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This pioneering Population Genomics Series deals with the concepts and approaches
of population genomics and their applications in addressing fundamental and applied
topics in a wide variety of organisms. Population genomics is a fast emerging
discipline, which has created a paradigm shift in many fields of life and medical
sciences, including population biology, ecology, evolution, conservation, agricul-
ture, horticulture, forestry, fisheries, human health and medicine.

Population genomics has revolutionized various disciplines of biology including
population, evolutionary, ecological and conservation genetics, plant and animal
breeding, human health, genetic medicine, and pharmacology by allowing to address
novel and long-standing intractable questions with unprecedented power and accu-
racy. It employs large-scale or genome-wide genetic information across individuals
and populations and bioinformatics, and provides a comprehensive genome-wide
perspective and new insights that were not possible before.

Population genomics has provided novel conceptual approaches, and is tremen-
dously advancing our understanding the roles of evolutionary processes, such as
mutation, genetic drift, gene flow, and natural selection, in shaping up genetic
variation at individual loci and across the genome and populations, disentangling
the locus-specific effects from the genome-wide effects, detecting and localizing the
functional genomic elements, improving the assessment of population genetic
parameters or processes such as adaptive evolution, effective population size, gene
flow, admixture, inbreeding and outbreeding depression, demography and biogeog-
raphy, and resolving evolutionary histories and phylogenetic relationships of extant
and extinct species. Population genomics research is also providing key insights into
the genomic basis of fitness, local adaptation, ecological and climate acclimation and
adaptation, speciation, complex ecologically and economically important traits, and
disease and insect resistance in plants, animals and/or humans. In fact, population
genomics research has enabled the identification of genes and genetic variants
associated with many disease conditions in humans, and it is facilitating genetic
medicine and pharmacology. Furthermore, application of population genomics
concepts and approaches can facilitate plant and animal breeding, forensics, delin-
eation of conservation genetic units, understanding evolutionary and genetic impacts
of resource management practices and climate and environmental change, and
conservation and sustainable management of plant and animal genetic resources.

The volume editors in this Series have been carefully selected and topics written
by leading scholars from around the world.
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Preface

Recent novel advances in sequencing technologies, bioinformatics tools, statistical
methods and software, and models have created a paradigm shift in several disci-
plines of biology (especially population biology, ecology, evolution, and conserva-
tion), agriculture, forestry, fisheries, human health, and medicine. Population
genomics is an outcome of these advances, which is a fascinating and fast-growing
discipline. Population genomics has revolutionized various disciplines of biology
including population, evolutionary, ecological and conservation genetics, plant and
animal breeding, human health, genetic medicine, and pharmacology by allowing to
address novel and long-standing intractable questions with unprecedented power
and accuracy. It employs large-scale or genome-wide genetic information and
bioinformatics to address various fundamental and applied aspects in biology and
related disciplines, and provides a comprehensive genome-wide perspective and
new insights that were not possible before.

Population genomics has provided novel conceptual approaches and is tremen-
dously advancing our understanding the roles of evolutionary processes, such as
mutation, genetic drift, gene flow, and natural selection, in shaping up genetic
variation at individual loci and across the genome, individuals and populations,
disentangling the locus-specific effects from the genome-wide effects, detecting and
localizing the functional genomic elements, improving the assessment of population
genetic parameters or processes such as adaptive evolution, adaptive population
genetic differentiation, effective population size, gene flow, admixture, inbreeding
and outbreeding depression, demography and biogeography, and resolving evolu-
tionary histories and phylogenetic relationships of extant and extinct species. Pop-
ulation genomics research is also providing key insights into the genomic basis of
fitness, local adaptation, ecological and climate acclimation and adaptation, specia-
tion, colonization, complex ecologically and economically important traits, and
disease and insect resistance in plants, animals and/or humans. In fact, population
genomics research has enabled the identification of genes and genetic variants
associated with many disease conditions in humans, and it is facilitating genetic
medicine and pharmacology. Furthermore, application of population genomics
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concepts and approaches can facilitate plant and animal breeding, forensics, delin-
eation of conservation genetic units, understanding evolutionary and genetic impacts
of resource management practices and climate change, and conservation and sus-
tainable management of plant and animal genetic resources.

I have been working on various aspects of molecular, population, evolutionary
and conservation genetics, and genomics for about four decades. Recognizing the
power and potential of population genomics, I started organizing a pioneering annual
workshop on Population and Conservation Genomics in 2007 as a part of the
premier annual International Plant and Animal Genome Conference. This Workshop
has provided a platform for the presentation and sharing of the latest advances in
population and conservation genomics at the international stage. I may have been the
first to identify Conservation Genomics as a research area in 2004 when I used this
term in my Senior (Tier 1) Canada Research Chair title. Leading and emerging
scholars have been presenting their research results at the Population and Conser-
vation Genomics workshop, which has grown to more than one Workshop session
and has given rise to several offshoot workshops. The pool of the Workshop
speakers provided a good resource for recruiting authors for the current Population
Genomics book. Indeed, the chapters are written by prominent pioneering, leading
and emerging research scholars in various fields of population genomics.

This Population Genomics book discusses the concepts, approaches and appli-
cations of population genomics in addressing various fundamental and applied
crucial aspects outlined above in a variety of organisms from microorganisms to
humans. The book provides insights into a range of emerging topics including
population epigenomics, landscape genomics, paleogenomics, ecological and evo-
lutionary genomics, seascape genomics, biogeography, demography, speciation,
admixture, colonization and invasion, genomic selection, and plant and animal
domestication. This book fills a vacuum in the field and is expected to become a
primary reference in Population Genomics world-wide.

The book is organized into four parts. The first part provides an overview of the
population genomics concepts, approaches, applications, challenges and future
perspectives. The second part includes three chapters discussing sequencing and
genotyping technologies, and bioinformatics methods as applied to population
genomics. The third part focuses on various concepts and approaches in population
genomics, such as population epigenomics, landscape genomics, paleogenomics,
genome-wide association studies, and genomic selection. The fourth, the last part,
includes nine chapters addressing population, evolutionary and ecological genetics
applications and inferences, such as evolutionary and ecological genomics, demog-
raphy, biogeography, seascape genomics, speciation, admixture, invasion and colo-
nization, and plant and animal domestication and breed development. With such
quite comprehensive and diverse topics, the book is envisioned for a wide reader-
ship, including undergraduate and graduate students, research scholars, and pro-
fessionals and experts in the field.

I would like to thank all contributors to this volume and peer reviewers.

Fredericton, NB, Canada Om P. Rajora
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Population Genomics: Advancing )
Understanding of Nature A

Gordon Luikart, Marty Kardos, Brian K. Hand, Om P. Rajora,
Sally N. Aitken, and Paul A. Hohenlohe

Abstract Population genomics is advancing our understanding of evolution, ecol-
ogy, conservation, agriculture, forestry, and human health by allowing new and
long-standing questions to be addressed with unprecedented power and accuracy.
These advances result from plummeting costs for DNA sequencing, which makes
genotyping feasible for hundreds to millions of individuals and loci, and also allows
for the study of variation in gene expression, epigenetic variation, and proteins. The
increased power also results from the development of innovative software, statistical
approaches, and models to extract information from massive next-generation
sequencing datasets. Among the most exciting developments are conceptually
novel approaches that are advancing understanding about inbreeding and outbreed-
ing depression, adaptive gene flow, population demographic history, and the geno-
mic basis of local adaptation and speciation. Remaining challenges in applying
genomics to natural and managed populations include the limited understanding
and availability of validated bioinformatics pipelines for genotyping and analyzing
genomic data. We also lack knowledge of best practices and general guidelines for
filtering and genotyping genomic data including restriction site-associated DNA
sequences (RAD), targeted DNA capture, and pooled sequencing. Finally, we
emphasize the need for continued rigorous teaching of population genetics theory,
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so that the next generation of population genomicists can ask well-informed ques-
tions and interpret next-generation sequence datasets.

Keywords Adaptation - Community genetics - Conservation genetics - Ecological
genomics - Epigenetics - Evolutionary genomics - Landscape genomics - Population
genetics - Selection detection

Molecular markers have totally changed our view of nature (Schldtterer 2004).

Population genomics is a new term for a field of study that is as old as the field of genetics
itself, assuming that it means the study of the amount and causes of genome-wide variability
in natural populations (Charlesworth 2010).

Population genomic tools have revolutionized many aspects of biology, as detailed through-
out the chapters of this volume (Hohenlohe et al. 2018).

1 Introduction

New and long-standing questions in ecology, evolution, conservation biology, and
related fields can now be addressed with unprecedented power and accuracy using
population genomics approaches. This power results largely from new sequencing and
genotyping technologies that produce enormous amounts of data (Schldtterer 2004;
Narum et al. 2013; van Dijk et al. 2018; Sedlazeck et al. 2018) but also from new
statistical approaches and software (Paradis et al. 2017; Ceballos et al. 2018; Cooke
and Nakagome 2018; Faria et al. 2018; Gruber et al. 2018; Hendricks et al. 2018;
Knaus and Griinwald 2017; Zhang et al. 2018). These molecular and computational
approaches are now within reach of many biologists in terms of costs, ease of data
production, and availability of computational tools. This chapter provides an overview
of the concepts and primary approaches employed to study genome-wide genetic
variation in natural and managed species and populations. Some of these approaches
are not yet widely used but are emerging in the literature on population genomics
(Hendricks et al. 2018).

Population genomics has been broadly defined as the simultaneous study of
numerous loci and genome regions to better understand the roles of evolutionary
processes (such as mutation, genetic drift, gene flow, and natural selection) that
influence variation across genomes and populations (Black et al. 2001; Luikart et al.
2003). This definition emphasizes understanding of locus-specific effects like selec-
tion against the background of genome-wide effects such as demography and genetic
drift in order to improve assessments of adaptive evolution, the effective population
size, gene flow, admixture, inbreeding and outbreeding depression, speciation, and
the genomic basis of fitness (Fig. 1) (Allendorf et al. 2010; McMahon et al. 2014;
Hunter et al. 2018).

Hohenlohe et al. (2010a) outlined a novel conceptual framework for population
genomics that emphasizes the understanding of patterns of genetic variation and
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Step 1
Sample individuals of different
populations, traits, and/or environments

v

Step 2
Genotype loci genome-wide (using
mapped loci if possible (narrow sense))

v

Step 3
Identify outlier loci & genome regions
associated with traits or environments

Candidate selected

Nentral loci (adaptive) loci

Step 4a Step 4b
Compute evolutionary or Test for causes of outlier
demographic parameters without behavior (for example, selection)
using outlier loci, or by down- and use adaptive information for
weighting them (for example, by biodiversity conservation or
modeling) evolutionary inferences

Fig. 1 Conceptual framework of main steps in a population genomics approach used to identify
outlier loci under selection (or genotyping errors) and also to improve estimates of population
history and demography using the selectively neutral loci. In Step 1, individuals can be sampled
from different phenotypes or environments to help test for adaptive gene marker associations and to
dissect the genomic basis of phenotypes, local adaptation, adaptation to captivity, artificial selec-
tion, or speciation. Step 2 requires a genetic linkage map or a physical map (Sects. 3.1 and 3.2) to
localize genome regions under selection and to ensure high marker density (narrow sense
approach). However many unmapped loci can be used in broad sense genomics (Figs. 3 and 4).
Step 3 could employ conceptually novel approaches to identify “outlier loci” or chromosomal
regions that behave unlike most other loci in the genome and therefore could be under selection or
associated with phenotypic traits. Outlier loci under selection can bias estimates of neutral popu-
lation genetic parameters (Step 4a) such as gene flow, effective population size, and structure.
Figure modified from Luikart et al. (2003)

evolutionary processes in all genome regions by plotting population genetic statistics
across each chromosome using many mapped loci (Fig. 2; Box 1). An example of a
population genomics approach is measuring a population genetic summary statistic,
e.g., genomic diversity, population differentiation, or gene expression, as a contin-
uous variable along chromosomes to help identify loci under selection, chromosomal
islands of adaptive divergence, or alleles associated with a phenotypic trait (see also
Fig. 3 in Luikart et al. 2003; Hohenlohe et al. 2010b; Ellegren 2014; Kardos et al.
2015b).

Allendorf (2017) and Hohenlohe et al. (2018) defined population genomics as
requiring a sufficient density of DNA markers to detect forces affecting any partic-
ular genomic region, e.g., genes under selection, regions of reduced recombination.
Here, we provide a narrow sense definition of population genomics as the use of
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Fig. 2 A population genomics perspective and conceptual framework. (A) Traditional population
genetics takes data on alleles (colored bars), grouped within individuals (solid boxes) and
populations (dashed boxes), and calculates summary statistics to make inferences about evolution,
such as nucleotide diversity (x) and population differentiation (Fst). (B) Population genomics takes
data on haplotypes within a population and calculates summary statistics as continuous variables
along the length of the genome, such as & and the allele frequency spectrum (Tajima’s D). The
different types of evolutionary processes leave different signatures in these distributions: (i) hard
selective sweep, (ii) region linked to hard sweep, (iii) neutral expectation, (iv) balancing selection,
(v) neutral expectation, and (vi) soft sweep. (C) The coalescent structure of ancestral relationships
among alleles within a population also reflects these processes along the genome. (D) Given these
genomic processes within a population, statistics comparing genetic variation across populations,
such as Fgr, can also indicate genomic patterns of selection. (E) Collapsing the genomic distribu-
tion of a statistic into a frequency distribution provides an estimate of the genome-wide average,
allowing identification of statistically significant outliers (shaded regions). Reproduced with per-
mission from Hohenlohe et al. (2010a)

conceptually novel approaches to address questions intractable by traditional
genetic methods by using high-density genome-wide markers (e.g., DNA, RNA,
epigenetic marks) to provide high power to detect genomic regions associated
with traits or evolutionary processes such as fitness, phenotypes, and selection
(Box 1). This definition combines the requirement for conceptual novelty aspect
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from Garner et al. (2016) and Hohenlohe et al. (2010a), with the high-density marker
requirement of Allendorf (2017); it also explicitly includes multiple omics
approaches (transcriptomics, epigenomics, and proteomics).

Broad sense population genomics can be defined as the use of new genomics
technology and numerous loci to address questions in population genetics (e.g.,
Shafer et al. 2015; Garner et al. 2016; Hohenlohe et al. 2018) (Box 1). We include
broad sense approaches here because some are advancing understanding of geno-
mics questions ranging from the discovery of genes underlying adaptive evolution to
assessing population parameters and demography using thousands to millions of
neutral markers that are often anonymous or not mapped.

Our main goals for this chapter are fourfold. First, we discuss the research topics
and questions for which genomics tools are most valuable. We illustrate where
genomics methods are improving our ability to address long-standing objectives
and also to address previously intractable questions using conceptually novel
approaches. Second, we give a brief introduction to new molecular techniques and
computational approaches (including bioinformatics workflows and Bayesian
methods) to help biologists understand this growing literature and to plan their
projects. Third, we provide an overview of the emerging disciplines where popula-
tion genomics concepts and approaches are being applied. Finally, we discuss future
perspectives of applications of population genomics concepts and approaches and
conclude the chapter. Throughout, we highlight the opportunities and challenges
associated with population genomic analyses in studies of natural and managed
populations.

Box 1 How is Narrow Sense Population Genomics Different from Broad
Sense Genomics and Traditional Population Genetics?

Defining broad and narrow sense population genomics can be useful because
there is often confusion among students and researchers as to what constitutes
genomics and also because broad sense population genomics studies include
traditional population genetic approaches and the use of more DNA markers
(see Charlesworth 2010; Allendorf 2017). An example of a broad sense
population genomics study would be using thousands or tens of thousands
of anonymous SNPs (Fig. 3) to estimate the inbreeding coefficients of indi-
viduals using traditional parameters (e.g., individual heterozygosity; Hoffman
et al. 2014; Kardos et al. 2016a), while a narrow sense study would be the
mapping of runs of homozygosity (RoH) to infer recent and historical inbreed-
ing (or population bottlenecks) (Bérénos et al. 2015; Howard et al. 2015;
Palkopoulou et al. 2015; Pemberton et al. 2017; Kardos et al. 2017; Ceballos
et al. 2018). The requirement for narrow sense genomics to include “concep-
tual novelty” and to address questions not tractable using traditional popula-
tion genetics addresses the criticism of Charlesworth (2010) and of others
saying that population genomics is nothing new.

(continued)
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Box 1 (continued)

A narrow sense population genomics study precisely characterizes varia-
tion at many specific (mapped) regions of the genome (Allendorf 2017). The
density of markers required (see below) varies and depends on phenomena that
affect gametic disequilibrium along a chromosome such as mating system
(e.g., selfing versus random mating), effective population size, population
subdivision, gene flow or admixture, and recombination rates (Slatkin 2008).

(A) Anonymous adaptive loci (B) Genomic islands of divergence
T o o] - o
."‘5 ° o _Lf
& . §| 8
2 o © o
2 © 3 &
8 o Q@ = ‘E X
@
= & o
g ) o (o] » g S 8
e | ° o
8 gl @ °
g z o ,
] 3P £ 1':“":*"":4%:'
Locus # ‘ Genomic position

Fig. 3 Tllustration of how (A) anonymous (unmapped) loci are often detected to be under
directional selection (e.g., with high allele frequency differentiation, Fsr) among
populations and how (B) a genetic linkage map or a physical map (genome assembly)
helps to localize the genome regions under selection by positioning loci (SNPs) along a
chromosome or entire genome. In panel B, each color represents a different chromosome
(linkage group) including the different shades of gray. Knowing the genome position of
SNPs allows for multiple, often linked, SNPs to be identified that result from the same
selection process and signature (e.g., high Fsr), which increases our confidence that the
SNPs or genome region are actually under selection and not false positives. Positional
information also helps understand the number of loci or genome regions that are under
selection. Further, if coding or annotated genes have also been mapped or physically located
on a genome sequence, researchers can identify genes in the region of the selection signature,
which represent candidate adaptive genes (e.g., Mckinney et al. 2016). Figure (A) represents
a broad sense genomics approach, while (B) is narrow sense genomics. Figure modified from
Garret McKinney (pers. comm., 2018)

2  When Is Population Genomics Most Valuable?

A wide array of fundamental and novel questions can now be reliably addressed
thanks to developments in population genomics (Table 1). In this section, we
describe several newly invigorated avenues of research in evolutionary biology
and conservation genetics. The most exciting developments of population genomics
involve using novel approaches to address previously unapproachable questions
such as mapping adaptive variation genome wide and resolving the genomic basis
of fitness and phenotypes (Hoban et al. 2016; Hendricks et al. 2018; Hunter et al.
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Table 1 Questions or objectives that population genomics can help to address and examples of
genomics approaches to address them

Question or objective

Genomics approach
(example)/software

References

Identify candidate adaptive
loci by detecting selective
sweeps

Genome scan for low hetero-
zygosity regions

Rubin et al. (2010), Axelsson
etal. (2013), Kardos et al. (2015b)

High differentiation (e.g.,
Fgr) outlier regions

Rochus et al. (2018)

High gametic disequilibrium

Pérez O’Brien et al. (2014)

Shifted site frequency spec-
trum (high-frequency-
derived alleles)

Alachiotis and Pavlidis (2018),
Tajima (1989), Fay and Wu
(2000), DeGiorgio et al. (2016)

Extended haplotype
homozygosity

Sabeti et al. (2002, 2007), Voight
et al. (2006)

Scan for soft selective sweeps
(sweeps of alleles that are
already present on multiple
haplotypes [standing genetic
variation] or of positively
selected alleles at multiple
sites in the same region or
gene)

Hermisson and Pennings (2017),
Marques et al. (2018), Hodel et al.
(2018)

Scan for hard selective
sweeps (sweeps of new

(de novo) positively selected
mutations)

Pennings and Hermisson (2006),
Betts et al. (2018), Kreiner et al.
(2018)

Identify candidate loci
underlying local adaptation
and speciation

See sweeps above (including
Fsr outliers)

Heritable gene expression
profile differences

Christie et al. (2016)

Parallel evolution of gene
expression

Yeaman et al. (2016)

Parallel phenotypic or DNA
sequence evolution

Prince et al. (2017)

Identify loci associated with
environmental variation
(landscape genomics)

Methods testing for gene-
environment association can
detect subtle signatures of
adaptation that are not
detectable using genome-
wide selection scans

Joost et al. (2007), Coop et al.
(2010), Hancock et al. (2011),
Rellstab et al. (2015), Rajora et al.
(2016), Harrisson et al. (2017),
Rougeux et al. (2018), Schmidt
et al. (2017)

Detect signatures of poly-
genic adaptation

Single vs multiple genes and
the genomic basis of fitness

Berg and Coop (2014), Bourret
et al. (2014), Brieuc et al. (2015),
Laporte et al. (2016), Stolting

et al. (2015), Sork (2016),
Yeaman et al. (2016), Rajora et al.
(2016), Harrisson et al. (2017)

Identify loci underlying
species and landscape inter-
actions (landscape commu-
nity genomics)

Landscape community
genomics

Hand et al. (2015b), De Kort et al.
(2018), Kozakiewicz et al. (2018)

(continued)
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Table 1 (continued)

G. Luikart et al.

Question or objective

Genomics approach
(example)/software

References

Identify loci associated with
traits within populations

Genome-wide association
analysis

Smith and O’Brien (2005), John-
ston et al. (2011), Johnston et al.
(2013), Barson et al. (2015),
Bérénos et al. (2015), Husby et al.
(2015)

Admixture mapping

Lamichhaney et al. (2015)

Quantify inbreeding and
inbreeding depression and
identify underlying loci

Individual heterozygosity;
runs of homozygosity

Hoffman et al. (2014), Bérénos
et al. (2016), Dobrynin et al.
(2015), Hedrick and Garcia-
Dorado (2016), Howard et al.
(2015), Huisman et al. (2016),
Kardos et al. (2017), (2018)

Quantify hybridization,
outbreeding depression,
adaptive introgression, and
associated loci

Runs of hybridity

Guan (2014), Gompert (2016),
Leitwein et al. (2018), Jones et al.
(2018)

Selection against
introgression

Kovach et al. (2016)

Estimate effective popula-
tion size (N,) or Nb

Abundance and lengths of
IBD segments (both within
and between individuals) can
be used to estimate N, and
historical changes in N,

Kirin et al. (2010), Pemberton
et al. (2012), Browning and
Browning (2015), Kardos et al.
(2017)

Pairwise sequentially
Markovian coalescent
(estimate deep historical time
series of N.)

Li and Durbin (2011)

Detect population declines
(reduction of N.)

BOTTLENECK; ABC ana-
lyses in DIYABC

Cornuet and Luikart (1996),
Hoban et al. (2013), Cammen
et al. (2018)

Estimate contemporary
gene flow rates (Nm)

BayesAss3-SNPs

Wilson and Rannala (2003),
Waterhouse et al. (2018), Brauer
et al. (2018)

Distinguishing continuous
migration from strict
isolation

Maximum-likelihood method
based on the jSFS

Gutenkunst et al. (2009), Fraisse
et al. (2018)

Identify adaptively differ-
entiated populations such as
ESUs (evolutionarily sig-
nificant units)

Detecting a major gene
(haplotype) for migration
timing Chinook salmon and
steelhead trout;
multidisciplinary framework
to delineate distinct
populations of butterflies

Prince et al. (2017), Dupuis et al.
(2018)
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2018). Identifying loci underlying adaptive evolution is a long-standing goal in
evolutionary biology, and doing so helps to understand the phenotypic traits,
biochemical pathways, and nature of the selective forces that have resulted in the
bewildering array of biodiversity.

A more common or widespread application of population genomics approaches is
improving estimation of population genetic parameters and evolutionary relation-
ships — including assessments of effective population size, population structure,
phylogeography, and demography — which are largely broad sense genomics
(Luikart et al. 2003). We first discuss these broader sense applications in Sect. 2.1.
We then discuss exciting and previously intractable applications including mapping
of adaptive genomic variation in Sects. 2.2 through 2.8.

2.1 Estimating Population Genetic Parameters
with Genome-Wide Markers: Broad Sense
Genomics Approaches

Genomics approaches can be used to address questions that have long been studied
using traditional molecular markers such as allozymes or microsatellites (Box 1). In
this section, we describe some of those population genetic questions and how
genomics can be used to improve them. While traditional molecular markers provide
information on a small fraction or subset of the genome, large-scale genomic data
(thousands to hundreds of thousands of SNPs) provide a more complete picture of
genetic parameters across the entire genome (e.g., Hohenlohe et al. 2010b; Brelsford
et al. 2017).

Statistical inference can be used to estimate population genetic parameters, such
as genetic diversity, effective population size, population differentiation, or phylo-
genetic relationships, and these population genetic metrics reflect processes that
affect the genome as a whole. However, these metrics can vary tremendously across
the genome, which suggests a narrow sense approach (e.g., mapped loci) is advis-
able. For example, genetic variation and population differentiation often vary tre-
mendously across the genome due to variation in recombination rate, selection
intensity (purifying and positive), and the mutation rate (Hohenlohe et al. 2010b).

The primary advantage of broad sense genomics is providing many more genetic
markers, often by several orders of magnitude, than previous techniques, and often
for similar cost and research effort. This results in the potential for much greater
precision of estimates of population genetic parameters. Many more markers can
also reduce bias of estimates of population genetic parameters by identifying loci
under selection that often should not be used to estimate parameters requiring only
neutral loci, such as gene flow, demographic history, and phylogenies. In some
cases, recent genomics techniques can also be more cost-effective than traditional
techniques, for instance, with the ability to simultaneously detect and genotype loci
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using RADseq and RAD capture (see Sect. 4) in taxa for which microsatellite or
other loci have not previously been developed (Andrews et al. 2016).

In population genomics studies, genome-wide estimates are often considered as
the background against which outliers reflect adaptive or functionally important loci
(Fig. 1; Luikart et al. 2003), and detection of these loci is central to narrow sense
population genomics as described in the sections below (see also Hohenlohe et al.
2018 this volume). The genome-wide background, estimated by either traditional
genetic or genomics techniques, is often interpreted to reflect selectively neutral
processes. But it is important to remember that the effects of selection and genotype-
phenotype relationships are pervasive across the genome due to processes, such as
hitchhiking (Maynard Smith and Haigh 1974), background selection (Charlesworth
et al. 1993), or isolation by adaptation (Nosil et al. 2008; Corbett-Detig et al. 2015).
Whether techniques tend to avoid coding regions (e.g., microsatellites), focus on
them (e.g., exon capture, RAD capture with targets in or near genes), or sample
randomly across the genome (e.g., RADseq), it can be treacherous to interpret
genome-wide patterns as solely reflecting “neutral” processes.

2.1.1 Genetic Variation and Effective Population Size

A central quantity in population genetics is the amount of genetic variation present in
a population. This can be quantified in several ways, including expected heterozy-
gosity (H.) or nucleotide diversity (r), which can be estimated from genome-wide
SNP data using many analysis programs, such as PLINK (Purcell et al. 2007).
Genome-wide genetic variation is the result of multiple interacting processes,
including mutation, genetic drift, selection, and population structure, that affect the
genome as a whole.

The amount of genetic variation in a population is closely related to the effective
population size (N,), which is often a focus of population genomics studies, particu-
larly those relevant to conservation (e.g., Hare et al. 201 1; Cammen et al. 2018). While
there are several ways to define ., a common definition derives from the amount of
genetic drift in a local population relative to an idealized Wright-Fisher model
(Charlesworth 2009; Allendorf et al. 2013). The most direct way to estimate the rate
of genetic drift and NV, is with temporal genetic samples from a local population, which
provide measurements of changes in allele frequencies over time (Wang 2005; Luikart
et al. 2010). Often, however, multiple samples over time are not available from natural
populations, so other estimation techniques are required.

Random genetic drift due to small population size also leads to nonrandom
associations between alleles from different loci, known as gametic disequilibrium
(GD). GD provides the basis for methods to estimate N, from a single genetic sample
collected at one time point, such as program LDNe in NeEstimator. LDNe requires
independent loci such as those on different chromosomes (Do et al. 2014). With the
large number of markers available from genomic data, it is likely that physically
linked loci (those on the same chromosome) are included. Physically linked loci can
downwardly bias estimates of N, by increasing GD (Waples and Do 2010). If
markers can be mapped to a reference genome assembly or linkage map, one locus
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in physically linked pairs of loci can be removed (e.g., as done by Larson et al.
(2017)) or a general correction for the number of chromosomes can be applied
(Waples et al. 2016). An alternative class of methods uses coalescent-based infer-
ence of N,; Nunziata and Weisrock (2018) found that GD methods require more
individuals (e.g., n > 30), while coalescent methods require fewer individuals (e.g.,
n = 15) but more SNP markers (25,000-50,000). Estimates of N, from different
methods can vary, and knowledge of population demography or temporal data can
improve estimates considerably (Gilbert and Whitlock 2015).

2.1.2 Population Structure and Phylogeography

Populations exist across space, and the spatial distribution of genetic variation is an
important focus of population genetics. Quantifying population structure and levels
of genetic differentiation among populations (e.g., estimating the parameter Fgr) has
been tractable with traditional population genetic tools, but again genomic tech-
niques provide greater statistical power and precision for estimating parameters
(Hohenlohe et al. 2018 in this volume). Furthermore, the number of markers from
genomic data can allow for estimates from fewer individual samples; for instance,
Nazareno et al. (2017) report consistent estimates of Fst when using as few as two
individuals, genotyped at over 1,500 SNPs.

Many analytical tools are well-suited for assessing and visualizing population
structure from large genomic SNP datasets, such as principal components analysis
and Bayesian clustering methods, and applying multiple techniques to a single
dataset can help reveal important patterns (Fig. 4). When applied to genome-wide
data, these approaches illustrate the results of processes that affect the genome as a
whole, such as population size and migration rates. In a landscape genetics frame-
work, a combination of genomic and landscape data can identify landscape features
associated with variation in dispersal patterns (see Johnson et al. 2018a, b in this
volume for areview). Interpolating and mapping genetic similarity across landscapes
can reveal areas of high versus low gene flow, e.g., using the estimated effective
migration surface (EEMS) approach of Petkova et al. (2016). Recent genomics
techniques also provide new power for understanding the relationship between
landscape variables and functional genetic variation at specific loci, such as genes;
Balkenhol et al. (2017) in this volume review this field of landscape genomics.

2.1.3 Demographic History

A goal of population genomics studies that was considerably less tractable with
traditional genetic techniques is a detailed reconstruction of historical demographic
patterns, including changes in effective population size and migration rates, using
genetic data sampled only from the contemporary populations. A number of tech-
niques have been developed for demographic reconstruction from genetic or geno-
mic data, such as approximate Bayesian computation (ABC; Boitard et al. 2016;
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these methods are applied to data from a 48,000 SNP genotyping array from wolves and their
relatives. Reproduced with permission from VonHoldt et al. (2011)
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Fig. 5 Mapped genomic markers provide information on haplotype lengths, which are informative
to assess historic admixture processes. Here the observed distributions of haplotype tract lengths in
Atlantic and Mediterranean populations of European sea bass (Dicentrarchus labrax) (red and
yellow dots) closely match simulated distributions (dark and light gray dots), allowing estimation of
parameters in a model of historic isolation followed by secondary contact and gene flow. The
haplotype information and modeling allows estimation of timing, directionality, and amount of gene
flow. Reproduced with permission from Duranton et al. (2018)

Elleouet and Aitken 2018), sequential Markovian coalescent methods (Terhorst
et al. 2017), and site frequency spectrum methods (Gutenkunst et al. 2009). See
Salmona et al. (2017) in this volume as well as Beichman et al. (2017) for detailed
reviews.

As an example, Duranton et al. (2018) estimated the parameters of a demographic
model of two populations of European sea bass (Dicentrarchus labrax). Using
genomic data mapped to a reference genome, the authors were able to characterize
the distribution of lengths of haplotypes and fit model parameters to the observations
(Fig. 5). Specifically, they identified tracts of migrant ancestry using the program
ChromoPainter (Lawson et al. 2012) and estimated admixture parameters, and
they used the method of Harris and Nielsen (2013) to infer demographic history
from tracts of identity by state. These results reconstruct the historical details of
population isolation and secondary gene flow between Atlantic and Mediterranean
populations. This is a narrow sense genomics study because high-density mapped

markers are used with a conceptually novel approach (haplotype tracts of immigrant
ancestry).
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2.1.4 Phylogenomics

Phylogenetic relationships among taxa can be estimated from a wide range of
genetic data types, including genomic data. A complication is that many genetic
markers spread across the genome may reflect different evolutionary histories
because of recombination, particularly in recently diverged species and where
incomplete lineage sorting and admixture play important roles (Edwards et al.
2016). Methods accounting for this, for instance, in estimating phylogeny from
large SNP datasets, have been developed (Hohenlohe et al. 2018 this volume;
McKain et al. 2018). Ideally, phylogenomic datasets are used not only to estimate
a consensus tree among taxa but also to reveal patterns of hybridization and
admixture (e.g., using analyses that allow for specific admixture events, such as
TreeMix; Pickrell and Pritchard 2012).

2.2 Identifying Adaptive Genetic Variation Underlying
Selective Sweeps

Population genomics makes it possible to identify “footprints” of natural selection in
genome-wide patterns of genetic variation. The classical genomic signature of
positive selection is the hard selective sweep, where fixation of a positively selected
de novo mutation dramatically reduces genetic diversity at closely linked loci in a
process referred to as genetic hitchhiking (Maynard Smith and Haigh 1974). The size
of the region of reduced variation around the positively selected allele depends
mainly on the strength of selection (and thus how quickly the sweep progressed)
and the recombination rates on either side of the selected site (Jensen et al. 2016).

Hard selective sweeps are characterized by very low nucleotide diversity, and
polymorphisms subsequently arising within a swept region display an excess of low-
frequency-derived alleles compared to the genome-wide background. Thus, methods
used to identify classical selective sweeps generally scan the genome for regions
with low diversity (Maynard Smith and Haigh 1974), an excess of rare alleles
(Tajima 1989), and a shifted site frequency spectrum (SFS) toward relatively high-
frequency-derived alleles (DeGiorgio et al. 2016; Fay and Wu 2000; Huber et al.
2015; Kim and Stephan 2002).

While classical hard selective sweeps strongly reduce genetic variation around
the selected site, soft selective sweeps arise from positive selection on standing
genetic variation and leave a subtler genomic signature (Hermisson and Pennings
2005). In particular, soft sweeps usually do not strongly reduce genetic variation or
result in a large shift in the site frequency spectrum around the selected site because
the positively selected allele is present within multiple flanking haplotypes
(Pennings and Hermisson 2006; Teshima et al. 2006). Soft sweeps appear to be a
dominant mechanism of recent adaptation in humans (McCoy and Akey 2017,
Schrider and Kern 2017). Methods based on extended haplotype homozygosity,
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which look for derived alleles sitting on exceptionally long haplotypes, are thought
to have substantially higher power to detect soft selective sweeps than diversity- or
site frequency spectrum-based genome scans (Ferrer-Admetlla et al. 2014; Voight
et al. 2006). Machine learning appears to also be a powerful method to detect soft
sweeps (Schrider and Kern 2017).

Recent studies have detected putative selective sweeps in an array of organisms,
ranging from domesticated livestock and humans to natural populations of
non-model species. In some cases, these studies have helped to identify the pheno-
types and underlying genetic and biochemical pathways involved with the response
to positive selection. Recent studies using genome scans based on genome
resequencing data have identified putative selective sweeps underlying adaptation
to domestication in pigs (Sus scrofa; Rubin et al. 2012), dogs (Canis lupus
familiaris; Axelsson et al. 2013), chickens (Gallus gallus; Rubin et al. 2010), and
rabbits (Oryctolagus cuniculus; Carneiro et al. 2014).

Schweizer et al. (2016) identified putative selective sweeps in North American
gray wolves (Canis lupus) related to coat color and environmental conditions by
conducting genome scans via resequencing of exons and intergenic sequences.
Kardos et al. (2015b) identified a putative selective sweep in wild bighorn sheep
(Ovis canadensis) in the vicinity of the RXFP2 gene associated with horn growth in
domestic sheep (RXFP2). Their results suggested that horn morphology (or size) in
bighorn sheep evolved at least in part via positive selection on a beneficial variant at
RXFP2. See the chapter herein by Hohenlohe et al. (2018) for additional examples of
selective sweeps and also Marques et al. (2018), Stetter et al. (2018), and Sugden
et al. (2018).

2.3 Genetic Architecture Underlying Adaptive Differentiation

Positive selection acting differently among populations can result in exceptionally
strong genetic differentiation in genomic regions containing loci subjected to selec-
tion (Lewontin and Krakauer 1973). For example, alleles conferring adaptation to
high elevation in humans tend to be at high frequency in high-elevation populations
but at low frequency in low-elevation populations in humans (e.g., Lorenzo et al.
2014; Hackinger et al. 2016). Genomic signatures of local adaptation can be detected
by scanning a large number of densely mapped loci to detect genes or chromosome
regions with exceptionally high genetic differentiation (e.g., Fst outliers) among
populations (Hohenlohe et al. 2010b; Paris et al. 2017). Small numbers (100s) of
unmapped loci can be tested for adaptive signatures (broad sense genomics), partic-
ularly if candidate loci have been identified a priori (e.g., Holliday et al. 2010, 2012),
but if adaptation is highly polygenic, some of the causal loci will likely be missed.

Many studies have analyzed large numbers of mapped SNPs to detect Fsy outlier
chromosomal regions that represent candidate genomic regions for local adaptation
(Hohenlohe et al. 2010b; Wang et al. 2016). Gene-environment association (GEA)
analyses are also used to identify outlier loci associated with environmental
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differences (Sect. 2.4; Figs. 3 and 5). Genomic regions displaying exceptionally high
genetic differentiation between incipient species can also help to localize loci
subjected to divergent selection during speciation (Burri et al. 2015; Ellegren et al.
2012; Harr 2006; Marques et al. 2016; Martin et al. 2013; Poelstra et al. 2014;
Renaut et al. 2013; Turner et al. 2005; Wolf and Ellegren 2017).

Problems with Fgr outlier tests, and related tests for differentiation, include the
use of the wrong null model resulting in false positives. For example, hierarchical
population genetic structure can cause higher variance in Fgt (e.g., higher Fgr’s)
than expected assuming a simpler model of population structure. The problem can be
assessed and dealt with using simulations to simulate null distributions of Fgr (for
1,000s of neutral loci) for a hierarchical population structure (e.g., Lotterhos and
Whitlock 2014). False negatives are another problem, which can also be caused by
using the wrong or suboptimal spatial model. For example, to avoid many false
negatives and increase power to detect selection, Foll et al. (2010) developed a
hierarchical Bayesian to improve detection of genes involved in adaptation by
humans to living at high altitude and hypoxia.

To avoid false negatives, researchers should use high SNP densities because
variation in Fst among SNPs is high even within a strongly selected gene. For
example, SNP alleles from the lactose tolerance gene have been under strong
positive selection in humans in Northern Europe (Beja-Pereira et al. 2003; Tishkoff
et al. 2007). However, only 15 of 61 SNPs across the gene show significantly high
Fgr (>0.45) between Europeans and other populations (Fig. 6). This suggests that
many SNP genotyping strategies (e.g., SNP chips, restriction site-associated DNA
sequencing, targeted sequencing) will often have too few SNPs per gene region to
reliably detect molecular signatures of adaptive genetic differentiation and perhaps
other selection signatures as well (Luikart et al. 2003).
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Fig. 6 Fgr for individual SNPs (dots) randomly sampled from across each of the two genes
(CLASPI1 and LCT, human chromosome #2) having the highest proportion of SNPs with Fgr
above 0.45 between the Yorubans in Africa and Utahans representing North Western Europeans.
AGFGl is a typical gene without apparent selection signatures. CLASP1 and LCT are under strong
directional selection. An Fgr value of 0.45 is approximately the upper 99.9 percentile of empirically
observed SNP Fgr values across the genome and above which few neutral SNPs are expected. The
x-axis represents a randomly chosen SNP (for instance, under random sampling with replacement).
Unpublished manuscript by T. Antao and Luikart
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2.4 Landscape Genomics

Landscape genomics is an emerging field or approach that strives to identify
environmental factors that shape neutral and especially adaptive variation and the
genes and their variants that underlie local adaptation (Rellstab et al. 2015;
Balkenhol et al. 2017 this book). Environmental conditions vary across time and
space, and local conditions can cause fitness differences among individuals that vary
for phenotypic traits on which natural selection can act (Blanquart et al. 2013; Hoban
et al. 2016). These differences in traits can be associated with underlying genotypic
differences and with environmental conditions. Thus landscape genomics methods
test for associations among environmental factors, geo-spatial location, or pheno-
typic traits and genomic variation. Landscape genomics studies focus on local
adaptation to environmental conditions within and among different geographic
locations (Rellstab et al. 2015; Hoban et al. 2016). The topic of landscape genomics
is discussed in detail in the chapter by Balkenhol et al. (2017) in this book.

Genetic differentiation (e.g., Fs) outlier tests alone do not identify the environ-
mental factors or selective pressures driving local adaptation. However, genotype-
environment association (GEA) analyses can identify loci associated with specific
environmental factors driving local adaptation. Simulation-based studies have
found that, in general, GEAs have more power than outlier-based approaches but
higher rates (20-50%) of false positives (De Mita et al. 2013; Frichot et al. 2013;
Forester et al. 2016). Examples of GEA-based programs are Bayenv2 (Gunther and
Coop 2013) that adjusts for population structure using an independent set of markers
that are assumed a priori to be neutral and the latent factors mixed model (LFMM,
Frichot et al. 2013) approach that uses the covariance structure of all loci being tested
to adjust for population history and demographics. There are a large number of tests
and software packages available for detecting differentiation outliers and GEAs, and
the number of publications using them has grown rapidly, especially for BayeScan,
Bayesenv, and LFMM (Ahrens et al. 2018).

Lotterhos and Whitlock (2014) used simulations to show that reliable genetic
differentiation test results vary depending on the number of individuals sampled.
Their review suggests that Fgt outlier tests will detect a higher proportion of outliers
as more individuals are sampled. This bias did not occur for GEA where the
proportion of associations remained relatively constant as the total number of
individuals increased. This finding implies that GEAs are more robust (see also
Abhrens et al. 2018).

One recent use of multiple GEA approaches identified a congruent set of candi-
date genes (among approaches) that are potentially important in the local adaptation
of Mediterranean striped red mullet (Mullus surmuletus) populations to their saline
environment (Dalongeville et al. 2018). Brauer et al. (2018) used GEA analysis to
test for adaptive divergence in the Murray river rainbowfish (Melanotaenia
Sfluviatilis) genome associated with hydroclimate. Brauer et al. (2018) used 17,504
SNPs in a multivariate GEA framework accounting for structure of a river system to
identify 146 candidate loci potentially underlying polygenic adaptive responses to
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seasonal fluctuations in stream flow and periods of extreme temperature and
precipitation.

Adjusting or accounting for neutral population structure is necessary to avoid a
high rate of false positives with GEA analyses. However, such adjustments can
result in false negatives if environmental factors driving local adaptation are corre-
lated with population structure (e.g., from patterns of post-glacial recolonization).
Yeaman et al. (2016) addressed this problem using a comparative genomics
approach by identifying GEA candidate loci correlated with variation in low tem-
peratures from exome capture and resequencing data based on raw GEA correlations
in one conifer species (Pinus contorta). They then looked for significant GEA in
those candidate loci in a second species complex (Picea glauca, P. engelmannii, and
their hybrids) and vice versa. They also identified shared loci associated with
phenotypic variation in cold hardiness. In this way, they identified 47 loci underlying
local adaptation to cold in populations of both conifers. For additional examples
involving gene expression and epigenetics, see below.

2.4.1 Spatial Signatures of Polygenic Adaptation

Adaptive traits are often polygenic and controlled by a large number of alleles from
many loci each having small phenotypic effect (Bourret et al. 2014; Laporte et al.
2016; Stolting et al. 2015; Sork 2016; Yeaman et al. 2016; Boyle et al. 2017).
However, methods for detecting adaptive genetic variation often only have the
power to detect loci and alleles with large phenotypic effects (Wellenreuther and
Hansson 2016). GEA methods can potentially detect weak signatures of adaptation
but still might seldom detect alleles with small effect sizes (Coop et al. 2010; Joost
et al. 2007).

Many of the early gene-environment association (GEA) methods tested only a
single locus at a time, rather than looking at the combined effects of multiple loci
simultaneously (Rellstab et al. 2015). More recent work has suggested that multi-
variate approaches (e.g., redundancy analysis (RDA), canonical correlation analysis
(CCA), or using a population graph approach) might help reduce the number of false
positives and maintain reasonable power to detect associations under even condi-
tions of weak, multilocus selection (Rajora et al. 2016; Forester et al. 2018).
However, multivariate approaches remain seldom used in population genomics
literature (Rajora et al. 2016; Wellenreuther and Hansson 2016).

A recent study tested for polygenic signatures of local adaptation using multivar-
iate approaches and 6605 RADseq SNPs in an Australian endemic fish, Murray cod
(Maccullochella peelii) (Harrisson et al. 2017). The polygenic multivariate method
(redundancy analysis, RDA) supported comparable roles of climate (temperature-
and precipitation-related variables) and geography in shaping the distribution of
multiple SNP genotypes across the range of Murray cod. Among the candidate SNPs
identified by these multivariate and the univariate methods, the top 5% of SNPs
contributing to significant RDA axes included 67% of the SNPs identified by
univariate methods. The results highlight the value of using a combination of
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different approaches, including polygenic methods, when looking for signatures of
local adaptation in landscape genomics studies.

2.4.2 Landscape Community Genomics: Identifying Loci Underlying
Both Species and Landscape Interactions

Genomic variation is influenced by complex interactions between abiotic (e.g.,
environmental) and biotic (e.g., community) effects. Researchers should consider
the effects of both environmental and community factors on evolutionary dynamics
simultaneously to avoid potentially incomplete, spurious, or erroneous conclusions
about the mechanisms driving patterns of genomic variation among and within
populations. Any study of genomic variation and adaptation in nature would ideally
begin with a set of predicted abiotic and biotic drivers, including interactions
between these two fundamental categories of effects (Hand et al. 2015b). Despite
the value of studying concordant patterns of genetic variation in interacting species,
there are relatively few empirical examples, in part because of the expense of
conducting population genomics on multiple interacting species across heteroge-
neous landscapes or environmental gradients. Few examples exist but will become
more common as it becomes feasible to conduct landscape genomics on multiple
interacting species (e.g., see Beja-Pereira et al. 2003).

One recent example of landscape community genomics is a study of the parasitic
Alcon blue butterfly (Phengaris alcon) and its two hosts: an ant species (Myrmica
scabrinodis) and the marsh gentian (Gentiana pneumonanthe) (De Kort et al. 2018).
The female butterfly lays its eggs onto gentian flower buds which develop into
caterpillars at the expense of the gentian’s ovules. This has led to coevolutionary
shifts in flowering phenology to escape peak times of infestation by the Alcon
butterflies (Valdés and Ehrlén 2017). When the caterpillars leave the plant, they
are adopted by Myrmica ants as the caterpillar’s chemical signature misleads the ants
into accepting and rearing the caterpillar in preference to their own brood. This social
parasitism of ants has also lead to coevolutionary changes in the surface chemistry of
Myrmica and in the Alcon butterfly larvae (Nash et al. 2008). De Kort et al. (2018)
focused on the impact of habitat fragmentation on the Alcon butterfly and subse-
quently the possible effect on its two obligatory host species (ants and gentians).
Some of the among-population genetic variation in the host species could be
explained by abiotic variables (e.g., altitude). Additional analyses showed a sub-
stantial amount of variation in Alcon butterfly genetic structure could be explained
by host genetic structure. De Kort et al. (2018) then suggested that coevolutionary
selection has been important in synchronizing genetic structure of this host-parasite
system. Habitat fragmentation is impacting the Alcon butterfly (Phengaris rebeli)
and will likely impact the genetic structure of its host species as well.
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2.5 Genome-Wide Association Studies: Loci Associated
with Traits Within Populations

A growing number of population genomics studies have identified loci contributing
to phenotypic variation among individuals, including in traits that strongly affect
fitness and local adaptation, via genome-wide association studies (GWAS). GWAS
typically use a regression model (e.g., a linear mixed-effects [LME] model) to
identify loci where genotypes are associated with a trait of interest (Gibson 2018).
Population structure is accounted for by fitting a genomic-relatedness matrix (GRM)
as a random effect; other potentially informative predictor variables can be included
as needed in the random or fixed effects parts of the model. Additional discussions of
GWAS and heritability estimation, with emphasis on functional genomics, is pro-
vided in the chapter by Pino Del Carpio et al. (2018) in this book (see also Santure
and Garant 2018; Armstrong et al. 2018).

The number of studies finding loci associated with variation in fitness-related
traits in natural populations is proliferating. Trait-associated loci are often identified
in regions that show strong genetic differentiation between individuals with stark
differences in morphology. For example, SNPs around the RXFP2 gene included on
a 50K SNP array were found to be associated with horn morphology in wild feral
Soay sheep (Ovis aries) (Johnston et al. 2011, 2013). Horn morphology strongly
affects fitness in Soay sheep (Ovis aries) and in natural populations of wild mountain
sheep (e.g., bighorn sheep, Ovis canadensis; Hogg 1984). Thus identifying loci
associated with horn size provides an interesting look into the genetic basis of
fitness-related variation.

In another recent GWAS example, Brelsford et al. (2017) studied a natural hybrid
zone between Audubon’s and myrtle warblers (Setophaga coronata auduboni x S. c.
coronata) to identify genomic regions associated with color pigmentation potentially
associated with mating success and fitness. RADseq produced 154,683 to 393,755
SNPs, depending on the filtering criteria. For each of five plumage coloration traits
studied (eye spot, throat color, eye line, wing bar, and auricular), the authors detected
highly significant associations with multiple SNPs genome wide that clustered into
chromosomal regions (Fig. 7). The high success in identifying loci associated with
these traits likely resulted from the relatively high gametic disequilibrium along
chromosomal stretches resulting from hybridization.

In another study, Husby et al. (2015) identified a locus that was associated with
clutch size (a life history trait) in the collared flycatcher (Ficedula albicollis). Simi-
larly, Bérénos et al. (2015) identified two SNPs in Soay sheep (Ovis aries) associated
with leg length (a measure of body size), with each of the two SNPs explaining >10%
of the additive genetic variance in the trait. One of the SNPs found to be associated
with leg length by Bérénos et al. (2015) was also associated with female reproductive
success, providing evidence for a link between genotype, phenotype, and fitness in
Soay sheep. Lamichhaney et al. (2015) and Kiipper et al. (2015) simultaneously
identified a large (~4.5 Mb) inversion that controlled mating morphology in the ruff
(Philomachus pugnax). Barson et al. (2015) identified a locus with sex-specific
dominance and large effects on age at maturation in wild Atlantic salmon.
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Fig.7 Manhattan plots of genomic differentiation (A) and plumage associations (B, C, D). (A) Fgsr
between allopatric myrtle and Audubon’s warblers at 393,755 SNPs across the genome with
scaffolds ordered by size. Adjacent scaffolds across the genomes are distinguished by alternating
gray or black coloration. Panels B, C, and D are phenotype-genotype associations for three of the
five plumage characters studied. The tiny red triangle near the top right of panel (B) shows the
cluster of loci that aligns to the zebra finch chromosome 15. This region includes the SCARF?2 gene,
which is a strong candidate gene for carotenoid pigment transport. Panel (E) shows patterns of
divergence and genotype-phenotype associations for eye line (blue points) and eye spot (red points)
for a region of chromosome 20. Associations between these two traits are highly correlated with
each other as well as patterns of divergence (Fst, small black dots). Coding regions (exons) for
genes are shown by the vertical bars, with different adjacent genes colored differently with
arbitrarily chosen colors. Modified from Brelsford et al. (2017)

GWAS methods are also being widely used in conjunction with common garden
experiments containing natural or seminatural populations of plants, fish, and other
taxa. For example, in black cottonwood (Populus trichocarpa), Mckown et al.
(2014) conducted GWAS using 29,355 filtered SNPs using a unified mixed model
accounting for population structure effects. They uncovered 410 significant SNPs
(from 275 genes) across 19 chromosomes that explained 1-13% of trait variation in
trait associations, mostly associations with phenology genes (240 genes) but also
biomass (53 genes) and ecophysiology (25 genes).

In the future, association studies will continually find more loci, including loci of
small effects associated with adaptive traits, thanks to improved power from
sequencing strategies like pool-seq with a reference genome that allow high-density
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genotyping of populations or lineages (Haussler et al. 2009; Schlétterer et al. 2014;
Wessinger et al. 2018; Pruisscher et al. 2018). For example, Narum et al. (2018) used
a new genome assembly (2.8 Gb) and pool-seq resequencing for Chinook salmon
(Oncorhynchus tshawytscha) to conduct association mapping of important life
history traits. The authors pooled individuals from populations of each of
three phylogenetic lineages that exhibit different maturation and run-timing
phenotypes. Their whole-genome resequencing of pooled (barcoded) individuals
suggested that divergent selection was extensive at many loci genome wide within
and among phylogenetic lineages. Association mapping with millions of SNPs
revealed a genomic region of major effect associated with phenotypes for migration
timing. This study illustrates how a genome assembly and high-density markers can
help resolve the genetic basis of important phenotypes.

2.6 Quantifying Inbreeding, Inbreeding Depression,
and Historical Bottlenecks

The availability of population genomic data is improving our understanding of
inbreeding (mating between relatives) and inbreeding depression in the wild
(Hedrick and Garcia-Dorado 2016; Kardos et al. 2016a). Inbreeding causes offspring
to be homozygous and “identical by descent” (IBD) across large chromosomal
segments where the two inherited DNA copies arise from a single DNA copy in a
common ancestor of the parents (Kardos et al. 2016a; Speed and Balding 2015;
Thompson 2013). The increased homozygosity arising from IBD causes inbreeding
depression: reduced fitness of inbred individuals (Charlesworth and Willis 2009).

The pedigree inbreeding coefficient (Fp) is a traditional measure of individual
inbreeding and predicts the fraction of the genome that is IBD, assuming that
pedigree founders are unrelated and noninbred (Keller and Waller 2002; Malécot
1970; Wright 1922). However, Fp can be an imprecise measure of the realized
fraction of the genome that is IBD (F) due pedigree errors, the stochastic nature of
Mendelian segregation and recombination, and the presence of related and inbred
pedigree founders (Fisher 1965; Franklin 1977; Stam 1980; Kardos et al. 2016a;
Knief et al. 2017; Forstmeier et al. 2012; Goudet et al. 2018). The imprecision of Fp
and the recent availability of genomic data have led to increased application of
genomic estimates of individual inbreeding and inbreeding depression (Hoffman
et al. 2014; Huisman et al. 2016; Bérénos et al. 2016).

Genomic measures of individual inbreeding have the advantage that they directly
measure patterns of homozygosity across the genome, thus making pedigrees
unnecessary to estimate individual inbreeding. Encouragingly, only a few thousand
unmapped SNP loci can provide more precise estimates of F (IBD) than a pedigree
five to ten generations deep (Kardos et al. 2015a, 2018). Even more powerful, the
analysis of many tens of thousands of mapped loci allows the use of runs of
homozygosity (ROH) residing within chromosomal segments that are IBD to assess
inbreeding (IBD) with very high precision (Kardos et al. 2015a). Genomics studies
of inbreeding are greatly advancing our understanding of the extent of inbreeding
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depression in humans, domestic animals and plants, and natural populations of
non-model organisms (Palkopoulou et al. 2015; Xue et al. 2015; Kardos et al. 2018).

ROH can be used to identify and map loci contributing to inbreeding depression
by testing for associations between the presence of ROH and individual fitness-
related traits (Keller et al. 2012; Kijas 2013; Lander and Botstein 1987; Pryce et al.
2014). Large-scale genomics studies of inbreeding depression (sample sizes
>100,000 individuals) based on ROH and other genomic measures of inbreeding
are now being done to precisely estimate inbreeding effects on a wide range of
human traits (Wessinger et al. 2018; Johnson et al. 2018a, b). Thus, population
genomics is beginning to contribute substantially to our understanding of the
evolution of fitness-related phenotypes and the genetic basis of inbreeding depres-
sion in many species. This understanding has the potential to guide conservation and
management of wild population and captive breeding programs, for example, to
avoid inbreeding depression and invoke genetic rescue through restoring gene flow
(Tallmon et al. 2004; Whiteley et al. 2015).

In another step to identify contributing loci, exons identified by ROH can also be
used to bioinformatically identify likely deleterious alleles based on the likely effects
of amino acid substitutions and whether such substitutions are common in homol-
ogous genes in other organisms using software such as PROVEAN (Choi and Chan
2015). The frequencies of these alleles can be compared among individuals and
populations. For example, Conte et al. (2017) found over 13% of all SNP alleles in
Picea engelmannii, P. glauca, and hybrid populations had amino acid substitutions
predicted to be deleterious, but homozygous genotypes for deleterious alleles were
less frequent in hybrid populations due to complementation.

Historical effective population size can be qualitatively inferred from the abun-
dance and length distribution of runs of homozygosity (Fig. 8). For example,
analyses of genome-wide runs of homozygosity (ROH) showed inbreeding arising
from recent common ancestors of parents (due to small population size) in individ-
uals of recently reintroduced populations of alpine ibex (Capra ibex). The detected
ROH were associated with small population size during captive breeding and the
founding of small wild populations approximately 20 generations ago. In spite of a
rapid population growth in the wild, the ibex carried a genomic signature of their
small recent historical population size (Fig. 8). The authors thus suggested that
genomic monitoring for ROH could provide an improved indicator for early detec-
tion of inbreeding in wild and managed populations (Grossen et al. 2018).

Historical population bottlenecks can also be inferred and approximately dated
using ROH and coalescent modeling (Ceballos et al. 2018). Palkopoulou et al.
(2015) sequenced genomes from two wooly mammoths from distant populations
in terms of both geography (northeastern Siberia versus Wrangel Island, Alaska) and
time (~44,800 versus ~4,300 YBP). Intriguingly, both yielded very similar genomic
signatures of a nearly identical population decline at the start of the Holocene. One
mammoth individual sample was dated to have died just before the species’ went
extinct approximately 4,000 years ago. From coalescent modeling, a second geno-
mic signature of a reduced population effective size (and inbreeding) was inferred
just before the extinction at the start of the Holocene. The analyses suggested that the
wooly mammoth was subject to reduced genetic variation prior to its extinction.
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Fig.8 (A) Schematic showing runs of homozygosity (ROH) along a chromosome. (B) Distribution
of total genome-wide runs of homozygosity in one representative individual from each of three
species including domestic goat (SGB A10), Iberian ibex (Z23), and Alpine ibex (VS0034). The
distribution is right-shifted to have longer ROH, >10-20 Mb, in the reintroduced Alpine ibex. (C)
Tract length distribution of ROH in wild and reintroduced populations. ROH for individuals from
different populations show a range of different tract lengths. Only the reintroduced (captive bred,
bottlenecked) individuals have 20 Mb tracts. The wild source population GP (Gran Paradiso) never
suffered the captive breeding founder effects, but it did decline to ~100 individuals approximately
100 years ago. Black-outlined circles show the three primary reintroduced populations Albris
(orange), Pleureur (light blue), and Brienzer Rothorn (green). Secondary reintroductions established
from the primary reintroduced populations share the same color. Populations with mixed ancestry
are shown in purple. N, sample size per population. Reproduced with permission from Grossen et al.
(2018)
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2.7 Delineating Adaptively Differentiated Populations

Population genomics can help identify locally adapted, differentiated populations
that are difficult to delineate using selectively neutral markers, especially in high
gene flow species, such as forest trees and marine organisms. Prince et al. (2017)
used RADseq to assess the evolutionary basis of premature migration among
individuals within local populations of Pacific salmonids. Chinook salmon and
also steelhead trout exhibit two major migration strategies: premature migrators
enter freshwater in the spring with high fat content and stay in freshwater for months
until spawning, and mature migrators which enter freshwater sexually mature just
prior to the spawn. Gene flow was relatively high between the two very different
forms (premature vs normal migration) within a stream (Fst ~ 0.03); Fst between
streams was far higher (Fst ~ 0.13). The authors found the same single locus
associated with premature migration in multiple populations in each of two different
species, Chinook salmon and also steelhead trout.

Results from this study suggest conservation implications. While many traits
involved in local adaptation are polygenic, in this case a single locus appears to
control migration timing and has significant economic, ecological, and cultural
importance (Fig. 9). In particular, extirpation of the premature migration allele and
phenotype are unlikely to re-evolve once extirpated from a population in the absence
of immigrants carrying the allele from elsewhere. Mutations producing a given
important allele are rare evolutionarily, suggesting such alleles will not re-evolve
quickly or easily if lost. Furthermore, spatial patterns of adaptive allelic variation can
differ from patterns of overall population genetic differentiation. Taken together,
these results suggest that conservation units based on genome-wide patterns of
genetic differentiation will sometimes fail to protect evolutionarily significant
genetic and phenotypic variation.

Adaptively differentiated populations can be identified and prioritized for con-
servation and breeding (Funk et al. 2012). Population genomics and landscape
genomics approaches are often necessary to identify adaptively differentiated
populations because common garden or reciprocal transplant experiments are not
feasible for many species. Bonin et al. (2007) devised a population adaptive index
(PAI), which uses both neutral and adaptive distinctiveness to assess the adaptive
value of the population. They suggested that outlier tests could help identify adaptive
loci and alleles to then use to identify and prioritize or rank populations for
conservation values. In species to which they applied the index (PAI), the neutral
and adaptive marker variation among populations were not correlated; Therefore the
authors concluded that conservation strategies based on the neutral and adaptive
indexes would not protect the same populations.

Other authors have suggested genomics approaches be used to identify adaptively
differentiated populations (Funk et al. 2018; Razgour et al. 2018; Hoban 2018).
Approaches include genotype-environment associations and gene expression anal-
ysis (e.g., Hansen 2010; Chen et al. 2018, see Sects. 2.4 and 4.4). Including
environmental variables improves power over differentiation-based methods, helps
identify the environmental drivers of adaptation, and facilitates detection of
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Fig. 9 Genomic basis of premature migration in steelhead. (A) Map of sampling locations of early
versus mature (normal) migration types of steelhead trout sampled together in each of many drainages.
(B) Association mapping of early vs normal migration of the Eel River steelhead trout with gene
annotation, with the (C) gene annotation of a region with strong association; red numbers show
genomic locations of the two RAD restriction sites with strongest associated SNPs, and blue asterisks
indicate positions of amplicon sequencing, with the candidate gene GREBIL. (D) Phylogenetic tree
depicting maximum parsimony of phased amplicon sequences from all individuals; branch lengths,
with the exception of terminal tips, reflect nucleotide differences between haplotypes; numbers
identify individuals with one haplotype in each migration category clade (i.e., heterozygotes for
premature and normal migration haplotypes). Reproduced with permission from Prince et al. (2017)

contemporary (and historical) selection (Forester et al. 2018). Ideally, multiple
independent data types would be combined to maximize power and reliability of
delineating adaptively differentiated populations (geography, environment, behav-
ior, ecology, physiology, transcriptomics, and genomics; Allendorf et al. 2013).
There is enormous risk of prioritizing populations for conservation based on
population genomics (or outlier) approaches alone. It can be extremely difficult or
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impossible to verify whether genes that behave as outliers are genuinely adaptive. The
genomic signatures expected from local adaptation (e.g., Fst outliers, GEA) can arise
from genetic drift, particularly when small populations and low migration rates are
involved. Further, genuine genomic signatures of selection may be due to selective
forces in deep history that have since disappeared and thus are irrelevant to adaptation
in current or future environments. Third, prioritizing certain populations based on
certain particular alleles (even if they are genuinely relevant to adaptation) could
actually reduce diversity across the rest of the genome that is necessary for future
adaptation (Luikart et al. 2003; Allendorf 2017; Kardos and Shafer 2018).

2.8 Speciation, Hybrid Zones, Admixture, and Adaptive
Introgression

Population genomics approaches have opened new avenues to study speciation,
admixture events, and hybrid zones in all organisms. A detailed account of this
topic is presented by Nadeau and Kawakami (2018) in this book. Here we introduce
the topic and provide a few relevant examples.

The European bison (Bison bonasus), Europe’s largest land mammal, was
recently shown to be a hybrid of two previously recognized subspecies, by authors
using low coverage genome sequence alignments of historical and modern individ-
uals (Wecek et al. 2017). Admixture occurred between subspecies prior to extinction
in the wild and also subsequently during recent captive breeding. Admixture with
domestic cattle was also significant but was ancient rather than from recent hybrid-
ization with domestics. These discoveries would have been difficult or impossible
without genome-wide mapped loci and both historical and modern samples.

Kovach et al. (2016) studied genome-wide patterns of admixture and natural
selection across recently formed hybrid zones between native cutthroat trout and
invasive rainbow trout (Oncorhynchus clarki lewisi and O. mykiss) by genotyping
9,380 species-diagnostic RADtag SNP loci. A significantly greater proportion of the
genome appeared to be under selection favoring native cutthroat trout (rather than
rainbow trout), in the local native environments. This negative selection against
rainbow introgression was found on most chromosomes and was consistent among
populations and environments, even in warmer environments where rainbow trout were
predicted to have a selective advantage. These data are consistent with previous findings
that admixed fish have reduced reproductive success (Muhlfeld et al. 2009). Future
studies could use far more loci to precisely map tracts of hybridity and infer timing
of introgression of the rainbow haplotype segments into the native cutthroat trout.

Among the most intriguing examples of natural selection favoring “adaptive
introgression” of certain alleles following admixture is the introgression of advanta-
geous alleles from Neanderthals (and Denisovans) into modern humans. Genes
involved in sugar metabolism, muscle contraction, and oocyte meiosis have been
influenced by adaptive introgression from Neanderthals. For example, EPASI which
influences hemoglobin concentration and response to hypoxia has introgressed from
Denisovans into Tibetans, facilitating adaptation to life at high altitude through ancient



30 G. Luikart et al.

admixture (Huerta-Sanchez et al. 2014). Other benefits of archaic (Neanderthal)
introgression in the past are associated with several neurological and dermatological
traits (Kelso and Priifer 2014; Racimo et al. 2015; Vattathil and Akey 2015).

Evidence for adaptive introgression in nonhuman populations is growing. For
example, adaptive introgression was detected in the Tibetan mastiff (Canis
domesticus). Alleles for adaptation to high elevation (hypoxia) were identified at
several loci, including the EPAS1 and HBB, which were introgression from Tibetan
gray wolves (Canis lupus) (Miao et al. 2017). This demonstrates that domestic animals
could rapidly become locally adapted by secondary contact with their wild relatives.

Adaptive introgression was also associated with the evolution of seasonal varia-
tion in coat color in snowshoe hares (Jones et al. 2018). Snowshoe hare populations
molt to white during winter in order to maintain camouflage in environments with
consistent winter snow cover. However, snowshoe hares in areas that remain snow-
free year round often retain their brown coat color during the winter, thus
maintaining effective camouflage in the absence of winter snow. The brown winter
coat in snowshoe hares appears to arise from an allele that has introgressed from
black-tailed jackrabbits (Jones et al. 2018). Other studies have also shown interesting
genome-wide patterns of adaptive introgression (Song et al. 2011; Rieseberg 2011;
Pardo-Diaz et al. 2012; Norris et al. 2015; Ozerov et al. 2016; Saint-Pé et al. 2018).

New approaches to analyze mapped loci will advance understanding of hybridiza-
tion and evolution in hybrid zones. For example, large numbers of mapped loci can be
analyzed to infer “local ancestry” across genomes of individuals. This involves
mapping the locations of haplotypes arising from different source populations across
the genomes of hybrids (Guan 2014; Leitwein et al. 2018). Such ancestry tracts can be
used to estimate individual hybridity and population level admixture at both the
genome wide and local scale across chromosomes. Additionally, local ancestry
information is highly useful for trait mapping in mixed-ancestry populations (Smith
and O’Brien 2005). Because the introgressing haplotypes decay in length at a predict-
able rate with increasing generations since hybridization, analyses of ancestry tract
lengths can be informative of the historical timing of admixture events. For example,
Leitwein et al. (2018) used 75,684 mapped SNPs obtained from double-digested RAD
to identify ancestry tracts and estimate individual admixture proportions along with the
timing of admixture in brown trout (Salmo trutta).

3 Benefits of Mapped Loci in Population Genomics

Information on the location of loci in the genome is a defining characteristic of
population genomics (narrow sense), as mentioned above (Allendorf 2017). Loci can
be mapped in terms of physical and/or genetic (linkage) positions in the genome.
Producing both physical and linkage maps is far more tractable with modern
genomics methods in non-model organisms than a few years ago. As a result,
population genomics research efforts can now feasibly include the construction of
a physical or linkage map for most study systems. Below we describe the key
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features of physical and genetic maps and the relative value of each for population
genomic analyses.

Physical and genetic (linkage) mapping are two separate but complementary
ways of describing the locations of loci in the genome. A physical map is a genome
sequence. Long sequence reads from new (third)-generation sequencers enable high-
quality genome assemblies, discovery of novel fitness-affecting structural variation,
and the ability to sequence through previously “unsequenceable” repetitive DNA to
allow mapping between distant loci along each chromosome. Reference genomes for
non-model organisms often, however, are not assembled into chromosomal units,
especially when genomes are large and contain a high fraction of highly repetitive
content (i.e., retrotransposons) (Ellegren 2014; Epstein et al. 2016).

A linkage map describes the gene order based on the recombination frequency
between loci along each chromosome. Linkage maps are constructed by genotyping
pedigreed individuals and using linkage analysis, which quantifies how often adja-
cent loci co-segregate versus segregate independently due to recombination during
meiosis. The distance between loci on a linkage map is described in terms of
centimorgans (cM), where 1 cM is defined as a 1% recombination frequency
between two adjacent loci inherited from a parent. Linkage maps can be developed
in some cases where assembly of physical maps remains difficult (e.g., large conifer
genomes, De La Torre et al. 2014).

Both physical and linkage maps facilitate population genomics research in at least
five ways. First, having large numbers of mapped loci improves the power to identify
and localize loci influencing phenotypic variation, fitness, and adaptation (e.g., Burri
et al. 2016; Rastas et al. 2016). For example, the availability of densely mapped
SNPs along a chromosome allows for localization of the chromosomal region(s) and
genes underlying traits or adaptations (Figs. 2, 3, 7, and 10). This helps determine the
genetic basis of adaptations or phenotypic variation, including determination of the
number, kind, and effect size of genes underlying an adaptation or trait.

Second, physical and linkage maps also help identify independent loci, e.g., loci
far apart on the same chromosome or on different chromosomes (although statistical
tests for independence can identify independent loci without a map). Independent
loci are required for some population genetic inferences, including analyses of
effective population size (N,), gene flow, or population relationships (Landry et al.
2002; Storz et al. 2002; Luikart et al. 2003). For example, Larson et al. (2014)
estimated N, for wild Chinook salmon using ~10,000 SNPs and the LDNe method
(based on gametic disequilibrium) that assumes all loci are independent or not
physically linked (Waples and Do 2010). Estimates using only pairs of SNPs from
different chromosomes (<1,000 SNPs) consistently gave estimates of N, that were
higher than when using all pairs of SNPs; for example, an N, estimate was 1,909 for
unlinked SNPs versus only 808 for all SNPs (including linked SNPs), as expected
because gametic disequilibrium is stronger for physically linked SNPs, which drives
(biases) lower N, estimates.

Third, the combination of a linkage map and a physical genome assembly allows
understanding variation in the recombination rate across the genome. This is impor-
tant because the recombination rate affects the extent of GD (gametic
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disequilibrium) and genetic diversity across a chromosome. Lower recombination
rates result in GD extending over longer physical distances across a chromosome. As
described below, the extent of significant GD strongly influences the power to detect
footprints of natural selection and the ability to map loci contributing to phenotypic
variation.

The recombination rate influences genetic diversity and differentiation among
populations or species via its interaction with natural selection. Knowing how
recombination rate varies across the genome is, therefore, crucial for interpreting
genomic patterns of genetic diversity and differentiation. For example, the recom-
bination rate is known to interact with background selection to generate chromo-
somal islands of reduced diversity (Charlesworth et al. 1993) and increased
differentiation (high Fsr, Burri et al. 2015), which might be erroneously interpreted
as resulting from positive selection.

Fourth, physical and linkage maps both help researchers determine if they have a
sufficient density of loci in the genome to have high power to detect loci subjected to
positive selection or genotype-phenotype associations. With a linkage map, researchers
can compute how far in centimorgans (cM) significant GD spans across chromosomes
or linkage groups. Similarly, with a physical map, researchers can compute how far in
base pairs (or kb) GD spans across chromosomes. Knowing the extent of GD is
important because detection of phenotype-genotype associations and signatures of
selection required GD between genotyped loci and causal loci. In addition, detecting
phenotype-genotype associations requires GD between genotyped marker loci and
causal loci, and so a relatively high density of markers is needed (Box 2).

Box 2 Importance of Gametic Disequilibrium and Marker Density

for Identifying Adaptive Loci

Researchers recently resequenced 81 whole genomes in flycatchers with
extreme phenotypes and also genotyped S0K SNP in 415 individuals. Birds
were phenotyped for forehead patch size, a sexually selected trait associated
with reproductive success. No SNPs were significantly associated with patch
size (Fig. 10A). One reason for the failure to detect loci (QTL, quantitative trait
loci) using association mapping could be that gametic (linkage) disequilibrium
extends only over short chromosome distances (Fig. 10B), which makes the
chances of strong associations between a DNA marker and trait loci small even
when genotyping many SNP markers (Lowry et al. 2017, but see McKinney
et al. 2017a; Catchen et al. 2017).

These results suggest that reliably detecting large-effect trait loci in large
natural populations will often require thousands of individuals and the
genotyping of hundreds of thousands of loci across the genome. Encourag-
ingly, far fewer individuals and loci will often be sufficient to achieve high
power to detect large-effect loci in small populations that typically have
widespread strong gametic disequilibrium. This study illustrates the

(continued)
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Box 2 (continued)

importance of knowing if strong gametic disequilibrium extends over long
chromosome distances (e.g., due to low recombination rates, small effective
populations size and drift, or perhaps admixture).
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Fig. 10 (A) Manhattan plot of —log10 (P-value) from a genome-wide association (GWA)
analyses of color-patch size based on whole-genome resequencing of 81 male flycatchers.
Chromosome identity is shown on the x-axis, and the P-values (open circles) are arranged
according to physical SNP positions on each chromosome. Horizontal dashed lines are
permutation-based statistical significance thresholds, and the dotted lines are the Bonferroni
statistical significance thresholds of statistical significance (no points above the dashed line).
(B) The relationship between the strength of linkage disequilibrium (+* or nonrandom
association between loci) and physical distance in 81 whole-genome resequenced collared
flycatcher males. r* is shown for each pair of SNPs separated by 50 or fewer kb. The solid
line represents a function fitted to the rolling mean of /> calculated in nonoverlapping
windows of 100 bp. The arrow shows where the mean of 72 drops below 0.20. The dashed
lines represent loess functions fitted to the rolling 5% and 95% quantiles of 7> in the same
nonoverlapping 100 bp windows. (C) Collared flycatcher photo (note forehead patch). (A,
B) Reproduced with permission from Kardos et al. (2016b). (C) Copyrighted license and
permission to use photo from Jiri Bohdal
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We caution that while maps allow quantification of the extent of GD along
chromosomes, this quantification must be conducted for each study population of
interest because the extent of GD varies among populations with in a species
(Table 2) (Whiteley et al. 2011; Gray et al. 2009). GD will be relatively higher
(genome wide) in populations with small N, and/or recent admixture (Fig. 11).
Quantifying GD along chromosomes also allows researchers to identify hotspots
of recombination (low GD) and thus to know which genome regions will require
higher densities of markers when screening for loci associated with adaptation or
phenotypic variation.

Directional selection is expected to reduce genetic variation and to alter the site
frequency spectrum at the selected site and at closely linked loci (Charlesworth et al.
1993). The expected physical distance over which selection affects genetic variation
depends on the local recombination rate. We expect directional selection to affect
genetic variation across larger regions when the local recombination rate is low. As
described below, accounting for recombination rate variation across the genome is
necessary in order to assess differentiation among populations (e.g., Fsr) measured
across each chromosome. Information on recombination patterns (genome wide)
improves interpretation of population genomic tests (GWAS, Fgr outliers, etc.)
because recombination can influence outlier locus behavior. For example, the rate
of recombination is expected to correlate positively with local nucleotide diversity
and rates of adaptive evolution, which could influence tests for selective sweeps
using heterozygosity or Fsr outlier loci (Cutter and Payseur 2013; Campos et al.
2014).

Fifth and finally, GD information from linkage or physical maps can improve
theoretical models to advance population genetics beyond bean-bag genetics.
Models parameterized with chromosomally explicit GD information can help to
understand issues such as the importance of interactions of gene flow, recombina-
tion, and selection in adaptation and speciation. Some models stress the importance
of recombination and distance among loci in the establishment and maintenance of
adaptive alleles in a population (Biirger and Akerman 2011; Yeaman and Whitlock
2011; Feder et al. 2012).

3.1 What Can Physical Maps Provide that Linkage Maps
Cannot?

Physical maps (reference genomes) generally provide higher power than linkage
maps for detecting selective sweeps or genotype-phenotype associations because
millions of SNPs can be mapped (positioned) via sequencing, whereas it is difficult
to produce linkage maps with more than approximately 20-30K SNPs. Linkage
mapping for tens of thousands of SNPs can require genotyping of many families,
which is difficult or impossible in most species due to small family sizes,
unavailability of families, or large expense of genotyping tens of thousands of loci
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Table 2 Estimated chromosomal length in kilobase pairs (kb) with moderate gametic disequilib-
rium (#* = 0.2) in populations from diverse species

Mean kb with
Species [population] (Genus species) moderate GD® | Reference
Flycatchers (Ficedula albicollis) <2 Kardos et al. (2016b)
Mosquito (Anopheles arabiensis) 1 Marsden et al. (2014)
Mosquito (Anopheles gambiae) <0.5 Harris et al. (2010)
Honey bee (Apis mellifera) 0.5 Wallberg et al. (2014)
Bighorn sheep [bison range population] (Ovis >4,000 Miller et al. (2014)
canadensis)
Bighorn sheep [Ram Mountain population] <2,000 Miller et al. (2014)
(O. canadensis)
Zebra fish [lab strain] (Danio rerio) >3,000 Whiteley et al. (2011)
Zebra fish [wild population] (Danio rerio) <20 Whiteley et al. (2011)
Murry cod (Maccullochella peelii) 5 Harrisson et al. (2017)
Rainbow trout (Oncorhynchus mykiss) 2,000 Vallejo et al. (2018)
bPig breeds [China] (Sus scrofa) ~10 Amaral et al. (2008)
bPig breeds [Europe] (Sus scrofa) ~400 Amaral et al. (2008)
Pig breed [Korea] (Sus scrofa) 3,700 Shin et al. (2018)
Common bean [Mesoamerican] (Phaseolus vulgaris) <100 Valdisser et al. (2017)
Common bean [Andean] (Phaseolus vulgaris) ~0.5 Valdisser et al. (2017)
Mung bean (cultivated) (Vigna radiata) 100 Noble et al. (2018)
Mung bean (wild) (Vigna radiata) 60 Noble et al. (2018)
“Antarctic fur seal (Arctocephalus gazella) 15 Humble et al. (2018)
Wolves [Alaska, Minnesota, or Canada] (Canis lupus) | <10 Gray et al. (2009)
Wolves [Isle Royal] (Canis lupus) >5,000 Gray et al. (2009)
Wolves [Yellowstone National Park] (Canis lupus) <10 Gray et al. (2009)
Wolves [Spain] (Canis lupus) >1,000 Gray et al. (2009)
Melon (Cucumis melo) <100 Gur et al. (2017)

Gametic disequilibrium (GD) in different populations of the same species can differ by orders of
magnitude, as seen here for zebra fish, pigs, beans, and wolves. The distance that moderate-to-
strong GD extends along chromosomes can vary due to different effective sizes (drift), substructure,
gene flow and admixture, mating system (inbreeding), recombination rates, and selection (e.g.,
sweeps)

*Publications here generally define a “moderate GD” to be > = 0.20. Mean chromosomal distance
in kilobases (kb) at which > decayed to 0.2

°GD stretched 10 kb in physical distance and 0.5 cM in linkage map distance. In European pig
breeds GD extended 400 kb physical distance and 2 ¢cM in linkage map distance

“Moderate GD extended to 15 kb; strong GD (r2 = 0.5) extended to 5 kb

4GD of > > 0.2 extended from ~75 to 100 kb (and 1 to 6 cM) in different strains

in many large families. For example, a map from a single family of Chinook salmon
had 5,400 SNP loci while increasing to four families allowed mapping of 13,800 loci
(G. McKinney, unpublished data, 2018; see also Mckinney et al. 2016). There are
diminishing returns from adding families for mapping because the number of
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Ram Mountain ] National Bison Range
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Intermarker distance (cM) Intermarker distance (cM)

Fig. 11 Gametic disequilibrium is stronger and more variable between loci (dots) in small
populations of bighorn sheep (National Bison Range, n ~50—75) compared to the moderately larger
population (Ram Mountain; n ~100-200). Strong LD (magnitude >0.4, see upper dashed line)
stretches over ~30 cM in the National Bison Range population but only to over ~10 ¢cM in Ram
Mountain population. Reproduced with permission from Miller et al. (2014)

additional loci that can be mapped declines as the number of families increases (unless
perhaps genetically divergent families, with different variable loci are mapped).

Physical maps are also useful for improving both the process of discovery of SNP
loci and of the subsequent genotyping of SNPs when using next-generation sequenc-
ing approaches such as RADseq (Sect. 4.1). For example, physical maps help
identify paralogues and duplicated genes to avoid them or genotype them by
allowing the alignment of sequencing reads to the physical map. If samples sizes
are large, paralogs can be identified in RADseq data (e.g., see HDplot method of
McKinney et al. 2017b).

Physical maps can improve genotyping by allowing the alignment of sequencing
reads to the entire reference genome during the genotyping process, instead of using
only a limited number of putative loci or de novo assembled loci (Hand et al. 2015a;
Shafer et al. 2017). A caveat is that reference genomes are never 100% complete, and
loci from missing sections of the genome will not be genotyped if doing only reference
alignments for genotyping. If a genome is 90% complete, it is possible that 10% of
your loci would not be mapped or genotyped when using the reference for genotyping.

Importantly, a physical map (assembly) can be used for genotyping next-
generation sequencing reads from a closely related species to help improve
genotyping (Cosart et al. 2011; Shafer et al. 2017). In this scenario, reads from
one species are aligned to the genome for another for genotyping. This is a benefit of
initiatives like Genome 10k that is providing a genome assembly for one species per
genus or family of vertebrate, which provides related species a reference genome for
mapping and genotyping (Haussler et al. 2009).
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3.2 What Can Linkage Maps Provide that Physical Maps
Cannot?

A high-density linkage map enables understanding of mechanisms (background/neg-
ative selection, positive selection, gene flow, and recombination) that cause heteroge-
neity along chromosomes in diversity within and differentiation between populations
(Burri et al. 2015). A linkage map reveals recombination hot and cold spots which are
known to interact with background selection to generate chromosomal islands of
divergence (high Fsr). Thus, a linkage map can help prevent false positives for local
adaptation and improve detection of islands of divergence that are truly indicative of
local adaptation (not false positives) (Cruickshank and Hahn 2014). Regional estimates
of the recombination rate also help interpret data on runs of homozygosity (RoH) to
detect inbreeding and to infer demographic history because recombination hotspots
influence the lengths of RoH (Thompson 2013) and the density of SNPs (Charlesworth
et al. 1993) and thus the power to detect RoH in genome regions.

Chromosomal level assemblies are often not possible without a linkage map,
especially for large genomes with many repetitive sequences (Amores et al. 2011).
Assembled chromosomes in turn can be used for identification of chromosomal
synteny and structural polymorphisms such as rearrangements (e.g., inversions)
within or between species (Amores et al. 2011; O’Quin et al. 2013; Rondeau et al.
2014). Structural changes or polymorphisms can influence fitness and adaptation and
thus are important to discover and map (Wellenreuther and Bernatchez 2018).
Additionally, assembled chromosomes can improve genome scans for loci associ-
ated with adaptation and phenotypic variation, by allowing computation of
chromosome-specific distributions of summary statistics (continuously along each
chromosome), which can increase power and reliability of outlier tests.

3.3 Combining Linkage and Physical Maps: The Ideal
Genomics Approach

Having both a reference genome assembly and linkage map is ideal because they
complement each other, and the linkage map improves the accuracy and contiguity
of the assembly. Perhaps the most important point is that a linkage map must be
combined with a physical map to estimate and map recombination rates across a
genome. If researchers must choose between map types when developing genome
resources for their species, the physical genome assembly will often be the map of
choice because many more SNPs can be mapped physically; It is difficult to build
linkage maps including extremely large numbers of SNPs (e.g., because many
mapping families are required), as mentioned above.
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3.4 Apply Genomics Approaches Without Maps

Many of the methods mentioned above can be applied to sequences from known
genes or loci with unmapped locations in the genome. For example, we can conduct
tests for loci under selection by testing for different kinds of outlier behavior (Fsr,
GD, allele frequency skew or heterozygosity excess, excessive locus-specific intro-
gression; Luikart et al. 2003). We can also test for population adaptive differentiation
(Bonin et al. 2007) and test for associations between genotypes and the environment
or phenotypes (Fig. 1, Step 4a) (Fig. 3a).

4 Genotyping and Sequencing Technologies for Population
Genomics

This quote by Schlétterer (2004) at the start of this chapter emphasizes the impor-
tance of molecular genetic methods and implies the importance of choosing an
appropriate DNA marker or sequencing method for your research question (as did
Sunnucks 2000; Benestan et al. 2016). The methods continue to evolve and improve
our understanding of nature. SNPs and other markers from a variety of partial
genome (and transcriptome) sequencing methods are the mainstay in population
genomics studies. Here we provide a short introduction to key marker technologies
likely to be most widely useful for non-model species. Low-cost genotyping,
including RAD capture, DArT (diversity array technology), and related methods
will continue to make population genomics increasingly feasible and widely used.
Later in this book, Holliday et al. (2018, Chapter 2) provide more details and merits
and demerits of different genotyping and sequencing technologies (see also Andrews
et al. 2016; Jones and Good 2016; Holliday et al. 2018). For information on the
promising approach of multiplex sequencing of many pooled individuals (pool-seq),
see Box 3, Sect. 2.5, Schlotterer et al. (2014), and Narum et al. (2018).

4.1 Reduced Representation and Genotyping-by-Sequencing

Reduced representation sequencing is revolutionizing population genetics, molecu-
lar ecology, and conservation biology by making feasible and affordable use of
massively parallel sequencing (MPS) on many individuals and loci genome wide
(Narum et al. 2013). We can now use MPS to discover and genotype thousands of
SNP loci for less cost than genotyping of only ~20 microsatellites. This makes
population genomics research feasible for nearly any species. Understanding the
strengths and limitations of the many reduced representation approaches is crucial to
choose the best method for your research question (Andrews et al. 2016).
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Approaches for reduced representation sequencing include general and targeted
approaches (Jones and Good 2016). Anonymous approaches include unmapped
restriction site-associated DNA sequencing (RADs) and transcriptome sequencing.
Targeted approaches allow direct sequencing of loci of interest such as genes or
informative RAD loci using capture arrays (below). Informative RAD loci are those
in candidate adaptive genes and/or loci that are evenly spaced (mapped) across
chromosomes to ensure genome wide coverage and high power for outlier tests,
GEA, and association studies (e.g., GWAS) (e.g., Hohenlohe et al. 2010b; Kovach
et al. 2016; Simons et al. 2018; Gibson 2018).

4.1.1 RADseq

The development of restriction site-associated DNA sequencing (referred to as
RADseq and genotyping-by-sequencing, GBS) was considered among the most
important scientific breakthroughs in the first decade of the twenty-first century
because it allowed for simultaneous discovery and genotyping of many thousands
of SNPs in a single experiment, in non-model species with no genomic resources
(Science 2010). It involves the cutting of DNA through digestion with one or more
restriction enzymes, labeling fragments from each individual with a unique barcode
(short 6-12 bp reads), amplifying fragments using PCR, and high-throughput
sequencing of pooled samples from multiple individuals (Andrews et al. 2016).

Another advantage of RADseq is its flexibility in the number of loci that can be
genotyped — from hundreds to tens of thousands — by choosing among different restric-
tion enzymes and >15 different RADseq-based techniques (Andrews et al. 2016). A
main disadvantage is that there is typically highly uneven coverage of genotypic data
among individuals and among loci, with many individuals missing data for many loci
unless very stringent filtering is conducted with deep coverage sequencing.

This method has become extremely popular and has been applied to many taxa
and questions in conservation, ecology, and evolution including quantifying
inbreeding, genomic diversity, effective population size (N,), and for discovery of
adaptive genes and genome regions (reviewed in Andrews et al. 2016; see also
Lowry et al. 2017; McKinney et al. 2017a; Catchen et al. 2017; Hohenlohe et al.
2010b; Nadeau et al. 2014; Benestan et al. 2016; Candy et al. 2015; Sovic et al.
2016; and also subsequent chapter by Holliday et al. (2018) in this volume).

4.1.2 Targeted Sequence Capture

Sequence capture allows targeted sequencing of any region of a genome for which
DNA sequence information exists. Sequence capture is often called “exon capture”
because it is often used to sequence coding regions of the genome, including
candidate adaptive genes (Flanagan et al. 2018). It is more expensive than RAD
but a cheaper and more efficient alternative to whole-genome sequencing and results
in more uniform sequencing of individuals and loci (and therefore less missing data)
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than restriction enzyme-based methods. It can be scaled to sequence hundreds to tens
of thousands of genes (Hodges et al. 2007; Jones and Good 2016). Another advan-
tage of sequence capture is in the genotyping of degraded DNA such as ancient,
historical, and fecal DNA (Castellano et al. 2014; Bi et al. 2012; Bos et al. 2015).

Targeted capture enriches for DNA of interest and washes away nontarget DNA,
as mentioned. This is important for genotyping fecal DNA because a majority
(>90%) of DNA can be from bacteria (e.g., Perry et al. 2010). Recent examples of
sequence capture include a wide range of question from phylogenetics to the
detection of adaption signatures in humans, wolves, sharks, wild sheep, ungulates,
birds, amphibians, trees, aquatic invertebrates, and host-parasites simultaneously
(Cosart et al. 2011; Schweizer et al. 2016, Roffler et al. 2016; Gasc et al. 2016;
Portik et al. 2016; McCartney-Melstad et al. 2016; Syring et al. 2016; Dowle et al.
2016: Campana et al. 2016; Manthey et al. 2016; Suren et al. 2016; Gauthier et al.
2017; see also Chapter 2 by Holliday et al. 2018).

4.1.3 RAD Capture

RAD capture (“Rapture”) combines the primary advantages of RADseq with advan-
tages of targeted sequence capture. For example, the relatively inexpensive and rapid
DNA library preparation methods of RADseq (Ali et al. 2015) are combined with the
high specificity in targeting hundreds or thousands of loci. Loci are of high value
(in genes, evenly spaced genome wide) for addressing nearly any questions of interest,
focusing sequencing effort on those loci (Andrews et al. 2016; Jones and Good 2016;
Hoffberg et al. 2016; Peek et al. 2018; see also Chiou and Bergey 2018). Another
advantage is that a single Rapture array (e.g., for trout) works for genotyping in
multiple divergent species such as salmon and trout (M. Miller, pers. comm., 2018).

The Rapture method was first used to successfully study SNP variation in lake
trout (M. Miller, unpublished, 2018) and rainbow trout (Ali et al. 2015). This study
used a capture array targeting 500 loci that were distributed across 29 chromosomes
(Ali et al. 2015). All 1,440 individuals genotyped for the 500 loci were sequenced in
a single llumina HiSeq lane.

414 DArT

Diversity array technology (DArT) is another sequencing-based approach
(a modification of GBS) allowing affordable discovery and genotyping of thousands
of SNPs in hundreds of individuals (Elbasyoni et al. 2018). DArT has been used
mainly in agriculturally important species and plants (Valdisser et al. 2017). This
technology is similar to RADseq. Commercial companies exist, as for RADseq, to
facilitate the discovery and application of genome-wide markers for population
genomics approaches.
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4.2 Reference Genomes

A reference genome sequence (i.e., genome assembly) is the portion of the genome
that has been sequenced and assembled, i.e., pieced together, from short sequence
reads. A reference genome is important in population genomics because it improves
mapping of NGS reads to facilitate both the initial discovery of loci and the eventual
genotyping of loci from many individuals. For example, if the reads from a RADseq
project can be mapped to a reference genome, it can improve the detection of SNPs
and duplicated genes or chromosomal regions that will be difficult to genotype
because reads from duplicated regions often will stack up (align) together as if from
a putative single locus (Hand et al. 2015a; Shafer et al. 2017). Shafer et al. (2017)
observed large differences between reference-based and de novo approaches; use of a
reference genome yielded more SNPs and reduced estimates of Fis and Ts/Tv.

Genome assembly is difficult in large genomes of plants where repetitive
elements (e.g., retrotransposons) constitute >50% of the genome (Nystedt et al.
2013). In loblolly pine (Pinus taeda), 62% of the 22 Gb genome is made up of
retrotransposons, and other conifers have similarly large repeat element content
(De La Torre et al. 2014). Similarly, for genomes resulting from recent
polyploidization events, as in many fish and plants, the assembly is difficult because,
for example, in a tetraploid four similar copies exist for much of the genome. Most
eukaryotic genomes contain complex repetitive sequences that are difficult to
sequence and assemble as mentioned above (Ellegren 2014).

Assembly is becoming vastly easier thanks to new long-read technology as
suggested by the following quote: “Long reads enable near reference-quality
genome assemblies, discovery of novel disease-causing structural variation, and
the ability to sequence through previously ‘unsequenceable’ repetitive DNA con-
tents of clinical utility” (Ameur et al. 2018).

A reference genome sequence is not a standardized concept or item (Ellegren
2014). Even for well-characterized genomes, large parts are often not yet included
in the genomic contigs (small assembled chromosomal regions) or the scaffolds (sets
of contigs linked into larger regions) that have been ordered and linked into chromo-
somes. For example, the first published rainbow trout genome had only ~50% of
sequences assembled and ordered into chromosomes; in fact one entire chromosome
(#25) was unassembled such that no sequences were known from that chromosome
(Berthelot et al. 2014). Similarly, chromosome 16 in the collared flycatcher genome is
unassembled (Kawakami et al. 2014). In the rainbow trout and flycatcher examples,
much of the one unassembled chromosome was likely sequenced and exists among the
many contigs that have not been incorporated (assembled) into chromosomes. The
quality and completeness of reference genomes vary widely among species.

Importantly, even partially assembled genomes are useful for many research
questions. Partial genomes facilitate discovery of non-duplicated (versus duplicated)
SNP loci for marker discovery. Partial (draft) genomes also increase quality of
genotyping (e.g., with RADSeq or DNA capture data). Finally, draft genomes help
design probes for exon sequence capture (e.g., when exons are identified from
RNAseq data), and are useful for estimating the rate or distance of decay of gametic
disequilibrium (Hand et al. 2015a; Shafer et al. 2017). Even a draft assembly (N50
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>50 kb) usually contains well-assembled coding gene regions because coding genes
have few repetitive elements and low heterozygosity, making a draft assembly
relatively feasible and highly useful. In Tasmanian devils (Sarcophilus harrisii),
researchers used a partially assembled draft genome (containing thousands of scaf-
folds not anchored on chromosomes) to successfully identify genomic regions and
candidate genes underlying cancer risk, along with concordant signatures of selec-
tion including increased GD (gametic disequilibrium) and changes in allele frequen-
cies (Epstein et al. 2016).

Another advantage of having at least a draft reference genome is that it allows
estimation of the rate of decay of gametic disequilibrium, which is crucial for
knowing the number of markers needed to adequately cover the genome to address
particularly interesting or challenging research questions (narrow sense genomics).
Having even only a hundred long scaffolds (>100 kb) with multiple DNA markers
provides information on whether long stretches of GD exist genome wide, which is
crucial for assessing the number of markers needed to achieve high density (Hen-
dricks et al. 2018).

4.3 Whole-Genome Sequencing (WGS) and Resequencing

A main reason for sequencing (i.e., resequencing) entire genomes from many
individuals is to maximize power to discover and localize DNA loci underlying
fitness, adaptation, and phenotypic variation important for population persistence
and growth (e.g., Kardos et al. 2016b). Increased power results from detecting most
SNPs in the species and from being able to compute summary statistics (H, Fst, GD)
for those SNPs and other polymorphisms (e.g., indels) in a sliding window across
genomic regions (e.g., Box 3).

Having only one individual’s genome sequence (e.g., from one male) will not
allow understanding of genome structural diversity or variation. This could bias
subsequent comparisons of diversity among individuals (e.g., males and females),
populations, and species, for example, when using GBS or RAD seq methods and
mapping reads to the one genome reference sequence.

Box 3 Whole-Genome Sequencing Identifies Selective Sweeps

and Candidate Genes

Researchers used whole-genome sequencing of wild Rocky Mountain bighorn
sheep (Ovis canadensis) to identify 3.2 million SNPs and genomic regions
with signatures of historical directional selection, i.e., selective sweeps
(Kardos et al. 2015b). Sweeps were detected as chromosomal regions with
low heterozygosity. Heterozygosity-based sweep analysis revealed evidence
for strong historical selection at a gene (RXFP2) that affects horn size in
domestic sheep, cattle, and goats (Johnston et al. 2011, 2013). The massive
horns carried by bighorn sheep rams appear to have evolved in part via strong
selection at the RXFP2 gene (Fig. 12).

(continued)
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Box 3 (continued)
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Fig. 12 Sequencing-based (pool-seq) genome-wide scan for selective sweeps that reduced
heterozygosity in Montana and Wyoming populations (A) of bighorn sheep (B). Sliding
window estimates of heterozygosity (C) across the bighorn sheep genome from an analysis
of three populations pooled from Montana and Wyoming. Chromosomes (linkage groups)
are arranged from 1 to 26 (left to right with alternative color (blue then orange) shading). The
horizontal jagged red line represents the rolling mean across 100 adjacent sliding windows.
The horizontal dashed line is 5 standard deviations below the mean heterozygosity. (D)
Sweep on chromosome 10 spanning the RXFP2 gene (vertical black lines at 29.5 Mb near
the x-axis are exons). Expected heterozygosity is plotted for individual SNPs (gray dots)
located across 2 Mb on chromosome 10. The location of exons (vertical lines) of EEFIAI,
RXFP2, and an uncharacterized predicted gene (“UNC”) is shown below the plot. Gene and
exon positions were obtained from the Ensemble gene models generated during annotation
of OARvV3.1. The continuous horizontal jagged line shows mean expected heterozygosity
calculated for nonoverlapping windows of 20 SNPs. The lowest genetic variation in the
region occurred in a window centered at position 29,473,544 between exons 3 and 4 of
RXFP2 (dashed line arrow). Reproduced with permission from Kardos et al. (2015b)

(continued)
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Box 3 (continued)

The authors also identified evidence for selection at genes affecting early
body growth and cellular response to hypoxia which is consistent with adap-
tation to life at high altitude. These results provide examples of strong genomic
signatures of selection identified at genes with known function in wild
populations of a non-model species.

A comparison of SNP diversity between the X chromosome and the
autosomes also indicated that bighorn males had a dramatically reduced
long-term effective population size compared to females. This likely reflects
a long history of intense sexual selection mediated by male-male competition
for mates, which reduces the effective population.

The approach of heterozygosity-based sweep analysis had been previously
used successfully in domestic animals where breed formation and subsequent
strong artificial selection have generated selective sweeps for genes that
influence a spectrum of phenotypic traits (Rubin et al. 2010, 2012; Axelsson
et al. 2013). In wildlife, genome sequencing of gray wolves from the high
altitude plateaus of western Asia recently detected selective sweeps surround-
ing genes involved with adaptation to hypoxia (Zhang et al. 2014). Together,
these studies provide encouragement that genome sequencing in carefully
selected wild populations will continue to yield valuable insights into the
genetics of adaptation (Kardos et al. 2015b).

The results illustrate the value of quality reference genome assemblies from
agricultural or model species for studies of the genomic basis of adaptation in
closely related wild taxa (domestic sheep in this case). This study also
illustrates the use of genome sequencing of pooled DNA from many individ-
uals (per population). This saves money and can be an efficient way to estimate
allele frequencies at nearly all SNPs in the genome. However, drawbacks
include imprecision in estimates of allele frequencies arising from uneven
contribution individuals to sequencing (pool-seq without barcoded individ-
uals). For more information, see discussions by Schlétterer et al. 2014; Kardos
et al. 2015b; Narum et al. 2018).

Certain questions can only be reliably addressed by using whole-genome
sequencing. For example, structural polymorphisms such as gene duplications
(copy number variants) cannot be reliably detected with GBS (e.g., RADseq) or
sequence capture but can be detected by whole-genome assemblies and ideally with
a linkage map (Wellenreuther and Bernatchez 2018). Additionally, adequately
covering the genome for applications, such as GWAS, will sometimes require
whole-genome sequencing for populations in which gametic disequilibrium is low
and decays rapidly along chromosomes, e.g., in populations with very large N, or
high recombination rates (Kardos et al. 2016b; Miles et al. 2017; Table 2).
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Nonetheless, most questions in population genetics, molecular ecology, and
conservation genetics can be addressed sufficiently without whole-genome sequenc-
ing and by using a population genomics approach (Allendorf et al. 2010). These
include estimating individual inbreeding, detecting hybridization, quantifying pop-
ulation structure, and inferring gene flow. Whole-genome or exome resequencing is
most useful for questions, such as determining the genomic basis (architecture) of
local adaption or fitness when only a limited amount of gametic disequilibrium exists
along chromosomes and thus millions of SNPs are required, for example.

4.4 Population Transcriptomics, Gene Expression,
and Adaptation

Transcriptomics is the study of all RNA transcripts (transcriptome) that are produced
by the genome. Population transcriptomics is the use of transcriptome-wide data to
study variation in gene expression within and among populations to understand
mechanisms underlying evolutionary change, for example, in response to environ-
mental change. Such mechanisms can include plasticity in gene expression if it
underlies adaptive evolutionary responses to new environments (Ghalambor et al.
2015) or if the amount or nature of plasticity itself evolves in response to selection.
Here, we discuss the two main tools of population transcriptomics, microarray
analysis and RNA sequencing (RNAseq), with examples of applications to natural
populations.

cDNA microarrays and oligonucleotide microarrays can measure expression of
thousands of genes simultaneously by quantifying levels of mRNA present in
different tissues or individuals. Thousands or tens of thousands of different short
DNA fragments are spotted onto a glass slide or other template, and cDNA from the
individuals being studied, labeled with fluorescent dyes or other markers, is hybrid-
ized with that array. The intensity of fluorescence provides a quantification of the
relative expression levels of targeted genes. Results are often validated with more
precise estimates of RNA abundance (expression) using quantitative PCR for a
subset of genes.

Gene expression profiles can be viewed as phenotypes because they are the
product of both genetic and environmental variation (Hansen 2010). To assess
genetic differences underlying gene expression, individuals can be reared in a
common environment. Information on gene expression differences among
populations can be used to complement data on neutral or adaptive genetic markers
and adaptive traits for circumscribing conservation units. For example, Vandersteen
Tymchuk et al. (2010) quantified gene expression for populations of Atlantic salmon
in and around the Bay of Fundy, Newfoundland, using a 16,000 gene cDNA
microarray. They found consistent year-to-year population differences in the expres-
sion of 389 genes when fish were reared in common environments. Population
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differentiation for gene expression was stronger, and patterns were somewhat
different than those observed for seven microsatellite loci.

RNAseq (also called whole transcriptome shotgun sequencing) is replacing
hybridization-based microarray technologies for many applications thanks to low-
ering costs of next-generation sequencing (Ozsolak and Milos 2011; Wang et al.
2009; Oomen and Hutchings 2017). RNAseq can more comprehensively assess the
entire repertoire of RNA molecules expressed from genomes over a wider range of
expression levels than can microarrays. We note that RNAseq can also be used for
SNP discovery, for SNP genotyping, or for probe design for exon capture. For
example, Bi et al. (2012) use RNAseq to discover SNPs within coding genes.
They then used the gene sequences to design DNA sequence capture baits to test
for SNPs associated with adaptive differentiation in chipmunks.

RNAseq and RADseq were used by Chen et al. (2018) to test for genetic variation
in thermal adaptation in redband trout populations (Oncorhynchus mykiss gairdneri)
from warm versus cool environments. In a common garden, fish from a desert
climate had significantly higher thermal tolerance and aerobic scope (>3°C) for
higher cardiac performance (e.g., without arrhythmia) than fish from the cooler
montane climate. In addition, the desert fish had the highest maximum heart rate
during warming, indicating improved capacity to deliver oxygen to internal tissues.
Following heat stress, distinct sets of cardiac genes were induced, which helped
explain the differences in cardiorespiratory function. Candidate RADseq SNP
markers and nearby genes underlying these physiological adaptations were identi-
fied, including genes involved in metabolic activity and stress response (such as heat
shock genes hsp40, Idh-b, and camkk?2). This kind of study is rare in that it identified
both transcriptomic and genomic mechanisms of evolutionary adaptation that allow
populations to persist in the difficult environmental conditions of desert streams.

5 Bioinformatics for Filtering, Genotyping, and Data
Analyses

Bioinformatics skills and understanding are crucial to analyze the increasingly
massive DNA sequence datasets. Bioinformatics involves intensive computations
to analyze DNA, RNA, and protein sequence datasets. The field of bioinformatics
underwent explosive growth starting in the mid-1990s, driven largely by the Human
Genome Project and rapid advances in DNA sequencing technology. Thus, the need
for bioinformatics training and approaches has increased greatly in the last decade as
the data produced by massive parallel sequencing approaches has grown exponen-
tially. However, while the costs of genome sequencing are plummeting, time and
money spent on bioinformatic data filtering and analysis (and production of bioin-
formatics platforms) have increased more slowly over time (Sboner et al. 2011).
Given the many advantages and increasing ease of generating massively parallel
sequencing (MPS) data, it has become crucial for population geneticists to be trained
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in computer programming and scripting to take full advantage of the growing catalog
of bioinformatics tools (Andrews and Luikart 2014).

There are four major bioinformatics steps, often referred to as a bioinformatics
pipeline, that occur in most population genomics studies including (1) sequence read
filtering, (2) assignment of reads to loci (e.g., alignment to a reference genome or de
novo loci assembly), (3) genotype calling, and (4) final filtering for problematic loci
that do not meet biological expectations (e.g., Hardy-Weinberg proportions, high
numbers of SNPs per locus (or 100 bp) usually resulting from alignment error, high
observed heterozygosity, or more than two observed alleles) (Benestan et al. 2016).
A major challenge in bioinformatic analysis is the creation of standardized pipelines
(e.g., see the Broad Institute webpage for best practices — software.broadinstitute.
org) that would improve consistency and comparison of results among species (and
studies within species) but also even within the same species. Worrisome is the fact
that different pipelines often result in very different results (for a given dataset) such
that the number SNPs discovered and basic summary statistics and conclusions can
change between pipelines (Shafer et al. 2017).

Analysis of up to entire genomes (millions of SNPs) presents challenges in
filtering out loci that could lead to erroneous results and conclusions. There are no
concrete rules for what criteria should be used for filtering loci from genomic
datasets. The current state of filtering in population genomics has led to some
colorful terms for filtering such as labeling filtering as the “F-word” or that filtering
of genomic data is the “wild west” of population genomics (Benestan et al. 2016).
Indeed, the potential effects of locus filtering approaches on downstream analyses
and research conclusions have only recently started to be investigated (e.g., Lowry
et al. 2017; Rodriguez-Ezpeleta et al. 2016; Shafer et al. 2017). However, it has also
been suggested and shown empirically that filtering is helped greatly by the exis-
tence of a reference genome (Ellegren 2014; Hand et al. 2015a, b; Shafer et al. 2017).

Despite recent attempts to build conceptual and practical frameworks for MPS
data analysis, a standardized pipeline remains elusive, and perhaps infeasible, given
the nature of data variability present in most genomic datasets (Benestan et al. 2016).
There has also been a move toward web-based platform analysis and filtering tools
such as Galaxy which has gained users and popularity in recent years (Giardine et al.
2005; Afgan et al. 2016). Galaxy offers a more user friendly graphical interface
for easy visualization and reproducibility of results through the tracking (logging) of
all bioinformatic analysis steps and user-created and shared workflows. Workflows
are flowchart-style representations of bioinformatics pipelines with drag and drop
functionality that allows for easy customization, reproduction, and even publication
of bioinformatics pipelines (Catchen et al. 2013; Eaton 2014). Galaxy also offers
tools across a range of datatypes including RAD and RNAseq, WGS, and exon
capture (Blankenberg et al. 2010; Pogorelcnik et al. 2018; Tranchant-Dubreuil et al.
2018). See the chapter “Computational Tools for Population Genomics” by Salojirvi
(2018) in this book for more information.
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6 Emerging Population Genomics Approaches

Here, we discuss emerging approaches that will become more widely used as costs
decrease and technologies improve. These include population metagenomics,
transcriptomics, epigenomics, proteomics, and paleogenomics.

6.1 Metagenomics

Metagenomics is the sequencing and analysis of DNA from all species in
an environmental or gut sample (Srivathsan et al. 2016; Stat et al. 2017,
Laforest-Lapointe et al. 2017; Waite et al. 2018). Metagenomics has usually been
defined more narrowly as the study of DNA from microbial communities in envi-
ronmental samples, perhaps because the initial studies were in microbes (Venter
et al. 2004; Garcia et al. 2018). Metagenomics can be used to describe the diversity
and relative abundance of taxonomic groups present within a single sample, exper-
iment, or local population (DeLong 2009). These techniques have been applied
widely to microbes in environmental samples, including water, soil, fecal, or gut
samples, and subjected to high-throughput sequencing. Further, analysis of the
functional groups of genes and their relative abundance, without requiring knowl-
edge of which organism each sequence fragment came from, can provide a func-
tional metabolic profile of the microbial community (Dinsdale et al. 2008).

From a population genomics perspective, metagenomics can allow the applica-
tion of population genomics approaches (e.g., Fig. 1 or Fig. 2) on each of multiple
microbial species, simultaneously. Further, if the microbial species are sampled
from across a heterogeneous environment (or gradient), it facilitates the application
of a landscape community genomics approach to improve understanding of eco-
evolution interactions (Sect. 2.4; Hand et al. 2015b). Another application of
metagenomic data is to describe a microbial community as an essential part of an
individual host’s phenotype, influencing the health and fitness of the host. The
application of metagenomics in ecology, evolution, and conservation is in its early
stages, but a few specific areas show promise for the future. A chapter in this book
series volume describes how population genomics approaches can be applied to
metagenomic data to delineate microbial populations in the environment and to
study evolutionary processes within them (Denef 2018).

Metagenomic surveillance systems are increasingly being used to improve mon-
itoring and determine mechanisms driving the spread of infectious diseases. Portable
genomic sequencers provide rapid near real-time diagnostics that can resolve impor-
tant epidemiological and genomic characteristics of an outbreak or epidemic’s
dynamics. As pathogens replicate and spread, mutations accumulate in their
genomes. The whole-genome sequencing of spatially referenced samples allows
researchers to track and reconstruct geo-spatial pathways of spread. Genomic epi-
demiology surveillance and rapid response programs can now take a more anticipa-
tory approach to outbreak prevention and control.
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Genomics-informed DNA detection assays have been developed to track a wide
range of important fungal plant pathogens, including introduced, invasive species
causing widespread diseases and mortality in natural populations and crop species
(Feau et al. 2018). Monitoring and understanding which strains are emerging and
associated with different environments and species (including humans) would also
help to model, predict, and manage outbreaks and spread of pathogens. Whole-
genome data from individual pathogen species in each of many host individuals can
be used in population genomics approaches (or landscape community genomics
approaches) to better understand the genomic basis of adaptation to hosts and local
environments and to predict the effects of environmental change on a pathogen
population and microbial community (Hand et al. 2015b).

Another application of metagenomics is to monitor or predict physiological
condition, health, or fitness of individual organisms. For instance, Vega Thurber
et al. (2009) have found shifts in the endosymbiont community of corals in response
to stressors, such as reduced pH, increased nutrients, and increased temperature.
Such shifts in the endosymbiont community could serve as indicators or predictors
of reef health, and they could also suggest mechanisms by which coral condition
affects other taxa in the reef ecosystem (Roitman et al. 2018; Leite et al. 2018).

Finally, a large-scale study used metagenomic techniques on fecal samples to
catalog 3.3 million microbial genomes in the human gut fauna (Qin et al. 2010). The
study found significant differences in the microbial metagenome between healthy
individuals and those with two types of inflammatory bowel disease (Qin et al.
2010). In the future metagenomic techniques will be applied to noninvasively-
collected fecal samples from wildlife species to assess their health status, such as
starvation or disease infection, and to understand mechanisms underlying host and
microbe interactions, population genomics, and coevolution (e.g., Beja-Pereira et al.
2009; Chiou and Bergey 2018; Waite et al. 2018).

6.2 Metatranscriptomics

While metagenomics focuses on detecting the presence of microbial species,
metatranscriptomics investigates their gene expression profiles to address questions
such as which genes are expressed in different environments or conditions. Thus,
metatranscriptomics investigates the function and activity of the entire set of tran-
scripts (RNAseq) from environmental, fecal, gut, or other samples. It is often used to
identify sequences of genes expressed within natural microbial communities to
advance understanding of microbial ecology and drivers of gene expression
variation.

Assessing all the microbial community transcripts from a particular time and
location, including bacteria, archaea, or small eukaryotes in the ocean, soil, or an
organism’s gut, can help understand the complex microbial processes simulta-
neously occurring in natural or disturbed environments. This allows “eavesdropping
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on microbial ecology,” a promising new approach for researchers in ecosystem
ecology, animal health, and functional biodiversity monitoring (Moran 2009).

From a population genomics perspective, metatranscriptomics - like
metagenomics — can facilitate landscape community genomics approaches to
improve understanding of eco-evolutionary processes (Hand et al. 2015b).
Transcriptomic and metatranscriptomic data can detect gene expression shifts in
both host and microbes simultaneously (e.g., lung tissue and lung parasites, gut
tissue and gut parasites, blood and malaria, etc.) and thus can help understand,
model, and predict host-parasite interactions (e.g., Matthews et al. 2018; Lee et al.
2018; Campbell et al. 2018).

Metatranscriptomics and metagenomics together can provide entire transcriptome
and genome repertoires of microorganisms through sequencing total DNA/RNA
from samples; this provides taxonomic and also functional information with high
resolution. These two approaches together with new bioinformatics tools can help us
better understand mechanisms of adaption, coevolution, and processes like rumen
fermentation, digestion, and community adaption to environmental change. A chal-
lenge for “meta” approaches is that only a small percentage of the many ecologically
important genes has been annotated or identified. Sequence datasets often contain
only the abundant genes from a limited number of natural microbial communities
(Moran 2009).

6.3 Population Epigenomics

While epigenetic inheritance is well documented the adaptive significance, if any, of such a
complementary inheritance system remains enigmatic (Lind and Spagopoulou 2018).

Among the most intriguing and perhaps controversial areas of population
genomics research involves understanding the role of transgenerational epigenetic
inheritance in adaptive evolution. Can a strong environment change produce
transgenerational epigenetic adaptation? Epigenetics has been defined as the
study of heritable changes in a trait or phenotype caused by mechanisms other
than DNA mutation. We focus here on transgenerational epigenetic inheritance,
which is defined as changes in gene expression and resulting phenotypic variation
that are transmitted between generations through germline, but do not involve
changes in the underlying DNA sequence (Horsthemke 2018).

If environmentally caused shifts in gene expression are adaptive and transmitted
to subsequent generations, it could represent a Lamarckian-type mechanism facili-
tating adaptation to environmental challenges, such as climate warming (e.g.,
Christie et al. 2016; Lind and Spagopoulou 2018; Horsthemke 2018). This idea
could perhaps provide hope to conservation biologists that rapid adaption to climate
warming is more likely than previously thought based on adaptation through natural
selection. This idea is perhaps intriguing but still farfetched given the lack of
evidence. The explosive growth in research on this topic results in part from the
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question of whether “epigenetic mechanisms might provide a basis for the inheri-
tance of acquired traits” (Horsthemke 2018).

Charlesworth et al. (2017) state that “allele frequency change caused by natural
selection is the only credible process underlying the evolution of adaptive
organismal traits.” Similarly, Horsthemke (2018) states that the evidence for
transgenerational epigenetic inheritance, “is not (yet) conclusive,” in mammals,
even though “it has been observed in plants, nematodes and fruit flies.” While
there is strong evidence for environmentally induced transgenerational inheritance
of epigenetic gene expression changes that influence fitness traits, there is not yet
evidence that such epigenetic changes persist in the longer term (many generations)
or that they influence population genetic or evolutionary processes.

Questions outlined by Charlesworth et al. (2017) can help guide future research to
investigate the potential role of transgenerational epigenetic inheritance in evolu-
tionary adaptation. These questions include the following: How many generations
do inherited epigenetic marks persist, and do they spread within and among
populations? Also, are transgenerational epigenetics changes an important source
of adaptive change, relative to DNA sequence change (Charlesworth et al. 2017)?
These are population epigenetics questions, which now can be addressed using
densely distributed epigenetic marks genome wide, thereby representing ‘“narrow
sense” population epigenomics.

Here we discuss recent evidence for environmentally induced multigenerational
epigenetic inheritance. We also discuss the role or importance of this inheritance in
population genomics research and understanding.

Evidence is growing rapidly for multigenerational transmission of environmen-
tally induced epigenetic changes that influence fitness traits. Environmental factors
observed to cause transgenerational epigenetic inheritance of phenotypic variation
include heat shock or other thermal stresses, drought, salt stress, low-calorie diet,
high-fat diet, smoking, and exposure to toxins, such as hydrocarbons from plastics,
atrazine, tributyltinthe, pesticide DDT (dichlorodiphenyltrichloroethane), and the
agricultural fungicide vinclozolin. Many of these stressors have caused trans-
generational epigenetic inheritance in humans, fish, birds, plants, and insects.

Genome-wide environmentally induced transgenerational epigenetic inheritance
of disease was documented in a recent study in rats. Ben Maamar et al. (2018)
exposed one generation of gestating female rats to DDT or alternatively vinclozolin.
The offspring (F; generation) were bred to generate the F, generation that was then
bred to generate the F5 generation (keeping separate the populations exposed — in the
F, generation — to vinclozolin, DDT, or control treatments). The F; generation
males’ sperm revealed persistent environmentally induced histone modification
genome wide (Fig. 13), which influences gene expression to cause disease. The
fact that two different environmental toxins, each promoted transgenerational epi-
genetic (histone) changes, suggest that histone sites have a role in epigenetic
transgenerational inheritance.

A particularly interesting study of epigenetic changes suggested that a single
generation in an extreme environment (captivity, in a hatchery) can translate into
heritable differences in expression at hundreds of genes. Christie et al. (2016)



52 G. Luikart et al.

MT
Y_..
X
20 h 4 w
94 —*
18 x_%
I',l' w ¥ L §
6- r—x 1y
15- —Y9" VW ¥
E”.. Y¥Y W YYY L 4
O 13 - = ¥
312. Yy ywy
En- Y vy
St _yw vy v
L g LY L |
O vy v v
T_ Wy Y
f -4 TN yyY ¥
54 X vYY v ¥ "'_'
4 v g3v Ty v
3 L B J ¥ ¥
2 A 4 yYyYy vy WYY w.v L
1 L] vgY § vv L ] ¥ ¥
= e s e T
000000000000 0000000
23222232222 2222222222:22
O=0O=TON ] - o ® N Q
gggsg;s‘;.&-?—gt§l‘§§§5§§

Chromosome size (megabase)

Fig. 13 Sperm histone site differences (site retention) caused by DDT (dichlorodiphenyl-
trichloroethane) and transmitted over multiple generations. Red arrowheads are individual chro-
mosome locations of histone differences in sperm. DDT-induced histone differences cause
transgenerational epigenetic inheritance of disease. Purified cauda epididymal sperm were collected
from the transgenerational F3 generation male rats for histone analysis. Reproduced with permis-
sion from Ben Maamar et al. (2018)

measured differential gene expression in the offspring of wild and first-generation
hatchery steelhead trout (Oncorhynchus mykiss) and found 723 differentially
expressed genes in the two groups of offspring reared in the same common envi-
ronment. Functional analyses of the 723 genes revealed that most genes involved
responses in immunity, wound healing, and metabolism. The large proportion of
immunity and healing genes being differentially methylated suggest that the high
density, rapid growth (and diet change), and aggression among fish in captivity lead
to disease and wounds. Finally, wild-born fish that had only one hatchery parent had
much lower reproductive success in the wild (compared to fish with two wild
parents), suggesting that adaptation to captivity leads to transmission of maladaptive
gene expression to wild-born offspring. These findings suggest that rapid environ-
mental adaptation is possible and might be transmitted to offspring through “herita-
ble” (transmitted) epigenetic changes.

It is becoming clear that multiple ancestral environmental influences, such as
toxins, stress, or unusual nutrition, can sometimes induce germline epigenome
changes called epimutations that are transmitted to descendants. These epimutations
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often occur in the germline and thus are transmitted (Gapp and Bohacek 2018).
The germline epigenetic changes are often imprinted, and avoid epigenetic
reprogramming (resetting/removal), and thus transgenerational inheritance occurs.
Sperm RNAs are a mechanism for transfer of acquired complex phenotypes from
father to offspring (Gapp et al. 2014). Stressful experiences were shown to cause
metabolic and behavioral changes in mice that can be transmitted through RNAs in
sperm to the offspring (Gapp and Bohacek 2018). Long-term studies are needed in
natural populations to understand if inherited epigenetic marks persist across enough
generations to significantly affect evolutionary processes, such as individual fitness,
local adaption, gene flow, and population persistence.

6.3.1 Epigenetic Variation and Mechanisms

Here we discuss epigenetic variation that is potentially important evolutionarily but
for which limited transgenerational inheritance information exists. Epigenomic
variation is widespread in wild populations of plants (Schmitz et al. 2013a, b;
Niederhuth et al. 2016) and animals (review in Hu and Barrett 2017). Epigenetic
mechanisms causing gene expression shifts include DNA methylation, histone
modifications, as well as variation in small RNAs. DNA methylation is the most
frequently studied and best-understood epigenetic process to date. With the devel-
opment of massive parallel sequencing techniques to examine genome-wide epige-
netic marks, such as bisulfite DNA sequencing, epigenomics has progressed from
investigating individual epigenomes to studying epigenomic variation across
populations and species (e.g., Gavery and Roberts 2017).

The sources of epigenetic/epigenomic variation include genetic factors, environ-
mental factors, or stochastic epimutations (reviews in Taudt et al. 2016; Yi 2017,
Richards et al. 2017; Martin and Fry 2018). Recent studies have identified both the
cis and trans regulatory genetic mechanisms conditioning population epigenomic
variation at individual epigenetic marks to integrated chromatin state maps in a wide
variety of species (review in Taudt et al. 2016). A number of methylation quantita-
tive trait loci (meQTL) and histone quantitative trait loci (2QTL) have been identi-
fied in humans, plants, and animals (Taudt et al. 2016). Most of the work has been
done on understanding the association of genetic (SNP, meQTL) and epigenetic
variants for DNA methylation (DMR, differentially methylated region; DMP, dif-
ferentially methylated polymorphism; SMV, single methylation variant; SMP, single
methylation polymorphism). Nearly all of the detected meQTL in human mapped in
cis association (review in Taudt et al. 2016).

Schmitz et al. (2013a), in the first plant population epigenomics study, examined
the genome-wide DMRs in natural accessions of Arabidopsis worldwide and inte-
grated these data with the whole-genome DNA sequences of the same accessions.
They reported that 35% of the DMRs could be associated with meQTL, and 26% of
the associations could be mapped to methylation changes in cis. In maize (Zea mays)
about 50% of DMRs were associated in cis, with SNPs found within or near the
DMR (Eichten et al. 2013). Similarly, cis meQTL-DMR associations were
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widespread in soybean (Glycine max) (Schmitz et al. 2013b). Heritable variation
in methylation can be genetically based (and not sensitive to the environment),
or environmentally induced, or a combination of both. Additionally, random
epimutations can cause epigenetic variation as well.

6.3.2 Associations Between Epigenomic Variation and Phenotypic,
Ecological, and Disease Traits

There is growing evidence that epigenetic mechanisms and epigenomic variation
contribute significantly to phenotypes, abiotic and biotic stress responses, disease
conditions, adaptation to habitat, and range distributions in a variety of organisms
(review in Richards et al. 2017). This has significance in the context of acclimation
and adaptation to climate change. Epigenomic differences are often correlated with
ecological and environmental factors (see Richards et al. 2017). For example, DNA
methylation patterns were found to be associated with a climate gradient in Quercus
lobata (Gugger et al. 2016).

Recent population epigenomics studies have concentrated on associations
between epigenomic variation and phenotypic, ecological, disease, and other traits
in humans, plants, and animals through epigenome-wide association studies
(EWAS) and epigenome environment association analysis (epiEAA), and a number
of significant associations have been identified. In particular, substantial EWAS
work has been done in the past few years to identify the association of DNA
methylation with common human disease conditions.

DNA methylation has been found to be significantly associated with kidney
function (Chu et al. 2017), type 2 diabetes (Meeks et al. 2017), panic disorder
(Shimada-Sugimoto et al. 2017), cardiovascular diseases (Nakatochi et al. 2017),
cancer (Xu et al. 2013), chronic obstructive pulmonary disease and lung function
(Lee et al. 2017), and other conditions. Population epigenomics has a role to play in
pharmacogenomics and personal medicine (see Kabekkodu et al. 2017). In plants
epigenetic variation has been associated with various phenotypic, phenological, and
disease and adaptive traits, such as salt tolerance (Foust et al. 2016), disease
susceptibility (Sollars and Buggs 2018), and flowering time (Aller et al. 2018).

Population epigenomics, as such, is an emerging approach in population geno-
mics. The detailed discussion of various aspects of population epigenomics is
presented in the chapter by Moler et al. (2018) later in this book. This includes the
molecular basis of epigenetic mechanism, sources and evolution of population
epigenomic variation, intra- and interspecific epigenomic variation, molecular and
bioinformatics methods in population epigenomics, and association of epigenomic
variation with phenotypic, ecological, and disease traits and pharmacogenomics. See
also recent reviews (e.g., Gapp and Bohacek 2018) and the special edition set of
papers on the evolutionary consequences of epigenetic inheritance (Lind and
Spagopoulou 2018).
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6.4 Population Proteomics

Population proteomics is the study of structural and functional variation (qualitative
and quantitative) in proteins within and among populations to better understand their
role in individual fitness, phenotypic variation, local adaption, and population
performance (see also Biron et al. 2006; Nedelkov et al. 2006; Nedelkov 2008).
Enzyme protein polymorphisms (isoenzymes, isozymes, allozymes) provided the
first molecular markers for population genetic studies. Protein electrophoresis stud-
ies were widely conducted for several decades before DNA markers became avail-
able (Charlesworth et al. 2016).

Although population proteomics gained attention around 2005 (e.g., Biron et al.
2006; Nedelkov et al. 2006; Nedelkov 2008), especially for biomarker discovery for
human disease conditions, it has not kept pace with population genomics owing to
the rapid advances in high-throughput DNA and RNA sequencing technologies.
However, the development of 2D gel electrophoresis, mass spectrophotometry
methodologies (such as MALDI TOF), and shotgun proteomics methods has made
high-throughput protein analysis possible. This has accelerated population proteo-
mics studies across different species (e.g., Ma et al. 2015; Armengaud 2016; Di et al.
2016; Hidalgo-Galiana et al. 2016; Colinet et al. 2017; Gamboa et al. 2017; Suhre
et al. 2017).

Since proteins influence important phenotypes and are the products of genes and
epigenetic or posttranslational mechanisms, population proteomics has the potential
to provide key insights into functional and metapopulation ecology, adaptation, and
acclimation processes under various climate and environment conditions (e.g., Biron
et al. 2006; Karr 2008; Di et al. 2016; Colinet et al. 2017; Gamboa et al. 2017; Trapp
et al. 2018). Population proteomics approaches also help identify genetic loci
underlying risk of disease and for clinical biomarkers for many human disease
conditions (Nedelkov et al. 2006; Suhre et al. 2017).

Most population proteomics studies to date have been focused on humans,
especially for discovering and validating biomarkers for clinical disease conditions.
High levels of protein diversity have been reported in humans. For example, a total
of 76 structural forms variants were observed for the 25 plasma proteins (an average
of 3 variants per protein) in a cohort of 96 individuals (Nedelkov et al. 2005).
Proteomics-based genome-wide association studies have identified many associa-
tions between protein levels and gene variants (protein QTLs, pQTLs) in different
population cohorts (summary provided in the supplementary table in Suhre et al.
2017 and updated on http://www.metabolomix.com/a-table-of-all-published-gwas-
with-proteomics/). For example, Suhre et al. (2017) reported 539 pQTLs in German,
Asian, and Arab cohorts, and associations overlapped with 57 genetic risk loci for
42 unique diseases.

Proteomics approaches have also been useful in nonhuman systems. For example,
clear ecotype-specific protein variation was found among eight Arabidopsis
ecotypes that were related to their physiological status (Chevalier et al. 2004).
Rees et al. (2011) reported significant within and among population variation in
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proteins in three species of the teleost fish Fundulus; The authors suggested that the
patterns of protein expression have evolved by natural selection.

Gamboa et al. (2017) investigated protein expression in five stream stonefly
species (Plecoptera) from four geographic regions along a latitudinal gradient in
Japan with varying climatic conditions. They found high spatial variation in protein
expression among four geographic regions that were positively correlated with water
temperature. However, low interspecific variation was observed in proteins within
geographical regions, suggesting regulation of protein expression varied with envi-
ronment and relates to local adaptation.

In Drosophila, Colinet et al. (2017) studied the regulatory mechanisms involved
in the acquisition of thermal tolerance. They note that reversible phosphorylation is a
common posttranslational modification that can rapidly alter proteins functions.
They conducted a large-scale comparative study of phosphorylation networks in
control versus cold-acclimated adult Drosophila and found that acclimation evoked a
strong phosphoproteomic signal characterized by large sets of unique and differen-
tial phosphoproteins. In diving beetles (Agabus ramblae and A. brunneus), Hidalgo-
Galiana et al. (2016) found protein expression parallels thermal tolerance and
ecological conditions in the diversification of these two Agabus species.

These studies suggest that research on proteomic variation among natural
populations along environmental gradients can provide insights into mechanisms
underlying eco-evolutionary processes such as local adaptation, diversification,
range shifts, and speciation. Future studies including genome-wide proteome data
combined with population and landscape genomics approaches on multiple species
(e.g., landscape community proteogenomics) will be especially helpful for under-
standing and predicting adaptive evolution, population performance, coevolution,
and adaptive divergence.

6.5 Paleogenomics

Paleogenomics is the study of genomes of ancient organisms from fossil remains or
specimen excavated from caves, permafrost, ice cores, or archeological or paleon-
tological sites or stored in museum and herbarium collections (Heintzman et al.
2015; Lan and Lindqvist 2018). Paleogenetics and paleogenomics are recent fields of
research relying on the extraction and analysis of preserved ancient DNA (aDNA).
Early paleogenetics research was based on sequencing of mitochondrial DNA
(mtDNA) fragments because of high copy numbers of the mitochondrial genomes
in a cell. This research has provided quite useful information on phylogenetic
relationships and timing of divergence among organisms and biographical patterns
(Lan and Lindqvist 2018).

Paleogenomic studies are providing insights into complex evolutionary histories
of ancient and extinct organisms, including humans (Homo sapiens) (Rasmussen



Population Genomics: Advancing Understanding of Nature 57

et al. 2010; Meyer et al. 2012; Priifer et al. 2014), phylogenetic and evolutionary
relationships of extinct organisms with living species and populations (e.g., Priifer
et al. 2014; Heintzman et al. 2015; Lan and Lindqvist 2018), inferences of demo-
graphic patterns and ancient admixtures in human and other organisms (Meyer et al.
2012; Priifer et al. 2014; Shapiro and Hofreiter 2014; Lan and Lindqvist 2018),
reconstruction of ancient adaptive phenotypes and inferences of extinction causes,
such as in wooly mammoth (Mammuthus primigenius) (Palkopoulou et al. 2015;
Rogers and Slatkin 2017), and causal agents and evolutionary history of ancient
pandemics, such as Black Death (bubonic plague), small pox, tuberculosis and
leprosy (reviewed in Lan and Lindqvist 2018), ancient pathogens through human
history (Marciniak and Poinar 2018), and structural variants in ancient genomes
(Resendez et al. 2018).

Paleogenomic investigations have provided key insights into the origin and
history or domestication of crop plants (reviewed in Lan and Lindqvist 2018) and
animals, such as dogs (Canis lupus familiaris) (Frantz et al. 2016; Thalmann and
Perri 2018), cats (Felis catus) (Geigl and Grange 2018), and horses (Equus caballus)
(Orlando et al. 2013; Orlando 2018), origins and genetic legacy of Neolithic farmers
and human settlement in Europe (Skoglund et al. 2012), reconstruction of ancient
plant communities (Parducci et al. 2018), and epigenomics of ancient species
(Hanghgj et al. 2018). Most of the above paleogenomics aspects are discussed
later in this book in the chapter ‘“Paleogenomics: Genome-scale Analysis of Ancient
DNA and Population and Evolutionary Genomic Inferences” by Lan and
Lindqvist (2018).

One of the most studied topics in paleogenomics is the evolution of human
species and its phylogenetic and evolutionary relationships with its closest evolu-
tionary relatives. The first ancient human genome was sequenced by Rasmussen
et al. (2010) from permafrost-preserved hair of a ~4-kyr-old Paleo-Eskimo. Then
paleogenomes from archaic hominins, Neanderthal and Denisovan, were sequenced
and published (Meyer et al. 2012; Priifer et al. 2014). These paleogenomics studies
suggested that that Neanderthal and Denisovan populations shared a common origin,
that their common ancestor diverged from the ancestors of modern humans, and that
admixture had taken place between archaic hominins and the ancestors of modern
humans most likely after the dispersal of modern non-African humans out of Africa
(Meyer et al. 2012; Priifer et al. 2014). The analysis also indicated that this gene flow
was from Neanderthal into the common ancestor of modern Eurasians.

Another example of paleogenomics applications is the inferences of the causes of
extinction of the iconic ancient animal wooly mammoth, which was an abundant
megafaunal species of the Northern Hemisphere. As mentioned above (Sect. 2.6),
paleogenomics studies provided evidence that genetic stochasticity due to small
population size could have contributed to the extinction of this species (Palkopoulou
et al. 2015; Rogers and Slatkin 2017).
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7 Does the Field of Population Genomics Promise More
Than It Can Deliver?

Population genomics holds a great deal of promise for increasing our understanding
of the genetic basis of phenotypic variation and adaptation in natural populations.
However, population genomics is not a panacea for addressing the outstanding
fundamental questions in many areas of biology. Genomes are tremendously com-
plex, and traits related to fitness are often highly polygenic. Researchers need to
better recognize the limitations of some methods and the opportunities for mislead-
ing or misinterpreted results (e.g., false positives and false negatives for selection
tests). For example, the hallmark genomic signatures of positive selection (e.g.,
highly reduced genetic variation, shifted site frequency spectrum, or alleles associ-
ated with environmental variation) can arise from forces other than positive
selection.

False signatures of positive selection can occur where purifying (background)
selection has reduced genetic variation, particularly in genomic regions with low
recombination (Charlesworth et al. 1993; Wolf and Ellegren 2017). Regions with
low genetic variation can be caused by a locally low mutation rate, or where large
haplotypes have drifted to high frequency or fixation in populations with small N,
(Nielsen et al. 2005; Kardos et al. 2015b). Regions with very high Fgr relative to the
genome-wide background can occur between insipient species as a result of selection
within lineages (e.g., background selection or recent selective sweeps), rather than
via divergent selection during speciation (Burri et al. 2015; Charlesworth et al. 1993;
Cruickshank and Hahn 2014; Payseur and Rieseberg 2016; Wolf and Ellegren
2017). Thus, genomic signatures of positive selection, including selective sweep
signals and Fst outlying regions must be interpreted cautiously.

Population genomics studies can have low power to detect loci related to adap-
tation or variation in phenotypes among individuals, especially for highly polygenic
traits. The relatively low density of SNPs generated, in certain species, when using
some technologies (e.g., some RADseq or sequence capture) means that selective
sweeps, Fgr outliers, associations between markers and environmental variables,
and QTLs may be missed because of low or no gametic disequilibrium between the
genotyped SNPs and causal loci (Kardos et al. 2016a; (Catchen et al. 2017; McKin-
ney et al. 2017a). Associations and outliers can also be missed by genotyping only a
limited number of SNPs from an adaptive gene or a selected genome region (Fig. 6).

Additionally, the relatively low sample sizes that are frequent in studies of
non-model organisms in the wild means that power to detect loci with relatively
large effects may often be low, even when whole-genome sequencing is used in
natural populations (Kardos et al. 2015a; Lotterhos and Whitlock 2014; Hunter
et al. 2018; Flanagan et al. 2018). Finally, to help increase the understanding of
the genetic basis of ecological and evolutionary traits and processes, we recommend
applying multiple population genomics and related approaches (at different func-
tional levels from DNA to RNA and proteins), as in Vasemagi and Primmer (2005).
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8 Future Perspectives and Needs

Among the most exciting advances from ‘“neutral” marker studies will be our
improved understanding of inbreeding depression and genetic rescue in natural
and managed populations. This will result from the fact that only 5000-10000
SNP loci are required to vastly improve precision of estimation of individual
inbreeding compared to traditional marker-based and pedigree approaches (Kardos
etal. 2016a). There will soon be many publications that use genomic data to estimate
inbreeding depression (and genetic rescue) in many populations, which could
change our view of the importance of inbreeding in conservation and evolution.
Interestingly, most publications in the vast inbreeding literature had low power and
precision to estimate inbreeding and inbreeding depression effects.

Even more exciting will be the use of novel, more informative statistical estima-
tors such as ROH (runs of homozygosity), which measures inbreeding and effective
population size change (Palkopoulou et al. 2015; Kardos et al. 2018; Grossen et al.
2018). The bioinformatic prediction of deleterious alleles from sequence data will
also increase our ability to understand the genomic architecture of inbreeding
depression and to predict and compare populations for genetic load.

An interesting advance will be the improved understanding of the importance of
transgenerational epigenetic inheritance in adaptive traits (Charlesworth et al. 2017).
Advances are likely to give the explosion of research and publications, following the
controversy and calls to test the relevance of epigenetic “inheritance” in evolutionary
processes and given lower costs for next-generation (bisulfite) sequencing
(Christie et al. 2016; Le Luyer et al. 2017; Nilsson et al. 2018; Horsthemke 2018).
Can environmentally induced transgenerational epigenetic inheritance contribute
substantially to adaption to changing environments?

Another general advancement in power and precision will result from calling of
microhaplotypes from short-read data. Most publications that use next-generation
short-read data (e.g., RADseq) have not called haplotypes but rather scored only one
SNP (or two independent SNPs) per locus, even though multiple SNPs exist per
locus, e.g., RAD loci (Hendricks et al. 2018). Haplotype calling will yield more
alleles (haplotypes), additional genealogical or phylogenetic information, and thus
more power for many applications in population genetics (Sunnucks 2000). Longer
single-end and paired-end reads and new software for haplotype calling will also
improve power (Baetscher et al. 2018).

Understanding of the importance of structural polymorphisms in fitness and
adaptation will increase soon (Wellenreuther and Bernatchez 2018). Genotyping
and detection of inversions and copy number variants are becoming more feasible
thanks to longer-read sequencing, reference genomes, linkage maps, and improved
software for discovering and genotyping structural polymorphisms (e.g., Farek et al.
2018). This will help population genomics move beyond SNPs. This is an important
advancement because structural variations are often involved with fitness-related
phenotypic variation (e.g., Kiipper et al. 2015) and are thought to play a key role in



60 G. Luikart et al.

sex chromosome evolution, local adaptation, and speciation (Kirkpatrick 2010;
Wellenreuther and Bernatchez 2018).

Many studies will estimate gametic disequilibrium along chromosomes
(or contigs) using draft genome assemblies, thereby allowing more informative
“narrow sense” population genomics studies with mapped high-density markers.
Even a few hundred contigs of 50-500 kb and 1,000s of marker loci will provide
quantification of genome-wide GD (gametic disequilibrium) required for some
narrow sense genomics approaches. Depending on the genome size and complexity,
an investment of $10k to $20k can achieve a useful draft reference genome with an
N50 of >50 kb for many species (Catchen et al. 2017; McKinney et al. 2017a;
Hendricks et al. 2018).

There is a need to train researchers and students in data analysis including the
initial filtering, genotyping, and data interpretation steps which requires an under-
standing of population genetics theory (Andrews and Luikart 2014; Allendorf 2017;
Shafer et al. 2015; Hendricks et al. 2018). The trend toward learning the latest
molecular techniques (RAD approaches, DNA capture, pool-seq, etc.) at the expense
of a solid grounding in population genetics theory is worrisome (Allendorf 2017).
Training in theoretical and conceptual aspects of population genetics enables
researcher to ask good questions and to adequately test and interpret the massive
and growing datasets against appropriate null models (Benestan et al. 2016;
Allendorf 2017).

There is an urgent need for understanding the effects of data analysis choices on
downstream biological inferences (Farek et al. 2018), because these choices can
dramatically influence downstream statistical results and inferences (Shafer et al.
2017; Hendricks et al. 2018). We need to validate pipelines and downstream
genomic statistical estimators, ensuring they are unbiased, by analyzing raw simu-
lated and empirical data from populations with known genotypes and evolutionary
parameters (N, Nm, §) in order to verify that we can recover or estimate the true
(known) genotypes and parameters. Related to this, the field needs to develop a set of
best practices for identifying possible genotyping errors, quantifying error rates, and
quantifying effects of data analysis choices on downstream results and conclusions.
The most rigorous approach for ensuring data quality can vary substantially from
dataset to dataset and will change through time as the structure and quality or data
change; thus we need the next generation of population genomicists to be well
trained in bioinformatics and programming (Andrews and Luikart 2014).

Finally, new computational approaches and modeling made easy by ABC
(approximate Bayesian computation) will vastly improve data analysis and inference
from population genomic data (Cabrera and Palsbgll 2017; Elleouet and Aitken
2018). However, extensive model performance evaluations are required to ensure
computational approaches are applied reliably and competently to natural
populations (e.g., Lotterhos and Whitlock 2014; Forester et al. 2018; see Appendix
in Allendorf et al. 2013).
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9 Conclusions

Population genomics is transforming many sub-disciplines in biology and vastly
improving our understanding of nature (Schlotterer 2004; Hohenlohe et al. 2018).
The greatest advances in our fundamental understanding of populations and the
translation of that knowledge to decisions around managing and conserving
populations will result from applications of conceptually novel “narrow sense”
genomics studies. This revolution will continue to accelerate for many years as
more studies combine population genomics, transcriptomics, transgenerational
epigenomics, and proteomics approaches simultaneously to multiple species
co-distributed across environments (Chen et al. 2018; De Kort et al. 2018). This
increase in strategic applications of narrow sense and multiple omics approaches
combined with phenotypic and environmental data (e.g., from sensor networks and
remote sensing) will ensure we will soon be answering long-standing questions
along with novel questions yet to be imagined by humanity. It is an exciting time to
be a population genomicist!

Acknowledgments We thank G. McKinney for helpful comments and information on linkage
mapping and Fred Allendorf for discussions and ideas regarding population genomics concepts and
definitions. GL, MK, and BKH were supported in part by funding from US National Science
Foundation grants DEB-1258203 and DoB-1639014. Montana Fish Wildlife and Parks provided
supported GL and MK through contract #199101903. GL and BKH were also supported in part by
funding from NASA grant number NNX14AB84G. OPR received support from a Natural Sciences
and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN 2017-04589.
PAH received support from National Science Foundation grants DEB-1316549 and DEB-1655809.

References

Afgan E, Baker D, van den Beek M, et al. The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016;44:W3-W10.

Ahrens CW, Rymer PD, Stow A, et al. The search for loci under selection: trends, biases and
progress. Mol Ecol. 2018;27:1342-56.

Alachiotis N, Pavlidis P. RAiSD detects positive selection based on multiple signatures of a
selective sweep and SNP vectors. Commun Biol. 2018;1:79.

Ali OA, O’Rourke SM, Amish SJ, et al. RAD capture (rapture): flexible and efficient sequence-
based genotyping. BioRxiv. 2015;52:4-7.

Allendorf FW. Genetics and the conservation of natural populations: allozymes to genomes. Mol
Ecol. 2017;26:420-30.

Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat
Rev Genet. 2010;11:697-709.

Allendorf FW, et al. Conservation and the genetics of populations. Hoboken: Wiley; 2013.

Aller EST, Jagd LM, Kliebenstein DJ, Burow M. Comparison of the relative potential for epigenetic
and genetic variation to contribute to trait stability. G3. 2018;8:1733—46.

Amaral AJ, Megens H-J, Crooijmans RPMA, Heuven HCM, Groenen MAM. Linkage disequilib-
rium decay and haplotype block structure in the pig. Genetics. 2008;179:569-79.



62 G. Luikart et al.

Ameur A, Kloosterman WP, Hestand MS. Single-molecule sequencing: towards clinical applica-
tions. Trends Biotechnol. 2018. In press.

Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH. Genome evolution and meiotic maps
by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome
duplication. Genetics. 2011;188:799-808.

Andrews KR, Luikart G. Recent novel approaches for population genomics data analysis. Mol Ecol.
2014;23:1661-7.

Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq
for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81-92.

Armengaud J. Next-generation proteomics faces new challenges in environmental biotechnology.
Curr Opin Biotechnol. 2016;38:174-82.

Armstrong C, Richardson DS, Hipperson H, et al. Genomic associations with bill length and disease
reveal drift and selection across island bird populations. Evol Lett. 2018;2(1):22-36.

Axelsson E, Ratnakumar A, Arendt ML, et al. The genomic signature of dog domestication reveals
adaptation to a starch-rich diet. Nature. 2013;495:360—4.

Baetscher DS, Clemento AJ, Ng TC, Anderson EC, Garza JC. Microhaplotypes provide increased
power from short-read DNA sequences for relationship inference. Mol Ecol Resour.
2018;18:296-305.

Balkenhol N, Dudaniec RY, Krutovsky KV, Johnson JS, Cairns DM, Segelbacher G, et al.
Landscape genomics: understanding relationships between environmental heterogeneity and
genomic characteristics of populations. In: Om PR, editor. Population genomics: concepts,
approaches and applications. Cham: Springer International Publishing AG; 2017. https://doi.
org/10.1111/eva.12672.

Barson NJ, Aykanat T, Hindar K, et al. Sex-dependent dominance at a single locus maintains
variation in age at maturity in salmon. Nature. 2015;528:405-8.

Beichman AC, Phung TN, Lohmueller KE. Comparison of single genome and allele frequency data
reveals discordant demographic histories. G3. 2017;7:3605-20.

Beja-Pereira A, Luikart G, England PR, et al. Gene-culture coevolution between cattle milk protein
genes and human lactase genes. Nat Genet. 2003;35:311-3.

Beja-Pereira A, et al. Advancing ecological understandings through technological transformations
in noninvasive genetics. Mol Ecol Resour. 2009;9:1279-301.

Ben Maamar M, Sadler-Riggleman I, Beck D, Skinner MK. Epigenetic transgenerational inheri-
tance of altered sperm histone retention sites. Sci Rep. 2018;8:5308.

Benestan LM, Ferchaud AL, Hohenlohe PA, et al. Conservation genomics of natural and managed
populations: building a conceptual and practical framework. Mol Ecol. 2016;25:2967-77.

Bérénos C, Ellis PA, Pilkington JG, et al. Heterogeneity of genetic architecture of body size traits in
a free-living population. Mol Ecol. 2015;24:1810-30.

Bérénos C, Ellis PA, Pilkington JG, Pemberton JM. Genomic analysis reveals depression due to
both individual and maternal inbreeding in a free-living mammal population. Mol Ecol.
2016;25:3152-68.

Berg JJ, Coop G. A population genetic signal of polygenic adaptation. PLoS Genet. 2014;10:
¢1004412.

Berthelot C, Brunet F, Chalopin D, et al. The rainbow trout genome provides novel insights into
evolution after whole-genome duplication in vertebrates. Nat Commun. 2014;5:3657.

Betts A, Gray C, Zelek M, MacLean RC, King KC. High parasite diversity accelerates host
adaptation and diversification. Science. 2018;360:907-11.

Bi K, Vanderpool D, Singhal S, et al. Transcriptome-based exon capture enables highly cost-
effective comparative genomic data collection at moderate evolutionary scales. BMC Geno-
mics. 2012;13:403.

Biron D, et al. Population proteomics: an emerging discipline to study metapopulation ecology.
Proteomics. 2006;6:1712-5.

Black WC, Baer CF, Antolin MF, DuTeau NM. Population genomics : genome-wide sampling of
insect populations. Annu Rev Entomol. 2001;46:441-69.


https://doi.org/10.1111/eva.12672
https://doi.org/10.1111/eva.12672

Population Genomics: Advancing Understanding of Nature 63

Blankenberg D, Von KG, Coraor N, et al. Galaxy: a web-based genome analysis tool for experi-
mentalists. Curr Protoc Mol Biol. 2010;89:1-21.

Blanquart F, Kaltz O, Nuismer SL, Gandon S. A practical guide to measuring local adaptation. Ecol
Lett. 2013;16:1195-205.

Boitard S, Rodriguez W, Jay F, Mona S, Austerlitz F. Inferring population size history from large
samples of genome-wide molecular data — an approximate Bayesian computation approach.
PLoS Genet. 2016;12:¢1005877.

Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P. Population adaptive index: a new method to
help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv
Biol. 2007;21:697-708.

Bos K, et al. Parallel detection of ancient pathogens via array-based DNA capture. Philos Trans R
Soc Lond B Biol Sci. 2015;370:20130375.

Bourret V, Dionne M, Bernatchez L. Detecting genotypic changes associated with selective
mortality at sea in Atlantic salmon: polygenic multilocus analysis surpasses genome scan.
Mol Ecol. 2014;23:4444-57.

Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic.
Cell. 2017;169:1177-86.

Brauer CJ, Unmack PJ, Smith S, Bernatchez L, Beheregaray LB. On the roles of landscape
heterogeneity and environmental variation in determining population genomic structure in a
dendritic system. Mol Ecol. 2018;27:3484-97.

Brelsford A, Toews DPL, Irwin DE. Admixture mapping in a hybrid zone reveals loci associated
with avian feather coloration. Proc Roy Soc B Biol Sci. 2017;284:20171106.

Brieuc MSO, Ono K, Drinan DP, Naish KA. Integration of random forest with population-based
outlier analyses provides insight on the genomic basis and evolution of run timing in Chinook
salmon (Oncorhynchus tshawytscha). Mol Ecol. 2015;24:2729-46.

Browning SR, Browning BL. Accurate non-parametric estimation of recent effective population
size from segments of identity by descent. Am J Hum Genet. 2015;97:404—18.

Biirger R, Akerman A. The effects of linkage and gene flow on local adaptation: a two-locus
continent-island model. Theor Popul Biol. 2011;80:272-88.

Burri R, Nater A, Kawakami T, et al. Linked selection and recombination rate variation drive the
evolution of the genomic landscape of differentiation across the speciation continuum of
Ficedula flycatchers. Genome Res. 2015;25:1656-65.

Burri R, Antoniazza S, Gaigher A, et al. The genetic basis of color-related local adaptation in a ring-
like colonization around the Mediterranean. Evolution. 2016;70:140-53.

Cabrera AA, Palsbgll PJ. Inferring past demographic changes from contemporary genetic data: a
simulation-based evaluation of the ABC methods implemented in diyabc. Mol Ecol Resour.
2017;17:e94—e110.

Cammen KM, Schultz TF, Don Bowen W, et al. Genomic signatures of population bottleneck and
recovery in Northwest Atlantic pinnipeds. Ecol Evol. 2018;8:6599-614.

Campana MG, Hawkins MTR, Henson LH, et al. Simultaneous identification of host, ectoparasite
and pathogen DNA via in-solution capture. Mol Ecol Resour. 2016;16:1224-39.

Campbell L], Hammond SA, Price SJ, et al. A novel approach to wildlife transcriptomics provides
evidence of disease-mediated differential expression and changes to the microbiome of amphib-
ian populations. Mol Ecol. 2018;27:1413-27.

Campos JL, Halligan DL, Haddrill PR, Charlesworth B. The relation between recombination rate
and patterns of molecular evolution and variation in drosophila melanogaster. Mol Biol Evol.
2014;31:1010-28.

Candy JR, Campbell NR, Grinnell MH, et al. Population differentiation determined from putative
neutral and divergent adaptive genetic markers in Eulachon (Thaleichthys pacificus,
Osmeridae), an anadromous Pacific smelt. Mol Ecol Resour. 2015;15:1421-34.

Carneiro M, Albert FW, Afonso S, et al. The genomic architecture of population divergence
between subspecies of the European rabbit. PLoS Genet. 2014;10:¢1003519.



64 G. Luikart et al.

Castellano S, Parra G, Sanchez-Quinto FA, et al. Patterns of coding variation in the complete
exomes of three Neanderthals. Proc Natl Acad Sci. 2014;111:6666-71.

Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for
population genomics. Mol Ecol. 2013;22:3124-40.

Catchen JM, Hohenlohe PA, Bernatchez L, et al. Unbroken: RADseq remains a powerful tool
for understanding the genetics of adaptation in natural populations. Mol Ecol Resour.
2017;17:362-5.

Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into
population history and trait architecture. Nat Rev Genet. 2018;19:220-34.

Charlesworth B. Fundamental concepts in genetics: effective population size and patterns of
molecular evolution and variation. Nat Rev Genet. 2009;10:195-205.

Charlesworth B. Molecular population genomics: a short history. Genet Res. 2010;92:397-411.

Charlesworth D, Willis JH. The genetics of inbreeding depression. Nat Rev Genet.
2009;10:783-96.

Charlesworth B, Morgan MT, Charlesworth D. The effect of deleterious mutations on neutral
molecular variation. Genetics. 1993;134:1289-303.

Charlesworth B, Charlesworth D, Coyne JA, Langley CH. Hubby and Lewontin on protein
variation in natural populations: when molecular genetics came to the rescue of population
genetics. Genetics. 2016;203:1497-503.

Charlesworth D, Barton NH, Charlesworth B. The sources of adaptive variation. Proc Roy Soc B
Biol Sci. 2017;284:20162864.

Chen Z, Farrell AP, Matala A, Hoffman N, Narum SR. Physiological and genomic signatures of
evolutionary thermal adaptation in redband trout from extreme climates. Evol Appl. 2018.
https://doi.org/10.1111/eva.12672.

Chevalier F, Martin O, Rofidal V, et al. Proteomic investigation of natural variation between
Arabidopsis ecotypes. Proteomics. 2004;4:1372-81.

Chiou KL, Bergey CM. Methylation-based enrichment facilitates low-cost, noninvasive genomic
scale sequencing of populations from feces. Sci Rep. 2018;8:1975.

Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid
substitutions and indels. Bioinformatics. 2015;31:2745-7.

Christie MR, Marine ML, Fox SE, French RA, Blouin MS. A single generation of domestication
heritably alters the expression of hundreds of genes. Nat Commun. 2016;7:10676.

Chu AY, Tin A, Schlosser P, et al. Epigenome-wide association studies identify DNA methylation
associated with kidney function. Nat Commun. 2017;8:1286.

Colinet H, Pineau C, Com E. Large scale phosphoprotein profiling to explore Drosophila cold
acclimation regulatory mechanisms. Sci Rep. 2017;7:1713.

Conte GL, Hodgins KA, Yeaman S, et al. Bioinformatically predicted deleterious mutations reveal
complementation in the interior spruce hybrid complex. BMC Genomics. 2017;18:970.

Cooke NP, Nakagome S. Fine-tuning of approximate Bayesian computation for human population
genomics. Curr Opin Genet Dev. 2018;53:60-9.

Coop G, Witonsky D, Di Rienzo A, Pritchard JK. Using environmental correlations to identify loci
underlying local adaptation. Genetics. 2010;185:1411-23.

Corbett-Detig RB, Hartl DL, Sackton TB. Natural selection constrains neutral diversity across a
wide range of species. PLoS Biol. 2015;13:¢1002112.

Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population
bottlenecks from allele frequency data. Genetics. 1996;144:2001-14.

Cosart T, Beja-Pereira A, Chen S, et al. Exome-wide DNA capture and next generation sequencing
in domestic and wild species. BMC Genomics. 2011;12:347-55.

Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to
reduced diversity, not reduced gene flow. Mol Ecol. 2014;23:3133-57.

Cutter AD, Payseur BA. Genomic signatures of selection at linked sites: unifying the disparity
among species. Nat Rev Genet. 2013;14:262-74.


https://doi.org/10.1111/eva.12672

Population Genomics: Advancing Understanding of Nature 65

Dalongeville A, Benestan L, Mouillot D, Lobreaux S, Manel S. Combining six genome scan
methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus
surmuletus). BMC Genomics. 2018;19:217.

De Kort H, Baguette M, Prunier JG, et al. Genetic costructure in a meta-community under threat of
habitat fragmentation. Mol Ecol. 2018;27:2193-203.

De La Torre AR, Birol I, Bousquet J, et al. Insights into conifer giga-genomes. Plant Physiol.
2014;166:1724-32.

De Mita S, Thuillet AC, Gay L, et al. Detecting selection along environmental gradients: analysis of
eight methods and their effectiveness for outbreeding and selfing populations. Mol Ecol.
2013;22:1383-99.

Degiorgio M, Huber CD, Hubisz MJ, Hellmann I, Nielsen R. SweepFinder2: increased sensitivity,
robustness and flexibility. Bioinformatics. 2016;32:1895-7.

DeLong EF. The microbial ocean from genomes to biomes. Nature. 2009;459:200-6.

Denef VJ. Peering into the genetic makeup of natural microbial populations using metagenomics.
In: Polz MF, Om PR, editors. Population genomics: microorganisms. Cham: Springer
International Publishing AG; 2018. https://doi.org/10.1007/13836_2018_14.

Di G, Miao X, Ke C, et al. Protein changes in abalone foot muscle from three geographical
populations of Haliotis diversicolor based on proteomic approach. Ecol Evol. 2016;6:3645-57.

Dinsdale EA, Edwards RA, Hall D, et al. Functional metagenomic profiling of nine biomes. Nature.
2008;452:629-32.

Do C, Waples RS, Peel D, et al. NeEstimator v2: re-implementation of software for the estimation
of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour.
2014;14:209-14.

Dobrynin P, Liu S, Tamazian G, et al. Genomic legacy of the African cheetah, Acinonyx jubatus.
Genome Biol. 2015;16:277.

Dowle EJ, Pochon X, C Banks J, Shearer K, Wood SA. Targeted gene enrichment and high-
throughput sequencing for environmental biomonitoring: a case study using freshwater
macroinvertebrates. Mol Ecol Resour. 2016;16:1240-54.

Dupuis JR, Oliver JC, Brunet BMT, et al. Genomic data indicate ubiquitous evolutionary distinc-
tiveness among populations of California metalmark butterflies. Conserv Genet. 2018. In press.

Duranton M, Allal F, Fraisse C, et al. The origin and remolding of genomic islands of differentiation
in the European sea bass. Nat Commun. 2018;9:2518.

Eaton DAR. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics.
2014;30:1844-9.

Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C. Reticulation, divergence, and the
phylogeography—phylogenetics continuum. Proc Natl Acad Sci. 2016;113:8025-32.

Eichten SR, Briskine R, Song J, et al. Epigenetic and genetic influences on DNA methylation
variation in maize populations. Plant Cell. 2013;25:2783-97.

Elbasyoni IS, Lorenz AJ, Guttieri M, et al. A comparison between genotyping-by-sequencing and
array-based scoring of SNPs for genomic prediction accuracy in winter wheat. Plant Sci.
2018;270:123-30.

Ellegren H. Genome sequencing and population genomics in non-model organisms. Trends Ecol
Evol. 2014;29:51-63.

Ellegren H, Smeds L, Burri R, et al. The genomic landscape of species divergence in Ficedula
flycatchers. Nature. 2012;491:756-60.

Elleouet JS, Aitken SN. Exploring approximate Bayesian computation for inferring recent demo-
graphic history with genomic markers in nonmodel species. Mol Ecol Resour. 2018;18:525-40.

Epstein B, et al. Rapid evolutionary response to a transmissible cancer in Tasmanian devils.
Microbiome. 2016;6(1):168.

Farek J, Hughes D, Mansfield A, et al. xAtlas: scalable small variant calling across heterogeneous
next-generation sequencing experiments. BioRxiv. 2018:295071.

Faria NR, Kraemer MUG, Hill S, et al. Genomic and epidemiological monitoring of yellow fever
virus transmission potential. BioRxiv. 2018:299842.


https://doi.org/10.1007/13836_2018_14

66 G. Luikart et al.

Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics. 2000;155:1405-13.

Feau N, Beauseigle S, Bergeron M-J, et al. Genome-enhanced detection and identification (GEDI)
of plant pathogens. PeerJ. 2018;6:4392.

Feder JL, Egan SP, Nosil P. The genomics of speciation-with-gene-flow. Trends Genet.
2012;28:342-50.

Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. On detecting incomplete soft or hard
selective sweeps using haplotype structure. Mol Biol Evol. 2014;31:1275-91.

Fisher R. The theory of inbreeding. 2nd ed. Edinburgh: Oliver & Boyd; 1965.

Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S. Guidelines for planning genomic
assessment and monitoring of locally adaptive variation to inform species conservation. Evol
Appl. 2018;11:1035-52.

Foll M, Fischer MC, Heckel G, Excoffier L. Estimating population structure from AFLP amplifi-
cation intensity. Mol Ecol. 2010;19:4638-47.

Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR. Detecting spatial genetic signatures of
local adaptation in heterogeneous landscapes. Mol Ecol. 2016;25:104-20.

Forester BR, Lasky JR, Wagner HH, Urban DL. Comparing methods for detecting multilocus
adaptation with multivariate genotype-environment associations. Mol Ecol. 2018;27:2215-33.

Forstmeier W, Schielzeth H, Mueller JC, Ellegren H, Kempenaers B. Heterozygosity-fitness
correlations in zebra finches: microsatellite markers can be better than their reputation. Mol
Ecol. 2012;21:3237-49.

Foust CM, Preite V, Schrey AW, et al. Genetic and epigenetic differences associated with
environmental gradients in replicate populations of two salt marsh perennials. Mol Ecol.
2016;25:1639-52.

Fraisse C, Roux C, Gagnaire P-A, et al. The divergence history of European blue mussel species
reconstructed from approximate Bayesian computation: the effects of sequencing techniques
and sampling strategies. PeerJ. 2018;6:5198.

Franklin IR. The distribution of the proportion of the genome which is homozygous by descent in
inbred individuals. Theor Popul Biol. 1977;11:60-80.

Frantz LAF, Mullin VE, Pionnier-Capitan M, et al. Genomic and archaeological evidence suggests
a dual origin of domestic dogs. Science. 2016;352:1228-31.

Frichot E, Schoville SD, Bouchard G, Frangois O. Testing for associations between loci and
environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30:1687-99.

Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating
conservation units. Trends Ecol Evol. 2012;27:489-96.

Funk WC, Forester BR, Converse SJ, Darst C, Morey S. Improving conservation policy with
genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions
for conservation practitioners and geneticists. Conserv Genet. 2018. In press.

Gamboa M, Tsuchiya MC, Matsumoto S, Iwata H, Watanabe K. Differences in protein expression
among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan. Arch
Insect Biochem Physiol. 2017;96:e21422.

Gapp K, Bohacek J. Epigenetic germline inheritance in mammals: looking to the past to understand
the future. Genes Brain Behav. 2018;17:¢12407.

Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of
the effects of early trauma in mice. Nat Neurosci. 2014;17:667-9.

Garcia SL, Stevens SLR, Crary B, Martinez-Garcia M, Stepanauskas R, et al. Contrasting patterns
of genome-level diversity across distinct co-occurring bacterial populations. ISME J.
2018;12:742-55. https://doi.org/10.1038/s41396-017-0001-0.

Garner BA, Hand BK, Amish SJ, et al. Genomics in conservation: case studies and bridging the gap
between data and application. Trends Ecol Evol. 2016;31:81-2.

Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient
genomic diversity in model and nonmodel organisms. Nucleic Acids Res. 2016;44:4504-18.

Gauthier J, Mouden C, Suchan T, et al. DiscoSnp-RAD: de novo detection of small variants for
population genomics. BioRxiv. 2017:216747.

Gavery MR, Roberts SB. Epigenetic considerations in aquaculture. PeerJ. 2017;5:e4147.


https://doi.org/10.1038/s41396-017-0001-0

Population Genomics: Advancing Understanding of Nature 67

Geigl E-M, Grange T. Of cats and men: ancient dNA reveals how the cat conquered the ancient
world. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publish-
ing AG; 2018. https://doi.org/10.1007/13836_2018_26.

Ghalambor CK, Hoke KL, Ruell EW, et al. Non-adaptive plasticity potentiates rapid adaptive
evolution of gene expression in nature. Nature. 2015;525:372-5.

Giardine B, Riemer C, Hardison RC, et al. Galaxy: a platform for interactive large-scale genome
analysis. Genome Res. 2005;15:1451-5.

Gibson G. Population genetics and GWAS: a primer. PLoS Biol. 2018;16:€2005485.

Gilbert KJ, Whitlock MC. Evaluating methods for estimating local effective population size with
and without migration. Evolution. 2015;69:2154-66.

Gompert Z. A continuous correlated beta process model for genetic ancestry in admixed
populations. PLoS One. 2016;11:e0151047.

Goudet J, Kay T, Weir BS. How to estimate kinship. Mol Ecol. 2018. In press.

Gray MM, Granka JM, Bustamante CD, et al. Linkage disequilibrium and demographic history of
wild and domestic canids. Genetics. 2009;181:1493-505.

Grossen C, Biebach I, Angelone-Alasaad S, Keller LF, Croll D. Population genomics analyses of
European ibex species show lower diversity and higher inbreeding in reintroduced populations.
Evol Appl. 2018;11:123-39.

Gruber B, Unmack PJ, Berry OF, Georges A. dartr: an r package to facilitate analysis of SNP data
generated from reduced representation genome sequencing. Mol Ecol Resour. 2018;18:691-9.

Guan Y. Detecting structure of haplotypes and local ancestry. Genetics. 2014;196:625-42.

Gugger PF, Fitz-Gibbon S, Pellegrini M, Sork VL. Species-wide patterns of DNA methylation
variation in Quercus lobata and their association with climate gradients. Mol Ecol.
2016;25:1665-80.

Gunther T, Coop G. Robust identification of local adaptation from allele frequencies. Genetics.
2013;195:205-20.

Gur A, Tzuri G, Meir A, et al. Genome-wide linkage-disequilibrium mapping to the candidate gene
level in melon (Cucumis melo). Sci Rep. 2017;7:9770.

Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the joint demographic
history of multiple populations from multidimensional SNP frequency data. PLoS Genet.
2009;5:e1000695.

Hackinger S, Kraaijenbrink T, Xue Y, et al. Wide distribution and altitude correlation of an archaic
high-altitude-adaptive EPAS1 haplotype in the Himalayas. Hum Genet. 2016;135:393—-402.
Hancock AM, et al. Adaptation to climate across the Arabidopsis thaliana genome. Science.

2011;334:83-6.

Hand BK, Hether TD, Kovach RP, et al. Genomics and introgression: discovery and mapping of
thousands of species-diagnostic SNPs using RAD sequencing. Curr Zool. 2015a;61:146-54.

Hand BK, Lowe WH, Kovach RP, Muhlfeld CC, Luikart G. Landscape community genomics:
understanding eco-evolutionary processes in complex environments. Trends Ecol Evol.
2015b;30:161-8.

Hanghgj K, Orlando L, Hanghgj K, Orlando AL. Ancient epigenomics. In: Lindqvist C, Om PR,
editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. https://doi.org/10.
1007/13836_2018_18.

Hansen MM. Expression of interest: transcriptomics and the designation of conservation units. Mol
Ecol. 2010;19:1757-9.

Hare MP, Nunney L, Schwartz MK, et al. Understanding and estimating effective population size
for practical application in marine species management. Conserv Biol. 2011;25:438—49.

Harr B. Genomic islands of differentiation between house mouse subspecies. Genome Res.
2006;16:730-7.

Harris K, Nielsen R. Inferring demographic history from a spectrum of shared haplotype lengths.
PLoS Genet. 2013;9:¢1003521.

Harris C, Rousset F, Morlais I, Fontenille D, Cohuet A. Low linkage disequilibrium in wild
Anopheles gambiae s.1. populations. BMC Genet. 2010;11:81.


https://doi.org/10.1007/13836_2018_26
https://doi.org/10.1007/13836_2018_18
https://doi.org/10.1007/13836_2018_18

68 G. Luikart et al.

Harrisson KA, Amish SJ, Pavlova A, et al. Signatures of polygenic adaptation associated with
climate across the range of a threatened fish species with high genetic connectivity. Mol Ecol.
2017;26:6253-69.

Haussler D, O’Brien SJ, Ryder OA, et al. Genome 10K: a proposal to obtain whole-genome
sequence for 10000 vertebrate species. J Hered. 2009;100:659-74.

Hedrick PW, Garcia-Dorado A. Understanding inbreeding depression, purging, and genetic rescue.
Trends Ecol Evol. 2016;31:940-52.

Heintzman PD, Soares AER, Chang D, Shapiro B. Paleogenomics. Rev Cell Biol Mol Med.
2015;1:243-67.

Hendricks S, Anderson EC, Antao T, et al. Recent advances in conservation and population
genomics data analysis. Evol Appl. 2018;11:1197-211.

Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing
genetic variation. Genetics. 2005;169:2335-52.

Hermisson J, Pennings PS. Soft sweeps and beyond: understanding the patterns and probabilities of
selection footprints under rapid adaptation. Methods Ecol Evol. 2017;8:700-16.

Hidalgo-Galiana A, Monge M, Biron DG, et al. Protein expression parallels thermal tolerance and
ecologic changes in the diversification of a diving beetle species complex. Heredity.
2016;116:114-23.

Hoban S. Integrative conservation genetics: prioritizing populations using climate predictions,
adaptive potential and habitat connectivity. Mol Ecol Resour. 2018;18:14-7.

Hoban SM, Gaggiotti OE, Bertorelle G. The number of markers and samples needed for detecting
bottlenecks under realistic scenarios, with and without recovery: a simulation-based study. Mol
Ecol. 2013;22:3444-50.

Hoban S, Kelley JL, Lotterhos KE, et al. Finding the genomic basis of local adaptation: pitfalls,
practical solutions, and future directions. Am Nat. 2016;188:379-97.

Hodel RG, Chandler LM, Fahrenkrog AM, et al. Linking genome signatures of selection and
adaptation in non-model plants: exploring potential and limitations in the angiosperm
Amborella. Curr Opin Plant Biol. 2018;42:81-9.

Hodges E, Xuan Z, Balija V, et al. Genome-wide in situ exon capture for selective resequencing.
Nat Genet. 2007;39:1522-7.

Hoffberg SL, Kieran TJ, Catchen JM, et al. RADcap: sequence capture of dual-digest RADseq
libraries with identifiable duplicates and reduced missing data. Mol Ecol Resour.
2016;16:1264-78.

Hoffman JI, Simpson F, David P, et al. High-throughput sequencing reveals inbreeding depression
in a natural population. Proc Natl Acad Sci. 2014;111:3775-80.

Hogg JT. Mating in bighorn sheep: multiple creative male strategies. Science. 1984;225:526-9.

Hohenlohe PA, Bassham S, Etter PD, et al. Population genomics of parallel adaptation in threespine
stickleback using sequenced RAD tags. PLoS Genet. 2010a;6:¢1000862.

Hohenlohe PA, Phillips PC, Cresko WA. Using population genomics to detect selection in
natural populations: key concepts and methodological considerations. Int J Plant Sci.
2010b;171:1059-71.

Hohenlohe PA, Hand BK, Andrews KR, Luikart G. Population genomics provides key insights in
ecology and evolution. In: Om PR, editor. Population genomics: concepts, approaches and
applications. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/
13836_2018_20.

Holliday JA, Ritland K, Aitken SN. Widespread, ecologically relevant genetic markers developed
from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New
Phytol. 2010;188:501-14.

Holliday JA, Wang T, Aitken S. Predicting adaptive phenotypes from multilocus genotypes in Sitka
spruce (Picea sitchensis) using random forest. G3. 2012;2:1085-93.

Holliday JA, Hallerman EM, Haak DC. Genotyping and sequencing technologies in population
genetics and genomics. In: Om PR, editor. Population genomics: concepts, approaches and


https://doi.org/10.1007/13836_2018_20
https://doi.org/10.1007/13836_2018_20

Population Genomics: Advancing Understanding of Nature 69

applications. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/
13836_2017_5.

Horsthemke B. A critical view on transgenerational epigenetic inheritance in humans. Nat
Commun. 2018;9:2973.

Howard JT, Haile-Mariam M, Pryce JE, Maltecca C. Investigation of regions impacting inbreeding
depression and their association with the additive genetic effect for United States and Australia
Jersey dairy cattle. BMC Genomics. 2015;16:813.

Hu J, Barrett RDH. Epigenetics in natural animal populations. J Evol Biol. 2017;30:1612-32.

Huber B, Whibley A, Poul YL, et al. Conservatism and novelty in the genetic architecture of
adaptation in Heliconius butterflies. Heredity. 2015;114:515-24.

Huerta-Sanchez E, Jin X, Asan, et al. Altitude adaptation in Tibetans caused by introgression of
Denisovan-like DNA. Nature. 2014;512:194-7.

Huisman J, Kruuk LEB, Ellis PA, Clutton-Brock T, Pemberton JM. Inbreeding depression across
the lifespan in a wild mammal population. Proc Natl Acad Sci U S A. 2016;113:3585-90.
Humble E, Dasmahapatra KK, Martinez-Barrio A, et al. RAD sequencing and a hybrid antarctic fur
seal genome assembly reveal rapidly decaying linkage disequilibrium, global population struc-

ture and evidence for inbreeding. G3. 2018;8:2709-22.

Hunter ME, Hoban SM, Bruford MW, Segelbacher G, Bernatchez L. Next-generation conservation
genetics and biodiversity monitoring. Evol Appl. 2018;11:1029-34.

Husby A, Kawakami T, Ronnegéard L, et al. Genome-wide association mapping in a wild avian
population identifies a link between genetic and phenotypic variation in a life-history trait. Proc
Biol Sci. 2015;282:20150156.

Jensen JD, Foll M, Bernatchez L. The past, present and future of genomic scans for selection. Mol
Ecol. 2016;25:1-4.

Johnson EC, Evans LM, Keller MC. Relationships between estimated autozygosity and complex
traits in the UK Biobank. PLoS Genet. 2018a;14:¢1007556.

Johnson JS, Krutovsky KV, Rajora OP, Gaddis KD, Cairns DM. Advancing biogeography through
population genomics. In: Om PR, editor. Population genomics: concepts, approaches and
applications. Cham: Springer International Publishing AG; 2018b. https://doi.org/10.1007/
13836_2018_39.

Johnston SE, McEwan JC, Pickering NK, et al. Genome-wide association mapping identifies the
genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep popula-
tion. Mol Ecol. 2011;20:2555-66.

Johnston SE, Gratten J, Berenos C, et al. Life history trade-offs at a single locus maintain sexually
selected genetic variation. Nature. 2013;502:93-5.

Jones MR, Good JM. Targeted capture in evolutionary and ecological genomics. Mol Ecol.
2016;25:185-202.

Jones MR, Scott Mills L, Alves PC, et al. Adaptive introgression underlies polymorphic seasonal
camouflage in snowshoe hares. Science. 2018;360:1355-8.

Joost S, Bonin A, Bruford MW, et al. A spatial analysis method (SAM) to detect candidate loci for
selection: towards a landscape genomics approach to adaptation. Mol Ecol. 2007;16:3955-69.

Kabekkodu SP, Chakrabarty S, Ghosh S, Brand A, Satyamoorthy K. Epigenomics,
pharmacoepigenomics, and personalized medicine in cervical cancer. Public Health Genomics.
2017;20:100-15.

Kardos M, Shafer ABA. The peril of gene-targeted conservation. Trends Ecol Evol. 2018. https://
doi.org/10.1016/j.tree.2018.08.011.

Kardos M, Luikart G, Allendorf FW. Measuring individual inbreeding in the age of genomics:
marker-based measures are better than pedigrees. Heredity. 2015a;115:63-72.

Kardos M, Luikart G, Bunch R, et al. Whole-genome resequencing uncovers molecular signatures
of natural and sexual selection in wild bighorn sheep. Mol Ecol. 2015b;24:5616-32.

Kardos M, Husby A, Mcfarlane SE, Qvarnstrom A, Ellegren H. Whole-genome resequencing of
extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait
loci in natural populations. Mol Ecol Resour. 2016a;16:727-41.


https://doi.org/10.1007/13836_2017_5
https://doi.org/10.1007/13836_2017_5
https://doi.org/10.1007/13836_2018_39
https://doi.org/10.1007/13836_2018_39
https://doi.org/10.1016/j.tree.2018.08.011
https://doi.org/10.1016/j.tree.2018.08.011

70 G. Luikart et al.

Kardos M, Taylor HR, Ellegren H, Luikart G, Allendorf FW. Genomics advances the study of
inbreeding depression in the wild. Evol Appl. 2016b;9:1205-18.

Kardos M, Qvarnstrom A, Ellegren H. Inferring individual inbreeding and demographic history
from segments of identity by descent in Ficedula flycatcher genome sequences. Genetics.
2017;205:1319-34.

Kardos M, Akesson M, Fountain T, et al. Genomic consequences of intensive inbreeding in an
isolated wolf population article. Nat Ecol Evol. 2018;2:124-31.

Karr TL. Application of proteomics to ecology and population biology. Heredity. 2008;100:200-6.

Kawakami T, Smeds L, Backstrom N, et al. A high-density linkage map enables a second-
generation collared flycatcher genome assembly and reveals the patterns of avian recombination
rate variation and chromosomal evolution. Mol Ecol. 2014;23:4035-58.

Keller LF, Waller DM. Inbreeding effects in wild populations. Trends Ecol Evol. 2002;17:230—41.

Keller MC, Simonson MA, Ripke S, et al. Runs of homozygosity implicate autozygosity as a
schizophrenia risk factor. PLoS Genet. 2012;8:€1002656.

Kelso J, Priifer K. Ancient humans and the origin of modern humans. Curr Opin Genet Dev.
2014;29:133-8.

Kijas JW. Detecting regions of homozygosity to map the cause of recessively inherited disease.
Methods Mol Biol. 2013;1019:331-45.

Kim Y, Stephan W. Detecting a local signature of genetic hitchhiking along a recombining
chromosome. Genetics. 2002;160:765-77.

Kirin M, McQuillan R, Franklin CS, et al. Genomic runs of homozygosity record population history
and consanguinity. PLoS One. 2010;5:¢13996.

Kirkpatrick M. How and why chromosome inversions evolve. PLoS Biol. 2010;8:e1000501.

Knaus BJ, Griinwald NJ. vcfr: a package to manipulate and visualize variant call format data in
R. Mol Ecol Resour. 2017;17:44-53.

Knief U, Kempenaers B, Forstmeier W. Meiotic recombination shapes precision of pedigree- and
marker-based estimates of inbreeding. Heredity. 2017;118:239-48.

Kovach RP, Hand BK, Hohenlohe PA, et al. Vive la résistance: genome-wide selection against
introduced alleles in invasive hybrid zones. Proc Roy Soc B Biol Sci. 2016;283:20161380.
Kozakiewicz CP, Burridge CP, Funk WC, et al. Pathogens in space: advancing understanding of

pathogen dynamics and disease ecology through landscape genetics. Evol Appl. 2018. In press.

Kreiner JM, Stinchcombe JR, Wright SI. Population genomics of herbicide resistance: adaptation
via evolutionary rescue. Annu Rev Plant Biol. 2018;69:611-35.

Kiipper C, Stocks M, Risse JE, et al. A supergene determines highly divergent male reproductive
morphs in the ruff. Nat Genet. 2015;48:79-83.

Laforest-Lapointe I, Paquette A, Messier C, Kembel SW. Leaf bacterial diversity mediates plant
diversity and ecosystem function relationships. Nature. 2017;546(7656):145. https://doi.org/10.
1038/nature22399.

Lamichhaney S, Fan G, Widemo F, et al. Structural genomic changes underlie alternative repro-
ductive strategies in the ruff (Philomachus pugnax). Nat Genet. 2015;48:84-8.

Lan T, Lindgvist C. Paleogenomics: genome-scale analysis of ancient DNA and population and
evolutionary genomic inferences. In: Om PR, editor. Population genomics: concepts,
approaches and applications. Cham: Springer International Publishing AG; 2018. https://doi.
org/10.1007/13836_2017_7.

Lander ES, Botstein D. Homozygosity mapping: a way to map human recessive traits with the DNA
of inbred children. Science. 1987;236:1567-70.

Landry PA, Koskinen MT, Primmed CR. Deriving evolutionary relationships among populations
using microsatellites and (5pt)2: all loci are equal, but some are more equal than others. Genetics.
2002;161:1339-47.

Laporte M, Pavey SA, Rougeux C, et al. RAD sequencing reveals within-generation polygenic
selection in response to anthropogenic organic and metal contamination in North Atlantic Eels.
Mol Ecol. 2016;25:219-37.


https://doi.org/10.1038/nature22399
https://doi.org/10.1038/nature22399
https://doi.org/10.1007/13836_2017_7
https://doi.org/10.1007/13836_2017_7

Population Genomics: Advancing Understanding of Nature 71

Larson WA, Seeb LW, Everett MV, et al. Genotyping by sequencing resolves shallow population
structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol Appl.
2014;7:355-69.

Larson WA, Limborg MT, McKinney GJ, et al. Genomic islands of divergence linked to ecotypic
variation in sockeye salmon. Mol Ecol. 2017;26:554-70.

Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense
haplotype data. PLoS Genet. 2012;8:¢1002453.

Le Luyer J, Laporte M, Beacham TD, et al. Parallel epigenetic modifications induced by hatchery
rearing in a Pacific salmon. Proc Natl Acad Sci. 2017;114:12964-9.

Lee MK, Hong Y, Kim S-Y, Kim WJ, London SJ. Epigenome-wide association study of chronic
obstructive pulmonary disease and lung function in Koreans. Epigenomics. 2017;9:971-84.
Lee HJ, Georgiadou A, Otto TD, et al. Transcriptomic studies of malaria: a paradigm for investi-

gation of systemic host-pathogen interactions. Microbiol Mol Biol Rev. 2018;82:¢00071-17.

Leite DCA, Salles JF, Calderon EN, et al. Coral bacterial-core abundance and network complexity
as proxies for anthropogenic pollution. Front Microbiol. 2018;9:833.

Leitwein M, Gagnaire P-A, Desmarais E, Berrebi P, Guinand B. Genomic consequences of a recent
three-way admixture in supplemented wild brown trout populations revealed by local ancestry
tracts. Mol Ecol. 2018;27:3466-83.

Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective
neutrality of polymorphisms. Genetics. 1973;74:175-95.

Li H, Durbin R. Inference of human population history from individual whole-genome sequences.
Nature. 2011;475:493-6.

Lind MI, Spagopoulou F. Evolutionary consequences of epigenetic inheritance. Heredity.
2018;121:205-9.

Lorenzo FR, Huff C, Myllymiki M, et al. A genetic mechanism for Tibetan high-altitude adapta-
tion. Nat Genet. 2014;46:951-6.

Lotterhos KE, Whitlock MC. Evaluation of demographic history and neutral parameterization on
the performance of FST outlier tests. Mol Ecol. 2014;23(9):2178-92.

Lowry DB, Hoban S, Kelley JL, et al. Breaking RAD: an evaluation of the utility of restriction site-
associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour.
2017;17:142-52.

Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population
genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981-94.

Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW. Estimation of census and
effective population sizes: the increasing usefulness of DNA-based approaches. Conserv
Genet. 2010;11:355-73.

Ma L, Sun X, Kong X, et al. Physiological, biochemical and proteomics analysis reveals the
adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the
Northwestern Tibetan Plateau. J Proteomics. 2015;112:63-82.

Malécot G. The mathematics of heredity. San Francisco: W.H. Freeman; 1970.

Manthey JD, Campillo LC, Burns KJ, Moyle RG. Comparison of target-capture and restriction-site
associated DNA sequencing for phylogenomics: a test in cardinalid tanagers (Aves, Genus:
Piranga). Syst Biol. 2016;65:640-50.

Marciniak S, Poinar H. Ancient pathogens through human history: a paleogenomic perspective. In:
Lindqvist C, Rajora OP, editors. Paleogenomics. Cham: Springer International Publishing AG;
2018. https://doi.org/10.1007/13836_2018.

Marques DA, Lucek K, Meier JI, et al. Genomics of rapid incipient speciation in sympatric
threespine stickleback. PLoS Genet. 2016;12:e1005887.

Marques DA, Jones FC, Di Palma F, Kingsley DM, Reimchen TE. Experimental evidence for rapid
genomic adaptation to a new niche in an adaptive radiation. Nat Ecol Evol. 2018;2:1128-38.

Marsden CD, Lee Y, Kreppel K, et al. Diversity, differentiation, and linkage disequilibrium:
prospects for association mapping in the malaria vector Anopheles arabiensis. G3.
2014;4:121-31.


https://doi.org/10.1007/13836_2018

72 G. Luikart et al.

Martin EM, Fry RC. Environmental influences on the epigenome: exposure-associated DNA
methylation in human populations. Annu Rev Public Health. 2018;39:309-33.

Martin SH, Dasmahapatra KK, Nadeau NJ, et al. Genome-wide evidence for speciation with gene
flow in Heliconius butterflies. Genome Res. 2013;23:1817-28.

Matthews B, Best RJ, Feulner PGD, Narwani A, Limberger R. Evolution as an ecosystem process:
insights from genomics. Genome. 2018;61:298-309.

Maynard Smith J, Haigh J. The hitch-hiking effect of a favorable gene. Genet Res. 1974;23:23-35.

McCartney-Melstad E, Mount GG, Shaffer HB. Exon capture optimization in amphibians with
large genomes. Mol Ecol Resour. 2016;16:1084-94.

McCoy RC, Akey JM. Selection plays the hand it was dealt: evidence that human adaptation
commonly targets standing genetic variation. Genome Biol. 2017;18:139.

McKain MR, Johnson MG, Uribe-Convers S, Eaton D, Yang Y. Practical considerations for plant
phylogenomics. Appl Plant Sci. 2018;6:¢1038.

Mckinney GJ, Seeb LW, Larson WA, et al. An integrated linkage map reveals candidate genes
underlying adaptive variation in Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol
Resour. 2016;16:769-83.

McKinney GJ, Larson WA, Seeb LW, Seeb JE. RADseq provides unprecedented insights into
molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al.
(2016). Mol Ecol Resour. 2017a;17:356-61.

McKinney GJ, Waples RK, Seeb LW, Seeb JE. Paralogs are revealed by proportion of heterozy-
gotes and deviations in read ratios in genotyping-by-sequencing data from natural populations.
Mol Ecol Resour. 2017b;17:656—-69.

Mckown AD, Klapsté J, Guy RD, et al. Genome-wide association implicates numerous genes
underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytol.
2014;203:535-53.

McMahon BJ, Teeling EC, Hoglund J. How and why should we implement genomics into
conservation? Evol Appl. 2014;7:999-1007.

Meeks KAC, Henneman P, Venema A, et al. An epigenome-wide association study in whole blood
of measures of adiposity among Ghanaians: the RODAM study. Clin Epigenetics. 2017;9:103.

Meyer M, Kircher M, Gansauge MT, et al. A high-coverage genome sequence from an archaic
Denisovan individual. Science. 2012;338:222-6.

Miao B, Wang Z, Li Y. Genomic analysis reveals hypoxia adaptation in the tibetan mastiff by
introgression of the gray wolf from the Tibetan plateau. Mol Biol Evol. 2017;34:734-43.

Miles A, Harding NJ, Botta G, et al. Genetic diversity of the African malaria vector anopheles
gambiae. Nature. 2017;552:96-100.

Miller JM, Malenfant RM, David P, et al. Estimating genome-wide heterozygosity: effects of
demographic history and marker type. Heredity. 2014;112:240-7.

Moler ERV, Abakir A, Eleftheriou M, Johnson JS, Krutovsky KV, Lewis LC, Ruzov A, Whipple
AV, Rajora OP. Population epigenomics. In: Om PR, editor. Population genomics: concepts,
approaches and applications. Cham: Springer International Publishing AG; 2018.

Moran MA. Metatranscriptomics: eavesdropping on complex microbial communities. Microbe
Mag. 2009;4:329-35.

Muhlfeld CC, Kalinowski ST, McMahon TE, et al. Hybridization rapidly reduces fitness of a native
trout in the wild. Biol Lett. 2009;5:328-31.

Nadeau NJ, Kawakami T. Population genomics of speciation and admixture. In: Om PR, editor.
Population genomics: concepts, approaches and applications. Cham: Springer International
Publishing AG; 2018. https://doi.org/10.1007/13836_2018_24.

Nadeau NJ, Ruiz M, Salazar P, et al. Population genomics of parallel hybrid zones in the mimetic
butterflies, H. melpomene and H. erato. Genome Res. 2014;24:1316-33.

Nakatochi M, Ichihara S, Yamamoto K, et al. Epigenome-wide association of myocardial infarction
with DNA methylation sites at loci related to cardiovascular disease. Clin Epigenetics.
2017;9:54.


https://doi.org/10.1007/13836_2018_24

Population Genomics: Advancing Understanding of Nature 73

Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. Genotyping-by-sequencing in
ecological and conservation genomics. Mol Ecol. 2013;22:2841-7.

Narum SR, Di Genova A, Micheletti SJ, Maass A. Genomic variation underlying complex life-
history traits revealed by genome sequencing in Chinook salmon. Proc Roy Soc B Biol Sci.
2018;285:20180935.

Nash DR, Als TD, Maile R, Jones GR, Boomsma JJ. A mosaic of chemical coevolution in a large
blue butterfly. Science. 2008;319:88-90.

Nazareno AG, Bemmels JB, Dick CW, Lohmann LG. Minimum sample sizes for population
genomics: an empirical study from an Amazonian plant species. Mol Ecol Resour.
2017;17:1136-47.

Nedelkov D. Population proteomics: investigation of protein diversity in human populations.
Proteomics. 2008;8:779-86.

Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW. Investigating diversity in
human plasma proteins. Proc Natl Acad Sci. 2005;102:10852-7.

Nedelkov D, U A K, Niederkofler EE, Tubbs KA, Nelson RW. Population proteomics: the concept,
attributes, and potential for cancer biomarker research. Mol Cell Proteomics. 2006;5:1811-8.

Niederhuth CE, Bewick AJ, Ji L, et al. Widespread natural variation of DNA methylation within
angiosperms. Genome Biol. 2016;17:174.

Nielsen R, Williamson S, Kim Y, et al. Genomic scans for selective sweeps using SNP data.
Genome Res. 2005;15:1566-75.

Nilsson E, et al. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian
pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of
polycystic ovarian syndrome and primary ovarian insufiency. Epigenetics. 2018;13:875-95.

Noble TJ, Tao Y, Mace ES, et al. Characterization of linkage disequilibrium and population
structure in a mungbean diversity panel. Front Plant Sci. 2018;8:2102.

Norris LC, Main BJ, Lee Y, et al. Adaptive introgression in an African malaria mosquito coincident
with the increased usage of insecticide-treated bed nets. Proc Natl Acad Sci. 2015;112:815-20.

Nosil P, Egan SP, Funk DJ. Heterogeneous genomic differentiation between walking-stick eco-
types: “isolation by adaptation” and multiple roles for divergent selection. Evolution.
2008;62:316-36.

Nunziata SO, Weisrock DW. Estimation of contemporary effective population size and population
declines using RAD sequence data. Heredity. 2018;120:196-207.

Nystedt B, Street NR, Wetterbom A, et al. The Norway spruce genome sequence and conifer
genome evolution. Nature. 2013;497:579-84.

O’Quin KE, Yoshizawa M, Doshi P, Jeffery WR. Quantitative genetic analysis of retinal degener-
ation in the blind cavefish Astyanax mexicanus. PLoS One. 2013;8:e57281.

Oomen RA, Hutchings JA. Transcriptomic responses to environmental change in fishes: insights
from RNA sequencing. FACETS. 2017;2:610-41.

Orlando L. An ancient DNA perspective on horse evolution. In: Lindqvist C, Om PR, editors.
Paleogenomics. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/
13836_2018_23.

Orlando L, Ginolhac A, Zhang G, et al. Recalibrating equus evolution using the genome sequence
of an early Middle Pleistocene horse. Nature. 2013;499:74-8.

Ozerov MY, Gross R, Bruneaux M, et al. Genomewide introgressive hybridization patterns in wild
Atlantic salmon influenced by inadvertent gene flow from hatchery releases. Mol Ecol.
2016;25:1275-93.

Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet.
2011;12:87-98.

Palkopoulou E, Mallick S, Skoglund P, et al. Complete genomes reveal signatures of demographic
and genetic declines in the woolly mammoth. Curr Biol. 2015;25:1395-400.

Paradis E, Gosselin T, Goudet J, Jombart T, Schliep K. Linking genomics and population genetics
with R. Mol Ecol Resour. 2017;17:54-66.


https://doi.org/10.1007/13836_2018_23
https://doi.org/10.1007/13836_2018_23

74 G. Luikart et al.

Pardo-Diaz C, Salazar C, Baxter SW, et al. Adaptive introgression across species boundaries in
Heliconius butterflies. PLoS Genet. 2012;8:61002752.

Parducci L, Nota K, Wood J. Reconstructing past vegetation communities using ancient DNA from
lake sediments. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International
Publishing AG; 2018. https://doi.org/10.1007/13836_2018_38.

Paris JR, Stevens JR, Catchen JM. Lost in parameter space: a road map for stacks. Meth Ecol Evol.
2017;8:1360-73.

Payseur BA, Rieseberg LH. A genomic perspective on hybridization and speciation. Mol Ecol.
2016;25:2337-60.

Peek RA, O’Rourke SM, Miller MR. Flow regulation associated with decreased genetic health of a
river-breeding frog species. BioRxiv. 2018;316604.

Pemberton TJ, Absher D, Feldman MW, et al. Genomic patterns of homozygosity in worldwide
human populations. Am J Hum Genet. 2012;91:275-92.

Pemberton JM, Ellis PE, Pilkington JG, Bérénos C. Inbreeding depression by environment inter-
actions in a free-living mammal population. Heredity. 2017;118:64-77.

Pennings PS, Hermisson J. Soft sweeps II — molecular population genetics of adaptation from
recurrent mutation or migration. Mol Biol Evol. 2006;23:1076-84.

Pérez O’Brien AM, Utsunomiya YT, Mészdros G, et al. Assessing signatures of selection through
variation in linkage disequilibrium between taurine and indicine cattle. Genet Sel Evol.
2014:46:19.

Perry GH, Marioni JC, Melsted P, Gilad Y. Genomic-scale capture and sequencing of endogenous
DNA from feces. Mol Ecol. 2010;19:5332—44.

Petkova D, Novembre J, Stephens M. Visualizing spatial population structure with estimated
effective migration surfaces. Nat Genet. 2016;48:94-100.

Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele
frequency data. PLoS Genet. 2012;8:¢1002967.

Pino Del Carpio D, Lozano R, Wolfe MD, Jannink J-L. Genome-wide associationstudies and
heritability estimation in the functional genomics era. In: Rajora OP, editor. Population geno-
mics: concepts, approaches and applications. Cham: Springer International Publishing AG;
2018. https://doi.org/10.1007/13836_2018_12.

Poelstra JW, Vijay N, Bossu CM, et al. The genomic landscape underlying phenotypic integrity in
the face of gene flow in crows. Science. 2014;344:1410-4.

Pogorelcnik R, Vaury C, Pouchin P, Jensen S, Brasset E. SRNAPipe: a Galaxy-based pipeline for
bioinformatic in-depth exploration of small RNAseq data. Mob DNA. 2018;9:25.

Portik DM, Smith LL, Bi K. An evaluation of transcriptome-based exon capture for frog
phylogenomics across multiple scales of divergence (Class: Amphibia, Order: Anura). Mol
Ecol Resour. 2016;16:1069-83.

Prince DJ, O’Rourke SM, Thompson TQ, et al. The evolutionary basis of premature migration in
Pacific salmon highlights the utility of genomics for informing conservation. Sci Adv. 2017;3:
e1603198.

Priifer K, Racimo F, Patterson N, et al. The complete genome sequence of a Neanderthal from the
Altai Mountains. Nature. 2014;505:43-9.

Pruisscher P, Nylin S, Gotthard K, Wheat CW. Genetic variation underlying local adaptation of
diapause induction along a cline in a butterfly. Mol Ecol. 2018. In press.

Pryce JE, Haile-Mariam M, Goddard ME, Hayes BJ. Identification of genomic regions associated
with inbreeding depression in Holstein and Jersey dairy cattle. Genet Sel Evol. 2014;46:71.
Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and

population-based linkage analyses. Am J Hum Genet. 2007;81:559-75.

Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic
sequencing. Nature. 2010;464:59-65.

Racimo F, Sankararaman S, Nielsen R, Huerta-Sanchez E. Evidence for archaic adaptive introgres-
sion in humans. Nat Rev Genet. 2015;16:359-71.


https://doi.org/10.1007/13836_2018_38
https://doi.org/10.1007/13836_2018_12

Population Genomics: Advancing Understanding of Nature 75

Rajora OP, Eckert AJ, Zinck JWR. Single-locus versus multilocus patterns of local adaptation to
climate in eastern white pine (Pinus strobus, Pinaceae). PLoS One. 2016;11:e0158691.

Rasmussen M, Li Y, Lindgreen S, et al. Ancient human genome sequence of an extinct Palaeo-
Eskimo. Nature. 2010;463:757-62.

Rastas P, Calboli FCF, Guo B, Shikano T, Merild J. Construction of ultradense linkage maps
with Lep-MAP2: stickleback F2 recombinant crosses as an example. Genome Biol Evol.
2016;8:78-93.

Razgour O, Taggart JB, Manel S, et al. An integrated framework to identify wildlife populations
under threat from climate change. Mol Ecol Resour. 2018;18:18-31.

Rees BB, Andacht T, Skripnikova E, Crawford DL. Population proteomics: quantitative variation
within and among populations in cardiac protein expression. Mol Biol Evol. 2011;28:1271-9.

Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental
association analysis in landscape genomics. Mol Ecol. 2015;24:4348-70.

Renaut S, Grassa CJ, Yeaman S, et al. Genomic islands of divergence are not affected by geography
of speciation in sunflowers. Nat Commun. 2013;4:1827.

Resendez SD, Bradley JR, Xu D, Gokcumen O. Structural variants in ancient genomes. In:
Lindqgvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publishing AG;
2018. https://doi.org/10.1007/13836_2018_34.

Richards CL, Alonso C, Becker C, et al. Ecological plant epigenetics: evidence from model and
non-model species, and the way forward. Ecol Lett. 2017;20:1576-90.

Rieseberg L. Adaptive introgression: the seeds of resistance. Curr Biol. 2011;21:R581-3.

Rochus CM, Tortereau F, Plisson-Petit F, et al. Revealing the selection history of adaptive loci
using genome-wide scans for selection: an example from domestic sheep. BMC Genomics.
2018;19:71.

Rodriguez-Ezpeleta N, Bradbury IR, Mendibil I, et al. Population structure of Atlantic mackerel
inferred from RAD-seq-derived SNP markers: effects of sequence clustering parameters and
hierarchical SNP selection. Mol Ecol Resour. 2016;16:991-1001.

Roffler GH, Amish SJ, Smith S, et al. SNP discovery in candidate adaptive genes using exon
capture in a free-ranging alpine ungulate. Mol Ecol Resour. 2016;16:1147-64.

Rogers RL, Slatkin M. Excess of genomic defects in a woolly mammoth on Wrangel island. PLoS
Genet. 2017;13:¢1006601.

Roitman S, Joseph Pollock F, Medina M. Coral microbiomes as bioindicators of reef health. In:
Population genomics. Cham: Springer; 2018. p. 1-19.

Rondeau EB, Minkley DR, Leong JS, et al. The genome and linkage map of the northern pike (Esox
lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei.
PLoS One. 2014;¢102089:9.

Rougeux C, Gagnaire P-A, Praebel K, Seehausen O, Bernatchez L. Convergent transcriptomic
landscapes under polygenic selection accompany inter- continental parallel evolution within a
Nearctic Coregonus (Salmonidae) sister-species complex. BioRxiv. 2018. https://doi.org/10.
1101/311464.

Rubin C-J, et al. Whole-genome resequencing reveals loci under selection during chicken domes-
tication. Nature. 2010;464:587.

Rubin C-J, Megens H-J, Barrio AM, et al. Strong signatures of selection in the domestic pig
genome. Proc Natl Acad Sci. 2012;109:19529-36.

Sabeti PC, Reich DE, Higgins JM, et al. Detecting recent positive selection in the human genome
from haplotype structure. Nature. 2002;419:832-7.

Sabeti PC, Varilly P, Fry B, et al. Genome-wide detection and characterization of positive selection
in human populations. Nature. 2007;449:913-8.

Saint-Pé K, Blanchet S, Tissot L, et al. Genetic admixture between captive-bred and wild individ-
uals affects patterns of dispersal in a brown trout (Salmo trutta) population. Conserv Genet.
2018;5:1269-79.


https://doi.org/10.1007/13836_2018_34
https://doi.org/10.1101/311464
https://doi.org/10.1101/311464

76 G. Luikart et al.

Salmona J, Heller R, Lascoux M, Shafer A. Inferring demographic history using genomic data. In:
Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham:
Springer International Publishing AG; 2017. https://doi.org/10.1007/13836_2017_1.

Salojérvi J. Computational tools for population genomics. In: Om PR, editor. Population genomics:
concepts, approaches and applications. Cham: Springer International Publishing AG; 2018.
https://doi.org/10.1007/13836_2018_57.

Santure AW, Garant D. Wild GWAS-association mapping in natural populations. Mol Ecol Resour.
2018;18:729-38.

Sboner A, Mu XJ, Greenbaum D, Auerbach RK, Gerstein MB. The real cost of sequencing: higher
than you think! Genome Biol. 2011;12:125.

Schlotterer C. The evolution of molecular markers — just a matter of fashion? Nat Rev Genet.
2004;5:63-9.

Schlétterer C, Tobler R, Kofler R, Nolte V. Sequencing pools of individuals-mining genome-wide
polymorphism data without big funding. Nat Rev Genet. 2014;15:749-63.

Schmidt TL, Filipovi I, Hoffmann AA, Rasi¢ G. Fine-scale landscape genomics of Aedes aegypti
reveals loss of Wolbachia transinfection, dispersal barrier and potential for occasional long
distance movement. BioRxiv. 2017. https://doi.org/10.1101/103598.

Schmitz RJ, He Y, Valdés-Lopez O, et al. Epigenome-wide inheritance of cytosine methylation
variants in a recombinant inbred population. Genome Res. 2013a;23:1663-74.

Schmitz RJ, Schultz MD, Urich MA, et al. Patterns of population epigenomic diversity. Nature.
2013b;495:193-8.

Schrider DR, Kern AD. Soft sweeps are the dominant mode of adaptation in the human genome.
Mol Biol Evol. 2017;34:1863-77.

Schweizer RM, VonHoldt BM, Harrigan R, et al. Genetic subdivision and candidate genes under
selection in North American grey wolves. Mol Ecol. 2016;25:380-402.

Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range
sequencing and mapping. Nat Rev Genet. 2018;19:329-46.

Shafer ABA, Wolf JBW, Alves PC, et al. Genomics and the challenging translation into conserva-
tion practice. Trends Ecol Evol. 2015;30:78-87.

Shafer ABA, Peart CR, Tusso S, et al. Bioinformatic processing of RAD-seq data dramatically
impacts downstream population genetic inference. Methods Ecol Evol. 2017;8:907-17. https://
doi.org/10.1111/2041-210X.12700.

Shapiro B, Hofreiter M. A paleogenomic perspective on evolution and gene function: new insights
from ancient DNA. Science. 2014;343

Shimada-Sugimoto M, Otowa T, Miyagawa T, et al. Epigenome-wide association study of DNA
methylation in panic disorder. Clin Epigenetics. 2017;9:6.

Shin D, Kim S-H, Park J, Lee H-K, Song K-D. Extent of linkage disequilibrium and effective
population size of the Landrace population in Korea. Asian Australas J Anim Sci.
2018;31:1078-87.

Simons YB, Bullaughey K, Hudson RR, Sella G. A population genetic interpretation of GWAS
findings for human quantitative traits. PLoS Biol. 2018;16:€2002985.

Skoglund P, Malmstrom H, Raghavan M, et al. Origins and genetic legacy of Neolithic farmers and
hunter-gatherers in Europe. Science. 2012;336:466-9.

Slatkin M. Linkage disequilibrium — understanding the evolutionary past and mapping the medical
future. Nat Rev Genet. 2008;9:477-85.

Smith MW, O’Brien SJ. Mapping by admixture linkage disequilibrium: advances, limitations and
guidelines. Nat Rev Genet. 2005;6:623-32.

Sollars ESA, Buggs RJA. Genome-wide epigenetic variation among ash trees differing in suscep-
tibility to a fungal disease. BMC Genomics. 2018;19:502.

Song Y, Endepols S, Klemann N, et al. Adaptive introgression of anticoagulant rodent poison
resistance by hybridization between old world mice. Curr Biol. 2011;21:1296-301.

Sork VL. Gene flow and natural selection shape spatial patterns of genes in tree populations:
implications for evolutionary processes and applications. Evol Appl. 2016;9:291-310.


https://doi.org/10.1007/13836_2017_1
https://doi.org/10.1007/13836_2018_57
https://doi.org/10.1101/103598
https://doi.org/10.1111/2041-210X.12700
https://doi.org/10.1111/2041-210X.12700

Population Genomics: Advancing Understanding of Nature 77

Sovic MG, Carstens BC, Gibbs HL. Genetic diversity in migratory bats: results from RADseq data
for three tree bat species at an Ohio windfarm. Peer]. 2016;4:e1647.

Speed D, Balding DJ. Relatedness in the post-genomic era: is it still useful? Nat Rev Genet.
2015;16:33-44.

Srivathsan A, Ang A, Vogler AP, Meier R. Fecal metagenomics for the simultaneous assessment of
diet, parasites, and population genetics of an understudied primate. Front Zool. 2016;13:17.
Stam P. The distribution of the fraction of the genome identical by descent in finite random mating

populations. Genet Res. 1980;35:131-55.

Stat M, Huggett MJ, Bernasconi R, et al. Ecosystem biomonitoring with eDNA: metabarcoding
across the tree of life in a tropical marine environment. Sci Rep. 2017;7:12240.

Stetter MG, Thornton K, Ross-Ibarra J. Genetic architecture and selective sweeps after polygenic
adaptation to distant trait optima. BioRxiv. 2018:313247.

Stolting KN, Paris M, Meier C, et al. Genome-wide patterns of differentiation and spatially varying
selection between postglacial recolonization lineages of Populus alba (Salicaceae), a wide-
spread forest tree. New Phytol. 2015;207:723-34.

Storz JF, Beaumont MA, Alberts SC. Genetic evidence for long-term population decline in a
savannah-dwelling primate: inferences from a hierarchical Bayesian model. Mol Biol Evol.
2002;19:1981-90.

Sugden LA, Atkinson EG, Fischer AP, et al. Localization of adaptive variants in human genomes
using averaged one-dependence estimation. Nat Commun. 2018;9:703.

Suhre K, Arnold M, Bhagwat AM, et al. Connecting genetic risk to disease end points through the
human blood plasma proteome. Nat Commun. 2017;8:14357.

Sunnucks P. Efficient genetic markers for population biology. Trends Ecol Evol. 2000;15:199-203.

Suren H, Hodgins KA, Yeaman S, et al. Exome capture from the spruce and pine giga-genomes.
Mol Ecol Resour. 2016;16:1136-46.

Syring JV, Tennessen JA, Jennings TN, et al. Targeted capture sequencing in whitebark pine
reveals range-wide demographic and adaptive patterns despite challenges of a large, repetitive
genome. Front Plant Sci. 2016;7:484.

Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.
Genetics. 1989;123:585-95.

Tallmon DA, Luikart G, Waples RS. The alluring simplicity and complex reality of genetic rescue.
Trends Ecol Evol. 2004;19:489-96.

Taudt A, Colomé-Tatché M, Johannes F. Genetic sources of population epigenomic variation. Nat
Rev Genet. 2016;17:319-32.

Terhorst J, Kamm JA, Song YS. Robust and scalable inference of population history from hundreds
of unphased whole genomes. Nat Genet. 2017;49:303-9.

Teshima KM, Coop G, Przeworski M. How reliable are empirical genomic scans for selective
sweeps? Genome Res. 2006;16:702-12.

Thalmann O, Perri AR. Paleogenomic inferences of dog domestication. In: Lindqvist C, Om PR,
editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. https://doi.org/10.
1007/13836_2018_27.

Thompson EA. Identity by descent: variation in meiosis, across genomes, and in populations.
Genetics. 2013;194:301-26.

Thurber RV, Willner-Hall D, Rodriguez-Mueller B, et al. Metagenomic analysis of stressed coral
holobionts. Environ Microbiol. 2009;11:2148-63.

Tishkoff SA, Reed FA, Ranciaro A, et al. Convergent adaptation of human lactase persistence in
Africa and Europe. Nat Genet. 2007;39:31-40.

Tranchant-Dubreuil C, Ravel S, Monat C, et al. TOGGLe, a flexible framework for easily building
complex workflows and performing robust large-scale NGS analyses. BioRxiv. 2018. https:/
doi.org/10.1101/245480.

Trapp J, Gouveia D, Almunia C, et al. Digging deeper into the pyriproxyfen-response of the
amphipod gammarus fossarum with a next-generation ultra-high-field orbitrap analyser: new
perspectives for environmental toxicoproteomics. Front Environ Sci. 2018;6:54.


https://doi.org/10.1007/13836_2018_27
https://doi.org/10.1007/13836_2018_27
https://doi.org/10.1101/245480
https://doi.org/10.1101/245480

78 G. Luikart et al.

Turner TL, Hahn MW, Nuzhdin SV. Genomic islands of speciation in Anopheles gambiae. PLoS
Biol. 2005;3:1572-8.

Valdés A, Ehrlén J. Caterpillar seed predators mediate shifts in selection on flowering phenology in
their host plant. Ecology. 2017;98:228-38.

Valdisser PAMR, Pereira WJ, Almeida Filho JE, et al. In-depth genome characterization of a
Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC
Genomics. 2017;18:423.

Vallejo RL, Silva RMO, Evenhuis JP, et al. Accurate genomic predictions for BCWD resistance in
rainbow trout are achieved using low-density SNP panels: evidence that long-range LD is a
major contributing factor. J Anim Breed Genet. 2018;135:263-74.

van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology.
Trends Genet. 2018;34:666-81.

Vandersteen Tymchuk W, O’Reilly P, Bittman J, MacDonald D, Schulte P. Conservation genomics
of Atlantic salmon: variation in gene expression between and within regions of the Bay of
Fundy. Mol Ecol. 2010;19:1842-59.

Vasemagi A, Primmer CR. Expressed sequence tag-linked microsatellites as a source of gene-
associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon
(Salmo salar L.). Mol Biol Evol. 2005;22:1067-76.

Vattathil S, Akey JM. Small amounts of archaic admixture provide big insights into human history.
Cell. 2015;163:281-4.

Venter J, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science.
2004;304:66-74.

Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human
genome. PLoS Biol. 2006;4:e154.

VonHoldt BM, Pollinger JP, Earl DA, et al. A genome-wide perspective on the evolutionary history
of enigmatic wolf-like canids. Genome Res. 2011;21:1294-305.

Waite DW, Dsouza M, Sekiguchi Y, Hugenholtz P, Taylor MW. Network-guided genomic and
metagenomic analysis of the faecal microbiota of the critically endangered kakapo. Sci Rep.
2018;8:8228.

Wallberg A, Han F, Wellhagen G, et al. A worldwide survey of genome sequence variation
provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet.
2014;46:1081-8.

Wang J. Estimation of effective population sizes from data on genetic markers. Phil Trans Roy Soc
B Biol Sci. 2005;360:1395-4009.

Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet.
2009;10:57-63.

Wang J, Street NR, Scofield DG, Ingvarsson PK. Variation in linked selection and recombination
drive genomic divergence during allopatric speciation of European and American aspens. Mol
Biol Evol. 2016;33:1754-67.

Waples RS, Do C. Linkage disequilibrium estimates of contemporary Ne using highly variable
genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl.
2010;3:244-62.

Waples RK, Larson WA, Waples RS. Estimating contemporary effective population size in
non-model species using linkage disequilibrium across thousands of loci. Heredity.
2016;117:233-40.

Waterhouse MD, Erb LP, Beever EA, Russello MA. Adaptive population divergence and direc-
tional gene flow across steep elevational gradients in a climate-sensitive mammal. Mol Ecol.
2018;27:2512-28.

Wecek K, Hartmann S, Paijmans JLA, et al. Complex admixture preceded and followed the
extinction of wisent in the wild. Mol Biol Evol. 2017;34:598-612.

Wellenreuther M, Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends
Ecol Evol. 2018;33:427-40.



Population Genomics: Advancing Understanding of Nature 79

Wellenreuther M, Hansson B. Detecting polygenic evolution: problems, pitfalls, and promises.
Trends Genet. 2016;32:155-64.

Wessinger CA, Kelly JK, Jiang P, Rausher MD, Hileman LC. SNP-skimming: a fast approach to
map loci generating quantitative variation in natural populations. Mol Ecol Resour. 2018.
https://doi.org/10.1111/1755-0998.12930.

Whiteley AR, Bhat A, Martins EP, et al. Population genomics of wild and laboratory zebrafish
(Danio rerio). Mol Ecol. 2011;20:4259-76.

Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA. Genetic rescue to the rescue. Trends Ecol
Evol. 2015;30:42-9.

Wilson G, Rannala B. Bayesian inference of recent migration rates using multilocus genotyoes.
Genetics. 2003;163:1177-91.

Wolf JBW, Ellegren H. Making sense of genomic islands of differentiation in light of speciation.
Nat Rev Genet. 2017;18:87—-100.

Wright S. Coefficients of inbreeding and relationship. Am Nat. 1922;56:330-8.

Xu Z, Bolick SCE, Deroo LA, et al. Epigenome-wide association study of breast cancer using
prospectively collected sister study samples. J Natl Cancer Inst. 2013;105:694—700.

Xue Y, Prado-Martinez J, Sudmant PH, et al. Mountain gorilla genomes reveal the impact of long-
term population decline and inbreeding. Science. 2015;348:242-5.

Yeaman S, Whitlock MC. The genetic architecture of adaptation under migration-selection balance.
Evolution. 2011;65:1897-911.

Yeaman S, Hodgins KA, Lotterhos KE, et al. Convergent local adaptation to climate in distantly
related conifers. Science. 2016;353:1431-3.

Yi SV. Insights into epigenome evolution from animal and plant methylomes. Genome Biol Evol.
2017;9:3189-201.

Zhang W, Fan Z, Han E, et al. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from
Qinghai-Tibet plateau. PLoS Genet. 2014;10:e1004466.

Zhang W, Zhang H, Yang H, et al. Computational resources associating diseases with genotypes,
phenotypes and exposures. Brief Bioinform. 2018:bby071.


https://doi.org/10.1111/1755-0998.12930

Part 11
Methods



Genotyping and Sequencing Technologies m)
in Population Genetics and Genomics i

J.A. Holliday, E.M. Hallerman, and D.C. Haak

Abstract Genotypes are the central data to any population genetic and genomic
study, and genotyping methods have steadily evolved since the first direct glimpses
of genetic variation were enabled through enzyme protein electrophoresis. Follow-
ing the development of the polymerase chain reaction, allozymes were supplanted
by methods that directly measured allelic variation in nuclear and organellar DNA,
most notably through the use of restriction fragment length polymorphisms
(RFLPs), amplified fragment length polymorphisms (AFLPs), and microsatellites.
At the turn of the millennium, genome-scale polymorphism detection and scoring
still was hampered by the low-throughput nature of Sanger sequencing. This
limitation changed with the advent of genotyping microarrays that at first yielded
hundreds of data points per sample — a revolution at the time — and that subse-
quently improved to the point where hundreds of thousands of genetic variants
could be scored simultaneously. These methods suffered a major flaw, however, in
that their cost put them out of reach for studies of most ecologically important but
economically unimportant species. The democratization of population genomics
arrived with the advent of high-throughput, short-read sequencers and subsequent
development of DNA library techniques to subsample the genome in a large
number of individuals. Today, such methods — genotyping-by-sequencing, restric-
tion site-associated DNA sequencing, RNA sequencing, and sequence capture —
have become mainstays of the population geneticist’s toolkit. Refinements to
existing library and sequencing methods continue to emerge at a rapid pace, and
novel sequencing platforms may soon put the gold standard of long-read, genome-
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wide coverage within a broader reach. In this chapter, we comprehensively review
genotyping methods used in population genetics, beginning with allozymes and
progressing through AFLPs, microsatellites, and SNP arrays. We subsequently turn
to a detailed discussion of methods that leverage next-generation technologies to
enable truly genome-scale genotyping. Finally, we discuss recent developments and
emerging technologies that constitute the “third wave” of sequencing and
genotyping methods. Throughout, our aim is to provide methodological details
that will be of use to population geneticists.

Keywords Ecological genomics - Genotyping by sequencing - [llumina
- Population genomics - Sequence capture

1 Introduction

The central goal of population genetics is to document and understand the signif-
icance of intraspecific genetic variation. Four key questions underlie this objective:
How much variation exists in a population? What is the origin of the variation?
How is the variation maintained? What is the ecological and evolutionary signif-
icance of this variation? At the emergence of the field in the early decades of the
twentieth century, methods for observing genetic variation were limited. In addition
to classical Mendelian traits, geneticists could observe variation of chromosome
number, chromosome morphology, and quantitative traits. Geneticists focused on
laboratory model species and on those species for which fully inbred lines could be
developed; the methods available were not well suited to screening of outbred, wild
populations. These limitations, so prominent early in the development of genetics,
were addressed by the rise of molecular genetics in the second half of the twentieth
century. Indeed, the progress of molecular genetics has been marked by the advent
of critical laboratory techniques. In this chapter, we review the emergence and
refinement of genotyping technologies, from early protein markers through modern
high-throughput sequencing approaches, and discuss the potential and limitations
of each.

2 Early Molecular Genetic Markers: Allozymes

Molecular population genetics emerged as a field with the development of methods
for observing variation of enzyme proteins. Starch gel electrophoresis and histo-
chemical staining techniques were developed primarily for detecting variant forms
of blood proteins, especially enzymes, as a means to study their biochemical
function (Lewontin and Hubby 1966). These bidirectional catalytic enzymes con-
vert one substrate to another without themselves being affected and control much of
cell metabolism. Examples include enzymes of the glycolytic pathway in which
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glucose is broken down and of the Krebs cycle in which energy is generated in the
mitochondria. A brief description of the background and methodology will support
an understanding of the strengths and limitations of allozyme genetic markers.
Enzymes mediate a specific biochemical reaction; e.g., lactate dehydrogenase
(LDH) removes a hydrogen atom from a lactate molecule. Some enzymes are
encoded by multiple genes; isozymes are different forms of an enzyme encoded
by different loci, which often are differentially expressed among the tissues of an
organism. For example, in most fishes, LDH is encoded by three isozyme loci:
LDH-A is expressed in almost all tissues, LDH-B predominately in the liver, and
LDH-C in the eye. Allozymes are allelic forms of isoenzymes, encoded by different
alleles at a particular locus, e.g., LDH-AI and LDH-A2 would be different alleles
expressed at the LDH-A locus. It is this variation that is sought and interpreted in
screenings of allozymes. To conduct a screening of a population, small samples of
tissues are dissected out, placed in a buffer, and homogenized. Filter paper wicks
with a bit of homogenate from each individual in the collection are placed along a
slot in a starch gel, to which an electric current is applied, leading molecules in the
homogenate to migrate. Different molecular forms of an enzyme encoded by
different alleles and genes migrate different distances through the gel depending
upon molecular weight and net electrical charge. The gel is then sliced into slabs
and the activity of a particular enzyme visualized with a histochemical stain. The
stain includes the substrate and cofactors for the enzyme and a suite of chemicals
that take a simple product of the reaction and change color, resulting in a banding
pattern that can be interpreted to yield presumptive alleles and genotypes. Thor-
ough technical reviews of visualization and interpretation of allozyme markers are
provided by Buth (1990), Morizot and Schmidt (1990), Maxam and Gilbert (1977),
Murphy et al. (1996), and May (1998). The genotype data are then subjected to
statistical analyses to determine various population genetic parameters.
Allozymes have the favorable property of being the products of codominant
gene expression — homozygotes and heterozygotes can be distinguished — and can
be developed relatively easily for species of interest. Freed of the need for out-
wardly observable phenotypic traits in plants and animals, screening of genetic
variation in any population of interest became a viable technical possibility. It led to
the discovery of unexpectedly high levels of genetic variation in a wide range of
natural populations, which in turn revolutionized geneticists’ view of the world
particularly regarding the adaptive significance of genetic variation (Kimura 1983).
Although allozyme applications revolutionized molecular population genetics,
allozyme methods also posed limitations. Sampling of multiple tissues — e.g.,
liver, muscle, and eye — at least for animals is generally lethal to the sampled
individual, which limits application of allozymes for studies of imperiled species.
Only the variation of enzymes for which we have histochemical assays can be
screened, which represents but a tiny portion of the genome. Most studies involved
screening of about 30 loci for diploid organisms, with some exceptions of up to 54
allozyme loci (Buchert et al. 1997), and not all loci were found to be polymorphic.
Furthermore, the most common allele at many loci often showed a frequency
greater than 0.9, limiting the power of statistical analyses. The evolutionary
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relations of allelic variants cannot be precisely inferred, limiting study of phyloge-
netics within a lineage. Finally, because of the redundancy of the genetic code, not
all DNA sequence-level substitutions lead to protein-level variation, and only a
subset of amino acid changes lead to detectable differences in net electric charge or
molecular weight. For these reasons, with the evolution of the molecular genetic
techniques, DNA-based markers were developed and have been the preferred
approach to study patterns of genetic variation within and among populations.

3 DNA Markers

3.1 Restriction Fragment Length Polymorphisms

The discovery of restriction endonucleases revolutionized molecular biology
(Avise 2004). Type II restriction enzymes (Kessler 1987) cleave double-stranded
DNA at particular base-pair sequences, typically four to six base pairs in length
(Roberts 1984). DNA sequence polymorphisms among individuals may result in
differences in the presence or absence of restriction sites and hence in the sizes of
the respective restriction fragments. These differences are termed restriction frag-
ment length polymorphisms or RFLPs. The methods for visualization of RFLPs
differ for organellar and nuclear DNA. Early RFLP studies were conducted using
organellar DNA and not genomic DNA because of the relative simplicity owing to
the small size of organellar genomes. The animal mitochondrial DNA molecule is
relatively small (~15-20 kb) and circular, properties that contribute to its isolation
and made analysis by restriction site variability easy (Lansman et al. 1981; Hoelzel
1992; Dowling et al. 1996; Avise 2004). Following digestion with one or more
restriction enzymes, fragments may be visualized by using gel electrophoresis
(either ethidium bromide staining or end-labeling with radioactive nucleotides
followed by autoradiography). The fragment sizes are observed, and inferences
are made of haplotypes (haploid genotypes), i.e., combinations of the presence or
absence of restriction sites. Early surveys of animal populations revealed the
haploid character, maternal inheritance, and rapid evolution of animal mitochon-
drial DNA. Analysis of mitochondrial DNA variation is useful for tracking
matrilineages and inference of the origins of species or populations, patterns of
population dispersal, and occurrence of past population bottlenecks. In humans, for
example, Cann et al. (1987) analyzed mitochondrial DNAs from 147 people drawn
from five geographic populations. All of the mitochondrial DNA variants were
inferred to stem from one woman, popularly referred to as the “mitochondrial Eve,”
who lived approximately 200,000 years ago, most likely in Africa. Lansman et al.
(1983) analyzed mtDNA sequence variation in 135 deer mice Peromyscus
maniculatus collected across their range in North America and distinguished five
major genetic assemblages within the species, as well as extensive diversity within
each of those assemblages. Phylogenies derived from mtDNA restriction fragment
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analysis were not generally concordant with those derived from morphological
characters.

Mitochondrial DNA of plants exhibits surprising contrasts with that of animals
(Avise 2004). Plant mtDNA is highly variable in size, ranging from about 200 kb to
2,500 kb among species (Ward et al. 1981; Palmer 1985; Pring and Lonsdale 1985).
Within an individual, mtDNA sequences typically exist as a heterogeneous collec-
tion of circular molecules that arise from extensive recombination (Palmer and
Herbon 1986; Backert et al. 1997; Lonsdale et al. 1988). Inheritance is often, but not
always, maternal (Birky 1978; Neale et al. 1989). Plant mtDNA gene order evolves
rapidly but about a hundredfold more slowly in nucleotide sequence compared with
nuclear DNA (Birky 1988; Palmer and Herbon 1988; Palmer 1992; Palmer et al.
2000). These properties, and the technical difficulties of laboratory assays, have
limited the utility of plant mtDNA for molecular systematics (Knoop 2004) and
population biology (Avise 2004). Nevertheless, RFLP markers have been used, for
example, to demonstrate changes in the mtDNA molecule associated with restora-
tion of fertility in cytoplasmic male-sterile maize (Schardl et al. 1985) and common
bean (Johns et al. 1992) and determine the phylogenetic relationships and maternal
parentage of natural interspecific hybrids in Populus (Barrett et al. 1993). Screen-
ings of the geographical distribution of mtDNA haplotypes led to insights into the
natural history of plants. For example, modern populations of Scots pine (Pinus
sylvestris) are derived from dispersal from three different refugia following degla-
ciation (Sinclair et al. 1999). Olson and McCauley (2002) observed 13 mtDNA
haplotypes among 250 individuals in 18 populations of bladder campion, Silene
vulgaris, a flowering plant, within a 20-km region in western Virginia, and found
that the populations were highly differentiated. Sex was determined by an interac-
tion between cytoplasmic male sterility factors and autosomal male fertility
restorers, with indications of population genetic structuring for the male fertility
restorer genes.

Chloroplast DNA (cpDNA) exhibits its own unique molecular biology (Palmer
1985). It is transmitted maternally in some species (Birky 1978; Gillham 1978),
biparentally in some (Metzlaff et al. 1981; Harris and Ingram 1991), and paternally
in yet others (Chat et al. 1999), including in most gymnosperms (Wagner et al.
1987; Neale and Sederoff 1989). The circular molecule varies greatly in size, from
120 to 217 kb among photosynthetic land plants (Zurawski and Clegg 1987). The
rate of molecular evolution is slow in terms of both gene order and nucleotide
sequence (Palmer and Thompson 1981; Curtis and Clegg 1984), which makes
cpDNA suitable for phylogenetic studies (Palmer and Zamir 1982; Clegg et al.
1986; Sytsma and Gottlieb 1986; Zurawski and Clegg 1987). CpDNA variation has
been characterized in wild (e.g., barley (Hordeum vulgare), Clegg et al. 1984) and
cultured (e.g., barley, Clegg et al. 1984; maize (Zea mays), Doebley et al. 1987)
populations and has demonstrated interspecific hybridization in wild (e.g., pine,
Wagner et al. 1987) and cultured (e.g., cotton, Wendel 1989) species. Among
studies of phylogeographic variation, a consortium of laboratories (Petit et al.
2002) screened four PCR-amplified cpDNA fragments among 12,214 individuals
from 2,613 European oak populations representing eight species. Six cpDNA
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lineages were identified, with distinct geographic distributions along a longitudinal
gradient reflecting patterns of colonization of the European landscape following
deglaciation, a pattern corroborated and dated with fossil pollen evidence (Petit et
al. 2002). RFLP analyses of mitochondrial and chloroplast DNA were common
until around 1990, when direct sequencing of PCR amplicons become possible,
which effectively replaced the whole-molecule, RFLP approach.

The complexity of nuclear DNA (e.g., three billion base pairs in human) is much
greater than for mitochondrial DNA (16.6 kb), and Southern (1975) blotting using
specific probes is needed to investigate RFLP variation of genomic DNA (gDNA).
Probe hybridization patterns are interpreted to infer which bands represent restric-
tion site alleles at a given locus. RFLPs were initially developed as markers for
human diseases and disorders (e.g., p-thalassemia, Little et al. 1980; sickle-cell
anemia, Phillips et al. 1980; Huntington’s disease, Gusella et al. 1983) and subse-
quently extended to many nonhuman genomes, including livestock (e.g., cattle;
prolactin, Camper et al. 1984; growth hormone, Beckmann et al. 1986) and crop
plants (maize, Rivin et al. 1983; barley, Saghai-Maroof et al. 1984). Southern blot
hybridization of the repeated sequence to EcoRI-restricted human DNA yielded
numerous hybridization fragments which showed Mendelian inheritance and
hypervariability. This multi-locus DNA fingerprinting approach found applications
in forensics (Gill et al. 1985), breeding, population genetic, and other contexts. The
advantage of the RFLP approach is that investigators can seek polymorphism at any
genomic site for which there is a hybridization probe, and RFLP markers display
codominant patterns. As early as 1980, Botstein et al. (1980) described a basis for
using RFLP variation at random, single-copy loci to construct a genetic linkage
map of the human genome. The approach was applied, for example, to map the
genomes of several crop plants (including maize and tomato (Solanum
lycopersicum), Helentjaris et al. 1986; Ritter et al. 1990), which are well suited
for producing the requisite mapping populations. However, the disadvantage of the
RFLP approach is that Southern blot hybridization is laborious and not well suited
to the cost-effective, high-throughput genotyping required for many applications
(Kashi et al. 1990).

3.2 PCR-Based Fingerprinting and Genotyping

Invention of the polymerase chain reaction (PCR) (Saiki et al. 1985, 1988; Mullis
and Faloona 1987) revolutionized molecular biology, and subsequently organismal
and population biology (Avise 2004), largely by stimulating new approaches to
genetic marker screenings. A number of PCR-based genotyping methods fall under
the general category of DNA fingerprinting.

A number of fingerprinting methods have been developed based on the ampli-
fication of random genomic DNA (gDNA) fragments using PCR primers of arbi-
trary sequence. The patterns generated depend on the sequence of the PCR primers
and the nature of the template DNA. PCR is performed at low annealing
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temperatures to allow the primers to anneal to multiple loci on the sample DNA.
These PCR-based fingerprinting methods have the major disadvantage that they are
very sensitive to reaction conditions, template DNA quality, PCR temperature
profiles, and detection system, which limits their repeatability among laboratories
and ultimately their range of utility. Williams et al. (1990) described one such
procedure in which gDNA was PCR-amplified using single primers of arbitrary
nucleotide sequence. The DNA segments that amplify are inherited in a Mendelian
fashion from one or both parents. The polymorphisms so visualized are termed
RAPD (random amplified polymorphic DNA) markers and have been used to
discover variation in many species, including humans, corn (Zea mays), soybean
(Glycine max), and Neurospora (Williams et al. 1990). While RAPD markers are an
inexpensive, readily adapted method for assessing genetic variation in a yet-
uncharacterized genome, they also pose several disadvantages. The sensitivity of
the assay to reaction conditions leads to issues of repeatability of results among
laboratories working with the same organism. Further, RAPD fragment patterns are
expressed and interpreted as dominant genetic markers, which limits our ability to
test for departures from Hardy-Weinberg equilibrium or to apply many classical
population genetic tests. For these reasons, the RAPD approach is no longer widely
used in population genetic studies.

The AFLP (amplified fragment length polymorphism) technique (Vos et al.
1995), based on the selective PCR amplification of restriction fragments from a
total digest of gDNA, addresses some of the repeatability issues of RAPDs. The
technique involves three steps: (1) restriction of the DNA and ligation of oligonu-
cleotide adapters onto the restriction fragments, (2) selective amplification of sub-
sets of the restriction fragments, and (3) electrophoretic analysis of the amplified
fragments in a large polyacrylamide gel. Selective amplification is achieved by
using primers that extend into the restriction fragments, amplifying only that subset
of fragments in which the primer extensions match the nucleotides flanking the
restriction sites. The key advantage of this method is that sets of restriction
fragments may be visualized by PCR without previous knowledge of nucleotide
sequence within the genome of interest. The method allows the specific co-ampli-
fication of high numbers of restriction fragments. The number of fragments that can
be analyzed depends on the resolution of the detection system; typically, 50-100
restriction fragments are amplified and detected on denaturing polyacrylamide gels.
The AFLP method has been applied primarily in studies of plants and microbes,
with a strong bias toward economically important cultivated species and their pests.
For example, AFLPs were widely used to construct single-tree genetic linkage
maps in conifers by assaying haploid megagametophytes (Travis et al. 1998;
Remington et al. 1999). Spooner et al. (2005) presented phylogenetic analyses of
261 wild and 98 landrace potatoes and three outgroup relatives, genotyped with 438
robust amplified fragment length polymorphisms. The AFLP data supported a
monophyletic origin of the landrace potato cultivars from the northern component
of the Solanum brevicaule complex in Peru, rather than from multiple independent
origins from various northern and southern members. Cervera et al. (2005) applied
AFLPs for examining genus-wide intraspecific and interspecific phylogenetic and
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genetic relationships in Populus. Beismann et al. (1997) applied AFLP analysis to
26 individuals of white willow Salix alba, crack willow S. fragilis, and several
individuals that were difficult to identify morphologically. Analysis of the AFLP
data revealed distinct clusters corresponding to the nominal species and to inter-
specific hybrids. Kang et al. (2010) used AFLPs and other markers to construct
high-density genetic maps in black spruce (Picea mariana) using a three-generation
outbred pedigree and a black spruce x red spruce (P. rubens) hybrid using a BC,
mapping population (Kang et al. 2011). AFLPs were widely used to construct
single-tree genetic linkage maps in conifers by assaying haploid megagameto-
phytes (e.g., Travis et al. 1998; Remington et al. 1999). Bensch and Akesson
(2005) identified a number of research areas where the AFLP method would be a
valuable tool in the study of wild species of animals, including studies of population
genetic structure and phylogenetic reconstructions, finding markers for genes
governing adaptation, and the distribution of DNA methylation. However, with
multiple technical steps, the procedure is prone to failure. Like RAPDs, AFLP
bands are interpreted as dominant genetic markers. In addition, AFLPs reflect
anonymous restriction sites, which are of less interest than markers within or linked
to genes. Repeatability among laboratories is reliable only to the degree that
electrophoretic conditions are standardized. AFLP markers were considered
genome-wide markers before the development of genome-scale SNPs and
genotyping-by-sequencing techniques.

3.3 Microsatellites

Due to the limitations of fingerprinting, alternative methods were sought that were
both highly repeatable and enabled direct scoring of heterozygotes. The discovery
of microsatellite sequences provided such an alternative. Microsatellites are tracts
with tandem repeats of simple motifs of one to four nucleotides, first noted in the
myoglobin gene, the zeta-globin pseudogene, the insulin gene, and the X-gene
region of hepatitis B virus (Nakamura et al. 1987). Such tandem repeat tracts
were subsequently found in all genomes and have been widely used as genetic
markers. Different communities of geneticists have termed them STRs (short
tandem repeats), SSRs (simple sequence repeats), or microsatellites, the term we
use in this chapter. Microsatellite loci are PCR-amplified by using primers that
anneal to unique genomic sequences flanking the tandem repeat tract. The ampli-
fication products may be visualized by standard electrophoresis or by labeling
forward PCR primers with fluorescent dyes and using a sequencing instrument to
score amplification products (Fig. 1). The latter allows precise estimation of the
molecular weight of each DNA fragment, and the method is well suited to high-
throughput genotyping. Microsatellite markers provide strong advantages for many
applications. There is normally high variation at each locus, often ten or more
alleles, providing great power for studies of population genetic variation, structure,
and differentiation. Because most individuals are heterozygous at such loci,
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Fig. 1 Methodology for observing microsatellite DNA variation. (a) Scattered about the genome
are regions bearing tandem repeats of simple nucleotide motifs, e.g., ATAG (NCTC 2014). (b) A
particular microsatellite-bearing locus is PCR-amplified using primers specific to regions flanking
the locus, and the amplification products are size-scored using a DNA sequencer (PMGF 2017)

microsatellite markers can provide linkage information in almost all families. There
are many microsatellite loci potentially available as markers. The loci exhibit
codominant expression of alleles, allowing use of a full range of data analysis
approaches. Screening of microsatellite loci is economical once the primers for a
locus have been developed. Several loci may be screened in one amplification mix
or visualized in one lane in a DNA sequencer, an approach termed multiplexing
(Chamberlain et al. 1988). Primer pairs used for amplifying microsatellite loci often
are useful for screening the genome of related species of plants (Dayanandan et al.
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1997; Peakall et al. 1998) and animals (Wilson et al. 1997). Microsatellite screening
protocols are transferable among laboratories, especially if a few samples of known
genotype are shared so that allele calls are standardized. Finally, variation at
microsatellite loci is generally selectively neutral, hence appropriate for assessing
the effects of population genetic processes such as migration and random genetic
drift. It should be noted, however, that selection on microsatellite variation has been
detected (Chhatre and Rajora 2014; Edelist et al. 2006), and care must therefore be
taken to ensure that a given marker meets this assumption of neutrality. In humans,
the number of SSR repeats has been found associated with disease conditions,
including Crohn’s disease (Hugot et al. 2001) and Behcet disease (Mizuki et al.
1997).

With such methodological strengths, microsatellite markers became the marker
of choice for population genetics through the latter years of the twentieth century.
They have been widely applied in studies of population structure in wild (Streiff et
al. 1998) and cultivated (Morgante and Olivieri 1993; Eujayl et al. 2002; Ghislain et
al. 2004) plants, as well as wild (Paetkau et al. 1995, 1998; Estoup et al. 1998;
DeWoody and Avise 2000; King et al. 2001) and domesticated (Parker et al. 2004)
animals. Microsatellite markers have been used to infer the origins (Vila et al. 2001)
and to map the genomes (Bishop et al. 1994; Barendse et al. 1994) of domesticated
species. Microsatellite-based inference of parentage and relatedness opened up
studies of fitness and dispersal in wild populations (Blouin et al. 1996; Lawson
Handley and Perrin 2007) and of seed dispersal by frugivores (Godoy and Jordano
2001). They have been used for noninvasive tracking of secretive (Kohn et al. 1999)
or dangerous (Taberlet et al. 1997) animals by genotyping of sloughed host cells in
feces. Microsatellites are also suited for genotyping of archived samples, such as
fish scales (Nielsen et al. 1997), for use in forensic cases (Craft et al. 2007), and
have been applied to determine the genetic impacts of forest harvest and manage-
ment practices (Fageria and Rajora 2013; Rajora et al. 2000). The key disadvantage
of microsatellite markers is the need to invest in the identification of microsatellite
loci and development of useful primer pairs, although modern genomic sequencing
technologies make their identification much easier (see next section). Microsatellite
loci can have null alleles (Callen et al. 1993), i.e., alleles that do not amplify
because a primer does not anneal to the sequence flanking the targeted microsatel-
lite region; because this allele will not amplify during PCR, the individual will in
error be regarded as a homozygote for the amplifying allele. While analytical
protocols exist for identifying loci with null alleles (Van Oosterhout et al. 2004),
the loss of data from such loci can limit the power of microsatellite-based studies.
Expressed sequence tag and whole-genome and RNA sequencing have resulted in
large numbers of candidate microsatellite loci, which can address this issue.
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3.4 DNA Sequencing

The ability to determine the sequence of DNA opened up the entire genome for
analysis. Originally, the target sequence had to be cloned but with the advent of
PCR that was no longer necessary. Two methods have been available since the mid-
1970s for sequencing target DNA. In the Maxam and Gilbert (1977, 1980)
approach, the DNA was radioactively end-labeled and divided into four aliquots,
which are treated with different chemical reagents that cleaved the DNA strand at
base-specific positions. The fragments for all reactions are separated electropho-
retically in a large polyacrylamide gel, visualized by autoradiography, and the DNA
sequence is read directly from the ladder-like bands in the autoradiograph. Then the
Sanger et al. (1977) method quickly became more widely used, which involves
denaturing the DNA and dividing the mixture into four aliquots, each with a single
dideoxynucleotide lacking the 3’ OH group needed for strand elongation. Strand
elongation upon a particular template DNA molecule goes forward until a
dideoxynucleotide becomes incorporated into the growing strand and then is
arrested, resulting in different DNA molecules in the reaction mixture reaching
different lengths before their elongation is terminated. The mixtures of fragments
for the four different nucleotides are subjected to electrophoresis through an
acrylamide gels, visualized through autoradiography, and the DNA sequence is
read directly. Development of a fluorescent labeling technique enabling all four
dideoxynucleotides to be identified in a single lane (Prober et al. 1987) led to the
development of automated DNA sequencers. The system is based on the Sanger
dideoxy chain termination method except that each dideoxynucleotide has a differ-
ent fluorescein dye. The DNA fragments are resolved by polyacrylamide gel
electrophoresis in one filament. Fluorescence is elicited by a laser and detected
by a fluorescence detection system matched to the emission characteristics of the
dye set. The output shows a sequence of fluorescence peaks with different colors for
each nucleotide. Automation of DNA sequencing brought down its cost, opening
the technique to cost-effective application to a wide range of issues and organisms
and to a huge increase in DNA sequence information available. As of June 2017,
approximately 200 million DNA sequences — over 231 billion nucleotides — have
been archived in GenBank (http://www.ncbi.nlm.nih.gov/genbank/statistics/).
Early DNA sequencing efforts targeted organellar genomes due to their small
sizes. Direct sequencing made screenings of mitochondrial DNA much more
powerful than RFLP-based screenings, as much more information became avail-
able. PCR primers annealing to conserved sequences (Kocher et al. 1989; Meyer et
al. 1990; Normark et al. 1991; Meyer 1993) enabled ready sequencing of selected
mitochondrial regions with contrasting mutation rates. For example, after isolating
¢DNA from single plucked human hair, Vigilant et al. (1989) used mtDNA
sequence variation to construct a genealogical tree relating Khoisan-speaking
southern Africans to 68 other humans. Results were consistent with an African
origin of human mtDNA and suggested that during hunter-gatherer times, female
lineages moved their home bases very little. Certain regions of animal mtDNA
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evolve at a rate suitable for phylogenetic inference. The mitochondrial sequences of
cattle (Loftus et al. 1994) fell into two distinct geographic lineages — European and
African breeds in one lineage and all Indian breeds are in the other — that did not
correspond with the taurine-zebu dichotomy. The two major mtDNA clades
diverged 200,000 to 1 million years ago, suggesting two separate domestication
events, presumably of different subspecies of the aurochs, Bos primigenius. Lake
Victoria and its satellite lakes harbor roughly 200 endemic forms of haplochromine
cichlid fishes. After sequencing mitochondrial DNA from 14 representative Victo-
rian species and 23 additional African species, Meyer et al. (1990) suggested a
monophyletic origin for the haplochromines within the past million years. Mito-
chondrial DNA sequence data are well suited for application of a molecular
phylogenetic approach to inference of natural history events and identification of
conservation units. Screening sequence variation in the mitochondrial control
region for 151 individuals representing 24 populations of European brown trout
Salmo trutta, Bernatchez et al. (1992) observed monomorphism across all Atlantic
basin populations and high inter-drainage diversity in more southerly populations,
likely reflecting dispersal from different glacial refugia. In animals, mtDNA pro-
vides the basis for DNA barcoding (Hebert et al. 2013; Kress and Erickson 2012), in
which the investigator sequences the cytochrome oxidase I subunit 3 gene and
compares it against reference sequences in a taxonomic database (BOL 2016).
Among many applications, Moran et al. (2015) used DNA barcoding to identify
prey items in the stomach of invasive catfishes in eastern Virginia. While traditional
morphological identification led to species-level identification of 65% of fish prey
items, addition of DNA barcoding resulted in identification to species of 88% of fish
prey items overall, including anadromous striped bass, herrings, and shads that are
the focus of fishery restoration programs in these rivers.

The availability of consensus primers for amplifying genes and introns (Duminil
et al. 2002) has eased screenings of plant mitochondrial DNA. For example, two
polymorphic mitochondrial tandem repeats in the second intron of the nadl gene of
Norway spruce (Picea abies) showed pronounced population genetic differentia-
tion (Sperisen et al. 2001), with lineage A in north-northeastern and lineage B in
Central and Southern Europe. Building on this work, Tollefsrud et al. (2008) used
fossil pollen data and assessed variation in nadl among 4,876 trees in 369
populations. Observing 28 mitochondrial variants, patterns of population subdivi-
sion superimposed on interpolated fossil pollen distributions indicated that survival
in separate refugia and postglacial colonization led to significant structuring of
genetic variation in the southern range of the species. Shallow genetic structure
consistent with the fossil pollen data suggested that the vast northern range was
colonized from a single refugium. In the Alps, the diversity decreased over short
distances, probably as a result of population bottlenecks caused by the presence of
competing tree species. Increased genetic diversity north of the Carpathians prob-
ably resulted from admixture of expanding populations from two separate refugia.

Screening for variation in cpDNA has been facilitated by the development of
universal PCR primers by Taberlet et al. (1991), Demesure et al. (1995), Dumolin-
Lapegue et al. (1997), and Hamilton (1999). Often, selected chloroplast sequences
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are amplified and characterized for restriction fragment length polymorphisms.
Using such tools, Palmé et al. (2003) inferred the geographic patterns of postglacial
recolonization of silver birch (Betula pendula), and Palmé et al. (2004) showed
hybridization among the birches Betula pendula, B. pubescens, and B. nana.
Similarly, Heuertz et al. (2004) showed the routes of postglacial recolonization of
common ash Fraxinus excelsior in Europe. Cavers et al. (2003) explained the
observed population structure in Spanish cedar Cedrela odorata in Central America
as the result of repeated colonizations from South American source populations,
first by a dry-adapted type and later by moist-adapted types. DNA barcoding of
plants, which is based on comparing the sequence of the trnL gene of the chloro-
plast (Taberlet et al. 1991) between an unknown sample and a reference database,
has proven useful for many species identification applications. Among them,
Quéméré et al. (2013) used the approach to show that the golden-crowned sifaka,
Propithecus tattersalli, an endangered lemur in Madagascar, exhibits remarkable
dietary diversity, consuming at least 130 plant species belonging to 80 genera and
49 families, suggesting a high flexibility of foraging strategies.

4 SNP Genotyping Arrays

Direct PCR-based DNA sequencing opened the path for new approaches to geno-
mic characterization, most notably for the discovery of single nucleotide poly-
morphisms (SNPs). SNPs are the most abundant and widespread type of
polymorphism in both coding and noncoding regions, and they evolve in a manner
well described by simple mutation models (Vignal et al. 2002). Prior to the
availability of high-throughput sequencing methods (see below), SNPs emerged
as the marker of choice for population genomic studies during the first decade of the
twenty-first century, superseding microsatellites. Many factors caused this transi-
tion. While microsatellites provide high resolution for inference of neutral pro-
cesses (migration, drift, inbreeding), their anonymous nature means that while some
are surely under selection, the a priori expectation is that microsatellites behave
neutrally. A multitude of enzymatic and detection methods were developed early in
the SNP era (Kim and Misra 2007; Kwok 2001), but most were rather labor
intensive and expensive per data point.

While initial efforts to study SNP variation were hampered by being relatively
low-throughput and expensive, genotyping arrays changed this. The original
method developed for humans and termed “variant detector arrays” (VDAs)
involved fixing oligomeric probes (“oligos”) to a glass surface (the ‘“chip”)
(Wang et al. 1998). Similar to gene expression microarrays, VDA oligos were
complementary to a target sequence but differed at a single site, which first was
used to detect the presence of a SNP via changes in hybridization patterns when
biotin-labeled samples were hybridized to the chip. However, it was the application
of this method to known SNPs that would lead to a revolution in the field of
population genomics. While the first report involved typing of only ~500 SNPs,
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two companies — Affymetrix and Illumina — soon developed assays that approached
the genomic scale for the first time. Current high-throughput SNP array platforms
include standard panels for model species (human, Arabidopsis, various crop
species) and can assay up to several million SNPs. Of more interest to population
genomicists are custom solutions, which use the same chemistry as the standard
chips but are designed and fabricated using SNP locations and flanking sequences
for the particular species of interest. While the up-front cost of developing such an
array is typically very high, when large numbers of samples are expected to be
genotyped, the per-sample cost can be quite competitive with sequencing-based
genotyping (see below). An additional advantage is that all assay steps are com-
pleted by a core facility as part of the overall cost of the genotyping effort. While
next-generation library preparation can be completed at the sequencing core, this
adds greatly to the cost of the project.

Early custom array-based genotyping solutions typically contained a few hun-
dred to a few thousand SNPs. One widely used platform was Illumina GoldenGate
(Fan et al. 2003; Shen et al. 2005), which used three oligos per SNP for allele
discrimination: one locus-specific oligo (LSO) and two allele-specific oligos
(ASOs). Each ASO carried one of the possible SNP alleles at their 3’ end. Following
solution hybridization of the sample gDNA with these oligos, PCR amplification of
the target loci was carried out, whereby amplification for a given sample/SNP
proceeded using the ASO corresponding to the allele at that locus. The LSO
contained an address sequence that enabled hybridization to the array and subse-
quent imaging and genotype calling. The GoldenGate assay was used extensively in
population genomics to understand patterns of neutral and especially adaptive
genetic diversity across species ranges (Eckert et al. 2009; Holliday et al. 2010;
Loridon et al. 2013; Pavy et al. 2008). At the time, this platform had the advantage
of being relatively inexpensive per data point, scalable, and much less laborious
than previous methods. Recent developments in SNP array technology and appli-
cation have focused on characterizing larger numbers of loci.

The two most widely used genome-scale methods for custom SNP genotyping
are [llumina Infinium iSelect BeadChip (Illumina, Inc., San Diego, CA, USA) and
Affymetrix Axiom (Affymetrix, Inc., Santa Clara, CA, USA). The former allows
for up to 700,000 SNPs and relies on hybridization of fragmented DNA to a bead
array, where each bead contains identical oligos that terminate one base prior to the
expected SNP site. Allelic discrimination is achieved by single-base extension of
the probes using fluorescent nucleotides with subsequent imaging and genotype
calling. The Axiom platform allows up to 650,000 SNP targets and works on a
similar principle. gDNA is fragmented and hybridized to oligomers on the array
that end one base upstream of the SNP site. Instead of single-base extension,
labeled probes complementary to the region including and downstream of the
expected SNP are ligated to the array oligomer and hybridized to the cognate
sample DNA. Two probe types correspond to the different expected alleles, each
having a different fluorescent moiety, and allele discrimination is, therefore,
achieved by respective hybridization of the probe or probes that are complementary
to the sample DNA sequence. Numerous examples of the use of these two methods
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have been reported for non-model species, with a bias toward the Illumina platform
(Faivre-Rampant et al. 2016; Johnston et al. 2014; Lepoittevin et al. 2015;
Malenfant et al. 2015; Pavy et al. 2013, 2016; Plomion et al. 2016; Yanez et al.
2016). Due in part to their economic importance, forest trees and commercially
relevant fish species are overrepresented among these studies. Conversion rates
vary widely and depend on the quality of the data used for SNP discovery and the
stringency of filtering prior to array design. For example, a study in Populus nigra
reported a >90% success rate for a 12k Infinium array (Faivre-Rampant et al.
2016), whereas a study in polar bears (Ursus maritimus) achieved a conversion rate
of ~60% for a 9k array. As most candidate SNPs currently arise from high-
throughput sequencing of discovery panels, understanding the parameters in those
sequencing data that affect conversion is crucial. Goncalves da Silva et al. (2015)
developed an Infinium array for orange roughy (Hoplostethus atlanticus) and found
that standard SNP filtering metrics (e.g., depth of coverage) fail to address system-
atic sequencing errors. Rather, their data show that it is more important to filter for
strand bias, where one allele is overrepresented among sequencing reads, polymor-
phism type (A/C and T/G polymorphisms had especially poor conversion rates),
and the interaction between these two parameters.

5 High-Throughput Sequencing Methods

Genotyping arrays revolutionized our ability to score large numbers of variants in a
cost-effective manner. These methods are still in use where data on a large, fixed
panel of SNPs is desirable. For example, in populations with high levels of linkage
disequilibrium (LD), such as agricultural breeding populations, generating dense,
genome-wide data may be a waste of effort. On the other hand, for natural
populations with low LD, and for which we lack the infrastructure and funding
necessary to develop such arrays, the emergence of high-throughput, sequencing-
based genotyping methods has enabled relatively inexpensive genome-scale stud-
ies. High-throughput sequencing began at the turn of the twenty-first century with
the development of pyrosequencing (i.e., 454) technology (Ronaghi et al. 1996,
1998), followed by the sequencing by oligonucleotide ligation and detection
(SOLiD) (McKernan et al. 2009) and Solexa (sequencing by synthesis; now
Illumina) systems (Bentley et al. 2008). For a variety of reasons — cost, throughput,
error rate, and run time — the Illumina platforms have captured much of the market
at present (though see the section entitled “Emerging Sequencing and Genotyping
Platforms”). We will, therefore, focus this section on sequence-based genotyping
methodologies that make use of Illumina instruments/platforms.
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5.1 General Features of Library Preparation

While there is a great diversity of DNA and RNA library preparation approaches,
with the specific choice depending on the project goals, all share some common
attributes. The first step, in most library preparation protocols, is fragmentation to
achieve a desired insert size range, which may be achieved by physical or enzy-
matic means. The most common method for physical fragmentation is acoustic
shearing with an ultrasonicator (e.g., instruments manufactured by Covaris, Inc.).
While this method yields relatively consistent fragment pools and is not dependent
on template sequence, it can be costly ($5—10 per sample) and require optimization.
Recently, enzymatic fragmentation has gained traction as an alternative to shearing.
This is most apparent in genotyping-by-sequencing (GBS) protocols in which the
genomic DNA is digested with one or more restriction enzymes, giving rise to a
heterogeneous pool of fragments that is subsequently size-selected (see below for
more details). General fragmentation also may be achieved with restriction
enzymes (e.g., NEB Fragmentase) or transposase-based systems (e.g., Illumina
Nextera), with the latter introducing less bias (Picelli et al. 2014). Following
fragmentation, library preparation involves ligation of oligonucleotide adapters to
either end of a pool of DNA fragments. Sequencing adapters serve several func-
tions: (1) they contain sequences complementary to oligos affixed to the Illumina
flow cell, which enables their immobilization on the flow cell for sequencing; (2)
they contain primers both for their amplification prior to sequencing (cluster
generation) and for the sequencing reaction itself (Bentley et al. 2008); and (3)
they frequently contain individual- or population-specific barcodes that allow for
multiplexing within a single flow-cell lane (Fig. 2). More details on adapter design
for specific applications are presented throughout the remainder of this section.
Following adapter ligation, the library is usually amplified by PCR, although
PCR-free protocols do exist (Kozarewa et al. 2009). The number of PCR cycles at
this stage should be limited, as each additional cycle introduces fragments that are
exact duplicates of one another, which can bias SNP calling if one allele is
preferentially amplified. For this reason, PCR duplicates are usually filtered out
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Fig. 2 Adapter configurations for (a) generic paired-end sequencing (e.g., WGS, RNA-Seq,
sequence capture) with a single separate index reads, (b) paired-end sequencing with dual
barcodes, (c¢) single-enzyme RAD-Seq, and (d) dual-enzyme genotyping-by-sequencing
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computationally, but this filtering means wasted sequencing effort (only one copy
of each duplicate read is usually retained). Moreover, PCR duplicates can only be
identified when at least one end of gDNA fragments was generated randomly by
shearing or by a non-specific enzyme (in which case, we expect that no two gDNA
fragments will be identical, and when they exist in the data, they must have arisen
due to the PCR step). When dual restriction enzymes are used to fragment the
genome (known as two-enzyme GBS or double-digest RAD-Seq; see below), we
expect multiple exact copies of each fragment to arise from the multiple copies of
each chromosome in the gDNA extraction, and it is not possible to separate these
natural duplicates from PCR duplicates.

At each step of library preparation, it is useful to check the fragment size range
on a digital electrophoresis appliance (e.g., Agilent Bioanalyzer) and is essential
prior to sequencing. Standard gel electrophoresis may be used as a “quick and dirty”
means to assess the success of the ligation and PCR steps, but the higher resolution
of a Bioanalyzer is recommended to estimate the library size range, to determine
whether (and how much) adapter dimers may be present, and to assess the presence
of high-molecular-weight fragments that can bias assessment of the molar concen-
tration of the library. The latter will not interfere with sequencing, but their
presence in the library may lead to underclustering on the flow cell and hence a
reduced data yield. While the Bioanalyzer also can integrate the library concentra-
tion, fluorescence-based methods are generally preferred by sequencing centers
(spectrophotometers are considered inaccurate for this purpose). If fragmentation
and adapter ligation were optimal, as evidenced by a tight Bioanalyzer trace
centered on the desired fragment size, the library should be ready for sequencing
following an appropriate cleanup step, usually with paramagnetic beads. The
rationale behind this approach is that beads are coated with carboxyl molecules,
which bind DNA in the presence of polyethylene glycol (PEG). When placed on a
magnetic stand, the supernatant-containing contaminants can be removed, leaving
only the desired DNA fragments, which are then washed from the beads.

Often the Bioanalyzer reveals a suboptimal fragment size distribution — either
too broad or containing adapter dimers. Shorter fragments, especially adapter
dimers, will preferentially bind to the flow cell (most likely because of their
increased mobility during flow-cell loading relative to larger fragments) and
hence may be overrepresented in the sequence data. A library containing 10%
adapter dimers will yield a disproportionate amount of useless data from these
sequences. Libraries with a faint adapter dimer band yielded upward of 90% of
reads from these sequences (J. Holliday, unpublished data). More generally, the
Bioanalyzer trace also provides precise information on the size distribution of
insert-containing fragments. If skewed toward smaller fragments, a large number
of reads while yielding useable data will also contain adapter sequence, which
means wasted sequencing resources. If the Bioanalyzer trace reveals one or more of
the undesirable properties described above, size selection must be undertaken. It
cannot be emphasized enough that any detectable adapter dimer band is unaccept-
able and will not only cause many reads to be discarded but may result in very little
useable data. While the intuitive (and time-consuming) way to remove large or
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small fragments is through gel extraction, on its own, this approach is unlikely to
remove all of the problematic fragments, unless a polyacrylamide gel is used. One
of the preferred methods is to size using the same magnetic beads used for general
library purification, which can be achieved by adjusting the ratio of beads to DNA.
Higher bead concentrations will capture both large and small fragments, whereas
lower concentrations tend to favor larger fragments (due to the preferential elec-
trostatic interaction between beads and larger DNA fragments that have larger total
negative charges per molecule). The obvious advantage of this approach is that it
can be used (at least in theory) to deplete the library of any adapter dimers revealed
by the Bioanalyzer. However, in practice, it is not always effective. When other
approaches have failed, size selection may be achieved by running the sample on an
automated electrophoresis instrument (e.g., Pippin Prep, Sage Science, Inc.), which
has the ability to target a narrow range of fragment sizes with much greater
specificity than conventional gel extraction.

5.2 Library Strategies: Length, Sequencing Mode, and
Multiplexing

The original Solexa sequencing strategy involved generating 35-bp reads from only
one end of each fragment, with a single biological sample in a single lane. While
many applications still rely on one or more of these parameters, it is more common
to see some combination of longer reads, paired-end sequencing, and multiplexing
in a single lane. We will consider each of these options in turn and their use for
different applications. Current single-end read lengths for Illumina instruments
vary between 36 and 300 bp depending on the instrument, with run times and
cost scaling proportional to length. While it may appear obvious that longer is
better, longer read length is more costly and may not be necessary. The 36-bp read
length is clearly all that is needed for small RNA (21-24 bp in length) expression
studies. For transcriptome studies in which counting transcripts (differential expres-
sion) is the objective, single-end 36-bp read lengths remain a cost-effective option.
However, single-end reads do not provide information on alternative splicing and
may not be sufficient to uniquely map transcripts arising from tandem or whole-
genome duplication events. Paired-end sequencing (Korbel et al. 2007), in which
sequences are sequentially read from each end of the insert, is the method of choice
for gDNA and also frequently used for transcriptomics (Fullwood et al. 2009).
Sequencing both ends of fragments that are typically 300-500 bp in length enables
more precise read mapping (where a reference genome or transcriptome exists) and
de novo assembly (where a reference is unavailable). Both the forward (read 1 or
R1) and reverse (read 2 or R2) reads from each cluster on the flow cell are
synchronized in the resulting data file, and this information can therefore be used
to constrain their mapping/assembly. For example, if library insert size ranges from
300 to 500 bp, the software used for mapping/assembly will only allow a given read
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pair to be placed within this approximate distance from one another. This strategy
allows for efficient assembly of contiguous regions (e.g., genes) or even whole
genomes (although for eukaryotes, shotgun sequencing is much more involved and
beyond the scope of this chapter). Paired-end sequencing also enables mapping of
splice junctions for transcriptome studies and can resolve structural genomic
variation in some cases.

While some experiments, particularly whole-genome sequencing/re-sequencing,
call for including only a single sample in each flow-cell lane, the high output
currently available means that most population genomic experiments entail
multiplexing. In a multiplexed run, each sample is prepared separately with one
or two unique 4—8-bp barcodes (also called indexes) prior to pooling. Information
from these barcode sequences enables bioinformatic demultiplexing. Barcode loca-
tion depends on the type of experiment, with several options available. Library kits
sold by Illumina and other manufacturers place the barcode upstream of the
sequencing primer for R1, and these sequences are read in a separate index read.
In recent iterations, there may be dual barcodes, one on each adapter, which enables
more precise demultiplexing and fewer reads lost due to barcode sequencing errors.
In some cases, particularly for custom GBS adapters, barcodes may be placed
downstream of the sequencing primer, in which case the first 4-8 bp of R1 provide
the sample information for demultiplexing. This approach has the disadvantage that
a small amount of data on R1 is lost to sequencing of the barcode. Besides barcode
position, an important consideration is the base composition of the barcodes. The
Illumina imaging software tends to get confused by stretches with high GC content,
in situations where many clusters are signaling the same base, and by homopolymer
runs (the same base repeated multiple times). Commercial barcodes are designed
with these considerations in mind, but if ever there is cause to design custom
barcodes, these constraints must be accounted for — it is not as simple as generating
a random list of 4-bp oligonucleotides. One consideration specific to GBS and
inline barcodes is that the first sequence read after the barcode is the restriction site
that generated the fragment. If the barcodes are all the same length, then every
cluster will be reading the restriction site in the same sequencing cycle. To avoid
this, it is advisable to use barcodes of heterogeneous length so that different clusters
reach the restriction sites at different points in the run.

The number of samples that can be multiplexed in a single lane depends on the
expected throughput of the sequencer. To determine an appropriate “plexity,” the
amount of data provided by the sequencing instrument and chemistry to be used is
divided by the product of the desired coverage depth (e.g., 15 or 30X) and the
cumulative length of the DNA fragments in the sample. For example, on an
Illumina HiSeq 2,500 with version-four chemistry in high-output mode, approxi-
mately 200 million reads are expected per lane. For an RNA-Seq experiment, for
example, in a species with a transcriptome comprised of 50,000 unique transcripts,
with an average length 1,000 bp, we have 50,000,000 bp of unique sequence data to
be gathered per sample. For a single-end 125 bp run, we expect approximately 25
billion bases of data (200,000,000 reads x 125 bp). We can therefore theoretically
expect ~500X coverage of the transcriptome (25 billion divided by 50 million) if we
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place a single sample in this lane. If we would like 30X coverage of our
transcriptome per sample (a reasonable target), we could place 16 samples in a
single lane (500/30). Of course, highly heterogeneous coverage depth, as a result of
natural variation in the abundance of each transcript, is expected for transcriptome
studies. It should be noted that for expression studies, we would not multiply the
output of the sequencer by two for paired-end sequencing, because while R2 is
useful for read mapping and splice variant detection, it does not give additional
information about transcript abundance, since it is read from the same transcript as
R1. For gDNA, we would multiply the output by two for paired-end sequencing,
since the goal is to generate sufficient coverage for a given cohort of gDNA
fragments (rather than to assess the abundance of those fragments). When estimat-
ing plexity levels, we usually discount the data output somewhat to allow for
possible underclustering or a greater number of low-quality reads than expected.
In the example above, we might conservatively multiplex 12 samples in a lane. This
calculation works well for RNA-Seq because we generally know, or can make an
educated guess, as to the cumulative length of the transcriptome. Whole-genome re-
sequencing is similarly straightforward when we know the total size of the genome
(which would generally also be the case). For GBS, which we discuss in detail
below, the number of fragments expected can be somewhat nebulous. With a
reference genome, we can scan for the relevant restriction sites and count the
number of fragments that are expected to fall within our library size range. This
would give an upper limit on, but would probably overestimate (perhaps substan-
tially), the complexity of the sample due to variation in how efficiently the enzyme
cuts in different areas of the genome or if a methylation-sensitive enzyme is used.
Hence, it is often useful to do a test run to empirically estimate a reasonable level of
multiplexing.

5.3 Genome Complexity Reduction

Many strategies have been developed in recent years to generate reduced represen-
tation libraries. These genome complexity reduction (GCR) methods fall into two
general categories, those based on digestion of genomic DNA with restriction
enzymes and those based on capture of desired gDNA fragments with synthetic
baits. Each method has advantages and disadvantages, which are summarized in
Table 1. In general, restriction enzyme-based methods — restriction site-associated
DNA sequencing (RAD-Seq) and genotyping-by-sequencing (GBS) — are relatively
inexpensive but do not allow for target selection and often result in much
missing data, while sequence capture is more costly but allows for target selection
and usually yields more complete datasets with less missing data. A summary of
the laboratory workflows associated with each of these techniques is illustrated in
Fig. 3.
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Table 1 Summary of library preparation methods relevant to population genomics

Method Cost | Advantages Disadvantages
Whole $$$ | Full genome coverage; possibility | Costly, especially for large
genome $ to reconstruct full haplotype space | genomes; much greater computa-
re-sequencing tional resources needed
Sequence $$$ | Reliable coverage of target High cost relative to enzyme-based
capture regions; typically recovers adja- methods
cent regions
RAD-Seq $$ Relatively inexpensive, though Missing data; inability to target
shearing increases per-sample particular areas of the genome
cost relative to GBS
Genotyping $ Low cost Missing data; inability to target
by particular areas of the genome
sequencing
RNA-Seq $$ Relatively inexpensive, though Missing data due to differential
more costly than GBS if com- abundance of transcripts; allele-
mercial kits used specific expression may bias SNP
calling
Genome $$ Inexpensive option for whole- Individual genotype calling may be
skimming genome coverage inaccurate in wild species with low
LD
Pool-Seq $ Inexpensive option for whole- Individual genotypes not resolved
genome coverage; accurate allele
frequency estimation for
populations

5.3.1 Restriction Enzyme-Based Methods

Numerous approaches to GCR using restriction enzymes have been reported. The
original method, RAD-Seq (Baird et al. 2008), involves single-enzyme digestion of
gDNA followed by shearing and purification of a particular fragment size range
from the digested DNA. The subset of the genome thus sequenced includes
fragments of a particular size (usually 300-500 bp) that are flanked on one end
by the enzyme cut site, with the other end the result of the random shearing process.
The library is then further enriched using custom adapters that complement the
restriction site sequence. The complexity of the fragment pool depends on the
frequency with which the enzyme cuts, which is determined by the length of
recognition site and other properties of the enzyme (methylation sensitivity, star
activity). Enzymes with a 4-bp recognition sequence will cut much more frequently
than 5-bp cutters. The pool may be enriched for euchromatic (i.e., genic) sequences
through the use of a methylation-sensitive enzyme that does not cut highly meth-
ylated gDNA (i.e., the heterochromatin). This strategy is related to the AFLP
method described in the previous section, with the obvious difference being that
the fragments are sequenced rather than scored by size on a gel. Indeed, the
similarity between the patented AFLP technology and GBS has led the United
States patent office to grant sole rights to the GBS procedure to Keygene Inc. At
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Fig. 3 Illustration of laboratory procedures involved in each genome complexity reduction
technique discussed. Each method begins with some form of fragmentation in order to achieve
the appropriate size range of DNA fragments for sequencing (usually 300-500 bp). In the case of
GBS and RAD-Seq, fragmentation with one or two selected restriction enzymes also provides the
means of reducing genome complexity when combined with size selection. Following fragmen-
tation, all protocols involve adapter ligation, which may include multiplex indexes. In the case of
sequence capture, there is one additional step — hybridization to synthetic baits and subsequent
wash steps to remove unbound (nontarget) fragments. Finally, size selection is usually required to
remove adapter dimers. In the case of GBS/RAD-Seq, size selection is also integral to the method,
as it removes the many fragments of undesirable sizes, leaving only those of in the desired range
that were flanked by one or more enzyme cut sites. Following size selection, visualization of the
finished libraries is essential to ensure the correct size range has been achieved and there is no
evidence of adapter dimers

IR
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present, the use of the GBS method requires a license from Keygene, though it is
unclear if this applies to academic laboratories. GBS yields two types of poly-
morphisms. The first are presence/absence variants, in which the restriction site
itself is polymorphic. These variants are dominant in the same way as AFLP
fragment patterns are dominant. In addition, the sequenced gDNA fragments
yield all of the usual types of sequence-based, codominant markers (SNPs, indels,
etc.), which in many cases are the only variants used in downstream analyses.

Numerous elaborations of the RAD-Seq principle have been developed. The
most widely used among these are GBS (Elshire et al. 2011) and double-digest
RAD-Seq (ddRAD) (Peterson et al. 2012). GBS involves no shearing and only a
single enzyme, which leads to lower-diversity libraries (i.e., only fragments of a
certain size flanked by the enzyme site are sequenced) that may be desirable in
some applications. An advantage of ddRAD over conventional RAD-Seq is that no
shearing or end repair is required, which reduces library development costs. As
noted above, multiplexing levels for restriction enzyme-based methods generally
need to be determined empirically. Many investigators have had success placing up
to 96 samples in a single flow-cell lane. The advantage of starting here is that useful
data will be obtained even in the event that coverage depth is insufficient at this
level of plexity. If such a test run indicates that fewer samples must be included per
lane (e.g., 48), the original library may be sequenced a second time to provide an
equivalent amount of data as two 48-sample runs, and the rest of the samples then
can be processed as 48 plexes.

GBS and RAD-Seq have become a mainstay of population genomic studies
across a wide variety of taxa, largely due to their flexibility and cost-effectiveness
(Gagnaire et al. 2013; Pascoal et al. 2014; Rheindt et al. 2014; Sobel and Streisfeld
2015). However, these methods have some limitations. The random nature of the
gDNA fragmentation process means that while a large number of variants may be
genotyped (typically 5,000-100,000), many fragments will arise from intergenic
regions not under selection. For species with reference genomes, or where there is a
reference genome for a closely related species, the GBS fragments can be posi-
tioned, and their relationship to genic regions that may be under selection can be
ascertained. However, GBS data frequently are generated for species that lack a
reference genome, and de novo assembly of such data, while possible, means that
the markers remain anonymous. In these situations, GBS may be better suited to
questions about neutral than selective processes. An additional issue with enzyme-
based methods is missing data, which may arise due to polymorphic restriction sites
that yield a fragment in some samples but not others, as well as due to insufficient
depth of coverage (Fig. 4). The latter can be overcome with more sequencing, but
the former cannot. It is not uncommon to see 90% or more of SNPs called from a
GBS dataset lost even with relatively liberal filters for missing data, quality, and
depth of coverage filters, and few SNPs typically remain where a complete dataset
is required. One way to overcome this limitation is by imputing missing data
(Browning and Browning 2016; Scheet and Stephens 2006), which may or may
not be successful depending on the haplotype structure of the population. Care must
be taken when imputing data, because a complete dataset will be output from the
relevant software, but the accuracy may be low and can only be ascertained
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Fig. 4 Illustration of the missing data problem for genotyping-by-sequencing/RAD-Seq. In this
experiment, libraries for 96 samples from an American chestnut (Castanea dentata) breeding
program were prepared using two restriction enzymes, a common cutter (Mspl) and a rare cutter
(PstI). Shown are the number of SNPs retained at various minor allele frequency (MAF) and
missing data cutoffs. For missing data, three thresholds were tested, corresponding to a maximum
of 90, 50, and 10% missingness across samples for a given SNP (J. Holliday, unpublished data).
Very few SNPs remained when the most stringent cutoff of <10% was used. The biological
samples for this experiment were a multigenerational pedigree that arose from an initial hybrid-
ization event between American chestnut and Chinese chestnut (Castanea mollissima), which was
aimed at introgressing alleles for resistance to Cryphonectria parasitica from Chinese chestnut.
The progeny of the initial cross was backcrossed over three generations to American chestnut and
subsequently intercrossed for two generations. The resulting high linkage disequilibrium in this
pedigree enabled a relatively high degree of accuracy in the imputation of missing genotypes. This
was assessed by randomly masking known genotypes and subsequently using Beagle software
(Browning and Browning 2016) to impute these masked genotypes. In this case, accuracy of
imputation was considered acceptable (~90%) for sites with <50% missing data. This illustrates
that while missing data is a significant problem for GBS and related genotyping approaches, the
genetic characteristics of the population can in some cases mitigate this issue

empirically, for example, by masking a subset of known genotypes, imputing them,
and comparing the genotypes called by the software with those known from the
sequencing run. A better way to assess the accuracy of imputation is to use a
reference panel of known SNPs ascertained by other means (e.g., a SNP array)
and to similarly compare the known and imputed genotypes (Li et al. 2009). While
this is sometimes possible, such reference panels are not usually available for non-
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model species of interest to population genomicists, at least not for the same SNPs
assayed in the GBS experiment. In spite of these limitations, enzyme-based library
preparation and sequencing methods are an attractive approach where funding is
limited and can yield a reasonably complete dataset comprising thousands of SNP
loci at a fraction of the cost of array-based genotyping.

5.3.2 Sequence Capture

Sequence capture is an alternative method for GCR that involves identifying
regions of interest, synthesizing complementary oligonucleotide baits (usually
60-120 bp), and using these baits to retrieve the genomic intervals of interest
through hybridization. While GBS can provide a reasonably complete dataset of a
few hundred to a few thousand SNPs at a relatively low cost, sequence capture
offers a number of advantages that make it the method of choice for GCR, in our
view. The original sequence capture method involved immobilizing the baits on a
glass slide, similar to early gene expression microarrays, hybridizing fragmented,
adapter-ligated gDNA to those fixed baits, and subsequently eluting the captured
fragments prior to sequencing (Hodges et al. 2007; Okou et al. 2007). The micro-
array method of capture was soon superseded by solution capture (Gnirke et al.
2009), which is more flexible in that array synthesis is not required. As all available
platforms have moved toward solution capture, we hereafter focus on this
technology.

The first step in a hybrid capture study is bait design. The nature and number of
baits are determined by the research question and may include a few genes or
genomic intervals (Nadeau et al. 2012), a broad selection of candidate genes
(Hebert et al. 2013), or the entire gene space (known as the “exome”) (Evans et
al. 2014a; Suren et al. 2016; Zhou and Holliday 2012). The usual process is to
identify regions of interest, which may be genomic intervals (where a reference
genome is available) or a cohort of sequence files, either from shotgun genome or
RNA sequencing. The primary companies that synthesize capture baits are Agilent
(Santa Clara, CA, USA) and NimbleGen (Madison, WI, USA), and each uses
proprietary software to determine exact bait positions relative to the sequence to
be captured. These software packages provide a score based on the likelihood that
capture will be successful. Because the capture hybridization is highly multiplexed,
there is a trade-off between matching the melting point of the different baits as
closely as possible and exclusion of desired targets on this basis. Hybridization
conditions must be fairly relaxed to allow for this variation, but not so lenient as to
encourage non-specific hybridization. Bait length factors into this specificity, and
the two companies have different strategies in this regard. Agilent designs baits of a
fixed length, 120 bp, whereas NimbleGen allows some variation in length to enable
design for a greater number of target regions. The problem with the latter strategy is
that short baits are more likely to hybridize with off-target regions of the genome
(Kiialainen et al. 2011; Suren et al. 2016). Off-target hybridization is not a problem
as long as the resulting data can be accurately mapped back to the reference
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Fig. 5 Comparison of exome capture in black cottonwood (Populus trichocarpa) (Zhou and
Holliday 2012) and interior spruce (Picea engelmannii x glauca) (Suren et al. 2016). Black
cottonwood has a high quality and well-annotated reference genome (Tuskan et al. 2006), which
was used to design baits around most exons and regions immediately upstream of genes. By
contrast, at the time of bait design, no reference genome existed for interior spruce (though a draft
genome has since been published (Birol et al. 2013)). Shown are cumulative distributions of
sequencing depth for on-target data (arising from designed bait regions), near-target data (that
mapped within a few hundred base pairs of a bait), and off-target data (not proximal to any
designed bait). Dashed lines illustrate the percent of target regions covered at 10X sequencing
depth and show much better recovery and sequencing of target regions for cottonwood than for
spruce. Almost 90% of targeted bases are covered at 10X or greater depth in cottonwood, whereas
for spruce only ~50% of targeted bases are covered at 10X or greater depth. Each of these
experiments comprised nearly the full exome for the respective species, with 16 samples pooled
in each lane of an Illumina HiSeq instrument. The black cottonwood example is adapted from data
reported in Zhou and Holliday (2012), and the interior spruce example is adapted from Fig. 1 of
Suren et al. 2016.

sequence, but it does introduce additional targets for sequencing that will affect
mean coverage if not accounted for in the multiplexing strategy. Another issue that
arises in bait design particular to species without quality reference genomes is the
presence of unknown intron-exon boundaries. Neves et al. (2013) designed baits for
capture in loblolly pine (Pinus taeda) prior to the completion of the reference
genome and found that as baits became more centered on subsequently identified
intron-exon boundaries, coverage decreased dramatically. While ignorance of these
splice junctions does not make sequence capture impossible, it does result in wasted
resources in terms of bait synthesis. The effects of designing an exome capture
experiment for species with and without a high quality reference genome are
illustrated in Fig. 5.

The issues of off-target hybridization and bait overlap with intron-exon bound-
aries illustrate another important point about sequence capture more generally:



Genotyping and Sequencing Technologies in Population Genetics and Genomics 109

mismatches are to some extent tolerated. This feature has several implications.
First, paralogous genes (i.e., genes related by descent from a common ancestral
DNA sequence) are likely to be simultaneously captured with baits designed for just
one of the paralogs. Where tandem or whole-genome duplication has led to
significant levels of paralogy in the study species, this fact needs to be considered
in the multiplexing strategy. Off-target capture varies depending on the platform
and species but should be assumed to comprise between 10% (for exome capture in
species with well-curated reference genomes) and 50% or more (for species lacking
a reference genome or with significant paralogy issues) of the completed library.
The second way that mismatch tolerance manifests itself is in what we might call
“near-target” capture. Near-target capture involves hybridization of a bait to a
¢DNA fragment, which arose through random shearing, comprised of both the
target sequence and flanking sequence. Studies routinely find near-target capture up
to ~200 bp from the nearest designed bait and in some cases more than that (Suren
et al. 2016; Zhou and Holliday 2012). In the case of exome capture, for example,
where baits are designed only for coding regions, near-target data may include
introns, untranslated regions (UTRs), and regions up- or downstream of UTRs.
How can a 120-bp bait capture gDNA >200 bp from the nearest target sequence?
The random process of shearing yields diversity in the length of gDNA fragments as
well as diversity in how much target sequence each contains. Shearing to mean
fragment size of 300 bp will yield some fragments >500 bp. When one of those
500-bp fragments contains the 120-bp target sequence, it is possible that it will be
captured in spite of its long, unpaired “tails.” Although truly off-target capture may
provide useful data, it is generally considered undesirable due to the sequencing
effort that is used for regions that were not designed to be part of the study.
However, near-target capture can prove an advantage. If the goal is to capture
ecologically relevant variation, which may reside in regulatory regions of introns,
UTRs, or promoters, capturing those regions without specifically targeting them
reduces the overall cost of the study (i.e., as the number of baits required increases,
so does the cost). We specifically took advantage of this outcome in revisions to an
exome capture bait design that first was used in a test for a few dozen samples and
subsequently for several hundred. Based on the results from the first cohort, we
strategically left gaps between baits of between 100 and 200 bp under the assump-
tion that those regions ultimately would be captured in spite of not having been
specifically targeted by baits, which worked well (Holliday et al. 2016; Zhou and
Holliday 2012).

The final consideration in the context of mismatch tolerance lies at the interspe-
cific level. Baits designed for one species are not solely useful for that species but
also for related species. This fact has been leveraged extensively in the realm of
phylogenomics, where baits for relatively conserved genes have been used for
capture in multiple species, even across relatively deep evolutionary divergences.
While such studies require a careful selection of a limited number of slowly
evolving regions of the nuclear or, more often, organellar genomes, capture of
more diverse targets can be successfully achieved in closely related species. For
example, a study in the spruce and pine genera yielded reasonably complete
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datasets in spite of several million years of intrageneric divergence (Suren et al.
2016). Alternatively, where the species of interest does not have a reference
genome, but a congener does, baits may be designed for the congener and used in
capture of gDNA for the focal species. Congeneric exome capture works reason-
ably well for divergence times up to a few million years at least, and there is often
very little difference in the efficiency of capture between the species for which the
baits were designed and congeners that are closely related.

With an appropriate bait design and synthesis completed, sequence capture
library preparation involves many of the same steps as other methods, including
fragmentation of gDNA, ligation of adapters, and amplification. Of course, the
primary difference is the hybridization itself, which usually involves incubation in a
thermocycler at an appropriate annealing temperature (usually ~65°C) for several
hours. One key consideration in this context is whether to pool different samples
before or after the capture hybridization step. The original solution-based hybrid-
ization protocols called for pooling after capture, which obviously increases the
sample-handling burden. This approach also gave the bait provider greater control
over pricing per sample. Today, pre-capture pooling is common. In the case of
Agilent, pricing is still on a per-sample basis but assumes pooling of 12—16 samples
in a single hybridization. Other providers leave the degree of multiplexing up to
individual labs, although they may provide guidance. We have had good results
pooling up to 16 samples in each exome capture (Zhou et al. 2014), which also
happens to be a reasonable number to multiplex in a single flow-cell lane for exome
re-sequencing. However, much greater levels of multiplexing are possible. For
example, a study in humans pooled 96 samples in a single capture when a small
number of gDNA targets were used (Neiman et al. 2012). The success of such high
levels of multiplexing depends on careful quantification of the individual samples
prior to pooling such that the bait:target ratio remains constant across samples.
Pooling such a large number of samples into a full exome capture would seem to be
advantageous in terms of cost even though the resulting library would need to be
sequenced several times (since a single lane would not yield sufficient coverage).
However, it is likely that competition/interference between baits and targets in such
a complex hybridization enforces limits on the number of samples that can be
pooled prior to capture. Moreover, the physical number of baits in a given aliquot of
the bait library may be limiting, although to our knowledge it is not possible to
calculate this stoichiometry (i.e., the information is proprietary). We are not aware
of any systematic studies that have investigated the limits of multiplexing for
exome capture across the different platforms, though it is likely to exceed the 16-
sample “rule of thumb” noted above. Such a study would have tremendous practical
value.

5.3.3 RNA Sequencing as “Natural” Genome Complexity Reduction

Given the trade-offs for GBS and sequence capture noted above, one wonders that
RNA-Seq is not more widely used in population genomics as a way to gather
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sequence data from the areas of the genome of most interest, the gene space. While
RNA-Seq has some of its own issues from the perspective of exome-wide variant
discovery, it is an underutilized tool in this context (De Wit et al. 2012). The
obvious advantage of sequencing cDNA is that it provides information on coding
regions of the genome without the need for synthesis of expensive baits and the
associated hybridization step. Baits are expensive, and while commercial RNA-Seq
library kits are also costly, the component reagents lend themselves to design of
custom Kkits that lower the price significantly. The main difference between
sequencing gDNA compared with RNA is the necessity to deplete the latter of
highly expressed ribosomal RNA. Fortunately, mRNAs have a natural molecular
tag, the poly-A tail, which has been used for decades as a means to separate mRNAs
from ribosomes. Poly-A isolation tends to be the most expensive step in custom
RNA-Seq protocols. The current approach typically employed involves oligo-dT-
bound magnetic beads, which are available from several providers (e.g., Dynabeads
from Thermo Fisher and Oligo d(T),s Magnetic Beads from New England Biolabs).
Because mRNA is labile, fragmentation can be achieved simply by the application
of heat (85-95°C) for a few minutes, which can be folded into the reverse tran-
scription reaction to produce cDNA (Hou et al. 2015). With custom-synthesized
adapters, coupled with the above methods, it is quite possible to put together an
RNA-Seq protocol that costs ~$20 per sample (perhaps even less). By contrast, the
list price of the NEXTflex RNA-Seq Kit (Bioo Scientific; one of the best values
currently) is more double than that. Although RNA-Seq for variant genotyping has
the advantage over GBS in that it targets the gene space and an advantage over
sequence capture in that it is less expensive, there are limitations. The most
important of these is the heterogeneity of the transcriptome. Natural abundance
varies among transcripts over several orders of magnitude, and the composition of
the transcriptome varies across tissues and over time. For these reasons, it is
advisable to capture the widest variety of tissues and conditions possible where
the goal is exome-wide coverage. In spite of this, some transcripts will comprise a
much greater proportion of the library than others, which presents two issues. First,
highly abundant transcripts will be disproportionately represented on the flow cell,
which means wasted sequencing effort. On the other hand, some transcripts will be
present at such low levels that they may be sequenced at a depth insufficient for
variant calling. Nevertheless, each method for GCR carries trade-offs, and RNA-
Seq is probably underutilized in population genomics to gain genotype data on
coding regions of transcripts that are reasonably abundant and whose abundance is
reasonably consistent across genetic backgrounds.

5.4 Whole-Genome Sequencing and Re-sequencing

The GCR methods described above represent the vast majority of population
genomic studies reported to date and reflect the relatively high cost of simply
sequencing the entire genome of a focal population. While whole-genome



112 J.A. Holliday et al.

sequencing (WGS) has been used in a few cases for population genomics (Evans et
al. 2014b; Jones et al. 2012; Soria-Carrasco et al. 2014), it is unlikely to become
common, at least at high coverage depth, using sequencing platforms currently
available. While the cost per base pair of sequence data has dropped precipitously
since the emergence of the Solexa technology, recent iterations of sequencing
chemistries and instruments have flattened this curve somewhat. As such, we do
not see the price of whole-genome sequencing becoming comparable with that of
genome complexity-reduced libraries, although this calculus depends on the size of
the genome under study. Many species of ecological interest have genome sizes that
exceed 1 Gb, and for such species WGS is currently vastly more expensive than
GBS and somewhat more expensive than sequence capture. On the other hand, if
one is fortunate enough to be interested in a species with a genome size on the order
of a few hundred Mb, WGS is a viable option (still much more expensive than GBS
and RNA-Seq, comparable to exome capture when done according to manufacturer
specifications, although see above). For species that fall in the >1 Gb category, or
where true genome-wide data is desired but funds are limited, other options exist.
These generally fall into two categories: genome skimming and pooled sequencing.
Genome skimming involves individually barcoding samples and sequencing them
to low average depth (e.g., 1X), which yields a very incomplete dataset (an average
depth of 1X leaves many bases unsequenced in each sample) (Straub et al. 2012).
However, such missing data can be overcome using advanced probabilistic bioin-
formatics approaches (Buerkle and Gompert 2013), particularly in populations with
high linkage disequilibrium. The other option, pooled sequencing, involves forgo-
ing individual barcoding. Instead, the goal is to sequence entire populations to a
reasonable depth (Schlotterer et al. 2014). In this case, individual genotypes are not
resolved, but accurate population allele frequencies may be obtained. As population
allele frequencies are the basis for many downstream analyses, this approach is of
use where the population is the ecological unit of interest. This approach has been
applied to a number of systems (Christe et al. 2016; Fabian et al. 2012; Fischer et al.
2013; Kofler et al. 2012). For example, a study in white poplar (Populus alba) and
European aspen (Populus tremula) scored approximately eight million SNPs from
pools of 24 samples and used these data to infer demographic history (Christe et al.
2016). Importantly, results from the demographic models were similar to those
inferred from RAD-Seq data, which showed that the Pool-Seq method is robust.
Theory and software tools are emerging to handle Pool-Seq data (Boitard et al.
2012; Kofler et al. 2011, 2016a, b), and we expect this method see extensive use in
the coming years.

6 Emerging Sequencing and Genotyping Platforms

The introduction of commercially available high-throughput sequencing platforms
in 2005 led to a boom in the amount of sequence data and drastically reduced costs.
Concordant with the precipitous decline in per-base sequencing costs is an
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exponential increase in the ability to conduct population genomic studies in model
and non-model systems. For example, the Illumina platform provides an unparal-
leled ability to generate informative markers from natural populations with little to
no preexisting genetic/genomic information, at very low cost. Along with these
advances, however, come new challenges: the shorter read lengths (35-700 bp)
limit inference by restricting analyses to smaller variants and also introduce biases
in the sequence data (Benjamini and Speed 2012). Additionally, de novo genome
assemblies are often more fragmented and gapped than those generated using older
approaches (Lee et al. 2016). Thus, the biggest innovations in sequencing technol-
ogy are platforms/techniques that cost-effectively generate reads in the range of 10—
100 kb, enabling the discovery of novel variants, improving the accuracy of
sequence capture, and expanding the ability to uncover variation in non-model
systems.

6.1 Illumina

Illumina offers a wide range of sequencing by synthesis (SBS) applications with the
throughput and turnaround time tuned to applications. Sequencing across these
systems proceeds through clonal amplification of DNA fragments containing adap-
tor sequences and reversible dye termination (for a detailed review, see (Bentley et
al. 2008). The available suite of sequencers, MiniSeq, MiSeq, NextSeq, HiSeq, and
NovaSeq (released in 2017), can generate from 7.5 to 6,000 Gb of data in as few as
4 h to 4 days, respectively. The benchtop sequencers MiniSeq and MiSeq range in
data output (7.5-15 Gb) and read length (150 and 300 bp); these systems are best
suited to small genomes (microbe, virus) and targeted sequencing (including
microbiome 16S sequencing on the MiSeq). The other benchtop system, NextSeq,
produces up to 120 Gb in 30 h and is particularly well suited to exome sequencing
and whole-transcriptome sequencing (from simple experimental designs). Perhaps
the most well-known system, HiSeq, is also the most versatile offering a rapid run
mode on the 2,500 where ca 50 Gb can be generated from a two-lane flow cell in
about 7 h, providing a great cost/turnaround time balance for genotyping-by-
sequencing applications. For re-sequencing, pooled sequencing, RNA-Seq, or
large (to very large)-scale reduced representation designs, the HiSeq 4,000 can
generate up to 1.5 Tb of data from an eight-lane flow cell in just under 4 days, and
the emerging system NovaSeq promises to deliver even more ca. 6 Tb in just 3 days.
In addition to these systems, in 2012, Illumina acquired a synthetic long-read
technology, Moleculo — now called TruSeq Synthetic Long Read. In this library
preparation approach, fragments up to 10 kb are sheared, cloned, and uniquely
barcoded for short-read sequencing. The short reads are assembled into synthetic
long reads or fragments based on barcode clustering. The diversity of systems, input
flexibility, throughput, and very low error rate make Illumina the most cost-
effective and widely used sequencing platform (Reuter et al. 2015).
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6.2 Pacific Biosciences

The single molecule real-time (SMRT) sequencing strategy was one of the first
long-read platforms commercialized (Pacific Biosciences) and exploits a strand
displacing polymerase to sequence the same molecule multiple times generating a
clone-free, circular consensus sequence (Travers et al. 2010). This approach
improves accuracy and reduces biases associated with cloning-based approaches
(e.g., GC bias in Illumina-derived data); thus PacBio error is random. The heart of
this platform is the SMRT cell which contains the 1 x 10-21 L (zeptoliter) zero-
mode waveguide (ZMW) wells (Goodwin et al. 2016). On the RSII system, each
SMRT cell contains 150,000 wells generating ca. 1 Gb per cell, whereas cells for
the recently introduced Sequel system contain 1,000,000 wells generating ca. 8 Gb
per cell. Both systems produce mean read lengths that are typically >14 kb, but read
length is a log normal distribution such that there are few very long reads (up to
100 kbp) and many reads <14 kb. This read distribution and a high error rate
relative to [llumina (Berlin et al. 2015) require relatively high coverage for accurate
genotyping (>25X). As more Sequel systems become available, the cost of gener-
ating sufficient coverage with only PacBio reads is falling; however, hybrid
approaches using Illumina short reads for error correction are quite cost-effective
(Lee et al. 2016). The power of using long reads to uncover important variation was
recently demonstrated via exome sequencing of uncharacterized regions of the pine
genome (Neves et al. 2013). In this study, long reads were used to improve the
accuracy of de novo assemblies for the targeted exome sequences, resulting in
better capture of full-length regions, and reduce complexity resulting from high
levels of heterozygosity.

6.3 Oxford Nanopore

Since introducing the MinION in early 2014, Oxford Nanopore Technologies has
emerged as a leader in commercializing nanopore sequencing. Like the SMRT cells
for PacBio, nanopore sequencing relies on cells with hundreds of microscopic
wells; only at the center of these wells are synthetic bilayers with enmeshed
biologic pores (Wang et al. 1998). Also like PacBio, the reads are “single molecule”
so a distribution of read lengths is generated from 6 kb up to >60 kb and error rates
are high (reported rates range from 4 to 15%). The MinlON system is a very
compact unit (about the size of an eyeglass case) with a USB adaptor that connects
to a laptop making the unit extremely portable; however throughput remains low at
ca. 5-10 Gb flow cell. This low throughput, combined with high run failure rate and
high error rate, has limited adoption of this platform. The development of a
benchtop system, PromethION, which is a cluster of up to 48 flow cells, can
generate 240—480 Gb, in a footprint no larger than a business class desktop. The
small footprint, library simplicity, read lengths, and speed of data acquisition
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suggest that this platform will find a niche. Indeed, the portability of this unit was
instrumental in determining population structure among Ebola strains during an
outbreak (Quick et al. 2016).

6.4 10X Genomics

A synthetic long-read system like TruSeq from Illumina, 10X Genomics, adds an
encapsulating system (GEM) and retains very large fragments (100 kb) within a
micelle for barcoding. This approach however requires an additional microfluidic
device in addition to the underlying sequencing (for a review, see Goodwin et al.
2016). While this approach generates long reads with very high accuracy, it is with
a higher cost, one that is commensurate with that of true long reads at sufficient
depth for similar accuracy (Lee et al. 2016). This system has already been used in a
hybrid approach combining with a true long-read platform for error correction and
novel variant discovery (Mostovoy et al. 2016). A distinct advantage of this system
is the potential for cell sorting and single-cell sequencing, particularly single-cell
RNA-Seq via the Chromium™ Single Cell Controller, enabling the comparison of
populations of cells.

7 Future Perspectives

With an expanding repertoire of sequencing platforms and the precipitous decline
in per-base costs (exceeding Moore’s law), the ability to generate sufficient data for
any given population genomic question is quickly becoming trivial. Whether the
protocol requires identification of structural variants, sequencing 1,000 whole
genomes to a depth of 10X, or a nimble sequencer that can be used in remote
areas, there is a platform available. The ability to combine platforms or tailor inputs
to specific needs further amplifies this flexibility. In spite of the increase in
throughput with each new chemistry and platform, the per-base cost of data
generated on I[llumina systems has flattened somewhat in recent years. The advent
of technologies that deliver more data at lower costs (e.g., NovaSeq, Sequel, and
PromethION) brings the promise of a second revolution in sequencing/genotyping.
Nevertheless, the goal of characterizing genome diversity “telomere to telomere”
(Shendure et al. 2017) remains elusive, particularly for species with complex
genomes containing abundant repetitive elements. Emerging long-read sequencers
(Nanopore, PacBio) have begun to address the assembly problem associated with
short reads, and we expect future technological developments to further advance
this objective. This increased competition in the sequencing market should allow
for generation of comprehensive genomic datasets for non-model species, which
comprise the vast majority of species of interest in population genomics, at a depth
and quality once reserved for model systems.
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Abstract With the rapidly dropping costs of sequencing, it is now possible to study
the genomes and populations of any species to obtain precise evidence about their
evolution and adaptation. Here, we will give an overview of software tools for
processing raw sequencing reads into population-level data, and then go through
the common population genomics analyses on these data and computational tools
developed for them, as well as give insights into the computational solutions and
their efficiency.

We first address the tools and pipelines for processing next-generation sequenc-
ing data from heterogeneous data sources into population-level data comprising
single nucleotide polymorphisms or copy-number variants. After a brief discussion
on all-purpose software tools for carrying out standard population genetic analyses,
we provide a more detailed overview of different types of population genomics data
analyses, loosely grouped under population genetics and demography, evolutionary
population genomics, phylogenomics, and comparative genomics, as well as suggest
current tools for the analyses. Under population genetics and demography analyses,
we discuss methods for exploring population genomic diversity and genetic struc-
ture, population admixture, interspecific introgression events, and inferences about
overall population history. The evolutionary genomics analyses include methods
and tools for studying patterns of selection, such as hard and soft sweeps
and population differentiation but also genome-wide association studies and
pan-genomes between individuals and populations, as well as paleogenomics
research. Under phylogenomics and comparative genomics, we provide an overview
of the computational tools used for studies on polyploid species, phylogenomics, and
comparative genomics of gene space evolution within and between species.

Keywords Admixture - Data analysis - Evolutionary population genomics -
Introgression - Paleogenomics - Polyploidy - Population genetics - Population
genomics - Single nucleotide polymorphisms - Software

J. Salojdrvi (X3)
School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
e-mail: jarkko @ntu.edu.sg

Om P. Rajora (ed.), Population Genomics: Concepts, Approaches and Applications, 127
Population Genomics [Om P. Rajora (Editor-in-Chief)],

https://doi.org/10.1007/13836_2018_57,

© Springer International Publishing AG, part of Springer Nature 2018


http://crossmark.crossref.org/dialog/?doi=10.1007/13836_2018_57&domain=pdf
mailto:jarkko@ntu.edu.sg
https://doi.org/10.1007/13836_2018_57

128 J. Salojérvi
1 Introduction

The influx of new genome data is bringing about a golden era for research on
populations; the genomic footprints of demography, evolution, and adaptation of a
wide variety of species can now be studied. Population genomics research is a field
where population genetics studies are carried out with information derived from the
whole genome data. This may sound like a trivial extension, but in fact the avail-
ability of full genomes transforms all analyses by introducing the well-known
statistical challenge of high-dimensional data, the notorious “small n, large p”
problem, into genetics. A second challenge comes from theory, since simplifying
assumptions made by many methods, for example, independence of different geno-
mic loci in many likelihood-based models, do not necessarily hold. On the other
hand, analyzing whole genomes instead of a small set of markers opens up new
opportunities for obtaining information on the populations and species, its demog-
raphy, selection pressure, evolution, and the underlying causal variants.

In this chapter, we will go through different analyses that can be carried out with
the population-level whole genome sequence (WGS) data. Many of the methods are
implementations of theoretical research on population genetics and analyze single
nucleotide polymorphism (SNP) data. Therefore, we start by introducing the stan-
dard methodology for obtaining SNPs from raw next-generation sequencing reads.
Since the standard SNP calling software is not able to detect larger genomic
insertions, deletions, and duplications, we address the software for detecting copy-
number variation separately. We will then go through the general methods and
software tools for analyzing aspects of population genetics and demography, evo-
lutionary genomics, and further expand the discussion to other types of data sets such
as pan-genomes and the challenges in analyzing more complex data, for example,
sequencing reads from polyploid species or ancient DNA. We loosely group various
population genomics analyses under three categories: population genetics and
demography, evolutionary population genomics, and phylogenomics and compara-
tive genomics.

2 Single Nucleotide Polymorphisms

Most of the theory of genetics has been derived under the assumption that genome
evolves through random point mutations, single nucleotide polymorphisms (SNPs),
which are inherited from parent to child. The coalescent model further assumes that
all genome sequences trace back to a common ancestral sequence, and this time can
be estimated given the number of mutations introduced to the genome per genera-
tion. Altogether, this means that it is possible to identify the relationship between
samples from the proportions of shared SNPs and, on larger time scales, to look at
admixture between subpopulations and introgression between species by analyzing
common SNPs.
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In this section, we discuss how to obtain the SNPs (SNP calling) from next-
generation sequencing data. This process involves several steps, out of which the
first one is perhaps the most important, quality control of the sequencing reads.
Therefore, we will initiate this Section by discussing the general aspects that may
compromise high-quality SNP calling and then go through the steps required for
SNP calling. In case of an existing reference genome, the procedure is very similar
for all data types, including whole genome sequencing, restriction site-associated
sequencing (RADseq), RNA sequencing, or exome sequencing data. Protocols exist
for SNP calling using specific set of tools (see, e.g., DePristo et al. 2011; Nielsen
et al. 2011; Langmead and Salzberg 2012), but overall the steps for obtaining the
SNPs is similar, no matter which set of tools are used (Olson et al. 2015). These
general procedures and standard tools are discussed in Sect. 2.2.

Alternatively, a reference genome for the studied species may not be available.
Nevertheless, populations can be analyzed from marker-based sequencing data, such
as RADseq, or transcriptome sequencing. We will discuss this methodology in Sect.
2.3. Finally, after the SNP data has been obtained, it needs to be filtered for high-
quality SNPs and annotated, if this information is available. Furthermore, more
accurate information can be obtained by phasing the genotype data. These issues
will be discussed in the concluding subsections.

2.1 Quality Control Is Essential for All Data

High-quality data is paramount for all data analyses, and population genomics is not
an exception. With noisy data or data from poorly designed experiments, all infer-
ences will be unreliable or possibly even false. An inherent problem in high-
dimensional data is that even if the results are random, always something that
“makes sense” can be found out by cherry-picking the data. To avoid these issues,
careful preprocessing and appropriate filtering of the data is essential, as well as
carrying out statistical tests of the claims and making sure that the number of
individuals in the study is sufficient.

2.1.1 Issues Affecting the Quality of the SNP Calls

Below we address some of the quality issues affecting the reliability of the inference
with population data.

Genome Quality

The quality of the reference assembly is essential to all genomics work. For

population genomics, the reference gives information on the order of the SNP loci
across the genome and provides a way to link and compare the SNP variation



130 J. Salojérvi

between individuals. Except for genomes assembled from Sanger sequence data, the
quality of older genome assemblies is generally worse than in more recent genomes
assembled using a combination of long-read platforms (PacBio, Oxford Nanopore)
and high-throughput short-read technology (i.e., [llumina, Ion Torrent, BGISEQ).

Many population genomic analyses, such as admixture or introgression analysis,
assume independent polymorphisms, and they are not as heavily affected by poor
reference quality. An exception is a so-called over-assembled genome, where the
assembly size is larger than the true genome size (estimated by, e.g., flow
cytometry). The most common reason for over-assembly is high heterozygosity,
which results in different assembly paths for different haplotypes, and, therefore,
different contigs can map to the same physical region in the genome. When the same
genomic locus is present twice in the reference assembly, short reads from
resequenced individuals are mapped to either of these regions, depending on
which haplotype is more similar. This can cause artifacts, such as regions of low
genomic variation in the population; these in turn could be falsely interpreted, for
example, as selective sweeps.

When working with a non-model organism, it may be necessary to test the quality
of the genome assembly used as reference. For example, Quast gives an overall
summary of the assembly, its size, and length distribution of the contigs and scaf-
folds (Gurevich et al. 2013). More arduous but also comprehensive analysis tool is
REAPR which also estimates the amounts of assembly errors in the genome by
analyzing sequencing data mapped to the reference (Hunt et al. 2013).

Read Length

Resequencing is usually carried out using short-read sequencing platforms. For
example, in [llumina HiSeq platforms, the resulting reads are typically paired-end,
meaning that in an insert size library of ~500 bp, the 150 bp from the ends of the
fragments are read by the platform. For short reads, highly repetitive sequences pose
a problem, since the read length may not be enough to identify a unique region in the
genome. Nonunique regions are typically outside of gene-coding regions (repetitive
DNA), but ambiguous mapping is possible also in recently duplicated genes or
segmental duplications. Similarly, non-ambiguous or false mappings may occur if
the species has high nucleotide diversity and, therefore, high variation in the
genome. Additionally, in case of autopolyploid species, the amount of ambiguously
mapping reads can be huge.

Coverage

Even though the cost of sequencing has been dropping rapidly, it is still expensive to
sequence populations of individuals. Therefore, in many population genomics
studies, the coverage — how many times an individual locus has been sequenced
with short reads — of resequencing is limited. This leads to problems in SNP calls.
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For example, if a locus has been sequenced to a coverage of 4, and each read is from
either one of the haplotypes with the probability of 0.5, there is overall a2 x 6.25%
chance that all the reads are from the same haplotype, meaning that a heterozygous
call is missed with 12.5% probability. Luckily this problem will be quickly allevi-
ated, since with the recent extremely high-throughput platforms, such as NovaSeq,
the library construction will be the highest cost, not the sequencing itself.

Genome Annotation

High-quality genome annotation is essential when evaluating the SNP data, since the
annotation information can be used to filter the data for neutral SNPs, such as
fourfold degenerate or intergenic SNPs, or then to find SNPs with putative causal
effect; SNPs that cause a non-synonymous mutation in the protein sequence encoded
by the gene.

2.1.2 Quality Control Tools for Sequencing Data

Quality control of the sequencing data is the essential first step in data analysis. The
most common tool for monitoring the quality of the sequenced library is FASTQC
(Andrews 2010), which provides summaries of the library size and quality scores of
the reads, as well as lists overrepresented sequences. The tool also gives the number
of reads in the sequencing library, which can be used to calculate the expected
average coverage along the reference genome. Based on this, it can be decided
whether more sequencing is needed to obtain high enough coverage for data
analyses.

Furthermore, the KmerGenie software can be used to give an estimate of the
sequencing coverage, genome size, as well as best k-mer value (division of data into
substrings of length k) for subsequent analyses (Chikhi and Medvedev 2014).

2.1.3 Read Trimming

The next step after ensuring the quality of the data is to trim it by removing
low-quality data and adapters used in sequencing. Based on the output from the
quality control, the parameters for read trimming software, such as Cutadapt (Martin
2011) or Trimmomatic (Bolger et al. 2014) can be tuned to filter out low-quality
data. The tools also remove the adapters used in sequencing and therefore prepare a
set of reads that are ready to be mapped to the genome. In Cutadapt, the adapter
sequences are defined by the user, whereas Trimmomatic has a library of the
common adapters used in Illumina TruSeq protocols. However, in exotic cases,
the adapters need to be defined by the software user.
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In addition to specific tools developed for read trimming, some analysis pipelines,
such as Stacks, developed for RADseq data (Rochette and Catchen 2017), incorpo-
rate their own read trimming modules.

2.2 Reference-Based SNP Calling

SNP calling methodology can be split into two general categories based on the
availability of the reference genome. In case of reference-based SNP calling, all of
the reads are first mapped to the genome using a fast alignment method, and then a
SNP caller software is invoked.

2.2.1 Read Alignment

Over the years, several tools have been developed for read alignment. In order to
carry out fast searches through the genome, the first N bases (typically 15-25 bases)
of the reads are used as a seed region for narrowing down the searches. First-
generation tools, such as Bowtie (Langmead et al. 2009) and MAQ (Li et al.
2008), allowed no mismatches in the seed region and therefore the first 15-25
bases of the reads had to align to the reference without any gaps or errors. The
second-generation methods allow a few gaps and errors (or, variation) also in the
beginning of the reads. With the second-generation methods, read mapping has
become a standard procedure. Current state-of-the-art tools include bwa-mem
(Li 2013), Bowtie2 (Langmead and Salzberg 2012), and HISAT2 (Kim et al.
2015); all use similar algorithms, such as suffix tree and Burrows-Wheeler trans-
form, to carry out a fast search for the matching locus (Canzar and Salzberg 2017).
An outcome of the methods is a Sequence Alignment Map (SAM) or Binary
Alignment Map (BAM) file.

More recently, a third generation of ultrafast alignment methods using
pseudoalignment have emerged. For example, minimap2 (Li 2018) can obtain
accuracy similar to second-generation mapping tools in standard alignment tasks
and is superior in aligning long reads, for example, from PacBio sequencing.
However, in some cases, the method can also be slower than second-generation
methods, for example, with short-read data having a high error rate or short reads
from Hi-C data.

2.2.2 SNP Calling

After the sequence alignment to the reference has been carried out, the actual SNP
calling can be done. A standard procedure requires several steps, including adding
read group information, sorting BAM files according to genomic coordinates of the
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mapped reads, removing or marking PCR duplicates, and the eventual SNP calling,
resulting in a Variant Call Format (VCF) file (Auwera et al. 2018).

Since sequencing coverage for some individuals can be low, current methods for
SNP calling carry out this step by genotyping whole populations together instead of
analyzing one individual at a time. This helps in genotyping loci with low sequence
coverage, since information from other individuals can be used to infer the most
likely allele configuration. We will next go through five alternative tools for SNP
calling.

Genome Analysis Toolkit (GATK)

Perhaps the current de facto standard for SNP calling, the genome analysis toolkit,
GATK (McKenna et al. 2010; DePristo et al. 2011; Auwera et al. 2018), is a set of
tools developed by Broad Institute. Even though not always the best one in com-
parisons (Hwang et al. 2015; Sandmann et al. 2017), it is the common benchmark for
all methods. The reason for popularity is that the software is well maintained due to
resources available from a large institute, and the user community and developers are
very active on the web. Therefore, in case of problems, help is always available.

The GATK SNP calling proceeds through a pipeline where the first step is to
estimate a so-called general VCF (gVCF) file containing genotype likelihoods for a
single individual at every site. The idea is that the file summarizes all the necessary
information for subsequent SNP calls and is much faster to handle than large BAM
files. In the second stage, joint genotype calling is carried out for a population, each
individual represented by its own gVCF file. The two-stage process makes it faster to
carry out SNP calling for different populations, since in a gVCF file, much of the
necessary preprocessing is already carried out and only joint genotyping needs to
be done.

SAMtools

Perhaps the simplest and fastest SNP calling software pipeline, SAMtools calls the
SNPs from a BAM file by forming a pileup of the reads, filtering them by mapping
quality, and then performing SNP calling using bcftools (Li et al. 2009; Li 2011).
Although typically used for SNP calling for single individuals, also multiple
individual SNP calls are possible.

Freebayes

Perhaps the best competitor to GATK, Freebayes uses Bayesian inference to
determine the genotype configuration at a given locus by using Ewens sampling
formula as the prior (Garrison and Gabor 2012). A particular strength of Freebayes



134 J. Salojérvi

is its haplotyping which is obtained by read-backed phasing, identifying reads that
span several SNPs at the same time.

ANGSD

Developed especially for low-coverage sequencing data, the benefit of Analysis of
Next-Generation Sequencing Data, ANGSD, is that the whole implementation of the
analysis pipeline is probabilistic (Korneliussen et al. 2014). Calculations are carried
out using phenotype likelihoods and probabilistic models, instead of reverting to
explicit SNP calls that lose information. This makes the tool the best option for
low-coverage sequencing data, since uncertainty regarding the SNP calls can be
handled optimally. The downside of this tool is that the manual is not very detailed
and the methods are described only in the scientific publications, making it difficult
to link the processing options with the methodology used.

DeepVariant

DeepVariant is a recent method that uses deep belief networks implemented in
Google TensorFlow machine learning library to call SNPs (Poplin et al. 2018). In
the original publication, the method performed significantly better than comparison
methods GATK and Freebayes. The method is computationally considerably more
demanding but is the first SNP caller able to use graphical processing units (GPUs)
to parallelize the SNP calls and, therefore, accelerate calling.

2.2.3 SNP Annotation

After obtaining a VCF file, the SNPs can be annotated based on the genome
information. This means identifying the locations of the detected SNPs inside the
gene models and possible regulatory elements and subsequently assigning a possible
functional impact for the SNPs. Annotation tools include SnpEff (Cingolani et al.
2012a, b), Annovar (Wang et al. 2010), and the Ensembl Variant Effect Predictor
(McLaren et al. 2016).

2.3 De Novo SNP Calling

At the time of writing this chapter, the NCBI genome database listed reference
genomes for 1,739 animals, 639 plants, and 3,456 fungal species. This is a minute
amount of total life diversity on earth, and therefore, for most species the reference
genome is not available. In this case, population analyses have been carried out



Computational Tools for Population Genomics 135

mostly using marker-based analyses. Restriction site-associated DNA sequencing
(RADseq) and its variants are the prevailing method; see Andrews et al. (2016) for a
review of different RADseq technologies. Other methods include transcriptome-
based analyses, such as RNA sequencing and exome capture sequencing. Compared
to RADseq, there are considerably less transcriptome-based population genomics
studies, mainly because of the higher costs; RNA sequencing is currently consider-
ably more expensive than whole genome sequencing or RADseq. Other issues
include the low stability of the RNA molecules and the fact that the expression
profile depends on tissue, time of the day, and environmental conditions. In
transcriptome-based analyses, first a complete transcriptome is constructed by de
novo assembly using software such as Trinity (Grabherr et al. 2011) or Oases
(Schulz et al. 2012); see Geniza and Jaiswal (2017) for a review of different tools.
Once assembled, the transcriptome can be used as a reference for variant calling. For
example, Trinity includes a script for running GATK software using STAR aligner
(Dobin et al. 2013).

In case of RADseq, the current industry standard tool is Stacks (Rochette and
Catchen 2017). An alternative tool for this is PyRAD (Eaton 2014), which is better
able to tolerate indels, making it a preferable choice when analyzing more divergent
species. The SNP calling procedure in both methods is similar, albeit the actual
methodological implementations differ. In Stacks, the RADseq analysis is initiated
by clustering the reads, first into putative alleles and then putative loci within a
sample. Stacks has parameters controlling the number of identified alleles, such as
minimum read coverage and number of mismatches allowed in a read; similar
parameters exist for further clustering of the alleles into genomic loci. After the
within-sample loci are identified, they are matched between samples to find homol-
ogous sites, all together forming a catalog of shared loci. Again, a certain number of
mismatches are allowed for homologous loci.

The deficiency of RADseq approaches is obviously the lack of reference genome,
which makes it difficult to choose “correct” parameters for clustering. The robust-
ness of the clustering parameters has been explored, and there exists a rule of thumb
(Paris et al. 2017). However, the rule was obtained by analyzing species with low
effective population size and, therefore, low heterozygosity. In plants, high hetero-
zygosity is not uncommon, and therefore having several SNPs per one RADseq read
is highly likely, suggesting more loose clustering parameters. Additionally, in
reality, the SNP density varies by genomic region, and therefore, uniform clustering
parameters could introduce a bias in the data.

2.4 SNP Filtering

The aim of SNP calling tools is to detect variants and assign a quality score to assess
the reliability of the call. At the next stage, the data will then be filtered to select
high-quality SNP calls. The selection of filtration parameters is specific to the data



136 J. Salojérvi

set and the analysis task at hand and depends on the overall mapping quality and
SNP call accuracy observed for the population. In this step, data is usually analyzed
by developing summaries of the quality values present in the variant call format
(VCF) file, for example, by reading the VCF file into R and visualizing the
distribution of mapping quality values and read coverage on the SNPs, for example,
by density plots. After identifying the proper filtration parameters for removing
SNPs with low quality or coverage, there are several software tools to carry out
filtration, such as the tools implemented in GATK (Auwera et al. 2018), SnpEft/
SnpSift (Cingolani et al. 2012a, b), or vcftools (Danecek et al. 2011).

During SNP filtering, it is typical to filter out also rare SNPs. However, this
should be done with careful consideration since the filtering affects all subsequent
analyses; model-based admixture methods such as STRUCTURE have been
reported to be sensitive to MAF threshold (Linck and Battey 2017), and even
principal component analysis produces varying results with different MAF thresh-
olds (De la Cruz and Raska 2014), albeit to a lesser extent (Linck and Battey 2017).
Naturally, also, methods analyzing site frequency spectrum and rare alleles will be
affected. Additionally, the proportion of rare SNPs that significantly contribute to
phenotypic traits is large. For example, in Arabidopsis GWAS, 35% of Bonferroni-
corrected significant associations were observed with SNPs having MAF less than
5%, and further 28% had intermediate MAF of 5-10% (Togninalli et al. 2018).

2.5 Phasing

More accurate genetic analyses can be carried out if the genome data can be phased,
that is, to be able to produce SNP data where the haplotypes have been identified.
There are essentially three methodologies for obtaining phased data. First approach
is read-backed phasing, which detects so-called haplotype blocks by identifying
reads that span several SNPs and, therefore, find linked alleles. Using mapped reads,
these blocks can be extended until an ambiguous region is encountered. The end
result is a genome with haplotype blocks, regions where phasing has been obtained,
spanned by unphased regions. A common problem in these approaches is that
finding the relative phasing of different haplotype blocks is not possible based on
short-read data. Read-backed phasing is implemented, for example, in GATK and
FreeBayes software.

Phasing can also be carried out with trios, data consisting of parents and their
progeny. In this case phasing is obtained by looking at recombination and SNP
patterns observed in progeny. One such tool for phasing is whatsHap (Patterson
et al. 2015). Finally, computational phasing can be carried out in large
populations using software such as Beagle (Browning and Browning 2007) and
Eagle2 (Loh et al. 2016).
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3 Copy-Number Variation

In addition to SNPs, genomes contain a large number of structural variants (SVs):
insertions, deletions, inversions, or copy-number variation. This genomic variation
is an important mechanism for evolution and adaptation (Iskow et al. 2012). The
standard SNP calling software processes only reads that are mapped to the reference
with high confidence and therefore is able to detect only very short, few base pair
insertions or deletions. In order to detect large indels and copy-number variation,
specific tools for detecting structural variants have been developed. The methods can
be categorized into two groups based on the data analysis type. In the first category,
the methods analyze the paired-end and split reads to detect anomalies such as
paired-end reads where only one end maps to the reference genome, or reads
where the insert size based on mapping deviates from the library insert size, or
reads where the orientation of the different ends is altered. An example of such
software is DELLY (Rausch et al. 2012).

The second category of methods for detecting SVs is to identify regions where
read coverage deviates from the average read coverage across the genome. For
example, CN'Vnator (Abyzov et al. 2011) monitors the read-depth along the genome
and identifies regions that deviate from the mean read depth. Methods also exist
which combine the two sources, such as LUMPY (Layer et al. 2014), which
combines split-read analysis and read coverage analysis using a probabilistic
model to make a combined prediction of the SVs.

Most user-friendly tool for SV analysis is SpeedSeq (Chiang et al. 2015), which
implements a full pipeline for SV calling. It uses LUMPY to initially detect SVs and
then read-depth analysis by CNVnator to detect SVs that were not detected by
LUMPY because of unmappable or repetitive sequence. Finally, it uses SVTyper
for refining the SV breakpoints.

Genome STRucture in Populations (Genome STRiP) is a 12-stage SV discovery
pipeline developed by Broad institute (Handsaker et al. 2015). For a given uniquely
alignable genomic region, Genome STRiP models the distribution of read depths
observed in the individuals using constrained Gaussian mixture models. The model-
based approach makes it possible to estimate the most likely copy number for each
genome and the confidence of the assignment. Mainly developed for humans, the
software utilizes pre-computed metadata identifying the uniquely alignable regions
from reference genome. However, for other species it is possible to set up the
necessary metadata files using the tools in the Genome STRiP package. An outcome
of the SV calling software is a file following the VCF format.

4 Population Genomic Analyses Using SNP or Structural
Variant Data

After SNP calling, annotation, and filtering steps, the genotyping of the individuals
has been completed, and the data is ready to be analyzed. In this section, we will go
through some of the most common analyses for population genomic data and the
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Fig. 1 In general, population genomic analyses can be split into research on population genetics
and demography, evolutionary population genomics analyses, or phylogenomics and comparative
genomics. Simulations can be run in parallel to all the analyses in order to test different evolutionary
scenarios or the robustness and performance of new methods

available software tools. In addition to obtaining overall population genetic param-
eters that characterize the population, the population genomic analyses carried out
with the data could be loosely grouped into the following three not so distinct
categories: population genetics and demography, evolutionary population genomics,
and phylogenomics and comparative population genomics. These are illustrated in
Fig. 1.

4.1 All-Purpose Tools for Common Population Genetic
Analyses

General-purpose analysis tools for population data are implemented in vcftools
(Danecek et al. 2011), PLINK (Purcell et al. 2007, Chang et al. 2015), various R
packages, and other software.
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4.1.1 Vcftools

The vcftools is a simple tool for filtering the population genotyping data for certain
sites, individuals, or allele frequency. Additionally, it can estimate standard popula-
tion genetic parameters, such as linkage disequilibrium, population differentiation in
terms of Fgr, and heterozygosity. The downside of the tool is that parallelization is
not implemented.

4.1.2 PLINK

PLINK is a highly efficient tool for population genetic analyses, incorporating
several different analyses, such as kinship estimation with identity-by-descent
(IBD) method. The software can read-in VCEF files, but after initial import, it uses
its own data format, ped. The benefit of the file format is that analysis is extremely
fast, but the encoding restricts the analysis to biallelic SNPs.

413 R

The number of R packages developed for analyzing population genomics data is
rapidly expanding. Here, we suggest the reader to look into the functionalities in
Pegas (Paradis 2010), PopGenome (Pfeifer et al. 2014), evobiR (Blackmon and
Adams 2015), SNPRelate (Zheng et al. 2012), phangorn (Schliep 2011), and APE
(Paradis et al. 2004) packages.

4.14 ANGSD

Designed for low-coverage sequencing data, the Analysis of Next-Generation
Sequencing Data, ANGSD, has implementations for estimating the general popula-
tion genetic parameters but also more advanced analyses such as admixture analysis
though NGSadmix (Skotte et al. 2013) and estimation of IBD probabilities with
NGSRelate (Korneliussen and Moltke 2015) are available.

4.2 Population Genetics and Demography

The first category of analyses, population genetics and demography, incorporates the
overall analysis of the population genomic diversity, population genetic structure,
and population history and demography. The current genetic diversity of the popu-
lation results from a complex history of alternating population size, gene flow
between populations, possible introgression from other species, as well as selection
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and evolution. The general descriptive population genetic statistics such as nucleo-
tide diversity will give an overall characterization of the population, but in order to
properly analyze the different historical events, it is important to first obtain an
understanding of the current population structure.

The key rule in all data analysis is to initiate it with models, which make the least
amount of assumptions on the data, and proceed incrementally to more advanced
models that make stronger modeling assumptions as more understanding of the data
is obtained. Similarly, also the analysis of SNP data from populations is initiated by
visualizing the overall variance of the data with principal component analysis (PCA).

4.2.1 Population Structure

Since most of the SNPs in the genomes are likely neutral, the global pattern of SNPs
is largely due to drift processes and genetic relationships between the samples. This
so-called population structure, differences in genetic ancestry of the sampled indi-
viduals, explains also much of the phenotypic variation observed in populations.
Population structure can be used to estimate the relationships between samples and
also as a null hypothesis where the observed phenotype is explained by drift
processes.

The best tool for providing an initial view of the data and the population structure
is principal component analysis (PCA), since it makes the least number of assump-
tions about the data. Perhaps the most common tool for PCA is EIGENSTRAT
(Price et al. 2006), part of the EIGENSOFT package (Patterson et al. 2006). The
downside of the tool is that the VCF file containing the SNPs needs to be converted
to its own internal format before analysis. The package has tools for the conversion
(convertf), but it doesn’t have direct converter from VCF. Therefore, a VCF file
needs to be first converted to PLINK format and that in turn to EIGENSTRAT. In
addition to EIGENSTRAT, principal component analysis can be carried out in
PLINK (Chang et al. 2015), and various packages in R programming language,
for example, SNPRelate (Zheng et al. 2012), PCAdapt (Luu et al. 2016), and a
combination of Adegenet (Jombart 2008) and ade4 (Dray and Dufour 2007). A
complementary approach to PCA is a nonlinear PCA, known also as principal
coordinate analysis or multidimensional scaling (MDS). The MDS is implemented,
for example, in PLINK and Adegenet/ade4.

Instead of measuring purely the Euclidean distance between samples, there exist
also genetically motivated ways of estimating relatedness, such as identity-by-state
(IBS) and identity-by-descent (IBD) analyses. IBS analysis estimates the proportion
of shared SNPs, whereas IBD estimates the proportion of haplotype blocks inherited
by descent. Different approaches for IBD have been implemented, for example, in
PLINK, NGSRelate (Korneliussen and Moltke 2015), and RELATE (Albrechtsen
et al. 2008). In R, the SNPRelate package (Zheng et al. 2012) incorporating many
IBD estimating methods is recommended. Finally, the refined IBD uses phased
haplotype data for the inference (Browning and Browning 2013).
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Finally, so-called admixture modeling is a model-based method for estimating
ancestral populations and their admixture proportions in the individuals under study.

Since its introduction in the beginning of the 2000s (Pritchard et al. 2000), the
analysis of admixture has become a common tool for all population analyses, and it
could be viewed as an alternative way of estimating the population structure.
However, compared to PCA, the admixture analyses make much stronger modeling
assumptions on the data, and therefore also the results depend on how well the data
fits these assumptions. We will therefore discuss admixture modeling separately in
Sect. 4.2.2.

4.2.2 Admixture

Admixture analyses divide the genomes into ancestral non-admixed populations and
estimate their relative proportions in each individual. The computational model
behind admixture analysis is known as latent Dirichlet allocation (Blei et al.
2003), or discrete PCA (Buntine and Jakulin 2004), where for each locus, the allele
is probabilistically generated from a set of ancestral populations. The method is
completely data-driven, as the parameters of the model — proportions of ancestral
populations in each individual — are estimated from the data using posterior sampling
(Markov chain Monte Carlo-based methods), variational approximation, or maxi-
mum likelihood fitting. The difference between the implementations is that MCMC-
based methods sample from the exact posterior, giving accurate results, but on the
other hand they are slower to run. Variational methods estimate an approximate
posterior distribution of the model parameters making heavy independence assump-
tions, and, thus, they give less accurate results but the execution is much faster.
Finally, maximum likelihood solutions fit the model parameters to the likelihood
without prior (thus assuming a uniform prior for the parameters). Most common
methods include MCMC-based STRUCTURE (Pritchard et al. 2000), fastStructure
using variational approximation (Raj et al. 2014), or maximum likelihood-based
methods FRAPPE (Tang et al. 2005), ADMIXTURE (Alexander et al. 2009), and
NGSadmix (Skotte et al. 2013). Recent developments include a fine-scale method
that uses phased haplotype data to identify admixture. The fineSSTRUCTURE
(Lawson et al. 2012) first uses ChromoPainter to identify shared haplotypes in the
population and then estimates their admixture; for a practical application of the
software, see, for example, Kerminen et al. (2017).

The generative model underlying the admixture model also has its deficiencies,
such as sensitivity to uneven sample sizes (Puechmaille 2016). Additionally, very
different demographic scenarios can result in similar admixture compositions and,
therefore, the results may be subject to over-interpretation (Lawson et al. 2018). In
order to help in the interpretation and in identifying the most likely underlying
scenario, a set of complementary analyses have recently been suggested, the
so-called badMIXTURE which analyzes the goodness of fit of the admixture
model (Lawson et al. 2018).
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4.2.3 Introgression

In addition to admixture between populations, there can be gene flow between
species through introgression. This may happen in cases where species may have
already been split, but divergence has not yet resulted into a complete reproductive
isolation barrier. Genomic research on introgression was heavily affected by the
introduction of F3 and F4 statistics, developed to detect introgression with Nean-
derthals and humans (Green et al. 2010). These methods are implemented in the
package Admixtools, which in addition to the formal test for introgression (F3) and
test for the directionality of the introgression (F4) also contains methods to estimate
the timing of the introgression and an implementation for comparing possible
scenarios of introgression in studies concerning several species (Patterson et al.
2012). Since then, a revised statistic, the D statistic (also commonly known as
ABBA-BABA statistic), was introduced as an improvement (Durand et al. 2011).
The D statistic is implemented, for example, in PopGenome R package (Pfeifer et al.
2014). When trying to identify the regions under gene flow, the statistic has been
applied to smaller genomic windows. However, it was recently shown that the D
statistic produces inflated values when effective population size is low, and as a
result, regions with low genomic diversity result in false positives, high D values
(Martin et al. 2015). As a correction, a combination of fy and dxy statistics has been
suggested, the first one to identify introgression and second one to identify regions of
low diversity (Martin et al. 2015).

Even though formal tests for introgression exist, determining the directionality
and proportions in the case of several populations and species is still very much
manual work. Search for a solution that incorporates admixture events increases
exponentially with the number of populations, and therefore, a global optimal
solution is practically impossible to identify. However, greedy solutions exist, and
they are implemented in

TreeMix (Pickrell and Pritchard 2012), Ohana (Cheng et al. 2017), and
Admixturegraph R package (Leppéld et al. 2017). In Admixtools, it is possible to
compare the model fit given different admixture solutions using qpGraph (Patterson
et al. 2012).

4.2.4 Population History

Population history, the historical changes in effective population size, is of funda-
mental interest in population genetics. Several methods exist for estimating popula-
tion history, all derived using different assumptions and summary statistics. The first
set of methods estimate effective population size from the number of recombination
events observed in a single individual or a small set of genomes. First, such method
was pairwise sequentially Markovian coalescent model, PSMC (Li and Durbin
2011), which is still the method of comparison in several studies. However, PSMC
is sensitive to population structure and can give false results, for example, in case of
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population bottlenecks (Mazet et al. 2015). The MSMC?2 (Schiffels and Durbin
2014) uses phased whole genome data and improves on PSMC by extending
inference to several haplotypes and accelerates exact calculations, such that some
of the approximations used in PSMC are not needed. The demographic inference
using composite approximate likelihood (diCal) achieves similar improvements
(Sheehan et al. 2013). The second method category estimates effective population
sizes from haplotype lengths (Harris and Nielsen 2013).

Third methodology estimates population history from a site frequency spectrum
(SFS). The methods are most accurate if an unfolded site frequency spectrum is used,
and for this means the ancestral allele state needs to be identified first. State-of-the-
art methods use several species and phylogenetic associations between them to
estimate most likely ancestral state; see, e.g., phangorn package (Schliep 2011) in
R. After inferring ancestral state and SFS, methods such as Stairway plots (Liu and
Fu 2015) can be used to estimate a mixture model for the SFS data, where the
mixture proportions are the effective population sizes at different times. Momi2 is a
more recent method using similar strategy (Kamm et al. 2018). Benefit of SFS-based
methods is that they do not suffer as heavily from population structure. Finally, the
SMC++ integrates two methodologies by pairing coalescent HMM with site fre-
quency spectrum estimation from a larger set of samples (Terhorst et al. 2017).

4.2.5 Mutation Rate

Correct estimate of mutation rate is essential for many analyses, since it helps in
dating the divergence times in phylogenetic trees and major events in population
history, such as population bottlenecks. In general, researchers are using mutation
rates estimated in model species, since only a few studies exist on this subject in
other species. One possibility is to obtain an indirect estimate of the mutation rate by
comparing the divergence of orthologs between species and identify the amount of
neutral mutations in the genes. The mutation rate can then be calibrated if the time of
the species split can be estimated, for example, from fossil evidence.

An alternative method is the direct estimation of mutation rate from parent-
progeny trios. Given parent-child relationships, the de novo mutations are identified
by first estimating SNPs between the father-mother-child trios and then using trio
calling software such as DeNovoGear (Ramu et al. 2013). In humans, the mutation
rate estimates in different populations are converging to similar values with the
direct method (Campbell and Eichler 2013). Interestingly, the indirect estimation
gives twice as high mutation rate than indirect method, creating a conundrum
(Moorjani et al. 2016).

4.3 Evolutionary Population Genomics Analyses

Genomic adaptation to the prevailing environmental conditions is a fundamental
research question in ecology and evolutionary biology. Population genomics



144 J. Salojérvi

addresses this question by looking at specific signatures in genome-level data or by
seeking for association between genomic loci and phenotypic traits. Additionally,
the analysis includes large-scale genomic variation between species and populations,
such as copy-number variation and pan-genomes.

4.3.1 Genomic Patterns of Selection

A large body of population genetics research is devoted to studying strong positive
selection for certain alleles. Hard selective sweep patterns appear under strong
positive selection where the frequency of the favored allele rapidly increases and
eventually reaches fixation in the population. During this process, genomic
hitchhiking occurs where also the neutral alleles in linkage disequilibrium with the
beneficial allele are inherited as well and reach fixation. As a result, the underlying
genomic region is swept from variation. After reaching fixation, the region again
accumulates random mutations. Their mutations are more recent than the sweep,
and, therefore, the local site frequency spectrum, a histogram showing the number of
SNPs shared by 1..N individuals, shows an overrepresentation of recently derived
alleles.

The software for detecting signatures of selective sweeps looks for regions of reduced
variation, a site frequency spectrum that is skewed toward recent alleles, or specific
linkage disequilibrium patterns. The simplest method is to calculate statistics, such as
Tajima’s D, Fay and Wu’s H, or similar. The ANGSD estimates many of these statistics
as a part of the pipeline, whereas R packages Pegas (Paradis 2010) and PopGenome
(Pfeifer et al. 2014) have functions for estimating these from VCF data. Finally, vcftools
(Danecek et al. 2011) is able to calculate the basic statistics, Tajima’s D, heterozygosity,
and runs of homozygosity (ROH) from VCF-formatted data.

More advanced statistical approaches are implemented in specific software. Tools
analyzing changes in site frequency spectrum include Sweepfinder2 (DeGiorgio
et al. 2015) and SweeD (Pavlidis et al. 2013). An alternative approach, OmegaPlus,
implements the omega statistic to detect anomalies in linkage disequilibrium
(Alachiotis et al. 2012). Finally, Sweepy (Druet et al. 2013) identifies regions with
reduced heterozygosity with a hidden Markov model having three states: neutral,
intermediate, and sweep. Instead of training, the model parameters were fixed by the
authors based on cattle data.

In most of the population genetics/genomics studies, the effect sizes of loci that
have been significantly associated with the traits are very small, implying that most
of the traits are polygenic. Under this scenario, it is very unlikely that a beneficial
mutation at a single locus would provide a remarkable fitness advantage. Indeed,
hard selective sweeps have turned out to be quite rare in nature. In contrast, soft
sweeps occur in cases where several mutations in a genomic region have a fitness
advantage, and, therefore, a palette of haplotypes is under selection in the same
region. Soft sweeps and ongoing strong positive selection are currently detected with
methods that use phased SNP data to identify alleles on their way to fixation or under
balancing selection. The integrated haplotype score (iHS) statistic (Voight et al.
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2006) seeks alleles driven to intermediate frequency by measuring the decay of
haplotype homozygosity for a given derived allele, compared to the decay observed
for the respective ancestral allele. Further refinements of this method are the “num-
ber of segregating sites by length” statistic, ng; (Ferrer-Admetlla et al. 2014), and
H12 and H2/H1 statistics (Garud et al. 2015), which are more robust to fluctuations
in recombination and mutation rate.

Due to the polygenic nature of most traits, a major proportion of evolution occurs
through long-term local adaptation to environmental conditions. Differentiation
between populations can be measured by carrying out a genomic scan with the
Wright fixation index (Fst). The Fgr essentially implements the famous analysis of
variance criterion to genetic data by comparing between population variance and
within population variance. When estimated using the neutrally evolving loci, its
average over the genome gives the overall differentiation between populations, and
significant deviations from this average score in specific genomic regions will
identify loci potentially under selection. The Fgr statistic is implemented in vcftools
(Danecek et al. 2011) and R packages PopGenome (Pfeifer et al. 2014), Pegas
(Paradis 2010), StAMPP (Pembleton et al. 2013), and HIERFSTAT (Goudet
2004). A similar measure, Qgt, measuring the genetic diversity of different pheno-
typic grouping can be implemented using the same functions.

However, in addition to selective processes, the genetic structure of a population
is dictated by random genetic drift processes, such as drift due to founder effects, and
population bottlenecks. For example, a founder effect may occur following the
establishment of a new population in a new environment. If the population is
small, the population will differ from other populations only because of limited
genetic variation present in the founding individuals. Population bottlenecks, for
example, due to harsh environmental conditions, can produce similar artifacts,
whereas migration introduces new alleles to the population and reduces the levels
of population differentiation. For these reasons, a plain Fgr measure is being
replaced by methods which attempt to decouple the drift processes and selection.
A standard methodology is to use the population structure as the null model for drift
and then detect loci where the allele distributions cannot be explained by the null
model. Models such as FDIST2 (Beaumont and Nichols 1996) and BayeScan (Foll
and Gaggiotti 2008) assume independent samples and simulate a null model under
specific population history scenario, whereas FLK (Bonhomme et al. 2010) and
BayEnv2 (Giinther and Coop 2013) estimate population structure from data and use
this as the null model.

Finally, one emerging trend to tackle the polygenicity of complex traits is to use
epistatic models, such as population graphs and redundancy analysis, which analyze
multilocus data (see, e.g., Legendre and Fortin 2010; Rajora et al. 2016; Salojdrvi
et al. 2017).
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4.3.2 Genome-Wide Association Studies

One of the fundamental questions in population genomics is how variation in
different loci is linked with the observed phenotypes. These data are analyzed in
genome-wide association studies (GWAS), where phenotype and genotype infor-
mation is collected from cohorts having sizes between hundreds to hundreds of
thousands of individuals.

The simplest methods for analyzing GWAS data compute the correlation or
estimate a linear model for the allele frequencies and trait values (in case of
continuous trait) or the difference between allele distributions (in case of a categor-
ical trait). After site-wise analysis over all genomic loci, multiple testing correction
of the p-values obtained for the individual loci is carried out using either the
conservative Bonferroni correction or the more loose false discovery rate correction
methods (e.g., Benjamini-Hochberg correction).

Similar to all population genomic studies, population structure is the major factor
contributing many false positives. More sophisticated models implement linear
mixed models (LMM), which take the population structure into account by intro-
ducing covariates that model their contribution. Perhaps the first such model was
Efficient Mixed Model Association (EMMA) software (Kang 2008). It models
population structure with a random effect where the variance structure is obtained
from a kinship matrix describing the relationship between samples. However, the
time required for computation scaled cubically with the number of individuals.

Speed and, therefore, scalability can be improved by approximate methods. The
genome-wide rapid association using mixed model and regression (GRAMMAR) set
up a two-stage process, where in the first stage the observed phenotypes were
modeled with a linear model using the kinship information (Aulchenko et al.
2007a, b). Residuals from this analysis were then used as input to the association
analyses incorporating genomic data. The method is implemented in the GenABEL
package in R (Aulchenko et al. 2007a, b). More sophisticated methods such as P3D,
Population Parameters Previously Determined (Zhang 2010) in TASSEL (Bradbury
et al. 2007), and EMMAX (Kang 2010) take similar approach by using kinship to fix
some of the parameters in the linear mixed model; the P3D uses the null model with
only kinship data to fix the variance components in the linear mixed model used for
estimating associations with SNPs, whereas in EMMAX the kinship matrix is
assumed to contribute to the noise covariance.

Instead of making compromises in accuracy, speedups can be obtained also by
careful analysis of the original exact method. The GEMMA carries out a single
Eigen decomposition of the relatedness matrix and uses this to replace several
computationally demanding Eigen decomposition steps in EMMA, thus reducing
the time complexity to quadratic in terms of the number of individuals (Zhou and
Stephens 2012).

Further extension to linear mixed model approach is to model several correlated
phenotypic variables at once. The so-called multi-trait mixed model (MTMM) uses
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similar approximation to EMMAX and P3D to estimate and fix the covariance
matrix before estimating the associations (Korte et al. 2012).

With whole genome sequencing data, genomic loci are not independent. The
so-called epistatic models attempt to identify genetic dependencies between loci.
However, with immensely many different SNP combinations, evaluating all of the
different SNP combinations quickly becomes computationally prohibitive. A proper
solution for this problem has not been found yet. Various different approaches have
been proposed, many of them based on a combination of exhaustive searches and
greedy optimization; see Niel et al. (2015) for a review of the current status.

4.3.3 Pan-Genomes

The pan-genome defines the entire genomic repertoire of a given species or, in
microbiology, the phylogenetic clade (Vernikos et al. 2015). The concept originated
from microbiology where species borders are notoriously difficult to specify and is
presently well established (Vernikos et al. 2015) with a large palette of analysis
software for bacterial pan-genomes (Xiao et al. 2015). Beyond microbial research,
pan-genome analysis has recently gained attention in plant genomics (Golicz et al.
2015), although still relatively few pan-genome studies have been published (see,
e.g., Cao et al. 2011; Li et al. 2014; Wang et al. 2018). The aim in pan-genome
analysis is to divide gene space to so-called core, cloud, and shell genomes where the
split is made according to the prevalence; the core genes are present in all individ-
uals, shell genes in at least two individuals, and cloud genes in only one. The genes
in the different categories appear to differ by their function, for example, in Wang
et al. (2018), the core was observed to be enriched for GO terms related to growth,
development, and reproduction, whereas shell and cloud genomes were enriched for
regulation of immune and defense responses and ethylene metabolism.

One method implementing the pan-genome analysis is eukaryotic pan-genome
analysis toolkit (EUPAN), a software pipeline implemented to detect presence/
absence variation among the genomes of many individuals (Hu et al. 2017). The
method uses a “map-to-pan” strategy, where each of the individual genomes are first
assembled de novo. After this the pan-genome is constructed by mapping the contigs
to a reference genome and identifying non-redundant novel sequences. After ab
initio gene prediction, the presence/absence variation is determined based on reads
mapped against pan-genome sequences. This strategy was used in the rice (Oryza
sativa) pan-genome (Wang et al. 2018).

4.3.4 Ancient DNA and Paleogenomics

Ancient samples and sample collections maintained by natural historical museums
provide invaluable information about ancestral populations. Since they give infor-
mation about the genome up to 1 million years ago, they can be used to study
migration patterns, species evolution, and adaptation. The analysis of ancient DNA
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was initiated in human studies (Green et al. 2010; Rasmussen et al. 2010; Meyer
et al. 2012; Slon et al. 2018), and the research has made it possible to track down
human ancestry across different time scales (Llamas et al. 2017). The main obstacle
in ancient DNA analysis is the sample quality. After the death of an organism, the
DNA molecules get fragmented and degraded over time. The level of degradation
varies across samples and environments but also within the specific sample. So far
the oldest samples where DNA has been sequenced currently date back to around a
million year (Orlando et al. 2015).

Depending on the level of DNA conservation, sequencing typically produces
very short reads, and if assembled also the contigs are very short. These contigs can
be organized by comparing against a modern genome, but for extinct species, this
does not provide a reliable view of the genome structure. Methods such as FPSAC
(Rajaraman et al. 2013) and the further development EWRA (Luhmann et al. 2018)
attempt to solve this problem by estimating the genome structure by comparing
several related species.

The ancient DNA typically contains contamination by modern DNA molecules,
which have limited degradation and fragmentation. These patterns can be used to
remove the contamination in the sample. Implementations include PMDtools
(Skoglund et al. 2014), mapDamage software (Jonsson et al. 2013), as well at
AtLAS, a toolbox for SNP calling in ancient DNA (Link et al. 2017), taking into
account degradation due to postmortem damage (Kousathanas et al. 2016). The
methods analyze reads by looking for hallmarks of DNA degradation and either
remove them (PMDtools) or in the more recent methods recalibrate the base quality
scores according to their probability of being damaged (mapDamage and AtLAS).

In terms of alignment, ancient DNA sequences contain a considerable amount of
damaged bases, which typically accumulate toward read ends. Therefore, for best
quality alignment results, the whole read length should be used for identifying the
mapping region, instead of using so-called seed regions for fast alignment. Addi-
tionally, the phylogenetic distance to the reference genome affects alignment and
should be taken into account (Schubert et al. 2012). Several probabilistic alignment
methods have been developed to take these effects into account, such as BWA
PSSM (Kerpedjiev et al. 2014), sesam (Rasmussen et al. 2010), and Anfo (Briggs
et al. 2007).

4.4 Phylogenomics and Comparative Genomics Analyses

How species are born was the fundamental question by Darwin already in the
nineteenth century, and the answer is still very much unknown. However, in plants,
a common pattern of speciation is the formation of polyploids (Soltis and Soltis
2009). After formation of polyploids, the duplicated genomes start to lose genes in a
so-called fractionation stage, which eventually results in a diploid species. These
phenomena can be studied using phylogenomics and comparative genomics.
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4.4.1 Polyploids

Polyploidy is highly prevalent among plant and fish species. For example, roughly
60-70% of flowering plant lineages have polyploid ancestry; new polyploids are
formed at a frequency of 1 per 100,000 individuals, and approximately 2—4% of
speciation events involve polyploidization (Van de Peer et al. 2009). Compared to
this, the amount of published polyploid reference genomes is relatively small. This is
for several reasons; genetics of polyploid species is more difficult, and genome
assemblies are harder to carry out due to sequence similarity among subgenomes.

Besides reference genomes, high sequence similarity is also a problem in
resequencing because even with a high-quality genome assembly, short reads may
not be long enough to identify the correct subgenome. In case of allopolyploid
species, the genomes of ancestral diploid parents may be used for identifying the
subgenome where the read originates from. For example, in PolyCat software (Page
et al. 2013), a SNP index of homeologous loci between cotton (Gossypium spp.)
subgenomes was used for RNA sequencing reads to identify the subgenome where
they originated from. The same authors have also developed a PolyDog software
(Page and Udall 2015) which, given a reference assembly of an allopolyploid
species, identifies reads that map uniquely to only one of the subgenomes. Both
tools are implemented in the bambam software package (Page et al. 2014).

However, in some cases large effective population size and the resulting high
heterozygosity may help in genome assembly. For example, in the hexaploid
genome of sweet potato (Ipomoea batatas), the high average density of 1 SNP per
58 bp made it possible to phase 30% of the genome into six haplotypes by read-
backed phasing that extended seed regions based on read support (Yang et al. 2017).
Additionally, biological variants can be exploited to obtain good genome assembly
such as aneuploidy (International Wheat Genome Sequencing Consortium 2014) or
doubled haploid (Garcia-Mas et al. 2012; Zhang et al. 2014) individuals.

Overall, the development of tools for population genomic analysis of polyploid
species is still in the very beginning. SuperMASSA software was developed for SNP
genotyping populations where the ploidy level can be unknown (Serang et al. 2012),
whereas the recent R package updog genotypes polyploids by accounting for allelic
bias, over-dispersion, and sequencing errors with an empirical Bayes approach
(Gerard et al. 2018). Further analyses can be carried out, for example, with StAMPP
software, developed for analyzing genetic differentiation and structure of populations
with mixed ploidy levels (Pembleton et al. 2013).

4.4.2 Phylogenomics

SNP calling can be carried out also using several species. In this case, the SNPs
represent nucleotide differences between species. For longer time scales, the SNPs
may be flipping back and forth, especially with gene-coding genomic regions where
the number of neutrally evolving sites is limited due to functional constraints
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imposed by the encoded protein. However, the effect is reduced when a large set of
intergenic SNPs and neutrally evolving SNPs from gene-coding regions are col-
lected. The SNPhylo software estimates phylogeny by first converting the SNPs into
a FASTA-formatted file and then estimating the phylogeny using DNAML from
PHYLIP package (Lee et al. 2014). Alternatively the produced FASTA files can
be used as input to other software for estimating phylogeny, such as RAxML
(Stamatakis 2014).

4.4.3 Comparative Genomics

The evolution of the number and size of gene families is in a key role when studying
the adaptation and evolution of species (Demuth and Hahn 2009), and the variation
also closely ties with population genetics and genomics. Tandemly duplicated genes
may have more relaxed selection pressure (Salojirvi et al. 2017), and in humans,
copy-number variation has been found to be associated with tandem duplication
regions, resulting also in gene duplications (Sudmant et al. 2010).

The general computational methodology to study gene family evolution is fairly
well established. Methods such as OrthoMCL (Li et al. 2003; Chen et al. 2006) and
OrthoFinder (Emms and Kelly 2015) first carry out all-vs-all BLAST using amino
acid sequences from the species under study and then cluster the pairwise similarity
matrix using Markov clustering (Enright et al. 2002). The clusters, orthogroups,
form a set of genes with common ancestry, putative orthologs, and paralogs. It is
worth noting that the grouping is merely computational and possibly mostly repre-
sents the overall gene family behavior. If one would inspect properly validated gene
families with common ancestry and domain composition, they may be split into
several orthogroups or be incorporated into large orthogroups with many more
genes. In Salojarvi et al. (2017), the proper clustering coefficient was searched by
analyzing how well the computational clustering matched with known gene family
splits.

In order to aid downstream analyses, OrthoFinder is also able to infer gene trees for
each orthogroup as well as estimate a rooting for the species tree based on gene
duplication events (Emms and Kelly 2017). The method also reconciles the gene trees
and produces estimates of gene loss, gain, birth events, or incomplete lineage sorting
using DLCpar (Wu et al. 2014) or its own internal method Recon, making it possible
to directly analyze gene family evolution. The downside of most reconciliation
methods is that the models are not implemented to take into account whole genome
duplications, a feature that is very common in, e.g., plant evolution. However, for
example, Phyldog can model these events (Boussau et al. 2013). Finally, the software
tool ANGES reconstructs ancestral genome maps by analyzing the syntenic organi-
zation of extant related genomes (Jones et al. 2012) and is thus an alternative method
for identifying gene duplication events in the extant species.

A complementary approach to gene tree reconciliation methods is to estimate a
birth-death rate model of gene families. Several probabilistic implementations exist,
such as CAFE (De Bie et al. 2006) and Badirate (Librado et al. 2012). Probabilistic
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implementation makes it possible to identify gene families which expand or contract
significantly more than expected based on general behavior.

5 Simulation

Since the evolutionary history of a species can be very complex, involving bottle-
necks, isolated populations, migration, admixture, and introgression events, it is
important to be able to estimate what types of footprints these different events leave
in the population. For this means, several simulators have been developed which can
generate genomic data under different evolutionary scenarios. When comparing the
simulated data to observed population data, it is then possible to identify the likely
population history or simulate the future behavior of a population. Another possible
use for the simulated data is to test the robustness and performance of new statistical
methods under different scenarios. For a thorough review of 42 different simulators,
we refer the reader to Hoban et al. (2012). In addition to these, fastSimCoal2 is a
more recent, highly versatile simulator (Excoffier et al. 2013). Current state-of-the-
art methodology uses approximate Bayesian computation (ABC) to facilitate infer-
ence (Sunndker et al. 2013).

6 Future Perspectives and Conclusion

In this chapter, we provided a brief overview of different computational tools
available for analyzing population genomics data. The set of tools and the analysis
types listed are by no means comprehensive, since we are missing many important
new and rising fields. For example, the dropping cost of bisulfite sequencing makes it
possible to estimate methylation status of the genome for populations. In humans,
epigenetic variation contributes to the natural variation between populations (Heyn
et al. 2013). A second interesting research field is the estimation of ultrahigh density
linkage maps. With low-cost sequencing, it is viable to sequence whole genomes in
parent-progeny experiments. This produces millions of markers, which is too much
for standard methods that analyze linkage between genomic loci. Recently developed
Lep-MAP3 software is able to manage the additional complexity and provides
reliable estimates even with low-coverage sequencing (Rastas 2017). However,
also metagenomics, population-level RNA sequencing and expression QTLs are
emerging fields within the scope of population genomics.

In summary, the genomics research field is expanding rapidly and will eventually
encompass all research where biological data is produced by sequencing. Reference
genomes for new species are emerging at an increasing rate, and with the dropping
cost of sequencing, whole genome sequencing will be the method of choice for all
analyses. WGS makes it possible to accumulate large population genomic data sets
which can be analyzed for any given purpose beyond the original study. With the
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increasing amounts of data, method development for population genomics is cur-
rently flourishing, with a huge number of different solutions developed for each task.
In time, some of these will prevail and will be incorporated into standard analyses
pipelines; which ones, only time will tell.
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Abstract The continuous advances in DNA sequencing technologies are driving a
constantly accelerating accumulation of nucleotide sequence data at the whole-
genome scale. As a consequence, evolutionary biology researchers have to rely on
a growing number of increasingly complex software. All widely used tools in the
field have grown considerably, in terms of the number of features as well as lines of
code and consequently also with respect to software complexity. Complexity is
further increased by exploiting parallelism on multi-core and hardware accelerator
architectures. Moreover, typical analysis pipelines now include a substantially larger
number of components than 5-10 years ago. A topic that has received little attention
in this context is that of code quality and verification of widely used data analysis
software. Unfortunately, the majority of users still tend to blindly trust the software
and the results it produces. To this end, we assessed the software quality of three
highly cited tools in population genetics (Genepop, Migrate, Structure) that are being
routinely used in current data analysis pipelines and studies. We also review widely
unknown problems associated with floating-point arithmetics in conjunction with
parallel processing. Since the software quality of the tools we analyzed is rather
mediocre, we provide a list of best practices for improving the quality of existing
tools but also list techniques that can be deployed for developing reliable, high-
quality scientific software from scratch. Finally, we also discuss some general policy
issues that need to be addressed for improving software quality as well as ensuring
support for developing new and maintaining existing software.
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1 Introduction

With next-generation sequencing (NGS) data coming off age and being routinely
used by now, evolutionary biology is becoming an increasingly quantitative and
computational discipline (see also Barone et al. 2017). These massive amounts of
data have also triggered a paradigm shift from a hypothesis-driven toward a more
data-driven science.

One can also observe a gradual transformation into a true computational science
as evolutionary biology increasingly relies on supercomputers (e.g., Misof et al.
2014 or Jarvis et al. 2014) as well as multi-core servers and accelerator architectures.
This is a transition other disciplines such as astrophysics, geophysics, or fluid
dynamics accomplished decades ago. This transition is challenging because it
requires nontrivial parallel programming techniques (e.g., Alachiotis et al. 2012)
and introduces additional reproducibility issues as well as error sources (i.e.,
nondeterministic program behavior) which we will also briefly discuss in this
chapter.

Apart from the increasing use of parallelism with all its associated complications,
researchers also have to rely on a substantially larger number of increasingly
complex core software components. These core components are mostly written in
C or C++ because they are typically highly compute- and floating point intensive.
By software complexity we refer to the fact that widely used tools in the broad
field of evolutionary biology have grown considerably, in terms of the number of
features, models, and lines of code. For instance, the Bayesian phylogenetic infer-
ence tool MrBayes (Ronquist et al. 2012) had approximately 49,000 lines of code
in 2005 and already about 94,000 in 2014. Furthermore, evolutionary analysis
software now supports a substantially larger set of models (e.g., substitution models,
demographic scenarios, variants of the coalescent, approximate Bayesian computa-
tion approaches), hardware platforms (e.g., GPUs, FPGAs, etc.), and types of
parallelism (e.g., embarrassingly parallel, fine-grain, coarse-grain, multigrain, hybrid
approaches) than a decade ago.

Another challenge is that constantly growing datasets also induce increased
numerical difficulties, as most population genetics codes calculate probabilities for
some quantity and are thus prone to either exhibit numerical underflows (e.g.,
Pavlidis et al. 2013) or yield inaccurate results because of roundoff error propaga-
tion. The deployment of more complex and parameter-rich models further compli-
cates matters, since it is often difficult to devise, for instance, numerically stable
maximum likelihood parameter optimization procedures as these increasingly com-
plex and parameter-rich models may exhibit several local maxima, for instance.

We do not only have to handle the software complexity of stand-alone core
components but also need to consider the increasing number of core components
in current analysis pipelines. In the “Sanger days,” the analysis pipeline for evolu-
tionary analyses used to be straightforward, once the sequences were available. For a
phylogenetic study, it merely consisted of three steps: align — infer tree — visualize
tree. For NGS data and huge phylogenomic datasets, such as the insect transcriptome
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(Misof et al. 2014) or bird genome evolution (Jarvis et al. 2014) projects, the data
analysis pipelines have become substantially longer and more complex. They also
require user expertise in an increasing number of bioinformatics areas (e.g., SNP
calling, orthology assignment, NGS error correction, read assembly, dataset assem-
bly, partitioning of datasets, divergence times inference, etc.). In addition, these
pipelines require a plethora of scripts to transform formats and to assemble
workflows. Even format transformation is not trivial in case of badly specified or
simply inappropriately used data formats which can lead to the incorrect presentation
of results. Such a behavior was recently demonstrated for the widely used Newick
phylogenetic tree file format (Czech et al. 2017). Moreover, helper scripts are
typically written in languages such as perl, a language that is highly susceptible
to coding errors due to lack of typing or python that uses dynamic typing and can
thus not be subjected to a comprehensive type-check either. The term “typing” refers
to the data types of variables (e.g., integer or floating point) that are passed to, and
returned by, functions. Without strict typing a function expecting an integer argu-
ment can be invoked with a floating point value as an argument and exhibit
undefined or unexpected behavior. Thus, programming languages with stricter
type control reduce the potential for errors. Ideally the languages used should be
fully type-safe. Our main concern is that, if each core software component (hence-
forth, we use code as synonym for software) or script component i used in such a
pipeline has a probability of being “buggy” P;, the probability that there is a bug in
the pipeline increases dramatically with the number of components. If detected too
late, errors in the early data analysis pipeline stages (e.g., NGS assembly, SNP
calling, alignment) for large-scale data analysis projects can have a dramatic impact
on downstream analyses such as coalescent simulations or phylogenetic inferences
as they will all have to be repeated. In fact, this has happened in every large-scale
data analysis project we have been involved in thus far. Given that our field needs to
compete with established computational sciences for scarce supercomputing or
cloud resources, repeating large evolutionary analyses can result in a substantial
waste of computational resources. Current large-scale phylogenomic analysis pro-
jects can require up to 75 million processor hours on supercomputers.

Algorithmic problems that might generally be perceived as “being solved” such
as the alignment of closely related sequences of individuals from a single population
may also exhibit methodological pitfalls. It was shown that errors in multiple
sequence alignments can yield a dramatically increased false-positive rate in tests
for positive selection (Fletcher and Yang 2010) which can, however, be alleviated by
taking alignment uncertainty into account (Redelings 2014). Thus, the alignment
problem is generally not solved. This is true even for apparently simple cases such as
pair-wise sequence alignment algorithms with affine gap penalties. Here, an error in
the initial formulation of the algorithm (Gotoh 1982) has propagated into several
textbooks, university lecture slides, and, more importantly, widely used
implementations (Flouri et al. 2015). While we will not discuss methodological
pitfalls here, we wish to emphasize that they exist and may also lead to incorrect
inferences. In the following we will only focus on software quality and verification
issues in population genetics software.
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Based on the prolegomena, our goals in this chapter are to (1) assess the quality of
current population genetics software and (2) to propose potential solutions, including
software analysis tools, for improving the quality of population genetics software.
We wish to emphasize that the quality measures we deploy only represent one
possible approach to assessing software and reflect a soft probabilistic notion that
“something might perhaps go wrong.” Software quality is not necessarily an indi-
cator for software correctness, but, as demonstrated repeatedly in software engineer-
ing research, a strong correlation does exist (e.g., Briand et al. 1999, 2000;
Casalnuovo et al. 2015).

For assessing software quality, we downloaded and scrutinized — using a common
set of criteria — three widely used and highly cited population genetics codes. An
analogous study has been conducted for a broader range of evolutionary biology
software in Darriba et al. (2018). Based on the software analysis results, we assemble
a list of best practices and discuss some possible policy changes that might contrib-
ute to improving software quality.

It is absolutely not our intention to criticize the developers of the tools we
assessed since they have made major contributions to the field. Instead, our goal is
to emphasize that users should be aware of the fact that software is imperfect and that
software quality should also constitute a criterion for selecting the most appropriate
tool for conducting population genetics analyses.

The remainder of this chapter is organized as follows. In Sect. 2 we assess the
software quality of three widely used population genetics tools. Then, we discuss
some more general issues and additional error sources that are induced by deploying
parallelism for large-scale data analyses in Sect. 4. We conclude our chapter with a
suggestions for best practices in software development in Sect. 5 and discuss
possible policy changes for improving software quality in Sect. 6.

2 Software Quality Analysis of Three Population Genetics
Codes

In our software quality analysis, we focus on core tools that are typically open
source, easy to obtain, and written in C or C++ for computational efficiency. Note
that, it is generally much harder to obtain the scripts used for large-scale empirical
data analysis pipelines deployed for empirical population genetics studies as they are
not always available and generally poorly documented.

While one might expect at least the core tools to exhibit a high software quality
since “they are being used by everyone” and “they yield reasonable results,” this is,
as we will show, not the case for some exemplary standard tools. Note that, in the
following, we only assess the software quality of these core tools using some rather
straightforward yet informative criteria. As stated before, our findings do not imply
that the codes do not work correctly. However, since there exists a strong correlation
between code quality and correctness (Briand et al. 1999, 2000), software of bad
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quality is substantially more likely to yield incorrect results. Our software analysis
results allow for identifying potential weaknesses of the tools which do allow to
deliberately make them fail under specific settings. What we intend to emphasize is
that not enough attention and funding are spent on analyzing as well as improving
the software quality of widely used tools with tens of thousands of citations, since
potential and substantial bugs in these tools can have a dramatic impact on published
research, including the worst-case scenario: the withdrawal of hundreds of papers
due to bugs in one of the core tools.

We want to emphasize that the issue of software verification and correctness
should receive substantially more attention from the application developers but also
from pure computer science that needs to develop novel tools for automatic or at
least semiautomatic verification of complex numerical codes in population genetics
and other areas of bioinformatics.

To explore the software quality and probability of potential software issues, we
analyzed the following three standard population genetics toolkits following a
similar approach as in Darriba et al. (2018): Genepop (two main publications
Raymond and Rousset (1995) and Rousset (2008) have over 19,000 citations;
Google scholar, accessed January 25, 2017), Migrate (the four main publications
Beerli and Felsenstein (1999, 2001), Beerli (2006) and Beerli and Palczewski (2010)
have over 3000 citations; Google scholar, accessed January 27, 2017), and Structure
(over 24,000 citations for the four main papers Pritchard et al. (2000), Falush et al.
(2003, 2007) and Hubisz et al. (2009); Google scholar accessed January 25, 2017).

Note that the results of our analyses merely provide an intuition about what and
how much could potentially go wrong. A detailed study of the warnings and
detection of potential bugs for only one of these programs would require more
than half a year of work for a programmer who is not familiar with the software
which is beyond the scope of this chapter. Our main intention is to assess the current
state, increase awareness about the issue, and provide some simple techniques and
suggestions for improving code quality.

2.1 Experimental Setup

All three codes are written in C/C++ and we analyzed them as follows. Initially, we
simply counted the lines of code (excluding comments) and conducted a so-called
cyclomatic code complexity (McCabe 1976) analysis using the lizard tool (https://
github.com/terryyin/lizard). The cyclomatic complexity provides a measure for
quantifying the control flow complexity in software (for a brief description, see
https://en.wikipedia.org/wiki/Cyclomatic_complexity). Typically, functions with a
complexity exceeding 10 or 15 are judged as being too complex. They should thus,
ideally, be redesigned and restructured such as to increase modularization. Thereafter,
we assessed the amount of code duplication using the simian tool (http:/www.
harukizaemon.com/simian/). Then, we deployed the clang/clang++ compiler and
enabled the following warning flags -Weverything -Wno-padded -Wno-float -


https://github.com/terryyin/lizard
https://github.com/terryyin/lizard
https://en.wikipedia.org/wiki/Cyclomatic_complexity
http://www.harukizaemon.com/simian/
http://www.harukizaemon.com/simian/

166 A. Stamatakis

equal -Wno-vla to assess how many warnings the codes generate. Note that the
clang compiler generates a substantially higher number of warnings than the gcc
compiler suite, because it entails a static code analysis tool. Based on our experience, it
reliably detects a significantly higher number of type mismatches in function calls and
variable assignments than gcc. Subsequently, we applied the Linux command
grep assert to all source files to determine if assertions were used. Assertions provide
a means of verifying that the code, and more specifically its variables, is in the expected
state, for instance, before a function call returns. The use of assertions essentially allows
for implementing a, at least partial, correctness verification mechanism based on Hoare
Logic (Hoare 1969) which is a formal framework to prove the correctness of code (see
https://en.wikipedia.org/wiki/Hoare_logic). Our working hypothesis is that the more
assertions a software author has inserted, the more he/she has attempted to reason
about the correctness of the code. There also exists a recent software engineering study
using a large collection of C/C++ codes obtained from github which suggests that
functions with assertions do have significantly fewer defects (Casalnuovo et al. 2015).
Finally, we assessed the memory management of the three softwares via the standard
valgrind tool wusing the --leak-check=full and --show-
reachable=yes flags. In the following three sections, we discuss our findings for
the three population genetics tools we assessed.

2.2 Genepop (V4)

The cyclomatic complexity analysis revealed that there are 53 functions with a
cyclomatic complexity greater than 15, the three highest complexity values being
166, 128, and 74. Thus, given those very high numbers, there might be a need to
simplify and modularize several functions. The code duplication analysis revealed
that there are 2252 duplicate lines of code (LoC) in a total of 167 blocks of code,
while the total LoC number without comments is 10, 583. Thus, there are approx-
imately 20% of code duplication that could be avoided to improve maintainability of
the software. Compiling the code with clang generated 1585 warnings, that is,
approximately 1 warning per 7 LoC. We further found that not a single assertion is
used in the entire code. Finally, the memory management analysis with valgrind
(using . /Genepop settingsFile=sampleSettings.txt Mode=Batch)
indicated that 984 bytes of RAM are possibly lost and that, at program termination,
19, 056 bytes of RAM are still reachable. In other words, the program does not
properly de-allocate the memory it used, at program termination. This can become
problematic especially if the Genepop main () function is integrated and called by
some larger surrounding C or C++ code several times, because this will generate
memory leaks. However, other memory issues are regularly being fixed by using
valgrind during Genepop development.

At the time of writing this, F. Rousset, the main author of Genepop, was aware of
the above issues. In the meantime, most issues have been taken into account in the
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context of the redesign of Genepop using the R programming language (pers.
comm., June 15, 2017, see https://cran.r-project.org/web/packages/genepop/index.
html).

2.3 Migrate (Version 3.6.11)

For migrate, we only assessed the main source file directory and not the
sub-directories, since the software also includes a plethora of third-party libraries
for random number generation, assembling PDF documents, or compressing files. In
total we detected 148 functions with a cyclomatic complexity greater than 15, the
three highest values being 239, 126, and 114, that is, the top candidates for
restructuring. We further detected 10, 145 duplicate lines in 867 code blocks for
83, 860 LoC in the main source directory (12% of duplicated code). Compiling the
code with clang generated 1818 clang warnings, that is, about 1 warning per
46 LoC. No assertions are used in the source files of the main code directory.
However, some of the third-party libraries such as z1ib (compression) or SFMT
(random number generator) do use assertions. Finally, we analyzed the memory
behavior by executing migrate-n with the default test files in the example/
directory of the distribution. We only modified the parameter file as follows (long-
sample=100 and burn-in=1000) to obtain reasonable execution times in
conjunction with executing valgrind on top of migrate, since valgrind sub-
stantially increases run-times (typically the factor ranges between 5 and
100 according to the official valgrind documentation). The valgrind tool
reports that 18, 008 bytes of allocated RAM are definitely lost, 7, 903, 896 bytes
of allocated RAM are indirectly lost, 2, 910, 391 bytes of allocated RAM are
possibly lost, and 240, 661 bytes of allocated RAM are still reachable at program
termination.

P. Beerli, the main author of migrate, is aware of the above issues and is currently
working on fixing them in the planned release v3.7.1 of his code (pers. comm., Jan
27, 2017).

2.4 Structure (Version 2.3.4)

Overall, we detected 31 functions with a cyclomatic complexity exceeding 15, the
three highest being 86, 82, and 60. We detected 280 duplicate lines of code in
29 code blocks for a total of 6060 LoC amounting to about 5% of code duplication.
Compiling the code with clang yielded 600 warnings, that is, roughly 1 warning per
10 LoC. We found that only one assertion is being used in source file mymath.c. We
provide the corresponding code snippet below:
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fprintf (stderr,

"lgamma function failed with wrong input (%f)\n",z) ;
assert (0) ;
exit (-1);

}

Here we want to show that the assertion is, in fact, not used as intended, because it
will always fail since the Boolean expression it should evaluate is, in fact, a constant
that is set to O (i.e., always evaluates to FALSE). Here, the assertion is merely used to
exit the program, and the subsequent command exit (-1) will never be executed
since the code will fail with the assertion prior to executing exit (-1).

The memory check with valgrind and using simulated microsatellite test data
from http://pritchardlab.stanford.edu/software/structure-data_v.2.3.1.html (with the
following settings LABEL=1, POPDATA=1, POPFLAG=1, NUMLOCI=5,
PLOIDY=2, MISSING=-999, ONEROWPERIND=0) generated no errors whatso-
ever. This is not surprising, since the original Makefile written by the authors
already includes some commented out lines for using valgrind, that is, the tool
was apparently used by the authors to generate code without memory leaks.

J. Pritchard, the main author of Structure, is aware of the above analyses and
issues we detected and has no objections about them (pers. comm., Jan 29, 2017).
The issues we found cannot be fixed in Structure due to lack of manpower.

The usage of valgrind and the lack of manpower for sustainable code main-
tenance lead to the conclusion of this section: if some straightforward standard tools
for improving software quality are routinely used (e.g., valgrind for Structure),
code quality can already be substantially improved. Furthermore, increased long-
term funding for maintaining and occasionally redesigning such important tools
from scratch is required.

3 Impact

The simple code quality metrics deployed in the preceding section only serve as
proxies for software quality. Note that software quality and the probability of
program faults, that is, either a crash of the program or incorrect behavior, are indeed
correlated (see, e.g., Khoshgoftaar and Seliya 2003; Nagappan and Ball 2005). Thus,
these analyses should provide sufficient evidence that additional measures to
enhance software quality are required in the tested tools. This will increase confi-
dence that they do work correctly.

We outline a simple example of how the Structure tool can be made to fail with an
uninformative error message because of a programming error. If we analyze the
warnings produced by the clang compiler, we observe the following programming
error:


http://pritchardlab.stanford.edu/software/structure-data_v.2.3.1.html

Population and Evolutionary Genetic Inferences in the Whole-Genome Era. . . 169

structure.c:3136:17: warning: implicit conversion
changes signedness: 'int' to 'unsigned long'
[-Wsign-conversion]
lambda=calloc (MAXPOPS, sizeof (double)) ;

This warning indicates that MAXPOPS has been defined as a 32-bit signed integer
variable. However, the C function calloc is expecting an unsigned, typically
64-bit integer value of type size t. Thus, if MAXPOPS is set to a value exceeding
the signed 32-bit integer number range, we expect a failure to occur. To test this,
Structure was executed under the following, admittedly rather unrealistic, setting:

structure -K 3000000000 infile
and yielded the following error message:

Error in assigning memory (not enough space?)
Exiting the program due to error (s) listed above.

This error message is misleading since the actual value of MAXPOPS before the
problematic memory allocation is -1294967296 (value obtained via code instru-
mentation). In fact, the failure occurs because (1) calloc () is invoked with a
negative value since an inadequate integer type is used for allocating memory, (2) no
range check for the command line input parameters is deployed (i.e., the value of -
K 3000000000 exceeds the signed 32-bit integer range), and (3) no assertions to
verify the allowed value range of this variable are used (e.g., assert
(MAXPOPS > 0)).

While this evidently represents a constructed example, this type of programming
error in memory allocations is present in all three tools assessed here. As a conse-
quence, they are all prone to yield analogous program failures. In fact, compiling
Structure with clang yielded 88 cases where either calloc () ormalloc () is
invoked with incorrect integer arguments. While this type of programming error will
not constitute a problem for the average use case, it is likely to emerge when
analyzing large datasets. In other words, it limits the scalability of the tools.

As this type of exemplary errors might not affect the correctness of the tools, but
merely their stability, the extremely frequent occurrence of dangerous implicit type
conversions as in the above example is also likely to affect program correctness.
Assessing the correctness of the tools is beyond the scope of this chapter as an
in-depth study of only one tool would require at least a year of work.

Here, our intention is to show that it is relatively straightforward to construct
examples for which the tools will fail and that, given the insights from the area of
empirical software engineering, it is likely that they contain errors.
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4 Numerical and Parallel Computing Challenges

Recent years have witnessed a substantial paradigm change in computer hardware
and programming approaches with the introduction of multi-core architectures and
accelerator systems such as graphics processing units (GPUs) and the Intel Xeon
PHI many-core system. Such architecture-level advancements also have an impact
on code verification, on debugging, and on the reproducibility of results. This is
because the complexity of software development for parallel architectures requires
an additional set of programming skills and also a distinct way of approaching
algorithm design. For instance, parallel computing introduces an additional class
of bugs, so-called race conditions. Race conditions are bugs that only occasionally
appear in a nondeterministic fashion due to varying execution speeds among con-
current threads of execution, yielding parallel software harder to develop, test, and
verify.

In addition, parallelization introduces serious complications with respect to the
reproducibility of analyses. The main problem here is a numerical one. Suppose one
intends to compute a sum over some floating point values f; as f = > ", f;. Further
assume that the data for calculating these individual values f; is distributed to a
certain number of processors p < n. Then, the value fwill typically be computed via
a so-called parallel reduction operation as implemented, for instance, in the
MPI_ Reduce () collective communication routine of the Message Passing Inter-
face (MPI) that still is the de facto standard for massively parallel computing. Now
assume that p :=n2. In such a case, each processor will first add two values f; + f;,1
locally and then invoke MPI_Reduce () to communicate this partial result and
calculate the overall sum f. If we now assume that p :=n4, each processor will
initially add four values locally and subsequently invoke MPI Reduce (). For
n:=8 and p:=4, the sum might be computed as {{(fi+/fo)+(fs+f1)}+
{(fs+fe)+ (fs+f3)}} where the placement of the curly brackets {} denoting the
parallel reduction depends, in fact, on the specific implementation of the
MPI_ Reduce () operation. Thus, the addition order induced by {} may also vary
between different MPI implementations. As a consequence, even using different
MPI implementations may induce distinct addition orders for the above sum. Hence,
because of roundoff error propagation, one may obtain different results when
executing code on the same computer system with the same number of processors,
compiled with distinct MPI implementations. Furthermore, if n:=8 and p :=2, the
sum is guaranteed to be executed in a distinct order since the partial sums will
become larger: {(fi+/fo+f3+f1)+(fs+fe+fr+f5)}. Thus, if the calculations
carried out are numerically sensitive, as they mostly are in population genetics,
since we typically operate with probabilities, we might obtain a signal for positive
selection with two processors but not with four processors due to round-off error
propagation. Note that this type of parallel reduction operation is very common in
parallel codes and that analogous phenomena can be observed for multi-core parallel
programming frameworks such as OpenMP (Open Memory Programming).
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The problem of lacking associativity in floating point operations does not only
apply to parallel programs though. Different compilers such as, for instance, icc
and gcc may choose to reorder instructions (always assuming associativity) in
different ways when code optimization flags (-O switch) are enabled which is
typically the case. Thus, one might obtain different results across compilers or
even for one and the same compiler when distinct optimization levels have been
chosen via -O. We have, in fact, observed both phenomena (deviations within and
across compilers) with RAXML (Stamatakis 2014). Thus, numerical deviations can
also be easily observed for sequential codes, and caution is advised since such
apparently small deviations may lead to a substantial divergence in the final result
(see example provided in Darriba et al. 2018).

In conjunction with the above deviations, it also becomes extremely difficult to
assess the correctness of numerical codes. If such a numerical deviation is detected, it
is often unclear if it is a bug or indeed just a numerical deviation. While one can
conduct a formal roundoff error analysis for an analytical mathematical equation,
this is almost impossible as soon as numerical optimization routines are being used
to optimize the value of that function. Thus, while one could determine a sufficiently
exact value of a function by using arbitrary numerical precision libraries, as soon as
this function needs to be optimized, there is no means to determine the expected or
allowed variance/deviation of the optimized value.

5 Best Practices

There exist several ways in which software quality can be improved. The code
analysis tools and criteria we have deployed in our analysis in Sect. 2 can and should
be applied to all new software being developed. Also, software quality aspects as
well as software analysis tools should receive more attention in programming
courses for undergraduate and graduate students. In the programming courses we
teach at the computer science department of the Karlsruhe Institute for Technology,
we regularly apply the above criteria (usage of assertions, valgrind, clang
compiler warnings, cyclomatic complexity analysis) for grading. In addition, as a
community, we need to interact more intensively with software engineering
researchers at computer science departments, since, after all, we are developing
production level tools. Beyond the simple tools we have analyzed, there exists a
plethora of more advanced software analysis tools such FindBugs for JAVA pro-
grams (http://findbugs.sourceforge.net/) or Cppcheck for C++ codes (http:/
cppcheck.sourceforge.net/) that attempt to identify spurious code at a higher level
that can be achieved by compilers. Some of these tools can also be integrated with
github. Developers should keep in mind that investing some effort during initial
program development will reduce the subsequent maintenance load. The main
problem with this is that it is entirely unpredictable whether a prototype software
one has developed will become a widely used bioinformatics tool or not.
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Thus far, we have only discussed code quality, but not addressed code verifica-
tion. A code quality assessment may only provide a notion as to whether a software
tool is more or less likely to exhibit defects. Hence, the question arises how the actual
code verification process could be improved. Firstly, standardized testing procedures
should be applied. Secondly, the results of the tool should be, if possible, compared
with competing codes implementing the same function, provided that such codes
exist. Thirdly, in an ideal world, two independent teams should be working on
developing two independent implementations simultaneously based upon the same
specification whose outputs will then be systematically compared. This is how
aircraft autopilots (usually with three independent teams using at least two distinct
programming languages) are being developed. Evidently, we lack the time and
funding for being able to apply most of the aforementioned techniques for software
verification.

We believe that this is the main problem of bioinformatics software development.
There is insufficient funding for sustainable development, reengineering, and main-
tenance of widely used software tools, given the tremendous citation impact such
tools have but also the harm that can be done (including paper retractions) by
software bugs. Thus, as a community, we need to (1) adopt a standard discipline
of using software analysis tools, (2) put more emphasis on testing and verifying
software, and (3) increase the pressure on funding agencies to implement actions for
sustainable software development and maintenance.

Another important factor to consider is that, while the code is correct, the actual
specification might be incorrect or incomplete. Examples for this are the aforemen-
tioned mathematical issues in Gotoh’s pair-wise alignment algorithm (Flouri et al.
2015) or the erroneous Hastings correction for a widely used topological proposal
mechanism in MCMC-based Bayesian inference of phylogenies (Holder et al. 2005)
that was being used for several years until finally detected and corrected.

Another source of errors that might at least induce reproducibility problems is the
usage of external libraries. Here, we consider library version management as being
the main problem. If a code relies on some external libraries, it might yield distinct
results depending on which version of the library happens to be installed. Thus,
explicit library version management needs to be integrated into our tools to prevent
this. When preparing a study on the impact of false positives for positive selection in
population genetics (Pavlidis et al. 2012), we were, initially, not able to reproduce
our own results. An intense search for the source of the problem revealed that a
simulation tool we were using relied on a random number generator implemented in
the widely used boost C++ library. It turned out that a different version of boost
was installed on the Linux system where we attempted to reproduce our results
which generated a distinct sequence of random numbers for the same random
number seed.
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6 Future Perspectives and Conclusion

We have analyzed three highly cited population genetics tools and assessed their
software quality which tends to be comparatively mediocre. While this does by no
means imply that these three tools work incorrectly, the probability that they do
contain bugs is high based on results from the field of empirical software engineer-
ing. In addition, even if correct, the tools might nonetheless experience failures, in
particular on very large datasets, as we highlight by an appropriate, yet admittedly
constructed, example.

One possible future direction for improving code quality is to make reviewers and
editors of journals that have dedicated software tracks, for instance, systematic
biology, bioinformatics application notes, molecular ecology resources, more
aware of this issue. Thus, reviewers could be asked to conduct analyses similar to
ours when reviewing software papers. We try to already apply this when reviewing
such papers. Alternatively, authors could be asked to submit a code analysis report
(including code duplication, warnings, results of valgrind analyses) together with
their software papers. For standard programming languages such as C/C++ or
JAVA, such tests could, to a large extent, also be automated. Such a policy change
would substantially improve awareness about code quality issues. In fact, we are
currently working on developing an open-source tool for code quality checking that
could be used for this purpose.

Another future direction is to emphasize the importance of code quality in
graduate and undergraduate teaching. In conjunction with this, we also need to
raise the awareness about software quality in the general user community, as we
do with this chapter.

Finally, there is a substantial lack of funding for code development, despite the
fact that widely used software packages contribute enormously to the citation
records of entire departments. Hence, funding agencies should initiate additional
and substantially more funding schemes for software development, redesign, and
verification.
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Abstract Advances in chromatin state mapping, high-throughput DNA sequencing,
and bioinformatics have revolutionized the study and interpretability of epigenomic
variation. The increasing feasibility of obtaining and analyzing detailed information
on epigenetic mechanisms across many individuals and populations has enabled the
study of epigenomic variation at the population level and its contributions to pheno-
typic variation, acclimation, ecological adaptation, and disease traits. Over the past
decade, researchers from disparate life sciences ranging from epidemiology to marine
conservation have begun approaching their subjects through the lens of population
epigenomics. Epigenetic mechanisms involve molecular alterations in chromatin
through DNA methylation and histone modifications, as well as complex non-coding
RNAs and enzyme machinery, all leading to altered transcription and post-transcrip-
tional RNA processing resulting in changes in gene expression. Genetic and envi-
ronmental variation and stochastic epimutations give rise to epigenomic variation.
Notably, some forms of epigenomic variation are quite stable and in some instances
may be transmitted through one or more rounds of meiosis. Epigenomic variation
can contribute significantly to phenotypic plasticity, stress responses, disease condi-
tions, and acclimation and adaptation to habitat conditions across a wide variety of
organisms during their lifetime but also across multiple generations. The purpose
of this chapter is to provide an overview of population epigenomics concepts,
approaches, challenges, and applications. We discuss the molecular basis of epi-
genetic mechanisms and their variation and heritability across diverse tissues and
taxa. We then discuss the sources of epigenomic variation, within — and among —
population epigenomic variation in plants and animals, and the evolutionary context
of epigenomic variation before reviewing current molecular and bioinformatics
methods for screening epigenomic variation. We then explore the contribution and
association of epigenomic variation with phenotypic and ecological adaptation traits
in plants and common disease conditions in humans and pharmacoepigenomics, as
well as the main challenges and future research directions in population epigenomics.
We emphasize challenges and potential solutions unique to the study of
epigenomes and how those challenges are amplified by the diversity of pathways
by which genes and environments can affect gene expression. With proper applica-
tion and interpretation, the field of population epigenomics will continue to yield
profound insights toward a better understanding of phenotypic plasticity, acclima-
tion, ecological adaptation, heritability, human diseases, and pharmacogenomics.

Keywords DNA methylation - Epigenome-wide association study (EWAS) -
Evolution - Histone modifications - Missing heritability - Non-coding RNAs -
Pharmacoepigenomics - Phenotypic plasticity - Population epigenomics - Source and
heritability of epigenomic variation
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1 Introduction

Epigenetics is the study of potentially heritable changes in gene expression that are
not strictly due to nucleotide changes such as substitutions, insertions and deletions
(indels), or other rearrangements of the underlying DNA sequence. Diverse epige-
netic mechanisms detected across all three domains of life are characterized by
genetically, environmentally, and developmentally mediated molecular phenotypes
that may trigger or result from cell differentiation and development, and which
demonstrate varying degrees of heritability through mitosis and meiosis (Cortijo
et al. 2014; Heard and Martienssen 2014). Epigenetic mechanisms involve molec-
ular alterations in chromatin through DNA methylation and histone modifications
and transcriptional and translational interference via non-coding RNAs (Fig. 1;
Johnson and Tricker 2010), leading to altered transcription and post-transcriptional
RNA processing resulting in changes in gene expression. Epigenomics is the
investigation of the interactions among multiple epigenetic mechanisms at the
genome-wide level and how they interact with the genome to influence chromatin
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Fig. 1 The three most commonly investigated epigenetic mechanisms affecting gene expression
are DNA methylation, histone modifications, and non-coding RNA. Reproduced with permission
from D’addario et al. (2013)
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function and gene expression. Epigenomic variation can result from genetic and
environmental factors, as well as from stochastic epimutations (see review in Taudt
et al. 2016).

In a series of papers published in 1942, Conrad Waddington presented the
concept of the “epigenotype” to describe processes of gene regulation suspected to
influence cell differentiation and phenotypic plasticity (Jamniczky et al. 2010;
Waddington 2012; Deans and Maggert 2015). While definitions of epigenetics
now often involve a heritability component following the popularization of that
association by Holliday in 1994, there is still no ultimate consensus of what
constitutes, and thus how to study, epigenetic phenomena (Richards 2006; Deans
and Maggert 2015) nor to what degree epigenetic mechanisms and their effects are
heritable (Pecinka and Scheid 2012; Furrow 2014; Whipple and Holeski 2016).
Irrespective of their heritability, epigenetic mechanisms are indispensable for the
development and survival of most organisms (Zemach and Zilberman 2010).

Population epigenetics was described by Richards (2008) as “emerging as an
active subfield at the interface of molecular genetics, genomics, and population
biology, [that] addresses questions concerning the prevalence and importance of
epigenetic variation in the natural world.” With the development of massive high-
throughput parallel sequencing techniques to assay genome-wide epigenetic marks,
such as bisulfite DNA sequencing, epigenomics has progressed from investigating
individual epigenomes to studying epigenomic variation across populations and
species, leading to the research field of population epigenomics, which is now a
rapidly growing field of basic and applied research.

By distinguishing the contribution of the epigenome to the variation in traits and
gene expression in and among populations, the field of population epigenomics is
unravelling the complexities of the evolutionary process and revolutionizing bio-
technological approaches for improving human health and the environment. The
broad utility of these methods for interrogating non-genetic sources of phenotypic
variation draws researchers from across the life sciences to consider the role of the
epigenome in their respective study systems. This has resulted in notable outcomes,
such as important discoveries in human disease processes (Ling and Groop 2009;
Rodriguez-Paredes and Esteller 2011), environmental toxicology (Birney et al.
2016; Martin and Fry 2018), novel advances in stem cell therapy (Lunyak and
Rosenfeld 2008; Atlasi and Stunnenberg 2017), new approaches in molecular
breeding for the improvement of agronomic crops (King et al. 2010; Zheng et al.
2017), and ambitious concepts and biotechnologies for the conservation of species
and ecosystems in the face of a rapidly warming global climate (Sdez-Laguna et al.
2014; Van Oppen et al. 2017). These advances will undoubtedly reveal new chal-
lenges in the study of epigenomes, as will studying the role of epigenomes at
increasingly complex levels of biological organization.

The objective of this chapter is to provide a discussion of population epigenomics
concepts, methods, challenges, and applications. First, we discuss the molecular
basis of epigenetic phenomena and their taxonomic diversity, tissue specificity, and
heritability. We then examine the evolution and sources of epigenomic variation
before discussing epigenomic variation within and among populations of plants and
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animals. Thereafter, we provide an overview of methods used to measure
epigenomic variation and bioinformatics methods for analyzing population
epigenomics data. Subsequently, we review the influence and association of
epigenomic variation with phenotypic and ecological acclimation and adaptation
traits in plants, common disease conditions in humans, and pharmacoepigenomics.
Lastly, we discuss challenges, research needs, and future directions in population
epigenomics.

2 The Molecular Basis of Epigenetic Phenomena

2.1 Epigenetic Mechanisms

DNA methylation, histone modifications, and non-coding RNA are the most well-
studied epigenetic mechanisms. Chromatin is thought to be at the core of epigenetic
gene regulation, affecting gene expression patterns and ultimately the phenotype via
changes in accessibility of the DNA to transcription factors (Chen et al. 2017). The
nucleosome, the basic building block of chromatin, is comprised of approximately
147 bp of negatively charged DNA wound twice around a histone octamer
consisting of heterodimers of H3/H4 and H2A/H2B histones (Hansen 2002). The
N-terminus of a histone molecule is positively charged and contains numerous lysine
and arginine residues that interact with negatively charged DNA, limiting its acces-
sibility to transcription factors (Peterson and Laniel 2004). The bulk of genomic
DNA is incorporated into the nucleosome with around 10-60 residues acting as a
linker region connecting subsequent nucleosomes together (Hansen 2002). Com-
paction of these nucleosome units produces structures of approximately 10 nm in
diameter known as chromatin fibers (Hansen 2002). Like origami, these chromatin
fibers are condensed further, firstly into 30 nm fibers, then into 100400 nm inter-
phase filaments, and finally into chromosomes (Peterson and Laniel 2004). Organi-
zation of these chromatin structures can be altered by DNA methylation, histone
modifications, and non-coding RNAs that collectively define chromatin states
allowing for either expression (euchromatin) or repression (heterochromatin) of
different genes (Allis and Jenuwein 2016). DNA methylation can result in the
compaction of chromatin, and small RNA can direct DNA methylation to a specific
genomic region via RNA-directed DNA methylation (RADM) (review in Bernstein
and Allis 2005). Chromatin compaction is known to suppress gene expression by
inhibiting the accessibility to DNA by transcription machinery. Importantly, most
chromatin modifications are reversible (Allis and Jenuwein 2016). The dynamics of
the patterns of chromatin modifications enables biological processes, such as devel-
opment, differentiation, acclimation and adaptation (Taudt et al. 2016). Organisms
from different branches of the tree of life can vary in these mechanisms, some
lineages having lost entire pathways (Zemach and Zilberman 2010).
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2.1.1 DNA Methylation

One of the most frequently studied chromatin modifications in plant, animal, and
fungal genomes is the covalent addition of a methyl group to the fifth carbon of the
cytosine pyrimidine ring, leading to the generation of 5-methylcytosine (SmC)
(Holliday and Pugh 1975; Riggs 1975; Law and Jacobsen 2010). The human
genome contains approximately 28 million CpG dinucleotides, of which 60-80%
are methylated (Taudt et al. 2016). Although different tissues are characterized by
various levels of CpG methylation, CpG islands located in the proximal regions of
gene promoters generally remain unmethylated in animal genomes (Ehrlich et al.
1982).

In mammalian genomes, there are three DNA methyltransferase (DNMT)
enzymes, which add methyl groups to DNA (Edwards et al. 2017). DNMT1, the
maintenance methyltransferase shared across numerous lineages, has an affinity for
hemimethylated CpGs that are generated following DNA replication or during DNA
damage repair (Bostick et al. 2007). Ubiquitin-like containing PHD and RING finger
domains 1 (UHRF1) recruits DNMT1 to hemimethylated DNA, where this enzyme
reproduces the pattern of DNA methylation present on the original strand of DNA
onto the newly synthesized strand (Bostick et al. 2007). DNMT3a and DNMT3b are
de novo DNA methyltransferases that, along with catalytically inactive DNMT3L,
methylate cytosine residues in “naked” unmethylated DNA (Okano et al. 1999).
Although DNMT1 and DNMT3a/b are, respectively, designated as maintenance and
de novo methyltransferases, these functions are not mutually exclusive (Okano et al.
1999; Fatemi et al. 2002).

Global levels of DNA methylation are relatively static in most tissues. However,
during cellular differentiation the DNA methylation status of a fraction of all CpGs
in the genome exhibits dynamic changes that modulate tissue-specific gene expres-
sion (Gifford et al. 2013; Ziller et al. 2013). These alterations in the patterns of
DNA methylation are influenced by the chromatin state through a cross-talk between
methylation/demethylation machinery and histone modifications including H3K9me
and H3K4me (Cedar and Bergman 2009; Du et al. 2015). The removal of SmC from
DNA can occur either through passive or active demethylation (Smith and Meissner
2013). Passive demethylation is replication-dependent. During this process, SmC is
being “diluted out” with each successive round of replication in the absence of
DNMT1 and/or UHRF1 (Wu and Zhang 2014). Active DNA demethylation was
initially described in plants where Demeter (DME)/repressor of silencing 1 (ROS1)
family of DNA glycosylases mediate removal of SmC when coupled with base
excision repair (BER) machinery. In addition to this, a direct removal of the methyl
group from 5mC has also been reported in plants; however, this process is thought to
be thermodynamically unfavorable in mammalian cells (Zhu 2009).

5-Hydroxymethylcytosine (ShmC), an oxidized derivative of 5SmC initially iden-
tified in bacteriophages (Wyatt and Cohen 1952), was later found in non-negligible
quantities in the mouse genome (Kriaucionis and Heintz 2009). The ten-eleven
translocation (TET) family of DNA dioxygenase enzymes (TET1-3) was shown to
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catalyze the conversion of SmC into ShmC (Tahiliani et al. 2009). Further oxidation
of 5ShmC then forms 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by TET
proteins (Ito et al. 2011; He et al. 2011). 5ShmC may facilitate passive dilution of
5mC by impairing binding of DNMT1/URHFI to the hemi-modified DNA (Wu and
Zhang 2014). Moreover, thymine-DNA glycosylase (TDG) can recognize and
excise ScaC and 5fC from DNA (Maiti and Drohat 2011; He et al. 2011). Analo-
gously to DME/ROS1-mediated demethylation in plants, TDG-driven excision of
5caC and 5fC produces an abasic site that can be repaired by BER machinery
resulting in regeneration of non-modified cytosine (Chen and Riggs 2011). In
addition to their roles as intermediates in the processes of active and passive DNA
demethylation, according to multiple studies, the oxidized forms of SmC (5hmC,
5caC, and 5fC) may have their own functional epigenetic significance (Song and He
2013). Thus, accumulation of 5fC and ScaC at cell-type-specific promoters, which
correlates with transcriptional activity of the corresponding genes, has been
observed during glial/neural and hepatic differentiation, implying a potential role
of these modifications in regulation of gene expression (Wheldon et al. 2014; Lewis
et al. 2017). The TET/TDG/BER-dependent pathway of active demethylation is
most documented for mammalian systems to date.

DNA methylation is usually associated with transcriptional repression and has
been linked to a plethora of biological processes, including X chromosome inacti-
vation, genomic imprinting, heritable repression of retrotransposons, pluripotency
regulation, and gene silencing in development and disease (Edwards et al. 2017,
Turlaro et al. 2017). In addition to silencing of coding genes, transposon-derived
sequences, such as long interspersed nuclear elements (LINEs), short interspersed
nuclear elements (SINEs), and long terminal repeats (LTRs), are often heavily
methylated in mammals (Edwards et al. 2017). Interestingly, in plants, DNA meth-
ylation also occurs predominantly on repetitive sequences, including transposons
(Zhang et al. 2006). Given that transposable elements are a significant threat to the
genome integrity due to their ability to replicate and integrate randomly throughout
the genome, their tight regulation is of particular importance for the heritable transfer
of genetic information (Fedoroff 2012). Correspondingly, DNA methylation repre-
sents one of the main mechanisms allowing to maintain repetitive elements in a
silenced state in both plants and animals (Law and Jacobsen 2010).

Genomic imprinting is an epigenetic process defined by the expression of genes
in a parental-origin-specific manner (Ferguson-Smith 2011). Imprinting was initially
discovered while studying the inheritance of maize (Zea mays) kernel coloration,
when specific phenotypes were attributed to the parental germline environment of a
gene instead of differences in its DNA sequence (Kermicle 1970). Imprinting has
been reported for mammals, plants, and insects (Kermicle 1970).

X-inactivation is an example of whole chromosome imprinting whereby one of
the female X chromosomes is silenced to equalize its transcriptional output to the
male XY (Plath et al. 2002). Although X chromosome inactivation is instigated by
the ncRNA Xist, DNA methylation is central to maintaining its inactive state
(Csankovszki et al. 2001). In addition to the continued expression of Xist and
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deacetylation of histones, de novo methylation of CpG islands is required for
permanent silencing of the X chromosome (Bird 2002).

Apart from locus-specific changes in SmC content, two events of genome-wide
DNA demethylation and remethylation occur in mammalian development (Edwards
et al. 2017). One wave of global genome demethylation is observed upon migration
of dividing primordial germ cells toward developing gonads, and the second
demethylation event occurs in cleavage stage embryos soon after fertilization
(Monk et al. 1987; Edwards et al. 2017). These waves of genome-wide demethyl-
ation and subsequent remethylation are currently understood as reprogramming
events and are correlated with the loss of cellular memory and the resetting of
cellular potency (Iurlaro et al. 2017). In contrast, for plants, studies in Arabidopsis
have shown that in pollen, the germline cells do not undergo erasure of DNA
methylation (Slotkin et al. 2009). Rather DNA methylation is lost in the vegetative
nucleus, resulting in re-expression of transposons and the production of small RNAs.
It has been demonstrated that these small RNAs can travel to the germline cells,
where it is suggested they reinforce methylation states (Slotkin et al. 2009).

Although methylation of cytosine is the most abundant and well-studied DNA
modification, adenine within DNA has been shown to be methylated in some
instances (N6-methy1adenine, 6mA) (O’Brown and Greer 2016). Until recently,
the presence of 6mA in DNA had been described only for prokaryotes in the context
of host defense mechanisms (Vanyushin et al. 1968). However, since 2015, a
number of studies have documented the presence of this mark in plants, insects,
and mammals (Fu et al. 2015; Greer et al. 2015; Zhang et al. 2015a, b; Liu et al.
2016; Wang et al. 2017; Xiao et al. 2017). Despite indications of its possible
involvement in the regulation of transcription, activity of transposable elements,
embryo development, and inheritance in these systems, potential functional roles of
this DNA modification in eukaryotes remain to be elucidated (Luo et al. 2015; Sun
et al. 2015; Luo and He 2017).

2.1.2 Non-coding RNAs (ncRNAs)

A majority of the non-protein-coding transcripts produced from a genome are
functionally active as RNA molecules and play numerous regulatory roles in the
cell (Uchida and Dimmeler 2015). These RNAs, known as non-coding RNAs
(ncRNA), are functional transcripts that are not translated into proteins. Classifica-
tion of ncRNAs is often based on size, dividing them into small (<30 nt) and long
(>200 nt) transcripts (Uchida and Dimmeler 2015). Small ncRNAs (sncRNAs)
include microRNAs (miRNAs), small interfering RNAs (siRNAs), Piwi-interacting
RNAs (piRNAs), transfer RNAs (tRNAs), and small nucleolar RNAs (snRNAs).
Ribosomal RNAs (rRNAs) and natural antisense transcripts (NATs) are within the
scope of long ncRNAs (IncRNAs); however numerous other IncRNAs exist (Chen
et al. 2017).
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Micro RNAs (miRNAs)

Almost 40 thousand types of miRNAs have been discovered, and these evolutionarily
conserved single-stranded RNAs (20-24 nucleotides long) are thought to be involved
in many important biological processes by regulating the expression of approxi-
mately half of all genes in a cell post-transcriptionally (Kaikkonen et al. 2011).
Although some miRNAs are transcribed from independent loci, most miRNAs are
clustered and are transcribed as a part of a single polycistronic unit, most commonly
from intergenic regions of the genome (Karius et al. 2012; Uchida and Dimmeler
2015).

Mature miRNA integrates with the RNA-induced silencing complex (RISC) in
order to guide its binding to the 3’ untranslated region (UTR) of target nRNA (Bartel
2004). The degree of base pairing between the mature miRNA seed sequence and the
target mRNA 3'UTR determines either repression or degradation of the
corresponding mRNA (Li et al. 2010). In case of perfect complementarity between
the seed sequence and mRNA 3'UTR, the Argonaute protein cleaves the resulting
complex, whereas non-perfect complementarity usually leads to translational inhi-
bition of mRNAs (Kaikkonen et al. 2011). Thus, via mRNA targeting, miRNAs can
modulate the gene expression patterns for hundreds of different targets and, conse-
quently, influence many biological processes, such as proliferation, differentiation,
and metabolism (Uchida and Dimmeler 2015).

Small Interfering RNAs (siRNAs)

miRNAs and siRNAs are similar in many aspects, including their size (20-24 nt) and
ability to associate with the RISC complex to silence gene function. However, they
have divergent origins and biogenesis pathways (Kaikkonen et al. 2011). Both
require Dicer for processing and the Argonaute family of proteins to support their
silencing abilities, but siRNAs do not rely on Drosha, a class 2 ribonuclease III
enzyme, and are mainly processed from long, linear, fully complementary dsRNAs
as opposed to the stem-loop precursors described for miRNAs (Carthew and
Sontheimer 2009; Kim et al. 2009). Analogously to miRNAs, the extent of comple-
mentarity between siRNA and its target determines the particular mode of siRNA-
dependent silencing, but most siRNAs almost exclusively mediate cleavage and
degradation of their target mRNAs (Kaikkonen et al. 2011).

Initially, only exogenous siRNAs were considered as a primitive form of genome
defense that act in response to foreign nucleic acids including viruses, transposons,
and transgenes (Kaikkonen et al. 2011); however, it soon became apparent that
endogenous siRNAs transcribed from loci containing transposons and repetitive
elements could, similar to exogenous siRNA and piRNAs, contribute to the sup-
pression of transposon activity (Carthew and Sontheimer 2009). Interestingly,
siRNAs have also been associated with sequence-specific silencing through
the upregulation of epigenetic marks that induce formation of heterochromatin
(Kaikkonen et al. 2011).
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PIWI-Interacting RNAs (piRNAs)

piRNAs are 24-31 nucleotides long and are characterized by a 2'-O-methyl modi-
fication at the 3/, as well as a preference for uridine at the 5’ (Siomi and Siomi 2009).
Unlike miRNAs and siRNAs, piRNAs are processed from a single-stranded precur-
sor transcript (Vagin et al. 2006). piRNAs form effector complexes known as
piRNA-induced silencing complexes (piRISCs) with PIWI proteins belonging to a
germline-specific subclass of the Argonaute family (Iwasaki et al. 2015). piRNAs
are transcribed from piRNA clusters, intergenic regions containing large numbers of
different transposons (Kaikkonen et al. 2011; Iwasaki et al. 2015). Initially, piRNAs
were identified in Drosophila, where they are complementary to numerous trans-
posable and repetitive elements (Aravin et al. 2003). Correspondingly, piRNAs act
primarily as the essential regulators of transposon activity within the genome during
germline development (Iwasaki et al. 2015). Interestingly, piRNAs have also been
linked to transposon regulation in somatic cells (Li et al. 2009a; Malone et al. 2009).
As piRNAs are transcribed from loci that are similar to their targets, to successfully
regulate transposition, they need to recognize their “self” genes from “non-self”
transposable elements that are to be targeted (Malone and Hannon 2009). A combi-
nation of diversity in the sequences for target transposons and in piRNA processing
mechanisms makes these RNAs one of the most diverse and the largest subgroups of
ncRNASs (Siomi et al. 2011).

Long Non-coding RNAs (IncRNAs)

Unlike highly conserved sncRNAs that regulate gene silencing through specific base
pairing, long non-coding RNAs (IncRNAs) have low-level sequence conservation
and use diverse mechanisms of regulation which are not yet fully characterized.
Similar to protein-translating mRNA, IncRNAs are transcribed by RNA polymerase
II (Wang and Chang 2011). They are often 5’ capped and spliced and contain a
3'-polyadenylated tail (Chen et al. 2017). Unlike protein-coding genes, IncRNAs
lack open reading frames (ORF); their encoded RNA sequences are shorter, and the
abundance of the expressed transcripts is lower compared with mRNAs (Wang and
Chang 2011). IncRNAs are enriched in the nucleus compared to the cytoplasm, and
their expression is highly cell type, tissue type, and developmental stage-specific
(Chen et al. 2017).

IncRNAs are commonly classified according to genomic location as sense,
antisense, intronic, intergenic, enhancer, and circular RNAs (Uchida and Dimmeler
2015). Sense IncRNAs usually share the same promoter and overlap with a protein-
coding transcript, whereas antisense IncRNAs are present in the strand opposite to a
protein-coding gene (Uchida and Dimmeler 2015). Intronic IncRNAs are transcribed
from the introns of a translated gene, and long intergenic non-coding RNAs
(lincRNAs) can be found between two transcribed genes. Enhancer RNAs
(eRNAs) are produced from enhancer regions of protein-coding genes, and circular
RNAs are usually formed following the splicing of a protein-coding gene whereby
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the product covalently binds to itself (Uchida and Dimmeler 2015; Chen 2016).
IncRNAs have also been grouped according to their function as imprinting-related,
scaffolds, enhancer activation, and molecular sponges (Uchida and Dimmeler 2015)
but as individual IncRNAs may fulfill several biological roles; therefore, these
groups are not mutually exclusive (Wang and Chang 2011).

The IncRNA Xist, the first functionally characterized IncRNA involved in
imprinting, silences one of two X chromosomes (Brown et al. 1991; Herzing et al.
1997). Xist silences one of the female XX chromosomes to equalize its transcrip-
tional output compared to male XY (Plath et al. 2002). On the active X chromosome,
Xist is silenced in the cis position (self-inactivation); however, on the inactive X
chromosome, Xist is activated both in cis and trans positions (non-self-inactivation)
(Chen et al. 2017).

When a IncRNA acts as a scaffold, it directs different biological activities through
the recruitment of additional functional proteins (Uchida and Dimmeler 2015).
Scaffold IncRNAs represent the most abundant subgroup of these RNAs, a type of
lincRNA consisting of more than 10,000 molecular species (Chen 2016). Unlike
most IncRNAs, lincRNAs are highly evolutionarily conserved across different
species (Guttman et al. 2009). lincRNAs have a distinctive chromatin signature;
their promoter and transcribed regions are marked by trimethylated lysines
4 (H3K4me3) and 36 (H3K36me3) of histone 3, and both are associated with
actively transcribed genes (Khalil et al. 2009; Guttman et al. 2009). Current exper-
imental evidence suggests that lincRNAs act as flexible scaffolds, guiding
chromatin-modifying complexes to particular loci within the genome, enabling the
creation of cell-type-specific epigenetic states and instigating different transcrip-
tional programs (Tsai et al. 2010; Guttman et al. 2011).

The eRNAs are a group of IncRNAs transcribed from enhancers (Uchida and
Dimmeler 2015). eRNAs modulate enhancer activation and range in size from 0.1 to
9 kb (Kim et al. 2010; Kaikkonen et al. 2011). Similar to other lincRNAs, eRNAs are
evolutionarily conserved and have a distinct chromatin signature (Heintzman et al.
2007). eRNA-producing regions are usually characterized by high enrichment of
monomethylated (H3K4mel) and low content of trimethylated lysine 4 on histone
3 (H3K4me3) (Heintzman et al. 2009). As the initiation of eRNA transcription
occurs from RNA polymerase II binding sites, followed by bidirectional elongation
of the transcript, eERNA expression levels positively correlate with those of nearby
mRNASs (Kim et al. 2010; Chen et al. 2017).

Unlike eRNAs, molecular sponges regulate gene expression via sequestering
molecules that interact with a particular region of the genome (Chen et al. 2017).
Circular RNA (circRNA) arising from introns or protein-coding exons via linking
their 3’ and 5" ends commonly acts as molecular sponges (Zhang et al. 2013a, b; Jeck
et al. 2013). Although the overall range of biological roles of circRNAs is still rather
unclear, one of their known functions is the sequestration of miRNAs (Uchida and
Dimmeler 2015). A circRNA containing more than 70 conserved miRNA target sites
known as ciRS-7 was shown to act as a sponge for miR-7 in both human and mouse
brain (Hansen et al. 2013). ciRS-7 is strongly associated with Argonaute proteins in
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a miR-7-dependent manner and upregulates miR-7 target levels by suppressing
miR-7 activity (Hansen et al. 2012, 2013).

2.1.3 Histone Modifications

Histones are the core components of the nucleosome. They are of fundamental
importance for the epigenetic regulation of chromatin structure and undergo a
large number of chemical modifications that are considered epigenetic (Hansen
2002). Although the post-translational modifications of histones were known since
the early 1960s (Allfrey et al. 1964), histone modifications were functionally linked
with chromatin structure only in 1997 after achieving a high-resolution X-ray
structural determination of the nucleosome (Luger et al. 1997). The 20-35 residue
amino-N-terminal histone tail extends from the nucleosome unit enabling its inter-
action with neighboring nucleosomes and is instrumental in the folding of nucleo-
somes into higher-order chromatin fibers (Peterson and Laniel 2004; Bannister and
Kouzarides 2011). Histones possess more than 130 post-translational modifications
(PTMs) that include acetylation, methylation, phosphorylation, sumoylation,
ubiquitination, deamination, beta-N-acetylglucosamine, ADP ribosylation, histone
tail clipping, and histone proline isomerization (Bannister and Kouzarides 2011;
Rivera and Ren 2013). Most of these PTMs are observed in both the amino and
carboxyl terminal tails of histones; however, central histone domains can also be
modified (Bannister and Kouzarides 2011). In 2000, the “histone code” hypothesis,
stating that the combined nature of different histone modifications defines different
combinatorial chromatin states, was proposed in several studies (Strahl and Allis
2000; Jenuwein and Allis 2001). According to this hypothesis, the patterns of
histone modifications present at defined locations in the genome can be interpreted
by other proteins resulting in a specific downstream event (Strahl and Allis 2000).
Although consensus has not been achieved for what the “histone code” actually
means, it is generally assumed that histone modifications contribute to control of
gene expression via either structural changes of chromatin or recruitment of tran-
scription factors, coactivators, and suppressors in order to achieve active, poised, or
silenced transcriptional states of the corresponding genes (Peterson and Laniel 2004;
Bannister and Kouzarides 2011; Chen et al. 2017).

2.2 Taxonomic Diversity of Epigenetic Patterns

Although epigenetic mechanisms play a key role in the evolution of phenotypic and
functional biological diversity in myriad animal and plant taxa, and are conserved
across a wide range of species, most fungi and invertebrate animals investigated so
far appear to make less use of DNA methylation than plants and animals (Zemach
and Zilberman 2010; Zhong 2016; Yung and Elsdsser 2017). Importantly, many
post-translational modifications originated in prokaryotes as metabolic intermediates



Population Epigenomics: Advancing Understanding of Phenotypic Plasticity. . . 191

and acquired an “epigenetic” role only in multicellular organisms (Yung and
Elsédsser 2017). Thus, comparative analysis of epigenetic modifications between
different species may provide an insight into both biological roles of epigenetic
marks and the evolution of specific developmental processes (Xiao et al. 2014;
Roadmap Epigenomics Consortium et al. 2015; Zhong 2016; Hardcastle et al. 2018).

Cytosine DNA methylation (SmC) is a major epigenetic modification commonly
found in plants, animals, and fungi (Yung and Elsidsser 2017). Its global levels vary
across different eukaryotes, with the amount of cytosine residues that are methylated
representing 0-3% of all the cytosine residues in the genome of insects, 5% in
mammals and birds, 10% in fish and amphibians, and sometimes more than 30% in
the genomes of certain plants (Field et al. 2004). Unlike in mammals, in insects, SmC
is enriched in the gene bodies of actively transcribed loci, where it is involved in the
control of gene expression (Yan et al. 2015; Jaenisch and Bird 2003). In the
honeybee (Apis spp.), gene body methylation has also been linked with alternative
splicing (Wedd and Maleszka 2016), and an intriguing though disputed finding from
studies of eusocial insects linked SmC variation with development of different castes
and behavioral patterns (Yan et al. 2014, 2015).

Extensive 5SmC variation exists in plants, mediated by a suite of plant-specific
methyltransferases, and correlates strongly with the distribution of transposable
elements across a given genome (Niederhuth et al. 2016; Bewick et al. 2017). Plants
with a more complex genome have a wide distribution of SmC that, like in mammals,
contributes to preventing transposition of repetitive elements (Zemach et al. 2010).
Similar to insects, plants contain SmC in a CG context, but also in CHG and CHH
contexts (where H is any base), within approximately a third of gene bodies of
actively transcribed protein-coding genes (Cokus et al. 2008; Lister et al. 2008).
CHG methylation is specifically mediated by CHROMOMETHYLASE 3, while
CHH methylation is specifically mediated by CHROMOMETHYLASE 2. CG,
CHG, and CHH methylation also share a common mediator: DOMAINS
REARRANGED METHYLASE 2. 5mC content and distribution vary significantly
across plant species and have been lost altogether within some algal species (Bewick
et al. 2016, 2017). Thus, Chlorella possesses a highly methylated genome, whereas
Volvox contains only low levels of DNA methylation (Lister et al. 2008).

Importantly, all of the DNMTs in eukaryotes are highly homologous to bacterial
DNA methyltransferases (Goll and Bestor 2005). While in mammals, de novo
methylation is mediated by the DNMTS3 class of enzymes, their plant counterparts
belong to the DOMAIN REARRANGED METHYLTRANSFERASE 2 (DRM2)
protein family (Law and Jacobsen 2010; Zhang et al. 2018). Targeting of these
enzymes to DNA significantly differs between these organisms. Mammalian
DNMTS3 is recruited to chromatin through its association with histones; however,
DRM2 is targeted to the DNA via siRNAs through RADM (Law and Jacobsen 2010;
Zhang et al. 2018). RdDM is a major mechanism of DNA methylation in plants that
is generated via a different pathway in plants than in other eukaryotes, consisting of
24 nt small RNAs produced by two RNA polymerases specific to plants: Pol IV
interacting with non-coding RNA produced by Pol V to target DOMAINS
REARRANGED METHYLASE 2 (Matzke and Mosher 2014). There is strong
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evidence of genetic variants in these plant-specific pathways associated with popu-
lation level differences in DNA methylation (Schmitz et al. 2013b).

The most common DNA modification in prokaryotes is adenine methylation
(6mA), while the role of 5SmC in bacteria is rather poorly understood (Vanyushin
et al. 1968; Breiling and Lyko 2015). There are two types of 6mA methyltransferases
in bacteria: restriction-modification systems, which protect the prokaryotic host from
the invasion of foreign (phage) DNA, and solitary methyltransferases, e.g., Dam
(Wion and Casadests 2006). In bacterial genomes, 6mA, in combination with
solitary methylases, is implicated in influencing virulence of diverse human and
animal pathogens as well as providing signals for DNA-protein interactions
(Vanyushin et al. 1968; Low et al. 2001; Casadests and Low 2006; Kahramanoglou
et al. 2012).

In addition to bacterial genomes, 6mA has also recently been identified in a
wide range of multicellular organisms including Arabidopsis, Chlamydomonas,
Drosophila, C. elegans, Tetrahymena thermophila, rice (Oryza sativa), zebrafish
(Danio rerio), pig (Sus scrofa), and Homo sapiens (Fu et al. 2015; Greer et al. 2015;
Zhang et al. 2015a, b; Liu et al. 2016; Wang et al. 2017; Xiao et al. 2018; Zhang et al.
2018). Unlike that of SmC, the function of 6mA in these organisms is currently
largely unclear. However, it does seem to correlate with activation and/or silencing
of genes in certain biological systems studied to date (Luo et al. 2015; Sun et al.
2015; Luo and He 2017).

Several recent reports have provided experimental evidence for epigenetic-like
functional roles of the active demethylation intermediates ShmC, ScaC, and 5fC
(Song and He 2013). The generation of 5caC and 5fC in plant genomes in response
to environmental stresses has also been reported (Tang et al. 2014), but not ShmC
due to the lack of TET enzymes in plants. Moreover, TET homologues and the
oxidized derivatives of SmC have also been detected in fungi Coprinopsis cinerea,
but their biological roles in these organisms are yet to be elucidated (Zhang et al.
2014).

ncRNAs are present not only in eukaryotes but also in bacteria, archaea, and
viruses (Storz 2002). Numerous early ncRNA studies were carried out in unicellular
eukaryotes (Volpe et al. 2002; Mochizuki et al. 2002). These sncRNAs are among
the most highly conserved sequences in vertebrate genomes, whereas the IncRNAs
have limited evolutionary conservation (Pang et al. 2006; Pollard et al. 2006). One of
the most ancient sncRNAs is the hammerhead ribozyme. This catalytic RNA was
discovered in subviral plant pathogens in addition to archaea, bacteria, and eukary-
otic genomes (Przybilski et al. 2005; Seehafer et al. 2011). Endogenous siRNAs
have also been observed in different species such as plants, worms, flies, and
mammals. However, the complexity of the siRNA biogenesis pathway is not equal
in all organisms (Kim et al. 2009). Within humans, identification of endogenous
siRNAs is limited (Xia et al. 2013). Bacterial siRNAs are not related to eukaryotic
small RNAs. Unlike bacterial siRNAs, endogenous siRNA of eukaryotes is 20-30
nucleotides long and specifically associates with the Argonaute family of proteins
(Kim et al. 2009). Interestingly, the high degree of base pairing between miRNAs
and their target mRNAs leading to target degradation is more commonly observed in
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plants, whereas miRNA-dependent translational repression most commonly occurs
in humans due to imperfect complementarity (He and Hannon 2004).

Unlike eukaryotes, archaea do not contain complex nucleosomal units, but
prototypic histones are associated with DNA packaging in these prokaryotes
(Mattiroli et al. 2017). Moreover, the amino acid sequences forming the contacts
between nucleosomal histones and DNA are conserved between archaea and eukary-
otes indicating an important functional role for these interactions (Mattiroli et al.
2017). The core histone fold, regulatory sites on the histone tail, and histone PTMs
are evolutionarily conserved in protozoans, and most of the components of the
machinery involved in the regulation of PTMs also appear to possess some degree
of evolutionary conservation (Postberg et al. 2010; Talbert et al. 2012). Lysine
acetylation is present in all kingdoms of life; sirtuin deacetylases are conserved
between eukaryotes, archaea, and bacteria; and the catalytic core of the SET domain
of lysine methyltransferases can be found in prokaryotic (bacterial) proteins (Soppa
2010; Alvarez-Venegas 2014; Yung and Elsédsser 2017). Furthermore, the donor
molecules employed by the eukaryotes for the generation of some PTMs (e.g., acetyl
CoA and ATP) serve as intermediates involved in metabolic feedback regulation in
prokaryotes (Sharma and Rando 2017).

Thus, despite the diverse roles of specific epigenetic marks in various species,
most of the basic epigenetic mechanisms are of very ancient origin, and, therefore,
elucidating their roles in different contexts should be of immense interest for
understanding the most fundamental principles of the homeostasis and development
of biological systems.

2.3 Cell and Tissue Specificity of Epigenetic Patterns

Epigenetic memory refers to the transmission of gene expression states through
multiple generations of a cell line, independent of initiation signals or genetic
variation (Ng and Gurdon 2008). With few exceptions, the hundreds of cell types
present in a multicellular eukaryote contain identical genomes, yet the functions they
perform differ substantially (Watanabe et al. 2013). This functional variation is
facilitated by changes in gene expression resulting from enhancer-promoter interac-
tions, chromatin assembly, transcription factors, transposable element mobilizations,
and attendant epigenomic modifications (Li et al. 2016). Mechanisms of gene regu-
lation both reflect changes in cellular environments and ontogeny, and collectively
act to progressively silence transcriptionally active gene regions as cell differentiation
proceeds. Once a developing cell becomes committed to a cell fate, it cannot switch to
another cell fate, in part due to accumulated epigenetic modifications that buffer cell
differentiation (Hochedlinger and Plath 2009; Takahashi et al. 2018). Elimination of
the epigenetic memory accumulated during cellular differentiation, exposure to
conducive cellular environments, and induction of embryonic transcription factor
network expression have allowed stem cell researchers to reprogram a wide range of
differentiated somatic cells to a pluripotent state (Lunyak and Rosenfeld 2008;
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Watanabe et al. 2013). Conversely, epigenetic alterations accrued during the cell
differentiation process result in cell populations consisting of an epigenome mosaic.
Therefore, any multi-cell epigenomic study of tissue samples composed of multi-
aged cells, let alone different cell types, constitutes a collection of epigenomes (Jaffe
and Irizarry 2014; Wijetunga et al. 2014). Mixed epigenome samples present chal-
lenges for the analysis and interpretation of epigenomic data, particularly in
epigenome-wide association studies (EWAS), of which investigators are often not
aware (Greally 2017). A study using five publicly available datasets from epigenome-
wide associations between human disease and DNA methylation content of whole
blood found that blood DNA methylation levels explain over 19% of variation in
blood cell-type composition present among study samples (Jaffe and Irizarry 2014).
Similarly, studies of stem cells from diverse cell sources have found that induced
pluripotent stem cells maintain characteristic epigenetic profiles depending on cell
origin even prior to cell reprogramming (Shiota et al. 2002; Watanabe et al. 2013).
Studies of the DNA methylome of multiple tissues from Arabidopsis thaliana found
divergence in methylation profiles across tissue types that also varied in their degree
of divergence based upon sequence context (Fig. 2; Calarco et al. 2012; Kawakatsu
et al. 2016a, b). Together, this suggests a strong potential for spurious epigenomic
associations to confound epigenomic studies any time when samples represent
heterogeneous cell compositions.

Mixed-cell sample deconvolution strategies for simplifying heterogeneous sam-
ples include methods of cell-type sorting via flow cytometric approaches such as
fluorescence-activated cell sorting, immunomagnetic separation, or microfluidic
microchips (Jaffe and Irizarry 2014; Wijetunga et al. 2014), single-cell genome-
wide bisulfite sequencing (Smallwood et al. 2014), and bioinformatics approaches
(Teschendorff and Zheng 2017). Naive assessment of heterogeneous tissue- and cell-
specific epigenetic profiles clearly presents a significant source of spurious
epigenomic variation, i.e., false detection of epigenomic variation among samples.
However, leverage of cell- or tissue-specific epigenomic variation allows dissection
of the epigenetic contribution to gene expression differences underlying differential
tissue and cell development. For instance, conspicuous tissue-specific DNA meth-
ylation patterns offer useful biomarkers of various human diseases (Hewitt et al.
2017; Keller et al. 2017; Yang et al. 2017), targets for the identification of loci
related to DNA methylation-associated phenotypic variation in response to imposed
environmental stress (Alonso et al. 2017), and methods for quantitative determina-
tion of cell-type proportions present in heterogeneous samples (Baron et al. 2006).
Additionally, cell-type-specific DNA methylation changes in the development of
certain cell lines, such as male and female plant germ cells, have important conse-
quences for the propagation of accumulated epigenetic modifications to daughter
cells via signaling factors, often in the form of small RNAs present in plant sperm
nuclei and seed endosperm (Calarco et a. 2012; Springer and Schmitz 2017).
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Fig. 2 Heat map of DNA methylation of the primary methylation contexts in different tissues of
Arabidopsis thaliana: INF inflorescence, MS microspore, VN vegetative nucleus, SC sperm cell,
EMB embryo. Reproduced with permission from Calarco et al. (2012)

2.4 Heritability of Epigenetic Patterns

Characteristic patterns of epigenomic variation occur within subspecies, species, and
populations (Verhoeven et al. 2010; Zemach and Zilberman 2010; Schmitz et al.
2011). The resetting of most epigenetic patterns that occurs during gamete and
zygote formation is necessary to enable zygote cell totipotency, yet epigenetic
patterns are largely conserved within lineages and populations, suggesting the
activity of mechanisms for their transmission through mitosis and meiosis, as well
as their reestablishment from environmental and genetic cues (Schmitz et al. 2011;
Calarco et al. 2012). Interestingly, transmission of gene-independent epialleles (loci
differing in chromatin states among cells or organisms) through meiosis is well
documented in plants, but less so in animals, although plants maintain totipotent
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cells well beyond embryogenesis while animals do not (Calarco 2012). This differ-
ence relates to the tendency of the epigenomes of animals, mammals in particular, to
be erased and then reestablished during zygote formation, while plant epigenomes
undergo far less loss or reprogramming and are instead reinforced during gamete
formation (Heard and Martienssen 2014).

The inheritance of silent gene expression states appears to mostly involve the
transmission of DNA methylation profiles, as evidenced by the finding that qualita-
tive “on/off” effects on gene expression are commonly associated with DNA
methylation (Springer and Schmitz 2017). Meanwhile, the transmission of active
and quantitative gene expression states commonly involves histone variants, espe-
cially the histone variant H3.3. Along with multiple histone modifications, H3.3 is
often enriched at active chromatin sites (Ng and Gurdon 2008). The mechanism
enabling maintenance of a pure epigenetic state (sensu Richards 2006) related to
DNA methylation through mitosis is facilitated by the semiconservative nature of
DNA replication. After mitosis, each daughter cell has one parental DNA strand with
a methylation pattern matching that of the parental cell and one newly synthesized
strand lacking methylation. The resulting hemimethylated state is the preferred
substrate of certain DNA methyltransferases, which preferentially methylate CG or
CHG nucleotides on the new strand paired with methylated complementary
sequences on the parental strand (Adams and Burdon 1985; Ng and Gurdon
2008). Transmission of the histone variant H3.3 depends upon the synthesis and
deposition of H3.3 near chromatin sites already enriched in H3.3, which may occur
in most phases of the cell cycle (Ng and Gurdon 2008). Enrichment of H3.3 near
sites in the mother cell enriched in H3.3 increases the ratio of this histone variant to
the typical H3.1 form, improving the likelihood of H3.3 recruitment into newly
replicated chromosomes, thus maintaining H3.3 density and position along the
chromatin across cell generations. It is misleading, however, to discuss the inheri-
tance of DNA methylation or histone variants in isolation from the influence of small
RNAs, which play a role in orchestrating many instances of the former. For instance,
patterns of CHH methylation, once lost in the sperm cells and microspores of
A. thaliana, are restored by small interfering RNA (siRNA) and RdADM pathways
associated with regions of active CG demethylation of transposable elements (TEs)
flanking imprinted genes (Calarco et al. 2012).

Transgenerational epigenetic inheritance, i.e., transmission of epigenetic states
through meiosis, requires the transfer of epigenetic phenotypes through the germ
line. Determining that a putatively epigenetic trait with a known source is
transgenerationally heritable requires, at a minimum, observing the persistence of
the trait across generations in the absence of the source (Mirbahai and Chipman
2014). Correlated gene expression and epigenetic profile alterations following
intragenerational epigenome alterations are frequently short-lived in plants,
decaying after a small number of cell cycles, much less transmitting through meiosis.
These short-term responses may cause beneficial phenotypic plasticity, as in the salt-
stress exposure of A. thaliana described by Wibowo et al. (2016) and the multi-
generation drought stress of A. thaliana reported by Van Dooren et al. (2018).
Correlated gene expression and epigenetic profile alterations meeting the conditions
of epigenetic transgenerational inheritance have been demonstrated only for
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intergenerationally accumulated changes in plants, such as the B’ epiallele in maize
that has remained stable through thousands of cell cycles (Richards 2006), mainte-
nance of epigenetic variation across many generations in A. thaliana (Schmitz et al.
2011; Hagmann et al. 2015), and in DNA methylation changes in rice after consis-
tent multi-generational stress exposure (Zheng et al. 2017). No evidence yet exists to
suggest that coupled gene expression-epigenetic alterations resulting from
intragenerational sources of epimutations are transmitted through meiosis in plants
(Pecinka and Scheid 2012), unlike for animal studies such as the study of Nilsson
et al. (2012) describing the transmission of DNA methylation states correlated to the
induction of ovarian disease in rats (Rattus spp.). While environmentally-induced
transgenerational epigenetic inheritance of disease reportedly occurs in rats (Maamar
et al. 2018), more studies are needed to conclude that transgenerational epigenetic
inheritance occurs in mammals (Horsthemke 2018). Nevertheless, there is evidence
for heritable changes in DNA methylation in response to environmental stresses in
plants, but the strength of inheritance depends upon environmental conditions, and
DNA methylation changes could persist through clonal propagation (review in
Richards et al. 2017). In general, the extent to which environmentally-induced
transgenerational epigenetic inheritance occurs and what role it plays in adaptive
evolution remains inconclusive and controversial (Luikart et al. 2018).

However, as described next, a significant aspect of epigenomic variation with
respect to evolution may relate to the fact that phenotypic changes associated with
inheritance of epigenetic alterations have often been found to outpace changes
associated with genetic alterations (Rando and Verstrepen 2007). Two possible
mechanisms for increased rates of phenotypic change related to epigenetic alter-
ations include (1) the effect of SmC on facilitating cytosine deamination, thereby
increasing rates of point mutations (Feinberg and Irizarry 2010), and (2) increased
TE transposition rates (with attendant altered DNA methylation patterns) following
stress exposure or hybridization — observed to increase the rate of TE inser-
tion x (TE copy)~' x (generation) ' from 107> to 1, and thereby contributing to
rapid chromosomal rearrangement (Bonchev and Parisod 2013).

3 Sources and Evolution of Epigenomic Variation

Epigenomes provide mechanisms for modifying gene expression according to envi-
ronmental and developmental contexts. Sources of epigenomic variation may be due
to epigenetic variants arising purely from genetic variation, the interaction of genetic
and environmental variation, purely environmental variation, or stochastic
epimutation events. Richards (2006) categorized types of epigenomic variation
based upon the source of variation, as follows: obligatory (a strictly genetic source),
facilitated (the genome facilitates or potentiates an epigenomic state), and pure
(epigenomic variation is due to the environment or stochastic epimutations, not the
underlying genome). The degree to which an epigenome may add to the phenotypic
variation in a population above that already afforded by population genetic variation
depends upon the extent to which an epigenome is pure (Klironomos et al. 2013),
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and whether an epigenomic mechanism is retained by natural selection probably
depends in part upon the costs and benefits of maintaining phenotypic variation.

Retention of an alternate source of phenotypic variation, such as an epigenome,
entails metabolic costs that are outweighed by associated benefits conferred to cells,
organisms, and populations that retain the system. For example, DNA methylation of
cytosine utilizes S-adenosyl-L-methionine (C;5H»3NOsS™; abbr. SAM), one of the
most metabolically expensive compounds that cells construct, as the donor of methyl
groups (CHj3). SAM has a metabolic cost of 12 ATP equivalents per carbon atom,
compared to the cost of 6 ATP equivalents per carbon atom in a glucose molecule
(Adams and Burdon 1985). The high cost of SAM implies that there must be both
sufficient selective advantage for organisms to direct large amounts of metabolic
energy toward SAM biogenesis and strong selective pressure for the parsimonious
consumption of CH; from SAM. Two crucial functions of DNA methylation and
related epigenetic mechanisms would appear to justify the retention of such a
metabolically expensive system: (1) enabling the regulation of proliferation of
transposable elements and (2) facilitating the generation of myriad cell types,
developmental changes, and phenotypic variation, all from the same underlying
genetic information. It follows then that the epigenetic machinery responsible for
these functions should be retained only to the extent that the machinery contributes
to the adaptation of organisms to their environments without undue costs. For
instance, in stable environments, the benefits of higher variation that may enable
survival in rapidly changing environments may not outweigh the metabolic cost
associated with maintaining high phenotypic variation via pure epigenetic means
(Relyea 2002).

For epigenetic modifications to influence adaptation, these modifications must be
subject to natural selection, which has the following requirements: (1) epigenetic
modifications produce phenotypic variation, (2) related phenotypic variants contrib-
ute to differential fitness, and (3) phenotypic variation generated by epigenetic
modifications are heritable (Darwin 1859). For natural selection to act upon epige-
netic variation similarly to genetic variation, epigenetic variation and its effects must
be sufficiently stable to allow time for multiple selective forces to act upon the
differential fitness it produces (Rahavi and Kovalchuk 2013; Iglesias and Cerdan
2016). Because the duration of an epigenetic change influences its relevance to
adaptation and different sources of epigenetic change have different durations of
influence, understanding the potential for an epigenetically-mediated trait to influ-
ence adaptation requires consideration and investigation of the potential sources of
observed epigenetic variation (Chadha and Sharma 2014).

3.1 Genetic Sources of Epigenomic Variation

Genetic variants associated with epialleles/epigenetic variants and activity of trans-
posable elements (TEs) constitute major genetic sources of epigenetic variation
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(Suzuki and Bird 2008; Taudt et al. 2016; Springer and Schmitz 2017). Whole
genome duplication events (polyploidization) also strongly influence epigenomic
variation, and though the precise role of polyploidization in the generation of
epigenomic variation remains speculative, it is likely to be heavily dependent upon
TE activity (Zhang et al. 2015a, b). See Taudt et al. (2016) for a review of genetic
sources of population epigenomic variation.

Genetic variants strongly associated with variation in methylated DNA loci
operate as distinct quantitative trait loci for epigenetic molecular phenotypes and
are identified through linkage mapping between genetic variants and methylated
DNA loci (Denker and de Laat 2015; Chen et al. 2016; Taudt et al. 2016). QTL
associated with DNA methylation (meQTL), histone variants (hQTL), and large-
scale patterning of histone variants forming variable chromatin domains (chQTL)
may reside near to (cis <50 kb) or hundreds of kb from (¢rans) an associated
epigenetic phenotype (Taudt et al. 2016). Regardless of the proximity of genetically
determined epigenetic marks, such epigenetic variants follow the same strict Men-
delian patterns of inheritance as the genes they relate to.

Both the cis and trans regulatory genetic mechanisms conditioning both popula-
tion epigenomic variation and individual epigenetic marks have been identified in a
wide variety of species, and numerous meQTL and hQTL have been identified
(Taudt et al. 2016). For example, 15% of the >3 million genome-wide CpG sites
in humans were found to be associated with meQTL (McClay et al. 2015), and
nearly all meQTL were found in cis configuration (Taudt et al. 2016). All hQTL
detected in the human study were also in cis configuration (review in Taudt et al.
2016). In a study of the genome-wide differentially methylated regions (DMRs) and
whole genome DNA sequences in worldwide natural accessions of Arabidopsis,
Schmitz et al. (2013a) found that 35% of the DMRs could be associated with
meQTL, with 26% of the associations mapped in cis and 74% in trans configuration.
In another study, Schmitz et al. (2013b), using recombinant inbred lines of
A. thaliana for examining the inheritance of DNA methylation, reported that
>90% of DMRs mapped to a meQTL, implying that up to 10% of DMRs detected
in the study may relate to non-genetic factors. A study of maize showed that nearly
half of the DMRs identified across 51 genotypes were significantly associated with
meQTL in cis configuration with or within DMRs (Eichten et al. 2013). Further-
more, many of the DMRs identified in this study occurred near TEs, a common
finding in epigenome-wide association studies reflecting the often-cited suspected
origin of DNA methylation as a means to regulate TE mobilization (Fedoroff 2012).
Many cis-acting meQTLs in plants are thought to be due to SNP alleles tagging
nearby structural variants, such as TEs, that spread methylation into flanking regions
(see Taudt et al. 2016). A study of the extent of trans-acting hQTL in mice showed
that roughly 25% of histone variants are under genetic control in frans configuration
to the histone variants detected (Baker 2018).

The stochastic transposition of repetitive gene sequences, resulting from the
mobilization of transposable elements, is both a result and a source of epigenetic
variation (Fedoroff 2012; Liang et al. 2014). Mobilization of transposable elements
is expected to be followed by a feedback cascade that results in TE remethylation
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either rapidly in cells without compromised methylation pathways or after multiple
rounds of DNA replication, leading to eventual TE silencing (Bousios and Gaut
2016). If TEs escape silencing due to environmentally or developmentally induced
disruption of the DNA methylation machinery, TEs may proliferate within the
genome and spread TE DNA fragments (i.e., targets of regulation by DNA methyl-
ation) and genetic regulatory networks throughout the genome (Rey et al. 2016).
This was shown to occur in the genome of Populus spp., where cytosine methylation
patterns were altered up to 2 kb upstream and downstream of TE insertion sites,
which strongly correlated to altered gene expression resulting from the methylation
of transcription factor binding sites located within the region of modified methyla-
tion near TE insertions (Liang et al. 2014). The coupled activities of DNA methyl-
ation, TEs, and altered gene expression via modified transcription factor activity
suggest that DNA methylation not only regulates but also provides a mechanism for
realizing selective advantages from retaining TEs. Otherwise, TEs likely would not
persist within genomes since there would be sufficient selective pressure to eliminate
deleterious, unregulated stochastic TE insertions resulting in chromosomal disrup-
tions, with potentially negative consequences (Kazazian 1998), through selection or
homologous recombination (Fedoroff 2012; Bonchev and Parisod 2013). Differ-
ences in numbers and sites of TE insertion likely relate to more than merely the
specific genomic site into which a TE is inserted, as TE insertion typically elicits a
flood of gene-silencing DNA methylation proximal and even distal to the insertion
site (Fedoroff 2012; Rey et al. 2016).

3.1.1 Environmental Sources of Epigenomic Variation

Though genetic mutations that affect epigenetic variation occur at a relatively
constant rate, exposure to environmental stresses, such as temperature extremes,
drought, and toxins can lead to altered epigenetic states through numerous mecha-
nisms. The best understood mechanisms include TE activation or mobilization and
accelerated rates of somatic mutation of genes linked to epialleles, such as epigenetic
modifier genes (Fedoroff 2012; Bonchev and Parisod 2013; Liang et al. 2014;
Greenblatt and Nimer 2014; Weng et al. 2014; Rey et al. 2016). Epigenetic alter-
ations resulting from environmental perturbation is a stochastic process with the
fundamental result of increasing phenotypic variation, which may by chance result
in adaptive changes in gene expression along with less beneficial outcomes
(Feinberg and Irizarry 2010; Becker and Weigel 2012; Calarco et al. 2012). For
instance, random TE insertions at particular genomic sites were found to increase the
capacity of wild populations of Drosophila melanogaster to adapt to temperature
and precipitation regimes (Bonchev and Parisod 2013). A population of wild barley
(Hordeum spp.) growing vigorously on a dry site was found to have more full-length
TE insertions and less truncated LTR retrotransposon insertions than a nearby
population occupying a more favorable, moist habitat (Bonchev and Parisod
2013). On the other hand, dozens of mammalian diseases are known to result from
retrotransposon insertions, demonstrating the stochastic and unbiased nature of TE
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transposition (Kazazian 1998). In another A. thaliana study, mobilization of the
ONSEN retrotransposon via heat shock stress was observed in plants with an
impaired siRNA pathway but not in wild-type plants or those not exposed to the
heat stress, resulting in the formation of a “stress memory” in siRNA-impaired plants
(Ito et al. 2011). While it is inaccurate to consider the stress memory as a Lamarckian
“trigger” capable of inducing a specific phenotypic change yielding more heat-
tolerant plants, the stress memory is associated with the activation of novel regula-
tory genetic networks that by chance may result in the generation of heat tolerance
upon which natural selection could act.

The well-documented environmentally-responsive quality of TEs represents a
mechanism through which the environment may indirectly influence epigenomic
variation. However, there are numerous examples of environmental influences
directly altering epigenetic phenotypes without apparent genetic influences, though
in most cases it is still possible that undetected frans-acting genetic variants are
involved (Greally 2017; Richards et al. 2017). Studies have, however, demonstrated
that patterns of epigenetic variation may be substantially altered quite independently
of genetic variation in plants shown to have minimum genetic variation after
growing for a number of generations (Schmitz et al. 2011, 2013b) and after con-
trolled environmental exposures to stresses such as vernalization (He et al. 2003),
drought (Zheng et al. 2017; Van Dooren et al. 2018), tissue culturing (Stroud et al.
2013), vegetation density reduction in a natural setting (Herrera and Bazaga 2016),
exposure to plant defense hormones (Verhoeven et al. 2010), and nutrient withhold-
ing (Verhoeven et al. 2010). Divergent epigenetic variation was also detected in a
monozygotic human twin study of DNA methylation profiles correlated to diabetes
(Zhao et al. 2011) and lifestyle differences (Fraga et al. 2005a). Numerous studies
taking a survey approach have also reported putative differences in epigenomic
profiles independent of genetic variation detected through various genotyping assays
in plants (Lira-Medeiros et al. 2010; Herrera et al. 2013; Latzel et al. 2013), fungi
(Zimmerman et al. 2016), fish (Mirbahai and Chipman 2014), mice (Wilson and
Sengoku 2013), and human toxicology studies (summarized by Martin and Fry
2018).

3.2 Evolution of Epigenomic Variation Within Populations

A means for achieving greater phenotypic diversity and plasticity (phenotypic
diversity arising in the same genotype in response to different environments) was
implicit in Waddington’s original formulation of the concept of epigenetics. By
providing a source of phenotypic variation independent of population-level changes
in allele frequencies, and by influencing the extent of phenotypic variation possible
via a given gene X environment interaction, epigenetic phenomena may provide a
critical stepping stone between phenotypic plasticity and the stabilization of
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expression of facultatively plastic (canalized) phenotypic responses (Johnson and
Tricker 2010; Grativol et al. 2012; Schlichting and Wund 2014; Richards et al.
2017). Given that environmental variation will inevitably favor the ability of a
population to adapt to new conditions, the ability to activate mechanisms for
enhancing phenotypic diversity could be profoundly beneficial (Sultan 2000;
Nicotra et al. 2010; Baythavong 2011). A brief review of the role of phenotypic
diversity and plasticity in the process of evolution will help to clarify their interaction
and the potential relevance of epigenetics to evolution.

Microevolution is a stochastic process that occurs within and among populations,
whereby drift and selection act upon mutations (Hendry and Kinnison 2001), which
may eventually lead to conspicuous trait and species divergences (Dobzhansky
1937). Phenotypic plasticity refers to the capacity of a genotype to express different
behavioral, morphological, and physiological responses depending on the environ-
ment in which it occurs (Price et al. 2003; Schlichting and Wund 2014). Increased
variation in a phenotypic trait due to phenotypic plasticity may soften the impact of
an environmental stressor on a population before natural selection acts upon popu-
lation gene frequencies (West-Eberhard 2005). The degree and rate of persistence or
reduction in the phenotypic plasticity of a population depend heavily upon the range
of environmental variation to which a population must continually adapt and the
adaptive landscape of a population (Price et al. 2003). Such plastic developmental
responses may represent past functionalities or functions produced by de novo
changes in gene regulation that reveal previously hidden portions of a reaction
norm to natural selection, such as previously silenced genes (Sultan 2003; West-
Eberhard 2005; Rey et al. 2016), which may result either from coordinated cellular
responses to specific environmental stimuli or arise through pure chance (Price et al.
2003). Enhanced trait variation produced by epigenetic variation could enhance the
efficiency of genetic accommodation by increasing the variation in phenotypes that
arise from a given genotype, thereby potentially increasing the frequency of pheno-
types that confer selective advantages under a given environmental regime
(Schlichting and Wund 2014). No matter what their source, plastic phenotypic
responses to stress can delay the trait-purifying step of selection that eventually
shifts a population’s fitness peak toward a new adaptive peak or, alternatively,
eliminates a population altogether due to a lack of short-term capacity to adjust to
a stressor (Fig. 3; Price et al. 2003).

The duration of the delay between initial phenotypic responses and selection for
adaptive traits that track the new adaptive peak is proportional to the level of
plasticity for adaptive traits in a population and the nature of the adaptive landscape
(Price et al. 2003). Multiple adaptive peaks in an evolutionary landscape, due to high
environmental heterogeneity, for instance, may select for increased phenotypic
plasticity, while high plasticity is likely to delay adaptation and any concomitant
reductions in plasticity that must precede canalization of an adaptive phenotype,
possibly leading to subsequent genetic assimilation (Price et al. 2003; Baythavong
2011; Schlichting and Wund 2014). Accordingly, a population with low to moderate
plasticity, yet sufficient plasticity to move a population’s fitness peak toward a new
adaptive peak, may adapt to the new environment more rapidly than a highly plastic
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mean fitness or frequency

phenotypic values

Fig. 3 Plasticity contributes to a peak shift in changing environments; bold line shows mean
fitness; bold dashed line shows the shift of mean fitness in a new environment; thin solid line shows
trait distribution in the old environment; thin dotted line shows trait distribution after plastic
response to new environment. Reproduced with permission from Price et al. (2003)

population. Meanwhile, populations with a history of rapid genetic assimilation due
to the stability or homogeneity of their environments are less likely to survive
stochastic, extreme environmental stresses (Price et al. 2003; Aitken et al. 2008).
In a controlled study of two genetically uniform inbred lines of A. thaliana with
different levels of variation in DNA methylation patterns (i.e., epigenetic recombi-
nant inbred lines, abbr. epiRILs; Johannes et al. 2009), one line with highly variable
genome-wide DNA methylation patterns (epigenetically diverse) and one line with
low variation (epigenetically uniform), it was concluded that epigenetic diversity
accounted for enhanced resilience and growth (Latzel et al. 2013). The two epiRILs
were studied for their responses to both a common pathogen and interspecific
competition. These studies revealed that the epigenetically diverse genetic line
produced 40% more biomass than the epigenetically uniform line, and morpholog-
ical differences between the lines were more pronounced when plants were under
biotic stress. In another epiRIL study of A. thaliana, Cortijo et al. (2014) described
the phenotypic outcomes of induced methylation of numerous genomic regions and
found that inducing methylation accounted for 60-90% of the heritability for
flowering time and primary root length through the F3 generation. Importantly, the
study showed that these traits can be propagated through artificial selection and that
the methylated regions related to the traits of interest were also variable within
natural populations of A. thaliana, suggesting that natural selection would likely
act upon these epigenetic traits in the same manner as strictly genetically based
evolution (Cortijo et al. 2014). Epigenetic mechanisms, especially DNA methyla-
tion, may, thus, facilitate the acclimation response of organisms to a variety of
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abiotic and biotic stresses through phenotypic plasticity (see also Richards et al.
2017). Hence, epigenomic variation has been described as a potentially significant
source of variation in plants and animals in response to climate change (Briutigam
et al. 2013).

3.3 Epigenomic Variation Within and Among Populations
and Species

The description of epigenomic variation within and among populations and species
is in its early stages. The epigenome is more complex than the genome in that it is
subject to direct genetic, developmental, and environmental influences at short time
scales and consists of diverse mechanisms. The presence and prevalence of epige-
netic mechanisms, especially the machinery involved in DNA methylation, differ
across taxa as shown by comparative epigenomics studies across phyla and within
angiosperms (Niederhuth et al. 2016) with some model species like Drosophila spp.
and Caenorhabditis spp. lacking some methylation mechanisms found in other
organisms. Additional differences, such as germline differentiation occurring later
in development for plants than animals (Sharma 2013) and less complete demethyl-
ation during reproduction in plants (Heard and Martienssen 2014), also suggest
substantial differences in the distribution and type of population epigenomic varia-
tion across taxa. Furthermore, the epigenome is a phenotype as well as in some
instances having the potential to facilitate the inheritance of other phenotypes
(Greally 2017). Thus, epigenomic variation within and among populations and
species is logistically more difficult to ascertain and describe than genomic variation,
and thus underlying theory for the former has been slower to develop (Banta and
Richards 2018). The population and species distribution of epigenomic variation is
just beginning to be explored in natural populations (Richards et al. 2017), with
studies on a small number of model systems, particularly maize and A. thaliana,
providing more detailed insight. Nevertheless, evidence so far suggests that
epigenomic variation is widespread in wild populations of plants (Schmitz et al.
2013b; Niederhuth et al. 2016) and animals (review in Hu and Barrett 2017).

3.3.1 Sex Differences and the Epigenome

Based on biological mechanisms and empirical results from quantitative genetics,
patterns and frequencies of epigenetic inheritance are expected to vary between
sexes. There are differences between sexes in epigenome reprograming, and sexes
differ in the opportunity for transmission of cytoplasmic signaling molecules
(Calarco et al. 2012; Jiang et al. 2013; Heard and Martienssen 2014). Meanwhile,
quantitative genetic studies of maternal and paternal effects have found variable
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effects of the sexes (Roach and Wulff 1987; Galloway and Etterson 2007,
Bonduriansky and Head 2007). Parental effects are not equivalent to epigenetics,
but epigenetics is one mechanism by which parental effects can be transmitted (Vogt
2017). In Mimulus guttatus, crosses in controlled breeding and a demethylation
treatment together demonstrated that both male and female parents demonstrated
transgenerational induction of increased glandular trichome production in response
to simulated insect damage, and the paternal effect persisted after demethylation
treatment, whereas the maternal effect did not (Akkerman et al. 2016). This is
suggestive of a methylation-dependent transmission in the maternal line and some
other mechanism, such as siRNA, meditating the paternal effect (Akkerman et al.
2016). In zebrafish (Danio rerio), the sperm methylome is the one passed to early
embryos (Jiang et al. 2013). In non-model species, sex differences in epigenetic
inheritance have been detected by methylation-sensitive amplified polymorphism
(MSAP) data. For instance, a methylome fragment analysis assay in a conifer full-sib
family found greater inheritance of fragments from the maternal line than the
paternal line (Avramidou et al. 2015).

Gender-specific methylation patterns in some species (JanouSek et al. 1996;
Piferrer 2013) suggest that methylation may influence sex determination or
sex-related trait expression (Chatterjee et al. 2016). Plant taxa that have more
recently evolved dioecy from monoecious ancestors are useful models for investi-
gating the evolution of sex-determining mechanisms (Brautigam et al. 2017). In
Populus balsamifera, the genome region associated with sex determination includes
a gene encoding methyltransferase. There are also overall sex differences in meth-
ylation levels across the P. balsamifera genome, and methylation difference between
the sexes is greatest at one gene within the region associated with sex determination
(Bréutigam et al. 2017). In sea bass (Centropristis striata), with mixed genetic and
environmental sex determination, temperature variation early in the development
alters methylation patterns suggesting a role for epigenetics in environmental sex
determination (Piferrer 2013).

3.3.2 Epigenomic Variation Within and Among Plant Populations

A relatively detailed picture of methylome variation among and within populations
of the model plant A. thaliana has emerged from a series of studies examining
natural variation and offspring of multi-generation crosses. Methylation of TE-rich
regions of the genome is high and relatively consistent across individuals and time
(Vaughn et al. 2007; Becker et al. 2011). Gene regions are less methylated but are the
source of a large fraction of DMRs detected. Instability of gene region methylation
status generates novel variation (Schmitz et al. 2011). These DMRs can be inherited
but experience high rates of loss or back-mutation in contrast with gene sequence
variation (Becker et al. 2011; Van der Graaf et al. 2015). This combination of
phenomena is probably the reason for the observation that after 31 generations, the
accumulation of differences in the epigenome is not different from the accumulation
of differences in the genome (Becker et al. 2011). Intriguingly, DMRs show less
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association with two potential promoters of methylation, transposable elements and
small interfering RNAs.

A. thaliana accessions vary substantially in TE composition, and this variation
coincides and interacts with methylation variation to impact gene expression
(Underwood et al. 2017). Geographic surveys of A. thaliana suggest an association
of low temperature with lower methylation of TEs that may result from temperature-
related natural selection acting on genetic control of methylation levels (Underwood
et al. 2017). A genome-wide association study (GWAS) analysis of methylation
found substantial genetic control of methylation (Kawakatsu et al. 2016a, b) and that
the epigenomic changes were particularly associated with immunity genes.

Research in crop plants, which has provided a large proportion of insights into
population epigenomics, highlights some potential differences between A. thaliana
and most other plants. Arabidopsis houses a small genome with low levels of
methylation and TEs relative to other plants. Thus, epigenomes of other plant taxa
may serve more important roles in generating phenotypic variation within and
among populations (Kawakatsu et al. 2016a, b; Song and Cao 2017). On the other
hand, comparative analysis of angiosperm methylomes suggests that clonal propa-
gation and other common crop production methods may lead crops to have a
different distribution of epigenomic variation than plants that are not cultivated
(Niederhuth et al. 2016). For instance, a greater proportion of the rice genome
consists of TEs, with correspondingly higher levels of methylation as compared to
A. thaliana (Song and Cao 2017). Furthermore, differences in the types of TEs
occurring in the genomes of Asian and African rice species account for most
observed variation in those genomes (Wang et al. 2015). Among rice subspecies,
differences in TEs predominate (Song and Cao 2017). Epigenetic differences
between subspecies were also well correlated with gene expression differences
(He et al. 2010), and hybrids showed high levels of non-additive epigenetic varia-
tion, especially for methylation as well as for transcription differences (He et al.
2010).

Maize has long been a model species for the study of TEs due to the pioneering
work of McClintock (1951). A selection experiment in rice found extensive meth-
ylation and morphological changes accompanying an artificial selection experiment
(Zheng et al. 2017). Approximately 30% of the methylation variants were inherited
by additional generations after the removal of selective pressure. A study comparing
a Chilean land race of maize to a maize reference genome found increases in long
non-coding RNAs that respond to salt and boron stress in the landrace, demonstrat-
ing within-species variation is yet another potential epigenetic regulatory mechanism
(Huanca-Mamani et al. 2018). In summarizing studies that included epigenome
profiling across diverse accessions in five plant species, mostly crops, Springer
and Schmitz (2017) noted that substantial variation occurs despite high conservation
of methylomes and that this variation can potentially be harnessed for crop improve-
ment both in cases of environmental induction and transgenerational inheritance.

Various Populus species have served as model tree species for genomics studies,
and they are also well suited to epigenomics work because of the ease of clonal
propagation. Common garden tests containing clonal replicates, implemented in
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multiple habitats, allows the separation of the effect of genomes and environments
on epigenomes and outward phenotypes, enabling some insight into epigenomic
variation and its consequences (Whipple and Holeski 2016). Two studies of clonally
reproduced Populus spp. cuttings and cultivars grown in distinct environments, and
then clonally reproduced again for growing a second clonal “generation” in another
common environment, provide insight into environmental sources of epigenomic
variation (Raj et al. 2011; Schonberger et al. 2016). Differences in the previous
growing conditions of clones resulted in differentially methylated regions and
differences in miRNA expression among clonal individuals currently growing in
the same environment. Some of these epigenetic changes were also related to
changes in gene expression.

For most non-model plant systems, population epigenomics work is in its infancy
and consists of assays on anonymous surveys of methylated restriction sites, as
recently reviewed by Richards et al. (2017). Other studies may not encompass the
entire genome but are still important in this young field for investigating associations
between traits and stably-inherited epialleles (Richards 2006; Jablonka and Raz
2009; Richards et al. 2017). Common findings presented in papers on non-model
plant species reviewed in Richards et al. (2017) demonstrate that often, but not
always, observed epigenomic variation is greater than genomic variation and that
epigenomic variation is frequently correlated with environmental or trait variation.
For example, Gugger et al. (2016) studied DNA methylation variation in 58 natural
populations of Quercus lobata sampled across the species’ range and found signif-
icant associations of 43 single methylation variations (SMVs) with each of the
four climate variables. One recent addition to these types of studies is a counter
example where genomic variation was found to be greater than epigenomic variation
in a deciduous shrub Vitex negundo var. heterophylla (Chinese chastetree) (Lele
et al. 2018). In another recent study, by combining field and common garden trait
measures as well as epigenomic assays, Groot et al. (2018) showed that some of
the epigenomic variation in the shrub species Scabiosa columbaria was inherited
and appeared to be environmentally induced. The epigenomes and genomes of
plants grown in the field were correlated, but not for garden-grown plants. Addi-
tional work is needed to determine the mechanism of inheritance of epigenome
variation and to what degree observed variation is genetically determined, facili-
tated, or pure.

Additional insights into natural variation in epigenomes have come from studies
of forest trees, especially Norway spruce (Picea abies). Long-running provenance
trials established across wide environmental gradients with the same source
populations enabled the detection of not only genetic source but also temperature
during seed development (embryogenesis), to offspring phenological traits in this
species (Kvaalen and Johnsen 2008, Johnsen et al. 2009). The epigenetic memory of
the environmental temperature during Norway spruce embryogenesis was shown to
consistently and reproducibly affect phenology of the resulting trees in a manner
often ascribed to ecotypes and gradual phenotypic differences across environmental
clines (Yakovlev et al. 2012; Carneros et al. 2017). Further study found an associ-
ation of miRNAs and transcriptome variation with seed development temperature
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(Yakovlev et al. 2016; Yakovlev and Fossdal 2017). The latest efforts to characterize
the miRNA expression in this species identified over 1,000 highly expressed
miRNAs, more than half of which were differentially expressed across temperature
treatments. Many of these miRNAs themselves target genes involved in epigenetic
regulation. Studies that do not explicitly assay the epigenome but make inventive use
of biological systems allowing inference of potential epigenetic phenomena have
also provided insights into epigenomic variation among populations. For instance,
Dewan et al. (2018) used grafted clonal Populus nigra to show that there are similar
temperature effects during seed production on offspring traits. And clonal propaga-
tion in contrasting environments with Pinus pinaster has been used to infer the
likelihood of an epigenetic component to seedling performance (Zas et al. 2013).
Hybridization and polyploidization can increase the occurrence of epigenetic
alterations, which may serve as mechanisms to cope with genomic instability
resulting from hybridization or generate novel phenotypic variation (Paun et al.
2010; Jackson 2017). Two orchid species have gone through independent allopoly-
ploid hybridization events across multiple sites and climates, providing a model
system for surveying epialleles associated with hybridization and ecotypic differen-
tiation. Paun et al. (2010) detected epialleles that showed patterns of selection
and strong association with climatic variation. Additional studies could elucidate
whether the epialleles are induced by the environment each generation, stably
inherited, or the result of an undetected genetic variant (Balao et al. 2016).

3.3.3 Epigenomic Variation Within and Among Animal Populations

Despite the attention to epigenetic mechanisms involved in human diseases, little
attention has been devoted to human population epigenomic variation (Kelly et al.
2017). In a worldwide survey of human epigenomic variation, Carja et al. (2017)
found evidence that patterns of variation closely follow genetic variation and are
likely largely under genetic control, with much greater stability than is generally
found in plants. Similarly, other authors found population variation in methylation
within genic regions with genetic control likely, but with the genes involved also
varying across human populations (Fraser et al. 2012). A third study, which more
closely mimics designs seen in non-model plant species, made comparisons of
geographically distinct populations where genetic difference predominated, versus
genetically similar populations occupying recently divergent environments (Fagny
et al. 2015). For geographically dispersed populations, most methylome variation
seemed to be attributable to genetic loci controlling methylation states. In addition,
the methylation differences were predominately located at metabolic and develop-
mental genes. For genetically similar populations in contrasting environments, there
was less evidence of genetic control of the epigenome, and the loci with methylation
differences were co-located with immune system genes (Fagny et al. 2015). Finally,
in a comparative study of human and mouse DNA methylation, differentially
methylated regions among individuals were disproportionally found in developmen-
tal genes for both species (Feinberg and Irizarry 2010).
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In general, animals have not been investigated for natural variation in the
epigenome to the same extent as plants (Vogt 2017). There are, however, examples
in animal studies of greater epigenome diversity than genome diversity (as reviewed
in Vogt 2017). Invasions by genetically uniform individuals, as may occur in asexual
animal species, can be useful for understanding associations of the epigenome with
environmental variation and/or trait variation (Vogt 2017). For instance, in an
introduced, parthenogenic snail (Cornu spp.), greater epigenomic and trait variation
were associated with differences between habitats (Thorson et al. 2017).

4 Methods for Screening Population Epigenomic Variation

DNA methylation and chromatin modification states are the most heavily studied of all
epigenetic marks due to the accessibility of the associated assays, with most studies
conducted on DNA methylation. Variation in DNA methylation among individuals
and populations is usually determined by examining DMRs and differentially meth-
ylated positions (DMPs, SM Vs, or single methylation polymorphisms — SMPs) — akin
to single nucleotide polymorphisms (SNPs). These data are then used for downstream
analyses for determining various population epigenomic parameters and associations
with various phenotypic, disease, and adaptive traits. Here, we first briefly describe
the molecular methods used for assaying the epigenomic marks/variants and then
bioinformatics methods for determining epigenomic states and epigenotypes.

4.1 Molecular Methods
4.1.1 Global Methylation and Methylation-Sensitive Marks

Global DNA methylation analyses are mostly used to address questions regarding
the extent and proportion of methylation present in a genome and do not enable high-
resolution detection of the sequence context in which methylation occurs. Since the
discovery of DNA methylation using paper chromatography (Hotchkiss 1948),
chromatography-based methods have been regarded as a gold standard approach
for the analysis of global DNA methylation due to their accuracy and reproducibility
(Ettre 2001). Thin-layer chromatography (TLC) and high-performance liquid chro-
matography (HPLC) (Friso et al. 2002; Magaiia et al. 2008) are currently the most
extensively used chromatographic methods for assessing the global levels of
5-methylcytosine (SmC). In TLC-based techniques, purified DNA is digested to
mononucleotides using nuclease P1 and then separated on a thin-layer chromatog-
raphy plate based on their distinct size and mobility (Kuchino et al. 1987). The
relative intensity of the spots (proportional to the amount of each analyte) can be
visualized using various techniques (Oakeley 1999). To confirm separation of 5SmC
from unmethylated cytosine (C), SmC monophosphate is usually run in parallel on a
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control plate (Oakeley 1999). While highly accurate, TLC has a limited resolution
compared to HPLC (Reich and Schibli 2007). First employed by Kuo and colleagues
for the global analysis of methylated cytosine, HPLC is one of the oldest and most
accurate tools for analysis of global DNA methylation (Kuo et al. 1980). In this
approach, DNase I, nuclease P1, and alkaline phosphatase are used for hydrolysis of
DNA into individual deoxyribonucleosides that are then separated by reverse-phase
high-pressure liquid chromatography (Kuo et al. 1980). The separated analytes
obtained from as little as 3 pg of the total DNA can be subsequently detected
using ultraviolet absorption at 254 and 280 nm (Kuo et al. 1980; Armstrong et al.
2011).

Further development of chromatographic methods led to their coupling with mass
spectrometry that provided a unique advantage for understanding the chemical com-
position of separated analytes. Most widely used variants of these techniques include
thin-layer chromatography mass spectrometry (TLC-MS) (Song et al. 2005) and
HPLC-MS (Friso etal. 2002; Le etal. 2011). During TLC-MS and HPLC-MS, analytes
separated using chromatographic methods are passed through the mass spectrometer
for confirmation of known chemical species, identification of novel bases, and quan-
titative measurement of the analytes (Song et al. 2016; Chowdhury et al. 2017). This
coupling of chromatographic methods with mass spectrometry recently resulted in
the identification of oxidized forms of 5mC, 5-hydroxymethylcytosine (ShmC),
S5-formylcytosine (5fc), and 5-carboxylcytosine (5caC) in mammalian genomes
(Kriaucionis and Heintz 2009; Tahiliani et al. 2009; Ito et al. 2011; He et al. 2011).
The combination of chromatographic and MS methods is currently extensively used for
the identification and analysis of the SmC oxidative derivatives (e.g., Zhang et al.
2012a, b).

Although the chromatography- and spectrometry-based methods offer an unpar-
alleled accuracy and precision for detection of DNA modifications, these approaches
do not provide any spatial information necessary to understand the biological
functions of DNA methylation in tissue and organs with cell-type-specific DNA
methylation patterns (Abakir et al. 2016). Generation of the 5SmC-specific antibody
allowed the development of immunochemical techniques that offer a robust and
rapid analysis of global levels of DNA methylation as well as other DNA modifica-
tions in individual cells of different tissues (Santos and Dean 2006; Abakir et al.
2016). Although the immunochemical techniques currently employed for the detec-
tion of global DNA methylation in mammalian systems may vary in detail, they
essentially involve the same steps. Among these are fixation of the cells or tissue
sections in 4% paraformaldehyde (PFA), their permeabilization with a detergent
(e.g., 0.1% Triton X-100), and depurination of the DNA using hydrochloric acid
(HCI) to facilitate antibody access to DNA (Santos and Dean 2006; Abakir et al.
2016). Next, the samples are treated with specific anti-SmC antibody, and, finally, a
fluorescent-labelled secondary antibody is used to visualize the SmC signal by
conventional or confocal microscopy (Santos and Dean 2006; Kremer et al. 2012).
Importantly, the immunochemical techniques can also be employed for co-detection
of 5SmC with other DNA modifications (e.g., ShmC, 5fC, or 5caC) (Ruzov et al.
2011; Almeida et al. 2012). Moreover, this protocol has recently been modified by
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incorporating peroxidase-conjugated secondary antibody and tyramide signal ampli-
fication step that adds in an unprecedented sensitivity to the immunochemical
detection of DNA modifications (Globisch et al. 2010; Wheldon et al. 2014; Abakir
et al. 2016).

Importantly, the techniques described above do not provide information regard-
ing the sequence specificity of observed DNA methylation. In contrast, employing
methylation-sensitive isoschizomers of restriction enzymes (e.g., Hpall sensitive to
DNA methylation and a methylation-insensitive Mspl that both can recognize the
same DNA restriction site depending on whether it is methylated or not) can lead to
determining the global sequence-specific patterns of DNA methylation based on
their fingerprints (Waalwijk and Flavell 1978; Lindsay and Bird 1987). This tech-
nique and its variants, such as MSAP and methylation-sensitive amplified fragment
length polymorphism (MS-AFLP), though not quantitative, are particularly appeal-
ing in ecological and evolutionary studies where reference genomes are often not
available (Reyna-Lopez et al. 1997; Yaish et al. 2014; Alonso et al. 2015). However,
as the ability of isoschizomers to differentiate SmC from unmethylated cytosine is
restricted to sites of recognition of the corresponding enzymes, these methods have
limited resolution (Yaish et al. 2014; Richards et al. 2017). To improve the resolu-
tion of the isoschizomer-based analysis, a modification of these techniques,
EpiRAD, has recently been developed (Peterson et al. 2012; Schield et al. 2016).
This technique is based on the use of barcoded adaptors that allow fragmentation of
the samples by different pairs of restriction enzymes before size selection, amplifi-
cation, and sequencing of the fragments (Peterson et al. 2012; Schield et al. 2016).
The MSAP, MS-AFLP, and EpiRAD methods yield information on polymorphic
DNA methylation loci and DNA methylation epigenotypes.

4.1.2 Bisulfite Sequencing

As both 5SmC and C have the same base-pairing characteristics, identification of the
methylation status of individual nucleotides had been a major hurdle for DNA
methylation analysis prior to the advent of bisulfite sequencing. Although sodium
bisulfite deaminates cytosine bases to uracil, thus changing the genomic DNA
sequence, such treatment does not affect methylated cytosine (Clark et al. 2006).
Subsequent PCR amplification of the bisulfite-treated DNA fragments leads to
incorporation of unmethylated cytosines in place of the 5SmC, while bisulfite-
modified unmethylated cytosine (C) is being amplified as thymine (T); therefore,
these bases can be discriminated from each other by standard sequencing techniques
(Sanger and Coulson 1975; Sanger et al. 1977). Direct bisulfite sequencing based on
the use of strand-specific PCR primers for amplification of the bisulfite-converted
DNA followed by cloning of the amplified fragments into a vector and sequencing of
the corresponding insert was developed by Frommer and colleagues in 1992
(Frommer et al. 1992; Clark et al. 2006). Since then, bisulfite sequencing has been
widely used for determining the DNA methylation status of individual CpGs at both
the level of single loci and genome-wide (Eckhardt et al. 2006; Kawakatsu et al.
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2016a, b). As conventional bisulfite sequencing requires a cloning step, it is a
low-throughput and time-consuming method. These limitations of conventional
bisulfite sequencing were overcome by the introduction of pyrosequencing, where
the ratio of C (methylated cytosine) and T in bisulfite-treated PCR fragments is
determined by the amounts of C and T incorporated by DNA polymerase during
sequencing reaction (Wong et al. 2006; Yaish et al. 2014). Unfortunately, use of
pyrosequencing for the analysis of DNA methylation patterns in eukaryotes with
large genomes is limited due to its prohibitively high cost (Zilberman and Henikoff
2007; Kacmarczyk et al. 2018). Thus, Meissner and colleagues introduced the
reduced representation bisulfite sequencing (RRBS) as a more affordable alternative
to pyrosequencing (Meissner et al. 2005). RRBS combines restriction digestion
(to enrich for CpG-containing regions) and bisulfite sequencing to provide methyl-
ation analysis at single base resolution (Meissner et al. 2005). Although the tech-
nique is popular among epigeneticists due to its relatively low cost, its limitations
consist of low sequencing coverage of some genomic regions that may originate
from the incomplete digestion of methylated CpGs by restriction enzymes (Gu et al.
2011). More recently, employing the next-generation “sequencing by synthesis”
approach together with bisulfite sequencing, numerous studies have provided
genome-wide DNA methylation map (Cokus et al. 2008; Lister et al. 2008).
Typically, genomic DNA is fragmented and ligated with I[llumina adapters in
which all cytosines are methylated and then bisulfite converted; the sites of methyl-
ated cytosines in the genome are revealed by deep sequencing (Cokus et al. 2008;
Lister et al. 2008; Ziller et al. 2013). Bisulfite-converted DNA sequences can be
processed for identifying DMRs, DMPs, SMVs, and/or SMPs.

Despite extensive use of bisulfite sequencing for analysis of DNA methylation
patterns, it has several important limitations (Kacmarczyk et al. 2018). Specifically,
incomplete bisulfite conversion may result in false detection of unmethylated cyto-
sines as methylated, though standard bisulfite conversion Kkits typically achieve high
conversion rates (Kurdyukov and Bullock 2016). Although prolonged bisulfite
treatment has been shown to reduce such false positives, it can also result in
degradation of the DNA (Grunau et al. 2001). These limitations highlight the
delicate balance between achieving full conversion of unmethylated cytosines and
retaining DNA integrity (Kurdyukov and Bullock 2016). Another major limitation
of conventional bisulfite sequencing is its inability to discriminate between 5SmC and
its oxidized derivative, ShmC (Nestor et al. 2010). To investigate the function of the
relatively large quantities of ShmC in mammalian genomes, recently, there has been
several modifications of conventional bisulfite sequencing that allow mapping of
S5hmC have been developed. One of them is based on chemical conversion of ShmC
to SfC, which is called as unmethylated cytosine during sequencing (Booth et al.
2012, 2013). Yu and colleagues described an alternative technique that involves
conversion of ShmC to B-glucosyl-5-hydroxymethylcytosine (5gmC) protecting
5hmC from further oxidation (Yu et al. 2012). After this conversion, all SmC
bases are oxidized to 5caC by recombinant TET1 protein followed by the bisulfite
treatment that, subsequently, converts ScaC to uracil leaving the original ShmC
(transformed to 5gmC) unaffected and called as C in sequencing reaction
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(Yu et al. 2012). Moreover, Neri and colleagues developed the methylation-assisted
bisulfite sequencing (MAB-seq) that allows mapping of 5fC and 5caC distribution
patterns (Neri et al. 2016). In this method, bacterial CpG methyltransferase M.Sssl
converts unmethylated cytosines to SmC (called as cytosine after bisulfite treatment)
discriminating it from 5fC and 5caC transformed to uracil by bisulfite. Collectively,
these methods can be used to determine the patterns of SmC and all of its oxidation
derivatives at single base resolution.

More recently, single molecule sequencing technologies (e.g., MinION, Oxford
Nanopore Technologies) were employed for the discrimination of 5SmC from
non-methylated cytosine based on their distinct ionic currents (Rand et al. 2017).
Although still in development, this approach looks very promising as it overcomes
the need for chemical treatment of DNA for mapping the methylation patterns
(Simpson et al. 2017).

4.1.3 NGS ChIP Sequencing

The composition and chemical nature of proteins interacting with DNA define
chromatin states in eukaryotic genomes (Ren et al. 2000). Chromatin immunopre-
cipitation (ChIP) is a method that allows mapping of the sites of protein-DNA
interactions using antibodies raised against specific chromatin-associated proteins
or histone modifications (Jackson and Chalkley 1981). Most of the ChIP protocols
typically include the following steps: cross-linking of DNA/chromatin-associated
proteins using formaldehyde, sonication of recovered chromatin into shorter frag-
ments, selective pulldown of the DNA bound by the protein of interest using specific
antibodies, purification of the immunoprecipitated DNA fragments, and their anal-
ysis by qPCR or next-generation sequencing (NGS) (Buck and Lieb 2004). This
approach has been extensively used for studying transcription (Weinmann and
Farnham 2002; Valouev et al. 2008), DNA replication (Jackson and Chalkley
1981; Gadaleta et al. 2015), and cellular identity (Whyte et al. 2013; Rehimi et al.
2016).

Analogously to ChIP, specific antibodies raised against SmC and its oxidized
derivatives can also be used for immunoprecipitation of DNA fragments enriched in
specific modifications in a technique termed DNA immunoprecipitation (DNA-IP or
DIP; meDIP for SmC-DNA-IP) that, in combination with high-throughput sequenc-
ing (HTS), is instrumental in determining the genomic distribution of these epige-
netic marks in different systems (Weber et al. 2005; Pomraning et al. 2009).
Moreover, meDIP can also be combined with ChIP for mapping the patterns of
5mC on DNA bound by the protein of interest (Mikkelsen et al. 2007; Moison et al.
2015). These approaches allow determining and comparing genome-wide distribu-
tions of histone modifications, specific histone variants, transcription factors, and
DNA modifications (Novak et al. 20006).

Importantly, there are several factors that may affect the reliability of ChIP and
DIP datasets (Lentini et al. 2018). Most crucial of them is the sensitivity and
specificity of the antibody used in the immunoprecipitation (Spencer et al. 2009).
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Moreover, a recent study reported that the intrinsic affinity of IgG for short
unmodified tandem repeats may affect DIP-based genome profiling resulting in
false positive rate of 55 to 99% (Lentini et al. 2018). Thus, normalization of the
DIP datasets not only for input but also for IgG controls seems important for the
reliable immunoprecipitation-based analysis of DNA modifications. Another impor-
tant limitation of these techniques is that, unlike bisulfite sequencing-based
approaches, neither of them yields single base resolution data.

4.1.4 sRNA Sequencing

Primarily evolved as a key defense system for silencing of parasitic foreign genetic
material (Storz 2002; Lu et al. 2005), small RNAs (sSRNAs) have also been shown to
play critical roles in gene regulation and post-transcriptional silencing of gene
expression (Studholme 2012). As sRNAs are usually less than 40 nt in length,
several specific approaches have been designed for their capture and analysis of
their distribution (Lu et al. 2005; Hafner et al. 2008). Although these approaches
differ in their throughput and amount of required input material, they all involve
isolation of SRNA, sRNA enrichment by size selection, ligation of the 5" adaptors to
both ends of sSRNAs, conversion of SRNA into cDNA, and amplification/sequencing
of corresponding cDNA fragments (Shendure and Ji 2008). Until recently, sSRNA
sequencing studies were mainly using either pyrosequencing or ABI Solid sequenc-
ing platforms; however, polymerase-based sequencing by synthesis on the Illumina
sequencing platform is currently the most popular approach for sSRNA analysis
(Creighton et al. 2009; Eminaga et al. 2013).

In summary, although none of the current methodologies allow complete
deciphering of chromatin states across individuals, creative integration of the
described methods should help in furthering our understanding of how epigenetic
variation influences evolution.

4.2 Bioinformatics Methods

Bioinformatics is performed on sequence data and other information provided by
molecular assays for epigenomic variant and epigenotype calling and downstream
analyses. Since most of the downstream analyses after epigenomic variant and
epigenotype calling are similar to those used in population genomics, here we
focus only on the bioinformatics methods used for epigenetic variant and
epigenotype calling. An overview of bioinformatics methods used in population
genomics is provided by Salojirvi (2018) in this book.

Bioinformatics analysis has become the rate-limiting step in all epigenomics
analyses. Decreasing costs coupled with greater ease and speed of sequence data
generation has resulted in the need to process increasingly large and complex
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datasets. As HTS replaces arrays, individual samples are themselves larger and more
complex, while multiplex sequencing has provided a means for the simultaneous
sequencing of up to thousands of different samples. Bioinformatic analysis is now
the most time-consuming step of most epigenomics studies. The type of data that are
produced can also determine what downstream analyses are possible. It is, therefore,
necessary for any epigenomics experiment to carefully consider how the data are to
be managed and analyzed at the outset of a project. The number and type of
bioinformatics programs and methods have proliferated alongside the data being
produced. As a result, a fully comprehensive review of bioinformatics methods is
beyond the scope of this chapter. Instead, we will highlight important aspects of
bioinformatics analyses and common themes and emphasize key downstream steps
unique to each method.

4.2.1 Microarray Data

Microarray data can provide information on single base methylation status and
differentially methylated sites. Analysis of microarray data is more straightforward
and computationally less intensive than that of sequencing data. Despite platform
specifics, the basic output of microarrays consists of a measurement of fluorophore
intensity from hybridization. Each signal of the array is derived from a set of probes
of known sequence and ty