieved in actual game dynamics? More generally, what
is the minimal guidance by a central authority that can guarantee near-optimal
system performance in equilibrium?

In this paper, we study these questions in the context of a game that exhibits
a particularly rich set of equilibria, namely the broadcast game. A broadcast
game is defined on a rooted undirected graph with costs on edges. Every vertex
in the graph has an agent whose goal is to select a routing path to the root
that minimizes her own cost. The cost of every edge is shared equally among
all agents using it, and the cost of an agent is the sum of her cost shares along
the edges in her path to the root. The system is in Nash equilibrium (or NE) if
no agent can lower her own cost by unilaterally changing her routing path. The
cost of an equilibrium is the total cost of all edges used by at least one agent.
The quality of equilibria is measured with respect to the social optimum, which
for broadcast games is the minimum spanning tree (mst) of the graph.

Broadcast games are a kind of potential games and the existence of NE in
any instance can be proved through a potential function argument, originally
given by Rosenthal [34] (see also Monderer and Shapley [30]). Anshelevich et al.
[4] observed that different NE in broadcast games can exhibit vastly different
performance: the PoA can be as large as Ω(n) whereas the PoS (a concept they
introduced to show this gap) is bounded by O(log n); here n denotes the number
of vertices in the graph.1 A long line of work (e.g., [10,19,27,28]) subsequently
improved the PoS bound to O(1).

Given this divergence of bounds, Chekuri et al. [13] posed the question of ana-
lyzing the quality of equilibria that are actually reachable via natural dynamics—
a sequence of single agent moves where the moving agent always chooses a new
path that strictly decreases her cost relative to her current path. We call such
moves “improving moves” or “best response moves”, depending on whether they
merely lower the agent’s cost or are optimal for the agent given the current state
of the system. It follows from the potential function argument of Rosenthal [34]
that any such sequence of moves will eventually converge to NE.

Chekuri et al. [13] considered the following restricted two-stage process: in
the first stage, starting with an empty graph, agents arrive sequentially in arbi-
trary order and choose their respective best response paths upon arrival; in the
second stage, agents make improving moves2 in arbitrary order until they reach
equilibrium. They showed that the equilibria reachable through this process have
a cost of O(

√
n log2 n) times the mst, a significant improvement over the PoA

bound. This bound was subsequently improved to O(log3 n) for the same two-
stage process by Charikar et al. [11].

1 The full version of this paper [12] provides examples illustrating these bounds.
2 Observe that when an agent arrives or makes an improving move, paths of other

agents may become suboptimal for them.
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The Dynamic Price of Stability. These previous works motivate extending the
notion of the price of stability to online dynamics. In the static (or “one shot”)
version of our problem, in which players are initially in an empty configuration,
the central planner can force the players into any configuration, in particular
the one realizing the price of stability. In the dynamic case, however, the central
planner cannot do so since some players have already chosen a route. Thus, the
central planner has to offer existing players a better strategy, so as to incentivize
changes. Informally, the dynamic price of stability is the cost of a solution in
equilibrium resulting from online dynamics, while allowing for algorithmic inter-
vention by the central planner. The notion of dynamic price of stability can be
applied to any game in which one needs to characterize which equilibria can be
reached via online dynamics, while minimizing the power of intervention of the
central planner. It would be very interesting to find further applications of this
new notion.

One way to restate Charikar et al.’s result is that the dynamic PoS is poly-
logarithmic when all arrivals happen before any improving moves. But, what if
some agents make improving moves before all of the other agents have arrived,
i.e., the sequence of improving moves is interleaved with arrivals? Unfortunately,
the analyses presented in [13] and [11] strongly build on the fact that all agents
arrive upfront and remain in the system thereafter, and agents must wait for
everyone to arrive before making any changes to their strategies. Charikar et
al. posed the question of analyzing dynamics in which arrivals and improving
moves are interleaved as a “tantalizing and difficult” open problem. In the decade
following their work, in spite of tremendous progress in PoS bounds for broad-
cast games, no progress has been made on understanding more general game
dynamics.3

More General Dynamics. Since the work of Chekuri et al., our work is the
first to study more general dynamics of the broadcast game. We consider two
kinds of extensions to the two-stage process. First, we consider systems with
churn where agents arrive as well as depart over time. Second, we allow multiple
interleaved stages of arrivals, departures, and improving moves. Our first result
shows that if we make a minimal change to the two-stage dynamics studied
above, namely adding departures to the first stage, then it is possible to reach
an equilibrium that is polynomial (in n) worse than the social optimum, placing
it in the same regime as the PoA bound. To the best of our knowledge, this is
the first polynomial lower bound for any game dynamics for broadcast games.

Theorem 1. For any large enough integer n, there exists an instance of the
broadcast game with n vertices and a sequence of arrivals and departures that
terminates in an NE of cost Ω(n1/3) times that of the minimum spanning tree
on all the vertices.

3 Charikar et al. also studied a variant where arrivals happen in uniformly random
order and are interleaved with adversarially ordered best response moves. For this
setting, they were able to prove an upper bound of O(

√
n polylog n) on the quality

of the equilibria reached, but did not present any lower bounds.
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It is important to observe that since we allow departures, not all vertices
have agents at the end of the game. This creates two candidates for opt: the
optimal Steiner tree on the remaining agents, or the mst on all vertices.4 The
former leads to trivial and uninteresting lower bounds (see the full version); so,
we use the mst as opt in this paper. This choice of a weaker optimum makes
for a stronger lower bound.

The Power of Intervention. Given the above lower bound, a natural question is
whether some limited intervention from a central planner can lead to a better
outcome for the game. At one extreme, if the central planner is allowed to suggest
a strategy to every player simultaneously, then any NE, in particular the best
one corresponding to the PoS of O(1), can be achieved. This level of control
is unrealistic. A more reasonable level of control is for the central planner to
suggest improving moves to players one by one; importantly, any such move
should lower the corresponding agent’s current cost share, otherwise the player
has no incentive to follow the planner’s suggestion.

What about the timing of such interventions? As our lower bound demon-
strates, if the timing of interventions is completely adversarial, in particular if no
interventions are allowed during the initial arrival/departure phase, the system
can end up in a poor NE. To get around this lower bound, we consider dynamics
where the central planner is allowed to make a series of improving moves after
every adversarial arrival/departure. Observe that the sequence of arrivals and
departures can still be ordered adversarially, and indeed can depend on the pre-
vious algorithmic interventions. We call such dynamics equilibrium-preserving
(eq-p) dynamics because the central planner restores the system to a good equi-
librium after every adversarial arrival/departure.

Specifically, the eq-p dynamics starts from an empty configuration and con-
tinues in epochs. At the beginning of each epoch the system is at equilibrium.
The epoch begins with an arrival or departure, followed by a series of improving
moves to restore equilibrium. Once equilibrium is restored, the epoch ends. Our
analysis, in fact, allows for multiple simultaneous arrivals5 at the beginning of an
epoch, and multiple departures at any point of time during the epoch. Formally,
we define three different kinds of moves within an epoch:

1. (Arrivals.) A set of new players arrive and each picks a best response path
with respect to the configuration reached at the end of the previous epoch.
(The choice of the set of arrivals is adversarial.)

2. (Departures.) A set of players departs the system. (Choice of departing
players is adversarial.)

4 Another bound is the optimal Steiner tree on all vertices for which an agent arrived
at some point in the dynamics. Since we can assume metric costs, we can restrict
our attention to these vertices and then mst cost is within a factor of two of the cost
of optimal Steiner tree.

5 Note that although arrivals within a single epoch are simultaneous in that every
arriving player picks a best response path with respect to the equilibrium state at
the beginning of the epoch, arrivals in different epochs are sequential. In this sense
our model captures sequential arrivals with interleaved improving moves.
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3. (Equilibrium Restoration.) The central authority offers players strategies
that can improve their (shared) connection costs. This step continues till
equilibrium is restored to the system.

Our second result shows that this limited level of central intervention is
sufficient to guarantee a NE with exponentially better performance:

Theorem 2. Every instance of the broadcast game using eq-p dynamics con-
verges to an NE of cost O(log n) times that of the minimum spanning tree on
all the vertices.

Observe that, as for our lower bound result, we compare the performance of
eq-p dynamics to the mst on all vertices6 and not the optimal Steiner tree on
the vertices that remain in the system. The two benchmarks are identical when
there are no departures but the mst benchmark can potentially be much weaker
when there are many departures. However, as mentioned earlier, the Steiner
tree benchmark is not interesting because it leads to trivial polynomial lower
bounds (see the full version [12]). Furthermore that the guarantee provided by
the above theorem holds at the end of every epoch as compared against the mst

over vertices that have arrived up to the end of that epoch, not including future
arrivals. A natural open question is whether a polylogarithmic dynamic PoS can
be achieved through less algorithmic intervention relative to eq-p dynamics, for
example, by allowing players to make best response moves instead of improving
moves.

Technical Challenges. The broadcast game exhibits a rich set of equilibria and
a far richer set of intermediate states of the system. For example, whereas the
set of agent strategies (paths) in any equilibrium of the game always forms a
tree,7 intermediate states, even those reached by a series of best response moves,
can contain a complex structure of interconnected cycles. A major impediment
to analyzing dynamics is that it is extremely challenging to maintain any struc-
tural invariant on intermediate states. Our work overcomes this challenge by
algorithmically maintaining such a structural invariant. Whenever the struc-
tural invariant is broken by arrivals or departures, we restore it algorithmically.
Importantly, we show that this can always be achieved through a sequence of
improving moves.

Our structural invariant is a charging of the cost of a state (i.e. collection
of paths) against a family of partitions of the underlying graph. Each partition
corresponds to a solution to the dual of the standard mst linear program. As
such, our charging scheme can be interpreted as a dual fitting approach. One
challenge in carrying out this approach is that as agents arrive and leave, our
analysis must allow for the dual to become grossly infeasible at intermediate
states, which in turn results in very expensive intermediate (non-equilibrium)
6 Because of this comparison against the mst, we prefer the term “broadcast game”

for this setting, rather than the “multicast game”.
7 The existence of a cycle would imply that one of the agents can improve her cost

share by switching to a different path and the current state is not an equilibrium.
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states. At the crux of our argument is a careful construction of improving moves
that ensures that the system cycles between a small set of states of which the
stable ones correspond to feasible duals.

Related Work. We have already mentioned the long line of work on improving
PoS bounds for broadcast games [4,10,19,27], and the game dynamics studied
by Chekuri et al. [13] and Charikar et al. [11]. A different approach was taken
by Balcan et al. [6], who considered the problem of influencing the dynam-
ics of broadcast games so as to achieve socially efficient equilibria. In their
model, players use expert learning, choosing between a best response expert and
a central authority expert suggesting (near-)optimal global behavior. Broad-
cast games belong to a broader class called network design games (see, e.g.,
[2,4,9,10,14,15,18,20,26,28]), which in turn, are a special case of the widely
studied congestion and potential games (see, e.g., [1,7,17,24,29,30,33–35]).

The analysis of game dynamics in this paper crucially relies on the construc-
tion of a hierarchial family of multiple dual solutions. This method of analysis
has been highly influential in designing online algorithms for network design
problems. Implicit use of this method dates back to the work of Imase and Wax-
man [25] on online Steiner trees and a subsequent line of work of Awerbuch et
al. [5], Berman and Coulston [8], Naor et al. [31]. More recently, this method has
been explicitly employed in solving a range of node and edge-weighted Steiner
network design problems in the online setting [3,16,21–23,32]. In terms of the
exact techniques, perhaps the closest to our work is that of Umboh [36], who uses
hierarchical tree embeddings to analyze greedy-like online algorithms for network
design problems. In contrast to these applications in competitive analysis where
decisions are irrevocable, game dynamics allows temporary overcharging of dual
solutions, which we crucially use in this paper.

Organization of the Paper. We present a proof of our lower bound (Theorem1)
in Sect. 2, and a proof of our upper bound (Theorem2) in Sect. 3. Due to lack
of space, we defer most of the proofs to the full version [12].

2 Lower Bound

In this section, we will show that if arrivals and departures are allowed at non
equilibrium states, then no dynamics can lead to a good equilibrium (Theorem1).

We construct a family of lower bound instances parameterized by an inte-
ger m ≥ 1. The mth instance uses the metric induced by weighted graph Gm

(see Fig. 1). The vertex set of this graph consists of a root r and m + 1 lay-
ers V 0, . . . , V m. For 1 ≤ i ≤ m, layer V i consists of m clusters Ci

1, . . . , C
i
m,

each of which is a clique over m vertices. We use vi
j,k to denote the k-th ver-

tex of Ci
j ; recall that each of i, j, and k take on integral values in [m]. Layer

V 0 also consists of m2 vertices, which are labeled v0
j,k for j, k ∈ [m], but there

are no edges between these vertices. The vertices of V m are called end vertices,
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r

V 1V 0 V 2 V 3 V 4

Fig. 1. Example for m = 4. Auxiliary vertices are in red, end vertices are in blue. Ovals
represent clusters. Intra-cluster edges are shown as dashed edges. The two bold paths
starting from the same cluster successively diverge into different clusters and converge
into the same cluster on their way to the root.

and those of V 0 are called auxiliary vertices. Observe that the graph Gm has
n = m2(m + 1) + 1 vertices in all.

Next, we describe the edges. Each pair of vertices within the same cluster Ci
j

is connected by an edge of length 1/m for all layers except V 0. The remaining
edges in the graph connect vertices in neighboring layers and are all of length 1.
Each auxiliary vertex v0

j,k in V0 is connected to the root and to its corresponding
vertex v1

j,k in layer 1. For 1 ≤ i ≤ m − 1, we have an edge (vi
j,k, v

i+1
k,j ) for each

j, k ∈ [m]. In other words, the vertices of the j-th cluster in layer i are connected
to the k-th vertices of the clusters in layer i + 1; in particular, the k-th vertex
of the j-th cluster in layer i is connected to the j-th vertex of the k-th cluster
in layer i + 1. For example, see the edges leaving the first (top) cluster of V1 in
Fig. 1. Observe that there are exactly m2(m + 1) inter-layer edges, and exactly
m3(m − 1)/2 intra-cluster edges.

Observe that each end vertex vm
j,k has a unique path Pj,k to the root that

consists of only inter-layer edges (see Fig. 1). We call these paths canonical paths.
Note that each inter-layer edge belongs to exactly one canonical path. In other
words, the set of inter-layer edges is a disjoint union of all the canonical paths
Pj,k.

The Cost of the Final Equilibrium. Before describing the sequence of arrivals
and departures of terminals, let us analyze the final equilibrium state and its cost
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relative to the optimal cost. Let OPT denote the cost of the minimum spanning
tree over all vertices in Gm. Observe that this is an upper bound on the cost of
any optimal solution at the end. The final state following our sequence of arrivals
and departures, denoted F , consists of m players situated at every end vertex
vm
j,k in layer m; each player uses the canonical path Pj,k to route to the root.

The following lemma shows that this is an equilibrium state with a polynomially
larger cost relative to OPT.

Lemma 1. State F is an equilibrium and the cost of F is Ω(m)OPT.

Sequence of Arrivals and Departures. The sequence is constructed in m phases,
each phase consisting of m2 rounds, one per end vertex vm

j,k, and indexed by (j, k).
Informally, the objective of each phase is to add one more terminal at each of
the end vertices vm

j,k. Within round (j, k) in a phase, we use a set of “temporary”
terminals whose sole aim is to force the terminal at vm

j,k that arrives at the end
of the round to choose the canonical path as its best response. The temporary
terminals are introduced at intermediate vertices along the canonical path during
the round, and removed at the end of the round.

Formally, let ≺ be an arbitrary total order on the pairs (j, k). The sequence
σ is constructed to maintain the following invariant: at the end of round (j, k) of
phase �, there will be � players on vm

j′,k′ for (j′, k′) ≺ (j, k), and � − 1 players on
the remaining end vertices. Furthermore, each player on vm

j,k uses the path Pj,k.
We now specify the subsequence for each round. Consider round (j, k) of

phase �. For simplicity of notation, we use vi to denote the vertex of V i on
Pj,k. We also use P i to denote the segment of Pj,k starting at vi and ending at
the root. The round consists of m + 1 iterations. In iteration 0 ≤ i ≤ m − 1,
m2 players arrive at vi. In iteration i = m, one player arrives at vm. Finally,
the players on v0, . . . , vm−1 depart. We can now show using induction over the
terminal arrivals, that for every terminal the best-response path on arrival is the
segment of the canonical path connecting it to the root.

Lemma 2. Consider a terminal arriving at vertex vi in iteration i of round
(j, k) in phase �. The best-response path of the terminal to the root is the segment
of its canonical path P i.

Lemma 2 shows that the sequence of arrivals and departures above terminates
in the final state F , which costs Ω(m)OPT by Lemma 1. Since m is polynomial
in the number of vertices, Theorem 1 follows.

3 eq-p Dynamics

In this section and the next, we describe and analyze eq-p dynamics for the
broadcast game. We first set up our notation and terminology, and prove some
basic structural properties that are used in the rest of the paper. Let G = (V,E)
be a complete graph, |V | = n, with metric costs c : V × V → R+ defined on
the edges. We assume without loss of generality that every vertex has a unique
agent (a.k.a. terminal) residing at it. Agents arrive and depart over time. Since
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edge costs satisfy the triangle inequality, before an agent arrives, no other agents
route their paths via the vertex corresponding to this agent. Indeed, we assume
that our intervention algorithm has no knowledge of vertices corresponding to
agents that are yet to arrive. However, if an agent already in the system departs,
other agents may continue to route their paths via its vertex, and the vertex
remains in the graph. At any point of time during the process, our algorithm
only considers the subgraph induced over vertices whose agents have arrived
prior to that time. We call a vertex active if the agent at that vertex is still in
the system.

The graph G is revealed via an online process that is divided into epochs
(indexed by time t). At the start of epoch t, the set of vertices in G that have
already appeared is denoted by Vt. We denote the set of active terminals among
them by At ⊆ Vt. Each terminal v ∈ At has a current routing path pv connecting
it to the common root r. The cost share of v along this path is the sum of v’s
cost share over the edges in the path, where the cost of an edge is equally shared
between all terminals currently using it. In the eq-p scenario, we further enforce
the invariant that the set of paths pv are in NE, i.e., no terminal has an incentive
to unilaterally deviate to a different routing path.

The routing at any time t is defined to be the set of routing paths (pv)v∈At
.

A best response path of a terminal v with respect to a routing, denoted p∗
v, is a

path from v to r with the minimum shared cost if v were to move to this path. If
there are multiple such paths, we break ties in favor of paths having fewer edges
with no terminal other than v using them. Note that this may not break all ties,
in which case, any of these paths can be designated as the best response path.
A terminal v ∈ A is said to have an improving move with respect to a routing if
by moving from its current path pv to a new path qv strictly decreases v’s cost
share. Given a routing, its potential [34] is defined to be Φ =

∑
e∈E

∑Ne

i=1 ce/i,
where Ne is the number of agents using e. A standard argument shows that any
improving move decreases the potential by a value which is uniformly bounded
away from zero, resulting in a finite convergence of our dynamics. The following
well-known lemma states that in equilibrium, the routing paths form a tree.

Lemma 3. In equilibrium, the routing paths of a broadcast game form a tree.

Each epoch t is divided into several phases. The first phase consists of an
arrival or departure event. In the former case, a new set of terminals Ut ⊆ V \Vt

arrive, and the cost of all edges incident on terminals in Ut is revealed. Each
new terminal u ∈ Ut chooses a best response routing path pu. In the latter
case, a set of terminals leave, thereby removing the corresponding vertices from
the set of terminals At. (Note that the corresponding vertices remain in Vt.)
Lemma 6 establishes that the structure of the set of routing paths after arrivals
or departures remains a tree.

Both arrival and departure events lead to changes in the cost shares of edges.
In the eq-p scenario, this might lead to a violation of the equilibrium state that
was being previously maintained. In this case, the system performs a sequence of
improving moves, in each of which a terminal changes its routing path in order
to reduce its cost share.
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Improving moves may temporarily create cycles in the collection of routing
paths {pv}v∈At

. We order and group improving moves into contiguous blocks
or phases such that every phase ends with the routing paths forming a tree.
Furthermore, the trees at the beginning and end of the phase differ in a single
pair of edges. The collection of moves in each such phase is called a tree-follow
move.

Definition 1 (Tree-follow move). A tree-follow move from u to v in T is a
sequence of improving moves that start with routing tree T and end with routing
tree T ′ = T \ (u, parent(u)) ∪ (u, v), where parent(u) is the parent vertex of u in
T . Observe that each terminal in the subtree rooted at u in T reroutes its path
to the root according to T ′.

Because of departure events, the routing tree may contain non-terminal ver-
tices as Steiner vertices. It is convenient to extend the notion of an improving
move to vertices that are not terminals. Let w /∈ A be a non-terminal vertex.
We say that w has an improving move if the following properties hold: (1) There
exists a terminal v whose routing path pv includes w; let pw denote the segment
of pv between w and r; (2) There exists a path qw between w and r such that if
v were to retain its current routing path from v to w but move from pw to qw,
then the cost share of v would strictly decrease.

A priori, it is not clear whether improving moves can always be grouped into
tree-follow moves. In Lemma 7, we show that in every routing tree T which is
not in equilibrium, there exists a sequence of improving moves that collectively
form the tree-follow move from u to v for some vertices u and v. When there are
multiple such moves, we use a careful charging scheme to identify the order in
which tree-follow moves should be implemented. (See Algorithm select tree

move defined at the end of this section.)
Since every vertex in a tree has a unique path to the root, it suffices to

specify the tree itself in lieu of all of the routing paths. Henceforth, we will use
Tt to denote the tree induced by {pv}v∈At

without explicitly specifying the paths
themselves.

eq-p Dynamics

1. Initialization. t = 1, V0 = {r}, T0 = {r}, A0 = ∅.
2. For t = 1, 2, . . .

– (Arrivals.) Let Ut be the set of terminals arriving. Let At ← At−1 ∪
Ut. For each v ∈ Ut, let pv = p∗

v where p∗
v is the best response path

of v with respect to Tt−1. Let Tt = Tt−1 ∪v∈Ut
p∗
v.

– (Departures.) Let Dt be the set of terminals departing. Let At =
At \ Dt. Let Tt = ∪v∈At

pv.
– (Tree Follow Moves.) While Tt is not in equilibrium:

Use algorithm select tree move to determine a tree-follow move
to implement in Tt; let this be a move from u to v, and let parent(u)
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denote the parent of u in Tt. Implement the sequence of improving
moves for this tree-follow move to obtain the new routing tree Tt ←
Tt \ (u,parent(u)) ∪ (u, v).

Charging Scheme. In proving the upper bound for eq-p dynamics, we use a dual
charging scheme to bound the cost of the routing tree. We define the dual and
the corresponding lower bound on the optimal cost next. We call a partition
P = (S1, · · · , Sm) of the vertex set V a level-j dual for an integer j if it satisfies
the following:

– P is a partition: ∪S∈PS = V , and for any Sa, Sb ∈ P , Sa ∩ Sb = ∅.
– The components have bounded diameter: for any S ∈ P , and any vertices

x, y ∈ S, c(x, y) < 2j .
– The components are far from each other: there exists a “center” si in each

component Si, such that for all Sa, Sb ∈ P , c(sa, sb) ≥ 2j−1.

We use the term cuts to denote the components S of the partition. The lemma
below follows immediately from the observation that any spanning tree over V
must connect the centers of all cuts in a level-j dual P .

Lemma 4. For any level-j dual P , the cost of the minimum spanning tree opt

is at least 2j−1(|P | − 1).

In order to bound the cost of an equilibrium resulting from eq-p, we relate
the cost of the edges used in the solution to a family of duals. Let Π = {Pj}j∈Z

denote a family of partitions, where Pj is a level-j dual.
Our charging scheme for routing solutions that form a tree proceeds as fol-

lows. Every vertex in the routing tree is responsible for the cost of its parent
edge. Consider an edge e = (v,parent(v)) with length in [2j+2, 2j+3) for some
j ∈ Z. We charge the cost of this edge to the cut in the level-j dual that contains
v: S ∈ Pj such that v ∈ S. Our goal is to show that every cut gets charged a
small number of times, and use the following well-known property (see the full
version for a proof).

Lemma 5. Suppose that our charging scheme charges each cut in the family Π
at most once. Then the cost of the solution is at most O(log n)opt.

For much of our analysis, we will assume that the dual family Π is provided
to us. In the full version, we discuss how to construct this family algorithmically
as terminals arrive online.

Classification of a Tree Routing. We classify the tree routings reachable via eq-

p dynamics into one of four states depending on the charging structure defined
by the solution. We remark that not all tree routings are reachable via eq-p

dynamics, indeed even the set of equilibria obtained is smaller than the set of
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all equilibria. Let T be a routing tree for some set of active terminals A. We say
a vertex u is a leaf (non-leaf) if it is a leaf (non-leaf) in T . Note that all leaves
must be terminals, but a non-leaf vertex may or may not be a terminal.

1. balanced-equilibrium: In this state, no terminal (and therefore, no non-
terminal vertex in T ) has an improving move. Furthermore, every cut is
charged at most once. (Note that not every NE is a balanced-equilibrium

state.)
2. balanced: In this state, some terminals (and potentially non-terminals) may

have improving moves, but every cut is charged at most once.
3. leaf-unbalanced: In this state, every cut is charged by at most one non-

leaf vertex (and any number of leaf terminals). (Recall that leaf vertices in
the routing tree are necessarily terminals.)

4. non-leaf-unbalanced: In this state, all but one of the cuts are charged by
at most one non-leaf vertex (and any number of leaf terminals). The excep-
tional cut, that we denote by S∗, is charged by at most two non-leaf vertices,
say u and v (and any number of leaf terminals). One of these, u or v, must
be the last vertex to have made a (tree-follow) move.

Note: balanced-equilibrium ⊆ balanced ⊆ leaf-unbalanced ⊆ non-

leaf-unbalanced, where A ⊆ B implies that a routing tree in state A is
also in state B.

Selecting a Tree-Follow Move. To define the tree-follow move performed in a non-
equilibrium tree state T , we establish a system of priorities among the improving
tree moves based on the current state of the routing tree. A tree follow move of
u to v is said to be a leaf move if v is a leaf in T , and a non-leaf move otherwise.

Algorithm select tree move

1. balanced-equilibrium: No terminal has an improving move. The sys-
tem can deviate from an equilibrium state only via arrivals or departure
events.

2. balanced: In this state, for any vertex u that has an improving tree
move, move u to the closest vertex to which it has an improving move.

3. leaf-unbalanced:
(a) If there exists a leaf terminal u with a non-leaf move, then make any

such move for u.
(b) Else, if there exists a non-leaf vertex u with a non-leaf move then

move u to the closest such non-leaf v.
(c) Else, if there exists a non-leaf vertex u and a leaf terminal v such

that u and v are charging the same dual cut, then move u to v. If
there are multiple such leaf terminals v, then make any such move.

(d) Else, make any improving move. (This will necessarily be a leaf-to-leaf
move by exclusion of the previous three cases.)
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4. non-leaf-unbalanced: Let u and v be the non-leaf vertices that are
charging the special cut S∗. If u has an improving move to v then move
u, else move v, in either case to the closest vertex to which they have an
improving move.

The validity of the algorithm depends on two claims. The first shows that
whenever a cut is being charged by a leaf and a non-leaf, at least one of these
two vertices has an improving move to the other. In this case, we can find a
valid tree-move for Step (3c) of select tree move. The second shows that in
a non-leaf-unbalanced state, whenever a cut is being charged by two non-
leaves, at least one of these two vertices has an improving move to the other; we
can then find a valid tree-move for Step (4) of select tree move.

3.1 Analysis of eq-p Dynamics

We now given an outline of the proof of Theorem2. Our argument hinges on a
closure property: the epoch starts with the routing tree being in the balanced-

equilibrium state; Lemma 7 argues that whenever the current routing tree is
not in equilibrium, at least one improving move exists, and we can use algorithm
select tree move to make a move; Lemma 8 then shows that for the moves
made by algorithm select tree move, the routing tree remains in one of the
four states defined above, in particular, it is always in a non-leaf-unbalanced

state. The epoch ends when the routing tree re-enters a balanced-equilibrium

state. At this point, by definition, each dual cut is charged at most once, and
therefore, by Lemma 5 the cost of the routing tree is bounded, and Theorem2
follows. We must also argue termination of the sequence of moves, but this
follows directly from a standard potential argument based on the fact that all
our moves are improving moves. The following lemmas capture the essence of
our argument.

Observation 1. In eq-p dynamics the routing paths at the end of every phase
form a tree.

Lemma 6. After the arrival or departure of a set of terminals in an balanced-

equilibrium state, the routing tree T remains in a leaf-unbalanced state.

Lemma 7. If the routing tree is not in equilibrium, then at least one improving
tree-follow move exists.

Lemma 8. Let T be the routing tree for which we make an improving tree-move
in Step (3) of algorithm eq-p.

(i) If T is in a balanced state but not in a balanced-equilibrium state,
then after the move selected in Step (2) of select tree move, the resulting
tree is in a non-leaf-unbalanced state.
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(ii) If T is in a leaf-unbalanced state, then after the move selected in
Step (3) of select tree move, the resulting tree is in a non-leaf-

unbalanced state.
(iii) If T is in a non-leaf-unbalanced state, then after the move selected

in Step (4) of select tree move, the resulting tree is in a non-leaf-

unbalanced state.
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Abstract. We study a classic Bayesian mechanism design setting of
monopoly problem for an additive buyer in the presence of budgets. In
this setting a monopolist seller with m heterogeneous items faces a sin-
gle buyer and seeks to maximize her revenue. The buyer has a budget
and additive valuations drawn independently for each item from (non-
identical) distributions. We show that when the buyer’s budget is pub-
licly known, the better of selling each item separately and selling the
grand bundle extracts a constant fraction of the optimal revenue. When
the budget is private, we consider a standard Bayesian setting where
buyer’s budget b is drawn from a known distribution B. We show that
if b is independent of the valuations and distribution B satisfies mono-
tone hazard rate condition, then selling items separately or in a grand
bundle is still approximately optimal. We give a complementary example
showing that no constant approximation simple mechanism is possible if
budget b can be interdependent with valuations.

1 Introduction

Revenue maximization is one of the fundamental problems in auction theory.
The well-celebrated result of Myerson [43] characterized the revenue-maximizing
mechanism when there is only one item for sale. Specifically, in the single buyer
case, the optimal solution is to post a take-it-or-leave-it price. Since Myerson’s
work, the optimal mechanism design problem has been studied extensively in
computer science literature and much progress has been made [2,12–15,26]. The
problem of finding the optimal auction turned out to be so much more complex
than the single-item case. Unlike the Myerson’s single-item auction, the opti-
mum can use randomized allocations and price bundles of items already for two
items and a single buyer. It is also known that the gap between the revenue
of the optimal randomized and optimal deterministic mechanism can be arbi-
trarily large [11,38], the optimal mechanism may require a menu with infinitely
many options [27,42], and the revenue of the optimal auction may decrease when
the buyer’s valuation distributions move upwards (in the stochastic dominance
sense).
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In light of these negative results for optimal auction design, many recent
papers focused on the design of simple mechanisms that are approximately opti-
mal. One such notable line of work initiated by Hart and Nisan [39] concerns a
basic and natural setting of monopoly problem for the buyer with item values
drawn independently from given distributions D1, . . . , Dm and whose valuation
for the sets of items is additive1 (linear). A remarkable result by Babaioff et al. [4]
showed that the better mechanism of either selling items separately, or selling
the grand bundle extracts at least (1/6)-fraction of the optimal revenue. It was
also observed [4,38,45] that the independence assumption on the items is essen-
tially necessary and without it no simple (any deterministic) mechanism cannot
be approximately optimal.

Auction design with budget constraints is an even harder problem. Because
buyer’s utility is no longer quasi-linear, many standard concepts do not carry
over2. For example, even for one buyer and one item, the optimal mechanism
may require randomization when the budget is public [21], and may need an
exponential-size menu when the budget is private [30]. Despite many efforts [1,7–
10,18,21,23,24,28–31,34,35,40,46], the theory of optimal auction design with
budgets is still far behind the theory without budgets.

In this paper, we investigate the effectiveness of simple mechanisms in the
presence of budgets. Our work is motivated by the following questions:

How powerful are simple mechanisms in the presence of budgets? In par-
ticular, is there a simple mechanism that is approximately optimal for a
budget-constrained buyer with independent valuations?

To this end we consider one of the most basic and natural settings of exten-
sively studied monopoly problem for an additive buyer. In this setting, a monop-
olistic seller sells m items to a single buyer. The buyer has additive valuations
drawn independently for each item from an arbitrary (non-identical) distribu-
tion. We study two different budget settings: the public budget case where the
buyer has a fixed budget known to the seller, and the private budget case where
the buyer’s budget is drawn from a distribution. The seller wishes to maximize
her revenue by designing an auction subject to individual rationality, incentive
compatibility, and budget constraints. We consider the Bayesian setting where
the buyer knows his budget and his values for each item, but the seller only
knows the prior distributions.

1.1 Our Results and Techniques

Our first result is that simple mechanisms remain approximately optimal when
the buyer has a public budget.

1 A buyer has additive valuations if his value for a set of items is equal to the sum of
his values for the items in the set.

2 E.g., the classic VCG mechanism may not be implementable and social efficiency
may not be achievable in the budgeted-setting [46].
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Theorem 1. For an additive buyer with a known public budget and independent
valuations, the better of selling each item separately and selling the grand bundle
extracts a constant fraction of the optimal revenue.

Theorem 1 is among the few positive results in budget-constrained settings
that hold for arbitrary distributions. Before our work, it is not clear that any
mechanism extracting a constant fraction of the optimal revenue can be com-
puted in polynomial time.

In Sects. 3 and 4, we present two different approaches to prove Theorem 1.
Both approaches truncate the valuation distribution V according to the budget
b (in different ways) and then relate the revenues of the optimal/simple mecha-
nisms on the truncated distribution to the revenues on the original valuations.
The first approach uses the main result of [4] in a black-box way, and the second
approach adapts the duality-based framework developed in [16].

It is worth pointing out that many of our structural lemmas hold for corre-
lated valuations as well. Using these lemmas, we can generalize Theorem 1 with
minimum effort to allow the buyer to have weakly correlated valuations. We call
a distribution ̂V weakly correlated if it is the result of conditioning an indepen-
dent distribution V on the sum of v ∼ V being at most c: ̂V = V|(∑ vi≤c) (See
Definition 4 for the formal definition).

Corollary 2. Let ̂V be a weakly correlated distribution. For an additive buyer
with a public budget and valuations drawn from ̂V , the better of selling separately
and selling the grand bundle extracts a constant fraction of the optimal revenue.

In Sect. 5, we examine the private budget setting. The budget b is no longer
fixed but is drawn from a distribution B. The seller only knows the prior dis-
tribution B but not the value of b. We first show that if the valuations can be
correlated with the budget, the problem is at least as hard as budget-free mech-
anism design with correlated valuations, where simple mechanisms are known
to be ineffective. In light of this negative result, we focus on the setting where
the budget distribution B is independent of the valuations V . In this setting,
we show that simple mechanisms are approximately optimal when the budget
distribution satisfies the monotone hazard rate (MHR) condition.

Theorem 3. When the budget distribution B is MHR, the better mechanism of
pricing items separately and selling a grand bundle achieves a constant fraction
of the optimal revenue.

We will show that it is sufficient to pretend the buyer has a public budget
b∗ = Eb∼B [b]. The proof of Theorem3 uses the MHR condition, as well as the
fact that for a public budget b, the (budget-constrained) optimal revenue is
nondecreasing in b, but optimal revenue divided by b is nonincreasing in b.

1.2 Related Work

The most closely related to ours are the following two lines of work.
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Simple Mechanisms. In a line of work initiated by Hart and Nisan [4,39,41],
[4] first showed that for an additive buyer with independent valuations, either
selling separately or selling the grand bundle extracts a constant fraction of
the optimal revenue. This was later extended to multiple buyers [49], as well
as buyers with more general valuations (e.g., sub-additive [45], valuations with
a common-value component [6], and valuations with complements [33]). Others
have studied the trade-off between the complexity and approximation ratio of an
auction, along with the design of small-menu mechanisms in various settings [3,
25,32,38,48].

Auctions for Budget-Constrained Buyers. There has been a lot of work
studying the impact of budget constraints on mechanism design. Most of the
earlier work required additional assumptions on the valuations distributions, like
regularity or monotone hazard rate [9,23,40,44]. We mention a few results that
work for arbitrary distributions. For public budgets, [21] designed approximately
optimal mechanisms for several single-parameter settings and multi-parameter
settings with unit-demand buyers. For private budgets, [30] characterized the
structure of the optimal mechanism for one item and one buyer. [28] gave a
constant-factor approximation for additive bidders whose private budgets can
be correlated with their values. However, they require the buyers’ valuation
distribution to be given explicitly, which is of exponential size in our setting.
There are also approximation and hardness results in the prior-free setting [1,
10,29], as well as designing Pareto optimal auctions [31,34].

Other Related Work. Our work concerns revenue maximization for addi-
tive buyer. Another natural and basic scenario extensively studied in the liter-
ature concerns buyers with unit-demand preferences [19,20,22]. Our work stud-
ies monopoly problem for additive budgeted buyer in the standard Bayesian
approach. In this framework, the prior distribution is known to the seller and
typically is assumed to be independent. Parallel to this framework, the (bud-
geted) additive monopoly problem has been studied in a new robust optimiza-
tion framework [17,36]. Another group of papers on budget feasible mechanism
design [7,24,46,47] studies different reverse auction settings and are concerned
with value maximization.

2 Preliminaries

2.1 Optimal Mechanism Design

We study the design of optimal auctions with one buyer, one seller, and m
heterogeneous items labeled by [m] = {1, . . . , m}. There is exactly one copy
of each item, and the items are indivisible. The buyer has additive valuation
(v(S) =

∑

j∈S v({i}) for any set S ⊆ [m]) and a publicly known budget b3.

3 In this paper, we mostly focus on the public budget case. So we define notations and
discuss backgrounds assuming the buyer has a public budget.
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We use v ∈ R
m to denote the buyer’s valuations, where vj is the buyer’s value

for item j. We consider the Bayesian setting of the problem, in which the buyer’s
values are drawn from a discrete4 distribution V . Let T = supp(V ) be the set
of all possible valuation profiles in V . We use f(t) for any t ∈ T to denote the
probability mass function of V : f(t) = Prv∼V [v = t]. Let Tj = supp(Vj). We say
the valuation distribution V is independent across items if it can be expressed
as V = ×jVj .

We assume the buyer is risk-neutral and has quasi-linear utility when the
payment does not exceed his budget. Let π : T → [0, 1]m and p : T → R denote
the allocation and payment rules of a mechanism respectively. That is, when the
buyer reports type t, the probability that he will receive item j is πj(t), and his
expected payment is p(t) (over the randomness of the mechanism). Thus, if the
buyer has type t, his (expected) value for reporting type t′ is exactly π(t′)�t,5

and his (expected) utility for reporting type t′ is

u(t, t′) =

{

π(t′)�t − p(t′) if p(t′) ≤ b, and
−∞ otherwise.

By the revelation principle, it is sufficient to consider mechanisms that are
incentive compatible (i.e., “truthful”). A mechanism M = (π, p) is (interim)
incentive-compatible (IC) if the buyer is incentivized to tell the truth (over
the randomness of mechanism), and (interim) individually rational (IR) if the
buyer’s expected utility is non-negative whenever he reports truthfully. We use
∅ for the option of not participating in the auction (π(∅) = 0, p(∅) = 0), and
let T+ = T ∪ {∅}. Then, the IC and IR constraints can be unified as follows:

u(t, t) ≥ u(t, t′) ∀t ∈ T, t′ ∈ T+.

To summarize, when the seller faces a single buyer with budget b and valuation
drawn from V , the optimal mechanism M∗ = (π∗, p∗) is the optimal solution to
the following (exponential-size) linear program (LP):

maximize
∑

t∈T f(t)p(t)
subject to π(t′)�t − p(t′) ≤ π(t)�t − p(t), ∀t ∈ T, t′ ∈ T+.

0 ≤ πj(t) ≤ 1, ∀t ∈ T, j ∈ [m].
p(t) ≤ b, ∀t ∈ T.
π(∅) = 0, p(∅) = 0.

(1)

A mechanism is called ex-post IC, ex-post IR, or ex-post budget-preserving
respectively, if the corresponding constraints hold for all possible outcomes, with-
out averaging over the randomness in the mechanism. We will show the better
of pricing each item separately and pricing the grand bundle, which is a deter-
ministic ex-post mechanism, can extract a constant fraction of the revenue of
any interim mechanism.
4 Like previous work on simple and approximately optimal mechanisms, our results

extend to continuous types as well (see, e.g., [16] for a more detailed discussion).
5 We use x�y =

∑m
i=1 xiyi to denote the inner product of two vectors x and y.



A Simple Mechanism for a Budget-Constrained Buyer 101

2.2 Simple Mechanisms

For a buyer with valuation distribution V , we frequently use the following nota-
tions in our analysis:

– Rev(V ): the revenue of the optimal truthful mechanism.
– SRev(V ): the maximum revenue obtainable by pricing each item separately.
– BRev(V ): the maximum revenue obtainable by pricing the grand bundle.
– Revb(V ): the revenue of the optimal truthful mechanism, when the buyer

has a budget b.
– SRevb(V ): the maximum revenue that can be extracted by pricing each item

separately, when the buyer has a public budget b.
– BRevb(V ): the maximum revenue that can be extracted by pricing the grand

bundle, when the buyer has a public budget b.

We know that SRev(V ) is obtained by running Myerson’s optimal auction sep-
arately for each item, and BRev(V ) is obtained by running Myerson’s auction
viewing the grand bundle as one item. Similarly, BRevb(V ) is a single-parameter
problem as well, with the minor change that the posted price is at most b.

The case of SRevb(V ) is more complicated. For example, when a budgeted
buyer of type t ∈ R

m participates in an auction with posted price pj for each item
j, he will maximize his utility by solving a Knapsack problem. There exists a
poly-time computable mechanism that extracts a constant fraction of SRevb(V )
(e.g., [8]). We focus on the structural result that the better of SRevb(V ) and
BRevb(V ) is a constant approximation of Revb(V ). A better approximation for
SRevb(V ) is an interesting open problem that is beyond the scope of this paper.

2.3 Weakly Correlated Distributions

We call a distribution like ̂V weakly correlated if the only condition causing the
correlation is a cap on its sum.

Definition 4. For an m-dimensional independent distribution V and a thresh-
old c > 0, we remove the probability mass on any t ∈ supp(V ) with ‖t‖1 > c and
renormalize. Let ̂V := V|(‖v‖1≤c) denote the resulting distribution. Formally,

Pr
v̂∼V̂

[v̂ = t] = Pr
v∼V

[v = t | ‖v‖1 ≤ c], ∀t ∈ supp(V ).

Weakly correlated distributions arise naturally in our analysis. We will show
that if the buyer’s valuations are weakly correlated, then the better of selling
separately and selling the grand bundle is approximately optimal, and this holds
with or without a (public) budget constraint.
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2.4 First-Order Stochastic Dominance

Stochastic dominance is a partial order between random variables. A random
variable X with supp(X) ⊆ R (weakly) first-order stochastically dominates
another random variable Y with supp(Y ) ⊆ R if and only if

Pr[X ≥ a] ≥ Pr[Y ≥ a] for all a ∈ R.

This notion of stochastic dominance can be extended to multi-dimensional
distributions. In this paper, we use the notion of coordinate-wise dominance.

Definition 5. Given two m-dimensional distributions D1 and D2, we say D1

coordinate-wise stochastically dominates D2 (D1 � D2 or D2  D1) if there
exists a randomized mapping f : supp(D1) → supp(D2) such that f(x) ∼ D2

when x ∼ D1, and f(x) ≤ x coordinate-wise for all x ∈ supp(D1) with probabil-
ity 1.

This notion helps us express the monotonicity of optimal revenues in some
cases. For example, we can show that SRev(V1) ≥ SRev(V2) when V1 � V2.
The mapping f allows us to couple the draws v1 ∼ V1 and v2 ∼ V2, so that for a
set of fixed prices, if the buyer buys an item under v2, he will also buy it under
v1.

3 Public Budget

In this section, we focus on the public budget case and prove our main result
(Theorem 1). The buyer has a fixed budget b and valuations drawn from an
independent distribution V .

Theorem 1. Revb(V ) ≤ 8SRevb(V ) + 24BRevb(V ).
It follows that the better of SRevb(V ) and BRevb(V ) is at least Revb(V )

32 .6

Overview of Our Approach. Instead of taking the Lagrangian dual of LP (1)
to derive an upper bound on the optimal objective value Revb(V ), we adopt a
more combinatorial approach. Intuitively, we come up with a charging argument
that splits Revb(V ) and charges each part to either SRevb(V ) or BRevb(V ).

First, we partition the buyer types t ∈ supp(V ) into two sets: high-value
types where ‖t‖∞ ≥ b and low-value types where ‖t‖∞ < b. Note that we can
already charge the revenue of high-value types to BRevb(V ): If we sell the grand
bundle at price b, all high-value types will exhaust their budgets.

We now examine the low-value types. Let V ′ denote the valuation distribution
conditioned on the buyer having a low-value type. Observe that V ′ is independent
because it is defined using �∞-norm, and we can remove the budget to upper
6 We do not optimize the constants in our proofs. In Sect. 4, we will give an alternative

proof of Theorem 1 that shows Revb(V ) ≤ 5SRevb(V )+6BRevb(V ), thus improving
this constant from 32 to 11.
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bound its revenue. For a budget-free additive buyer with independent valuations,
we can apply the main result of [4], which states that either selling separately
or grand bundling works for V ′: Rev(V ′) = O(SRev(V ′) + BRev(V ′)).

Next, we will relate SRev(V ′),BRev(V ′) to SRevb(V ′),BRevb(V ′). We
can assume the sum of v′ ∼ V ′ is usually much smaller than b. Similar to
standard tail bounds, if the sum ‖v′‖1 is often small and the random variables
are independent and bounded (each v′

j is at most b), then ‖v′‖1 must have an
exponentially decaying tail. Therefore, we can add back the budget, because the
sum ‖v′‖1, which upper bounds the buyer’s payment, is rarely very large.

Finally, we will show that SRevb(V ′) = O(SRevb(V )) and BRevb(V ′) ≤
BRevb(V ). The BRev statement is easy to verify, but the SRev statement is
more tricky. The monotonicity of SRev(V ) in the budget-free case (see Sect. 2.4)
no longer holds when there is a budget. Fortunately, we can pay a factor of two
and circumvent this non-monotonicity due to budget constraints.

We will now make our intuitions formal and present three key lemmas.
Throughout the paper, we will always use V ′ = V|‖v‖∞≤b as defined below.

Definition 6. Fix an m-dimensional distribution V = ×Vj. Let V ′ be the
independent distribution where every coordinate of V is capped at b. That is,
V ′ = ×jV

′
j , and V ′

j is given by PrV ′
j
[x] = Prvj∼Vj

[min(vj , b) = x].

Lemma 7. Revb(V ) ≤ Rev(V ′) + BRevb(V ).

Lemma 8. Assume BRevb(V ′) < b
10 . Then, BRev(V ′) ≤ 3BRevb(V ′) and

SRev(V ′) ≤ SRevb(V ′) + 4BRevb(V ′).

Lemma 9. BRevb(V ′) ≤ BRevb(V ) and SRevb(V ′) ≤ 2SRevb(V ).

We defer the proofs of these lemmas to the full version of this paper, and
first use them to prove Theorem 1.

Proof (of Theorem 1). If BRevb(V ′) ≥ b
10 , then the theorem holds because the

optimal revenue Revb(V ) is at most the budget b. By Lemma 9, BRevb(V ) ≥
BRevb(V ′) ≥ b

10 ≥ Revb(V )
10 .

We now assume BRevb(V ′) < b
10 . The theorem follows straightforwardly

from Lemmas 7, 8, 9, and a black-box use of the main result of [4].

Revb(V ) ≤ Rev(V ′) + BRevb(V ) (Lemma 7)

≤ 4SRev(V ′) + 2BRev(V ′) + 2BRevb(V ) ([4])

≤ 4SRevb(V ′) + 22BRevb(V ′) + 2BRevb(V ). (Lemma 8)

≤ 8SRevb(V ) + 24BRevb(V ). (Lemma 9)

��
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4 Public Budget and Weakly Correlated Valuations

In this section, we present an alternative approach to prove our main result
(Theorem 1). Recall that the buyer has a public budget b and valuations drawn
from an independent distribution V .

Theorem 1. Revb(V ) ≤ 5SRevb(V ) + 6BRevb(V ).

Overview of Our Approach. We will truncate the input distribution V in a
different way: instead of truncating v ∼ V in �∞-norm (as in Sect. 3), we will
truncate v in �1-norm. This truncation produces a correlated distribution ̂V .
The upshot of truncating in �1-norm is that we always have ‖v̂‖1 ≤ b, so ̂V can
ignore the budget. In addition, as in Sect. 3, we can relate the optimal revenue
to the revenue of ̂V , and we can relate the revenue of simple mechanisms on ̂V
back to revenue of simple mechanisms on V .

We still need to argue that simple mechanisms work well for ̂V . This is
the main challenge in this approach. Because ̂V is correlated, we cannot apply
the result of [4] in a black-box way. Instead, we need to modify the analysis of
previous work [4,16,41] and build on the key ideas like “core-tail” decomposition.
More specifically, we generalize the duality-based framework developed in [16]
to handle the specific type of correlation ̂V has.

Weakly Correlated Valuations. It is worth mentioning that our structural
lemmas do not require the input distribution to be independent. This is why our
techniques can be applied to more general settings. For example, in this section,
we will generalize Theorem 1 with minimum effort to handle weakly correlated
valuations (see Definition 4 for the formal definition).

Corollary 2. Let ̂V be a weakly correlated distribution (Definition 4). We have
Revb(̂V ) ≤ 5SRevb(̂V ) + 6BRevb(̂V ).

Our main contribution in this section is Lemma10. Lemma 10 shows that for
any weakly correlated distribution ̂V (see Definition 4), the better of SRev(̂V )
and BRev(̂V ) is a constant approximation to the optimal revenue Rev(̂V ).

Lemma 10. Fix c > 0. Let ̂V = V|(‖v‖1≤c) for an independent distribution V .
We have Rev(̂V ) ≤ 5SRev(̂V ) + 4BRev(̂V ).

We defer the proof of Lemma 10 to the full version. We first use these lemmas
to prove Theorem 1.

Proof (of Theorem 1). If minv∼V ‖v‖1 ≥ b/2, then the seller can price the grand
bundle at b/2 and the buyer always buys it. In this case, the revenue is b/2 and
Revb(V ) ≤ b ≤ 2BRevb(V ). Thus, we focus on the more interesting case where
Prv∼V [‖v‖1 ≤ b/2] > 0.7

7 Throughout the paper, when we consider the conditional distribution V̂ :=
V|(‖v‖1≤c), we will always have c > minv∈supp(V ) ‖v‖1, so that the event we con-
dition on happens with non-zero probability.
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Let ̂V := V|(‖v‖1≤c) for c = b/2. The proof outline goes as:

Revb(V ) ≤ (b/c) · BRevb(V ) + Rev(̂V )

≤ 2BRevb(V ) + 5SRev(̂V ) + 4BRev(̂V ) (Lemma 10)

= 2BRevb(V ) + 5SRevc(̂V ) + 4BRevc(̂V ) (‖v̂‖1 ≤ c)

≤ 2BRevb(V ) + 5SRevb(V ) + 4BRevb(V )

= 5SRevb(V ) + 6BRevb(V ).

The details are proved in the full version. ��

5 Private Budget

In this section, we consider the case where the budget b is no longer fixed but
instead drawn from a distribution B. One natural model is that the buyer’s
budget b is first drawn from B, and then depending on the value of b, the
buyer’s valuations are drawn independently for each item.

We show that in this case, the problem is at least as hard as finding (approxi-
mately) optimal mechanisms for correlated valuations in the budget-free setting.
Consider an instance in which all possible budgets are larger than maxv∼V ‖v‖1
so they are irrelevant. However, the budget can still be used as a signal (or a cor-
relation device) to produce correlated valuations. It is known that for correlated
distributions, the better of selling separately and bundling together [37], or even
the best partition-based mechanism [4], does not offer a constant approximation.

This negative result motivates us to study the private budget setting when
the budget distribution B is independent of the valuation distributions V .

5.1 Monotone-Hazard-Rate Budgets

We focus on the case where the budget is independent of valuations, and it is
drawn from a continuous8 monotone-hazard-rate (MHR) distribution. Let g(·)
and G(·) be the probability density function and cumulative distribution function
of B. The MHR condition says g(b)

1−G(b) is non-decreasing in b.

Lemma 11. Let b∗ be the expectation of an MHR distribution B. Let M∗ be
the optimal mechanism for a buyer with a public budget b∗. Then in expectation,
M∗ extracts at least 1

2e -fraction of the expected optimal revenue when the buyer
has a private budget drawn from B.

Proof. Let R(b, V ) denote the expected revenue of M∗ when the buyer has a
public budget b and valuations drawn from V . Let R(B, V ) = Eb∼B [R(b, V )]

8 If the distribution is a discrete MHR distribution, similar results still hold. For
discrete distributions we have Prb∼B [b ≥ �b∗�] ≥ e−1 instead of Prb∼B [b ≥ b∗] ≥ e−1.
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denote the expected revenue of M∗ when the buyer’s budget is drawn from B.

R(B, V ) =
∫

b

g(b)R(b, V )db ≥
∫

b≥b∗
g(b)R(b, V )db

=
∫

b≥b∗
g(b)R(b∗, V )db ≥ e−1 · R(b∗, V ).

The second last step uses R(b, V ) = R(b∗, V ) when b ≥ b∗, because M∗ provides
a menu of allocation/payment pairs for the buyer to choose from; A buyer with
budget b ≥ b∗ can afford any option on the menu so he will choose the same
option as if he had budget b∗. The last inequality comes from the fact that for
any MHR distribution B, Prb∼B [b ≥ b∗] ≥ e−1 (see, e.g., [5]).

Let RevB(V ) denote the optimal revenue we can extract when the buyer has
private budgets drawn from B.

RevB(V ) ≤
∫

b<b∗
g(b)Revb(V )db +

∫

b≥b∗
g(b)Revb(V )db

≤
∫

b<b∗
g(b)Revb∗

(V )db +
∫

b≥b∗
g(b) · b

b∗ · Revb∗
(V )db

≤ Revb∗
(V ) +

∫

b
g(b)bdb

b∗ · Revb∗
(V ) = 2Revb∗

(V ).

The first line is because the seller can only do better if she knows the buyer’s
budget b. The third line is because b∗ = E[b]. The second line uses the fact that
Revb(V ) ≤ Revb∗

(V ) when b < b∗ and Revb(V ) ≤ b
b∗ Revb∗

(V ) when b > b∗.
We have Revb(V ) ≤ Revb∗

(V ) when b < b∗ because a buyer with budget
b∗ can afford all options from the menu that achieves Revb(V ). When b > b∗,
consider the menu that achieves Revb(V ) and cap all prices at b∗. A buyer with
budget b > b∗ either chooses the same option as if he had budget b∗, or chooses a
different option whose price must be b∗, and therefore Revb(V ) ≤ b

b∗ Revb∗
(V ).

By definition R(b∗, V ) = Revb∗
(V ). Therefore, R(B, V ) ≥ 1

2eRevB(V ). ��

Theorem 3. When the budget distribution B is MHR, the better of pricing items
separately and bundling them together achieves a constant fraction of the optimal
revenue.

Proof. By pretending the budget is b∗,

SRevB(V ) ≥
∫

b≥b∗
g(b)SRevb∗

(V )db ≥ 1
e
SRevb∗

(V ).

Similarly, BRevB(V ) ≥ 1
eBRevb∗

(V ). Therefore, by Theorem 1 and Lemma 11,
SRevB(V ) + BRevB(V ) = Ω(SRevb∗

(V ) + BRevb∗
(V )) = Ω(Revb∗

(V )) =
Ω(RevB(V )). ��
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6 Conclusion and Future Directions

In this paper, we investigated the effectiveness of simple mechanisms in the
presence of budgets, and showed that for an additive buyer with independent
valuations and a public budget, either selling separately or selling the grand
bundle gives a constant approximation to optimal revenue.

The area of designing simple and approximately optimal auctions with budget
constraints is still largely unexplored. Our work leaves many natural follow-up
questions. We only considered selling to a single buyer. An immediate open ques-
tion is whether our results can be extended to multiple bidders. A generalization
to multiple bidders is known in the budget-free case [16,49].

Question 1. Is there a simple mechanism that is approximately optimal for
multiple additive buyers, when each buyer has the same public budget b?

For private budgets where the budget is independent of the valuations, we
showed that if the budget distribution satisfies monotone hazard rate, then we
can extract a constant fraction of the revenue. The general case with arbitrary
budget distributions appears to be nontrivial and is an interesting avenue for
future work.

Question 2. Is there a simple mechanism that is approximately optimal for an
additive buyer with private budgets, when the budget distribution is independent
of the valuations?
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Abstract. We consider the problem of deciding the existence of pure
Nash equilibrium and the problem of finding mixed Nash equilibrium in
graphical games defined on the two dimensional d×m grid graph. Unlike
previous works focusing on the computational complexity of centralized
algorithms, we study the communication complexity of distributed pro-
tocols for these problems, in the setting that each player initially knows
only his private input of constant length describing his utility function
and each player can only communicate directly with his neighbors. For
the pure Nash equilibrium problem, we show that in any protocol, the
players in some game must communicate a total of at least Ω(dm2)
bits when d ≥ logm and at least Ω(d2dm) bits when d < logm. For
the mixed Nash equilibrium problem, we show that in any protocol, the
players in some game must communicate at least Ω(d2m2) bits in total,
and moreover, every player must communicate at least Ω(dm) bits. We
also provide protocols with matching or almost matching upper bounds.

Keywords: Nash equilibrium · Communication complexity

1 Introduction

Game theory has become an important topic in computer science, as it pro-
vides an appropriate framework for studying the behavior of a network of non-
cooperative players (or agents) who have their own interests. To model the inter-
action among players, Kearns, Littman, and Singh [12] proposed the notion of
graphical games, in which each player is represented by a node of a graph and
his utility depends only on his action and the actions of his neighbors on the
graph. Much effort has been devoted to the problem of deciding the existence of
pure Nash equilibrium (PNE) and the problem of computing mixed Nash equi-
librium (NE), but no efficient algorithm is known so far for either problem in
such games on general graphs. In fact, there are evidences showing that no such
algorithm may exist. More precisely, for general graphical games, the problem
of deciding the existence of PNE was shown in [9,14] to be NP-complete, while
the problem of computing NE was shown in [4] to be PPAD-complete even when
each player has at most two actions and three neighbors. On the other hand,
there are polynomial-time algorithms for games on special graphs. For games on
c© Springer Nature Switzerland AG 2018
G. Christodoulou and T. Harks (Eds.): WINE 2018, LNCS 11316, pp. 111–125, 2018.
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graphs with maximum degree 2 in which each player has two actions, such an
algorithm was given in [7] for computing NE. For games on graphs with logarith-
mic tree-width and constant degree in which each player has a constant number
of actions, such algorithms were given in [6], for deciding the existence of PNE
and for computing approximate NE. For games on a k-dimensional torus (or
grid) in which all players have the same action set and the same utility function
(the input thus consists of only that utility function and the number of nodes in
each dimension), it was shown in [5] that the problem of deciding the existence
of PNE falls in P when k = 1 but becomes NEXP-complete when k ≥ 2.

Note that most of the previous works focused on the centralized setting, which
corresponds to the scenario in which there is a centralized authority who knows
every player’s utility function, does all the computation, and then tells every
player what to do. In such a setting, the dominant question is the computational
complexity of the centralized algorithm. Although results in this direction have
been fruitful, they may not tell the whole story, since many systems in use
today operate in a distributed fashion with participants having their own inputs
and working autonomously, instead of being controlled by a central authority.
Therefore, we would like to argue that another direction worth exploring is to
consider the distributed setting. In fact, different types of questions naturally
arise from such a setting, which may provide different perspectives and help
us gain better understanding of some fundamental problems in game theory.
As a start, we consider the issue of communication, which is one of the main
issues in a distributed system. This issue was studied by Hart and Mansour
[10], who considered the case of graphical games on a complete graph. They
showed that for such games with n players each having two actions, Ω(2n) bits
of communication are required to decide the existence of PNE or to compute
NE. Note that in such games, each player’s utility depends on the actions of all
players, which means that the size of each player’s input, his utility function, is
at least 2n. Recently, Babichenko and Rubinstein [2] showed that such an lower
bound even holds for finding approximate NE, with some small enough constant
approximation error.

We are more interested in graphical games on sparse graphs, in which each
player has direct interaction with only a small number of players. That is, each
player’s utility depends only on the actions of his small number of neighbors, and
moreover, each player can only communicate directly with his small number of
neighbors. We believe that this captures more accurately many social or physical
networks in our daily life, and many interesting questions may be waiting to be
asked and answered. As a first step, following [5], we start by considering a class
of highly regular graphs: the two dimensional grids. A d×m grid is a graph with
dm nodes, aligned in d rows and m columns, with each node connected to at most
four other nodes, at its left, right, top, and bottom. In games on such a graph,
each player’s utility only depends on the actions of at most four other players.
We consider the setting in which players initially know only their own utility
functions, given as their private inputs, and they must then communicate with
others in order to collectively solve the PNE problem or the NE problem. We
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consider the communication model in which each player can only communicate
directly with his neighbors on the graph; thus, if a player wants to send one
bit of message to a player with k edges away from him, he needs the players
in between to relay the message, and this costs k bits, instead of one bit, of
communication complexity in total. This seems to be the model often used in
the areas of networking and distributed computing, but is different from what
is usually considered in the area of communication complexity [8], including
[2,10], which allows any player to communicate directly with others. We adopt
this model because we believe it to be a more appropriate model for graphical
games, as it corresponds to the case that the neighbors who affect your utility are
those you have communication with. To avoid obscuring the picture, we focus on
the case that each player’s input is short, with O(1) bits, which means that the
total input length is O(dm), and we ignore the issue of computation complexity.
We obtain the following results, assuming without loss of generality that d ≤ m
(by rotating the grid if necessary).

First, we consider the problem of deciding the existence of PNE in such
games. In the case with d ≥ log m, we show that in any protocol, the players
must communicate at least Ω(dm2) bits in total, and thus most players must
each communicate at least Ω(m) bits. Note that these are the largest lower
bounds a decision problem can possibly have, because matching upper bounds
can be achieved by a simple protocol, which lets all players send their inputs
to one particular player who then computes and broadcasts the answer. In the
case with d < log m, we show that any protocol must communicate at least
Ω(d2dm) bits in total, and we also provide a protocol which communicates at
most O(22dm) bits in total. When d = O(1), our upper bound matches our lower
bound, and each player in our protocol only communicates O(1) bits.

Next, we consider the problem of finding NE in such games. We show that
in any protocol, the players must communicate at least Ω(d2m2) bits in total,
and furthermore, every player must communicate at least Ω(dm) bits. These
are also the largest lower bounds a search problem can possibly have, because
matching upper bounds can be achieved by another simple protocol, which lets
each player send his input to all other players and then lets each player compute
his answer by himself. Our lower bounds also imply that every player’s distri-
bution in an NE is in fact influenced by the utility functions of almost all the
players. Furthermore, our lower bounds can be extended to the more general
problem of finding approximate NE, and we show that the same lower bounds
hold even when the approximation error ε is at most 2−Ω(dm), while the lower
bounds become Ω(dm log(1/ε)) in total and Ω(log(1/ε)) for each player when
ε ≥ 2−O(dm).

Let us make some remarks about our results. First, observe that our bounds
for the problem of finding NE are larger than those for the problem of deciding
the existence of PNE. For example, in the case with d = O(1), each player
can communicate O(1) bits for the PNE problem but must communicate Ω(m)
bits for the NE problem. One reason may be that while the PNE problem is a
decision problem, the NE is a search problem whose solution may need many
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bits to describe. Next, our results can be seen as giving an example of graphical
games in which each player’s utility depends only on the actions of a small
number of players, but long range influence from many other players still exists.
Therefore, the degree of graphs alone is not the parameter which determines the
communication complexity of graphical games. Moreover, although we discuss
only games on grids, our lower bounds in fact apply to games on a much broader
class of graphs, those which can embed such grids (formally, those which have
such grids as minors). In fact, our lower bound for the NE problem even works
for graphs which can embed a subtree of the 2 × m grid (as shown in Fig. 2(1)).
Finally, our communication lower bounds are unconditional, which show that the
PNE problem and the NE problem are indeed hard in terms of communication
complexity, since the lower bounds are the largest possible for decision problems
and search problems, respectively. This is in contrast to the current status on
their computation complexity: the negative results currently known for them are
only of the form of NP-hardness and PPAD-hardness, respectively.

2 Preliminaries

Let N denote the set of positive integers and R the set of real numbers. For n ∈ N,
let [n] denote the set {1, . . . , n}. All logarithms in the paper will have base two.
The entropy of a distribution X is defined as

∑
x Pr[X = x] log(1/Pr[X = x]).

Games and Nash Equilibria. In a game, there are some number n of players
indexed by 1, . . . , n. Each player i has a finite set of actions Ai, as well as a utility
function ui :

∏
j∈[n] Aj → R. One can allow each player i to play according to

some distribution σi over his actions. We say that a sequence of independent
distributions (σ1, . . . , σn) is an ε-Nash equilibrium, if for any player i, changing
his distribution σi to a different σ′

i unilaterally cannot improve his expected
utility by more than ε. More precisely, we have the following.

Definition 1. A sequence of independent distributions σ = (σ1, . . . , σn) is an
ε-Nash equilibrium, or ε-NE for short, if for any player i and for any sequence
of independent distributions σ∗ which differs from σ only in its i’th distribution,
Ea∈σ∗ [ui(a)] ≤ Ea∈σ[ui(a)]+ε. An ε-NE with ε = 0 is called a Nash Equilibrium,
or NE for short. An NE in which each player plays some action with probability
1 is called a pure Nash equilibrium, or PNE for short.

Graphical Games and Communication Model. A graphical game on a graph is a
game in which every player is represented by a node of the graph and the utility
of a player only depends on the joint action of himself and his neighbors on the
graph. The graphs which we will focus on in this paper are two-dimensional grid
graphs. For d,m ∈ N, a d×m grid graph has dm nodes, aligned in d rows and m
columns, with each node connecting to at most four neighbors, on its left, right,
top, and bottom.
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Definition 2. Let Gd×m denote the set of graphical games on a d × m grid
graph, in which each player is represented by a node on the graph, has a binary
action set {0, 1}, and has a utility function mapping from the joint action taken
by himself and his neighbors to a value in the set U = {0, 1/2, 1}.1

Note that each game in Gd×m is determined by the dm utility functions of
the players, which can be specified by O(dm) bits since each utility function
has only a constant number of possibilities. We study two problems: a decision
problem which decides if a PNE exists, and a search problem which outputs
an ε-NE. We consider the setting in which each player initially knows only his
utility function as his private input, and there is an underlying communication
network, which is the grid graph, such that each player can only communicate
directly with his neighbors on the communication network. Thus, on the grid
graph, each player can only communicate directly with at most four players. If
a player wants to send one bit of message to a player with k edges away from
him, he needs the players in between to relay the message, and this costs k bits,
instead of one bit, of communication complexity in total because there are k
players each sending one bit. Note that this is different from what is usually
considered in the area of communication complexity, which allows any player to
communicate directly with others (or equivalently, the communication network is
a complete graph). For a given input, the communication complexity of a player
is the number of bits he sends and receives, and the communication complexity
of a protocol is the total number of bits sent and received by its players. The
maximum communication complexity over all possible inputs is taken as the
communication complexity of a protocol for that problem. The goal is to have
protocols with small communication complexity for the PNE problem and the
ε-NE problem.

Definition 3. For the problem of deciding if a PNE exists, we say that a protocol
succeeds on an input if every player knows the final answer (true or false) of
whether or not a PNE exists, while for the problem of finding an ε-NE, we say
that a protocol succeeds on an input if the players agree on some ε-NE and each
player knows his distribution in that ε-NE.

We allow a protocol to be randomized, which can use a random string to
help its computation, and this makes our lower bound results stronger. In fact,
our lower bounds even work for the stronger model known as the public coins
model, in which the random string is generated publicly and broadcasted to all
players without counting its communication complexity. We say that a protocol
is a δ-error randomized protocol for a problem if for any input, the protocol
succeeds with probability at least 1 − δ.

1 Our algorithms actually work for any set U of constant size. We make this restriction
on U to make our lower bound results stronger—the problems remain hard even when
specialized to such a set U . In fact, our lower bound in Sect. 3 even holds when U is
restricted to {0, 1}.
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Set-Disjointness Problem. We will prove a communication lower bound for
our PNE problem by reducing to it a hard communication problem. The hard
problem we choose is the set-disjointness problem, denoted as Φn, which takes
the input (x, y) = ((x1, . . . , xn), (y1, . . . , yn)) ∈ {0, 1}n × {0, 1}n and outputs∨

i∈[n](xi ∧ yi), where ∧ is the And operation and ∨ is the Or operation. Note
that Φn(x, y) =

∨
i∈[n] Φ1(xi, yi). This problem is known to have a high commu-

nication complexity for any two-party protocol, with one party having x and the
other having y. We will use the following stronger result.

Lemma 1. [1] For n ∈ N, there is a distribution Dn = ((X1, . . . ,Xn),
(Y1, . . . ,Yn)) over Φ−1

n (0) ⊆ {0, 1}n × {0, 1}n such that the following two condi-
tions hold:

– For each i ∈ [n], the pair of distributions (Xi,Yi) over {0, 1} × {0, 1} is
independent from all other pairs of distributions (Xj ,Yj) for j 	= i.

– Given any δ-error randomized two-party protocol for Φn, with a constant δ <
1/4, the expected length of its messages, over the inputs sampled from Dn and
the randomness it uses, must be at least Ω(n).

Note that what [1] actually proved is that the distribution of messages sent
by a protocol must have entropy at least Ω(n), but this implies that the expected
length of the messages must also be at least Ω(n). The reason is that one
can convert the messages into a prefix-free encoding of their distribution with
their lengths increased only by a constant factor, and it is well-known that
the expected length of any prefix-free encoding of a distribution is at least the
entropy of the distribution (see, e.g., Theorem 5.3.1. of [3]).

3 Pure Nash Equilibria

In this section, we consider the communication complexity of deciding the exis-
tence of pure Nash equilibria in Gd×m. Note that we can assume without loss of
generality that d ≤ m, by rotating the grid if necessary. Our main result is the
following, which we will prove in Subsect. 3.1.

Theorem 1. Suppose d ≥ c, for a large enough constant c, and 0 ≤ δ < 1/4.
Then for the problem of deciding the existence of PNE in Gd×m, any δ-error
randomized protocol must have total communication complexity at least Ω(dm2)
when d ≥ log m and at least Ω(d2dm) when d < log m.

We also have the following upper bounds, which we will prove in Subsect. 3.2.
Note that our lower bounds match our upper bounds when d ≥ log m or when
d ≤ O(1).

Theorem 2. For the problem of deciding the existence of PNE in Gd×m, there
is a deterministic protocol which has total communication complexity at most
O(dm2) in general and at most O(22dm) when d ≤ O(log m).
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3.1 Proof of Theorem1

First, let us consider the case with d ≥ log m. To have a cleaner presentation,
we will prove an Ω(dm2) lower bound for graphical games on an O(d) × O(m)
grid, instead of on a d × m grid, which clearly implies our result.

The basic idea behind our proof is the following. To show a communication
lower bound for our problem, we take a hard problem which is known to have
a high communication lower bound, and reduce it to our problem. The hard
problem we choose is the set-disjointness problem Φdm, defined in Sect. 2, with
inputs from {0, 1}dm × {0, 1}dm, which is known to have a communication com-
plexity of Ω(dm) for any two-party protocol. More precisely, given any input
(x, y) ∈ {0, 1}dm × {0, 1}dm of Φdm, we will map it to a graphical game on an
O(d)×O(m) grid, such that Φdm(x, y) = 1 if and only if the graphical game has
a PNE. For this, we will first construct a combinatorial circuit for Φdm which
can be placed on an O(d)×O(m) grid in such a way that gates and wires of the
circuit are placed on nodes and edges, respectively, of the graph. Then we will
design the utility functions for players so that the actions taken by them will
match the values of the corresponding gates on them. Furthermore, we will add
two extra players to force the condition that the game has a PNE if and only
if the circuit has output 1. We will have dm input gates for the input x as well
as dm input gates for the input y, and they will be placed on two sides of the
graph separable by a cut in the middle. Then by seeing players on two sides of
the graph as two parties, any protocol for our problem gives a two-party proto-
col for Φdm. Thus, the two-party communication lower bound for Φdm implies a
communication lower bound for our problem.

However, there seems to be an obstacle in this approach. If we take a deter-
ministic circuit for Φdm, there must be at least Ω(dm) wires crossing any cut that
separates x and y. This is because otherwise one can obtain a two-party protocol
for Φdm by simulating the circuit which only needs o(dm) bits of communication,
contradicting the known lower bound of Ω(dm). Therefore, it is impossible to
embed any deterministic circuit for Φdm on an O(d) × O(m) grid. We overcome
this obstacle by using a non-deterministic circuit, instead of a deterministic one,
for Φdm, where a non-deterministic circuit, unlike a deterministic one, has some
non-deterministic gates each of which can be assigned any binary value, and
the circuit accepts an input if it outputs one for some assignment of the non-
deterministic gates. As we will see, a non-deterministic circuit can indeed have
much fewer crossing wires and can thus be placed on the grid.

Now we proceed to give the formal proof. First, we show how to con-
struct a non-deterministic circuit C to compute Φdm. Let us arrange the input
x ∈ {0, 1}dm of Φdm as a d × m array and write x = (x1, . . . , xm) with
xb = (xb,1, . . . , xb,d) ∈ {0, 1}d denoting the b’th column of the array; the other
input y ∈ {0, 1}dm is treated similarly. Then we have

Φ(x, y) = 1 ⇐⇒
∨

b∈[m]

∨

j∈[d]

(xb,j ∧ yb,j) = 1 ⇐⇒ ∃b ∈ [m] : Φd(xb, yb) = 1.
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What our non-deterministic circuit C does is to guess b ∈ [m], select xb and yb,
and then compute Φd(xb, yb). Note that Φd(xb, yb) =

∨
j∈[d](xb,j ∧ yb,j), which

can be easily realized by a small deterministic circuit with O(d) gates and wires.
The difficult part is to select xb and yb. For this, we use the guessed b to produce
a mask a ∈ {0, 1}m with ab = 1 and ai = 0 for i 	= b. Then for every i ∈ [m],
we produce the string (ai ∧ xi,1, . . . , ai ∧ xi,d), which gives the string xb if i = b
and the all-0 string otherwise, and then by taking bit-wise Or of these m string,
we obtain the string xb. Similarly, we do this for selecting yb. In summary, our
non-deterministic circuit C consists of the following.

1. There are � = log m non-deterministic gates (b1, . . . , b�) for guessing the
binary representation of the index b.

2. There are two copies of a sub-circuit Ca, each of which takes (b1, . . . , b�) as
its input and outputs the m-bit string a = (a1, . . . , am) such that ab = 1 and
ai = 0 for i 	= b.

3. There is a sub-circuit Cx which contains x as input gates, takes the string a
from Ca, and outputs the d-bit string xb. There is a similar sub-circuit Cy for
yb.

4. There is a sub-circuit CΦ which takes xb from Cx as well as yb from Cy, and
outputs Φd(xb, yb).

Fig. 1. The layout of the circuit C.

We compose these sub-circuits in the way as shown in Fig. 1 to obtain the
nondeterministic circuit C for Φdm. To implement the circuit, we adopt the
binary ∧ gate for the And of two inputs, the binary ∨ gate for the Or of two
inputs, and the binary ≡ gate for comparing if two inputs are equal. In addition,
to embed the circuit on the grid, we adopt the binary ⊕ gate for the Xor of
two inputs, which enables us to simulate the crossing of two wires, and we also
adopt the unary → gate for passing its input to its output, which enables us
to simulate a long wire. Lemma 2 below guarantees the feasibility of such an
implementation. The proof is somewhat straightforward following the discussion
above, which we omit due to the page limit.
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Lemma 2. The circuit C can be implemented using gates from {∧,∨,≡,⊕,→},
as well as input gates and non-deterministic gates. Furthermore, it can be placed
on an O(d) × O(m) grid such that every gate is on a different node and every
wire is on a different edge of the grid.

Recall that each node of the grid corresponds to a player of the graphical
game, so each gate is now associated with a player of the graphical game. Next,
we show how to set the utility functions for players so that they simulate their
associated gates of the circuit. In particular, for a player who is associated with
some gate, given the actions taken by his neighbors which correspond to the
input values for that gate, we will force the player to play the action equal
to the output value of that gate. Note that we can force a player to play a
particular action by giving him utility 1 for playing that action and 0 otherwise.
More precisely, we do the following.

1. For a player who simulates a nondeterministic gate bi, we allow him to play
any action by always giving him utility 1.

2. For a player who simulates an input gate xi,j (or yi,j), we force him to play
action xi,j (or yi,j), by giving him utility 1 if he does so and 0 otherwise.

3. For a player who simulates the unary → gate, we force him to play the same
action as his neighbor who corresponds to the input. That is, we give him
utility 1 if he plays the same action as that neighbor and 0 otherwise.

4. For a player who simulates a binary gate � ∈ {∨,∧,≡,⊕}, we force him to
play action α1 � α2 whenever his two neighbors, who correspond to the two
inputs, play actions α1 and α2. That is, we give him utility 1 if he plays action
α1 � α2 and 0 otherwise.

So far, by setting utility functions in this way, one can show that for any
assignment to the non-deterministic gates (b1, . . . , b�), the graphical game always
has a PNE which corresponds to the evaluation of the circuit. However, what we
actually want is to have a graphical game which has a PNE if and only if there
is an assignment to the non-deterministic gates which makes the circuit output
1. To achieve this, we would like the player p who represents the output gate to
play action 1, by adding two extra players p1, p2 and set their utility functions
in the following way. We force p2 to play the same action as p1, but we force p1
to play the same action as p2 if and only if p plays 1. Thus, p2 and p1 can both
be happy if and only if p plays 1, which accomplishes what we want. Note that
to incorporate these two new players, we only need to add a new row of nodes
to the grid, so we still have an O(d) × O(m) grid. This completes the reduction.

Now, we are ready to show the communication lower bound for our problem.
Let us focus on those graphical games constructed above. In these games, for
each i ∈ [m] and j ∈ [d], the player with the input gate xi,j has two possible
utility functions as his input, and so is the player with the input gate yi,j , while
each of the remaining players has a fixed utility function. Thus, there are 22dm

such games, one for each possible (x, y). Let us abuse the notation and also use
Ddm to denote the distribution of graphical games with (x, y) sampled from the
distribution Ddm in Lemma 1 and with the utility functions of other players
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fixed in the way discussed before. Now consider any randomized protocol ΠG for
deciding the existence of a PNE. Note that for any i ∈ [m], the players with the
input gates xi,1, . . . , xi,d are all located on the same column of the grid, which is
different from those with other input gates. Thus for any i ∈ [m], there is a cut on
the graph which separates those with input gates for x1, . . . , xi from those with
other input gates, and these m cuts share no edge. Then from Lemma 1, we have
the following, as one can derive from ΠG a two party-protocol for computing
Φdi((x1, . . . , xi), (y1, . . . , yi)). We omit the proof due to the page limit.

Lemma 3. For any i ∈ [m], over the input sampled from the distribution Ddm

and the random string used by ΠG, the expected length of the messages sent
across the i’th cut by ΠG must be at least Ω(di).

Finally, by summing the bound in Lemma3 over i, we can obtain a lower
bound on the total communication complexity. More precisely, using the fact
that the m cuts share no edge as well as the linearity of expectation, we know
that the messages sent across the m cuts altogether must have an expected total
length of at least

∑
i∈[m] Ω(di) = Ω(dm2). This completes the proof for the case

with d ≥ log m.
For the case with d < log m, let us divide the d × m grid into m/2d copies

of a d × 2d grid (assuming for simplicity of presentation that 2d divides m).
For each copy of the d × 2d grid, we sample an input for players on it from an
independent copy of the distribution Dd2d discussed before. We claim that if we
sample an input from Gd×m according to such a distribution, then the messages
communicated within each copy of the d × 2d grid by any protocol must have
an expected total length of Ω(d22d). This is because otherwise it would give a
protocol for Gd×2d violating the lower bound we have shown for the case with
d ≥ log m. The argument is similar to that for proving Lemma3, so we omit it
here. As a result, by summing over the m/2d copies, the expected total length
of all messages must be at least Ω(d22d) · (m/2d) = Ω(d2dm). This completes
the proof of Theorem1.

3.2 Proof of Theorem2

An O(dm2) upper bound can be achieved by the straightforward deterministic
protocol: every player sends his utility function to the first player, who decides
if a PNE exists and then tells each player the answer.

For the case with d ≤ O(log m), we can do the following instead, which
is inspired by the protocols in [6,12]. Let us start with some preparation. For
i ∈ [m] and j ∈ [d], let ci,j denote the player on column i and row j of the
d×m grid. For each column i ∈ [m], let us see the d players in that column as a
meta-player ci, who has 2d meta-actions from {0, 1}d corresponding to the joint-
actions of those d players. For convenience, let us add a column 0 in front and a
column m+1 at the end, and consider two corresponding imaginary meta-players
c0 and cm+1, who are always happy (with utility 1) for taking any meta-actions.
For any i ∈ [m], we say that a meta-action αi is good for ci with respect to a
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meta-action αi+1 of ci+1 if they have the potential of being part of a PNE in
the sense that there is a meta-action αi−1 of ci−1 such that the following two
conditions hold:

– The meta-action αi−1 is good for ci−1 (we assume that any meta-action is
good for c0) with respect to the meta-action αi of ci.

– The meta-action αi is stable for ci with respect to ci−1’s meta-action αi−1

and ci+1’s meta-action αi+1, in the sense that for any j ∈ [d], the player ci,j

cannot improve his utility by unilaterally changing his action in αi.

Then our protocol does the following. For any i ∈ [m], we let the first player in
column i represent the meta-player ci by collecting all the utility functions in
that column; this only costs O(d2m) bits of communication in total. Then our
protocol enters the following m−1 iterations. For i going from 1 up to m−1, let
ci first receive the message from ci−1 and then send ci+1 the following message:
for every meta-action αi+1 of ci+1, which meta-actions are good for ci with
respect to αi+1. Finally, after receiving the message from cm−1, the meta-player
cm declares that a PNE exists if and only if there is a meta-action αm which is
good for cm with respect to some meta-action of cm+1.

For the correctness of our protocol, a simple induction shows that cm has
a meta-action αm which is good with some meta-action αm+1 of cm+1 if and
only if there exist meta-actions α0, α1, . . . , αm, αm+1 such that for any i ∈ [m],
αi is stable with respect to αi−1 and αi+1. Since the imaginary meta-players
c0 and cm+1 are always happy, the condition that these meta-actions are stable
is equivalent to the condition that no player ci,j can improve his utility by
unilaterally changing his distribution in αi, which means the existence of a PNE.

To bound the communication complexity of our protocol, note that the mes-
sage sent in each iteration can be described by a 2d × 2d Boolean matrix, which
costs 22d bits of communication. Therefore, the total communication complexity
of our protocol is O(d2m + 22dm) = O(22dm), which completes the proof.

4 Mixed Nash Equilibria

In this section, we prove a communication lower bound for finding (approximate)
mixed Nash equilibria in Gd×m. Our result is the following.

Theorem 3. For the problem of finding ε-NE in Gd×m, any δ-error randomized
protocol, with 0 ≤ δ ≤ 1/4, must have the following communication lower bounds.

– The communication complexity of any player is at least Ω(dm) for ε ≤
2−Ω(dm) and at least Ω(log(1/ε)) for ε ≥ 2−O(dm).

– The total communication complexity of all players is at least Ω(d2m2) for
ε ≤ 2−Ω(dm) and at least Ω(dm log(1/ε)) for ε ≥ 2−O(dm).

Before proving the theorem, let us make some remarks. First, for the task of
finding an ε-NE with ε ≤ 2−Ω(dm) (in particular, finding an NE, with ε = 0),
our lower bounds are tight, as matching upper bounds can be achieved by the



122 J.-H. Chou and C.-J. Lu

straightforward deterministic protocol: every player sends his utility function to
all other players and then every player computes his distribution in the first
(according to some order) NE. Another straightforward algorithm, similar to
that in Theorem 2, is to have one particular player collecting all utility functions,
computing an NE, and telling each player his distribution in that NE. However,
this does not give a smaller communication complexity because each player’s
distribution in general may need much more than a constant number of bits
to specify. This may explain why the communication complexity for finding an
NE given in Theorem 3 is larger than that for deciding the existence of a PNE
given in Theorem 1. Finally, note that the first item of the theorem does not
imply the second item. This is because different players may have their high
communication complexity on different inputs, so it may be possible that every
input has only few players with high communication complexity. Nevertheless,
the second item of the theorem guarantees that there indeed exists some input
on which many players all have high communication complexity.

4.1 Proof of Theorem3

The basic idea behind our proof is to show the existence of 2Ω(dm) different
inputs which all have different NE. This means that to distinguish among these
many different NE, many bits must be communicated. We will first show this
for games in G2×2n, which are graphical games on the 2 × 2n grid. Then we will
show that by embedding the 2 × 2n grid into the d × m grid, with n = Θ(dm),
we can obtain lower bounds for Gd×m from lower bounds for G2×2n.

Let us start by considering graphical games in G2×2n. Among the 4n players,
the 2n players g1, . . . , gn, v1, . . . , vn will be the main ones for us, the n players
w1, . . . , wn will be the auxiliary ones, and the remaining n players will be ignored.
Figure 2(1) shows their positions on the grid. In our games, each player z has
only two actions, denoted by 0 and 1, and we let p[z] denote the probability that
z plays the action 1. For each player vj , we would like p[vj ] in any NE to have
exactly two possibilities, either 0 or 1, which can be achieved by forcing him to
play either action 0 or 1, by giving him utility 1 for playing that action and 0
otherwise. Furthermore, we would like to set the utility functions for the players
g1, . . . , gm so that in any NE, each p[gi] is uniquely determined by the values of
p[v1], . . . , p[vi]. In particular, we will make

p[gi] =
p[vi]

2
+

p[gi−1]
2

=
p[vi]

2
+

p[vi−1]
22

+ · · · +
p[v1]
2i

.

For this, we will rely on the following building block, which is a simplified version
from [4]. We will consider the more general case of an ε-NE, and we will use the
notation u = p ± ε for the condition p − ε ≤ u ≤ p + ε.

Proposition 1. [4] Let g′, v, w, g be the players on the graph shown in Fig. 2(2).
Then there are fixed utility functions Ug and Uw for players g and w, respectively,
with utility values in {0, 1/2, 1}, such that for any utility functions of players g′

and v, p[g] = 1
2p[v] + 1

2p[g
′] ± ε in any ε-NE. In particular, p[g] = 1

2p[v] + 1
2p[g

′]
in any NE.
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Fig. 2. (1) The graph of G2×2n. (2) The graph of Proposition 1.

In our games, we give our players their utility functions in the following way.
For convenience, let us have an imaginary player g0 who is connected to w1 and
always plays the action 0. For i ∈ [n], we give the players gi and wi the fixed
utility functions Ug and Uw of Proposition 1, respectively. For i ∈ [n], we give the
player vi two possible utility functions, specified by an input variable xi ∈ {0, 1},
to force him to play the action xi (by giving him utility 1 for playing xi and
0 otherwise), and this implies that p[vi] = xi in any NE. Other players do not
matter and we fixed their utility functions arbitrarily. In summary, each player
vi, for i ∈ [n], has two possible utility functions as his input, indicated by the
input variable xi ∈ {0, 1}, and all other players have their utility functions fixed.
That is, our games have exactly 2n different inputs, and let S denote this set of
inputs. Then we have the following.

Lemma 4. In any ε-NE, any player gi, for i ∈ [n], has

p[gi] =
xi

2
+

xi−1

22
+ · · · +

x1

2i
± 3ε.

Proof. Consider any ε-NE. Note that for any player vi, we have p[vi] = xi ± ε.
Then for any player gi with i ∈ [n], we know from Proposition 1 that

p[gi] =
1
2
p[vi] +

1
2
p[gi−1] ± ε =

1
2
xi +

1
2
p[gi−1] ± 3

2
ε,

where we let p[g0] = 0, and a simple induction shows that p[gi] equals

xi

2
+

1
2

(xi−1

2
+

xi−1

22
+ · · · +

x1

2i−1
± 3ε

)
± 3

2
ε =

xi

2
+

xi−1

22
+ · · · +

x1

2i
± 3ε.

��
In the case of an NE, with ε = 0, the lemma shows that different values of

(x1, . . . , xi) give rise to different values of p[gi]. However, in the case of an ε-NE,
this is no longer true, but we will show that there are still many different values
of p[gi] from many different values of (x1, . . . , xi). Then to distinguish the many
possibilities, the player gi must communicate many bits. Formally, we have the
following. We omit the proof here due to the page limit.
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Lemma 5. Consider any δ-error randomized protocol, with 0 ≤ δ ≤ 1/4, for
finding ε-NE in G2×2n, and consider any player gi with i ∈ [n]. Then over
the random input sampled uniformly from S and the random string used by the
protocol, the expected number of bits received by gi must be at least (i∗ − 2)/2,
where i∗ = min{i, �log(1/7ε)�}.

Now let us return to graphical games in Gd×m. We will focus on a subset of
them which correspond to the graphical games in G2×2n discussed above. Note
that one can easily embed the 2 × 2n grid into the d × m grid, with n = Θ(dm),
in several ways. We give the utility functions of the players in G2×2n to the
corresponding players in Gd×m. The remaining players in Gd×m will have no
effect, and we fix their utility functions arbitrarily. Thus, we can see our games
in Gd×m simply as games in G2×2n.

For the first item of the theorem, note that we can choose an embedding such
that the player in Gd×m corresponds to some player gi in G2×2n with i ≥ n/2.
Then the first item follows immediately from Lemma 5.

For the second item of the theorem, we know from the linearity of expec-
tation that over the random input sampled from S and the random string
used by the protocol, the expected number of bits received by the players
g1, . . . , gn equals the sum, over i ∈ [n], of the expected number of bits received
by player gi. By Lemma 5, for the case with ε ≤ 2−Ω(n), this is at least
∑Ω(n)

i=O(1) Ω(i) ≥ Ω(n2) ≥ Ω(d2m2), while for the case with ε ≥ 2−O(n), this
is at least

∑n
i=n/2 Ω(log(1/7ε)) ≥ Ω (n log(1/ε)) ≥ Ω (dm log(1/ε)) .
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Abstract. The existential theory of the reals (ETR) consists of exis-
tentially quantified boolean formulas over equalities and inequalities of
real-valued polynomials. We propose the approximate existential theory
of the reals (ε-ETR), in which the constraints only need to be satisfied
approximately. We first show that unconstrained ε-ETR = ETR, and
then study the ε-ETR problem when the solution is constrained to lie in
a given convex set. Our main theorem is a sampling theorem, similar to
those that have been proved for approximate equilibria in normal form
games. It states that if an ETR problem has an exact solution, then it
has a k-uniform approximate solution, where k depends on various prop-
erties of the formula. A consequence of our theorem is that we obtain a
quasi-polynomial time approximation scheme (QPTAS) for a fragment
of constrained ε-ETR. We use our theorem to create several new PTAS
and QPTAS algorithms for problems from a variety of fields.

1 Introduction

Sampling Techniques. The Lipton-Markakis-Mehta algorithm (LMM) is a
well known method for computing approximate Nash equilibria in normal form
games [28]. The key idea behind their technique is to prove that there exist
approximate Nash equilibria where both players use simple strategies.

Suppose that we have a convex set C = conv(c1, c2, . . . , cl) defined by vectors
c1 through cl. A vector x ∈ C is k-uniform if it can be written as a sum of the
form (β1/k) · c1 + (β2/k) · c2 + · · · + (βl/k) · cl, where each βi is a non-negative
integer and

∑l
i=1 βi = k.
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Since there are at most lO(k) k-uniform vectors, one can enumerate all k-
uniform vectors in lO(k) time. For approximate equilibria in n×n bimatrix games,
Lipton, Markakis, and Mehta showed that for every ε > 0 there exists an ε-Nash
equilibrium where both players use k-uniform strategies where k ∈ O(log n/ε2),
and so they obtained a quasi-polynomial approximation scheme (QPTAS) for
finding an ε-Nash equilibrium.

Their proof of this fact uses a sampling argument. Every bimatrix game
has an exact Nash equilibrium (NE), and each player’s strategy in this NE is a
probability distribution. If we sample from each of these distributions k times,
and then construct new k-uniform strategies using these samples, then when
k ∈ O(log n/ε2) there is a positive probability the new strategies form an ε-NE.
So by the probabilistic method, there must exist a k-uniform ε-NE.

The sampling technique has been widely applied. It was initially used by
Althöfer [1] in zero-sum games, before being applied to non-zero sum games by
Lipton, Markakis, and Mehta [28]. Subsequently, it was used to produce algo-
rithms for finding approximate equilibria in normal form games with many play-
ers [3], sparse bimatrix games [4], tree polymatrix [5], and Lipschitz games [21].
It has also been used to find constrained approximate equilibria in polymatrix
games with bounded treewidth [19].

At their core, each of these results uses the sampling technique in the same
way as the LMM algorithm: first take an exact solution to the problem, then
sample from this solution k times, and finally prove that with positive probability
the sampled vector is an approximate solution to the problem. The details of
the proofs, and the value of k, are often tailored to the specific application, but
the underlying technique is the same.

The Existential Theory of the Reals. In this paper we ask the following
question: is there a broader class of problems to which the sampling technique
can be applied? We answer this by providing a sampling theorem for the existen-
tial theory of the reals. The existential theory of the reals consists of existentially
quantified formulae using the connectives {∧,∨,¬} over polynomials compared
with the operators {=,≤, <,≥, >}. For example, each of the following is a for-
mula in the existential theory of the reals.

∃x∃y∃z · (x = y) ∧ (x > z) ∃x · (x2 = 2)

∃x∃y · ¬(x10 = y100) ∨ (y ≥ 4) ∃x∃y∃z · (x2 + y2 = z2)

Given a formula in the existential theory of the reals, we must decide whether
the formula is true, that is, whether there do indeed exist values for the variables
that satisfy the formula.

The complexity class ETR is defined to be all problems that can be reduced
in polynomial time to the existential theory of the reals. It is known that ETR
⊆ PSPACE [12], and NP ⊆ ETR since the problem can easily encode Boolean
satisfiability. However, the class is not known to be equal to either PSPACE or
NP, and it seems to be a distinct class of problems between the two. Many prob-
lems are now known to be ETR-complete, including various problems involving
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constrained equilibria in normal form games with at least three players [6–9,23].

Our Contribution. In this paper we propose the approximate existential theory
of the reals (ε-ETR), where we seek a solution that approximately satisfies the
constraints of the formula. We show a subsampling theorem for a large fragment
of ε-ETR, which can be used to obtain PTASs and QPTASs for the problems
that lie within it. We believe that this will be useful for future research: instead
of laboriously reproving subsampling results for specific games, it now suffices to
simply write a formula in ε-ETR and then apply our theorem to immediately get
the desired result. To exemplify this, we prove several new QPTAS and PTAS
results using our theorem.

Our first result is actually that ε-ETR = ETR, meaning that the problem of
finding an approximate solution to an ETR formula is as hard as finding an exact
solution. However, this result crucially relies on the fact that ETR formulas can
have solutions that are doubly-exponentially large. This motivates the study of
constrained ε-ETR, where the solutions are required to lie within a given convex
set.

Our main theorem (Theorem 2) gives a subsampling result for constrained
ε-ETR. It states that if the formula has an exact solution, then it also has
a k-uniform approximate solution, where the value of k depends on various
parameters of the formula, such as the number of constraints and the number
of variables. The theorem allows for the formula to be written using tensor
constraints, which are a type of constraint that is useful in formulating game-
theoretic problems.

The consequence of the main theorem is that, when various parameters of
the formula are constant (see Corollary 1), we are able to obtain a QPTAS
for approximating the existential theory of the reals. Specifically, this algorithm
either finds an approximate solution of the constraints, or verifies that no exact
solution exists. In many game theoretic applications an exact solution always
exists, and so this algorithm will always find an approximate solution.

It should be noted that we are not just applying the well-known subsampling
techniques in order to derive our main theorem. Our main theorem incorporates
a new method for dealing with polynomials of degree d, which prior subsampling
techniques were not able to deal with.

Our theorem can be applied to a wide variety of problems. In the game the-
oretic setting, we prove new results for constrained approximate equilibria in
normal form games, and approximating the value vector of a Shapley game. We
also show optimization results. Specifically, we give approximation algorithms for
optimizing polynomial functions over a convex set, subject to polynomial con-
straints. We also give algorithms for approximating eigenvalues and eigenvectors
of tensors. Finally, we apply the theorem to some problems from computational
geometry.
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2 The Existential Theory of the Reals

Let x1, x2, . . . , xq ∈ R be distinct variables, which we will treat as a vector
x ∈ R

q. A term of a multivariate polynomial is a function T (x) := a · xd1
1 · xd2

2 ·
· · · ·xdq

q , where d1, d2, . . . , dq are non negative integers and a ∈ R. A multivariate
polynomial is a function p(x) := T1(x) + T2(x) + · · · + Tt(x) + c, where each Ti

is a term as defined above, and c ∈ R is a constant.
We now define Boolean formulae over multivariate polynomials. The atoms

of the formula are polynomials compared with {<,≤,=,≥, >}, and the formula
itself can use the connectives {∧,∨,¬}.

Definition 1. The existential theory of the reals consists of every true sentence
of the form ∃x1∃x2 . . . ∃xq ·F (x), where F is a Boolean formula over multivariate
polynomials of x1 through xq.

Given a Boolean formula F , the ETR problem is to decide whether F is a
true sentence in the existential theory of the reals. We will say that F has m
constraints if it uses m operators from the set {<,≤,=,≥, >} in its definition.

The Approximate ETR. In the approximate existential theory of the reals,
we replace the operators {<,≤,≥, >} with their approximate counterparts. We
define the operators <ε and >ε with the interpretation that x <ε y holds if and
only if x < y + ε and x >ε y if and only if x > y − ε. The operators ≤ε and ≥ε

are defined analogously.
We do not allow equality tests in the approximate ETR. Instead, we require

that every constraint of the form x = y should be translated to (x ≤ y)∧(y ≤ x)
before being weakened to (x ≤ε y) ∧ (y ≤ε x).

We also do not allow negation in Boolean formulas. Instead, we require that
all negations are first pushed to atoms, using De Morgan’s laws, and then further
pushed into the atoms by changing the inequalities. So the formula ¬((x ≤
y) ∧ (a ≥ b)) would first be translated to (x ≥ y) ∨ (a ≤ b) before then being
weakened to (x ≥ε y) ∨ (a ≤ε y).

Definition 2. The approximate existential theory of the reals consists of every
true sentence of the form ∃x1∃x2 . . . ∃xq · F (x), where F is a negation-free
Boolean formula using the operators {<ε,≤ε,≥ε, >ε} over multivariate polyno-
mials of x1 through xq.

Given a Boolean formula F , the ε-ETR problem asks us to decide whether F
is a true sentence in the approximate existential theory of the reals, where the
operators {<ε,≤ε,≥ε, >ε} are used.

Unconstrained ε-ETR. Our first result is that if no constraints are placed on
the value of the variables, that is if each xi can be arbitrarily large, then ε-ETR
= ETR for all values of ε ∈ R. We show this via a two way reduction between
ε-ETR and ETR. The reduction from ε-ETR to ETR is trivial, since we can just
rewrite each constraint x <ε y as x < y + ε, and likewise for the other operators.
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For the other direction, we show that the ETR-complete problem Feas, which
asks us to decide whether a system of multivariate polynomials (pi)i=1,...,k has
a shared root, can be formulated in ε-ETR. Here we rely on a result of Schaefer
and Stefankovic [29], which showed that Feas has a solution if and only if there
is a point x such that |pi(x)| < 2−2L+5

for all i, where L is the number of
bits used to represent the polynomials. To formulate the problem in ε-ETR, we
blow-up the instance by multiplying each polynomial by a doubly-exponentially
large number t that is bigger than ε ·22L+5

. The number t can be constructed by
a polynomially-sized formula that uses repeated squaring. So if we write down
the constraint t · pi(x) ≤ε 0 in ε-ETR, then this implies that t · pi(x) ≤ ε and
therefore pi(x) < 2−2L+5

. Thus, via the lemma of Schaefer and Stefankovic, we
can formulate Feas in the ε-ETR. The full details of this reduction are given in
the full version of this paper [18].

Theorem 1. ε-ETR = ETR for all ε ∈ R.

Constrained ε-ETR. In our negative result for unconstrained ε-ETR, we
abused the fact that variables could be arbitrarily large to construct the doubly-
exponentially large number t. So, it makes sense to ask whether ε-ETR gets
easier if we constrain the problem so that variables cannot be arbitrarily large.

In this paper, we consider ε-ETR problems that are constrained by a convex
set in R

q. For vectors c1, c2, . . . , cl ∈ R
q we use conv(c1, c2, . . . , cl) to denote the

set containing every vector that lies in the convex hull of c1 through cl. In the
constrained ε-ETR, we require that the solution of the ε-ETR problem should
also lie in the convex hull of c1 through cl.

Definition 3. Given a Boolean formula F and vectors c1, c2, . . . , cl ∈ R
q, the

constrained ε-ETR problem asks us to decide whether

∃x1∃x2 . . . ∃xq · (
x ∈ conv(c1, c2, . . . , cl) ∧ F (x)

)
.

Note that, unlike the constraints used in F , the convex hull constraints are
not weakened. So the resulting solution x1, x2, . . . , xq, must actually lie in the
convex set.

3 Approximating Constrained ε-ETR

Polynomial Classes. To state our main theorem, we will use a certain class of
polynomials where the coefficients are given as a tensor. This will be particularly
useful when we apply our theorem to certain problems, such as normal form
games. To be clear though, this is not a further restriction on the constrained
ε-ETR problem, since all polynomials can be written down in this form.

The variables of the polynomials we will study will be p-dimensional vectors
denoted as x1, x2, . . . , xn, where xj(i) will denote the i-th element of vector xj .
The coefficients of the polynomials will be a tensor denoted by A. Given a ×n

j=1p
tensor A, we denote by a(i1, . . . , in) its element with coordinates (i1, . . . , in) on
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the tensor’s dimensions 1, . . . , n, respectively, and by α we denote the maxi-
mum absolute value of these elements. We define the following two classes of
polynomials.

– Simple tensor multivariate. We will use STM(A, xd1
1 , . . . , xdn

n ) denote an
STM polynomial with n variables where each variable xj , j ∈ [n] is applied
dj times on tensor A that defines the coefficients. Tensor A has

∑n
j=1 dj

dimensions with p indices each. We will say that an STM polynomial is of
maximum degree d, if d = maxj dj . Here is an example of a degree 2 simple
tensor polynomial with two variables:

STM(A, x2, y) =
p∑

i=1

p∑

j=1

p∑

k=1

x(i) · x(j) · y(k) · a(i, j, k) + 10.

This polynomial itself is written as follows.

STM(A, xd1
1 , . . . , xdn

n ) =
∑

i1,1∈[p]

· · ·
∑

in,dn∈[p]

(x1(i1,1)) · . . . · (x1(i1,d1)) · . . . · (xn(in,1)) · . . . · (xn(in,dn
))·

· a(i1,1, . . . , i1,d1 . . . , in,1, . . . , in,dn
) + a0.

– Tensor multivariate. A tensor multivariate (TMV) polynomial is the sum
over a number of simple tensor multivariate polynomials. We will use
TMV(x1, . . . , xn) to denote a tensor multivariate polynomial with n vector
variables, which is formally defined as

TMV(x1, . . . , xn) =
∑

i∈[t]

STM(Ai, x
di1
1 , . . . , xdin

n ),

where the exponents di1, . . . , din depend on i, and t is the number of simple
multivariate polynomials. We will say that TMV(x1, . . . , xn) has length t if it
is the sum of t STM polynomials, and that it is of degree d if d = max

i∈[t],j∈[n]
dij .

ε-ETR with Tensor Constraints. We focus on ε-ETR instances F where
all constraints are of the form TMV(x1, . . . , xn) �� 0, where �� is an operator
from the set {<ε,≤ε, >ε,≥ε}. Recall that each TMV constraint considers vector
variables. We consider the number of variables used in F (denoted as n) to
be the number of vector variables used in the TMV constraints. So the value
of n used in our main theorem may be constant if only a constant number of
vectors are used, even if the underlying ε-ETR instance actually has a non-
constant number of variables. For example, if x and y and w are p-dimensional
probability distributions and A1 and A2 are p × p tensors, the TMV constraint
xT A1y + wT A2x > 0 has three variables, degree 1, length two; though the
underlying problem has 3 · p variables.

Note that every ε-ETR constraint can be written as a TMV constraint,
because all multivariate polynomials can be written down as a TMV polynomial.
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Every term of a TMV can be written as a STM polynomial where the tensor
entry is non zero for exactly the combination of variables used in the term, and
0 otherwise. Then a TMV polynomial can be constructed by summing over the
STM polynomial for each individual term.

The Main Theorem. Given an ε-ETR formula F , we define exact(F ) to be
a Boolean formula in which every approximate constraint is replaced with its
exact variant, meaning that every instance of x ≤ε y is replaced with x ≤ y, and
likewise for the other operators.

Our main theorem is as follows.

Theorem 2. Let F be an ε-ETR instance with n vector variables and m
multivariate-polynomial constraints each one of maximum length t and maxi-
mum degree d, constrained by a convex set defined by c1, c2, . . . , cl ∈ R

np. Let
α be the maximum absolute value of the coefficients of constraints of F , and let
γ = maxi ‖ci‖∞. If exact(F ) has a solution in conv(c1, c2, . . . , cl), then F has a
k-uniform solution in conv(c1, c2, . . . , cl) where

k =
48 · α6 · γ2d+2 · d5 · t4 · n6 · ln(2 · α · γ · d · t · n · m)

ε4
.

Consequences of the Main Theorem. Our main theorem gives a QPTAS
for approximating a fragment of ε-ETR. The total number of k-uniform vectors
in a convex set C = conv(c1, c2, . . . , cl) is lO(k). So, if the parameters α, γ, d,
t, and n are all constant, then our main theorem tells us that the total number
of k-uniform vectors is lO(log m), where m is the number of constraints. So if we
enumerate each k-uniform vector x, we can check whether F holds, and if it
does, we can output x. If no k-uniform vector exists that satisfies F , then we
can determine that exact(F ) has no solution. This gives us the following result.

Corollary 1. Let F be an ε-ETR instance constrained by the convex set defined
by c1, c2, . . . , cl. If α, γ, d, t, and n are constant, and l is polynomial, then we
have an algorithm that runs in time lO(log m) that either finds a solution to F ,
or determines that exact(F ) has no solution.

If m is constant and l is polynomial then this gives a PTAS, while if m and l
are polynomial, then this gives a QPTAS.

In Sect. 5 we will show that the problem of approximating the best social
welfare achievable by an approximate Nash equilibrium in a two-player normal
form game can be written down as a constrained ε-ETR formula where α, γ,
d, and m are constant. It has been shown that, assuming the exponential time
hypothesis, this problem cannot be solved faster than quasi-polynomial time [11,
20], so this also implies that constrained ε-ETR where α, γ, d, and m are constant
cannot be solved faster than quasi-polynomial time unless the exponential time
hypothesis is false.

Many ε-ETR problems are naturally constrained by sets that are defined
by the convex hull of exponentially many vectors. The cube [0, 1]n is a natural
example of one such set. Brute force enumeration does not give an efficient
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algorithm for these problems, since we need to enumerate lO(k) vectors, and
l is already exponential. However, our main theorem is able to provide non-
deterministic polynomial time algorithms for these problems.

This is because each k-uniform vector is, by definition, the convex combina-
tion of at most k of the vectors in the convex set, and this holds even if l is
exponential. So, provided that k is polynomial, we can guess the subset of vec-
tors that are used, and then verify that the formula holds. This is particularly
useful for problems where exact(F ) always has a solution, which is often the case
in game theory applications, since it places the approximation problem in NP,
whereas computing the exact solution may be ETR-complete.

Corollary 2. Let F be an ε-ETR instance constrained by the convex set defined
by c1, c2, . . . , cl. If α, γ, d, t, n, are polynomial, then there is a non-deterministic
polynomial time algorithm that either finds a solution to F , or determines that
exact(F ) has no solution. Moreover, if exact(F ) is guaranteed to have a solution,
then the problem of finding an approximate solution for F is in NP.

A Theorem for Non-tensor Formulas. One downside of Theorem 2 is that
it requires that the formula is written down using tensor constraints. We have
argued that every ETR formula can be written down in this way, but the trans-
lation introduces a new vector-variable for each variable in the ETR formula.
When we apply Theorem 2 to obtain PTASs or QPTASs we require that the
number of vector variables is at most polylogarithmic, and so this limits the
application of the theorem to ETR formulas that have at most polylogarithmi-
cally many variables.

The following theorem is a sampling result for ε-ETR with non-tensor con-
straints, which is proved in the full version of this paper [18].

Theorem 3. Let F be an ε-ETR instance constrained over the convex set
defined by c1, c2, . . . , cl ∈ R

q. Let m be the number of constraints used in F ,
Let γ = maxi ‖ci‖∞, let α be the largest constant coefficient used in F , let t be
the number of terms used in F , and let d be the maximum degree of the poly-
nomials in F . If exact(F ) has a solution in conv(c1, c2, . . . , cl), then F has a
k-uniform solution in conv(c1, c2, . . . , cl) where

k = α2 · γ2d−2 · (2d − 1)2 · t2 · log l/ε2.

The key feature here is that the number of variables does not appear in
the formula for k, which allows the theorem to be applied to some formulas
for which Theorem 2 cannot. However, since the theorem does not allow tensor
constraints, its applicability is more limited because the number of terms t will
be much larger in non-tensor formulas. For example, as we will see in Sect. 5,
we can formulate bimatrix games using tensor constraints over constantly many
vector variables, and this gives a result using Theorem 2. No such result can
be obtained via Theorem 3, because when we formulate problem without tensor
constraints, the number of terms t used in the inequalities becomes polynomial.
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4 The Proof of the Main Theorem

In this section we prove Theorem 2. Before we proceed with the technical results
let us provide a roadmap. We begin by considering two special cases, which when
combined will be the backbone of the proof of the main theorem.

Firstly, we will show how to deal with problems where every constraint of the
Boolean formula is a multilinear polynomial, which we will define formally later.
We deal with this kind of problems using Hoeffding’s inequality and the union
bound, which is similar to how such constraints have been handled in prior work.

Then, we study problems where the Boolean formula consists of a single
degree d polynomial constraint. We reduce this kind of problems to a constrained
ε/2-ETR problem with multilinear constraints, so we can use our previous result
to handle the reduced problem. Degree d polynomials have not been considered
in previous work, and so this reduction is a novel extension of sampling based
techniques to a broader class of ε-ETR formulas.

Finally, we deal with the main theorem: we reduce the original ETR problem
with multivariate constraints to a set of ε′−ETR problems with a single standard
degree d constraint, and then we use the last result to derive a bound on k. The
proof of the theorem is given in the full version of the paper [18].

Problems with Multilinear Constraints. We begin by considering con-
strained ε-ETR problems where the Boolean formula F consists of tensor-
multilinear polynomial constraints. We will use TML(A, x1, . . . , xn) to denote
a tensor-multilinear polynomial with n variables and coefficients defined by ten-
sor A of size ×n

j=1p. Formally,

TML(A, x1, . . . , xn) =
∑

i1∈[p]

· · ·
∑

in∈[p]

x1(i1) · . . . · xn(in) · a(i1, . . . , in) + c.

We will use α to denote the maximum entry of tensor A in the absolute value
sense and γ to denote the infinite norm of the convex set that constrains the
variables.

The following lemma is proved in the full version of this paper [18]. The
proof uses Hoeffding’s inequality and the union bound, and is similar to previous
applications of the sampling technique.

Lemma 1. Let F be a Boolean formula with n variables and m tensor-
multilinear polynomial constraints and let Y be a convex set in the variables
space. If the constrained ETR problem defined by exact(F ) and Y has a solu-
tion, then the constrained ε-ETR problem defined by F and Y has a k uniform
solution where

k =
2 · α2 · γ2 · n2 · ln(2 · n · m)

ε2
.

Problems with a Standard Degree d Constraints. We now consider con-
strained ε-ETR problems with exactly one tensor polynomial constraint of stan-
dard degree d. We will use TSD(A, x, d) to denote a standard degree d tensor-
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polynomial with coefficients defined by the ×d
j=1l tensor A. Here, d identical

vectors x are applied on A. Formally,

TSD(A, x, d) =
∑

i1∈[p]

· · ·
∑

id∈[p]

x(i1) · . . . · x(id) · a(i1, . . . , id) + c.

The following lemma is proved in the full version of this paper [18]. To
prove the lemma we consider the variable x to be defined as the average of
r = O(α2·γd·d2

ε ) variables. This allows us to “break” the standard degree d tensor
polynomial to a sum of multilinear tensor polynomials and to a sum of not-too-
many multivariate polynomials. Then, the choice of r allows us to upper bound
the error occurred by the multivariate polynomials by ε

2 . Then, we observe that
in order to prove the lemma we can write the sum of multilinear tensor polynomi-
als as an ε

2 -ETR problem with r variables and roughly rd multilinear constraints.
This allows us to use Lemma 1 to complete the proof.

Lemma 2. Let F be a Boolean formula with variable x and one tensor-
polynomial constraint of standard degree d, and let Y be a convex set. If the
constrained ETR problem defined by exact(F ) and Y has a solution, then the
constrained ε-ETR problem defined by F and Y has a k-uniform solution where

k =
24 · α6 · γ2d+2 · d5 · ln(2 · α · γ · d)

ε4
.

Problems with Simple Multivariate Constraints. We now assume that
we are given a constraint-ε-ETR problem defined by a Boolean formula F of
tensor simple multilinear polynomial constraints and a convex set Y. As before
γ = ‖Y‖∞ and let α be the maximum absolute value of the coefficients of the
constraints. We will say that the constraints are of maximum degree d if d is the
maximum degree among all variables. The following lemma is shown in the full
version of this paper [18]. The idea is to rewrite the problem as an equivalent
problem with standard degree d constraints and then apply Lemmas 2 and 1 to
derive the bound for k.

Lemma 3. Let F be a Boolean formula with n variables and m simple tensor-
multivariate polynomial constraints of maximum degree d and let Y be a convex
set in the variables space. If the constrained ETR problem defined by exact(F )
and Y has a solution, then the constrained ε-ETR problem defined by F and Y
has a k uniform solution where

k =
48 · α6 · γ2d+2 · d5 · n6 · ln(2 · α · γ · d · n · m)

ε4
.

5 Applications

We now show how our theorems can be applied to derive new approximation
algorithms for a variety of problems.
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Constrained Approximate Nash Equilibria. A constrained Nash equilib-
rium is a Nash equilibrium that satisfies some extra constraints, like specific
bounds on the payoffs of the players. Constrained Nash equilibria attracted the
attention of many authors, who proved NP-completeness for two-player games
[6,14,24] and ETR-completeness for three-player games [6–9,23] for constrained
exact Nash equilibria.

Constrained approximate equilibria have been studied, but so far only lower
bounds have been derived [2,11,19,20,26]. It has been observed that sampling
methods can give QPTASs for finding constrained approximate Nash equilibria
for certain constraints in two player games [20].

By applying Theorem 2, we get the following result for games with a con-
stant number of players: Any property of an approximate equilibrium that can
be formulated in ε-ETR where α, γ, d, t and n are constant has a QPTAS. This
generalises past results to a much broader class of constraints, and provides
results for games with more than two players, which had not previously been
studied in this setting. The details of this result are given in the full version of
the paper [18].

Shapley Games. Shapley’s stochastic games [30] describe a two-player infinite-
duration zero-sum game. The game consists of N states. Each state specifies a
two-player M × M matrix game where the players compete over: (1) a reward
(which may be negative) that is paid by player two to player one, and (2) a
probability distribution over the next state of the game. So each round consists
of the players playing a bimatrix game at some state s, which generates a reward,
and the next state s′ of the game. The reward in round i is discounted by λi−1,
where 0 < λ < 1 is a discount factor. The overall payoff to player 1 is the
discounted sum of the infinite sequence of rewards generated during the course
of the game.

Shapley showed that these games are determined, meaning that there exists a
value vector v, where vs is the value of the game starting at state s. A polynomial-
time algorithm has been devised for computing the value vector of a Shapley
game when the number of states N is constant [25]. However, since the values
may be irrational, this algorithm needs to deal with algebraic numbers, and the
degree of the polynomial is O(N)N2

, so if N is even mildly super-constant, then
the algorithm is not polynomial.

Shapley showed that the value vector is the unique solution of a system
of polynomial optimality equations, which can be formulated in ETR. Any
approximate solution of these equations gives an approximation of the value
vector, and applying Theorem 2 gives us a QPTAS. This algorithm works when
N ∈ O( 6

√
log M), which is a value of N that prior work cannot handle. The

downside of our algorithm is that, since we require the solution to be bounded
by a convex set, the algorithm only works when the value vector is reasonably
small. Specifically, the algorithm takes a constant bound B ∈ R, and either finds
the approximate value of the game, or verifies that the value is strictly greater
than B. The algorithm’s details are given in the full version of the paper [18].
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Optimization Problems. Our framework can provide approximation schemes
for optimization problems with one vector variable x ∈ R

p with polynomial
constraints over bounded convex sets. Formally,

max h(x)
s.t. h1(x) > 0, . . . , hm(x) > 0

x ∈ conv(c1, . . . , cl)

where h(x), h1(x), . . . , hm(x) are polynomials with respect to vector x; for exam-
ple h(x) = xT Ax, where A is an p × p matrix, subject to h1(x) = xT x > 1

10
and x ∈ Δp. We will call the polynomials hi solution-constraints. Optimization
problems of this kind received a lot of attention over the years [15–17,22].

For optimization problems, we sample from the solution that achieves the
maximum when we apply Theorem 2, in order to prove that there is a k-uniform
solution that is close to the maximum. Our algorithm enumerates all k-uniform
profiles, and outputs the one that maximizes the objective function. Using this
technique, Theorem 2 gives the following results.

1. There is a PTAS if h(x) is a STM polynomial of maximum degree independent
of p, the number of solution-constraints is independent of p, and l = poly(p).

2. There is QPTAS if h(x) is an STM polynomial of maximum degree up to
poly log p, the number of solution-constraints is poly(p), and l = poly(p).

To the best of our knowledge, the second result is new. The first result was
already known, however it was proven using completely different techniques:
in [10] it was proven for the special case of degree two, in [22] it was extended
to any fixed degree, and alternative proofs of the fixed degree case were also
given in [16,17]. We highlight that in all of the aforementioned results solution
constraints were not allowed. Note that unless NP=ZPP there is no FPTAS for
quadratic programming even when the variables are constrained in the simplex
[15]. Hence, our results can be seen as a partial answer to the important question
posed in [15]: “What is a complete classification of functions that allow a PTAS?”

Tensor Problems. Our framework provides quasi-polynomial time algorithms
for deciding the existence of approximate eigenvalues and approximate eigenvec-
tors of tensors in R

p×p×p, where the elements are bounded by a constant, where
the solutions are required to be in a convex set. In [27] it is proven that there is
no PTAS for these problems when the domain is unrestricted. To the best of our
knowledge this is the first positive result for the problem even in this, restricted,
setting. The algorithm’s details are given in the full version of this paper [18].

Computational Geometry. Finally, we note that our theorem can be applied
to problems in computational geometry, although the results are not as general
as one may hope. Many problems in this field are known to be ETR-complete,
including, for example, the Steinitz problem for 4-polytopes, inscribed poly-
topes and Delaunay triangulations, polyhedral complexes, segment intersection
graphs, disk intersection graphs, dot product graphs, linkages, unit distance
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graphs, point visibility graphs, rectilinear crossing number, and simultaneous
graph embeddings. We refer the reader to the survey of Cardinal [13] for further
details.

All of these problems can be formulated in ε-ETR, and indeed our theorem
does give results for these problems. However, our requirement that the bound-
ing convex set be given explicitly limits their applicability. Most computational
geometry problems are naturally constrained by a cube, so while Corollary 2 does
give NP algorithms, we do not get QPTASs unless we further restrict the convex
set. In the full version of the paper [18] we formulate QPTASs for the segment
intersection graph and the unit disk intersection graph problems when the solu-
tions are restricted to lie in a simplex. While it is not clear that either problem
has natural applications that are restricted in this way, we do think that future
work may be able to derive sampling theorems that are more tailored towards
the computational geometry setting.

Acknowledgements. P. Spirakis wishes to dedicate this paper to the memory of his
late father in law Mathematician and Professor Dimitrios Chrysofakis, who was among
the first in Greece to work on tensor analysis.
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Abstract. We study the power and limitations of posted prices in multi-
unit markets, where agents arrive sequentially in an arbitrary order. We
prove upper and lower bounds on the largest fraction of the optimal
social welfare that can be guaranteed with posted prices, under a range
of assumptions about the designer’s information and agents’ valuations.
Our results provide insights about the relative power of uniform and non-
uniform prices, the relative difficulty of different valuation classes, and
the implications of different informational assumptions. Among other
results, we prove constant-factor guarantees for agents with (symmetric)
subadditive valuations, even in an incomplete-information setting and
with uniform prices.

1 Introduction

We consider the problem of allocating identical items to agents to maximize the
social welfare. More formally, there are m identical items, each agent i ∈ [n] has
a valuation function vi : [m] → R≥0 describing her value for a given number of
items, and the goal is to compute nonnegative and integral quantities q1, . . . , qn,
with

∑n
i=1 qi ≤ m, to maximize the total value

∑n
i=1 vi(qi) to the agents.

This problem underlies the design of multi-unit auctions, which have played
a starring role in the fields of classical and algorithmic mechanism design, and
in both theory and practice. As with any welfare-maximization problem, the
problem can be solved in principle using the VCG mechanism. There has been
extensive work on the design and analysis of more practical multi-unit auc-
tions. There are indirect implementations of the VCG mechanism, most famously
Ausubel’s ascending clinching auction for downward-sloping (a.k.a. submodular)
valuations [1]. Work in algorithmic mechanism design has identified mechanisms
that retain the dominant-strategy incentive-compatibility of the VCG mecha-
nism while running in time polynomial in n and log m (rather than polynomial
in n and m), at the cost of a bounded loss in the social welfare. Indeed, Nisan [30]
argues that the field of algorithmic mechanism design can be fruitfully viewed
through the lens of multi-unit auctions.

The multi-unit auction formats used in practice typically sacrifice dominant-
strategy incentive-compatibility in exchange for simplicity and equitability; a
c© Springer Nature Switzerland AG 2018
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canonical example is the uniform-price auctions suggested by Milton Friedman
(see [22]) and used (for example) by the U.S. Treasury to sell government secu-
rities. Uniform-price auctions do not always maximize the social welfare (e.g.,
because of demand reduction), but they do admit good “price-of-anarchy” guar-
antees [29], meaning that every equilibrium results in social welfare close to the
maximum possible.

A key drawback of all of the mechanisms above is that they require all agents
to participate simultaneously, in order to coordinate their allocations and respect
the supply constraint. For example, in a uniform-price auction, all of the agents’
bids are used to compute a market-clearing price-per-unit, which then deter-
mines the allocations of all of the agents. It is evident from our daily experience
that, in many different markets, buyers arrive and depart asynchronously over
time, making purchasing decisions as a function of their preferences and the
current prices of the goods for sale.1 The goal of this paper is to develop theory
that explains the efficacy of such posted prices in markets where agents arrive
sequentially rather than simultaneously, and that gives guidance on how to set
prices to achieve an approximately welfare-maximizing outcome.

1.1 The Model

We consider a setting where a designer must post prices in advance, before the
arrival of any agents. We assume that the supply m is known. The designer is
given full or incomplete information about agents’ valuations, and must then
set a price for each item.2 Agents then arrive in an arbitrary (worst-case) order,
with each agent taking a utility-maximizing bundle (breaking ties arbitrarily),
given the set of items that remain. These prices are static, in that they remain
fixed throughout the entire process.

Example 1.1. Suppose m = 3 and there are two agents, each with the valuation
v(1) = 5, v(2) = 9, and v(3) = 11, and suppose a designer prices every item at 4.
The first agent will choose either 1 or 2 items (breaking the tie arbitrarily). If the
first agent chooses 2 items, the second agent will take the only item remaining;
if the first agent chooses 1 item, then the second agent will take either 1 or 2
items.

In general, we allow different items to receive different prices (as will be the case
in the VCG mechanism for this problem, for example.) With identical items,
however, it is natural to focus on uniform prices, where every item is given the
same price. Generally speaking, we are most interested in positive results for
uniform prices, and negative results for non-uniform prices.

1 For examples involving identical items, think about general-admission concert tick-
ets, pizzas at Una Pizza Napoletana (which shuts down for the night when the dough
runs out), or shares in an IPO (other than Google [33]).

2 No non-trivial guarantees are possible without at least partial knowledge about
agents’ valuations.
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The overarching goal of this paper is to characterize the largest fraction of the
optimal social welfare that can be guaranteed with posted prices, under a range
of assumptions about the designer’s information and agents’ valuations. This
goal is inherently quantitative, but our results also provide qualitative insights,
for example about the relative power of uniform and non-uniform prices, the
relative difficulty of different valuation classes, and the implications of different
informational assumptions.

Table 1. Summary of results. All results are new to this paper unless indicated oth-
erwise. Numbers in parentheses refer to the corresponding theorem or proposition
number.

Uniform prices Non-uniform prices
Submodular 1

2
(4.6, 4.7, 4.8) 2

3
(4.1, 4.2) [2 items]

≥ 5
7

− 1
m

(4.3), ≤ 0.802 (4.4) [m items]
XOS ≥ 1

2
(8.2) ≤ 1 − 1

e
(5.1)

Subadditive 1
3
(6.1, 6.4) ≤ 1

2
(6.3) [even with 2 buyers]

2
3
(6.2, 6.6) [2 identical buyers] ≤ 3

4
(6.5) [even with 2 identical buyers]

General 1
m

(7.1) 1
m

(7.2)

(a) Full information

Uniform prices Non-uniform prices
XOS 1

2
(8.2) 1

2
[21]

Subadditive ≥ 1
4
(8.4) ≤ 1

2
(6.3) [even with 2 buyers]

≤ 3
4
(6.5) [even with 2 identical buyers]

(b) Incomplete information

1.2 Our Results

The majority of our results are summarized in Table 1; we highlight a subset
of these next. First, consider the case of a Bayesian setting with XOS agent
valuations (see Sect. 2 for definitions). That is, each agent’s valuation is drawn
independently from a known (possibly agent-specific) distribution over XOS val-
uations. Feldman et al. [21] show that, even with non-identical items, posted
prices can always obtain expected welfare at least 1/2 times the maximum pos-
sible. This factor of 1/2 is tight, even for the special case of a single item and
i.i.d. agents. The posted prices used by Feldman et al. [21] are non-uniform,
even when the result is specialized to the case of identical items (the price of
an item is based on its expected marginal contribution to an optimal allocation,
which can vary across items). We prove in Theorem 8.2 that with identical items,
and agents with independent (not necessarily identical) XOS valuations, uniform
prices suffice to achieve the best-possible guarantee of half the optimal expected
welfare. Moreover, this result extends to any class of valuations that is c-close
to XOS valuations, with an additional loss of a factor of c (Theorem 8.3).

While the 1/2-approximation above is tight for an incomplete-information
setting, this problem is already interesting in the full-information case where the
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buyers’ valuations are known (with the order of arrival still worst-case). Can we
improve over the approximation factor of 1/2 under this stronger informational
assumption?

We prove that uniform prices cannot achieve an approximation factor better
than 1/2, even for the more restrictive class of submodular valuations, and even
with two agents (Proposition 4.7) or identical agents (Proposition 4.8). In con-
trast, with non-uniform prices (still for submodular valuations), we prove that
an approximation of 2/3 is possible (Theorem4.1). This is tight for the case of
two items (Proposition 4.2), but in large markets (with m → ∞) we show how
to obtain an approximation guarantee of 5/7 (Theorem4.3). In addition, if the
order of arrival is known beforehand, we can extract the full optimal welfare
(Theorem 4.5).

We next consider the family of subadditive valuations, which strictly general-
ize XOS valuations and are regarded as the most challenging class of valuations
that forbid complements. For example, with non-identical items, it is not known
whether or not posted prices can guarantee a constant fraction of the optimal
social welfare. For identical items, we prove that this is indeed possible. In the
incomplete-information setting (and identical items), we show that subadditive
valuations are 2-close to XOS valuations (Sect. 3), which leads to an approxima-
tion factor of 1/4 (Theorem 8.4). We can also do better in the full-information
setting: uniform prices can guarantee a 1/3 fraction of the optimal social wel-
fare (Theorem 6.1), and the approximation is tight (Proposition 6.4), while even
non-uniform prices cannot guarantee a factor bigger than 1/2, even with only
two agents (Proposition 6.3). In the case of two identical agents, uniform prices
can guarantee a 2/3 fraction of the optimal welfare (Theorem6.2), and this is
tight (Proposition 6.6).

With all these positive results, the reader might wonder whether constant
factor guarantees can be provided for general valuations. Unfortunately, this is
not the case. For general valuations, we show that even in the full-information
setting and with non-uniform prices, and even when there are only two agents
and the arrival order is known, posted prices can guarantee a 1/m fraction of the
optimal social welfare, but not more (Proposition 7.1, Theorem 7.2). If the seller
can control the arrival order, however, then even uniform prices can guarantee
half of the optimal social welfare (Theorem7.3). No better bound is possible,
even for identical valuations and with non-uniform prices (Proposition 7.4).

1.3 Further Related Work

The design and analysis of simple mechanisms has been an active area of study
in algorithmic mechanism design, particularly within the last decade. This focus
is motivated in part by the observation that simple mechanisms are highly
desired in practical scenarios. Examples of simple mechanisms that are used in
practice are the generalized second price auctions (GSP) for online advertising
[15,27,28,31,34], and simultaneous item auctions (where the agents bid sepa-
rately and simultaneously on multiple items) [6,11,20,24]. These mechanisms
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are not truthful and are evaluated in equilibrium using the price of anarchy
measure.

Posting prices is perhaps the most prevalent method for selling goods in prac-
tice. By simply publishing prices for individual items, posted price mechanisms
are extremely easy to understand and participate in. It should therefore not come
as a surprise that these mechanisms have been studied extensively for various
objective functions (e.g., welfare, revenue, makespan), information structures of
values (e.g., full-information, Bayesian, online), and valuation functions (e.g.,
unit-demand, submodular, XOS). For example, a long line of work has focused
on sequential posted prices for revenue maximization and has shown, among
other things, that a form of posted price mechanisms can achieve a constant
fraction of the optimal revenue for agents with unit-demand valuations [8–10].
Revenue maximization with sequential posted prices has also been studied for a
single item, both in large markets [7] and when the distributions are unknown
[2], for additive valuations [4,5], and for a buyer with complements [17]. Dütting
et al. [14] provides a general framework for posted price mechanisms. In several
of these works, posted price mechanisms are allowed to discriminate between
agents and set different prices for each of them. In contrast, in this work we do
not consider discriminatory prices.

Another line of research relevant to our work considers market equilibria, for
example those achieved by Walrasian prices. A result of Kelso and Crawford [25]
states that for the class of gross-substitute valuations, there always exists a Wal-
rasian equilibrium, meaning that one can assign prices to items so as to achieve
the optimal social welfare. However, this result is based on the assumption that
agents break ties in a particular way. As such, the existence of Walrasian prices
does not carry over welfare guarantees to our setting, even for unit-demand val-
uations. We believe that the worst-case perspective that we take is more realistic
in our setting, where we do not have control over how agents break ties.

In addition to the aforementioned works, a new line of research has con-
sidered dynamic posted prices in online settings such as for the k-server and
parking problems [12]. Moreover, posted price mechanisms have been studied
in the context of welfare maximization in matching markets, where prices are
dynamic (i.e., can change over the course of the mechanism) but do not depend
on the identity of the agents [13]. With static prices, it was recently shown that
one can achieve strictly more than half of the welfare in the full information
setting with binary unit-demand valuations [16].

The sequential arrival of agents considered in posted price mechanisms fits
into the framework of online mechanisms, which deals with dynamic environ-
ments with multiple agents having private information [3,23,32]. Our work shows
that for identical items and agents with subadditive valuations, posted prices
can guarantee a constant fraction of the welfare even while setting the (uniform)
prices up front.
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2 Preliminaries

We consider a setting with a set M of m identical items, and a set N of n
buyers. Each buyer has a valuation function vi : 2M → R≥0 that indicates his
value for every set of objects. Since items are identical, the valuation depends
only on the number of items. We assume that valuations are monotone non-
decreasing (i.e., vi(T ) ≤ vi(S) for T ⊆ S) and normalized (i.e., vi(∅) = 0). We
use vi(S|T ) = vi(S ∪ T ) − vi(T ) to denote the marginal value of bundle S given
bundle T .

A buyer valuation profile is denoted by v = (v1, . . . , vn). An allocation is a
vector of disjoint sets x = (x1, . . . , xn), where xi denotes the bundle associated
with buyer i ∈ [n] (note that it is not required that all items are allocated).
As with valuations, since we consider identical items, an allocation can be rep-
resented by the number of items allocated to each buyer. The social welfare of
an allocation x is SW(x,v) =

∑n
i=1 vi(xi), and the optimal social welfare is

denoted by OPT(v). When clear from the context we omit v and write OPT for
the optimal social welfare.

For two valuation functions v, v′, we say that v ≥ v′ iff v(S) ≥ v′(S) for every
set S. A hierarchy over complement-free valuations is given by Lehmann et al.
[26].

Definition 2.1. A valuation function v is

– additive if v(S) =
∑

i∈S v({i}) for every set S ⊆ M .
– submodular if v({i}|S) ≥ v({i}|T ) for every item i 
∈ T and sets S, T such

that S ⊆ T ⊆ M .
– XOS if there exist additive valuation functions v1, . . . , vk such that v(S) =

maxj=1,...,k vj(S) for every set S ⊆ M .
– subadditive if v(S) + v(T ) ≥ v(S ∪ T ) for any sets S, T ⊆ M .

Since we assume throughout the paper that all items are identical, we only
work with symmetric valuation functions.

Definition 2.2. A valuation function v is symmetric if v(S) = v(T ) for every
sets S, T ⊆ M such that |S| = |T |. A symmetric valuation function can thus
be represented by a monotone non-decreasing function v : {0, 1, . . . ,m} → R≥0,
which assigns a non-negative real value to any integer in [m] (recall v(0) = 0 as
we assume normalized functions).

In what follows we adjust the definitions of additive, submodular, XOS, and
subadditive functions in Definition 2.1 to the case of symmetric valuation func-
tions. The simplified definition for XOS functions follows from the equivalence
between XOS and fractional subadditivity [19].

Definition 2.3. A symmetric valuation function v is said to be

– additive if v(i) = a · i for every integer 0 ≤ i ≤ m for some constant a.
– submodular if v(i)−v(i−1) ≥ v(i+1)−v(i) for every integer 1 ≤ i ≤ m−1.
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– XOS if v(i) ≥ i
j · v(j) for any integers 1 ≤ i < j ≤ m.

– subadditive if v(i) + v(j) ≥ v(i + j) for any integers 1 ≤ i, j ≤ m with
i + j ≤ m.

We assume that the agents arrive sequentially. We will for the most part set
static prices for the items; each arriving agent takes a bundle from the remaining
items that maximizes her utility, with ties broken arbitrarily. For some results we
will assume dynamic prices, i.e., the seller can set new prices for the remaining
items for each iteration (but without knowing which agent will arrive next). If
prices p = (p1, . . . , pm) are set on the m items, and an agent buys a subset S of
them, then her utility is given by v(|S|)−∑

i∈S pi. For most of the paper we will
assume that the arrival order of the agents is unknown, but we will also consider
settings where we know this order or where we even have control over the order.
We are interested in the social welfare that we can obtain by setting prices in
comparison to the optimal social welfare with respect to the worst case arrival
order.

Due to space constraints, omitted results and proofs can be found in the full
version of this paper [18].

3 Properties of Symmetric Functions

In this section, we consider properties of symmetric functions. In addition to
being interesting in their own right, these properties will later help us establish
welfare guarantees for posted prices (Theorem 8.4).

We are interested in approximating functions with “simpler” functions.
Specifically, for two classes of functions V1 ⊆ V2, we want to determine the
smallest constant c such that for any function v ∈ V2, there exists a function
ṽ ∈ V1 such that v ≤ ṽ ≤ cv. We answer this question for each pair from the
classes of subadditive, XOS, and submodular functions and show that the best
constant is c = 2 for all of these pairs. (Note that since all three classes are
closed under scalar multiplication, the inequality v ≤ ṽ ≤ cv above can also be
replaced by v/c ≤ ṽ ≤ v.) The details can be found in the full version of this
paper [18].

4 Submodular Valuations

In this section we consider submodular valuations and establish bounds on the
approximation ratio that can be obtained using different types of pricing.

4.1 Non-uniform Pricing

We first show that we can obtain 2/3 of the optimal welfare for submodular
valuations if we are allowed to set non-uniform prices, and this bound is tight.
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Theorem 4.1. For every market with symmetric submodular valuations, there
exists a static item pricing p that guarantees at least 2/3 of the optimal social
welfare.

Proposition 4.2. There exists a market with two items and two buyers with
symmetric submodular valuations such that every static pricing can guarantee a
social welfare of at most 2/3 of the optimal social welfare.

The negative result in Proposition 4.2 is obtained for a market with two items.
In what follows we show that the guaranteed social welfare is higher when the
number of items is large.

Theorem 4.3. For every market of m items with symmetric submodular valu-
ations, there exists a static item pricing p that guarantees at least 5/7 − 1/m of
the optimal social welfare.

The guarantee in Theorem 4.3 approaches 5/7 ≈ 0.714 as the number of items
grows. The next theorem shows that this bound cannot exceed 0.802 even for
an arbitrarily large number of items.

Theorem 4.4. For every constant c, there exists a market with m > c items
with symmetric submodular valuations such that for any static item pricing p,
the social welfare guaranteed by the pricing is at most 0.802 of the optimal social
welfare.

The next result shows that if we know the order of the agents beforehand
(while having no control over this order), then we can extract the full optimal
welfare.

Theorem 4.5. For every market with symmetric submodular valuations with a
known order of arrival, there exists a static pricing p that guarantees the optimal
social welfare.

4.2 Uniform Pricing

We now show that if we restrict ourselves to using uniform pricing with submod-
ular valuations, we can still guarantee 1/2 of the optimal welfare. This bound is
also tight.

Theorem 4.6. For every market with symmetric submodular valuations, there
exists a static uniform pricing p that guarantees at least 1/2 of the optimal social
welfare.

Proposition 4.7. There exists a market with m items and two buyers with
symmetric submodular valuations such that every uniform static pricing yields a
social welfare of at most m

2m−1 (≈ 1
2 ) of the optimal social welfare.

Proposition 4.8. There exists a market with identical buyers with symmetric
submodular valuation such that every uniform static pricing yields a social wel-
fare of at most n+1

2n (≈ 1
2 ) of the optimal social welfare.
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4.3 Dynamic Pricing

If we allow dynamic pricing, the following result shows that we can extract the
full optimal welfare.

Theorem 4.9. For every market with n agents with symmetric submodular val-
uations over m items, there exists a dynamic item pricing that guarantees the
optimal social welfare.

5 XOS Valuations

In this section we consider XOS valuations. We give upper bounds on the approx-
imation ratio for both static and dynamic pricing.

Theorem 5.1. There exists a market of m items and two agents with symmetric
XOS valuations for which no static pricing yields more the 1−1/e of the optimal
social welfare.

Theorem 5.2. There exists a market of three items and two agents with sym-
metric XOS valuations for which no dynamic pricing yields more the 5/6 of the
optimal social welfare.

6 Subadditive Valuations

In this section we consider subadditive valuations. Our main result of this section
is the existence of a uniform price that guarantees at least 1/3 of the optimal
welfare.

Theorem 6.1. For every market of m items with symmetric subadditive valu-
ations, there exists a uniform static item pricing p that guarantees at least 1/3
of the optimal social welfare.

If there are two identical agents, this bound can be improved to 2/3.

Theorem 6.2. For every market of m items and two identical agents with sym-
metric subadditive valuations, there exists a uniform static item pricing p that
guarantees at least 2/3 of the optimal social welfare.

The next propositions show that the bound in Theorem6.1 cannot be
improved to more than 1/2, and in the case of using only uniform pricing, cannot
be improved to more than 1/3. Hence, this bound is tight for uniform pricing.

Proposition 6.3. There is a market with symmetric subadditive valuations with
m items and two agents such that no static pricing p guarantees more than 1/2
of the optimal social welfare.

Proposition 6.4. There is a market with symmetric subadditive valuations with
m items and three agents such that no uniform static pricing p guarantees more
than 1/3 of the optimal social welfare.
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In the case of two identical agents, the approximation cannot be improved to
more than 3/4. In this special case, we can guarantee at least half of the social
welfare by applying Theorem7.3.

Proposition 6.5. There exists a market of m items and two identical agents
with a subadditive valuation such that no static pricing guarantees more the 3/4
of the optimal social welfare.

If we use uniform pricing, we cannot guarantee more than 2/3 of the welfare
for two identical agents. This means that the bound in Theorem6.2 is tight.

Proposition 6.6. There is a market with symmetric subadditive valuations with
m items and two identical agents such that no uniform static pricing p guaran-
tees more than 2/3 of the optimal social welfare.

7 General Valuations

In this section we consider general valuations. While the analysis assumes mono-
tonicity, all results hold even for non-monotone valuations: simply do all calcu-
lations based on the monotone closure of the valuations.

7.1 Worst-Case Ordering

We first show that for general valuations, we cannot guarantee more than 1/m
of the optimal welfare even if we know the order of arrival, and this is tight.

Proposition 7.1. There is a market with symmetric valuations over m items
and two agents such that no static pricing p guarantees more than 1/m of the
optimal social welfare even for a known order of arrival.

Theorem 7.2. For every market of m items, there exists a uniform static item
pricing p that guarantees at least 1/m of the optimal social welfare.

7.2 Best-Case Ordering

Next, we show that if we can choose the order of arrival, then we can guarantee
at least half of the optimal welfare. We remark that when agents are identical,
the order of arrival does not matter, and therefore our result holds for the setting
with identical agents as well. This bound is also tight.

Theorem 7.3. For every market of m items, there exists a uniform static item
pricing p along with an order of arrival that guarantees at least 1/2 of the optimal
social welfare.

Proposition 7.4. There exists a market of m items for which no static pricing
and order of arrival yields more than 1/2 of the optimal social welfare.
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8 Bayesian Setting

In this section, we consider the Bayesian setting, where the valuation function
of each agent is drawn independently from a distribution which can be different
for different agents.

8.1 XOS Valuations

Feldman et al. [21] showed that if agents’ valuations are drawn independently
from a distribution over XOS valuation functions, then there exist prices that
yield expected welfare at least half of the expected optimal welfare. These posted
prices are non-uniform, even when the result is specialized to the case of identical
items. We first restate Feldman et al.’s result and then show that if the items
are identical, then the same bound can be obtained using uniform prices.

Theorem 8.1 [21]. Let F = F1 × · · · × Fn be a product distribution over
XOS valuation functions. For every v = (v1, . . . , vn) ∈ F , let X∗(v) =
(X∗

1 (v), . . . , X∗
n(v)) be any allocation that maximizes the social welfare. Let

a = (a1, . . . , an) be additive functions such that vi(S) ≥ ai(S) for any sub-
set S of items, and vi(X∗

i ) = ai(X∗
i ). When the items are offered at prices

pj = Ev∈F [ai(j)/2 where j ∈ X∗
i (v)], the expected social welfare is at least

OPT/2.

Theorem 8.2. Let F = F1 × · · · × Fn be a product distribution over symmetric
XOS valuation functions. Let OPT be the expected optimal social welfare. When
all items are offered at the uniform price OPT/(2m), the expected social welfare
is at least OPT/2.

8.2 Subadditive and General Valuations

We now define a notion that describes how close an arbitrary valuation function
is to an XOS function and derive approximation results in terms of this closeness
quantity. The proof of Theorem8.3 follows the analysis presented by Feldman
et al. [21].

Definition 8.1. We say that a (not necessarily symmetric) valuation function
v is c-close to XOS if there exists an XOS function ṽ such that for every set of
item S, it holds that v(S)/c ≤ ṽ(S) ≤ v(S).

Theorem 8.3. For any product distribution F over (not necessarily symmetric)
valuation functions that are c-close to XOS, there exist anonymous prices p that
guarantee an expected social welfare of at least 1/(2c) of the optimal expected
welfare.

Since any symmetric subadditive function is 2-close to XOS (see Sect. 3),
Theorem 8.3 implies that we can obtain at least 1/4 of the expected optimal
welfare when the agents’ valuations are drawn from a product distribution over
subadditive valuations. In addition, using techniques similar to those in the proof
of Theorem 8.2, we can achieve this with uniform prices.
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Theorem 8.4. Let F = F1 × · · · × Fn be a product distribution over symmetric
subadditive valuation functions. Let OPT be the expected maximal social welfare.
There exists a uniform price on the items for which the expected social welfare
is at least OPT/4.

Our results cease to hold for general valuations, even if we can control the
order of arrival.

Proposition 8.5. There is a market with n agents and m = n2 items and
a distribution over symmetric valuations such that no static pricing p yields
expected welfare more than Θ(1/n) of the optimal expected welfare, even if we
can control the arrival order.

9 Discussion

In this paper, we study the fraction of the optimal social welfare that can be
achieved via posted prices in markets with identical items under various assump-
tions on the designer’s information and agents’ valuations. We show that in the
Bayesian setting, uniform posted prices can guarantee 1/2 and 1/4 of the opti-
mal welfare for XOS and subadditive valuations, respectively. If the designer has
full information on agents’ valuations, then 1/3 of the optimal welfare can be
obtained via uniform prices for subadditive valuations. For general valuations,
we exhibit a tight bound of 1/m for both uniform and non-uniform prices; on the
other hand, if the designer can control the arrival order, then 1/2 of the optimal
welfare can be guaranteed for such valuations.

Our work sheds light on the power of uniform prices for settings with iden-
tical items. For submodular valuations in the full-information setting, there is a
gap between the guarantee that can be obtained by uniform and non-uniform
prices, while for XOS valuations in the Bayesian setting there is no gap. It would
be interesting to determine whether such a gap exists for subadditive valuations,
both for the full-information and the Bayesian setting. Finally, it also remains
open whether the constant approximation guarantee provided here for subad-
ditive valuations over identical items holds also for subadditive valuations over
heterogeneous items. This problem has been raised by Feldman et al. [21] who
provide a logarithmic (in m) bound for this setting.
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11. Christodoulou, G., Kovács, A., Schapira, M.: Bayesian combinatorial auctions.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
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Abstract. We study the performance of anonymous posted-price sell-
ing mechanisms for a standard Bayesian auction setting, where n bid-
ders have i.i.d. valuations for a single item. We show that for the nat-
ural class of Monotone Hazard Rate (MHR) distributions, offering the
same, take-it-or-leave-it price to all bidders can achieve an (asymptoti-
cally) optimal revenue. In particular, the approximation ratio is shown
to be 1+O(ln ln n/ ln n), matched by a tight lower bound for the case of
exponential distributions. This improves upon the previously best-known
upper bound of e/(e − 1) ≈ 1.58 for the slightly more general class of
regular distributions. In the worst case (over n), we still show a global
upper bound of 1.35. We give a simple, closed-form description of our
prices which, interestingly enough, relies only on minimal knowledge of
the prior distribution, namely just the expectation of its second-highest
order statistic.

1 Introduction

In this paper we study a traditional Myersonian auction setting: an auctioneer
has an item to sell and he is facing n potential buyers. Each buyer has a (pri-
vate) valuation for the item, and these valuations are i.i.d. according to some
known continuous probability distribution F . You can think of this valuation,
as modelling the amount of money that the buyer is willing to spend in order to
get the item. An auction is a mechanism that receives as input a bid from each
buyer, and then decides if the item is going to be sold and to whom, and for
what price. Our goal is to design auctions that maximize the seller’s expected
revenue.

We focus only on truthful auctions, that is, selling mechanisms that give no
incentives to the bidders to lie about their true valuation. Such auctions are both
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conceptually and practically convenient. This restriction is essentially without
loss for our revenue maximization objective, due to the Revelation Principle1.

In general, such an optimal auction can be rather complicated and even ran-
domized (aka a lottery). However, in his celebrated result, Myerson [24] proved
that (under some standard assumptions on the valuations’ distribution) revenue
maximization can be achieved by a very simple deterministic mechanism, namely
a second-price auction paired with a reserve value r. In such an auction, all buy-
ers with bids smaller than r are ignored and the item is sold to the highest bidder
for a price equal to the second-highest bid (or r, if no other bidder remains).
Equivalently, you can think of this as the seller himself taking part in the auc-
tion, with a bid equal to r, and simply running a standard, Vickrey second-price
auction; if the auctioneer is the winning bidder, then the item stays with him,
that is, it remains unsold.

No matter how simple and powerful the above optimal auction seems, it still
requires explicitly soliciting bids from all buyers and using the second-highest
as the “critical payment”; this is essentially a centralized solution, that asks
for a certain degree of coordination. Arguably, there is an even simpler selling
mechanism which, as a matter of fact, is being used extensively in practice,
known as anonymous pricing : the seller simply decides on a selling price p, and
then the item goes to any buyer that can afford it (breaking ties arbitrarily);
that is, we sell the item to any bidder with a valuation greater or equal to p, for
a price of exactly p.

The question we investigate in this paper, is how well can such an extremely
simple selling mechanism perform when compared to an arbitrary, optimal auc-
tion. We resolve this in a very positive way proving that, under natural assump-
tions on the valuation distribution, as the number of buyers grows large, anony-
mous pricing achieves optimal revenue. More precisely, its approximation ratio
is 1 + O(ln lnn/ ln n). Furthermore, we show that in order to get such a near-
optimal performance, the seller does not really need to have full knowledge of
the bidders’ population; he just needs to know the expectation of the second-
highest order statistic of the valuation distribution, that is, (a good estimate of)
the expected second-highest bid is enough.

1.1 Related Work

The seminal reference in auction theory is the work of Myerson [24] who com-
pletely characterized the revenue-maximizing auction in single-item settings with
bidder valuations drawn from independent (but not necessarily identical) distri-
bution. Under his standard regularity condition (see Footnote 4), this optimal
auction has a very simple description when the valuation distributions are iden-
tical: it is a second-price auction with a reserve. Furthermore, there is an elegant,
closed-form formula that gives the reserve price (see Sect. 2).
1 In this paper we will avoid discussing such subtler issues as implementability and

truthfulness, since our goal is to study the performance of specific and very simple
pricing mechanisms. The interested reader is pointed to [25] as a good starting point
for a deeper investigation of those ideas.
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One can achieve good, constant approximations to that optimal revenue
by using even simpler auctions, namely anonymous pricing mechanisms. These
mechanisms offer the same take-it-or-leave-it price to all bidders, and the item
is sold to someone who can afford it (breaking ties arbitrarily). An upper bound
of e/(e − 1) ≈ 1.58 on the approximation ratio of anonymous pricing can be
shown from the work of Chawla et al. [10]. Blumrosen and Holenstein [6] study
the asymptotic performance of pricing when the number of bidders grows large
and demonstrate a lower bound on the approximation ratio of 0.88/0.65 = 1.37
for anonymous pricing2. If we allow for non-continuous distributions that have
point-masses, then Dütting et al. [14] provide a matching lower bound of e/(e−1).
Although the class of MHR distributions (see Sect. 2) is a natural restriction of
Myerson’s regularity, that has been extensively studied in optimal auction the-
ory, mechanism design and complexity to derive powerful positive results (see,
e.g., [3,5,8,12,13,16,17,21]), no better bounds are known for anonymous pricing
in this class. This is our goal in this paper.

Although not immediately related to our model, an important line of work
studies the performance of “simple” auctions, such as pricing and auctions
with reserves, for the more general case where bidders’ valuations may be non-
identically distributed. In such settings, the elegance of Myerson’s characteriza-
tion is not in effect any more, and the optimal auction can be rather complicated.
Nevertheless, in an influential paper, Hartline and Roughgarden [21] showed that,
for regular distributions, a second-price auction with a single anonymous reserve
guarantees a 4-approximation to the optimal ratio, and also provided a lower
bound of 2. This upper bound was subsequently improved to e ≈ 2.72 by Alaei
et al. [2], achieved even by the simpler class of anonymous pricing mechanisms.
At the same paper, they also provided a lower bound of 2.23 for the approx-
imation ratio of anonymous pricing for non-i.i.d. bidders.3 For bounds on the
approximation ratios between different pricing and reserve mechanisms, under
various assumptions on the underlying distributions and the order of the bidders’
arrival, see [2,10,14,20,22].

Finally, we briefly mention that there is a very rich theory about sequential
pricing that deals with dynamically arriving buyers and which is inspired by
and related to secretary-like online problems and the powerful theory of prophet
inequalities. See, e.g., [1,9,11,19,23,26].

2 As a matter of fact, one can use the techniques of Blumrosen and Holenstein [6] to get
a slightly better lower bound of (at least) 1.4: a corollary of their work is that, for any
k > 1, if the valuations are drawn from a Pareto distribution with cdf F (x) = 1−1/xk

and the number of bidders grows arbitrarily large, then the separation between the
optimal revenue and that of anonymous pricing is Γ

(
k−1

k

) (
1 − 1

k

)
/ k

eη(k) η(k)1−1/k,
where Γ is the standard gamma function and η(k) is the unique positive solution
of equation ex = 1 + k · x. Optimizing this ratio over k ∈ (1, 2), we can get a lower
bound greater than 1.403.

3 This lower bound was very recently improved to 2.62 by Jin et al. [22].
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1.2 Our Results

In this paper we study the performance of anonymous pricing mechanisms in
single-item auction settings with n bidders that have i.i.d. valuations from the
same MHR distribution F . These mechanisms are extremely simple: the seller
simply offers the same take-it-or-leave-it price p to all potential buyers; the item
is then sold to a buyer that can meet this price, that is, has a valuation greater
or equal than p; the winning bidder pays p to the seller. Our benchmark is the
seller’s expected revenue (with respect to his incomplete, prior knowledge of the
buyers’ bids via distribution F ) and we compare against the maximum revenue
achievable by any auction. For our particular model, this optimal auction is a
second-price auction with a reserve [24].

Our main result (Sect. 5; see also Fig. 1) is an explicit, closed-form upper
bound on the approximation ratio of the revenue of anonymous pricing. As the
number n of buyers grows large, this ratio tends to the optimal value of 1, at a
rate of 1 + O(ln lnn/ ln) (Theorem 1). Additionally, we design an upper bound
that is fine-tuned to handle also small values of n (Theorem 2), and using this
we provide a global, worst-case (with respect to n) upper bound of 1.35 on the
approximation ratio. Previously, only an upper bound of e/(e − 1) ≈ 1.58 was
known (for any value of n), holding for the slightly more general class of regular
distributions.

In Sect. 7 we demonstrate how the aforementioned positive guarantee on the
revenue of anonymous pricing can still be (within an exponentially decreasing
additive constant) achieved even if the seller does not have full knowledge of the
prior distribution F (see Fig. 2). In particular (Theorem 4), we give an explicit
formula for such a “good” pricing rule that only depends on the expectation of
the second-highest order statistic of F .

Finally, in Sect. 6 we prove that our upper bound analysis is essentially tight,
by showing that the exponential distribution provides an (almost) tight gap
instance between the revenue of anonymous pricing and that of the optimal
auction (Theorem 3; see also Fig. 2).

Our upper bound technique differs from related previous approaches [2,10] in
that we do not use the ex-ante relaxation of the revenue-maximization objective.
Instead, we deploy explicit upper bounds on the optimal revenue (Sect. 3) that
depend on key parameters of the valuation distribution F , namely its order
statistics and its monopoly reserve. Then, we pair these with a range of critical
properties of MHR distributions that we develop in Sect. 4. We believe that some
of these auxiliary results may be of independent interest, in particular the order
statistics tail-bound of Lemma 3 and the reserve-quantile optimal revenue bound
of Lemma 4.

Due to space constraints, all omitted proofs can be found in the full version
of our paper [18].
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2 Model and Notation

A seller wants to sell a single item to n ≥ 2 bidders. The valuations of the bid-
ders for the item are i.i.d. from a continuous probability distribution supported
over an interval DF ⊆ [0,∞), with cdf F and pdf f . Throughout this paper
we will assume that F has Monotone Hazard Rate (MHR), that is, f(x)

1−F (x) is
monotonically nondecreasing with respect to x ∈ DF . Equivalently, this means
that ln(1−F ) is a concave function. The MHR condition is a slight refinement of
Myerson’s standard regularity condition4 that is still general enough to give rise
to a wide family of natural distributions, like the uniform, exponential, normal
and gamma. Intuitively, MHR distributions have exponentially decreasing tails.
For an in-depth treatment of MHR distributions we refer to the book of Barlow
and Proschan [4, Chap. 2].

For a random variable X ∼ F drawn from F and 1 ≤ k ≤ n, we will use
Xk:n to denote the k-th lowest order statistic out of n i.i.d. draws from F . That
is, X1:n ≤ X2:n ≤ · · · ≤ Xn:n. For completeness and ease of reference, we discuss
some useful properties of order statistics in [18, Appendix A]. The exponential
distribution will play a significant role in some parts of our paper; we denote it
by E , and its cdf and pdf are FE(x) = 1−e−x and fE = e−x, respectively. Finally,
we use Hn to denote the n-th harmonic number Hn =

∑n
i=1

1
i , and γ ≈ 0.577

for the Euler-Mascheroni constant (see also [18, Lemma 8]).
A pricing mechanism that offers a take-it-or-leave-it price of p ∈ DF to all

bidders gives to the seller an expected revenue of

Price(F, n, p) ≡ p[1 − Fn(p)],

since the probability of no bidder being able to afford price p is Fn(p). We will
refer to such a mechanism simply as (anonymous) pricing. Thus, the optimal
(maximum) revenue achievable via pricing is

Price(F, n) ≡ sup
p∈DF

Price(F, n, p).

On the other hand, as discussed in the introduction, the optimal revenue attain-
able by any mechanism may be higher; as a matter of fact, Myerson [24] showed
that it is achieved by a second-price auction with a reserve equal to the monopoly
reserve r∗ = argmaxr∈DF

r(1 − F (r)) of the valuation distribution. We denote
this optimum revenue by Myerson(F, n), and it can be shown that

Myerson(F, n) = E [max {0, φ(Xn:n)}] ,

where φ(x) ≡ x − 1−F (x)
f(x) is the virtual valuation function of F (see also Foot-

note 6) and Xn:n its maximum order statistic. Keep in mind that, due to the

4 Regularity a la Myerson [24] requires the virtual valuation x − 1−F (x)
f(x)

to be nonde-

creasing. Notice that this is a (strictly) weaker condition than MHR. For example,
some Pareto distributions ∝ x−α with α ≥ 2 are regular but not MHR.
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monotonicity of φ and the definition of the reserve r∗, we know that φ(x) ≥ 0
for all x ≥ r∗.

Sometimes it is more convenient to work in quantile space instead of the
actual valuation domain. More precisely, the quantile of distribution F corre-
sponding to a value x ∈ DF is q(x) = 1−F (x). Using this, we can define what is
known as the revenue curve of distribution F , by R(q) = F−1(1− q) · q. In other
words, if p ∈ DF is a price and q is its corresponding quantile, then R(q) is the
expected revenue of selling the item to a single bidder, using a price p. Thus,
the monopoly reserve quantile q∗ that corresponds to the monopoly reserve r∗

defined above is exactly the maximizer of the revenue curve R(q). So, for a single
bidder (n = 1):

Myerson(F, 1) = Price(F, 1) = sup
p∈DF

p(1 − F (p)) = sup
q∈[0,1]

R(q) = R(q∗).

In general though for more players (n ≥ 2) this is not the case, and our goal
in this paper is exactly to study how well the optimal revenue Myerson(F, n)
can be approximated by pricing Price(F, n). That is, we want to bound the
following approximation ratio:

APX(F, n) ≡ Myerson(F, n)
Price(F, n)

.

Finally, we need to define an auxiliary function that will help us with stating
and proving our main results. For any positive integer n, we define the function
gn : [0,∞) −→ [0,∞) with

gn(x) = x[1 − (1 − e−x)n]. (1)

Some properties of this function, that will be very useful to us in the following,
are proven in [18, Appendix C].

3 Bounds on the Optimal Revenue

In this section we collect the bounds on the optimal revenue Myerson(F, n)
that we will use for our main result in Sect. 5 to bound the approximation ratio
of pricing. They rely on the fact that the valuation distribution is MHR. The
first one is essentially a refinement of the well-known Bulow-Klemperer bound
[7], and it was proven by Fu et al. [15]:

Lemma 1 (Fu et al. [15]). For n bidders with i.i.d. values from an MHR5

distribution F ,

Myerson(F, n) ≤ E[Xn−1:n] + R(q∗)(1 − q∗)n−1,

where X ∼ F and R is the revenue curve of F and q∗ is the quantile correspond-
ing to the monopoly reserve price r∗ of F , q∗ = 1 − F (r∗).
5 As a matter of fact, this bound holds even for the more general class of regular

distributions (see also the discussion in Sect. 2.).
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Our second bound on the optimal revenue is a new one, that might also be
of independent interest for future work:

Lemma 2. For every MHR distribution F with monopoly reserve price r∗ and
quantile q∗ = 1 − F (r∗), and any positive integer n,

Myerson(F, n) ≤ r∗
∫ q∗

0

1 − (1 − z)n

z
dz

4 Properties of MHR Distributions

In this section we state some properties of MHR distributions that will play a
critical role into deriving our main results in the rest of the paper. The first
in particular, Lemma 3, might be of independent interest, since it is providing
powerful tail-bounds on with respect to the order statistics of the distribution:

Lemma 3. For any continuous MHR random variable X, integers 1 ≤ k ≤ n
and real c ∈ [0, 1],

Pr [X < c · E[Xk:n]] ≤ 1 − e−c(Hn−Hn−k).

The next lemma states some useful bounds on the monopoly reserve of an
MHR distribution:

Lemma 4. For any MHR distribution with expectation μ, monopoly reserve r∗

and corresponding quantile q∗:

1. q∗ ≥ 1/e

2. ln(1/q∗) · μ ≤ r∗ ≤ ln(1/q∗)
1−q∗ · μ.

Finally, the following lemma shows that the high-order statistics of MHR
distributions are “well-behaved”, in the sense that they cannot be away from
the expectation:

Lemma 5. For any MHR random variable X and integer n ≥ 2,

E[Xn−1:n] ≥
(

1 − Hn − 1
n − 1

)

· E[X].

5 Upper Bounds

This section is dedicated to proving the main result of our paper. First (The-
orem 1) we show that pricing is indeed asymptotically optimal with respect to
revenue and then (Theorem 2) we also provide a more refined upper-bound on
the approximation ratio that is fine-tuned to work well for a small number of
bidders n. As we will see in the following Sect. 6, our upper bound analysis of
this section is essentially tight (see also Fig. 2).
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Fig. 1. The upper bounds on the approximation ratio APX(F, n) of anonymous pricing
for n i.i.d. bidders with MHR valuations, given by Theorem 1 (blue) and Theorem 2
(red). The best (smallest) of the two converges to the optimal value of 1 as the number
of bidders grows large, at a rate of 1 + O (ln ln n/ ln n). A single, unified plot of this
can be seen in Fig. 2 (black), together with a matching lower bound (red). In the worst
case (n = 3), our upper bound is at most 1.354. (Color figure online)

Theorem 1. Using the same take-it-or-leave-it price, to sell an item to n buyers
with i.i.d. valuations from a continuous MHR distribution F , is asymptotically
optimal with respect to revenue. In particular,

APX(F, n) = 1 + O

(
ln lnn

ln n

)

.

A plot of the exact values6 of this upper bound can be seen in Fig. 1 (blue).

Proof. First notice that by using the monopoly reserve price r∗ of F as a take-
it-or-leave it price to the n bidders, we get an expected revenue of

Price(F, n, r∗) = r∗(1−F (r∗)n) = r∗[1−(1−q∗)n] = R(q∗)
1 − (1 − q∗)n

q∗ , (2)

where q∗ = 1 − F (r∗) is the quantile of the monopoly reserve price, for which
we know that q∗ ≥ 1

e (Lemma 4), and R denotes the revenue curve (see Sect. 2).
Next, for simplicity denote ν = E [Xn−1:n]. For any real c ∈ [0, 1], if we offer

a price of c · ν we have

Price(F, n, cν) = cν[1 − F (cν)n] ≥ cν
[
1 −

(
1 − e−c(Hn−1)

)n]
, (3)

the inequality holding due to Lemma3 (for k = n − 1). Optimizing with respect
to c we get that

Price(F, n) ≥ ν

Hn − 1
max

x∈[0,Hn−1]
gn(x). (4)

6 See (6) below.
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Using the two lower bounds (2) and (4) on the pricing revenue, in conjunction
with the upper bound on the optimal revenue from Lemma1 we can bound the
approximation ratio of pricing by

APX(F, n) =
Myerson(F, n)
Price(F, n)

≤ ν
ν

Hn−1 maxx∈[0,Hn−1] gn(x)
+

R(q∗)(1 − q∗)n−1

R(q∗) 1−(1−q∗)n

q∗

=
Hn − 1

maxx∈[0,Hn−1] gn(x)
+

q∗(1 − q∗)n−1

1 − (1 − q∗)n
(5)

≤ Hn − 1
maxx∈[0,Hn−1] gn(x)

+
(e − 1)n−1

en − (e − 1)n
(6)

= 1 + O

(
ln lnn

ln n

)

+ O

((
e

e − 1

)−n
)

. (7)

Equation (6) holds by observing that function x �→ x(1−x)n−1

1−(1−x)n is decreasing over
(0, 1], for any n ≥ 2, and taking into consideration that q∗ ≥ 1/e, while for (7)
we make use of the asymptotics from [18, Lemma 12]. The upper bound given
by (6) is plotted by the blue line in Fig. 1.

Theorem 2. The approximation ratio of the revenue obtained by using the same
take-it-or-leave-it price, to sell an item to n buyers with i.i.d. valuations from a
continuous MHR distribution F , is at most

APX(F, n) ≤ max
q∈[1/e,1]

min

{
1

1 − (1 − e−Hn+1)n
+

q(1 − q)n−1

1 − (1 − q)n
,

∫ q

0

1−(1−z)n

z
dz

1 − (1 − q)n

}

.

In particular, the worst case (maximum) of this quantity is attained at n = 3
and is at most APX(F, 3) ≤ 1.354. A plot of the exact values of this upper bound
can be seen in Fig. 1 (red).

Proof. From (5) in the proof of Theorem1 we can get the following upper bound
on the approximation ratio, by using (possibly suboptimally) x ← Hn − 1 for
the maximization operator:

APX(F, n) ≤ Hn − 1

gn(Hn − 1)
+

q∗(1 − q∗)n−1

1 − (1 − q∗)n
=

1

1 − (1 − e−Hn+1)n
+

q∗(1 − q∗)n−1

1 − (1 − q∗)n
.

On the other hand, using the reserve price of F as a price and combining the
guarantee of (2) with the upper bound on the optimal revenue from Lemma2,
gives us

APX(F, n) ≤ r∗ ∫ q∗

0
1−(1−z)n

z dz

R(q∗) 1−(1−q∗)n

q∗
=

∫ q∗

0
1−(1−z)n

z dz

1 − (1 − q∗)n
,

since R(q∗) = r∗q∗. Recalling that q∗ ∈ [1/e, 1] and taking the best (i.e., mini-
mum) of the two bounds above, finishes the proof.
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6 Lower Bound

The lower bound instance of this section (Theorem 3) shows that our main pos-
itive result for the approximation ratio of pricing under MHR distributions in
Theorem 1 is essentially tight (see also Fig. 2). It is achieved by an exponential
distribution instance. Before proving it, we need the following auxiliary lemma
about the maximizers of functions gn that we introduced in (1).

Lemma 6. For any positive integer n, function gn (defined in (1)) has a unique
maximizer. Furthermore, for all n ≥ 17,

argmax
x≥0

gn(x) ≤ Hn − 1.

Theorem 3. For n ≥ 2 bidders with exponentially i.i.d. valuations, the approx-
imation ratio of anonymous pricing is at least

APX(E , n) ≥ Hn − 1
maxx≥0 gn(x)

,

where function gn is defined in (1). A plot of this lower bound can be seen in
Fig. 2 (red). In particular, the upper bound derived in the proof of Theorem1 is
tight (up to an exponentially vanishing additive factor).

Proof. Let X ∼ E be an exponential random variable. Then, we have

Myerson(E , n) ≥ E [Xn−1:n] = Hn − 1

and

Price(E , n) = sup
x≥0

x
[
1 − (

1 − e−x
)n]

= max
x≥0

gn(x).

Putting the above together, we get the desired lower bound on the approximation
ratio.

For the tightness, we need to show that our lower bound is within an additive,
exponentially decreasing factor of the upper bound given in (6). Since the second

term in (6) is at most O

((
e

e−1

)−n
)

, it is enough to show that, for a sufficiently

large number of bidders n,

max
x∈[0,∞)

gn(x) = max
x∈[0,Hn−1]

gn(x).

This is exactly what we proved in Lemma 6, for any n ≥ 17.



164 Y. Giannakopoulos and K. Zhu

Fig. 2. Bounds on the approximation ratio of anonymous pricing for n = 3, . . . , 30
i.i.d. bidders with MHR valuations: the upper bound on optimal pricing (black) derived
in Sect. 5 (see also Fig. 1), the lower bound (red) given by Theorem 3, and the upper
bound of pricing at the expected value of the second-highest order statistic, scaled down
by parameter cn (blue), given in Theorem 4 of Sect. 7. They are all (asymptotically)
optimal, their (additive) difference decreasing exponentially fast. They all converge to
the optimal value of 1 at a rate of 1 + O(ln ln n/ ln n). (Color figure online)

7 Explicit Prices – Knowledge of the Distribution

Our main result from Sect. 5 demonstrates that a seller, facing n bidders with
i.i.d. valuations from and MHR distribution F , can achieve (asymptotically)
optimal revenue by using just an anonymous, take-it-or-leave-it price. Taking
a careful look within the proof of Theorem1, we see that this upper bound is
derived by comparing the optimal Myersonian revenue (via the bound provided
by Lemma 1) to that of two different anonymous pricings; namely, first (see (2))
we use the monopoly reserve r∗ of F , and then (see (3) and (4)) a multiple
of the expectation ν = E[Xn−1:n] of the second-highest order statistic of F , in
particular cn · ν where

cn =
argmaxx∈[0,Hn−1] gn(x)

Hn − 1
. (8)

Although the latter price requires only the knowledge of ν = E[Xn−1:n], that is
not the case for the former; determining the reserve price r∗ demands, in general,
a detailed knowledge of the distribution F : it is the maximizer of r(1 − F (r)).

As a result, we would ideally like to provide a more robust solution, that
would still provide optimality but depend only in limited information about F .
If we pay even closer attention to the proof of Theorem 1, and the derivation
of (7) in particular, we will see that the summand of our upper bound that
corresponds to the pricing using r∗ is exponentially decreasing, according to
(

e
e−1

)−n

. Therefore, if we could show that the expected revenue achieved by
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using the other price cnν is within a constant factor from that of using r∗, then
we could deduce that using only price cnν has an insignificant effect on the
approximation ratio of pricing. We do exactly that in the following lemma:

Lemma 7. For n ≥ 2 bidders with i.i.d. valuations from an MHR distribution
F with monopoly reserve r∗ and parameters cn ∈ [0, 1] given by (8),

Price(F, n, cn · E[Xn−1:n]) ≥ (1 − o(1))
e − 1

e
· Price(F, n, r∗),

where X ∼ F .

Proof. For convenience, denote μ = E[X] and ν = E[Xn−1:n]. By the proof of
Theorem 1 (see (3) and (4)) we know that by offering an anonymous price of
cn · ν gives us an expected revenue of at least

Price(F, n, cn · ν) ≥ ν

Hn − 1
max

x∈[0,Hn−1]
gn(x) ≥ maxx∈[0,Hn−1] gn(x)

Hn − 1
n − Hn

n − 1
· μ

the second inequality holding due Lemma5.
On the other hand, from (2) we know that using the reserve price r∗ as an

anonymous price to all bidders gives an expected revenue of at most

Price(F, n, r∗) = r∗[1 − (1 − q∗)n] ≤ ln(1/q∗)
1 − q∗ [1 − (1 − q∗)n] · μ,

the inequality holding due to Lemma4.
Putting everything together, we finally get that

Price(F, n, r∗)
Price(F, n, cnν)

≤ ln(1/q∗)
1 − q∗ [1 − (1 − q∗)n]

n − 1

n − Hn

Hn − 1

maxx∈[0,Hn−1] gn(x)
(9)

≤ e

e − 1

n − 1

n − Hn

Hn − 1

maxx∈[0,Hn−1] gn(x)

≤ (1 + o(1))
e

e − 1
.

The second inequality holds because ln(1/q∗)
1−q∗ [1 − (1 − q∗)n] ≤ ln(1/q∗)

1−q∗ ≤ e
e−1 ,

since function x �→ ln(1/x)
1−x is decreasing for x > 0 and q∗ ≥ 1/e (from Property 1

of Lemma 4). The last inequality is a consequence of [18, Lemma 12] and the fact
that Hn ≤ ln(n) + 1.

As discussed before, Lemma 7 shows us that there indeed exists an anony-
mous price that depends on the knowledge of only the expectation of the second-
order statistic of the valuation distribution and which, furthermore, guarantees
an (asymptotically) optimal revenue. We can even provide a closed-form upper
bound for it:

Theorem 4. Let F be an MHR distribution and Xn−1:n denote the second-
highest, out of n i.i.d. draws from F . Then, using an anonymous price of cn ·
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E[Xn−1:n], where cn is given in (8), to sell an item to n ≥ 2 bidders with i.i.d.
valuations from F , guarantees a revenue with approximation ratio of at most

Myerson(F, n)
Price(F, n, cn E[Xn−1:n])

≤ Hn − 1
maxx∈[0,Hn−1] gn(x)

[

1 +
1
e

n − 1
n − Hn

(
e − 1

e

)n−2
]

.

A plot of this upper bound can be seen in Fig. 2 (blue).

Proof. Simulating the proof of the approximation upper bound in Theorem1,
but now using (9) to approximate Price(F, n, r∗) by Price(F, n, cn E[Xn−1:n]),
the derivation in (5) gives us that

Myerson(F, n)
Price(F, n, cn E[Xn−1:n])

≤ Hn − 1
maxx∈[0,Hn−1] gn(x)

+
ln(1/q∗)
1 − q∗ [1 − (1 − q∗)n]

n − 1
n − Hn

Hn − 1
maxx∈[0,Hn−1] gn(x)

· q∗(1 − q∗)n−1

1 − (1 − q∗)n

=
Hn − 1

maxx∈[0,Hn−1] gn(x)

[

1 +
n − 1

n − Hn
ln(1/q∗)q∗(1 − q∗)n−2

]

≤ Hn − 1
maxx∈[0,Hn−1] gn(x)

[

1 +
1
e

n − 1
n − Hn

(
e − 1

e

)n−2
]

,

the last inequality coming from [18, Lemma 11], together with the fact that
q∗ ∈ [1/e, 1] (see Property 1 of Lemma 4).
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Abstract. Suppose that an m-simplex is partitioned into n convex
regions having disjoint interiors and distinct labels, and we may learn
the label of any point by querying it. The learning objective is to know,
for any point in the simplex, a label that occurs within some distance
ε from that point. We present two algorithms for this task: Constant-
Dimension Generalised Binary Search (CD-GBS), which for constant m
uses poly(n, log

(
1
ε

)
) queries, and Constant-Region Generalised Binary

Search (CR-GBS), which uses CD-GBS as a subroutine and for constant
n uses poly(m, log

(
1
ε

)
) queries. We show via Kakutani’s fixed-point the-

orem that these algorithms provide bounds on the best-response query
complexity of computing approximate well-supported equilibria of bima-
trix games in which one of the players has a constant number of pure
strategies.

Keywords: Query protocol · Equilibrium computation
Revealed preferences

1 Introduction

The computation of game-theoretic equilibria is a topic of long-standing interest
in the algorithmic and AI communities. This includes computation in the “clas-
sical” setting of complete information about a game, as well as settings of partial
information, communication-bounded settings, and distributed algorithms (for
example, best-response dynamics). A recent line of research has studied com-
putation of equilibria based on query access to players’ payoff functions. That
work, along with the notion of revealed preferences in economics, inspires the
new setting we study here.

We study algorithms that have query access to the players’ best-response
behaviour: an algorithm may query a mixed-strategy profile (i.e. probability dis-
tributions constructed by the algorithm, over each player’s pure strategies) and
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learn the players’ best responses. Our focus is on standard bimatrix games, which
is arguably the most natural starting-point for an investigation of this new query
model. The solution concept of interest is ε-approximate Nash equilibria (exact
equilibria are typically impossible to find using finitely many such queries). A
basic challenge is to identify algorithms that achieve this goal with good bounds
on their query complexity (and also, ideally, their runtime complexity).

In more detail, we assume an m × n game G: a row player has m pure
strategies and a column player has n pure strategies. G has two unknown m×n
payoff matrices that represent payoffs to the players for all combinations of pure
strategy choices they may make. A query consists of a probability distribution
over the pure strategies of one of the players, and elicits an answer consisting
of a best response for the other player (i.e. a pure strategy that maximises
that player’s expected payoff). We seek an ε-well-supported Nash equilibrium
(ε-WSNE): a pair of probability distributions over their pure strategies with the
property that any strategy of player p whose expected payoff is more than ε
below the value of p’s best response, gets probability zero. The general question
of interest is: how many queries are needed, as a function of m,n, ε.

Using Kakutani’s fixed point theorem, we reduce this question to a novel and
more geometrical challenge in the design of query protocols. Suppose that the m-
simplex Δm is partitioned into n convex regions having labels in [n] = {1, . . . , n}.
When we query a point x ∈ Δm we are told the label of x. How many queries
(in terms of m,n, ε) are needed in order to ensure that all points in Δm are
within ε of a point whose label we know? We show how to achieve this using
time and queries polynomial in log ε and max(m,n) provided that min(m,n) is
constant. This leads to a polynomial query complexity algorithm for 2-player
games, provided that one of the players has a constant number of strategies.

1.1 Further Details

In essence, we consider partitions of the unit m-simplex Δm into n convex poly-
topes, P1, ..., Pn, with disjoint interiors, and aim to approximately learn the
partition with access to a membership oracle that for a given x ∈ Δm, returns a
polytope to which x belongs. The notion of approximation we study is that of
ε-close labellings, a collection of empirical polytopes, { ̂Pi}n

i=1, such that ̂Pi ⊆ Pi

for i = 1, ..., n and ∪n
i=1

̂Pi is an ε-net of Δm ⊂ R
m in the �2 norm.

Note that in one dimension (m = 1) we can use binary search to solve this
problem using n log(1/ε) queries. We generalise to higher dimension, exploiting
convexity of the regions to reduce query usage in computing ε-close labellings.
We present two algorithms for this task: Constant-Dimension Generalised Binary
Search (CD-GBS), which for constant m uses poly(n, log

(

1
ε

)

) queries, and
Constant-Region Generalised Binary Search (CR-GBS), which uses CD-GBS
as a subroutine and for constant n uses poly(m, log

(

1
ε

)

) queries.
This problem derives from the question of how to compute approximate

(well-supported) Nash equilibra (ε-WSNE) using only best response informa-
tion, obtained via queries in which the algorithm selects a mixed strategy profile
and a player, and receives a best response for that player to the mixed profile. Via
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Kakutani’s fixed-point theorem [18] we reduce this variant of equilibrium com-
putation to finding ε-close labellings of polytope partitions. For m × n games
where m is constant (or n equivalently, by symmetry), we show that an ε-WSNE
can be computed using poly(n, log

(

1
ε

)

) best response queries.

1.2 Related Work

Earlier work in computational learning theory has studied exact learning of geo-
metrical regions over a discretised domain, where algorithms are sought with
query complexity logarithmic in a resolution parameter and binary search is
repeatedly applied in a systematic way [6]. Goldberg and Kwek [12] specifically
study the learnability of polytopes in this context, deriving query efficient algo-
rithms, and precisely classifying polytopes learnable in this setting. These algo-
rithms can be adapted to approximately learn a single polytope with membership
queries, but the obtained notion of approximation is not directly applicable to
computing ε-close labellings.

The Nash equilibrium (NE) is a fundamental concept in game theory [21].
They are guaranteed to exist in finite games, yet computational challenges in
finding one abound, most notably, the PPAD-completeness of computing an
exact equilibrium even for two-player normal form games [7,9]. For this rea-
son, query complexity has been extensively used as a tool to differentiate hard-
ness of equilibrium concepts in games. For payoff queries, some notable exam-
ples include: exponential lower bounds for randomised computation of exact
Nash equilibria and exact correlated equilibria via communication complex-
ity lower bounds in multiplayer games [16,17]; exponential lower bounds for
randomised computation of approximate well-supported equilibria and general
approximate equilibria for a small enough approximation factor in multiplayer
games [1]; upper and lower bounds for equilibrium computation in bimatrix
games, congestion games [10] and anonymous games [15]; upper and lower
bounds for randomised algorithms computing approximate correlated equilib-
ria [13]. Babichenko et al. have also proved lower bounds in communication
complexity for computing ε-WSNE for small enough ε in both bimatrix and
multiplayer games [2].

Best response queries are a weaker but natural query model which is pow-
erful enough to implement fictitious play, a dynamic first proposed by Brown
[5], and proven to converge by Robinson [22] in two-player zero-sum games to
an approximate NE. Fictitious play does not always converge for general games
where both players have more than two strategies [11]. Furthermore, Daskalakis
and Pan have proven that the rate of convergence of the dynamic is quite slow in
the worst case (with arbitrary tie-breaking) [8]. Also, beyond non-convergence,
the dynamic can have a poor approximation value for general games [14]. In
addition, the relationship between best responses and convex partitions of sim-
plices has been studied by Von Stengel [23] in the context of sequential games
where one player has to commit to and announce a strategy before playing.

For a bimatrix game, simple ε-close labellings can be constructed by query-
ing best responses at mixed strategies arising as uniform distributions over suffi-
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ciently large multisets of pure strategies. As a consequence of our main theorem,
best responses to these multiset distributions contain enough information to
compute approximate WSNE. This result is in the spirit of [3] and [20], who
aim to quantify specific k such that some approximate equilibrium arises as a
uniform mixture over multisets of size k. We note in our scenario that there
is also a guaranteed existence of an approximate equilibrium using sufficiently
large multisets, however verifying that a specific pair of mixed strategies is an
approximate WSNE is not straightforward using only best response queries. This
is in contrast to the verification of approximate equilibria via utility queries as
studied in [3].

Separately, we note that the present paper is possibly relevant to the search
for a price equilibrium in certain markets. Baldwin and Klemperer study markets
consisting of strong-substitutes demand functions for N different goods available
in multiple discrete units [4]. These markets are a generalisation of the product-
mix auction of [19]; a basic task is to identify prices at which some desired
bundle of the goods is demanded. Consider the space (R+)N of all price vectors.
As analysed in [4], a strong-substitutes demand function partitions this price
space into convex polytopes, each of which comprises the prices at which some
particular bundle of goods is demanded. So, the present paper relates to a setting
where price vectors may be queried, and responses consist of demand bundles.
The connection is imperfect, since the main objective in the context of [4] would
be to learn a price at which some target bundle is demanded, rather than the
entire demand function. The ideas here may be useful for learning the values
that the market has for various bundles.

2 Preliminaries and Notation

Our main object of study will be families of polytopes that precisely cover the
unit simplex, with the property that any two distinct polytopes from the family
are either disjoint, meet at their boundary, or entirely coincide. Throughout, the
polytopes we work with are convex.

Definition 1 ((m,n)-Polytope Partition). A (m,n)-polytope partition is a
set of n convex polytopes, P = {P1, ..., Pn} such that

⋃

Pi = Δm = {x ∈
R

m | ∀i, xi ≥ 0,
∑

i xi ≤ 1} and for each i 	= j, either relint(Pi)∩relint(Pj) = ∅
or Pi = Pj (relint(H) being the relative interior of H).

Definition 2 (Cross-sections and Slices). Let P ⊂ R
m be a polytope and

π : R
m → R the projection function into the first coordinate. For x ∈ R, we

define the x-cross-section of P as P x = π−1(x) ∩ P . For any I = [x, y] ⊂ R

we define the [x, y]-slice of P as P I = P x,y = π−1([x, y]) ∩ P . Suppose that
P = {Pi}i is an (m,n)-polytope partition. The definitions of cross-sections and
slices extend to Px = {P x

i }i and PI = Px,y = {P x,y
i }i.

Figure 1 gives a visualisation of these two definitions. Notice that in the same
figure, Px is essentially a lower-dimensional polytope partition linearly scaled
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Fig. 1. Polytope partition, cross-section and slices.

by a factor of (1 − x). This however, is not the case in general. We distinguish
between these two scenarios with the following formal definition:

Definition 3 (Non-Degenerate and Degenerate cross-sections). Let P
be an (m,n)-polytope partition. For x ∈ [0, 1) let fx : Px → Δm−1 be defined as
fx(v1, ..., vm) = 1

1−x (v2, ..., vm). If fx(Px) is an (m − 1, n)-polytope partition,
we say that Px is a non-degenerate cross-section. Otherwise we say that Px is
a degenerate cross-section.

The recursive structure of polytope partitions on non-degenerate cross-
sections will be crucial to our constructions. Luckily, Lemma 1 (the full proof
can be found in the online version of the paper) shows that for any polytope
partition, there are only a finite number of points x ∈ [0, 1) that give rise to
degenerate cross-sections. Before stating the lemma, we define an important dis-
crete subset of [0, 1] given by the projections of vertices of polytopes under π.

Definition 4 (Vertex Critical Coordinates). For a given polytope P ⊂ R
m

let VP ⊂ R
m be the vertex set of P . Define the set of vertex critical coordinates

as CP = π(VP ) ⊂ R. If P = {Pi}n
i=1 is an (m,n)-polytope partition, then we

extend our definition to include CP =
⋃n

i=1 CPi
⊂ [0, 1] as the vertex critical

coordinates of P.

Lemma 1. Let P be an (m,n)-polytope partition and x ∈ [0, 1) \ CP . Then
Px is non-degenerate.

2.1 Membership Query Oracles and ε-Close Labellings

We study two natural query oracle models for polytope membership in any P.

Definition 5 (Membership Query Oracles for Polytope Partitions).
Any (m,n)-polytope partition, P has the following membership query oracles:

– Lexicographic query oracle: Q� : Δm → [n], which for a given y returns
the smallest index of polytope to which y belongs, namely Q�(y) = min{i ∈
[n] | y ∈ Pi}.
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– Adversarial query oracle(s): QA : Δm → [n], which can return any polytope to
which y belongs. Namely, QA is any function such that QA(y) ∈ {i ∈ [n] | y ∈
Pi} for all y ∈ Δm.

When we wish to refer to an arbitrary oracle from the above models, we use the
notation Q. Before continuing, we also clarify that for A,B ⊆ R

n, we denote
Conv(A,B) ⊆ R

m as the convex combination of the two sets. In addition, if
Ai ⊆ R

m is an indexed family of sets with i = 1, ..., r, we denote Conv(Ai |i =
1, ..., r) ⊆ R

n as the convex combination of all Ai. Upon making queries to Q,
we can infer labels of x ∈ Δm by taking convex combinations. We abstract this
notion in the following definition.

Definition 6 (Empirical Polytopes and Labellings). Suppose that P is
an (m,n)-polytope partition and S ⊂ Δm is a finite set for which queries to Q

have been made. Let ̂Pi = Conv({x ∈ S | Q(x) = i}) ⊂ Pi. We say each ̂Pi is
an empirical polytope of Pi and that ̂P = { ̂Pi} is an empirical labelling of P.
Furthermore, we use the notation ̂P⊥ = Δm \ ∪n

i=1
̂Pi. to refer to points in Δm

unlabelled under ̂P.

An ε-net in the �2 norm for Δm ⊂ R
m is a set Nm

ε ⊆ Δm with the property
that for all x ∈ Δm, there exists a y ∈ Nm

ε such that ‖x − y‖2 ≤ ε. Our learning
goal is to use query access to an oracle, Q, to compute an empirical labelling ̂P
such that ∪n

i=1
̂Pi is an ε-net of Δm.

Definition 7 (ε-close Labelling). Suppose that ε ≥ 0 and that ̂P is an empir-
ical labelling for P. If ∪n

i=1
̂Pi is an ε-net of Δm ⊂ R

m in the �2 norm, we say
that ̂P is an ε-close labelling of P.

Although ε-close labellings are defined for polytope partitions, we extend our
terminology to also encompass slices of polytope partitions. As such, when we
mention computing an ε-close labelling of Px,y, we mean an empirical labelling
of Px,y (in the same vein as Definition 6) with the property that the union of
its empirical polytopes forms an ε-net of (Δm)x,y.

2.2 Learning in Thickness to Learning in Distance

Definition 8 (Thickness of Sets). Suppose that Z ⊆ R
m is a set. We define

the thickness of Z as the radius of the largest �2 ball fully contained in Z and we
denote it by τ(Z) = sup{δ ≥ 0 | ∃x ∈ Z with Bδ(x) ⊆ Z} where Bδ(x) = {y ∈
R

m | ‖x − y‖2 ≤ δ}. In the language of convex geometry, τ(Z) is the depth of
the Chebyshev centre of Z.

For a polytope partition P, if ̂P is an ε-close labelling, then τ( ̂P⊥) ≤ ε,
but the converse does not hold in general. Even though ̂P⊥ may be of small
thickness, if it contains vertices of Δm, these vertices may be far from labelled
points. The following results (with full proofs in the online version of the paper)
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lead up to Lemma 4, a slightly weaker version of the aforementioned converse.
Lemma 4 shows that if we are able to learn an empirical labelling where the
set of unlabelled points is of small enough thickness, then we will in fact have
succeeded in learning an ε-close labelling, where any unlabelled point is close in
distance to a labelled point.

Lemma 2. Let P ⊂ R
m be a full-dimensional polytope with Diam(P ) =

supx,y∈P ‖x − y‖2.

– If A � P and γ >
(

Diam(P )
τ(P )

)

τ(A), then Bγ(x) ∩ (P \ A) 	= ∅ for all x ∈ A.
– If A ⊆ P is such that int(P ) \ A 	= ∅ (int(P ) refers to the interior of P ) and

γ >
(

Diam(P )
τ(P )

)

τ(A), then Bγ(x) ∩ (int(P ) \ A) 	= ∅ for all x ∈ A.

Lemma 3. Diam(Δm) =
√

2 and τ(Δm) ≥ 1
m+

√
m

.

Lemma 4. Suppose that P is an (m,n)-polytope partition. Furthermore sup-
pose that ̂P is an empirical labelling with τ( ̂P⊥) < ε. For any γ >

√
2(m+

√
m)ε,

it follows that ̂P is a γ-close labelling. In particular, if γ > 4mε, the claim also
holds.

Proof. From Lemma 3, we know that τ(Δm) ≥ 1
m+

√
m

and Diam(Δm) =
√

2.

Suppose that x ∈ ̂P⊥. From Lemma 2 our choice of γ implies Bγ(x)∩(Δm\ ̂P⊥) 	=
∅. This in turn means that ̂P is a γ-close labelling. As for the final claim, this
holds since m ≥ 1. ��

3 Constant-Dimension Generalised Binary Search for Q�

We set up important groundwork by focusing on arbitrary polytopes P ⊂ R
m.

We let π : R
m → R be the projection function introduced in Definition 2, and

we recall Definition 4 regarding the vertex critical coordinates of P denoted by
CP .

Lemma 5. Suppose that x, y ∈ R are such that [x, y]
⋂

CP = ∅. Then taking
convex hulls of cross-sections we get Conv(P x, P y) = P x,y.

Proof. [x, y] ∩ CP = ∅ implies the vertices of the polytope P x,y lie in Px and
Py. Since the convex hull of the set of all vertices of a bounded polytope is the
polytope itself, the claim follows. ��

This property of polytopes whereby convex combinations give rise to com-
plete information except when traversing a discrete set of critical points (visu-
alised in Fig. 2) is critical to CD-GBS. With query access to polytopes however,
we no longer fully recover P x perfectly, but instead an approximation given by
an ε-close labelling, ̂P x. It becomes more subtle to show that by taking convex
hulls of ̂P x and ̂P y, we recover the desired information along [x, y].
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Fig. 2. Conv(P a, P b) �= P a,b and Conv(P c, P d) = P c,d

3.1 Necessary Machinery

We delve into the specifics of CD-GBS by defining important machinery. All
proofs for the lemmas of this section can be found in the full online version of
the paper. To begin, we recall thickness from Definition 8, and see that it satisfies
a sub-additivity property when the sets being considered are convex polytopes:

Lemma 6. Let P1, .., Pk ⊆ R
m be convex polytopes. Then τ (∪iPi) <

10
3 (

∑

i τ(Pi))(m + 1)3/2.

For a given polytope partition P = {Pi}i, it will be important to establish
thickness bounds on Pi at specific cross-sections.

Definition 9 (α-Critical Coordinates). Let P ⊂ R
m be a polytope. For α >

0, we define lα(P ) = inf{x ∈ R | τ(P x) ≥ α} and rα(P ) = sup{x ∈ R | τ(P x) ≥
α} so that ∀z ∈ R, τ(P z) ≥ α if and only if z ∈ [lα(P ), rα(P )] (Here thickness is
with respect to the natural embedding of P x in R

m−1). These are called α-critical
coordinates for P .

The previous definition allows us to associate to each polytope Pi a segment of
[0, 1] within which cross-sections of Pi are thick above a threshold. By combining
this with Definition 4 we get the correct notion of critical coordinates.

Definition 10 (Critical Coordinates of a (m,n)-Polytope Partition).
Suppose that P = {P1, ..., Pn} is an (m,n)-polytope partition. For α > 0, we
let Cα

P be the union of the sets of all vertex critical coordinates of all Pi as
defined in Definition 4, and the set of all α-critical coordinates for all Pi as in
Definition 9. Specifically, Cα

P = (∪iCPi
)
⋃

(∪i{lα(Pi), rα(Pi)}).

CD-GBS clusters queries around critical coordinates (up to a desired toler-
ance). For this reason it is important to bound the number of critical coordinates
in a given (m,n)-Polytope partition.

Lemma 7. If P is a (m,n)-polytope partition |Cα
P | ≤ (

n+m
m

)

+ 2n.

With this machinery in hand, we are in a position to prove the main auxi-
lary lemma necessary to demonstrate correctness of CD-GBS. We show that if
x, y ∈ [0, 1] are such that [x, y] contains no critical coordinates, then computing
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sufficiently fine empirical labellings of Px and Py with Q� will contain enough
information to compute an ε-close labelling of Px,y by simply taking convex
combinations of the empirical labellings at both cross-sections.

Lemma 8. Given m,n, ε > 0 let α = ε
20nm5/2 and β = ε2

85nm5/2 . Suppose that
P is an (m,n)-polytope partition and that the following hold:

– x, y ∈ [0, 1] are such that x < y ≤ 1 − ε
3 .

– [x, y] ∩ Cα
P = ∅.

– ̂Px and ̂Py are empirical labellings of Px and Py computed via Q�, such
that ∪i

̂P x
i and ∪j

̂P y
j are β-nets for (Δm)x and (Δm)y respectively.

Then
⋃

i Conv( ̂P x
i , ̂P y

i ) is an ε-net of (Δm)x,y.

For the following corollary, suppose that P is an (m,n) polytope partition
and that 0 = t0 < t1, ..., < tk = 1 are points in [0, 1]. Furthermore suppose
that β = ε2

85nm5/2 as in Lemma 8. For each ti, if ti /∈ Cα
P , let ̂Pti be a β-close

labelling of Pti , otherwise let ̂Pti = ∅. Let ̂P = Convi( ̂Pti) and for i = 1, .., k,
let Ij = [tj−1, tj ]. If ̂Pti−1,ti is an ε-close labelling of Pti−1,ti , we say that Ij is
covered, otherwise we say Ij is uncovered.

Corollary 1. For any collection of {ti}k
i=1, there are no more than 2Cα

P inter-
vals Ij that are uncovered.

3.2 Specification of CD-GBS and Query Usage

Terms and Notation: The details of CD-GBS are presented in Algorithm1. We
recall our notation from Definition 3 where for x ∈ [0, 1) we defined fx : (Δm)x →
Δm−1 given by fx(x, ..., vm) = 1

1−x (v2, ..., vm). We note that this is a bijection
between both polytopes, hence it is well-defined to use f−1

x . In addition, we let
Dk = { i

2k
|1 ≤ i ≤ 2k} be the dyadic fractions of k-th power in the unit interval

(excluding 0). For every x ∈ Dk we can associate the interval Ik
x = [x − 1

2k
, x].

For each of these intervals midpoint(Ik
x ) denotes its midpoint. We also use the

same language as Corollary 3.1 when we talk about whether Ik
x is covered or not

(with respect to the current empirical labelling, ̂P, obtained from taking convex
hulls of labels in Δm). We note that in order to have a well-defined base case of
CD-GBS (which is equivalent to binary search), we let Δ0 = R

0 = {0}. Finally,
we say that a point x ∈ [0, 1] is an uncovered critical point if ̂Px is computed
via a recursive call to CD-GBS and for (a, b) = Bε/2(x) ∩ [0, 1], it holds that
̂Pa,b is not an ε-close labelling of Pa,b.

Theorem 1. If CD-GBS is given access to Q� for a
(m,n)-polytope partition, it computes an ε-close labelling of P using at most
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(∏m
i=1

((

n+i
i

)

+ 2n
))

22m2
logm

(

170nm5/2

ε

)

membership queries. For constant m

this constitutes O(nm2
logm

(

n
ε

)

) = poly(n, log
(

1
ε

)

) queries 1.

Proof. We first prove that CD-GBS indeed computes an ε-close labelling when
given access to a valid Q� by inducting on m. It is straightforward to see that
in the case m = 1, if CD-GBS is given access to a valid Q� for a (1, n) polytope
partition (a partition of the unit interval into conected subintervals), then it
simply performs binary search on the interval [0, 1] ∼= Δ1.

As for the inductive step, for k = �log(2/ε)�, any two contiguous points
of Dk are less than ε/2 away from each other. For now suppose that every
recursive call to CD-GBS was along a non-degenerate cross section Pt. From the
inductive assumption, this means that CD-GBS computes an ε/2-close labellings
of those cross-sections, using the triangle inequality, we know that ̂P is an ε-close
labelling of P.

We note however that there is no guarantee for what a recursive call to CD-
GBS does on a degenerate cross section ̂Pt. For this reason, it could be the case
that at the end of the loop over Di, ̂P is not an ε-close labelling. This can only
happen if there is some t ∈ Cα

P ∩ Dk which is an uncovered critical coordinate.
If t is an uncovered critical coordinate we can rectify the situation. If we

find a z ∈ Bε/2 that is not a critical coordinate, then Pz is non-degenerate and
computing CD-GBS along the cross-section gives us an ε

2 -close labelling of Pz.
Using the triangle inequality, we see that this in turn removes t from the set of
uncovered critical coordinates, and we say that t is “fixed”. Thus the final while
loop of the algorithm eliminates the set of uncovered critical coordinates so that
̂P is indeed an ε-close labelling.

It thus remains to show that the final while loop terminates. However, there
are at most |Cα

P | uncovered critical coordinates, and over the course of fixing
all uncovered critical coordinates, there are at most |Cα

P | bad guesses for z ∈
Bε/2(x) where Pz is degenerate. Therefore the final while loop makes at most
2|Cα

P | invocations to CD-GBS along cross-sections. This concludes the proof of
correctness for CD-GBS.

Let us bound the total query usage of CD-GBS. For all values of k in the
first for loop, we know from Corollary 3.1 that since Q� is a valid lexicographic
oracle for P, that the number of uncovered Ik

x will not exceed 2
((

n+m
m

)

+ 2n
)

,
and since CD-GBS is called once per uncovered interval, it follows that for each
k there at most 2

((

n+m
m

)

+ 2n
)

recursive calls to CD-GBS. Furthermore, since
Q� is a valid lexicographic oracle for P, it will also never be the case that
∃i, j ∈ [n], z ∈ Δm such that dim( ̂Pi) = m and z ∈ int( ̂Pi).

1 CD-GBS runs in polynomial time for constant m. The time-intensive operation con-
sists of identifying uncovered intervals, but since the dimension of the ambient sim-
plex is constant, each empirical polytope P̂i has at most a constant number of bound-
ing hyperplanes. These hyperplanes can each be extruded by ε, and checking whether
there exists a point outside all these extrusions can be done in time polynomial in
n via brute force. In fact, all other algorithms in this paper have efficient runtimes
(in their relevant parameters) due to similar reasoning.
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In the worst case, k loops from 1 to �log(2/ε)� and makes an extra 2|Cα
P |

recursive calls to CD-GBS to fix all uncovered critical coordinates. In total if we
let T (m,n, ε) denote the query cost of running CD-GBS on a valid lexicographic
oracle, we get the following recursion:

T (m,n, ε) ≤ 2|Cα
P | log

(

2
ε

)

T

(

m − 1, n,
ε2

85nm5/2

)

+ 2|Cα
P |.

In order to make this more amenable, we define f(m) =
((

n+m
m

)

+ 2n
)

and use Lemma 7 to bound this expression by T (m,n, ε) ≤ 3f(m)
log

(

2
ε

)

T
(

m − 1, n, ε2

85nm5/2

)

. Furthermore, from the fact that the base case

is binary search, we know T (1, n, ε) ≤ n log
(

2
ε

)

.

To unpack the recursion. Let us define ε0 = ε and εk+1 = ε2
k

85n(m−k)5/2
for

k = 1, ...,m − 1. With this in hand, we can unroll the recursion to obtain
T (m,n, ε) ≤

(

3m−1
∏m−1

i=1 f(i)
) (

∏m−1
k=1 log

(

2
εk

))

. Since each εk+1 < εk, we
can upper bound the right-hand product by bounding each term with εm−1. If we

first solve for this value, we obtain: εm−1 = ε2m−1

∏m−1
j=1 (85nj5/2)2

j ≥ ε2m−1

∏m−1
j=1 (85nm5/2)2

j ≥
(

ε
85nm5/2

)2m

. In the first inequality we bounded the denominator product in the
base by j ≤ m, as for the second inequality, we evaluated the geometric series in
2 for the exponent to bound the exponent by 2m. With this in hand we obtain
the desired bounds:

T (m, n, ε) ≤ 3
m

2
m2 m∏

i=1

f(i) log
m

(
170nm5/2

ε

)

≤
(

m∏

i=1

((
n + i

i

)

+ 2n

))

2
2m2

log
m

(
170nm5/2

ε

)

.

For large enough n, every term in
∏m

i=1

((

n+i
i

)

+ 2n
)

is bounded by (n +
m)m+2n. It follows that this product is O(nm2

). For constant m, this constitutes
O(nm2

logm
(

n
ε

)

) = poly(n, log
(

1
ε

)

) queries. ��
The previous results show that for constant dimension, m, CD-GBS is query

efficient in n and 1
ε . In the following section we use this algorithm as a building

block to construct a method for computing efficient ε-close labellings when the
number of regions, n, is held constant instead.

4 Constant-Region Generalised Binary Search

The intuition behind the algorithm lies in the fact that if m is much greater
than n, then any vertex of a given Pi cannot lie in the interior of the ambient
simplex Δm. This is since a vertex in Δm must consist of the intersections of at
least m half-spaces, all of which cannot arise from adjacencies between different
Pi. Not only do all vertices lie on the boundary of Δm, but one can show that
they are all contained in faces of the boundary of Δm that have dimension O(n2)
which is presumed to be constant. The number of such faces in the boundary
of Δm is thus polynomial in m, and if we could compute 0-close labellings of
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Algorithm 1. CD-GBS(m,n, ε,Q)
Input: m ≥ 0, n, ε > 0, query access to function Q : Δm → [n].

Output: P̂: an ε-close labelling of P.
if m = 0 then

Query Q(0)
else

P̂0 ← f−1
0

(
CD-GBS

(
m − 1, n, ε2

85nm5/2 , Q ◦ f−1
0

))
, P̂1 ← Q(e1).

for k = 1 to �log(2/ε)� do
if Number of uncovered Ik

x exceeds 2
((

n+m
m

)
+ 2n

)
then

Halt
for x ∈ Dk do

if Ik
x is uncovered then

t ← midpoint(Ix)

P̂t ← f−1
t

(
CD-GBS

(
m − 1, n, ε2

85(1−t)nm5/2 , Q ◦ f−1
t

))

Recompute P̂ by taking convex hulls of labels
if ∃i, j ∈ [n] such that int(P̂i) ∩ P̂j �= ∅ or P̂ is an ε-close labelling then

Halt
while ∃x ∈ [0, 1] an uncovered critical point do

t ← z for arbitrary z ∈ Bε/2(x)

P̂t ← f−1
t

(
CD-GBS

(
m − 1, n, ε2

85(1−t)nm5/2 , Q ◦ f−1
t

))

Recompute P̂ by taking convex hulls of labels
return P̂

these faces we could take convex combinations and recover a 0-close labelling
of the entire polytope partition. We will demonstrate that for an appropriate
value of ε′, if we compute ε′-close labellings of such faces in the boundary, we
can recover an ε-close labelling of the entire polytope partition over all of Δm by
taking convex combinations. CR-GBS computes the necessary ε′-close labellings
of lower dimensional faces by using CD-GBS as a subroutine.

Necessary Machinery for CR-GBS: Suppose that P is an (m,n)-polytope par-
tition with m >

(

n
2

)

. Furthermore, let k =
(

n
2

)

and let ∂k(Δm) denote all k-
dimensional faces of Δm. For each face F , let PF be the restriction of P to
F . If F contains the origin, then it is an isometric embedding of Δk in Δm,
so we let φF be a canonical isomorphism from F to Δk. If F does not contain
the origin, then let vF ∈ F be the vertex of lowest index, i.e. vF = ei where
i = argmin{j | ej ∈ F}. In this case, we let φF be a canonical linear isomor-
phism from F to Δk that maps vF to the origin and other vertices of F to other
vertices of Δk.

As mentioned previously, computing empirical labellings of every face in
∂k(Δm) via CD-GBS will be enough to compute an empirical labelling for P.
The only issue however, is that CD-GBS is only guaranteed to return an ε-close
labelling if given access to a valid lexicographic membership oracle for a poly-
tope partition. For an arbitrary polytope partition, φF (PF ) is not necessarily a
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(k, n)-polytope partition for all F ∈ ∂k(Δm). For this reason, we slightly refine
our notion of polytope partition.

Definition 11. Suppose that P is an (m,n)-polytope partition such that for all
0 ≤ k ≤ m and F ∈ ∂k(Δm), φF (PF ) is a (k, n)-polytope partition. Then we
say P is a proper polytope partition.

Specification of CR-GBS and Query Usage: For F ∈ ∂k(Δm), we let φF denote
the canonical isomorphism from F to Δk. This isomorphism is different depend-
ing on whether F is axis-aligned or not. Furthermore, we let ̂PF empirical
labelling returned by CD-GBS on F ∈ ∂k(Δm). The full proof of correctness
and query usage of Algorithm 2 can be found in the online version of the paper.

Algorithm 2. CR-GBS(m,n, ε,Q)
Input: m, n, ε > 0, query access to membership oracle Q for (m, n)-polytope partition P.

Output: ̂P: an ε-close labelling of P.
k ← (n

2

)

for F ∈ ∂k(Δ
m) do

̂PF ← φ−1
F

(

CD-GBS
(

k, n, 3ε
100n2√

k+1(m+1)5/2
, Q ◦ φ−1

F

))

.

̂P ← ConvF ( ̂PF )

return ̂P

Theorem 2. Let P be a proper (m,n)-polytope partition where n is constant
and m > k =

(

n
2

)

. CR-GBS computes an ε-close labelling of P and uses

O
(

mk logk
(

m
ε

)

)

= poly(m, log
(

1
ε

)

) queries.

5 Upper Envelope Polytope Partitions

We have focused completely on the lexicographic query oracle Q�, creating algo-
rithms CD-GBS and CR-GBS that compute ε-close labellings of (m,n)-polytope
partitions when given access to Q�. If these algorithms are given access to an
adversarial oracle QA however, they may fail.

To see why CD-GBS may fail under QA we recall that the algorithm recur-
sively computes ε-close labellings of cross-sections Pt for different values of
t ∈ [0, 1]. If ever CD-GBS is called on a degenerate cross-section Pt, it has con-
ditions to either tell that it is being called on a degenerate cross-section (when
it notices that there exist i, j ∈ [n] and z ∈ Δm such that z ∈ int( ̂Pi) ∩ ̂Pj),
or in the worst case, prevent it from exceeding its query balance. In both cases
however, the algorithm returns a valid empirical labelling, i.e., ̂P = { ̂Pi}n

i=1 such
that ̂Pi ⊆ Pi.

When an adversarial oracle is used however, we may see i, j ∈ [n] and z ∈ Δm

such that z ∈ int( ̂Pi) ∩ ̂Pj . Indeed this can occur if Pi = Pj and both are full-
dimensional. The natural solution seems to merge Pi and Pj (since the second
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condition of the definition of polytope partitions tells us that Pi = Pj in this
case). The main problem however, is that there is no way of telling when the
condition above is an artifice of the adversarial oracle, or simply due to the fact
that Pt is degenerate. If we blindly merge labels, we may in fact be performing
an incorrect merge on a degenerate cross-section! This of course may return
inconsistent polytope partitions.

Since the key problem is the existence of degenerate cross-sections, we con-
sider a slightly stronger variant of polytope partitions with the key property that
cross-sections are never degenerate. Furthermore, this special type of polytope
partition is expressive enough for our game theoretic applications, and best of
all, it allows us to prove results in the adversarial query oracle model.

Definition 12 (Upper Envelope Polytope Partition). Suppose that A ∈
R

n×m is an n × m real-valued matrix and that b ∈ R
n. Let Pi = {y ∈ Δm

such that (Ay + b)i ≥ (Ay + b)j for all j 	= i}. We denote the collection
P(A, b) = {P1, . . . , Pn}, as the upper envelope polytope partition (UEPP) aris-
ing from (A, b).

It is straightforward to see that for any (A, b), P(A, b) is itself an (m,n)-
polytope partition. Crucially however, it satisfies more properties than the pre-
vious definition of polytope partitions. The full proof of the following lemma can
be found in the online version of the paper.

Lemma 9. Suppose that A is an n × m real valued matrix and that b ∈ R
n.

Then P(A, b) = {P1, . . . , Pn} has the following properties:

– For any x ∈ [0, 1) let fx be the canonical affine transformation that maps
(Δm)x to Δm−1. There exists an n × (m − 1) real matrix Ax and bx ∈ R

n

such that P(Ax, bx) = fx(P(A, b)x).
– P(A, b) is a proper polytope partition (Definition 11).
– If Ai,• = Aj,• and bi = bj then Pi = Pj. Conversely if Pi is of full affine

dimension and relint(Pi)∩Pj 	= ∅, then Ai,• = Aj,• and bi = bj; consequently,
Pi = Pj.

– Let a1, . . . , ak ∈ R be such that
∑k

i=1 ai < 1 with k < m. Let H =
{(z1, . . . , zm) ∈ Δm | zi = ai, i = 1, . . . , k} where H has codimension
k. If x1, . . . , xm−k ∈ Δm are affinely independent points of Pi ∩ H and
y ∈ Conv(x1, . . . , xm−k) belongs to Pj, then Pi and Pj coincide in H.

5.1 Adversarial CD-GBS

Suppose that P is an UEPP. Since it is also a proper (m,n)-polytope parti-
tion, it inherits all the properties from before. Along with Lemma9 we have the
necessary tools to show that Algorithm 3 is a query efficient way of computing
ε-close labellings of P with an adversarial query oracle. In the specification of
CD-GBS, we use identical terms and notation from Algorithm 1. The full proof
of correctness and query usage of Algorithm 3 can be found in the online version
of the paper.



182 P. W. Goldberg and F. J. Marmolejo-Cosśıo

Algorithm 3. Adversarial CD-GBS(m,n, ε,QA)
Input: m ≥ 0, n, ε > 0, query access to oracle QA : Δm → [n].

Require: Recursive calls to CD-GBS
(

m − 1, n, ε2

85(1−x)nm5/2 , QA ◦ f−1
x

)

.

Output: ε-close labelling of P.

if m = 0 then
Query QA(0)

else
̂P0 ← f−1

0

(

CD-GBS
(

m − 1, n, ε2

85nm5/2 , QA ◦ f−1
0

))

̂P1 ← Q(e1).
for k = 1 to �log(2/ε)� do

for x ∈ Dk do
if Ik

x is uncovered then
t ← midpoint(Ix)

̂Pt ← f−1
t

(

CD-GBS
(

m − 1, n, ε2

85(1−t)nm5/2 , QA ◦ f−1
t

))

Recompute ̂P by taking convex hulls of labels
while ∃i, j ∈ [n], z ∈ Δm such that dim( ̂Pi) = m and z ∈ int( ̂Pi) do

Merge label i with label j
Recompute ̂P by taking convex hulls of labels

if ̂P is an ε-close labelling then
Break

return ̂P

Theorem 3. If Adversarial CD-GBS is given access to an adversarial query
oracle QA of an (m,n)-polytope partition based on a UEPP, it computes an ε-
close labelling of P using at most
(∏m

i=1

((

n+i
i

)

+ 2n
))

22m2
logm

(

170nm5/2

ε

)

membership queries. For constant m

this constitutes O(nm2
logm

(

n
ε

)

) = poly(n, log
(

1
ε

)

) queries.

5.2 Adversarial CR-GBS

In this section we formalize an adversarial variant of CR-GBS. We note that
most of the notation is identical to lexicographic CR-GBS. As before, the full
proof of correctness and query usage of Algorithm 4 can be found in the online
version of the paper.

Theorem 4. Let P be an (m,n)-polytope partition where n is constant. Fur-
thermore, let k =

(

n
2

)

. Adversarial CR-GBS computes an ε-close labelling of P

and uses O
(

mk logk
(

m
ε

)

)

= poly(m, log
(

1
ε

)

) queries.

6 Applications to Game Theory

Let G = (A,B) be an m×n bi-matrix game where A,B ∈ [0, 1]m×n are row and
column player payoff matrices respectively with payoffs normalised to [0, 1]. The
set of row player pure strategies is [m] = {1, . . . , m} and that of the column player
pure strategies is [n] = {1, . . . , n}. The set of all row player mixed strategies can
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Algorithm 4. Adversarial CR-GBS(m,n, ε,P)
Input: m, n, ε > 0, query access to QA for (m, n)-polytope partition P.
Output: ε-close labelling of P.

k ← (
n
2

)

for F ∈ ∂(Δm)k do

P̂F ← φ−1
F

(
CD-GBS

(
k, n, 3ε

100n2√
k+1(m+1)5/2

, Q ◦ φ−1
F

))
.

P̂ ← ConvF (P̂F )

while ∃i, j ∈ [n], z ∈ Δm such that dim(P̂i) = m and z ∈ int(P̂i) do
Merge label i with label j
Recompute convex hulls of labels

return Q̂

be identified with Δm−1 = {x ∈ R
m−1|∑m−1

i=1 xi ≤ 1 and xi ≥ 0}. Similarly,
column player mixed strategies are identified with Δn−1.

Definition 13 (Utility Functions). Let u ∈ Δm−1, and v ∈ Δn−1 be row and
column player mixed strategies and let u′ = (1 − ∑

ui, u1, ..., un−1) and v′ =
(1−∑

vi, v1, ..., vn−1). For strategy profile (u, v), row player utility is Ur(u, v) =
u′T Av′ and column player utility is Uc(u, v) = u′T Bv′.

It will be useful to have shorthand for the following functions: U i
r(y) =

Ur(ei, y) as the row player utility for playing pure strategy i, and ER(y) =
maxi∈[m] U

i
r(y) as the maximal utility the row player can achieve against mixed

strategies. In an identical fashion we can define U j
c and EC as the column player

utility in playing strategy j and the maximal column player utility. With this
notation in hand, we can define the best response oracles our algorithms will
have access to.

Definition 14 (Best Response Query Oracles). Any bimatrix game has the
following best response query oracles:

– Strong query oracles: for the column player, BRC
s (u) = {j ∈ [n] | U j

c (u) =
EC(u)} and for the row player, BRR

s (v) = {i ∈ [m] | U i
r(v) = ER(v)}

– Lexicographic query oracles: for the column player, BRC
� (u) = min BRC

s (u)
and for the row player, BRR

� (v) = min BRR
s (v)

– Adversarial query oracles: for the column player, any function BRC
A such that

BRC
A(u) ∈ BRC

s (u) and for the row player, any function such that BRR
A(v) ∈

BRR
s (v)

Definition 15 (Nash Equilibrium). Suppose that u and v are row and column
player strategies respectively. We say that the pair (u, v) is a Nash Equilibrium
(NE) if for all u′ ∈ Δm−1 and v′ ∈ Δn−1: Ur(u, v) ≥ Ur(u′, v) and Uc(u, v) ≥
Uc(u, v′).

With utility queries the complexity of an exact Nash equilibrium is finite:
we can exhaustively query the game. This is not the case for best response
queries. Therefore, the relaxation we study is that of approximate well-supported
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Nash equilibria. Before proceeding, we say that a row player mixed strategy
u ∈ Δm is an ε best response against a column player mixed strategy v ∈ Δn if
Ur(u, v) ≥ Ur(u′, v)−ε for all u′ ∈ Δm. An identical notion holds for the column
player.

Definition 16 (ε-Well-Supported Nash Equilibrium). Suppose that u and
v are row and column player strategies respectively. We say that the pair (u, v)
is an ε-well-supported Nash equilibrium (ε-WSNE) if and only if u is supported
by ε-best responses to v and vice versa.

Definition 16 mentions approximate best responses, yet we only have access
to the best response oracle in our model. To resolve this, we bound how much
utilities can deviate between “close” mixed strategy profiles. The full proof of
the following lemma can be found in the online version of the paper.

Lemma 10. Fix ε > 0 and let δC = ε
2
√

m−1
. Suppose that u ∈ Δm−1 is a row

player mixed strategy with cj ∈ BRC
s (u). For any u′ such that ‖u−u′‖2 ≤ δC , if

ci ∈ BRC
s (u′), then |U i

c(u)−U j
c (u)| ≤ ε. In other words, ci is an ε-best response

to u. Similarly, let δR = ε
2
√

n−1
. Suppose that v ∈ Δn−1 is a column player mixed

strategy with rj ∈ BRR
s (u). For any v′ such that ‖v−v′‖2 ≤ δR, if ri ∈ BRR

s (v′),
then |U i

r(v) − U j
r (v)| ≤ ε. In other words, ri is an ε-best response to v.

We now prove the connection between computing ε-close labellings of poly-
tope partitions and computing ε-WSNE for bimatrix games using best response
queries.

Definition 17 (Best Response Sets). Let G = (A,B) be a bimatrix
game. We define column best response sets as the collection of Ci = {x ∈
Δm−1 | BRC

s (x) � ci}. Similarly we define row player best response sets as
the collection of Rj = {y ∈ Δn−1 | BRR

s (y) � rj}. We denote the collections by
C = {Ci}n

i=1 and R = {Rj}m
j=1.

Since utilities are affine functions, it is immediately clear that C and R are
upper envelope polytope partitions. Best response oracles play the same role
as membership oracles, Q, from before. Since adversarial oracles are a valid
lexicographic oracle, we focus on using adversarial best response oracles. With
our language of empirical labellings we can now define the following important
concept, but first we clarify some notation: d(x, S) denotes the infimum distance
of a point, x to a set S.

Definition 18 (Voronoi Best Response Sets). Suppose that ̂C = { ̂Ci}
and ̂R = { ̂Rj} are empirical labellings of C and R as in Definition 6. The
Voronoi Best Response Sets of the row and column player are V Rj = {y ∈
Δn−1 | argminjd(y, ̂Rj) = rj} and V Ci = {x ∈ Δm−1 | argminid(x, ̂Ci) = ci},
defined for any j ∈ [m] and i ∈ [n]. Furthermore, we let V R(v) = {i | V Ri � v}
and V C(u) = {j |V Cj � u} be the row and column player Voronoi Best
Responses.
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Lemma 11. Suppose that ̂C is a ε
2
√

m−1
-close labelling and ̂R is a ε

2
√

n−1
-close

labelling. Then Voronoi best responses are ε best-responses in G.

Lemma 11 (with a full proof in the online version of the paper), tells us
precisely that Voronoi best response sets allow us to extend partial information
from empirical labellings to approximate best response information across the
entire domains Δm and Δn. This hints at the fact that Voronoi best response
sets hold enough information to compute ε-WSNE. In fact we can prove this in
the same way as Nash’s theorem: via Kakutani’s fixed point theorem. In order
to do so, we define a Voronoi best response correspondence (which as we have
shown before is an approximate best response correspondence), and show that it
satisfies the properties of Kakutani’s fixed point theorem. The guaranteed fixed
point of this correspondence will in turn be an ε-WSNE.

Definition 19 (Voronoi Approximate Best Response Correspon-
dence). For a given mixed strategy profile of both the row and column player,
(u, v) ∈ Δm−1 × Δn−1, we define B∗(u, v) to be the set of all possible mix-
tures over Voronoi best response profiles both players may have to the other
player’s strategy. B∗ : Δm−1 × Δn−1 → P(Δm−1 × Δn−1) is defined as follows:
B∗(u, v) =

(

conv(V R(v)), conv(V C(u))
) ⊆ Δm−1 × Δn−1.

Theorem 5 (Kakutani’s Fixed Point Theorem [18]). Let A be a non-
empty, compact and convex subset of R

n. Let f : A → P(A) be a set-valued
function on A with a closed graph and the property that f(x) is non-empty and
convex for all x ∈ A. Then f has a fixed point.

Theorem 6. B∗ satisfies all the conditions of Kakutani’s fixed point Theorem,
and hence there exists a strategy profile (u∗, v∗) such that (u∗, v∗) ∈ B∗(u∗, v∗).
In particular, if the Voronoi best responses for B∗ arise from ̂C , a ε

2
√

m−1
-close

labelling and ̂R, a ε
2
√

n−1
-close labelling, then this in turn implies that (u∗, v∗)

is an ε-WSNE of G.

The full proof of Theorem6 can be found in the online version of the paper.
With this in hand and our algorithms for constructing ε-close labellings, we
can bound the query complexity of computing an ε-WSNE in general bimatrix
games.

Theorem 7. Suppose that G is an m × n bimatrix game and let n be constant.
We can compute an ε-WSNE using O(mn2

logn2 (

m
ε

)

) = poly(m, log
(

1
ε

)

) adver-
sarial best response queries.

Proof. Suppose that C and R are UEPP arising from best-response sets in G.
This means that C is a (m − 1, n)-polytope partition and R is a (n − 1,m)-
polytope partition. Let εC = ε

2
√

m−1
and εR = ε

2
√

n−1
. From Theorem 6, we

know that computing an εC-close labelling of C and a εR-close labelling of R
suffice to compute an ε-WSNE of G. We use adversarial CR-GBS on C and
adversarial CD-GBS on R.
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n is the number of polytopes in the partition C , which is assumed to be
constant. Consequently, Theorem 4 states that computing an εC-close labelling
of C using CR-GBS uses O((m − 1)k logk

(

m−1
εC

)

) adversarial queries, where

k =
(

n
2

)

. Since k ≤ n2, this is bounded by O(mn2
logn2 (

m
ε

)

).
n − 1 is the dimension of the ambient simplex in the partition R, which is

assumed to be finite. Consequently, Theorem 3 states that computing an εR-close
labelling of R using CD-GBS uses O(m(n−1)2 logn−1

(

1
ε

)

) queries. We trivially
upper bound this quantity by O(mn2

logn2 (

m
ε

)

).
The total query usage is thus O(mn2

logn2 (

m
ε

)

) = poly(m, log
(

1
ε

)

) as
desired. ��

7 Conclusion and Future Directions

In this paper we introduced the concept of learning ε-close labellings of (m,n)-
polytope partitions with membership queries, and derived query efficient algo-
rithms for when either the dimension of the ambient simplex in the polytope
partition, m, is held constant, or when the number of polytopes in the partition,
n, is held constant. Most importantly, we introduced a novel reduction from
computing ε-WSNE with best response queries to this geometric problem, thus
allowing us to show that in the best response query model, computing ε-WSNE
of a bimatrix game has a finite query complexity. More specifically, for m × n
games with one parameter, say n, constant, the query complexity is polynomial
in m and log

(

1
ε

)

. Furthermore, in the full online version of the paper, we par-
tially extend our results from bimatrix games to n-player games. Although the
underlying geometry in n-player games prevents us from using our results from
learning polytope partitions, we are still able to show that querying a fine enough
ε-net of the mixed strategy space of all players suffices to compute an ε-WSNE.

As mentioned in the introduction, this geometric framework could be of use
in other areas where Lipschitz continuous structures appear over domains with
convex partitions. Upon further inspection, it is not difficult to see that polytope
partitions do not need to be contained in Δm, and in fact our algorithms extend
to arbitrary ambient polytopes. Furthermore, it would be of great interest to
create algorithms with a better query cost, prove lower bounds with regards to
computing ε-close labellings, or simply explore weaker query paradigms, such as
noisy membership oracles.
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Abstract. Liquid democracy is the principle of making collective deci-
sions by letting agents transitively delegate their votes. Despite its signif-
icant appeal, it has become apparent that a weakness of liquid democracy
is that a small subset of agents may gain massive influence. To address
this, we propose to change the current practice by allowing agents to
specify multiple delegation options instead of just one. Much like in
nature, where—fluid mechanics teaches us—liquid maintains an equal
level in connected vessels, so do we seek to control the flow of votes in a
way that balances influence as much as possible. Specifically, we analyze
the problem of choosing delegations to approximately minimize the max-
imum number of votes entrusted to any agent, by drawing connections
to the literature on confluent flow. We also introduce a random graph
model for liquid democracy, and use it to demonstrate the benefits of
our approach both theoretically and empirically.

1 Introduction

Liquid democracy is a potentially disruptive approach to democratic decision
making. As in direct democracy, agents can vote on every issue by themselves.
Alternatively, however, agents may delegate their vote, i.e., entrust it to any
other agent who then votes on their behalf. Delegations are transitive; for exam-
ple, if agents 2 and 3 delegate their votes to 1, and agent 4 delegates her vote to
3, then agent 1 would vote with the weight of all four agents, including herself.
Just like representative democracy, this system allows for separation of labor,
but provides for stronger accountability: Each delegator is connected to her tran-
sitive delegate by a path of personal trust relationships, and each delegator on
this path can withdraw her delegation at any time if she disagrees with her
delegate’s choices.

Although the roots of liquid democracy can be traced back to the work
of Miller [15], it is only in recent years that it has gained recognition among
practitioners. Most prominently, the German Pirate Party adopted the plat-
form LiquidFeedback for internal decision-making in 2010. At the highest point,
their installation counted more than 10 000 active users [12]. More recently, two
parties—the Net Party in Argentina, and Flux in Australia—have run in national
elections on the promise that their elected representatives would vote according
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to decisions made via their respective liquid-democracy-based systems. Although
neither party was able to win any seats in parliament, their bids enhanced the
promise and appeal of liquid democracy.

However, these real-world implementations also exposed a weakness in the
liquid democracy approach: Certain individuals, the so-called super-voters, seem
to amass enormous weight, whereas most agents do not receive any delegations.
In the case of the Pirate Party, this phenomenon is illustrated by an article in
Der Spiegel, according to which one particular super-voter’s “vote was like a
decree,” even though he held no office in the party. As Kling et al. [12] describe,
super-voters were so controversial that “the democratic nature of the system was
questioned, and many users became inactive.” Besides the negative impact of
super-voters on perceived legitimacy, super-voters might also be more exposed
to bribing. Although delegators can retract their delegations as soon as they
become aware of suspicious voting behavior, serious damage might be done in
the meantime. Furthermore, if super-voters jointly have sufficient power, they
might find it more efficient to organize majorities through deals between super-
voters behind closed doors, rather than to try to win a broad majority through
public discourse. Finally, recent work by Kahng et al. [11] indicates that, even
if delegations go only to more competent agents, a high concentration of power
might still be harmful for social welfare, by neutralizing benefits corresponding
to the Condorcet Jury Theorem.

While all these concerns suggest that the weight of super-voters should be
limited, the exact metric to optimize for varies between them and is often not
even clearly defined. For the purposes of this paper, we choose to minimize the
weight of the heaviest voter. As is evident in the Spiegel article, the weight
of individual voters plays a direct role in the perception of super-voters. But
even beyond that, we are confident that minimizing this measure will lead to
substantial improvements across all presented concerns.

Just how can the maximum weight be reduced? One approach might be to
restrict the power of delegation by imposing caps on the weight. However, as
argued by Behrens et al. [3], delegation is always possible by coordinating out-
side of the system and copying the desired delegate’s ballot. Pushing delegations
outside of the system would not alleviate the problem of super-voters, just reduce
transparency. Therefore, we instead adopt a voluntary approach: If agents are
considering multiple potential delegates, all of whom they trust, they are encour-
aged to leave the decision for one of them to a centralized mechanism. With the
goal of avoiding high-weight agents in mind, our research challenge is twofold:
First, investigate the algorithmic problem of selecting delegations to minimize the
maximum weight of any agent, and, second, show that allowing multiple delega-
tion options does indeed provide a significant reduction in the maximum weight
compared to the status quo.

Put another (more whimsical) way, we wish to design liquid democracy sys-
tems that emulate the law of communicating vessels, which asserts that liquid
will find an equal level in connected containers.

http://www.spiegel.de/international/germany/liquid-democracy-web-platform-makes-professor-most-powerful-pirate-a-818683.html
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1.1 Our Approach and Results

We formally define our problem in Sect. 2. In general, our problem is closely
related to minimizing congestion for confluent flow as studied by Chen et al. [5].
Not only does this connection suggest an optimal algorithm based on mixed
integer linear programming, but we also get a polynomial-time (1 + log |V |)-
approximation algorithm, where V is the set of direct voters.1 In addition, we
show that approximating our problem to within a factor of 1

2 log2 |V | is NP-hard.
In Sect. 3, to evaluate the benefits of allowing multiple delegations, we pro-

pose a probabilistic model for delegation behavior—inspired by the well-known
preferential attachment model [2]. In a certain class of parameter settings, mov-
ing from single delegations to two delegation options per agent decreases the
maximum weight doubly exponentially. Our analysis draws on a phenomenon
called the power of choice that can be observed in many different load balancing
models.

In Sect. 4, we show through simulations that our approach continues to out-
perform classical preferential attachment in more general parameter settings.
These improvements in terms of maximum weight persist even if just some frac-
tion of delegators gives two options while the others specify a single delegate.
Finally, we find that the approximation algorithm and even a greedy heuristic
lead to close-to-optimal maximum weights in our model.

1.2 Related Work

Kling et al. [12] conduct an empirical investigation of the existence and influence
of super-voters. The analysis is based on daily data dumps, from 2010 until 2013,
of the German Pirate Party installation of LiquidFeedback. As noted above,
Kling et al. find that super-voters exist, and have considerable power. The results
do suggest that super-voters behave responsibly, as they “do not fully act on their
power to change the outcome of votes, and they vote in favour of proposals with
the majority of voters in many cases.” Of course, this does not contradict the
idea that a balanced distribution of power would be desirable.

There are only a few papers that provide theoretical analyses of liquid democ-
racy [7,9,11]. We would like to stress the differences between our approach and
the one adopted by Kahng et al. [11]. They consider binary issues in a setting
with an objective ground truth, i.e., there is one “correct” outcome and one
“incorrect” outcome. In this setting, voters are modeled as biased coins that
each choose the correct outcome with an individually assigned probability, or
competence level. The authors examine whether liquid democracy can increase
the probability of making the right decision over direct democracy by having
less competent agents delegate to more competent ones. By contrast, our work
is completely independent of the (strong) assumptions underlying the results of
Kahng et al. In particular, our approach is agnostic to the final outcome of the
voting process, does not assume access to information that would be inaccessi-
ble in practice, and is compatible with any number of alternatives and choice of
1 Throughout this paper, let log denote the natural logarithm.



The Fluid Mechanics of Liquid Democracy 191

voting rule used to aggregate votes. In other words, the goal is not to use liquid
democracy to promote a particular outcome, but rather to adapt the process of
liquid democracy such that more voices will be heard.

2 Algorithmic Model and Results

Let us consider a delegative voting process where agents may specify multiple
potential delegations. This gives rise to a directed graph, whose nodes represent
agents and whose edges represent potential delegations. A distinguished subset
of nodes corresponds to agents who have voted directly, the voters. Since voters
forfeit the right to delegate, the voters are a subset of the sinks of the graph. We
call all non-voter agents delegators.

Each agent has an inherent voting weight of 1. When the delegations will
have been resolved, the weight of every agent will be the sum of weights of her
delegators plus her inherent weight. We aim to choose a delegation for every
delegator in such a way that the maximum weight of any voter is minimized.

This task closely mirrors the problem of congestion minimization for con-
fluent flow (with infinite edge capacity): There, a flow network is also a finite
directed graph with a distinguished set of graph sinks, the flow sinks. Every
node has a non-negative demand. If we assume unit demand, this demand is 1
for every node. Since the flow is confluent, for every non-sink node, the algo-
rithm must pick exactly one outgoing edge, along which the flow is sent. Then,
the congestion at a node n is the sum of congestions at all nodes who direct
their flow to n plus the demand of n. The goal in congestion minimization is to
minimize the maximum congestion at any flow sink.

In spite of the similarity between confluent flow and resolving potential del-
egations, the two problems differ when a node has no path to a voter/flow sink.
In confluent flow, the result would simply be that no flow exists. In our setting
however, this situation can hardly be avoided. If, for example, several friends
assign all of their potential delegations to each other, and if all of them rely on
the others to vote, their weight cannot be delegated to any voter. Our mecha-
nism cannot simply report failure as soon as a small group of voters behaves in
an unexpected way. Thus, it must be allowed to leave these votes unused. At the
same time, of course, our algorithm should not exploit this power to decrease
the maximum weight, but must primarily maximize the number of utilized votes.
We formalize these issues in the following section.

2.1 Problem Statement

All graphs G = (N,E) mentioned in this section will be finite and directed.
Furthermore, they will be equipped with a set of voters V ⊆ sinks(G).

Some of these graphs represent situations in which all delegations have
already been resolved and in which each vote reaches a voter: We call a graph
(N,E) with voters V a delegation graph if it is acyclic, its sinks are exactly the
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set V , and every other vertex has outdegree one. In such a graph, define the
weight w(n) of a node n ∈ N as

w(n):=1 +
∑

(m,n)∈E

w(m).

This is well-defined because E is a well-founded relation on N .
Resolving the delegations of a graph G with voters V can now be described

as the MinMaxWeight problem: Among all delegation subgraphs (N ′, E′) of G
with voting vertices V of maximum |N ′|, find one that minimizes the maximum
weight of the voting vertices.

2.2 Connections to Confluent Flow

We recall definitions from the flow literature as used by Chen et al. [5]. We
slightly simplify the exposition by assuming unit demand at every node.

Given a graph (N,E) with V , a flow is a function f : E → R≥0. For any
node n, set in(n):=

∑
(m,n)∈Ef(m,n) and out(n):=

∑
(n,m)∈Ef(n,m). At every

node n ∈ N \ V , a flow must satisfy flow conservation: out(n) = 1 + in(n). The
congestion at any node n is defined as 1+ in(n). A flow is confluent if every node
has at most one outgoing edge with positive flow. We define MinMaxConges-

tion as the problem of finding a confluent flow on a given graph such that the
maximum congestion is minimized.

In the full version of this paper [8], we give translations between instances
of MinMaxWeight and MinMaxCongestion that preserve the optimization
objective value.

2.3 Algorithms

These translations allow us to apply algorithms—even approximation
algorithms—for MinMaxCongestion to our MinMaxWeight problem, that
is, we can reduce the latter problem to the former.

Theorem 1. Let A be an algorithm for MinMaxCongestion with approxi-
mation ratio c ≥ 1. Let A′ be an algorithm that, given (N,E) with V , runs
A on the active subgraph, and translates the result into a delegation subgraph
by eliminating all zero-flow edges. Then A′ is a c-approximation algorithm for
MinMaxWeight.

We relegate the proof to the full version [8]. Note that Theorem 1 works
for c = 1, i.e., even for exact algorithms. Therefore, it is possible to solve Min-

MaxWeight by adapting a standard mixed integer linear programming (MILP)
formulation of MinMaxFlow.

Since this algorithm is based on solving an NP-hard problem, it might be
too inefficient for typical use cases of liquid democracy with many participating
agents. Fortunately, it might be acceptable to settle for a slightly non-optimal
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maximum weight if this decreases computational cost. To our knowledge, the best
polynomial approximation algorithm for MinMaxCongestion is due to Chen
et al. [5] and achieves an approximation ratio of 1 + log |V |. Their algorithm
starts by computing the optimal solution to the splittable-flow version of the
problem, by solving a linear program. The heart of their algorithm is a non-
trivial, deterministic rounding mechanism. This scheme drastically outperforms
the natural, randomized rounding scheme, which leads to an approximation ratio
of Ω(|N |1/4) with arbitrarily high probability [6].

2.4 Hardness of Approximation

In this section, we demonstrate the NP-hardness of approximating the Min-

MaxWeight problem to within a factor of 1
2 log2 |V |. On the one hand, this

justifies the absence of an exact polynomial-time algorithm. On the other hand,
this shows that the approximation algorithm is optimal up to a multiplicative
constant.

Theorem 2. It is NP-hard to approximate the MinMaxWeight problem to a
factor of 1

2 log2 |V |, even when each node has outdegree at most 2.

Again, the proof can be found in the full version [8]. Not surprisingly, we
derive hardness via a reduction from MinMaxCongestion, i.e., a reduction
in the opposite direction from the one given in Theorem1. As shown by Chen
et al. [5], approximating MinMaxCongestion to within a factor of 1

2 log2 |V |
is NP-hard. However, in our case, nodes have unit demands. Moreover, we are
specifically interested in the case where each node has outdegree at most 2, as
in practice we expect outdegrees to be very small, and this case plays a special
role in the following section.

3 Probabilistic Model and Results

Our generalization of liquid democracy to multiple potential delegations aims to
decrease the concentration of weight. Accordingly, the success of our approach
should be measured by its effect on the maximum weight in real elections. Since,
at this time, we do not know of any available datasets,2 we instead propose a
probabilistic model for delegation behavior, which can serve as a credible proxy.
Our model builds on the well-known preferential attachment model, which gen-
erates graphs possessing typical properties of social networks.

The evaluation of our approach will be twofold: In Sects. 3.2 and 3.3, for a
certain choice of parameters in our model, we establish a striking separation
between traditional liquid democracy and our system. In the former case, the
maximum weight at time t is Ω(tβ) for a constant β with high probability,

2 There is one relevant dataset that we know of, which was analyzed by Kling et
al. [12]. However, due to stringent privacy constraints, the data privacy officer of the
German Pirate Party was unable to share this dataset with us.
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whereas in the latter case, it is in O(log log t) with high probability, even if each
delegator only suggests two options. For other parameter settings, we empirically
corroborate the benefits of our approach in Sect. 4.

3.1 The Preferential Delegation Model

Many real-world social networks have degree distributions that follow a power
law [13,16]. Additionally, in their empirical study, Kling et al. [12] observed that
the weight of voters in the German Pirate Party was “power law-like” and that
the graph had a very unequal indegree distribution. In order to meld the previous
two observations in our liquid democracy delegation graphs, we adapt a standard
preferential attachment model [2] for this specific setting. On a high level, our
preferential delegation model is characterized by three parameters: 0 < d < 1,
the probability of delegation; k ≥ 1, the number of delegation options from each
delegator; and γ ≥ 0, an exponent that governs the probability of delegating to
nodes based on current weight.

At time t = 1, we have a single node representing a single voter. In each
subsequent time step, we add a node for agent i and flip a biased coin to deter-
mine her delegation behavior. With probability d, she delegates to other agents.
Else, she votes independently. If i does not delegate, her node has no outgoing
edges. Otherwise, add edges to k many i.i.d. selected, previously inserted nodes,
where the probability of choosing node j is proportional to (indegree(j) + 1)γ .
Note that this model might generate multiple edges between the same pair of
nodes, and that all sinks are voters. Figure 1 shows example graphs for different
settings of γ.

Fig. 1. Example graphs generated by the preferential delegation model.

In the case of γ = 0, which we term uniform delegation, a delegator is equally
likely to attach to any previously inserted node. Already in this case, a “rich-get-
richer” phenomenon can be observed, i.e., voters at the end of large networks
of potential delegations will likely see their network grow even more. Indeed,
a larger network of delegations is more likely to attract new delegators. In
traditional liquid democracy, where k = 1 and all potential delegations will
be realized, this explains the emergence of super-voters with excessive weight
observed by Kling et al. [12]. We aim to show that for k ≥ 2, the resolution of
potential delegations can strongly outweigh these effects. In this, we profit from
an effect known as the “power of two choices” in load balancing described by
Azar et al. [1].
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For γ > 0, the “rich-get-richer” phenomenon additionally appears at the
degrees of nodes. Since the number of received potential delegations is a proxy
for an agent’s competence and visibility, new agents are more likely to attach to
agents with high indegree. In total, this is likely to further strengthen the inher-
ent inequality between voters. For increasing γ, the graph becomes increasingly
flat, as a few super-voters receive nearly all delegations. This matches observa-
tions from the LiquidFeedback dataset [12] that “the delegation network is slowly
becoming less like a friendship network, and more like a bipartite networks of
super-voters connected to normal voters.” The special case of γ = 1 corresponds
to preferential attachment as described by Barabási and Albert [2].

The most significant difference we expect to see between graphs generated by
the preferential delegation model and real delegation graphs is the assumption
that agents always delegate to more senior agents. In particular, this causes gen-
erated graphs to be acyclic, which need not be the case in practice. It does seem
plausible that the majority of delegations goes to agents with more experience
on the platform. Even if this assumption should not hold, there is a second inter-
pretation of our process if we assume—as do Kahng et al. [11]—that agents can
be ranked by competence and only delegate to more competent agents. Then,
we can think of the agents as being inserted in decreasing order of competence.
When a delegator chooses more competent agents to delegate to, her choice
would still be biased towards agents with high indegree, which is a proxy for
popularity.

In our theoretical results, we focus on the cases of k = 1 and k = 2, and
assume γ = 0 to make the analysis tractable. The parameter d can be chosen
freely between 0 and 1. Note that our upper bound for k = 2 directly translates
into an upper bound for larger k, since the resolution mechanism always has
the option of ignoring all outgoing edges except for the two first. Therefore, to
understand the effect of multiple delegation options, we can restrict our attention
to k = 2. This crucially relies on γ = 0, where potential delegations do not
influence the probabilities of choosing future potential delegations. Based on
related results by Malyshkin and Paquette [14], it seems unlikely that increasing
k beyond 2 will reduce the maximum weight by more than a constant factor.

3.2 Lower Bounds for Single Delegation (k = 1, γ = 0)

As mentioned above, we begin with a lower bound on the maximum weight for
the case of uniform delegation and a single delegation option per delegator. Here
and in the following, we say that a sequence (Et)t of events happens with high
probability if P[Et] → 1 for t → ∞. Our lower bound, whose proof is relegated to
the full version [8], is the following:

Theorem 3. In the preferential delegation model with k = 1, γ = 0, and d ∈
(0, 1), with high probability, the maximum weight of any voter at time t is in
Ω(tβ), where β > 0 is a constant that depends only on d.
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3.3 Upper Bound for Double Delegation (k = 2, γ = 0)

Analyzing cases with k > 1 is considerably more challenging. One obstacle is
that we do not expect to be able to incorporate optimal resolution of potential
delegations into our analysis, because the computational problem is hard even
when k = 2 (see Theorem 2). Therefore, we give a pessimistic estimate of opti-
mal resolution via a greedy delegation mechanism, which we can reason about
alongside the stochastic process. Clearly, if this stochastic process can guarantee
an upper bound on the maximum weight with high probability, this bound must
also hold if delegations are optimally resolved to minimize maximum weight.

In more detail, whenever a new delegator is inserted into the graph, the
greedy mechanism immediately selects one of the delegation options. As a result,
at any point during the construction of the graph, the algorithm can measure
the weight of the voters. Suppose that a new delegator suggests two delegation
options, to agents a and b. By following already resolved delegations, the mech-
anism obtains voters a∗ and b∗ such that a transitively delegates to a∗ and b
to b∗. The greedy mechanism then chooses the delegation whose voter currently
has lower weight, resolving ties arbitrarily.

This situation is reminiscent of a phenomenon known as the “power of
choice.” In its most isolated form, it has been studied in the balls-and-bins model,
for example by Azar et al. [1]. In this model, n balls are to be placed in n bins. In
the classical setting, each ball is sequentially placed into a bin chosen uniformly
at random. With high probability, the fullest bin will contain Θ(log n/ log log n)
balls at the end of the process. In the choice setting, two bins are independently
and uniformly selected for every ball, and the ball is placed into the emptier one.
Surprisingly, this leads to an exponential improvement, where the fullest bin will
contain at most Θ (log log n) balls with high probability.

We show that, at least for γ = 0 in our setting, this effect outweighs the
“rich-get-richer” dynamic described earlier:

Theorem 4. In the preferential delegation model with k = 2, γ = 0, and d ∈
(0, 1), the maximum weight of any voter at time t is log2 log t + Θ(1) with high
probability.

Due to space constraints, we defer the proof to the full version [8]. In our
proof we build on work by Malyshkin and Paquette [14], who study the maximum
degree in a graph generated by preferential attachment with the power of choice.
In addition, we incorporate ideas by Haslegrave and Jordan [10].

4 Simulations

In this section, we present our simulation results, which support the two main
messages of this paper: that allowing multiple delegation options significantly
reduces the maximum weight, and that it is computationally feasible to resolve
delegations in a way that is close to optimal.
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Our simulations were performed on a MacBook Pro (2017) on MacOS 10.12.6
with a 3.1 GHz Intel Core i5 and 16 GB of RAM. All running times were mea-
sured with at most one process per processor core. Our simulation software is
written in Python 3.6 using Gurobi 8.0.1 to solve MILPs. All of our simulation
code is open-source and available at https://github.com/pgoelz/fluid.

4.1 Multiple vs. Single Delegations

For the special case of γ = 0, we have established a doubly exponential, asymp-
totic separation between single delegation (k = 1) and two delegation options
per delegator (k = 2). While the strength of the separation suggests that some
of this improvement will carry over to the real world, we still have to examine
via simulation whether improvements are visible for realistic numbers of agents
and other values of γ.

To this end, we empirically evaluate two different mechanisms for resolving
delegations. First, we optimally resolve delegations by solving an MILP for con-
fluent flow. Our second mechanism is the greedy “power of choice” algorithm
used in the theoretical analysis and introduced in Sect. 3.3.

Fig. 2. Maximum weight averaged over 100 simulations of length 5 000 time steps each.
Maximum weight has been computed every 50 time steps.

In Fig. 2, we compare the maximum weight produced by a single-delegation
process to the optimal maximum weight in a double-delegation process, for dif-
ferent values of γ. Corresponding figures for different values of d and γ can be
found in the full version [8].

These simulations show that our asymptotic findings translate into consid-
erable differences even for small numbers of agents, across different values of d.
Moreover, these differences remain nearly as pronounced for values of γ up to 1,
which corresponds to classical preferential attachment. This suggests that our
mechanism can outweigh the social tendency towards concentration of votes;
however, evidence from real-world elections is needed to settle this question.
Lastly, we would like to point out the similarity between the graphs for the opti-
mal maximum weight and the result of the greedy algorithm, which indicates
that a large part of the separation can be attributed to the power of choice.

https://github.com/pgoelz/fluid
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If we increase γ to large values, the separation between single and double
delegation disappears. As we show in the full version [8], there are even combi-
nations of γ > 1 and d such that the curve for single delegation falls below the
ones for double delegation. In these settings, since a large fraction of delegators
give two identical delegation options, any resolution mechanism has virtually no
leverage. In the double delegation setting, indegrees grow faster, which makes
the delegations concentrate toward a single voter more quickly than in classical
liquid democracy, leading to a wildly unrealistic concentration of weight. Thus,
it seems that large values of γ do not actually describe our scenario of multiple
delegations.

Fig. 3. Optimal maximum weight for
different k averaged over 100 simula-
tions, computed every 10 steps. γ = 1,
d = 0.5.

Fig. 4. Optimal maximum weight aver-
aged over 100 simulations. Voters give
two delegations with probability p; else
one. γ = 1, d = 0.5.

As we have seen, switching from single delegation to double delegation greatly
improves the maximum weight in plausible scenarios. It is natural to wonder
whether increasing k beyond 2 will yield similar improvements. As Fig. 3 shows,
however, the returns of increasing k quickly diminish, which is common to many
incarnations of the power of choice [1].

4.2 Evaluating Mechanisms

Already the case of k = 2 appears to have great potential; but how easily can
we tap it?

We have observed that, on average, the greedy “power of choice” mechanism
comes surprisingly close to the optimal solution. However, this greedy mecha-
nism depends on seeing the order in which our random process inserts agents
and on the fact that all generated graphs are acyclic, which need not be true in
practice. If the graphs were acyclic, we could simply first sort the agents topo-
logically and then present the agents to the greedy mechanism in reverse order.
On arbitrary active graphs, we instead proceed through the strongly connected
components in reversed topological order, breaking cycles and performing the
greedy step over the agents in the component. To avoid giving the greedy algo-
rithm an unfair advantage, we use this generalized greedy mechanism throughout
this section. Thus, we compare the generalized greedy mechanism, the optimal
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solution, the (1 + log |V |)-approximation algorithm3 and a random mechanism
that materializes a uniformly chosen option per delegator.

On a high level, we find that both the generalized greedy algorithm and
the approximation algorithm perform comparably to the optimal confluent flow
solution. Across a variety of values of d and γ examined in the full paper [8], all
three mechanisms seem similarly effective in exploiting the advantages of double
delegation.

The similar success of these three mechanisms might indicate that our prob-
abilistic model for k = 2 generates delegation networks that have low maximum
weights for arbitrary resolutions. However, this is not the case: The random
mechanism does quite poorly already on small instances, and the gap between
random and the other mechanisms only grows further as t increases, as indicated
by Fig. 5. In general, the graph for random delegations looks more similar to sin-
gle delegation than to the other mechanisms on double delegation. Indeed, for
γ = 0, random delegation is equivalent to the process with k = 1, and, for higher
values of γ, it performs even slightly worse since the unused delegation options
make the graph more centralized (see the full paper [8]). Thus, if simplicity is a
primary desideratum, we recommend using the generalized greedy algorithm.

As Fig. 6 and additional measurements detailed in the full version [8] demon-
strate, all three other mechanisms, including the optimal solution, easily scale to
input sizes as large as the largest implementations of liquid democracy to date.

Fig. 5. Maximum weight per algorithm
for d = 0.5, γ = 1, k = 2, averaged over
100 simulations.

Fig. 6. Running time of mechanisms on
graphs for d = 0.5, γ = 1, averaged
over 20 simulations.

3 For one of their subprocedures, instead of directly optimizing a convex program,
Chen et al. [5] reduce this problem to finding a lexicographically optimal maximum
flow in O(n5). We choose to directly optimize the convex problem in Gurobi, hoping
that this will increase efficiency in practice.
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5 Discussion

The approach we have presented and analyzed revolves around the idea of allow-
ing agents to specify multiple delegation options, and selecting one such option
per delegator. A natural variant of this approach corresponds to splittable—
instead of confluent—flow. In this variant, the mechanism would not have to
commit to a single outgoing edge per delegator. Instead, a delegator’s weight
could be split into arbitrary fractions between her potential delegates. Indeed,
such a variant would be computationally less expensive, and the maximum vot-
ing weight can be no higher than in our setting. However, we view our concept of
delegation as more intuitive and transparent: Whereas, in the splittable setting,
a delegator’s vote can disperse among a large number of agents, our mechanism
assigns just one representative to each delegator. As hinted at in the introduction,
this is needed to preserve the high level of accountability guaranteed by classi-
cal liquid democracy. We find that this fundamental shortcoming of splittable
delegations is not counterbalanced by a marked decrease in maximum weight.
Indeed, representative empirical results given in the full version [8] show that
the maximum weight trace is almost identical under splittable and confluent
delegations. Furthermore, note that in the preferential delegation model with
k = 1, splittable delegations do not make a difference, so the lower bound given
in Theorem 3 goes through. And, when k ≥ 2, the upper bound of Theorem4
directly applies to the splittable setting. Therefore, our main technical results in
Sect. 3 are just as relevant to splittable delegations.

To demonstrate the benefits of multiple delegations as clearly as possible,
we assumed that every agent provides two possible delegations. In practice, of
course, we expect to see agents who want to delegate but only trust a single per-
son to a sufficient degree. This does not mean that delegators should be required
to specify multiple delegations. For instance, if this was the case, delegators
might be incentivized to pad their delegations with very popular agents who are
unlikely to receive their votes. Instead, we encourage voters to specify multiple
delegations on a voluntary basis, and we hope that enough voters participate to
make a significant impact. Fortunately, as demonstrated in Fig. 4, much of the
benefits of multiple delegation options persist even if only a fraction of delegators
specify two delegations.

Without doubt, a centralized mechanism for resolving delegations wields con-
siderable power. Even though we only use this power for our specific goal of
minimizing the maximum weight, agents unfamiliar with the employed algo-
rithm might suspect it of favoring specific outcomes. To mitigate these concerns,
we propose to divide the voting process into two stages. In the first, agents either
specify their delegation options or register their intent to vote. Since the votes
themselves have not yet been collected, the algorithm can resolve delegations
without seeming partial. In the second stage, voters vote using the generated
delegation graph, just as in classic liquid democracy, which allows for trans-
parent decisions on an arbitrary number of issues. Additionally, we also allow
delegators to change their mind and vote themselves if they are dissatisfied with
how delegations were resolved. This gives each agent the final say on their share
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of votes, and can only further reduce the maximum weight achieved by our mech-
anism. We believe that this process, along with education about the mechanism’s
goals and design, can win enough trust for real-world deployment.

Beyond our specific extension, one can consider a variety of different
approaches that push the current boundaries of liquid democracy. For exam-
ple, in a recent position paper, Brill [4] raises the idea of allowing delegators
to specify a ranked list of potential representatives. His proposal is made in
the context of alleviating delegation cycles, whereas our focus is on avoiding
excessive concentration of weight. But, on a high level, both proposals envision
centralized mechanisms that have access to richer inputs from agents. Making
and evaluating such proposals now is important, because, at this early stage in
the evolution of liquid democracy, scientists can still play a key role in shaping
this exciting paradigm.

Acknowledgments. We are grateful to Miklos Z. Racz for very helpful pointers to
analyses of preferential attachment models.
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Abstract. We consider multi-product (m products) Cournot games
played by n firms where products are substitutable goods. Such games
can arise in network markets and in general is motivated by markets with
differentiated goods and differing producer costs that can be arbitrary,
especially due to subsidies. We provide strongly polynomial algorithms
for computing the Nash equilibrium for Cournot games with quadratic
utility functions. To study the inefficiency, we provide a characterization
of Nash equilibrium in multi-product oligopolies with concave utilities
and uniform substitutability in terms of games with quadratic utilities.
We show that the Price of Anarchy in these games is bounded below
by 2/3.

1 Introduction

We study social welfare in the context of Cournot games in a differentiated prod-
uct market. One of the motivations is to investigate the impact of heterogeneous
costs on the efficiency of competitive good production. Digital distribution and
on-line content delivery is growing more competitive every year with increasing
demand and content providers (CP) are vying for higher proportions of premium
bandwidth so as to provide enhanced quality of service. Differentiation in inter-
net markets is provided by different levels of services, which are substitutable to
a certain extent. To manage costs, leading internet service providers (ISP) are
providing data services to consumers that is sponsored by content providers who
are vying to gain consumer subscriptions. This includes content providers like
Facebook, and the Netflix- T-mobile [3] and AT&T- HBO partnerships [10].

A model of how sponsored data plans alter the payment structure to ISPs
has been illustrated in [14]. The net impact of CPs providing payments to ISPs
is to alter the cost structure of specific ISPs. Does this lead to loss of effi-
ciency or unfair competition? A study of Cournot games which include pro-
ducer dependent production costs provides an insight into this question. The
use of sponsored data plans is one illustration of the change of costs incurred by
ISPs and users. Subsidies of other types may also significantly change the cost.
There has been substantial work in this area, including the use of game theoretic
frameworks [2].
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We consider oligopolistic competition in a differentiated products market
with m products. The study of markets in the context of oligopolistic competi-
tion has been modeled by Cournot and Bertrand games. Of particular interest
are Cournot games where firms decide production levels in an effort to clear
markets, while maximizing their profit. These games have been studied exten-
sively by multiple authors [4,6,8,22,25,26] who have considered relationships
between equilibrium prices, production costs etc. The study of social welfare
in oligopolistic competition has been less extensive and is more recent [11,18].
Quantification of the loss in social welfare as measured by Price of Anarchy has
been introduced in [19], where this term denotes the ratio between the social
welfare, as defined by a specific objective function, at the worst-case Nash equi-
librium and the optimum social welfare. Bounds on Price of Anarchy have since
been extensively studied in multiple contexts, notably in transportation networks
that were first studied by Roughgarden and Tardos in [24].

We use game theoretic market models to further our understanding of the
impact of cost structures on pricing and profits and analyze its impact on the
relative benefits accrued to the production of goods. Our model is based on
a very generic Cournot model of competition with multiple goods and multi-
ple producers. This model has been considered previously by multiple papers,
most notably in [18,21], where in [21], Ledvina and Sircar consider multiple pro-
ducers each producing a distinct product, the products being substitutable and
the impact of substitutability being measured by a parameter γ. They analyze
the number of firms that will be in the market as a function of product sub-
stitutability. In [18], Kluberg and Perakis study a general version where prices
are dependent on producers and provide Price of Anarchy results when good
substitutability is modeled by a matrix M , assumed to be a diagonally domi-
nant M-matrix. In this paper, we focus on substitutability and use a model that
generalizes the consumer utility model as defined in [21] and [18]. We model util-
ities by a concave function, generalizing the quadratic utility model used in the
previous papers. In addition to incorporating multiple products, an important
aspect of our model is the cross product impact or the impact of substitutability
of one good on the other. Product substitutability is modeled by an interaction
matrix that is positive semi-definite. When goods are similar, substitutability is
modeled by an uniform interaction matrix, as defined in [21]. The provision of
subsidies, either regulatory or through other market participants can alter the
cost structure of the producers. Thus our model emphasizes distinct costs. We
provide a constant tight bound of 2

3 for the price of anarchy, using the social cost
metric, in Cournot games when the games have a uniform interaction matrix.
Another recent work [20] that addresses the interaction between producers and
consumers in a networked market also considers substitutability in the form
of parallel edges; however the price function of a good-producer pair does not
include the impact of other substitutable goods.

Efficiency loss in single product games have been the attention of multiple
papers, including [16] that shows a bound of 2

3 for a single product game. Tsit-
siklis and Xu [28,29] focus on analyzing convex inverse demand functions and its
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inefficiency as compared to affine price functions but do not consider multiple
goods and the interaction between them via substitutability. In both papers, the
model consists of a single homogeneous good; and while their inefficiency bounds
(PoA) for affine inverse demand function is shown to be 2

3 , for convex inverse
demand functions the bound can be arbitrarily low. In contrast, our bound of
2
3 holds for concave inverse demand functions for games with multiple goods
which are substitutable. In the case of a single good and affine inverse demand
functions, this bound coincides with the bound in [28,29].

Additional research that addresses inefficiency in Cournot markets may be
found in [11] which considers markets with a single homogeneous good. An anal-
ysis from the viewpoint of coalitions may be found in [13]. The study of multi-
product oligopolies faces challenges, especially when the demand functions are
non-linear and typically the action spaces are unbounded. In the paper [23], the
existence of equilibrium in multi-product Cournot oligopolies under certain con-
ditions has been proven. Multi-product oligopolistic competition in the context
of global trade has also been considered in [7] when firms are identical. Other
models that have been considered include models with user types [17]. The eco-
nomics literature addresses equilibrium existence and uniqueness in the Cournot
model. Equilibrium existence and uniqueness are ensured if the reciprocal of
demand is convex [5].

In this paper, our first set of results provide polynomial time algorithms for
computing Nash equilibrium. Recent related work includes the work in Abol-
hassani et al. [1] where they study multi-market Cournot model (by utilizing a
bipartite graph to model consumers and products (markets)) and provide algo-
rithms for computing Nash equilibrium. The network market defined in their
paper has only one product, and the network impact is accounted for by the
cost function. Since they consider a single product they do not consider sub-
stitutability of one good with another; their model thus differs substantially in
this aspect. They also provide algorithms to compute equilibrium in network
markets using convex programming and Linear Complementarity, and a combi-
natorial algorithm relying on binary search for the produced quantity in a market
with one good. We use a primal-dual approach to solve the multi-dimensional
problem of determining the equilibrium involving multiple goods. In [27], Harks
and Timmermans consider the computation of equilibrium in multi-markets and
reduce the oligopoly equilibrium to computing the equilibrium in an atomic
splittable congestion game. While they use a price function that is dependent
on the production of the good, they do not consider any interaction between the
different goods, which is the focus of this paper.

Our Contributions. This paper

• Defines a model that considers consumer utility in a market with multiple
goods and multiple producers where the consumer utility is concave and the
demand of each good is based on a price function which is concave. Our
model generalizes the models in [21] for multi-product oligopolistic compe-
tition with heterogeneous producers. The goods are modeled as substitutes
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utilizing a matrix B, termed the product interaction matrix. We provide Price
of Anarchy bounds for the uniform case (modeled by an interaction matrix
that has the substitutability parameter γ where the product’s impact on its
own demand is by a factor β). Contrast this with the analysis in [18], where
the matrix M is assumed to be diagonally dominant. To understand the dif-
ference, we note that in the uniform case the property of diagonally dominant
would imply that γ is asymptotically vanishing as compared to β for large
number of products.

• Provides a strongly polynomial algorithm for computing Nash equilibrium in
the case of quadratic utilities. The Nash equilibrium solution is determined
for the most general case of n producers and m distinct products, using a
primal-dual technique. To our knowledge, there are no existing comparable
algorithms.

• Determines the Price of Anarchy (PoA) in the case of concave utilities but
with uniform product interaction matrix. This model captures the impact of
competition since producers can be divided into two categories, those that
have cost sponsorship or subsidies and those that do not. With n producers
and m product classes or goods, we show that the PoA ≥ 2

3 or more specifi-
cally, 2n+4

3n+5 , which is tight. While our bound suggests that inefficiency in social
welfare is bounded, we note that the socially optimum solution favors dispar-
ity in production costs. This points us towards future research on fairness.

In Sect. 2, we define the multi-product Oligopoly model and introduce ter-
minology. Section 3 provides the strongly polynomial algorithm for games with
quadratic utility functions. In Sect. 4, we present bounds on the Price of Anarchy
for games with uniform product interaction matrices. Due to space constraints,
we provide proofs for our claims and results in a fuller version [12].

2 Model Formulation

We consider a general Cournot competitive model involving n producers and m
goods. The game is defined as G = (N,M, (Ui)i∈N , (ci

q)i∈N,q∈M ), where N =
{1, . . . n} is the set of producers and M = {1, . . . m} is the set of product classes
(goods) to be produced. Ui is the utility function for producer i and ci

q denotes
the cost of producing a unit of good q incurred by producer i. We use Xi ∈ R

m
+

to represent the production vector of the ith producer, i.e. Xi = (Xi
1, . . . , X

i
m)

where Xi
q represents the production of the qth product. The total production

schedule is represented by X = (X1, . . . , Xn) ∈ R
n×m. We also let Xq =

∑
i Xi

q,
where Xq ∈ R, represents the composite production of good q.

Given a production schedule X = (Xi
q)∀i,q, producer i’s utility function,

provided by the profit per unit of good sold, is given as Ui(Xi,X−i) =∑
q Xi

q(p
i
q(X) − ci

q). Here, pi
q(X) is the inverse demand (price) function, i.e.,

the price of good q offered by producer i. For simplicity, we denote Ui

(
Xi,X−i

)

as Ui.
We consider an aggregate consumer c as a representative of all the consumers

in the system, and introduce a general class of consumer utility functions, Uc, for
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the aggregate consumer, based on the models in [16,18,21,30]. We allow goods to
be substitutable, and represent the interaction between goods by using a matrix
B ∈ R

nm×nm, termed the product interaction matrix, similar to the one used
in [18]. The consumer utility is defined by Uc = LT X − f

(
XT BX

)
where f(y)

is a convex non-decreasing function; vector L =
(
l11, l

1
2, · · · , l1m, l21, · · · , lnm

)
, with

nm components, represents the marginal utility of the goods for the first unit of
production; and XT BX is the quadratic form that captures the effect of inter-
product substitutability. We assume B to be positive semi-definite, defining a
convex function. Consequently, Uc is concave w.r.t X. The optimum demand
vector of the consumer generates the price function p = L − f ′ (XT BX

)
BX

where f ′(XT BX) is a convex function. This causes the price function p to be
concave. In B, we index the row corresponding to producer i and good q as
B(iq). Individual entries in B are indexed by the pair (iq, i′q′), and represented
by B(iq),(i′q′).

We also consider a meaningful restriction of the problem, i.e., when the func-
tion f(y) is affine, then we can express the consumer utility as a quadratic
function. For convenience, we assume consumer utility and price functions to be
of the forms: Uc = LT X − 1

2XT BX, and p = L−BX. This model has also been
utilized in [18] and is standard in the economics literature [30]. We refer to this
model as the quadratic utility model.

The matrix B that represents the interaction between products can, in gen-
eral, be arbitrary. To model substitutability among similar products, we assume
B to have a uniform structure, i.e., ∀q �= q′B(iq,iq′) = γ, with γ representing a
common substitutability parameter. Such uniform product interaction for pro-
ducers has been considered in the context of differentiated product Cournot
games in [21]. We term this model as the uniform interaction model. In this
model, the quadratic utility function Ūc yields a linear price function pq(X),
described below.

Ūc =
∑

q

(
lqXq − 1

2
(
β(Xq)2 +

∑

q′ γXqXq′
))

(1)

pq(X) = lq − βXq − γ
∑

q′ �=q

Xq′ (2)

Note that 0 ≤ γ ≤ β and represents the impact of substitute products in differ-
entiated oligopolistic markets.

Nash Equilibrium. We define that a game G = (N,M, (Ui)i∈N , (ci
q)i∈N,q∈M )

is at a Nash (Cournot-Nash) equilibrium at a feasible production vector X =
(Xi)i∈N , iff Ui

(
Xi,X−i

) ≥ Ui

(
X̄i,X−i

)
,∀i, where X̄i is an alternative feasible

production vector for producer i, and X−i is the production schedule of the other
producers at Nash equilibrium. A feasible production vector is non-negative and
ensures non-negative profit per unit good.

To determine Nash equilibrium in the Cournot game, a producer i ∈ N
aims to maximize its total utility, given the production schedule of the other
producers, over all the classes q ∈ M of goods produced, by solving the following
problem.
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argXi maxUi(Xi,X−i)

s.t. (L − BX)iq ≥ ci
q,∀q

Xi
q ≥ 0,∀q

(L − BX)iq represents the component indexed by the producer-good pair (i, q)
in the vector (L − BX). The inequality follows from the fact that no goods will
be produced when the price of the good is below the cost of production. The
natural question that arises is whether a Nash equilibrium exists in this setting.
We state the following result for completion.

Claim 1. A Nash equilibrium always exists in the m product, n producer
Cournot game G = (N,M, (Ui), (ci

q)).

Social Utility. We define the social utility Usocial for a game G to be the sum of
utilities of all producers and the representative consumer involved in the game,
i.e., Usocial =

∑
i Ui + Uc − ∑

i

∑
q Xqp(Xq), or equivalently, Usocial = L̄T X −

1
2XT BX where L̄i

q = liq −ci
q,∀i, q and vector L̄ =

(
L̄1
1, L̄

1
2, · · · , L̄1

m, L̄2
1, · · · , L̄n

m

)

with nm components.

Price of Anarchy. Using standard game theory terminology, the Price of Anarchy
(PoA) for a class of games G is the lower bound on the ratio of the social function
value at a Nash equilibrium to that of the social optimum, i.e.,

PoA(G) = min
G∈G

min
NE∈NG

UNE
social

U∗
social

(3)

where UNE
social is the utility at NE, a Nash equilibrium solution in the set NG

of Nash solutions of G, and U∗
social = sup{Usocial} is the optimum solution. We

shall refer to minNE∈NG
{UNE

social} as UNE
social for simplicity in our analysis.

Preliminaries. Related to the interaction matrix B, we also define the following
sub-matrices, which we use in the paper:

Bii =

⎡

⎢
⎢
⎢
⎣

B(i1),(i1) B(i1),(i2) · · · B(i1),(im)

B(i2),(i1) B(i2),(i2) · · · B(i2),(im)

...
. . .

...
B(im),(i1) B(im),(i2) · · · B(im),(im)

⎤

⎥
⎥
⎥
⎦

, and B̂ =

⎡

⎢
⎢
⎢
⎣

B11 0 · · · 0
0 B22 · · · 0
...

. . .
...

0 · · · 0 Bnn

⎤

⎥
⎥
⎥
⎦

Throughout the paper, we use the following two notations for better presen-
tation: (i) κ = (n + 1)(β − γ)(β + (m − 1)γ), and (ii) L̄i

q = liq − ci
q

An Illustrative Example. Let us consider a game with 2 players and 2 goods.
Suppose that the substitutability factor of good 2 in lieu of good 1 is γ12 and that
of good 1 in lieu of good 2 is γ21. The interaction matrix B is then represented
by

B =

⎡

⎢
⎢
⎣

β γ12 β γ12
γ21 β γ21 β
β γ12 β γ12

γ21 β γ21 β

⎤

⎥
⎥
⎦
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Vector L̄ is given by
(
L̄1
1, L̄

1
2, L̄

2
1, L̄

2
2

)
. We can now express producer utilities and

the social utility respectively,

U1 = X
1
1 [L̄

1
1X

1
1 − β(X

1
1 + X

2
1 ) − γ12(X

1
2 + X

2
2 )] + X

1
2 [L̄

1
2X

1
2 − β(X

1
2 + X

2
2 ) − γ21(X

1
1 + X

2
1 )]

U2 = X
2
1 [L̄

2
1X

2
1 − β(X

1
1 + X

2
1 ) − γ12(X

1
2 + X

2
2 )] + X

2
2 [L̄

2
2X

2
2 − β(X

1
2 + X

2
2 ) − γ21(X

1
1 + X

2
1 )]

Usocial = [(L̄
1
1X

1
1 + L̄

2
1X

2
1 ) − 1

2
(β(X

1
1 + X

2
1 )

2
+ γ12((X

1
1 + X

2
1 )(X

1
2 + X

2
2 )))]

+[(L̄
1
2X

1
2 + L̄

2
2X

2
2 ) − 1

2
(β(X

1
2 + X

2
2 )

2
+ γ21((X

1
2 + X

2
2 )(X

1
1 + X

2
1 )))]

3 Nash Equilibrium for Quadratic Utility Cournot games

In this section, we present a polynomial time algorithm for finding Nash equi-
librium in quadratic utility games. We first represent the problem of finding
Nash equilibrium as an optimization problem by providing the following com-
posite utility function Û , whose optimum solution is equivalent to the solution
for Nash equilibrium. This approach has also been utilized in [15].

Û is obtained as follows: Consider the utility function for a producer i,
Ui =

∑
q Xi

qL̄
i
q − ∑

q Xi
q

(
B(iq) · X

)
. Taking the derivative, ∂Ui

∂Xi
q

= L̄i
q − B(iq) ·

X − (
B(iq)

)i · Xi = L̄i
q − (BX)iq − (BiiXi)iq where

(
B(iq)

)i denotes the partial
vector of B(iq), given by (B(iq))i = (B(iq),(i1), B(iq),(i2), · · · , B(iq),(im)), and Xi

is the production vector of producer i. Next, we sum the partial derivatives over
all producers i and goods q,

∑
i

∑
q

∂Ui

∂Xi
q

and integrate, to get

Û =
∑

q

∑

i

(
L̄i

qX
i
q

) − 1
2
XT B̂X − 1

2
XT BX (4)

Thus, we have the following optimization problem,

OP1 : max Û

s.t. BX ≤ L

X ≥ 0

(5)

Constraints BX ≤ L and X ≥ 0 ensure that all goods have positive price
values, and that a producer does not produce a good with negative quantities
respectively. From the construction of Û , we note that the derivative of the
composite function Û and the producer utility Ui are equal, i.e., ∂Û

∂Xi
q

= ∂Ui

∂Xi
q
,∀i, q.

Therefore, optimizing Û w.r.t. the production value Xi
q,∀i, q is also the value

that optimizes the utility function of producer i for good q. Consequently, solving
OP1 will provide the Nash equilibrium solution to the problem.

Note that the problem OP1 is a convex programming problem (we use a
standard result - the product of two non-decreasing and positive convex functions
is convex), and although the problem of optimizing Û can be solved by using the
Ellipsoid or interior point methods, we devise a strongly polynomial algorithm.
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To optimize OP1, consider the Lagrangian P of Û :

P = Û +
∑

i

∑

q

(μi
q · (L − BX)iq) +

∑

i

∑

q

(λi
q · Xi

q) (6)

where μi
q,∀i, q is the multiplier associated with the price constraint

(L − BX)iq ≥ 0, whereas λi
q is associated with production values Xi

q,∀i, q. From
the Lagrangian P , we obtain the following KKT conditions:

∂P

∂Xi
q

=
∂Û

∂Xi
q

+ μi
q · Biq,iq + λi

q = 0

(L − BX)iq > 0 =⇒ μi
q = 0

Xi
q > 0 =⇒ λi

q = 0

(7)

If Xi
q > 0 then pi

q(X) = (L − BX)iq > 0, implying that μi
q = 0 at optimality.

We then obtain the following condition,

Xi
q > 0 =⇒ ∂P

∂Xi
q

=
∂Û

∂Xi
q

+ μi
q · Biq,iq + λi

q =
∂Û

∂Xi
q

= 0

Algorithm 1. FIND-NASH
1: Xi

q = 0, ∀i, q
2: S0 ← {∪i ∪q (i, q)}
3: (̂i, q̂) = arg max(i,q)∈S0 L̄i

q

4: S ← {(̂i, q̂)}
5: S0 ← {S0 \ (̂i, q̂)}
6: while (breakF lag == false ) do
7: for each (i, q) ∈ S0 do λ(i,q) = FEASIBLE-EQ (S, (i, q))
8: if (arg max(i,q)∈S0 λ(i,q) > 0 and S �= Ø) then
9: (i′, q′) = arg max(i,q)∈S0 λ(i,q)

10: S ← {S ∪ (i′, q′)} ; S0 ← {S0 \ (i′, q′)}
11: else breakF lag = true
12: end if
13: end while
14: Assign Xi

q = 0, ∀(i, q) ∈ S0

15: Obtain values of Xi
q, ∀(i, q) ∈ S by solving the system of equations given by

∂Û
∂Xi

q
= 0, ∀(i, q) ∈ S.

We now present Algorithm 1, where we optimize the value of Û while
maintaining feasibility. The algorithm maintains μi

q = 0, λi
q = 0 as well as

∂L
∂Xi

q
= ∂Û

∂Xi
q
,∀(i, q) where Xi

q > 0. In fact, the algorithm will determine a set S

of producer-good pairs (i, q) that maximizes the marginal benefit to Û at the
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given production levels Xi
q, i.e. S =

{
(i, q) | (i, q) = arg sup(i′,q′)

∂Û
∂Xi′

q′

}
. Note

that all elements in S provide the same marginal benefit to Û . It will also be
ensured that Xi

q > 0 ⇐⇒ (i, q) ∈ S. The remaining set of producer-good pairs
will be in the set S0.

At the beginning of the algorithm, there is no production and the pair with
the maximum value of L̄i

q will maximize the marginal utility ∂Û
∂Xi

q
. S is thus

initialized with this producer-good pair and S0 comprises of all the other (i, q)
pairs. As the algorithm proceeds, (i) the value of Xi

q,∀(i, q) ∈ S increases and

the value ∂Û
∂Xi

q
, (i, q) ∈ S decreases, and (ii) the set S increases in size by addition

of pairs from S0 until the optimality condition, ∂Û
∂Xi

q
= 0,∀(i, q) ∈ S is achieved.

We now present three claims that help us prove Theorem 1.

Claim 2. Let S∗ be the set of producer-good pairs (i, q) such that Xi
q > 0 in the

optimal solution, and suppose S ⊂ S∗. There exists a pair (i′, q′) from S0, where
(i′, q′) = arg max(i,q)∈S0 λ(i,q), such that if λ(i′,q′) > 0 then S ∪ {(i′, q′)} is also
part of an optimal solution.

Claim 3. During the course of the algorithm, the invariance pi
q(X) ≥ 0,∀i, q

holds.

Claim 4. When breakF lag = true, set S contains producer-good pairs (i, q)
such that ∀(i, q) ∈ S, a solution to ∂Û

∂Xi
q

= 0 exists and provides the optimal

solution to Û and a Nash equilibrium solution.

Given a set S and a pair (i′, q′) ∈ S0, we define λ(i′,q′) to be the value of
the gradient that satisfies the condition ∂Û

Xi
q

= ∂Û
Xi′

q′
,∀(i, q) ∈ S when Xi′

q′ = 0. At

this value of the gradient, (i′, q′) becomes a candidate for S. From amongst all
candidates in S0, the candidate that enters S is found using Claim 2. We next
note that feasibility is maintained, by Claim3; and when the while loop exits,
the set of producer-good pairs in S determine Nash equilibrium (Claim 4). Thus,
we arrive at the following theorem:

Algorithm 2. FEASIBLE-EQ(S, (i′, q′))

1: Solve the system of simultaneous equations ∂Û
∂Xi

q
= λ, ∀(i, q) ∈ S ∪ (i′, q′) for Xi

q

2: Express all Xi
q, ∀(i, q) ∈ S and λ̂ in terms of Xi′

q′

3: Evaluate X̂i
q = Xi

q, ∀(i, q) ∈ S and λ when Xi′
q′ = 0

4: Evaluate λ̂ when Xi′
q′ = 0

5: if ( λ̂ > 0, ∀(i, q) ∈ S) then
6: return λ̂
7: else return −1
8: end if
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Theorem 1. For a quadratic utility Cournot game G = (N,M, (Ui), (ci
q)), Algo-

rithm 1 correctly computes the Nash equilibrium in strongly polynomial time,
O

(
(mn)2 · TL(mn)

)
where TL(mn) is the time complexity of solving a system of

linear equations of size O(nm).

The best known algorithm for solving a linear system of equations with nm
variables provides TL(mn) = O

(
(mn)2.376

)
[9].

Faster Algorithm for Uniform Interaction Quadratic Utility Games. In games
where the matrix B has a uniform structure, leading to a uniform interaction
quadratic utility function, defined in Eq. 1, we can improve algorithm by intro-
ducing a frontier set, FS of size O(m). This set contains a limited number of
candidates for inclusion in the set S of producer-pairs that correspond to non-
zero production variables and is defined as follows:

Xi
q ∈ FS iff Xi

q = arg max
i:(i,q)∈S0

L̄i
q (8)

Instead of choosing candidates from S0, the algorithm chooses elements from
FS , supported by the following claim.

Claim 5. Let S∗ be set of producer-good pairs (i, q) such that Xi
q > 0 in an

optimal solution, and suppose S ⊂ S∗. There exists a pair (i′, q′) from FS,
defined by arg max(i,q)∈FS

λ(i,q) , such that if λ(i′,q′) > 0 then S ∪ {(i′, q′)} is
also part of an optimal solution.

In the algorithm, a producer-good pair is picked from the set FS , which is
then updated in O(n) steps. The algorithm terminates when FS = ∅, leading to
an improved complexity algorithm, summarized as,

Theorem 2. Nash equilibrium in the uniform interaction quadratic utility game
G = (N,M, (Ui), (ci

q)) can be determined in O (mn · mTL(mn)) where TL(mn)
is the time complexity of solving a systems of linear equations.

4 Price of Anarchy in Concave Utility Uniform
Interaction Games

In this section, we consider the Price of Anarchy in games with non-increasing
concave utility functions with uniform interaction, denoted by GU . The main
result of this section is that the Price of Anarchy for the class of Cournot games
GU is bounded below by the constant 2

3 .
Our strategy to determine the Price of Anarchy for arbitrary concave func-

tions will be to first show that the PoA can be determined from a class of games
Ḡ, having quadratic utility functions. We then determine closed form solutions
for Nash equilibrium of games in the class Ḡ. We also characterize the structure
of optimum solutions for games in Ḡ and utilize that to determine PoA.
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Establishing a Bound on PoA

We first derive a producer utility function Ūi, which is quadratic and with a
linear price function, from the general convex function Ui, such that the Nash
equilibrium solution of Ui is also a Nash equilibrium to Ūi, and prove that
the Price of Anarchy can be obtained by considering the class of games with
quadratic utility functions specified by Ūi, given in Claim 6.

Claim 6. Let GU = (N,M, (Ui), (ci
q)) be a game under the uniform interaction

model, where the price function is concave and non-increasing. If XNE is a Nash
equilibrium solution for the game GU , then it is a Nash equilibrium solution for
a game Ḡ with a quadratic utility function.

We shall use the social utility represented as Usocial(X) =
∑

q Uq =
∑

q Xq(pq −
ci
q), and relate the social utility function in the game G with Ḡ, which has a

quadratic utility function, thus arriving at Claim7, and consequently Claim 8.

Claim 7. Any social optimum solution for a uniform interaction model game
GU = (N,M, (Ui), (ci

q)) is bounded as Usocial(X∗) ≤ Usocial(XNE) +
Ūsocial(X∗)−Ūsocial(XNE), where Ūsocial(X) is the quadratic social utility in the
game Ḡ; X∗ is the optimum solution and XNE is the Nash equilibrium solution.

Claim 8. The PoA bound for the class of Cournot games GU under the uniform
interaction model can be obtained from the PoA bound for the class of games Ḡ
with quadratic utilities.

Nash Equilibrium Solutions

We now provide closed form solutions for Nash equilibrium for the uniform
interaction model where the utility function is quadratic and prices are linear.

Theorem 3. The Nash equilibrium solution to uniform interaction Cournot
games, denoted by Ḡ = (N,M, (Ui), (ci

q)), with quadratic utilities is given by:

X
i
q

NE
=

1

κ

(
(β + (m − 2)γ)

(
nL̄

i
q −

∑

i′ �=i

L̄
i′
q

) − γ
∑

q′ �=q

(
nL̄

i
q′ −

∑

i′ �=i

L̄
i′
q′

))
,where L̄

i
q = lq − c

i
q

(9)

Using the above theorem, we express the total production of a good q at
Nash equilibrium, given by Xq

NE =
∑

i Xi
q
NE , where

∑
i

X
i
q

NE
=

1

κ

(
(β + (m − 2)γ)

(
n

∑
i

L̄
i
q −

∑
i

∑

i′ �=i

L̄
i′
q

) − γ
∑

q′ �=q

(
n

∑
i

L̄
i
q′ −

∑
i

∑

i′ �=i

L̄
i′
q′

))

and thus represent social utility at Nash equilibrium as
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U
NE
social =

∑
q

(( 1

κ

(
(β + (m − 2)γ)(n

∑
i

(L̄
i
q)

2 −
∑
i

∑

i′ �=i

L̄
i
qL̄

i′
q ) − γ

∑

q′ �=q

(n
∑
i

L̄
i
qL̄

i
q′ −

∑
i

∑

i′ �=i

L̄
i
qL̄

i′
q′ )

))
− 1

2

(
β(

1

κ
[(β + (m − 2)γ)

∑
i

L̄
i
q − γ

∑

q′ �=q

∑
i

L̄
i
q′ ])2 + γ

∑

q′ �=q

(
1

κ
[(β + (m

− 2)γ)
∑
i

L̄
i
q − γ

∑

q′ �=q

∑
i

L̄
i
q′ ])(

1

κ
[(β + (m − 2)γ)

∑
i

L̄
i
q′ − γ

∑

q′′ �=q′

∑
i

L̄
i
q′′ ])

))

(10)

Social Optimum Solutions

Next, we determine a social optimum solution by maximizing the social utility.

U∗
social = sup

Xi
q

{ ∑

q

[
(
∑

i

Xi
qL̄

i
q) − 1

2
[β(

∑

i

Xi
q)

2 + γ
∑

q′ �=q

(
∑

i

Xi
q)(

∑

i

Xi
q′)]

]}

(11)
We first note that the solution that optimizes Usocial is obtained when the pro-
ducer with the least cost produces to satisfy the demand of a good, and use it
to provide a solution for social optimum.

Claim 9. In a social optimum solution, any good q is produced only by the
producer i∗q , such that L̄

i∗
q

q = maxi L̄i
q.

Theorem 4. The socially optimum solution to the uniform interaction Cournot
game, denoted by Ḡ = (N,M, (Ui), (ci

q)), with quadratic utilities is given by X∗,
as

X∗i
q=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(n + 1)
κ

⎛

⎝(β + (m − 2)γ)L̄i
q − γ

∑

q′ �=q

L̄i
q′

⎞

⎠ ,∀(i, q) s.t. i = arg max
i′

L̄i′
q

0 ,∀(i, q) s.t. i �= arg max
i′

L̄i′
q

(12)

For simplicity, we assume that i∗q = 1,∀q where i∗q = arg maxi L̄i
q. Thus, at social

optimum, only producer 1 will produce the goods. The social utility at optimum
is then given by

U∗
social =

∑

q

(
(L̄1

q

(n + 1)
κ

((β + (m − 2)γ)L̄1
q − γ

∑

q′ �=q

L̄1
q′)) − 1

2
[β(

(n + 1)
κ

((β + (m − 2)γ)L̄1
q − γ

∑

q′ �=q

L̄1
q′))2 + γ

∑

q′ �=q

(
(n + 1)

κ
((β + (m − 2)γ)

L̄1
q − γ

∑

q′ �=q

L̄1
q′))(

(n + 1)
κ

((β + (m − 2)γ)L̄1
q′ − γ

∑

q′′ �=q′
L̄1

q′′))]
)

(13)
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Bound for Price of Anarchy

We now proceed to proving a bound on PoA. We first obtain conditions
which yield a Nash equilibrium solution with the minimum value of social
utility (Claim 10), and similarly, obtain conditions that maximize social util-
ity (Claim 11). The approach is to determine the parameters of the game, more
specifically, the values of L̄i

q,∀i, q which minimize the social cost at Nash equilib-
rium, noting that the solutions to Nash equilibrium have a closed form in terms
of L̄i

q.

Claim 10. Usocial(XNE) is minimized when the marginal profits for any good
q are related as L̄i

q = L̄i
q′ ,∀i, q, q′ and

L̄i
q = −L̄1

q

(
α3 + (m − 1)α4(

α1 + (m − 1)α2 + (n − 2)(α3 + (m − 1)α4)
)
)

, ∀q, ∀i �= 1. (14)

where α1 =
1
κ

(2n(n + 1) − 1)(β + (m − 2)γ)
(n + 1)

, α2 =
−1
κ

(2n(n + 1) − 1)γ
(n + 1)

,

α3 =
−1
κ

(2n + 3)(β + (m − 2)γ)
(n + 1)

, and α4 =
1
κ

(2n + 3)γ
(n + 1)

(15)

Claim 11. Usocial is maximized when L̄1
q = L̄1

1,∀q.

Using Claim 10, we show conditions under which Usocial is maximized. This
leads us to Claim 11, which relates L1

q to L̄1
1,∀q, q′. (Recall the assumption that

L̄1
q = maxi L̄i

q,∀q.) Further, assume w.l.o.g. that L̄1
1 = maxi L̄i

1.

Theorem 5. Let GU = (N,M, (U i), (ci
q)) be a game under the uniform inter-

action model with concave utilities. Then,

(a) PoA(GU ) = 2n+4
3n+5 . For large number of producers, we achieve PoA(GU ) ≥ 2

3 .
(b) There exists an instance of a game under the uniform interaction model GU

where PoA ≤ 0.667.

Proof. (a) Based on Claims 10 and 11, we reduce the game to one with linear
prices and where the marginal profits of all producers can be expressed in terms
of the maximum marginal profit achieved by a producer of one of the goods,
assumed to be L1

1. Using the definition in Eq. 3 and the expressions from Eqs. 10
and 13, we have

PoA ≥ UNE
social

U∗
social

=

m

⎛
⎜⎝

(L̄
1
1X

1
1
NE

)
2
+ L̄

2
1(n − 1)X

2
1
NE − 1

2
(β(X

1
1
NE

+ (n − 1)X
2
1
NE

)
2

+γ(m − 1)((X
1
1
NE

+ (n − 1)X
2
1
NE

)(X
1
1
NE

+ (n − 1)X
2
1
NE

)))

⎞
⎟⎠

m

(
L̄

1
1X

∗1
1 − 1

2
(β(X

∗1
1)

2
+ γ(m − 1)(X

∗1
1)

2
)

)

Expressing variables Xi
q,∀i, q and X∗1

1 in terms of L̄i
q, and simplifying, we obtain

PoA =
2n + 4
3n + 5

; and for large values of n, we get PoA ≥ 2
3
.
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(b) To show tightness, consider the instance of GU with 1000 producers and 10
goods. The entries of B, have β = 1 and γ = 0.6; and lq = 100,∀q. The costs
are c1q = 5,∀q, ci

q = 36.695,∀i �= 1, q �= 1.
We wrote a program written in Java to evaluate the conditions at Nash

equilibrium and Social optimum, using the solutions obtained in this paper. In
this instance, we get UNE

social = 4802.69 and U∗
social = 7199.99, implying PoA =

0.667 ≈ 2
3
.
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Abstract. Assortment optimization refers to the problem of designing a
slate of products to offer potential customers, such as stocking the shelves
in a convenience store. The price of each product is fixed in advance, and
a probabilistic choice function describes which product a customer will
choose from any given subset. We introduce the combinatorial assortment
problem, where each customer may select a bundle of products. We con-
sider a choice model in which each consumer selects a utility-maximizing
bundle subject to a private valuation function, and study the complex-
ity of the resulting optimization problem. Our main result is an exact
algorithm for k-additive valuations, under a model of vertical differenti-
ation in which customers agree on the relative value of each pair of items
but differ in their absolute willingness to pay. For valuations that are
vertically differentiated but not necessarily k-additive, we show how to
obtain constant approximations under a “well-priced” condition, where
each product’s price is sufficiently high. We further show that even for a
single customer with known valuation, any sub-polynomial approxima-
tion to the problem requires exponentially many demand queries when
the valuation function is XOS, and that no FPTAS exists even when the
valuation is succinctly representable.

1 Introduction

Imagine that you are an inventory manager, tasked with selecting which prod-
ucts to display on the shelves in a retail store. These products are acquired from
different producers, who control the suggested retail prices. Your goal is to find
a profitable assortment of items to offer, given a model of how customers choose
which item(s) to ultimately purchase from the subset you display. This assort-
ment problem captures a natural tradeoff. If you offer only the most expensive
items, then many customers might simply leave the store without purchasing
anything. On the other hand, a variety of inexpensive items might cannibalize

A full version of this paper can be found at https://arxiv.org/abs/1711.02601.
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sales from pricier goods and dilute the overall revenue. Given a collection of pos-
sible items, and a model of customer preferences, which subset of items should
you display to maximize revenue?

The assortment problem is of practical importance for brick and mortar
stores, but is also relevant to online shopping and travel offer aggregration plat-
forms (e.g., Expedia) that must choose which products to display in response
to a search query, and where the products’ prices are set by a third party. Cus-
tomers have limited patience and are more likely to select products from the
first page of results, so the platform is incentivized to display a well-chosen slate
of products. Since an online platform may need to choose from a vast array of
potential products and offers, it is important to find computationally feasible
solutions.

There is a growing literature on assortment in the field of revenue manage-
ment, typically focusing on cases where each customer wants at most a single
item. In such unit-demand settings, the problem is captured by a choice func-
tion that maps an assortment S to a probability distribution describing which
good in S a customer will ultimately purchase. Commonly-studied choice func-
tions include multinomial logit functions [16], exponential choice functions [2],
and mixture models [3], among others. On the other hand, the computer science
literature has mostly focused on combinatorial versions of revenue or welfare
maximization when the designer controls the prices of items (see, e.g., multi-
dimensional revenue maximization [4,6,10]) or the mode of interaction with the
consumer (e.g., combinatorial auctions [9,12]). The important case of assortment
optimization, where the platform designer is constrained to only design the set
of available items, has been largely left untouched by the combinatorial opti-
mization community. The goal of our work is to bridge this gap and explore the
intersection of assortment and combinatorial optimization.

We introduce the combinatorial assortment problem, where consumers may
choose to purchase bundles of goods. For example, a customer may want to buy
a camera, possibly in combination with accessories, which may be either of the
same brand as the camera or a cheaper off-brand variety. These items may be
complementary (a camera plus an accessory), or substitutes for each other (a
brand-name accessory or a generic version of the same accessory). We ask: given
the relationship between the items for sale, and possibly a cardinality constraint
on the number of items that can be shown, what is a revenue-maximizing selection
to offer?

1.1 Our Results and Techniques

We explore the computational complexity of combinatorial assortment. Our goal
is to characterize the limits of polynomial time computation or approximability
and provide conditions under which the assortment problem is computationally
feasible. In our model, each customer has a valuation function v that maps a
bundle of goods T to a value v(T ) ≥ 0. This valuation is unknown to the planner
choosing the assortment, but is drawn from a known distribution F . When faced
with a slate of products, the customer will choose a bundle T that maximizes the
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value v(T ) less the total price of T . We will focus on the computational difficulty
of the combinatorial assortment problem, parameterized by assumptions on the
distribution F .

Main Result: Vertically Differentiated k-Additive Valuations. We initiate the
study of combinatorial assortment by considering the problem under two
assumptions. First, we focus on the case of k-additive valuations, where each
buyer desires at most k items and the value of a bundle is the sum of the indi-
vidual item values. This class extends unit-demand valuations to bundles of more
than a single item. Second, we suppose that each valuation in the support of F
agrees on the relative value of each pair of items. Equivalently, each valuation in
the support of F can be expressed as w · v(T ), where v is a fixed valuation func-
tion common to all buyers and w is a non-negative real number that describes
the buyer’s type. This captures settings where the relative quality and relation-
ship between the items is unambiguous, but customers vary in their ability to
extract value from the items.

It turns out that even this special case of the combinatorial assortment prob-
lem is suprisingly nontrivial. Natural heuristics like always displaying all items,
or choosing items greedily by price, do not necessarily produce optimal assort-
ments. This suggests that the vertical differentiation model is deceptively subtle.
Solving the problem for this minimally combinatorial valuation class is a first
step toward understanding more general cases.

We describe a dynamic programming solution to this problem that runs in
time O(n2k), where n is the total number of vouchers and k is the maximum
number of items demanded by the buyer.

Theorem 1. For vertically differentiated additive k-demand valuations, the
revenue-optimal assortment can be computed in time O(n2k + n2 log(n)).

The algorithm does not impose any constraints on the price of each item,
and applies whether or not there are cardinality constraints on the assortment
(i.e., a bound on the number of items that can be displayed). Our solution builds
an optimal assortment by first optimizing for low-type buyers and incrementally
modifying the assortment to cater to higher types. An important technical chal-
lenge is that the set of customer types that choose to purchase a particular item
need not be convex: it might be that a certain item is chosen by customers with
low values and customers with high values, but not by intermediate types.

Further Algorithmic Results. We next consider more general settings in which
valuations are still differentiated vertically, but are not necessarily k-additive.
Recall our earlier intuition that offering all items might be highly suboptimal in
the presence of “cheap” items that cannabilize sales from more profitable items.
We show that such an issue is inherently due to items being sold at too low a
price. We say that the goods are “well-priced” if, roughly speaking, the price of
each bundle is at least its optimal (i.e., Myerson) reserve price, in a world where
only that bundle is for sale. When goods are substitutes, this is equivalent to
each individual item’s price being at least its Myerson price. This may be the
case if the individual product retailers are behaving like monopolists and not
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responding to the assortment planner, such as when the platform is driving only
a small portion of the producer’s overall revenue. We show that if the goods are
well-priced, and the type distribution satisfies the standard regularity property,
then offering all items is a 4-approximation to the optimal revenue.

Theorem 2. For combinatorial assortment with well-priced items and vertical
differentiation with a regular type distribution, the assortment that selects all
items is a 4-approximation to the optimal expected revenue.

We also show that if there is a cardinality constraint on the number of items
that can be shown, then greedily accepting items to maximize marginal rev-
enue also yields a constant approximation when the valuations satisfy the gross
substitutes condition, which is a stronger notion of substitutability than sub-
modularity.

Theorem 3. For cardinality-constrained combinatorial assortment with well-
priced items, a gross substitutes valuation, and vertical differentiation with a
regular type distribution, the assortment that selects items greedily by revenue is
a 4e

e−1 -approximation to the optimal expected revenue.

Finally, for k-demand valuations that may not be additive, we show that
under a certain revenue-concavity assumption on the type distribution, the opti-
mal assortment will have size at most k. This admits an O(nk) algorithm that
enumerates over all bundles of at most k items.

Negative Results. Each of the results above assume a vertical differentiation
model of consumer preference, and impose constraints on either the prices or
the valuations. We next show that the combinatorial assortment problem is
inherently difficult even in a full-information setting. In the deterministic case,
where there is a single buyer whose valuation is known to the optimizer, it is hard
to approximate the revenue of the optimal assortment to a factor of o(n1/2−ε) for
any constant ε > 0, where n is the number of items to choose from. This is true
even if there is no constraint on the number of items to be shown, and even if
the valuation function is an XOS function, a subclass of subadditive functions.1

Notably, this is a class of valuations where the welfare maximization problem
can be well-approximated [9,12].

This hardness result takes the form of a communication complexity bound,
independent of any computational hardness assumptions. We show that an
approximation algorithm requires an exponential amount of communication with
an oracle that can answer demand queries about the valuation function v.2

Note that it is too much to hope for a lower bound in a fully general model
of communication with a valuation oracle, since in particular the oracle could

1 A valuation is subadditive if, for any sets of items S and T , v(S ∪T ) ≤ v(S)+ v(T ).
A valuation is XOS if it is the maximum of a collection of additive functions.

2 A demand query takes as input the price of each item, and returns a utility-
maximizing bundle at those prices.
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simply communicate the optimal assortment, which can be described in polyno-
mially many bits. Instead, our proof considers a communication model in which
information about the valuation v is split between two oracles, and show that
exponential communication between the oracles is necessary to obtain any rea-
sonable approximation. We then show how the pair of oracles can simulate a
demand query oracle. One implication of this result is that any assortment algo-
rithm with a sub-polynomial approximation factor requires exponentially many
demand queries about the valuation function v.

We next show that even for valuation functions that can be described suc-
cinctly,3 it is still NP-hard to compute the optimal assortment. Like the com-
munication complexity result, this holds even in the full-information case of a
single buyer with known valuation.

Moving beyond the full-information case, we show that even if we impose
the vertical differentiation assumption on the valuation distribution F , and even
if each customer is submodular and demands at most two items, then there
is no FPTAS for the combinatorial assortment problem.4 In particular, while
we provided an algorithm for solving combinatorial assortment with k-additive
valuations, we cannot hope to extend this to k-demand submodular valuations.
Furthermore, the natural greedy heuristic that adds items to the assortment one
by one, maximizing the marginal revenue increase on each step, fails to obtain a
constant approximation for submodular valuations, even in the full-information
case where F is a point mass.

Extension: Welfare Maximization. We conclude by considering two extensions.
First, we note that most of our positive results apply also to the goal of maximiz-
ing welfare, rather than maximizing revenue. The welfare maximization prob-
lem is still non-trivial, since the presence of cheap goods can result in lower-
valued items being purchased. However, we show that if items are well-priced
then offering all items is, in fact, the welfare-optimal assortment. Note that this
is a stronger result than for revenue-maximization, where we established a 4-
approximation. Under a cardinality constraint, the greedy algorithm for assort-
ment yields a e

e−1 approximation to the optimal welfare for well-priced items
and gross substitutes valuations. Finally, our dynamic programming algorithm
for additive k-demand valuations applies just as well to the welfare objective,
and can be used to compute a welfare-optimal assortment.

Extension: Learning. The second extension concerns a setting where F is not
known to the seller. Rather, the seller must learn the distribution of types
through demand queries: repeatedly choosing a slate of items and observing
a buyer’s choice. We show that the dynamic programming solution for vertically

3 Formally: an XOS valuation that is the maximum of only 2 additive functions.
4 When customers demand at most 2 items, the XOS condition is equivalent to

submodularity. A valuation is submodular if, for any sets of items S and T ,
v(S∪T )+v(S∩T ) ≤ v(S)+v(T ). This is equivalent to each item having diminishing
marginal value, and is more restrictive than subadditivity.
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differentiated k-demand additive valuations can be implemented in this learning
setting, with the loss of an O(kε) additive error factor, using Θ(nk+1 log(n)/ε2)
queries.

1.2 Related Work

There is a growing literature on (unit-demand) assortment optimization in the
management science literature. Talluri and van Ryzin [16] provide a closed-form
solution when buyer choices follow the multinomial logit model. Rusmevichien-
tog et al. [15] extend this solution to the case of cardinality-restricted assortment,
and Davis et al. [7] show how to solve for the optimal assortment under more gen-
eral nested logit models. When the choice function is described by a mixture of
multinomial logit models, the assortment problem is NP-hard but various integer
programming methods and approximation algorithms are known [3,8,14]. These
results are incomparable with the positive results in this paper, which extend
beyond unit-demand preferences but assume a model of vertical differentiation.

There has also been work studying learning in assortment, where the product
slate can be adjusted to learn customer preferences. Caro and Gallein [5] consider
learning in a model of assortment without substitution effects, where the demand
for each product is unaffected by the other products in the assortment. Ulu
et al. [17] study the dynamic learning problem when products exhibit purely
horizontal differentiation, as modeled by location on a line segment. Agrawal et
al. [1] consider a multi-armed bandit model of dynamic assortment, and show
how to achieve near-optimal regret for multinomial logit choice models. Kleinberg
et al. [11] consider a general class of comparison-based choice models, and study
the complexity of learning their model from samples.

The combinatorial assortment problem can be viewed as a restricted form of
mechanism design, where the design space consists only of choosing which subset
of items to display. This is more restrictive than sequential posted pricing, where
the designer can also choose the price at which each item can be sold (e.g., [6]).

2 The Combinatorial Assortment Optimization Problem

There is a set N of n items. Each item i has a fixed price pi ≥ 0. We assume
items are indexed so that p1 ≤ p2 ≤ · · · ≤ pn. There is an unbounded supply
(i.e., number of copies) of each item.

There is a collection of buyers, each of whom wish to purchase a subset of
the items. Each buyer j has a valuation function vj : 2[n] → R≥0 that maps each
subset of goods to a non-negative value. We assume that each valuation function
is sampled independently from a distribution F , which we refer to as the type
distribution. In the full-information version where F is a point mass, we call the
problem noiseless. We call the general problem noisy.

Given a subset of items T displayed to a buyer j, the buyer will pick S ⊆ T
maximizing vj(S) − ∑

i∈S pi and pay
∑

i∈S pi. Our goal as a seller is to pick an
optimal assortment, which is a subset T of at most � items that maximizes the
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expected revenue. Here � is a parameter of the problem, which we can think of
as an exogenous constraint on the number of products that fit on a shelf, the
number of results that can be displayed on a search page, etc. We will focus first
on the unconstrained case of � = n, then consider general � in Sect. 5. For most
of the paper we will assume that F is known to the seller and given as inputs
to the optimization problem. In Sect. 5 we relax this assumption and suppose F
is fixed but unknown to the seller, who must learn about it by interacting with
buyers.

Valuation Classes. We focus on variants of the combinatorial assortment problem
where the valuation functions in the support of F lie in a given class. We assume
that valuations are monotone non-decreasing and normalized so that v(∅) = 0.
In this paper we will focus on the following valuation classes, which encode forms
of substitutability between items.

– additive: there exist v1, . . . , vn ≥ 0 such that v(S) =
∑

i∈S vi.
– XOS: there exist additive valuations (i.e., clauses) v1, ..., vm such that v(S) =

maxi∈[m] vi(S).
– submodular: for all S, T ⊆ [n], v(S ∪ T ) + v(S ∩ T ) ≤ v(S) + v(T ).
– gross substitutes: for all S, T ⊆ [n] and x ∈ S, one of the following is true:5

1. v(S) + v(T ) ≤ v(S\{x}) + v(T ∪ {x}).
2. There exists y ∈ T , v(S) + v(T ) ≤ v(S\{x} ∪ {y}) + v(T\{y} ∪ {x}).

We will also be interested in valuations that encode a constraint that a buyer
does not derive benefit from receiving more than a certain number of items.

Definition 1. Valuation v is k-demand if, for all S ⊆ N , v(S) =
maxT⊆S,|T |≤k v(T ). That is, the buyer derives no benefit from receiving more
than k items. We say that valuation v is additive (resp. XOS, submodular) k-
demand if there is an additive (resp. XOS, submodular) valuation v′ such that,
for all S ⊆ N , v(S) = maxT⊆S,|T |≤k v′(T ).

We note that these valuation classes can be ordered from most to least restric-
tive, as follows: Additive k-demand ⊆ gross substitutes ⊆ submodular ⊆ XOS.

Vertical Differentiation. We will also be interested in the special case where
the valuations in the support of F all agree on the relative value of bundles of
items. We say that F satisfies vertical differentiation if there is a fixed valuation
function v and, for all vj in the support of F , there exists a real number wj ≥ 0
such that vj(S) = wj · v(S) for all S ⊆ [n]. In other words, F is a distribution
over multiplicative scalings of valuation v. For vertically differentiated settings,
it is convenient to think of F as a distribution over scaling factors w. We will
sometimes abuse notation and refer to wj as the type of customer j.

5 We use the M#-exchange characterization of gross substitutes, since it will be con-
venient for our proofs [13].
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3 Structural and Algorithmic Results

We begin by describing instances of the combinatorial assortment problem that
can be solved (or approximated) in polynomial time. All of the results in this
section apply to the case where valuations are vertically differentiated, so we will
assume this throughout. We will first describe an exact algorithm for k-additive
valuations in Sect. 3.1. Then in Sect. 3.2 we will describe a set of structural
assumptions that imply that displaying all items is approximately optimal. In
Sect. 4 we will complement these algorithmic results with computational lower
bounds.

3.1 Exact Combinatorial Assortment for k-demand buyers

We focus on additive k-demand valuations, which include unit-demand valu-
ations as a special case. We will see in Sect. 4 that the combinatorial assort-
ment problem is hard even for submodular 2-demand buyers. We show that for
constant k, there is a polynomial-time algorithm that solves the combinatorial
assortment problem for additive k-demand preferences.

Theorem 4. For additive k-demand valuations, there exists an algorithm that
finds the revenue-optimal assortment in time6 O(n2k + n2 log(n)).

The full proof of Theorem 4 can be found in the full version. Importantly, this
result applies even in the general noisy cases where buyer values are not fully
known in advance. In general, the optimal assortment for additive k-demand
valuations may include many more than k items. The algorithm we propose is
a dynamic programming algorithm (DP), which incrementally builds an opti-
mal assortment by considering how the purchasing behavior of a buyer changes
with w.

3.2 Approximate Assortment for Well-Priced items

As mentioned in the introduction, it can be highly suboptimal to select all items
in the combinatorial assortment problem, since the presence of a cheap but
valuable item might cannibalize revenue from more expensive items. One might
wonder, then, if such a situation can be made less severe if the items are all
priced “reasonably.” For example, suppose that each individual item is assigned
the price that would maximize revenue when that item is sold by itself. Indeed,
we would argue that such prices are very reasonable if the items are typically sold
separately, and it is precisely the assortment platform that presents these items in
combination with each other. We will show that under such an assumption, plus
a regularity assumption on the type distribution, it is approximately revenue-
optimal to show all of the items. Let us first define formally the assumptions
needed for our result.
6 Our algorithms depend on the type distribution, which may be continuous. The

runtime bound assumes that the CDF of this distribution can be queried in O(1)
time. See the full version for a detailed discussion.
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Definition 2 (Regularity). We say that type distribution F is regular if the
virtual value function φ(w) = w − 1−F (w)

f(w) is non-decreasing, where f denotes
the density function of distribution F .

Regularity is a common assumption in the revenue maximization literature.
Many natural distributions are regular, including uniform, gaussian, and expo-
nential distributions.

Definition 3 (Revenue Curve). The revenue curve of a type distribution F
is R(p) = p(1 − F (p)).

We can think of R(p) as describing the revenue obtained if we were to offer
a single item with value 1 and price p to a buyer whose type is drawn from
distribution F . As we show the total revenue of an assortment can be expressed
as a function of R.

The optimal reserve (or Myerson reserve) for F is the value r that maximizes
R(r) (or the supremum over such values r, if the maximum is not unique).

Definition 4 (Well-priced). Suppose the type distribution F is regular with
Myerson reserve r and non-increasing density after r.7 Then the combinatorial
assortment problem with type distribution F is well-priced if, for any item i ∈
N ,

pi ≥ r · vi.

We show that for well-priced instances of the combinatorial assortment prob-
lem, selecting all items yields a 4-approximation to the optimal revenue.

Theorem 5. Choosing S = N is a 4-approximation to the optimal revenue for
well-priced combinatorial assortment when the valuation function v is subaddi-
tive.

The idea behind Theorem 5 is to show that the revenue curve R can be well-
approximated by a modified revenue curve R̂ that is convex on the range [r,∞).
We show that for convex curves, maximizing revenue reduces to the problem
of maximizing utility, and hence the (modified) revenue is maximized by the
assortment that maximizes buyer utility, which is to display all items. The proof
complete proof can be found the full version.

Remark 1. Theorem 5 holds even for general valuations beyond subadditive,
under the assumption that all subsets of items S ⊆ N satisfy

∑
i∈S pi ≥ r ·v(S).

When valuations are subadditive this condition is equivalent to the condition on
individual items given in Definition 4.

7 In fact, our results for well-priced combinatorial assortment hold for distributions
that satisfy a weaker condition than regularity. It is enough for the well-pricedness
condition to hold for some value r (not necessarily the Myerson reserve) such that
the density function f is non-increasing after r, and the revenue curve R is non-
increasing after r.
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Exact Assortment When Revenue is Concave. This approximation result used
intuition that when revenue curves are convex, it is preferable to show as many
items as possible. As it turns out, the reverse intuition holds as well: if the
revenue curve is concave, then it is preferable to show fewer items. In particular,
if buyers are k-demand, then the optimal assortment will consist of at most k
items. The proof of Theorem 6 can be found in the full version.

Theorem 6. Suppose that buyers are k-demand, and the revenue function R is
concave over the support of the type distribution F . Then there exists an optimal
assortment S with |S| ≤ k.

In Sect. 4, we show that in general the optimal assortment for k-demand
buyers may contain far more than k items. In particular, a heuristic that simply
enumerates all assortments of size at most k will not find an optimal solution in
general. Theorem 6 shows that such a heuristic does find an optimal solution in
cases where the revenue curve is concave.

Example 1. Suppose that buyers are k-demand with uniform type distribution
over [a, b]. The revenue curve R(w) = w·min

{
1, b−w

b−a

}
is concave for all w ∈ [0, b]

and thus by Theorem 6 the optimal assortment consists of at most k items.

Remark 2. If in Example 1 items are well-priced, Theorem 5 implies that
even though the optimal assortment is small, showing all items yields a 4-
approximation to the optimal revenue.

4 Hardness of Combinatorial Assortment

In this section we explore the hardness of the Combinatorial Assortment prob-
lem. We give a general hardness of approximation result for XOS valuations,
even in the noiseless setting. We then show that even when valuations can be
succinctly represented, the problem remains NP-hard. We also demonstrate that
even when valuations are submodular, the natural greedy heuristic fails to obtain
a good approximation. All missing proofs can be found in the full version.

Hardness of Approximation, Even Without Noise. We begin by considering the
noiseless setting, where F is a point mass at 1 and hence the valuation of the
buyer is known exactly. Our first result shows that for XOS valuations, the
combinatorial nature of the problem leads to strong hardness of approximation.
Indeed, it may take exponentially many demand queries to achieve better than
an O(

√
n)-approximation to the combinatorial assortment problem.

Theorem 7. For XOS valuations, any o(n1/2−ε)-approximate algorithm for the
combinatorial assortment problem requires Ω(exp(n2ε/24)/n) demand queries.

Note that Theorem 7 is a query complexity bound, and puts no limitations
on the algorithm’s running time. Theorem 7 can be extended to a more general
statement about communication complexity under a certain query model. See
the full version for details.
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Hardness for Succinct Valuations. Theorem 7’s hardness is a communication
bound, and relies on the fact that an XOS function may require exponentially
many bits to fully describe. As we now show, the combinatorial assortment
problem remains hard even for XOS valuations with succint descriptions. In
particular, the problem is NP-hard, again in the noiseless setting, even if we
restrict to valuations with only two clauses (i.e., the maximum of two additive
functions).

Theorem 8. For any XOS valuations with only 2 clauses, finding the optimal
revenue is NP-hard in the noiseless case.

The idea of the proof is to relate the optimal revenue of the combinato-
rial assortment problem to the solution to a knapsack problem, implementing
the knapsack constraints by comparing values between the two clauses in the
combinatorial assortment problem.

Hardness for 2-Demand Valuations in the Noisy Setting. One might also wonder
if the hardness results above are driven by the large sets of goods desired by the
buyers. What if we restrict attention to k-demand buyers, where k is a small
constant?

One observation is that in the noiseless setting, the optimal assortment for a
k-demand valuation will contain at most k items, so the problem can be solved
in time nO(k) by evaluating the revenue for all subsets of size k. So this question
is interesting only in the more general noisy setting.

Theorem 9 shows that even for submodular 2-demand valuations, and even
if we assume that valuations are only vertically differentiated, there can be no
FPTAS for combinatorial assortment. Therefore, we can only hope to get an
efficient algorithm for k-demand valuations if we add add more restrictions,
such as the restriction to k-additive valuations as in Sect. 3.1.

Theorem 9. For vertically differentiated submodular 2-demand valuations, it
is NP-hard to approximate the optimal revenue within approximation factor 1 +
1/nc, for some large enough constant c. In particular, there is no FPTAS in this
setting unless P = NP .

Greedy Assortment Fails for Submodular Valuations. We’ve shown that there is
no FPTAS for submodular valuations in the general noisy setting. One might
wonder if it’s possible to obtain a constant approximation, however, by using a
simple heuristic. One natural idea for submodular valuations is to use a greedy
approach: repeatedly add the revenue-maximizing item to the assortment, until
either no item remains or until adding any one item causes revenue to decrease.
The following example shows that this heuristic can lead to approximation Ω(n),
even without noise.

Example 2. There are n = m + 1 items, which we’ll label {0, 1, . . . ,m}. The
valuation v is:

v(S) =

{
m|S| if 0 �∈ S

m + (m − 1)|S| otherwise
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One can verify that this valuation is indeed submodular. Suppose p0 = m and
pj = m−2 for all j > 0. The greedy algorithm selects item 0 first, as it generates
revenue m which is larger than m − 2, the revenue from any other single item.
However, having selected item 0, the greedy algorithm would not add more items,
since if the assortment is {0, i} for any i > 0, the buyer would choose to buy only
item i leading to a loss of revenue. So greedy obtains revenue m. The optimal
assortment takes all items other than 0, for a revenue of (m − 2)m.

Greedy Assortment Fails for Vertical Differentiation. There are n = m+1 items,
which we’ll label {0, 1, . . . ,m}. Each item has price pi = Hi for some large
constant H > n. The valuation v is unit demand with v({i}) = i if i > 0 and
v({0}) = n. Buyers are vertically differentiated, where a buyer of type j has wj =
Hj and appears with probability qj proportional to H−j , i.e. qj = H−j

∑m
k=0 H−k .

One can verify that every item i is only afforded by buyer types j ≥ i. The
greedy algorithm selects item 0 first as it generates revenue 1. After selecting
item 0, any other item does not introduce any additional revenue as it is never
bought by any type. In contrast, the optimal assortment selects all item other
than 0. In this case, every buyer type j > 0 buys item j yielding a revenue of

m∑m
k=0 H−k → m as H → +∞. This implies that the optimal assortment gives

revenue a factor of m worse than optimal.

5 Extensions

Constrained Assortment. To this point we focused exclusively on the case of
unconstrained assortment, where � = n. For general �, the lower bounds from
Sect. 4 still apply. Also, the dynamic program for exact revenue-optimal assort-
ment for additive k-demand valuations solves the constrained case; one need only
track the remaining budget for additional items as part of the program. See the
full version for a detailed proof.

Theorem 10. For additive k-demand valuations and any cardinality constraint
�, there exists an algorithm that finds the revenue-optimal assortment of at most
� items in time O(n2k�).

Theorem 5 specified conditions under which it is approximately optimal to
select all items. Under a cardinality constraint, this solution may not be feasi-
ble. However, if the buyer valuations are gross substitutes, a greedy assortment
algorithm is approximately optimal.

Theorem 11. For gross substitutes valuations and well-priced items, a (6.33)-
approximation to the revenue-optimal assortment of size at most � can be com-
puted in time Õ(�3n).

Welfare Maximizing Assortment. We have focused on revenue-maximization, but
assortment optimization for welfare maximization is also non-trivial. The pres-
ence of cheap items in the assortment can reduce the total welfare and should be
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excluded. We note that the algorithm we developed for revenue-maximization
under additive k-demand valuations can be easily adjusted for welfare maximiza-
tion. Also, if items are well-priced, our results for revenue maximization apply
to welfare maximization with even better constants. In particular, for uncon-
strained assortment, selecting the slate of all items is welfare-optimal if items
are well-priced. See the full version.

Learning Assortments from Demand Samples. Suppose v and F are not known
to the seller. Instead, the algorithm can learn about v and F via samples, taken
by choosing a slate of items to sell and observing a buyer’s choice. Details appear
in the full version.

We show how to implement our dynamic program for k-additive valuations
in this learning setting, by characterizing the algorithm’s robustness to noise.
We show that if the algorithm can make Θ(nk+1 log(n)/ε2) queries, then our
dynamic programming solution will be within an O(ε·max|S|=k

∑
i∈S pi) additive

factor to the optimal revenue.
We also show that a variant of Theorem 6 applies to the learning setting.

This requires choosing the best of a polynomial number of assortments. Since
the highest revenue is bounded, standard concentration arguments imply that
we can evaluate the revenue of any given assortment to within a small additive
error by making polynomially many queries.

Acknowledgment. We would like to thank Aviad Rubinstein for pointing out an
improvement on Theorem 7.
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Abstract. In large matching markets between job candidates and orga-
nizations, organizations may be unable to effectively identify interested
candidates due to a large volume of applications. The resulting conges-
tion makes it unlikely for candidates to receive offers from their most
preferred organizations, leading to significant mismatch. We study how
signaling mechanisms can be used as a market design tool to reduce the
congestion in such markets. Specifically, we look at how the number of
signals available to market participants affects welfare and the number
of matches using a large market model. We show that for sufficiently
many signals, candidate welfare and the number of matches decrease as
a function of the number of signals, while the behavior of organization
welfare depends on the extent to which organizations value top candi-
dates. Furthermore, we describe a class of firm utility functions for which
these limiting effects start to hold at realistic numbers of signals S.

Keywords: Signaling · Matching · Large markets

1 Introduction

In most matching markets, candidates apply to organizations and organizations
choose a subset of applicants to accept. Since the quantity of offers is typically
limited, organizations must not only determine candidates’ qualities, but also
discern whether candidates are realistically attainable. However, it is often easy
for candidates to express interest in many organizations by sending out a large
number of applications. This behavior may lead to market congestion, in which
organizations become overwhelmed by the volume of applications and are unable
to select for interested applicants [1,5,7]. Candidates are also unlikely to receive
offers from their most preferred firms under such circumstances. As a result, there
can be significant mismatch between candidates and organizations, as well as
suboptimal welfare: most candidates fail to receive offers from their top choices,
and organizations waste effort on recruiting uninterested candidates.
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The introduction of a signaling mechanism is one strategy to reduce the
amount of congestion and mismatch in such markets. A typical signaling mech-
anism in this context allows candidates to signal interest to organizations, but
limits the number of signals that any candidate may send. Because the signals
of this mechanism are scarce, sending a signal has a tangible opportunity cost.
As a result, signaling becomes more than just “cheap talk” and can serve as a
means for candidates to credibly convey interest towards organizations.

An important design consideration when implementing a signaling mecha-
nism is selecting the number of signals that each candidate may send. If can-
didates can signal to all or a significant fraction of the firms, then signals lose
their scarcity and may devolve into cheap talk. At the other extreme, if candi-
dates do not have enough signals, then they may not be able to communicate
much information about their preferences, and the signaling mechanism may
not be as effective as possible. These opposing effects show that it is not obvious
how to optimally set the number of signals, e.g., so that welfare metrics such as
aggregate welfare or the number of matches are maximized.

In this paper, we analyze how varying the number of signals available to can-
didates affects welfare in signaling markets. We consider a large market model
in which a continuum of candidates is matched to a finite, discrete set of orga-
nizations. We then introduce a one-sided signaling mechanism that allows each
candidate to signal to one or several organizations and examine how this mech-
anism affects market dynamics and statistics such as welfare and the number
of matches. Our main result is a characterization of how the number of signals
affects welfare metrics in the limiting case of many signals. We show that for
sufficiently many signals, candidate welfare and the number of matches decrease
as a function of the number of signals, while the behavior of organization welfare
depends on the extent to which organizations value top candidates.

Signaling as a market design technique has been studied empirically in both
the economics job market and in online matchmaking. In the economics job mar-
ket, the AEA implements a mechanism through which job seekers are permitted
to “signal” to up to two prospective employers. Signaling has been observed to
increase the probability that a candidate lands an interview for one of their highly
ranked positions and to allow for better expression of idiosyncratic preferences,
e.g., over school type and over location [4]. Lee and Niederle [9] make similar
empirical observations about an online matchmaking market where candidates
were randomly endowed with either two or eight virtual roses. The introduc-
tion of the signal was observed to increase the total number of matches as well
as increase the probability a proposal was accepted. Although these empirical
studies demonstrate the benefits of a market with signals over a market without
signals, there has not yet been a systematic analysis of how varying the number
of available signals between different nonzero values affects market welfare.

We fill in this gap from a theoretical perspective by analyzing a large market
model of signaling. In our model, a continuum of candidates gets matched to a
finite, discrete set of firms, and candidates may express interest towards firms
through a signaling mechanism with scarce signals. We show that a non-babbling
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equilibrium, i.e., an equilibrium in which firms respond to signals, always exists
in this game. Furthermore, if we restrict our attention to symmetric, anonymous
equilibria, a non-babbling equilibrium occurs if and only if each candidate signals
to exactly their top choice firms.

Our main result is a characterization of how the number of signals affects wel-
fare metrics once there are sufficiently many signals. In this regime, we show that
a unique symmetric, anonymous, non-babbling equilibrium exists. This equilib-
rium is such that candidates use all of their signals and organizations only con-
sider candidates who have signaled. For these equilibria, we show that increasing
the number of signals decreases worker welfare and the number of matches, since
it becomes increasingly difficult to express preferences. On the other hand, orga-
nizations may or may not prefer more signals. If organizations highly value top
candidates, then they would prefer weaker signaling so that they can pursue
their most preferred candidates, whereas if organizations are indifferent between
strong candidates and very strong candidates, then they would prefer stronger
signaling so they can pursue the candidates most interested in them.

Finally, we consider our results in the context of more explicit parameter
settings. We characterize a class of firm utilities for which these limiting results
start to hold when the number of signals S is at least 4. These utility functions
show that although our results are for “sufficiently many” signals, they do hold
for very realistic values of S. In the other direction, we describe a market with
a relatively simple firm utility function that demonstrates the indeterminacies
and multiple equilibria inherent for few signals. This example also concretely
illustrates the potential of using many signals to achieve welfare improvements.

Past theoretical work on matching markets with a centralized signaling mech-
anism includes Coles et al. [5] and Kushnir [8]. Coles et al. [5] study signaling
in the context of small, symmetric markets. They model signaling as a Bayesian
game and characterize the set of equilibrium strategies. Furthermore, they show
that under the assumption of uniform preferences, the introduction of a signal
increases the utility of applicants and the expected number of matches, but has
an indeterminate effect on the utility of organizations. While the uniform pref-
erences assumption may not accurately model all real-life settings, it is crucial
in making the analysis tractable: Coles et al. [5] remark that even when their
model is extended to multiple blocks of firms with block-uniform preferences, the
welfare comparisons across different equilibria become indeterminate. In another
direction, Kushnir [8] observes that when there is heterogeneity among applicants
and preferences are almost completely specified, the introduction of a signaling
mechanism with one signal may improve the expression of idiosyncratic pref-
erences, but may also hurt more “mainstream” applicants on average. These
previous works show that for several market settings, signaling can allow for the
better expression of preferences for various segments of the market.

We now turn to the question of how to maximize the usefulness of signals by
varying their number. We borrow the game structure and uniform preferences
assumptions of Coles et al. [5] in our model. However, Coles et al. [5] do not have
the necessary architecture in their model to study the impact of changing the
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number of signals to different nonzero values, since they focus on comparing the
game with signals to the game with no signal. Nonetheless, we give a generaliza-
tion of their model to any nonzero number of signals, with the modification of
shifting to a large market setting in order to make studying the effects of vary-
ing the number of signals tractable. Large market models have been previously
considered by Azevedo and Leshno [3] in the contexts of stable matchings. In
their work, the continuum matching economy serves as an analytic tool to enable
comparative statistics to be taken. We similarly use the continuum assumption
to allow us to analyze the impact of varying the number of signals.

The remainder of this paper is structured as follows: In Sect. 2, we present
and formalize our large market model of a one-sided signaling mechanism as
a Bayesian game. In Sect. 3, we state our solution concept and characterize the
equilibrium strategies in our game. In Sect. 4, we investigate the signaling dynam-
ics of our game with signals and characterize how varying the number of signals
affects welfare metrics (number of matches, worker welfare, and firm welfare) in
the limiting case. Proofs and useful examples are included in the online appendix.

2 Model

Our model captures the behavior of firms and workers in a large matching market
with a signaling mechanism. We extend the approach of Coles et al. [5] to allow
for more than one signal, making similar symmetry and uniformity assumptions
on the market participants. We also shift the model to a large market setting to
make our analysis of varying the number of signals tractable.

We assume the market consists of a finite number of firms and a continuum
of workers. In this market, we make the standard Bayesian game assumption
that the distribution of firm preferences over workers and worker preferences
over firms is common knowledge. Furthermore, each worker knows their own
preference ordering over the firms, and each firm knows the utility that it will
derive from each worker, but each worker has no knowledge of how firms evaluate
them relative to other workers, and each firm has no knowledge of how any
given worker ranks it relative to other firms. To make our analysis tractable, we
assume firms independently assign scores to workers, so that firm preferences
over workers are uncorrelated, and we assume workers’ preference orderings over
firms are drawn uniformly at random, so that there is no common ranking of
the firms.1 Finally, we assume that firms’ preference orderings over workers and
workers’ preference orderings over firms are independent of each other.

We model the matching market in three stages. We start with a signaling
stage, during which each worker signals to up to a fixed number of firms through
the signaling mechanism. Each signal is binary and does not transmit any fur-
ther information. Then, each firm, having received the set of workers who have
signaled to it, sends offers to a fixed quantity of workers. Finally, each worker
1 While Coles et al. [5] also study the case of multiple blocks of firms, some of their

welfare trends become indeterminate for more than one block of firms in their model.
For this reason, we focus on the case of one block in our paper.
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accepts their most preferred offer (if they have any offers). We assume that all
workers share a common utility function and that all firms share a common util-
ity function. Rejected offers yield 0 utility, firm utility from an accepted offer
is purely determined by its score on the worker, and worker utility from an
accepted offer is purely determined by their ranking of the firm.

Modeling the workers as a continuum greatly simplifies the space of possible
equilibrium firm strategies. This assumption has a convexifying effect on the
game [2], since no individual worker is able to influence the measure of workers
who signal to a given firm. Furthermore, by a line of work on exact laws of large
numbers for atomless measure spaces [10], we can assume the workers belong to
an atomless measure space where such a law of large numbers holds. Stripping
atomicity from the workers and assuming exact convergence to the distribution
over preferences resolves complications imposed by the model of Coles et al. [5],
in which the firm strategies took into account the number of signals received
by the firm. The continuity of the worker types thus simplifies the equilibrium
structure, allowing us to apply analytic tools and take comparative statics that
would have otherwise been intractable in the discrete setting.

We describe the distribution of preferences in Sect. 2.1 and the stages of the
game in Sect. 2.2.

2.1 Distribution of Preferences and Utilities

Let F denote the set of firms, and let F := |F| be the number of firms. We use SF
to denote the set of permutations of F . Let W := SF × [0, 1]F be the continuum
of worker types. That is, worker rankings of firms are given by permutations
drawn from SF , which correspond to a total ordering of firms from highest to
lowest ranked. Firm rankings of workers are given by scores in [0, 1], where ew

f

denotes the score of worker w given by firm f . The set of all firm scores for a
given worker can thus be represented as an element of [0, 1]F . Finally, let S ≥ 0
be the maximum number of signals that each worker is allowed to send.

We assume that the distribution of the worker types over W is given by the
product of a distribution over SF of worker preferences over firms and a distribu-
tion over [0, 1]F of firm preferences over workers. This product construction yields
the key property that the workers’ preferences over firms and the firms’ prefer-
ences over workers are independent of each other. The workers themselves (and
the corresponding firm preferences over workers) will then compose an atomless
measure space with types drawn uniformly from W, such that the distribution
of worker types is exactly the uniform distribution over W [10].

By assuming that the distribution of firm preferences over workers is the
uniform distribution over [0, 1]F , we make firm preferences over any given worker
independent. Nonetheless, observe that there are some workers who have high
scores from all the firms (universally “high-performing” workers), some workers
who have high scores from some firms but not other firms (workers endowed
with some skills but lacking other skills), and some workers who have low scores
from all the firms (universally “low-performing” workers).
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The uniform preferences assumption has been used throughout the signaling
literature, for example in the one-signal model of Coles et al. [5] (which our
model extends) to make their welfare analyses determinate. In fact, Coles et al.
remark that even when their model for one signal is extended to multiple blocks
of firms with block-uniform preferences, the welfare comparisons across different
equilibria become indeterminate. When a single firm responds to more signals,
firms in lower-ranked blocks may benefit so that there is no longer a purely nega-
tive spillover on other firms. We make the same uniform preferences assumption
to make possible our analogous results on the dynamics of the signaling game
and our analysis of welfare metrics in the limit.

Our welfare comparison theorems rely on the property that there is a unique
equilibrium in the limit. The uniqueness comes from the fact that not receiving
a signal from a worker indicates that the firm is not high on the worker’s prefer-
ence list. This fact, however, can fail if workers’ preferences are correlated, e.g.,
workers may prefer to signal to lower tier firms so that their signal will carry
more weight. While such strategies may be of interest in practice, it nonetheless
makes the space of equilibria, which may now depend heavily on the number of
signals, intractable to analyze across different numbers of signals.

We also assume that firms share a common utility function u : [0, 1] → R≥0

mapping worker score to utility. If a firm f ’s offer is rejected by a worker, then
the firm receives 0 utility. Otherwise, if worker w accepts firm f ’s offer, the firm
receives utility equal to u(ew

f ). Naturally, the utility function u should be increas-
ing, i.e., workers with higher score yield higher utility. For technical reasons, we
also assume that u is continuously differentiable and strictly increasing. Observe
that by setting u to be a quantile function, we may have u([0, 1]) be distributed
as any bounded distribution D on R whose quantile function is continuously dif-
ferentiable and increasing. Using this construction, we can convert the uniform
distribution over [0, 1]F of worker scores to any such product distribution DF

over R
F
≥0 of utilities derived from workers.

We assume that the distribution of worker preferences over firms is the uni-
form distribution over SF , so that firms are equally ranked on average. Here,
workers share a common utility function v : {1, . . . , F} → R≥0 mapping firm
rank to utility that is a decreasing function. If a worker does not receive offers
from any firm, they derive 0 utility from the game. Otherwise, a worker derives
v(i) utility if they accept the offer of their i-th highest ranked firm.

2.2 Stages of the Game

We model the signaling market as a game with three stages. We assume that the
distribution over worker types is common knowledge, but that at the beginning
of the game, firms do not have any knowledge of any given worker’s preferences,
and the workers do not have any knowledge of any specific firm’s preferences. In
other words, each firm and each worker knows only their own preferences. This
assumption ensures that the only information communicated between the firms
and the workers is through the presence (or lack) of the binary signal.
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To define the game, we introduce a new constant 0 ≤ γ < 1/F , that roughly
quantifies the competitiveness of the market by serving as an upper bound on
the number of offers each firm is allowed to send. The constraints 0 ≤ γ < 1/F
ensure there are fewer positions available than workers. We require competition
since when γ ≥ 1/F , each worker is able to be matched to their preferred firm,
leading to the existence of non-competitive equilibria in which workers only
signal to their most preferred firm.

The game proceeds in the following three stages:

– During the first stage, each worker, knowing only their own preferences over
firms, sends signals to up to S different firms for some fixed parameter S.

– At the start of the second stage, each firm is notified of the set of workers
that signaled to it. Given the signals that it receives as well as its ranking of
the workers by score, each firm then sends offers to a measurable subset of
the workers of measure at most γ.

– In the third and final stage, each worker accepts the offer from the highest
ranked firm from whom they receive an offer, if they receive any offers at all.

The offer structure of our game is based on the one-block, one-signal game of
Coles et al. [5].2 We allow workers to send fewer than S signals, so that workers
do not have to signal if signaling lowers their probability of acceptance, thus
preventing signals from becoming a negative commodity for the workers.

3 Equilibrium Strategies

Our solution concept is perfect Bayesian equilibrium restricted to strategies that
are symmetric and anonymous with respect to each side of the market. The
symmetry assumption comes from the fact that types on each side are drawn
from the same distribution. Anonymity is necessary to rule out strategies in
which there is unrealistic coordination outside of the signaling mechanism. These
assumptions on strategy profiles are similar to those of related works [5,6].

We say that a worker strategy is anonymous if the strategy only depends on
the preference profile of the worker, i.e., how a firm is treated depends only on its
rank. This corresponds to the traditional definition of an anonymous strategy:
a worker strategy σw is anonymous if for any permutation π of the firms and
any preference profile θw, we have that σw(π(θw)) = π(σw(θw)). We say that
a worker strategy profile is symmetric if each worker has the same response

2 In Coles et al. [5], each firm is only allowed to make an offer to at most one worker,
and each worker is allowed to accept at most one offer from at most one firm. In
our model, we maintain that each worker can accept at most one offer. However,
we instead set the maximum measure of offers that a firm is permitted to send to
γ. While this offer structure does not precisely model the dating market (where
candidates can “accept” multiple dates) or college admissions (where colleges can
select the number of students to accept based on yield rates), the simplicity of the
game, in both the setting of Coles et al. [5] and in our setting, enables the analysis
to be tractable.
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to a given preference profile over the firms. Next, given that a firm is facing a
symmetric strategy profile from the workers, which in particular gives us a well-
defined measure for the set of workers who signal to any given firm, we say that a
firm strategy is an anonymous response if the strategy depends only on whether
or not the worker signaled and the firm’s own score on the worker. Finally, we
say that a firm strategy profile is symmetric if each firm has the same response
to a given preference profile and a given set of workers who signaled.

In order to determine the set of symmetric, anonymous equilibria of the sig-
naling game, we first consider firm strategies in equilibrium. Recall that worker
preferences over firms are independent from firm preferences over workers. Intu-
itively, given this independence assumption, the optimal firm strategy should
be specified by cutoffs, in which the firm sends offers to all signaling workers
with scores above a certain cutoff and fills the remainder of its quota with non-
signaling workers with scores above another cutoff; this motivates the following
definition of cutoff strategy :

Definition 1. A cutoff strategy is a firm strategy given by cutoffs cS and cN

such that the firm sends offers to all signaling workers whose scores is at least cS

and all non-signaling workers whose score is at least cN . If the set of signaling
workers is empty, then we take cS to be 0; likewise, if the set of non-signaling
workers is empty, then we take cN to be 0.

Cutoff strategies are clearly anonymous. We show that for any nonzero num-
ber of signals, firms play cutoff strategies in equilibrium. For this reason, we will
only consider cutoff strategies for the remainder of our discussion.

Lemma 1. In any symmetric, anonymous equilibrium of the game with a
nonzero number of signals, firms play cutoff strategies (or measure 0 deviations
from cutoff strategies) and all firms have the same cutoff cS.

Lemma 1 relies on the independence of worker rankings of firms from firm
rankings of workers, which guarantees that the probability a worker accepts an
offer is independent of the worker’s score. Without this assumption, each firm
may be able to strategize based on the workers’ ranking of it. For example, if
one firm were universally much lower ranked than the other firms, it may choose
not to waste offer slots on very talented workers. As a result, our model applies
to a segment of the job market in which firms are of similar caliber and workers
are of similar caliber, where our independence assumptions are reasonable.

The equilibrium worker strategy depends on how cS compares to cN . If cS =
cN , then firms effectively ignore signals, giving rise to a babbling equilibrium.
Otherwise, if cS < cN , then due to the symmetry between the firms, we show
that it is optimal for each worker to truthfully signal to their top S choices.

Lemma 2. The following are the only two possibilities for symmetric, anony-
mous worker strategy profiles in equilibrium:

1. If signaling increases the probability of receiving an offer (i.e., cN > cS > 0),
then workers always signal to their top S firms.
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2. Otherwise, if firms ignore signals (i.e., cS = cN ), then any symmetric, anony-
mous worker strategy profile leads to a babbling equilibrium.

In particular, cS > cN is not possible in equilibrium, since workers will never
signal to a firm whose cutoff for non-signaling workers is higher than its cutoff
signaling workers.

For the remainder of the paper, we focus on the equilibria where the welfare
metrics change as a function of the number of signals. In the first scenario,
where cS = cN , the game is in a babbling equilibrium and the welfare metrics
are equivalent to the equilibrium in the game without signals. For this reason,
we focus on the non-babbling equilibria.

The simplicity of worker strategies depends on the fact that the distribu-
tion of firm preferences is uniform. Without this assumption, optimal worker
strategies are much less clear: the symmetry assumptions on the equilibria are
no longer reasonable, and optimal strategies can no longer be parameterized by
a single value. While the strategy space in our model does not capture the full
range of behavior that could occur in practice, its simplicity makes our analysis
of welfare metrics with varied numbers of signals tractable.

Given that the distribution of worker preferences is uniform over SF , we show
that there always exists at least one non-babbling equilibrium in symmetric and
anonymous strategies for the signaling game.

Theorem 1. For each firm utility function u and for any nonzero number of
signals, there exists a non-babbling equilibrium in symmetric and anonymous
strategies for the signaling game where workers signal to their top S firms.

We show in the online appendix that there exist firm utility functions u that lead
to multiple non-babbling equilibria where workers signal to their top S firms.
In Sect. 4, we will analyze the welfare metrics (worker welfare, firm welfare, and
number of matches) at these multiple equilibria.

In non-babbling equilibria in symmetric and anonymous strategies, we know
by Lemma 2 that each worker signals to their top S firms. In the online appendix,
we show the reverse implication: for any symmetric, anonymous equilibrium, if
workers signal to their top S firms, then cS = cN , i.e., where signaling does not
change the probability of receiving an offer, is never an equilibrium. For this
reason, we focus for the remainder of the paper on the symmetric, anonymous
equilibria that arise when each worker signals to their top S firms.

4 Impact of Signals

Having characterized the non-babbling equilibria in symmetric and anonymous
strategies, we now study the welfare metrics associated to the signaling game. In
Sect. 4.1, we discuss the signaling dynamics of the game with signals. In Sect. 4.2,
we discuss how varying the number of signals affects the welfare metrics.
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4.1 Signaling Dynamics

We now consider the dynamics of the game with signals. As we showed in The-
orem 1, there is always at least one non-babbling equilibrium in the game with
signals, and as we will show in the online appendix, there exist firm utility func-
tions u that lead to multiple symmetric, anonymous, non-babbling equilibria in
the signaling game. Thus, it is of interest to consider how the welfare metrics
compare between the multiple equilibria that arise for a fixed number of signals.

We show that the welfare metrics of firm welfare, worker welfare, and number
of matches are all monotonic in the cutoff value cS parameterizing the equilib-
rium. Namely, there is an opposition of interests between firms and the work-
ers/number of matches: at equilibria corresponding to lower cutoffs, firm welfare
is lower, worker welfare is higher, and the number of matches is higher.

Theorem 2. For any nonzero number of signals, suppose there exist symmet-
ric, anonymous, non-babbling equilibria with cutoffs at cS = c1 and cS = c2,
respectively, such that c1 < c2. Then at the equilibrium with cutoff cS = c1, firm
welfare is lower, worker welfare is higher, and the number of matches is higher.

The cutoff parameter cS can be thought of as the extent to which firms
respond to worker signals. This observation provides an explanation of the mono-
tonicity results for firm and worker welfare: at lower cutoffs, firms consider worker
preferences more, which is beneficial to workers and harmful to firms. Finally, the
number of matches is intuitively decreasing in the cutoff since signaling reduces
the amount of congestion in the market.

We also investigate how welfare metrics compare between equilibria in the
game with signals and in the game without signals. We specifically show that the
game with signals is always preferable to the game without signals with respect
to worker welfare and the number of matches. The change in firm welfare is
indeterminate, as we show in the online appendix.

Theorem 3. For any nonzero number of signals, both worker welfare and the
number of matches are greater at any equilibrium in the game with signals than
in the game without signals.

Since signaling forces firms to consider worker preferences, any amount of
signal intuitively should improve worker welfare, which is exactly what occurs
in this model. For a similar reason, the number of matches should intuitively
increase with signaling. The change in firm welfare is indeterminate because the
introduction of a signaling mechanism has two opposing effects. The first effect
is a reduction in the market power of firms from taking into account worker
preferences, which decreases firm welfare; the second is a partial resolution of
the coordination problem which reduces the waste of multiple firms sending offers
to the same worker.

These properties of our model for signaling markets, which hold for any
nonzero number of signals, capture and reinforce many of the same structural
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properties as the one-block model with one signal studied by Coles et al. [5].3

However, unlike in their model, our firm strategies are specified by one cutoff as
a result of having a continuum of workers, so we can analyze the effect of varying
the number of signals on these welfare metrics by taking comparative statics.

4.2 Welfare Metrics in the Limit

Our main goal is to investigate how firm welfare, worker welfare, and the number
of matches change as a function of the number of signals S available to each
worker. One complication that arises is the possibility of multiple equilibria in
this game. In the online appendix, we present a firm utility function for which
the number of equilibria and the cutoff values at the equilibria change as the
number of signals varies. Furthermore, although we have shown in the previous
section that welfare metrics are monotonic in the cutoff for a fixed number of
signals, it is indeterminate how these values compare across different numbers
of signals, as we also demonstrate through our example in the online appendix.

We resolve these complications by focusing on the relevant welfare metrics in
the case where there are many signals. The regime of interest is where the signals
transmit enough information to have a significant impact on firm strategy, but
not enough so that signals devolve into cheap talk. Our next theorem shows that
given sufficiently many signals, there exists only one symmetric, anonymous, non-
babbling equilibrium, in which workers signal to their top S firms and firms only
send offers to signaling workers. This phenomenon occurs when there are enough
signals that not sending a signal becomes a strong negative indication of interest.
The uniqueness of this equilibrium will allow us to take comparative statics to
analyze the effect of increasing the number of signals on welfare metrics.

Theorem 4. Suppose that γ = α
F for some constant α < 1. For each utility

function u, there exists a threshold value C < ∞ such that for any S ≥ C and
F > S, there exists only one symmetric, anonymous, non-babbling equilibrium
in the signaling game with F firms and S signals. This equilibrium occurs when
firms only make offers to signaling workers, i.e., when firm strategies have cutoffs
cS = 1 − α

S and cN = 1.

When a large number of signals are available to workers, workers are able
to signal to enough firms that not receiving a signal from a worker strongly
indicates to a firm that it is low in the worker’s preference ranking. In particular,
the probability that a worker is rejected by all of its signaled-to firms and accepts

3 One difference between the dynamics of our model and the dynamics of the model
of Coles et al. [5] is whether c = 1 − γ is an equilibrium if worker signal truthfully,
while in our model, for any S < F , the cutoff c = 1 − γ is never an equilibrium. On
the other hand, in [5], the cutoff c = 1−γ is always an equilibrium in the game with
signals. The difference arises because in our model, firms send offers to more than
one candidate, and the margin now matters. One consequence is that in our model,
shifts to strategies based on signaling are more likely to endogenously occur given
the existence of a signaling mechanism.
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the offer of a non-signaled-to firm becomes low. In contrast, in the case where
there are very few signals, workers only signal to their top few firms, so it may still
be worthwhile for firms to extend offers to highly valued workers who have not
signaled. In this case, it is indeterminate whether cS = 1 − α

S is an equilibrium,
and there may also be other equilibria, as we show in the online appendix.

Now that we have shown that, given sufficiently many signals, the unique
equilibrium is at cS = 1 − γF

S and cN = 1, our task boils down to studying how
the welfare metrics change as the number of signals increases. We show that
worker welfare and the number of matches decrease as the number of signals
increases at this equilibrium.

Theorem 5. Suppose that γ = α
F for some constant α < 1. Let u be a utility

function, and let C be a threshold value such for all S ≥ C, the signaling game
has only one symmetric, anonymous, non-babbling equilibrium at cS = 1 − α

S .
(This threshold C is guaranteed to exist by Theorem 4.) Then, for any S ≥ C
and F > S, worker welfare and the number of matches decrease as the number
of the signals increases.

The decrease in worker welfare and the number of matches occurs because
firms already respond maximally to signals, and increasing the number of signals
available to each worker without increasing the extent to which firms respond
to signals dilutes the strength of the signal. Now, workers very interested in a
firm may get their spots taken away by less interested workers. At the extreme,
signaling devolves into cheap talk, and the market where the number of signals
equals the number of firms is indistinguishable from the market without signals.

Now, we consider firm welfare. We show that, in the regime of many signals,
the change in firm welfare as the number of signals increases is a local property
of the utility function: namely, it depends solely on the rate of increase of u at
the maximum worker score. We show that if this derivative is small, then firm
welfare is decreasing in the number of signals in the limit, and if the derivative
is large, then firm welfare is increasing in the number of signals in the limit.

Theorem 6. Suppose that γ = α
F for some constant α < 1. Let u be a utility

function, and let C be such that for all S ≥ C, the game with signals has only one
symmetric, anonymous non-babbling equilibrium at cS = 1 − α

S . (This threshold
value is guaranteed to exist by Theorem 4.) There exists a threshold value C ′ ≥ C
that satisfies the following property:

– If u′(1) < αu(1)
eα−1 , then for any S ≥ C ′ and F > S, firm welfare in the signaling

game with utility function u, S signals, and F firms is a decreasing function
of S. Furthermore, firms prefer any number of signals S ≥ C ′ to no signals.

– If u′(1) > αu(1)
eα−1 , then for any S ≥ C ′ and F > S, firm welfare in the signaling

game with utility function u, S signals, and F firms is an increasing function
of S. Furthermore, firms prefer no signals to any number of signals S ≥ C ′.

In an equilibrium where firms only send offers to signaling workers, firms face
a tradeoff as the number of signals increases between being able to send offers
to a stronger set of workers and getting offers rejected by very strong workers
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who receive multiple offers. The sign of this comparative static therefore hinges
on the extent to which firms value stronger workers. If firms significantly value
stronger workers, then firms would prefer more signals, i.e., to be closer to the
case where signals are cheap talk. Otherwise, firms would prefer fewer signals in
order to reduce the number of offers received by workers that are highly rated
by many firms. In the limit, how much firms value stronger workers is captured
by the derivative u′(1).

When the number of signals is small, however, the effect of increasing the
number of signals available has an indeterminate effect on firm utility, even if
we assume that the game is in the equilibrium where firms only make offers to
signaling workers. The direction of change in firm utility depends on the marginal
gain of accepting a worker at the cutoff for signaling workers. If this marginal gain
at the cutoff is very different from the marginal gain of accepting a top worker,
then the direction of change may be indeterminate. In the online appendix, we
construct an example in which the direction of change is indeterminate when S
lies between the bounds C and C ′. (That is, it is necessary to allow threshold
C ′ to be greater than threshold C.)

Combining the previous two theorems yields the following result about total
firm and worker welfare. If u′(1) is small, then total welfare is a decreasing
function of S for sufficiently large S, and if u′(1) is large, then there is an
opposition of interests between firms and workers. In the former case, the optimal
number of signals should therefore not be too high, since the limiting behavior
has negative consequences for both firms and workers. In the latter case, there
exists an opposition of interests between firms and workers in the regime of many
signals, and the optimal amount of signaling in this case becomes dependent on
the method of welfare aggregation.

Corollary 1. Suppose that γ = α
F for some constant α < 1. Let u be a firm

utility function, and assume that u′(1) �= αu(1)
eα−1 . Let C ′ be the threshold value

such that there is a unique symmetric, anonymous, non-babbling equilibrium at
cS = 1 − α

S and such that the change in firm welfare as the number of signals
increases is monotonic. (This threshold is guaranteed to exist by Theorem 4 and
Theorem 6.) Suppose that S ≥ C ′ and F > S. If u′(1) < αu(1)

eα−1 , then total welfare

is a decreasing function of S. And if u′(1) > αu(1)
eα−1 , then there is an opposition

of interests between firms and workers.

Since these results are limiting results, this raises the question of how large
of the thresholds C and C ′ needs to be for well-behaved firm utility functions.
We show that for utility functions that grow sufficiently slowly between 0.75 and
1, firm welfare and total welfare are decreasing functions of S when S ≥ 4.

Lemma 3. Suppose that γ = α
F for some constant 0.8 ≤ α < 1. Suppose that u

satisfies u(y) ≥ u(1)(0.76 + 0.24y) for 1 ≥ y ≥ 0.75. Suppose that F > S ≥ 4.
Then, there is only one symmetric, anonymous, non-babbling equilibrium in the
signaling game with S signals and firm utility function u. Furthermore, firm and
worker welfare are both decreasing functions of S for S ≥ 4.
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This shows for certain utility functions, the optimal number of signals is between
0 and 4, demonstrating that limiting results can take effect for reasonable S.

5 Conclusion

Scarce signaling mechanisms are a useful market design tool to reduce conges-
tion and mismatch in markets where credible communication of preferences is
difficult. Such mechanisms have been implemented in practice in the economics
job market and in the context of matchmaking in online dating. However, the
number of signals available to each candidate varies between mechanisms. Under-
standing how to best set the number of signals available is therefore a key design
question for the implementation of such signaling mechanisms.

In this paper, we developed a large market model for signaling markets
and studied how varying the number of signals affects various welfare metrics.
Assuming uniform preferences, we showed that in a symmetric, anonymous, non-
babbling equilibrium, firms play cutoff strategies and workers signal to their top
S firms. Our main result is that in the limit, there exists a unique equilibrium
in which firms respond maximally to signals. At this equilibrium, increasing the
number of signals decreases worker welfare and the number of matches, while the
effect on firm welfare depends on the extent to which firms value top workers.

Future lines of research include relaxing the uniform preferences assumption
and characterizing welfare behavior in the case of very small numbers of signals.
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Abstract. We study the problem of a budget limited buyer who wants
to buy a set of items, each from a different seller, to maximize her value.
The budget feasible mechanism design problem requires the design a
mechanism which incentivizes the sellers to truthfully report their cost
and maximizes the buyer’s value while guaranteeing that the total pay-
ment does not exceed her budget. Such budget feasible mechanisms can
model a buyer in a crowdsourcing market interested in recruiting a set
of workers (sellers) to accomplish a task for her.

This budget feasible mechanism design problem was introduced by
Singer in 2010. We consider the general case where the buyer’s valua-
tion is a monotone submodular function. There are a number of truthful
mechanisms known for this problem. We offer two general frameworks for
simple mechanisms, and by combining these frameworks, we significantly
improve on the best known results, while also simplifying the analysis.
For example, we improve the approximation guarantee for the general
monotone submodular case from 7.91 to 5; and for the case of large mar-
kets (where each individual item has negligible value) from 3 to 2.58.
More generally, given an r approximation algorithm for the optimization
problem (ignoring incentives), our mechanism is a r + 1 approximation
mechanism for large markets, an improvement from 2r2. We also provide
a mechanism without the large market assumption, where we achieve a
4r + 1 approximation guarantee. We also show how our results can be
used for the problem of a principal hiring in a Crowdsourcing Market to
select a set of tasks subject to a total budget.

1 Introduction

We study prior-free budget feasible mechanism design problem, where a single
buyer aims to buy a set of items, each from a different seller. Budget feasible
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É. Tardos—Work supported in part by NSF grants CCF-1563714, and CCF-1422102,
ONR grant N00014-08-1-0031, and a Google Research Grant.

c© Springer Nature Switzerland AG 2018
G. Christodoulou and T. Harks (Eds.): WINE 2018, LNCS 11316, pp. 246–263, 2018.
https://doi.org/10.1007/978-3-030-04612-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04612-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-04612-5_17


Simple and Efficient Budget Feasible Mechanisms 247

mechanism design focuses on maximizing the value of the buyer, while keeping
the total payments bellow the budget. This problem was introduced by Singer
(2010), and models problems such as the problem of a crowdsourcing platform,
like a principal working on Amazon’s Mechanical Turk, who wishes to procure
a set of workers to accomplish a set of tasks. Each worker has a private cost for
her service. We offer universally truthful mechanisms with good approximation
guarantee for this problem that incentivize the workers to report their true cost
and find a set of workers with close to optimal value.

We focus on simple parameterized mechanisms, assuming the buyer’s valu-
ation is a general monotone (non-decreasing) submodular function. Monotone
submodular functions are widely used, with submodularity capturing the dimin-
ishing returns property of adding items. Submodular value functions are the
most general class of functions where the optimization problem (without consid-
ering incentives) can be solved approximately in polynomial time using a value
oracle.

We introduce new simple parameterized mechanisms for this problem, as well
as parameterizing and improving the analysis of some previously known mecha-
nisms. Our main result is to show how these simple parameterized mechanisms
can be combined for the case of large markets, where each item individually does
not have a significant value compared to the optimum. We also show how our
results can be used for the problem of a principal hiring in a Crowdsourcing
Market to select a set of tasks and agents to complete these tasks, subject to a
total budget.

Our Model. We consider the problem of a single buyer with a budget B facing
a set of multiple sellers A. We assume that each seller i ∈ A has a single indi-
visible item, and has a private cost ci for this item, and the buyer has no prior
knowledge of the private costs. The utility of a seller for selling her item and
receiving payment pi is pi − ci. We only study universally truthful mechanisms,
i.e. the mechanisms in which sellers truthfully report their costs, and do not
have incentive to misreport. Since each seller i ∈ A only has a single item, we
interchangeably use i to denote the seller or her item. We assume that v(S), the
value of the buyer for a subset of items S ⊆ A, is a monotone (non-decreasing)
submodular function.

The budget feasibility constraint requires that the total payments to the sell-
ers may not exceed the budget. The goal of this paper is to design simple, uni-
versally truthful and budget feasible mechanisms that approximately maximize
the value of the buyer. We compare the performance of our mechanism with the
true optimum, without computational or incentive limitation: maximizing the
value subject to keeping the total cost bellow the budget. With this comparison
in mind, incentive compatible mechanisms that do not run in polynomial time
are also of some interest.

We also consider a variant of the problem modeled by a bipartite graph,
where one side of the graph are agents with private costs and the other side
are tasks, each with a value for the principal. An edge (a, t) represents that
agent a can do task t. In this model, which was introduced by Goel et al. (2014)
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motivated by Crowdsourcing Markets, each agent (represented by a node) has a
fixed private cost, can do a subset of the tasks, and each task has a fixed value
for the principal.

Our Contribution. We offer two classes of parameterized mechanisms. The
main result of our paper in Sect. 4 combines these two mechanisms in a surpris-
ing way, offering a new and improved mechanism for large markets. In Sect. 3.1,
we study the class of parameterized threshold mechanisms that decide on adding
items based on a threshold of the marginal contribution of each item over its
cost (bang per buck), using a parameter γ. In Sect. 3.2, we consider another
parameterized class, called the oracle mechanisms, which adds items in decreas-
ing order of bang per buck, till reaching an α fraction of the true optimum,
without considering the budget. In Sect. 3 we analyze these two parameterized
mechanisms for general monotone submodular valuations. In Sect. 4 we combine
the two mechanisms to get an improved result for large markets. See Table 1
for a summary of our results for the general problem. In Sect. 5 we focus on the
application to a problem of markets with heterogeneous tasks Chen et al. (2011);
Goel et al. (2014).

Table 1. The top numbers are the previously known best guarantees, r ≥ 1 is the
approximation ratio of the oracle used by the mechanism, ∗ indicates that the mecha-
nism has exponential running time. Rand and Det stand for randomized and determin-
istic mechanisms, and LM indicates the large market assumption. The 4r guarantee
requires an additional assumption for the oracle, without the assumption the bound is
4r + 1.

Rand Rand∗ Det∗ Det, LM Rand, Oracle Det, Oracle, LM

Previous work 7.91 7.91 8.34 3 − 2r2

Our results 5 4 4.56 2.58 4r or 4r + 1 1 + r

– In Sect. 3.1 we consider threshold mechanism Greedy-TM, and Random-

TM, that chooses randomly between the single item of highest value, and
the output of Greedy-TM. This framework is a direct generalization of
the mechanisms presented in Singer (2010), Chen et al. (2011), Singla and
Krause (2013), and some of the mechanisms of Anari et al. (2014), who used
γ = 0.5. We show that for monotone submodular valuations, with the same
choice of the parameter γ, the randomized threshold mechanism is universally
truthful, budget feasible and can achieve a 5 approximation of the optimum.
This improves on the best previous bound of 7.91 due to Chen et al. (2011).

– In Sect. 3.2, we introduce another class of parameterized mechanisms,
Random-OM, called oracle mechanisms which add items in the bang per
bunk order until an α fraction of the optimum value is obtained, for a param-
eter α. We have included their exponential counterparts Random-EOM and
Deterministic-EOM in the full version of this paper (Jalaly and Tardos
(2017)). The mechanisms Random-EOM and Deterministic-EOM use the
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true optimum value (and hence run in exponential time), while Random-OM

uses a polynomial time approximation instead. We show that keeping the
total value of the winning set at most a fraction of the optimum guarantees
that the mechanism is budget feasible. Random-EOM and Deterministic-

EOM use a parameterized version of the exponential time oracle mechanism
of Anari et al. (2014), which we call Greedy-EOM, as a subroutine.
For the case when the mechanism has access to an oracle computing the true
optimum value, we show that with the right choice of α, our oracle mecha-
nism Random-EOM is universally truthful, budget feasible and achieves a 4
approximation of the optimum for monotone submodular values, improving
the bound of 7.91 of Chen et al. (2011). For Deterministic-EOM, we use a
derandomization idea, which is similar to that of Chen et al. (2011) and show
it achieves 4.56 approximation of the optimum, improving the 8.34 bound of
Chen et al. (2011). The main difference between our mechanism with that of
Chen et al. (2011) is that their mechanism only uses the optimum value in its
derandomization phase and their greedy subroutine does not take advantage
of having access to the optimum value, but our mechanism uses the optimum
value for both derandomization and creating a simple greedy subroutine that
selects the items (called Greedy-EOM).
The mechanism Random-OM runs in polynomial time by using an r-
approximation oracle as a subroutine instead of the optimum. We note that
using Greedy-EOM with a sub-optimal oracles breaks monotonicity; our
Random-OM mechanism guarantees monotonicity with any oracle.
We show that with the right choice of α, Random-OM is universally truthful,
budget feasible, and achieves a 4r + 1 approximation of the optimum (which
improves to 4r when the oracle used is a greedy algorithm).

– We give the main result of this paper in Sect. 4, where we combine our two
parameterized mechanisms by running both and declaring the sellers in the
intersection of the two sets as winners. Taking the intersection allows our
Cautious-Buyer mechanism to use larger values of the parameters γ and α
and keep the mechanism budget feasible. We show that for the right choice of
α and γ, our mechanism is deterministic, truthful, budget feasible and has an
approximation guarantee of 1+r, improving the bound 2r2 claimed by Anari
et al. (2014)1 (where r is the approximation guarantee of the oracle used).
Using the greedy algorithm of Sviridenko (2004) (which was also analyzed
in Khuller et al. (1999) for the special case of budgeted maximum coverage
problem), the approximation guarantee of our mechanism is 1 + e

e−1 � 2.58.
In Fig. 1 we show our mechanisms and their subroutines.

– In Sect. 5, we show how our results for submodular valuations can be used
for the problem of Crowdsourcing Markets with Heterogeneous Tasks of Goel
et al. (2014). This implies that our large market mechanism in Sect. 4 is a

1 Anari et al. (2014) achieve the claimed 2r2 by replacing the subroutine computing the
optimal solution in their exponential mechanisms by an r-approximation algorithm.
Unfortunately, this appears to break the truthfulness of the mechanism, as we point
out in Sect. 3.2.
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deterministic, truthful and budget feasible mechanism with 1 + e
e−1 ≈ 2.58

approximation guarantee for this problem. The resulting deterministic mech-
anism matches the approximation guarantee of the randomized truthful (in
expectation) mechanism of Goel et al. (2014) for this problem.

CAUTIOUS-BUYERRANDOM-TM RANDOM-OM

Greedy-TM Greedy-OMOracle

DETERMINISTIC-EOM RANDOM-EOM

Greedy-EOMOptimum

Fig. 1. Edges show mechanisms that are used as a subroutine of others. The mech-
anisms on left and right run polynomial and exponential time respectively. Oracle
is a polynomial time algorithm that approximately solves the budgeted optimization
problem for monotone submodular valuations.

Related Work. Prior free budget feasible mechanism design for buying a set
of items, each from a different seller, has been introduced by Singer (2010). For
monotone submodular valuations, which is the focus of our paper, Chen et al.
(2011) improved the mechanism of Singer (2010) and its analysis to achieve a
7.91 approximation guarantee, and also derandomized the mechanism to get a
deterministic (but exponential time) mechanism with an approximation guaran-
tee of 8.34. Amanatidis et al. (2016) showed this mechanism can be derandomized
given a linear programming (LP) relaxation of an integer program (IP) for this
problem in polynomial time. Their approximation guarantee depends on some
parameters of the input IP and its LP relaxation, but does not improve the 8.34
guarantee2.

Singla and Krause (2013) considered the problem for an application in com-
munity sensing and gave a mechanism with a 4.75 approximation guarantee for
large markets. Anari et al. (2014) improved the result of Singla and Krause
(2013) achieving a 3 approximation guarantee for large markets with a poly-
nomial time mechanism and a 2 approximation guarantee with an exponential
time mechanism. Anari et al. (2014) also proposed a mechanism that given an
r approximation oracle for the budgeted value maximization problem for mono-
tone submodular functions, has a 2r2 approximation guarantee, however, their
mechanism uses an optimization algorithm as an oracle, and loses monotonic-
ity (and hence truthfulness), when using the greedy algorithm (see Sect. 3.2 for
more details). We overcome this difficulty (in addition to improving the bound)

2 The same authors somewhat improved this bound in Amanatidis et al. (2017) using
our analysis from an earlier version of this paper, but the improved bound is at least
5.45.
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by allowing winning sets of items that are no longer contiguous in the order of
their marginal bang per buck.

Budget feasible mechanism design has also been considered with special
valuation functions, where better bounds are known. For example, for addi-
tive valuations the best known mechanism achieves an approximation bound of
2 +

√
2 ≈ 3.41 and 3 with a deterministic and randomized mechanisms respec-

tively due to Chen et al. (2011), who also gave a 1 +
√

2 ≈ 2.41 lower bound for
approximation ratio of any truthful budget feasible mechanism in this setting.
In large markets with additive valuations, Anari et al. (2014) improved these
results and gave a budget feasible mechanism with an approximation guarantee
of e

e−1 with a matching lower bound.
Singer (2010) also introduced the feasible mechanism design problem for

matchings on bipartite graphs: the principal is required to select a matching
of a bipartite graph, where each individual edge is an agent with a private
cost and a public value. Chen et al. (2011) consider the knapsack problem with
heterogeneous items, which is the special case of this problem where the bipartite
graph is a set of disjoint stars. Their approximation bound mentioned above for
additive item values, of 2 +

√
2 and 3 with a deterministic and randomized

mechanisms, also extend to this case. Goel et al. (2014) considered a variant of
the problem motivated by Crowdsourcing Markets, as defined above, where one
side of the graph are agents with private costs, and the other side are tasks, each
with a value for the principal. They give a randomized truthful (in expectation)
mechanism with a 1 + e

e−1 approximation guarantee for this problem under the
large market assumption. We consider this version of the matching problem in
Sect. 5. Even though adding the hard constraint that the winning set should be a
matching breaks submodularity of the valuation function (see Chen et al. (2011);
Goel et al. (2014); Amanatidis et al. (2016)), we show that our mechanisms for
the case of monotone submodular valuations still can be used for this case,
matching the approximation guarantee of Goel et al. (2014) with a deterministic
mechanism.

Prior free budget feasible mechanisms has also been studied for more general
valuation functions. Monotone submodular valuations are the most general class
of valuation functions for which a constant factor approximation guarantee with
a polynomial time (with a value oracle), truthful and budget feasible mechanism
is known. For subadditive valuations Dobzinski (2011) introduced a mechanism
using a demand oracle (more powerful than the value oracle we use). The current
best bound is an O( log n

log log n ) approximation guarantee due to Bei et al. (2012).
Bei et al. (2012) also gave a randomized mechanism that achieves a constant
(768) approximation guarantee for fractionally subadditive (XOS) valuations,
also using a demand oracle.

Some papers consider the Bayesian setting, where cost of each agent comes
from known independent distributions. Bei et al. (2012) gave a constant-
competitive mechanism for subadditive valuations (with a very large constant).
Balkanski and Hartline (2016) gave a ( e

e−1 )2-competitive posted pricing mech-
anism for monotone submodular valuations for large markets, using a cost ver-
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sion for defining the largeness of the market. The benchmark (optimum) used
in Balkanski and Hartline (2016) is the outcome of optimal Bayesian incentive
compatible mechanism, while others (including us) have used the significantly
higher, optimum with respect to the budgeted pure optimization problem as
their benchmark. It is interesting to compare our results for large markets to
the approximation guarantee of ( e

e−1 )2 ≈ 2.5 of the mechanism in Balkanski and
Hartline (2016). While this bound is ≈ 0.08 better than our bound, their bench-
mark, the optimal Bayesian incentive compatible mechanism, can be a factor of

e
e−1 lower than our benchmark of the optimum ignoring incentives Anari et al.
(2014). Even when the cost of sellers come from a uniform distributions, and the
value of each item is 1, the ratio between the two benchmarks is

√
2.

2 Preliminaries

We consider the problem of a single buyer with a budget B facing a set of
multiple sellers A, each selling a single item. We let n denote the number of
sellers and we assume A = [n]. We assume that the value v(S) of the buyer for
a set of items S, is a (non-decreasing) submodular function, that is, it satisfies
v(S) ≤ v(T ) for every S ⊆ T , and v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ), for every
set S, T ⊆ A. For every i ∈ A and S ⊆ A, we define mi(S) = v(S ∪ {i}) − v(S),
i.e. the marginal value of i with respect to subset S. Note that v(.) is monotone
submodular if and only if for every S, T ⊆ A we have:

v(T ) ≤ v(S) +
∑

i∈T\S

mi(S).

The large market assumption. In Sect. 4, we consider large markets, assuming
that the value of each agent is small compared to the optimum, i.e. v(i) �
opt(A) for all i ∈ [n]. For simplicity, we state our approximation bounds for
large markets in the limit3, assuming θ = maxi∈[n]

v(i)
opt(A) → 0.

The mechanism design problem of selecting sellers maximizing the buyer’s
value subject to his budget constraint, is a single parameter mechanism design
problem, in which each bidder (seller) has one private value (the cost of her
item). We design truthful, deterministic and individually rational mechanisms,
as well as universally truthful and individually rational randomized mechanisms.
A randomized mechanism is universally truthful if it is a randomization among
deterministic mechanisms, each of which are truthful. We use Myerson’s char-
acterization for truthful mechanisms, stating that a mechanism is truthful and
individually rational if and only if the choice of selecting each item is monotone
in its declared cost, and winners are paid threshold payments that are above
their declared cost.
3 By having a θ-large market assumption instead, the approximation guarantees for

our large market mechanisms increases by a factor of (1 − cθ)−1, where c ∈ (0, 4) is
a constant which is different for each mechanism. We omit stating the exact value
of c for each mechanism separately.
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In order to show a mechanism is universally truthful and budget feasible,
it suffices to show that the allocation is monotone and by using the threshold
payments, the total payments are not more than the budget. Similar to Dobzinski
(2011); Chen et al. (2011); Bei et al. (2012); Singla and Krause (2013), we assume
that the payments are threshold payments and only specify the allocation rule.
At the end of each section, we briefly explain how the payment rule of the
mechanisms in that section can be computed. In all our mechanisms if a seller
bids a cost more than B, he will not be selected in the winning set, hence will
have utility 0. This combined with the fact that all our mechanisms are truthful,
implies individual rationality, i.e. in all of our mechanisms utility of sellers are
non-negative.

3 Parameterized Mechanisms for Submodular Valuations

In this section we present two simple parameterized mechanisms. We show that
these parameterized mechanisms provide good approximation guarantees, and
are monotone and hence can be turned into truthful mechanisms with payments
defined appropriately. We analyze the approximation guarantee of these mech-
anisms with and without the large market assumption and give conditions that
make these mechanisms budget feasible.

Let S0 = ∅, and for each i ∈ [n], recursively define Si = Si−1 ∪
{arg maxj∈A\Si−1(

mj(Si−1)
cj

)}, adding the item with maximum marginal value
to cost ratio, to Si−1. To simplify notation, we will assume without loss of gen-
erality that {i} = Si \ Si−1. All of our mechanisms sort the items in descending
order of marginal bang for buck at the beginning and consider items in this
order.

3.1 The Threshold Mechanisms

Our threshold mechanism generalizes the mechanisms of Singer (2010) and Chen
et al. (2011). We consider items in increasing cost-to-marginal value order, as
defined above. Our greedy threshold mechanism, Greedy-TM, sets a threshold
for the cost to marginal value ratio of the items, compared to the ratio of the
budget to the total value of the set selected. Using a parameter γ, the mechanism
adds items while they are relatively cheap compared to the total so far.

The Greedy-TM mechanism works well for large markets where each indi-
vidual item has small value compared to the optimum. In the general case, we
will randomly choose between just selecting the item with maximum individual
value and cost below the budget, or running Greedy-TM. We call the resulting
randomized mechanism Random-TM(γ,A,B).



254 P. Jalaly Khalilabadi and É. Tardos

Greedy-TM(γ,A,B)
(Greedy Threshold Mechanism)
Let k = 1
while k ≤ |A| and

ck
mk(Sk−1)

≤ γ B
v(Sk)

do
k = k + 1

end
return Sk−1

Random-TM(γ,A,B)
(Random Threshold Mechanism)
Let A = {i : ci ≤ B}
Let i∗ = argmaxi∈[n](v(i))
With probability γ+1

γ+2 do
return Greedy-TM(γ,A,B)
halt

return i∗

The randomized mechanisms for submodular functions in Singer (2010) is
similar to Random-TM with parameter γ = e−1

12e−4 and the improved mechanism
of Chen et al. (2011) is equivalent to Random-TM with γ = 0.5. In this section
we offer a sketch of an improved analysis with details deferred to Jalaly and
Tardos (2017).

Monotonicity of the mechanisms is easy to see: if someone is not chosen,
he cannot be selected by increasing his cost (decreasing his marginal bang per
buck).

Lemma 1. For every fixed γ ∈ (0, 1], the mechanism Greedy-TM(γ,A,B) is
monotone.

We show that for every fixed γ ∈ (0, 1], Random-TM(γ,A,B) achieves a
1+ 2

γ approximation of the optimum, improving the bound of Chen et al. (2011).
The key difference is that we compare the output of Greedy-TM directly with
the true optimum, rather than a fractional greedy solution. Doing this not only
improves the approximation factor, but also simplifies the analysis. We use this
idea in the proof of the following technical lemma, which is the main ingredient
for proving the approximation guarantee of our mechanism. The detailed proof
is deferred to Jalaly and Tardos (2017).

Lemma 2. For every fixed γ ∈ (0, 1], if Sk−1 = Greedy-TM(γ,A,B) then

(1 +
1

γ
)v(Sk−1) +

1

γ
v(i∗) ≥ opt(A). (1)

By using the above lemma for the performance of Random-TM, we can get
the following approximation bound for Random-TM(γ,A,B).

Theorem 1. For every fixed γ ∈ (0, 1], Random-TM(γ,A,B) is universally
truthful, and has approximation ratio of 1 + 2

γ .

Proof Sketch. Monotonicity of the mechanism follows from Lemma 1.
The main idea for proving the approximation ratio is calculating the expected

value of the outcome of the mechanism and using inequality 1 from Lemma 2.
�

The mechanisms Greedy-TM(γ,A,B) and Random-TM(γ,A,B) are not
necessarily budget feasible for an arbitrary choice of γ. However, Chen et al.
(2011) shows that Random-TM(0.5, A,B) (which they call Random-SM) is
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budget feasible. We have included a simplified proof in the full version of this
paper (Jalaly and Tardos (2017)).

Combining the budget feasibility proof of Chen et al. (2011) and Theorem 1
for the general case, and using inequality (1) directly, instead of Theorem 1, for
the case of large market, where v(i∗) � opt(A), we get the following theorem.
The bound for large markets is matching the best approximation guarantee of
Anari et al. (2014) for submodular functions with computational constraint. In
Sect. 4 we improve this bound, while in Jalaly and Tardos (2017) we show that
the analysis in this section for Random-TM(0.5, A,B) is tight.

Corollary 1. Random-TM(0.5, A,B) is truthful, budget feasible and has
approximation ratio of 5. For the case of large market case, where v(i∗) �
opt(A), Greedy-TM(γ,A,B) is truthful, budget feasible and has approxima-
tion ratio of 3.

Note that we need γ = 0.5 to get the above corollary, however in Sect. 4 we
use this mechanism with a larger value of γ. The threshold payment of each
agent i in the winning set for the threshold mechanisms in this section can be
computed by increasing i’s cost until he reaches the threshold that makes him
not eligible to be in the winning set, while keeping the cost of other agents fixed.
In order to compute this number in polynomial time, it is enough to fix other
agents’ costs and see where in the sorted list of marginal bang-per-bucks this
agent can appear such that the inequality of Greedy-TM(γ,A,B) still holds for
her. The more detailed characterization of these threshold payments is similar
to that of Singer (2010).

3.2 The Oracle Mechanisms

Here, we provide a different class of parameterized mechanisms. This class of
mechanisms requires an oracle Oracle(A,B), which considers the optimization
problem of maximizing the value of a subset of A, subject to the total cost not
exceeding the budget B, and returns a value which is close to optimum. Let
opt(A,B) denote the optimum value of this optimization problem. We assume
that opt(A,B) ≥ Oracle(A,B). The oracle is an r approximation, if we also have
r · Oracle(A,B) ≥ opt(A,B). For instance, the greedy algorithm of Sviridenko
(2004) can be used as an oracle with r = e

e−1 ≈ 1.58. Since calculating the
opt(A,B) is not possible in polynomial time, we call the mechanisms that use
optimum value the exponential time oracle mechanisms. Due to lack of space,
we study these mechanisms in the full version of this paper (Jalaly and Tardos
(2017)). For some of our analysis in this section we offer a proof sketch here and
defer the detailed proof to Jalaly and Tardos (2017).

Here we offer an oracle mechanism that uses a oracle in place of the optimum
value opt(A,B), as finding the optimum for monotone submodular maximization
with a knapsack constraint cannot be done in polynomial time. Naively using
the outcome of a sub-optimal oracle instead of optimum in our exponential time
oracle mechanisms of Jalaly and Tardos (2017) can break monotonicity. To see
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this, note that if an item increases his cost, she cannot increase the value of
opt(A,B). However, if we replace opt(A,B) with the outcome of a sub-optimal
oracle (for instance a greedy algorithm), this is no longer true: if one increases
the cost of all the items that are not in the optimum set to be more than the
budget, any reasonable approximation algorithm for submodular maximization
(for instance the greedy algorithm in Sviridenko (2004)) can detect and choose
all the items that are in optimum set. Now if an item i increases her cost and this
increases the value of the outcome of the approximation algorithm compared to
opt(A,B), this gets the mechanism to take more items, possibly including item
i, by increasing the value of αv∗ in the selection rule of the mechanism.

To make our mechanism monotone, we remove i before calling the oracle
to decide if we should add i to the set S, making the items selected no longer
contiguous in the order we consider them.

Greedy-OM(α,A,B)
(Greedy Oracle Mechanism)
Let S = ∅
for i = 1 to n do

if
v(Si) ≤ αOracle(A \ {i}, B)
then

S = S ∪ {i}
end

end
return S

Random-OM(α,A,B)
(Random Oracle Mechanism)
Let A = {i : ci ≤ B}
Let i∗ = argmaxi∈[n](v(i))
With probability r

α+2r do
return
Greedy-OM(α,A,B)
halt

return i∗

Next we show that Greedy-OM(α,A,B) is monotone and provide its
approximation ratio.

Lemma 3. For every fixed α ∈ (0, 1], Greedy-OM(α,A,B) is monotone. If
S = Greedy-EOM(α,A,B), k ∈ [n] is the biggest integer such that Sk−1 ⊆ S,
i∗ is the item with maximum individual value, and assuming Oracle is an r
approximation of the optimum, then

r

α
v(Sk−1) + (1 +

r

α
)v(i∗) ≥ opt(A)

Proof. Monotonicity of the mechanism follows from the usual argument, increas-
ing ci does not effect Oracle(A\{i}, B) and decreases the item’s bang per buck
in any step so it can only increase the value of v(Si) since the decrease in the
item’s bang per buck can only add more items to Si by definition. To show the
approximation factor, recall that {k} = Sk \ Sk−1. Since k was not chosen by
the mechanism we have

v(Sk−1) + v(k) ≥ v(Sk) > αOracle(A \ {k}) ≥ α

r
opt(A \ {k})

≥ α

r
(opt(A) − v(k)) ≥ α

r
(opt(A) − v(i∗))

��
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Next Lemma shows that Greedy-OM(0.5, A,B) is budget feasible. We include
a sketch of the proof here with details deferred to Jalaly and Tardos (2017).

Lemma 4. By using threshold payments, Greedy-OM(0.5, A,B) is budget fea-
sible.

Proof Sketch. We prove that if each agent i bids higher than mi(Si−1) B
v(S) , where

S =Greedy-OM(0.5, A,B), then she will not be in the winning set. We use
contradiction to prove this showing that, if an agent bids higher than this amount
and is still in the winning set, then cost of optimum has to be higher than the
budget which is a contradiction. �

In large markets v(i∗) � opt(A) so by combining Lemmas 3 and 4 we get
the following corollary.

Corollary 2. In large markets, Greedy-OM(0.5, A,B) is truthful, budget fea-
sible and given an r-approximation oracle, achieves 2r approximation of the
optimum.

The previously known best oracle mechanism for large markets is due to
Anari et al. (2014) achieves 2r2. We will improve this bound for the case of large
markets to r + 1 in Sect. 4.

By using Lemma 3, we get the following theorem, whose proof is deferred to
Jalaly and Tardos (2017).

Theorem 2. Random-OM(α,A,B) is truthful and in expectation achieves 1+
2r
α of the optimum, assuming the oracle used is an r-approximation.

By combining Lemma 4 and Theorem 2 we have the following theorem.

Theorem 3. Random-OM(0.5, A,B) is truthful, budget feasible and in expec-
tation achieves 1 + 4r of the optimum.

By using the greedy algorithm of Sviridenko (2004) as an oracle, we
can improve the approximation ratio to 2r

α . To achieve this, we change
Greedy-OM(α,A,B), so that instead of using Oracle(A \ {k}, B), it uses
maxc′

i≥ci Oracle(A, (c′
i, c−i)). We also change the probability of choosing the

greedy mechanism’s outcome in Random-OM(α,A,B) to 1
2 . By doing so,

Random-OM(α,A,B) can achieve 2r
α instead of 1 + 2r

α . By using the greedy
algorithm of Sviridenko (2004), as an oracle, finding maxc′

i≥ci Oracle(A, (c′
i, c−i))

can be done in polynomial time, since we only have to check polynomial number
of cases for c′

i. Furthermore, if i increases his cost, he cannot increase the value
of maxc′

i≥ci Oracle(A, (c′
i, c−i)). We omit the proof of the following theorem, as

it is analogous to our previous proofs.

Theorem 4. The above modification of the Random-OM(0.5, A,B) mecha-
nism is truthful, budget feasible, get expected value of a 4r fraction of the opti-
mum. With the greedy algorithm as the oracle, it can be implemented in polyno-
mial time, and is a 4e/(e − 1)-approximation mechanism.
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For calculating the agents’ threshold payments of our oracle mechanisms in
this section, it is enough to check what is the maximum cost that each agent i
can declare such that she is still in the winning set. Similar to Sect. 3.1, for each
agent i, this number can simply be computed by checking where in the sorted
list of agents by their marginal bang-per-buck this agent can appear such that
the inequality of Greedy-EOM(α,A,B) (for the exponential time mechanisms)
and the inequality of Greedy-OM(α,A,B) (for polynomial time mechanisms)
still hold. The characterization of these threshold payments is similar to the
payment characterization of the oracle mechanisms of Anari et al. (2014).

4 A Simple 1 + e
e−1

Approximation Mechanism for Large

Markets

In this section we combine the two greedy parameterized mechanisms of Sect. 3,
Greedy-OM(α,A,B) and Greedy-TM(γ,A,B) to improve the approximation
guarantee for large markets. Given a polynomial time r approximation oracle,
our simple, deterministic, truthful, and budget feasible mechanism in this section
has an approximation ratio of 1 + r and runs in polynomial time.

Cautious-Buyer(α, γ,A,B)
Let A = {i : ci ≤ B}
Let Sα = Greedy-OM(α,A,B)
Let Sγ = Greedy-TM(γ,A,B)
return Sα ∩ Sγ

At first glance, Cautious-Buyer

seems worse than both of Greedy-

OM and Greedy-Tm, since its win-
ning set is the intersection of the win-
ing sets of these mechanisms. However,
taking the intersection of these mecha-
nisms will allow us to choose the value
of α and γ to be higher than 0.5 while
keeping the mechanism budget feasible. It is easy to see that the intersection of
two monotone mechanisms is monotone.

Proposition 1. For two monotone mechanisms M1 and M2, the mechanism M
that outputs the intersection of the winning set of M1 and the winning set of M2

is monotone.

Next we give a parameterized approximation guarantee for Cautious-

Buyer(α, γ,A,B).

Lemma 5. Assuming the large market assumption, for every fixed value of
α, γ ∈ (0, 1] Cautious-Buyer(α, γ,A,B) is monotone. Furthermore, with an r
approximation oracle, it has a worst case approximation ratio of max(1 + 1

γ , r
α ).

Proof. From Proposition 1, Lemmas 2, 3 it follows that Cautious-Buyer is
monotone.

Let S be the outcome of the mechanism. Let k be the biggest integer such
that Sk−1 ⊆ S, i.e., Sk−1 ⊆ Sα and Sk−1 ⊆ Sγ . By definition k /∈ S, so there are
two cases
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– k /∈ Sα: By Lemma 3, the large market assumption and monotonicity of
v(.), we have r

αv(S) ≈ r
αv(S) + (1 + r

α )v(i∗) ≥ r
αv(Sk−1)+(1 + r

α )v(i∗) ≥
opt(A,B).

– k /∈ Sγ : By Lemma 2, the large market assumption and monotonicity of v(.),
we have (1 + 1

γ )v(Sk−1) ≈ (1 + 1
γ )v(Sk−1) + 1

γ v(i∗) ≥ opt(A,B).

In both cases we have, max(1 + 1
γ , r

α )v(S) ≥ opt(A,B) assuming that v(i∗)
is negligible.

Now we provide a simple condition for the budget feasibility of Cautious-

Buyer(α, γ,A,B).

Lemma 6. If α ≤ 1
1+γ for any α, γ ≥ 0, then by using threshold payments,

Cautious-Buyer(α, γ,A,B) is budget feasible.

Proof. Let pi be the threshold payment for agent i. Let S =Cautious-

Buyer(α, γ,A,B). For every i ∈ S, we show that if i deviates to bidding a cost
bi > mi(Si−1) B

v(S) , he cannot be in the winning set. By proving this and by using
the definition of threshold payments we get

∑
i∈S pi ≤ ∑

i∈S mi(Si−1) B
v(S) ≤

∑
i∈S mi(Si−1 ∩ S) B

v(S) = B, so the mechanism is budget feasible.
We prove above claim by contradiction: assume that i deviates to bi >

mi(Si−1) B
v(S) and is in the winning set. Let b be the new cost vector and j

be position of i in the new order of items. Let S′
z for z ∈ [n] be defined similar

to Sz but with cost vector b instead of c. So S′
j is the set of items that are in

the winning set of Greedy-TM(γ,A,B) at the end of step j once i is added.
Note that S′

j is also equal to the set of all the items that has been considered by
Greedy-OM(α,A,B) at the end of its j-th step. So by using the same argument
as proof of Lemma 4 we get

c(S∗) > B
v(S∗) − v(S′

j)
v(S)

and v(S′
j), v(S) ≤ αv(S∗)

By defining x = v(S′
j)

v(S) , we have v(S′
j) = xv(S) ≤ αxv(S∗). So we get

c(S∗) > B
v(S∗) − v(S′

j))
v(S)

> B
(1 − α)v(S∗)

αxv(S∗)
= B

1 − α

αx

so if 1 − α ≥ αx, or equivalently, α ≤ 1
1+x then we get c(S∗) > B which is the

desired contradiction.
Since i ∈ Sγ , we also have

bi

mi(S′
j)

≤ γ
B

v(S′
j)

=
γ

x

B

v(S)

So since mi(S′
j) ≤ mi(Si−1), if γ ≤ x, we get to a contradiction with the assump-

tion about bi.
The only remaining case is when γ > x and α > 1

1+x . This means that
α > 1

1+γ which is a contradiction with the property in the statement of lemma,
so the mechanism is budget feasible.



260 P. Jalaly Khalilabadi and É. Tardos

By using Lemmas 5 and 6, the main theorem of this section follows. We
include the detailed proof in full version of this paper (Jalaly and Tardos (2017)).

Theorem 5. By using threshold payments, Cautious-Buyer ( r
r+1 , 1

r ) is truth-
ful, budget feasible, and 1+r approximation of the optimum. By using the greedy
algorithm with r = e/(e − 1) we get a mechanism with approximation guarantee
of ≈ 2.58.

The threshold payment of an agent in this mechanism is the minimum of
the threshold payment of two mechanisms we intersected to get Cautious-

Buyer(α, γ,A,B).

5 Application to Hiring in Crowdsourcing Markets

In this section, we consider an application of our mechanisms for the problem
of a principal hiring in a Crowdsourcing Market. We consider the model where
there is a set of agents A that can be hired and a set of tasks T that the principal
would like to get done. Each agent i ∈ A has a private cost ci. We represent the
abilities of the agents by a bipartite graph G(A, T ), where edge e = (a, t) in the
G indicates that agent a can be used for task t, where each agent hired can be
used for at most one of the tasks she can do. The value of buyer for each edge
e is ve, which can be different for each edge. The principal would like to hire
agents to maximize the total value of tasks done, while keeping the total payment
under her budget B. The optimal solution for this problem is a maximum value
matching, subject to the budget constraint on the cost of the hired agents.

This model is also known as knapsack with heterogeneous items. Knapsack
with heterogeneous items and buyer with a matching constraint for budget fea-
sible mechanism design was also studied by Singer (2010); Chen et al. (2011);
Goel et al. (2014); Amanatidis et al. (2016). There are many ways for modeling
the heterogeneity of items. In Chen et al. (2011), this heterogeneity has been
defined by having types for items where at most one item can be chosen from
each type, corresponding to a bipartite graph where agents have degree 1. Goel
et al. (2014) consider our model of agents and tasks with a bipartite graph, but
assume that the principal has a fixed value for each task completed, independent
of the agent that took care of the task, so values of the edges entering a task
node t are all equal.

In this section, we apply our technique from Sect. 4 for this problem. For
the model used by Goel et al. (2014), where the principal has a value for each
task independent of who completes the task, we show that a small change in
our mechanism (stopping it when the marginal increase in value is 0) results
in the same approximation guarantee. The small modification is needed as the
value for the buyer is not a submodular function of the set of agents hired (see
Amanatidis et al. (2016)).

Theorem 6. The truthful budget feasible threshold and oracle mechanisms, as
well as the large markets mechanism for submodular valuations of this paper
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without any loss in the approximation ratio can be also used for the case of
heterogeneous tasks, with the constraint that each agent in the winning set should
be assigned to a unique task (matching constraint).

Before proving this theorem, we consider the general problem defied above,
but similar to Singer (2010), we relax the assumption that the allocation should
always assigned each agent in the winning set to a unique task, and allow instead
that multiple agents get assigned to a given task, with only one contributing to
the value. We define the value of the buyer for the winning set S to be the
value of the maximum matching on the induced subgraph G[S, T ]. We’ll see
that allowing the principal to hire extra agents makes her valuation a monotone
submodular function. This can model the case where the principal asks more
than one worker to accomplish a task, but only keep the best results.

General Crowdsourcing Markets. It is well-known and not hard to see that
the function defined by value of maximum matching adjacent to a subset of
agents S is a monotone and submodular function of S. The following proposition
formalizes this statement.

Proposition 2. For S ⊆ A, let f(S) be the maximum value of a matching of the
induced subgraph G[S, T ] of the bipartite graph G(A, T ), then f(S) is a monotone
submodular function.

This proposition implies that all our truthful budget feasible mechanisms for
submodular valuations can be used for this model.

Corollary 3. Without the strict matching constraint, budgeted valuations with
heterogeneous tasks (items) are a special case of monotone submodular valua-
tions, so all the mechanisms from the previous sections can be applied to this
problem.

Hiring with Strict Matching Constraint. Consider the case where the
buyer’s value is defined by summation of her value for each task, i.e. for all
the edges that are directly connected to the same task, the value of the buyer
for those edges is the same. We argue that in this model, if we add the hard
constraint each agent in the winning set should be assigned to a unique task
(similar to Chen et al. (2011); Goel et al. (2014); Amanatidis et al. (2016)), then
with a small change in our mechanisms, all our results still hold. This problem
was considered by Goel et al. (2014) for large markets, who gave a randomized
truthful (in expectation) and budget feasible mechanism with a 1+ e

e−1 approx-
imation guarantee for large markets (the main result of Goel et al. (2014)). The
next lemma shows how one can use our truthful budget feasible mechanism for
large markets to get the same approximation guarantee with a deterministic
mechanism.

Lemma 7. For S ⊆ A, let f(S) be the maximum value of matching of the
induced subgraph G[S, T ] of the bipartite graph G(A, T ) in which all the edges
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that connect to the same node of T have the same value. If a maximum value
matching induced by S ⊆ A connects all vertices in S to a vertex in T , and for
a ∈ A \ S, f(S ∪ {a}) − f(S) > 0, then there is a maximum value matching
induced by S ∪ {a} which is also assigning each agent to a unique task.

Proof. We use contradiction. Assume that there is a subset of agents S ⊆ A
such that there is a maximum matching M in the subgraph of G, induced by
vertices of S and T that connects each agent in S to a task in T . Let a ∈ A be
an agent such that f(S ∪ {a}) − f(S) > 0 and there is no maximum matching
in the subgraph induced by S′ = S ∪ {a} and T that connects each agent in
S′ to a task in T . Let M ′ be a maximum matching of this induced subgraph.
Let G′ be the union of edges in M and M ′ and let C and P be the set of
cycles and paths that contain all the edges of G′. Since M and M ′ are both
maximum matchings, we have W (M ∩ c) = W (M ′ ∩ c) for all c ∈ C. Since the
only difference between S and S′ is having a, there can only be one path p ∈ P
such that W (p ∩ M ′) > W (p ∩ M). Furthermore, one of the end points of p
should be a and for all other paths p′ ∈ P that p′ �= p, W (p′ ∩M) = W (p′ ∩M ′).
For p there are two cases

– The edge that is connected to the other endpoint of p is in M : in this case,
since the value of matching is defined by tasks, W (p ∩ M) = W (p ∩ M ′).
Therefore, W (M) = W (M ′) and F (S′) − F (S) = 0 which is a contradiction.

– The edge that is connected to the other endpoint of p is in M ′: In this case
if we define a matching M∗ = (M \ p) ∪ (M ′ ∩ p), then M∗ will connect each
agent in S′ to a unique task, which is a contradiction.

This means that we reach contradiction in both cases, and the proof is complete.

Proof of Theorem 6. We use our mechanism this problem, using Corollary 3, but
stopping to consider items in the sorted list of marginal bang per bucks whenever
the marginal bang-per-buck of the item is 0. Note that since the items are listed
in decreasing order of marginal bang per buck and we know that the valuation
is submodular, doing this will not have any effects on the approximation ratio
(since the marginal bang-per-buck of the next items is also 0) and truthfulness
(since the threshold payment of an agent whose item has 0 marginal value is 0)
of our mechanisms.

By Lemma 7 in the resulting subset of agents, there is a maximum value
matching assigning each agent to a unique task. �

For the case of large markets, by this corollary and Theorem 5, Cautious-

Buyer is a deterministic truthful and budget feasible mechanism for this prob-
lem, matching the 1+ e

e−1 guarantee of the randomized truthful (in expectation)
mechanism of Goel et al. (2014).
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Jalaly, P., Tardos, É.: 2017. Simple and Efficient Budget Feasible Mechanisms for Mono-
tone Submodular Valuations. CoRR abs/1703.10681 (2017). http://arxiv.org/abs/
1703.10681

Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Inform.
Process. Lett. 70(1), 39–45 (1999)

Singer, Y.: Budget feasible mechanisms. In: 2010 51st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 765–774. IEEE (2010)

Singla, A., Krause, A.: Incentives for privacy tradeoff in community sensing. In: First
AAAI Conference on Human Computation and Crowdsourcing (2013)

Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack
constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

https://doi.org/10.1007/978-3-662-54110-4_29
https://doi.org/10.1007/978-3-662-54110-4_29
http://arxiv.org/abs/1704.06901
http://arxiv.org/abs/1704.06901
http://arxiv.org/abs/1703.10681
http://arxiv.org/abs/1703.10681


Social Welfare and Profit Maximization
from Revealed Preferences

Ziwei Ji(B), Ruta Mehta, and Matus Telgarsky

University of Illinois at Urbana-Champaign, Urbana, USA
{ziweiji2,rutameht,mjt}@illinois.edu

Abstract. Consider the seller’s problem of finding optimal prices for her
n (divisible) goods when faced with a set of m consumers, given that she
can only observe their purchased bundles at posted prices, i.e., revealed
preferences. We study both social welfare and profit maximization with
revealed preferences. Although social welfare maximization is a seem-
ingly non-convex optimization problem in prices, we show that (i) it can
be reduced to a dual convex optimization problem in prices, and (ii) the
revealed preferences can be interpreted as supergradients of the concave
conjugate of valuation, with which subgradients of the dual function can
be computed. We thereby obtain a simple subgradient-based algorithm
for strongly concave valuations and convex cost, with query complexity
O(m2/ε2), where ε is the additive difference between the social welfare
induced by our algorithm and the optimum social welfare. We also study
social welfare maximization under the online setting, specifically the ran-
dom permutation model, where consumers arrive one-by-one in a random
order. For the case where consumer valuations can be arbitrary contin-
uous functions, we propose a price posting mechanism that achieves an
expected social welfare up to an additive factor of O(

√
mn) from the

maximum social welfare. Finally, for profit maximization (which may be
non-convex in simple cases), we give nearly matching upper and lower
bounds on the query complexity for separable valuations and cost (i.e.,
each good can be treated independently).

1 Introduction

In consumer theory, it is standard to assume that the preferences of a consumer
are captured by a valuation function, which is often assumed to be known to the
mechanism designer. However, in a real market, one can only observe what buyers
buy at given prices, the revealed preferences. Research on revealed preferences
within TCS has two primary objectives: (i) learning valuation functions from
revealed preferences, with the goal of having predictive properties [6,7,10,36];
(ii) directly learning the prices that maximize social welfare or profit [4,5,8,9,
11,13,28,29,35].

The latter problem is of importance to sellers in today’s online economies,
where a large amount of data about consumers’ buying patterns is available. For
a seller, profit maximization is the primary goal in general, while she may also
c© Springer Nature Switzerland AG 2018
G. Christodoulou and T. Harks (Eds.): WINE 2018, LNCS 11316, pp. 264–281, 2018.
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want to maximize social welfare in an effort to earn the goodwill of consumers,
with increased market share as a byproduct.

In this paper, we consider social welfare and profit maximization using only
revealed preferences.

1.1 Our Model, Results, and Techniques

Consider a market with m consumers and a producer (seller) who produces
and sells a set of n divisible goods. In the most general case, the preferences of
consumer i over bundles of goods are defined by a valuation function vi : C → R+

(C ⊂ R
n is called the feasible set), which is her private information and unknown.

At prices p she demands bundle xi(p) that maximizes her value minus payment,
i.e., her quasilinear utility

xi(p) ∈ arg max
x∈C

(
vi(x) − 〈p,x〉) .

Given prices p, the revealed preference refers to the purchased bundle xi(p)
of each consumer in the market (demand oracle information), or even only∑m

i=1 xi(p) (aggregate demand oracle information). No other information of the
valuations is revealed.

Producing the demanded goods incurs cost to the producer, which is rep-
resented by a convex cost function c. The producer, or the algorithm, posts
prices and makes observations repeatedly, trying to maximize the social welfare
or profit, as described below.

Social Welfare Maximization. The social welfare of bundles x1, . . . ,xm ∈ C is
the sum of consumers’ valuations minus production cost, i.e.,

SW(x1, . . . ,xm) =
∑m

i=1 vi(xi) − c
(∑m

i=1 xi

)
. (1)

The benchmark used in this paper is the maximum social welfare SW∗ and
corresponding maximizing bundles (x∗

1, . . . ,x
∗
m), defined as

SW∗ = max
x1,...,xm∈C

SW(x1, . . . ,xm) and (x∗
1, . . . ,x

∗
m)∈ arg max

x1,...,xm∈C
SW(x1, . . . ,xm).

(2)
In Sect. 3, offline social welfare maximization is considered. The producer tries

to find good prices p such that SW(x1(p), . . . ,xm(p)) is maximized. Although
there exist many methods to maximize a concave function, the social welfare is
usually a non-concave function in p [29]. Moreover, the producer only has access
to the aggregate demand oracle; the true valuations vi(xi(p)) are unknown.

We first show using duality theory that the maximum social welfare SW∗,
which is larger than or equal to any social welfare that can be induced by some
prices, can in fact be induced by a single price vector p∗, which is the minimizer
of a convex dual function f(p) = c∗(p) − ∑m

i=1 v∗
i (p), where c∗ and v∗

i are
respectively convex and concave conjugates [27], as reviewed in Sect. 2. Moreover,
the revealed preferences are supergradients of v∗

i , with which subgradients of
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f can be computed. Finally, to get a faster algorithm, we apply a smoothing
technique to f and then invoke the accelerated gradient descent method. These
ideas are formalized in Algorithm 1, whose guarantee is given below.

Theorem 1 (Informal statement of Theorem 4). The additive error
between the social welfare induced by Algorithm 1 and the maximum social wel-
fare Eq. (2) is at most O(m/

√
T ), where T is the number of queries to the

aggregate demand oracle.

In other words, to ensure an additive ε approximation of the maximum social
welfare, Algorithm 1 needs O(m2/ε2) queries to the aggregate demand oracle.

[29] and [28] are the most relevant prior work. [29] studies profit maximiza-
tion instead of social welfare maximization in a market with one consumer.
However, it is assumed that the valuation function is homogeneous, under which
profit maximization can be reduced to social welfare maximization. Assump-
tions made in [29] and this paper are basically identical. Key differences are: (i)
[29] proposes a two-level algorithm, where there is an outer iterative algorithm
maximizing social welfare, and for each outer iterate, the supergradient of the
unknown valuation function is computed by solving a dual optimization prob-
lem. In this paper, we only need to solve a single (different) dual optimization
problem. Therefore, this gives a simpler approach which may be of independent
interest. (ii) The subgradient of the dual objective function in this paper can be
interpreted as the excess supply (see the discussion around Eq. (8) in Sect. 3.1),
which gives our algorithm a natural interpretation as a Tâtonnement process.
(iii) The query complexity given in [29] can be as large as O(1/ε6) to ensure an
additive error of ε between the induced social welfare and the maximum social
welfare; one reason is that they use subgradient descent, which works for non-
smooth convex functions but converges slowly. In this paper, by combining a
smoothing technique and accelerated gradient descent, Theorem 1 only needs
O(1/ε2) queries to the aggregate demand oracle. [28] assumes that the valua-
tion is stochastic, but only considers a linear cost. It also considers unit demand
consumers with indivisible goods, which is out of the scope of this paper.

Next in Sect. 4 we consider online social welfare maximization under the ran-
dom permutation model. In this model, m consumers come to make purchases
one by one, and correspondingly the producer is allowed to post prices dynam-
ically, i.e., to update prices from pi to pi+1 after the purchase of consumer
i. Random permutation here means that those m consumers are first chosen
potentially by an adversary, and then come and make purchases one by one in
a uniformly random order. (The random permutation model has been exten-
sively studied within online optimization [2,14,17], and is more general than the
i.i.d. model where each valuation is an independent sample from an unknown
distribution.) The objective is to maximize the expected online social welfare
E[SW(x1(p1), . . . ,xm(pm))], where the expectation is taken over random orders.

The idea to solve the online social welfare maximization problem is to run
an online convex optimization algorithm on a dual problem fi(p) = c∗(p)/m −
〈xi(pi),p〉. See Algorithm 2 for details; an introduction to online convex opti-
mization is given in Sect. 4.
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Theorem 2 (Informal statement of Theorem 5). The expected additive
error between the online social welfare achieved by Algorithm 2 and the maximum
offline social welfare Eq. (2) is bounded by O(

√
mn), where the expectation is

taken over random orders of valuations.

For a given producer, the number of goods n can be thought of as fixed. As
a result, the loss of social welfare induced by Algorithm 2 is sublinear in the
number of consumers m.

The idea of Algorithm 2 comes from [2], where a general online stochastic
convex programming problem is considered. It has many other advantages when
applied to online social welfare maximization. First, it is enough to assume that
the valuations are continuous; the consumer demand oracle may potentially need
to solve some non-convex quasi-linear utility maximization problem, but our
focus is on the producer side. Since fi only depends on the revealed preference
xi(pi), not on vi, it is still convex. Second, Algorithm 2 is robust, in the sense
that it is not sensitive to the potential error in quasi-linear utility maximization.
For details, see the discussion at the end of Sect. 4.

Profit Maximization. Next we consider profit maximization with access to the
aggregate demand oracle. Given prices p, the profit of producer is the revenue
minus production cost, i.e.,

Profit(p) = 〈p,
∑m

i=1 xi(p)〉 − c
(∑m

i=1 xi(p)
)
. (3)

Although it is more reasonable for the producer to maximize the profit, this
problem is hard due to non-convexity. The social welfare maximization problems
are solved by making a reduction to some convex optimization problem on the
space of prices. However, for profit maximization, both the set of optimal bundles
and the set of optimal prices may be non-convex, as shown by Example 1 in
Sect. 5.

We then consider the case where both the valuations and cost are separable. A
separable valuation vi(x) =

∑n
j=1 vij(xj), while similarly a separable cost c(y) =∑n

j=1 cj(yj). Under this assumption, in Sect. 5 we give upper and lower bounds
on the query complexity for profit maximization and revenue maximization (i.e.,
the cost is 0). These upper and lower bounds match for revenue maximization.

Theorem 3 (Informal statement of Theorems 6 and 7). Consider a mar-
ket with m consumers and n goods. If the valuations are strongly concave, and
both the valuations and cost are separable and Lipschitz continuous, then Algo-
rithm 3 maximizes the profit up to an additive ε error with O(mn/ε) queries
to the aggregate demand oracle. If the cost is zero, then the strongly concave
assumption on valuations can be dropped.

On the other hand, for concave, separable and Lipschitz continuous valua-
tions, any algorithm requires Ω(n/ε) queries to the aggregate demand oracle in
order to maximize the revenue up to an ε additive error.
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1.2 Related Work

Samuelson started the theory of revealed preferences in 1938 [30] to facilitate
mapping observed data to valuation functions, which led to extensive work within
economics on “rationalization” or “fitting the samples” [1,15,20,22,23,26,33,34].
In TCS, there have been a lot of work on learning valuations from revealed
preferences with which predictions can be made [6,7,10,36].

Another line of research is on learning prices directly that can maximize social
welfare or profit, usually known as the dynamic pricing problem [4,5,8,9,11,13].
Some prior works assume nice properties of the demand function (oracle) itself,
such as linearity in case of large number of goods [12,21], concavity [5], Lipschitz
continuity [8,9,35]. However, these properties may not be satisfied by demands
that come from typical concave valuation functions. In [4], the valuation function
is assumed to be linear, and is first partially inferred and then used in a price
optimization step. However, if the valuation is general concave, such a learning
phase is not possible [7].

Recently, [16] studies an online linear classification problem under the
revealed preference model.

2 Preliminaries

Market Model. Our model consists of one producer (seller) who produces and sells
n divisible goods, and m consumers. Consumer i’s preferences are represented
by an unknown valuation function vi : C → R+. The feasible consumption set
C ⊂ R

n
+ is typically assumed to be convex and compact with non-empty interior.

It is assumed that C is known to the algorithm, and let D = maxx,y∈C ‖x− y‖2
denote the �2 diameter of C. Note that our algorithm can be extended to the case
where vi’s have different domains with different diameters; a common domain C
is used here only for convenience.

Given prices p = (p1, . . . , pn) ∈ R
n
+ of goods, the quasi-linear utility of a

bundle x ∈ R
n
+ is defined as

ui(x,p) = vi(x) − 〈x,p〉.

Naturally, consumer i demands a bundle from C that maximizes her quasi-linear
utility

xi(p) ∈ arg max
x∈C

ui(x,p),

which is known as the revealed preference of consumer i at prices p. Once the
seller sets prices p, we only get to see xi(p) for each consumer i, where every
consumer can be thought of as a demand oracle, or even only x(p) =

∑m
i=1 xi(p),

where the market can be seen as an aggregate demand oracle. vi is always
assumed to be continuous to ensure that xi(p) exists. This is the only assump-
tion needed for the online social welfare maximization part of this paper; the
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offline social welfare maximization part and the profit maximization part further
assume that the valuations are strongly concave, which will be introduced later.

The production cost is represented by a convex, Lipschitz continuous, non-
decreasing cost function c : mC → R+, where mC = {mx|x ∈ C} =
{∑m

i=1 xi|x1, . . . ,xm ∈ C} since C is convex. Note that the domain of c is big
enough to allow production of any aggregate demand. Let λ denote the modulus
of Lipschitz continuity of c with respect to the �2-norm. It is assumed that the
cost function is known to the algorithm.

The producer, or the algorithm, can only post prices and observe the pur-
chased bundles repeatedly, trying to maximize the social welfare Eq. (1) or profit
Eq. (3). Note that if valuations are only continuous, xi(p) and the induced social
welfare and profit may not be uniquely defined. In this paper, the online social
welfare result holds for any xi(p), while in offline social welfare and profit max-
imization, xi(p) is unique since strong concavity is assumed.

Convex and Concave Conjugates. The notion of convex and concave conjugates
are crucial in our algorithms. Given a convex function f : D → R where D ⊂ R

n

is non-empty, its convex conjugate f∗ is defined as:

f∗(y) = sup
x∈D

(〈y,x〉 − f(x)
)
,

where the domain of f∗ is given by dom f∗ = {y ∈ R
n|f∗(y) < ∞}. Similarly,

given a concave function f : D → R, its concave conjugate is defined as

f∗(y) = inf
x∈D

(〈y,x〉 − f(x)
)
,

where the domain of f∗ is given by dom f∗ = {y ∈ R
n|f∗(y) > −∞}. Since we

only compute convex conjugates of convex functions and concave conjugates of
concave functions, the above notation is fine. ∂f denotes the set of subgradients
of convex f or supergradients of concave f .

Note that in our case, since dom c = mC is non-empty and compact and c
is continuous, dom c∗ = R

n. Similarly, for every i, dom v∗
i = R

n.
Lemma 1 is crucial in our algorithm: One key observation in this paper is

that revealed preferences are actually supergradients of the concave conjugate
of valuation, which is given by Lemma 1. Lemma 1 can be derived from [19]
Corollary E.1.4.4 immediately. Although it is stated for convex functions and
convex conjugates, corresponding properties hold for concave functions and con-
cave conjugates.

Lemma 1. Suppose f is convex continuous with non-empty domain. For every
pair (x,y) ∈ dom f × dom f∗,
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y ∈ ∂f(x)

⇐⇒ x ∈ ∂f∗(y)

⇐⇒ x ∈ arg maxx′∈dom f

(〈y,x′〉 − f(x′)
)

⇐⇒ y ∈ arg maxy′∈dom f∗
(〈x,y′〉 − f∗(y′)

)

⇐⇒ f(x) + f∗(y) = 〈x,y〉.

3 Offline Social Welfare Maximization

Problem Description. The goal of offline social welfare maximization is to find
prices p ∈ R

n
+ such that the induced social welfare SW(x1(p), . . . ,xm(p)) =∑m

i=1 vi(xi(p)) − c(
∑m

i=1 xi(p)) is maximized. As introduced below, vi’s are
assumed to be strongly concave, and thus xi(p)’s are uniquely determined.

Strongly Concave Valuations. In the offline setting, the valuation functions (vi’s)
are further assumed to be α-strongly concave, meaning that vi(x) + α‖x‖2

2/2 is
concave. Concavity is a standard assumption on valuations to capture diminish-
ing marginal returns. Strong concavity, as its name suggests, is a strong assump-
tion; however it is satisfied by many common valuations such as the constant
elasticity of substitution functions and Cobb-Douglas functions (c.f. [29]). Fur-
thermore, a common modulus of strong concavity α is only for convenience; the
algorithm can be easily adapted to the case where different vi have different
moduli of strong concavity.

The dual notion to strong concavity (convexity) is strong smoothness. f :
D → R is β-strongly smooth if f is differentiable and its gradient is β-Lipschitz
continuous, or formally, for any x,y ∈ D, ‖∇f(y) − ∇f(x)‖2 ≤ β‖y − x‖2.

The following lemma can be immediately derived from [19] Theorem E.4.2.1
and E.4.2.2.

Lemma 2. Suppose f : D → R is concave continuous and D ⊂ R
n is non-

empty. Then f is α-strongly concave if and only if f∗ is 1/α-strongly smooth and
concave on R

n.

Accelerated Gradient Descent. The accelerated gradient descent algorithm, which
was first introduced in [25], gives the optimal convergence rate for smooth convex
optimization problems. There have been many extensions to AGD, including
[3,32]. In this paper, one variant called the AGM algorithm given in [3] will be
invoked.

Lemma 3 ([3] Theorem 4.1). Suppose f : D → R is β-strongly smooth and
convex and x∗ ∈ arg minx∈D f(x). Given x0 ∈ D, for any t ≥ 1, The AGM
algorithm outputs xt ∈ D such that

f(xt) − f(x∗) ≤ 2β‖x0 − x∗‖22
t2

.
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3.1 Algorithm and Analysis

We propose Algorithm 1 to solve the offline social welfare maximization problem.

Algorithm 1. Offline SW Maximization
μ ← 2λ

mD
√

T
, cμ(y) = c(y) + μ

2
‖y‖2

2, fμ = c∗
μ(p) − ∑m

i=1 v∗
i (p).

P ← {p ≥ 0|‖p‖2 ≤ λ}, p0
μ = 0.

Give T , the total number of rounds, and p0
μ to the AGM algorithm.

Output pT
μ returned by the AGM algorithm.

Theorem 4. The social welfare induced by pT
μ given by Algorithm 1 is within

9λmD/
√

T + 16λ2m/αT from the maximum offline social welfare.

The proof is based on two observations. The first one, formalized in Lemma
4, says that the optimal solution of a dual optimization problem can induce the
maximum social welfare SW∗.

Lemma 4. Given concave continuous valuations v1, . . . , vm : C → R and a
convex continuous cost c : mC → R,

SW∗ = min
p∈Rn

⎛

⎝c∗(p) −
m∑

i=1

v∗
i (p)

⎞

⎠ ,

and for any dual optimal solution p∗, (x1(p∗), . . . ,xm(p∗)) maximizes social
welfare. If furthermore the cost is non-decreasing and λ-Lipschitz continuous,
then

SW∗ = min
p∈Rn

⎛

⎝c∗(p) −
m∑

i=1

v∗
i (p)

⎞

⎠ = min
p≥0,‖p‖2≤λ

⎛

⎝c∗(p) −
m∑

i=1

v∗
i (p)

⎞

⎠,

and for any optimal solution p∗ of the rightmost dual problem, (x1(p∗),
. . . ,xm(p∗)) maximizes social welfare.

Proof. Maximizing social welfare is equivalent to solving the following problem

max
x1,...,xm∈C

y∈mC

∑m
i=1 vi(xi) − c(y)

s.t.
∑m

i=1 xi = y.
(4)

The Lagrangian is L(x1, . . . ,xm,y,p) =
∑m

i=1 vi(xi) − c(y) + 〈p,y − ∑m
i=1 xi〉.

Equation (4) equals

max
x1,...,xm∈C,y∈mC

min
p∈Rn

L(x1, . . . ,xm,y,p)

= min
p∈Rn

max
x1,...,xm∈C,y∈mC

L(x1, . . . ,xm,y,p)

= min
p∈Rn

⎛

⎝c∗(p) −
m∑

i=1

v∗
i (p)

⎞

⎠ .

(5)
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Here the second line is due to Slater’s condition, and the third line is due to the
definition of convex conjugate and concave conjugate.

Due to the continuity of vi’s and c and the compactness of C, the optimal
primal solution (x∗

1, . . . ,x
∗
m,y∗) exists. By Slater’s condition, the dual optimal

solution p∗ also exists. By the minimax property, we know that y∗ =
∑m

i=1 x
∗
i ,

and x∗
i maximizes vi(x) − 〈x,p∗〉, 1 ≤ i ≤ m.

For the second part, due to the monotonicity of c, maximizing social welfare
is equivalent to

max
x1,...,xm∈C

y∈mC

∑m
i=1 vi(xi) − c(y)

s.t.
∑m

i=1 xi ≤ y.
(6)

The Lagrangian is still L(x1, . . . ,xm,y,p) =
∑m

i=1 vi(xi) − c(y) + 〈p,y −∑m
i=1 xi〉. Equation (6) equals

max
x1,...,xm∈C,y∈mC

min
p≥0,‖p‖2≤λ

L(x1, . . . ,xm,y,p)

= min
p≥0,‖p‖2≤λ

max
x1,...,xm∈C,y∈mC

L(x1, . . . ,xm,y,p)

= min
p≥0,‖p‖2≤λ

⎛

⎝c∗(p) −
m∑

i=1

v∗
i (p)

⎞

⎠ .

(7)

Here the first line is due to the Lipschitz continuity of c, the second line is due
to Sion’s theorem [31]. ��

Lemma 4 tells us that the minimizer p∗ of f(p) = c∗(p)−∑m
i=1 v∗

i (p) induces
SW∗, and thus it is natural to try to solve this dual optimization problem.
However, vi’s are unknown to us, and so are v∗

i ’s and f . The second observation
is that the revealed preference, xi(p), actually gives a supergradient of v∗

i at p.
Formally, given a concave continuous valuation v : C → R, for any x ∈ C, by
Lemma 1,

x ∈ arg max
x′∈C

(
v(x′)−〈x′,p〉) ⇐⇒ x ∈ arg min

x′∈C
(〈x′,p〉 − v(x′)

) ⇐⇒ x ∈ ∂v∗(p).

(8)
Similarly, given a convex continuous cost c : mC → R+, for any y ∈ R

n
+,

y ∈ ∂c∗(p) ⇐⇒ y ∈ arg maxy′
(〈y′,p〉 − c(y′)

)
. In other words, the subgradi-

ent of c∗ at p gives a bundle which maximizes the producer’s profit, assuming
everything produced can be sold.

As a result, we can run subgradient-based optimization algorithms to mini-
mize f . (c is known to the algorithm, and so is c∗; the computation of subgra-
dients of c∗ is another problem, but does not require access to the consumer
demand oracles.) Since vi is α-strongly concave, by Lemma 2, v∗

i is 1/α-strongly
smooth and concave. However, there is no guarantee on c∗, and thus in general, f
is not strongly smooth. In this case the standard optimization algorithm is sub-
gradient descent. However, for strongly smooth and convex functions, acceler-
ated gradient descent converges much faster than subgradient descent. To invoke
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accelerated gradient descent, the smoothing technique given in [24] is used. We
minimize fμ as given in Algorithm 1 and tune the parameter μ, which finally
gives Theorem 4. The detailed proof is given in the full version of this paper at
https://arxiv.org/abs/1711.02211.

4 Online Social Welfare Maximization

Problem Description. In online social welfare maximization, m consumers come
one by one and the producer/algorithm can post prices dynamically. Specifically,
at step i, prices pi are posted, and then consumer i comes and makes a pur-
chase xi(pi). Then the algorithm updates pi to pi+1, based on past information.
The goal is to maximize the online social welfare SW(x1(p1), . . . ,xm(pm)) =∑m

i=1 vi(xi(pi)) − c(
∑m

i=1 xi(pi)).
To model the randomness in the real world, it is usually assumed that val-

uations are sampled i.i.d. from some unknown distribution. Here we consider a
slightly stronger model, called the random permutation model. In the random
permutation model, an adversary chooses m valuations ṽ1, . . . , ṽm in advance,
which then come in a uniformly random order. Formally, let γ = (γ1, . . . , γm) be
a random permutation of (1, . . . , m), then at step i the consumer with valuation
vi = ṽγi

comes and makes a purchase, after pi is posted. Note that in the random
permutation model, the corresponding offline problem is fixed (with valuations
ṽ1, . . . , ṽm). We still let SW∗ = maxx1,...,xm∈C

(∑m
i=1 ṽi(xi) − c(

∑m
i=1 xi)

)
, and

let

(x̃∗
1, . . . , x̃

∗
m) = arg max

x1,...,xm∈C

⎛

⎜
⎝

m∑

i=1

ṽi(xi) − c

⎛

⎝
m∑

i=1

xi

⎞

⎠

⎞

⎟
⎠ .

Our goal is to show that the expected online social welfare Eγ [SW(x1(p1),
. . . ,xm(pm))] is close to SW∗, where the expectation is taken over the random
permutation γ.

Note that no more assumption is made; valuations are only required to be
continuous.

Online Convex Optimization. The algorithm for online social welfare maximiza-
tion invokes an online convex optimization (OCO) algorithm as a subroutine.
In an OCO problem, there is a feasible domain D and T steps. At step t, the
OCO algorithm determines xt ∈ D, and then a convex function ft : D → R is
chosen (potentially by an adversary) and a loss of ft(xt) is induced. Based on
the past information (formally, x1, . . . ,xt and f1, . . . , ft), the algorithm updates
xt to xt+1, and tries to minimize the regret

R(T ) =
T∑

t=1

ft(xt) − min
x∈D

T∑

t=1

ft(x).

The regret of an OCO algorithm A is denoted by RA(T ).

https://arxiv.org/abs/1711.02211
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The online (sub)gradient descent algorithm performs the following update at
step t:

xt+1 = ΠD[xt − ηtgt(xt)],

where ηt is the step size, gt(xt) ∈ ∂ft(xt), and ΠD is the �2 projection onto D.

Lemma 5 ([18] Theorem 3.1). Let D = max{‖x1 − x2‖2|x1,x2 ∈ D}, G =
max{‖∂ft(x)‖2|1 ≤ t ≤ T,x ∈ D}, and ηt = D/G

√
T . Then

ROGD(T ) =
T∑

t=1

ft(xt) − min
x∈D

T∑

t=1

ft(x) ≤ DG
√

T .

4.1 Algorithm and Analysis

Algorithm 2 is proposed to solve the online social welfare maximization problem.
The idea of Algorithm 2 comes from [2].

Algorithm 2. Online SW Maximization
P ← {p ≥ 0|‖p‖2 ≤ λ}.
Give P to an OCO algorithm A, and let p1 ∈ P be the initial prices chosen by A.
for i = 1 to m do

Post prices pi.
Observe xi(pi), the choice of the buyer who shows up in the i-th step.
Give fi(p) = 1

m
c∗(p) − 〈xi(pi),p〉 with domain P to A, and observe an updated

pi+1 from A.
end for

Theorem 5. The expected social welfare of Algorithm 2 with respect to a
uniformly random permutation of continuous valuations, is within RA(m) +
2λD∞

√
nm from the offline optimum social welfare, where D∞ = maxx,y∈C ‖x−

y‖∞ is the �∞ diameter of C. Specifically, for online gradient descent, the dif-
ference is bounded by 4λD∞

√
nm.

Proof. For convenience, let xi denote xi(pi). By the regret bound of the OCO
algorithm,

m∑

i=1

fi(pi) − min
p≥0,‖p‖2≤λ

m∑

i=1

fi(p)

=
m∑

i=1

(fi(pi) + vi(xi)) − min
p≥0,‖p‖2≤λ

m∑

i=1

(fi(p) + vi(xi))

≤ RA(m). (9)
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First, we examine the second term of Eq. (9):

min
p≥0,‖p‖2≤λ

m∑

i=1

(fi(p)+vi(xi)) = min
p≥0,‖p‖2≤λ

⎛

⎝c∗(p) −
〈

m∑

i=1

xi,p

〉⎞

⎠+
m∑

i=1

vi(xi)

=
m∑

i=1

vi(xi) − c

⎛

⎝
m∑

i=1

xi

⎞

⎠.

The first equality comes from the definition of f , while the second inequality
is due to the definition of c∗ and the monotonicity and Lipschitz continuity of
c. Thus the second term of Eq. (9) always equals the social welfare achieved by
Algorithm 2. In the following we show that the first term of Eq. (9) is within
O(

√
mn) from the offline maximum social welfare SW∗.

For a permutation (γ1, . . . , γm) of 1, . . . , m, let Γi denote (γ1, . . . , γi). Note
that pi is determined by Γi−1 (Γ0 = ∅), vi is determined by γi, and xi depends
on pi and γi. Fix 1 ≤ i ≤ m and Γi−1, note that the revealed preference xi

maximizes the quasi-linear utility given pi, we have

Eγi
[fi(pi) + vi(xi)|Γi−1] = Eγi

[
1
m

c∗(pi) − 〈xi,pi〉 + vi(xi)
∣
∣
∣
∣Γi−1

]

=
1
m

c∗(pi) + Eγi
[−〈xi,pi〉 + ṽγi

(xi)|Γi−1]

≥ 1
m

c∗(pi) + Eγi
[−〈x̃∗

γi
,pi〉 + ṽγi

(x̃∗
γi

)|Γi−1]

=
1
m

c∗(pi) − 〈Eγi
[x̃∗

γi
|Γi−1],pi〉 + Eγi

[ṽγi
(x̃∗

γi
)|Γi−1].

(10)

Consider the last term of Eq. (10) and take expectation with respect to Γi−1:

EΓi−1

[
Eγi

[ṽγi
(x̃∗

γi
)|Γi−1]

]
=

1
m

m∑

i=1

ṽi(x̃∗
i ). (11)

Then consider the first two terms of Eq. (10):

1
m

c∗(pi) − 〈Eγi
[x̃∗

γi
|Γi−1],pi〉

=
1
m

c∗(pi) − 〈Eγi
[x̃∗

γi
],pi〉 + 〈Eγi

[x̃∗
γi

],pi〉 − 〈Eγi
[x̃∗

γi
|Γi−1],pi〉

≥ 1
m

c∗(pi) − 〈Eγi
[x̃∗

γi
],pi〉 − λ

∥
∥
∥Eγi

[x̃∗
γi

] − Eγi
[x̃∗

γi
|Γi−1]

∥
∥
∥
2

=
1
m

c∗(pi) − 1
m

〈
m∑

i=1

x̃∗
i ,pi

〉

− λ
∥
∥
∥Eγi

[x̃∗
γi

] − Eγi
[x̃∗

γi
|Γi−1]

∥
∥
∥
2

≥ − 1
m

c

⎛

⎝
m∑

i=1

x̃∗
i

⎞

⎠ − λ
∥
∥
∥Eγi

[x̃∗
γi

] − Eγi
[x̃∗

γi
|Γi−1]

∥
∥
∥
2
.

(12)
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Here the first inequality is due to Cauchy-Schwarz inequality, while the second
inequality is given by Fenchel-Young inequality.

Equation (10), (11) and (12) give us

E

⎡

⎣
m∑

i=1

fi(pi) + vi(xi)

⎤

⎦ ≥
m∑

i=1

ṽi(x̃∗
i ) − c

⎛

⎝
m∑

i=1

x̃∗
i

⎞

⎠

− λ

m∑

i=1

EΓi−1

[∥
∥
∥Eγi

[x̃∗
γi

] − Eγi
[x̃∗

γi
|Γi−1]

∥
∥
∥
2

]
. (13)

Furthermore, Lemma 6 shows that the last sum in Eq. (13) is bounded by
2D∞

√
nm, and thus Theorem 5 is proved for general OCO algorithms. Finally,

to prove the bound for online gradient descent, it is enough to use step size
ηi = 2λ/D

√
m (recall that D is the �2 diameter of C) and invoke Lemma 5. ��

As we can see from the proof of Theorem 5, it is enough to have continuous
valuations. Furthermore, Algorithm 2 still works if consumers only maximize
their quasi-linear utilities approximately. Formally, if consumer i finds a bundle
xi such that vi(xi) − 〈pi,xi〉 ≥ maxx∈C

(
vi(x) − 〈pi,x〉) − εi, then an additive

error of εi will be introduced in Eq. (10). However, as long as the total error∑m
i=1 εi is not large, the expected online social welfare of Algorithm 2 will still

be close to the offline optimum.
Finally, we state and prove Lemma 6.

Lemma 6. For any 1 ≤ i ≤ m, we have

EΓi−1

[∥
∥
∥Eγi

[x̃∗
γi

] − Eγi
[x̃∗

γi
|Γi−1]

∥
∥
∥
2

]
≤ D∞

√
n

m − i + 1
.

Proof. Let S = {s1, . . . , sN} denote a finite population of real numbers, and
X1, . . . , Xn (1 ≤ n ≤ N) denote n samples from S without replacement. Fur-
thermore, let μ = 1

N

∑N
i=1 si and σ2 = 1

N

∑N
i=1(si − μ)2. Then X = 1

n

∑n
i=1 Xi

has mean μ and variance N−n
N−1

σ2

n .
Now come back the the proof of Lemma 6. By Jensen’s inequality, we have

EΓi−1

[∥
∥
∥Eγi

[x̃∗
γi

] − Eγi
[x̃∗

γi
|Γi−1]

∥
∥
∥
2

]
≤

√

EΓi−1

[∥
∥
∥Eγi

[x̃∗
γi

] − Eγi
[x̃∗

γi
|Γi−1]

∥
∥
∥
2

2

]
.

Note that each coordinate of EΓi−1

[
‖Eγi

[x̃∗
γi

] − Eγi
[x̃∗

γi
|Γi−1]‖22

]
equals the vari-

ance of the average of m − i + 1 without-replacement samples. Thus we further
have
√

EΓi−1

[∥
∥
∥Eγi

[x̃∗
γi

]−Eγi
[x̃∗

γi
|Γi−1]

∥
∥
∥
2

2

]
≤

√

n
i − 1
m − 1

D2∞
m − i + 1

≤D∞

√
n

m − i + 1
.

��
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5 Profit Maximization for Separable Valuations and Cost

Previously, social welfare maximization is solved by reducing to a convex opti-
mization problem on the price space. However, profit maximization may be non-
convex on both the bundle space and the price space.

Example 1. Consider a market where there is only one consumer, one good, and
zero cost. Suppose v′ : [0, 2] → R+ is continuous and strictly decreasing, with
v′(1) = 2, v′(2) = 1, and v′(x)x < 2 for any x �= 1, 2. The integral of v′ gives a
non-decreasing concave valuation v. It can be shown that the maximum profit
is 2, which is attained by price 2 at quantity 1 or price 1 at quantity 2. Thus the
set of optimum prices and optimum bundles are both non-convex.

Here we present an algorithm of profit maximization and a nearly matching
lower bound when all vi’s and c are separable. Formally, for every x ∈ C and every
1 ≤ i ≤ m, vi(x) =

∑n
j=1 vij(xj), and for every y ∈ mC, c(y) =

∑n
j=1 cj(yj).

Due to the separability assumption, we restate the assumptions on the feasible
set, valuation functions and cost function:

– C = [0, 1]n.
– For every 1 ≤ i ≤ m, 1 ≤ j ≤ n, vij is α-strongly concave and λ-Lipschitz

continuous.
– For every 1 ≤ j ≤ n, cj is λ-Lipschitz continuous.

The i-th consumer’s consumption of good j is completely determined by
pj and is denoted by xij(pj). Furthermore, xj(pj) =

∑m
i=1 xij(pj). Our goal is

thus to maximize Profitj(pj) =
∑n

j=1 xj(pj)pj − cj(xj(pj)), for each 1 ≤ j ≤
n. Although we can set prices for different goods independently now, to keep
consistency, we still consider posting new prices p ∈ R

n
+ as one query.

Algorithm 3. Profit Maximization Algorithm for Separable Functions

r ←
⌈

mnλ(λ+α)
αε

⌉
.

p̃ = (0, 0, . . . , 0).
for t = 1 to r do

Post prices pt =
(

tαε
mn(λ+α)

, . . . , tαε
mn(λ+α)

)
.

for j = 1 to n do
if Profitj(pt,j) > Profitj(p̃j) then

p̃j = pt,j

end if
end for

end for
Output p̃.

Theorem 6. The profit given by Algorithm 3 is no less than the optimum profit
minus ε. The number of queries is �mnλ(λ + α)/αε�.
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Proof. Fix 1 ≤ j ≤ n. Let p∗
j denote the profit-maximizing price for good j.

Suppose p̂j = zαε
mn(λ+α) ≤ p∗

j ≤ (z+1)αε
mn(λ+α) . By the definition of strong smoothness

and Lemma 2, we have

xj(p∗
j )p

∗
j − cj(xj(p∗

j ))

≤ xj(p̂j)
(

p̂j +
αε

mn(λ + α)

)
− cj(xj(p̂j)) + λ|xj(p∗

j ) − xj(p̂j)|

= xj(p̂j)
(

p̂j +
αε

mn(λ + α)

)
− cj(xj(p̂j)) + λ

∣
∣
∣
∣
∣
∣

m∑

i=1

(
(v∗

ij)
′(p∗

j ) − (v∗
ij)

′(p̂j)
)
∣
∣
∣
∣
∣
∣

≤ xj(p̂j)
(

p̂j +
αε

mn(λ + α)

)
− cj(xj(p̂j)) + λ

m

α

αε

mn(λ + α)

= xj(p̂j)p̂j − cj(xj(p̂j)) + xj(p̂j)
αε

mn(λ + α)
+

λε

n(λ + α)

≤ xj(p̂j)p̂j − cj(xj(p̂j)) +
αε

n(λ + α)
+

λε

n(λ + α)

= xj(p̂j)p̂j − cj(xj(p̂j)) +
ε

n
.

��
Remark 1. Note that if the cost is 0 and thus revenue maximization i considered,
then we can set r = �mnλ/ε� in Algorithm 3, and it is enough to assume concave
valuations.

Theorem 7 shows that the dependency on n and ε cannot be improved, even
for revenue maximization.

Theorem 7. The revenue maximization problem needs Ω(n/ε) queries to get an
additive error ε, even if the valuations are separable, concave, non-decreasing,
and Lipschitz continuous.

Proof. Let us first consider the case where there is only one consumer and one
good. Given λ > 1, consider ε such that there exists an integer q satisfying
(1 + ε)q = λ, and thus q = lnλ

ln(1+ε) ≥ lnλ
ε .

Now we are going to define concave functions of the amount of good on [0, 1].
It is enough to give a non-decreasing and integrable derivative. Let v′(x) = λ on
[0, 1

λ ], and 1
x on [ 1λ , 1]. One can verify that v′ is non-decreasing and integrable,

and thus we can integrate it into a concave function v (by shifting, we can ensure
v(0) = 0). The maximum of v′(x)x on [0, 1] is 1.

We claim that the algorithm has to make at least q queries to ensure an ε
additive or multiplicative error. If it is not true, there must exist some integer
z ∈ [0, q − 1] such that no x ∈ I = ( 1

(1+ε)z+1 , 1
(1+ε)z ] is considered. We can then

set ṽ′(x) = v′(x) outside I, ṽ′(x) = (1+ε)z+1 on ( 1
(1+ε)z+1 , 1

(1+ε)z ), and ṽ′( 1
(1+ε)z )

does not exist. ṽ′ is still non-decreasing and integrable, but the optimum revenue
is 1 + ε now, which is not detected by the algorithm.
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In other words, for λ-Lipschitz valuations, at least lnλ
ε queries is required.

W.l.o.g., suppose λ = e and thus 1
ε queries is needed. Now suppose there are n

goods, Tj different prices are tested for the j-th good, and the profit we get from
good j is within εj from the maximum profit. Then Tj ≥ 1

εj
. We have

∑n
j=1 Tj

n
≥ n

∑n
j=1 1/Tj

≥ n
∑n

j=1 εj
=

n

ε
.

In other words,
∑n

j=1 Tj ≥ n2

ε . Since each query can set new prices for n goods,
we need Ω(n

ε ) queries. ��

6 Conclusion and Open Problems

In this paper, we study social welfare and profit maximization with only revealed
preferences. The social welfare maximization problem can be solved by reducing
to a convex dual optimization problem in both the offline and online case, while
profit maximization is essentially non-convex, for which we give nearly matching
upper and lower bounds on the query complexity when valuations and cost are
separable.

While social welfare maximization is interesting and important, it is still more
reasonable for a producer to maximize profit. However, as shown by Example
1, this problem is in general non-convex. While we give an algorithm for the
separable case, it is a very interesting open problem to design algorithms for
profit maximization in a more general setting or show some hardness result.
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Abstract. We study opinion formation games based on the Friedkin-
Johnsen (FJ) model. We are interested in simple and natural variants
of the FJ model that use limited information exchange in each round
and converge to the same stable point. As in the FJ model, we assume
that each agent i has an intrinsic opinion si ∈ [0, 1] and maintains an
expressed opinion xi(t) ∈ [0, 1] in each round t. To model limited infor-
mation exchange, we assume that each agent i meets with one random
friend j at each round t and learns only xj(t). The amount of influence
j imposes on i is reflected by the probability pij with which i meets j.
Then, agent i suffers a disagreement cost that is a convex combination
of (xi(t) − si)

2 and (xi(t) − xj(t))
2.

An important class of dynamics in this setting are no regret dynamics.
We show an exponential gap between the convergence rate of no regret
dynamics and of more general dynamics that do not ensure no regret.
We prove that no regret dynamics require roughly Ω(1/ε) rounds to be
within distance ε from the stable point x∗ of the FJ model. On the other
hand, we provide an opinion update rule that does not ensure no regret
and converges to x∗ in Õ(log2(1/ε)) rounds. Finally, we show that the
agents can adopt a simple opinion update rule that ensures no regret and
converges to x∗ in poly(1/ε) rounds.

1 Introduction

The study of Opinion Formation has a long history [22]. Opinion Formation is
a dynamic process in the sense that socially connected people (family, friends,
colleagues) exchange information and this leads to changes in their expressed
opinions over time. Today, the advent of the internet and social media makes
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the study of opinion formation in large social networks even more important;
realistic models of how people form their opinions are of great practical inter-
est for prediction, advertisement etc. In an attempt to formalize the process of
opinion formation, several models have been proposed (see e.g. [8,15,20]). The
common assumption underlying all these models, which dates back to DeGroot
[8], is that opinions evolve through a form of repeated averaging of information
collected from the agents’ social neighborhoods.

Our work builds on the model proposed by Friedkin and Johnsen [15]. The
FJ model is a variation on the DeGroot model capturing the fact that consensus
on the opinions is rarely reached. According to FJ model each person i has a
public opinion xi ∈ [0, 1] and an internal opinion si ∈ [0, 1], which is private and
invariant over time. There also exists a weighted graph G(V,E) representing a
social network where V stands for the persons (|V | = n) and E their social
relations. Initially, all nodes start with their internal opinion and at each round
t, update their public opinion xi(t) to a weighted average of the public opinions
of their neighbors and their internal opinion,

xi(t) =

∑
j∈Ni

wijxj(t − 1) + wiisi
∑

j∈Ni
wij + wii

, (1)

where Ni = {j ∈ V : (i, j) ∈ E} is the set of i’s neighbors, the weight wij

associated with the edge (i, j) ∈ E measures the extent of the influence that j
poses on i and the weight wii > 0 quantifies how susceptible i is in adopting
opinions that differ from her internal opinion si.

The FJ model is one of most influential models for opinion formation. It has
a very simple update rule, making it plausible for modeling natural behavior and
its basic assumptions are aligned with empirical findings on the way opinions
are formed [25]. At the same time, it admits a unique stable point x∗ ∈ [0, 1]n to
which it converges with a linear rate [16]. The FJ model has also been studied
under a game theoretic viewpoint. Bindel et al. considered its update rule as the
minimizer of a quadratic disagreement cost function and based on it they defined
the following opinion formation game [5]. Each node i is a selfish agent whose
strategy is the public opinion xi that she expresses incurring her a disagreement
cost

Ci(xi, x−i) =
∑

j∈Ni

wij(xi − xj)2 + wii(xi − si)2 (2)

Note that the FJ model is the simultaneous best response dynamics and its stable
point x∗ is the unique Nash equilibrium of the above game. In [5] they quantified
its inefficiency with respect to the total disagreement cost. They proved that
the Price of Anarchy (PoA) is 9/8 in case G is undirected and wij = wji.
They also provided PoA bounds in the case of unweighted Eulerian directed
graphs. We remark that in [5] an alternative framework for studying the way
opinions evolve was introduced. The opinion formation process can be described
as the dynamics of an opinion formation game. This framework is much more
comprehensive since different aspects of the opinion formation process can be
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easily captured by defining suitable games. Subsequent works [3,4,9] considered
variants of the above game and studied the convergence properties of the best
response dynamics.

1.1 Motivation and Our Setting

Many recent works study the Nash equilibrium x∗ of the opinion formation
game defined in [5] under various perspectives. In [6] they extended the bounds
for PoA in more general classes of directed graphs, while recently introduced
influence maximization problems [1,17], which are defined with respect to x∗.
The reason for this scientific interest is evident: the equilibrium x∗ is considered
as an appropriate way to model the final opinions formed in a social network,
since the well established FJ model converges to it.

Our work is motivated by the fact that there are notable cases in which the
FJ model is not an appropriate model for the dynamic of the opinions, due to
the large amount of information exchange that it implies. More precisely, at
each round its update rule (1) requires that every agent learns all the opinions
of her social neighbors. In today’s large social networks where users usually
have several hundreds of friends it is highly unlikely that, each day, they learn
the opinions of all their social neighbors. In such environments it is far more
reasonable to assume that individuals randomly meet a small subset of their
acquaintances and these are the only opinions that they learn. Such information
exchange constraints render the FJ model unsuitable for modeling the opinion
formation process in such large networks and therefore, it is not clear whether
x∗ captures the limiting behavior of the opinions. In this work we ask:

Question 1. Is the equilibrium x∗ an adequate way to model the final formed
opinions in large social networks? Namely, are there simple variants of the FJ
model that require limited information exchange and converge fast to x∗? Can
they be justified as natural behavior for selfish agents under a game-theoretic
solution concept?

To address these questions, one could define precise dynamical processes
whose update rules require limited information exchange between the agents
and study their convergence properties. Instead of doing so, we describe the
opinion formation process in such large networks as dynamics of a suitable opin-
ion formation game that captures these information exchange constraints. This
way we can precisely define which dynamics are natural and, more importantly,
to study general classes of dynamics (e.g. no regret dynamics) without explicitly
defining their update rule. The opinion formation game that we consider is a
variant of the game in [5] based on interpreting the weight wij as a measure of
how frequently i meets j.

Definition 1. For a given opinion vector x ∈ [0, 1]n, the disagreement cost of
agent i is the random variable Ci(xi, x−i) defined as follows:

– Agent i meets one of her neighbors j with probability pij = wij/
∑

j∈Ni
wij.
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– Agent i suffers cost Ci(xi, x−i) = (1 − αi)(xi − xj)2 + αi(xi − si)2, where
αi = wii/(

∑
j∈Ni

wij + wii).

Note that the expected disagreement cost of each agent in the above game is the
same as the disagreement cost in [5] (scaled by

∑
j∈Ni

wij + wii). Moreover its
Nash equilibrium, with respect to the expected disagreement cost, is x∗. This
game provides us with a general template of all the dynamics examined in this
paper. At round t, each agent i selects an opinion xi(t) and suffers a disagreement
cost based on the opinion of the neighbor that she randomly met. At the end of
round t, she is informed only about the opinion and the index of this neighbor
and may use this information to update her opinion in the next round. Obviously
different update rules lead to different dynamics, however all of these respect the
information exchange constraints: at every round each agent learns the opinion
of just one of her neighbors. Question 1 now takes the following more concrete
form.

Question 2. Can the agents update their opinions according to the limited infor-
mation that they receive such that the produced opinion vector x(t) converges
to the equilibrium x∗? How is the convergence rate affected by the limited infor-
mation exchange? Are there dynamics that ensure that the cost that the agents
experience is minimal?

In what follows, we are mostly concerned about the dependence of the rate of
convergence on the distance ε from the equilibrium x∗. Thus, we shall suppress
the dependence on other parameters such as the size of the graph, n. We remark
that the dependence of our dynamics on these constants is in fact rather good
(see Sect. 2), and we do this only for clarity of exposition.

Definition 2 (Informal). We say that a dynamics converges slowly resp. fast
to the equilibrium x∗ if it requires poly(1/ε) resp. poly(log(1/ε)) rounds to be
within error ε.

1.2 Contribution

The major contribution of the paper is proving an exponential separation on the
convergence rate of no regret dynamics and the convergence rate of more general
dynamics produced by update rules that do not ensure no regret.

No regret dynamics are produced by update rules that ensure no regret to
any agent that adopts them. In our setting such an update rule must ensure
that the total disagreement cost of an agent that adopts it is close to the total
disagreement cost that she would experience by selecting the best fixed opinion
in hindsight. The latter must hold even if the identities and the opinions of the
neighbors that the agent meets are chosen adversarially. We prove that if all the
agents adopt an update rule that ensures no regret, then there exists an instance
of the game such that the produced opinion vector x(t) requires roughly Ω(1/ε)
rounds to be ε-close to x∗. The reason is that by definition such update rules only
depend on the opinions that the agent observes and don’t take into account the
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weights wij of the outgoing edges (see Sect. 5). We call the update rules with the
latter property, graph oblivious. In Sect. 5 we use a novel information theoretic
argument to prove the aforementioned lower bound for this more general class.

In Sect. 6, we present a simple update rule whose resulting dynamics con-
verges fast, i.e. the opinion vector x(t) is ε-close to x∗ in O(log2(1/ε)) rounds.
The reason that the previous lower bound doesn’t apply is that this rule is not
graph oblivious and it does not ensure no regret to the agents that adopt it. In
fact there is a very simple example with two agents, in which the first follows
the rule while the second selects her opinions adversarially, where the first agent
experiences regret.

We introduce an intuitive no regret update rule and we show that if all agents
adopt it, the resulting opinion vector x(t) converges to x∗. Our rule is a Follow
the Leader algorithm, meaning that at round t, each agent updates her opinion to
the minimizer of total disagreement cost that she experienced until round t − 1.
It also has a very simple form: it is roughly the time average of the opinions that
the agent observes. In Sect. 3, we bound its convergence rate and show that in
order to achieve ε distance from x∗, poly(1/ε) rounds are sufficient. In view of
our lower bound this rate is close to best possible. In Sect. 4, we prove its no
regret property. This can be derived by the more general results in [19]. However,
we give a short and simple proof that may be of interest.

In conclusion, our results reveal that the equilibrium x∗ is a robust choice for
modeling the limiting behavior of the opinions of agents since, even in our limited
information setting, there exist simple and natural dynamics that converge to
it. The convergence rate crucially depends on whether the agents act selfishly,
i.e. they are only concerned about their individual disagreement cost.

1.3 Related Work

There exists a large amount of literature concerning the FJ model. Many recent
works [3,4,9] bound the inefficiency of equilibrium in variants of opinion for-
mation game defined in [5]. In [16] they bound the convergence time of the FJ
model in special graph topologies. In [4] they proved that best response converges
to PNE for a variant of the opinion formation game, in which social relations
depend on the expressed opinions. Convergence results in other discretized vari-
ants of the FJ model can be found in [11,28]. In [13] they provide convergence
results for a limited information variant of the FJ model. Although the consid-
ered variant is very similar to ours, their convergence results are much weaker,
since they concern the expected value of the opinion vector.

Other works that relate to ours concern the convergence properties of dynam-
ics based on no regret learning algorithms. In [12,14,27] it is proved that in a
finite n-person game, if each agent updates her mixed strategy according to a no
regret algorithm, the resulting time-averaged strategy vector converges to Coarse
Correlated Equilibrium. The convergence properties of no regret dynamics for
games with infinite strategy spaces were considered in [10]. They proved that for
a large class of games with concave utility functions (socially concave games),
the time-averaged strategy vector converges to Pure Nash Equilibrium. More
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recent work investigates a stronger notion of convergence of no regret dynam-
ics. In [7] they show that, in n-person finite generic games that admit unique
Nash equilibrium, the strategy vector converges locally and fast to it. They also
provide conditions for global convergence. Our results fit in this line of research
since we show that for a game with infinite strategy space, the strategy vector
(and not the time-averaged) converges to the Nash equilibrium x∗.

No regret dynamics in limited information settings have recently received
substantial attention from the scientific community since they provide realis-
tic models for the practical applications of game theory. Kleinberg et al. in
[23] treated load-balancing in distributed systems as a repeated game and ana-
lyzed the convergence properties of no regret learning algorithms under the full
information assumption that each agent learns the load of every machine. In a
subsequent work [24], the same authors consider the same problem in a limited
information setting (“bulletin board model”), in which each agent learns the
load of just the machine that served him. Most relevant to ours are the works
[7,21,26], where they examine the convergence properties of no regret learning
algorithms when the agents observe their payoffs with some additive zero-mean
random noise.

2 Our Results and Techniques

As previously mentioned, an instance of the game in [5] is also an instance of the
game of Definition 1. Following the notation introduced earlier we have that if
j ∈ Ni then pij = wij/

∑
j∈Ni

wij and 0 otherwise. Moreover since wii > 0 by the
definition of the game in [5], αi = wii/(

∑
j∈Ni

wij + wii) > 0. If an agent i does
not have outgoing edges (Ni = ∅) then pij = 0 for all j. Therefore

∑n
j=1 pij = 0,

αi = 1 if Ni = ∅ and
∑n

j=1 pij = 1, αi ∈ (0, 1) otherwise. For simplicity we
adopt the following notation for an instance of the game of Definition 1.

Definition 3. We denote an instance of the opinion formation game of Defi-
nition 1 as I = (P, s, α), where P is a n × n matrix with non-negative elements
pij, with pii = 0 and

∑n
j=1 pij is either 0 or 1, s ∈ [0, 1]n is the internal opinion

vector, α ∈ (0, 1]n the self confidence vector.

An instance I = (P, s, α) is also an instance of the FJ model, since by the update
rule (1) xi(t) = (1 − αi)

∑
j∈Ni

pijxj(t − 1) + αisi. It also defines the opinion
vector x∗ ∈ [0, 1]n which is the stable point of the FJ model and the Nash
equilibrium of the game in [5].

Definition 4. For a given instance I = (P, s, α) the equilibrium x∗ ∈ [0, 1]n

is the unique solution of the following linear system, for every i ∈ V , x∗
i =

(1 − αi)
∑

j∈Ni
pijx

∗
j + αisi.

It is easy to check that the above definition of x∗ is equivalent to defining it as
the PNE of the game in [5] or as the stable point of the FJ model. The fact that
the above linear system always admits a solution follows by standard matrix
norm properties.
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Throughout the paper we study dynamics of the game of Definition 1. We
denote as W t

i the neighbor that agent i met at round t, which is a random variable
whose probability distribution is determined by the instance I = (P, s, α) of the
game, P [W t

i = j] = pij . Another parameter of an instance I that we often use
is ρ = mini∈V αi.

In Sect. 3, we examine the convergence properties of the opinion vector x(t)
when all agents update their opinions according to the Follow the Leader princi-
ple. Since each agent i must select xi(t), before knowing which of her neighbors
she will meet and what opinion her neighbor will express, this update rule says
“play the best according to what you have observed”. For a given instance (P, s, a)
of the game dynamics x(t) is defined in Dynamics 1 and Theorem 1 shows its
convergence rate to x∗.

Dynamics 1 Follow the Leader dynamics
1: Initially xi(0) = si for all agents i.
2: At round t ≥ 0 each agent i:

3: Meets neighbor with index W t
i , P

[
W t

i = j
]

= pij .
4: Suffers cost (1 − αi)(xi(t) − xW t

i
(t))2 + αi(xi(t) − si)

2 and learns xW t
i
(t).

5: Updates her opinion as follows:

xi(t + 1) = argmin
x∈[0,1]

t∑

τ=0

[(1 − αi)(x − xW τ
i
(τ))2 + αi(x − si)

2] (3)

Theorem 1. Let I = (P, s, α) be an instance of the opinion formation game
of Definition 1 with equilibrium x∗ ∈ [0, 1]n. The opinion vector x(t) ∈ [0, 1]n

produced by update rule (3) after t rounds satisfies

E [‖x(t) − x∗‖∞] ≤ C
√

log n
(log t)3/2

tmin(1/2,ρ)
,

where ρ = mini∈V αi and C is a universal constant.

In Sect. 4 we argue that, apart from its simplicity, update rule (3) ensures
no regret to any agent that adopts it and therefore the FTL dynamics can be
considered as natural dynamics for selfish agents. Since each agent i selfishly
wants to minimize the disagreement cost that she experiences, it is natural to
assume that she selects xi(t) according to a no regret algorithm for the online
convex optimization problem where the adversary chooses a function ft(x) =
(1−αi)(x−bt)2+αi(x−si)2 at each round t. In Theorem 2 we prove that Follow
the Leader is a no regret algorithm for the above OCO problem. We remark that
this does not hold, if the adversary can pick functions from a different class (see
e.g. chapter 5 in [18]).
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Theorem 2. Consider the function f : [0, 1]2 �→ [0, 1] with f(x, b) = (1−α)(x−
b)2 + α(x − s)2 for some constants s, α ∈ [0, 1]. Let (bt)∞

t=0 be an arbitrary
sequence with bt ∈ [0, 1]. If xt = argminx∈[0,1]

∑t−1
τ=0 f(x,bτ ) then for all t ≥ 0,

∑t
τ=0 f(xτ , bτ ) ≤ minx∈[0,1]

∑t
τ=0 f(x, bτ ) + O (log t) .

On the positive side, the FTL dynamics converges to x∗ and its update rule is
simple and ensures no regret to the agents. On the negative side, its convergence
rate is outperformed by the rate of FJ model. For a fixed instance I = (P, s, α),
the FTL dynamics converges with rate Õ(1/tmin(ρ,1/2)) while FJ model converges
with rate O(e−ρt) [16].

Question 3. Can the agents update their opinions according to other no regret
algorithms such that the resulting dynamics converges fast to x∗?

The answer is no. In Sect. 5, we prove that fast convergence cannot be estab-
lished for any opinion vector, produced by a no regret algorithm for the above
online convex problem. The reason that FTL dynamics converges slowly is that
rule (3) only depends on the opinions of the neighbors that agent i meets, αi, and
si. This is by definition true for any update rule based on a no regret algorithm
(see Sects. 4 and 5). As already mentioned, we call this larger class of update
rules graph oblivious, and we prove that fast convergence cannot be established
for graph oblivious dynamics.

Definition 5 (graph oblivious update rule). A graph oblivious update rule
A is a sequence of functions (At)∞

t=0 where At : [0, 1]t+2 �→ [0, 1].

Definition 6 (graph oblivious dynamics). Let a graph oblivious update rule
A. For a given instance I = (P, s, α) the rule A produces a graph oblivious
dynamics xA(t) defined as follows:

– Initially each agent i selects her opinion xA
i (0) = A0(si, αi)

– At round t ≥ 1, each agent i updates her opinion as follows:

xA
i (t) = At(xW 0

i
(0), . . . , xW t−1

i
(t − 1), si, αi),

where W t
i is the neighbors that i meets at round t.

Theorem 3 states that for any graph oblivious dynamics there exists an instance
I = (P, s, α), where roughly Ω(1/ε) rounds are required to achieve convergence
within error ε.

Theorem 3. Let A be a graph oblivious update rule, which all agents use to
update their opinions. For any c > 0 there exists an instance I = (P, s, a) such
that E [‖xA(t) − x∗‖∞] = Ω(1/t1+c), where xA(t) denotes the opinion vector
produced by A for the instance I = (P, s, α).

To prove Theorem 3, we show that graph oblivious rules whose dynamics con-
verge fast imply the existence of estimators for Bernoulli distributions with
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“small” sample complexity. The key part of the proof lies in Lemma 6, in which
it is proven that such estimators cannot exist.

In Sect. 6, we present a simple update rule that achieves error rate e− ˜O(
√

t).
This update rule is a function of the opinions and the indices of the neighbors
that i met, si, αi and the i-th row of the matrix P . Obviously this rule is not
graph oblivious, due to its dependency on the i-th row and the indices. However it
reveals that slow convergence is not a generic property of the limited information
dynamics, but comes with the assumption that agents act selfishly.

3 Convergence Rate of FTL Dynamics

In this section we present the high level idea for proving Theorem1. We note
that since the produced opinion vector x(t) is a random vector, the convergence
metric used in Theorem 1 is E [‖x(t) − x∗‖∞] , where the expectation is taken
over the random meeting of the agents. At first notice that update rule (3) can
be equivalently written as

xi(t) = (1 − αi)
t−1∑

τ=0

xW τ
i
(τ)/t + αisi,

where Wi(τ) is the neighbor that i met at round τ . Using the fact that x∗
i =

(1 − αi)
∑

j∈Ni
pijx

∗
j + αisi, one can prove that

|xi(t) − x∗
i | ≤ (1 − αi)

∑

j∈Ni

∣
∣
∣
∣
∣

∑t−1
τ=0 1[W τ

i = j]xj(τ)
t

− pijx
∗
j

∣
∣
∣
∣
∣

Now assume that |
∑t−1

τ=0 1[W τ
i =j]

t − pij | = 0 for all t ≥ 1, then we easily get
that ‖x(t) − x∗‖∞ ≤ e(t) where e(t) satisfies the recursive equation e(t) = (1 −
ρ)

∑t−1
τ=0 e(τ)

t and ρ = mini∈V αi. It follows that ‖x(t) − x∗‖∞ ≤ 1/tρ. Obviously
the latter assumption does not hold, however since W τ

i are independent random

variables with P [W τ
i = j] = pij , |

∑t−1
τ=0 1[W τ

i =j]
t −pij | tends to 0 with probability

1. In Lemma 1 we use this fact to obtain a similar recursive equation for e(t) and
then in Lemma 2 we upper bound its solution.

Lemma 1. Let e(t) the solution of the recursion e(t) = δ(t) + (1 − ρ)
∑t−1

τ=0 e(τ)
t

where e(0) = ‖x(0) − x∗‖∞, δ(t) =
√

ln(π2nt2/6p)/t and ρ = mini∈V αi. Then,

P [for all t ≥ 1, ‖x(t) − x∗‖∞ ≤ e(t)] ≥ 1 − p

Lemma 2. Let e(t) be a function satisfying the recursion e(t) = δ(t) + (1 −
ρ)

∑t−1
τ=0 e(τ)/t and e(0) = ‖x(0) − x∗‖∞ where δ(t) =

√
ln(Dt2.5)/t, δ(0) = 0,

and D > e2.5 is a positive constant. Then e(t) ≤ √
2 ln(D) (ln t)3/2

tmin(ρ, 1/2) .
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4 Follow the Leader Ensures No Regret

In this section we provide rigorous definitions of no regret algorithms and explain
why update rule (3) ensures no regret to any agent that repeatedly plays the
game of Definition 1. Based on the cost that the agents experience, we consider
an appropriate Online Convex Optimization problem. This problem is a “game”
played between an adversary and a player. At round t ≥ 0,

1. the player selects a value xt ∈ [0, 1].
2. the adversary observes the xt and selects a bt ∈ [0, 1]
3. the player receives cost f(xt, bt) = (1 − α)(xt − bt)2 + α(xt − s)2.

where s, α are constants in [0, 1]. The goal of the player is to pick xt based on
the history (b0, . . . , bt−1) in a way that the total cost that she suffers during
the “game” is minimized. Generally, different OCO problems can be defined by
a set of functions F that the adversary chooses from and a feasibility set K
from which the player picks her value (see [18] for an introduction to the OCO
framework). In our case the feasibility set is K = [0, 1] and the set of functions is
Fs,α = {x �→ (1 − α)(x − b)2 + α(x − s)2 : b ∈ [0, 1]}. As a result, each selection
of the constants s, α leads to a different OCO problem.

Definition 7. An algorithm A for the OCO problem with Fs,α and K = [0, 1]
is a sequence of functions (At)∞

t=0 where At : [0, 1]t �→ [0, 1].

Definition 8. An algorithm A is no regret for the OCO problem with Fs,α and
K = [0, 1] if and only if for all sequences (bt)∞

t=0, if xt = At(b0, . . . , bt−1) then
for all t,

∑t
τ=0 f(xτ , bτ ) ≤ minx∈[0,1]

∑t
τ=0 f(x, bτ ) + o(t).

Informally speaking, if the player selects the value xt according to a no regret
algorithm then she does not regret not playing any fixed value no matter what the
choices of the adversary are. Theorem 2 states that Follow the Leader i.e. xt =
argminx∈[0,1]

∑t−1
τ=0 f(x, bτ ) is a no regret algorithm for all the OCO problems

with Fs,α.
Returning to the dynamics of the game in Definition 1, it is natural to assume

that each agent i selects xi(t) by a no regret algorithm Ai for the OCO problem
with Fsi,αi

, since

1
t

t∑

τ=0

fi(xi(τ), xW τ
i
(τ)) ≤ 1

t
min

x∈[0,1]

t∑

τ=0

fi(x, xW τ
i
(τ)) +

o(t)
t

The latter means that the time averaged total disagreement cost that she suffers
is close to the time averaged cost by expressing the best fixed opinion and this
holds regardless of the opinions of the neighbors that i meets. Meaning that
even if the other agents selected their opinions maliciously, her total experienced
cost would still be in a sense minimal. Under this perspective update rule (3)
is a rational choice for selfish agents and as a result FTL dynamics is a natural
limited information variant of the FJ model.

We now present the key steps for proving Theorem2. We first prove that a
similar strategy that also takes into account the value bt admits no regret.
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Lemma 3. Let (bt)∞
t=0 be an arbitrary sequence with bt ∈ [0, 1]. Then for all t,

∑t
τ=0 f(yτ , bτ ) ≤ minx∈[0,1]

∑t
τ=0 f(x, bτ ), where yt = argminx∈[0,1]

t∑

τ=0
f(x,bτ ).

Obviously the player cannot know bt before selecting her value, however we
can now understand why Follow the Leader admits no regret. Since the cost
incurred by the sequence yt is at most that of the best fixed value, we can
compare the cost of xt with that of yt. Since the functions in Fs,α are quadratic,
the extra term f(x, bt) that yt takes into account doesn’t change dramatically
the minimizer of the total sum i.e. xt, yt are relatively close.

Lemma 4. For all t ≥ 0, f(xt, bt) ≤ f(yt, bt) + 21−α
t+1 + (1−α)2

(t+1)2 .

5 Lower Bound for Graph Oblivious Dynamics

In this section we prove that graph oblivious dynamics cannot converge much
faster than FTL dynamics (Dynamics 1). The reason that this class is of particu-
lar interest is that it contains the dynamics produced by any no regret algorithm
of the online convex optimation problem presented in the previous section.

Definition 9 (no regret dynamics). Consider a collection of no regret algo-
rithms such that for each (s, α) ∈ [0, 1]2 a no regret algorithm As,α

1for the OCO
problem with Fs,α and K = [0, 1], is selected. For a given instance I = (P, s, α)
this selection produces the no regret dynamics x(t) defined as follows:

– Initially each agent i selects her opinion xi(0) = Asi,αi

0 (si, αi)
– At round t ≥ 1, each agent i selects her opinion,

xi(t) = Asi,αi

t (xW 0
i
(0), . . . , xW t−1

i
(t − 1), si, αi),

where W t
i is the neighbor that i meets at round t.

Such a selection of no regret algorithms can be encoded as a graph oblivi-
ous update rule. Specifically, the function At : {0, 1}t+2 �→ [0, 1] is defined as
At(b0, . . . , bt−1, s, α) = At

s,α(b0, . . . , bt−1). Thus, Theorem 3 applies. For exam-
ple if agents use the Online Gradient Descent2 to update their opinion i.e.
xi(t+1) = xi(t)−1/

√
t(xi(t)− (1−αi)xW t

i
(t)−αisi). Then we are ensured that

fast convergence cannot be established in the respective no regret dynamics. The
rest of the section is dedicated to prove Theorem 3. In Lemma 5 we show that
any graph oblivious update rule A can be used as an estimator of the parameter
p ∈ [0, 1] of a Bernoulli random variable. Before proceeding we briefly introduce
some definitions and notation.
1 These s, α are scalars in [0, 1] and should not be confused with the internal opinion

vector s and the self confidence vector α of an instance I = (P, s, α).
2 Online Gradient Descent is an influential no regret algorithm proposed by Zinkevic

in [29] for the general OCO problem, where the adversary can select any convex
function with bounded gradient. The latter directly implies that it also ensures no
regret in our simpler OCO problem with Fsi,αi and K = [0, 1].
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Definition 10. An estimator θ = (θt)∞
t=1 is a sequence of functions θt where

θt : {0, 1}t �→ [0, 1].

Perhaps the first estimator that comes to one’s mind is the sample mean, that
is θt =

∑t
i=1 Xi/t. To measure the efficiency of an estimator we define the risk,

which corresponds to the expected error of an estimator.

Definition 11. Let P be a Bernoulli distribution with mean p and P t be the
corresponding t-fold product distribution. The risk of an estimator θ = (θt)∞

t=1

is E(X1,...,Xt)∼P t [|θt(X1, . . . , Xt) − p|] or Ep [|θt − p|] for brevity.

Obviously since p is unknown, any meaningful estimator θ = (θt)∞
t=1 must guar-

antee that for all p ∈ [0, 1], limt→∞ Ep [|θt − p|] = 0. For example, sample mean
has error rate Ep [|θt − p|] ≤ 1

2
√

t
.

Lemma 5. Let A a graph oblivious update rule such that for all instances
I = (P, s, α), limt→∞ t1+cE [‖xA(t) − x∗‖∞] = 0. Then there exists an estimator
θA = (θA

t )∞
t=1 such that for all p ∈ [0, 1], limt→∞ t1+cEp

[|θA
t − p|] = 0.

Now in order to prove Theorem3 we just need to prove the following claim.

Claim. For any estimator θ there exists p such that limt→∞ t1+cEp [|θt − p] > 0.

The above claim states that for any estimator θ = (θt)∞
t=1, we can inspect the

functions θt : {0, 1}t �→ [0, 1] and then choose a p ∈ [0, 1] such that the function
Ep [|θt − p|] = Ω(1/t1+c). The claim follows by Lemma 6, which states something
significantly stronger: for almost all p ∈ [0, 1], any estimator θ cannot achieve
rate o(1/t1+c).

Lemma 6. Let θ = (θt)∞
t=1 be a Bernoulli estimator with error rate Ep [|θt − p|].

For any c > 0, if we select p uniformly at random in [0, 1] then with probability
1, limt→∞ t1+cEp [|θt − p|] > 0.

6 Limited Information Dynamics with Fast Convergence

In this section we provide an update rule that is not graph oblivious and con-
verges exponentially fast to x∗. This rule is based on asynchronous distributed
minimization algorithms [2] and depends not only on the opinions of the neigh-
bors that an agent i meets, but also on the i-th row of matrix P .

In this case each agent stores the most recent opinions of the neighbors that
she meets in an array and then updates her opinion to their weighted sum (each
agent knows row i of P ). For a given instance I = (P, s, α) we call the produced
dynamics Row Dependent dynamics (Dynamics 2). Now the problem is that the
opinions of the neighbors that she keeps in her array are outdated, i.e. a neighbor
of agent i may have changed opinion since their last meeting. The good news are
that as long as this outdatedness is bounded we can still achieve fast convergence
(Lemma 7). By bounded outdatedness we mean that there exists a number B
such that all agents have met all their neighbors at least once from t − B to t.
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Dynamics 2 Row Dependent dynamics
1: Initially xi(0) = si for all agent i.
2: Each agent i keeps an array Mi of length |Ni|, randomly initialized.
3: At round t ≥ 0 each agent i:

4: Meets neighbor with index W t
i , P

[
W t

i = j
]

= pij .
5: Suffers cost (1−αi)(xi(t)−xW t

i
(t))2+αi(xi(t)−si)

2 and learns (xW t
i
(t), W t

i ).

6: Updates her array Mi and opinion:

Mi[W
t
i ] ← xW t

i
(t), xi(t + 1) = (1 − αi)

∑

j∈Ni

pijMi[j] + αisi

Lemma 7. Let ρ = mini αi, and πij(t) be the most recent round before round
t, that agent i met her neighbor j. If for all t ≥ B, t − B ≤ πij(t) then, for all
t ≥ kB, ‖x(t) − x∗‖∞ ≤ (1 − ρ)k.

In Dynamics 2 there does not exist a fixed B that satisfies Lemma 7. However we
can select a length value such that the requirements hold with high probability.
Observe that agent i simply needs to wait to meet the neighbor j with the
smallest weight pij . Therefore, after log(1/δ)/minj pij rounds, agent i met all
her neighbors at least once with probability at least 1 − δ . In order to hold this
for all agents, we shall roughly take B = 1/minpij>0 pij .

Theorem 4. Let I = (P, s, α) be an instance of the opinion formation game
of Definition 1 with equilibrium x∗ ∈ [0, 1]n and let ρ = mini∈V αi. The opin-
ion vector x(t) ∈ [0, 1]n produced by Row Dependent dynamics, after t rounds
satisfies E [‖x(t) − x∗‖∞] ≤ 2 exp(−ρminij pij

√
t/(4 ln(nt))).
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Abstract. We consider the fair division of indivisible items using the
maximin shares measure. Recent work on the topic has focused on
extending results beyond the class of additive valuation functions. In
this spirit, we study the case where the items form an hereditary set sys-
tem. We present a simple algorithm that allocates each agent a bundle
of items whose value is at least 0.3667 times the maximin share of the
agent. This improves upon the current best known guarantee of 0.2 due
to Ghodsi et al. The analysis of the algorithm is almost tight; we present
an instance where the algorithm provides a guarantee of at most 0.3738.
We also show that the algorithm can be implemented in polynomial time
given a valuation oracle for each agent.

1 Introduction

Consider the problem of dividing up m heterogenous goods amongst n agents.
How can this be achieved in an equitable manner? This is the classical problem
of fair division in economics and political science [13]. The issue that arises
immediately is how to define “fairness”. Two important concepts that have been
widely studied are proportionality and envy-freeness. An allocation of the items
to the agents is proportional if, for every agent, the value that the agent has for
the grand bundle (all of the items) is at most a factor n times greater than the
value it has for the bundle it receives. The allocation is envy-free if the value an
agent has for the bundle it receives is at least as great as the value it has for the
bundle of any other agent; that is, no agent is willing to exchange its allocated
bundle for the bundle of another agent.1

Fair division has been extensively studied in the case of divisible items, typ-
ically in the general guise of cake-cutting [5,12]. Interestingly, for divisible items
general equilibria can provide fair allocations in restricted settings. For example,

Z. Li—The first author thanks McGill University for hosting them while conducting
this research.
1 Observe that if the agents have sub-additive valuation functions then envy-freeness

implies proportionality.
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assume the agents have linear valuation functions. If each agent is now given the
same budget then equilibrium prices exist where all items are completely sold
and each agent receives a most desired bundle; this concept of competitive equi-
librium from equal incomes is due to Varian [14].

In practice, however, the fair division of indivisible items is more important
than that of divisible items. This can be seen from the plethora of real-world
examples, including course registration in universities, shift scheduling, draft
assignment in sport, client assignment to sales-people, airport slot assignments,
divorce settlements, and estate division [6,9]. But, at first glance, it is not clear
anything useful can be said regarding the fair division of indivisible goods. For
instance, what is a fair way to allocate a single indivisible good between two
agents? An important concept used in understanding the case of indivisible
goods was introduced by Budish [6], namely, maximin shares. The basic pro-
tocol is familiar to every child when cake cutting: “I cut, you choose”. More
generally, for n agents and m indivisible goods, one agent partitions the items
into n bundles but that agent then gets the last choice of bundle. Intuitively, a
risk averse agent seeks a partition that maximizes the value of its least desired
bundle in the partition. The minimum value of a bundle in the optimal partition
value is called the maximin share for the agent. Clearly, since the agents have
different valuation functions, the optimal partitions and the corresponding max-
imin share values may differ for each agent. The first question that then arises
is whether one can partition the items in such a way that every agent receives
a bundle whose value is at least its maximin share. The answer is no, even for
additive valuation functions [9]. This negative result leads to the question of
whether or not approximate solutions exist. Specifically, is there a partition that
gives every agent a bundle with value at least an α-fraction of their maximin
share? In groundbreaking work, for additive valuation functions, Kurokawa, Pro-
caccia and Wang [9] showed the existence of a partition with α = 2

3 ; polynomial
time algorithms with the same guarantee were subsequently given in [1] and [2].
A stronger guarantee of α = 3

4 was very recently obtained by Ghodsi et al. [8].
More general classes of valuation function have also been studied. Barman and
Krishnamurthy [2] proved a bound of α = 1

10 for the class of submodular valu-
ation functions. This was improved to 1

3 by Ghodsi et al. [8], who also proved
guarantees of 1

5 for fractionally subadditive (XOS) valuations and Ω(1/ log n)
for subadditive valuations.

Our Results. In this paper, we consider the fair division problem in an heredi-
tary set system (or downward-closed set system). A set system H = (J,F) con-
sists of a collection J of items and a family F of feasible (independent) subsets
of J . The set system satisfies the hereditary property if:

S ∈ F and T ⊂ S =⇒ T ∈ F
Hereditary set systems are ubiquitous in computer science and optimization.
They arise naturally in the presence of packing or cost constraints, for example
in scheduling problems and manufacturing processes. Furthermore, they are of
fundamental theoretic importance; notable combinatorial and geometric objects
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that satisfy the hereditary property include matroids, simplicial complexes, and
minor closed graph families such as networks embeddable on a surface.

In an hereditary set system, each agent i has a value vi,j for each item j
but these values are additive only on feasible sets in the set system. A formal
description of this model is given in Sect. 2 along with a proposed algorithm for
dividing up the items amongst the agents. Our main result, given in Sect. 3, is
that this algorithm provides a guarantee of at least 0.3667 for the maximin shares
problem in a hereditary set system. This improves on the current best known
bound of 0.2. In Sect. 4 we prove that our bound is almost tight by constructing
an instance where the algorithm has a performance guarantee of at most 0.3738.
Consequently, our lower and upper bounds for the performance guarantee of
the algorithm are within an amount 0.007. The basic implementation of the
algorithm runs in exponential time. So in Sect. 5 we show how to implement
the procedure in polynomial time. Specifically, given a valuation oracle for each
agent, the algorithm makes at most a polynomial in m number of queries to the
oracles and performs a polynomial amount of computation given the responses
of the oracles.

2 The Hereditary Maximin Share Problem

In this section, we describe the maximin share problem on an hereditary set
system. We present a fair division algorithm for the problem and provide a
simple performance analysis of the procedure (which we improve upon in the
next section).

The Fair-Division Model. We have a set I of n agents and collection J
of m items. The items belong to an hereditary set system H = (J,F) and
agents desire feasible (independent) sets in the set system. Specifically, each
agent i has an additive valuation function over independent sets. That is, for
any S ∈ F we have vi(S) =

∑
j∈S vi,j . The value the agent has for a set S /∈ F

is simply the maximum value it has for any feasible subset of S; that is vi(S) =
max

T∈F :T⊂S

∑
j∈T vi,j .

Our aim is to fairly divide up the items amongst the agents. We measure the
fairness of a division with respect to the maximin share of each agent. To define
this, let P be the set of all partitions of the items into n sets. The value of the
maximin share for a agent i is then

MMS(i) = max
P∈P

min
P∈P

vi(P ).

That is, the maximin share is a partition that maximizes the value of the least
valuable bundle in the partition. A partition Pi = {P 1

i , P 2
i , . . . , Pn

i } ∈ P that
attains this value is called a maximin partition for agent i and the elements of Pi

are called maximin parts. Observe that the maximin partition may be different
for each agent.

Our objective is to find a partition of the items {S1, S2, . . . , S�} where the
bundle Si allocated to agent i has value at least its maximin share. In general
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this is not possible, so instead we search for approximate solutions. Specifically,
we desire the maximum fraction α > 0 and an allocation {S1, S2, . . . , S�} such
that vi(Si) ≥ α · MMS(i), for every agent i. We call this the hereditary maximin
share problem.

The hereditary maximin share problem has a constant factor approximation.
This is because our valuation functions are fractionally subadditive (XOS). That
is, the valuation function can be defined as the maximum over a collection of
additive set functions. To show this, for each agent i, we define an additive
function aS

i over the items for each independent set S ∈ F . Specifically, let

aS
i (j) =

{
vi,j if j ∈ S

0 if j /∈ S
.

It is then easy to verify, for any set T (independent or not), that

vi(T ) = max
S∈F

∑

j∈T

aS
i (j).

Thus vi is indeed fractionally subadditive. Using this fact, it follows from recent
work of Ghodsi et al. [8] that a performance guarantee of 0.2 is obtainable.

Theorem 1. [8] There is an algorithm for the fair division problem in hereditary
set systems that allocates every agent a bundle with an approximation guarantee
α = 1

5 . ��
We remark that the valuation functions for hereditary set systems are not

submodular functions.2 To our knowledge, these valuation functions for the fair
division problem have not been studied previously. The aim of this paper is to
improve upon the α = 0.2 performance guarantee.

A Fair-Division Algorithm. To obtain a better performance guarantee we
apply a simple and natural procedure. To begin, without loss of generality, we
may assume that the maximin share of every agent is exactly 1 by normalizing.
Even stronger, we may assume that, for every agent i, there exists a maximin
partition such that the agent has value exactly 1 for each part in the partition.
To see this formally, let Pi be a maximin partition for agent i. Now define a
new valuation function v̂i with the property that v̂i,j = vi,j

vi(P ) if item j is in part
P ∈ Pi. Thus v̂i(P ) = 1, for each part P ∈ Pi. It is then easy to verify that an
allocation that provides a value α with respect to v̂i is a factor α allocation with
respect to the true valuation vi.

We are now ready to present our fair-division algorithm which begins with
the normalization above. This normalization is not required in our polynomial
2 For example, consider an hereditary set system H = (J, F) with three items J =

{a, b, c} and let the maximal independent sets in F be {a} and {b, c}. Suppose
agent i has item values vi,a = 3, vi,b = 2 and vi,c = 2. Thus vi({a, c}) = 3 and
vi({a, b, c}) = 4. Consequently, the marginal value of adding item c to the set {a, b}
is larger than the marginal value of adding item c to the set {a}. Thus the valuation
function is not submodular.
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time algorithm; see the full version of the paper. Given a target value α, we
search for a minimum cardinality feasible sets of at least the targeted value for
some agent. If such a set is found we allocate that set (bundle) to that agent
and then recurse on the remaining items and agents. This method is formalized
in Procedure 1.

Algorithm 1. The Fair Division Algorithm
Input: A set I of agents, a set J of items, and a target value α.
for τ = 1 to m do

while there exists a set S ⊆ J with |S| = τ and an i ∈ I with vi(S) ≥ α do
Allocate bundle S to agent i
Set I ← I \ {i}
Set J ← J \ S

We use the following notation. Let {S1, S2, . . . , S�} be the bundles assigned
by the procedure in order; note that � ≤ n. We view the procedure as working
in phases. In Phase τ the procedure searches for bundles of cardinality τ that
provide utility at least α for some agent; note that τ ≤ m. We denote by Aτ the
collection of all items allocated during Phase τ .

A Simple Analysis. To begin, let’s present a very simple analysis that shows
this algorithm gives a factor α = 1

3 guarantee. In Sect. 4, we will give a more
intricate and nearly tight analysis.

Theorem 2. The procedure gives every agent a bundle of value at least α = 1
3 .

Proof. Clearly, if an agent is allocated a bundle by the procedure then it receives
a bundle of value at least α. So it suffices to show that the procedure allocates
every agent a bundle if it is run with a target value α = 1

3 . For a contradiction,
suppose the procedure terminates after allocating bundles to � < n agents. Let
i be an agent that is not allocated a bundle.

We may assume that A1 = ∅. That is, vi,j < α for every agent i and every
item j and so no items are allocated in Phase 1. The argument is standard [9]: if
a set of cardinality one is allocated to an agent then this item intersects at most
one of the n bundles in the maximin partition of any other agent. Thus n − 1
of the bundles in the partition are untouched and each still have total value 1.
Consequently, n − 1 agents remain and they each have a partition of the items
into n − 1 bundles each with value 1. Thus, we recurse on this smaller problem.

Therefore, we may assume the procedure only allocates items in Phases τ ≥ 2.
Since the algorithm considers items in increasing size τ , agents receive a minimal
bundle with value the sum of value of its elements (by definition of valuation).
Now take any set S allocated to some agent k in Phase τ . It must be the case
that vi(S) < τ

τ−1 ·α. If not then there is a set T ⊂ S with cardinality τ − 1 such
that vi(T ) ≥ τ−1

τ · τ
τ−1 · α = α. But, by the hereditary property, the bundle T is

an independent set so should then have been allocated to agent i in Phase τ −1.
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Let bundle Sk be the kth bundle allocated, where 1 ≤ k ≤ �. Let U be the set of
items unallocated by the procedure. Then the total value of unallocated items
in some bundle of the maximin partition Pi of agent i is at least

∑

j∈U∩Pi

vi(j) ≥ n −
�∑

k=1

vi(Sk) ≥ n −
�∑

k=1

|Sk|
|Sk| − 1

· α ≥ n −
�∑

k=1

2 · α (1)

Here the final inequality arises as A1 = ∅ and so |Sk| ≥ 2 for every allocated
bundle. Since α = 1

3 , we obtain from (1) that

∑

j∈U∩Pi

vi(j) ≥ n − 2
3
� > n − 2

3
n =

n

3

Because the maximin partition Pi contains exactly n parts, there is a part that
contains a set S of unallocated items where vi(S) ≥ n

3 · 1
n = 1

3 . By the heredi-
tary property, this contradicts the fact that the procedure terminated without
allocating agent i a bundle. Thus every agent received a bundle of value at
least 1

3 . ��

3 An Improved Lower Bound

In this section, we provide a much more detailed analysis of the fair division
algorithm and prove it provides for an approximation guarantee of α = 0.3667.
This analysis is almost tight; in Sect. 4 we present an example showing that the
performance of the procedure is not better than α = 0.3738.

Theorem 3. The procedure gives every agent a bundle of value at least α = 11
30 .

Before proving this theorem, let’s give some intuition behind the analysis. The
basic approach is the same as in Theorem 2. For an appropriately chosen target
value α we run the procedure and assume for a contradiction that some agent
i was not allocated a bundle. We then consider the maximin shares partition
P = {P1, P2, . . . , Pn} for agent i and show that some part P ∈ P contains items
with total value at least α that are unallocated at the end of the procedure. By
the hereditary property, this will contradict the fact the procedure terminated
without allocating a bundle to agent i.

However, in order for this method to work for α = 11
30 , we refine the analysis in

four key ways. First, upon termination of the procedure, rather than considering
the entire maximin shares partition P = {P1, P2, . . . , Pn} for agent i, we focus
on a restricted sub-partition P̂ of P. To find P̂ we use combinatorial arguments
on an auxiliary graph that is constructed with respect to the allocation decisions
made in Phase 2 of the procedure. With this sub-partition P̂ more specialized
accounting techniques can then be applied. We explain how to find the sub-
partition P̂ in Sect. 3.1.

For the second improvement, note that upon termination we now wish to
show that at least one of the parts P ∈ P̂ has unallocated items with total value
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α. For this to not hold at the end of the procedure, we require that each part
contains unallocated items of total value less than α. This simple observation is
useful in that once a part contains unallocated items of value less than α, the
removal of additional items from that part does not hurt us any more. In fact,
the removal of additional items from such a part is actually beneficial to us in
the analysis as such items do not reduce the value of parts that may still feasibly
provide agent i with a bundle of value α. To quantify this, let

vP = 1 −
∑

τ≥1

∑

j∈P∩Aτ

vi,j

be the total value of unallocated items in part P ∈ P̂ upon termination of
the algorithm. We then denote by sP = α − vP the superfluity of part P . We
may assume that sP > 0, otherwise the procedure would have allocated agent i a
bundle. Accounting for this superfluous damage will be the second key ingredient
in the proof.

The third idea is to exploit any laxity the procedure provides before the start
of the third phase. Essentially the laxity lP of a part P ∈ P̂ is a measure of how
much better the unallocated value of the part is after Phase 2 than a “perceived”
worst case. The fourth key idea is to amortize our accounting process. Rather
than simply focus independently on items in each part of the partition P̂, we
will also redistribute values within allocated bundles that cross multiple parts
in the partition. The concepts of superfluity and laxity are explained in Sect. 3.2
along with a description of the amortization process. The proof of Theorem 3 is
then given in Sect. 3.3.

3.1 Finding a Sub-Partition

Now assume the procedure terminates after � < n iterations leaving at least one
agent i who does not receive a bundle. Let the maximin partition for agent i be
P = {P1, P2, . . . , Pn}. Let J∗ ⊆ J be the set of items allocated to agents during
the procedure. We will show

max
1≤k≤n

vi(Pk \ J∗) ≥ α (2)

This will contradict the fact that the procedure terminated without allocating
a bundle to agent i. So let’s prove that inequality (2) holds. As in the proof of
Theorem 2, without loss of generality, we may assume no items were allocated in
Phase 1; that is, A1 = ∅. Next we construct an auxiliary graph G based upon the
allocation decisions made in Phase 2. The graph contains n vertices, one vertex
for each part Pk in the partition P. The graph contains an edge connecting the
two (possibly equal) parts containing the two items of the bundle, for each bundle
allocated in Phase 2. Observe that a vertex in G may have degree greater than
one since the part it represents may contain multiple items. This also implies
that G may contain edges that are self-loops; this happens whenever a bundle
allocated in Phase 2 consists of two items in the same part of the partition P.
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Let’s further investigate the structure of G. Let X be a maximal set of vertices
of G that induce at least |X| edges. Note that such a set exists because ∅ is a
feasible choice for X. On the other hand, it must be the case that X �= V (G).
This follows as G contains exactly n vertices but � < n edges. But this, in turn,
implies that X induces exactly |X| edges. If X induced more than |X| edges
then we could add to it any other vertex in V (G) \ X and still maintain the
desired property.

Now consider the subgraph G \X. This subgraph is a forest F . If it contained
a cycle C then X ∪ V (C) would contradict the maximality of X. Furthermore,
there are no edges between X and G \ X; otherwise, the endpoint in G \ X of
such an edge could have been added to X.

Let the forest F contain s components consisting of a single vertex – observe
that, by the above argument, these vertices are also singleton components of G.
Let F contain c non-trivial components, that is, trees with at least one edge.
Clearly, every non-trivial tree contains at least two leaves. Therefore, we may
select a set Y that consists of every vertex in non-trivial trees in F except for
exactly two leaves in each non-trivial tree. Finally, we set Z = V (G) \ (X ∪ Y ).
An illustration of the auxiliary graph G and the sets X,Y and Z is shown in
Fig. 1.

Fig. 1. The auxiliary graph

The sub-partition P̂ of P consisting of the vertices in Z = V (G)\(X ∪ Y )
will be important to us. Let’s now present a couple of combinatorial equalities
that will be useful later. The first is a claim that follows trivially by definition
of P̂. The second is a lemma quantifying how many agents are allocated bundles
in Phase 2.
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Claim. The number of parts in the sub-partition P̂ is |Z| = 2c + s. ��
Lemma 1. Exactly |X| + |Y | + c agents receive a bundle in Phase 2.

Proof. Observe that, by construction, the number of agents allocated a bundle in
Phase 2 is exactly |E(G)|. So we must count the number of edges in the auxiliary
graph G. We have seen that E(G) = E(X) ∪ E(F ). By the maximality of X, we
have that |E(X)| = |X|. In addition, |V (F )| = |Y | + 2c + s. Thus, as F consists
of exactly c + s trees, |E(F )| = (|Y | + 2c + s) − (c + s) = |Y | + c. Putting this
together gives |E(G)| = |X| + |Y | + c, as desired. ��

We will focus our counting arguments on the sub-partition P̂ in order to
obtain a contradiction to the fact that agent i was not allocated a bundle. Specif-
ically, we will show that at least one of the vertices in Z contains unallocated
items that together provide value at least α to agent i.

3.2 Laxity, Superfluity and Amortization

Consider the allocated items in P̂. As A1 = ∅, every item j has vi,j < α. We
now study the value (to agent i) of the items in P̂ allocated in Phase 2. To
do this, recall that the vertices of P̂ = Z are of two types, vertices of degree 0
in G (specifically, singleton vertices in F ) and vertices of degree 1 (that is, leaf
vertices in F ). Vertices of degree 0 contain no items that are allocated in Phase 2.
Vertices of degree 1 in G contain exactly one item that is allocated in Phase 2.
So given a part P ∈ P̂, we define the laxity of P to be lP = α if P corresponds
to a singleton vertex in F . Otherwise, if P corresponds to a leaf vertex in F we
define lP = (1−vi,j∗(P ))− (1−α) = α−vi,j∗(P ), where j∗(P ) is the unique item
of P that is allocated in Phase 2. Observe that lP > 0 since vi,j < α for every
item j and in particular for j∗(P ). We can use the laxity to quantify the total
value of items in P̂ allocated in Phase 2.

Lemma 2.
∑

P∈P̂
∑

j∈P∩A2
vi,j = 2α · c − ∑

P∈P̂ lP .

Proof. We have
∑

P∈P̂

∑

j∈P∩A2

vi,j =
∑

P∈P̂
(α − lP ) = 2c · α −

∑

P∈P̂
lP

Here the first equality holds since when P corresponds to singleton, the associ-
ated term in the sum is 0 = α − α = α − lP , and when P corresponds to a leaf,
the associated term is vi,j∗(P ) = α − lP . The final equality follows as P̂ = Z
contains exactly 2 · c vertices of degree 1. ��

Next we want to bound the value (to agent i) of items allocated in Phases 3
and beyond. First, let’s count the number of bundles allocated in Phases 3 and
beyond.

Lemma 3. At most c + s − 1 agents receive a bundle in Phases 3 and beyond.
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We give the proof of this claim in the full version of the paper. Now let’s
bound the value of bundles allocated in Phases 3 and beyond. We will need
two more definitions. First, recall, we defined the superfluity of a part P as
sP = α −

(
1 − ∑

τ≥1

∑
j∈P∩Aτ

vi,j

)
. For the purpose of our analysis, we also

define the excess eP of a part P ∈ P̂ to be the sum of its superfluity and its
laxity. Therefore

eP = sP + lP =

⎛

⎝α − 1 +
∑

τ≥1

∑

j∈P∩Aτ

vi,j

⎞

⎠ + (α − vi,j∗(P ))

= 2α − 1 +
∑

τ≥3

∑

j∈P∩Aτ

vi,j (3)

The final equality holds because A1 = ∅ and P ∩ A2 is either {j∗(P )} or ∅.
As discussed, to bound the value of bundles allocated in Phases 3 and beyond,

we will amortize our accounting process. In these phases each allocated bun-
dle has cardinality at least three. Take such a bundle, say B = {j1, j2, . . . , jk}
allocated to some agent τ . The hereditary property states that B \ {j} is fea-
sible, for every item j ∈ B. Thus, because B is a minimum cardinality feasi-
ble bundle of value at least α when it is allocated, it must be the case that
vi(B \ {j}) < α. Observe, this applies even for the least valuable item ĵ ∈ B to
agent i in the bundle B. Furthermore, because B is an independent set, we have
that (i) vi(B \ {ĵ}) = vi(B) − vi,ĵ , and (ii) vi,ĵ is at most the average value of
an item in B. Putting this all together gives

vi(B) < α + vi,ĵ ≤ α +
1
k

· vi(B)

As k ≥ 3, we obtain

vi(B) <
k

k − 1
· α ≤ 3

2
· α (4)

Hence, each bundle that is allocated in Phase 3 reduces the total value to agent
i of items in P̂ by at most 3

2 · α. For bundles of cardinality at least 4 (allocated
in Phases 4 and beyond) this is at most 4

3 · α. This bound suffices for bundles of
size at least 4. We now bound bundles allocated in Phase 3 more carefully. To
do so, we amortize the accounting process by defining for any item j allocated
in a bundle B by the mechanism,

aj =
vi(B)
|B| .

That is, aj is the average value of items in B. Since each allocated bundle is
minimal and has cardinality 3, we have, for any item j, that

aj ≤ 1
3
(α + vi,j) (5)

We now further partition elements of A3 into two sets whose values we will
bound independently in order to reduce the gaps in our accounting. To this end,
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let U consist of those items in A3 that belong to a part P ∈ P̂ which contains
no other elements of A3. That is, j ∈ U if item j is the only item of A3 in some
part P ∈ P̂. Let Ū = A3 \ U ; thus, Ū consists of those items in A3 that belong
to a part P ∈ P̂ which contains a least two items of A3.

Claim. If α ≤ 11
30 then for any part P of P̂,

∑
j∈P∩Ū aj − eP ≤ 1

6 · |P ∩ Ū |.
Claim 3.2 is proved in the full version of the paper. Applying Claim 3.2 to

every part P ∈ P̂, we obtain that

∑

j∈Ū

aj ≤ 1
6

· |Ū | +
∑

P∈P̂
eP (6)

Moreover, because aj ≤ 1
2 · α for all j ∈ U ⊆ A3, we also have

∑

j∈U

aj ≤ 1
2

· α · |U | (7)

3.3 Proof of the Improved Bound

We are now ready to prove the stated performance guarantee of the procedure.

Theorem 3. The procedure gives every agent a bundle of value at least α = 11
30 .

Proof. Let β3 be the number of bundles of size 3 allocated in Phase 3 and let
β4+ be number of bundles of size at least 4 allocated in Phase 4 and beyond.
Applying inequality (4) for k ≥ 4, we have

∑

τ≥4

∑

j∈Aτ

vi,j ≤ 4
3

· α · β4+ (8)

This gives

∑

τ≥3

∑

j∈Aτ

vi,j =
∑

j∈A3

vi,j +
∑

τ≥4

∑

j∈Aτ

vi,j ≤
∑

j∈A3

vi,j +
4α

3
· β4+

=
∑

j∈A3

aj +
4α

3
· β4+ =

∑

j∈U

aj +
∑

j∈Ū

aj +
4α

3
· β4+

where the last equality follows by definition of U and Ū . Applying (7) and (6)
then produces:

∑

τ≥3

∑

j∈Aτ

vi,j ≤ α

2
· |U | +

⎛

⎝1
6

· |Ū | +
∑

P∈P̂
eP

⎞

⎠ +
4α

3
· β4+

=
α

2
· |U | +

1
6

· (|A3| − |U |) +
4α

3
· β4+ +

∑

P∈P̂
eP
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=
(

α

2
− 1

6

)

· |U | +
1
6

· |A3| +
4α

3
· β4+ +

∑

P∈P̂
eP

≤
(

α

2
− 1

6

)

· |U | +
1
2

· β3 +
4α

3
· β4+ +

∑

P∈P̂
eP

≤
(

α

2
− 1

6

)

· |U | +
1
2

· (β3 + β4+) +
∑

P∈P̂
eP

Here the second inequality is due to the fact that |A3| = 3β3; the final inequality
follows as our target value is α = 11

30 ≤ 3
8 .

Now, by definition, there is at most one element of U for each of the 2c + s
maximin parts in P̂. So |U | ≤ 2c + s. Furthermore, by Lemma 3, we have
β3 + β4+ ≤ c + s − 1. Therefore, it follows that

∑

τ≥3

∑

j∈Aτ

vi,j ≤
(

α

2
− 1

6

)

(2c + s) +
1
2
(c + s) +

∑

P∈P̂
eP (9)

We are now ready to complete the proof. The total value of non-superfluous,
allocated items in P̂ at the end of the procedure is then at most
∑

τ≥1

∑

j∈Aτ

vi,j −
∑

P∈P̂
sP =

∑

j∈A1

vi,j +
∑

j∈A2

vi,j +
∑

τ≥3

∑

j∈Aτ

vi,j −
∑

P∈P̂
sP

= 0 +

⎛

⎝2αc −
∑

P∈P̂
lP

⎞

⎠ +
∑

τ≥3

∑

j∈Aτ

vi,j −
∑

P∈P̂
sP

≤ 2αc −
∑

P∈P̂
lP +

⎛

⎝
(

α

2
− 1

6

)

(2c + s) +
1
2
(c + s) +

∑

P∈P̂
eP

⎞

⎠ −
∑

P∈P̂
sP

Here the second equality follows from the fact that A1 = ∅ and by Lemma 2.
The inequality follows by (9). Simplifying now gives

∑

τ≥1

∑

j∈Aτ

vi,j −
∑

P∈P̂
sP ≤ 2αc +

(
α

2
− 1

6

)

(2c + s) +
1
2
(c + s)

= 2c ·
(

α +
1
2
α − 1

6
+

1
4

)

+ s ·
(

1
2
α − 1

6
+

1
2

)

= 2c ·
(

1
12

+
3
2
α

)

+ s ·
(

1
3

+
1
2
α

)

By Claim 3.1, at the start of the procedure the total value of items to agent i
in the sub-partition P̂ is at least (2c + s) · 1. Thus upon termination, the total
value of unallocated items (modulo superfluity) is at least
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2c + s −
⎛
⎝∑

τ≥1

∑
j∈Aτ

vi,j −
∑

P∈P̂
sP

⎞
⎠ ≥ (2c + s) −

(
2c ·

(
1

12
+

3

2
α

)
+ s ·

(
1

3
+

1

2
α

))

= 2c ·
(

11

12
− 3

2
α

)
+ s ·

(
2

3
− 1

2
α

)

≥ (2c + s) ·
(

11

12
− 3

2
α

)

Here the final inequality holds because 11
12 − 3

2α ≤ 2
3 − 1

2α for α = 11
30 ≥ 1

4 . Hence
the average remaining value in each part of P̂ at the end of the procedure is at
least 11

12 − 3
2α. This is at least α for α ≤ 11

30 . Thus agent i must receive a bundle
of value at least α = 11

30 = 0.3667. ��

4 An Upper Bound

We now show that the analysis in Sect. 3 is tight to within an additive amount
of 0.007. Specifically, we present an example that shows the procedure cannot
guarantee a performance guarantee better than 40

107 = 0.3738.

Theorem 4. The procedure’s performance guarantee is at most 40
107 = 0.3738.

The proof of this theorem is available in the full version of the paper and is
obtained from the following example.

Class A B C D E F

Quantity n 1
3n 2

3n 2
3n 1

3n 40n

Value α′ = 40
107

13
4 α′ − 1 = 23

107 1 − 9
4α′ = 17

107
1
4α′ = 10

107 2 − 21
4 α′ = 4

107
1
40α′ = 1

107

Capacity 2 1 2 5 11 40

Set α′ = 40
107 , ε > 0. The set system contains six classes of items, denoted

{A,B,C,D,E, F}. The number of identical items in each class are shown in the
second row of the table. Moreover these agents are identical. The value each
agent has for a single item of each class is shown in the third row of the table.
Finally, the feasible (independent) sets are defined by a capacity constraint for
each class of items, as shown in fourth row of the table.

5 A Polynomial Time Implementation

Procedure 1 is not a polynomial time algorithm. However, it can be modified
to give a polynomial time implementation given access to a valuation oracle for
each agent. To do this there are two main problems. First, the use of a phase τ
to search for bundles of cardinality τ is clearly exponential time if the procedure
ends up searching for bundles of large cardinality. Second, the procedure, requires
the maximin partition or, more specifically, the maximin share value for each
agent. In the full version, we detail how to overcome both these problems using
a polynomial amount of computation and a polynomial number of valuation
queries.
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6 Conclusion

We have presented a fair division algorithm for hereditary set systems which pro-
vides each agent with at least an 11

30 fraction of its maximin share value. Several
open problems remain. The first is to close the 0.007 gap between the lower and
upper bounds given for the performance of the procedure given in this paper.
The second is to design a new procedure with a better performance guarantee.
Of course, this may be easier to do for sub-classes of hereditary set systems.
One very important sub-class is that of matroids. A matroid is a hereditary set
system that also satisfies the augmentation property: given two independent sets
S and T where |S| > |T |, there exists an element s ∈ S such that T ∪{s} is inde-
pendent. Because the almost-tight example presented in Sect. 4 is a (partition)
matroid, the procedure presented in this paper does not have a better perfor-
mance guarantee for matroids. So a third open problem would be to design a fair
division algorithm that exploits the augmentation property to produce improved
performance guarantees for matroids.

Acknowledgements. The authors thank Jugal Garg, Vasilis Gkatzelis and Richard
Santiago for interesting discussions on fair division. We thank the anonymous reviewers
for helpful suggestions.
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Abstract. Many important stable matching problems are known to be
NP-hard, even when strong restrictions are placed on the input. In this
paper we seek to identify structural properties of instances of stable
matching problems which will allow us to design efficient algorithms
using elementary techniques. We focus on the setting in which all agents
involved in some matching problem can be partitioned into k different
types, where the type of an agent determines his or her preferences,
and agents have preferences over types (which may be refined by more
detailed preferences within a single type). This situation would arise in
practice if agents form preferences solely based on some small collection
of agents’ attributes. We also consider a generalisation in which each
agent may consider some small collection of other agents to be excep-
tional, and rank these in a way that is not consistent with their types; this
could happen in practice if agents have prior contact with a small num-
ber of candidates. We show that (for the case without exceptions), the
well-known NP-hard matching problem Max SMTI (that of finding the
maximum cardinality stable matching in an instance of stable marriage
with ties and incomplete lists) belongs to the parameterised complexity
class FPT when parameterised by the number of different types of agents
needed to describe the instance. This tractability result can be extended
to the setting in which each agent promotes at most one “exceptional”
candidate to the top of his/her list (when preferences within types are
not refined), but the problem remains NP-hard if preference lists can
contain two or more exceptions and the exceptional candidates can be
placed anywhere in the preference lists.

1 Introduction

Matching problems occur in various applications and scenarios such as the assign-
ment of children to schools, college students to dorm rooms, junior doctors to
hospitals, and so on. In all the aforementioned, and similar, problems, it is under-
stood that the participants (which we will refer to as agents) have preferences
over other agents, or subsets of agents. The majority of the literature assumes
that these preferences are ordinal, and that is the assumption we make in this
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work as well. Moreover, it is widely accepted that a “good” and “reasonable”
solution to a matching problem must be stable, where stability is defined accord-
ing to the context of the problem at hand. Intuitively speaking, a stable solution
guarantees that no subset of agents find it in their best interest to leave the
prescribed solution and seek an assignment amongst themselves. Unfortunately,
many interesting and important stable matching problems are known to be NP-
hard even for highly restricted cases.

In this paper we focus on the Stable Marriage problem (SM), which is perhaps
the most widely studied matching problem. In an instance of SM we have two
disjoint sets of agents, men and women, each having a strict preference ordering
over the individuals of the opposite sex (candidates). A solution to this problem is
a matching, that is a mapping from men to women where each man is matched
to at most one woman and vice versa. Each agent prefers being matched to
remaining unmatched. A matching is stable if there are no two agents a and b
who prefer each other to their assigned partners. If such a pair exists, we say
that (a, b) is a blocking pair. Stable Marriage with Incomplete lists (SMI) is a
generalisation of SM where agents are permitted to declare some candidates
unacceptable. In their seminal work, Gale and Shapley [11] showed that every
instance of SMI admits a stable matching that can be found in polynomial time
by their proposed algorithm (GS). A simple extension of GS can be used to
identify stable matchings in domains where agents are additionally allowed to
express indifference between two or more candidates (Stable Marriage with Ties
and Incomplete lists (SMTI)). However, it is known that (in contrast with SMI)
an instance of SMTI might admit stable matchings of different sizes, and GS does
not necessarily find the largest. In many practical applications, it is important
to match as many agents as possible, but finding a matching which achieves
this is much more computationally challenging: Max SMTI, the problem of
determining a maximum cardinality stable matching (i.e., a stable matching
with the largest size amongst all stable matchings) in an instance of SMTI, is
known to be NP-hard [3,14,16,20], even when the input is heavily restricted.

Most hardness results in the study of stable matching problems are based on
the premise that agents may have arbitrary preference lists. In practice, however,
agents’ preferences are likely to be more structured and correlated. In this work,
we consider a setting where agents can be grouped into k different “types”, where
the type of an agent determines (most of) the agent’s preferences, and also how
s/he is compared against other agents. If we allow each agent to have a different
type, this setup does not place any restrictions on the instance. However, we
are interested in the setting where the number of types required to describe an
instance is much smaller than the total number of agents: such a situation would
arise in practice if agents derive their preferences by considering some small col-
lection of attributes of other agents (where each of these attributes has a small
number of possible values). As an example, consider the hospitals-residents job
market in which junior doctors or residents are to be assigned to hospital posts.
It is highly plausible that agents in this market base their preferences on small
collection of candidates’ attributes. E.g. hospitals might rank applicants based on
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their exam grade, interview score, etc., and junior doctors might rank the hospi-
tals based on the programs they offer, their reputation, their geographic location,
etc. Similar observations have been made in the literature (see [2,4]) regarding
stable marriage market and stable roommate market respectively, where agents
form preferences based on candidates’ attributes such as attractiveness, intelli-
gence, wealth, etc. In this setting, we obtain our set of types by first partitioning
agents by their profile of attributes, then further partitioning each set by the
preference list over other profiles of attributes. Note that the number of possible
preference lists depends only on the number of possible attribute profiles.

The notion of types is also useful if we are interested in a relaxation of
stability, where agents are only willing to form a private arrangement with a
partner who is distinctly superior to their current partner with respect to an
important characteristic. It is reasonable to assume that in practice a certain
amount of effort is required by both agents in a blocking pair to make a private
arrangement outside the matching, and so agents are unlikely to make this effort
for a very small improvement in their utility. Suppose that an agent is only willing
to make the effort to form a private arrangement if it results in a significantly
better partner, specifically one which has a significantly better value for the most
important attribute. In this case we only need to consider attributes which are
the most important for at least one agent, and moreover we might reasonably
consider only a small number of categories of values for these attributes.

The simplest model is to assume that the agents of the same type are com-
pletely indistinguishable. That is, they have the same preference lists, and every
other agent that finds their type acceptable is indifferent between them. Equiv-
alently, we can say that each type has a preference ordering over types of the
candidates, which need not be complete or strict. We also consider two gener-
alisations of this basic model. In the first generalisation, agents no longer have
to be indifferent between agents of the same type: they can refine their prefer-
ence lists arbitrarily (so that agents of the same type still occur consecutively),
so long as the preference lists for agents of the same type are identical. In the
second generalisation, we instead enrich the basic model by allowing each agent
to consider some small number of other agents “exceptional”: such agents can
appear anywhere in the preference list, regardless of their type. This situation
with exceptions might arise in practice if, for example, an agent knows some of
the candidates directly or through a third-party connection and, based on this
additional information, ranks them disregarding their type, e.g. at the top or
bottom of his/her preference list.

Our Contribution. We consider the parameterised complexity of Max SMTI

in all three settings. In the basic model and the extension which allows con-
sistently refined preference lists, we show that the problem is in FPT parame-
terised by the number of types. In both settings the problem further becomes
polynomial-time solvable if all preferences over types are strict. When exceptions
are allowed in the preference lists, we demonstrate that the problem is once again
in FPT, parameterised by the number of types, if each agent considers at most
one agent exceptional, whom s/he promotes to the top of his/her preference list.
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On the other hand, if two arbitrarily placed exceptions are allowed, Max SMTI

remains NP-hard, even if the number of types is bounded by a constant.
Due to shortage of space we have omitted or shortened the proofs. We refer

the reader to the full version of the paper [18].

1.1 Definitions

Let N denote a set of n agents, which is composed of two disjoint sets. We use
the term candidates to refer to the agents on the opposite side of the market to
that of an agent under consideration. Each agent finds a subset of candidates
acceptable and ranks them in order of preference. Preference orderings need
not be strict, so it is possible for an agent to be indifferent between two or
more candidates. We write b �a c to denote that agent a prefers candidate b to
candidate c, and b �a c to denote that a is indifferent between b and c. We write
b �a c to denote that a either prefers b to c or is indifferent between them. The
indifference relation �a implies an equivalence relation on acceptable candidates
for a; each equivalence class under �a is referred to as a tie.

In an instance of SMTI, a matching M is a pairing of men and women such
that no one is paired with an unacceptable partner, each man is paired with at
most one woman, and each woman is paired with at most one man. We write
(a, b) ∈ M to say that a and b are matched in M . We use M(a) to denote the
agent matched to a in M . We write M(a) = ∅ if agent a is unmatched in M .
We assume that every agent prefers being matched to an acceptable candidate
to remaining unmatched. Given an instance of SMTI, a matching M is (weakly)
stable if there is no pair (a, b) /∈ M where a prefers b to his current partner in
M , i.e., b �a M(a), and vice versa. For further background and terminology on
stable matchings we refer the reader to [15].

We are concerned with the parameterised complexity of computational prob-
lems that are intractable in the classical sense. Parameterised complexity pro-
vides a multivariate framework for the analysis of hard problems: if a problem
is known to be NP-hard, so that we expect the running-time of any algorithm
to depend exponentially on some aspect of the input, we can seek to restrict
this combinatorial explosion to one or more parameters of the problem rather
than the total input size. This has the potential to provide an efficient solution
to the problem if the parameter(s) in question are much smaller than the total
input size. A parameterised problem with total input size n and parameter k
is considered to be tractable if it can be solved by a so-called FPT algorithm,
an algorithm whose running time is bounded by f(k) · nO(1), where f can be
any computable function. Such problems are said to be fixed parameter tractable,
and belong to the complexity class FPT. For further background on the theory
of parameterised complexity, we refer the reader to [7,8,10].

1.2 Related Work

The NP-hardness of Max SMTI has been shown for a variety of restricted
settings, for example: (1) even if each man’s list is strictly ordered, and each
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woman’s list is either strictly ordered or is a tie of length 2 [16], (2) even
if each mans preference list is derived from a strictly-ordered master list of
women, and each woman’s preference list is derived from a master list of men
that contains only one tie [14], and (3) even if the SMTI instance has sym-
metric preferences; that is, for any acceptable (man, woman) pair (mi, wj),
rank(mi, wj) = rank(wj ,mi) [20], where rank(a, b) is defined to be one plus
the number of candidates that a prefers to b.

There are a limited number of works addressing fixed-parameter tractability
in stable matching problems. Marx and Schlotter [17] gave the first parame-
terised complexity results on Max SMTI. They showed that the problem is in
FPT when parameterised by the total length of the ties, but is W[1]-hard when
parameterised by the number of ties in the instance, even if all the men have
strictly ordered preference lists. Very recently, three different works have studied
hard stable matching problems from the perspective of parameterised complex-
ity. Mnich and Schlotter [19] obtained results on the parameterised complexity of
finding a stable matching which matches a given set of distinguished agents and
has as few blocking pairs as possible. Gupta et al. [13] showed that several hard
stable matching problems, including Max SMTI, are W[1]-hard when parame-
terised by the treewidth of the graph obtained by adding an edge between each
pair of agents that find each other mutually acceptable. Gupta et al. [12] studied
above guarantee parameterisations of the problem of finding a stable matching
that balances between the dissatisfaction of men and women, with parameters
that capture the degree of dissatisfaction.

Settings in which agents are partitioned into different types, or derive their
preferences based on a set of attributes assigned to each candidate, have been
considered for the problems of sampling and counting stable matchings in
instances of SM or SR (Stable Roommate problem); see, e.g., [2,4,5]. Echenique
et al. [9] studied the problem of characterising matchings that are rationalis-
able as stable matchings when agents’ preferences are unobserved. They focused
on a restricted setting that translates into assigning each agent a type based
on several attributes, and assuming that agents of the same type are identical
and have identical preferences. They remarked that empirical studies on mar-
riage typically make such an assumption [6]. Bounded agent types have been
considered by Aziz and de Keijzer [1] and Shrot et al. [22] to derive polynomial-
time results for the coalition structure generation problem, an important issue in
cooperative games when the goal is to partition the participants into exhaustive
and disjoint coalitions in order to maximise the social welfare.

2 Our Basic Model: Agents of the Same Type are
Indistinguishable

In this section we begin with a formal definition of the simplest model we con-
sider, in which agents’ preferences can be derived directly from the preferences
of types over types of candidates. We then identify a necessary and sufficient
condition, in terms of the type of the least desirable partner assigned to any
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agent of each type, for a matching to be stable in this model. We use this to
show that, if there are k types, we can solve Max SMTI by solving kO(k) · log n
instances of Max Flow on directed networks with O(k) vertices and maximum
edge capacity O(n). This implies that Max SMTI, parameterised by k, belongs
to FPT.

2.1 Definition of Typed Instances

Assume that there are k types available for agents. Let [k] denote the set
{1, 2, . . . , k}. Let Ni denote the set of agents that are of type i. Thus we have
that the set of agents N =

⋃
i∈[k] Ni. Each type i has a preference ordering

over types of the candidates, which need not be complete or strict. We assume,
without loss of generality, that |Ni| > 0 for all i ∈ [k], and that each type finds
at least one other type acceptable. We write j �i � if agents of type i strictly
prefer agents of type j to agents of type �. We write j �i � to denote that agents
of type i are indifferent between agents of types j and �, and j �i � if agents of
type i prefer agents of type j to those of type � or are indifferent between the
two. We assume that given every two agents x and y of the same type:

1. x and y have identical preference lists, and
2. all other agents are indifferent between x and y.

These requirements imply that any agent either finds all agents of a given type
acceptable (and is indifferent between them) or finds none of them acceptable.
We say that an instance of a stable matching problem satisfying these require-
ments is typed, and refer to the standard problems with input of this form as
Typed Max SMTI etc. Note that Typed Max SMTI remains NP-hard when
k is considered to be part of the input: we can always create a typed instance
by assigning each agent its own type.

A typed instance I of SMTI is given as input by specifying the number
of types k and, for each type i, the set Ni of agents of type i as well as the
preference ordering �i over types of the candidates. Observe that, if we are only
given the preference list for each agent as input, it is straightforward to compute,
in polynomial time, the coarsest partition of the agents into types that satisfies
the definition of a typed instance (see [18]). Having found such a partition, the
preference lists over types can also be constructed efficiently.

Example 1. Assume we have 4 types for the agents, all men are of type 1 and
types 2, 3 and 4 correspond to women. Let the preference ordering of type 1 over
types of women be as follows, where the preference list is ordered from left to
right in decreasing order of preference, and the types in round brackets are tied:
(2 3) 4. Assume that there are 7 women and w1 and w2 are of type 2, w3 and w4

are of type 3, and w5, w6 and w7 are of type 4. Therefore, the preference lists of
all men under the typed model are as follows: (w1 w2 w3 w4) (w5 w6 w7).
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2.2 An FPT Algorithm for Typed Max SMTI

Let I be a typed instance of SMTI, and let M be a matching in I. We may assume
without loss of generality that every agent is matched, by creating sufficiently
many dummy agents of type k + 1 which are inserted at the end of each man’s
and woman’s (possibly incomplete) preference list. We define worstM (i) to be
the type of the least desirable agent with which any agent of type i is matched in
M , breaking ties arbitrarily (e.g. lexicographically). Note that worstM (i) would
be a dummy type if an agent of type i is unmatched (i.e. matched to a dummy
agent) in M . Let type(a) denote the type of a given agent a.

The key observation is that, in order to determine whether or not M is stable,
it suffices to examine the values of worstM (i) for each i ∈ [k].

Lemma 1. Let I be a typed instance of SMTI. Then a matching M in I is
stable if and only if there is no pair (i, j) ∈ [k](2) such that j �i worstM (i) and
i �j worstM (j).

We say that a matching M realises a given function worst : [k] → [k + 1] if,
for each i ∈ [k], the least desirable partner any agent of type i has in M is of type
no worse than worst(i). We say that a function worst : [k] → [k + 1] is I-stable
for an instance I of SMTI if there is no pair (i, j) ∈ [k](2) such that j �i worst(i)
and i �j worst(j). Given any I-stable function worst, we write max(worst)
for the maximum cardinality of any matching in I that realises worst. Using
Lemma 1, it is straightforward to check that, given a typed instance I of SMTI,
the cardinality of a solution to Max SMTI can be found by taking the largest
value of max(worst) over all I-stable functions worst.

Corollary 1. Let I be a typed instance of SMTI. Then the cardinality of the
largest stable matching in I is equal to max{max(worst) : worst is I-stable}.

We next show that, given an arbitrary I-stable function worst, we can com-
pute max(worst) in time polynomial in k and log n. We do this by solving
O(log n) instances of Max Flow on a directed network.

Lemma 2. Let I be a typed instance of SMTI, and fix an I-stable function
worst. We can compute max(worst) in time O(k3 log2 n).

Proof (Proof sketch.). The proof is structured as follows. Suppose that in total
there are n1 women and n2 men, so we have that n = n1 + n2. Note that
max(worst) is at most min{n1, n2}, which in turn is at most �n/2�. There-
fore, using a binary search strategy, we can determine the maximum size of a
matching realising worst by solving O(log n) instances of the decision problem
“Is max(worst) at least c?”, where c ∈ {1, . . . ,min{n1, n2}}. We show that we
can determine whether max(worst) ≥ c by solving Max Flow on a directed
network D with O(k) vertices, in which the maximum capacity of any edge is
O(n) (see Fig. 1); we can construct D from I in time O(k2 log n). Max Flow

can be solved on D in time O(k3 log n), using an algorithm due to Orlin [21],
where the log n factor is required to carry out arithmetic operations on integers
of size O(n). Therefore, we conclude that we can compute max(worst) in time
O(k3 log2 n). 
�
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Present iff j   i worst(i) 
and i   j worst(j)

Present iff worst(i) = k + 1 Present iff worst(j) = k + 1

Fig. 1. Network D, constructed from an instance of SMTI in the proof of Lemma2.
Types 1, . . . , k1 are types of women and types k1 + 1, . . . , k are types of man. Each
vertex vi corresponds to type i and both vertices dw and dm correspond to the dummy
type. In total there are n1 women and n2 men. We have max(worst) ≥ c if and only if
the maximum flow in D is equal to n1 + n2 − c.

It then follows that Typed Max SMTI is in FPT parameterised by the
number k of different types in the instance.

Corollary 2. Typed Max SMTI can be solved in time kO(k) · log2 n+O(n). If
we are only interested in computing the size of the maximum cardinality match-
ing, and not the matching itself, this can be done in time kO(k) · log2 n.

3 Agents of the Same Type Refine Their Preferences in
the Same Way

In this section, we generalise the model from Sect. 2 by allowing agents to refine
their preferences over candidates within a particular type, so long as agents of
the same type still have identical preference lists. Our key result is that refining
preferences in this way can never change the size of the largest stable match-
ing, compared with the corresponding typed instance. We also use the tools we
develop to deal with this generalisation to show that Max SMTI becomes poly-
nomially solvable if preferences over types are strict, both in this setting and
under the basic model.

3.1 Definition of Consistently-Refined-Typed Instances

Consider a generalisation of typed instances in which agents are no longer nec-
essarily indifferent between two agents of the same type, however agents of the
same type occur consecutively in preference lists. This means that for any two
agents x and y of the same type i:
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1. x and y have identical preference lists,
2. no agent of a different type appears between x and y in any preference list,

and
3. if a tie in a preference list contains agents of two or more types, then that tie

is in fact a union of types.

The third criterion allows us to define in a consistent way what it means for
agents of type i to strictly prefer type j to type � or to be indifferent between
them. We will say that agents of type i prefer type j to type � if and only if
given every pair of agents x of type j and y of type � all agents in Ni prefer x
to y.

On the other hand, if type i is indifferent between types j and � it means
that, in the preference list for each agent x of type i, all agents in Nj ∪ N�

belong to a single tie.
If an instance of a stable matching problem satisfies these slightly weaker

requirements, we say that the instance is consistently-refined-typed, and refer
to the standard problems with input of this form as Consistently-Refined-

Typed Max SMTI etc.
A consistently-refined-typed instance I of SMTI is given as an input by spec-

ifying the number of types k and, for each type i, the set Ni of agents of type i
as well as the preference ordering �i over agents. Note that for typed instances
�i specified preferences over types, whereas here the preferences are over agents.
However, we can compute preferences over types from preferences over agents
in time O(kn). Note that if we are only given the preference list for each agent
as input (i.e., no information about types is given), it is straightforward to com-
pute, in polynomial time, the coarsest partition of the agents into types that
satisfies the definition of consistently-refined-typed instance (see [18]).

Example 2. Assume we have 4 types for the agents, all men are of type 1 and
types 2, 3, and 4 correspond to women. Assume also that we have 3 men m1,
m2 and m3, and 7 women where w1 and w2 are of type 2, w3 and w4 are
of type 3, and w5, w6 and w7 are of type 4. Let all men have the preference
ordering (w1 w2 w3 w4) w6 (w5 w7), women of types 2 and 3 have the prefer-
ence ordering (m1 m2 m3), and women of type 4 have the preference ordering
m2 m1. This setting constitutes a consistently-refined-typed instance. It is easy
to compute the preferences of type 1 agents over the types of women, which
is (2 3) 4, similar to that of Example 1. Allowing men to have the preference
ordering (w1 w2) w3 w4 (w5 w6 w7), while keeping everything else unchanged,
also gives us a consistently-refined-typed instance. In this new instance agents
of type 1 have the strict preference ordering 2 3 4 over the types of women.

3.2 An FPT Algorithm for Consistently-Refined-Typed Max SMTI

To extend the result for Typed Max SMTI to Consistently-Refined-

Typed Max SMTI, we need the following result.
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Lemma 3. Let I be a consistently-refined-typed instance of SMTI and suppose
that M is a matching in I such that there is no pair (i, j) ∈ [k](2) where j �i

worstM (i) and i �j worstM (j). Then there is a stable matching M ′ such that,
for every (i, j) ∈ [k](2), both M and M ′ contain the same number of pairs that
consist of one agent of type i and another of type j. Moreover, given M , we can
compute M ′ in time O(kn).

Let I be a consistently-refined-typed instance of SMTI and let I ′ be a typed
instance of SMTI that is obtained from I by ignoring the refined preferences
within each type (i.e. every agent is indifferent between the candidates of the
same type). It follows from the definition of stability that every matching that is
stable in I is also stable in I ′. Lemma3 implies that for any stable matching M
in I ′, there exists a stable matching M ′ in I of the same cardinality as M . Thus,
in order to find a maximum cardinality matching in a consistently-refined-typed
instance I of SMTI, it suffices to (1) solve the typed problem (i.e. ignore the
refined preferences within each type) and then (2) use the algorithm provided in
the proof of Lemma 3 (see [18]) to convert the solution to a matching of the same
cardinality that is stable in the instance I. In fact, in (1) it is enough to only
compute the maximum flow f (and not the matching M); the flow f , that can be
computed in time kO(k) · log2 n, provides sufficient information for the algorithm
described in the proof of Lemma 3 to construct M ′ in time O(kn). Deriving a
typed instance from a consistently-refined-typed instance can be done easily in
time O(kn). It thus follows that Consistently-Refined-Typed Max SMTI

is in FPT parameterised by the number k of different types in the instance.

Theorem 1. Consistently-Refined-Typed Max SMTI can be solved in
time kO(k) · log2 n + O(kn).

3.3 Strict Preferences over Types

Elsewhere in the paper, we assume that agents can be indifferent between agents
of two or more types. It turns out that Max SMTI becomes easier if we restrict
the set of possible instances by assuming that agents have strict preferences over
types. We prove this by breaking ties arbitrarily in a consistent way for each
type, to obtain an instance I ′ of the polynomially-solvable problem SMI, and
then using Lemma 3 to argue that the cardinality of the largest stable matching
in I ′ is the same as that in our original instance. This argument is based on a
private communication with David Manlove.

Theorem 2. When preferences over types are strict, Typed Max SMTI

and Consistently-Refined-Typed Max SMTI are polynomial-time solvable.
Furthermore, all stable matchings are of the same size.

4 Exceptions in Preference Lists

We have argued for the existence of typed instances, where k  n, based on the
premise that agents’ preferences are formed based on a small collection of candi-
dates’ attributes. In practice, it seems likely that an agent might have access to
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additional information about some small subset of the candidates, either through
personal acquaintance or some third-party connection; we say that an agent con-
siders such candidates to be exceptional. This additional information may alter
the agent’s opinion of candidates relative to that derived from the attributes
alone, and so affect where these candidates are placed in his/her preference
ordering. In this section we consider a generalisation of typed instances in which
each agent may find some small collection of other agents to be exceptional and
ranks them without regard to their types. Note that if only a small number of
the agents in our instance consider one or more candidates to be exceptional, we
can capture this information in a typed instance: each agent with exceptions in
their preference list can be assigned their own type.

We say that an instance I of a stable matching problem is a (c,Any)-
exception-typed instance, for a given constant c, if I is a typed instance in
which each agent finds at most c number of the candidates exceptional and may
rank them anywhere in his/her preference list. Two special cases are (c,Top)-
exception-typed and (c,Bottom)-exception-typed instances where the exceptions
are promoted to the top, or demoted to the bottom, of the preference lists, respec-
tively. We refer to the standard problems with input of this form as (c,Any)-

Exception Typed Max SMTI etc.
In this section we show that (1,Top)-Exception Typed Max SMTI

belongs to FPT, but that (2,Any)-Exception Typed Max SMTI remains
NP-hard even when there are only a constant number of types. The computa-
tional complexity of (1,Any)-Exception Typed Max SMTI and (2,Top)-

Exception Typed Max SMTI remain open.
We begin with the case of (1,Top)-Exception Typed Max SMTI. For

each agent a let ex(a) denote the exceptional candidate from a’s point of view;
ex(a) = ∅ if a does not find any candidate exceptional. Formally, we say that I
is a (1,Top)-exception-typed instance of SMTI if, given every two agents x and
y of the same type:

1. x and y have identical preference lists when restricted to N \ {ex(x), ex(y)},
and

2. all other agents who do not find either x or y exceptional are indifferent
between x and y.

Without loss of generality we can assume that there is no pair of agents who
each consider the other to be exceptional in a (1,Top)-exception-typed instance
of SMTI. If there are such pairs, they must be assigned to each other in any
stable matching; so we can remove all such pairs to reduce to an instance that
satisfies this assumption. A (1,Top)-exception-typed instance of SMTI is given
as input by, in addition to the specifications needed for a typed instance (see
Sect. 2.1), providing for each agent his or her exceptional candidate (if s/he has
one).

Let I be a (1,Top)-exception-typed instance of SMTI, and let M be a match-
ing in I. As in Sect. 2.2, we may assume without loss of generality that every
agent is matched, by creating sufficiently many dummy agents of type k + 1
which are inserted at the end of each man’s and woman’s (possibly incomplete)
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preference list. In order to obtain an analogue of the stability criterion given in
Lemma 1 in this setting, we need some more notation.

Recall that we write j �i � if agents of type i are indifferent between types j
and �. It is straightforward to see that �i defines an equivalence relation on [k]
for each i. Given j ∈ [k], we write classi(j) for the equivalence class under �i

which contains j. For each equivalence class J under �i, we say that the agent
x of type i has subtype i[J ] if:

1. some agent y, with type(y) ∈ J , considers x exceptional, and
2. there is no agent z, such that type(z) �i j for j ∈ J , who considers x

exceptional.

Thus subtype(x) = i[J ] if the most desirable agents who consider x exceptional
have types from J . If an agent x of type i is not considered exceptional by
any agent, we say that x has subtype i[{k + 1}]. We also introduce a second
dummy type 0, which is inserted at the head of each type’s preference list and
corresponds to exceptional candidates. We write Ni[J] for the set of agents of
subtype i[J ]. Observe that the sets Ni[J] can be computed in time O(n): for each
agent x, subtype(x) can be computed in time O(n) with suitable data structures.

We will need a variation on the function worstM , which we call worstexM .
For any non-empty set Ni[J], worstexM (i[J ]) is the type of the least desirable
partner received by an agent of subtype i[J ] who is not matched with an agent
they find exceptional; if the least desirable partners assigned to agents of subtype
i[J ] belong to two or more different types between which agents of type i are
indifferent, we define worstexM (i[J ]) to be the lexicographically first such type.
If every agent of subtype i[J ] is matched with a partner they find exceptional,
we set worstexM (i[J ]) = 0. Therefore worstM (i), as defined in Sect. 2.2, is the
least desirable type out of {worstexM (i[J ]) : Ni[J] �= ∅}.

We say that a matching M in an instance I of (1,Top)-exception-typed
SMTI realises the function worstex, mapping nonempty subtypes i[J ] to val-
ues in {0, 1, . . . , k + 1}, if worstexM (i[J ]) �i worstex(i[J ]) whenever Ni[J] �= ∅.
We can now characterise stability in a (1,Top)-exception-typed instance.

Lemma 4. Let I be a (1,Top)-exception-typed instance of SMTI. Then a match-
ing M in I is stable if and only if there is no pair (i, j) ∈ [k](2) such that

1. j �i worstM (i) and i �j worstM (j), or
2. i �j worstexM (j[classj(i)]).

We will say that a function worstex is I-exception-stable for a (1,Top)-
exception-typed instance I of SMTI if there is no pair (i, j) ∈ [k](2) such that
either j �i worst(i) and i �j worst(j) or i �j worstex(j[classj(i)]). Given any
I-exception-stable function worstex, we write max(worstex) for the maximum
cardinality of any matching in I that realises worstex. We have an analogous
result to Corollary 1 in this setting.

Lemma 5. Let I be a (1,Top)-exception-typed instance of SMTI. Then the car-
dinality of the largest stable matching in I is equal to

max{max(worstex) : worstex is I-exception-stable}.
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By solving a collection of instances of Maximum Matching in suitable
undirected graphs, we are able to compute max(worstex) (and generate a stable
matching of this size) in time O(n5/2 log n), for any I-exception-stable function
worstex. Our FPT result now follows.

Theorem 3. (1,Top)-Exception Typed Max SMTI can be solved in time
O

(
kk2

(k3 + n5/2 log n)
)
.

In contrast with this positive result, we show that only a small relaxation
of the requirements on exceptions results in a problem that is NP-hard, even if
the number of types is bounded by a constant. We show that, if we allow each
agent to declare two candidates exceptional, and these two candidates can appear
anywhere in the agent’s preference list, then Max SMTI remains NP-hard under
sever restrictions. In fact, we give a reduction from the NP-complete problem
Clique to the special case Com SMTI, which involves deciding whether a
given instance of SMTI admits a complete stable matching (i.e., a matching
that matches all agents).

Theorem 4. (2,Any)-Exception Typed COM SMTI is NP-complete, even
if only men have exceptions in their preference lists, preferences over types are
strict, and there are three types each of men and women.

5 Discussion and Future Work

We believe that the same techniques used in this paper can be extended to
prove analogous results in all three settings for the Hospitals-Residents problem
(a many-one generalisation of SMTI) and the Stable Roommates problem (a
non-bipartite generalisation of SMTI). For typed and consistently-refined-typed
instances, a standard cloning argument gives the corresponding results for the
Hospitals-Residents problem immediately.

We note that our FPT results can also be derived using Integer Linear Pro-
gramming (ILP) techniques: for each function worst (or worstex), the correspond-
ing optimisation problem can be encoded as an ILP instance. For the problems
studied here, the ILP approach results in worse running times than the algo-
rithms we have described, but this alternative approach might be helpful in
tackling other stable matching problems involving types.

It would be interesting to investigate what further generalisations of
our model yield FPT algorithms for NP-hard stable matching problems. In
particular, the complexity of (1,Bottom)-Exception-Typed Max SMTI,
(1,Any)-Exception-Typed Max SMTI, and (2,Top)-Exception-Typed

Max SMTI remain open. Moreover, we could consider further restrictions with
two or more exceptions, for example if an exceptional candidate can only be
moved to the top or bottom of its type. Another intriguing question would be
to understand how the complexity of MAX SMTI and other stable matching
problems changes when agents on only one side of the market are associated
with types.
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Abstract. In the Byzantine agreement problem, n nodes with possibly
different input values aim to reach agreement on a common value in the
presence of t < n/3 Byzantine nodes which represent arbitrary failures in
the system. This paper introduces a generalization of Byzantine agree-
ment, where the input values of the nodes are preference rankings of
three or more candidates. We show that consensus on preferences, which
is an important question in social choice theory, complements already
known results from Byzantine agreement. In addition, preferential vot-
ing raises new questions about how to approximate consensus vectors.
We propose a deterministic algorithm to solve Byzantine agreement on
rankings under a generalized validity condition, which we call Pareto-
Validity. These results are then extended by considering a special voting
rule which chooses the Kemeny median as the consensus vector. For this
rule, we derive a lower bound on the approximation ratio of the Kemeny
median that can be guaranteed by any deterministic algorithm. We then
provide an algorithm matching this lower bound. To our knowledge, this
is the first non-trivial generalization of multi-valued Byzantine agree-
ment to multiple dimensions which can tolerate a constant fraction of
Byzantine nodes.

Keywords: Social choice · Byzantine agreement · Pareto-Validity
Distributed voting · Multivalued

1 Introduction

In distributed machine learning, different data is often collected and owned by
different parties, each of which will locally train its own machine learning model.
If a new data item needs to be judged, the parties could collaborate in order to
make a collective decision. As an example, a hospital may be authorized to use
its own collected patient data to train an image recognition model, but not to
share that data with other hospitals because of patient privacy limitations. For
some critical cases the hospitals would still want to collaborate and decide on
the correct diagnosis together.

In order to obtain a robust collective decision, we need to take the fol-
lowing two aspects into account. On the one hand, it is possible that some
of the involved parties experience hardware or software difficulties, or simply
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play dirty. Our decision will be robust if we can withstand even Byzantine par-
ties, who are controlled by a single omnipotent adversary trying to maliciously
disturb the process. On the other hand, non-Byzantine parties should use all
available information to come up with the best possible decision. In standard
multi-valued Byzantine agreement algorithms, each party will provide only one
input, however, machine learning algorithms usually provide information about
the second-best and third-best guess. For example, when doing image recognition
in medicine the result can be a ranking of possible diagnoses: glioblastoma �
metastasis � . . . � inflammatory. Such rankings convey much more information
than just the top ranked alternative (glioblastoma). While the different honest
parties might completely disagree on the top alternative, the second alterna-
tive might serve as a tie breaker, and we can therefore hope to receive more
meaningful results from the voting process by considering rankings.

In this paper we use social choice theory in order to investigate the most
fair choice among a set of rankings to solve Byzantine agreement on rankings.
In particular, we want to study how robust preferential voting is in a Byzan-
tine environment. In Sect. 2, we first focus on some basic properties for voting
rules, and see that not all of them can be satisfied if the parties should reach
an agreement. This is because Byzantine voters are manipulators that modify
the result to make it more favorable to themselves. In the main part of the
paper (Sect. 5) we then study how well the voting result intended by the cor-
rect (non-Byzantine) voters can be approximated. For this purpose we consider
the Kemeny rule which picks the most central ranking as the voting result. We
will provide an algorithm that approximates the solution of the Kemeny rule
in the presence of Byzantine voters and prove that this algorithm computes
the best possible approximation. We believe our paper will contribute a deeper
understanding of both fault-tolerant distributed systems as well as social choice
theory.

2 Background and Motivation

In search of a fair rule to elect candidates, philosophers and mathematicians
started developing various voting mechanisms and rules already in the beginning
of the 18th century. In the middle of the 20th century, Kenneth Arrow [2,3] was
one of the first to formalize existing voting rules and analyze possibility and
impossibility results in an axiomatic fashion, thereby introducing the field of
Computational Social Choice. In this section we will show how well Byzantine
agreement connects to voting theory.

We start by considering the special case of n voters voting on only two
candidates c1 and c2. In this setting, each voter (node) ranks the two candidates
such that its preferred candidate (input value) is ranked first. A vote for a
candidate c1 means that the voter strictly prefers c1 to c2, which we here denote
c1 � c2. A central authority then applies a social choice function (SCF) to
a given preference profile in order to determine the winner (decision value),
or set of winners in case of a tie. An SCF should typically strive to satisfy
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anonymity, neutrality and positive responsiveness. May’s theorem [27] shows
that the majority rule is the only voting rule on two candidates that satisfies all
three properties.

Interestingly, most known algorithms for binary Byzantine agreement indi-
rectly exploit the properties of May’s theorem: Some of them make use of leaders
who suggest their decision value to all nodes, e.g., the King and the Queen algo-
rithms [8,9]. The leader in these algorithms temporarily plays what is known
as a dictator in voting theory. Another type of algorithm, e.g., the shared coin
algorithm in [39], is biased towards one of the outcomes and thus violates neu-
trality. In general we can say that most of the proposed algorithms try to use the
majority value as the decision value if a majority exists, or an arbitrary input
value otherwise, see for example [7,11]. Such settings may satisfy anonymity
and neutrality, but in cases where the correct nodes are undecided, i.e., there
is a tie between the two input values, Byzantine nodes have a large influence
on the majority value. Thus, if a correct node decides to swap two candidates
in its ranking in order to make one of the candidates win, a Byzantine node
can perform an opposite swap in its own ranking and return the profile to the
previous state. This shows that positive responsiveness cannot be satisfied for
these algorithms in the presence of Byzantine nodes.

May’s theorem does however not apply to the general case with more than
two candidates. Moreover, a lot of information is lost when a single winner is
sought. When it comes to preferential voting, social choice theory often wants
not only the input to be rankings, but also the output. This is satisfied by social
welfare functions (SWF) that map a preference profile to a set of consensus
rankings. For an SWF, g, the following three properties are usually considered:

– g is dictatorial if there is one distinguished voter whose input ranking is
chosen as the single consensus ranking

– g is independent of irrelevant alternatives (IIA) if the consensus ranking of
two candidates ci and cj only depends on the relative preference of these
candidates in each voter’s ranking, and not on the ranking of some third
candidate ck

– g is weakly Paretian if it satisfies the weak Pareto condition [31]: for two
candidates ci and cj which are ranked ci � cj by all voters, consensus ranking
has to rank ci � cj as well.

Unfortunately, Arrow’s impossibility theorem [2] shows that every SWF on
three or more alternatives that is weakly Paretian and IIA must be dictatorial.
From the viewpoint of Byzantine agreement, an SWF should not be dictatorial
since one does not want a dictator to be a Byzantine node. Consequently, any
reasonable Byzantine agreement protocol must either violate IIA or weak Pareto.
We say that IIA or weak Pareto are satisfied in the Byzantine setting if they
are satisfied with respect to the input rankings of the correct nodes only. Under
this assumption, the IIA condition implies that the consensus ranking should
remain the same if the input of every correct node does not change, no matter
what the Byzantine nodes do. However, a Byzantine node can pretend to be a
correct node but change its ranking in two executions in which the correct nodes
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have the same inputs. This change may lead to a different consensus ranking
and thus violate IIA. For the weak Pareto condition consider the case with two
candidates: if every non-Byzantine voter ranks c1 � c2, the consensus ranking
should also rank c1 � c2. This corresponds to a well-known validity condition
in Byzantine agreement – the All-Same-Validity : If all correct nodes have the
same input value, all correct nodes have to decide on this value. We use the weak
Pareto condition to impose a validity rule on Byzantine agreement on rankings:

ParetoValidity for any pair of candidates ci and cj : if all correct nodes rank
ci � cj , then the consensus ranking should rank ci � cj as well.

Given m candidates, Pareto-Validity can be viewed as All-Same-Validity applied
on each of the

(
m
2

)
pairs of candidates in a ranking. Note that Byzantine agree-

ment on a ranking is at least as hard as binary Byzantine agreement: Consider a
case where the nodes agree on the ranking of the candidates c3, . . . cm which they
rank last, but not on the two first candidates c1 and c2. Pareto-Validity is then
satisfied for every binary relation which contains at least one of the candidates
c3, . . . cm. Agreement in this case is then reduced to binary Byzantine agreement
on the two candidates c1 and c2, under the All-Same-Validity condition.

There is no straightforward way to apply a binary Byzantine agreement pro-
tocol to solve Byzantine agreement on rankings. This is because, in contrast to
binary relations on two candidates, preference profiles can contain Condorcet
cycles, e.g. tree contradicting binary relations ci � cj , cj � ck and ck � ci which
are each preferred by a majority of nodes. Simply agreeing on each pair of can-
didates can thus lead to a circular decision which does not form a ranking. In
order to get rid of such cycles one could think of applying the quicksort algo-
rithm on the candidates sorted with respect to the majority. This procedure will
however violate Pareto-Validity: Consider a candidate ci that Pareto dominates
candidate cj . Assume that the quicksort algorithm compares both candidates to
some third candidate ck first. Then cj might win against ck and ci might lose,
thus swapping ci and cj in the consensus ranking. This consideration makes the
problem of finding a consensus ranking in the presence of Byzantine nodes rather
an instance of multi-valued agreement, as we discuss in Sect. 4, which makes the
problem both interesting and challenging.

3 Related Work

Byzantine agreement was first proposed as the Byzantine Generals problem by
Pease, Shostak and Lamport [26,32]. In these papers the authors showed that
three nodes cannot establish agreement in the presence of one Byzantine node
even if the communication system is synchronous. Given n nodes, it was shown
for the synchronous model that at least t + 1 rounds are required to establish
agreement [20], where t < n/3 is the number of Byzantine nodes in the system;
the corresponding upper bound was provided in [8,9]. For the asynchronous
model, the FLP impossibility result [21] states that there is no deterministic
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agreement protocol which can tolerate even one Byzantine node. The first ran-
domized algorithm for solving Byzantine agreement proposed in [7] had expected
exponential running time for a constant fraction of Byzantine nodes. Recently,
the authors of [25] claimed that it is possible to establish agreement within
expected polynomial running time using spectral methods.

Byzantine agreement with more than two input values has mostly been con-
sidered in approximate agreement [17,19], where the input values of the nodes
converge towards some value over rounds. More recent results seek to estab-
lish agreement on a value that makes sense for applications. In [16], the values
converge towards a value at most

√
n log n positions away from the median. In

[28,35] an exact algorithm to establish agreement on a value that is at most
t/2 positions away from the median or t positions away from a minimum or a
maximum was proposed. In [29,30,38], Byzantine agreement was further gener-
alized to several dimensions. There, the nodes converge to a vector inside the
convex hull of all correct input vectors. In [13,37] the authors consider voting
in Byzantine systems, they do however only focus on single winners that are
determined by applying the plurality rule to the top alternatives of the rank-
ings, a setting which corresponds to standard Byzantine agreement. All previous
approaches for multiple dimensions struggle to derive an algorithm which either
can tolerate a constant fraction of Byzantine nodes independent on the number
of dimensions, or find a solution that is not trivial.

In social choice theory, Byzantine behavior can be interpreted as manipula-
tion of a ballot in an election, in which the manipulating party has full knowledge
about all votes. Bartholdi et al. [5] defined manipulation as a preference profile
where one single voter can change its ranking such that this voter’s most pre-
ferred candidate wins the election. Groups of voters have also been considered
in this context, but mostly from the perspective of how hard it is for a group of
nodes to manipulate the voting result given a certain voting rule [10,14]. Other
types of Byzantine behavior have been considered with respect to robustness of
proposed voting rules. In [6], the authors investigate robustness of Borda’s mean
and median in the presence of outlier ballots. In [33], robustness of scoring rules
is considered under arbitrary noise which is described in terms of pairwise swaps
of candidates in the ranking of one voter.

In this paper we will consider the Kemeny rule which was first proposed
in [22,23]. The corresponding Kemeny median satisfies additional properties to
those presented in Sect. 2, but it was shown to be NP-hard to compute for an
increasing number of candidates and already for four voters in [4,18]. At least
three different 2-approximation algorithms for the Kemeny median have been
proposed in [1] and [15]. In [1], the approximation ratio was improved to 4/3
using randomization, and later derandomized in [40]. A good overview over the
Kemeny rule and an extended introduction into social choice theory can be found
in [12].
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4 A Deterministic Algorithm for Pareto-Validity

This section focuses on Byzantine agreement protocols for rankings that sat-
isfy Pareto-Validity. By using a similar idea to single transferable voting [36]
and a multi-valued Byzantine agreement algorithm, a ranking satisfying Pareto-
Validity can be obtained in (m−1) ·(t+1) rounds: In the first t+1 rounds, we let
the voters apply the King algorithm [9] in order to agree on the top candidate.
After this, every node removes this candidate from its ranking. In the next step,
they will agree on the top candidate from the reduced rankings, and so on. While
this procedure is simple, the number of rounds depends not only on the number
of nodes, but also on the number of candidates.

In the following we present a deterministic algorithm which solves this prob-
lem in only t + 1 phases using the same number of messages. We do this by
modifying the King algorithm to broadcast rankings instead of single candidates.
For convenience, we assume that a broadcast operation also includes sending a
message to oneself. In the proposed algorithm, we select t + 1 different nodes
and assign each of them to one of the t+1 phases of the algorithm. Such a node
is called the dictator of the corresponding phase. This dictator then suggests its
own, possibly adjusted, ranking to all nodes, which will always be accepted if the
dictator is a correct node. This way, dictators decide on the ranking of all pairs
of candidates which do not satisfy the Pareto-Validity. Algorithm1 presents this
procedure in pseudocode.

Since we are dealing with rankings, it is not trivial to see that the nodes
always will be able to agree on a proper ranking at the end of the algorithm.
The following lemmas state that the nodes can adjust their rankings in Step 9 of
Algorithm 1 in order to guarantee Pareto-Validity and that the outcome of the
algorithm thus will be a proper ranking. It is easy to see that the algorithm is
correct for t < n/4 Byzantine nodes, since the correct nodes will not be able to
propose binary relations which form a Condorcet cycle in this case. In order to
show that the algorithm can tolerate t < n/3 Byzantine nodes a well, we need
to exploit the fact that no Byzantine node can propose relations that form a
Condorcet cycle at any point of the algorithm.

Lemma 1. There is no Condorcet cycle that can be proposed by the correct nodes
if t < n/3.

Note that by the properties of the King algorithm, no two opposite binary
relations can be proposed in Step 4 simultaneously. Lemma1 additionally shows
that a Condorcet cycle cannot be proposed in Step 4 and that all proposed pairs
can form a ranking. It remains to be proven that the nodes will always be able
to adjust their rankings to incorporate the proposed pairs.

Lemma 2. In Step 9 a correct node will always be able to incorporate the pro-
posed pairs into its own ranking.

Proof. This is constructed based on the following strategy: Divide the candidates
into two sets. The first set contains all candidates which appear in at least one
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Algorithm 1. Byzantine agreement protocol on rankings (for t < n/3)
Every node v executes the following algorithm

1: for phase 1 to t + 1 do
Communication Round:

2: Broadcast own input ranking rv
3: for all pairs of candidates ci and cj do
4: if ci is ranked above cj in at least n − t rankings then
5: Broadcast “propose ci � cj”
6: end if
7: end for
8: if some “propose ck � cl” received at least t + 1 times then
9: Adjust own ranking rv according to Lemma 2

10: end if
11: if some “propose ck � cl” received at least n − t times then
12: Fix the pair ck � cl
13: end if

Dictator Round:
14: Let node w be the predefined dictator of the current phase
15: The dictator broadcasts its ranking rdictator := rw

Decision Round:
16: if rdictator agrees with rv in all fixed pairs ci � cj from Step 12 then
17: rv := rdictator
18: end if
19: end for
20: Return rv

of the pairs proposed by the t + 1 nodes in Step 9. This set of nodes will be
ranked first. The second set will contain all candidates for which the node has
not received any propose message. These candidates will be ranked second and
will be dominated by all candidates from the first set. Next, we can rank all
candidates in the first set according to the proposed relations, possibly leaving
some pairs of the candidates not ranked. In the last step, all candidates which
have not been ranked in each of the sets can be ranked by choosing binary
relations from the local ranking of the node. This strategy outputs a ranking of
candidates in which all proposed binary relations are satisfied. ��

The next lemma summarizes the correctness results of Algorithm 1 and states
that the consensus ranking will be valid.

Lemma 3. At the end of Algorithm 1 all nodes will have agreed on the same
ranking which additionally satisfies Pareto-Validity.

5 Kemeny Median with Byzantine Nodes

Weakly Paretian voting rules are often not sufficient to pick a fair ranking from
a set of individual preference rankings. In search of the best possible consensus
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ranking we have to add restrictions on the voting rules without violating the
known impossibility results of Arrow [2]. This leads us to majoritarian SWFs, one
of which is the Kemeny rule. In the following we will introduce this rule and use
it to derive a better consensus ranking in the presence of Byzantine nodes. Since
Byzantine nodes have influence on the final ranking, the corresponding solutions
can be qualified with respect to their approximation ratio which we define in
Sect. 5.1. In Sect. 5.2, we will derive lower bounds on the approximation ratio of
the Kemeny median in the presence of Byzantine nodes and further provide a
matching upper bound in Sect. 5.3.

Definition 1 (Kendall’s τ distance [24]). The Kendall’s τ distance measures
the distance between two rankings r and p on candidates c1, . . . , cm by counting
all pairs of candidates on which they disagree:

τ(r, p) � |{(ci, cj) | ci �r cj and cj �p ci}|.

This metric τ on ballots can be extended to a distance function between a ranking
r and a profile P:

τ(r,P) �
∑

p∈P
τ(r, p).

Definition 2 (Kemeny median). For a given profile P, the Kemeny median
is the ranking r which minimizes τ(r,P).

The Kemeny median satisfies many nice properties and to some extent guaran-
tees that the chosen ranking is “fair”. The most prominent quality is probably
monotonicity : if voters increase a candidate’s preference level, the ranking result
either does not change or the promoted choice increases in overall popularity.
This quality makes the median solution more robust to Byzantine behavior. The
Kemeny rule is also a Condorcet method, it only depends on the number of
voters who prefer one alternative over the other and is reinforcing.

Kendall’s τ distance, which is used in the Kemeny rule, essentially captures
the nature of multidimensionality in our consensus problem. Although it is not
straightforward to properly define dimensions for metric spaces, there exist some
widely used definitions such as the equilateral dimension. The equilateral dimen-
sion is described by the maximum number of points which lie at equal distance
from each other. Using the equilateral dimension makes a lot of sense in many
cases, it is for example not difficult to see that the equilateral dimension of a
d-dimensional Euclidean space is d + 1. Here we also use the equilateral dimen-
sion in order to argue that by using the Kemeny rule we are actually solving
a multi-dimensional consensus problem. For any m, we can construct rankings
ri, i = 1, . . . , �m/2� at equal distance as follows: ri ranks every candidate j as
the j-th element in the ranking and only swaps the candidates 2i − 1 and 2i.
Any pair of rankings in this construction has the same distance 2 to each other
and the equilateral dimension of Kendall’s τ metric space is therefore at least
�m/2�.
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5.1 Byzantine Setting

The Kemeny median cannot be computed exactly in the presence of Byzantine
nodes since they might suggest rankings which have a large distance to the
Kemeny median of the correct nodes, thus moving the median ranking away
from the actual median. A notion for approximate median rankings is therefore
introduced as follows:

Definition 3 (α-approximation of Kemeny median). Let κ be a Kemeny
median of a preference profile P. An α-approximation of κ is a preference ranking
κα satisfying

τ(κα,P) ≤ α · τ(κ,P)

As an example consider binary agreement (m = 2): Here τ counts the number
of correct nodes who disagree with the consensus value. Any binary Byzantine
agreement algorithm that satisfies All-Same-Validity will also satisfy α < n−t−1.

Unlike binary agreement, it is not straightforward to see what a Byzantine
node would choose as its ranking when the Kemeny rule determines the consensus
ranking. Since the input vectors of nodes are rankings, each voter has to propose
a strict order between candidates and the corresponding preference relation is
transitive. A possible strategy for the Byzantine nodes could then be to choose
exactly the opposite ranking of the Kemeny median of all correct nodes. While
this strategy can be shown to be optimal, such a solution is not unique for
most preference profiles. To see this, assume that all correct nodes agree on the
preference ci � cj such that this pair will always belong to the Kemeny median
of the correct rankings. Then, the Byzantine nodes can pick either ci � cj or
cj � ci for their ranking, since this strategy does not have any influence on the
Kemeny median of all rankings. It is therefore difficult for the correct nodes to
detect which of the rankings might have been Byzantine.

5.2 Lower Bounds on the Approximation Ratio

In this section we discuss preference profiles that are vulnerable to Byzantine
nodes. The first case is based on reducing the rankings to binary agreement
and gives the highest approximation ratio for t < n/3. Binary agreement does
however assume that there are two groups of voters who completely disagree in
their preferences. This is somewhat unlikely in practical situations when m is
sufficiently large. In the second case we therefore exclude such binary instances
and provide a lower bound based on Condorcet cycles within a preference profile
which converges to the same value for large m. The approximation ratio usually
depends on the ratio n/t, which will be denoted k for the sake of simplicity.

For our analysis, we represent the preference profile P as a weighted tourna-
ment graph, i.e., a graph where the nodes represent the candidates and weighted
edges represent how many voters prefer one candidate to the other. The sum of
the forward and the backward edges should be equal to the total number of vot-
ers in the corresponding preference profile. The ranking of a node is a directed
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Hamiltonian path following the order of the ranking, and all other edges are
derived from the transitivity. For any two candidates we denote the edge between
these candidates a majority edge if its backward edge has a smaller weight. The
backward edge we then call a minority edge. A Kemeny median of a weighted
tournament graph is the ranking that minimizes the sum of the weights of all
backward edges of the graph. Note that rankings restrict the power of Byzantine
nodes in the sense that Byzantine nodes only can send transitive tournament
graphs where every edge has weight 1.

We first consider all possible preference profiles, in which the worst case is
the binary case. This case corresponds to a class of tournament graphs where
the Byzantine nodes can redirect all edges by adding t rankings to the preference
profiles of the correct nodes. Theorem 1 gives a lower bound for the binary case.

Theorem 1. There exists a tournament graph corresponding to a preference
profile for which the Byzantine nodes may change the edge weights such that
no deterministic algorithm can output a ranking which is better than a k

k−2 -
approximation of the Kemeny median of all correct nodes, where k = n/t. For t
close to n/3, this gives a 3-approximation.

Proof. This tournament graph is equivalent to binary agreement. Consider there-
fore one pair of candidates: t Byzantine nodes are only able to change the
median, i.e., the majority edge, between these two candidates if they can swap
the majority and minority edge by supporting the minority edge with their rank-
ing. Assume the worst case, where the forward and the backward edge both have
the same weight n/2 after the Byzantine nodes have added their preferences. In
this worst case the tournament graph of correct nodes had the weight n/2 for the
majority edge. Since the correct nodes will not be able to determine the actual
majority edge, they might agree on a minority edge with weight n/2− t instead.
The corresponding approximation ratio is then n/2

n/2−t = k
k−2 . This result can be

easily generalized to m candidates by using opposite rankings.

In the following, we present another lower bound using Condorcet cycles
which can result in ambiguous views as well. We start with one directed cycle
formed by three nodes on the tournament graph and assume that every majority
edge has a weight of more than (n+t)/2, thus discarding the possibility to reduce
any pair of forward and backward edges in the tournament graph to binary
agreement. The main difficulty in finding a good example comes from the fact
that not every tournament graph has an underlying preference profile.

Theorem 2. There exists a preference profile containing directed majority
cycles in the corresponding tournament graph, for which the Byzantine nodes
can add t rankings such that no deterministic algorithm can output a ranking
with a better approximation ratio to the actual median than k/(k − 2), for m
large.

Proof. Considering a tournament graph formed by one directed cycle of can-
didates c1, c2, c3, i.e., a directed cycle formed by majority edges. Assume all
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Fig. 1. Two indistinguishable views on m candidates for directed cycles. We have two
views which show the profiles of correct nodes only. The left tournament graph results
from a profile where n−t

2
− 1 nodes choose c1 � c2 � cm � . . . � c3,

n−3t
2

− 1 nodes
choose cm � . . . � c3 � c1 � c2 and t + 2 nodes choose c2 � cm � . . . � c3 � c1. The
right tournament graph results from n−3t

2
− 1 nodes choosing c1 � c2 � cm � . . . � c3,

n−t
2

− 1 nodes choosing cm � . . . � c3 � c1 � c2 and t + 2 nodes choosing c2 � cm �
. . . � c3 � c1. If the Byzantine nodes add t profiles cm � . . . � c3 � c2 � c1 to the left
view, and t profiles c2 � c1 � cm � . . . � c3 to the right view, the resulting profiles
become indistinguishable to the correct nodes.

correct nodes receive a view where n−2t−2 nodes prefer c1 to c2, where (c1, c2)
is a majority edge. Then (n + t)/2 + 1 nodes prefer c2 to c3 and (n + t)/2 + 1
nodes prefer c3 to c1. For n > 3t + 4, the edge (c1, c2) is in the median ranking
of all nodes. Since the edges (c2, c3) and (c3, c1) cannot both be in the median
ranking, the nodes have to decide for one of the rankings. In the worst case, one
of these two edges was supported by all t Byzantine nodes while the other edge
was not supported by any Byzantine node. This leads to two views which are
not distinguishable for the correct nodes, as shown in Fig. 1. The approximation
ratio for these views is

n + t + 2
n − t + 2

≈ k + 1
k − 1

<
5
3

An extension to m candidates gives an approximation ratio of

m · n + 2n + t + 2
m · (n − 2t) + 2n − 3t + 2

≈ k

k − 2

for large m. ��
The received approximation ratio converges to the same approximation ratio
as in the binary case for large m, even though we have excluded the binary
case from the tournaments. This lower bound underlines the fact that Byzantine
agreement on rankings is more complex than binary Byzantine agreement.
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5.3 Algorithm for Kemeny Median Approximation

In this section we present a synchronous algorithm for computing a consensus
median which matches the lower bound on the approximation ratio presented
in the previous section. A simple idea is to use interactive consistency [11,34]:
For t + 1 rounds, the nodes exchange all information they have received this far
and after the (t + 1)-st round they compute the Kemeny median from a set of
rankings which they have received often enough. This algorithm guarantees that
the set of rankings will be the same for each node and therefore that all nodes
will decide on the same ranking. The main drawback of interactive consistency is
that it has a large message complexity. The message complexity of this strategy
is in Θ(mnt) which is exponential for t ∈ Θ(n). Also other approaches, such as
agreeing on each ranking upfront require the nodes to reliably broadcast their
rankings at least once, which results in a message complexity of at least O(n3)
(each node has to forward every received ranking to all other nodes).

Instead of exchanging large amounts of information, we present an approach
where we can directly exploit the fact that the Byzantine nodes cannot change
a Kemeny median of the preference profile of the correct nodes by more than a
transitive tournament graph with edge weights t. This strategy is presented in
Algorithm 2.

Algorithm 2. Byzantine agreement for the Kemeny median (for t < n/3)
Every node v executes the following algorithm

1: broadcast own ranking rv
2: compute the Kemeny median of the received preference profile, call it mv

3: apply Algorithm 1 with mv as an input value

Algorithm 2 has the same order of round and message complexity as Algo-
rithm1 as stated in the next theorem.

Theorem 3. Algorithm2 terminates within t + 3 phases exchanging
O(tn2m log m) messages. The computed consensus ranking satisfies the lower
bounds from Sect. 5.2 and Pareto-Validity.

6 Discussion and Future Work

In this paper we introduced a new Byzantine agreement problem which extends
binary Byzantine agreement to rankings. We showed that rules for choosing a
consensus ranking in voting theory fit well with requirements from Byzantine
agreement. We further considered a special voting rule, the Kemeny median, for
which we provided an optimal Byzantine agreement protocol that can tolerate
up to t < n/3 Byzantine nodes. We do not claim to have chosen the best voting
rule at this point, since such a rule simply does not exist due to impossibility
results in voting theory. Instead, we think of our results as an inspiration to
consider a larger pool of voting rules, such as approval voting, the Godgson’s
rule, and many others.
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Abstract. We study the stable marriage problem in the partial infor-
mation setting where the agents, although they have an underlying true
strict linear order, are allowed to specify partial orders either because
their true orders are unknown to them or they are unwilling to com-
pletely disclose the same. Specifically, we focus on the case where the
agents are allowed to submit strict weak orders and we try to address the
following questions from the perspective of a market-designer: (i) How
can a designer generate matchings that are robust—in the sense that
they are “good” with respect to the underlying unknown true orders?
(ii) What is the trade-off between the amount of missing information
and the “quality” of solution one can get? With the goal of resolving
these questions through a simple and prior-free approach, we suggest
looking at matchings that minimize the maximum number of blocking
pairs with respect to all the possible underlying true orders as a mea-
sure of “goodness” or “quality”, and subsequently provide results on
finding such matchings. In particular, we first restrict our attention to
matchings that have to be stable with respect to at least one of the
completions (i.e., weakly-stable matchings) and show that in this case
arbitrarily filling-in the missing information and computing the result-
ing stable matching can give a non-trivial approximation factor for our
problem in certain cases. We complement this result by showing that,
even under severe restrictions on the preferences of the agents, the fac-
tor obtained is asymptotically tight in many cases. We then investigate a
special case, where only agents on one side provide strict weak orders and
all the missing information is at the bottom of their preference orders,
and show that in this special case the negative result mentioned above
can be circumvented in order to get a much better approximation factor;
this result, too, is tight in many cases. Finally, we move away from the
restriction on weakly-stable matchings and show a general hardness of
approximation result and also discuss one possible approach that can
lead us to a near-tight approximation bound.

1 Introduction

Two-sided matching markets have numerous applications, e.g., in matching stu-
dents to dormitories (i.e., Stable Roommates problem (SR) [11]), residents to
c© Springer Nature Switzerland AG 2018
G. Christodoulou and T. Harks (Eds.): WINE 2018, LNCS 11316, pp. 341–355, 2018.
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hospitals (i.e., Hospital-Resident problem (HR) [18]) etc., and hence are ubiqui-
tous in practice. Perhaps unsurprisingly, then, this line of research has received
much attention, with plenty of work done on investigating numerous problems
like SR and HR, and their many variations (we refer the reader to the excellent
books by Gusfield and Irving [9] and Manlove [17] for a survey on two-sided
matching problems). The focus of this paper, too, is on one such problem—one
that is perhaps the most widely-studied, but yet the simplest—called the Stable
Marriage problem (SM), first introduced by Gale and Shapley [8]. In SM we are
given two disjoint sets (colloquially referred to as the set of men and women)
and each agent in one set specifies a strict linear order over the agents in the
other set, and the aim is to find a stable matching, i.e., a matching where there is
no man-woman pair such that each of them prefers the other over their partner
in the matching. (Such a pair, if it exists, is called a blocking pair).

While the assumption that the agents will be able to specify strict linear
orders is not unreasonable in small markets, in general, as the markets get larger,
it may not be feasible for an agent to determine a complete ordering over all the
alternatives. Furthermore, there may arise situations where agents are simply
unwilling to provide strict total orders due to, say, privacy concerns. Thus, it
is natural for a designer to allow agents the flexibility to specify partial orders,
and so in this paper we assume that the agents submit strict weak orders1

(i.e., strict partial orders where incomparability is transitive) that are consistent
with their underlying true strict linear orders. Although the issue of partially
specified preferences has received attention previously, we argue that certain
aspects have not been addressed sufficiently. In particular, the common approach
to the question of what constitutes a “good” matching in such a setting has
been to either work with stable matchings that arise as a result of an arbitrary
linear extension of the submitted partial orders (these are known as weakly-stable
matchings) or to look at something known as super-stable matchings, which are
matchings that are stable with respect to all the possible linear extensions of the
submitted partial orders [12,19]. In the case of the former, one key issue is that
we often do not really know how “good” a particular weakly-stable matching
is with the respect to the underlying true orders of the agents, and in the case
of the latter they often do not exist. Furthermore, we believe that it is in the
interest of the market-designer to understand how robust or “good” a matching
is with respect to the underlying true orders of the agents, for, if otherwise, issues
relating to instability and market unravelling can arise since the matching that is
output by a mechanism can be arbitrarily bad with respect to these true orders.
Hence, in this paper we propose to move away from the extremes of working with
either arbitrary weakly-stable matchings or super-stable matchings, and to find
a middle-ground when it comes to working with partial preference information.
To this end, we aim to answer two questions from the perspective of a market-
designer: (i) How should one handle partial information so as to be able to

1 All our negative results naturally hold for the case when the agents are allowed to
specify strict partial orders. As for our positive results, most of them can be extended
for general partial orders, although the resulting bounds will be worse.
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provide some guarantees with respect to the underlying true preference orders?
(ii) What is the trade-off between the amount of missing information and the
quality of a matching that one can achieve? We discuss our proposal in more
detail in the following sections.

1.1 How Does One Work with Partial Information?

When agents do not submit full preference orderings, there are several possi-
ble ways to cope with the missing information. For instance, one approach that
immediately comes to mind is to assume that there exists some underlying dis-
tribution from which the agents’ true preferences are drawn, and then use this
information to find a “good” matching—which is, say, the one with the least
number of blocking pairs in expectation. However, the success of such an app-
roach crucially depends on having access to information about the underlying
preference distributions which may not always be available. Therefore, in this
paper we make no assumptions on the underlying preference distributions and
instead adopt a prior-free and absolute-worst-case approach where we assume
that any of the linear extensions of the given strict partial orders can be the
underlying true order, and we aim to provide solutions that perform well with
respect to all of them. We note that similar worst-case approaches have been
looked at previously, for instance, by Chiesa et al. [5] in the context of auctions.

The objective we concern ourselves with here is that of minimizing the num-
ber of blocking pairs, which is well-defined and has been considered previously
in the context of matching problems (for instance, see [1,4]). In particular, for
a given instance I our aim is to return a matching Mopt that has the best
worst case—i.e., a matching that has the minimum maximum ‘regret’ after one
realises the true underlying preference orders. (We refer to Mopt as the min-
imax optimal solution.) More precisely, let I = (pU , pW ) denote an instance,
where pU = {pu1 , · · · , pun

}, pW = {pw1 , · · · , pwn
}, U = {ui}i∈{1,2,··· ,n} and

W = {wi}i∈{1,2,··· ,n} are the set of men and women respectively, and pi is the
strict partial order submitted by agent i. Additionally, let C(pi) denote the
set of linear extensions of pi, C be the Cartesian product of the C(pi)s, i.e.,
C =×i∈U∪W

C(pi), bp(M, c) denote the set of blocking pairs that are associ-
ated with the matching M according to some linear extension c ∈ C, and S
denote the set of all possible matchings. Then the matching Mopt that we are
interested in is defined as Mopt = arg minM∈S maxc∈C |bp(M, c)|.

While we are aware of just one work by Drummond and Boutilier [6] who
consider the minimax regret approach in the context of stable matchings (they
consider it mainly in the context of preference elicitation; see Sect. 1.4 for more
details), the approach, in general, is perhaps reminiscent, for instance, of the
works of Hyafil and Boutilier [10] and Lu and Boutilier [15] who looked at the
minimax regret solution criterion in the context of mechanism design for games
with type uncertainty and preference elicitation in voting protocols, respectively.

Remark: In the usual definition of a minimax regret solution, there is a
second term which measures the ‘regret’ as a result of choosing a particu-
lar solution. That is, in the definition above, it would usually be Mopt =
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arg minM∈S maxc∈C |bp(M, c)|−|bp(Mc, c)|, where Mc is the optimal matching
(with respect to the objective function |bp()|) for the linear extension c. We do
not include this in the definition above because |bp(Mc, c)| = 0 as every instance
of the marriage problem with linear orders has a stable solution (which by defi-
nition has zero blocking pairs). Additionally, the literature on stable matchings
uses the term “regret” to denote the maximum cost associated with a stable
matching, where the cost of a matching for an agent is the rank of its partner
in the matching and the maximum is taken over all the agents (for instance, see
[16]). However, here the term regret is used in the context of the minimax regret
solution criterion.

1.2 How Does One Measure the Amount of Missing Information?

For the purposes of understanding the trade-off between the amount of missing
information and the “quality” of solution one can achieve, we need a way to
measure the amount of missing information in a given instance. There are many
possible ways to do this, however in this paper we adopt the following. For a
given instance I, the amount of missing information, δ, is the fraction of pairwise
comparisons one cannot infer from the given strict partial orders. That is, we
know that if every agent submits a strict linear order over n alternatives, then
we can infer

(
n
2

)
comparisons from it. Now, instead, if an agent i submits a strict

partial order pi, then we denote by δi the fraction of these
(
n
2

)
comparisons one

cannot infer from pi (this is the “missing information” in pi). Our δ here is equal
to 1

2n

∑
i∈U∪W δi. Although, given a strict partial order pi, it is straightforward

to calculate δi, we will nevertheless assume throughout that δ is part of the
input. Hence, our definition of an instance will be modified the following way to
include the parameter for missing information: I = (δ, pU , pW ).

Remark: δ = 0 denotes the case when all the preferences are strict linear orders.
Also, for an instance with n agents on each side, the least value of δ when
the amount of missing information is non-zero is 1

2n
1

(n2)
(this happens in the

case where there is only one agent with just one pairwise comparison missing).
However, despite this, in the interest of readability, we sometimes just write
statements of the form “for all δ > 0”. Such statements need to be understood
as being true for only realizable or valid values of δ that are greater than zero.

1.3 Our Contributions

The focus of our work is on computing the minimax optimal matching, i.e., a
matching that, when given an instance I, minimizes the maximum number of
blocking pairs with respect to all the possible linear extensions (see Sect. 2.1 for
a formal definition of the problem). Towards this end, we make the following
contributions:

– We formally define the problem and show that, interestingly, the problem
under consideration is equivalent to the problem of finding a matching that
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has the minimum number of super-blocking pairs (i.e., man-woman pairs
where each of them weakly-prefers the other over their current partners).

– While an optimal answer to our question might involve matchings that have
man-woman pairs such that each of them strictly prefers the other over their
partners, we start by focusing our investigation on matchings that do not have
such pairs. Given the fact that any matching with no such pairs are weakly-
stable, through this setting we address the question “given an instance, can
we find a weakly-stable matching that performs well, in terms of minimizing
the number of blocking pairs, with respect to all the linear extensions of the
given strict partial orders?” We show that by arbitrarily filling-in the missing
information and computing the resulting stable matching, one can obtain a
non-trivial approximation factor (i.e., one that is o(n2)) for our problem for
many values of δ. We complement this result by showing that, even under
severe restrictions on the preferences of the agents, the factor obtained is
asymptotically tight in many cases.

– By assuming a special structure on the agents’ preferences—one where strict
weak orders are specified by just agents on one side and all the missing infor-
mation is at the bottom of their preference orders—we show that one can
obtain a O(n)-approximation algorithm for our problem. The proof of the
same is via finding a 2-approximation for another problem (see Problem3)
that might be of independent interest.

– In Sect. 4 we remove the restriction to weakly-stable matchings and show a
general hardness of approximation result for our problem. Following this, we
discuss one possible approach that can lead to a near-tight approximation
guarantee for the same.

1.4 Related Work

There has recently been a number of papers that have looked at problems relating
to missing preference information or uncertainty in preferences in the context of
matching.

Drummond and Boutilier [6] used the minimax regret solution criterion in
order to drive preference elicitation strategies for matching problems. While
they discussed computing robust matchings subject to a minimax regret solution
criteria, their focus was on providing an NP-completeness result and heuristic
preference elicitation strategies for refining the missing information. In contrast,
in addition to focusing on understanding the exact trade-offs between the amount
of missing information and the solution “quality”, we concern ourselves with
arriving at approximation algorithms for computing such robust matchings.

Rastegari et al. [19] studied a partial information setting in labour markets.
However, again, the focus of this paper was different than ours. They looked at
pervasive-employer-optimal matchings, which are matchings that are employer-
optimal (see [19] for the definitions) with respect to all the underlying linear
extensions. In addition, they also discussed how to identify, in polynomial time,
if a matching is employer-optimal with respect to some linear extension.



346 V. Menon and K. Larson

Recent work by Aziz et al. [2] looked at the stable matching problem in set-
tings where there is uncertainty about the preferences of the agents. They consid-
ered three different models of uncertainty and primarily studied the complexity
of computing the stability probability of a given matching and the question of
finding a matching that will have the highest probability of being stable. In con-
trast to their work, in this paper we do not make any underlying distributional
assumptions about the preferences of the agents and instead take an absolute
worst-case approach, which in turn implies that our results hold irrespective of
the underlying distribution on the completions.

Finally, we also briefly mention another line of research which deals with
partial information settings and goes by the name of interview minimization
(see, for instance, [7,20]). One of the main goals in this line of work is to come
with a matching that is stable (and possibly satisfying some other desirable
property) by conducting as few ‘interviews’ (which in turn helps the agents
in refining their preferences) as possible. We view this work as an interesting,
orthogonal, direction from the one we pursue in this paper.

2 Preliminaries

Let U and W be two disjoint sets. The sets U and W are colloquially referred to
as the set of men and women, respectively, and |U | = |W | = n. We assume that
each agent in U and W has a true strict linear order (i.e., a ranking without ties)
over the agents in the other set, but this strict linear order may be unknown to
the agents or they may be unwilling to completely disclose the same. Hence, each
agent in U and W specifies a strict partial order over the agents in the other
set (which we refer to as their preference order) that is consistent with their
underlying true orders, and pU and pW , respectively, denote the collective pref-
erence orders of all the men and women. For a strict partial order pi associated
with agent i, we denote the set of linear extensions associated with pi by C(pi)
and denote by C the Cartesian product of the C(pi)s, i.e., C =×i∈U∪W

C(pi).
We refer to the set C as “the set of all completions” where the term completion
refers to an element in C. Also, throughout, we denote strict preferences by �
and use � to denote the relation ‘weakly-prefers’. So, for instance, we say that
an agent c strictly prefers a to b and denote this by a �c b and use a �c b to
denote that either c strictly prefers a to b or finds them incomparable. As men-
tioned previously, we restrict our attention to the case when the strict partial
orders submitted by the agents are strict weak orders over the set of agents in
the other set.

Remark: Strict weak orders are defined to be strict partial orders where incom-
parability is transitive. Hence, although the term tie is used to mean indifference,
it is convenient to think of strict weak orders as rankings with ties. Therefore,
throughout this paper, whenever we say that agent c finds a and b to be tied,
we mean that c finds a and b to be incomparable. Additionally, we will use the
terms ties and incomparabilities interchangeably.
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An instance I of the stable marriage problem (SM) is defined as I =
(δ, pU , pw), where δ denotes the amount of missing information in that instance
and this in turn, as defined in Sect. 1.2, is the average number of pairwise com-
parisons that are missing from the instance, and pU and pW are as defined above.
Given an instance I, the aim is usually to come up with a matching M—which
in turn is a set of disjoint pairs (m,w), where m ∈ U and w ∈ W—that is stable.
There are different notions of stability that have been proposed and below we
define two of them that are relevant to our paper: (i) weak-stability and (ii)
super-stability. However, before we look at their definitions we introduce the
following terminology that will be used throughout this paper. (Note that in the
definitions below we implicitly assume that in any matching M all the agents
are matched. This is so because of the standard assumption that is made in the
literature on SM (i.e., the stable marriage problem where every agent has a strict
linear order over all the agents in the other set) that an agent always prefers to
be matched to some agent than to remain unmatched).

Definition 1 (blocking pair/obvious blocking pair). Given an instance
I and a matching M associated with I, (m,w) is said to be a blocking pair
associated with M if w �m M(m) and m �w M(w). The term blocking pair
is usually used in situations where the preferences of the agents are strict linear
orders, so in cases where the preferences of the agents have missing information,
we refer to such a pair as an obvious blocking pair.

Definition 2 (super-blocking pair). Given an instance I where the agents
submit partial preference orders and a matching M associated with I, we say
that (m,w) is a super-blocking pair associated with M if w �m M(m) and
m �w M(w).

Given the definitions above we can now define weak-stability and super-
stability.

Definition 3 (weakly-stable matching). Given an instance I and matching
M associated with I, M is so said to be weakly-stable with respect to I if it
does not have any obvious blocking pairs. When the preferences of the agents are
strict linear orders, such a matching is just referred to as a stable matching.

Definition 4 (super-stable matching). Given an instance I and matching
M associated with I, M is so said to be super-stable with respect to I if it does
not have any super-blocking pairs.

2.1 What Problems Do We Consider?

As mentioned in the introduction, we are interested in finding the minimax
optimal matching where the objective is to minimize the number of blocking
pairs, i.e., to find, from the set S of all possible matchings, a matching that
has the minimum maximum number of blocking pairs with respect to all the
completions. This is formally defined below.
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Problem 1 (δ-minimax-matching). Given a δ ∈ [0, 1] and an instance I = (δ′,
pU , pW ), where δ′ ≤ δ is the amount of missing information and pU , pW are the
preferences submitted by men and women respectively, compute Mopt where
Mopt = arg minM∈S maxc∈C |bp(M, c)|.

Although the problem defined above is our main focus, for the rest of this
paper we will be talking in terms of the following problem which concerns itself
with finding an approximately super-stable matching (i.e., a super-stable match-
ing with the minimum number of super-blocking pairs). As we will see below,
the reason we do the same is because both the problems are equivalent.

Problem 2 (δ-min-bp-super-stable-matching). Given a δ ∈ [0, 1] and an instance
I = (δ′, pU , pW ), where δ′ ≤ δ is the amount of missing information and pU , pW

are the preferences submitted by men and women respectively, compute MSS
opt

where MSS
opt = arg minM∈S |super-bp(M)| and super-bp(M) is the set of super-

blocking pairs associated with M for the instance I.

Below we show that both the problems described above are equivalent. How-
ever, before that we prove the following lemma. Unfortunately, due to space
constraints, all the proofs are omitted. We refer the reader to the full version of
the paper2 for all the proofs and for more detailed explanations.

Lemma 1. Let M be a matching associated with some instance I = (δ, pU , pW ),
α denote the maximum number of blocking pairs associated with M for any
completion of I, and β denote the number of super-blocking pairs associated
with M for the instance I. Then, α = β.

Given the lemma above, we can now show the following theorem.

Theorem 1. For any δ ∈ [0, 1], the δ-minimax-matching and δ-min-bp-super-
stable-matching problems are equivalent.

For the rest of this paper, we assume that we are always dealing with instances
which do not have a super-stable matching as this can be checked in polynomial-
time [12, Theorem 3.4]. So, now, in the context of the δ-min-bp-super-stable-
matching problem, it is easy to show that if the number of super-blocking pairs
k in the optimal solution is a constant, then we can solve it in polynomial-time.
We state this in the theorem below. Later, in Sect. 4, we will see that the problem
is NP-hard, even to approximate.

Theorem 2. An exact solution to the δ-min-bp-super-stable-matching problem
can be computed in O(n2(k+1)) time, where k is the number of super-blocking
pairs in the optimal solution.

3 Investigating Weakly-Stable Matchings

In this section we focus on situations where obvious blocking pairs are not per-
mitted in the final matching. In particular, we explore the space of weakly-stable
2 https://arxiv.org/abs/1804.09156.

https://arxiv.org/abs/1804.09156
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matchings and ask whether it is possible to find weakly-stable matchings that
also provide good approximations to the δ-min-bp-super-stable-matching prob-
lem (and thus the δ-minimax-matching problem).

3.1 Approximating δ-min-bp-super-stable-matching with
Weakly-Stable Matchings

It has previously been established that a matching is weakly-stable if and only if
it is stable with respect to at least one completion [16, Sect. 1.2]. Therefore, given
this result, one immediate question that arises in the context of approximating
the δ-min-bp-super-stable-matching problem is “what if we just fill in the missing
information arbitrarily and then compute a stable matching associated with such
a completion?” This is the question we consider here, and we show that weakly-
stable matchings do give a non-trivial (i.e., one that is o(n2), as any matching
has only O(n2) super-blocking pairs) approximation bound for our problem for
certain values of δ. The proof of the following theorem is through a simple
application of the Cauchy-Schwarz inequality and due to space constraints is
omitted.

Theorem 3. For any δ > 0 and an instance I = (δ′, pU , pW ) where δ′ ≤ δ,
any weakly-stable matching with respect to I gives an O

(
min

{
n3δ, n2

√
δ
})

-
approximation for the δ-min-bp-super-stable-matching problem.

3.2 Can We Do Better When Restricted to Weakly-Stable
Matchings?

While Theorem 3 established an approximation factor for the δ-min-bp-super-
stable-matching problem when considering only weakly-stable matchings, it was
simply based on arbitrarily filling-in the missing information. Therefore, there
remains the question as to whether one can be clever about handling the miss-
ing information and as a result obtain improved approximation bounds. In this
section we consider this question and show that for many values of δ the approx-
imation factor obtained in Theorem3 is asymptotically the best one can achieve
when restricted to weakly-stable matchings.

Theorem 4. For any δ ∈ [ 16n2 , 1
4 ], if there exists an α-approximation algo-

rithm for δ-min-bp-super-stable-matching that always returns a matching that
is weakly-stable, then α ∈ Ω

(
n2

√
δ
)
. Moreover, this result is true even if we

allow only one side to specify ties and also insist that all the ties need to be at
the top of the preference order.

3.3 The Case of One-Sided Top-Truncated Preferences: An O(n)
Approximation Algorithm for δ-min-bp-super-stable-matching

Although Theorem 4 is an inherently negative result, in this section we consider
an interesting restriction on the preferences of the agents and show how this
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negative result can be circumvented. In particular, we consider the case where
only agents on one side are allowed to specify ties and all the ties need to be at
the bottom. Such a restriction has been looked at previously in the context of
matching problems and as noted by Irving and Manlove [13] is one that appears
in practise in the Scottish Foundation Allocation Scheme (SFAS). Addition-
ally, restricting ties to only at the bottom models a very well-studied class of
preferences known as top-truncated preferences, which has received considerable
attention in the context of voting (see, for instance, [3]).

Top-truncated preferences model scenarios where an agent is certain about
their most preferred choices, but is indifferent among the remaining ones or is
unsure about them. More precisely, in our setting, the preference order submitted
by, say, a woman w is said to be a top-truncated order if it is a linear order over
a subset of U and the remaining men are all considered to be incomparable by
w. In this section we consider one-sided top-truncated preferences, i.e., where
only men or women are allowed to specify top-truncated orders, and show an
O(n)-approximation algorithm for δ-min-bp-super-stable-matching under this
setting. (Without loss of generality we assume throughout that only the women
submit strict weak orders.) Although arbitrarily filling-in the missing information
and computing the resulting weakly-stable matching can lead to an O(n2

√
δ)-

approximate matching even for this restricted case (see the full version of the
paper for an example), we will see that not all weakly-stable matchings are “bad”
and that in fact the O(n)-approximate matching we obtain is weakly-stable.

However, in order to arrive at this result, we first introduce the following
problem which might be of independent interest. (To the best of our knowledge,
this has not been previously considered in the literature.) Informally, in this
problem we are given an instance I and are asked if we can delete some of the
agents to ensure that the instance, when restricted to the remaining agents, will
have a perfect super-stable matching.

Problem 3 (min-delete-super-stable-matching). Given an instance I = (δ, pU ,
pW ), where δ is the amount of missing information and pU , pW are the prefer-
ences submitted by men and women respectively, compute the set D of min-
imum cardinality such that the instance I−D = (δ−D, pU\D, pW\D), where
δ−D = 1

|(U∪W )\D|
∑

i∈(U∪W )\D δi, has a perfect super-stable matching (i.e., every
agent in (U ∪ W ) \ D is matched in a super-stable matching).

Below we first show that Algorithm 1 gives a 2-approximation for the min-
delete-super-stable-matching problem when restricted to the case of one-sided
top-truncated preferences. Subsequently, we then use this result in order to get an
O(n)-approximation for our problem. Intuitively, the main idea in Algorithm1,
which is inspired by the work of Tan [21], is that some of the entries in each
agent’s preference list can be deleted by running the proposal-rejection sequence
like in Gale-Shapley algorithm and through rotation eliminations, while at the
same time maintaining at least one solution of the maximum size. Unfortunately,
due to space constraints, we are unable to provide a complete analysis and so
we refer the reader to the full version of the paper for detailed explanations and
proofs.
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Procedure: proposeWith(A, I)
1: assign each agent a ∈ A to be free
2: while some a ∈ A is free do
3: b ← first agent on a’s list
4: if b is already engaged to agent p && b finds p and a incomparable then
5: delete (a, b)
6: else
7: if b is already engaged to agent p then
8: assign p to be free
9: end if
10: assign a and b to be engaged
11: for each agent c in b’s list such that a �b c do
12: delete (c, b)
13: end for
14: end if
15: end while
16: for each man m do
17: w ← first woman on m’s list
18: if there exists a man m′ such that w finds m and m′ incomparable then
19: delete (m′, w)
20: end if
21: end for � deletions in this loop only happen once and results in the removal of all the remaining ties

22: return I � this returns the updated lists

Main:
Input: a one-sided top-truncated instance I = (δ, pU , pW )
23: I′ ← proposeWith(U, I)
24: I′ ← proposeWith(W, I′)
25: while there exists some exposed rotation (m1, w1), (m2, w2), · · · , (mr, wr) in I′ do
26: delete (mi, wi) for all i ∈ {1, · · · , r}
27: I′ ← proposeWith(U, I′)
28: I′ ← proposeWith(W, I′)
29: end while
30: M ← for all men m ∈ U , match m with the only woman in his list
31: construct G = (V, E) where V = U ∪ W , (m, w) ∈ E if (m, w) is a super-blocking pair in M

w.r.t. I
32: D ← minimum vertex cover of G
33: for each a ∈ D do
34: D ← D ∪ M(a)
35: end for
36: return (D, M)

Algorithm 1. For the case of one-sided top-truncated preferences, the set D
returned by the algorithm is a 2-approximation for the min-delete-super-stable-
matching problem and the matching M returned is an O(n)-approximation for
δ-min-bp-super-stable-matching

Proposition 1. Algorithm1 is a polynomial-time 2-approximation algorithm
for the min-delete-super-stable-matching problem when restricted to the case of
one-sided top-truncated preferences.

Given Proposition 1, we can now prove the following theorem.

Theorem 5. For any δ > 0, Algorithm1 is a polynomial-time O(n)-
approximation algorithm for the δ-min-bp-super-stable-matching problem when
restricted to the case of one-sided top-truncated preferences. Moreover, the
matching it returns is also weakly-stable.

Before we end this section, we address one final question as to whether,
for the class of one-sided top-truncated preferences, one can obtain a better
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approximation result if one continues to consider only weakly-stable matchings.
In the theorem below we show that for δ ∈ Ω( 1

n ) Algorithm 1 is asymptotically
the best one can do under this restriction.

Theorem 6. For δ ≤ 1
2 , if there exists an α-approximation algorithm for δ-min-

bp-super-stable-matching that always returns a matching that is weakly-stable for
the case of one-sided top-truncated preferences, then α ∈ Ω

(
min

{
n

3
2
√

δ, n
})

.

4 Beyond Weak-Stability

In the previous section we investigated weakly-stable matchings and we showed
several results concerning this situation. Here we move away from this restric-
tion and explore what happens when we do not place any restriction on the
matchings. In particular, we begin this section by showing a general hardness
of approximation result, and then follow it with a discussion on one possible
approach that can lead to a near-tight approximation result.

4.1 Inapproximability Result for δ-min-bp-super-stable-matching

We show a hardness of approximation result for the δ-min-bp-super-stable-
matching problem through a gap-producing reduction from the Vertex Cover
(VC) problem, which is a well-known NP-complete problem [14]. In the VC
problem, we are given a graph G = (V,E), where V = {v1, · · · , vk}, and a
k0 ≤ k and are asked if there exists a subset of the vertices with size less than
or equal to k0 such that it contains at least one endpoint of every edge.

Theorem 7. For any constant ε ∈ (0, 1] and δ ∈ (0, 1), one cannot obtain
a polynomial-time (n

√
δ)1−ε approx. algorithm for the δ-min-bp-super-stable-

matching problem unless P = NP .

4.2 A Possible General Approach for Obtaining a Near-Tight
Approximation Factor for δ-min-bp-super-stable-matching

While obtaining a general near-optimal approximation result for the δ-min-bp-
super-stable-matching problem is still open, in this section we propose a poten-
tially promising direction for this problem. In particular, we demonstrate how
solving even a very relaxed version of the min-delete-stable-matching problem
will be enough to get an O(n)-approximation for δ-min-bp-super-stable-matching
in general. Below, we first define the relaxation in question, which we refer to as
an (α, β)-approximation to the min-delete-super-stable-matching problem.

Definition 5 ((α, β)-min-delete-super-stable-matching). Given an
instance I = (δ, pU , pW ), compute a set D′ such that |D′| ≤ α · |Dopt|, where
|Dopt| is the size of the optimal solution to the min-delete-super-stable-matching
for the same instance, and the instance I−D′ = (δ−D′ , pU\D′ , pW\D′), where
δ−D′ = 1

|(U∪W )\D′|
∑

i∈(U∪W )\D′ δi, has a matching with at most β super-
blocking pairs.
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Next, we show that an (α, β)-approximation to the min-delete-super-stable-
matching problem gives us an (αn+β)-approximation for δ-min-bp-super-stable-
matching. So, in particular, if we have an (α, β)-approximation where α is a
constant and β ∈ O(n), then this in turn gives us an O(n)-approximation for
δ-min-bp-super-stable-matching in general.

Proposition 2. If there exists an (α, β)-approximation algorithm for the
min-delete-super-stable-matching problem, then there exists an (αn + β)-
approximation algorithm for the δ-min-bp-super-stable-matching problem.

5 Conclusion

In this paper we initiated a study on matching with partial information in order
to investigate what makes a matching “good” in this context, and to better
understand the trade-off between the amount of missing information and the
quality of different matchings. Towards this end, we introduced a measure for
accounting for missing preference information in an instance, and argued that a
natural definition of a “good” matching in this context is one that minimizes the
maximum number of blocking pairs with respect to all the possible completions.
Subsequently, using an equivalent problem (δ-min-bp-super-stable-matching) we
first explored the space of matchings that contained no obvious blocking pairs
(i.e., weakly-stable matchings) in order to better understand how missing pref-
erence information effected/affected the quality, in terms of approximation with
respect to the objective of minimizing the number of super-blocking pairs. Later
on, by expanding the space of matchings we considered (i.e., removing the restric-
tion that matches must be weakly-stable), we asked whether it was possible to
improve on the approximation factors that were achieved under the restriction
to weakly-stable matchings.

There are a number of interesting directions for future work. First, while
in Sect. 4.2 we proposed one possible approach that can lead to near-tight
approximations, there may be other approaches that can prove fruitful. Second,
we believe that the min-delete-super-stable-matching problem, and its relax-
ation we introduced, are both of independent interest, and so an open question
is to see if one can obtain general results on them. In Proposition 1 we saw
that a 2-approximation was achievable for the case of one-sided top-truncated
preferences and hence it would also be interesting to determine if there are
other interesting classes of preferences for which constant-factor approximations
are possible. Finally, there are possible extensions, like, for instance, allowing
incompleteness—meaning the agents can specify that they are willing to be
matched to only a subset of the agents on the other set—that one could consider
and ask similar questions like the ones we considered.
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Abstract. We revisit the classic prophet inequality problem, where the
goal is selling a single item to an arriving sequence of buyers whose val-
ues are drawn from independent distributions, to maximize the expected
allocated value. The usual benchmark is the expected value that an omni-
scient prophet who knows the future can attain. We diverge from this
framework and compare the performance of the best single pricing mech-
anism with the best optimum online mechanism.

Somewhat surprisingly, we show that the original tight prophet
inequality bounds comparing the single-pricing with the optimum offline
are tight even when we use the optimum online as a benchmark, both for
the identical and non-identical distributions. Moreover, we incorporate
linear programming to characterize this benchmark, and show how this
approach leads to a modular way of designing prophet inequalities, hence
reconstructing the results of [31] and [13] with somewhat simpler proofs.

Keywords: Prophet inequality · Optimal stopping · Online algorithm

1 Introduction

Mechanisms with simple semantics are natural and easy to optimize. The prac-
tical advantages of such mechanisms have led to their prevalence in electronic
commerce, where the canonical examples are different forms of pricing mecha-
nisms. One important aspect of such mechanisms is how well they perform versus
an economically justified benchmark. This “simple vs. optimal” comparison [24]
can then yield new insights when designing simple mechanisms.

We revisit a classic problem in the optimal stopping theory, which is inti-
mately related to the design of pricing mechanisms. Consider selling a single
item to a sequence of arriving buyers whose values are drawn from non-identical
and independent distributions, with the goal of maximizing the expected value of
the buyer who eventually receives the item. In such a setting, we can consider the
omniscient prophet benchmark, also termed as the optimum offline, which can
foresee the entire realized value sequence of the buyers and picks the maximum
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value. Another benchmark is the optimum online that is the best implementable
mechanism in an online fashion for maximizing the expected allocated value,
assuming we know the distributions of values of the buyers.

In their seminal work, [27] asked the following question: how does the
expected value of the optimum online mechanism compare with the expected
value of the omniscient prophet? Garling, Krengel and Sucheston established
a tight bound of 2 for this problem, which became the first of many “prophet
inequalities” (see [29] for a comprehensive survey). The optimum online mecha-
nism in this setting is an adaptive pricing mechanism, where prices change over
time based on the observed set of the buyers. Moreover, if the ordering is also
known to the mechanism, these prices can be computed by a simple backward
induction. In the special case when the distributions are identical, the same
backward induction yields a factor strictly better than 2, as first shown by [25].
The tight factor of ≈ 1.342 for identical distributions is established recently by
[1] and [13].

Quite surprisingly, [31] showed that one can achieve the same factor 2 guar-
antee as the result of Garling et al. using a simple and elegant “single pricing”
mechanism. This bound is tight due to a simple example; there are two buyers,
where the first buyer value is deterministically equal to 1 and the second buyer
value is equal to 1/ε with probability ε and 0 otherwise for an arbitrarily small
ε. The expectation of the maximum value is 2 − ε, while no online policy can
achieve a value higher than 1 in expectation.

What if we use the optimum online as the benchmark? Clearly, in the above
example, while there is a gap between the prophet and any online policy, there is
no gap between the single threshold and the optimum online. This discrepancy
motivates us to seek the answer to the following question.

In a single-item prophet inequality problem (with identical or non-identical
distributions), does single pricing achieve an improved approximation
guarantee when compared to the optimum online solution as the bench-
mark, instead of the optimum offline solution?

Our Results. Our main result is to answer the above question in the negative,
and hence proving that by switching the benchmark from the optimum offline
to the optimum online, no improved approximation guarantees are possible. In a
nutshell, we proceed in a step-by-step fashion by investigating simpler problems
and special cases first, e.g. when the distributions are identical or non-atomic. We
then build up on top of the solutions for these special cases to get the final answer.
In our study, we identify hard instances for approximating the optimum online
and offline benchmarks, discover simpler proofs for the performance guarantees
of single pricing mechanisms, and find linear programming characterizations for
the optimum online benchmark. While these technical pieces play key roles in
proving our result, some of them are also of independent interest.

We start by considering the special case of identical distributions; We identify
an i.i.d. sequence of discrete distributions under which no single pricing mecha-
nism obtains an approximation factor smaller than 2 with respect to the optimum
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online, which is clearly tight thanks to the [31]’s original prophet inequality. How-
ever, this approximation factor is simply an artifact of tie-breaking : we re-derive
similar results of [13,17] by a new simpler proof, and show for any non-atomic
instance, posting the price that is accepted by a single buyer with probability
1
n is an e

e − 1 -approximation to the optimum online (and also offline), where n is
the number of the buyers in the sequence.

For general distributions, we arm the single pricing with a randomized tie-
breaking, i.e. flipping an independent coin with a fixed given probability to break
the tie and overcome the above issue. As a simple corollary of the non-atomic
i.i.d. result we show under any i.i.d. sequence of distributions (no matter atomic
or non-atomic) there is a single pricing with randomized tie-breaking that is

e
e − 1 -approximation to the optimum online (and also offline). Essentially, the
role of randomized tie-breaking can be seen as perturbing the discrete distribu-
tion to make it non-atomic. We further prove this factor is tight by identify-
ing another i.i.d. sequence of discrete distributions under which the best single
pricing with the best randomized tie-breaking probability is no better than a

e
e − 1 -approximation to the optimum online.

We then consider the case of non-identical distributions. The above inves-
tigation still leaves the following question open in this case: what is the tight
approximation factor of the best single pricing with randomized tie-breaking
with respect to the optimum online? or equivalently, can single pricing with
randomized tie-breaking beat the approximation factor of 2 when compared to
the optimum online and when the distributions are non-atomic? (note that the
factor 2 is tight if we allow atomic distributions as discussed earlier.) Some-
what surprisingly, we also answer this question in the negative: there exists a
sequence of non-identical, yet non-atomic, distributions under which no single
pricing mechanism obtains more than half of the expected value of the optimum
online mechanism. We conclude that replacing the prophet benchmark with the
optimum online does not allow a worst-case approximation factor smaller than 2
for single pricing with randomized tie-breaking mechanisms, if the distributions
are allowed to be non-identical.

Finally, we switch gears to a slightly stronger, yet computable, benchmark
than the optimum online and seek to understand this new benchmark through
the lens of linear programming. The considered benchmark is basically the opti-
mum online mechanism when the ordering of the buyers is also known to the
mechanism. While the previous negative results trivially apply to this bench-
mark as well, as a good news this benchmark can be characterized completely
through a linear program. This LP is then used as the main tool to design com-
petitive algorithms with respect to the optimum offline benchmark: we show
how to start from a relaxation of the optimum offline benchmark (termed as the
ex-ante relaxation [3,15,28]) and then modify its solution to make it feasible for
this LP, which can then be rounded exactly by a sequential pricing mechanism
(with randomized tie-breakings in case of discrete distributions). For the case of
non-identical distributions, our proposed approach loses a factor of 2, and hence
re-deriving the celebrated result of [27] with a simpler proof. Furthermore, for
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identical distributions, we re-derive the approximation factor of e
e − 1 of [25] using

this LP and with a much simpler proof. We believe the improved approximation
factor in [1] and the tight approximation factor in [13] can also be extracted
using this LP and the same techniques, which we leave as two interesting open
problems.

Studying new benchmarks can offer new insights. In some cases they are
approximable with a better ratio and lead to the design of new algorithms (e.g.
see [4]). In our case they lead to simpler proofs; while trying to understand the
optimum online through linear programming, all of a sudden a two-line proof
for the well-studied prophet inequalities magically pops out.

Further Related Work. Besides the classic prophet inequalities, many variations
such as prophet inequalities with limited samples form the distributions [5],
i.i.d. and random order [1,18], and finally ordered prophets (a.k.a. the free-
order sequential posted pricing problem) [6,8,14,32] have been explored, and
discovering connections to the price of anarchy [15], online contention resolution
schemes [20], and online combinatorial optimization [21] have been of particu-
lar interest in this literature. Generalizations of the simple prophet inequality
problem to combinatorial settings have also been studied, where the examples
are matroids [26], knapsack [20], k-uniform matroids (for better bounds) [2,22],
or even general downward-closed [30]. Finally, techniques and results in this lit-
erature had an immense impact on mechanism design [7,9–13,16,19]. For a full
list of recent and old related results, refer to [29].

Notations. We are considering a single item prophet inequality problem, in which
a seller is interested in selling an item to a sequence of n arriving buyers. Each
buyer i has a value vi for the item. This value is independently drawn from a
distribution Fi. Buyers arrive one by one and reveal their values.1 Upon the
arrival of a buyer, the seller decides whether to sell the item or move on to the
next buyer. The goal is to maximize the expected value of the selected buyer. We
consider the setting where the sequence of distributions F1,F2, . . . ,Fn is picked
by an oblivious adversary up front. We assume the seller knows the distributions
in advance but does not know the order in which the buyers arrive.

In this paper we consider the following types of mechanisms/benchmarks for
the seller:

– Optimum offline benchmark : Assume the seller is assisted by an omniscient
prophet who knows the values of all the buyers in advance and helps the seller
to pick the buyer with the maximum value.

– Optimum online benchmark : It is the mechanism that achieves the maximum
expected value possible by looking at the values of the buyers sequentially
and adaptively deciding whether to pick/reject the current buyer by inferring
from the past observed values as well as the distributions F1,F2, . . . ,Fn.

1 Although the focus of this paper is not on truthful mechanism design, all of our
mechanisms are pricing and hence truthful.
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– Sequential pricing mechanism: the seller sets a price Ti for each buyer i, and
picks the first buyer i whose value is at least Ti, i.e. vi ≥ Ti.

– Single pricing mechanism: the seller sets a price T , and picks the first buyer
i (if any) whose value is at least T , i.e. vi ≥ T .

Throughout this paper, we compare the performance of single pricing mech-
anisms to the optimum online mechanism as well as the optimum offline mecha-
nism. The expected value obtained by the sequential pricing mechanism is always
upper bounded by that of the optimum online and can assist us in obtaining some
of our bounds.

2 Optimum Online and Beating Prophet Inequalities

In this section, we investigate a new benchmark, namely the optimum online
mechanism, for the single item prophet inequality problem. We ask how it is
compared with different variations of the single pricing mechanism, with and
without (randomized) tie-breaking, in terms of expected value, and whether
optimum online is amenable to improved approximation factors by these single
pricing mechanisms. We start our journey by considering an important special
case: independent and identical distributions. It turns out, as we will see in
Sect. 2.1, this important special case paves the path to crack the problem for
general non-identical distributions in Sect. 2.2.

2.1 Independent and Identical Distributions

Suppose we allow the adversarial instance to have distributions with point-
masses. Even in this case, although ties can happen, the single pricing mech-
anism of [31] or [26] can still achieve at least half of the value obtained by the
optimum online in expectation (as it achieves half of the expected value obtained
by the optimum offline). Interestingly, if the single pricing is not armed with any
tie-breaking, we can show this bound is tight, even for i.i.d. distributions.

Proposition 1. For every ε > 0, there exists a large enough n and an identical
sequence of (discrete) distributions F1, . . . ,Fn, where the optimal single pricing
obtains at most (12 + ε) fraction of the expected value of the optimum online for
this instance.

Proof. Consider the simple example below:

Example 1. There are n i.i.d. buyers, where the value of buyer i, denoted by vi,

is 1 with probability (1 − 1
n )

1
n and n otherwise.

First, we calculate the expected value of the optimum offline. We have:

E

[
max
i∈[n]

(vi)
]

= ((1 − 1
n

)
1
n )n + n(1 − ((1 − 1

n
)
1
n )n) = 1 − 1

n
+ n

1
n

= 2 − 1
n
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Moreover, the optimum online mechanism is a sequential pricing mechanism in
this example; one can see that to always pick the maximum value we can post
the price n for the buyers arriving at times t = 1, . . . , n − 1, and then post
the price 1 for the last buyer. Therefore, to compare the single pricing with the
optimum online, it suffices to compare the single pricing with E

[
maxi∈[n] vi

]
.

Without loss of the generality, suppose the single pricing mechanism posts

a price T ∈ [1, n]. By construction, with probability 1 −
(

(1 − 1
n )

1
n

)n

= 1
n ,

the random variable maxi∈[n] vi is equal to n. Therefore, If T > 1, the expected
obtained value by posting T is equal to 1. On the other hand, if T ≤ 1, the
expected obtained value is equal to:

(1 − 1
n

)
1
n + n(1 − (1 − 1

n
)
1
n ) = 1 + O(

1
n2

) + n

(
1 − 1 + O(

1
n2

)
)

= 1 + O(
1
n

)

Finally, letting n to be large enough finishes the proof.
Now, here is one concrete question: is the tightness of the factor 1

2 in Proposi-
tion 1 a consequence of having discrete distributions, or can we obtain the same
upper-bound for non-atomic distributions as well? Not much surprisingly, we
prove that for such distributions, the optimum single pricing mechanism can
always achieve 1− 1

e fraction of the value obtained by the optimum offline mech-
anism, and hence that of the optimum online. Similar results have been reported
in the literature, e.g. in [13] by incorporating the Bernoulli selection lemma or
in [18] by reducing to the prophet secretary problem. Yet, we provide a simpler
and more direct proof here, which might also be of independent interest.

Inspired by [2,20], we start by defining the value curve. This curve is defined
in the probability space (a.k.a. the quantile space) and captures the expected
value obtained by posting a price to a single buyer when the ex-ante probability
of sale is some fixed quantity.

Definition 1. Consider a single buyer with value v ∼ F , and suppose F is a
non-atomic distribution. For every sale probability q ∈ [0, 1], referred to as the
quantile q, the value curve V (q) is defined as V (q) � Ev∼F [v · 1{v ≥ T (q)}],
where T (q) is the minimum price at which the item is sold to the buyer with
probability q, i.e. T (q) � argmin

p∈R

Pv∼F [v ≥ p] = q. We refer to T (q) as the

pricing curve.

The following lemma is immediate, which describes some basic properties of the
value curve.

Lemma 1. For a given value curve V (.) as in Definition 1, we have ∂V
∂q (q) =

T (q). Moreover, V (q) is non-decreasing and T (q) is non-increasing (and there-
fore V (q) is concave).

Proof. The proof is straightforward. First of all, T (q) is non-increasing as by
increasing the price the sale probability can only decrease. Therefore V (q) is
also non-decreasing as by increasing q the price can only decrease and hence a
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larger set of buyer values can get accepted. Now consider moving from quantile
q to q + ε for infinitesimal ε > 0. This changes the price from T (q) to T (q + ε).
Remember that V (q) is the expected obtained value, and hence new values in
[T (q + ε), T (q)] will be added to this expectation by the mentioned change.
Moreover, T (q) is a continuous function (as F is non-atomic), and therefore the
marginal change in V (.) is equal to εT (q). Hence, ∂V

∂q = T (q).

Proposition 2. If all the distributions F1,F2, . . . ,Fn are independent, identi-
cal, and non-atomic, then the optimal single pricing mechanism obtains at least
(1 − 1

e ) fraction of the value procured by both the optimum offline and the opti-
mum online mechanism in expectation.

Proof. We use the optimum offline as a surrogate to approximate the optimum
online. Let V (q) and T (q) be the value curve and the pricing curve for the
distribution F1 respectively, as in Definition 1. Now consider posting a single
price T ( 1

n ). The expected value obtained by the seller is equal to:

V ( 1
n ) + (1 − 1

n )V ( 1
n ) + . . . + (1 − 1

n )n−1V ( 1
n ) = n

(
1 − (1 − 1

n )n
)
V ( 1

n )

≥ n(1 − 1
e )V ( 1

n ).

To complete the proof, it suffices to show E
[
maxi∈[n] vi

] ≤ nV ( 1
n ). We have

E

[
max
i∈[n]

vi

]
=

n∑
i=1

E
[
vi · 1{vi ≥ max v−i}]

= nEv−1

[
Ev1

[
v1 · 1{v1 ≥ max v−1}|v−1

]]
= nEv−1 [V (q̄)] ,

where q̄ is the quantile corresponding to v̄ = maxi�=1 vi, or equivalently q̄ =
1 − F1(v̄). Note that q̄ is a random variable with E [q̄] = 1

n . This is because
for each vi, 2 ≤ i ≤ n, the quantile qi corresponding to vi is a random variable
drawn from the uniform distribution on [0, 1] (by using the standard connections
between the value space and the quantile space for a given distribution, e.g. see
[23]). Since v̄ = maxi�=1 vi, we have q̄ = mini�=1 qi, where each qi ∼ unif[0, 1], and
hence E [q̄] = 1

n . Finally, by the concavity of V (.) (Lemma 1) and using Jensen
inequality:

nV ( 1
n ) = nV (E [q̄]) ≥ nE [V (q̄)] = E

[
max
i∈[n]

vi

]
.

Even though we stated Proposition 2 for the case of non-atomic distributions,
we can obtain the same result for any distribution (atomic or non-atomic) by
allowing the single pricing to do randomized tie breaking : in case of a tie, the
mechanism flips a random independent coin and break the tie based on the
outcome of this coin flip. We first prove this lower-bound of 1 − 1

e through the
following proposition and combining it with Proposition 2. Later we will show
that this bound is in fact tight for the case of identical distributions and when
single pricing is allowed to randomly break the ties, even when we consider
optimum online as a benchmark.

Proposition 3. Given a single pricing mechanism M1 that always achieves in
expectation, fraction 0 ≤ α ≤ 1 of the value obtained by the optimum offline
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mechanism over i.i.d. and non-atomic distributions, we can devise a mechanism
M2 that achieves the same performance guarantee for i.i.d. and general (maybe
atomic) distributions.

Proof. Assume each buyer i has a valuation vi ∼ F, where F can (potentially)
have point-masses. We create a non-atomic distribution F ′ as follows. For any
v ∈ supp(F) with point mass probability p, we add a continuous and uniform
distribution with probability mass p to F ′. This distribution will be defined on
interval [v, v + ε] and therefore we must have ∂

∂xF ′(x) = p
ε for x ∈ [v, v + ε].

Let M1(F ′) denote the price picked by M1 given the distribution F ′. Without
loss of generality, we can assume that M1(F ′) ∈ [v, v + ε] for some v ∈ supp(F)
(potentially the end points). We devise a new mechanism M2(F) for the original
distribution F, as follows. Given value v′ ∼ F of a buyer, If v′ is bigger/smaller
than v, we pick/reject the buyer with probability 1. On the other hand, if v′ = v,
we pick the buyer with probability (v+ε−M1(F ′))

ε . Note that the probability of
M2(F) picking buyer i, is the same as the probability of M1(F ′) picking buyer
i. When we move from M1(F ′) to M2(F), there is at most an ε difference in the
expected value obtained from buyer i conditioned on the item is not yet allocated
upon her arrival. Also, the probability of the item is not yet being allocated when
buyer i arrives is the same. So their expected obtained values from buyer i differ
by at most ε. Also note that in the limit as ε → 0, the expected value obtained
by the optimum offline remains unchanged. Therefore by taking the limit of ε to
0, M2 will achieve an approximation factor of at least α on the original problem
instance when compared to the optimum offline.

To obtain a matching upper-bound for the case of identical distributions
and when the single pricing mechanism is armed with randomized tie-breaking,
consider Example 2. This example is inspired by [17], and shows the existence of
an i.i.d. instance (obviously with atomic distributions) under which we cannot
achieve more than 1 − 1

e fraction of the value obtained by the optimum offline
(or the optimum online since they are equal), even with the best possible single
price and the best possible randomized tie-breaking.

Example 2. There are n i.i.d. buyers, where the value of buyer i, denoted by vi,

is 1 with probability (1 − 1
n )

1
n and n

e − 2 otherwise.

Proposition 4. For any ε > 0, there exists a large enough n such that the
optimum single pricing mechanism with tie breaking cannot obtain any better
than (1 − 1

e + ε) fraction of both the optimum online and the optimum offline in
Example 2.

Proof. Note that the optimal sequential pricing mechanism (and therefore the
optimum online) can always achieve the maximum value by picking price 1 on
the last day and price n

e − 2 on all other days. Now we show that the optimal
single pricing mechanism (with the optimal tie breaking probability) cannot
achieve, in expectation, anything better than (1 − 1

e )E
[
maxi∈[n] vi

]
. Note that

E
[
maxi∈[n] vi

]
= 1 + 1

e − 2 = e − 1
e − 2 . Moreover, the mechanism is allowed to pick
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any price T and probability q. At each time, if the value of the buyer is exactly
equal to T , the item gets allocated with probability q. If the value was lower (or
higher) than T , the mechanism rejects (or allocates to) the buyer with probability
1. Now consider two possible price choices: If 1 < T < n

e − 2 , then in this case the

expected obtained value is equal to
(

1 −
(

(1 − 1
n )

1
n

)n)
· n

e − 2 = 1
e − 2 , hence

the ratio is strictly smaller than 1 − 1
e . Suppose the mechanism posts T = 1.

Denote the expected obtained value of this mechanism by U(n). We have:

U(n) =
n−1∑
i=0

((1 − q)(1 − 1
n

)
1
n )i

(
q(1 − 1

n
)
1
n +

n

e − 2
(1 − (1 − 1

n
)
1
n )

)

=
1 − (1 − q)n(1 − 1

n )

1 − (1 − q)(1 − 1
n )

1
n

(
q(1 − 1

n
)
1
n +

n

e − 2
(1 − (1 − 1

n
)
1
n )

)

=
1 − (1 − q)n(1 − 1

n )

1 − (1 − q)(1 − 1
n )

1
n

(
q(1 − 1

n
)
1
n +

1
n(e − 2)

+ o(
1
n

)
)

We first claim that lim
n→+∞

U(n)

E[maxi∈[n] vi] is again strictly less than 1 − 1
e if

q = o( 1
n ) or q = Ω( 1

n ). In the former case:2

1 − (1 − q)n(1 − 1
n )

1 − (1 − q)(1 − 1
n )

1
n

≤
1
n
1

n2

+ o(1), q(1 − 1
n

)
1
n +

1
n(e − 2)

+ o(
1
n

) ≈ 1
n(e − 2) ,

and hence the ratio converges to lim
n→+∞

U(n)

E[maxi∈[n] vi] = 1
e − 1 < 1 − 1

e .

If q = Ω( 1
n ), we can again drop the lower-order terms and we have:

1 − (1 − q)n(1 − 1
n )

1 − (1 − q)(1 − 1
n )

1
n

≈ 1
q
, q(1 − 1

n
)
1
n +

1
n(e − 2)

+ o(
1
n

) ≈ q,

and hence the ratio converges to e − 2
e−1 < 1 − 1

e . Next, suppose q = c
n for some

constant c > 0. We have:

U(n) =
1 − (1 − c

n )n(1 − 1
n )

1 − (1 − c
n )(1 − 1

n )
1
n

(
c

n
(1 − 1

n
)
1
n +

n

e − 2
(1 − (1 − 1

n
)
1
n )).

By taking the limit as n → ∞, we end up with lim
n→+∞ U(n) = 1− e−c

c
(e − 2)c+1

(e − 2) .

So by looking at the ratio of U(n) to the expected maximum value and taking
the limit, we have:

lim
n→+∞

U(n)
E

[
maxi∈[n] vi

] =
1 − e−c

c

(e − 2)c + 1
(e − 1)

. (1)

2 We drop lower order terms by using ≈.
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By taking the derivative from the right-hand side of the Eq. 1 and setting
it to zero, and also by checking the direction of concavity of this right-hand
side term, we can easily verify that the maximum value of the above function is
attained at c = 1. With c = 1, the right-hand side of Eq. 1 evaluates to 1 − 1

e ,
which finishes the proof.

We further show that we can turn the distribution in Example 2 into a non-
atomic distribution such that the expected values of the optimum online and
optimum offline mechanisms do not change. This along with Propositions 4 and
3, indirectly proves that the result of Proposition 2 is tight. More importantly,
it shows that we do not benefit by moving the benchmark from the optimum
offline to optimum online for the case of i.i.d. distributions (or equivalently for
general distributions when randomized tie-breaking is allowed).

Lemma 2. Consider a perturbed version of Example 2 where each buyer has

a value uniformly distributed on the [1, 1 + ε] with probability (1 − 1
n )

1
n and on

[ n
e − 2 , n

e − 2 +ε] otherwise. Then the expected value obtained by the optimal online
(or offline) approaches the expected value obtained by the original optimal online
(or offline) in Example 2 as ε → 0.

Proof. We first show that the expected value collected by the optimum online
and optimum offline are at most ε apart. To see this, note that we can design
a sequential pricing mechanism that has price n

e − 2 for buyers 1, 2, . . . , n − 1
and price 1 for buyer n. This mechanism always attains a value that is at least
the maximum value minus ε, and therefore, the expected value obtained by the
optimum online is no less than that of the optimum offline minus ε. Next we
show that the expected value obtained by the optimum offline is at most ε apart
from the expected value obtained by the optimum offline in Example 2. By a
simple argument, we can map each realized perturbed value profile (i.e. values
of all the buyers) to a realized value profile in the discrete instance, so that the
maximum value in the first profile is in the ε neighborhood of the second profile.
By linearity of expectation, the expected maximum value of the first profile is
also in the ε neighborhood of the maximum value of the second profile, as desired.
Taking the limit as ε → 0 finishes the proof.

2.2 Independent and Non-identical Distributions

As we have shown so far, the worst case ratio between the expected value of
the single pricing mechanism and the expected value of the optimum online
mechanism is different when the distributions are non-atomic as opposed to when
they are discrete. More precisely, for the case of non-atomic distributions this
ratio is 1− 1

e whereas for discrete distributions (without tie breaking) this ratio is
1
2 . This gives rise to a natural question. Is this difference an artifact of having non-
continuous distributions? And more importantly, does this gap between these
ratios still exists for the more general case of non-identical distributions. More
formally, we show the following proposition.
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Proposition 5. For the case of non-identical and non-atomic distributions,
there exists an example of F1,F2, . . . ,Fn such that the expected value obtained
by the optimum single pricing mechanism is at most half of the expected value
obtained by the optimum online.

Proof. Now we describe how to transform the distributions in Example 1 into
continuous and non-identical distributions in a way that the 1

2 ratio remains
tight. For any ε > 0 and δ = ε

n , let Fi be uniformly distributed on [1+ ε− iδ, 1+

ε− (i−1)δ] with probability (1− 1
n )

1
n and uniformly distributed on [n− ε, n+ ε)

otherwise. Note that similar to the argument in Example 1, by picking price n−ε
for buyers 1, 2, . . . , n − 1 and price 1 for buyer n, the optimal sequential pricing
mechanism achieves value 2+O(ε) in expectation. On the other hand, one can see
that for any choice of price T ≤ 1+ ε−δ, the first buyer will always be picked by
the mechanism and therefore the expected value obtained will be at most 1 + ε.
On the other hand, if T > 1+ ε the mechanism does not pick buyer 1, since only
accepts a buyer if his value is bigger than or equal to n − ε and therefore the

expected value obtained cannot be more than (n + ε)(1 − ((1 − 1
n )

1
n )n) = 1 + ε

n .
Finally, we show that for large n, picking T ∈ (1 + ε − δ, 1 + ε] does not
yield to an expected allocated value more than 1 + O(ε). To show this, suppose
p = 1+ ε − T

δ . Then the expected obtained value is at most:

(
p(1 + ε)(1 − 1

n
)
1
n + (n + ε)(1 − (1 − 1

n
)
1
n )

)
+

(
(1 − p)(n + ε)(1 − ((1 − 1

n )
1
n )

n−1
) + O(ε)

)

where the first parenthesis is the contribution of the first buyer, and the second
parenthesis is the contribution of the remaining buyers. Straightforward calcu-
lations shows this is at most 1 + O(ε) in the limit as n → ∞ for any value of
0 < p < 1. This in turn shows that the optimal single pricing mechanism obtains,
in expectation, at most half of the expected value obtained by the mentioned
sequential pricing, and hence at most half of the optimum online.

Corollary 1. Proposition 5 implies that for non-identical distributions, no
improved approximation guarantees can be obtained for the single pricing mech-
anism (even with randomized tie-breaking), when compared against the optimum
online benchmark instead of the optimum offline.

3 Optimum Online and Linear Programming

In this section, we use linear programming to study (a variant of) the optimum
online benchmark for the single item prophet inequality problem. The benefits of
this linear programming approach are two-fold. On the one hand, the LP gives
us a systematic way of describing the optimum online benchmark, which can
then be easily generalized to other more combinatorial domains (e.g. matroids).
On the other hand, we show how to use this LP to design approximate pricing
mechanisms with respect to the optimal offline in a modular way, and therefore
re-deriving simpler proofs for a couple of already existing prophet inequalities.



Prophet Inequalities vs. Approximating Optimum Online 367

We believe this approach can be useful for other settings as well, which we leave
as future research directions. For the ease of exposition, we focus on non-atomic
distributions in this section. The case of general distributions can be easily han-
dled by adding randomized tie-breaking to our mechanisms in a straightforward
fashion.

3.1 LP Characterization of the Optimum Online Benchmark

We consider a slightly stronger version of the optimum online benchmark used in
Sect. 2, which is the optimum online mechanism that knows the ordering of the
buyers in advance. We say that buyers arrive with the ordering π : [n] → [n] if at
each time t = 1, . . . , n buyer π(t) arrives. Now, for an ordering π over the buyers,
let OPT-ONLINE(π) be the optimum online mechanism knowing π. We seek to find
a linear programming characterization for OPT-ONLINE(π) for a fixed π. Note
that using a simple backward induction one can find such an optimum policy;
However, the introduced LP sheds more insight on the structure of this policy
and helps us with designing approximate policies with respect to the optimum
offline (i.e. prophet inequalities).

For a given online policy for the single item prophet inequality problem,
let Xt(v) denote the probability that the policy allocates the item to the buyer
arriving at time t conditioned on the event that the value of this buyer is equal to
v. We term {Xt(v)} as the allocation probabilities associated with a given online
policy. Our linear programming has variables Xt(v) for every t ∈ [n] and every
v ∈ supp(Fπ(t)), where supp(.) denotes the support of its input distribution.3

We then try to impose constraints on these variables to guarantee that the
solution of the LP is implementable by an online policy, without losing anything
in the expected allocated value. Formally speaking, consider the following linear
program, which we denote by LP-ONLINE(π):

maximize

n∑

t=1

Evπ(t)∼Fπ(t)

[
vπ(t) · Xt(vπ(t))

]

subject to Xt(v) ≤ 1 −
∑

t′<t

Ev
π(t′)∼F

π(t′)
[Xt′ (vπ(t′))

]
, ∀v ∈ supp(Fπ(t)), t = 2, . . . , n

X1(v) ≤ 1, ∀v ∈ supp(Fπ(1))

Xt(v) ≥ 0, ∀v ∈ supp(Fπ(t)), t = 1, . . . , n

(LP-ONLINE(π))

It is not hard to see that every feasible online policy induces a feasible solution
for LP-ONLINE(π), by setting Xt(v) to be the allocation probabilities of this
policy. In fact, no allocation happens at time t if the item has been allocated
at some time t′ < t. Therefore, by taking an expectation with respect to the
buyer values arriving at times t′ = 1, . . . , t − 1, Xt(v) will be at most equal to
1−∑

t′<t Evπ(t′)∼Fπ(t′)

[Xt′(vπ(t′))
]
. More interestingly, the converse is also true.

3 In the case of non-atomic distributions, this LP is essentially a continuous program
with uncountably many variables. In the case of discrete distributions, the LP has
finitely many variables.
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Proposition 6. Given any feasible assignment {Xt(v)} for LP-ONLINE(π), there
exists a feasible online policy with an expected allocated value equal to the objec-
tive value of the LP under {Xt(v)}.
Proof. Define qt � 1 − ∑

t′<t Evπ(t′)∼Fπ(t′)

[Xt′(vπ(t′))
]

for t ≥ 2, and q1 � 1.
Consider the following randomized rounding policy: at time t ≥ 1, if the item has
already been allocated do nothing. If it has not yet been allocated, upon realizing
the value vπ(t) flip an independent coin with heads probability of Xt(vπ(t))

qt
. Now,

if the coin flips heads allocate the item and terminate. Otherwise, continue to
the next buyer.

Clearly the above policy is online and feasible, i.e. it sells the item to only
one buyer. To compare its expected allocated value with the objective value
of the LP under the assignment {Xt(v)}, we first claim that qt is equal to the
probability that this randomized policy reaches time t, i.e. with probability qt

the policy does not sell the item to any buyer arriving before time t. We prove
this claim by induction. Clearly q1 = 1 satisfies this property. As the induction
hypothesis, suppose the policy reaches time t ≥ 2 with probability qt. To prove
the inductive step, we have:

P [reaching time t + 1] = P [(reaching time t)& (no allocation at time t)]

= P [no allocation at time t|reaching time t] · qt

= Evπ(t)∼Ft

[
P

[
no allocation at time t| (reaching time t) & vπ(t)

]] · qt

= Evπ(t)∼Ft

[
1 − Xt(vπ(t))

qt

]
· qt = qt − Evπ(t)∼Ft

[Xt(vπ(t))
]
= qt+1

Next we claim that by conditioning the realized value at time t to be v, the
policy allocates the item with probability Xt(v). This is simply true because
the policy reaches time t with probability qt, and then conditioned on reaching
time t and realizing value v allocates the item with probability Xt(v)

qt
. Finally,

as {Xt(v)} are the allocation probabilities of the policy (as we just proved), the
expected allocated value at time t is equal to Evπ(t)∼Fπ(t)

[
vπ(t) · Xt(vπ(t))

]
. The

proof of the proposition is then finished by summing over all t.

3.2 Ex-ante Relaxation and Rounding

The goal of this section is to propose two sequential pricing policies, one for the
case of non-identical distributions and one for the case of identical distributions,
so that they obtain 1

2 and 1− 1
e fractions of the expected value of the omniscient

prophet benchmark, respectively. To this end, we use LP-ONLINE(π) and the
rounding algorithm proposed in Proposition 6, and in a modular fashion design
new algorithms satisfying the classic prophet inequality of [27] and the semi-
optimal prophet inequality of [13] and [18].

Our approach is based on a relaxation of the omniscient prophet benchmark
which we term as the ex-ante relaxation. Suppose the seller intends to sell the
item, but rather than selling the item to only one buyer for every profile of buyer
values, it has a relaxed constraint of selling the item to one person in expectation
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over buyer values. Without loss of generality, assume ∀t : π(t) = t (this will
be cleared shortly). In the ex-ante relaxation benchmark the seller only needs
to sell the item to each buyer t with probability qt, where

∑
t qt ≤ 1. Clearly,

the maximum expected value of the ex-ante relaxation is an upper-bound on the
expected value of the optimum offline mechanisms, as the omniscient prophet
allocates the item to only one buyer point-wise. Moreover, the following linear
program capture the ex-ante relaxation:

maximize
n∑

t=1

Evt∼Ft
[vt · Xt(vt)]

subject to
∑
t∈[n]

Evt∼Ft
[Xt(vt)] ≤ 1,

Xt(v) ≥ 0, ∀v ∈ supp(Ft), t = 1, . . . , n

(Ex-ante-LP)

Fix a feasible assignment {Xt(v)} for the above LP, and let qt = Evt∼Ft
[Xt(vt)].

Note that
∑

t qt ≤ 1. Now, one can replace {Xt(v)} with the following assign-
ment, which obtains at least as much expected value as before and is a feasible
assignment for Ex-ante-LP:

X̂t(v) =

{
1 v ≥ Tt(qt),
0 o.w.

where Tt(qt) is the price corresponding to the quantile qt of the distribution Ft,
as in Definition 1. Under the pricing allocations {X̂t(v)}, the objective value of
the ex-ante LP is equal to

∑n
t=1 Vt(qt), where Vt(qt) is the concave value-curve

of the distribution Ft, as in Definition 1. By putting all the pieces together, the
optimal solution to Ex-ante-LP is X ∗

t (v) = 1{v ≥ Tt(q∗
t )}, where q∗ is the

optimal solution of the following convex program:

maximize
n∑

t=1

Vt(qt)

subject to
∑
t∈[n]

qt ≤ 1, qt ≥ 0 t = 1, . . . , n
(Ex-ante-Conv)

Remark 1. Note that the optimal solution of the ex-ante relaxation
(Ex-ante-LP) can be computed by only knowing the set of distributions
{Ft}t∈[n], and without the need to know the ordering π. In other words, this
benchmark, similar to optimum offline, is order oblivious; no matter what the
ordering π is, the ex-ante relaxation yields the same solution.
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Rounding for the Non-Identical Distributions. We now start with the optimal
solution of the ex-ante relaxation described above, i.e. {X ∗

t (v)}, and modify it so
that it becomes online implementable. In a nutshell, consider Xt(v) = 1

2X ∗
t (v).

We show this solution is feasible for LP-ONLINE(π), for any π as the true ordering
of the buyers. Below, without loss of generality, assume ∀t : π(t) = t.

Proposition 7. The expected value obtained by Algorithm1 is at least 1
2 of opti-

mum offline.

Proof. Suppose X ∗
t (v) = 1{v ≥ Tt(q∗

t )} is the optimal assignment of
(Ex-ante-LP), where q∗ is the optimal solution of the convex program
Ex-ante-Conv. Consider Xt(v) = 1

2X ∗
t (v). We have:

Xt(v) = 1
2X ∗

t (v)
(1)

≤ 1
2

(2)

≤ 1 − 1
2

∑
t′<t

q∗
t′

(3)
= 1 − Evt′∼Ft′ [Xt′(vt′)]

where inequality (1) holds as X ∗
t (v) ≤ 1, inequality (2) holds as

∑
t′<t q∗

t′ ≤∑
t′ q∗

t′ ≤ 1, and equality (3) holds as Evt′ ∼Ft′ [Xt′(vt′)] = 1
2Evt′∼Ft′ [X ∗

t′(vt′)] =
1
2q∗

t′ . Therefore, {Xt(v)} forms a feasible assignment for the LP-ONLINE(π).4 By
applying Proposition 6, there exists a feasible randomized policy that implements
{Xt(v)}; this policy obtains exactly the same allocation probabilities as {Xt(v)}
and obtains an expected value equal to the objective value of LP-ONLINE(π) for
this assignment. Clearly, this objective value is at least 1

2 of the expected value of
the optimum offline, as the optimal value of the ex-ante relaxation program is an
upper-bound on the expected maximum value. Finally, note that the randomized
policy implementing Xt(v), described in the proof of Proposition 6, is exactly
equivalent to Algorithm1.

Algorithm 1: Online policy for non-identical distributions
input: Distributions {F1, . . . , Fn}
Compute the optimal solution of (Ex-ante-Conv). Let q∗ be this optimal solution.
t ← 0
while [ item is not allocated ] & [t ≤ n] do

t ← t + 1
Post a price pt � Tt(q∗

t ).
if price pt gets accepted (vt ≥ pt) then

Allocate the item with probability
1

2 − ∑
t′<t q∗

t′
.

4 Note that we assume the true π is the unitary ordering, but that is without loss of
generality.
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Rounding for the identical distributions. Can we round the ex-ante optimal solu-
tion for the case of identical distributions, and obtain the improved bound of
1− 1

e , or even the optimal bound in [13]? Interestingly, by incorporating a careful
rounding of the ex-ante and using the LP of optimum online, we can obtain a
mechanism which is posting the single price of T ( 1

n ) and show that it achieves
at least 1 − 1

e fraction of the optimum offline (hence an alternative proof for
Proposition 2 and a similar result in [13] and [18]).

Proof (Proof of Proposition 2 using LP). Due to the symmetry, the optimal
solution of Ex-ante-Conv is attained at q∗

i = 1
n , and hence X ∗

t (v) = 1{v ≥
T ( 1

n )}. Let γ � 1 − 1
n , and consider the solution Xt(v) = γt · X ∗

t (v). Note that
Ev∼F [X ∗

t (v)] = 1
n = 1 − γ for all t. Moreover, we have Xt(v) = γt · X ∗

t (v) ≤ γt,
simply because X ∗

t (v) ≤ 1. Therefore,

1 −
∑
t′<t

Evt′ ∼F [Xt′(vt′)] = 1 −
∑
t′<t

γt′ · Evt′ ∼F [X ∗
t′(vt′)] = 1 − 1

n

1 − γt

1 − γ
= γt

where in the last equality we used γ = 1 − 1
n . So, Xt(v) ≤ 1 −∑

t′<t Evt′ ∼F [Xt′(vt′)], and hence forms a feasible solution to LP-ONLINE(π) for
any π. Proposition 6 suggests that there exists a randomized policy that imple-
ments this feasible assignment. In fact, similar to the proof of Proposition 6, the
final policy should post the price T ( 1

n ), and if v ≥ T ( 1
n ) should accept it with

probability:

γt

1 − ∑
t′<t Evt′ ∼F [Xt′(vt′)]

=
γt

1 − 1
n

∑
t′<t γt′ =

γt

1 − 1
n

1−γt

1−γ

= 1,

where the last equality again holds because γ = 1 − 1
n . So, the exact rounding

policy simply suggests posting the single price T ( 1
n ). To compare the expected

value of this policy with that of the optimum offline, we only need to compare
the objective value of LP-ONLINE(π) at this solution with the ex-ante objective
value, thanks to Proposition 6. We have:

n∑

t=1

Evt∼F [vt · Xt(vt)] =
n∑

t=1

γt ·Evt∼F
[
vt · 1{vt ≥ T (

1

n
)}

]
= V (

1

n
)

n∑

t=1

γt = V (
1

n
)
1 − γn+1

1 − γ
,

where the right-hand-side is equal to n · V ( 1
n ) · (1 − (1 − 1

n )n+1) as γ = 1 − 1
n .

Finally, the ex-ante optimal objective is equal to n ·V ( 1
n ) and (1− (1− 1

n )n+1) ≥
1 − 1

e , which completes the proof.

4 Discussion

When designing a simple mechanism, one key question to ask is how do these
simple mechanisms perform compared to a benchmark optimal mechanism. Find-
ing the answer to this question occasionally sheds insights on the structure of the
simple mechanisms and potentially leads to the design of better ones. But, which
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benchmark should be selected? Quite often the designer has multiple economi-
cally justified choices for the benchmark, and the answer to the above “simple vs.
optimal” question relies heavily on this choice. It is therefore valuable to charac-
terize and compare the different existing benchmarks, and understand how well
each one is amenable to approximations by simple mechanisms.

In this paper we take the first stab to consider approximations with respect
to the optimum online benchmark for the single item prophet inequality setting.
We believe this approach can be used for other settings as well and can lead
to more insights on designing more meaningful approximation mechanisms. We
leave these directions as future research.
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Abstract. One of the most celebrated results in mechanism design is
Myerson’s characterization of the revenue optimal auction for selling a
single item. However, this result relies heavily on the assumption that
buyers are indifferent to risk. In this paper we investigate the case where
the buyers are risk-loving, i.e. they prefer gambling to being rewarded
deterministically. We use the standard model for risk from expected util-
ity theory, where risk-loving behavior is represented by a convex utility
function.

We focus our attention on the special case of exponential utility func-
tions. We characterize the optimal auction and show that randomization
can be used to extract more revenue than when buyers are risk-neutral.
Most importantly, we show that the optimal auction is simple: the opti-
mal revenue can be extracted using a randomized take-it-or-leave-it price
for a single buyer and using a loser-pay auction, a variant of the all-pay
auction, for multiple buyers. Finally, we show that these results no longer
hold for convex utility functions beyond exponential.

1 Introduction

The classic mechanism design problem, pioneered by Myerson’s seminal work
(Myerson 1981), considers designing an auction that maximizes the auctioneer’s
revenue. There is rich literature on this mechanism design problem under differ-
ent settings. However, most prior work assumes the buyers are utility maximizers
with quasilinear utility functions, where the utility function is linear in either the
payment or the buyer’s value. These assumptions often make the problem simple
and easy to analyze. In the real world, agents need not follow such assumptions.
In fact, under different behavioral models for the buyers, the auctioneer is able
to draw more revenue than under the standard setting, where the buyers are
maximizing their linear utility functions. One particular example is when the
buyers are risk-averse (Chawla et al. 2018; Maskin and Riley 1984). In this case,
the seller/auctioneer can design an “insurance”-based auction to extract more
revenue from risk-averse buyers. In this paper, we study the setting where the
buyers are risk-loving. We ask whether the auctioneer can take advantage of such
risk-loving behavior, and if so, what can be achieved?

Recently, experiments in electricity markets and transportation networks
have demonstrated the importance of designing a mechanism for risk-loving
c© Springer Nature Switzerland AG 2018
G. Christodoulou and T. Harks (Eds.): WINE 2018, LNCS 11316, pp. 375–392, 2018.
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agents. Electric utility companies are considering how to incentivize customers
to reduce their electricity consumption in peak load times so as to alleviate
the strain on the grid and to prevent expensive line capacity and transformer
upgrades. Some of the more successful attempts to achieve a desired “demand
response” have included offering lottery coupons to consumers for scaling back
demand (Li et al. 2015). In transportation networks, similar lottery schemes
have been applied to reduce congestion in the rush hour (Lu 2015; Merugu et al.
2009; Pluntke and Prabhakar 2013). In both cases, more consumer response was
elicited from lotteries, where a consumer was offered a small chance to win a big
reward, than from small fixed payments. Hence, there is a need for a theoretical
foundation and analysis of the optimal lottery schemes to improve the consumer
response and experience in these nation critical infrastructure applications.

In economics, von Neumann-Morgenstern’s expected utility theory (Von Neu-
mann and Morgenstern 1945) has been a standard model to describe people’s
preferences. According to this theory, an agent evaluates the payoff of an event by
applying a utility function on the wealth it generates, and takes the expectation
over all possible events to evaluate the payoff of a given action. As such, expected
utility theory provides a simple way to describe how people behave when facing
risk—a risk-averse player has a concave utility function, whereas a risk-loving
player has a convex utility function. Consider a payment scheme where a buyer
can choose one of two payment options. In the first option, the buyer either pays
$100 or $0, each with probability 50%. In the second option, she has to pay $50
with certainty. These two options have the same expected gains. A risk-neutral
buyer, who has a linear utility function, is indifferent between these two options.
A risk-averse buyer is going to choose the second option because she prefers
the less risky payment scheme. A risk-loving buyer will choose the first option
because she is more willing to take risks.

In the above example, the expected payment the seller receives is $50. If the
buyer is risk-loving, we can extract more revenue by replacing the first option
with an even more risky payment option. For example, we can offer another
payment option in which the buyer pays $110 or 0, each with probability 50%.
From the risk-loving buyer’s perspective, this new payment option is still prefer-
able to the second option. Therefore, the expected payment the seller receives
will increase to $55. In fact, it has been shown by Hinnosaar (2017) that in the
absence of any regulation, the seller is able to extract infinite expected revenue
from a risk-loving buyer by simply taking advantage of this trick—offering a
menu option that asks the buyer to pay a very high amount with a very small
probability. Therefore, in this paper, we will mainly focus on the bounded trans-
fer setting, i.e. where we upper bound the ex-post payment that the seller may
ask the buyer to pay. In other words, the amount of payment by the buyer is
upper-bounded by some specific value under all circumstances. Particularly, the
bounded transfer requirement can be shown to be equivalent to the buyers having
a publicly known really high yet still bounded budget.
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1.1 Our Results and Techniques

In this paper, we focus on a special case of risk-loving agents, that use an expo-
nential utility function of the form u(x) = β(eαx −1). We seek to design individ-
ually rational and incentive compatible mechanisms that maximize the revenue.
We assume bounded transfers, that is the maximum payment of the mechanism
is bounded, and characterize the optimal mechanism. Surprisingly, we show that
if the value distribution of the agents is well behaved, then the optimal revenue
can be extracted using a randomized take-it-or-leave-it price for a single buyer
and a loser-pay auction, a variant of the all-pay auction where the winner gets
a refund, for multiple buyers.

Our analysis combines a generalized virtual value function similarly to Myer-
son’s analysis (Myerson 1981) and the duality framework developed by Cai et
al. (2016). In particular, we upper bound the revenue of the optimal mechanism
by defining a dual solution that can be interpreted as a generalization of the
virtual value function. Then we show that this solution matches the revenue
obtained by a randomized-take-it-or-leave-it price and the loser-pay auction, for
a single buyer and for multiple buyers, respectively. To our surprise, the vir-
tual value function that captures the marginal revenue is different in the single
buyer and multiple buyer settings, which may be explained due to the additional
uncertainty introduced by the extra buyers.

These results are in stark contrast with the risk-averse setting where the
seller can improve the revenue by offering a plethora of lotteries each with a
deterministic price but different allocation probabilities (Maskin and Riley 1984).
The risk-averse buyer opts to pay for lotteries that are priced close to her value
and the risk is used as a deterrent for under-bidding. On the other hand, we
can extract more revenue from a risk-loving buyer by randomizing the payment.
This is because the buyer gains more utility from gambles so that we can increase
the probability that the price is accepted. This difference in how risk behavior
is exploited explains the conceptually different nature of revenue maximizing
mechanisms in the two settings.

2 Related Work

Most work on optimal mechanism design beyond the risk-neutral setting has
focused on risk-averse preferences. The classic results of Maskin and Riley (1984)
and Matthews (1983) provide a characterization of the optimal mechanism with
concave utility functions. A recent result in this area by Dughmi and Peres (2012)
is that any mechanism designed for risk-neutral buyers can be adjusted to also
align the incentives of risk-averse buyers and obtain similar guarantees. Fu et
al. (2013) consider the design of prior-independent mechanisms (that have no
access to the buyers’ private value distributions) for risk-averse buyers. Finally,
Chawla et al. (2018) study the design of robust mechanisms under the cumulative
prospect theory model.
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To the best our knowledge, the only work on mechanism design under risk-
loving behavior is by Hinnosaar (2017), who shows that in the absence of regula-
tions, the seller can extract infinite revenue from the buyer with asymptotically
risk-loving behavior under both the expected utility theory and prospect theory
models.

Recently, the duality theory framework has drawn attention in the mecha-
nism design community for understanding optimal mechanisms for selling mul-
tiple items. For example, Daskalakis et al. (2017, 2013) and Giannakopoulos
and Koutsoupias (2014, 2015) discovered the connection between the dual prob-
lem and the optimal transport (bipartite matching) problem. Cai et al. (2016)
consider a duality framework via linear programming, and identify a connection
between the virtual valuations and the dual variables. In our setting, the problem
results in a different form of dual problem than in the multi-item setting, hence
we seek to establish a new duality framework that diverges from the multi-item
setting to different behavior models.

3 Problem Statement

We study revenue maximization for a single seller and n symmetric buyers.
The seller has a single item to sell and each buyer i has a private value ti
for the item. We use t = (t1, . . . , tn) to denote the values of all buyers. We
let V = {v1, v2, . . . , vK} denote the set of all possible values, which is shared
by all buyers. For simplicity, we assume v1 = 0 and v1 < v2 < · · · < vK .
Additionally, we assume each buyer’s private value is drawn independently from
a known identical distribution with probability mass function f . Without loss of
generality, we assume f(v) > 0 for all v ∈ V . Further, we let P = {z1, z2, . . . , zM}
denote the set of allowed payments, where z1 = 0 (no positive transfers) and
z1 < z2 < · · · < zM . Here we implicitly assume that P is upper-bounded by
zM

1. This implies that our setting becomes equivalent with the case where the
payments are unconstrainted but the buyer has a publicly known budget of zM

as we show in Subsect. 3.2. We additionally require that zM > vK , that is, the
upper bound of the payment is larger than the largest possible buyer’s value.

Each buyer seeks to maximize her utility given by a function u : R → R,
which we assume is strictly increasing and u(0) = 0. If u is linear, then we say
the buyers are risk-neutral and if u is convex, then we say that the buyers are
risk-loving. For the rest of the paper, we focus on a special case of convex utility,
specifically the exponential utility function given by u(x) = β(eαx − 1) for some
α > 0 and β > 0. Unless otherwise noted, we will assume such an exponential
utility function for the buyers.

Notation. Let [R] denote the set {1, 2, . . . , R}, for any positive integer R. For
any vector v, we use v−i to denote the vector generated by removing the i-
th coordinate from v. Also, we use (v, v−i) to denote the vector generated by
replacing the i-th coordinate of v with v.
1 Without this assumption, it can be shown that there exists a mechanism that attains

infinite revenue from risk-loving buyers Hinnosaar (2017).
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3.1 Direct Mechanisms and Bayesian Incentive Compatibility

In a direct mechanism the auctioneer elicits bids from each buyer and then
decides on their allocation probabilities and payments. We represent such a
mechanism by Md = (X,P ), where X : V n → {0, 1}n is a random allocation
function and P : V n → Pn is a payment function which can also be random-
ized. Given all buyers’ values t = (t1, . . . , tn), we refer to the random variable
(X(t), P (t)) as the outcome of the mechanism at t.

We require that our mechanism Md is Bayesian incentive compatible (BIC),
that is, for each buyer, it is in her best interest to truthfully report her value in
expectation. Note that this expectation takes into account the randomness of the
mechanism as well as the uncertainty about the other buyers’ values. Formally,
Md = (X,P ) is BIC if for any i ∈ [n] and for any v ∈ V and v′ ∈ V , it holds
that

E[u(vX(v, t−i) − P (v, t−i))] ≥ E[u(vX(v′, t−i) − P (v′, t−i))], (1)

where the expectation is taken over X, P , and t−i. A mechanism is individually
rational (IR) if it guarantees a non-negative expected utility for every buyer that
truthfully reveals her value, i.e., for any i ∈ [n] and for any v ∈ V , it holds that

E[u(vX(v, t−i) − P (v, t−i))] ≥ 0. (2)

Note that if we only allow non-negative payments, then we must have P (0, t−i) ≤
0 almost surely.

3.2 Bounded Transfers and Budgeted Buyers

As we stated in the beginning of Sect. 3 we require the mechanism to charge
ex-post payments from a finite pool of P, where zM is the largest ex-post price
that also satisfies that zM > vK , i.e., the upper-bound on the payment is larger
than the highest value of the buyer. The finiteness of zM can be thought of as
buyers having a finite budget equal to zM . Particulalry, for the case where P was
unbounded but the buyers had a budget of zM then no revenue maximizing IR
mechanism would ever charge an ex-post price larger than zM . Similarly, in any
feasible mechanism under the bounded-transfer setting, the buyers with budget
greater than the upper-bound on the ex-post price behave as if they had no
budget at all. As a result, in both of those cases the revenue-maximizing BIC
and IR mechanism are the same.

3.3 Myerson’s Mechanism and Virtual Values

One of the fundamental results of auction theory is Myerson’s characterization
of revenue optimal mechanisms for risk-neutral buyers (Myerson 1981). This is
achieved by an amortized analysis that expresses the revenue of any mecha-
nism via the virtual value function φ(v), which captures the marginal revenue
of allocating to a buyer with value v. The virtual value function is defined for



380 E. Nikolova et al.

a continuous distribution of values (and can be similarly defined for a discrete
one), with cumulative distribution function F and probability density function
f , as

φ(v) = v − 1 − F (v)
f(v)

. (3)

The revenue of the mechanism equals the expected virtual surplus, i.e., the
expected virtual value of the winner. As a result, if the value distributions satisfy
certain properties, the optimal mechanism turns out to be quite simple: for a
single buyer it is just a take-it-or-leave-it price and for multiple symmetric buyers
it is the second price auction with a common reserve. However, this definition
of virtual values heavily relies on the risk-neutrality assumption. Our analysis
generalizes this definition for risk-loving buyers in Definition 2 in order to derive
our results.

3.4 Revenue Maximization as an Optimization Problem

Our goal is to characterize the optimal mechanism for revenue maximization. To
that end, we model the mechanism design question as an optimization problem.
We define the decision variables {y0

i,j , y
1
i,j}i∈[n],j∈[M ], where y0

i,j : V n → [0, 1] and
y1

i,j : V n → [0, 1], that encode the mechanism Md as follows: y0
i,j(t) represents

the probability that buyer i does not get the item and pays zj when the buyers’
values are t. Similarly, y1

i,j(t) represents the probability that buyer i gets the
item and pays zj , given the buyers’ values are t.

Those decision variables capture both the allocation and the payment of the
mechanism given any reported values. To see this, the allocation probability
that buyer i gets the item given values t is

∑
j y1

i,j(t) and the expectation of her
randomized payment is

∑
j zjy

1
i,j(t) +

∑
j zjy

0
i,j(t) where the first and second

summand correspond to her expected payment if she wins or loses the item
respectively.

For the sake of succinctness of our optimization problem formulation, we fur-
ther define the interim version of the decision variables y1

i,j(t), y
0
i,j(t), denoted by

y1
i,j(vk), y0

i,j(vk). Namely, given that the buyer has value vk, what is the expected
probability of winning/losing the item and paying value zj in expectation over
the values of the other buyers v−i? These interim variables are given by:

y1
i,j(vk) =

∑

v−i∈V n−1

y1
i,j(vk, v−i)f(v−i), y0

i,j(vk) =
∑

v−i∈V n−1

y0
i,j(vk, v−i)f(v−i).

(4)

We can express the interim allocation xi(k) of buyer i at value vk as xi(k) =∑
j y1

i,j(vk) and her interim payments in case of win pi(k) and loss qi(k) as:

pi(k) =

∑
j zjy

1
i,j(vk)

xi(k)
, qi(k) =

∑
j zjy

0
i,j(vk)

1 − xi(k)
.
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The above follow from the definition of conditional probability. With this nota-
tion, we can rewrite the BIC constraint as:
∑

j

[
y
1
i,j(vk)u(vk − zj) + y

0
i,j(vk)u(−zj)

]
≥

∑

j

[
y
1
i,j(vk′ )u(vk − zj) + y

0
i,j(vk′ )u(−zj)

]
, ∀k, k′ ∈ [K],

(5)

where the first and second summand on the left hand side correspond to the
expected utility if buyer i wins and loses, respectively, after truthfully reporting
vk. Similarly, the first and second summand on the right hand side correspond
to the expected utility if buyer i wins and loses, respectively, after misreporting
vk′ .

In addition, we can write the IR constraint as
∑

j

[
y1

i,j(vk)u(vk − zj) + y0
i,j(vk)u(−zj)

] ≥ 0, ∀k ∈ [K]. (6)

Finally, we need to satisfy the feasibility constraints
∑

j

(
y0

i,j(v) + y1
i,j(v)

)
= 1,

∑

i

∑

j

y1
i,j(v) ≤ 1, ∀v ∈ V n. (7)

Therefore, we can find the optimal mechanism by solving the following linear
program:

Maximize
∑

i

∑

v∈V

f(v)
∑

j

zj

[
y0

i,j(v) + y1
i,j(v)

]

Subject to Constraints (4), (5), (6), and (7).

y0
i,j(v) ≥ 0, y1

i,j(v) ≥ 0, ∀v ∈ V n. (8)

3.5 Overview of Main Theorems and Results

The main result of this paper is that there is no need to actually solve the
linear program (8) in order to compute the optimal mechanism. Instead, we take
advantage of the linear program formulation (8) of the problem to help us derive
simple mechanisms that are optimal. In particular, when there is a single risk-
loving buyer with an exponential utility function, we show that the optimal
mechanism is a randomized “take-it-or-leave-it” price, which offers the buyer a
single randomized price irrespectively of her value. We present this result in the
following theorem:

Theorem 1 (Restatement of Theorem 5). Consider a single risk-loving
buyer with exponential utility. The optimal mechanism is the revenue maximizing
randomized take-it-or-leave-it price.

When there are multiple symmetric risk-loving buyers, we show that the
optimal mechanism is a loser-pay auction with a reserve price. In a loser-pay
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auction, the item is awarded to the buyer with the highest value but only the
buyers who do not get the item are paying. Similarly to the single buyer case, all
payments are randomized between the minimum and the maximum price. We
will show the following theorem:

Theorem 2 (Restatement of Theorem 6). Consider n ≥ 2 risk-loving buy-
ers with exponential utility u(x) = β(eαx − 1). Assume zM � α. Then, the
optimal mechanism is a loser-pay auction.

4 Optimal Mechanism Design for a Single Buyer

In this section, we characterize the revenue-maximizing mechanism for selling an
item to a single risk-loving agent. Specifically, we show that the optimal mech-
anism is a randomized “take-it-or-leave-it” price, that offers the buyer a single
randomized price irrespectively of her value. To prove that, we first characterize
the revenue generated by the optimal randomized take-it-or-leave-it price. Then,
we prove that this mechanism remains optimal if we allow an arbitrary BIC
mechanism, by utilizing the optimization problem formulation and the duality
framework to find a matching upper bound. Note that this result is quite similar
to what the Myerson characterization implies for the single risk-neutral buyer
setting with the exception that the optimal “take-it-or-leave-it” price is always
deterministic. However, as Example 1 demonstrates, this is no longer true for the
risk-loving setting, and randomizing the price is required even in the case where
the allocation probability is deterministic.

For the rest of this section, we are going to use the following menu of options
interpretation that provides an equivalent description of BIC mechanisms in
the single buyer case: A menu consists of a tuple (Xi, Pi) where Xi and Pi

represent the allocation and payment random variables. Instead of the buyer
revealing her value, the seller offers the buyer a collection of menu options and
the buyer chooses the menu option that maximizes her utility. For example, a
deterministic take-it-or-leave-it price can be described with the menu options
(0, 0), (1, P ) where P is a point-mass at some price p.

4.1 Sub-optimality of Deterministic “Take-It-or-Leave-It” Prices

We illustrate that randomizing a take-it-or-leave-it price can result in increased
revenue as the buyer shifts from a risk-neutral to a risk-loving utility function.
For the sake of the presentation we use a continuous distribution but similar
results can be derived using a discrete value distribution.

Example 1. Assume the buyer’s value t for the item is distributed according
to the Uniform distribution U(0, 1). Then, the optimal mechanism with a risk-
neutral buyer is to offer the buyer a take-it-or-leave it price of 1/2, producing a
revenue of 1/4. Now, consider the case of a risk-loving buyer with utility u. Her
utility of accepting this price is u(t−1/2). Now, consider a different scheme using
a randomized take-it-or-leave-it price: with probability 1/2 pay nothing and with



Optimal Mechanism Design with Risk-Loving Agents 383

probability 1/2 pay 1. Note that this scheme has the same expected payment
as the first one. However, the expected utility of the buyer for this option is
1
2u (t) + 1

2u (t − 1) and by Jensen’s inequality, we get that 1
2u (t) + 1

2u (t − 1) >
u

(
t − 1

2

)
, which indicates that the expected utility function for the randomized

menu option is always above the utility function of the menu option (1,1/2). This
means that the probability that a buyer accepts the randomized menu option
is greater than 1/2, i.e. Pr[12u(t) + 1

2u(t − 1) ≥ 0] ≥ Pr[u(t − 1/2) ≥ 0] = 1/2.
Therefore, offering the randomized menu option earns more revenue.

4.2 Optimal Take-It-or-Leave-It Randomized Price

In Example 1, we saw that randomizing the take-it-or-leave-it price increased the
revenue extracted by a risk-loving buyer. This gives rise to the question: What
is the revenue maximizing randomized take-it-or-leave-it price?

Definition 1. A randomized take-it-or-leave-it price with allocation and price
P is a mechanism that contains only two menu options (0, 0) and (1, P ).

In a randomized take-it-or-leave-it price scheme, the seller posts a (possibly
randomized) price P of the item, and asks the buyer to accept it or not. If
the buyer rejects the price, then her allocation is zero and she pays nothing.
According to Myerson (1981), we know that with a risk-neutral buyer, it is
optimal to post P with the expectation of P equal to arg maxv(v Pr[t ≥ v]).
In contrast, for a risk-loving buyer we show that P must be randomized and
specifically have positive support only for the maximum and minimum allowable
price. Formally, we state this in the following theorem:

Theorem 3. With a risk-loving buyer, the randomized take-it-or-leave-it price
with following randomized payment rule

P =

{
zM , w.p. u(v∗)

u(v∗)−u(v∗−zM )

0, otherwise

where v∗ = arg maxv∈V
zM Pr[t≥v]u(v)
u(v)−u(v−zM ) , is the optimal randomized take-it-or-leave-

it price. The optimal take-it-or-leave-it price has revenue maxv∈V
zM Pr[t≥v]u(v)
u(v)−u(v−zM ) .

Note that for a linear utility function u this implements the optimal deter-
ministic take-it-or-leave-it price for a risk neutral agent and produces the exact
same revenue. We call the optimal take-it-or-leave-it mechanism the revenue
maximizing randomized take-it-or-leave-it price.

Theorem 3 can be proved in two steps. In the first step, we apply Jensen’s
inequality to show that given any pricing rule P , we can construct another
pricing rule P ′ that randomizes between 0 and zM , and achieves a larger utility
than P for any value v ∈ V . In the second step, we use the individual rationality
constraint to derive the optimal pricing. Due to space constraints, we defer the
full proof to the full version of this paper (Nikolova et al. 2018).
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4.3 Duality Theory for Optimal Mechanisms

In this section, we prove our main theorem (Theorem4), namely that the
revenue-maximizing take-it-or-leave-it randomized price is optimal among all
possible mechanisms for revenue extraction. This is similar in nature to the risk-
neutral setting where Myerson (1981) showed that a take-it-or-leave-it payment
is optimal. It is important to note that the same is not true for the case of risk-
averse agents where multiple menu options can be used to extract revenue that
approaches the social welfare given sufficient aversion to risk.

We prove this theorem by upper bounding the revenue of the optimal mecha-
nism using the optimization problem formulation (8) and employing the duality
framework. Specifically, we identify dual variables of the Lagrangian dual pro-
gram and show that it matches the maximum revenue obtained by a take-it-
or-leave-it randomized price. The core idea is to define a virtual value function
that captures the marginal revenue and assume a regularity condition to close
the duality gap. The virtual values used in interpreting Myerson’s result heavily
rely on the assumption of risk neutrality, therefore we need a new definition of
virtual value.

Definition 2 (Virtual value function for a single buyer). In the single
buyer setting, the virtual value function φu : [K] → R with respect to utility
function u is defined as

φu(k) =
1

f(vk)

⎛

⎝
∑

k′≥k

f(vk′ ) · u(vk)

u(vk) − u(vk − zM )
−

∑

k′≥k+1

f(vk′ ) · u(vk+1)

u(vk+1) − u(vk+1 − zM )

⎞

⎠ .

Note that this definition of the virtual value function reduces to Myerson’s
virtual value function for linear u. To see how this new definition of virtual
value function is related to the marginal revenue, consider a take-it-or-leave-it
mechanism with a pricing rule that asks the buyer to pay zM with probability
p, and pay zero otherwise. If we would like to guarantee that this pricing rule
is accepted by a buyer with value greater than v, then by individual rationality,
we can find that the largest p, the probability of paying zM , we can set is

u(v)
u(v)−u(v−zM ) . Therefore, the expected revenue we have from this mechanism

is
∑

v′≥v f(v′)zM
u(v)

u(v)−u(v−zM ) . As a result, we can find that f(vk)φu(k)zM is
indeed the marginal increase on the revenue by moving the threshold value from
vk+1 to vk. Given the definition of the virtual value function above, we need to
define the following regularity condition:

Definition 3 (Regular distribution for a single buyer). In the single buyer
setting, a distribution f is regular if the corresponding virtual value function is
monotone increasing, i.e. for any k, k′ ∈ [K] and k > k′, it holds that φu(k) >
φu(k′).

Note that with this regularity condition, in the optimal take-it-or-leave-it
mechanism considered in Theorem 3, the optimal quantile can also be found by
looking at the smallest k ∈ {0, 1, . . . ,K} such that φu(k) > 0. We are now
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ready to state our first main result in Theorem4, which says that the revenue
maximizing randomized take-it-or-leave-it price that we derived in Theorem 3
is the optimal mechanism for a single buyer, assuming the regularity condition.
Due to space constraints, we will only give a proof sketch that demonstrates
our duality framework, and we defer the full proof to the full version of this
paper (Nikolova et al. 2018).

Theorem 4. Consider a single risk-loving buyer with exponential utility whose
value is drawn from a regular distribution f . Then, the optimal mechanism is
the revenue maximizing randomized take-it-or-leave-it price.

In order to prove this theorem, first note that the revenue of the optimal
mechanism is upper-bounded by the Lagrangian dual program of the linear pro-
gram (8). For the single buyer case the dual program of (8) can be simplified
as

Minimize
∑

k∈[K]

νk (9)

Subject to the following constraints:

f(vk)zj +
∑

k′
(λkk′u(vk − zj) − λk′ku(vk′ − zj)) + μku(vk − zj) ≤ νk, ∀k ∈ [K], j ∈ [M ]

f(vk)zj +
∑

k′
(λkk′ − λk′k)u(−zj) + μku(−zj) ≤ νk, ∀k ∈ [K], j ∈ [M ]

μk ≥ 0, λkk′ ≥ 0, ∀k, k′ ∈ [K],

where λkk′ corresponds to the BIC constraints (5), μk corresponds to the IR
constraints (6), and νk corresponds to the feasibility constraints (7). For the first
two sets of the constraints in program (9), we define

Γk(z;λ, μ) = f(vk)z +
∑

k′
(λkk′u(vk − z) − λk′ku(vk′ − z)) + μku(vk − z)

Πk(z;λ, μ) = f(vk)z +
∑

k′
(λkk′ − λk′k) u(−z) + μku(−z).

In the dual program (9), the constraint Γk(z;λ, μ) ≤ νk corresponds to the vari-
able y1

1,j(vk) in the primal (8) and the constraint Πk(z;λ, μ) ≤ νk corresponds to
the variable y0

1,j(vk). In fact, for any k ∈ [K], we can show that among the sets of
constraints {Γk(zj ;λ, μ) ≤ νk}j∈[M ] and {Πk(zj ;λ, μ) ≤ νk}j∈[M ], only the fol-
lowing four can be binding: Γk(0;λ, μ) ≤ νk, Γk(zM ;λ, μ) ≤ νk, Πk(0;λ, μ) ≤ νk,
and Πk(zM ;λ, μ) ≤ νk. This can be observed by the following lemma:

Lemma 1. In the dual program (9), both Γk(z;λ, μ) and Πk(z;λ, μ) are either
increasing or strongly convex in z for z ≥ 0.

Now, we are ready to demonstrate how we can construct a set of dual variables
that helps prove our main theorem in the following proof sketch. Due to space
constraints, the proof of Lemma 1 and the detailed discussion of Theorem4 can
be found in the full version of this paper (Nikolova et al. 2018).
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Proof (Proof sketch of Theorem 4). To prove the theorem, we construct a set of
feasible dual variables that upper bound the value of the dual program (9) by the
revenue of the optimal take-it-or-leave-it randomized price. For any k, k′ ∈ [K],
we set μk = 0 and

λkk′ =

{∑
�≥k f(v�)zM

1
u(vk)−u(vk−zM ) , if k′ = k − 1

0, otherwise.
(10)

For simplicity, we define k∗ = min{k : φu(k) > 0}. For any k ∈ [K], we set

νk = max {0, f(vk)φu(k)zM} .

Under this choice of νk, given the regularity condition, we can write the objective
of the dual program (9) as

∑

k

νk =
∑

k:φu(k)>0

f(vk)φu(k)zM =
∑

k≥k∗
f(vk)φu(k)zM .

Then, by the definition of the virtual value function, we have
∑

k

νk =
∑

k≥k∗

( ∑
k′≥k f(vk′)u(vk)

u(vk) − u(vk − zM )
−

∑
k′≥k+1 f(vk′)u(vk+1)

u(vk+1) − u(vk+1 − zM )

)

zM

=
∑

k≥k∗
f(vk)zM · u(vk∗)

u(vk∗) − u(vk∗ − zM )
, (11)

where the last equality results from taking a telescopic sum. We can find that
the expression in the last line (11) is equal to the revenue of the optimal take-it-
or-leave-it mechanism.

It remains to verify that this choice of the dual variables is feasible for the dual
program (9). Since we have argued that the sets of constraints {Γk(zj ;λ, μ) ≤
νk}j∈[M ] and {Πk(z;λ, μ) ≤ νk}j∈[M ] can only be binding at j = 0 and j = M ,
it suffices to check whether Γk(0;λ, ν) ≤ νk, Γk(zM ;λ, ν) ≤ νk, Πk(0;λ, ν) ≤ νk,
and Πk(zM ;λ, ν) ≤ νk. We defer the detailed derivation to the full proof in the
full version of the paper. Here, we only show that by bringing our choice of the
dual variables into these constraints, we have

Γk(0;λ, μ) = f(vk)φu(k)zM , Γk(zM ;λ, μ) = f(vk)φu(k)zM ,

Πk(0;λ, μ) = 0, Πk(zM ;λ, μ) = (1 − e−αzM )f(vk)φu(k)zM .

By definition of νk, we can find that this assignment of dual variables is feasible.
Therefore, weak duality implies that the objective value of program (8) is upper
bounded by the revenue maximizing take-it-or-leave-it randomized price, which
shows that this mechanism is optimal.

In addition, we can find that given k ∈ [K], as long as φu(k) > 0, the only
binding dual constraints are Γk(0;λ, μ) ≤ νk and Γk(zM ;λ, μ) ≤ νk. Therefore,
by complementary slackness, in the optimal mechanism, the pricing scheme must
be a randomization of 0 and zM , and must ask the buyer to pay only if she is
given the item. This coincides with the revenue-maximizing randomized take-it-
or-leave-it price, which is our claimed optimal primal solution.
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4.4 Optimal Mechanism Beyond Regularity Condition

In the next step, we would like to extend our duality framework described in
Theorem 4 to the case without a regularity condition. Namely, we would like to
prove that the revenue-maximizing take-it-or-leave-it randomized price is still
optimal even though the virtual value function is not an increasing function,
using the similar argument that we have made in Sect. 4.3. Formally, we would
like to prove the following theorem:

Theorem 5. Consider a single risk-loving buyer with exponential utility. The
optimal mechanism is the revenue-maximizing randomized take-it-or-leave-it
price.

The technique that we use to prove this theorem consists of two steps. First,
we construct an ironed virtual value φ̃u. The ironed virtual value function is
an increasing function constructed based on the original virtual value function,
which is similar to the risk-neutral case as in Myerson’s work. After that, we
can slightly modify the dual variables that we specified in Sect. 4.3 to match the
ironed virtual value and then claim the optimality of the revenue-maximizing
randomized take-it-or-leave-it price by strong duality.

Surprisingly, having a non-linear utility function does not complexify the
ironing process. We can directly apply Myerson’s ironing for a risk-loving buyer
by convexifying the cumulative virtual value function. Formally, we can define
the “ironed virtual value” function in the following way:

Definition 4 (Ironed virtual value for a single buyer). Given a virtual
value function φu. Let {[a1, b1], [a2, b2], . . . , [am, bm]} denote the intervals that
are not convex on the cumulative virtual value function Fφ(k) =

∑
�≤k φu(	).

Then, the ironed virtual value function is defined as

φ̃u(k) =

⎧
⎨

⎩

∑bi
�=ai

f(v�)φu(�)
∑bi

�=ai
f(v�)

, if k ∈ [ai, bi], for any i ∈ [m]

φu(	), otherwise.

Although the ironing process is straightforward, how to modify the dual variables
to match the ironed virtual value is more tricky. Recall that under the choice
of λ as specified in (10), the left hand side of the first dual constraint is upper-
bounded by the virtual value, i.e. Γk(0;λ, μ) = Γk(zM ;λ, μ) = f(vk)φu(k)zM .
Motivated by Cai et al. (2016), we show that we can add loops to λ to alter
the value of Γk.2 More precisely, consider some k′ < k. If we add Ae−αvk to
λk,k′ and add Ae−αvk′ to λk′,k for some A > 0, then Γk(0;λ, μ) is increased
by A[e−αvk′ − e−αvk ] and Γk′(0;λ, μ) is decreased by A[e−αvk′ − e−αvk ]. This
distorted modification guarantees that the binding structure does not change,
i.e. Γk(0;λ, μ) = Γk(zM ;λ, μ) and Γk′(0;λ, μ) = Γk′(zM ;λ, μ). With this idea,
2 In Cai et al. (2016), the dual variables can be interpreted as flows. However, in our

setting, this interpretation no longer holds. We need to handle the distortion caused
by the non-linear utility function.
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we are able to apply Myerson’s ironing by iterative adding loops to λ in the way
such that Γk(0;λ, μ) = f(vk)φ̃u(k)zM holds after the modification. After that,
we are able to follow the steps in the proof of Theorem1 to prove the theorem.
Due to the space constraint, we defer the detailed proof of Theorem5 to the full
version of the paper (Nikolova et al. 2018).

5 Optimal Mechanism Design with Multiple Symmetric
Buyers

In this section, we extend our analysis of optimal mechanism design to multiple
symmetric buyers (n ≥ 2). Since the buyers are symmetric, their values come
from the same distribution and they have the same utility function. We show
that the loser-pay auction achieves the maximum revenue in the multiple-buyer
case. In a loser-pay auction, the buyer with the highest value wins the item
and only the buyers that do not obtain the item pay. In addition, similarly
to the randomized take-it-or-leave-it pricing, all payments are made using a
mixing of the minimum and the maximum price. This auction could be thought
of as implementing an incentive-compatible version of the all-pay auction but
adjusting it to achieve maximum discrepancy between the two outcomes.

When characterizing the revenue maximizing mechanisms, our analysis is
similar to the analysis in Sect. 4.3 in that it uses the virtual value formulation
and the duality framework to upper bound the revenue obtained by the optimal
mechanism. In what follows, we first give an example of the loser-pay auction
and show how it improves the revenue compared to the second price auction,
which is optimal for risk-neutral buyers.

5.1 An Example

Example 2. Consider two buyers. Assume the private values of both buyers are
distributed independently according to the uniform distribution U({0, 1}), and
u(x) = eαx − 1. Also assume 3(eαx − 1) < 1 − e−αzM . Consider the following
mechanism:

1. The item is allocated to the buyer who reports the higher value. If both buyers
report 1, the item is allocated uniformly at random. If both buyers report 0,
the item is not allocated to anyone.

2. If a buyer reports 1, she gets the item and does not pay anything. However, if
she reports 1 and she does not get the item, then she pays zM with probability
3(eα−1)
1−e−αzM

.

To verify this mechanism is BIC and IR, we check the utility curve if a buyer
reports 1 to the seller. Consider buyer 1. Given her true value is t1, her expected
utility is

x1(2)u(t1) + (1 − x1(2))
3(eα − 1)
1 − e−αzM

u(−zM ) =
3
4

(
eαt1 − 1

) − 3
4
(eα − 1),
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which is 0 if t1 = 1 and − 3
4 (eα − 1) if t1 = 0. This verifies that the mechanism

is BIC and IR. Next, we can find that the revenue of this mechanism is

Rev =
∑

i∈{1,2}
Pr[ti = 1](1 − xi(2))

3(eα − 1)
1 − e−αzM

zM =
3
4

eα − 1
1 − e−αzM

zM .

From the above example, we make two observations. First, we find that compared
with the case of a single buyer, the revenue is increased by a factor of 3

2eα. Note
that in the case of risk-neutral buyers, this factor is only 3

2 . The additional factor
of eα comes from the second observation—the buyer pays if she does not get the
item. In the rest of this section, we show that these two properties hold in the
optimal mechanism.

5.2 The Loser-Pay Auction

Recall that in the setting with risk-neutral buyers, the second-price auction
with reserve price is optimal. A natural question here is, when the buyers are
risk-loving, does the optimal mechanism take a similar form? We show that,
given the assumption that zM � α, i.e., the maximum allowed price is far
greater than the level of risk-loving, the optimal mechanism corresponds to the
revenue maximizing loser-pay auction. From Example 2, we already know that
the optimal payment rule is to ask the buyer who loses to pay a randomized
price. The reserve price in our risk-loving setting, similarly to the risk-neutral
setting, is going to be computed via a virtual value function.

We have already defined a virtual value function for the convex utility func-
tion in Sect. 4.3. However, recall that the virtual value function is the marginal
revenue in the quantile space. According to Example 2, there is an additional eα

factor in the revenue of the multi-buyer setting, hence now we need a different
definition of the virtual value function than in the single buyer case. Specifically,
in the multi-buyer setting, we need to consider the following new virtual value
function that takes this eα factor into account:

Definition 5 (Virtual value function for multiple buyers). In the multi-
buyer case, the virtual value function Φu : [K] → R with respect to an exponential
utility function u is defined as

Φu(k) =
1

f(vk)

⎛

⎝
∑

k′≥k

f(vk′ ) · eαvk u(vk)

u(vk) − u(vk − zM )
−

∑

k′≥k+1

f(vk′ ) · eαvk+1u(vk+1)

u(vk+1) − u(vk+1 − zM )

⎞

⎠ .

In the full version of the paper we show that this additional eα factor comes
from the competition that only happens when there are multiple buyers. Similar
to the single buyer case, we call a distribution f a regular distribution if its
corresponding virtual value function is a monotone increasing function. If f
is not regular, then we can apply Myerson’s ironing to the new virtual value
function as what we have described in Sect. 4.4. We let Φ̃u denote the ironed
virtual value of Φu. The formal definition of Φ̃u can be found in the full version
of this paper (Nikolova et al. 2018).
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Now, we are ready to describe the loser-pay auction—the mechanism that
we claim to be optimal when the buyers are risk-loving:

Definition 6 (The loser-pay auction). A loser-pay auction is a direct mech-
anism with the following allocation and payment rule:

1. Suppose each buyer i bids vki
. Then, the auctioneer allocates the item to buyer

i if Φ̃u(ki) > Φ̃u(ki′) for every other buyer i′ �= i provided Φ̃u(ki) > 0.
2. Suppose each buyer i bids vki

. If buyer i submits the bid with the largest ironed
virtual value and ties with nt − 1 other buyers, then she gets the item with
probability 1/nt provided Φ̃u(ki) > 0.

3. If buyer i bids vk and gets the item, she pays nothing.
4. If buyer i bids vk with Φ̃u(k) ≤ 0, she pays nothing, i.e. qi(k) = 0.
5. If buyer i bids vk with Φ̃u(k) > 0 and does not get the item, then she pays zM

with probability

qi(k) =
1

1 − xi(k)

k∑

k′=k∗

[xi(k′) − xi(k′ − 1)]u(vk′)
−u(−zM )

,

where k∗ = min{k ∈ [K] : Φu(k) > 0} is the index of the reserve price.

For simplicity, in this section, we use k = (k1, . . . , kn) to denote the indices of
bids from all buyers. Also, we use f(k) =

∏
i∈[n] f(vki

) to denote the probability
that t = (vk1 , vk2 , . . . , vkn

). If buyer i submits her bid vk that is no less than the
reserve price vk∗ , then the interim probability that she gets the item is

xi(k) =
∑

k−i∈[K]n−1

f(k−i)

⎡

⎣
1

{
Φ̃(vki

) ≥ Φ̃(vki′ ),∀i′ �= i
}

∑
i′∈[n] 1

{
Φ̃(vki

) = Φ̃(vki′ )
}

⎤

⎦ ,

where 1{A} is the indicator function that equals 1 if event A is true, and 0
otherwise. In order to guarantee that the payment rule of the loser-pay auction
is feasible, we need to make the following assumption, which plays an important
role in guaranteeing qi(k) < 1:
(A1) zM � α so that for each v ∈ V , it holds that 1− 1

n f(v)
1
n f(v)

·(eαv−1) < 1−e−αzM .
In the full version of this paper (Nikolova et al. 2018), we show that the loser-

pay auction is feasible, individually rational, and Bayesian incentive compatible
under Assumption (A1). In the following theorem, we formally state that the
loser-pay auction is an optimal mechanism. The full proof can also be found in
the full version of this paper.

Theorem 6. Consider n ≥ 2 buyers with exponential utility. With Assump-
tion (A1), the loser-pay auction is the optimal mechanism.
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6 Conclusion

In this paper we studied the revenue-c mechanism for the special case of risk-
loving agents with exponential utility functions. We demonstrate that for both
a single and multiple symmetric buyers the optimal auction is simple. A natural
question is whether or not the same results extend beyond the expoential utility
function. Unfortunately, it can be shown that optimal auction for the case of a
single agent with quadratic utility function is more complicated than the simple
randomized take-it-or-leave it offer and requires us to utilize at least one more
menu option3.
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Abstract. Tournament solutions provide methods for selecting the
“best” alternatives from a tournament and have found applications in
a wide range of areas. Previous work has shown that several well-known
tournament solutions almost never rule out any alternative in large
random tournaments. Nevertheless, all analytical results thus far have
assumed a rigid probabilistic model, in which either a tournament is
chosen uniformly at random, or there is a linear order of alternatives
and the orientation of all edges in the tournament is chosen with the
same probabilities according to the linear order. In this work, we con-
sider a significantly more general model where the orientation of different
edges can be chosen with different probabilities. We show that a num-
ber of common tournament solutions, including the top cycle and the
uncovered set, are still unlikely to rule out any alternative under this
model. This corresponds to natural graph-theoretic conditions such as
irreducibility of the tournament. In addition, we provide tight asymp-
totic bounds on the boundary of the probability range for which the
tournament solutions select all alternatives with high probability.

1 Introduction

Tournaments play an important role in numerous situations as a means of repre-
senting entities and a dominance relationship between them. For instance, both
the outcome of a round-robin sports competition and the majority relation of
voters in an election can be represented by a tournament. A question that occurs
frequently is therefore the following: Given a tournament, how can we choose the
“best” alternatives in a consistent manner? This question has been addressed by
a rich and beautiful literature on tournament solutions, which have found appli-
cations in areas ranging from sports competitions [31] to multi-criteria decision
analysis [2,4] to biology [1,15,27,30]. Over the past half century several tourna-
ment solutions have been proposed, two of the oldest and best-known of which
are the top cycle [12,20,28] and the uncovered set [21].1

1 For a thorough treatment of tournament solutions, we refer the reader to excellent
surveys by Laslier [16] and Brandt et al. [5].
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Given that the purpose of tournament solutions is to discriminate the “best”
alternatives from the remaining ones, it perhaps comes as a surprise that many
common tournament solutions—including the top cycle, the uncovered set, the
Banks set, and the minimal covering set—select all alternatives with high prob-
ability in a large random tournament [9,29]. Put differently, the aforementioned
tournament solutions almost never exclude any alternative in a tournament cho-
sen at random. Nevertheless, these results are based on the uniform random
model, in which all tournaments are drawn with equal probability, or equiva-
lently each edge is oriented in one direction or the other with equal probability
independently of other edges. For a large majority of applications of tourna-
ments, one would not expect that this assumption holds. Indeed, stronger teams
are likely to beat weaker teams in a sports competition, and candidates with
a large base of support have a higher chance of winning an election. Moreover,
real-world tournaments often exhibit a certain degree of transitivity: If alterna-
tives a, b, and c are such that a dominates b and b dominates c, then it is more
likely that a dominates c than the other way around.

A more general model of random tournaments is the Condorcet random
model, previously considered by Frank [11], �Luczak et al. [18], Vassilevska
Williams [32] and Kim et al. [14]. In this model, there is a linear order of alterna-
tives, which can be interpreted as an ordering of the alternatives from strongest
to weakest. For each pair of alternatives, the probability that the edge is ori-
ented from the alternative that occurs later in the linear order to the alternative
that occurs earlier in the linear order is p, independently of other pairs of alter-
natives.2 Crucially, the value of p is the same for all pairs of alternatives. The
Condorcet random model generalizes the uniform random model, since the latter
can be obtained from the former by taking p = 1/2. �Luczak et al. [18] showed
that under the Condorcet random model, the top cycle selects all alternatives
as long as p ∈ ω(1/n). The same authors show furthermore that this bound is
tight, that is, the statement no longer holds if p ∈ O(1/n).3

Although the Condorcet random model addresses the issues raised above
with regard to the uniform random model, it is still rather unrealistic for two
important reasons. Firstly, in tournaments in the real world, the orientation of
different edges are typically determined by different probabilities. For instance,
in a sports tournament the probability that a very strong team beats a very weak
team is usually higher than the probability that a moderately strong team beats
a moderately weak team; a similar phenomenon can be observed in elections.
Secondly, even though one can roughly order the alternatives in a tournament
according to their strength, it is often the case that not all probabilities of the
orientation of the edges respect the ordering. Indeed, this precisely corresponds
to the notion of “bogey teams”—weak teams that nevertheless frequently beat
certain supposedly stronger teams. Given the limitations of the uniform random
model and the Condorcet random model, it is natural to ask whether previous
results continue to hold under more general and realistic models of random

2 By symmetry, we may assume without loss of generality that p ≤ 1/2.
3 See, e.g., Cormen et al. [8] for the definitions of asymptotic notations.
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tournaments, or whether they break down as soon as we move beyond these
restricted models.

In this paper, we show that a number of tournament solutions, including the
top cycle and the uncovered set, still choose all alternatives with high probabil-
ity under a significantly more general model of random tournaments. Unlike the
Condorcet random model, our model does not rely on an ordering of the alterna-
tives. Instead, the orientation of each edge is determined by probabilities within
the range [p, 1 − p] for some parameter p, and these probabilities are allowed
to vary across edges. The only substantive assumption that we make is that
the orientations of different edges are chosen independently from one another.
Under this model, which is more general than both the uniform random model
and the Condorcet random model, we establish in Sect. 3 that the top cycle
almost never rules out any alternative as long as p ∈ ω(1/n), thus generalizing
the result by �Luczak et al. [18]. We also show that our bound is asymptotically
tight, and that analogous results hold for two other tournament solutions based
on the set of Condorcet winners and losers as well. Moreover, we prove in Sect. 4
that the uncovered set is likely to include the whole set of alternatives when
p ∈ ω(

√
log n/n). This bound is again asymptotically tight, and the same holds

for another tournament solution based on the uncovered set. Since the condition
that the top cycle or the uncovered set chooses all alternatives have meaningful
graph-theoretic interpretations—the top cycle is the whole set of alternatives if
and only if the tournament is strongly connected,4 and the uncovered set fails to
exclude any alternative exactly when all alternatives are kings5—we believe that
our results are of independent interest in graph theory and discrete mathemat-
ics. Furthermore, the generality of our model allows us to derive consequences in
Sect. 5 for a different model in which tournaments are generated from random
voter preferences, and we complement our theoretical results with experimental
data in Sect. 6.

1.1 Related Work

The study of the behavior of tournament solutions in large random tournaments
goes back to Moon and Moser [23], who showed that the top cycle almost never
rules out any alternative in a large tournament chosen uniformly at random. In
fact, they proved a stronger statement that the probability that the top cycle
excludes at least one alternative is inverse exponential in the number of alterna-
tives; the estimate was later made more precise by Moon [22] in his seminal book
on tournaments. Bell [3] also considered the top cycle but assumed that tourna-
ments are generated from the preferences of a large number of voters, each with
4 A strongly connected tournament is also said to be strong. Strong connectedness is

equivalent to irreducibility and to the property of having a Hamiltonian cycle [22].
5 A king is an alternative that can reach any other alternative via a directed path of

length at most two [19]. Therefore, all alternatives of a tournament are kings if and
only if every pair of alternatives can reach each other via a directed path of length
at most two. Such a tournament has been studied in graph theory and called an
all-kings tournament [25].
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a uniform random ranking over the alternatives; he likewise found that the top
cycle selects all alternatives with high probability under this assumption. Fey
[9] and later Scott and Fey [29] established results on several tournament solu-
tions including the uncovered set, the Banks set, the Copeland set, the minimal
covering set, and the bipartisan set using the uniform random model. While the
uncovered set, the Banks set, and the minimal covering set are likely to include
all alternatives in a large random tournament, the same event is unlikely to occur
for the Copeland set. On the other hand, the bipartisan set chooses on average
half of the alternatives in a random tournament of any fixed size [10]; it is the
unique most discriminating tournament solution satisfying standard properties
proposed in the literature [6].

The discriminative power of tournament solutions has also been investigated
empirically by Brandt and Seedig [7]. Building on the observation that the distri-
butions of real-world tournaments are typically far from uniform, these authors
examined the behavior of eleven common tournament solutions on tournaments
generated according to stochastic preference models and empirical data. The
stochastic models that they used include the impartial culture model, the Mal-
lows mixtures model, and the Pólya-Eggenberger urn model. They reported that
under these more realistic models, most tournament solutions are in fact much
more discriminating than the analytical results for uniform random tournaments
suggest.

2 Preliminaries

A tournament T consists of a set A = {a1, a2, . . . , an} of alternatives and a dom-
inance relation. The dominance relation is an asymmetric and connex binary
relation on A represented by a directed edge between each unordered pair of dis-
tinct alternatives in A. We say that alternative ai dominates another alternative
aj if there is an edge from ai to aj . An alternative is said to be a Condorcet
winner if it dominates all of the remaining alternatives, and a Condorcet loser
if it is dominated by all of the remaining alternatives. We extend the dominance
relation to sets and say that a set A′ ⊆ A of alternatives dominates another
set A′′ ⊆ A of alternatives disjoint from A′ if for all a′ ∈ A′ and a′′ ∈ A′′, a′

dominates a′′. A tournament is commonly interpreted as the outcome of a round-
robin sports competition and as the majority relation of an odd number of voters
with linear preferences. In the former interpretation, alternative ai dominating
alternative aj means that the player or team represented by ai beats the player
or team represented by aj in the competition. In the latter interpretation, the
same dominance relation signifies that more than half of the voters prefer ai

to aj .
We are interested in tournament solutions, which are functions that map

each tournament to a nonempty subset of its alternatives, usually referred to as
the choice set. Two simple tournament solutions are COND , which chooses a
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Condorcet winner if one exists and chooses all alternatives otherwise,6 and the
set of Condorcet non-losers (CNL), which consists of all alternatives that are
not Condorcet losers. Other tournament solutions considered in this paper are
the following:

– The top cycle (TC ) is the (unique) smallest set of alternatives such that all
alternatives in the set dominate all alternatives not in the set;

– The uncovered set (UC ) consists of all alternatives that can reach all other
alternatives via a domination path of length at most two;7

– The iterated uncovered set (UC∞) is the result of iteratively computing the
uncovered set until there is no further reduction.

The inclusions UC∞(T ) ⊆ UC (T ) ⊆ TC (T ) ⊆ CNL(T ) and TC (T ) ⊆
COND(T ) hold for any tournament T .

Next, we describe the random models for generating tournaments that we
consider in this paper. We will work with the first model in Sects. 3 and 4 and
the second model in Sect. 5.

– Model 1: For each pair of distinct alternatives ai, aj , there is an edge from
ai to aj with probability pi,j and an edge from aj to ai with probability
pj,i = 1 − pi,j , independently of other pairs of alternatives.

– Model 2: There is a constant number k of voters, where k is odd. For each
voter v and each pair of distinct alternatives ai, aj , the voter prefers ai to aj

with probability qv,i,j and prefers aj to ai with probability qv,j,i = 1 − qv,i,j ,
independently of other voters and other pairs of alternatives.8 The majority
relation, in which alternative ai dominates another alternative aj if and only
if more than half of the voters prefer ai to aj , forms a tournament with A as
its set of alternatives.

Several models for generating random tournaments considered in previous
work are special cases of our models. For example, the uniform random model
[9,29] corresponds to taking pi,j = 1/2 for all i, j in Model 1 or taking qv,i,j = 1/2
for all v, i, j in Model 2 with any k. The Condorcet random model [11,14,18,32]
corresponds to taking pi,j = p for all i < j in Model 1, for some fixed value of
p. The Condorcet random model for voters [7] corresponds to taking qv,i,j = p
for all v and all i < j in Model 2, for some fixed value of p. Following standard

6 Note that the set of Condorcet winners is not a tournament solution because it can
be empty.

7 This is known in graph theory as the set of kings (cf. Footnote 5). An alternative
definition, which is also the origin of the name “uncovered set”, is based on the
covering relation. An alternative ai is said to cover another alternative aj if (i) ai

dominates aj , and (ii) any alternative that dominates ai also dominates aj . The
uncovered set corresponds to the set of alternatives that are not covered by any
other alternative.

8 One way to interpret the possible intransitivity of the preferences is as a result of
noise in the voters’ true preferences. Laslier [17] introduced the term Rousseauist
cultures for this kind of models.
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terminology, we say that an event occurs “with high probability” or “almost
surely” if the probability that the event occurs converges to 1 as n, the number
of alternatives, goes to infinity.

Due to space constraints, all omitted proofs can be found in the full version
of this paper [26].

3 Top Cycle

In this section, we consider the top cycle. We show that when each probability
pi,j is between f(n) and 1 − f(n) for some function f(n) ∈ ω (1/n), TC chooses
all alternatives with high probability (Theorem3.1). By using the inclusion rela-
tionships between TC , COND , and CNL, we obtain analogous statements for
COND and CNL. We also show that our results are asymptotically tight—for
all three tournament solutions, the statement ceases to hold if f(n) ∈ O (1/n)
(Theorem 3.2).

We begin with our main result of the section.

Theorem 3.1. Let f : Z+ → R≥0 be a function such that f(n) ≤ 1/2 for all
n and f(n) ∈ ω (1/n). Assume that a tournament T is generated according to
Model 1, and that

pi,j ∈ [f(n), 1 − f(n)]

for all i �= j. Then with high probability, TC (T ) = A.

Theorem 3.1 generalizes a result by �Luczak et al. [18] that establishes the
claim for the case where pi,j = f(n) for all i < j (or, by symmetry, the case
where pi,j = 1 − f(n) for all i < j). We remark that their proof relies crucially
on the assumption that there is a linear order of alternatives and all edges are
more likely to be oriented in one direction than in the other direction according
to the order. Indeed, this assumption allows the authors to show that with high
probability, any alternative can be reached by the strongest alternative and can
reach the weakest alternative via a domination path of length at most two each.
Moreover, with the assumption f(n) ∈ ω (1/n) one can show that the weakest
alternative can almost surely reach the strongest alternative via a domination
path of length four, thus establishing the strong connectivity of the tournament.
In contrast, we do not assume that the edges in the tournament are likely to
be oriented in one direction or the other. As such, we will need a completely
different approach for our proof.

We give here a high-level overview of the proof of Theorem3.1; the full proof
can be found in the full version of this paper [26]. We observe that TC (T ) �=
A exactly when there exists a proper, nontrivial subset of alternatives B that
dominates the complement set of alternatives A\B. Using the union bound, we
then upper bound the probability that TC (T ) �= A by the sum over all sets B
of the probabilities that B dominates A\B. This sum can be written entirely in
terms of the variables pi,j for i < j and is moreover linear in all of these variables,
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implying that its maximum is attained when all variables take on a value at one
of the two boundaries of their domain. Using a number of helper lemmas, which
include an interesting combinatorial extension of Karamata’s inequality, we show
that the sum is in fact maximized when all variables take on a value at the same
boundary. This allows us to bound the sum directly by plugging in the value at
a boundary and complete the proof.

Since TC (T ) ⊆ COND(T ) and TC (T ) ⊆ CNL(T ), we immediately obtain
the following corollary.

Corollary 3.1. Let f : Z+ → R≥0 be a function such that f(n) ≤ 1/2 for all
n and f(n) ∈ ω (1/n). Assume that a tournament T is generated according to
Model 1, and that pi,j ∈ [f(n), 1 − f(n)] for all i �= j. Then with high probability,
COND(T ) = CNL(T ) = A.

Next, we show that Theorem 3.1 and Corollary 3.1 are tight in the sense that
if f(n) ∈ O (1/n), the results no longer hold.

Theorem 3.2. Let c ≥ 0 be a constant. Assume that a tournament T is gener-
ated according to Model 1, and that pi,j ≤ c

n for all i > j. Then for large enough
n, with at least constant probability both TC (T ) and COND(T ) contain a sin-
gle alternative. Moreover, for large enough n, with at least constant probability
CNL(T ) does not contain all alternatives.

Theorems 3.1 and 3.2 and Corollary 3.1 allow us to obtain the following corol-
lary on the Condorcet random model.

Corollary 3.2. Let f : Z+ → R≥0 be a function such that f(n) ≤ 1/2 for all
n. Assume that a tournament T is generated according to Model 1, and that
pi,j = f(n) for all i > j.

– If f(n) ∈ ω (1/n), then with high probability, TC (T ) = COND(T ) =
CNL(T ) = A.

– If f(n) ∈ o (1/n), then with high probability, TC (T ) and COND(T ) contain
a single alternative, and CNL(T ) does not contain all alternatives.

– If f(n) ≤ c/n for some constant c ≥ 0, then for large enough n, with at
least constant probability TC (T ) and COND(T ) contain a single alternative.
Moreover, for large enough n, with at least constant probability CNL(T ) does
not contain all alternatives.

�Luczak et al. [18] also considered the case where pi,j = c/n for all i > j
and showed that the probability that TC selects all alternatives converges to
(1− e−c)2 in this special case. Our next theorem establishes an analogous result
for COND and CNL.

Theorem 3.3. Let c ≥ 0 be a constant. Assume that a tournament T is gener-
ated according to Model 1, and that pi,j = c

n for all i > j. Then the probability
that COND(T ) = A converges to 1 − e−c as n → ∞. The same statement holds
for CNL.
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Proof. We show the result for COND ; a similar argument holds for CNL. We
have

Pr[COND(T ) �= A] =
n∑

i=1

Pr[ai is a Condorcet winner]

=
n∑

i=1

(
1 − c

n

)n−i ( c

n

)i−1

=
(
1 − c

n

)n−1

·
n−1∑

i=0

(
c

n − c

)i

.

The first term converges to e−c as n → ∞. For the second term, notice that it
is always at least 1. Moreover, when n ≥ (k + 1)c for some positive k > 1, the
term is at most

1 +
1
k

+
1
k2

+ · · · =
k

k − 1
,

which approaches 1 for large n. Hence the second term converges to 1, and
therefore the probability that COND(T ) �= A converges to e−c, yielding the
desired result. 	


4 Uncovered Set

In this section, we turn our focus to the uncovered set. We show that when each
probability pi,j is between f(n) and 1−f(n) for some function f(n) ≥ c

√
log n/n

with c >
√

2 a constant, UC chooses all alternatives with high probability (The-
orem 4.1). As with TC , we also show that our result is asymptotically tight—if
f(n) ≤ 0.6

√
log n/n, the statement no longer holds (Theorem 4.2). It follows

that similar results hold for UC∞, implying that Θ(
√

log n/n) is the threshold
where the two tournament solutions go from almost always choosing all alterna-
tives to excluding at least one alternative with high probability.

Our first result of the section shows that UC chooses the whole set of alter-
natives for a wide range of distributions over tournaments.

Theorem 4.1. Let c >
√

2 be a constant. Assume that a tournament T is gen-

erated according to Model 1, and that pi,j ∈
[
c
√

logn
n , 1 − c

√
logn
n

]
for all i �= j.

Then with high probability, UC (T ) = A.

We give here a high-level overview of the proof of Theorem4.1; the full proof
can be found in the full version of this paper [26]. Let A1 = {a1, a2, . . . , a�n0.49�},
and let A2 be the set of alternatives that an dominates. Our key claim is that,
with high probability, the following two events occur simultaneously: (i) an does
not dominate any of the alternatives in A1, and (ii) |A2| ≤ 0.61

√
n log n. When
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these two events occur, an can reach all of the alternatives in A1 via a domina-
tion path of length at most two if and only if each alternative in A1 is dominated
by some alternative in A2. Moreover, the event that this holds for a particular
alternative in A1 is independent of the corresponding events for other alterna-
tives in A1. This allows us to show that the probability that an belongs to the
uncovered set goes to 0 for large n.

Since the uncovered set is the finest tournament solution satisfying the axioms
of Condorcet consistency, neutrality, and expansion [24], Theorem 4.1 implies
that any tournament solution that satisfies these three axioms also selects all
alternatives with high probability when the tournament is generated according
to the assumptions of the theorem.

Next, we show that the statement of Theorem 4.1 breaks down if f(n) ≤
0.6

√
log n/n, thus confirming that the assumption of the theorem cannot be

relaxed asymptotically.

Theorem 4.2. Assume that a tournament T is generated according to Model 1,
and that

pi,j ≤ 0.6

√
log n

n

for all i > j. Then with high probability, UC (T ) �= A.

Since UC (T ) = A exactly when UC∞(T ) = A, we immediately have the
following corollary.

Corollary 4.1. Assume that a tournament T is generated according to Model 1.

– Let c >
√

2 be a constant. If pi,j ∈
[
c
√

logn
n , 1 − c

√
logn
n

]
for all i �= j, then

with high probability, UC∞(T ) = A.

– If pi,j ≤ 0.6
√

logn
n for all i > j, then with high probability, UC∞(T ) �= A.

Theorems 4.1 and 4.2 and Corollary 4.1 allow us to obtain the following corol-
lary on the Condorcet random model.

Corollary 4.2. Let f : Z+ → R≥0 be a function such that f(n) ≤ 1/2 for all
n. Assume that a tournament T is generated according to Model 1, and that
pi,j = f(n) for all i > j.

– If f(n) ∈ ω
(√

log n/n
)

or f(n) ≥ c
√

log n/n for some constant c >
√

2,
then with high probability, UC (T ) = UC∞(T ) = A.

– If f(n) ∈ o
(√

log n/n
)

or f(n) ≤ 0.6
√

log n/n, then with high probability,
UC (T ) �= A and UC∞(T ) �= A.
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5 Majority Tournaments

Thus far, we have established probabilistic results for a general model in which
the distribution over tournaments is defined by the probabilities that an alter-
native dominates another alternative in the tournament (Model 1). As we men-
tioned in Sect. 2, a common interpretation of tournaments is as the majority
relation of an odd number of voters who are endowed with linear preferences
over a set of alternatives. In this section, we investigate a more specific model in
which the distribution over tournaments is determined by the probability that a
voter prefers an alternative to another alternative (Model 2). It turns out that
the generality of our results for Model 1 allows us to derive similar results for
Model 2 as consequences.

Theorem 5.1. Let f : Z+ → R≥0 be a function such that f(n) ≤ 1/2 for all n,
and f(n) ∈ ω

(
1/n2/(k+1)

)
. Assume that a tournament T is generated according

to Model 2, and that qv,i,j ∈ [f(n), 1 − f(n)] for all voters v and all i �= j. Then
with high probability, TC (T ) = COND(T ) = CNL(T ) = A.

Theorem 5.2. Let c >
√

2 be a constant. Assume that a tournament T is gen-

erated according to Model 2, and that qv,i,j ∈
[
c
(

logn
n

) 1
k+1

, 1 − c
(

log n
n

) 1
k+1

]
for

all voters v and all i �= j. Then with high probability, UC (T ) = UC∞(T ) = A.

6 Experiments

To complement our theoretical results, we investigate the asymptotic behavior
of random tournaments according to the Condorcet random model. Starting
from a set of alternatives {a1, a2, . . . , an}, we generated random tournaments by
inserting for each pair of alternatives ai, aj with i < j an edge from ai to aj with
probability p and an edge in the reverse direction with probability 1 − p. The
tournament solutions that we consider can all be computed efficiently: A simple
counting algorithm suffices to compute COND , a depth-first search algorithm
computes TC in linear time, and the asymptotic running time for computing
UC equals that of matrix multiplication [13]. In our experimental setup, we drew
10000 random tournaments of each size n ∈ {5, 10, 20, 30, . . . , 100} for each p ∈
{0.5, 0.3, 1/n, 1/n2,

√
2 log n/n, 0.6

√
log n/n} and checked for each tournament

solution S ∈ {COND ,UC ,TC} whether it selects all alternatives.9,10 Out of
that, we computed the percentage of tournaments in which all alternatives are
selected. The resulting graphs are displayed in Fig. 1.

9 Our setting is slightly different for the last two values of p, as we explain later in
this section.

10 Since the probability that CNL selects all alternatives is equal to the corresponding
probability for COND for any fixed n by symmetry, and UC∞ selects all alternatives
exactly when UC does, the results for CNL and UC∞ are captured by those for
COND and UC , respectively.
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Fig. 1. Percentage of tournaments for which the tournament solution chooses the whole
set of alternatives. The horizontal and vertical axes correspond to the number of alter-
natives in the tournament and the percentage, respectively. Averages are taken over
10000 runs.
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For p = 0.5, which corresponds to the uniform random model, our exper-
imental results in Fig. 1(a) coincide with the main theorem of [9]. The results
moreover reveal that UC chooses all alternatives with high probability in tourna-
ments with at least 50 alternatives while COND and TC already do so in much
smaller tournaments. As p decreases from 0.5 toward 0, the curves of COND ,
TC , and UC are shifted to the right; this is to be expected since for smaller p
the tournament is more skewed, making it more likely for weaker alternatives to
be excluded. Nevertheless, for any fixed p the fraction of tournaments in which
all alternatives are chosen approaches 1. In particular, when p = 0.3, UC almost
never rules out any alternative in tournaments of size 100 or more (Fig. 1(b)).

Next, we look at the regimes where the probability p goes to 0 as n approaches
infinity. For the case of p = 1/n we find that, in line with Theorem3.3, the
probability that COND selects all alternatives converges to 1 − e−1 ≈ 0.6321
(Fig. 1(c)). Similarly, the probability that TC selects all alternatives converges
to (1 − e−1)2 ≈ 0.3996 for the same value of p, confirming a result by �Luczak et
al. [18]. Letting p approach 0 even faster, we find that for p = 1/n2, both TC and
COND are discriminative with high probability (Fig. 1(d)). As 1/n2 ∈ o (1/n),
this is consistent with Corollary 3.2. Note that UC is discriminative for almost
all tournaments for both p = 1/n and p = 1/n2; indeed, this is implied by
Corollary 4.2 since already 1/n ∈ o

(√
log n/n

)
.

Finally, we consider the regime p = Θ
(√

log n/n
)
, which according to Corol-

lary 4.2 is the boundary between UC almost never ruling out any alternative and
almost always ruling out at least one alternative. The experimental setting for
p = c

√
log n/n with c ∈ {0.6,

√
2} differs from the previous settings in that

we only examined tournaments of size n ≥ 50, since for small n the expres-
sion

√
2 log n/n is larger than 0.5, making it unsuitable for our experiments. On

the other hand, as p decreases rather slowly, we examined random tournaments
up to size 1000 in order to increase the expressive power of our experiments.
We find that COND and TC select all alternatives with high probability for
both values of c; this is in line with Corollary 3.2 and the observation that
c
√

log n/n ∈ ω (1/n). On the other hand, our experiments indicate that UC
returns all alternatives in almost all tournaments in the case of p =

√
2 log n/n

(Fig. 1(e)) but is discriminative in almost all tournaments when p = 0.6
√

log n/n
(Fig. 1(f)). These findings coincide with Corollary 4.2 and demonstrate the inter-
esting fact that a small gap in the constant factor constitutes the threshold with
regard to the discriminative power of UC .

7 Conclusion

In this paper, we investigate the behavior of a number of tournament solutions
in large random tournaments under a general probabilistic model. We establish
tight asymptotic bounds on the boundary of the probability range for which
each tournament solution is unlikely to exclude any alternative. In particular,
we illustrate a difference between the discriminative power of the top cycle and
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the uncovered set; this difference is not evident in previous studies that focused
on more restricted models. Indeed, while both tournament solutions include all
alternatives with high probability in the uniform random model, our results
suggest that the uncovered set is in fact considerably more discriminative than
the top cycle.

Our work leaves many interesting open questions for future study. A natural
next step would be to investigate the asymptotic behavior of other tournament
solutions that have been previously studied in the uniform random model—
including the Banks set [9], the minimal covering set [29], and the bipartisan set
[10]—using our general probabilistic model. For instance, it is conceivable that
the approach used by Fey [9] to show that the Banks set almost never rules out
any alternative in the uniform random model can be extended to establish an
analogous statement when each edge probability is drawn from some constant
range. It is not clear, however, whether the approach would still work if we allow
the range to depend on the number of alternatives in the tournament like we do
in the current work.

From a broader point of view, we believe that an important direction is to
apply our model to other tournament problems beyond those concerning tourna-
ment solutions, for example the problem of finding a dominating set of minimum
size. It is well-known that a dominating set of size at most log2(n + 1) always
exists and can be found using a simple greedy algorithm. While a dominating set
can be as small as a singleton in tournaments that admit a Condorcet winner,
Scott and Fey [29] showed that for uniform random tournaments, a dominat-
ing set of logarithmic size is the best that one can hope for. More precisely,
these authors showed that given any constant 0 < c < 1, the smallest dominat-
ing set of a tournament chosen uniformly at random contains at least c log2 n
alternatives with high probability. Establishing a similar result in our general
probabilistic model is an intriguing technical challenge that would allow us to
better understand the behavior of such structures in the real world.
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Abstract. In this paper, we present a new routing model with edge pri-
orities. We consider network users that route packages selfishly through a
network over time and try to reach their destinations as fast as possible.
If the number of packages that want to enter an edge at the same time
exceeds the inflow capacity of this edge, edge priorities with respect to
the preceding edge solve these conflicts. For this class of games, we show
the existence of equilibrium solutions for single-source-single-sink games
and we analyze structural properties of these solutions. We present an
algorithm that computes Nash equilibria and we prove bounds both on
the Price of Stability and on the Price of Anarchy. Moreover, we intro-
duce the new concept of the Price of Mistrust and analyze the connection
to earliest arrival flows.

Keywords: Routing game · Algorithmic game theory
Pure Nash equilibria · Edge priorities · Price of Mistrust

1 Motivation

Routing games are a common way to model network congestion in a variety
of settings. Network users, consequently called players, behave selfishly and try
to independently improve their travel times. These routing games over time
are widely studied [6,12,13] due to various applications, e.g., internet routing
and other communication networks, road and air traffic control, transportation,
logistic in production systems, and financial flows. Depending on applications,
there is a huge range of models (see, e.g., [11–13]).

The constrained inflow capacity of edges is an essential ingredient of these
models. If more players than the capacity allows want to enter an edge at the same
time, one needs to decide which players can go first. Some models maintain the
overall arrival order with a first-in first-out rule [6,12,13], i.e., only players with
the exact same arrival time are re-arranged. Other models allow overtaking by
higher prioritized players with global priority lists [11,12] or local priority lists [11]
of players, that is, priority is a property that is inherent to the players and players
are linearly ordered. A very natural way to motivate priority has origin in road
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traffic. At intersections of road networks, priority is usually determined by road
signs. One road has the way of right, whereas the traffic on the crossing road is
prompted to give way by yield or stop signs. This motivates a priority that depends
on the chosen edges and not only on the road users.

In this paper, we introduce a routing game over time on a network G = (V,E)
where priority on every edge is assigned to players depending on their preceding
edge. Every edge e = (v, w) has an ordering of the v entering edges. That is,
if two players arrive at a node v ∈ V at the same time via two different edges
e1 ∈ E and e2 ∈ E, and both players are going to enter the same outgoing
edge e, then the player from the edge that is first in the order of edge e, say
e1, always moves first and the player on the other edge, here e2, always has to
wait. Moreover, if a third player arrives in the subsequent time step at v via
edge e1, then this player also gets priority and the player on edge e2 has to wait
another round. In other words, for this edge-based priority the first-in first-out
(FIFO) property does not hold in nodes. Nevertheless, we assume that the first-
in-first-out property holds on edges, i.e., players may queue up before traversing
an intersection.

Our Contribution. In this paper, we focus on the symmetric game, i.e., there
is only one source and one sink for all players. We show that Nash equilibria
are guaranteed to exist in symmetric games and we present a tight bound on
the Price of Anarchy as well as a lower bound on the Price of Stability in the
same magnitude. Surprisingly, even in the best Nash equilibrium, strategies may
include the use of cycles. Beyond that, we show that some players may have to
visit a node up to O(k)-times in a network with k players and |E| ∈ O(k) edges.
Furthermore, we introduce the new concept of the Price of Mistrust. Here, a
player mistrusts the other players and chooses a best response such that she
can be delayed by as few as possible other players. We show that this concept
yields equilibria with values strictly in between the Price of Stability and Price of
Anarchy. Furthermore, we present an algorithm to compute mistrustful equilibria
for symmetric routing games.

The paper is organized as follows. In Sect. 2, we discuss related results from
literature and categorize our problem. Section 3 gives a formal problem definition
and fixes the terminology. Afterwards, we present basic results on Nash Equilib-
ria in Sect. 4. In Sect. 5, we present an algorithm that computes such equilibria
and introduce the Price of Mistrust. Finally, in Sect. 6 we show the connection to
earliest arrival flows. Due to space constraints, some of the proofs are omitted.
They can be found in a preliminary version of this paper on arXiv [19].

2 Pointers to the Literature

Routing games are a widely used approach to model traffic situations and there
are a lot of different variants. Rosenthal [17] introduced atomic selfish routing
games in 1973. Much work on the existence and efficiency of equilibria in this
kind of games has been done [1,2,5,18]. For a profound survey by Roughgarden
see Chap. 18 in [16].
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However, these routing games have the drawback of being static. Hoefer et
al. [12] introduced temporal network congestion games, where players block each
other only when they enter or use an edge at the same moment in time. The
authors analyze the existence of equilibria as well as best response dynamics for
several priority rules. Harks et al. [11] proved bounds on the Price of Anarchy
and Stability for competitive packet routing games where players have a global
or local ranking. In contrast to the player-dependent forwarding/priority rules in
the work just mentioned, Cao et al. [4] use a FIFO policy with an edge dependent
tie-breaking. They focus on the comparison between Nash equilibria and equilib-
ria in a game with full control (subgame perfect equilibria) on acyclic graphs. In
the paper at hand, we use the subordinated tie-breaking of Cao et al. [4] as our
main criterion in a non-FIFO setting.

More generally, Ford and Fulkerson introduced a dynamic model for flows
over time, also called dynamic network flows, in their seminal works [8,9]. The
authors used time-expanded networks to keep track of the dynamic movement of
flow particles and compute system optimal solutions. An excellent introduction
to dynamic flows is given by Skutella [20]. A very fascinating concept in this
context is the earliest arrival flow (EAF). Given a network, an earliest arrival
flow simultaneously maximizes the amount of flow that has already reached the
sink for all points in time [10]. A game theoretical extension of this model was
given by Koch and Skutella [13,14], who presented a characterization of Nash
equilibria for flows over time. However, the results were obtained for non-atomic
players, i.e., a flow particle is arbitrarily small, while we consider atomic players.

3 A Model for Routing with Edge Priorities

The object under consideration in this paper is a routing game with edge prior-
ities which we define as follows.

Playing Field and Rules. The routing game is played on a directed network
G = (V,E), where V is the node set with n = |V | nodes and E is the edge
multiset with m = |E| edges. We allow multiple edges, i.e., more than one edge
starting at the same node and ending at the same node, as well as loops, i.e.,
an edge starting and ending at the same node. Further, u : E → N are integral
capacities on the edges. This capacity limits the inflow rate, that is, the amount
of flow entering an edge e ∈ E per time unit. This means the total number
of players per edge is not restricted. Furthermore, the edges of G are equipped
with integral transit times τ : E → N0. The transit time or cost τ(e) denotes
the time a player needs to traverse edge e ∈ E. We use constant transit times
here, that is, players use edges independently of other players and there is no
delay due to congestion. We allow edges with transit time zero, since they are
useful to model capacities on nodes. The throughput capacity of a node v can be
limited by replacing this node by an edge (v′, v′′) with the desired capacity and
cost zero. Similar to the work of Harks et al. [11], we restrict to integral transit
times, since each player blocks exactly one capacity unit for one time unit on
each edge of her path.
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Additionally, each routing game fixes two distinguished nodes, a source s
and a sink t. We assume w.l.o.g. that the source has no incoming edges, i.e.,
deg−(s) = 0 with deg−(v) := |δ−(v)|. Every player in the set N = {1, . . . , k}
of players chooses a path Pi from the set of s-t-paths Pst and travels over time
through the network. To be more specific, a player can leave an edge e at the
earliest τ(e) time units after entering e. Moreover, we only consider discrete time
steps, since we have integral transit times. Please note that we do not restrict
to simple paths, since it may be advantageous for a player to visit a node more
than once, as we will see in the upcoming analysis. Since all the players have the
same set of strategies, we call it a symmetric or single-commodity game.

It might happen that more than u(e) players try to enter an edge e = (v, w)
at the same time. To decide which players are allowed to proceed directly and
which players need to wait at least one time unit, we define a priority order
π(e) = (e1, e2, . . . , edeg−(v)), i.e., for every v ∈ V we assign an ordered list
π(e) of all incoming edges ei = (ui, v) ∈ δ−(v) of v to each outgoing edge
e = (v, w) ∈ δ+(v) of v. If edge e has remaining capacity at time T , a player
seeking to enter edge e at time T may do so, if the incoming edge of this player
has the lowest possible index in the ordered list π(e) among all players who
want to enter the link e. This applies iteratively. Thus, after the first player has
entered the link, we choose the next player with the lowest possible incoming
edge in π(e) from the remaining players, if e still has capacity left.

Among the players waiting on an edge e′ the first-in first-out rule (FIFO)
applies. This means, if Player i and Player j both try to enter edge e from the
same edge e′, the player who arrived on edge e′ first will be preferred. If several
players have entered e′ at the same time, but the desired edge e does not provide
enough capacity for all of them, we use the number of the player as a global tie-
breaker. That is, in case of a tie, Player i moves before Player j if i < j. In
particular, this rule applies at the source, i.e., Player 1 is always the first player
to leave source s.

If for every node v ∈ V it holds that π(e) = π(e′) for all priority lists of
outgoing edges e, e′ ∈ δ+(v), then we call a game global and else local. In case
of a global game, we may simply define a total order on all edges, since such
an order canonically defines the priority list of each edge. This total order is
of course not unique. For the sake of simplicity in a global game, we always
relabel the edges of G to e1, e2, . . . , em such that ei has higher priority than ej
whenever i < j. Summarizing, we determine priority lexicographically according
to the order: edge list > FIFO > player ID. A routing game with edge priorities
is defined as a tuple (G, u, τ,N, π).

Goal of the Game. In the game, a strategy of a Player i is an s-t path Pi. Let
P be the profile or state of the game with the strategies of all the players, that
is, P consists of k paths P1 to Pk. Now, we denote the arrival time of Player i
as Ci(P ), which is the sum of the transit times τ(e) of all the edges of the
chosen path Pi and the waiting time on those edges. Obviously, the former is
independent of the strategies of the other players due to constant transit times,
but the latter significantly depends on P .
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A profile P is socially optimal if it minimizes the total cost given by C(P ) =∑
i∈N Ci(P ). However, we assume players to behave selfishly, i.e., each player

aims to minimize her own arrival time. We call a state a (pure) Nash equilibrium
(PNE) if the chosen strategies separately minimize the costs for each player. Let
P−i be the state P without the strategy of Player i. Furthermore, with P ′

i , P−i we
denote replacing the strategy of Player i in P by P ′

i . More formally, a routing
game with state P and strategy Pi for Player i is in a PNE if Ci(Pi, P−i) ≤
Ci(P ′

i , P−i) ∀P ′
i ∈ Pst, for all players i ∈ N . In other words, no player can

reduce her cost by switching from Pi to another path P ′
i .

Making the Game Well-Defined. For a well-defined game, it is necessary to
have a unique mapping of a strategy profile P to costs C(P ) of the players.
Unfortunately, the current model can still lead to some paradoxical situations
in connection with zero cost cycles. An example with two players is given in
Fig. 1. Assume, Player 1 chooses the path (s, v1, v3, v2, v4, t) and Player 2 chooses
(s, v2, v4, v1, v3, t). Note that the paths intersect twice. Player i hits node vi
before node v3−i on the respective path.

Now, assume the red wavy edges (v4, v1) and (v3, v2) in the cycle have priority
over the black straight entering edges (s1, v1) and (s2, v2) to proceed on (v1, v3)
and (v2, v4), respectively. Furthermore, all edges have zero transit time. On the
one hand, Player 1 could reach v2 in zero time and block Player 2 there. If
Player 2 is blocked at v2, she cannot block Player 1 at v1. Thus, Player 1 reaches
t at time 0, and Player 2 reaches t at time 1. On the other hand, the same
argument is valid vice versa and, thus, there is no unique mapping from the
strategy P to arrival times of players C(P ).

s tv1

v3

v2

v4

Fig. 1. Non-unique embedding due to zero cost cycles. Red wavy edges have higher
priority. (Color figure online)

Since we do not want to forbid zero transit times in general, we exclude all
networks with directed zero cost cycles from our consideration. Moreover, we
will compute ratios of various solutions, e.g., the Price of Anarchy. To avoid
division by zero, we additionally exclude all games where source s and sink t
have distance zero.

Given this analog to [11] we can show that there is a unique embedding of a
given set of paths. The basic idea is to use a Dijkstra-like algorithm and always
forward players which are in nodes without entering 0-edges of the paths of other
players.



Equilibria in Routing Games with Edge Priorities 413

4 Basic Results on Equilibria

In this section, we highlight some important properties of equilibria in routing
games with edge priorities. Before we can claim the existence of a PNE in every
symmetric game, we have to study structural properties of equilibria, which will
be exploited in a constructive proof in the next section.

We start by recognizing that not only is the equilibrium not unique with
regard to the profile, but even the cost C(P ) of equilibria can vary for a given
game.

Lemma 1. The value of PNEs in a routing game with edge priorities is not
unique.

Proof. We use a graph based on the famous example of Braess [3]. We refer to
the graph with b parallel paths from s to t as b-Braess graph. Each path consists
of three edges. Furthermore, edges connect the third node of the i-th path with
the second node of the (i + 1)-th path for all 1 ≤ i < b. A 4-Braess graph is
depicted in Fig. 2. Consider the b-Braess graph where all s-leaving edges have
transit time one and all the other edges have cost zero, while all edges have unit
capacity. In this network, priority follows the scheme depicted in Fig. 2, that is,
the red wavy edges connecting the parallel paths are always prioritized over the
edges in the direct paths.

s t

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

Fig. 2. The 4-Braess graph, where the value of a PNE is not unique. Red wavy edges
have higher priority (Color figure online)

We study the game with k = b players. Obviously, using the b parallel paths
in this network is a PNE, which is also socially optimal with total cost C(P ) = k.

However, it is also a PNE for all players to go along the zigzag-path in order
of the player IDs, i.e., every player uses all the red wavy edges. In this case,
Player i has cost i and no improving move. In total C(P ) = k(k+1)

2 .

Surprisingly, in routing games with edge priorities, a player may visit a node
arbitrarily often. Furthermore, there are networks where this can happen in every
PNE. We start with the following lemma.
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Lemma 2. In a PNE in a symmetric routing game with edge priorities, players
arrive at the sink t in unchanged order. Further, for every 1 ≤ i ≤ k − 1,
Player i + 1 arrives at t at most one time unit after the preceding Player i.

Note that this statement does not hold for intermediate nodes. There, players
may arrive much earlier on a subordinate edge and wait until they can proceed.

Theorem 3. For every k ∈ N, k ≥ 3, there exists a routing game with edge
priorities with k players on a network with 2k − 1 edges and unit capacities
u ≡ 1 such that there is a player who visits a node k − 1 times in every PNE.

Proof. We construct an instance with a unique PNE. The network consists of
three nodes s, v, and t. The source s is connected to v with k parallel edges
ek, . . . , e2k−1. Furthermore, there are k − 2 loops at v, namely e2, . . . , ek−1, and
a single edge e1 from v to the sink t. All edges have capacity u ≡ 1 and transit
time τ ≡ 1. An example of the network is given in Fig. 3. We use global edge
priorities, i.e., the index of the edge is equivalent to its priority.

s v

t

e2k−1

e2k−2

ek

. . .
e2 ek−1. . .

e1

Fig. 3. This example shows that there is a PNE such that a player visits a node multiple
times. All edges have unit travel time. We use a global priority list where ei is preferred
over ej if i < j.

First, we define a state P in which Player k−1 visits node v exactly k−1 times
and prove that this is indeed a PNE. Afterwards, we show that the strategies
of the Players 1 to k − 1 coincide in every PNE. For Player i ∈ {1, . . . , k − 1}
define Pi = (ek+i−1, ei, . . . , e1). Player k can choose any path arriving at time
k +1. By construction, Player i visits node v exactly i times and arrives at time
i + 1 for i ∈ {1, . . . , k − 1}. Assume for the sake of contradiction that the state
P = (P1, . . . , Pk) is not a PNE. Then there is a player that can improve her
strategy. Since the players arrive one after another, improving is only possible
by delaying a preceding player. This is not possible, since every player goes along
edges with the highest possible priorities.

Assume there is a PNE P ′ which differs from P by another path than Pk.
Let i be the first player deviating from the strategy in P . Player i cannot arrive
earlier than in P as argued above. Moreover, Player i cannot arrive later than
in profile P in a PNE, since strategy Pi is always a valid choice for arriving at
time i+1. Thus, P ′ realizes the same arrival time as Pi. In this case, Player i+1
can now improve by playing (ex, ei, . . . , e1) where ex is an unused edge among
ek+i−1 and e2k−1. With this strategy, Player i+1 overtakes Player i and arrives
at time i + 1 which is an improving move. Thus, P ′ was not a PNE.
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Note that we used multi-edges for simplicity, here. In a network without
multi-edges, one can still achieve O(k) visits of a node by a single player by
subdividing each edge.

Contrariwise, there is no such result on the edges, as we show in Corollary 6
in Sect. 5. Since edges and FIFO determine priority, there is no advantage to use
an edge twice.

5 Computing Equilibria and the Price of Mistrust

Computing an Equilibrium. In this section, we present an efficient algorithm for
computing PNEs in symmetric routing games with edge priorities. Intuitively,
the players choose their strategies one by one in order of the tie breaking rule.
Each player chooses a strategy minimizing her cost, and among all those strate-
gies she takes the one, where she cannot be delayed by any of the following
players. We start with an outline of the main algorithmic ideas, before we give
a detailed description of the algorithm in pseudo-code in Algorithm1.

The algorithm consists of three steps. The first step initializes a kind of
shortest path network and this step is executed only once. In step 2, a path
for the next player is found within this shortest path network, and in step 3,
the network is updated to renew the earliest arrival property for the upcoming
player. Step 2 and 3 are executed once for each player. In detail:

1. A modified Dijkstra search [7] is executed starting in s. We determine two
functions d : V → N0 and ε : E → N0. Here, d(v) describes, at which time step
node v can be reached at the earliest, i.e., at this initialization step d(v) is the
standard label set by Dijkstra’s algorithm. The function value ε(e) defines the
earliest point in time at which edge e can be left. Hence, d(v) ≤ ε(e) where
e = (u, v). In the initialization, it holds ε(e) = d(u)+τ(e) for e = (u, v), since
there are no waiting times. Please note that the sub network G′ = (V,E′)
where E′ = {e = (u, v) ∈ E : ε(e) = d(v)} contains all shortest paths from s
to t.

2. We now perform a backward search in this sub network G′ = (V,E′) to find
a path p that reaches t at time d(t) for every Player i, starting with Player 1.
The algorithm iteratively adds edges to p until reaching s. Here, Δ : V → N0

describes the latest time when v ∈ V must be reached in order to arrive at
the following node of the path in time. It is updated to Δ(v) := ε(e) − τ(e)
always when adding edge e to p. Among all possibilities to arrive at v in
the time interval [d(v),Δ(v)], we choose the edge with the highest available
priority with respect to the subsequent edge, which was already determined.
Moreover, we use this edge at the earliest possible moment in time.

3. After assigning Player i to the path p constructed in step 2, we have to update
the values of d and ε. If Player i exhausted the capacity of an edge e = (u, v),
we increment ε(e) by 1. We now perform a modified Dijkstra search to check
whether we have to increment other labels d(v) and ε(e), too. Now, we can
go back to step 2 to compute the path for the next Player.
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Algorithm 1. Pathfinder
Input: G = (V, E) with priorities π, s, t ∈ V and set of players N = {1, . . . , k}
Output: A walk for every player i ∈ N

1 calculate d(v) and ε(e) ∀v ∈ V, ∀e ∈ E;
2 for i := 1 to k do
3 e := arbitrary edge of δin(t) with ε(e) = d(t);
4 v := tail(e);
5 Δ(v) := d(t) − τ(e);
6 p := {e};
7 while v �= s do
8 let e′ ∈ δin(v), with ε(e′) ≤ Δ(v) and maximal priority for e;
9 v := tail(e′);

10 Δ(v) := ε(e′) − τ(e′);
11 p := p ∪ {e′};
12 e := e′;

13 print “Path of player i is p”;
14 foreach e ∈ p do
15 if capacity of e at entry time Δ(tail(e)) is exhausted then
16 ε(e) := ε(e) + 1;

17 d(s) := 0 and d(v) := ∞ ∀v ∈ V, v �= s;
18 Π := heap(V, d);
19 while Π �= ∅ do
20 v := getMin(Π) and remove v from Π;
21 foreach e ∈ δout(v) do
22 ε(e) := max{ε(e), d(v) + τ(e)};
23 d(head(e)) := min{d(head(e)), ε(e)};

Let us remark some observations. Firstly, for the first player, the situation is
quite simple with Δ(v) = d(v) for all nodes of the constructed path in step 2,
since the network is not yet congested and no waiting times occur. However,
this is not true for subsequent players. Here, some edge e = (v, w) could be
blocked at time d(v) by preceding players. Secondly, d(v) denotes the earliest
arrival time at each node. In particular, d(t) is the earliest time to reach the
sink and we always construct a path achieving this time bound. Thirdly, we
always use the earliest option for each edge under consideration. Therefore, no
subsequent player can use an earlier option and nobody can displace Player i.
And fourthly, by choosing the edge e′ = (u, v) with the highest priority in π(e),
we can guarantee that we can go from e′ to e at time Δ(v). No subsequent player
can use edge e′ at an earlier time, i.e., there is no additional delay on e′ to be
expected. Moreover, this path has the way of right over all subsequent players
who arrive at v via other edges.
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Theorem 4. Let (G, u, τ,N, π) be a symmetric routing game with edge priorities
and k := |N | ≥ 1. Then Algorithm1 has running time O(k(m2 + n log n)) and
computes a PNE.

Note that the run-time bound is given with respect to the network size.
However, it is essentially determined by looping through the edge priority lists.
Even when we visit a node twice or more as in Fig. 3, priority increases locally,
i.e., we only have to run through all priority lists once. Since the total length
of all edge priority lists is in O(m) for global games, we can improve the run-
time analysis for this case to O(k(m + n log n)). However, these lists are part of
the input, too. Hence, run-time is even linear regarding this part of the input.
Since we have to return a path for every player, the run-time is obviously only
pseudo-polynomial in the number of players k, but it is polynomial, when we
use a unary encoding of players. The previous result also implies the existence
of equilibria.

Theorem 5. In every symmetric routing game with edge priorities there exists
a PNE.

So in contrast to Theorem 3, there is always a PNE where each player uses
each edge at most once. Intuitively this follows from the definition of the priority
rules, a formal proof is given in Theorem4 [19] since there we show that every
edge is processed only once while executing the algorithm.

Corollary 6. In every symmetric routing game with edge priorities, there exists
a PNE such that every edge is used at most once by each player.

Yet, this does not imply that an optimal strategy does not contain an edge
multiple times. Furthermore, please note that the presented algorithm does not
necessarily compute the best PNE. In particular, the cost of the computed PNE
significantly depends on the way in which we choose the incoming edge to the
sink t. Since we do not have any priority here, one may choose this edge randomly
or in any fixed order among all those edges e = (v, t) with d(t) = ε(e). As an
example, consider again the graph in Fig. 2. If we choose the bottom edge to
t first, the algorithm computes the zigzag-path for the first player and every
following player. Thus, the algorithm computes the worst possible PNE in this
scenario. Contrary, if the algorithm treats the incoming edges of t in a fixed
order from top to bottom, it computes the best PNE.

Bounding the PoS and the PoA. On the one hand, we have seen in Lemma1
that there may exist several user equilibria with different values for a routing
game with edge priorities. Consequently, we ask for the highest quotient of the
cost of an equilibrium compared to the cost of a social optimum. This ratio is
known as the Price of Anarchy (PoA) (cf. [15]). On the other hand, if a social
optimal state is not a user equilibrium, then it is not stable, i.e., some players
have occasion to change routes. If every social optimal solution is not stable, then
even the best equilibrium has additional cost compared to the social optimum.
This ratio is called the Price of Stability (PoS) (cf. [1]).
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In this subsection, we give a tight bound of the PoA for routing games with
edge priorities. Furthermore, we show that there are instances of a routing game
with edge priorities where every social optimum is not stable and we present a
lower bound example of the PoS.

Theorem 7. The PoA in a symmetric routing game with edge priorities is at
most k+1

2 , where k is the number of players. This upper bound is tight.

The idea of the proof is to use Lemma 2 to bound the cost of Player i in the
PNE from above by � + i − 1, where � is the length of a shortest path. This is
similar to the proof in [11].

For similar routing games, e.g. [11], it turns out that there is a stable socially
optimal state, i.e., the PoS is equal to 1. Surprisingly, this is not true for the
routing game with edge priorities and the PoS can be of the same order of
magnitude as the PoA.

Theorem 8. The PoS in a symmetric routing game with edge priorities can be
≥ k+1

4 , where k is the number of players.

Price of Mistrust. Algorithm 1 calculates PNEs that have a special property,
which we formalize in the following.

Definition 9. For Player i, given a strategy profile P , a mistrustful best
response is a best response to P−i that minimizes the number of players that
can delay Player i through a strategy change. A PNE is mistrustful, if every
player plays a mistrustful best response.

From Theorem 4 (see [19]), we get that Player i can always find a mistrustful
best response, such that she can maximally be delayed by i − 1 players (the
preceding players who can delay her by coping the strategy).

Observation 10. Every PNE that is computed by Algorithm1 is mistrustful.

It is an interesting question how much social cost is caused by this kind of
mistrust. For the best PNE, it is often necessary that players co-operate and
trust each other. Similar to the PoS, we define the Price of Mistrust (PoM) as
the quotient of the mistrustful PNE with minimal cost and the social optimum.
As an example, consider the graph in Fig. 2. If the first player chooses the lowest
horizontal path, every following player can find a path that has optimal cost
and does not block the first player. Unfortunately, any of these players may also
use a path blocking the first player, maybe because of ignorance or because of
malignity. Thus, mistrust forces the first player to choose another path.

In the following, we present some routing games which show that the PoM
can reach exactly the same extremal value of k+1

2 of the PoA. Nevertheless, we
also show that there is an instance where the PoM is strictly smaller than the
pessimistic PoA, but strictly larger than the optimistic PoS. For this purpose, we
use the construction of the b-Braess graph in the proof of Lemma1 and extend it
by a twisted second copy. Roughly speaking, we add a second zigzag path after
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the first one, which connects the parallel paths in the opposite directions. We
call these graphs b-double-Braess graphs and Fig. 4 shows two 4-double-Braess
graphs. In these graphs, each outgoing edge of s has cost one, each other edge
has cost zero and all edges have unit capacities. For k = b players the cost of
the social optimum is k, since the players can use parallel paths with cost one.
Since there is no cheaper path, this is also a PNE.

Now, we consider two different choices of priorities, depicted by red wavy
edges in Fig. 4. Firstly, on the left hand side, both zigzag paths have higher
priority than any other path. No matter which edge to t is chosen by the first
player, Player 1 always has to visit node v and she has to use the first zigzag
path completely as otherwise any subsequent player would be able to block her.
For the subsequent players the same argumentation holds and the players follow
each other. The total cost is k(k+1)

2 , so the PoM is equal to k+1
2 , which is also

the worst case PoA. In consequence, we obtain the following corollary.

Corollary 11. There are symmetric routing games with edge priorities, where
Algorithm1 is not able to compute a PNE with minimal cost.

s t

v

s t

v

Fig. 4. On the left hand side the PoM is equal to the PoA. On the right hand side the
PoM lies between PoS and PoA. The red wavy edges have higher priority. (Color figure
online)

Secondly, consider the priorities on the right hand side of Fig. 4. Again, the
social optimum, which is also a PNE (with cost k), is not mistrustful, but the
PoS is equal to 1. Moreover, the mistrustful first player has to visit node v or
otherwise, her strategy would be vulnerable on the second zigzag path by any
other player who visits v. To reach v on a prioritized path, Player 1 has to choose
the second lowest outgoing edge of s. In the best case, Player 1 will not use the
second zigzag path, but she will use edge (v, t). Now, each subsequent Player i
has to choose the (i − 1)th lowest horizontal path if this player mistrusts all
upcoming players. The last Player k can choose any path, but she will definitely
not reach t before time step 2. Thus, the PoM is k+1

k . In the worst case, Player 1
uses the second zigzag path completely, which again yields a PoA of k+1

2 as in
the previous example. Thus, we finally conclude with the following observation.
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Observation 12. There are symmetric routing games with edge priorities,
where the PoM is greater than the PoS and less than the PoA.

6 Connection to Earliest Arrival Flows

A socially optimal state of a routing game in a network with a single source
and a single sink and without priority lists is an earliest arrival flow (EAF).
Furthermore, if we restrict to unit capacities and follow the same argumentation
as in Harks et al. [11], we can show that the socially optimal state of a given
symmetric game with edge priorities is an EAF, too. Similar to the model with
player priorities, there is always a socially optimal solution with edge priorities,
where players only wait at the source node in an EAF in a network with unit
capacities due to the fact that an EAF fulfills strong flow conservation. But at
the source, the global tie-breaking order of the players applies and there is no
priority rules of any entering edges in our model. Thus, both models, our model
and the model with player priorities, coincide in this case.

However, in [11], an EAF is also always an equilibrium, i.e., the PoS is equal
to one. This is not the case in our model with edge priorities as we have seen in
Theorem 8. Yet, given a network initially without edge priorities, it may still be
possible to find a priority rule on the edges, such that there is an equilibrium
that is an EAF. In other words, can a network operator always establish a system
optimal flow in a network with edge priorities by choosing an appropriate priority
list? Unfortunately, this is not possible in general.

Theorem 13. There exist networks where an earliest arrival flow cannot be
established by any priority order of the edges as a PNE with edge priorities.
Further, for arbitrarily many players and arbitrarily high edge costs, the additive
gap of the social costs of an optimal flow (EAF) and the best PNE is arbitrarily
large.

Nevertheless, there are graph classes which always allow the construction of
appropriate priority lists.

Proposition 14. On series-parallel networks with unit capacities, there exist
edge priorities such that the best mistrustful PNE is an EAF.

7 Discussion

Motivated by right of way rules, routing over time with edge priorities brings
some surprises like optimal Nash equilibrium solutions with many cycles. Yet,
there are also many open questions. Among them, what are efficient network
topologies, i.e., for which graph classes can the system optimum be established
by a (mistrustful) equilibrium? How can one compute the best equilibrium?
Moreover, the gap between social optimum (EAF) and PoS makes routing with
edge priorities seem unattractive in terms of ‘protocol design’. On the other
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hand, it is a natural rule for self-organizing flows like road traffic. Hence, it is
quite natural to ask for a generalization of the results to multi-commodity games.
Yet, it is unlikely that equilibria always exist in this case. Under what conditions
can we guarantee the existence of equilibria?
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3. Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung
12, 258–268 (1968)

4. Cao, Z., Chen, B., Chen, X., Wang, C.: A network game of dynamic traffic. arXiv
preprint arXiv:1705.01784 (2017)

5. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, pp. 67–73. ACM (2005)
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Abstract. We apply non-cooperative game theory to analyze the
server’s activation cost in real-time scheduling systems. An instance of
the game consists of a single server and a set of unit-length jobs. Every
job needs to be processed along a specified time interval, defined by its
release-time and due-date. Jobs may also have variable weights, which
specify the amount of resource they require. We assume that jobs are
controlled by selfish agents who act to minimize their own cost, rather
than to optimize any global objective.

The jobs processed in a specific time-slot cover the server’s activation
cost in this slot, with the cost being shared proportionally to the jobs’
weights. Known result on cost-sharing games do not exploit the spe-
cial interval-structure of the strategy space in our game, and are there-
fore not tight. We present a complete analysis of equilibrium existence,
computation, and inefficiency in real-time scheduling cost-sharing games.
Our tight analysis covers various classes of instances, and distinguishes
between unilateral and coordinated deviations.

1 Introduction

The emergence of cloud systems as a common computation resource gives rise to
plenty of optimization problems whose input is a real-time scheduling instance,
consisting of time-sensitive jobs which are often business-critical. Each job needs
to be processed along a specified time interval, defined by its release-time and
due-date. Jobs may also have variable lengths and weights, corresponding to
their resource demand [10,11,26,30].

Traditional research interest in cluster systems has been high performance,
such as high throughput, low response time, or load balancing [10,30]. In this
paper we apply non-cooperative game theory to study the problem of minimizing
the server’s activation cost, a recent trend in cluster computing which aims at
reducing power consumption (see, e.g., [4,14,28]).

The jobs should be processed by a server available during the whole schedule.
We assume that time is slotted, and a job needs to be processed along one time-
slot in order to be completed. For every time-slot, we are given the server’s cost
for this slot. The server has unlimited capacity, and the cost is independent
of the load (as long as it is non-zero). In other words, the cost is associated

c© Springer Nature Switzerland AG 2018
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with activating the server. This scenario arises in cloud computing management,
as well as in several applications in media-on-demand systems, optical-network
design, and shuttle services.

As a real-life toy example, consider a big carousel (merry-go-round) in an
amusement park. Rides may start in every quarter of an hour (defining the time
slots), and every operation of the carousel costs a predefined amount, which is
independent of the number of riders. The park attracts many groups of kids
along the day. All the groups would like to have a ride on the carousel during
their visit in the park. The carousel owner would like to schedule the group rides
in a way that minimizes the total activation cost. The carousel’s capacity is not
a problem, as the number of simultaneous visitors in the park never exceeds the
carousel capacity.

In this paper, we analyze the game corresponding to this job-scheduling sce-
nario. We assume that jobs are controlled by selfish agents who act to minimize
their own cost, rather than to optimize any global objective. Thus, each agent
chooses the slot in which its job is processed instead of being assigned to one by
a central authority. Back to our merry-go-round example, in the corresponding
game, every group selects its riding time, with the understanding that groups
riding together share the carousel’s activation cost with the share being propor-
tional to the groups’ sizes.

While game theory has become an essential tool in their study, many real-
world applications do not necessarily fit the basic framework assumed in their
common analysis. In particular, the setting of real-time scheduling induces a
game in which the resources form a line and the strategy space of each player is
defined by an interval in this line. Thus, our paper belongs to the rich literature
on congestion and cost-sharing games with limited strategy space (e.g., matroids,
paths in graphs, etc.). As we show, the strategies’ interval structure induces a
game which is more stable than general singleton cost-sharing games. While
some of our results are simple adaptations of previously studied games, most of
them require different techniques and new tools, that exploit the unique interval-
strategy structure.

1.1 Preliminaries

An instance G of our game consists of a set J of n unit-length jobs, and a single
server. Every job j ∈ J is associated with a time interval, I(j) = [rj , dj), where
rj and dj denote its release-time and due-date. In addition, every j ∈ J has a
weight wj > 0.

Let T = maxj∈J dj be the maximal deadline of a job. We assume that the
server is available along the interval [0, T ). Time is slotted, and a job can start
its processing only at integral time points. For t = 1, . . . , T we refer to [t − 1, t)
as the t-th slot. Let ct denote the activation cost of the server in slot t.

A schedule S determines for every job j the time slot sj in which it is pro-
cessed, such that [sj −1, sj) ⊆ I(j). We say that the server is busy at time-slot t if
it processes at least one job in slot t. Otherwise, the server is idle at time t. Every
feasible schedule S corresponds to a profile of the game. For a profile S, the load
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on slot t is denoted �t(S) and is given by the total weight of jobs processed in
slot t. That is, �t(S) =

∑
j|sj=t wj . The jobs processed in slot t share the server’s

activation cost ct in a way proportional to the load they generate, given by their
weights. Formally, the cost of job j in a profile S is costj(S) = wj · csj

/�sj
(S).

The total cost of a schedule is cost(S) =
∑

j∈J costj(S). Note that cost(S) also
equals the total activation cost of non-idle slots, that is, cost(S) =

∑
t|�t(S)>0 ct.

This cost-sharing scheme fits the commonly used proportional cost-sharing rule
for weighted players (e.g., [6,9,22,32]), when the cost of a resource splits among
its users proportional to their demand.

For a profile S, a job j ∈ J , and a slot s′
j ⊆ I(j), let (S−j , s

′
j) denote the

profile obtained from S by replacing the strategy of job j by s′
j . That is, the

profile resulting from a migration of job j from slot sj to slot s′
j . A profile S is

a pure Nash equilibrium (NE) if no job can benefit from unilaterally deviating
from his strategy in S to another strategy; i.e., for every job j and every slot
s′

j ⊆ I(j) it holds that costj(S−j , s
′
j) ≥ costj(S).1

Best-Response Dynamics (BRD) is a local-search method where in each step
some player is chosen and plays its best improving deviation (if one exists), given
the strategies of the other players. Since BRD corresponds to actual dynamics
in real-life applications, the question of BRD convergence and the quality of
possible BRD outcomes are major issues in the study of resource allocation
games in applied systems.

It is well known that decentralized decision-making may lead to sub-optimal
solutions from the point of view of the society as a whole. For a game G, let
P (G) be the set of feasible profiles of G. We denote by OPT (G) the cost of a
social optimal (SO) solution; i.e., OPT = minS∈P (G) cost(S). We quantify the
inefficiency incurred due to self-interested behavior according to the price of
anarchy (PoA) [29] and price of stability (PoS) [6] measures. The PoA is the
worst-case inefficiency of a pure Nash equilibrium, while the PoS measures the
best-case inefficiency of a pure Nash equilibrium. Formally,

Definition 1. Let G be a family of games, and let G be a game in G. Let Υ (G)
be the set of pure Nash equilibria of the game G. Assume that Υ (G) �= ∅.

– The price of anarchy of G is the ratio between the maximal cost of a NE and
the social optimum of G. That is, PoA(G) = maxS∈Υ (G) cost(S)/OPT (G).
The price of anarchy of the family of games G is PoA(G) = supG∈GPoA(G).

– The price of stability of G is the ratio between the minimal cost of a NE and
the social optimum of G. That is, PoS(G) = minS∈Υ (G) cost(S)/OPT (G).
The price of stability of the family of games G is PoS(G) = supG∈GPoS(G).

A firmer notion of stability requires that a profile is stable against coordinated
deviations. A set of players Γ ⊆ J forms a coalition if there exists a joint move
where each job j ∈ Γ strictly reduces its cost. When BRD is applied with

1 Throughout this paper, we consider pure strategies, as is the case for the vast lit-
erature on cost-sharing games. Unlike mixed strategies, pure strategies may not be
random, or drawn from a distribution.
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coordinated deviations, in every step some coalition performs a joint beneficial
move. A profile S is a Strong Equilibrium (SE) if there is no coalition Γ ⊆ J that
has a beneficial joint move from S [7]. The strong price of anarchy (SPoA) and
the strong price of stability (SPoS), introduced in [5], are defined similarly to the
PoA and PoS in Definition 1, where Υ (G) refers to the set of strong equilibria.

1.2 Related Work

This paper links two well-studied areas (i) cost-sharing games, and in particular
cost-sharing games with singleton strategies, and (ii) real-time scheduling, and
in particular efficient energy allocation. Each of these areas has been widely
studied. We survey below the papers we find most relevant to our work.

Game-theoretic analysis became an important tool for analyzing systems
that are controlled by users with strategic consideration. In particular, systems
in which a set of resources is shared by selfish users. Congestion games [12,
29,32] consist of a set of resources and a set of players who need to use these
resources. Players’ strategies are subsets of resources. In cost-sharing games, such
as network formation games, each resource has an activation cost that is shared
by the players using it according to some sharing mechanism. With unit-weight
players and uniform cost-sharing, this is a potential game, a NE exists and the
PoS is logarithmic in the number of players [6]. On the other hand, Weighted
cost-sharing games, with proportional cost-sharing need not have a pure NE and
the PoS may be as high as the number of players [6,16].

The paper [33] studies the complexity of equilibria in a wide range of cost-
sharing games. The results on singleton cost-sharing games correspond to our
model with unit-weight jobs. Other related work studies the impact of the strate-
gies’ combinatorial structure [1,17,25]. In a more general setting, players’ strate-
gies are multisets of resources. Thus, a player may need multiple uses of the same
resource and his cost for using the resource depends on the number of times he
uses the resource [8]. Job scheduling on unrelated machines is a special case of
this class [9].

Variants of cost-sharing games have been the subject of extensive research. It
is well-known that games with player-specific costs [31] as well as other sharing
variants need not have a NE. Another line of research study the effect of different
cost-sharing mechanisms on the equilibrium inefficiency [16,20,23,24]. A lot of
attention has been given to scheduling congestion games (e.g., [18,34]), which
can be thought of as a special case of weighted congestion games with singleton
strategies. The paper [21] provides bounds on the PoS for singleton congestion
games, with weighted and unweighted players.

The SPoA and SPoS measures were introduced by [5], which study a schedul-
ing game, with the goal of minimizing the cost of the highest paying player. The
SPoA and SPoS were studied also for job scheduling on unrelated machines [9],
and for network formation games [3,5].

To the best of our knowledge, none of the above rich literature on job-
scheduling games consider the special structure of players’ strategies in the set-
ting of real-time scheduling.



Cost-Sharing Games in Real-Time Scheduling Systems 427

There is a wide literature also on real-time scheduling, either on a single or
on parallel machines (see surveys in [14,26]). All previous work on real-time
scheduling consider systems controlled by a centralized authority determining
the jobs’ assignment. We are not aware of any results in which this setting is
analyzed as a non-cooperative game. When the server has a limited capacity,
and jobs have variable weights, many problems such as minimizing the number
of late jobs, or minimizing the servers’ busy time are NP-hard, even with unit-
length jobs [4,13]. On the other hand, with unit-weight unit-length jobs, these
problems are polynomially solvable [10,14]. The papers [19,28] provide constant
approximation algorithms for the minimum busy-time problem with variable-
length, variable-weight jobs.

1.3 Our Results

We provide a complete analysis of equilibrium existence, computation, and
inefficiency in real-time scheduling cost-sharing games. Our analysis distin-
guishes between instances with unit slot-activation costs, in which ct = 1 for
all 1 ≤ t ≤ T , and instances with unit job-weights, in which wj = 1 for all j ∈ J .
Specifically, we analyze the following four classes of games:

G1,1 = {games with unit slot-activation costs and unit job-weights}.
G1,v = {games with unit slot-activation costs and variable job-weights}.
Gv,1 = {games with variable slot-activation costs and unit job-weights}.
Gv,v = {games with variable slot-activation costs and variable job-weights}.

We first show that, independent of the instance class, any application of
best-response dynamics, of unilateral or coordinated deviations, converges to a
NE or a SE, respectively. Also, a SE can be computed efficiently. In addition,
PoS(G1,v) = 1 and for this class we present an O(n2)-time algorithm for comput-
ing, for any G ∈ G1,v, a NE profile S� such that cost(S�) = OPT (G). This result
heavily exploits the interval-structure of the players’ strategy space, and is in
contrast to other singleton cost-sharing games, in which computing an optimal
stable solution in NP-hard, even with unit-weight players [15]. The guaranteed
existence of a SE is in contrast to other singleton cost-sharing games in which
a SE may not exist [9]. Finally, we present an O(n2 + T )-time algorithm for
computing a social optimum profile for general instances.

In Sect. 3 we consider instances with unit slot-activation costs. While in many
singleton cost-sharing games, PoA = n even with unit-weight players, unit-cost
resources, and a restricted strategy space [6,9], the PoA in our game is only
Θ(

√
n) with unit job-weights, and n/2 + 1 with variable job-weights, and its

unique analysis relies on the interval-structure of the strategies.
In Sect. 4 we study instances with variable slot-activation costs. The bad news

is that the limited strategy-structure does not help in reducing the PoA. That
is, the PoA may be as high as the number of players, n, even if maxt ct/mint ct

is arbitrarily close to 1. On the other hand, while in other singleton unweighted
cost-sharing games PoS = Ω(log n) [6], we show that PoS(Gv,1) is the constant 8

3 .
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Moreover, when combined with our algorithm for computing a social optimum,
the PoS upper-bound proof is constructive.

Our results for the equilibrium inefficiency with respect to unilateral devia-
tions are summarized in Table 1. All the bounds specified in the table are tight,
and all PoS upper bounds are constructive, that is, for each of the four classes we
present an algorithm for computing a NE whose cost is at most PoS(G)·OPT (G).

Table 1. Our results for equilibrium inefficiency with respect to unilateral deviations.

Slot-activation costs Job-weights Pure Nash Equilibrium

PoS PoA

Unit Unit 1
√
4n+ 1 − 1

Variable 1 n/2 + 1

Variable Unit 8/3 n

Variable n n

In Sect. 5 we study the equilibrium inefficiency with respect to coordinated
deviations. By definition, for every game G, PoA(G) ≥ SPoA(G) ≥ SPoS(G) ≥
PoS(G). For instances with variable slot-activation costs, and variable job-
weights, our analysis for unilateral deviations implies that all four measures
are as high as the number of jobs.

For instances with unit slot-activation costs, our analysis of coordinated devi-
ations is more positive and a bit surprising – showing no difference between unit
and variable job-weights, and no difference between the worst and best strong
equilibrium. Specifically, we show that SPOA(G1,v) = SPOS(G1,1) and both
measures are a constant – arbitrarily close to 2. Combined with our convergence
proof, we conclude that natural dynamics, even with coordinated deviations
allowed, are guaranteed to converge to a solution whose cost is less than 2OPT .
This result distinguishes our game from other games in which the strong price
of anarchy was analyzed and shown to be either equal to the PoS (O(log n) in
network formation games, and O(n) in scheduling on unrelated machines) or to
1 (single-source connection games) [2,5].

In general, our results show that games in which the players’ strategies have
an interval structure, are more stable than general singleton cost-sharing games,
the loss due to selfish behavior is smaller, and it is possible to compute efficiently
a stable and optimal or close to optimal solutions. We conclude in Sect. 6 with
some open problems and directions for future work. Due to space constraints,
some of the proofs are omitted.

2 Equilibrium Existence and Computation

In this section we study the stability of real-time scheduling games. We first
show that any application of best-response dynamics, with unilateral or coordi-
nated deviations, converges to a NE or a SE, respectively. We then present an
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O(n2) algorithm for calculating a strong equilibrium. Both results are valid for
general instances – with variable slot-activation costs and variable job-weights.
The algorithm generalizes an algorithm from [33] for finding a NE in unweighted
singleton games.

Theorem 1. For every G ∈ Gv,v, any application of BRD, with unilateral or
coordinated deviations, converges to a NE or a SE, respectively.

Theorem 2. For every G ∈ Gv,v, a strong equilibrium exists, and can be com-
puted efficiently.

We turn to consider the class G1,v. We show that for any G ∈ Gv,1, a NE
assignment whose cost equals the social optimum exists, and can be computed
in time O(n2).

Theorem 3. PoS(G1,v) = 1, and for every G ∈ G1,v, a NE whose cost is
OPT (G) can be computed efficiently.

Proof. We present an optimal algorithm that computes a NE solution whose
cost is OPT (G). It consists of two phases: In the first phase, a social optimum
solution, S�, is computed. This solution is not necessarily a NE. In the second
phase, the jobs are assigned in the busy slots of S�, such that the resulting
schedule is stable.

Algorithm 1. Computes a NE schedule of cost OPT (G) for G ∈ G1,v

1: Sort the jobs such that d1 ≤ d2 ≤ · · · ≤ dk

2: while there are unassigned jobs do
3: Let j be the next unassigned job. Activate slot dj and assign every job k such

that dj ⊆ Ik in slot dj .
4: Remove the assigned jobs from the instance.
5: end while
6: Let b1, . . . , bm be the set of slots in which the server is busy.
7: Remove all the jobs from the server and reassign them as follows:
8: while there are unassigned jobs do
9: For every slot bi, let A(bi) be the total weight of jobs for which bi ⊆ Ij .

10: Let i� = arg mini cbi/A(bi).
11: Assign all jobs j for which bi� ⊆ Ij in slot bi� .
12: Remove the assigned jobs from the instance.
13: end while

The proof of the algorithm combines two claims. The first claim, whose proof
is based on an exchange argument, shows that the number of slots open during
the first phase is minimal. The second claim refers to the stability of the schedule
produced in the second phase.

The first phase can be implemented in linear time after the jobs are sorted by
due-dates and release-times, and it therefore takes O(n log n). The calculation
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and the updates of A(bi) take O(n2). Thus, the time complexity of Algorithm 1
is O(n2) and is independent of T .

Note that the resulting schedule does not produce a strong equilibrium. In
Sect. 5 we show that SPOS = 2. Specifically, Algorithm1 fails when coordinated
deviations are allowed, since moving to an idle slot may be beneficial for a
coalition, but never for a single job.

Finally, we consider the problem of computing a (not necessarily stable) social
optimum profile for instances with variable activation costs.

Theorem 4. For every G ∈ Gv,v, a profile whose cost is OPT (G) can be com-
puted efficiently.

Proof. Let G ∈ Gv,v. Since the server’s capacity on each slot is not limited, the
social optimum is independent of the jobs’ weights. Also, we assume that for
every two jobs j1, j2 it holds that if rj1 < rj2 then dj1 ≤ dj2 . In other words, no
interval is contained in another (such an instance is commonly denoted proper).
This assumption is w.l.o.g, since if I(j2) ⊆ I(j1), then j1 can be removed from
the instance, and be assigned in j′

2s slot once the assignment is done.
By the above, the jobs in J can be sorted such that r1 ≤ · · · ≤ rn and

d1 ≤ · · · ≤ dn. Our algorithm is based on dynamic programming. For every
j1 ≤ j2, let

α(j1, j2) =

{
mint∈{rj2+1,...,dj1}ct if rj2 < dj1

∞ otherwise

In words, α(j1, j2) is the cost of a cheapest slot in I(j1) ∩ I(j2). After the table
α is computed, the algorithm advances by computing for every 1 ≤ j ≤ n the
minimal cost C(j) of an assignment of jobs 1, . . . , j. The base case is C(0) = 0.
Then, for j = 1, . . . , n, let

C(j) = min
k<j

C(k) + α(k + 1, j).

That is, for every k < j, we consider the cheapest assignment in which the
rightmost busy slot processes the jobs {k + 1, . . . , j}, and select the cheapest
among these candidates. In particular, C(n), is the social optimum.

Standard DP backtracking can be used to retrieve the busy slots (rather
than their costs). The calculation of α(j1, j2) for all 1 ≤ j1 ≤ j2 ≤ n takes time
O(T + n2). Calculating C(j) takes O(j), for a total of O(n2) for the whole table
C. Thus, the total time complexity of the algorithm is O(T + n2).

3 Instances with Unit Slot-Activation Costs

3.1 Unit Job-Weights, Unit Slot-Activation Costs

This section discusses the equilibrium inefficiency of the class G1,1. Being a sub-
class of G1,v, Theorem 3 implies that PoS(G1,1) = 1. We show that the interval-
structure of the players’ strategies, limits the PoA to Θ(

√
n).
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Theorem 5. PoA(G1,1) =
√

4n + 1 − 1.

Proof. We begin with the lower bound. Let n = h2 + h for some integer h. We
present a game G ∈ G1,1 for which OPT (G) = 1 and some NE profile has cost
2h =

√
4n + 1 − 1. An example for n = 20 and h = 4 is presented in Fig. 1. The

game is played over n unit-weight jobs. For i = 0 . . . , h − 1, the set J includes
h − i jobs for which Ij = [i, h + 1). For i = 1, . . . , h, the set J includes i jobs for
which Ij = [h, h + 1 + i).

In our example, the interval of each of the 4 jobs assigned in slot 1 is [0, 5).
Symmetrically, the interval of each of the 4 jobs assigned in slot 9 is [4, 9), and
so on. Note that for all j ∈ J it holds that [h, h + 1) ⊆ I(j), thus, an optimal
solution assigns all the jobs in slot h + 1 (slot 5 in our example). A possible
NE profile S assigns i jobs for i = 1, . . . h, in each of the slots h − i + 1 and
h + i + 1. The profile S is a NE, since jobs can only migrate towards slot h + 1,
that is, to slots with a lower load. Since the server is busy in [0, h) and [h+1, 2h),
cost(S) = 2h and the PoA bound follows.

0     1      2     3      4      5     6      7     8     9

Fig. 1. A NE achieving
PoA=

√
4n + 1 − 1 = 8 for n = 20

unit-weight jobs. The jobs’ intervals
are shown above the schedule.

a1
a3

a4
b1

b3

b4

a2

b2

0   1     2   3  4  5 6   

Fig. 2. A NE achieving PoA= n
2

+1 =
5 for n = 8 variable-weight jobs.

For the upper bound, let S� be a social optimum schedule and assume that
cost(S�) = m. Let b1 < b2 < ··· < bm be the sequence of slots in which the server
is busy in S�. Let S be a NE schedule. Partition the jobs into at most 2m sets
L1, R1, . . . , Lm, Rm, in the following way: For every job j, let s�

j ∈ {b1, . . . , bm}
be the slot in which Job j is processed in S�, and let sj be the slot in which j
is processed in S. If sj ≤ s�

j , then let i be the minimal index such that sj ≤ bi,
and let j ∈ Li. In other words, j belongs to the L-set of the earliest busy slot
in S� that can process it. Symmetrically, if sj > s�

j , then let i be the maximal
index such that tj > bi, and let j ∈ Ri. In other words, j belongs to the R-set
of the latest busy slot in S� that can process it. The partition into sets implies
that if j ∈ Li ∪ Ri then Job j can be processed in slot bi, that is, bi ⊆ I(j).

The following observations will be used in our analysis. The structure of S is
sketched in Fig. 3. We first show that the loads on non-idle slots accommodating
jobs from the same set form a strictly decreasing or increasing sequence.
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0           b1 b2 b3 …          bm T

L1 R1 L2 R2 L3
…

Rm

Fig. 3. The structure of a NE given that in an optimal solution the server is busy in
slots b1, b2, . . . , bm.

Observation 6. In S, if two slots t1 < t2 both accommodate jobs from Li,
then �t1(S) > �t2(S). If two slots t1 < t2 both accommodate jobs from Ri, then
�t1(S) < �t2(S).

Proof. Assume by contradiction that in some NE, S, two jobs {j1, j2} ⊆ Li are
processed in different slots, t1 < t2 such that �t1(S) ≤ �t2(S). Since t1 < t2, we
have that t2 is closer to bi. Since bi ⊆ Ij1 and t1 < t2 ≤ bi, it must be that
t2 ⊆ Ij1 , thus, j1 can migrate to t2 and reduce its cost to 1

�t2 (S)+1 < 1
�t1 (S) ,

contradicting the stability of S. The analysis for Ri is symmetric (note that the
word ‘symmetric’ is accurate here).

Observation 7. In S, for every 1 ≤ i ≤ m, there is at most one slot in [bi +
1, bi+1) in which jobs from both Ri and Li+1 are processed.

Proof. Assume by contradiction that there are two different slots t1 < t2 in
[bi, bi+1), in which jobs from both Ri and Li+1 are processed. The partition into
sets implies that moving to the right, towards bi+1, is feasible for j ∈ Li+1, and
moving to the left, towards bi, is feasible for every j ∈ Ri. In particular, some
job currently assigned in t2 can migrate to t1 and some job, currently assigned
in t1 can migrate to t2. This implies that S cannot be a NE - as a job from a
least loaded slot among t1 and t2 can perform a beneficial move.

We conclude that S has the following structure: during [0, b1), jobs from
L1 are processed in some slots with decreasing loads. During [b1 + 1, b2), jobs
from R1 are processed in some slots with increasing loads, then a single slot
may process jobs from R1 ∪ L2, and then jobs from L2 are processed in some
slots with decreasing loads. This middle slot with the jobs from R1 ∪ L2 has the
maximal load. The same structure continues until, during [bm + 1, T ) jobs from
Rm are processed in some slots with increasing loads.

In the sequel, we assume that no slot accommodates jobs from both Ri and
Li+1. It can be shown that an instance with such a slot, t, can be replaced by
an instance in which all the jobs processed in t are from Ri (specifically, their
interval is (bi, t]), with the same social optimum and the same worst NE.

Observation 8. If k jobs are assigned on h slots with distinct loads then h ≤
1
2 (

√
8k + 1 − 1).
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Proof. The number of slots is maximized if the loads are 1, 2, . . . , h. Thus, in
order to utilize h slots, at least

∑h
i=1 i = 1

2 (h2 + h) jobs are required, implying
h ≤ 1

2 (
√

8k + 1 − 1).

Let f(k) = 1
2 (

√
8k + 1−1). By Observation 8, and the structure of S, at most

f(L1) slots are busy in [0, b1), at most f(Rm) slots are busy in [bm + 1, T ), and
for every 1 ≤ i < m, at most f(|Ri|) + f(|Li+1|) slots are busy in [bi + 1, bi+1).

Given that OPT = cost(S�) = m, the PoA is at most 1
m

∑m
i=1(f(|Li|) +

f(|Ri|)). Since f(k) is convex and
∑m

i=1(|Li| + |Ri|) = n, by Jensen’s inequal-
ity [27], the PoA gets its maximal value when m = 1 and L1 = R1 = n/2. Specif-
ically, for every G ∈ G1,1, we have PoA(G) ≤ 2f(n/2) = 2 · 1

2 (
√

4n + 1 − 1) =√
4n + 1 − 1.

3.2 Variable Job-Weights, Unit Slot-Activation Costs

We turn to analyze instances with variable job-weights. Here again, the PoA is
lower than n - the PoA in general cost-sharing games with singleton strategies,
however, it is still Θ(n).

Theorem 9. PoA(G1,v) = n
2 + 1.

Proof. We begin with the upper bound and show that PoA(G) ≤ n
2 + 1 for

every G ∈ Gv,1. First note that if the social optimum assigns the jobs on two or
more slots, then PoA(G) ≤ n/2 follows form the fact that the maximal cost of
a solution is n. Assume that OPT (G) = 1, and let t be a slot such that t ⊆ I(j)
for every j ∈ J . Assume by contradiction that in some NE profile S, the jobs
are assigned on at least n

2 + 2 slots. This implies that for at least three slots, a
single job is assigned in each of these slots. Moreover, at least two of these three
slots are either in [t − 1, T ), or in [0, t). Assume w.l.o.g., that two jobs j1, j2, are
assigned alone on two different slots t1 < t2 in [0, t). Since slot t is feasible for
both jobs, the job assigned on t1 can join the job on t2. This migration reduces
its cost from 1 to w(j1)/(w(j1) + w(j2)), contradicting the assumption that S is
a NE.

We proceed to prove the lower bound. for every even integer n, we describe a
game G ∈ Gv,1 over n jobs, such that PoA(G) = n

2 + 1. An example for n = 8 is
given in Fig. 2. Let n = 2z. The set of jobs consists of z pairs, a1, b1, . . . , az, bz.
Each of the four jobs a1, b1, a2, b2 has weight 1. For 3 ≤ j ≤ z, w(aj) = w(bj) =
2j−2. The intervals of the jobs are I(a1) = [0, 2) and I(b1) = [1, 2). For 2 ≤ j ≤ z,
Jobs I(aj) = I(bj) = [1, j + 2). Note that for all jobs j ∈ J , [1, 2) ⊆ I(J). Thus,
OPT (G) = 1 is achieved by assigning all the jobs in the single slot [1, 2). A
possible NE leaves slot 2 idle and assigns a1 in slot 1, b1 in slot 3 and for
2 ≤ j ≤ z, Jobs aj and bj are assigned in slot j + 2. We show that S is a NE:
the cost for each of a0 and b0 is 1, however, these jobs cannot join any other job,
as they can only move towards slot 2 which is idle. The other jobs are paired
with an equal-weight job, so each has cost 1/2. These jobs can move towards
slot 2, but each of the busy slots they can move to has load not larger than their
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current pair’s load. Thus, no migration is beneficial, and S is a NE. The social
cost of S is n

2 + 1, implying the lower bound of the PoA.

4 Instances with Variable Slot-Activation Costs

In this section we discuss the equilibrium inefficiency of the classes Gv,1 and Gv,v.
As we show, allowing variable slot-activation costs, may increase significantly
the equilibrium inefficiency, even if maxt ct/mint ct is arbitrarily close to 1. On
the other hand, while the PoS equals O(log n) in other singleton unweighted
cost-sharing games [6], the interval strategy structure of real-time scheduling
game guarantees that with unit-weight players, the PoS is O(1). Moreover, our
proof is constructive. First, a social optimum profile is computed (as shown in
Theorem 4), and then the SO is converted to a stable profile whose cost is at
most 8

3 · OPT (G).

Theorem 10. PoA(Gv,1) = n and PoS(Gv,1) = 8
3 .

Theorem 11. PoA(Gv,v) = n and for every ε > 0, there exists a game G ∈ Gv,v

for which PoS(G) = n − ε.

5 Coordinated Deviations

In this section we study the equilibrium inefficiency with respect to coordinated
deviations. By definition, for every game G, PoA(G) ≥ SPoA(G) ≥ SPoS(G) ≥
PoS(G). For general instances, the following upper bound follows from simple
standard arguments, and the lower bound follows from Theorem11.

Theorem 12. SPoA(Gv,v) < n and for every ε > 0, there exists a game G ∈
Gv,v for which SPoS(G) ≥ n − ε.

For instances with unit slot-activation costs, we showed in Sect. 3 that PoS = 1
and the PoA is Θ(n) or Θ(

√
n) depending on the uniformity of job-weights.

Our analysis of the SPOA and SPOS is therefore a bit surprising - showing
no difference between unit- and variable-weight jobs, and no difference between
the worst and best strong equilibrium. All measures turned out to be the same
constant – arbitrarily close to 2. Formally,

Theorem 13. SPoA(G1,v) < 2, and for every ε > 0, there exists a game G ∈
G1,1 for which SPOS(G) ≥ 2 − ε.

6 Conclusions and Open Problems

In this paper we analyzed, using game theoretic tools, the server’s activation
cost in real-time job-scheduling systems. We showed that the limited interval-
structure of players’ strategies induces a game which is more stable than general
singleton cost-sharing games. Specifically, a strong equilibrium exists even in the
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most general setting, and the equilibrium inefficiency bounds are significantly
lower than in other singleton cost-sharing games with uniform-cost resources
or unweighted players. Our results imply that if the system is controlled by
rational selfish users, then the increase in its activation cost is limited. This
is valid especially if the server’s activation cost does not vary over time, or if
clients have uniform resource demand, and even if users can form coalitions and
coordinate their assignment.

This is the first work that studies real-time scheduling games, and it can be
extended in various directions:

1. Consider games with negative congestion effect. In our setting, the slot-
activation cost is shared by the jobs assigned in it, thus, jobs have an incentive
to join other jobs. Games in which jobs’ costs increases with the congestion
require different analysis.

2. Study games with variable-length jobs, in which every job is associated with
a processing time pj , and should select its processing interval [tj,1, tj,2) ⊆
[rj , dj) such that tj,2 − tj,1 = pj . The cost of processing a job is the total
cost of its process. With variable-length jobs, preemptions may be allowed,
inducing a different game, in which the strategy space of job j consists of all
subsets of size pj of {rj + 1, rj + 2, . . . , dj}.

3. Another interesting direction is to consider systems with limited server’s
capacity. Formally, for a given parameter B, at most B jobs may be pro-
cessed in every slot. In this setting, the cost-sharing mechanism should also
handle the challenge of convergence to a feasible solution.
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We propose a model of strategic hiding in a network in face of a hostile authority.
Given a set of nodes, the hider chooses a network over these nodes together with
a node. The network chosen by the hider is observed by the seeker (the hostile
authority) but the location choice is not observed. The seeker chooses one of
the nodes in the network to inspect. The inspected node is removed from the
network. If the hider hides in the inspected node or one of its neighbours, he is
caught by the seeker and suffers a penalty. Otherwise, he enjoys the benefits from
the network that are a convex and increasing function of the number of nodes
(including himself) that the hider can access (directly or not) in the network.
This form of network benefits, first proposed by [3], is in line with the celebrated
Metcalfe’s law, where the function is identity. The objectives of the seeker are
to minimize the payoff of the hider and the proposed model takes the form of a
two-stage zero-sum game.

The hide and seek stage in our model is similar to the hide and seek games on
graphs of [2], with the difference that in their case the penalty from being caught
is 0 and benefits from not being caught are fixed and independent of the graph.
Unlike in the model of [1], in our model the authorities choose their seeking
strategy knowing the network and only one node chooses the network topology
to hide himself. This is similar to the model of [4]. However, unlike in their
model, the authorities are strategic and they take into account the incentives and
strategic behaviour of the hider when choosing the seeking strategy. Although
very stylised and simple, the model allows us to capture the trade-off between
secrecy and network benefits.

We provide optimal networks for the hider and characterize optimal strategies
of the two players on these networks. In general, the optimal networks consists of
a number of singleton nodes and a connected component which is either a cycle
or a core-periphery network. If the component is a cycle, in equilibrium the hider
mixes uniformly across its nodes. If the component is a core-periphery network,
the hider mixes uniformly across the periphery nodes. This provides theoretical
support to the claim that the hider chooses networks where his centrality is small
and indistinguishable from the centralities of the other nodes.
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Abstract. Budgets play a significant role in real-world sequential auc-
tion markets such as those implemented by Internet companies. To max-
imize the value provided to auction participants, spending is smoothed
across auctions so budgets are used for the best opportunities. Motivated
by a mechanism used in practice by several companies, this paper consid-
ers a smoothing procedure that relies on pacing multipliers: on behalf of
each bidder, the auction market applies a factor between 0 and 1 that uni-
formly scales the bids across all auctions. Reinterpreting this process as a
game between bidders, we introduce the notion of pacing equilibrium, and
prove that they are always guaranteed to exist. We demonstrate through
examples that a market can have multiple pacing equilibria with large
variations in several natural objectives. We show that pacing equilib-
ria refine another popular solution concept, competitive equilibria, and
show further connections between the two solution concepts. Although
we show that computing either a social-welfare-maximizing or a revenue-
maximizing pacing equilibrium is NP-hard, we present a mixed-integer
program (MIP) that can be used to find equilibria optimizing several
relevant objectives. We use the MIP to provide evidence that: (1) equi-
librium multiplicity occurs very rarely across several families of random
instances, (2) static MIP solutions can be used to improve the outcomes
achieved by a dynamic pacing algorithm with instances based on a real-
world auction market, and (3) for our instances, bidders do not have an
incentive to misreport bids or budgets provided there are enough partic-
ipants in the auction.

Keywords: ad auctions · Budget constraints · Internet advertising
Pacing · Repeated auctions

This work was done while the first author was visiting Facebook Core Data Science. A
full version of this paper can be found at https://arxiv.org/abs/1706.07151.
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Abstract. We consider a model of matching in trading networks in
which firms can enter into bilateral contracts. In trading networks, stable
outcomes, which are immune to deviations of arbitrary sets of firms, may
not exist. We define a new solution concept called trail stability. Trail-
stable outcomes are immune to consecutive, pairwise deviations between
linked firms. We show that any trading network with bilateral contracts
has a trail-stable outcome whenever firms’ choice functions satisfy the
full substitutability condition. For trail-stable outcomes, we prove results
on the lattice structure, the rural hospitals theorem, strategy-proofness,
and comparative statics of firm entry and exit. We also introduce weak
trail stability which is implied by trail stability under full substitutability.
We describe relationships between the solution concepts.

Keywords: Matching markets · Market design · Trading networks
Supply chains · Trail stability · Weak trail stability · Chain stability
Stability · Contracts
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A public decision-making problem consists of a set of issues, each with multi-
ple possible alternatives, and a set of competing agents, each with a preferred
alternative for each issue. We study adaptations of market economies to this
setting, focusing on binary issues. Issues have prices, and each agent is endowed
with artificial currency that she can use to purchase probability for her pre-
ferred alternatives (we allow randomized outcomes). We first show that when
each issue has a single price that is common to all agents, market equilibria can
be arbitrarily bad.

This negative result motivates a different approach. We present a novel tech-
nique called pairwise issue expansion, which transforms any public decision-
making instance into an equivalent Fisher market, the simplest type of private
goods market. This is done by expanding each issue into many goods: one for each
pair of agents who disagree on that issue. We show that the equilibrium prices
in the constructed Fisher market yield a pairwise pricing equilibrium in the
original public decision-making problem which maximizes Nash welfare. More
broadly, pairwise issue expansion uncovers a powerful connection between the
public decision-making and private goods settings; this immediately yields sev-
eral interesting results about public decisions markets, and furthers the hope
that we will be able to find a simple iterative voting protocol that leads to
near-optimum decisions.

The full version of the paper can be found at https://arxiv.org/pdf/1807.
10836.pdf.
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Abstract. We study the use of Bayesian persuasion (i.e., strategic use
of information disclosure/signaling) in endogenous team formation. This
is an important consideration in settings such as crowdsourcing compe-
titions, open science challenges and group-based assignments, where a
large number of agents organize themselves into small teams which then
compete against each other. A central tension here is between the strate-
gic interests of agents who want to have the highest-performing team,
and that of the principal who wants teams to be balanced. Moreover,
although the principal cannot choose the teams or modify rewards, she
often has additional knowledge of agents’ abilities, and can leverage this
information asymmetry to provide signals that influence team formation.
Our work uncovers the critical role of self-awareness (i.e., knowledge of
one’s own abilities) for the design of such mechanisms. For settings with
two-member teams and binary-valued agents, we provide signaling mech-
anisms which are asymptotically optimal when agents are agnostic of
their own abilities. On the other hand, when agents are self-aware, then
we show that there is no signaling mechanism that can do better than not
releasing information, while satisfying agent participation constraints.

Our work focuses on the use of strategic signaling for incentivizing team forma-
tion. The main idea is that many strategic settings have an inherent information
asymmetry, where the principal has more information than the participating
agents. We seek to understand if there is any way of leveraging this informa-
tion asymmetry to influence endogenous team formation, with the objective of
creating balanced teams.

We consider a setting with n agents who form teams of two, leading to some
utility for both the agents and the principal. The teams are chosen endogenously
by the agents, in the form of a stable matching ; the principal however can influ-
ence agents’ preferences via strategic release of information. Each agent has an
intrinsic (numerical) type, drawn from some publicly-known prior. Crucially, we
assume that each agent’s type is known to the principal, but unknown to other
agents. Moreover, an agent’s utility is an increasing function of her and her team-
mates’ types, while the principal’s utility function depends on the set of resulting
teams, and favors having more ‘balanced’ teams; thus, the principal’s and agents’
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incentives are misaligned. We focus on settings with a binary type-space {0, 1},
and a constant number (K) of prior distributions.

Any signaling policy designed by the principal must induce a stable matching
of agents, as well as obey individual rationality constraints, which enforce that
each agent be weakly better off by agreeing to receive the signal. We show that
it is enough to restrict to signals that are rank-orderings of agents according to
expected posterior types. For K ≥ 1 prior distributions, we propose the Cluster
First Best signaling policy, in which agents with types drawn from the same
prior distribution are always matched to agents of opposing realized type (i.e.,
high-type agents are always matched to low-type agents, and vice versa). Our
main results are the following:

Theorem 1. When agents do not know their own types, Cluster First Best is
asymptotically optimal in n.

Theorem 2. When agents do know their own types, no signaling policy can do
better than random matching.

Our results indicate the importance of self-awareness in determining the suc-
cess of signaling mechanisms. Showing this strategy is asymptotically optimal
requires a novel dual-certification argument, which may be useful in related set-
tings. Moreover, our work provides important insights and techniques for the
design of Bayesian persuasion schemes for general team formation settings, as
well as more general bipartite matching settings. For details, refer to our full
version: https://arxiv.org/abs/1809.00751.
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Abstract. I consider the optimal hourly (or per-unit-time in general)
pricing problem faced by a worker (or a service provider) on an on-
demand service platform. Service requests arriving while the worker is
busy are lost forever. Thus, the optimal hourly prices need to capture
the average hourly opportunity costs incurred by accepting jobs. Due
to potential asymmetries in these costs, price discrimination across jobs
based on duration, characteristics of the arrival process, etc., may be
necessary for optimality, even if the customers’ hourly willingness to pay
is believed to be identically distributed. I first establish that such price
discrimination is not necessary if the customer arrival process is Poisson:
in this case, the optimal policy charges an identical hourly rate for all
jobs. This result holds even if the earnings are discounted over time. I
then consider the case where the customers belong to different classes
that are differentiated in their willingness to pay. I present a simple and
practical iterative procedure to compute the optimal prices in this case
under standard regularity assumptions on the distributions of customer
valuations.

Keywords: Optimal pricing · On-demand services

A full draft of the paper is available at https://arxiv.org/abs/1803.06797.

c© Springer Nature Switzerland AG 2018
G. Christodoulou and T. Harks (Eds.): WINE 2018, LNCS 11316, p. 448, 2018.
https://doi.org/10.1007/978-3-030-04612-5

https://arxiv.org/abs/1803.06797
https://doi.org/10.1007/978-3-030-04612-5


Implementing the Lexicographic Maxmin
Bargaining Solution

Ashish Goel and Anilesh K. Krishnaswamy(B)

Stanford University, Stanford, USA
{ashishg,anilesh}@stanford.edu

Abstract. A major question which bargaining theory deals with is that
of implementation – designing a mechanism for which a desired bargain-
ing solution is the unique subgame perfect outcome, with each player
having complete information, and the social planner/designer having no
knowledge of the players’ preferences. There has been much work on
exhibiting mechanisms that implement various bargaining solutions, in
particular the Kalai-Smorodinsky solution and the Nash Bargaining solu-
tion. However, to the best of our knowledge, there is no known (subgame
perfect) implementation of the lexicographic maxmin solution.

The lexicographic maxmin solution is obtained by a repeated appli-
cation of the maxmin criterion: first, selecting feasible outcomes that
maximize the utility of the worst-off player, then, among these outcomes,
selecting those that maximize the utility of the next worst-off player, and
so on. The utility gains are measured with respect to the disagreement
point. The lexicographic maxmin solution has also had a long history out-
side of the literature on bargaining. It corresponds directly to the notion
of maxmin fairness which has been extensively studied in network rout-
ing, bandwidth allocation and other resource allocation problems.

This paper is devoted to designing a mechanism for the (subgame per-
fect) implementation of the lexicographic maxmin solution. We do so by
first defining the Knockout mechanism on any two given outcomes. This
construction is based on a novel notion, namely disagreement dominance
(a relation defined on pairs of vectors), which we believe is interesting
in its own right. We then use the Knockout mechanism as a subroutine
in constructing our full mechanism: a binary tree of games, where each
node corresponds to a Knockout mechanism with two outcomes. The
workings of our overall mechanism rely crucially on an original com-
binatorial result we establish, that the lexicographic maxmin solution
disagreement dominates any other outcome.

A full draft of the paper is available at https://arxiv.org/pdf/1810.01042v1.pdf.
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Our mechanism uses the standard assumption that the space of out-
comes is such that in any player’s best outcome, all the surplus goes to
her, and every one else gets no utility. This assumption is commonplace
in most of the literature on implementation of bargaining solutions.

Keywords: Bargaining · Implementation · Maxmin fairness
Mechanism design
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Abstract. Modern labor platforms face the online learning problem of
optimizing matches between jobs and workers of unknown abilities. This
problem is complicated by the rise of complex jobs on these platforms
that require teamwork, such as web development and product design.
Successful completion of such a job depends on the abilities of all workers
involved, which can only be indirectly inferred by observing the aggre-
gate performance of the team. Observations of the performance of various
overlapping teams induce correlations between the unknown abilities of
different workers at any given time. Tracking the evolution of this corre-
lation structure across a large number of workers on the platform as new
observations become available, and using this information to adaptively
optimize future matches, is a challenging problem.

To study this problem, we develop a stylized model in which teams
are of size 2 and each worker is drawn i.i.d. from a binary (good or bad)
type distribution. Under this model, we analyze two natural settings:
when the performance of a team is dictated by its strongest member
and when it is dictated by its weakest member. We find that these two
settings exhibit stark differences in the trade-offs between exploration
(i.e., learning the performance of untested teams) and exploitation (i.e.,
repeating previously tested teams that resulted in a good performance).
We establish fundamental regret bounds and design near-optimal algo-
rithms that uncover several insights into these tradeoffs.

Keywords: Team formation · Online learning · Online labor platforms
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