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This pioneering Population Genomics Series deals with the concepts and approaches
of population genomics and their applications in addressing fundamental and applied
topics in a wide variety of organisms. Population genomics is a fast emerging
discipline, which has created a paradigm shift in many fields of life and medical
sciences, including population biology, ecology, evolution, conservation, agricul-
ture, horticulture, forestry, fisheries, human health and medicine.

Population genomics has revolutionized various disciplines of biology including
population, evolutionary, ecological and conservation genetics, plant and animal
breeding, human health, genetic medicine, and pharmacology by allowing to address
novel and long-standing intractable questions with unprecedented power and accu-
racy. It employs large-scale or genome-wide genetic information across individuals
and populations and bioinformatics, and provides a comprehensive genome-wide
perspective and new insights that were not possible before.

Population genomics has provided novel conceptual approaches, and is tremen-
dously advancing our understanding the roles of evolutionary processes, such as
mutation, genetic drift, gene flow, and natural selection, in shaping up genetic
variation at individual loci and across the genome and populations, disentangling
the locus-specific effects from the genome-wide effects, detecting and localizing the
functional genomic elements, improving the assessment of population genetic
parameters or processes such as adaptive evolution, effective population size, gene
flow, admixture, inbreeding and outbreeding depression, demography and biogeog-
raphy, and resolving evolutionary histories and phylogenetic relationships of extant
and extinct species. Population genomics research is also providing key insights into
the genomic basis of fitness, local adaptation, ecological and climate acclimation and
adaptation, speciation, complex ecologically and economically important traits, and
disease and insect resistance in plants, animals and/or humans. In fact, population
genomics research has enabled the identification of genes and genetic variants
associated with many disease conditions in humans, and it is facilitating genetic
medicine and pharmacology. Furthermore, application of population genomics
concepts and approaches can facilitate plant and animal breeding, forensics, delin-
eation of conservation genetic units, understanding evolutionary and genetic impacts
of resource management practices and climate and environmental change, and
conservation and sustainable management of plant and animal genetic resources.

The volume editors in this Series have been carefully selected and topics written
by leading scholars from around the world.
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Preface

Recent novel advances in sequencing technologies, bioinformatics tools, statistical
methods and software, and models have created a paradigm shift in several disci-
plines of biology (especially population biology, ecology, evolution, and conserva-
tion), agriculture, forestry, fisheries, human health, and medicine. Population
genomics is an outcome of these advances, which is a fascinating and fast-growing
discipline. Population genomics has revolutionized various disciplines of biology
including population, evolutionary, ecological and conservation genetics, plant and
animal breeding, human health, genetic medicine, and pharmacology by allowing to
address novel and long-standing intractable questions with unprecedented power
and accuracy. It employs large-scale or genome-wide genetic information and
bioinformatics to address various fundamental and applied aspects in biology and
related disciplines, and provides a comprehensive genome-wide perspective and
new insights that were not possible before.

Population genomics has provided novel conceptual approaches and is tremen-
dously advancing our understanding the roles of evolutionary processes, such as
mutation, genetic drift, gene flow, and natural selection, in shaping up genetic
variation at individual loci and across the genome, individuals and populations,
disentangling the locus-specific effects from the genome-wide effects, detecting and
localizing the functional genomic elements, improving the assessment of population
genetic parameters or processes such as adaptive evolution, adaptive population
genetic differentiation, effective population size, gene flow, admixture, inbreeding
and outbreeding depression, demography and biogeography, and resolving evolu-
tionary histories and phylogenetic relationships of extant and extinct species. Pop-
ulation genomics research is also providing key insights into the genomic basis of
fitness, local adaptation, ecological and climate acclimation and adaptation, specia-
tion, colonization, complex ecologically and economically important traits, and
disease and insect resistance in plants, animals and/or humans. In fact, population
genomics research has enabled the identification of genes and genetic variants
associated with many disease conditions in humans, and it is facilitating genetic
medicine and pharmacology. Furthermore, application of population genomics
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concepts and approaches can facilitate plant and animal breeding, forensics, delin-
eation of conservation genetic units, understanding evolutionary and genetic impacts
of resource management practices and climate change, and conservation and sus-
tainable management of plant and animal genetic resources.

I have been working on various aspects of molecular, population, evolutionary
and conservation genetics, and genomics for about four decades. Recognizing the
power and potential of population genomics, I started organizing a pioneering annual
workshop on Population and Conservation Genomics in 2007 as a part of the
premier annual International Plant and Animal Genome Conference. This Workshop
has provided a platform for the presentation and sharing of the latest advances in
population and conservation genomics at the international stage. I may have been the
first to identify Conservation Genomics as a research area in 2004 when I used this
term in my Senior (Tier 1) Canada Research Chair title. Leading and emerging
scholars have been presenting their research results at the Population and Conser-
vation Genomics workshop, which has grown to more than one Workshop session
and has given rise to several offshoot workshops. The pool of the Workshop
speakers provided a good resource for recruiting authors for the current Population
Genomics book. Indeed, the chapters are written by prominent pioneering, leading
and emerging research scholars in various fields of population genomics.

This Population Genomics book discusses the concepts, approaches and appli-
cations of population genomics in addressing various fundamental and applied
crucial aspects outlined above in a variety of organisms from microorganisms to
humans. The book provides insights into a range of emerging topics including
population epigenomics, landscape genomics, paleogenomics, ecological and evo-
lutionary genomics, seascape genomics, biogeography, demography, speciation,
admixture, colonization and invasion, genomic selection, and plant and animal
domestication. This book fills a vacuum in the field and is expected to become a
primary reference in Population Genomics world-wide.

The book is organized into four parts. The first part provides an overview of the
population genomics concepts, approaches, applications, challenges and future
perspectives. The second part includes three chapters discussing sequencing and
genotyping technologies, and bioinformatics methods as applied to population
genomics. The third part focuses on various concepts and approaches in population
genomics, such as population epigenomics, landscape genomics, paleogenomics,
genome-wide association studies, and genomic selection. The fourth, the last part,
includes nine chapters addressing population, evolutionary and ecological genetics
applications and inferences, such as evolutionary and ecological genomics, demog-
raphy, biogeography, seascape genomics, speciation, admixture, invasion and colo-
nization, and plant and animal domestication and breed development. With such
quite comprehensive and diverse topics, the book is envisioned for a wide reader-
ship, including undergraduate and graduate students, research scholars, and pro-
fessionals and experts in the field.

I would like to thank all contributors to this volume and peer reviewers.

Fredericton, NB, Canada Om P. Rajora
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Part I
Introduction



Population Genomics: Advancing
Understanding of Nature

Gordon Luikart, Marty Kardos, Brian K. Hand, Om P. Rajora,
Sally N. Aitken, and Paul A. Hohenlohe

Abstract Population genomics is advancing our understanding of evolution, ecol-
ogy, conservation, agriculture, forestry, and human health by allowing new and
long-standing questions to be addressed with unprecedented power and accuracy.
These advances result from plummeting costs for DNA sequencing, which makes
genotyping feasible for hundreds to millions of individuals and loci, and also allows
for the study of variation in gene expression, epigenetic variation, and proteins. The
increased power also results from the development of innovative software, statistical
approaches, and models to extract information from massive next-generation
sequencing datasets. Among the most exciting developments are conceptually
novel approaches that are advancing understanding about inbreeding and outbreed-
ing depression, adaptive gene flow, population demographic history, and the geno-
mic basis of local adaptation and speciation. Remaining challenges in applying
genomics to natural and managed populations include the limited understanding
and availability of validated bioinformatics pipelines for genotyping and analyzing
genomic data. We also lack knowledge of best practices and general guidelines for
filtering and genotyping genomic data including restriction site-associated DNA
sequences (RAD), targeted DNA capture, and pooled sequencing. Finally, we
emphasize the need for continued rigorous teaching of population genetics theory,

G. Luikart (*) · M. Kardos · B. K. Hand
Flathead Lake Biological Station, Conservation Genomics Group, Division of Biological
Sciences, University of Montana, Polson, MT, USA
e-mail: gordon.luikart@mso.umt.edu

O. P. Rajora
Faculty of Forestry and Environmental Management, University of New Brunswick,
Fredericton, NB, Canada

S. N. Aitken
Centre for Forest Conservation Genetics, Faculty of Forestry, University of British Columbia,
Vancouver, BC, Canada

P. A. Hohenlohe
Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies,
University of Idaho, Moscow, ID, USA

Om P. Rajora (ed.), Population Genomics: Concepts, Approaches and Applications,
Population Genomics [Om P. Rajora (Editor-in-Chief)],
https://doi.org/10.1007/13836_2018_60,
© Springer International Publishing AG, part of Springer Nature 2018

3

http://crossmark.crossref.org/dialog/?doi=10.1007/13836_2018_60&domain=pdf
mailto:gordon.luikart@mso.umt.edu
https://doi.org/10.1007/13836_2018_60


so that the next generation of population genomicists can ask well-informed ques-
tions and interpret next-generation sequence datasets.

Keywords Adaptation · Community genetics · Conservation genetics · Ecological
genomics · Epigenetics · Evolutionary genomics · Landscape genomics · Population
genetics · Selection detection

Molecular markers have totally changed our view of nature (Schlötterer 2004).

Population genomics is a new term for a field of study that is as old as the field of genetics
itself, assuming that it means the study of the amount and causes of genome-wide variability
in natural populations (Charlesworth 2010).

Population genomic tools have revolutionized many aspects of biology, as detailed through-
out the chapters of this volume (Hohenlohe et al. 2018).

1 Introduction

New and long-standing questions in ecology, evolution, conservation biology, and
related fields can now be addressed with unprecedented power and accuracy using
population genomics approaches. This power results largely from new sequencing and
genotyping technologies that produce enormous amounts of data (Schlötterer 2004;
Narum et al. 2013; van Dijk et al. 2018; Sedlazeck et al. 2018) but also from new
statistical approaches and software (Paradis et al. 2017; Ceballos et al. 2018; Cooke
and Nakagome 2018; Faria et al. 2018; Gruber et al. 2018; Hendricks et al. 2018;
Knaus and Grünwald 2017; Zhang et al. 2018). These molecular and computational
approaches are now within reach of many biologists in terms of costs, ease of data
production, and availability of computational tools. This chapter provides an overview
of the concepts and primary approaches employed to study genome-wide genetic
variation in natural and managed species and populations. Some of these approaches
are not yet widely used but are emerging in the literature on population genomics
(Hendricks et al. 2018).

Population genomics has been broadly defined as the simultaneous study of
numerous loci and genome regions to better understand the roles of evolutionary
processes (such as mutation, genetic drift, gene flow, and natural selection) that
influence variation across genomes and populations (Black et al. 2001; Luikart et al.
2003). This definition emphasizes understanding of locus-specific effects like selec-
tion against the background of genome-wide effects such as demography and genetic
drift in order to improve assessments of adaptive evolution, the effective population
size, gene flow, admixture, inbreeding and outbreeding depression, speciation, and
the genomic basis of fitness (Fig. 1) (Allendorf et al. 2010; McMahon et al. 2014;
Hunter et al. 2018).

Hohenlohe et al. (2010a) outlined a novel conceptual framework for population
genomics that emphasizes the understanding of patterns of genetic variation and
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evolutionary processes in all genome regions by plotting population genetic statistics
across each chromosome using many mapped loci (Fig. 2; Box 1). An example of a
population genomics approach is measuring a population genetic summary statistic,
e.g., genomic diversity, population differentiation, or gene expression, as a contin-
uous variable along chromosomes to help identify loci under selection, chromosomal
islands of adaptive divergence, or alleles associated with a phenotypic trait (see also
Fig. 3 in Luikart et al. 2003; Hohenlohe et al. 2010b; Ellegren 2014; Kardos et al.
2015b).

Allendorf (2017) and Hohenlohe et al. (2018) defined population genomics as
requiring a sufficient density of DNA markers to detect forces affecting any partic-
ular genomic region, e.g., genes under selection, regions of reduced recombination.
Here, we provide a narrow sense definition of population genomics as the use of

Candidate selected 
(adaptive) loci

Step 1
Sample individuals of different 

populations, traits, and/or environments

Step 2
Genotype loci genome-wide (using 

mapped loci if possible (narrow sense))

Step 3
Identify outlier loci & genome regions 
associated with traits or environments 

Step 4a
Compute evolutionary or 

demographic parameters without 
using outlier loci, or by down-

weighting them (for example, by 
modeling)

Step 4b
Test for causes of outlier 

behavior (for example, selection) 
and use adaptive information for 

biodiversity conservation or
evolutionary inferences

Neutral loci 

Fig. 1 Conceptual framework of main steps in a population genomics approach used to identify
outlier loci under selection (or genotyping errors) and also to improve estimates of population
history and demography using the selectively neutral loci. In Step 1, individuals can be sampled
from different phenotypes or environments to help test for adaptive gene marker associations and to
dissect the genomic basis of phenotypes, local adaptation, adaptation to captivity, artificial selec-
tion, or speciation. Step 2 requires a genetic linkage map or a physical map (Sects. 3.1 and 3.2) to
localize genome regions under selection and to ensure high marker density (narrow sense
approach). However many unmapped loci can be used in broad sense genomics (Figs. 3 and 4).
Step 3 could employ conceptually novel approaches to identify “outlier loci” or chromosomal
regions that behave unlike most other loci in the genome and therefore could be under selection or
associated with phenotypic traits. Outlier loci under selection can bias estimates of neutral popu-
lation genetic parameters (Step 4a) such as gene flow, effective population size, and structure.
Figure modified from Luikart et al. (2003)
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conceptually novel approaches to address questions intractable by traditional
genetic methods by using high-density genome-wide markers (e.g., DNA, RNA,
epigenetic marks) to provide high power to detect genomic regions associated
with traits or evolutionary processes such as fitness, phenotypes, and selection
(Box 1). This definition combines the requirement for conceptual novelty aspect

Fig. 2 A population genomics perspective and conceptual framework. (A) Traditional population
genetics takes data on alleles (colored bars), grouped within individuals (solid boxes) and
populations (dashed boxes), and calculates summary statistics to make inferences about evolution,
such as nucleotide diversity (π) and population differentiation (FST). (B) Population genomics takes
data on haplotypes within a population and calculates summary statistics as continuous variables
along the length of the genome, such as π and the allele frequency spectrum (Tajima’s D). The
different types of evolutionary processes leave different signatures in these distributions: (i) hard
selective sweep, (ii) region linked to hard sweep, (iii) neutral expectation, (iv) balancing selection,
(v) neutral expectation, and (vi) soft sweep. (C) The coalescent structure of ancestral relationships
among alleles within a population also reflects these processes along the genome. (D) Given these
genomic processes within a population, statistics comparing genetic variation across populations,
such as FST, can also indicate genomic patterns of selection. (E) Collapsing the genomic distribu-
tion of a statistic into a frequency distribution provides an estimate of the genome-wide average,
allowing identification of statistically significant outliers (shaded regions). Reproduced with per-
mission from Hohenlohe et al. (2010a)
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from Garner et al. (2016) and Hohenlohe et al. (2010a), with the high-density marker
requirement of Allendorf (2017); it also explicitly includes multiple omics
approaches (transcriptomics, epigenomics, and proteomics).

Broad sense population genomics can be defined as the use of new genomics
technology and numerous loci to address questions in population genetics (e.g.,
Shafer et al. 2015; Garner et al. 2016; Hohenlohe et al. 2018) (Box 1). We include
broad sense approaches here because some are advancing understanding of geno-
mics questions ranging from the discovery of genes underlying adaptive evolution to
assessing population parameters and demography using thousands to millions of
neutral markers that are often anonymous or not mapped.

Our main goals for this chapter are fourfold. First, we discuss the research topics
and questions for which genomics tools are most valuable. We illustrate where
genomics methods are improving our ability to address long-standing objectives
and also to address previously intractable questions using conceptually novel
approaches. Second, we give a brief introduction to new molecular techniques and
computational approaches (including bioinformatics workflows and Bayesian
methods) to help biologists understand this growing literature and to plan their
projects. Third, we provide an overview of the emerging disciplines where popula-
tion genomics concepts and approaches are being applied. Finally, we discuss future
perspectives of applications of population genomics concepts and approaches and
conclude the chapter. Throughout, we highlight the opportunities and challenges
associated with population genomic analyses in studies of natural and managed
populations.

Box 1 How is Narrow Sense Population Genomics Different from Broad
Sense Genomics and Traditional Population Genetics?
Defining broad and narrow sense population genomics can be useful because
there is often confusion among students and researchers as to what constitutes
genomics and also because broad sense population genomics studies include
traditional population genetic approaches and the use of more DNA markers
(see Charlesworth 2010; Allendorf 2017). An example of a broad sense
population genomics study would be using thousands or tens of thousands
of anonymous SNPs (Fig. 3) to estimate the inbreeding coefficients of indi-
viduals using traditional parameters (e.g., individual heterozygosity; Hoffman
et al. 2014; Kardos et al. 2016a), while a narrow sense study would be the
mapping of runs of homozygosity (RoH) to infer recent and historical inbreed-
ing (or population bottlenecks) (Bérénos et al. 2015; Howard et al. 2015;
Palkopoulou et al. 2015; Pemberton et al. 2017; Kardos et al. 2017; Ceballos
et al. 2018). The requirement for narrow sense genomics to include “concep-
tual novelty” and to address questions not tractable using traditional popula-
tion genetics addresses the criticism of Charlesworth (2010) and of others
saying that population genomics is nothing new.

(continued)
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Box 1 (continued)
A narrow sense population genomics study precisely characterizes varia-

tion at many specific (mapped) regions of the genome (Allendorf 2017). The
density of markers required (see below) varies and depends on phenomena that
affect gametic disequilibrium along a chromosome such as mating system
(e.g., selfing versus random mating), effective population size, population
subdivision, gene flow or admixture, and recombination rates (Slatkin 2008).

2 When Is Population Genomics Most Valuable?

A wide array of fundamental and novel questions can now be reliably addressed
thanks to developments in population genomics (Table 1). In this section, we
describe several newly invigorated avenues of research in evolutionary biology
and conservation genetics. The most exciting developments of population genomics
involve using novel approaches to address previously unapproachable questions
such as mapping adaptive variation genome wide and resolving the genomic basis
of fitness and phenotypes (Hoban et al. 2016; Hendricks et al. 2018; Hunter et al.

Fig. 3 Illustration of how (A) anonymous (unmapped) loci are often detected to be under
directional selection (e.g., with high allele frequency differentiation, FST) among
populations and how (B) a genetic linkage map or a physical map (genome assembly)
helps to localize the genome regions under selection by positioning loci (SNPs) along a
chromosome or entire genome. In panel B, each color represents a different chromosome
(linkage group) including the different shades of gray. Knowing the genome position of
SNPs allows for multiple, often linked, SNPs to be identified that result from the same
selection process and signature (e.g., high FST), which increases our confidence that the
SNPs or genome region are actually under selection and not false positives. Positional
information also helps understand the number of loci or genome regions that are under
selection. Further, if coding or annotated genes have also been mapped or physically located
on a genome sequence, researchers can identify genes in the region of the selection signature,
which represent candidate adaptive genes (e.g., Mckinney et al. 2016). Figure (A) represents
a broad sense genomics approach, while (B) is narrow sense genomics. Figure modified from
Garret McKinney (pers. comm., 2018)
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Table 1 Questions or objectives that population genomics can help to address and examples of
genomics approaches to address them

Question or objective
Genomics approach
(example)/software References

Identify candidate adaptive
loci by detecting selective
sweeps

Genome scan for low hetero-
zygosity regions

Rubin et al. (2010), Axelsson
et al. (2013), Kardos et al. (2015b)

High differentiation (e.g.,
FST) outlier regions

Rochus et al. (2018)

High gametic disequilibrium Pérez O’Brien et al. (2014)

Shifted site frequency spec-
trum (high-frequency-
derived alleles)

Alachiotis and Pavlidis (2018),
Tajima (1989), Fay and Wu
(2000), DeGiorgio et al. (2016)

Extended haplotype
homozygosity

Sabeti et al. (2002, 2007), Voight
et al. (2006)

Scan for soft selective sweeps
(sweeps of alleles that are
already present on multiple
haplotypes [standing genetic
variation] or of positively
selected alleles at multiple
sites in the same region or
gene)

Hermisson and Pennings (2017),
Marques et al. (2018), Hodel et al.
(2018)

Scan for hard selective
sweeps (sweeps of new
(de novo) positively selected
mutations)

Pennings and Hermisson (2006),
Betts et al. (2018), Kreiner et al.
(2018)

Identify candidate loci
underlying local adaptation
and speciation

See sweeps above (including
FST outliers)

Heritable gene expression
profile differences

Christie et al. (2016)

Parallel evolution of gene
expression

Yeaman et al. (2016)

Parallel phenotypic or DNA
sequence evolution

Prince et al. (2017)

Identify loci associated with
environmental variation
(landscape genomics)

Methods testing for gene-
environment association can
detect subtle signatures of
adaptation that are not
detectable using genome-
wide selection scans

Joost et al. (2007), Coop et al.
(2010), Hancock et al. (2011),
Rellstab et al. (2015), Rajora et al.
(2016), Harrisson et al. (2017),
Rougeux et al. (2018), Schmidt
et al. (2017)

Detect signatures of poly-
genic adaptation

Single vs multiple genes and
the genomic basis of fitness

Berg and Coop (2014), Bourret
et al. (2014), Brieuc et al. (2015),
Laporte et al. (2016), Stölting
et al. (2015), Sork (2016),
Yeaman et al. (2016), Rajora et al.
(2016), Harrisson et al. (2017)

Identify loci underlying
species and landscape inter-
actions (landscape commu-
nity genomics)

Landscape community
genomics

Hand et al. (2015b), De Kort et al.
(2018), Kozakiewicz et al. (2018)

(continued)
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Table 1 (continued)

Question or objective
Genomics approach
(example)/software References

Identify loci associated with
traits within populations

Genome-wide association
analysis

Smith and O’Brien (2005), John-
ston et al. (2011), Johnston et al.
(2013), Barson et al. (2015),
Bérénos et al. (2015), Husby et al.
(2015)

Admixture mapping Lamichhaney et al. (2015)

Quantify inbreeding and
inbreeding depression and
identify underlying loci

Individual heterozygosity;
runs of homozygosity

Hoffman et al. (2014), Bérénos
et al. (2016), Dobrynin et al.
(2015), Hedrick and Garcia-
Dorado (2016), Howard et al.
(2015), Huisman et al. (2016),
Kardos et al. (2017), (2018)

Quantify hybridization,
outbreeding depression,
adaptive introgression, and
associated loci

Runs of hybridity Guan (2014), Gompert (2016),
Leitwein et al. (2018), Jones et al.
(2018)

Selection against
introgression

Kovach et al. (2016)

Estimate effective popula-
tion size (Ne) or Nb

Abundance and lengths of
IBD segments (both within
and between individuals) can
be used to estimate Ne and
historical changes in Ne

Kirin et al. (2010), Pemberton
et al. (2012), Browning and
Browning (2015), Kardos et al.
(2017)

Pairwise sequentially
Markovian coalescent
(estimate deep historical time
series of Ne)

Li and Durbin (2011)

Detect population declines
(reduction of Ne)

BOTTLENECK; ABC ana-
lyses in DIYABC

Cornuet and Luikart (1996),
Hoban et al. (2013), Cammen
et al. (2018)

Estimate contemporary
gene flow rates (Nm)

BayesAss3-SNPs Wilson and Rannala (2003),
Waterhouse et al. (2018), Brauer
et al. (2018)

Distinguishing continuous
migration from strict
isolation

Maximum-likelihood method
based on the jSFS

Gutenkunst et al. (2009), Fraisse
et al. (2018)

Identify adaptively differ-
entiated populations such as
ESUs (evolutionarily sig-
nificant units)

Detecting a major gene
(haplotype) for migration
timing Chinook salmon and
steelhead trout;
multidisciplinary framework
to delineate distinct
populations of butterflies

Prince et al. (2017), Dupuis et al.
(2018)
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2018). Identifying loci underlying adaptive evolution is a long-standing goal in
evolutionary biology, and doing so helps to understand the phenotypic traits,
biochemical pathways, and nature of the selective forces that have resulted in the
bewildering array of biodiversity.

A more common or widespread application of population genomics approaches is
improving estimation of population genetic parameters and evolutionary relation-
ships – including assessments of effective population size, population structure,
phylogeography, and demography – which are largely broad sense genomics
(Luikart et al. 2003). We first discuss these broader sense applications in Sect. 2.1.
We then discuss exciting and previously intractable applications including mapping
of adaptive genomic variation in Sects. 2.2 through 2.8.

2.1 Estimating Population Genetic Parameters
with Genome-Wide Markers: Broad Sense
Genomics Approaches

Genomics approaches can be used to address questions that have long been studied
using traditional molecular markers such as allozymes or microsatellites (Box 1). In
this section, we describe some of those population genetic questions and how
genomics can be used to improve them. While traditional molecular markers provide
information on a small fraction or subset of the genome, large-scale genomic data
(thousands to hundreds of thousands of SNPs) provide a more complete picture of
genetic parameters across the entire genome (e.g., Hohenlohe et al. 2010b; Brelsford
et al. 2017).

Statistical inference can be used to estimate population genetic parameters, such
as genetic diversity, effective population size, population differentiation, or phylo-
genetic relationships, and these population genetic metrics reflect processes that
affect the genome as a whole. However, these metrics can vary tremendously across
the genome, which suggests a narrow sense approach (e.g., mapped loci) is advis-
able. For example, genetic variation and population differentiation often vary tre-
mendously across the genome due to variation in recombination rate, selection
intensity (purifying and positive), and the mutation rate (Hohenlohe et al. 2010b).

The primary advantage of broad sense genomics is providing many more genetic
markers, often by several orders of magnitude, than previous techniques, and often
for similar cost and research effort. This results in the potential for much greater
precision of estimates of population genetic parameters. Many more markers can
also reduce bias of estimates of population genetic parameters by identifying loci
under selection that often should not be used to estimate parameters requiring only
neutral loci, such as gene flow, demographic history, and phylogenies. In some
cases, recent genomics techniques can also be more cost-effective than traditional
techniques, for instance, with the ability to simultaneously detect and genotype loci
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using RADseq and RAD capture (see Sect. 4) in taxa for which microsatellite or
other loci have not previously been developed (Andrews et al. 2016).

In population genomics studies, genome-wide estimates are often considered as
the background against which outliers reflect adaptive or functionally important loci
(Fig. 1; Luikart et al. 2003), and detection of these loci is central to narrow sense
population genomics as described in the sections below (see also Hohenlohe et al.
2018 this volume). The genome-wide background, estimated by either traditional
genetic or genomics techniques, is often interpreted to reflect selectively neutral
processes. But it is important to remember that the effects of selection and genotype-
phenotype relationships are pervasive across the genome due to processes, such as
hitchhiking (Maynard Smith and Haigh 1974), background selection (Charlesworth
et al. 1993), or isolation by adaptation (Nosil et al. 2008; Corbett-Detig et al. 2015).
Whether techniques tend to avoid coding regions (e.g., microsatellites), focus on
them (e.g., exon capture, RAD capture with targets in or near genes), or sample
randomly across the genome (e.g., RADseq), it can be treacherous to interpret
genome-wide patterns as solely reflecting “neutral” processes.

2.1.1 Genetic Variation and Effective Population Size

A central quantity in population genetics is the amount of genetic variation present in
a population. This can be quantified in several ways, including expected heterozy-
gosity (He) or nucleotide diversity (π), which can be estimated from genome-wide
SNP data using many analysis programs, such as PLINK (Purcell et al. 2007).
Genome-wide genetic variation is the result of multiple interacting processes,
including mutation, genetic drift, selection, and population structure, that affect the
genome as a whole.

The amount of genetic variation in a population is closely related to the effective
population size (Ne), which is often a focus of population genomics studies, particu-
larly those relevant to conservation (e.g., Hare et al. 2011; Cammen et al. 2018). While
there are several ways to define Ne, a common definition derives from the amount of
genetic drift in a local population relative to an idealized Wright-Fisher model
(Charlesworth 2009; Allendorf et al. 2013). The most direct way to estimate the rate
of genetic drift and Ne is with temporal genetic samples from a local population, which
provide measurements of changes in allele frequencies over time (Wang 2005; Luikart
et al. 2010). Often, however, multiple samples over time are not available from natural
populations, so other estimation techniques are required.

Random genetic drift due to small population size also leads to nonrandom
associations between alleles from different loci, known as gametic disequilibrium
(GD). GD provides the basis for methods to estimate Ne from a single genetic sample
collected at one time point, such as program LDNe in NeEstimator. LDNe requires
independent loci such as those on different chromosomes (Do et al. 2014). With the
large number of markers available from genomic data, it is likely that physically
linked loci (those on the same chromosome) are included. Physically linked loci can
downwardly bias estimates of Ne by increasing GD (Waples and Do 2010). If
markers can be mapped to a reference genome assembly or linkage map, one locus
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in physically linked pairs of loci can be removed (e.g., as done by Larson et al.
(2017)) or a general correction for the number of chromosomes can be applied
(Waples et al. 2016). An alternative class of methods uses coalescent-based infer-
ence of Ne; Nunziata and Weisrock (2018) found that GD methods require more
individuals (e.g., n > 30), while coalescent methods require fewer individuals (e.g.,
n ¼ 15) but more SNP markers (25,000–50,000). Estimates of Ne from different
methods can vary, and knowledge of population demography or temporal data can
improve estimates considerably (Gilbert and Whitlock 2015).

2.1.2 Population Structure and Phylogeography

Populations exist across space, and the spatial distribution of genetic variation is an
important focus of population genetics. Quantifying population structure and levels
of genetic differentiation among populations (e.g., estimating the parameter FST) has
been tractable with traditional population genetic tools, but again genomic tech-
niques provide greater statistical power and precision for estimating parameters
(Hohenlohe et al. 2018 in this volume). Furthermore, the number of markers from
genomic data can allow for estimates from fewer individual samples; for instance,
Nazareno et al. (2017) report consistent estimates of FST when using as few as two
individuals, genotyped at over 1,500 SNPs.

Many analytical tools are well-suited for assessing and visualizing population
structure from large genomic SNP datasets, such as principal components analysis
and Bayesian clustering methods, and applying multiple techniques to a single
dataset can help reveal important patterns (Fig. 4). When applied to genome-wide
data, these approaches illustrate the results of processes that affect the genome as a
whole, such as population size and migration rates. In a landscape genetics frame-
work, a combination of genomic and landscape data can identify landscape features
associated with variation in dispersal patterns (see Johnson et al. 2018a, b in this
volume for a review). Interpolating and mapping genetic similarity across landscapes
can reveal areas of high versus low gene flow, e.g., using the estimated effective
migration surface (EEMS) approach of Petkova et al. (2016). Recent genomics
techniques also provide new power for understanding the relationship between
landscape variables and functional genetic variation at specific loci, such as genes;
Balkenhol et al. (2017) in this volume review this field of landscape genomics.

2.1.3 Demographic History

A goal of population genomics studies that was considerably less tractable with
traditional genetic techniques is a detailed reconstruction of historical demographic
patterns, including changes in effective population size and migration rates, using
genetic data sampled only from the contemporary populations. A number of tech-
niques have been developed for demographic reconstruction from genetic or geno-
mic data, such as approximate Bayesian computation (ABC; Boitard et al. 2016;
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Fig. 4 Two methods for visualizing patterns of genetic differentiation among populations or
closely related taxa: (a) principal components analysis and (b) Bayesian clustering analysis. Here
these methods are applied to data from a 48,000 SNP genotyping array from wolves and their
relatives. Reproduced with permission from VonHoldt et al. (2011)
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Elleouet and Aitken 2018), sequential Markovian coalescent methods (Terhorst
et al. 2017), and site frequency spectrum methods (Gutenkunst et al. 2009). See
Salmona et al. (2017) in this volume as well as Beichman et al. (2017) for detailed
reviews.

As an example, Duranton et al. (2018) estimated the parameters of a demographic
model of two populations of European sea bass (Dicentrarchus labrax). Using
genomic data mapped to a reference genome, the authors were able to characterize
the distribution of lengths of haplotypes and fit model parameters to the observations
(Fig. 5). Specifically, they identified tracts of migrant ancestry using the program
ChromoPainter (Lawson et al. 2012) and estimated admixture parameters, and
they used the method of Harris and Nielsen (2013) to infer demographic history
from tracts of identity by state. These results reconstruct the historical details of
population isolation and secondary gene flow between Atlantic and Mediterranean
populations. This is a narrow sense genomics study because high-density mapped
markers are used with a conceptually novel approach (haplotype tracts of immigrant
ancestry).

Fig. 5 Mapped genomic markers provide information on haplotype lengths, which are informative
to assess historic admixture processes. Here the observed distributions of haplotype tract lengths in
Atlantic and Mediterranean populations of European sea bass (Dicentrarchus labrax) (red and
yellow dots) closely match simulated distributions (dark and light gray dots), allowing estimation of
parameters in a model of historic isolation followed by secondary contact and gene flow. The
haplotype information and modeling allows estimation of timing, directionality, and amount of gene
flow. Reproduced with permission from Duranton et al. (2018)
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2.1.4 Phylogenomics

Phylogenetic relationships among taxa can be estimated from a wide range of
genetic data types, including genomic data. A complication is that many genetic
markers spread across the genome may reflect different evolutionary histories
because of recombination, particularly in recently diverged species and where
incomplete lineage sorting and admixture play important roles (Edwards et al.
2016). Methods accounting for this, for instance, in estimating phylogeny from
large SNP datasets, have been developed (Hohenlohe et al. 2018 this volume;
McKain et al. 2018). Ideally, phylogenomic datasets are used not only to estimate
a consensus tree among taxa but also to reveal patterns of hybridization and
admixture (e.g., using analyses that allow for specific admixture events, such as
TreeMix; Pickrell and Pritchard 2012).

2.2 Identifying Adaptive Genetic Variation Underlying
Selective Sweeps

Population genomics makes it possible to identify “footprints” of natural selection in
genome-wide patterns of genetic variation. The classical genomic signature of
positive selection is the hard selective sweep, where fixation of a positively selected
de novo mutation dramatically reduces genetic diversity at closely linked loci in a
process referred to as genetic hitchhiking (Maynard Smith and Haigh 1974). The size
of the region of reduced variation around the positively selected allele depends
mainly on the strength of selection (and thus how quickly the sweep progressed)
and the recombination rates on either side of the selected site (Jensen et al. 2016).

Hard selective sweeps are characterized by very low nucleotide diversity, and
polymorphisms subsequently arising within a swept region display an excess of low-
frequency-derived alleles compared to the genome-wide background. Thus, methods
used to identify classical selective sweeps generally scan the genome for regions
with low diversity (Maynard Smith and Haigh 1974), an excess of rare alleles
(Tajima 1989), and a shifted site frequency spectrum (SFS) toward relatively high-
frequency-derived alleles (DeGiorgio et al. 2016; Fay and Wu 2000; Huber et al.
2015; Kim and Stephan 2002).

While classical hard selective sweeps strongly reduce genetic variation around
the selected site, soft selective sweeps arise from positive selection on standing
genetic variation and leave a subtler genomic signature (Hermisson and Pennings
2005). In particular, soft sweeps usually do not strongly reduce genetic variation or
result in a large shift in the site frequency spectrum around the selected site because
the positively selected allele is present within multiple flanking haplotypes
(Pennings and Hermisson 2006; Teshima et al. 2006). Soft sweeps appear to be a
dominant mechanism of recent adaptation in humans (McCoy and Akey 2017;
Schrider and Kern 2017). Methods based on extended haplotype homozygosity,
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which look for derived alleles sitting on exceptionally long haplotypes, are thought
to have substantially higher power to detect soft selective sweeps than diversity- or
site frequency spectrum-based genome scans (Ferrer-Admetlla et al. 2014; Voight
et al. 2006). Machine learning appears to also be a powerful method to detect soft
sweeps (Schrider and Kern 2017).

Recent studies have detected putative selective sweeps in an array of organisms,
ranging from domesticated livestock and humans to natural populations of
non-model species. In some cases, these studies have helped to identify the pheno-
types and underlying genetic and biochemical pathways involved with the response
to positive selection. Recent studies using genome scans based on genome
resequencing data have identified putative selective sweeps underlying adaptation
to domestication in pigs (Sus scrofa; Rubin et al. 2012), dogs (Canis lupus
familiaris; Axelsson et al. 2013), chickens (Gallus gallus; Rubin et al. 2010), and
rabbits (Oryctolagus cuniculus; Carneiro et al. 2014).

Schweizer et al. (2016) identified putative selective sweeps in North American
gray wolves (Canis lupus) related to coat color and environmental conditions by
conducting genome scans via resequencing of exons and intergenic sequences.
Kardos et al. (2015b) identified a putative selective sweep in wild bighorn sheep
(Ovis canadensis) in the vicinity of the RXFP2 gene associated with horn growth in
domestic sheep (RXFP2). Their results suggested that horn morphology (or size) in
bighorn sheep evolved at least in part via positive selection on a beneficial variant at
RXFP2. See the chapter herein by Hohenlohe et al. (2018) for additional examples of
selective sweeps and also Marques et al. (2018), Stetter et al. (2018), and Sugden
et al. (2018).

2.3 Genetic Architecture Underlying Adaptive Differentiation

Positive selection acting differently among populations can result in exceptionally
strong genetic differentiation in genomic regions containing loci subjected to selec-
tion (Lewontin and Krakauer 1973). For example, alleles conferring adaptation to
high elevation in humans tend to be at high frequency in high-elevation populations
but at low frequency in low-elevation populations in humans (e.g., Lorenzo et al.
2014; Hackinger et al. 2016). Genomic signatures of local adaptation can be detected
by scanning a large number of densely mapped loci to detect genes or chromosome
regions with exceptionally high genetic differentiation (e.g., FST outliers) among
populations (Hohenlohe et al. 2010b; Paris et al. 2017). Small numbers (100s) of
unmapped loci can be tested for adaptive signatures (broad sense genomics), partic-
ularly if candidate loci have been identified a priori (e.g., Holliday et al. 2010, 2012),
but if adaptation is highly polygenic, some of the causal loci will likely be missed.

Many studies have analyzed large numbers of mapped SNPs to detect FST outlier
chromosomal regions that represent candidate genomic regions for local adaptation
(Hohenlohe et al. 2010b; Wang et al. 2016). Gene-environment association (GEA)
analyses are also used to identify outlier loci associated with environmental
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differences (Sect. 2.4; Figs. 3 and 5). Genomic regions displaying exceptionally high
genetic differentiation between incipient species can also help to localize loci
subjected to divergent selection during speciation (Burri et al. 2015; Ellegren et al.
2012; Harr 2006; Marques et al. 2016; Martin et al. 2013; Poelstra et al. 2014;
Renaut et al. 2013; Turner et al. 2005; Wolf and Ellegren 2017).

Problems with FST outlier tests, and related tests for differentiation, include the
use of the wrong null model resulting in false positives. For example, hierarchical
population genetic structure can cause higher variance in FST (e.g., higher FST’s)
than expected assuming a simpler model of population structure. The problem can be
assessed and dealt with using simulations to simulate null distributions of FST (for
1,000s of neutral loci) for a hierarchical population structure (e.g., Lotterhos and
Whitlock 2014). False negatives are another problem, which can also be caused by
using the wrong or suboptimal spatial model. For example, to avoid many false
negatives and increase power to detect selection, Foll et al. (2010) developed a
hierarchical Bayesian to improve detection of genes involved in adaptation by
humans to living at high altitude and hypoxia.

To avoid false negatives, researchers should use high SNP densities because
variation in FST among SNPs is high even within a strongly selected gene. For
example, SNP alleles from the lactose tolerance gene have been under strong
positive selection in humans in Northern Europe (Beja-Pereira et al. 2003; Tishkoff
et al. 2007). However, only 15 of 61 SNPs across the gene show significantly high
FST (>0.45) between Europeans and other populations (Fig. 6). This suggests that
many SNP genotyping strategies (e.g., SNP chips, restriction site-associated DNA
sequencing, targeted sequencing) will often have too few SNPs per gene region to
reliably detect molecular signatures of adaptive genetic differentiation and perhaps
other selection signatures as well (Luikart et al. 2003).

Fig. 6 FST for individual SNPs (dots) randomly sampled from across each of the two genes
(CLASP1 and LCT, human chromosome #2) having the highest proportion of SNPs with FST

above 0.45 between the Yorubans in Africa and Utahans representing North Western Europeans.
AGFG1 is a typical gene without apparent selection signatures. CLASP1 and LCT are under strong
directional selection. An FST value of 0.45 is approximately the upper 99.9 percentile of empirically
observed SNP FST values across the genome and above which few neutral SNPs are expected. The
x-axis represents a randomly chosen SNP (for instance, under random sampling with replacement).
Unpublished manuscript by T. Antao and Luikart
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2.4 Landscape Genomics

Landscape genomics is an emerging field or approach that strives to identify
environmental factors that shape neutral and especially adaptive variation and the
genes and their variants that underlie local adaptation (Rellstab et al. 2015;
Balkenhol et al. 2017 this book). Environmental conditions vary across time and
space, and local conditions can cause fitness differences among individuals that vary
for phenotypic traits on which natural selection can act (Blanquart et al. 2013; Hoban
et al. 2016). These differences in traits can be associated with underlying genotypic
differences and with environmental conditions. Thus landscape genomics methods
test for associations among environmental factors, geo-spatial location, or pheno-
typic traits and genomic variation. Landscape genomics studies focus on local
adaptation to environmental conditions within and among different geographic
locations (Rellstab et al. 2015; Hoban et al. 2016). The topic of landscape genomics
is discussed in detail in the chapter by Balkenhol et al. (2017) in this book.

Genetic differentiation (e.g., FST) outlier tests alone do not identify the environ-
mental factors or selective pressures driving local adaptation. However, genotype-
environment association (GEA) analyses can identify loci associated with specific
environmental factors driving local adaptation. Simulation-based studies have
found that, in general, GEAs have more power than outlier-based approaches but
higher rates (20–50%) of false positives (De Mita et al. 2013; Frichot et al. 2013;
Forester et al. 2016). Examples of GEA-based programs are Bayenv2 (Gunther and
Coop 2013) that adjusts for population structure using an independent set of markers
that are assumed a priori to be neutral and the latent factors mixed model (LFMM,
Frichot et al. 2013) approach that uses the covariance structure of all loci being tested
to adjust for population history and demographics. There are a large number of tests
and software packages available for detecting differentiation outliers and GEAs, and
the number of publications using them has grown rapidly, especially for BayeScan,
Bayesenv, and LFMM (Ahrens et al. 2018).

Lotterhos and Whitlock (2014) used simulations to show that reliable genetic
differentiation test results vary depending on the number of individuals sampled.
Their review suggests that FST outlier tests will detect a higher proportion of outliers
as more individuals are sampled. This bias did not occur for GEA where the
proportion of associations remained relatively constant as the total number of
individuals increased. This finding implies that GEAs are more robust (see also
Ahrens et al. 2018).

One recent use of multiple GEA approaches identified a congruent set of candi-
date genes (among approaches) that are potentially important in the local adaptation
of Mediterranean striped red mullet (Mullus surmuletus) populations to their saline
environment (Dalongeville et al. 2018). Brauer et al. (2018) used GEA analysis to
test for adaptive divergence in the Murray river rainbowfish (Melanotaenia
fluviatilis) genome associated with hydroclimate. Brauer et al. (2018) used 17,504
SNPs in a multivariate GEA framework accounting for structure of a river system to
identify 146 candidate loci potentially underlying polygenic adaptive responses to
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seasonal fluctuations in stream flow and periods of extreme temperature and
precipitation.

Adjusting or accounting for neutral population structure is necessary to avoid a
high rate of false positives with GEA analyses. However, such adjustments can
result in false negatives if environmental factors driving local adaptation are corre-
lated with population structure (e.g., from patterns of post-glacial recolonization).
Yeaman et al. (2016) addressed this problem using a comparative genomics
approach by identifying GEA candidate loci correlated with variation in low tem-
peratures from exome capture and resequencing data based on raw GEA correlations
in one conifer species (Pinus contorta). They then looked for significant GEA in
those candidate loci in a second species complex (Picea glauca, P. engelmannii, and
their hybrids) and vice versa. They also identified shared loci associated with
phenotypic variation in cold hardiness. In this way, they identified 47 loci underlying
local adaptation to cold in populations of both conifers. For additional examples
involving gene expression and epigenetics, see below.

2.4.1 Spatial Signatures of Polygenic Adaptation

Adaptive traits are often polygenic and controlled by a large number of alleles from
many loci each having small phenotypic effect (Bourret et al. 2014; Laporte et al.
2016; Stölting et al. 2015; Sork 2016; Yeaman et al. 2016; Boyle et al. 2017).
However, methods for detecting adaptive genetic variation often only have the
power to detect loci and alleles with large phenotypic effects (Wellenreuther and
Hansson 2016). GEA methods can potentially detect weak signatures of adaptation
but still might seldom detect alleles with small effect sizes (Coop et al. 2010; Joost
et al. 2007).

Many of the early gene-environment association (GEA) methods tested only a
single locus at a time, rather than looking at the combined effects of multiple loci
simultaneously (Rellstab et al. 2015). More recent work has suggested that multi-
variate approaches (e.g., redundancy analysis (RDA), canonical correlation analysis
(CCA), or using a population graph approach) might help reduce the number of false
positives and maintain reasonable power to detect associations under even condi-
tions of weak, multilocus selection (Rajora et al. 2016; Forester et al. 2018).
However, multivariate approaches remain seldom used in population genomics
literature (Rajora et al. 2016; Wellenreuther and Hansson 2016).

A recent study tested for polygenic signatures of local adaptation using multivar-
iate approaches and 6605 RADseq SNPs in an Australian endemic fish, Murray cod
(Maccullochella peelii) (Harrisson et al. 2017). The polygenic multivariate method
(redundancy analysis, RDA) supported comparable roles of climate (temperature-
and precipitation-related variables) and geography in shaping the distribution of
multiple SNP genotypes across the range of Murray cod. Among the candidate SNPs
identified by these multivariate and the univariate methods, the top 5% of SNPs
contributing to significant RDA axes included 67% of the SNPs identified by
univariate methods. The results highlight the value of using a combination of
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different approaches, including polygenic methods, when looking for signatures of
local adaptation in landscape genomics studies.

2.4.2 Landscape Community Genomics: Identifying Loci Underlying
Both Species and Landscape Interactions

Genomic variation is influenced by complex interactions between abiotic (e.g.,
environmental) and biotic (e.g., community) effects. Researchers should consider
the effects of both environmental and community factors on evolutionary dynamics
simultaneously to avoid potentially incomplete, spurious, or erroneous conclusions
about the mechanisms driving patterns of genomic variation among and within
populations. Any study of genomic variation and adaptation in nature would ideally
begin with a set of predicted abiotic and biotic drivers, including interactions
between these two fundamental categories of effects (Hand et al. 2015b). Despite
the value of studying concordant patterns of genetic variation in interacting species,
there are relatively few empirical examples, in part because of the expense of
conducting population genomics on multiple interacting species across heteroge-
neous landscapes or environmental gradients. Few examples exist but will become
more common as it becomes feasible to conduct landscape genomics on multiple
interacting species (e.g., see Beja-Pereira et al. 2003).

One recent example of landscape community genomics is a study of the parasitic
Alcon blue butterfly (Phengaris alcon) and its two hosts: an ant species (Myrmica
scabrinodis) and the marsh gentian (Gentiana pneumonanthe) (De Kort et al. 2018).
The female butterfly lays its eggs onto gentian flower buds which develop into
caterpillars at the expense of the gentian’s ovules. This has led to coevolutionary
shifts in flowering phenology to escape peak times of infestation by the Alcon
butterflies (Valdés and Ehrlén 2017). When the caterpillars leave the plant, they
are adopted byMyrmica ants as the caterpillar’s chemical signature misleads the ants
into accepting and rearing the caterpillar in preference to their own brood. This social
parasitism of ants has also lead to coevolutionary changes in the surface chemistry of
Myrmica and in the Alcon butterfly larvae (Nash et al. 2008). De Kort et al. (2018)
focused on the impact of habitat fragmentation on the Alcon butterfly and subse-
quently the possible effect on its two obligatory host species (ants and gentians).
Some of the among-population genetic variation in the host species could be
explained by abiotic variables (e.g., altitude). Additional analyses showed a sub-
stantial amount of variation in Alcon butterfly genetic structure could be explained
by host genetic structure. De Kort et al. (2018) then suggested that coevolutionary
selection has been important in synchronizing genetic structure of this host-parasite
system. Habitat fragmentation is impacting the Alcon butterfly (Phengaris rebeli)
and will likely impact the genetic structure of its host species as well.
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2.5 Genome-Wide Association Studies: Loci Associated
with Traits Within Populations

A growing number of population genomics studies have identified loci contributing
to phenotypic variation among individuals, including in traits that strongly affect
fitness and local adaptation, via genome-wide association studies (GWAS). GWAS
typically use a regression model (e.g., a linear mixed-effects [LME] model) to
identify loci where genotypes are associated with a trait of interest (Gibson 2018).
Population structure is accounted for by fitting a genomic-relatedness matrix (GRM)
as a random effect; other potentially informative predictor variables can be included
as needed in the random or fixed effects parts of the model. Additional discussions of
GWAS and heritability estimation, with emphasis on functional genomics, is pro-
vided in the chapter by Pino Del Carpio et al. (2018) in this book (see also Santure
and Garant 2018; Armstrong et al. 2018).

The number of studies finding loci associated with variation in fitness-related
traits in natural populations is proliferating. Trait-associated loci are often identified
in regions that show strong genetic differentiation between individuals with stark
differences in morphology. For example, SNPs around the RXFP2 gene included on
a 50K SNP array were found to be associated with horn morphology in wild feral
Soay sheep (Ovis aries) (Johnston et al. 2011, 2013). Horn morphology strongly
affects fitness in Soay sheep (Ovis aries) and in natural populations of wild mountain
sheep (e.g., bighorn sheep, Ovis canadensis; Hogg 1984). Thus identifying loci
associated with horn size provides an interesting look into the genetic basis of
fitness-related variation.

In another recent GWAS example, Brelsford et al. (2017) studied a natural hybrid
zone between Audubon’s and myrtle warblers (Setophaga coronata auduboni x S. c.
coronata) to identify genomic regions associated with color pigmentation potentially
associated with mating success and fitness. RADseq produced 154,683 to 393,755
SNPs, depending on the filtering criteria. For each of five plumage coloration traits
studied (eye spot, throat color, eye line, wing bar, and auricular), the authors detected
highly significant associations with multiple SNPs genome wide that clustered into
chromosomal regions (Fig. 7). The high success in identifying loci associated with
these traits likely resulted from the relatively high gametic disequilibrium along
chromosomal stretches resulting from hybridization.

In another study, Husby et al. (2015) identified a locus that was associated with
clutch size (a life history trait) in the collared flycatcher (Ficedula albicollis). Simi-
larly, Bérénos et al. (2015) identified two SNPs in Soay sheep (Ovis aries) associated
with leg length (a measure of body size), with each of the two SNPs explaining>10%
of the additive genetic variance in the trait. One of the SNPs found to be associated
with leg length by Bérénos et al. (2015) was also associated with female reproductive
success, providing evidence for a link between genotype, phenotype, and fitness in
Soay sheep. Lamichhaney et al. (2015) and Küpper et al. (2015) simultaneously
identified a large (~4.5 Mb) inversion that controlled mating morphology in the ruff
(Philomachus pugnax). Barson et al. (2015) identified a locus with sex-specific
dominance and large effects on age at maturation in wild Atlantic salmon.
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GWAS methods are also being widely used in conjunction with common garden
experiments containing natural or seminatural populations of plants, fish, and other
taxa. For example, in black cottonwood (Populus trichocarpa), Mckown et al.
(2014) conducted GWAS using 29,355 filtered SNPs using a unified mixed model
accounting for population structure effects. They uncovered 410 significant SNPs
(from 275 genes) across 19 chromosomes that explained 1–13% of trait variation in
trait associations, mostly associations with phenology genes (240 genes) but also
biomass (53 genes) and ecophysiology (25 genes).

In the future, association studies will continually find more loci, including loci of
small effects associated with adaptive traits, thanks to improved power from
sequencing strategies like pool-seq with a reference genome that allow high-density

Fig. 7 Manhattan plots of genomic differentiation (A) and plumage associations (B,C,D). (A) FST

between allopatric myrtle and Audubon’s warblers at 393,755 SNPs across the genome with
scaffolds ordered by size. Adjacent scaffolds across the genomes are distinguished by alternating
gray or black coloration. Panels B, C, and D are phenotype-genotype associations for three of the
five plumage characters studied. The tiny red triangle near the top right of panel (B) shows the
cluster of loci that aligns to the zebra finch chromosome 15. This region includes the SCARF2 gene,
which is a strong candidate gene for carotenoid pigment transport. Panel (E) shows patterns of
divergence and genotype-phenotype associations for eye line (blue points) and eye spot (red points)
for a region of chromosome 20. Associations between these two traits are highly correlated with
each other as well as patterns of divergence (FST, small black dots). Coding regions (exons) for
genes are shown by the vertical bars, with different adjacent genes colored differently with
arbitrarily chosen colors. Modified from Brelsford et al. (2017)
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genotyping of populations or lineages (Haussler et al. 2009; Schlötterer et al. 2014;
Wessinger et al. 2018; Pruisscher et al. 2018). For example, Narum et al. (2018) used
a new genome assembly (2.8 Gb) and pool-seq resequencing for Chinook salmon
(Oncorhynchus tshawytscha) to conduct association mapping of important life
history traits. The authors pooled individuals from populations of each of
three phylogenetic lineages that exhibit different maturation and run-timing
phenotypes. Their whole-genome resequencing of pooled (barcoded) individuals
suggested that divergent selection was extensive at many loci genome wide within
and among phylogenetic lineages. Association mapping with millions of SNPs
revealed a genomic region of major effect associated with phenotypes for migration
timing. This study illustrates how a genome assembly and high-density markers can
help resolve the genetic basis of important phenotypes.

2.6 Quantifying Inbreeding, Inbreeding Depression,
and Historical Bottlenecks

The availability of population genomic data is improving our understanding of
inbreeding (mating between relatives) and inbreeding depression in the wild
(Hedrick and Garcia-Dorado 2016; Kardos et al. 2016a). Inbreeding causes offspring
to be homozygous and “identical by descent” (IBD) across large chromosomal
segments where the two inherited DNA copies arise from a single DNA copy in a
common ancestor of the parents (Kardos et al. 2016a; Speed and Balding 2015;
Thompson 2013). The increased homozygosity arising from IBD causes inbreeding
depression: reduced fitness of inbred individuals (Charlesworth and Willis 2009).

The pedigree inbreeding coefficient (FP) is a traditional measure of individual
inbreeding and predicts the fraction of the genome that is IBD, assuming that
pedigree founders are unrelated and noninbred (Keller and Waller 2002; Malécot
1970; Wright 1922). However, FP can be an imprecise measure of the realized
fraction of the genome that is IBD (F) due pedigree errors, the stochastic nature of
Mendelian segregation and recombination, and the presence of related and inbred
pedigree founders (Fisher 1965; Franklin 1977; Stam 1980; Kardos et al. 2016a;
Knief et al. 2017; Forstmeier et al. 2012; Goudet et al. 2018). The imprecision of FP

and the recent availability of genomic data have led to increased application of
genomic estimates of individual inbreeding and inbreeding depression (Hoffman
et al. 2014; Huisman et al. 2016; Bérénos et al. 2016).

Genomic measures of individual inbreeding have the advantage that they directly
measure patterns of homozygosity across the genome, thus making pedigrees
unnecessary to estimate individual inbreeding. Encouragingly, only a few thousand
unmapped SNP loci can provide more precise estimates of F (IBD) than a pedigree
five to ten generations deep (Kardos et al. 2015a, 2018). Even more powerful, the
analysis of many tens of thousands of mapped loci allows the use of runs of
homozygosity (ROH) residing within chromosomal segments that are IBD to assess
inbreeding (IBD) with very high precision (Kardos et al. 2015a). Genomics studies
of inbreeding are greatly advancing our understanding of the extent of inbreeding
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depression in humans, domestic animals and plants, and natural populations of
non-model organisms (Palkopoulou et al. 2015; Xue et al. 2015; Kardos et al. 2018).

ROH can be used to identify and map loci contributing to inbreeding depression
by testing for associations between the presence of ROH and individual fitness-
related traits (Keller et al. 2012; Kijas 2013; Lander and Botstein 1987; Pryce et al.
2014). Large-scale genomics studies of inbreeding depression (sample sizes
>100,000 individuals) based on ROH and other genomic measures of inbreeding
are now being done to precisely estimate inbreeding effects on a wide range of
human traits (Wessinger et al. 2018; Johnson et al. 2018a, b). Thus, population
genomics is beginning to contribute substantially to our understanding of the
evolution of fitness-related phenotypes and the genetic basis of inbreeding depres-
sion in many species. This understanding has the potential to guide conservation and
management of wild population and captive breeding programs, for example, to
avoid inbreeding depression and invoke genetic rescue through restoring gene flow
(Tallmon et al. 2004; Whiteley et al. 2015).

In another step to identify contributing loci, exons identified by ROH can also be
used to bioinformatically identify likely deleterious alleles based on the likely effects
of amino acid substitutions and whether such substitutions are common in homol-
ogous genes in other organisms using software such as PROVEAN (Choi and Chan
2015). The frequencies of these alleles can be compared among individuals and
populations. For example, Conte et al. (2017) found over 13% of all SNP alleles in
Picea engelmannii, P. glauca, and hybrid populations had amino acid substitutions
predicted to be deleterious, but homozygous genotypes for deleterious alleles were
less frequent in hybrid populations due to complementation.

Historical effective population size can be qualitatively inferred from the abun-
dance and length distribution of runs of homozygosity (Fig. 8). For example,
analyses of genome-wide runs of homozygosity (ROH) showed inbreeding arising
from recent common ancestors of parents (due to small population size) in individ-
uals of recently reintroduced populations of alpine ibex (Capra ibex). The detected
ROH were associated with small population size during captive breeding and the
founding of small wild populations approximately 20 generations ago. In spite of a
rapid population growth in the wild, the ibex carried a genomic signature of their
small recent historical population size (Fig. 8). The authors thus suggested that
genomic monitoring for ROH could provide an improved indicator for early detec-
tion of inbreeding in wild and managed populations (Grossen et al. 2018).

Historical population bottlenecks can also be inferred and approximately dated
using ROH and coalescent modeling (Ceballos et al. 2018). Palkopoulou et al.
(2015) sequenced genomes from two wooly mammoths from distant populations
in terms of both geography (northeastern Siberia versus Wrangel Island, Alaska) and
time (~44,800 versus ~4,300 YBP). Intriguingly, both yielded very similar genomic
signatures of a nearly identical population decline at the start of the Holocene. One
mammoth individual sample was dated to have died just before the species’ went
extinct approximately 4,000 years ago. From coalescent modeling, a second geno-
mic signature of a reduced population effective size (and inbreeding) was inferred
just before the extinction at the start of the Holocene. The analyses suggested that the
wooly mammoth was subject to reduced genetic variation prior to its extinction.
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Fig. 8 (A) Schematic showing runs of homozygosity (ROH) along a chromosome. (B) Distribution
of total genome-wide runs of homozygosity in one representative individual from each of three
species including domestic goat (SGB A10), Iberian ibex (Z23), and Alpine ibex (VS0034). The
distribution is right-shifted to have longer ROH, >10–20 Mb, in the reintroduced Alpine ibex. (C)
Tract length distribution of ROH in wild and reintroduced populations. ROH for individuals from
different populations show a range of different tract lengths. Only the reintroduced (captive bred,
bottlenecked) individuals have 20 Mb tracts. The wild source population GP (Gran Paradiso) never
suffered the captive breeding founder effects, but it did decline to ~100 individuals approximately
100 years ago. Black-outlined circles show the three primary reintroduced populations Albris
(orange), Pleureur (light blue), and Brienzer Rothorn (green). Secondary reintroductions established
from the primary reintroduced populations share the same color. Populations with mixed ancestry
are shown in purple. N, sample size per population. Reproduced with permission from Grossen et al.
(2018)



2.7 Delineating Adaptively Differentiated Populations

Population genomics can help identify locally adapted, differentiated populations
that are difficult to delineate using selectively neutral markers, especially in high
gene flow species, such as forest trees and marine organisms. Prince et al. (2017)
used RADseq to assess the evolutionary basis of premature migration among
individuals within local populations of Pacific salmonids. Chinook salmon and
also steelhead trout exhibit two major migration strategies: premature migrators
enter freshwater in the spring with high fat content and stay in freshwater for months
until spawning, and mature migrators which enter freshwater sexually mature just
prior to the spawn. Gene flow was relatively high between the two very different
forms (premature vs normal migration) within a stream (FST ~ 0.03); FST between
streams was far higher (FST ~ 0.13). The authors found the same single locus
associated with premature migration in multiple populations in each of two different
species, Chinook salmon and also steelhead trout.

Results from this study suggest conservation implications. While many traits
involved in local adaptation are polygenic, in this case a single locus appears to
control migration timing and has significant economic, ecological, and cultural
importance (Fig. 9). In particular, extirpation of the premature migration allele and
phenotype are unlikely to re-evolve once extirpated from a population in the absence
of immigrants carrying the allele from elsewhere. Mutations producing a given
important allele are rare evolutionarily, suggesting such alleles will not re-evolve
quickly or easily if lost. Furthermore, spatial patterns of adaptive allelic variation can
differ from patterns of overall population genetic differentiation. Taken together,
these results suggest that conservation units based on genome-wide patterns of
genetic differentiation will sometimes fail to protect evolutionarily significant
genetic and phenotypic variation.

Adaptively differentiated populations can be identified and prioritized for con-
servation and breeding (Funk et al. 2012). Population genomics and landscape
genomics approaches are often necessary to identify adaptively differentiated
populations because common garden or reciprocal transplant experiments are not
feasible for many species. Bonin et al. (2007) devised a population adaptive index
(PAI), which uses both neutral and adaptive distinctiveness to assess the adaptive
value of the population. They suggested that outlier tests could help identify adaptive
loci and alleles to then use to identify and prioritize or rank populations for
conservation values. In species to which they applied the index (PAI), the neutral
and adaptive marker variation among populations were not correlated; Therefore the
authors concluded that conservation strategies based on the neutral and adaptive
indexes would not protect the same populations.

Other authors have suggested genomics approaches be used to identify adaptively
differentiated populations (Funk et al. 2018; Razgour et al. 2018; Hoban 2018).
Approaches include genotype-environment associations and gene expression anal-
ysis (e.g., Hansen 2010; Chen et al. 2018, see Sects. 2.4 and 4.4). Including
environmental variables improves power over differentiation-based methods, helps
identify the environmental drivers of adaptation, and facilitates detection of
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contemporary (and historical) selection (Forester et al. 2018). Ideally, multiple
independent data types would be combined to maximize power and reliability of
delineating adaptively differentiated populations (geography, environment, behav-
ior, ecology, physiology, transcriptomics, and genomics; Allendorf et al. 2013).

There is enormous risk of prioritizing populations for conservation based on
population genomics (or outlier) approaches alone. It can be extremely difficult or

Fig. 9 Genomic basis of premature migration in steelhead. (A) Map of sampling locations of early
versus mature (normal) migration types of steelhead trout sampled together in each of many drainages.
(B) Association mapping of early vs normal migration of the Eel River steelhead trout with gene
annotation, with the (C) gene annotation of a region with strong association; red numbers show
genomic locations of the two RAD restriction sites with strongest associated SNPs, and blue asterisks
indicate positions of amplicon sequencing, with the candidate gene GREB1L. (D) Phylogenetic tree
depicting maximum parsimony of phased amplicon sequences from all individuals; branch lengths,
with the exception of terminal tips, reflect nucleotide differences between haplotypes; numbers
identify individuals with one haplotype in each migration category clade (i.e., heterozygotes for
premature and normal migration haplotypes). Reproduced with permission from Prince et al. (2017)
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impossible to verify whether genes that behave as outliers are genuinely adaptive. The
genomic signatures expected from local adaptation (e.g., FST outliers, GEA) can arise
from genetic drift, particularly when small populations and low migration rates are
involved. Further, genuine genomic signatures of selection may be due to selective
forces in deep history that have since disappeared and thus are irrelevant to adaptation
in current or future environments. Third, prioritizing certain populations based on
certain particular alleles (even if they are genuinely relevant to adaptation) could
actually reduce diversity across the rest of the genome that is necessary for future
adaptation (Luikart et al. 2003; Allendorf 2017; Kardos and Shafer 2018).

2.8 Speciation, Hybrid Zones, Admixture, and Adaptive
Introgression

Population genomics approaches have opened new avenues to study speciation,
admixture events, and hybrid zones in all organisms. A detailed account of this
topic is presented by Nadeau and Kawakami (2018) in this book. Here we introduce
the topic and provide a few relevant examples.

The European bison (Bison bonasus), Europe’s largest land mammal, was
recently shown to be a hybrid of two previously recognized subspecies, by authors
using low coverage genome sequence alignments of historical and modern individ-
uals (Wecek et al. 2017). Admixture occurred between subspecies prior to extinction
in the wild and also subsequently during recent captive breeding. Admixture with
domestic cattle was also significant but was ancient rather than from recent hybrid-
ization with domestics. These discoveries would have been difficult or impossible
without genome-wide mapped loci and both historical and modern samples.

Kovach et al. (2016) studied genome-wide patterns of admixture and natural
selection across recently formed hybrid zones between native cutthroat trout and
invasive rainbow trout (Oncorhynchus clarki lewisi and O. mykiss) by genotyping
9,380 species-diagnostic RADtag SNP loci. A significantly greater proportion of the
genome appeared to be under selection favoring native cutthroat trout (rather than
rainbow trout), in the local native environments. This negative selection against
rainbow introgression was found on most chromosomes and was consistent among
populations and environments, even in warmer environments where rainbow trout were
predicted to have a selective advantage. These data are consistent with previous findings
that admixed fish have reduced reproductive success (Muhlfeld et al. 2009). Future
studies could use far more loci to precisely map tracts of hybridity and infer timing
of introgression of the rainbow haplotype segments into the native cutthroat trout.

Among the most intriguing examples of natural selection favoring “adaptive
introgression” of certain alleles following admixture is the introgression of advanta-
geous alleles from Neanderthals (and Denisovans) into modern humans. Genes
involved in sugar metabolism, muscle contraction, and oocyte meiosis have been
influenced by adaptive introgression from Neanderthals. For example, EPAS1 which
influences hemoglobin concentration and response to hypoxia has introgressed from
Denisovans into Tibetans, facilitating adaptation to life at high altitude through ancient
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admixture (Huerta-Sánchez et al. 2014). Other benefits of archaic (Neanderthal)
introgression in the past are associated with several neurological and dermatological
traits (Kelso and Prüfer 2014; Racimo et al. 2015; Vattathil and Akey 2015).

Evidence for adaptive introgression in nonhuman populations is growing. For
example, adaptive introgression was detected in the Tibetan mastiff (Canis
domesticus). Alleles for adaptation to high elevation (hypoxia) were identified at
several loci, including the EPAS1 and HBB, which were introgression from Tibetan
gray wolves (Canis lupus) (Miao et al. 2017). This demonstrates that domestic animals
could rapidly become locally adapted by secondary contact with their wild relatives.

Adaptive introgression was also associated with the evolution of seasonal varia-
tion in coat color in snowshoe hares (Jones et al. 2018). Snowshoe hare populations
molt to white during winter in order to maintain camouflage in environments with
consistent winter snow cover. However, snowshoe hares in areas that remain snow-
free year round often retain their brown coat color during the winter, thus
maintaining effective camouflage in the absence of winter snow. The brown winter
coat in snowshoe hares appears to arise from an allele that has introgressed from
black-tailed jackrabbits (Jones et al. 2018). Other studies have also shown interesting
genome-wide patterns of adaptive introgression (Song et al. 2011; Rieseberg 2011;
Pardo-Diaz et al. 2012; Norris et al. 2015; Ozerov et al. 2016; Saint-Pé et al. 2018).

New approaches to analyze mapped loci will advance understanding of hybridiza-
tion and evolution in hybrid zones. For example, large numbers of mapped loci can be
analyzed to infer “local ancestry” across genomes of individuals. This involves
mapping the locations of haplotypes arising from different source populations across
the genomes of hybrids (Guan 2014; Leitwein et al. 2018). Such ancestry tracts can be
used to estimate individual hybridity and population level admixture at both the
genome wide and local scale across chromosomes. Additionally, local ancestry
information is highly useful for trait mapping in mixed-ancestry populations (Smith
and O’Brien 2005). Because the introgressing haplotypes decay in length at a predict-
able rate with increasing generations since hybridization, analyses of ancestry tract
lengths can be informative of the historical timing of admixture events. For example,
Leitwein et al. (2018) used 75,684 mapped SNPs obtained from double-digested RAD
to identify ancestry tracts and estimate individual admixture proportions along with the
timing of admixture in brown trout (Salmo trutta).

3 Benefits of Mapped Loci in Population Genomics

Information on the location of loci in the genome is a defining characteristic of
population genomics (narrow sense), as mentioned above (Allendorf 2017). Loci can
be mapped in terms of physical and/or genetic (linkage) positions in the genome.
Producing both physical and linkage maps is far more tractable with modern
genomics methods in non-model organisms than a few years ago. As a result,
population genomics research efforts can now feasibly include the construction of
a physical or linkage map for most study systems. Below we describe the key
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features of physical and genetic maps and the relative value of each for population
genomic analyses.

Physical and genetic (linkage) mapping are two separate but complementary
ways of describing the locations of loci in the genome. A physical map is a genome
sequence. Long sequence reads from new (third)-generation sequencers enable high-
quality genome assemblies, discovery of novel fitness-affecting structural variation,
and the ability to sequence through previously “unsequenceable” repetitive DNA to
allow mapping between distant loci along each chromosome. Reference genomes for
non-model organisms often, however, are not assembled into chromosomal units,
especially when genomes are large and contain a high fraction of highly repetitive
content (i.e., retrotransposons) (Ellegren 2014; Epstein et al. 2016).

A linkage map describes the gene order based on the recombination frequency
between loci along each chromosome. Linkage maps are constructed by genotyping
pedigreed individuals and using linkage analysis, which quantifies how often adja-
cent loci co-segregate versus segregate independently due to recombination during
meiosis. The distance between loci on a linkage map is described in terms of
centimorgans (cM), where 1 cM is defined as a 1% recombination frequency
between two adjacent loci inherited from a parent. Linkage maps can be developed
in some cases where assembly of physical maps remains difficult (e.g., large conifer
genomes, De La Torre et al. 2014).

Both physical and linkage maps facilitate population genomics research in at least
five ways. First, having large numbers of mapped loci improves the power to identify
and localize loci influencing phenotypic variation, fitness, and adaptation (e.g., Burri
et al. 2016; Rastas et al. 2016). For example, the availability of densely mapped
SNPs along a chromosome allows for localization of the chromosomal region(s) and
genes underlying traits or adaptations (Figs. 2, 3, 7, and 10). This helps determine the
genetic basis of adaptations or phenotypic variation, including determination of the
number, kind, and effect size of genes underlying an adaptation or trait.

Second, physical and linkage maps also help identify independent loci, e.g., loci
far apart on the same chromosome or on different chromosomes (although statistical
tests for independence can identify independent loci without a map). Independent
loci are required for some population genetic inferences, including analyses of
effective population size (Ne), gene flow, or population relationships (Landry et al.
2002; Storz et al. 2002; Luikart et al. 2003). For example, Larson et al. (2014)
estimated Ne for wild Chinook salmon using ~10,000 SNPs and the LDNe method
(based on gametic disequilibrium) that assumes all loci are independent or not
physically linked (Waples and Do 2010). Estimates using only pairs of SNPs from
different chromosomes (<1,000 SNPs) consistently gave estimates of Ne that were
higher than when using all pairs of SNPs; for example, an Ne estimate was 1,909 for
unlinked SNPs versus only 808 for all SNPs (including linked SNPs), as expected
because gametic disequilibrium is stronger for physically linked SNPs, which drives
(biases) lower Ne estimates.

Third, the combination of a linkage map and a physical genome assembly allows
understanding variation in the recombination rate across the genome. This is impor-
tant because the recombination rate affects the extent of GD (gametic
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disequilibrium) and genetic diversity across a chromosome. Lower recombination
rates result in GD extending over longer physical distances across a chromosome. As
described below, the extent of significant GD strongly influences the power to detect
footprints of natural selection and the ability to map loci contributing to phenotypic
variation.

The recombination rate influences genetic diversity and differentiation among
populations or species via its interaction with natural selection. Knowing how
recombination rate varies across the genome is, therefore, crucial for interpreting
genomic patterns of genetic diversity and differentiation. For example, the recom-
bination rate is known to interact with background selection to generate chromo-
somal islands of reduced diversity (Charlesworth et al. 1993) and increased
differentiation (high FST, Burri et al. 2015), which might be erroneously interpreted
as resulting from positive selection.

Fourth, physical and linkage maps both help researchers determine if they have a
sufficient density of loci in the genome to have high power to detect loci subjected to
positive selection or genotype-phenotype associations.With a linkagemap, researchers
can compute how far in centimorgans (cM) significant GD spans across chromosomes
or linkage groups. Similarly, with a physical map, researchers can compute how far in
base pairs (or kb) GD spans across chromosomes. Knowing the extent of GD is
important because detection of phenotype-genotype associations and signatures of
selection required GD between genotyped loci and causal loci. In addition, detecting
phenotype-genotype associations requires GD between genotyped marker loci and
causal loci, and so a relatively high density of markers is needed (Box 2).

Box 2 Importance of Gametic Disequilibrium and Marker Density
for Identifying Adaptive Loci
Researchers recently resequenced 81 whole genomes in flycatchers with
extreme phenotypes and also genotyped 50K SNP in 415 individuals. Birds
were phenotyped for forehead patch size, a sexually selected trait associated
with reproductive success. No SNPs were significantly associated with patch
size (Fig. 10A). One reason for the failure to detect loci (QTL, quantitative trait
loci) using association mapping could be that gametic (linkage) disequilibrium
extends only over short chromosome distances (Fig. 10B), which makes the
chances of strong associations between a DNAmarker and trait loci small even
when genotyping many SNP markers (Lowry et al. 2017, but see McKinney
et al. 2017a; Catchen et al. 2017).

These results suggest that reliably detecting large-effect trait loci in large
natural populations will often require thousands of individuals and the
genotyping of hundreds of thousands of loci across the genome. Encourag-
ingly, far fewer individuals and loci will often be sufficient to achieve high
power to detect large-effect loci in small populations that typically have
widespread strong gametic disequilibrium. This study illustrates the

(continued)
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Box 2 (continued)
importance of knowing if strong gametic disequilibrium extends over long
chromosome distances (e.g., due to low recombination rates, small effective
populations size and drift, or perhaps admixture).

Fig. 10 (A) Manhattan plot of �log10 (P-value) from a genome-wide association (GWA)
analyses of color-patch size based on whole-genome resequencing of 81 male flycatchers.
Chromosome identity is shown on the x-axis, and the P-values (open circles) are arranged
according to physical SNP positions on each chromosome. Horizontal dashed lines are
permutation-based statistical significance thresholds, and the dotted lines are the Bonferroni
statistical significance thresholds of statistical significance (no points above the dashed line).
(B) The relationship between the strength of linkage disequilibrium (r2 or nonrandom
association between loci) and physical distance in 81 whole-genome resequenced collared
flycatcher males. r2 is shown for each pair of SNPs separated by 50 or fewer kb. The solid
line represents a function fitted to the rolling mean of r2 calculated in nonoverlapping
windows of 100 bp. The arrow shows where the mean of r2 drops below 0.20. The dashed
lines represent loess functions fitted to the rolling 5% and 95% quantiles of r2 in the same
nonoverlapping 100 bp windows. (C) Collared flycatcher photo (note forehead patch). (A,
B) Reproduced with permission from Kardos et al. (2016b). (C) Copyrighted license and
permission to use photo from Jiri Bohdal
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We caution that while maps allow quantification of the extent of GD along
chromosomes, this quantification must be conducted for each study population of
interest because the extent of GD varies among populations with in a species
(Table 2) (Whiteley et al. 2011; Gray et al. 2009). GD will be relatively higher
(genome wide) in populations with small Ne and/or recent admixture (Fig. 11).
Quantifying GD along chromosomes also allows researchers to identify hotspots
of recombination (low GD) and thus to know which genome regions will require
higher densities of markers when screening for loci associated with adaptation or
phenotypic variation.

Directional selection is expected to reduce genetic variation and to alter the site
frequency spectrum at the selected site and at closely linked loci (Charlesworth et al.
1993). The expected physical distance over which selection affects genetic variation
depends on the local recombination rate. We expect directional selection to affect
genetic variation across larger regions when the local recombination rate is low. As
described below, accounting for recombination rate variation across the genome is
necessary in order to assess differentiation among populations (e.g., FST) measured
across each chromosome. Information on recombination patterns (genome wide)
improves interpretation of population genomic tests (GWAS, FST outliers, etc.)
because recombination can influence outlier locus behavior. For example, the rate
of recombination is expected to correlate positively with local nucleotide diversity
and rates of adaptive evolution, which could influence tests for selective sweeps
using heterozygosity or FST outlier loci (Cutter and Payseur 2013; Campos et al.
2014).

Fifth and finally, GD information from linkage or physical maps can improve
theoretical models to advance population genetics beyond bean-bag genetics.
Models parameterized with chromosomally explicit GD information can help to
understand issues such as the importance of interactions of gene flow, recombina-
tion, and selection in adaptation and speciation. Some models stress the importance
of recombination and distance among loci in the establishment and maintenance of
adaptive alleles in a population (Bürger and Akerman 2011; Yeaman and Whitlock
2011; Feder et al. 2012).

3.1 What Can Physical Maps Provide that Linkage Maps
Cannot?

Physical maps (reference genomes) generally provide higher power than linkage
maps for detecting selective sweeps or genotype-phenotype associations because
millions of SNPs can be mapped (positioned) via sequencing, whereas it is difficult
to produce linkage maps with more than approximately 20–30K SNPs. Linkage
mapping for tens of thousands of SNPs can require genotyping of many families,
which is difficult or impossible in most species due to small family sizes,
unavailability of families, or large expense of genotyping tens of thousands of loci
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in many large families. For example, a map from a single family of Chinook salmon
had 5,400 SNP loci while increasing to four families allowed mapping of 13,800 loci
(G. McKinney, unpublished data, 2018; see also Mckinney et al. 2016). There are
diminishing returns from adding families for mapping because the number of

Table 2 Estimated chromosomal length in kilobase pairs (kb) with moderate gametic disequilib-
rium (r2 ¼ 0.2) in populations from diverse species

Species [population] (Genus species)
Mean kb with
moderate GDa Reference

Flycatchers (Ficedula albicollis) <2 Kardos et al. (2016b)

Mosquito (Anopheles arabiensis) 1 Marsden et al. (2014)

Mosquito (Anopheles gambiae) <0.5 Harris et al. (2010)

Honey bee (Apis mellifera) 0.5 Wallberg et al. (2014)

Bighorn sheep [bison range population] (Ovis
canadensis)

>4,000 Miller et al. (2014)

Bighorn sheep [Ram Mountain population]
(O. canadensis)

<2,000 Miller et al. (2014)

Zebra fish [lab strain] (Danio rerio) >3,000 Whiteley et al. (2011)

Zebra fish [wild population] (Danio rerio) <20 Whiteley et al. (2011)

Murry cod (Maccullochella peelii) 5 Harrisson et al. (2017)

Rainbow trout (Oncorhynchus mykiss) 2,000 Vallejo et al. (2018)
bPig breeds [China] (Sus scrofa) ~10 Amaral et al. (2008)
bPig breeds [Europe] (Sus scrofa) ~400 Amaral et al. (2008)

Pig breed [Korea] (Sus scrofa) 3,700 Shin et al. (2018)

Common bean [Mesoamerican] (Phaseolus vulgaris) <100 Valdisser et al. (2017)

Common bean [Andean] (Phaseolus vulgaris) ~0.5 Valdisser et al. (2017)

Mung bean (cultivated) (Vigna radiata) 100 Noble et al. (2018)

Mung bean (wild) (Vigna radiata) 60 Noble et al. (2018)
cAntarctic fur seal (Arctocephalus gazella) 15 Humble et al. (2018)

Wolves [Alaska, Minnesota, or Canada] (Canis lupus) <10 Gray et al. (2009)

Wolves [Isle Royal] (Canis lupus) >5,000 Gray et al. (2009)

Wolves [Yellowstone National Park] (Canis lupus) <10 Gray et al. (2009)

Wolves [Spain] (Canis lupus) >1,000 Gray et al. (2009)
dMelon (Cucumis melo) <100 Gur et al. (2017)

Gametic disequilibrium (GD) in different populations of the same species can differ by orders of
magnitude, as seen here for zebra fish, pigs, beans, and wolves. The distance that moderate-to-
strong GD extends along chromosomes can vary due to different effective sizes (drift), substructure,
gene flow and admixture, mating system (inbreeding), recombination rates, and selection (e.g.,
sweeps)
aPublications here generally define a “moderate GD” to be r2 ¼ 0.20. Mean chromosomal distance
in kilobases (kb) at which r2 decayed to 0.2
bGD stretched 10 kb in physical distance and 0.5 cM in linkage map distance. In European pig
breeds GD extended 400 kb physical distance and 2 cM in linkage map distance
cModerate GD extended to 15 kb; strong GD (r2 ¼ 0.5) extended to 5 kb
dGD of r2 � 0.2 extended from ~75 to 100 kb (and 1 to 6 cM) in different strains
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additional loci that can be mapped declines as the number of families increases (unless
perhaps genetically divergent families, with different variable loci are mapped).

Physical maps are also useful for improving both the process of discovery of SNP
loci and of the subsequent genotyping of SNPs when using next-generation sequenc-
ing approaches such as RADseq (Sect. 4.1). For example, physical maps help
identify paralogues and duplicated genes to avoid them or genotype them by
allowing the alignment of sequencing reads to the physical map. If samples sizes
are large, paralogs can be identified in RADseq data (e.g., see HDplot method of
McKinney et al. 2017b).

Physical maps can improve genotyping by allowing the alignment of sequencing
reads to the entire reference genome during the genotyping process, instead of using
only a limited number of putative loci or de novo assembled loci (Hand et al. 2015a;
Shafer et al. 2017). A caveat is that reference genomes are never 100% complete, and
loci frommissing sections of the genome will not be genotyped if doing only reference
alignments for genotyping. If a genome is 90% complete, it is possible that 10% of
your loci would not be mapped or genotyped when using the reference for genotyping.

Importantly, a physical map (assembly) can be used for genotyping next-
generation sequencing reads from a closely related species to help improve
genotyping (Cosart et al. 2011; Shafer et al. 2017). In this scenario, reads from
one species are aligned to the genome for another for genotyping. This is a benefit of
initiatives like Genome 10k that is providing a genome assembly for one species per
genus or family of vertebrate, which provides related species a reference genome for
mapping and genotyping (Haussler et al. 2009).

Fig. 11 Gametic disequilibrium is stronger and more variable between loci (dots) in small
populations of bighorn sheep (National Bison Range, n ~50–75) compared to the moderately larger
population (Ram Mountain; n ~100–200). Strong LD (magnitude >0.4, see upper dashed line)
stretches over ~30 cM in the National Bison Range population but only to over ~10 cM in Ram
Mountain population. Reproduced with permission from Miller et al. (2014)
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3.2 What Can Linkage Maps Provide that Physical Maps
Cannot?

A high-density linkage map enables understanding of mechanisms (background/neg-
ative selection, positive selection, gene flow, and recombination) that cause heteroge-
neity along chromosomes in diversity within and differentiation between populations
(Burri et al. 2015). A linkage map reveals recombination hot and cold spots which are
known to interact with background selection to generate chromosomal islands of
divergence (high FST). Thus, a linkage map can help prevent false positives for local
adaptation and improve detection of islands of divergence that are truly indicative of
local adaptation (not false positives) (Cruickshank andHahn 2014). Regional estimates
of the recombination rate also help interpret data on runs of homozygosity (RoH) to
detect inbreeding and to infer demographic history because recombination hotspots
influence the lengths of RoH (Thompson 2013) and the density of SNPs (Charlesworth
et al. 1993) and thus the power to detect RoH in genome regions.

Chromosomal level assemblies are often not possible without a linkage map,
especially for large genomes with many repetitive sequences (Amores et al. 2011).
Assembled chromosomes in turn can be used for identification of chromosomal
synteny and structural polymorphisms such as rearrangements (e.g., inversions)
within or between species (Amores et al. 2011; O’Quin et al. 2013; Rondeau et al.
2014). Structural changes or polymorphisms can influence fitness and adaptation and
thus are important to discover and map (Wellenreuther and Bernatchez 2018).
Additionally, assembled chromosomes can improve genome scans for loci associ-
ated with adaptation and phenotypic variation, by allowing computation of
chromosome-specific distributions of summary statistics (continuously along each
chromosome), which can increase power and reliability of outlier tests.

3.3 Combining Linkage and Physical Maps: The Ideal
Genomics Approach

Having both a reference genome assembly and linkage map is ideal because they
complement each other, and the linkage map improves the accuracy and contiguity
of the assembly. Perhaps the most important point is that a linkage map must be
combined with a physical map to estimate and map recombination rates across a
genome. If researchers must choose between map types when developing genome
resources for their species, the physical genome assembly will often be the map of
choice because many more SNPs can be mapped physically; It is difficult to build
linkage maps including extremely large numbers of SNPs (e.g., because many
mapping families are required), as mentioned above.
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3.4 Apply Genomics Approaches Without Maps

Many of the methods mentioned above can be applied to sequences from known
genes or loci with unmapped locations in the genome. For example, we can conduct
tests for loci under selection by testing for different kinds of outlier behavior (FST,
GD, allele frequency skew or heterozygosity excess, excessive locus-specific intro-
gression; Luikart et al. 2003). We can also test for population adaptive differentiation
(Bonin et al. 2007) and test for associations between genotypes and the environment
or phenotypes (Fig. 1, Step 4a) (Fig. 3a).

4 Genotyping and Sequencing Technologies for Population
Genomics

This quote by Schlötterer (2004) at the start of this chapter emphasizes the impor-
tance of molecular genetic methods and implies the importance of choosing an
appropriate DNA marker or sequencing method for your research question (as did
Sunnucks 2000; Benestan et al. 2016). The methods continue to evolve and improve
our understanding of nature. SNPs and other markers from a variety of partial
genome (and transcriptome) sequencing methods are the mainstay in population
genomics studies. Here we provide a short introduction to key marker technologies
likely to be most widely useful for non-model species. Low-cost genotyping,
including RAD capture, DArT (diversity array technology), and related methods
will continue to make population genomics increasingly feasible and widely used.
Later in this book, Holliday et al. (2018, Chapter 2) provide more details and merits
and demerits of different genotyping and sequencing technologies (see also Andrews
et al. 2016; Jones and Good 2016; Holliday et al. 2018). For information on the
promising approach of multiplex sequencing of many pooled individuals (pool-seq),
see Box 3, Sect. 2.5, Schlötterer et al. (2014), and Narum et al. (2018).

4.1 Reduced Representation and Genotyping-by-Sequencing

Reduced representation sequencing is revolutionizing population genetics, molecu-
lar ecology, and conservation biology by making feasible and affordable use of
massively parallel sequencing (MPS) on many individuals and loci genome wide
(Narum et al. 2013). We can now use MPS to discover and genotype thousands of
SNP loci for less cost than genotyping of only ~20 microsatellites. This makes
population genomics research feasible for nearly any species. Understanding the
strengths and limitations of the many reduced representation approaches is crucial to
choose the best method for your research question (Andrews et al. 2016).
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Approaches for reduced representation sequencing include general and targeted
approaches (Jones and Good 2016). Anonymous approaches include unmapped
restriction site-associated DNA sequencing (RADs) and transcriptome sequencing.
Targeted approaches allow direct sequencing of loci of interest such as genes or
informative RAD loci using capture arrays (below). Informative RAD loci are those
in candidate adaptive genes and/or loci that are evenly spaced (mapped) across
chromosomes to ensure genome wide coverage and high power for outlier tests,
GEA, and association studies (e.g., GWAS) (e.g., Hohenlohe et al. 2010b; Kovach
et al. 2016; Simons et al. 2018; Gibson 2018).

4.1.1 RADseq

The development of restriction site-associated DNA sequencing (referred to as
RADseq and genotyping-by-sequencing, GBS) was considered among the most
important scientific breakthroughs in the first decade of the twenty-first century
because it allowed for simultaneous discovery and genotyping of many thousands
of SNPs in a single experiment, in non-model species with no genomic resources
(Science 2010). It involves the cutting of DNA through digestion with one or more
restriction enzymes, labeling fragments from each individual with a unique barcode
(short 6–12 bp reads), amplifying fragments using PCR, and high-throughput
sequencing of pooled samples from multiple individuals (Andrews et al. 2016).

Another advantage of RADseq is its flexibility in the number of loci that can be
genotyped – from hundreds to tens of thousands – by choosing among different restric-
tion enzymes and >15 different RADseq-based techniques (Andrews et al. 2016). A
main disadvantage is that there is typically highly uneven coverage of genotypic data
among individuals and among loci, with many individuals missing data for many loci
unless very stringent filtering is conducted with deep coverage sequencing.

This method has become extremely popular and has been applied to many taxa
and questions in conservation, ecology, and evolution including quantifying
inbreeding, genomic diversity, effective population size (Ne), and for discovery of
adaptive genes and genome regions (reviewed in Andrews et al. 2016; see also
Lowry et al. 2017; McKinney et al. 2017a; Catchen et al. 2017; Hohenlohe et al.
2010b; Nadeau et al. 2014; Benestan et al. 2016; Candy et al. 2015; Sovic et al.
2016; and also subsequent chapter by Holliday et al. (2018) in this volume).

4.1.2 Targeted Sequence Capture

Sequence capture allows targeted sequencing of any region of a genome for which
DNA sequence information exists. Sequence capture is often called “exon capture”
because it is often used to sequence coding regions of the genome, including
candidate adaptive genes (Flanagan et al. 2018). It is more expensive than RAD
but a cheaper and more efficient alternative to whole-genome sequencing and results
in more uniform sequencing of individuals and loci (and therefore less missing data)
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than restriction enzyme-based methods. It can be scaled to sequence hundreds to tens
of thousands of genes (Hodges et al. 2007; Jones and Good 2016). Another advan-
tage of sequence capture is in the genotyping of degraded DNA such as ancient,
historical, and fecal DNA (Castellano et al. 2014; Bi et al. 2012; Bos et al. 2015).

Targeted capture enriches for DNA of interest and washes away nontarget DNA,
as mentioned. This is important for genotyping fecal DNA because a majority
(>90%) of DNA can be from bacteria (e.g., Perry et al. 2010). Recent examples of
sequence capture include a wide range of question from phylogenetics to the
detection of adaption signatures in humans, wolves, sharks, wild sheep, ungulates,
birds, amphibians, trees, aquatic invertebrates, and host-parasites simultaneously
(Cosart et al. 2011; Schweizer et al. 2016, Roffler et al. 2016; Gasc et al. 2016;
Portik et al. 2016; McCartney-Melstad et al. 2016; Syring et al. 2016; Dowle et al.
2016: Campana et al. 2016; Manthey et al. 2016; Suren et al. 2016; Gauthier et al.
2017; see also Chapter 2 by Holliday et al. 2018).

4.1.3 RAD Capture

RAD capture (“Rapture”) combines the primary advantages of RADseq with advan-
tages of targeted sequence capture. For example, the relatively inexpensive and rapid
DNA library preparation methods of RADseq (Ali et al. 2015) are combined with the
high specificity in targeting hundreds or thousands of loci. Loci are of high value
(in genes, evenly spaced genome wide) for addressing nearly any questions of interest,
focusing sequencing effort on those loci (Andrews et al. 2016; Jones and Good 2016;
Hoffberg et al. 2016; Peek et al. 2018; see also Chiou and Bergey 2018). Another
advantage is that a single Rapture array (e.g., for trout) works for genotyping in
multiple divergent species such as salmon and trout (M. Miller, pers. comm., 2018).

The Rapture method was first used to successfully study SNP variation in lake
trout (M. Miller, unpublished, 2018) and rainbow trout (Ali et al. 2015). This study
used a capture array targeting 500 loci that were distributed across 29 chromosomes
(Ali et al. 2015). All 1,440 individuals genotyped for the 500 loci were sequenced in
a single Illumina HiSeq lane.

4.1.4 DArT

Diversity array technology (DArT) is another sequencing-based approach
(a modification of GBS) allowing affordable discovery and genotyping of thousands
of SNPs in hundreds of individuals (Elbasyoni et al. 2018). DArT has been used
mainly in agriculturally important species and plants (Valdisser et al. 2017). This
technology is similar to RADseq. Commercial companies exist, as for RADseq, to
facilitate the discovery and application of genome-wide markers for population
genomics approaches.
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4.2 Reference Genomes

A reference genome sequence (i.e., genome assembly) is the portion of the genome
that has been sequenced and assembled, i.e., pieced together, from short sequence
reads. A reference genome is important in population genomics because it improves
mapping of NGS reads to facilitate both the initial discovery of loci and the eventual
genotyping of loci from many individuals. For example, if the reads from a RADseq
project can be mapped to a reference genome, it can improve the detection of SNPs
and duplicated genes or chromosomal regions that will be difficult to genotype
because reads from duplicated regions often will stack up (align) together as if from
a putative single locus (Hand et al. 2015a; Shafer et al. 2017). Shafer et al. (2017)
observed large differences between reference-based and de novo approaches; use of a
reference genome yielded more SNPs and reduced estimates of FIS and Ts/Tv.

Genome assembly is difficult in large genomes of plants where repetitive
elements (e.g., retrotransposons) constitute >50% of the genome (Nystedt et al.
2013). In loblolly pine (Pinus taeda), 62% of the 22 Gb genome is made up of
retrotransposons, and other conifers have similarly large repeat element content
(De La Torre et al. 2014). Similarly, for genomes resulting from recent
polyploidization events, as in many fish and plants, the assembly is difficult because,
for example, in a tetraploid four similar copies exist for much of the genome. Most
eukaryotic genomes contain complex repetitive sequences that are difficult to
sequence and assemble as mentioned above (Ellegren 2014).

Assembly is becoming vastly easier thanks to new long-read technology as
suggested by the following quote: “Long reads enable near reference-quality
genome assemblies, discovery of novel disease-causing structural variation, and
the ability to sequence through previously ‘unsequenceable’ repetitive DNA con-
tents of clinical utility” (Ameur et al. 2018).

A reference genome sequence is not a standardized concept or item (Ellegren
2014). Even for well-characterized genomes, large parts are often not yet included
in the genomic contigs (small assembled chromosomal regions) or the scaffolds (sets
of contigs linked into larger regions) that have been ordered and linked into chromo-
somes. For example, the first published rainbow trout genome had only ~50% of
sequences assembled and ordered into chromosomes; in fact one entire chromosome
(#25) was unassembled such that no sequences were known from that chromosome
(Berthelot et al. 2014). Similarly, chromosome 16 in the collared flycatcher genome is
unassembled (Kawakami et al. 2014). In the rainbow trout and flycatcher examples,
much of the one unassembled chromosomewas likely sequenced and exists among the
many contigs that have not been incorporated (assembled) into chromosomes. The
quality and completeness of reference genomes vary widely among species.

Importantly, even partially assembled genomes are useful for many research
questions. Partial genomes facilitate discovery of non-duplicated (versus duplicated)
SNP loci for marker discovery. Partial (draft) genomes also increase quality of
genotyping (e.g., with RADSeq or DNA capture data). Finally, draft genomes help
design probes for exon sequence capture (e.g., when exons are identified from
RNAseq data), and are useful for estimating the rate or distance of decay of gametic
disequilibrium (Hand et al. 2015a; Shafer et al. 2017). Even a draft assembly (N50
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>50 kb) usually contains well-assembled coding gene regions because coding genes
have few repetitive elements and low heterozygosity, making a draft assembly
relatively feasible and highly useful. In Tasmanian devils (Sarcophilus harrisii),
researchers used a partially assembled draft genome (containing thousands of scaf-
folds not anchored on chromosomes) to successfully identify genomic regions and
candidate genes underlying cancer risk, along with concordant signatures of selec-
tion including increased GD (gametic disequilibrium) and changes in allele frequen-
cies (Epstein et al. 2016).

Another advantage of having at least a draft reference genome is that it allows
estimation of the rate of decay of gametic disequilibrium, which is crucial for
knowing the number of markers needed to adequately cover the genome to address
particularly interesting or challenging research questions (narrow sense genomics).
Having even only a hundred long scaffolds (>100 kb) with multiple DNA markers
provides information on whether long stretches of GD exist genome wide, which is
crucial for assessing the number of markers needed to achieve high density (Hen-
dricks et al. 2018).

4.3 Whole-Genome Sequencing (WGS) and Resequencing

A main reason for sequencing (i.e., resequencing) entire genomes from many
individuals is to maximize power to discover and localize DNA loci underlying
fitness, adaptation, and phenotypic variation important for population persistence
and growth (e.g., Kardos et al. 2016b). Increased power results from detecting most
SNPs in the species and from being able to compute summary statistics (H, FST, GD)
for those SNPs and other polymorphisms (e.g., indels) in a sliding window across
genomic regions (e.g., Box 3).

Having only one individual’s genome sequence (e.g., from one male) will not
allow understanding of genome structural diversity or variation. This could bias
subsequent comparisons of diversity among individuals (e.g., males and females),
populations, and species, for example, when using GBS or RAD seq methods and
mapping reads to the one genome reference sequence.

Box 3 Whole-Genome Sequencing Identifies Selective Sweeps
and Candidate Genes
Researchers used whole-genome sequencing of wild Rocky Mountain bighorn
sheep (Ovis canadensis) to identify 3.2 million SNPs and genomic regions
with signatures of historical directional selection, i.e., selective sweeps
(Kardos et al. 2015b). Sweeps were detected as chromosomal regions with
low heterozygosity. Heterozygosity-based sweep analysis revealed evidence
for strong historical selection at a gene (RXFP2) that affects horn size in
domestic sheep, cattle, and goats (Johnston et al. 2011, 2013). The massive
horns carried by bighorn sheep rams appear to have evolved in part via strong
selection at the RXFP2 gene (Fig. 12).

(continued)
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Box 3 (continued)

(continued)

Fig. 12 Sequencing-based (pool-seq) genome-wide scan for selective sweeps that reduced
heterozygosity in Montana and Wyoming populations (A) of bighorn sheep (B). Sliding
window estimates of heterozygosity (C) across the bighorn sheep genome from an analysis
of three populations pooled from Montana and Wyoming. Chromosomes (linkage groups)
are arranged from 1 to 26 (left to right with alternative color (blue then orange) shading). The
horizontal jagged red line represents the rolling mean across 100 adjacent sliding windows.
The horizontal dashed line is 5 standard deviations below the mean heterozygosity. (D)
Sweep on chromosome 10 spanning the RXFP2 gene (vertical black lines at 29.5 Mb near
the x-axis are exons). Expected heterozygosity is plotted for individual SNPs (gray dots)
located across 2 Mb on chromosome 10. The location of exons (vertical lines) of EEF1A1,
RXFP2, and an uncharacterized predicted gene (“UNC”) is shown below the plot. Gene and
exon positions were obtained from the Ensemble gene models generated during annotation
of OARv3.1. The continuous horizontal jagged line shows mean expected heterozygosity
calculated for nonoverlapping windows of 20 SNPs. The lowest genetic variation in the
region occurred in a window centered at position 29,473,544 between exons 3 and 4 of
RXFP2 (dashed line arrow). Reproduced with permission from Kardos et al. (2015b)
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Box 3 (continued)
The authors also identified evidence for selection at genes affecting early

body growth and cellular response to hypoxia which is consistent with adap-
tation to life at high altitude. These results provide examples of strong genomic
signatures of selection identified at genes with known function in wild
populations of a non-model species.

A comparison of SNP diversity between the X chromosome and the
autosomes also indicated that bighorn males had a dramatically reduced
long-term effective population size compared to females. This likely reflects
a long history of intense sexual selection mediated by male-male competition
for mates, which reduces the effective population.

The approach of heterozygosity-based sweep analysis had been previously
used successfully in domestic animals where breed formation and subsequent
strong artificial selection have generated selective sweeps for genes that
influence a spectrum of phenotypic traits (Rubin et al. 2010, 2012; Axelsson
et al. 2013). In wildlife, genome sequencing of gray wolves from the high
altitude plateaus of western Asia recently detected selective sweeps surround-
ing genes involved with adaptation to hypoxia (Zhang et al. 2014). Together,
these studies provide encouragement that genome sequencing in carefully
selected wild populations will continue to yield valuable insights into the
genetics of adaptation (Kardos et al. 2015b).

The results illustrate the value of quality reference genome assemblies from
agricultural or model species for studies of the genomic basis of adaptation in
closely related wild taxa (domestic sheep in this case). This study also
illustrates the use of genome sequencing of pooled DNA from many individ-
uals (per population). This saves money and can be an efficient way to estimate
allele frequencies at nearly all SNPs in the genome. However, drawbacks
include imprecision in estimates of allele frequencies arising from uneven
contribution individuals to sequencing (pool-seq without barcoded individ-
uals). For more information, see discussions by Schlötterer et al. 2014; Kardos
et al. 2015b; Narum et al. 2018).

Certain questions can only be reliably addressed by using whole-genome
sequencing. For example, structural polymorphisms such as gene duplications
(copy number variants) cannot be reliably detected with GBS (e.g., RADseq) or
sequence capture but can be detected by whole-genome assemblies and ideally with
a linkage map (Wellenreuther and Bernatchez 2018). Additionally, adequately
covering the genome for applications, such as GWAS, will sometimes require
whole-genome sequencing for populations in which gametic disequilibrium is low
and decays rapidly along chromosomes, e.g., in populations with very large Ne or
high recombination rates (Kardos et al. 2016b; Miles et al. 2017; Table 2).
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Nonetheless, most questions in population genetics, molecular ecology, and
conservation genetics can be addressed sufficiently without whole-genome sequenc-
ing and by using a population genomics approach (Allendorf et al. 2010). These
include estimating individual inbreeding, detecting hybridization, quantifying pop-
ulation structure, and inferring gene flow. Whole-genome or exome resequencing is
most useful for questions, such as determining the genomic basis (architecture) of
local adaption or fitness when only a limited amount of gametic disequilibrium exists
along chromosomes and thus millions of SNPs are required, for example.

4.4 Population Transcriptomics, Gene Expression,
and Adaptation

Transcriptomics is the study of all RNA transcripts (transcriptome) that are produced
by the genome. Population transcriptomics is the use of transcriptome-wide data to
study variation in gene expression within and among populations to understand
mechanisms underlying evolutionary change, for example, in response to environ-
mental change. Such mechanisms can include plasticity in gene expression if it
underlies adaptive evolutionary responses to new environments (Ghalambor et al.
2015) or if the amount or nature of plasticity itself evolves in response to selection.
Here, we discuss the two main tools of population transcriptomics, microarray
analysis and RNA sequencing (RNAseq), with examples of applications to natural
populations.

cDNA microarrays and oligonucleotide microarrays can measure expression of
thousands of genes simultaneously by quantifying levels of mRNA present in
different tissues or individuals. Thousands or tens of thousands of different short
DNA fragments are spotted onto a glass slide or other template, and cDNA from the
individuals being studied, labeled with fluorescent dyes or other markers, is hybrid-
ized with that array. The intensity of fluorescence provides a quantification of the
relative expression levels of targeted genes. Results are often validated with more
precise estimates of RNA abundance (expression) using quantitative PCR for a
subset of genes.

Gene expression profiles can be viewed as phenotypes because they are the
product of both genetic and environmental variation (Hansen 2010). To assess
genetic differences underlying gene expression, individuals can be reared in a
common environment. Information on gene expression differences among
populations can be used to complement data on neutral or adaptive genetic markers
and adaptive traits for circumscribing conservation units. For example, Vandersteen
Tymchuk et al. (2010) quantified gene expression for populations of Atlantic salmon
in and around the Bay of Fundy, Newfoundland, using a 16,000 gene cDNA
microarray. They found consistent year-to-year population differences in the expres-
sion of 389 genes when fish were reared in common environments. Population
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differentiation for gene expression was stronger, and patterns were somewhat
different than those observed for seven microsatellite loci.

RNAseq (also called whole transcriptome shotgun sequencing) is replacing
hybridization-based microarray technologies for many applications thanks to low-
ering costs of next-generation sequencing (Ozsolak and Milos 2011; Wang et al.
2009; Oomen and Hutchings 2017). RNAseq can more comprehensively assess the
entire repertoire of RNA molecules expressed from genomes over a wider range of
expression levels than can microarrays. We note that RNAseq can also be used for
SNP discovery, for SNP genotyping, or for probe design for exon capture. For
example, Bi et al. (2012) use RNAseq to discover SNPs within coding genes.
They then used the gene sequences to design DNA sequence capture baits to test
for SNPs associated with adaptive differentiation in chipmunks.

RNAseq and RADseq were used by Chen et al. (2018) to test for genetic variation
in thermal adaptation in redband trout populations (Oncorhynchus mykiss gairdneri)
from warm versus cool environments. In a common garden, fish from a desert
climate had significantly higher thermal tolerance and aerobic scope (>3�C) for
higher cardiac performance (e.g., without arrhythmia) than fish from the cooler
montane climate. In addition, the desert fish had the highest maximum heart rate
during warming, indicating improved capacity to deliver oxygen to internal tissues.
Following heat stress, distinct sets of cardiac genes were induced, which helped
explain the differences in cardiorespiratory function. Candidate RADseq SNP
markers and nearby genes underlying these physiological adaptations were identi-
fied, including genes involved in metabolic activity and stress response (such as heat
shock genes hsp40, ldh-b, and camkk2). This kind of study is rare in that it identified
both transcriptomic and genomic mechanisms of evolutionary adaptation that allow
populations to persist in the difficult environmental conditions of desert streams.

5 Bioinformatics for Filtering, Genotyping, and Data
Analyses

Bioinformatics skills and understanding are crucial to analyze the increasingly
massive DNA sequence datasets. Bioinformatics involves intensive computations
to analyze DNA, RNA, and protein sequence datasets. The field of bioinformatics
underwent explosive growth starting in the mid-1990s, driven largely by the Human
Genome Project and rapid advances in DNA sequencing technology. Thus, the need
for bioinformatics training and approaches has increased greatly in the last decade as
the data produced by massive parallel sequencing approaches has grown exponen-
tially. However, while the costs of genome sequencing are plummeting, time and
money spent on bioinformatic data filtering and analysis (and production of bioin-
formatics platforms) have increased more slowly over time (Sboner et al. 2011).
Given the many advantages and increasing ease of generating massively parallel
sequencing (MPS) data, it has become crucial for population geneticists to be trained
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in computer programming and scripting to take full advantage of the growing catalog
of bioinformatics tools (Andrews and Luikart 2014).

There are four major bioinformatics steps, often referred to as a bioinformatics
pipeline, that occur in most population genomics studies including (1) sequence read
filtering, (2) assignment of reads to loci (e.g., alignment to a reference genome or de
novo loci assembly), (3) genotype calling, and (4) final filtering for problematic loci
that do not meet biological expectations (e.g., Hardy-Weinberg proportions, high
numbers of SNPs per locus (or 100 bp) usually resulting from alignment error, high
observed heterozygosity, or more than two observed alleles) (Benestan et al. 2016).
A major challenge in bioinformatic analysis is the creation of standardized pipelines
(e.g., see the Broad Institute webpage for best practices – software.broadinstitute.
org) that would improve consistency and comparison of results among species (and
studies within species) but also even within the same species. Worrisome is the fact
that different pipelines often result in very different results (for a given dataset) such
that the number SNPs discovered and basic summary statistics and conclusions can
change between pipelines (Shafer et al. 2017).

Analysis of up to entire genomes (millions of SNPs) presents challenges in
filtering out loci that could lead to erroneous results and conclusions. There are no
concrete rules for what criteria should be used for filtering loci from genomic
datasets. The current state of filtering in population genomics has led to some
colorful terms for filtering such as labeling filtering as the “F-word” or that filtering
of genomic data is the “wild west” of population genomics (Benestan et al. 2016).
Indeed, the potential effects of locus filtering approaches on downstream analyses
and research conclusions have only recently started to be investigated (e.g., Lowry
et al. 2017; Rodríguez-Ezpeleta et al. 2016; Shafer et al. 2017). However, it has also
been suggested and shown empirically that filtering is helped greatly by the exis-
tence of a reference genome (Ellegren 2014; Hand et al. 2015a, b; Shafer et al. 2017).

Despite recent attempts to build conceptual and practical frameworks for MPS
data analysis, a standardized pipeline remains elusive, and perhaps infeasible, given
the nature of data variability present in most genomic datasets (Benestan et al. 2016).
There has also been a move toward web-based platform analysis and filtering tools
such as Galaxy which has gained users and popularity in recent years (Giardine et al.
2005; Afgan et al. 2016). Galaxy offers a more user friendly graphical interface
for easy visualization and reproducibility of results through the tracking (logging) of
all bioinformatic analysis steps and user-created and shared workflows. Workflows
are flowchart-style representations of bioinformatics pipelines with drag and drop
functionality that allows for easy customization, reproduction, and even publication
of bioinformatics pipelines (Catchen et al. 2013; Eaton 2014). Galaxy also offers
tools across a range of datatypes including RAD and RNAseq, WGS, and exon
capture (Blankenberg et al. 2010; Pogorelcnik et al. 2018; Tranchant-Dubreuil et al.
2018). See the chapter “Computational Tools for Population Genomics” by Salojärvi
(2018) in this book for more information.
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6 Emerging Population Genomics Approaches

Here, we discuss emerging approaches that will become more widely used as costs
decrease and technologies improve. These include population metagenomics,
transcriptomics, epigenomics, proteomics, and paleogenomics.

6.1 Metagenomics

Metagenomics is the sequencing and analysis of DNA from all species in
an environmental or gut sample (Srivathsan et al. 2016; Stat et al. 2017;
Laforest-Lapointe et al. 2017; Waite et al. 2018). Metagenomics has usually been
defined more narrowly as the study of DNA from microbial communities in envi-
ronmental samples, perhaps because the initial studies were in microbes (Venter
et al. 2004; Garcia et al. 2018). Metagenomics can be used to describe the diversity
and relative abundance of taxonomic groups present within a single sample, exper-
iment, or local population (DeLong 2009). These techniques have been applied
widely to microbes in environmental samples, including water, soil, fecal, or gut
samples, and subjected to high-throughput sequencing. Further, analysis of the
functional groups of genes and their relative abundance, without requiring knowl-
edge of which organism each sequence fragment came from, can provide a func-
tional metabolic profile of the microbial community (Dinsdale et al. 2008).

From a population genomics perspective, metagenomics can allow the applica-
tion of population genomics approaches (e.g., Fig. 1 or Fig. 2) on each of multiple
microbial species, simultaneously. Further, if the microbial species are sampled
from across a heterogeneous environment (or gradient), it facilitates the application
of a landscape community genomics approach to improve understanding of eco-
evolution interactions (Sect. 2.4; Hand et al. 2015b). Another application of
metagenomic data is to describe a microbial community as an essential part of an
individual host’s phenotype, influencing the health and fitness of the host. The
application of metagenomics in ecology, evolution, and conservation is in its early
stages, but a few specific areas show promise for the future. A chapter in this book
series volume describes how population genomics approaches can be applied to
metagenomic data to delineate microbial populations in the environment and to
study evolutionary processes within them (Denef 2018).

Metagenomic surveillance systems are increasingly being used to improve mon-
itoring and determine mechanisms driving the spread of infectious diseases. Portable
genomic sequencers provide rapid near real-time diagnostics that can resolve impor-
tant epidemiological and genomic characteristics of an outbreak or epidemic’s
dynamics. As pathogens replicate and spread, mutations accumulate in their
genomes. The whole-genome sequencing of spatially referenced samples allows
researchers to track and reconstruct geo-spatial pathways of spread. Genomic epi-
demiology surveillance and rapid response programs can now take a more anticipa-
tory approach to outbreak prevention and control.
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Genomics-informed DNA detection assays have been developed to track a wide
range of important fungal plant pathogens, including introduced, invasive species
causing widespread diseases and mortality in natural populations and crop species
(Feau et al. 2018). Monitoring and understanding which strains are emerging and
associated with different environments and species (including humans) would also
help to model, predict, and manage outbreaks and spread of pathogens. Whole-
genome data from individual pathogen species in each of many host individuals can
be used in population genomics approaches (or landscape community genomics
approaches) to better understand the genomic basis of adaptation to hosts and local
environments and to predict the effects of environmental change on a pathogen
population and microbial community (Hand et al. 2015b).

Another application of metagenomics is to monitor or predict physiological
condition, health, or fitness of individual organisms. For instance, Vega Thurber
et al. (2009) have found shifts in the endosymbiont community of corals in response
to stressors, such as reduced pH, increased nutrients, and increased temperature.
Such shifts in the endosymbiont community could serve as indicators or predictors
of reef health, and they could also suggest mechanisms by which coral condition
affects other taxa in the reef ecosystem (Roitman et al. 2018; Leite et al. 2018).

Finally, a large-scale study used metagenomic techniques on fecal samples to
catalog 3.3 million microbial genomes in the human gut fauna (Qin et al. 2010). The
study found significant differences in the microbial metagenome between healthy
individuals and those with two types of inflammatory bowel disease (Qin et al.
2010). In the future metagenomic techniques will be applied to noninvasively-
collected fecal samples from wildlife species to assess their health status, such as
starvation or disease infection, and to understand mechanisms underlying host and
microbe interactions, population genomics, and coevolution (e.g., Beja-Pereira et al.
2009; Chiou and Bergey 2018; Waite et al. 2018).

6.2 Metatranscriptomics

While metagenomics focuses on detecting the presence of microbial species,
metatranscriptomics investigates their gene expression profiles to address questions
such as which genes are expressed in different environments or conditions. Thus,
metatranscriptomics investigates the function and activity of the entire set of tran-
scripts (RNAseq) from environmental, fecal, gut, or other samples. It is often used to
identify sequences of genes expressed within natural microbial communities to
advance understanding of microbial ecology and drivers of gene expression
variation.

Assessing all the microbial community transcripts from a particular time and
location, including bacteria, archaea, or small eukaryotes in the ocean, soil, or an
organism’s gut, can help understand the complex microbial processes simulta-
neously occurring in natural or disturbed environments. This allows “eavesdropping
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on microbial ecology,” a promising new approach for researchers in ecosystem
ecology, animal health, and functional biodiversity monitoring (Moran 2009).

From a population genomics perspective, metatranscriptomics – like
metagenomics – can facilitate landscape community genomics approaches to
improve understanding of eco-evolutionary processes (Hand et al. 2015b).
Transcriptomic and metatranscriptomic data can detect gene expression shifts in
both host and microbes simultaneously (e.g., lung tissue and lung parasites, gut
tissue and gut parasites, blood and malaria, etc.) and thus can help understand,
model, and predict host-parasite interactions (e.g., Matthews et al. 2018; Lee et al.
2018; Campbell et al. 2018).

Metatranscriptomics and metagenomics together can provide entire transcriptome
and genome repertoires of microorganisms through sequencing total DNA/RNA
from samples; this provides taxonomic and also functional information with high
resolution. These two approaches together with new bioinformatics tools can help us
better understand mechanisms of adaption, coevolution, and processes like rumen
fermentation, digestion, and community adaption to environmental change. A chal-
lenge for “meta” approaches is that only a small percentage of the many ecologically
important genes has been annotated or identified. Sequence datasets often contain
only the abundant genes from a limited number of natural microbial communities
(Moran 2009).

6.3 Population Epigenomics

While epigenetic inheritance is well documented the adaptive significance, if any, of such a
complementary inheritance system remains enigmatic (Lind and Spagopoulou 2018).

Among the most intriguing and perhaps controversial areas of population
genomics research involves understanding the role of transgenerational epigenetic
inheritance in adaptive evolution. Can a strong environment change produce
transgenerational epigenetic adaptation? Epigenetics has been defined as the
study of heritable changes in a trait or phenotype caused by mechanisms other
than DNA mutation. We focus here on transgenerational epigenetic inheritance,
which is defined as changes in gene expression and resulting phenotypic variation
that are transmitted between generations through germline, but do not involve
changes in the underlying DNA sequence (Horsthemke 2018).

If environmentally caused shifts in gene expression are adaptive and transmitted
to subsequent generations, it could represent a Lamarckian-type mechanism facili-
tating adaptation to environmental challenges, such as climate warming (e.g.,
Christie et al. 2016; Lind and Spagopoulou 2018; Horsthemke 2018). This idea
could perhaps provide hope to conservation biologists that rapid adaption to climate
warming is more likely than previously thought based on adaptation through natural
selection. This idea is perhaps intriguing but still farfetched given the lack of
evidence. The explosive growth in research on this topic results in part from the
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question of whether “epigenetic mechanisms might provide a basis for the inheri-
tance of acquired traits” (Horsthemke 2018).

Charlesworth et al. (2017) state that “allele frequency change caused by natural
selection is the only credible process underlying the evolution of adaptive
organismal traits.” Similarly, Horsthemke (2018) states that the evidence for
transgenerational epigenetic inheritance, “is not (yet) conclusive,” in mammals,
even though “it has been observed in plants, nematodes and fruit flies.” While
there is strong evidence for environmentally induced transgenerational inheritance
of epigenetic gene expression changes that influence fitness traits, there is not yet
evidence that such epigenetic changes persist in the longer term (many generations)
or that they influence population genetic or evolutionary processes.

Questions outlined by Charlesworth et al. (2017) can help guide future research to
investigate the potential role of transgenerational epigenetic inheritance in evolu-
tionary adaptation. These questions include the following: How many generations
do inherited epigenetic marks persist, and do they spread within and among
populations? Also, are transgenerational epigenetics changes an important source
of adaptive change, relative to DNA sequence change (Charlesworth et al. 2017)?
These are population epigenetics questions, which now can be addressed using
densely distributed epigenetic marks genome wide, thereby representing “narrow
sense” population epigenomics.

Here we discuss recent evidence for environmentally induced multigenerational
epigenetic inheritance. We also discuss the role or importance of this inheritance in
population genomics research and understanding.

Evidence is growing rapidly for multigenerational transmission of environmen-
tally induced epigenetic changes that influence fitness traits. Environmental factors
observed to cause transgenerational epigenetic inheritance of phenotypic variation
include heat shock or other thermal stresses, drought, salt stress, low-calorie diet,
high-fat diet, smoking, and exposure to toxins, such as hydrocarbons from plastics,
atrazine, tributyltinthe, pesticide DDT (dichlorodiphenyltrichloroethane), and the
agricultural fungicide vinclozolin. Many of these stressors have caused trans-
generational epigenetic inheritance in humans, fish, birds, plants, and insects.

Genome-wide environmentally induced transgenerational epigenetic inheritance
of disease was documented in a recent study in rats. Ben Maamar et al. (2018)
exposed one generation of gestating female rats to DDT or alternatively vinclozolin.
The offspring (F1 generation) were bred to generate the F2 generation that was then
bred to generate the F3 generation (keeping separate the populations exposed – in the
F0 generation – to vinclozolin, DDT, or control treatments). The F3 generation
males’ sperm revealed persistent environmentally induced histone modification
genome wide (Fig. 13), which influences gene expression to cause disease. The
fact that two different environmental toxins, each promoted transgenerational epi-
genetic (histone) changes, suggest that histone sites have a role in epigenetic
transgenerational inheritance.

A particularly interesting study of epigenetic changes suggested that a single
generation in an extreme environment (captivity, in a hatchery) can translate into
heritable differences in expression at hundreds of genes. Christie et al. (2016)
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measured differential gene expression in the offspring of wild and first-generation
hatchery steelhead trout (Oncorhynchus mykiss) and found 723 differentially
expressed genes in the two groups of offspring reared in the same common envi-
ronment. Functional analyses of the 723 genes revealed that most genes involved
responses in immunity, wound healing, and metabolism. The large proportion of
immunity and healing genes being differentially methylated suggest that the high
density, rapid growth (and diet change), and aggression among fish in captivity lead
to disease and wounds. Finally, wild-born fish that had only one hatchery parent had
much lower reproductive success in the wild (compared to fish with two wild
parents), suggesting that adaptation to captivity leads to transmission of maladaptive
gene expression to wild-born offspring. These findings suggest that rapid environ-
mental adaptation is possible and might be transmitted to offspring through “herita-
ble” (transmitted) epigenetic changes.

It is becoming clear that multiple ancestral environmental influences, such as
toxins, stress, or unusual nutrition, can sometimes induce germline epigenome
changes called epimutations that are transmitted to descendants. These epimutations

Fig. 13 Sperm histone site differences (site retention) caused by DDT (dichlorodiphenyl-
trichloroethane) and transmitted over multiple generations. Red arrowheads are individual chro-
mosome locations of histone differences in sperm. DDT-induced histone differences cause
transgenerational epigenetic inheritance of disease. Purified cauda epididymal sperm were collected
from the transgenerational F3 generation male rats for histone analysis. Reproduced with permis-
sion from Ben Maamar et al. (2018)

52 G. Luikart et al.



often occur in the germline and thus are transmitted (Gapp and Bohacek 2018).
The germline epigenetic changes are often imprinted, and avoid epigenetic
reprogramming (resetting/removal), and thus transgenerational inheritance occurs.
Sperm RNAs are a mechanism for transfer of acquired complex phenotypes from
father to offspring (Gapp et al. 2014). Stressful experiences were shown to cause
metabolic and behavioral changes in mice that can be transmitted through RNAs in
sperm to the offspring (Gapp and Bohacek 2018). Long-term studies are needed in
natural populations to understand if inherited epigenetic marks persist across enough
generations to significantly affect evolutionary processes, such as individual fitness,
local adaption, gene flow, and population persistence.

6.3.1 Epigenetic Variation and Mechanisms

Here we discuss epigenetic variation that is potentially important evolutionarily but
for which limited transgenerational inheritance information exists. Epigenomic
variation is widespread in wild populations of plants (Schmitz et al. 2013a, b;
Niederhuth et al. 2016) and animals (review in Hu and Barrett 2017). Epigenetic
mechanisms causing gene expression shifts include DNA methylation, histone
modifications, as well as variation in small RNAs. DNA methylation is the most
frequently studied and best-understood epigenetic process to date. With the devel-
opment of massive parallel sequencing techniques to examine genome-wide epige-
netic marks, such as bisulfite DNA sequencing, epigenomics has progressed from
investigating individual epigenomes to studying epigenomic variation across
populations and species (e.g., Gavery and Roberts 2017).

The sources of epigenetic/epigenomic variation include genetic factors, environ-
mental factors, or stochastic epimutations (reviews in Taudt et al. 2016; Yi 2017;
Richards et al. 2017; Martin and Fry 2018). Recent studies have identified both the
cis and trans regulatory genetic mechanisms conditioning population epigenomic
variation at individual epigenetic marks to integrated chromatin state maps in a wide
variety of species (review in Taudt et al. 2016). A number of methylation quantita-
tive trait loci (meQTL) and histone quantitative trait loci (hQTL) have been identi-
fied in humans, plants, and animals (Taudt et al. 2016). Most of the work has been
done on understanding the association of genetic (SNP, meQTL) and epigenetic
variants for DNA methylation (DMR, differentially methylated region; DMP, dif-
ferentially methylated polymorphism; SMV, single methylation variant; SMP, single
methylation polymorphism). Nearly all of the detected meQTL in human mapped in
cis association (review in Taudt et al. 2016).

Schmitz et al. (2013a), in the first plant population epigenomics study, examined
the genome-wide DMRs in natural accessions of Arabidopsis worldwide and inte-
grated these data with the whole-genome DNA sequences of the same accessions.
They reported that 35% of the DMRs could be associated with meQTL, and 26% of
the associations could be mapped to methylation changes in cis. In maize (Zea mays)
about 50% of DMRs were associated in cis, with SNPs found within or near the
DMR (Eichten et al. 2013). Similarly, cis meQTL-DMR associations were
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widespread in soybean (Glycine max) (Schmitz et al. 2013b). Heritable variation
in methylation can be genetically based (and not sensitive to the environment),
or environmentally induced, or a combination of both. Additionally, random
epimutations can cause epigenetic variation as well.

6.3.2 Associations Between Epigenomic Variation and Phenotypic,
Ecological, and Disease Traits

There is growing evidence that epigenetic mechanisms and epigenomic variation
contribute significantly to phenotypes, abiotic and biotic stress responses, disease
conditions, adaptation to habitat, and range distributions in a variety of organisms
(review in Richards et al. 2017). This has significance in the context of acclimation
and adaptation to climate change. Epigenomic differences are often correlated with
ecological and environmental factors (see Richards et al. 2017). For example, DNA
methylation patterns were found to be associated with a climate gradient in Quercus
lobata (Gugger et al. 2016).

Recent population epigenomics studies have concentrated on associations
between epigenomic variation and phenotypic, ecological, disease, and other traits
in humans, plants, and animals through epigenome-wide association studies
(EWAS) and epigenome environment association analysis (epiEAA), and a number
of significant associations have been identified. In particular, substantial EWAS
work has been done in the past few years to identify the association of DNA
methylation with common human disease conditions.

DNA methylation has been found to be significantly associated with kidney
function (Chu et al. 2017), type 2 diabetes (Meeks et al. 2017), panic disorder
(Shimada-Sugimoto et al. 2017), cardiovascular diseases (Nakatochi et al. 2017),
cancer (Xu et al. 2013), chronic obstructive pulmonary disease and lung function
(Lee et al. 2017), and other conditions. Population epigenomics has a role to play in
pharmacogenomics and personal medicine (see Kabekkodu et al. 2017). In plants
epigenetic variation has been associated with various phenotypic, phenological, and
disease and adaptive traits, such as salt tolerance (Foust et al. 2016), disease
susceptibility (Sollars and Buggs 2018), and flowering time (Aller et al. 2018).

Population epigenomics, as such, is an emerging approach in population geno-
mics. The detailed discussion of various aspects of population epigenomics is
presented in the chapter by Moler et al. (2018) later in this book. This includes the
molecular basis of epigenetic mechanism, sources and evolution of population
epigenomic variation, intra- and interspecific epigenomic variation, molecular and
bioinformatics methods in population epigenomics, and association of epigenomic
variation with phenotypic, ecological, and disease traits and pharmacogenomics. See
also recent reviews (e.g., Gapp and Bohacek 2018) and the special edition set of
papers on the evolutionary consequences of epigenetic inheritance (Lind and
Spagopoulou 2018).
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6.4 Population Proteomics

Population proteomics is the study of structural and functional variation (qualitative
and quantitative) in proteins within and among populations to better understand their
role in individual fitness, phenotypic variation, local adaption, and population
performance (see also Biron et al. 2006; Nedelkov et al. 2006; Nedelkov 2008).
Enzyme protein polymorphisms (isoenzymes, isozymes, allozymes) provided the
first molecular markers for population genetic studies. Protein electrophoresis stud-
ies were widely conducted for several decades before DNA markers became avail-
able (Charlesworth et al. 2016).

Although population proteomics gained attention around 2005 (e.g., Biron et al.
2006; Nedelkov et al. 2006; Nedelkov 2008), especially for biomarker discovery for
human disease conditions, it has not kept pace with population genomics owing to
the rapid advances in high-throughput DNA and RNA sequencing technologies.
However, the development of 2D gel electrophoresis, mass spectrophotometry
methodologies (such as MALDI TOF), and shotgun proteomics methods has made
high-throughput protein analysis possible. This has accelerated population proteo-
mics studies across different species (e.g., Ma et al. 2015; Armengaud 2016; Di et al.
2016; Hidalgo-Galiana et al. 2016; Colinet et al. 2017; Gamboa et al. 2017; Suhre
et al. 2017).

Since proteins influence important phenotypes and are the products of genes and
epigenetic or posttranslational mechanisms, population proteomics has the potential
to provide key insights into functional and metapopulation ecology, adaptation, and
acclimation processes under various climate and environment conditions (e.g., Biron
et al. 2006; Karr 2008; Di et al. 2016; Colinet et al. 2017; Gamboa et al. 2017; Trapp
et al. 2018). Population proteomics approaches also help identify genetic loci
underlying risk of disease and for clinical biomarkers for many human disease
conditions (Nedelkov et al. 2006; Suhre et al. 2017).

Most population proteomics studies to date have been focused on humans,
especially for discovering and validating biomarkers for clinical disease conditions.
High levels of protein diversity have been reported in humans. For example, a total
of 76 structural forms variants were observed for the 25 plasma proteins (an average
of 3 variants per protein) in a cohort of 96 individuals (Nedelkov et al. 2005).
Proteomics-based genome-wide association studies have identified many associa-
tions between protein levels and gene variants (protein QTLs, pQTLs) in different
population cohorts (summary provided in the supplementary table in Suhre et al.
2017 and updated on http://www.metabolomix.com/a-table-of-all-published-gwas-
with-proteomics/). For example, Suhre et al. (2017) reported 539 pQTLs in German,
Asian, and Arab cohorts, and associations overlapped with 57 genetic risk loci for
42 unique diseases.

Proteomics approaches have also been useful in nonhuman systems. For example,
clear ecotype-specific protein variation was found among eight Arabidopsis
ecotypes that were related to their physiological status (Chevalier et al. 2004).
Rees et al. (2011) reported significant within and among population variation in
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proteins in three species of the teleost fish Fundulus; The authors suggested that the
patterns of protein expression have evolved by natural selection.

Gamboa et al. (2017) investigated protein expression in five stream stonefly
species (Plecoptera) from four geographic regions along a latitudinal gradient in
Japan with varying climatic conditions. They found high spatial variation in protein
expression among four geographic regions that were positively correlated with water
temperature. However, low interspecific variation was observed in proteins within
geographical regions, suggesting regulation of protein expression varied with envi-
ronment and relates to local adaptation.

In Drosophila, Colinet et al. (2017) studied the regulatory mechanisms involved
in the acquisition of thermal tolerance. They note that reversible phosphorylation is a
common posttranslational modification that can rapidly alter proteins functions.
They conducted a large-scale comparative study of phosphorylation networks in
control versus cold-acclimated adult Drosophila and found that acclimation evoked a
strong phosphoproteomic signal characterized by large sets of unique and differen-
tial phosphoproteins. In diving beetles (Agabus ramblae and A. brunneus), Hidalgo-
Galiana et al. (2016) found protein expression parallels thermal tolerance and
ecological conditions in the diversification of these two Agabus species.

These studies suggest that research on proteomic variation among natural
populations along environmental gradients can provide insights into mechanisms
underlying eco-evolutionary processes such as local adaptation, diversification,
range shifts, and speciation. Future studies including genome-wide proteome data
combined with population and landscape genomics approaches on multiple species
(e.g., landscape community proteogenomics) will be especially helpful for under-
standing and predicting adaptive evolution, population performance, coevolution,
and adaptive divergence.

6.5 Paleogenomics

Paleogenomics is the study of genomes of ancient organisms from fossil remains or
specimen excavated from caves, permafrost, ice cores, or archeological or paleon-
tological sites or stored in museum and herbarium collections (Heintzman et al.
2015; Lan and Lindqvist 2018). Paleogenetics and paleogenomics are recent fields of
research relying on the extraction and analysis of preserved ancient DNA (aDNA).
Early paleogenetics research was based on sequencing of mitochondrial DNA
(mtDNA) fragments because of high copy numbers of the mitochondrial genomes
in a cell. This research has provided quite useful information on phylogenetic
relationships and timing of divergence among organisms and biographical patterns
(Lan and Lindqvist 2018).

Paleogenomic studies are providing insights into complex evolutionary histories
of ancient and extinct organisms, including humans (Homo sapiens) (Rasmussen
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et al. 2010; Meyer et al. 2012; Prüfer et al. 2014), phylogenetic and evolutionary
relationships of extinct organisms with living species and populations (e.g., Prüfer
et al. 2014; Heintzman et al. 2015; Lan and Lindqvist 2018), inferences of demo-
graphic patterns and ancient admixtures in human and other organisms (Meyer et al.
2012; Prüfer et al. 2014; Shapiro and Hofreiter 2014; Lan and Lindqvist 2018),
reconstruction of ancient adaptive phenotypes and inferences of extinction causes,
such as in wooly mammoth (Mammuthus primigenius) (Palkopoulou et al. 2015;
Rogers and Slatkin 2017), and causal agents and evolutionary history of ancient
pandemics, such as Black Death (bubonic plague), small pox, tuberculosis and
leprosy (reviewed in Lan and Lindqvist 2018), ancient pathogens through human
history (Marciniak and Poinar 2018), and structural variants in ancient genomes
(Resendez et al. 2018).

Paleogenomic investigations have provided key insights into the origin and
history or domestication of crop plants (reviewed in Lan and Lindqvist 2018) and
animals, such as dogs (Canis lupus familiaris) (Frantz et al. 2016; Thalmann and
Perri 2018), cats (Felis catus) (Geigl and Grange 2018), and horses (Equus caballus)
(Orlando et al. 2013; Orlando 2018), origins and genetic legacy of Neolithic farmers
and human settlement in Europe (Skoglund et al. 2012), reconstruction of ancient
plant communities (Parducci et al. 2018), and epigenomics of ancient species
(Hanghøj et al. 2018). Most of the above paleogenomics aspects are discussed
later in this book in the chapter “Paleogenomics: Genome-scale Analysis of Ancient
DNA and Population and Evolutionary Genomic Inferences” by Lan and
Lindqvist (2018).

One of the most studied topics in paleogenomics is the evolution of human
species and its phylogenetic and evolutionary relationships with its closest evolu-
tionary relatives. The first ancient human genome was sequenced by Rasmussen
et al. (2010) from permafrost-preserved hair of a ~4-kyr-old Paleo-Eskimo. Then
paleogenomes from archaic hominins, Neanderthal and Denisovan, were sequenced
and published (Meyer et al. 2012; Prüfer et al. 2014). These paleogenomics studies
suggested that that Neanderthal and Denisovan populations shared a common origin,
that their common ancestor diverged from the ancestors of modern humans, and that
admixture had taken place between archaic hominins and the ancestors of modern
humans most likely after the dispersal of modern non-African humans out of Africa
(Meyer et al. 2012; Prüfer et al. 2014). The analysis also indicated that this gene flow
was from Neanderthal into the common ancestor of modern Eurasians.

Another example of paleogenomics applications is the inferences of the causes of
extinction of the iconic ancient animal wooly mammoth, which was an abundant
megafaunal species of the Northern Hemisphere. As mentioned above (Sect. 2.6),
paleogenomics studies provided evidence that genetic stochasticity due to small
population size could have contributed to the extinction of this species (Palkopoulou
et al. 2015; Rogers and Slatkin 2017).
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7 Does the Field of Population Genomics Promise More
Than It Can Deliver?

Population genomics holds a great deal of promise for increasing our understanding
of the genetic basis of phenotypic variation and adaptation in natural populations.
However, population genomics is not a panacea for addressing the outstanding
fundamental questions in many areas of biology. Genomes are tremendously com-
plex, and traits related to fitness are often highly polygenic. Researchers need to
better recognize the limitations of some methods and the opportunities for mislead-
ing or misinterpreted results (e.g., false positives and false negatives for selection
tests). For example, the hallmark genomic signatures of positive selection (e.g.,
highly reduced genetic variation, shifted site frequency spectrum, or alleles associ-
ated with environmental variation) can arise from forces other than positive
selection.

False signatures of positive selection can occur where purifying (background)
selection has reduced genetic variation, particularly in genomic regions with low
recombination (Charlesworth et al. 1993; Wolf and Ellegren 2017). Regions with
low genetic variation can be caused by a locally low mutation rate, or where large
haplotypes have drifted to high frequency or fixation in populations with small Ne

(Nielsen et al. 2005; Kardos et al. 2015b). Regions with very high FST relative to the
genome-wide background can occur between insipient species as a result of selection
within lineages (e.g., background selection or recent selective sweeps), rather than
via divergent selection during speciation (Burri et al. 2015; Charlesworth et al. 1993;
Cruickshank and Hahn 2014; Payseur and Rieseberg 2016; Wolf and Ellegren
2017). Thus, genomic signatures of positive selection, including selective sweep
signals and FST outlying regions must be interpreted cautiously.

Population genomics studies can have low power to detect loci related to adap-
tation or variation in phenotypes among individuals, especially for highly polygenic
traits. The relatively low density of SNPs generated, in certain species, when using
some technologies (e.g., some RADseq or sequence capture) means that selective
sweeps, FST outliers, associations between markers and environmental variables,
and QTLs may be missed because of low or no gametic disequilibrium between the
genotyped SNPs and causal loci (Kardos et al. 2016a; (Catchen et al. 2017; McKin-
ney et al. 2017a). Associations and outliers can also be missed by genotyping only a
limited number of SNPs from an adaptive gene or a selected genome region (Fig. 6).

Additionally, the relatively low sample sizes that are frequent in studies of
non-model organisms in the wild means that power to detect loci with relatively
large effects may often be low, even when whole-genome sequencing is used in
natural populations (Kardos et al. 2015a; Lotterhos and Whitlock 2014; Hunter
et al. 2018; Flanagan et al. 2018). Finally, to help increase the understanding of
the genetic basis of ecological and evolutionary traits and processes, we recommend
applying multiple population genomics and related approaches (at different func-
tional levels from DNA to RNA and proteins), as in Vasemagi and Primmer (2005).
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8 Future Perspectives and Needs

Among the most exciting advances from “neutral” marker studies will be our
improved understanding of inbreeding depression and genetic rescue in natural
and managed populations. This will result from the fact that only 5000–10000
SNP loci are required to vastly improve precision of estimation of individual
inbreeding compared to traditional marker-based and pedigree approaches (Kardos
et al. 2016a). There will soon be many publications that use genomic data to estimate
inbreeding depression (and genetic rescue) in many populations, which could
change our view of the importance of inbreeding in conservation and evolution.
Interestingly, most publications in the vast inbreeding literature had low power and
precision to estimate inbreeding and inbreeding depression effects.

Even more exciting will be the use of novel, more informative statistical estima-
tors such as ROH (runs of homozygosity), which measures inbreeding and effective
population size change (Palkopoulou et al. 2015; Kardos et al. 2018; Grossen et al.
2018). The bioinformatic prediction of deleterious alleles from sequence data will
also increase our ability to understand the genomic architecture of inbreeding
depression and to predict and compare populations for genetic load.

An interesting advance will be the improved understanding of the importance of
transgenerational epigenetic inheritance in adaptive traits (Charlesworth et al. 2017).
Advances are likely to give the explosion of research and publications, following the
controversy and calls to test the relevance of epigenetic “inheritance” in evolutionary
processes and given lower costs for next-generation (bisulfite) sequencing
(Christie et al. 2016; Le Luyer et al. 2017; Nilsson et al. 2018; Horsthemke 2018).
Can environmentally induced transgenerational epigenetic inheritance contribute
substantially to adaption to changing environments?

Another general advancement in power and precision will result from calling of
microhaplotypes from short-read data. Most publications that use next-generation
short-read data (e.g., RADseq) have not called haplotypes but rather scored only one
SNP (or two independent SNPs) per locus, even though multiple SNPs exist per
locus, e.g., RAD loci (Hendricks et al. 2018). Haplotype calling will yield more
alleles (haplotypes), additional genealogical or phylogenetic information, and thus
more power for many applications in population genetics (Sunnucks 2000). Longer
single-end and paired-end reads and new software for haplotype calling will also
improve power (Baetscher et al. 2018).

Understanding of the importance of structural polymorphisms in fitness and
adaptation will increase soon (Wellenreuther and Bernatchez 2018). Genotyping
and detection of inversions and copy number variants are becoming more feasible
thanks to longer-read sequencing, reference genomes, linkage maps, and improved
software for discovering and genotyping structural polymorphisms (e.g., Farek et al.
2018). This will help population genomics move beyond SNPs. This is an important
advancement because structural variations are often involved with fitness-related
phenotypic variation (e.g., Küpper et al. 2015) and are thought to play a key role in
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sex chromosome evolution, local adaptation, and speciation (Kirkpatrick 2010;
Wellenreuther and Bernatchez 2018).

Many studies will estimate gametic disequilibrium along chromosomes
(or contigs) using draft genome assemblies, thereby allowing more informative
“narrow sense” population genomics studies with mapped high-density markers.
Even a few hundred contigs of 50–500 kb and 1,000s of marker loci will provide
quantification of genome-wide GD (gametic disequilibrium) required for some
narrow sense genomics approaches. Depending on the genome size and complexity,
an investment of $10k to $20k can achieve a useful draft reference genome with an
N50 of >50 kb for many species (Catchen et al. 2017; McKinney et al. 2017a;
Hendricks et al. 2018).

There is a need to train researchers and students in data analysis including the
initial filtering, genotyping, and data interpretation steps which requires an under-
standing of population genetics theory (Andrews and Luikart 2014; Allendorf 2017;
Shafer et al. 2015; Hendricks et al. 2018). The trend toward learning the latest
molecular techniques (RAD approaches, DNA capture, pool-seq, etc.) at the expense
of a solid grounding in population genetics theory is worrisome (Allendorf 2017).
Training in theoretical and conceptual aspects of population genetics enables
researcher to ask good questions and to adequately test and interpret the massive
and growing datasets against appropriate null models (Benestan et al. 2016;
Allendorf 2017).

There is an urgent need for understanding the effects of data analysis choices on
downstream biological inferences (Farek et al. 2018), because these choices can
dramatically influence downstream statistical results and inferences (Shafer et al.
2017; Hendricks et al. 2018). We need to validate pipelines and downstream
genomic statistical estimators, ensuring they are unbiased, by analyzing raw simu-
lated and empirical data from populations with known genotypes and evolutionary
parameters (Ne, Nm, S) in order to verify that we can recover or estimate the true
(known) genotypes and parameters. Related to this, the field needs to develop a set of
best practices for identifying possible genotyping errors, quantifying error rates, and
quantifying effects of data analysis choices on downstream results and conclusions.
The most rigorous approach for ensuring data quality can vary substantially from
dataset to dataset and will change through time as the structure and quality or data
change; thus we need the next generation of population genomicists to be well
trained in bioinformatics and programming (Andrews and Luikart 2014).

Finally, new computational approaches and modeling made easy by ABC
(approximate Bayesian computation) will vastly improve data analysis and inference
from population genomic data (Cabrera and Palsbøll 2017; Elleouet and Aitken
2018). However, extensive model performance evaluations are required to ensure
computational approaches are applied reliably and competently to natural
populations (e.g., Lotterhos and Whitlock 2014; Forester et al. 2018; see Appendix
in Allendorf et al. 2013).
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9 Conclusions

Population genomics is transforming many sub-disciplines in biology and vastly
improving our understanding of nature (Schlötterer 2004; Hohenlohe et al. 2018).
The greatest advances in our fundamental understanding of populations and the
translation of that knowledge to decisions around managing and conserving
populations will result from applications of conceptually novel “narrow sense”
genomics studies. This revolution will continue to accelerate for many years as
more studies combine population genomics, transcriptomics, transgenerational
epigenomics, and proteomics approaches simultaneously to multiple species
co-distributed across environments (Chen et al. 2018; De Kort et al. 2018). This
increase in strategic applications of narrow sense and multiple omics approaches
combined with phenotypic and environmental data (e.g., from sensor networks and
remote sensing) will ensure we will soon be answering long-standing questions
along with novel questions yet to be imagined by humanity. It is an exciting time to
be a population genomicist!
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Genotyping and Sequencing Technologies
in Population Genetics and Genomics

J.A. Holliday, E.M. Hallerman, and D.C. Haak

Abstract Genotypes are the central data to any population genetic and genomic

study, and genotyping methods have steadily evolved since the first direct glimpses

of genetic variation were enabled through enzyme protein electrophoresis. Follow-

ing the development of the polymerase chain reaction, allozymes were supplanted

by methods that directly measured allelic variation in nuclear and organellar DNA,

most notably through the use of restriction fragment length polymorphisms

(RFLPs), amplified fragment length polymorphisms (AFLPs), and microsatellites.

At the turn of the millennium, genome-scale polymorphism detection and scoring

still was hampered by the low-throughput nature of Sanger sequencing. This

limitation changed with the advent of genotyping microarrays that at first yielded

hundreds of data points per sample – a revolution at the time – and that subse-

quently improved to the point where hundreds of thousands of genetic variants

could be scored simultaneously. These methods suffered a major flaw, however, in

that their cost put them out of reach for studies of most ecologically important but

economically unimportant species. The democratization of population genomics

arrived with the advent of high-throughput, short-read sequencers and subsequent

development of DNA library techniques to subsample the genome in a large

number of individuals. Today, such methods – genotyping-by-sequencing, restric-

tion site-associated DNA sequencing, RNA sequencing, and sequence capture –

have become mainstays of the population geneticist’s toolkit. Refinements to

existing library and sequencing methods continue to emerge at a rapid pace, and

novel sequencing platforms may soon put the gold standard of long-read, genome-
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wide coverage within a broader reach. In this chapter, we comprehensively review

genotyping methods used in population genetics, beginning with allozymes and

progressing through AFLPs, microsatellites, and SNP arrays. We subsequently turn

to a detailed discussion of methods that leverage next-generation technologies to

enable truly genome-scale genotyping. Finally, we discuss recent developments and

emerging technologies that constitute the “third wave” of sequencing and

genotyping methods. Throughout, our aim is to provide methodological details

that will be of use to population geneticists.

Keywords Ecological genomics · Genotyping by sequencing · Illumina

· Population genomics · Sequence capture

1 Introduction

The central goal of population genetics is to document and understand the signif-

icance of intraspecific genetic variation. Four key questions underlie this objective:

How much variation exists in a population? What is the origin of the variation?

How is the variation maintained? What is the ecological and evolutionary signif-

icance of this variation? At the emergence of the field in the early decades of the

twentieth century, methods for observing genetic variation were limited. In addition

to classical Mendelian traits, geneticists could observe variation of chromosome

number, chromosome morphology, and quantitative traits. Geneticists focused on

laboratory model species and on those species for which fully inbred lines could be

developed; the methods available were not well suited to screening of outbred, wild

populations. These limitations, so prominent early in the development of genetics,

were addressed by the rise of molecular genetics in the second half of the twentieth

century. Indeed, the progress of molecular genetics has been marked by the advent

of critical laboratory techniques. In this chapter, we review the emergence and

refinement of genotyping technologies, from early protein markers through modern

high-throughput sequencing approaches, and discuss the potential and limitations

of each.

2 Early Molecular Genetic Markers: Allozymes

Molecular population genetics emerged as a field with the development of methods

for observing variation of enzyme proteins. Starch gel electrophoresis and histo-

chemical staining techniques were developed primarily for detecting variant forms

of blood proteins, especially enzymes, as a means to study their biochemical

function (Lewontin and Hubby 1966). These bidirectional catalytic enzymes con-

vert one substrate to another without themselves being affected and control much of

cell metabolism. Examples include enzymes of the glycolytic pathway in which
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glucose is broken down and of the Krebs cycle in which energy is generated in the

mitochondria. A brief description of the background and methodology will support

an understanding of the strengths and limitations of allozyme genetic markers.

Enzymes mediate a specific biochemical reaction; e.g., lactate dehydrogenase

(LDH) removes a hydrogen atom from a lactate molecule. Some enzymes are

encoded by multiple genes; isozymes are different forms of an enzyme encoded

by different loci, which often are differentially expressed among the tissues of an

organism. For example, in most fishes, LDH is encoded by three isozyme loci:

LDH-A is expressed in almost all tissues, LDH-B predominately in the liver, and

LDH-C in the eye. Allozymes are allelic forms of isoenzymes, encoded by different

alleles at a particular locus, e.g., LDH-A1 and LDH-A2 would be different alleles

expressed at the LDH-A locus. It is this variation that is sought and interpreted in

screenings of allozymes. To conduct a screening of a population, small samples of

tissues are dissected out, placed in a buffer, and homogenized. Filter paper wicks

with a bit of homogenate from each individual in the collection are placed along a

slot in a starch gel, to which an electric current is applied, leading molecules in the

homogenate to migrate. Different molecular forms of an enzyme encoded by

different alleles and genes migrate different distances through the gel depending

upon molecular weight and net electrical charge. The gel is then sliced into slabs

and the activity of a particular enzyme visualized with a histochemical stain. The

stain includes the substrate and cofactors for the enzyme and a suite of chemicals

that take a simple product of the reaction and change color, resulting in a banding

pattern that can be interpreted to yield presumptive alleles and genotypes. Thor-

ough technical reviews of visualization and interpretation of allozyme markers are

provided by Buth (1990), Morizot and Schmidt (1990), Maxam and Gilbert (1977),

Murphy et al. (1996), and May (1998). The genotype data are then subjected to

statistical analyses to determine various population genetic parameters.

Allozymes have the favorable property of being the products of codominant

gene expression – homozygotes and heterozygotes can be distinguished – and can

be developed relatively easily for species of interest. Freed of the need for out-

wardly observable phenotypic traits in plants and animals, screening of genetic

variation in any population of interest became a viable technical possibility. It led to

the discovery of unexpectedly high levels of genetic variation in a wide range of

natural populations, which in turn revolutionized geneticists’ view of the world

particularly regarding the adaptive significance of genetic variation (Kimura 1983).

Although allozyme applications revolutionized molecular population genetics,

allozyme methods also posed limitations. Sampling of multiple tissues – e.g.,

liver, muscle, and eye – at least for animals is generally lethal to the sampled

individual, which limits application of allozymes for studies of imperiled species.

Only the variation of enzymes for which we have histochemical assays can be

screened, which represents but a tiny portion of the genome. Most studies involved

screening of about 30 loci for diploid organisms, with some exceptions of up to 54

allozyme loci (Buchert et al. 1997), and not all loci were found to be polymorphic.

Furthermore, the most common allele at many loci often showed a frequency

greater than 0.9, limiting the power of statistical analyses. The evolutionary
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relations of allelic variants cannot be precisely inferred, limiting study of phyloge-

netics within a lineage. Finally, because of the redundancy of the genetic code, not

all DNA sequence-level substitutions lead to protein-level variation, and only a

subset of amino acid changes lead to detectable differences in net electric charge or

molecular weight. For these reasons, with the evolution of the molecular genetic

techniques, DNA-based markers were developed and have been the preferred

approach to study patterns of genetic variation within and among populations.

3 DNA Markers

3.1 Restriction Fragment Length Polymorphisms

The discovery of restriction endonucleases revolutionized molecular biology

(Avise 2004). Type II restriction enzymes (Kessler 1987) cleave double-stranded

DNA at particular base-pair sequences, typically four to six base pairs in length

(Roberts 1984). DNA sequence polymorphisms among individuals may result in

differences in the presence or absence of restriction sites and hence in the sizes of

the respective restriction fragments. These differences are termed restriction frag-

ment length polymorphisms or RFLPs. The methods for visualization of RFLPs

differ for organellar and nuclear DNA. Early RFLP studies were conducted using

organellar DNA and not genomic DNA because of the relative simplicity owing to

the small size of organellar genomes. The animal mitochondrial DNA molecule is

relatively small (~15–20 kb) and circular, properties that contribute to its isolation

and made analysis by restriction site variability easy (Lansman et al. 1981; Hoelzel

1992; Dowling et al. 1996; Avise 2004). Following digestion with one or more

restriction enzymes, fragments may be visualized by using gel electrophoresis

(either ethidium bromide staining or end-labeling with radioactive nucleotides

followed by autoradiography). The fragment sizes are observed, and inferences

are made of haplotypes (haploid genotypes), i.e., combinations of the presence or

absence of restriction sites. Early surveys of animal populations revealed the

haploid character, maternal inheritance, and rapid evolution of animal mitochon-

drial DNA. Analysis of mitochondrial DNA variation is useful for tracking

matrilineages and inference of the origins of species or populations, patterns of

population dispersal, and occurrence of past population bottlenecks. In humans, for

example, Cann et al. (1987) analyzed mitochondrial DNAs from 147 people drawn

from five geographic populations. All of the mitochondrial DNA variants were

inferred to stem from one woman, popularly referred to as the “mitochondrial Eve,”

who lived approximately 200,000 years ago, most likely in Africa. Lansman et al.

(1983) analyzed mtDNA sequence variation in 135 deer mice Peromyscus
maniculatus collected across their range in North America and distinguished five

major genetic assemblages within the species, as well as extensive diversity within

each of those assemblages. Phylogenies derived from mtDNA restriction fragment
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analysis were not generally concordant with those derived from morphological

characters.

Mitochondrial DNA of plants exhibits surprising contrasts with that of animals

(Avise 2004). Plant mtDNA is highly variable in size, ranging from about 200 kb to

2,500 kb among species (Ward et al. 1981; Palmer 1985; Pring and Lonsdale 1985).

Within an individual, mtDNA sequences typically exist as a heterogeneous collec-

tion of circular molecules that arise from extensive recombination (Palmer and

Herbon 1986; Backert et al. 1997; Lonsdale et al. 1988). Inheritance is often, but not

always, maternal (Birky 1978; Neale et al. 1989). Plant mtDNA gene order evolves

rapidly but about a hundredfold more slowly in nucleotide sequence compared with

nuclear DNA (Birky 1988; Palmer and Herbon 1988; Palmer 1992; Palmer et al.

2000). These properties, and the technical difficulties of laboratory assays, have

limited the utility of plant mtDNA for molecular systematics (Knoop 2004) and

population biology (Avise 2004). Nevertheless, RFLP markers have been used, for

example, to demonstrate changes in the mtDNA molecule associated with restora-

tion of fertility in cytoplasmic male-sterile maize (Schardl et al. 1985) and common

bean (Johns et al. 1992) and determine the phylogenetic relationships and maternal

parentage of natural interspecific hybrids in Populus (Barrett et al. 1993). Screen-
ings of the geographical distribution of mtDNA haplotypes led to insights into the

natural history of plants. For example, modern populations of Scots pine (Pinus
sylvestris) are derived from dispersal from three different refugia following degla-

ciation (Sinclair et al. 1999). Olson and McCauley (2002) observed 13 mtDNA

haplotypes among 250 individuals in 18 populations of bladder campion, Silene
vulgaris, a flowering plant, within a 20-km region in western Virginia, and found

that the populations were highly differentiated. Sex was determined by an interac-

tion between cytoplasmic male sterility factors and autosomal male fertility

restorers, with indications of population genetic structuring for the male fertility

restorer genes.

Chloroplast DNA (cpDNA) exhibits its own unique molecular biology (Palmer

1985). It is transmitted maternally in some species (Birky 1978; Gillham 1978),

biparentally in some (Metzlaff et al. 1981; Harris and Ingram 1991), and paternally

in yet others (Chat et al. 1999), including in most gymnosperms (Wagner et al.

1987; Neale and Sederoff 1989). The circular molecule varies greatly in size, from

120 to 217 kb among photosynthetic land plants (Zurawski and Clegg 1987). The

rate of molecular evolution is slow in terms of both gene order and nucleotide

sequence (Palmer and Thompson 1981; Curtis and Clegg 1984), which makes

cpDNA suitable for phylogenetic studies (Palmer and Zamir 1982; Clegg et al.

1986; Sytsma and Gottlieb 1986; Zurawski and Clegg 1987). CpDNA variation has

been characterized in wild (e.g., barley (Hordeum vulgare), Clegg et al. 1984) and

cultured (e.g., barley, Clegg et al. 1984; maize (Zea mays), Doebley et al. 1987)

populations and has demonstrated interspecific hybridization in wild (e.g., pine,

Wagner et al. 1987) and cultured (e.g., cotton, Wendel 1989) species. Among

studies of phylogeographic variation, a consortium of laboratories (Petit et al.

2002) screened four PCR-amplified cpDNA fragments among 12,214 individuals

from 2,613 European oak populations representing eight species. Six cpDNA
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lineages were identified, with distinct geographic distributions along a longitudinal

gradient reflecting patterns of colonization of the European landscape following

deglaciation, a pattern corroborated and dated with fossil pollen evidence (Petit et

al. 2002). RFLP analyses of mitochondrial and chloroplast DNA were common

until around 1990, when direct sequencing of PCR amplicons become possible,

which effectively replaced the whole-molecule, RFLP approach.

The complexity of nuclear DNA (e.g., three billion base pairs in human) is much

greater than for mitochondrial DNA (16.6 kb), and Southern (1975) blotting using

specific probes is needed to investigate RFLP variation of genomic DNA (gDNA).

Probe hybridization patterns are interpreted to infer which bands represent restric-

tion site alleles at a given locus. RFLPs were initially developed as markers for

human diseases and disorders (e.g., β-thalassemia, Little et al. 1980; sickle-cell

anemia, Phillips et al. 1980; Huntington’s disease, Gusella et al. 1983) and subse-

quently extended to many nonhuman genomes, including livestock (e.g., cattle;

prolactin, Camper et al. 1984; growth hormone, Beckmann et al. 1986) and crop

plants (maize, Rivin et al. 1983; barley, Saghai-Maroof et al. 1984). Southern blot

hybridization of the repeated sequence to EcoRI-restricted human DNA yielded

numerous hybridization fragments which showed Mendelian inheritance and

hypervariability. This multi-locus DNA fingerprinting approach found applications

in forensics (Gill et al. 1985), breeding, population genetic, and other contexts. The

advantage of the RFLP approach is that investigators can seek polymorphism at any

genomic site for which there is a hybridization probe, and RFLP markers display

codominant patterns. As early as 1980, Botstein et al. (1980) described a basis for

using RFLP variation at random, single-copy loci to construct a genetic linkage

map of the human genome. The approach was applied, for example, to map the

genomes of several crop plants (including maize and tomato (Solanum
lycopersicum), Helentjaris et al. 1986; Ritter et al. 1990), which are well suited

for producing the requisite mapping populations. However, the disadvantage of the

RFLP approach is that Southern blot hybridization is laborious and not well suited

to the cost-effective, high-throughput genotyping required for many applications

(Kashi et al. 1990).

3.2 PCR-Based Fingerprinting and Genotyping

Invention of the polymerase chain reaction (PCR) (Saiki et al. 1985, 1988; Mullis

and Faloona 1987) revolutionized molecular biology, and subsequently organismal

and population biology (Avise 2004), largely by stimulating new approaches to

genetic marker screenings. A number of PCR-based genotyping methods fall under

the general category of DNA fingerprinting.

A number of fingerprinting methods have been developed based on the ampli-

fication of random genomic DNA (gDNA) fragments using PCR primers of arbi-

trary sequence. The patterns generated depend on the sequence of the PCR primers

and the nature of the template DNA. PCR is performed at low annealing
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temperatures to allow the primers to anneal to multiple loci on the sample DNA.

These PCR-based fingerprinting methods have the major disadvantage that they are

very sensitive to reaction conditions, template DNA quality, PCR temperature

profiles, and detection system, which limits their repeatability among laboratories

and ultimately their range of utility. Williams et al. (1990) described one such

procedure in which gDNA was PCR-amplified using single primers of arbitrary

nucleotide sequence. The DNA segments that amplify are inherited in a Mendelian

fashion from one or both parents. The polymorphisms so visualized are termed

RAPD (random amplified polymorphic DNA) markers and have been used to

discover variation in many species, including humans, corn (Zea mays), soybean
(Glycine max), and Neurospora (Williams et al. 1990). While RAPDmarkers are an

inexpensive, readily adapted method for assessing genetic variation in a yet-

uncharacterized genome, they also pose several disadvantages. The sensitivity of

the assay to reaction conditions leads to issues of repeatability of results among

laboratories working with the same organism. Further, RAPD fragment patterns are

expressed and interpreted as dominant genetic markers, which limits our ability to

test for departures from Hardy-Weinberg equilibrium or to apply many classical

population genetic tests. For these reasons, the RAPD approach is no longer widely

used in population genetic studies.

The AFLP (amplified fragment length polymorphism) technique (Vos et al.

1995), based on the selective PCR amplification of restriction fragments from a

total digest of gDNA, addresses some of the repeatability issues of RAPDs. The

technique involves three steps: (1) restriction of the DNA and ligation of oligonu-

cleotide adapters onto the restriction fragments, (2) selective amplification of sub-

sets of the restriction fragments, and (3) electrophoretic analysis of the amplified

fragments in a large polyacrylamide gel. Selective amplification is achieved by

using primers that extend into the restriction fragments, amplifying only that subset

of fragments in which the primer extensions match the nucleotides flanking the

restriction sites. The key advantage of this method is that sets of restriction

fragments may be visualized by PCR without previous knowledge of nucleotide

sequence within the genome of interest. The method allows the specific co-ampli-

fication of high numbers of restriction fragments. The number of fragments that can

be analyzed depends on the resolution of the detection system; typically, 50–100

restriction fragments are amplified and detected on denaturing polyacrylamide gels.

The AFLP method has been applied primarily in studies of plants and microbes,

with a strong bias toward economically important cultivated species and their pests.

For example, AFLPs were widely used to construct single-tree genetic linkage

maps in conifers by assaying haploid megagametophytes (Travis et al. 1998;

Remington et al. 1999). Spooner et al. (2005) presented phylogenetic analyses of

261 wild and 98 landrace potatoes and three outgroup relatives, genotyped with 438

robust amplified fragment length polymorphisms. The AFLP data supported a

monophyletic origin of the landrace potato cultivars from the northern component

of the Solanum brevicaule complex in Peru, rather than from multiple independent

origins from various northern and southern members. Cervera et al. (2005) applied

AFLPs for examining genus-wide intraspecific and interspecific phylogenetic and
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genetic relationships in Populus. Beismann et al. (1997) applied AFLP analysis to

26 individuals of white willow Salix alba, crack willow S. fragilis, and several

individuals that were difficult to identify morphologically. Analysis of the AFLP

data revealed distinct clusters corresponding to the nominal species and to inter-

specific hybrids. Kang et al. (2010) used AFLPs and other markers to construct

high-density genetic maps in black spruce (Picea mariana) using a three-generation
outbred pedigree and a black spruce x red spruce (P. rubens) hybrid using a BC1

mapping population (Kang et al. 2011). AFLPs were widely used to construct

single-tree genetic linkage maps in conifers by assaying haploid megagameto-

phytes (e.g., Travis et al. 1998; Remington et al. 1999). Bensch and Åkesson
(2005) identified a number of research areas where the AFLP method would be a

valuable tool in the study of wild species of animals, including studies of population

genetic structure and phylogenetic reconstructions, finding markers for genes

governing adaptation, and the distribution of DNA methylation. However, with

multiple technical steps, the procedure is prone to failure. Like RAPDs, AFLP

bands are interpreted as dominant genetic markers. In addition, AFLPs reflect

anonymous restriction sites, which are of less interest than markers within or linked

to genes. Repeatability among laboratories is reliable only to the degree that

electrophoretic conditions are standardized. AFLP markers were considered

genome-wide markers before the development of genome-scale SNPs and

genotyping-by-sequencing techniques.

3.3 Microsatellites

Due to the limitations of fingerprinting, alternative methods were sought that were

both highly repeatable and enabled direct scoring of heterozygotes. The discovery

of microsatellite sequences provided such an alternative. Microsatellites are tracts

with tandem repeats of simple motifs of one to four nucleotides, first noted in the

myoglobin gene, the zeta-globin pseudogene, the insulin gene, and the X-gene
region of hepatitis B virus (Nakamura et al. 1987). Such tandem repeat tracts

were subsequently found in all genomes and have been widely used as genetic

markers. Different communities of geneticists have termed them STRs (short

tandem repeats), SSRs (simple sequence repeats), or microsatellites, the term we

use in this chapter. Microsatellite loci are PCR-amplified by using primers that

anneal to unique genomic sequences flanking the tandem repeat tract. The ampli-

fication products may be visualized by standard electrophoresis or by labeling

forward PCR primers with fluorescent dyes and using a sequencing instrument to

score amplification products (Fig. 1). The latter allows precise estimation of the

molecular weight of each DNA fragment, and the method is well suited to high-

throughput genotyping. Microsatellite markers provide strong advantages for many

applications. There is normally high variation at each locus, often ten or more

alleles, providing great power for studies of population genetic variation, structure,

and differentiation. Because most individuals are heterozygous at such loci,
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microsatellite markers can provide linkage information in almost all families. There

are many microsatellite loci potentially available as markers. The loci exhibit

codominant expression of alleles, allowing use of a full range of data analysis

approaches. Screening of microsatellite loci is economical once the primers for a

locus have been developed. Several loci may be screened in one amplification mix

or visualized in one lane in a DNA sequencer, an approach termed multiplexing

(Chamberlain et al. 1988). Primer pairs used for amplifying microsatellite loci often

are useful for screening the genome of related species of plants (Dayanandan et al.

Fig. 1 Methodology for observing microsatellite DNA variation. (a) Scattered about the genome

are regions bearing tandem repeats of simple nucleotide motifs, e.g., ATAG (NCTC 2014). (b) A
particular microsatellite-bearing locus is PCR-amplified using primers specific to regions flanking

the locus, and the amplification products are size-scored using a DNA sequencer (PMGF 2017)
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1997; Peakall et al. 1998) and animals (Wilson et al. 1997). Microsatellite screening

protocols are transferable among laboratories, especially if a few samples of known

genotype are shared so that allele calls are standardized. Finally, variation at

microsatellite loci is generally selectively neutral, hence appropriate for assessing

the effects of population genetic processes such as migration and random genetic

drift. It should be noted, however, that selection on microsatellite variation has been

detected (Chhatre and Rajora 2014; Edelist et al. 2006), and care must therefore be

taken to ensure that a given marker meets this assumption of neutrality. In humans,

the number of SSR repeats has been found associated with disease conditions,

including Crohn’s disease (Hugot et al. 2001) and Behcet disease (Mizuki et al.

1997).

With such methodological strengths, microsatellite markers became the marker

of choice for population genetics through the latter years of the twentieth century.

They have been widely applied in studies of population structure in wild (Streiff et

al. 1998) and cultivated (Morgante and Olivieri 1993; Eujayl et al. 2002; Ghislain et

al. 2004) plants, as well as wild (Paetkau et al. 1995, 1998; Estoup et al. 1998;

DeWoody and Avise 2000; King et al. 2001) and domesticated (Parker et al. 2004)

animals. Microsatellite markers have been used to infer the origins (Vila et al. 2001)

and to map the genomes (Bishop et al. 1994; Barendse et al. 1994) of domesticated

species. Microsatellite-based inference of parentage and relatedness opened up

studies of fitness and dispersal in wild populations (Blouin et al. 1996; Lawson

Handley and Perrin 2007) and of seed dispersal by frugivores (Godoy and Jordano

2001). They have been used for noninvasive tracking of secretive (Kohn et al. 1999)

or dangerous (Taberlet et al. 1997) animals by genotyping of sloughed host cells in

feces. Microsatellites are also suited for genotyping of archived samples, such as

fish scales (Nielsen et al. 1997), for use in forensic cases (Craft et al. 2007), and

have been applied to determine the genetic impacts of forest harvest and manage-

ment practices (Fageria and Rajora 2013; Rajora et al. 2000). The key disadvantage

of microsatellite markers is the need to invest in the identification of microsatellite

loci and development of useful primer pairs, although modern genomic sequencing

technologies make their identification much easier (see next section). Microsatellite

loci can have null alleles (Callen et al. 1993), i.e., alleles that do not amplify

because a primer does not anneal to the sequence flanking the targeted microsatel-

lite region; because this allele will not amplify during PCR, the individual will in

error be regarded as a homozygote for the amplifying allele. While analytical

protocols exist for identifying loci with null alleles (Van Oosterhout et al. 2004),

the loss of data from such loci can limit the power of microsatellite-based studies.

Expressed sequence tag and whole-genome and RNA sequencing have resulted in

large numbers of candidate microsatellite loci, which can address this issue.
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3.4 DNA Sequencing

The ability to determine the sequence of DNA opened up the entire genome for

analysis. Originally, the target sequence had to be cloned but with the advent of

PCR that was no longer necessary. Two methods have been available since the mid-

1970s for sequencing target DNA. In the Maxam and Gilbert (1977, 1980)

approach, the DNA was radioactively end-labeled and divided into four aliquots,

which are treated with different chemical reagents that cleaved the DNA strand at

base-specific positions. The fragments for all reactions are separated electropho-

retically in a large polyacrylamide gel, visualized by autoradiography, and the DNA

sequence is read directly from the ladder-like bands in the autoradiograph. Then the

Sanger et al. (1977) method quickly became more widely used, which involves

denaturing the DNA and dividing the mixture into four aliquots, each with a single

dideoxynucleotide lacking the 30 OH group needed for strand elongation. Strand

elongation upon a particular template DNA molecule goes forward until a

dideoxynucleotide becomes incorporated into the growing strand and then is

arrested, resulting in different DNA molecules in the reaction mixture reaching

different lengths before their elongation is terminated. The mixtures of fragments

for the four different nucleotides are subjected to electrophoresis through an

acrylamide gels, visualized through autoradiography, and the DNA sequence is

read directly. Development of a fluorescent labeling technique enabling all four

dideoxynucleotides to be identified in a single lane (Prober et al. 1987) led to the

development of automated DNA sequencers. The system is based on the Sanger

dideoxy chain termination method except that each dideoxynucleotide has a differ-

ent fluorescein dye. The DNA fragments are resolved by polyacrylamide gel

electrophoresis in one filament. Fluorescence is elicited by a laser and detected

by a fluorescence detection system matched to the emission characteristics of the

dye set. The output shows a sequence of fluorescence peaks with different colors for

each nucleotide. Automation of DNA sequencing brought down its cost, opening

the technique to cost-effective application to a wide range of issues and organisms

and to a huge increase in DNA sequence information available. As of June 2017,

approximately 200 million DNA sequences – over 231 billion nucleotides – have

been archived in GenBank (http://www.ncbi.nlm.nih.gov/genbank/statistics/).

Early DNA sequencing efforts targeted organellar genomes due to their small

sizes. Direct sequencing made screenings of mitochondrial DNA much more

powerful than RFLP-based screenings, as much more information became avail-

able. PCR primers annealing to conserved sequences (Kocher et al. 1989; Meyer et

al. 1990; Normark et al. 1991; Meyer 1993) enabled ready sequencing of selected

mitochondrial regions with contrasting mutation rates. For example, after isolating

gDNA from single plucked human hair, Vigilant et al. (1989) used mtDNA

sequence variation to construct a genealogical tree relating Khoisan-speaking

southern Africans to 68 other humans. Results were consistent with an African

origin of human mtDNA and suggested that during hunter-gatherer times, female

lineages moved their home bases very little. Certain regions of animal mtDNA
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evolve at a rate suitable for phylogenetic inference. The mitochondrial sequences of

cattle (Loftus et al. 1994) fell into two distinct geographic lineages – European and

African breeds in one lineage and all Indian breeds are in the other – that did not

correspond with the taurine-zebu dichotomy. The two major mtDNA clades

diverged 200,000 to 1 million years ago, suggesting two separate domestication

events, presumably of different subspecies of the aurochs, Bos primigenius. Lake
Victoria and its satellite lakes harbor roughly 200 endemic forms of haplochromine

cichlid fishes. After sequencing mitochondrial DNA from 14 representative Victo-

rian species and 23 additional African species, Meyer et al. (1990) suggested a

monophyletic origin for the haplochromines within the past million years. Mito-

chondrial DNA sequence data are well suited for application of a molecular

phylogenetic approach to inference of natural history events and identification of

conservation units. Screening sequence variation in the mitochondrial control

region for 151 individuals representing 24 populations of European brown trout

Salmo trutta, Bernatchez et al. (1992) observed monomorphism across all Atlantic

basin populations and high inter-drainage diversity in more southerly populations,

likely reflecting dispersal from different glacial refugia. In animals, mtDNA pro-

vides the basis for DNA barcoding (Hebert et al. 2013; Kress and Erickson 2012), in

which the investigator sequences the cytochrome oxidase I subunit 3 gene and

compares it against reference sequences in a taxonomic database (BOL 2016).

Among many applications, Moran et al. (2015) used DNA barcoding to identify

prey items in the stomach of invasive catfishes in eastern Virginia. While traditional

morphological identification led to species-level identification of 65% of fish prey

items, addition of DNA barcoding resulted in identification to species of 88% of fish

prey items overall, including anadromous striped bass, herrings, and shads that are

the focus of fishery restoration programs in these rivers.

The availability of consensus primers for amplifying genes and introns (Duminil

et al. 2002) has eased screenings of plant mitochondrial DNA. For example, two

polymorphic mitochondrial tandem repeats in the second intron of the nad1 gene of
Norway spruce (Picea abies) showed pronounced population genetic differentia-

tion (Sperisen et al. 2001), with lineage A in north-northeastern and lineage B in

Central and Southern Europe. Building on this work, Tollefsrud et al. (2008) used

fossil pollen data and assessed variation in nad1 among 4,876 trees in 369

populations. Observing 28 mitochondrial variants, patterns of population subdivi-

sion superimposed on interpolated fossil pollen distributions indicated that survival

in separate refugia and postglacial colonization led to significant structuring of

genetic variation in the southern range of the species. Shallow genetic structure

consistent with the fossil pollen data suggested that the vast northern range was

colonized from a single refugium. In the Alps, the diversity decreased over short

distances, probably as a result of population bottlenecks caused by the presence of

competing tree species. Increased genetic diversity north of the Carpathians prob-

ably resulted from admixture of expanding populations from two separate refugia.

Screening for variation in cpDNA has been facilitated by the development of

universal PCR primers by Taberlet et al. (1991), Demesure et al. (1995), Dumolin-

Lapegue et al. (1997), and Hamilton (1999). Often, selected chloroplast sequences
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are amplified and characterized for restriction fragment length polymorphisms.

Using such tools, Palmé et al. (2003) inferred the geographic patterns of postglacial

recolonization of silver birch (Betula pendula), and Palmé et al. (2004) showed

hybridization among the birches Betula pendula, B. pubescens, and B. nana.
Similarly, Heuertz et al. (2004) showed the routes of postglacial recolonization of

common ash Fraxinus excelsior in Europe. Cavers et al. (2003) explained the

observed population structure in Spanish cedar Cedrela odorata in Central America

as the result of repeated colonizations from South American source populations,

first by a dry-adapted type and later by moist-adapted types. DNA barcoding of

plants, which is based on comparing the sequence of the trnL gene of the chloro-

plast (Taberlet et al. 1991) between an unknown sample and a reference database,

has proven useful for many species identification applications. Among them,

Quéméré et al. (2013) used the approach to show that the golden-crowned sifaka,

Propithecus tattersalli, an endangered lemur in Madagascar, exhibits remarkable

dietary diversity, consuming at least 130 plant species belonging to 80 genera and

49 families, suggesting a high flexibility of foraging strategies.

4 SNP Genotyping Arrays

Direct PCR-based DNA sequencing opened the path for new approaches to geno-

mic characterization, most notably for the discovery of single nucleotide poly-

morphisms (SNPs). SNPs are the most abundant and widespread type of

polymorphism in both coding and noncoding regions, and they evolve in a manner

well described by simple mutation models (Vignal et al. 2002). Prior to the

availability of high-throughput sequencing methods (see below), SNPs emerged

as the marker of choice for population genomic studies during the first decade of the

twenty-first century, superseding microsatellites. Many factors caused this transi-

tion. While microsatellites provide high resolution for inference of neutral pro-

cesses (migration, drift, inbreeding), their anonymous nature means that while some

are surely under selection, the a priori expectation is that microsatellites behave

neutrally. A multitude of enzymatic and detection methods were developed early in

the SNP era (Kim and Misra 2007; Kwok 2001), but most were rather labor

intensive and expensive per data point.

While initial efforts to study SNP variation were hampered by being relatively

low-throughput and expensive, genotyping arrays changed this. The original

method developed for humans and termed “variant detector arrays” (VDAs)

involved fixing oligomeric probes (“oligos”) to a glass surface (the “chip”)

(Wang et al. 1998). Similar to gene expression microarrays, VDA oligos were

complementary to a target sequence but differed at a single site, which first was

used to detect the presence of a SNP via changes in hybridization patterns when

biotin-labeled samples were hybridized to the chip. However, it was the application

of this method to known SNPs that would lead to a revolution in the field of

population genomics. While the first report involved typing of only ~500 SNPs,
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two companies – Affymetrix and Illumina – soon developed assays that approached

the genomic scale for the first time. Current high-throughput SNP array platforms

include standard panels for model species (human, Arabidopsis, various crop

species) and can assay up to several million SNPs. Of more interest to population

genomicists are custom solutions, which use the same chemistry as the standard

chips but are designed and fabricated using SNP locations and flanking sequences

for the particular species of interest. While the up-front cost of developing such an

array is typically very high, when large numbers of samples are expected to be

genotyped, the per-sample cost can be quite competitive with sequencing-based

genotyping (see below). An additional advantage is that all assay steps are com-

pleted by a core facility as part of the overall cost of the genotyping effort. While

next-generation library preparation can be completed at the sequencing core, this

adds greatly to the cost of the project.

Early custom array-based genotyping solutions typically contained a few hun-

dred to a few thousand SNPs. One widely used platform was Illumina GoldenGate

(Fan et al. 2003; Shen et al. 2005), which used three oligos per SNP for allele

discrimination: one locus-specific oligo (LSO) and two allele-specific oligos

(ASOs). Each ASO carried one of the possible SNP alleles at their 30 end. Following
solution hybridization of the sample gDNA with these oligos, PCR amplification of

the target loci was carried out, whereby amplification for a given sample/SNP

proceeded using the ASO corresponding to the allele at that locus. The LSO

contained an address sequence that enabled hybridization to the array and subse-

quent imaging and genotype calling. The GoldenGate assay was used extensively in

population genomics to understand patterns of neutral and especially adaptive

genetic diversity across species ranges (Eckert et al. 2009; Holliday et al. 2010;

Loridon et al. 2013; Pavy et al. 2008). At the time, this platform had the advantage

of being relatively inexpensive per data point, scalable, and much less laborious

than previous methods. Recent developments in SNP array technology and appli-

cation have focused on characterizing larger numbers of loci.

The two most widely used genome-scale methods for custom SNP genotyping

are Illumina Infinium iSelect BeadChip (Illumina, Inc., San Diego, CA, USA) and

Affymetrix Axiom (Affymetrix, Inc., Santa Clara, CA, USA). The former allows

for up to 700,000 SNPs and relies on hybridization of fragmented DNA to a bead

array, where each bead contains identical oligos that terminate one base prior to the

expected SNP site. Allelic discrimination is achieved by single-base extension of

the probes using fluorescent nucleotides with subsequent imaging and genotype

calling. The Axiom platform allows up to 650,000 SNP targets and works on a

similar principle. gDNA is fragmented and hybridized to oligomers on the array

that end one base upstream of the SNP site. Instead of single-base extension,

labeled probes complementary to the region including and downstream of the

expected SNP are ligated to the array oligomer and hybridized to the cognate

sample DNA. Two probe types correspond to the different expected alleles, each

having a different fluorescent moiety, and allele discrimination is, therefore,

achieved by respective hybridization of the probe or probes that are complementary

to the sample DNA sequence. Numerous examples of the use of these two methods
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have been reported for non-model species, with a bias toward the Illumina platform

(Faivre-Rampant et al. 2016; Johnston et al. 2014; Lepoittevin et al. 2015;

Malenfant et al. 2015; Pavy et al. 2013, 2016; Plomion et al. 2016; Yanez et al.

2016). Due in part to their economic importance, forest trees and commercially

relevant fish species are overrepresented among these studies. Conversion rates

vary widely and depend on the quality of the data used for SNP discovery and the

stringency of filtering prior to array design. For example, a study in Populus nigra
reported a >90% success rate for a 12k Infinium array (Faivre-Rampant et al.

2016), whereas a study in polar bears (Ursus maritimus) achieved a conversion rate
of ~60% for a 9k array. As most candidate SNPs currently arise from high-

throughput sequencing of discovery panels, understanding the parameters in those

sequencing data that affect conversion is crucial. Goncalves da Silva et al. (2015)

developed an Infinium array for orange roughy (Hoplostethus atlanticus) and found
that standard SNP filtering metrics (e.g., depth of coverage) fail to address system-

atic sequencing errors. Rather, their data show that it is more important to filter for

strand bias, where one allele is overrepresented among sequencing reads, polymor-

phism type (A/C and T/G polymorphisms had especially poor conversion rates),

and the interaction between these two parameters.

5 High-Throughput Sequencing Methods

Genotyping arrays revolutionized our ability to score large numbers of variants in a

cost-effective manner. These methods are still in use where data on a large, fixed

panel of SNPs is desirable. For example, in populations with high levels of linkage

disequilibrium (LD), such as agricultural breeding populations, generating dense,

genome-wide data may be a waste of effort. On the other hand, for natural

populations with low LD, and for which we lack the infrastructure and funding

necessary to develop such arrays, the emergence of high-throughput, sequencing-

based genotyping methods has enabled relatively inexpensive genome-scale stud-

ies. High-throughput sequencing began at the turn of the twenty-first century with

the development of pyrosequencing (i.e., 454) technology (Ronaghi et al. 1996,

1998), followed by the sequencing by oligonucleotide ligation and detection

(SOLiD) (McKernan et al. 2009) and Solexa (sequencing by synthesis; now

Illumina) systems (Bentley et al. 2008). For a variety of reasons – cost, throughput,

error rate, and run time – the Illumina platforms have captured much of the market

at present (though see the section entitled “Emerging Sequencing and Genotyping

Platforms”). We will, therefore, focus this section on sequence-based genotyping

methodologies that make use of Illumina instruments/platforms.
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5.1 General Features of Library Preparation

While there is a great diversity of DNA and RNA library preparation approaches,

with the specific choice depending on the project goals, all share some common

attributes. The first step, in most library preparation protocols, is fragmentation to

achieve a desired insert size range, which may be achieved by physical or enzy-

matic means. The most common method for physical fragmentation is acoustic

shearing with an ultrasonicator (e.g., instruments manufactured by Covaris, Inc.).

While this method yields relatively consistent fragment pools and is not dependent

on template sequence, it can be costly ($5–10 per sample) and require optimization.

Recently, enzymatic fragmentation has gained traction as an alternative to shearing.

This is most apparent in genotyping-by-sequencing (GBS) protocols in which the

genomic DNA is digested with one or more restriction enzymes, giving rise to a

heterogeneous pool of fragments that is subsequently size-selected (see below for

more details). General fragmentation also may be achieved with restriction

enzymes (e.g., NEB Fragmentase) or transposase-based systems (e.g., Illumina

Nextera), with the latter introducing less bias (Picelli et al. 2014). Following

fragmentation, library preparation involves ligation of oligonucleotide adapters to

either end of a pool of DNA fragments. Sequencing adapters serve several func-

tions: (1) they contain sequences complementary to oligos affixed to the Illumina

flow cell, which enables their immobilization on the flow cell for sequencing; (2)

they contain primers both for their amplification prior to sequencing (cluster

generation) and for the sequencing reaction itself (Bentley et al. 2008); and (3)

they frequently contain individual- or population-specific barcodes that allow for

multiplexing within a single flow-cell lane (Fig. 2). More details on adapter design

for specific applications are presented throughout the remainder of this section.

Following adapter ligation, the library is usually amplified by PCR, although

PCR-free protocols do exist (Kozarewa et al. 2009). The number of PCR cycles at

this stage should be limited, as each additional cycle introduces fragments that are

exact duplicates of one another, which can bias SNP calling if one allele is

preferentially amplified. For this reason, PCR duplicates are usually filtered out

Flow cell complement

Sequencing primer

Index

Restriction site

Insert
Insert read primer

Index read primer

A

B

C

D

Fig. 2 Adapter configurations for (a) generic paired-end sequencing (e.g., WGS, RNA-Seq,

sequence capture) with a single separate index reads, (b) paired-end sequencing with dual

barcodes, (c) single-enzyme RAD-Seq, and (d) dual-enzyme genotyping-by-sequencing
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computationally, but this filtering means wasted sequencing effort (only one copy

of each duplicate read is usually retained). Moreover, PCR duplicates can only be

identified when at least one end of gDNA fragments was generated randomly by

shearing or by a non-specific enzyme (in which case, we expect that no two gDNA

fragments will be identical, and when they exist in the data, they must have arisen

due to the PCR step). When dual restriction enzymes are used to fragment the

genome (known as two-enzyme GBS or double-digest RAD-Seq; see below), we

expect multiple exact copies of each fragment to arise from the multiple copies of

each chromosome in the gDNA extraction, and it is not possible to separate these

natural duplicates from PCR duplicates.

At each step of library preparation, it is useful to check the fragment size range

on a digital electrophoresis appliance (e.g., Agilent Bioanalyzer) and is essential

prior to sequencing. Standard gel electrophoresis may be used as a “quick and dirty”

means to assess the success of the ligation and PCR steps, but the higher resolution

of a Bioanalyzer is recommended to estimate the library size range, to determine

whether (and how much) adapter dimers may be present, and to assess the presence

of high-molecular-weight fragments that can bias assessment of the molar concen-

tration of the library. The latter will not interfere with sequencing, but their

presence in the library may lead to underclustering on the flow cell and hence a

reduced data yield. While the Bioanalyzer also can integrate the library concentra-

tion, fluorescence-based methods are generally preferred by sequencing centers

(spectrophotometers are considered inaccurate for this purpose). If fragmentation

and adapter ligation were optimal, as evidenced by a tight Bioanalyzer trace

centered on the desired fragment size, the library should be ready for sequencing

following an appropriate cleanup step, usually with paramagnetic beads. The

rationale behind this approach is that beads are coated with carboxyl molecules,

which bind DNA in the presence of polyethylene glycol (PEG). When placed on a

magnetic stand, the supernatant-containing contaminants can be removed, leaving

only the desired DNA fragments, which are then washed from the beads.

Often the Bioanalyzer reveals a suboptimal fragment size distribution – either

too broad or containing adapter dimers. Shorter fragments, especially adapter

dimers, will preferentially bind to the flow cell (most likely because of their

increased mobility during flow-cell loading relative to larger fragments) and

hence may be overrepresented in the sequence data. A library containing 10%

adapter dimers will yield a disproportionate amount of useless data from these

sequences. Libraries with a faint adapter dimer band yielded upward of 90% of

reads from these sequences (J. Holliday, unpublished data). More generally, the

Bioanalyzer trace also provides precise information on the size distribution of

insert-containing fragments. If skewed toward smaller fragments, a large number

of reads while yielding useable data will also contain adapter sequence, which

means wasted sequencing resources. If the Bioanalyzer trace reveals one or more of

the undesirable properties described above, size selection must be undertaken. It

cannot be emphasized enough that any detectable adapter dimer band is unaccept-

able and will not only cause many reads to be discarded but may result in very little

useable data. While the intuitive (and time-consuming) way to remove large or
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small fragments is through gel extraction, on its own, this approach is unlikely to

remove all of the problematic fragments, unless a polyacrylamide gel is used. One

of the preferred methods is to size using the same magnetic beads used for general

library purification, which can be achieved by adjusting the ratio of beads to DNA.

Higher bead concentrations will capture both large and small fragments, whereas

lower concentrations tend to favor larger fragments (due to the preferential elec-

trostatic interaction between beads and larger DNA fragments that have larger total

negative charges per molecule). The obvious advantage of this approach is that it

can be used (at least in theory) to deplete the library of any adapter dimers revealed

by the Bioanalyzer. However, in practice, it is not always effective. When other

approaches have failed, size selection may be achieved by running the sample on an

automated electrophoresis instrument (e.g., Pippin Prep, Sage Science, Inc.), which

has the ability to target a narrow range of fragment sizes with much greater

specificity than conventional gel extraction.

5.2 Library Strategies: Length, Sequencing Mode, and
Multiplexing

The original Solexa sequencing strategy involved generating 35-bp reads from only

one end of each fragment, with a single biological sample in a single lane. While

many applications still rely on one or more of these parameters, it is more common

to see some combination of longer reads, paired-end sequencing, and multiplexing

in a single lane. We will consider each of these options in turn and their use for

different applications. Current single-end read lengths for Illumina instruments

vary between 36 and 300 bp depending on the instrument, with run times and

cost scaling proportional to length. While it may appear obvious that longer is

better, longer read length is more costly and may not be necessary. The 36-bp read

length is clearly all that is needed for small RNA (21–24 bp in length) expression

studies. For transcriptome studies in which counting transcripts (differential expres-

sion) is the objective, single-end 36-bp read lengths remain a cost-effective option.

However, single-end reads do not provide information on alternative splicing and

may not be sufficient to uniquely map transcripts arising from tandem or whole-

genome duplication events. Paired-end sequencing (Korbel et al. 2007), in which

sequences are sequentially read from each end of the insert, is the method of choice

for gDNA and also frequently used for transcriptomics (Fullwood et al. 2009).

Sequencing both ends of fragments that are typically 300–500 bp in length enables

more precise read mapping (where a reference genome or transcriptome exists) and

de novo assembly (where a reference is unavailable). Both the forward (read 1 or

R1) and reverse (read 2 or R2) reads from each cluster on the flow cell are

synchronized in the resulting data file, and this information can therefore be used

to constrain their mapping/assembly. For example, if library insert size ranges from

300 to 500 bp, the software used for mapping/assembly will only allow a given read
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pair to be placed within this approximate distance from one another. This strategy

allows for efficient assembly of contiguous regions (e.g., genes) or even whole

genomes (although for eukaryotes, shotgun sequencing is much more involved and

beyond the scope of this chapter). Paired-end sequencing also enables mapping of

splice junctions for transcriptome studies and can resolve structural genomic

variation in some cases.

While some experiments, particularly whole-genome sequencing/re-sequencing,

call for including only a single sample in each flow-cell lane, the high output

currently available means that most population genomic experiments entail

multiplexing. In a multiplexed run, each sample is prepared separately with one

or two unique 4–8-bp barcodes (also called indexes) prior to pooling. Information

from these barcode sequences enables bioinformatic demultiplexing. Barcode loca-

tion depends on the type of experiment, with several options available. Library kits

sold by Illumina and other manufacturers place the barcode upstream of the

sequencing primer for R1, and these sequences are read in a separate index read.

In recent iterations, there may be dual barcodes, one on each adapter, which enables

more precise demultiplexing and fewer reads lost due to barcode sequencing errors.

In some cases, particularly for custom GBS adapters, barcodes may be placed

downstream of the sequencing primer, in which case the first 4–8 bp of R1 provide

the sample information for demultiplexing. This approach has the disadvantage that

a small amount of data on R1 is lost to sequencing of the barcode. Besides barcode

position, an important consideration is the base composition of the barcodes. The

Illumina imaging software tends to get confused by stretches with high GC content,

in situations where many clusters are signaling the same base, and by homopolymer

runs (the same base repeated multiple times). Commercial barcodes are designed

with these considerations in mind, but if ever there is cause to design custom

barcodes, these constraints must be accounted for – it is not as simple as generating

a random list of 4-bp oligonucleotides. One consideration specific to GBS and

inline barcodes is that the first sequence read after the barcode is the restriction site

that generated the fragment. If the barcodes are all the same length, then every

cluster will be reading the restriction site in the same sequencing cycle. To avoid

this, it is advisable to use barcodes of heterogeneous length so that different clusters

reach the restriction sites at different points in the run.

The number of samples that can be multiplexed in a single lane depends on the

expected throughput of the sequencer. To determine an appropriate “plexity,” the

amount of data provided by the sequencing instrument and chemistry to be used is

divided by the product of the desired coverage depth (e.g., 15 or 30X) and the

cumulative length of the DNA fragments in the sample. For example, on an

Illumina HiSeq 2,500 with version-four chemistry in high-output mode, approxi-

mately 200 million reads are expected per lane. For an RNA-Seq experiment, for

example, in a species with a transcriptome comprised of 50,000 unique transcripts,

with an average length 1,000 bp, we have 50,000,000 bp of unique sequence data to

be gathered per sample. For a single-end 125 bp run, we expect approximately 25

billion bases of data (200,000,000 reads � 125 bp). We can therefore theoretically

expect ~500X coverage of the transcriptome (25 billion divided by 50 million) if we
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place a single sample in this lane. If we would like 30X coverage of our

transcriptome per sample (a reasonable target), we could place 16 samples in a

single lane (500/30). Of course, highly heterogeneous coverage depth, as a result of

natural variation in the abundance of each transcript, is expected for transcriptome

studies. It should be noted that for expression studies, we would not multiply the

output of the sequencer by two for paired-end sequencing, because while R2 is

useful for read mapping and splice variant detection, it does not give additional

information about transcript abundance, since it is read from the same transcript as

R1. For gDNA, we would multiply the output by two for paired-end sequencing,

since the goal is to generate sufficient coverage for a given cohort of gDNA

fragments (rather than to assess the abundance of those fragments). When estimat-

ing plexity levels, we usually discount the data output somewhat to allow for

possible underclustering or a greater number of low-quality reads than expected.

In the example above, we might conservatively multiplex 12 samples in a lane. This

calculation works well for RNA-Seq because we generally know, or can make an

educated guess, as to the cumulative length of the transcriptome. Whole-genome re-

sequencing is similarly straightforward when we know the total size of the genome

(which would generally also be the case). For GBS, which we discuss in detail

below, the number of fragments expected can be somewhat nebulous. With a

reference genome, we can scan for the relevant restriction sites and count the

number of fragments that are expected to fall within our library size range. This

would give an upper limit on, but would probably overestimate (perhaps substan-

tially), the complexity of the sample due to variation in how efficiently the enzyme

cuts in different areas of the genome or if a methylation-sensitive enzyme is used.

Hence, it is often useful to do a test run to empirically estimate a reasonable level of

multiplexing.

5.3 Genome Complexity Reduction

Many strategies have been developed in recent years to generate reduced represen-

tation libraries. These genome complexity reduction (GCR) methods fall into two

general categories, those based on digestion of genomic DNA with restriction

enzymes and those based on capture of desired gDNA fragments with synthetic

baits. Each method has advantages and disadvantages, which are summarized in

Table 1. In general, restriction enzyme-based methods – restriction site-associated

DNA sequencing (RAD-Seq) and genotyping-by-sequencing (GBS) – are relatively

inexpensive but do not allow for target selection and often result in much

missing data, while sequence capture is more costly but allows for target selection

and usually yields more complete datasets with less missing data. A summary of

the laboratory workflows associated with each of these techniques is illustrated in

Fig. 3.
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5.3.1 Restriction Enzyme-Based Methods

Numerous approaches to GCR using restriction enzymes have been reported. The

original method, RAD-Seq (Baird et al. 2008), involves single-enzyme digestion of

gDNA followed by shearing and purification of a particular fragment size range

from the digested DNA. The subset of the genome thus sequenced includes

fragments of a particular size (usually 300–500 bp) that are flanked on one end

by the enzyme cut site, with the other end the result of the random shearing process.

The library is then further enriched using custom adapters that complement the

restriction site sequence. The complexity of the fragment pool depends on the

frequency with which the enzyme cuts, which is determined by the length of

recognition site and other properties of the enzyme (methylation sensitivity, star

activity). Enzymes with a 4-bp recognition sequence will cut much more frequently

than 5-bp cutters. The pool may be enriched for euchromatic (i.e., genic) sequences

through the use of a methylation-sensitive enzyme that does not cut highly meth-

ylated gDNA (i.e., the heterochromatin). This strategy is related to the AFLP

method described in the previous section, with the obvious difference being that

the fragments are sequenced rather than scored by size on a gel. Indeed, the

similarity between the patented AFLP technology and GBS has led the United

States patent office to grant sole rights to the GBS procedure to Keygene Inc. At

Table 1 Summary of library preparation methods relevant to population genomics

Method Cost Advantages Disadvantages

Whole

genome

re-sequencing

$$$

$

Full genome coverage; possibility

to reconstruct full haplotype space

Costly, especially for large

genomes; much greater computa-

tional resources needed

Sequence

capture

$$$ Reliable coverage of target

regions; typically recovers adja-

cent regions

High cost relative to enzyme-based

methods

RAD-Seq $$ Relatively inexpensive, though

shearing increases per-sample

cost relative to GBS

Missing data; inability to target

particular areas of the genome

Genotyping

by

sequencing

$ Low cost Missing data; inability to target

particular areas of the genome

RNA-Seq $$ Relatively inexpensive, though

more costly than GBS if com-

mercial kits used

Missing data due to differential

abundance of transcripts; allele-

specific expression may bias SNP

calling

Genome

skimming

$$ Inexpensive option for whole-

genome coverage

Individual genotype calling may be

inaccurate in wild species with low

LD

Pool-Seq $ Inexpensive option for whole-

genome coverage; accurate allele

frequency estimation for

populations

Individual genotypes not resolved
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Restriction
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Heat or 
enzymatic

Genomic DNA or mRNA

Fig. 3 Illustration of laboratory procedures involved in each genome complexity reduction

technique discussed. Each method begins with some form of fragmentation in order to achieve

the appropriate size range of DNA fragments for sequencing (usually 300–500 bp). In the case of

GBS and RAD-Seq, fragmentation with one or two selected restriction enzymes also provides the

means of reducing genome complexity when combined with size selection. Following fragmen-

tation, all protocols involve adapter ligation, which may include multiplex indexes. In the case of

sequence capture, there is one additional step – hybridization to synthetic baits and subsequent

wash steps to remove unbound (nontarget) fragments. Finally, size selection is usually required to

remove adapter dimers. In the case of GBS/RAD-Seq, size selection is also integral to the method,

as it removes the many fragments of undesirable sizes, leaving only those of in the desired range

that were flanked by one or more enzyme cut sites. Following size selection, visualization of the

finished libraries is essential to ensure the correct size range has been achieved and there is no

evidence of adapter dimers
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present, the use of the GBS method requires a license from Keygene, though it is

unclear if this applies to academic laboratories. GBS yields two types of poly-

morphisms. The first are presence/absence variants, in which the restriction site

itself is polymorphic. These variants are dominant in the same way as AFLP

fragment patterns are dominant. In addition, the sequenced gDNA fragments

yield all of the usual types of sequence-based, codominant markers (SNPs, indels,

etc.), which in many cases are the only variants used in downstream analyses.

Numerous elaborations of the RAD-Seq principle have been developed. The

most widely used among these are GBS (Elshire et al. 2011) and double-digest

RAD-Seq (ddRAD) (Peterson et al. 2012). GBS involves no shearing and only a

single enzyme, which leads to lower-diversity libraries (i.e., only fragments of a

certain size flanked by the enzyme site are sequenced) that may be desirable in

some applications. An advantage of ddRAD over conventional RAD-Seq is that no

shearing or end repair is required, which reduces library development costs. As

noted above, multiplexing levels for restriction enzyme-based methods generally

need to be determined empirically. Many investigators have had success placing up

to 96 samples in a single flow-cell lane. The advantage of starting here is that useful

data will be obtained even in the event that coverage depth is insufficient at this

level of plexity. If such a test run indicates that fewer samples must be included per

lane (e.g., 48), the original library may be sequenced a second time to provide an

equivalent amount of data as two 48-sample runs, and the rest of the samples then

can be processed as 48 plexes.

GBS and RAD-Seq have become a mainstay of population genomic studies

across a wide variety of taxa, largely due to their flexibility and cost-effectiveness

(Gagnaire et al. 2013; Pascoal et al. 2014; Rheindt et al. 2014; Sobel and Streisfeld

2015). However, these methods have some limitations. The random nature of the

gDNA fragmentation process means that while a large number of variants may be

genotyped (typically 5,000–100,000), many fragments will arise from intergenic

regions not under selection. For species with reference genomes, or where there is a

reference genome for a closely related species, the GBS fragments can be posi-

tioned, and their relationship to genic regions that may be under selection can be

ascertained. However, GBS data frequently are generated for species that lack a

reference genome, and de novo assembly of such data, while possible, means that

the markers remain anonymous. In these situations, GBS may be better suited to

questions about neutral than selective processes. An additional issue with enzyme-

based methods is missing data, which may arise due to polymorphic restriction sites

that yield a fragment in some samples but not others, as well as due to insufficient

depth of coverage (Fig. 4). The latter can be overcome with more sequencing, but

the former cannot. It is not uncommon to see 90% or more of SNPs called from a

GBS dataset lost even with relatively liberal filters for missing data, quality, and

depth of coverage filters, and few SNPs typically remain where a complete dataset

is required. One way to overcome this limitation is by imputing missing data

(Browning and Browning 2016; Scheet and Stephens 2006), which may or may

not be successful depending on the haplotype structure of the population. Care must

be taken when imputing data, because a complete dataset will be output from the

relevant software, but the accuracy may be low and can only be ascertained
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empirically, for example, by masking a subset of known genotypes, imputing them,

and comparing the genotypes called by the software with those known from the

sequencing run. A better way to assess the accuracy of imputation is to use a

reference panel of known SNPs ascertained by other means (e.g., a SNP array)

and to similarly compare the known and imputed genotypes (Li et al. 2009). While

this is sometimes possible, such reference panels are not usually available for non-
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Fig. 4 Illustration of the missing data problem for genotyping-by-sequencing/RAD-Seq. In this

experiment, libraries for 96 samples from an American chestnut (Castanea dentata) breeding
program were prepared using two restriction enzymes, a common cutter (MspI) and a rare cutter

(PstI). Shown are the number of SNPs retained at various minor allele frequency (MAF) and

missing data cutoffs. For missing data, three thresholds were tested, corresponding to a maximum

of 90, 50, and 10% missingness across samples for a given SNP (J. Holliday, unpublished data).

Very few SNPs remained when the most stringent cutoff of <10% was used. The biological

samples for this experiment were a multigenerational pedigree that arose from an initial hybrid-

ization event between American chestnut and Chinese chestnut (Castanea mollissima), which was
aimed at introgressing alleles for resistance to Cryphonectria parasitica from Chinese chestnut.

The progeny of the initial cross was backcrossed over three generations to American chestnut and

subsequently intercrossed for two generations. The resulting high linkage disequilibrium in this

pedigree enabled a relatively high degree of accuracy in the imputation of missing genotypes. This

was assessed by randomly masking known genotypes and subsequently using Beagle software

(Browning and Browning 2016) to impute these masked genotypes. In this case, accuracy of

imputation was considered acceptable (~90%) for sites with <50% missing data. This illustrates

that while missing data is a significant problem for GBS and related genotyping approaches, the

genetic characteristics of the population can in some cases mitigate this issue

106 J.A. Holliday et al.



model species of interest to population genomicists, at least not for the same SNPs

assayed in the GBS experiment. In spite of these limitations, enzyme-based library

preparation and sequencing methods are an attractive approach where funding is

limited and can yield a reasonably complete dataset comprising thousands of SNP

loci at a fraction of the cost of array-based genotyping.

5.3.2 Sequence Capture

Sequence capture is an alternative method for GCR that involves identifying

regions of interest, synthesizing complementary oligonucleotide baits (usually

60–120 bp), and using these baits to retrieve the genomic intervals of interest

through hybridization. While GBS can provide a reasonably complete dataset of a

few hundred to a few thousand SNPs at a relatively low cost, sequence capture

offers a number of advantages that make it the method of choice for GCR, in our

view. The original sequence capture method involved immobilizing the baits on a

glass slide, similar to early gene expression microarrays, hybridizing fragmented,

adapter-ligated gDNA to those fixed baits, and subsequently eluting the captured

fragments prior to sequencing (Hodges et al. 2007; Okou et al. 2007). The micro-

array method of capture was soon superseded by solution capture (Gnirke et al.

2009), which is more flexible in that array synthesis is not required. As all available

platforms have moved toward solution capture, we hereafter focus on this

technology.

The first step in a hybrid capture study is bait design. The nature and number of

baits are determined by the research question and may include a few genes or

genomic intervals (Nadeau et al. 2012), a broad selection of candidate genes

(Hebert et al. 2013), or the entire gene space (known as the “exome”) (Evans et

al. 2014a; Suren et al. 2016; Zhou and Holliday 2012). The usual process is to

identify regions of interest, which may be genomic intervals (where a reference

genome is available) or a cohort of sequence files, either from shotgun genome or

RNA sequencing. The primary companies that synthesize capture baits are Agilent

(Santa Clara, CA, USA) and NimbleGen (Madison, WI, USA), and each uses

proprietary software to determine exact bait positions relative to the sequence to

be captured. These software packages provide a score based on the likelihood that

capture will be successful. Because the capture hybridization is highly multiplexed,

there is a trade-off between matching the melting point of the different baits as

closely as possible and exclusion of desired targets on this basis. Hybridization

conditions must be fairly relaxed to allow for this variation, but not so lenient as to

encourage non-specific hybridization. Bait length factors into this specificity, and

the two companies have different strategies in this regard. Agilent designs baits of a

fixed length, 120 bp, whereas NimbleGen allows some variation in length to enable

design for a greater number of target regions. The problem with the latter strategy is

that short baits are more likely to hybridize with off-target regions of the genome

(Kiialainen et al. 2011; Suren et al. 2016). Off-target hybridization is not a problem

as long as the resulting data can be accurately mapped back to the reference
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sequence, but it does introduce additional targets for sequencing that will affect

mean coverage if not accounted for in the multiplexing strategy. Another issue that

arises in bait design particular to species without quality reference genomes is the

presence of unknown intron-exon boundaries. Neves et al. (2013) designed baits for

capture in loblolly pine (Pinus taeda) prior to the completion of the reference

genome and found that as baits became more centered on subsequently identified

intron-exon boundaries, coverage decreased dramatically. While ignorance of these

splice junctions does not make sequence capture impossible, it does result in wasted

resources in terms of bait synthesis. The effects of designing an exome capture

experiment for species with and without a high quality reference genome are

illustrated in Fig. 5.

The issues of off-target hybridization and bait overlap with intron-exon bound-

aries illustrate another important point about sequence capture more generally:
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Fig. 5 Comparison of exome capture in black cottonwood (Populus trichocarpa) (Zhou and

Holliday 2012) and interior spruce (Picea engelmannii x glauca) (Suren et al. 2016). Black

cottonwood has a high quality and well-annotated reference genome (Tuskan et al. 2006), which

was used to design baits around most exons and regions immediately upstream of genes. By

contrast, at the time of bait design, no reference genome existed for interior spruce (though a draft

genome has since been published (Birol et al. 2013)). Shown are cumulative distributions of

sequencing depth for on-target data (arising from designed bait regions), near-target data (that

mapped within a few hundred base pairs of a bait), and off-target data (not proximal to any

designed bait). Dashed lines illustrate the percent of target regions covered at 10X sequencing

depth and show much better recovery and sequencing of target regions for cottonwood than for

spruce. Almost 90% of targeted bases are covered at 10X or greater depth in cottonwood, whereas

for spruce only ~50% of targeted bases are covered at 10X or greater depth. Each of these

experiments comprised nearly the full exome for the respective species, with 16 samples pooled

in each lane of an Illumina HiSeq instrument. The black cottonwood example is adapted from data

reported in Zhou and Holliday (2012), and the interior spruce example is adapted from Fig. 1 of

Suren et al. 2016.
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mismatches are to some extent tolerated. This feature has several implications.

First, paralogous genes (i.e., genes related by descent from a common ancestral

DNA sequence) are likely to be simultaneously captured with baits designed for just

one of the paralogs. Where tandem or whole-genome duplication has led to

significant levels of paralogy in the study species, this fact needs to be considered

in the multiplexing strategy. Off-target capture varies depending on the platform

and species but should be assumed to comprise between 10% (for exome capture in

species with well-curated reference genomes) and 50% or more (for species lacking

a reference genome or with significant paralogy issues) of the completed library.

The second way that mismatch tolerance manifests itself is in what we might call

“near-target” capture. Near-target capture involves hybridization of a bait to a

gDNA fragment, which arose through random shearing, comprised of both the

target sequence and flanking sequence. Studies routinely find near-target capture up

to ~200 bp from the nearest designed bait and in some cases more than that (Suren

et al. 2016; Zhou and Holliday 2012). In the case of exome capture, for example,

where baits are designed only for coding regions, near-target data may include

introns, untranslated regions (UTRs), and regions up- or downstream of UTRs.

How can a 120-bp bait capture gDNA >200 bp from the nearest target sequence?

The random process of shearing yields diversity in the length of gDNA fragments as

well as diversity in how much target sequence each contains. Shearing to mean

fragment size of 300 bp will yield some fragments >500 bp. When one of those

500-bp fragments contains the 120-bp target sequence, it is possible that it will be

captured in spite of its long, unpaired “tails.” Although truly off-target capture may

provide useful data, it is generally considered undesirable due to the sequencing

effort that is used for regions that were not designed to be part of the study.

However, near-target capture can prove an advantage. If the goal is to capture

ecologically relevant variation, which may reside in regulatory regions of introns,

UTRs, or promoters, capturing those regions without specifically targeting them

reduces the overall cost of the study (i.e., as the number of baits required increases,

so does the cost). We specifically took advantage of this outcome in revisions to an

exome capture bait design that first was used in a test for a few dozen samples and

subsequently for several hundred. Based on the results from the first cohort, we

strategically left gaps between baits of between 100 and 200 bp under the assump-

tion that those regions ultimately would be captured in spite of not having been

specifically targeted by baits, which worked well (Holliday et al. 2016; Zhou and

Holliday 2012).

The final consideration in the context of mismatch tolerance lies at the interspe-

cific level. Baits designed for one species are not solely useful for that species but

also for related species. This fact has been leveraged extensively in the realm of

phylogenomics, where baits for relatively conserved genes have been used for

capture in multiple species, even across relatively deep evolutionary divergences.

While such studies require a careful selection of a limited number of slowly

evolving regions of the nuclear or, more often, organellar genomes, capture of

more diverse targets can be successfully achieved in closely related species. For

example, a study in the spruce and pine genera yielded reasonably complete
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datasets in spite of several million years of intrageneric divergence (Suren et al.

2016). Alternatively, where the species of interest does not have a reference

genome, but a congener does, baits may be designed for the congener and used in

capture of gDNA for the focal species. Congeneric exome capture works reason-

ably well for divergence times up to a few million years at least, and there is often

very little difference in the efficiency of capture between the species for which the

baits were designed and congeners that are closely related.

With an appropriate bait design and synthesis completed, sequence capture

library preparation involves many of the same steps as other methods, including

fragmentation of gDNA, ligation of adapters, and amplification. Of course, the

primary difference is the hybridization itself, which usually involves incubation in a

thermocycler at an appropriate annealing temperature (usually ~65�C) for several
hours. One key consideration in this context is whether to pool different samples

before or after the capture hybridization step. The original solution-based hybrid-

ization protocols called for pooling after capture, which obviously increases the

sample-handling burden. This approach also gave the bait provider greater control

over pricing per sample. Today, pre-capture pooling is common. In the case of

Agilent, pricing is still on a per-sample basis but assumes pooling of 12–16 samples

in a single hybridization. Other providers leave the degree of multiplexing up to

individual labs, although they may provide guidance. We have had good results

pooling up to 16 samples in each exome capture (Zhou et al. 2014), which also

happens to be a reasonable number to multiplex in a single flow-cell lane for exome

re-sequencing. However, much greater levels of multiplexing are possible. For

example, a study in humans pooled 96 samples in a single capture when a small

number of gDNA targets were used (Neiman et al. 2012). The success of such high

levels of multiplexing depends on careful quantification of the individual samples

prior to pooling such that the bait:target ratio remains constant across samples.

Pooling such a large number of samples into a full exome capture would seem to be

advantageous in terms of cost even though the resulting library would need to be

sequenced several times (since a single lane would not yield sufficient coverage).

However, it is likely that competition/interference between baits and targets in such

a complex hybridization enforces limits on the number of samples that can be

pooled prior to capture. Moreover, the physical number of baits in a given aliquot of

the bait library may be limiting, although to our knowledge it is not possible to

calculate this stoichiometry (i.e., the information is proprietary). We are not aware

of any systematic studies that have investigated the limits of multiplexing for

exome capture across the different platforms, though it is likely to exceed the 16-

sample “rule of thumb” noted above. Such a study would have tremendous practical

value.

5.3.3 RNA Sequencing as “Natural” Genome Complexity Reduction

Given the trade-offs for GBS and sequence capture noted above, one wonders that

RNA-Seq is not more widely used in population genomics as a way to gather
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sequence data from the areas of the genome of most interest, the gene space. While

RNA-Seq has some of its own issues from the perspective of exome-wide variant

discovery, it is an underutilized tool in this context (De Wit et al. 2012). The

obvious advantage of sequencing cDNA is that it provides information on coding

regions of the genome without the need for synthesis of expensive baits and the

associated hybridization step. Baits are expensive, and while commercial RNA-Seq

library kits are also costly, the component reagents lend themselves to design of

custom kits that lower the price significantly. The main difference between

sequencing gDNA compared with RNA is the necessity to deplete the latter of

highly expressed ribosomal RNA. Fortunately, mRNAs have a natural molecular

tag, the poly-A tail, which has been used for decades as a means to separate mRNAs

from ribosomes. Poly-A isolation tends to be the most expensive step in custom

RNA-Seq protocols. The current approach typically employed involves oligo-dT-

bound magnetic beads, which are available from several providers (e.g., Dynabeads

from Thermo Fisher and Oligo d(T)25 Magnetic Beads from New England Biolabs).

Because mRNA is labile, fragmentation can be achieved simply by the application

of heat (85–95�C) for a few minutes, which can be folded into the reverse tran-

scription reaction to produce cDNA (Hou et al. 2015). With custom-synthesized

adapters, coupled with the above methods, it is quite possible to put together an

RNA-Seq protocol that costs ~$20 per sample (perhaps even less). By contrast, the

list price of the NEXTflex RNA-Seq Kit (Bioo Scientific; one of the best values

currently) is more double than that. Although RNA-Seq for variant genotyping has

the advantage over GBS in that it targets the gene space and an advantage over

sequence capture in that it is less expensive, there are limitations. The most

important of these is the heterogeneity of the transcriptome. Natural abundance

varies among transcripts over several orders of magnitude, and the composition of

the transcriptome varies across tissues and over time. For these reasons, it is

advisable to capture the widest variety of tissues and conditions possible where

the goal is exome-wide coverage. In spite of this, some transcripts will comprise a

much greater proportion of the library than others, which presents two issues. First,

highly abundant transcripts will be disproportionately represented on the flow cell,

which means wasted sequencing effort. On the other hand, some transcripts will be

present at such low levels that they may be sequenced at a depth insufficient for

variant calling. Nevertheless, each method for GCR carries trade-offs, and RNA-

Seq is probably underutilized in population genomics to gain genotype data on

coding regions of transcripts that are reasonably abundant and whose abundance is

reasonably consistent across genetic backgrounds.

5.4 Whole-Genome Sequencing and Re-sequencing

The GCR methods described above represent the vast majority of population

genomic studies reported to date and reflect the relatively high cost of simply

sequencing the entire genome of a focal population. While whole-genome

Genotyping and Sequencing Technologies in Population Genetics and Genomics 111



sequencing (WGS) has been used in a few cases for population genomics (Evans et

al. 2014b; Jones et al. 2012; Soria-Carrasco et al. 2014), it is unlikely to become

common, at least at high coverage depth, using sequencing platforms currently

available. While the cost per base pair of sequence data has dropped precipitously

since the emergence of the Solexa technology, recent iterations of sequencing

chemistries and instruments have flattened this curve somewhat. As such, we do

not see the price of whole-genome sequencing becoming comparable with that of

genome complexity-reduced libraries, although this calculus depends on the size of

the genome under study. Many species of ecological interest have genome sizes that

exceed 1 Gb, and for such species WGS is currently vastly more expensive than

GBS and somewhat more expensive than sequence capture. On the other hand, if

one is fortunate enough to be interested in a species with a genome size on the order

of a few hundred Mb, WGS is a viable option (still much more expensive than GBS

and RNA-Seq, comparable to exome capture when done according to manufacturer

specifications, although see above). For species that fall in the >1 Gb category, or

where true genome-wide data is desired but funds are limited, other options exist.

These generally fall into two categories: genome skimming and pooled sequencing.

Genome skimming involves individually barcoding samples and sequencing them

to low average depth (e.g., 1X), which yields a very incomplete dataset (an average

depth of 1X leaves many bases unsequenced in each sample) (Straub et al. 2012).

However, such missing data can be overcome using advanced probabilistic bioin-

formatics approaches (Buerkle and Gompert 2013), particularly in populations with

high linkage disequilibrium. The other option, pooled sequencing, involves forgo-

ing individual barcoding. Instead, the goal is to sequence entire populations to a

reasonable depth (Schlotterer et al. 2014). In this case, individual genotypes are not

resolved, but accurate population allele frequencies may be obtained. As population

allele frequencies are the basis for many downstream analyses, this approach is of

use where the population is the ecological unit of interest. This approach has been

applied to a number of systems (Christe et al. 2016; Fabian et al. 2012; Fischer et al.

2013; Kofler et al. 2012). For example, a study in white poplar (Populus alba) and
European aspen (Populus tremula) scored approximately eight million SNPs from

pools of 24 samples and used these data to infer demographic history (Christe et al.

2016). Importantly, results from the demographic models were similar to those

inferred from RAD-Seq data, which showed that the Pool-Seq method is robust.

Theory and software tools are emerging to handle Pool-Seq data (Boitard et al.

2012; Kofler et al. 2011, 2016a, b), and we expect this method see extensive use in

the coming years.

6 Emerging Sequencing and Genotyping Platforms

The introduction of commercially available high-throughput sequencing platforms

in 2005 led to a boom in the amount of sequence data and drastically reduced costs.

Concordant with the precipitous decline in per-base sequencing costs is an
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exponential increase in the ability to conduct population genomic studies in model

and non-model systems. For example, the Illumina platform provides an unparal-

leled ability to generate informative markers from natural populations with little to

no preexisting genetic/genomic information, at very low cost. Along with these

advances, however, come new challenges: the shorter read lengths (35–700 bp)

limit inference by restricting analyses to smaller variants and also introduce biases

in the sequence data (Benjamini and Speed 2012). Additionally, de novo genome

assemblies are often more fragmented and gapped than those generated using older

approaches (Lee et al. 2016). Thus, the biggest innovations in sequencing technol-

ogy are platforms/techniques that cost-effectively generate reads in the range of 10–

100 kb, enabling the discovery of novel variants, improving the accuracy of

sequence capture, and expanding the ability to uncover variation in non-model

systems.

6.1 Illumina

Illumina offers a wide range of sequencing by synthesis (SBS) applications with the

throughput and turnaround time tuned to applications. Sequencing across these

systems proceeds through clonal amplification of DNA fragments containing adap-

tor sequences and reversible dye termination (for a detailed review, see (Bentley et

al. 2008). The available suite of sequencers, MiniSeq, MiSeq, NextSeq, HiSeq, and

NovaSeq (released in 2017), can generate from 7.5 to 6,000 Gb of data in as few as

4 h to 4 days, respectively. The benchtop sequencers MiniSeq and MiSeq range in

data output (7.5–15 Gb) and read length (150 and 300 bp); these systems are best

suited to small genomes (microbe, virus) and targeted sequencing (including

microbiome 16S sequencing on the MiSeq). The other benchtop system, NextSeq,

produces up to 120 Gb in 30 h and is particularly well suited to exome sequencing

and whole-transcriptome sequencing (from simple experimental designs). Perhaps

the most well-known system, HiSeq, is also the most versatile offering a rapid run

mode on the 2,500 where ca 50 Gb can be generated from a two-lane flow cell in

about 7 h, providing a great cost/turnaround time balance for genotyping-by-

sequencing applications. For re-sequencing, pooled sequencing, RNA-Seq, or

large (to very large)-scale reduced representation designs, the HiSeq 4,000 can

generate up to 1.5 Tb of data from an eight-lane flow cell in just under 4 days, and

the emerging system NovaSeq promises to deliver even more ca. 6 Tb in just 3 days.

In addition to these systems, in 2012, Illumina acquired a synthetic long-read

technology, Moleculo – now called TruSeq Synthetic Long Read. In this library

preparation approach, fragments up to 10 kb are sheared, cloned, and uniquely

barcoded for short-read sequencing. The short reads are assembled into synthetic

long reads or fragments based on barcode clustering. The diversity of systems, input

flexibility, throughput, and very low error rate make Illumina the most cost-

effective and widely used sequencing platform (Reuter et al. 2015).
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6.2 Pacific Biosciences

The single molecule real-time (SMRT) sequencing strategy was one of the first

long-read platforms commercialized (Pacific Biosciences) and exploits a strand

displacing polymerase to sequence the same molecule multiple times generating a

clone-free, circular consensus sequence (Travers et al. 2010). This approach

improves accuracy and reduces biases associated with cloning-based approaches

(e.g., GC bias in Illumina-derived data); thus PacBio error is random. The heart of

this platform is the SMRT cell which contains the 1 � 10–21 L (zeptoliter) zero-

mode waveguide (ZMW) wells (Goodwin et al. 2016). On the RSII system, each

SMRT cell contains 150,000 wells generating ca. 1 Gb per cell, whereas cells for

the recently introduced Sequel system contain 1,000,000 wells generating ca. 8 Gb

per cell. Both systems produce mean read lengths that are typically>14 kb, but read

length is a log normal distribution such that there are few very long reads (up to

100 kbp) and many reads �14 kb. This read distribution and a high error rate

relative to Illumina (Berlin et al. 2015) require relatively high coverage for accurate

genotyping (>25X). As more Sequel systems become available, the cost of gener-

ating sufficient coverage with only PacBio reads is falling; however, hybrid

approaches using Illumina short reads for error correction are quite cost-effective

(Lee et al. 2016). The power of using long reads to uncover important variation was

recently demonstrated via exome sequencing of uncharacterized regions of the pine

genome (Neves et al. 2013). In this study, long reads were used to improve the

accuracy of de novo assemblies for the targeted exome sequences, resulting in

better capture of full-length regions, and reduce complexity resulting from high

levels of heterozygosity.

6.3 Oxford Nanopore

Since introducing the MinION in early 2014, Oxford Nanopore Technologies has

emerged as a leader in commercializing nanopore sequencing. Like the SMRT cells

for PacBio, nanopore sequencing relies on cells with hundreds of microscopic

wells; only at the center of these wells are synthetic bilayers with enmeshed

biologic pores (Wang et al. 1998). Also like PacBio, the reads are “single molecule”

so a distribution of read lengths is generated from 6 kb up to >60 kb and error rates

are high (reported rates range from 4 to 15%). The MinION system is a very

compact unit (about the size of an eyeglass case) with a USB adaptor that connects

to a laptop making the unit extremely portable; however throughput remains low at

ca. 5–10 Gb flow cell. This low throughput, combined with high run failure rate and

high error rate, has limited adoption of this platform. The development of a

benchtop system, PromethION, which is a cluster of up to 48 flow cells, can

generate 240–480 Gb, in a footprint no larger than a business class desktop. The

small footprint, library simplicity, read lengths, and speed of data acquisition
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suggest that this platform will find a niche. Indeed, the portability of this unit was

instrumental in determining population structure among Ebola strains during an

outbreak (Quick et al. 2016).

6.4 10X Genomics

A synthetic long-read system like TruSeq from Illumina, 10X Genomics, adds an

encapsulating system (GEM) and retains very large fragments (100 kb) within a

micelle for barcoding. This approach however requires an additional microfluidic

device in addition to the underlying sequencing (for a review, see Goodwin et al.

2016). While this approach generates long reads with very high accuracy, it is with

a higher cost, one that is commensurate with that of true long reads at sufficient

depth for similar accuracy (Lee et al. 2016). This system has already been used in a

hybrid approach combining with a true long-read platform for error correction and

novel variant discovery (Mostovoy et al. 2016). A distinct advantage of this system

is the potential for cell sorting and single-cell sequencing, particularly single-cell

RNA-Seq via the Chromium™ Single Cell Controller, enabling the comparison of

populations of cells.

7 Future Perspectives

With an expanding repertoire of sequencing platforms and the precipitous decline

in per-base costs (exceeding Moore’s law), the ability to generate sufficient data for
any given population genomic question is quickly becoming trivial. Whether the

protocol requires identification of structural variants, sequencing 1,000 whole

genomes to a depth of 10X, or a nimble sequencer that can be used in remote

areas, there is a platform available. The ability to combine platforms or tailor inputs

to specific needs further amplifies this flexibility. In spite of the increase in

throughput with each new chemistry and platform, the per-base cost of data

generated on Illumina systems has flattened somewhat in recent years. The advent

of technologies that deliver more data at lower costs (e.g., NovaSeq, Sequel, and

PromethION) brings the promise of a second revolution in sequencing/genotyping.

Nevertheless, the goal of characterizing genome diversity “telomere to telomere”

(Shendure et al. 2017) remains elusive, particularly for species with complex

genomes containing abundant repetitive elements. Emerging long-read sequencers

(Nanopore, PacBio) have begun to address the assembly problem associated with

short reads, and we expect future technological developments to further advance

this objective. This increased competition in the sequencing market should allow

for generation of comprehensive genomic datasets for non-model species, which

comprise the vast majority of species of interest in population genomics, at a depth

and quality once reserved for model systems.
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Computational Tools for Population
Genomics

Jarkko Salojärvi

Abstract With the rapidly dropping costs of sequencing, it is now possible to study
the genomes and populations of any species to obtain precise evidence about their
evolution and adaptation. Here, we will give an overview of software tools for
processing raw sequencing reads into population-level data, and then go through
the common population genomics analyses on these data and computational tools
developed for them, as well as give insights into the computational solutions and
their efficiency.

We first address the tools and pipelines for processing next-generation sequenc-
ing data from heterogeneous data sources into population-level data comprising
single nucleotide polymorphisms or copy-number variants. After a brief discussion
on all-purpose software tools for carrying out standard population genetic analyses,
we provide a more detailed overview of different types of population genomics data
analyses, loosely grouped under population genetics and demography, evolutionary
population genomics, phylogenomics, and comparative genomics, as well as suggest
current tools for the analyses. Under population genetics and demography analyses,
we discuss methods for exploring population genomic diversity and genetic struc-
ture, population admixture, interspecific introgression events, and inferences about
overall population history. The evolutionary genomics analyses include methods
and tools for studying patterns of selection, such as hard and soft sweeps
and population differentiation but also genome-wide association studies and
pan-genomes between individuals and populations, as well as paleogenomics
research. Under phylogenomics and comparative genomics, we provide an overview
of the computational tools used for studies on polyploid species, phylogenomics, and
comparative genomics of gene space evolution within and between species.
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1 Introduction

The influx of new genome data is bringing about a golden era for research on
populations; the genomic footprints of demography, evolution, and adaptation of a
wide variety of species can now be studied. Population genomics research is a field
where population genetics studies are carried out with information derived from the
whole genome data. This may sound like a trivial extension, but in fact the avail-
ability of full genomes transforms all analyses by introducing the well-known
statistical challenge of high-dimensional data, the notorious “small n, large p”
problem, into genetics. A second challenge comes from theory, since simplifying
assumptions made by many methods, for example, independence of different geno-
mic loci in many likelihood-based models, do not necessarily hold. On the other
hand, analyzing whole genomes instead of a small set of markers opens up new
opportunities for obtaining information on the populations and species, its demog-
raphy, selection pressure, evolution, and the underlying causal variants.

In this chapter, we will go through different analyses that can be carried out with
the population-level whole genome sequence (WGS) data. Many of the methods are
implementations of theoretical research on population genetics and analyze single
nucleotide polymorphism (SNP) data. Therefore, we start by introducing the stan-
dard methodology for obtaining SNPs from raw next-generation sequencing reads.
Since the standard SNP calling software is not able to detect larger genomic
insertions, deletions, and duplications, we address the software for detecting copy-
number variation separately. We will then go through the general methods and
software tools for analyzing aspects of population genetics and demography, evo-
lutionary genomics, and further expand the discussion to other types of data sets such
as pan-genomes and the challenges in analyzing more complex data, for example,
sequencing reads from polyploid species or ancient DNA. We loosely group various
population genomics analyses under three categories: population genetics and
demography, evolutionary population genomics, and phylogenomics and compara-
tive genomics.

2 Single Nucleotide Polymorphisms

Most of the theory of genetics has been derived under the assumption that genome
evolves through random point mutations, single nucleotide polymorphisms (SNPs),
which are inherited from parent to child. The coalescent model further assumes that
all genome sequences trace back to a common ancestral sequence, and this time can
be estimated given the number of mutations introduced to the genome per genera-
tion. Altogether, this means that it is possible to identify the relationship between
samples from the proportions of shared SNPs and, on larger time scales, to look at
admixture between subpopulations and introgression between species by analyzing
common SNPs.
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In this section, we discuss how to obtain the SNPs (SNP calling) from next-
generation sequencing data. This process involves several steps, out of which the
first one is perhaps the most important, quality control of the sequencing reads.
Therefore, we will initiate this Section by discussing the general aspects that may
compromise high-quality SNP calling and then go through the steps required for
SNP calling. In case of an existing reference genome, the procedure is very similar
for all data types, including whole genome sequencing, restriction site-associated
sequencing (RADseq), RNA sequencing, or exome sequencing data. Protocols exist
for SNP calling using specific set of tools (see, e.g., DePristo et al. 2011; Nielsen
et al. 2011; Langmead and Salzberg 2012), but overall the steps for obtaining the
SNPs is similar, no matter which set of tools are used (Olson et al. 2015). These
general procedures and standard tools are discussed in Sect. 2.2.

Alternatively, a reference genome for the studied species may not be available.
Nevertheless, populations can be analyzed from marker-based sequencing data, such
as RADseq, or transcriptome sequencing. We will discuss this methodology in Sect.
2.3. Finally, after the SNP data has been obtained, it needs to be filtered for high-
quality SNPs and annotated, if this information is available. Furthermore, more
accurate information can be obtained by phasing the genotype data. These issues
will be discussed in the concluding subsections.

2.1 Quality Control Is Essential for All Data

High-quality data is paramount for all data analyses, and population genomics is not
an exception. With noisy data or data from poorly designed experiments, all infer-
ences will be unreliable or possibly even false. An inherent problem in high-
dimensional data is that even if the results are random, always something that
“makes sense” can be found out by cherry-picking the data. To avoid these issues,
careful preprocessing and appropriate filtering of the data is essential, as well as
carrying out statistical tests of the claims and making sure that the number of
individuals in the study is sufficient.

2.1.1 Issues Affecting the Quality of the SNP Calls

Below we address some of the quality issues affecting the reliability of the inference
with population data.

Genome Quality

The quality of the reference assembly is essential to all genomics work. For
population genomics, the reference gives information on the order of the SNP loci
across the genome and provides a way to link and compare the SNP variation
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between individuals. Except for genomes assembled from Sanger sequence data, the
quality of older genome assemblies is generally worse than in more recent genomes
assembled using a combination of long-read platforms (PacBio, Oxford Nanopore)
and high-throughput short-read technology (i.e., Illumina, Ion Torrent, BGISEQ).

Many population genomic analyses, such as admixture or introgression analysis,
assume independent polymorphisms, and they are not as heavily affected by poor
reference quality. An exception is a so-called over-assembled genome, where the
assembly size is larger than the true genome size (estimated by, e.g., flow
cytometry). The most common reason for over-assembly is high heterozygosity,
which results in different assembly paths for different haplotypes, and, therefore,
different contigs can map to the same physical region in the genome. When the same
genomic locus is present twice in the reference assembly, short reads from
resequenced individuals are mapped to either of these regions, depending on
which haplotype is more similar. This can cause artifacts, such as regions of low
genomic variation in the population; these in turn could be falsely interpreted, for
example, as selective sweeps.

When working with a non-model organism, it may be necessary to test the quality
of the genome assembly used as reference. For example, Quast gives an overall
summary of the assembly, its size, and length distribution of the contigs and scaf-
folds (Gurevich et al. 2013). More arduous but also comprehensive analysis tool is
REAPR which also estimates the amounts of assembly errors in the genome by
analyzing sequencing data mapped to the reference (Hunt et al. 2013).

Read Length

Resequencing is usually carried out using short-read sequencing platforms. For
example, in Illumina HiSeq platforms, the resulting reads are typically paired-end,
meaning that in an insert size library of ~500 bp, the 150 bp from the ends of the
fragments are read by the platform. For short reads, highly repetitive sequences pose
a problem, since the read length may not be enough to identify a unique region in the
genome. Nonunique regions are typically outside of gene-coding regions (repetitive
DNA), but ambiguous mapping is possible also in recently duplicated genes or
segmental duplications. Similarly, non-ambiguous or false mappings may occur if
the species has high nucleotide diversity and, therefore, high variation in the
genome. Additionally, in case of autopolyploid species, the amount of ambiguously
mapping reads can be huge.

Coverage

Even though the cost of sequencing has been dropping rapidly, it is still expensive to
sequence populations of individuals. Therefore, in many population genomics
studies, the coverage – how many times an individual locus has been sequenced
with short reads – of resequencing is limited. This leads to problems in SNP calls.
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For example, if a locus has been sequenced to a coverage of 4, and each read is from
either one of the haplotypes with the probability of 0.5, there is overall a 2 � 6.25%
chance that all the reads are from the same haplotype, meaning that a heterozygous
call is missed with 12.5% probability. Luckily this problem will be quickly allevi-
ated, since with the recent extremely high-throughput platforms, such as NovaSeq,
the library construction will be the highest cost, not the sequencing itself.

Genome Annotation

High-quality genome annotation is essential when evaluating the SNP data, since the
annotation information can be used to filter the data for neutral SNPs, such as
fourfold degenerate or intergenic SNPs, or then to find SNPs with putative causal
effect; SNPs that cause a non-synonymous mutation in the protein sequence encoded
by the gene.

2.1.2 Quality Control Tools for Sequencing Data

Quality control of the sequencing data is the essential first step in data analysis. The
most common tool for monitoring the quality of the sequenced library is FASTQC
(Andrews 2010), which provides summaries of the library size and quality scores of
the reads, as well as lists overrepresented sequences. The tool also gives the number
of reads in the sequencing library, which can be used to calculate the expected
average coverage along the reference genome. Based on this, it can be decided
whether more sequencing is needed to obtain high enough coverage for data
analyses.

Furthermore, the KmerGenie software can be used to give an estimate of the
sequencing coverage, genome size, as well as best k-mer value (division of data into
substrings of length k) for subsequent analyses (Chikhi and Medvedev 2014).

2.1.3 Read Trimming

The next step after ensuring the quality of the data is to trim it by removing
low-quality data and adapters used in sequencing. Based on the output from the
quality control, the parameters for read trimming software, such as Cutadapt (Martin
2011) or Trimmomatic (Bolger et al. 2014) can be tuned to filter out low-quality
data. The tools also remove the adapters used in sequencing and therefore prepare a
set of reads that are ready to be mapped to the genome. In Cutadapt, the adapter
sequences are defined by the user, whereas Trimmomatic has a library of the
common adapters used in Illumina TruSeq protocols. However, in exotic cases,
the adapters need to be defined by the software user.
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In addition to specific tools developed for read trimming, some analysis pipelines,
such as Stacks, developed for RADseq data (Rochette and Catchen 2017), incorpo-
rate their own read trimming modules.

2.2 Reference-Based SNP Calling

SNP calling methodology can be split into two general categories based on the
availability of the reference genome. In case of reference-based SNP calling, all of
the reads are first mapped to the genome using a fast alignment method, and then a
SNP caller software is invoked.

2.2.1 Read Alignment

Over the years, several tools have been developed for read alignment. In order to
carry out fast searches through the genome, the first N bases (typically 15–25 bases)
of the reads are used as a seed region for narrowing down the searches. First-
generation tools, such as Bowtie (Langmead et al. 2009) and MAQ (Li et al.
2008), allowed no mismatches in the seed region and therefore the first 15–25
bases of the reads had to align to the reference without any gaps or errors. The
second-generation methods allow a few gaps and errors (or, variation) also in the
beginning of the reads. With the second-generation methods, read mapping has
become a standard procedure. Current state-of-the-art tools include bwa-mem
(Li 2013), Bowtie2 (Langmead and Salzberg 2012), and HISAT2 (Kim et al.
2015); all use similar algorithms, such as suffix tree and Burrows-Wheeler trans-
form, to carry out a fast search for the matching locus (Canzar and Salzberg 2017).
An outcome of the methods is a Sequence Alignment Map (SAM) or Binary
Alignment Map (BAM) file.

More recently, a third generation of ultrafast alignment methods using
pseudoalignment have emerged. For example, minimap2 (Li 2018) can obtain
accuracy similar to second-generation mapping tools in standard alignment tasks
and is superior in aligning long reads, for example, from PacBio sequencing.
However, in some cases, the method can also be slower than second-generation
methods, for example, with short-read data having a high error rate or short reads
from Hi-C data.

2.2.2 SNP Calling

After the sequence alignment to the reference has been carried out, the actual SNP
calling can be done. A standard procedure requires several steps, including adding
read group information, sorting BAM files according to genomic coordinates of the
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mapped reads, removing or marking PCR duplicates, and the eventual SNP calling,
resulting in a Variant Call Format (VCF) file (Auwera et al. 2018).

Since sequencing coverage for some individuals can be low, current methods for
SNP calling carry out this step by genotyping whole populations together instead of
analyzing one individual at a time. This helps in genotyping loci with low sequence
coverage, since information from other individuals can be used to infer the most
likely allele configuration. We will next go through five alternative tools for SNP
calling.

Genome Analysis Toolkit (GATK)

Perhaps the current de facto standard for SNP calling, the genome analysis toolkit,
GATK (McKenna et al. 2010; DePristo et al. 2011; Auwera et al. 2018), is a set of
tools developed by Broad Institute. Even though not always the best one in com-
parisons (Hwang et al. 2015; Sandmann et al. 2017), it is the common benchmark for
all methods. The reason for popularity is that the software is well maintained due to
resources available from a large institute, and the user community and developers are
very active on the web. Therefore, in case of problems, help is always available.

The GATK SNP calling proceeds through a pipeline where the first step is to
estimate a so-called general VCF (gVCF) file containing genotype likelihoods for a
single individual at every site. The idea is that the file summarizes all the necessary
information for subsequent SNP calls and is much faster to handle than large BAM
files. In the second stage, joint genotype calling is carried out for a population, each
individual represented by its own gVCF file. The two-stage process makes it faster to
carry out SNP calling for different populations, since in a gVCF file, much of the
necessary preprocessing is already carried out and only joint genotyping needs to
be done.

SAMtools

Perhaps the simplest and fastest SNP calling software pipeline, SAMtools calls the
SNPs from a BAM file by forming a pileup of the reads, filtering them by mapping
quality, and then performing SNP calling using bcftools (Li et al. 2009; Li 2011).
Although typically used for SNP calling for single individuals, also multiple
individual SNP calls are possible.

Freebayes

Perhaps the best competitor to GATK, Freebayes uses Bayesian inference to
determine the genotype configuration at a given locus by using Ewens sampling
formula as the prior (Garrison and Gabor 2012). A particular strength of Freebayes
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is its haplotyping which is obtained by read-backed phasing, identifying reads that
span several SNPs at the same time.

ANGSD

Developed especially for low-coverage sequencing data, the benefit of Analysis of
Next-Generation Sequencing Data, ANGSD, is that the whole implementation of the
analysis pipeline is probabilistic (Korneliussen et al. 2014). Calculations are carried
out using phenotype likelihoods and probabilistic models, instead of reverting to
explicit SNP calls that lose information. This makes the tool the best option for
low-coverage sequencing data, since uncertainty regarding the SNP calls can be
handled optimally. The downside of this tool is that the manual is not very detailed
and the methods are described only in the scientific publications, making it difficult
to link the processing options with the methodology used.

DeepVariant

DeepVariant is a recent method that uses deep belief networks implemented in
Google TensorFlow machine learning library to call SNPs (Poplin et al. 2018). In
the original publication, the method performed significantly better than comparison
methods GATK and Freebayes. The method is computationally considerably more
demanding but is the first SNP caller able to use graphical processing units (GPUs)
to parallelize the SNP calls and, therefore, accelerate calling.

2.2.3 SNP Annotation

After obtaining a VCF file, the SNPs can be annotated based on the genome
information. This means identifying the locations of the detected SNPs inside the
gene models and possible regulatory elements and subsequently assigning a possible
functional impact for the SNPs. Annotation tools include SnpEff (Cingolani et al.
2012a, b), Annovar (Wang et al. 2010), and the Ensembl Variant Effect Predictor
(McLaren et al. 2016).

2.3 De Novo SNP Calling

At the time of writing this chapter, the NCBI genome database listed reference
genomes for 1,739 animals, 639 plants, and 3,456 fungal species. This is a minute
amount of total life diversity on earth, and therefore, for most species the reference
genome is not available. In this case, population analyses have been carried out
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mostly using marker-based analyses. Restriction site-associated DNA sequencing
(RADseq) and its variants are the prevailing method; see Andrews et al. (2016) for a
review of different RADseq technologies. Other methods include transcriptome-
based analyses, such as RNA sequencing and exome capture sequencing. Compared
to RADseq, there are considerably less transcriptome-based population genomics
studies, mainly because of the higher costs; RNA sequencing is currently consider-
ably more expensive than whole genome sequencing or RADseq. Other issues
include the low stability of the RNA molecules and the fact that the expression
profile depends on tissue, time of the day, and environmental conditions. In
transcriptome-based analyses, first a complete transcriptome is constructed by de
novo assembly using software such as Trinity (Grabherr et al. 2011) or Oases
(Schulz et al. 2012); see Geniza and Jaiswal (2017) for a review of different tools.
Once assembled, the transcriptome can be used as a reference for variant calling. For
example, Trinity includes a script for running GATK software using STAR aligner
(Dobin et al. 2013).

In case of RADseq, the current industry standard tool is Stacks (Rochette and
Catchen 2017). An alternative tool for this is PyRAD (Eaton 2014), which is better
able to tolerate indels, making it a preferable choice when analyzing more divergent
species. The SNP calling procedure in both methods is similar, albeit the actual
methodological implementations differ. In Stacks, the RADseq analysis is initiated
by clustering the reads, first into putative alleles and then putative loci within a
sample. Stacks has parameters controlling the number of identified alleles, such as
minimum read coverage and number of mismatches allowed in a read; similar
parameters exist for further clustering of the alleles into genomic loci. After the
within-sample loci are identified, they are matched between samples to find homol-
ogous sites, all together forming a catalog of shared loci. Again, a certain number of
mismatches are allowed for homologous loci.

The deficiency of RADseq approaches is obviously the lack of reference genome,
which makes it difficult to choose “correct” parameters for clustering. The robust-
ness of the clustering parameters has been explored, and there exists a rule of thumb
(Paris et al. 2017). However, the rule was obtained by analyzing species with low
effective population size and, therefore, low heterozygosity. In plants, high hetero-
zygosity is not uncommon, and therefore having several SNPs per one RADseq read
is highly likely, suggesting more loose clustering parameters. Additionally, in
reality, the SNP density varies by genomic region, and therefore, uniform clustering
parameters could introduce a bias in the data.

2.4 SNP Filtering

The aim of SNP calling tools is to detect variants and assign a quality score to assess
the reliability of the call. At the next stage, the data will then be filtered to select
high-quality SNP calls. The selection of filtration parameters is specific to the data

Computational Tools for Population Genomics 135



set and the analysis task at hand and depends on the overall mapping quality and
SNP call accuracy observed for the population. In this step, data is usually analyzed
by developing summaries of the quality values present in the variant call format
(VCF) file, for example, by reading the VCF file into R and visualizing the
distribution of mapping quality values and read coverage on the SNPs, for example,
by density plots. After identifying the proper filtration parameters for removing
SNPs with low quality or coverage, there are several software tools to carry out
filtration, such as the tools implemented in GATK (Auwera et al. 2018), SnpEff/
SnpSift (Cingolani et al. 2012a, b), or vcftools (Danecek et al. 2011).

During SNP filtering, it is typical to filter out also rare SNPs. However, this
should be done with careful consideration since the filtering affects all subsequent
analyses; model-based admixture methods such as STRUCTURE have been
reported to be sensitive to MAF threshold (Linck and Battey 2017), and even
principal component analysis produces varying results with different MAF thresh-
olds (De la Cruz and Raska 2014), albeit to a lesser extent (Linck and Battey 2017).
Naturally, also, methods analyzing site frequency spectrum and rare alleles will be
affected. Additionally, the proportion of rare SNPs that significantly contribute to
phenotypic traits is large. For example, in Arabidopsis GWAS, 35% of Bonferroni-
corrected significant associations were observed with SNPs having MAF less than
5%, and further 28% had intermediate MAF of 5–10% (Togninalli et al. 2018).

2.5 Phasing

More accurate genetic analyses can be carried out if the genome data can be phased,
that is, to be able to produce SNP data where the haplotypes have been identified.
There are essentially three methodologies for obtaining phased data. First approach
is read-backed phasing, which detects so-called haplotype blocks by identifying
reads that span several SNPs and, therefore, find linked alleles. Using mapped reads,
these blocks can be extended until an ambiguous region is encountered. The end
result is a genome with haplotype blocks, regions where phasing has been obtained,
spanned by unphased regions. A common problem in these approaches is that
finding the relative phasing of different haplotype blocks is not possible based on
short-read data. Read-backed phasing is implemented, for example, in GATK and
FreeBayes software.

Phasing can also be carried out with trios, data consisting of parents and their
progeny. In this case phasing is obtained by looking at recombination and SNP
patterns observed in progeny. One such tool for phasing is whatsHap (Patterson
et al. 2015). Finally, computational phasing can be carried out in large
populations using software such as Beagle (Browning and Browning 2007) and
Eagle2 (Loh et al. 2016).
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3 Copy-Number Variation

In addition to SNPs, genomes contain a large number of structural variants (SVs):
insertions, deletions, inversions, or copy-number variation. This genomic variation
is an important mechanism for evolution and adaptation (Iskow et al. 2012). The
standard SNP calling software processes only reads that are mapped to the reference
with high confidence and therefore is able to detect only very short, few base pair
insertions or deletions. In order to detect large indels and copy-number variation,
specific tools for detecting structural variants have been developed. The methods can
be categorized into two groups based on the data analysis type. In the first category,
the methods analyze the paired-end and split reads to detect anomalies such as
paired-end reads where only one end maps to the reference genome, or reads
where the insert size based on mapping deviates from the library insert size, or
reads where the orientation of the different ends is altered. An example of such
software is DELLY (Rausch et al. 2012).

The second category of methods for detecting SVs is to identify regions where
read coverage deviates from the average read coverage across the genome. For
example, CNVnator (Abyzov et al. 2011) monitors the read-depth along the genome
and identifies regions that deviate from the mean read depth. Methods also exist
which combine the two sources, such as LUMPY (Layer et al. 2014), which
combines split-read analysis and read coverage analysis using a probabilistic
model to make a combined prediction of the SVs.

Most user-friendly tool for SV analysis is SpeedSeq (Chiang et al. 2015), which
implements a full pipeline for SV calling. It uses LUMPY to initially detect SVs and
then read-depth analysis by CNVnator to detect SVs that were not detected by
LUMPY because of unmappable or repetitive sequence. Finally, it uses SVTyper
for refining the SV breakpoints.

Genome STRucture in Populations (Genome STRiP) is a 12-stage SV discovery
pipeline developed by Broad institute (Handsaker et al. 2015). For a given uniquely
alignable genomic region, Genome STRiP models the distribution of read depths
observed in the individuals using constrained Gaussian mixture models. The model-
based approach makes it possible to estimate the most likely copy number for each
genome and the confidence of the assignment. Mainly developed for humans, the
software utilizes pre-computed metadata identifying the uniquely alignable regions
from reference genome. However, for other species it is possible to set up the
necessary metadata files using the tools in the Genome STRiP package. An outcome
of the SV calling software is a file following the VCF format.

4 Population Genomic Analyses Using SNP or Structural
Variant Data

After SNP calling, annotation, and filtering steps, the genotyping of the individuals
has been completed, and the data is ready to be analyzed. In this section, we will go
through some of the most common analyses for population genomic data and the
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available software tools. In addition to obtaining overall population genetic param-
eters that characterize the population, the population genomic analyses carried out
with the data could be loosely grouped into the following three not so distinct
categories: population genetics and demography, evolutionary population genomics,
and phylogenomics and comparative population genomics. These are illustrated in
Fig. 1.

4.1 All-Purpose Tools for Common Population Genetic
Analyses

General-purpose analysis tools for population data are implemented in vcftools
(Danecek et al. 2011), PLINK (Purcell et al. 2007, Chang et al. 2015), various R
packages, and other software.

Fig. 1 In general, population genomic analyses can be split into research on population genetics
and demography, evolutionary population genomics analyses, or phylogenomics and comparative
genomics. Simulations can be run in parallel to all the analyses in order to test different evolutionary
scenarios or the robustness and performance of new methods
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4.1.1 Vcftools

The vcftools is a simple tool for filtering the population genotyping data for certain
sites, individuals, or allele frequency. Additionally, it can estimate standard popula-
tion genetic parameters, such as linkage disequilibrium, population differentiation in
terms of FST, and heterozygosity. The downside of the tool is that parallelization is
not implemented.

4.1.2 PLINK

PLINK is a highly efficient tool for population genetic analyses, incorporating
several different analyses, such as kinship estimation with identity-by-descent
(IBD) method. The software can read-in VCF files, but after initial import, it uses
its own data format, ped. The benefit of the file format is that analysis is extremely
fast, but the encoding restricts the analysis to biallelic SNPs.

4.1.3 R

The number of R packages developed for analyzing population genomics data is
rapidly expanding. Here, we suggest the reader to look into the functionalities in
Pegas (Paradis 2010), PopGenome (Pfeifer et al. 2014), evobiR (Blackmon and
Adams 2015), SNPRelate (Zheng et al. 2012), phangorn (Schliep 2011), and APE
(Paradis et al. 2004) packages.

4.1.4 ANGSD

Designed for low-coverage sequencing data, the Analysis of Next-Generation
Sequencing Data, ANGSD, has implementations for estimating the general popula-
tion genetic parameters but also more advanced analyses such as admixture analysis
though NGSadmix (Skotte et al. 2013) and estimation of IBD probabilities with
NGSRelate (Korneliussen and Moltke 2015) are available.

4.2 Population Genetics and Demography

The first category of analyses, population genetics and demography, incorporates the
overall analysis of the population genomic diversity, population genetic structure,
and population history and demography. The current genetic diversity of the popu-
lation results from a complex history of alternating population size, gene flow
between populations, possible introgression from other species, as well as selection
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and evolution. The general descriptive population genetic statistics such as nucleo-
tide diversity will give an overall characterization of the population, but in order to
properly analyze the different historical events, it is important to first obtain an
understanding of the current population structure.

The key rule in all data analysis is to initiate it with models, which make the least
amount of assumptions on the data, and proceed incrementally to more advanced
models that make stronger modeling assumptions as more understanding of the data
is obtained. Similarly, also the analysis of SNP data from populations is initiated by
visualizing the overall variance of the data with principal component analysis (PCA).

4.2.1 Population Structure

Since most of the SNPs in the genomes are likely neutral, the global pattern of SNPs
is largely due to drift processes and genetic relationships between the samples. This
so-called population structure, differences in genetic ancestry of the sampled indi-
viduals, explains also much of the phenotypic variation observed in populations.
Population structure can be used to estimate the relationships between samples and
also as a null hypothesis where the observed phenotype is explained by drift
processes.

The best tool for providing an initial view of the data and the population structure
is principal component analysis (PCA), since it makes the least number of assump-
tions about the data. Perhaps the most common tool for PCA is EIGENSTRAT
(Price et al. 2006), part of the EIGENSOFT package (Patterson et al. 2006). The
downside of the tool is that the VCF file containing the SNPs needs to be converted
to its own internal format before analysis. The package has tools for the conversion
(convertf), but it doesn’t have direct converter from VCF. Therefore, a VCF file
needs to be first converted to PLINK format and that in turn to EIGENSTRAT. In
addition to EIGENSTRAT, principal component analysis can be carried out in
PLINK (Chang et al. 2015), and various packages in R programming language,
for example, SNPRelate (Zheng et al. 2012), PCAdapt (Luu et al. 2016), and a
combination of Adegenet (Jombart 2008) and ade4 (Dray and Dufour 2007). A
complementary approach to PCA is a nonlinear PCA, known also as principal
coordinate analysis or multidimensional scaling (MDS). The MDS is implemented,
for example, in PLINK and Adegenet/ade4.

Instead of measuring purely the Euclidean distance between samples, there exist
also genetically motivated ways of estimating relatedness, such as identity-by-state
(IBS) and identity-by-descent (IBD) analyses. IBS analysis estimates the proportion
of shared SNPs, whereas IBD estimates the proportion of haplotype blocks inherited
by descent. Different approaches for IBD have been implemented, for example, in
PLINK, NGSRelate (Korneliussen and Moltke 2015), and RELATE (Albrechtsen
et al. 2008). In R, the SNPRelate package (Zheng et al. 2012) incorporating many
IBD estimating methods is recommended. Finally, the refined IBD uses phased
haplotype data for the inference (Browning and Browning 2013).
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Finally, so-called admixture modeling is a model-based method for estimating
ancestral populations and their admixture proportions in the individuals under study.

Since its introduction in the beginning of the 2000s (Pritchard et al. 2000), the
analysis of admixture has become a common tool for all population analyses, and it
could be viewed as an alternative way of estimating the population structure.
However, compared to PCA, the admixture analyses make much stronger modeling
assumptions on the data, and therefore also the results depend on how well the data
fits these assumptions. We will therefore discuss admixture modeling separately in
Sect. 4.2.2.

4.2.2 Admixture

Admixture analyses divide the genomes into ancestral non-admixed populations and
estimate their relative proportions in each individual. The computational model
behind admixture analysis is known as latent Dirichlet allocation (Blei et al.
2003), or discrete PCA (Buntine and Jakulin 2004), where for each locus, the allele
is probabilistically generated from a set of ancestral populations. The method is
completely data-driven, as the parameters of the model – proportions of ancestral
populations in each individual – are estimated from the data using posterior sampling
(Markov chain Monte Carlo-based methods), variational approximation, or maxi-
mum likelihood fitting. The difference between the implementations is that MCMC-
based methods sample from the exact posterior, giving accurate results, but on the
other hand they are slower to run. Variational methods estimate an approximate
posterior distribution of the model parameters making heavy independence assump-
tions, and, thus, they give less accurate results but the execution is much faster.
Finally, maximum likelihood solutions fit the model parameters to the likelihood
without prior (thus assuming a uniform prior for the parameters). Most common
methods include MCMC-based STRUCTURE (Pritchard et al. 2000), fastStructure
using variational approximation (Raj et al. 2014), or maximum likelihood-based
methods FRAPPE (Tang et al. 2005), ADMIXTURE (Alexander et al. 2009), and
NGSadmix (Skotte et al. 2013). Recent developments include a fine-scale method
that uses phased haplotype data to identify admixture. The fineSTRUCTURE
(Lawson et al. 2012) first uses ChromoPainter to identify shared haplotypes in the
population and then estimates their admixture; for a practical application of the
software, see, for example, Kerminen et al. (2017).

The generative model underlying the admixture model also has its deficiencies,
such as sensitivity to uneven sample sizes (Puechmaille 2016). Additionally, very
different demographic scenarios can result in similar admixture compositions and,
therefore, the results may be subject to over-interpretation (Lawson et al. 2018). In
order to help in the interpretation and in identifying the most likely underlying
scenario, a set of complementary analyses have recently been suggested, the
so-called badMIXTURE which analyzes the goodness of fit of the admixture
model (Lawson et al. 2018).
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4.2.3 Introgression

In addition to admixture between populations, there can be gene flow between
species through introgression. This may happen in cases where species may have
already been split, but divergence has not yet resulted into a complete reproductive
isolation barrier. Genomic research on introgression was heavily affected by the
introduction of F3 and F4 statistics, developed to detect introgression with Nean-
derthals and humans (Green et al. 2010). These methods are implemented in the
package Admixtools, which in addition to the formal test for introgression (F3) and
test for the directionality of the introgression (F4) also contains methods to estimate
the timing of the introgression and an implementation for comparing possible
scenarios of introgression in studies concerning several species (Patterson et al.
2012). Since then, a revised statistic, the D statistic (also commonly known as
ABBA-BABA statistic), was introduced as an improvement (Durand et al. 2011).
The D statistic is implemented, for example, in PopGenome R package (Pfeifer et al.
2014). When trying to identify the regions under gene flow, the statistic has been
applied to smaller genomic windows. However, it was recently shown that the D
statistic produces inflated values when effective population size is low, and as a
result, regions with low genomic diversity result in false positives, high D values
(Martin et al. 2015). As a correction, a combination of fd and dXY statistics has been
suggested, the first one to identify introgression and second one to identify regions of
low diversity (Martin et al. 2015).

Even though formal tests for introgression exist, determining the directionality
and proportions in the case of several populations and species is still very much
manual work. Search for a solution that incorporates admixture events increases
exponentially with the number of populations, and therefore, a global optimal
solution is practically impossible to identify. However, greedy solutions exist, and
they are implemented in

TreeMix (Pickrell and Pritchard 2012), Ohana (Cheng et al. 2017), and
Admixturegraph R package (Leppälä et al. 2017). In Admixtools, it is possible to
compare the model fit given different admixture solutions using qpGraph (Patterson
et al. 2012).

4.2.4 Population History

Population history, the historical changes in effective population size, is of funda-
mental interest in population genetics. Several methods exist for estimating popula-
tion history, all derived using different assumptions and summary statistics. The first
set of methods estimate effective population size from the number of recombination
events observed in a single individual or a small set of genomes. First, such method
was pairwise sequentially Markovian coalescent model, PSMC (Li and Durbin
2011), which is still the method of comparison in several studies. However, PSMC
is sensitive to population structure and can give false results, for example, in case of
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population bottlenecks (Mazet et al. 2015). The MSMC2 (Schiffels and Durbin
2014) uses phased whole genome data and improves on PSMC by extending
inference to several haplotypes and accelerates exact calculations, such that some
of the approximations used in PSMC are not needed. The demographic inference
using composite approximate likelihood (diCal) achieves similar improvements
(Sheehan et al. 2013). The second method category estimates effective population
sizes from haplotype lengths (Harris and Nielsen 2013).

Third methodology estimates population history from a site frequency spectrum
(SFS). The methods are most accurate if an unfolded site frequency spectrum is used,
and for this means the ancestral allele state needs to be identified first. State-of-the-
art methods use several species and phylogenetic associations between them to
estimate most likely ancestral state; see, e.g., phangorn package (Schliep 2011) in
R. After inferring ancestral state and SFS, methods such as Stairway plots (Liu and
Fu 2015) can be used to estimate a mixture model for the SFS data, where the
mixture proportions are the effective population sizes at different times. Momi2 is a
more recent method using similar strategy (Kamm et al. 2018). Benefit of SFS-based
methods is that they do not suffer as heavily from population structure. Finally, the
SMC++ integrates two methodologies by pairing coalescent HMM with site fre-
quency spectrum estimation from a larger set of samples (Terhorst et al. 2017).

4.2.5 Mutation Rate

Correct estimate of mutation rate is essential for many analyses, since it helps in
dating the divergence times in phylogenetic trees and major events in population
history, such as population bottlenecks. In general, researchers are using mutation
rates estimated in model species, since only a few studies exist on this subject in
other species. One possibility is to obtain an indirect estimate of the mutation rate by
comparing the divergence of orthologs between species and identify the amount of
neutral mutations in the genes. The mutation rate can then be calibrated if the time of
the species split can be estimated, for example, from fossil evidence.

An alternative method is the direct estimation of mutation rate from parent-
progeny trios. Given parent-child relationships, the de novo mutations are identified
by first estimating SNPs between the father-mother-child trios and then using trio
calling software such as DeNovoGear (Ramu et al. 2013). In humans, the mutation
rate estimates in different populations are converging to similar values with the
direct method (Campbell and Eichler 2013). Interestingly, the indirect estimation
gives twice as high mutation rate than indirect method, creating a conundrum
(Moorjani et al. 2016).

4.3 Evolutionary Population Genomics Analyses

Genomic adaptation to the prevailing environmental conditions is a fundamental
research question in ecology and evolutionary biology. Population genomics
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addresses this question by looking at specific signatures in genome-level data or by
seeking for association between genomic loci and phenotypic traits. Additionally,
the analysis includes large-scale genomic variation between species and populations,
such as copy-number variation and pan-genomes.

4.3.1 Genomic Patterns of Selection

A large body of population genetics research is devoted to studying strong positive
selection for certain alleles. Hard selective sweep patterns appear under strong
positive selection where the frequency of the favored allele rapidly increases and
eventually reaches fixation in the population. During this process, genomic
hitchhiking occurs where also the neutral alleles in linkage disequilibrium with the
beneficial allele are inherited as well and reach fixation. As a result, the underlying
genomic region is swept from variation. After reaching fixation, the region again
accumulates random mutations. Their mutations are more recent than the sweep,
and, therefore, the local site frequency spectrum, a histogram showing the number of
SNPs shared by 1..N individuals, shows an overrepresentation of recently derived
alleles.

The software for detecting signatures of selective sweeps looks for regions of reduced
variation, a site frequency spectrum that is skewed toward recent alleles, or specific
linkage disequilibrium patterns. The simplest method is to calculate statistics, such as
Tajima’s D, Fay andWu’s H, or similar. The ANGSD estimates many of these statistics
as a part of the pipeline, whereas R packages Pegas (Paradis 2010) and PopGenome
(Pfeifer et al. 2014) have functions for estimating these from VCF data. Finally, vcftools
(Danecek et al. 2011) is able to calculate the basic statistics, Tajima’s D, heterozygosity,
and runs of homozygosity (ROH) from VCF-formatted data.

More advanced statistical approaches are implemented in specific software. Tools
analyzing changes in site frequency spectrum include Sweepfinder2 (DeGiorgio
et al. 2015) and SweeD (Pavlidis et al. 2013). An alternative approach, OmegaPlus,
implements the omega statistic to detect anomalies in linkage disequilibrium
(Alachiotis et al. 2012). Finally, Sweepy (Druet et al. 2013) identifies regions with
reduced heterozygosity with a hidden Markov model having three states: neutral,
intermediate, and sweep. Instead of training, the model parameters were fixed by the
authors based on cattle data.

In most of the population genetics/genomics studies, the effect sizes of loci that
have been significantly associated with the traits are very small, implying that most
of the traits are polygenic. Under this scenario, it is very unlikely that a beneficial
mutation at a single locus would provide a remarkable fitness advantage. Indeed,
hard selective sweeps have turned out to be quite rare in nature. In contrast, soft
sweeps occur in cases where several mutations in a genomic region have a fitness
advantage, and, therefore, a palette of haplotypes is under selection in the same
region. Soft sweeps and ongoing strong positive selection are currently detected with
methods that use phased SNP data to identify alleles on their way to fixation or under
balancing selection. The integrated haplotype score (iHS) statistic (Voight et al.
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2006) seeks alleles driven to intermediate frequency by measuring the decay of
haplotype homozygosity for a given derived allele, compared to the decay observed
for the respective ancestral allele. Further refinements of this method are the “num-
ber of segregating sites by length” statistic, nSL (Ferrer-Admetlla et al. 2014), and
H12 and H2/H1 statistics (Garud et al. 2015), which are more robust to fluctuations
in recombination and mutation rate.

Due to the polygenic nature of most traits, a major proportion of evolution occurs
through long-term local adaptation to environmental conditions. Differentiation
between populations can be measured by carrying out a genomic scan with the
Wright fixation index (FST). The FST essentially implements the famous analysis of
variance criterion to genetic data by comparing between population variance and
within population variance. When estimated using the neutrally evolving loci, its
average over the genome gives the overall differentiation between populations, and
significant deviations from this average score in specific genomic regions will
identify loci potentially under selection. The FST statistic is implemented in vcftools
(Danecek et al. 2011) and R packages PopGenome (Pfeifer et al. 2014), Pegas
(Paradis 2010), StAMPP (Pembleton et al. 2013), and HIERFSTAT (Goudet
2004). A similar measure, QST, measuring the genetic diversity of different pheno-
typic grouping can be implemented using the same functions.

However, in addition to selective processes, the genetic structure of a population
is dictated by random genetic drift processes, such as drift due to founder effects, and
population bottlenecks. For example, a founder effect may occur following the
establishment of a new population in a new environment. If the population is
small, the population will differ from other populations only because of limited
genetic variation present in the founding individuals. Population bottlenecks, for
example, due to harsh environmental conditions, can produce similar artifacts,
whereas migration introduces new alleles to the population and reduces the levels
of population differentiation. For these reasons, a plain FST measure is being
replaced by methods which attempt to decouple the drift processes and selection.
A standard methodology is to use the population structure as the null model for drift
and then detect loci where the allele distributions cannot be explained by the null
model. Models such as FDIST2 (Beaumont and Nichols 1996) and BayeScan (Foll
and Gaggiotti 2008) assume independent samples and simulate a null model under
specific population history scenario, whereas FLK (Bonhomme et al. 2010) and
BayEnv2 (Günther and Coop 2013) estimate population structure from data and use
this as the null model.

Finally, one emerging trend to tackle the polygenicity of complex traits is to use
epistatic models, such as population graphs and redundancy analysis, which analyze
multilocus data (see, e.g., Legendre and Fortin 2010; Rajora et al. 2016; Salojärvi
et al. 2017).
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4.3.2 Genome-Wide Association Studies

One of the fundamental questions in population genomics is how variation in
different loci is linked with the observed phenotypes. These data are analyzed in
genome-wide association studies (GWAS), where phenotype and genotype infor-
mation is collected from cohorts having sizes between hundreds to hundreds of
thousands of individuals.

The simplest methods for analyzing GWAS data compute the correlation or
estimate a linear model for the allele frequencies and trait values (in case of
continuous trait) or the difference between allele distributions (in case of a categor-
ical trait). After site-wise analysis over all genomic loci, multiple testing correction
of the p-values obtained for the individual loci is carried out using either the
conservative Bonferroni correction or the more loose false discovery rate correction
methods (e.g., Benjamini-Hochberg correction).

Similar to all population genomic studies, population structure is the major factor
contributing many false positives. More sophisticated models implement linear
mixed models (LMM), which take the population structure into account by intro-
ducing covariates that model their contribution. Perhaps the first such model was
Efficient Mixed Model Association (EMMA) software (Kang 2008). It models
population structure with a random effect where the variance structure is obtained
from a kinship matrix describing the relationship between samples. However, the
time required for computation scaled cubically with the number of individuals.

Speed and, therefore, scalability can be improved by approximate methods. The
genome-wide rapid association using mixed model and regression (GRAMMAR) set
up a two-stage process, where in the first stage the observed phenotypes were
modeled with a linear model using the kinship information (Aulchenko et al.
2007a, b). Residuals from this analysis were then used as input to the association
analyses incorporating genomic data. The method is implemented in the GenABEL
package in R (Aulchenko et al. 2007a, b). More sophisticated methods such as P3D,
Population Parameters Previously Determined (Zhang 2010) in TASSEL (Bradbury
et al. 2007), and EMMAX (Kang 2010) take similar approach by using kinship to fix
some of the parameters in the linear mixed model; the P3D uses the null model with
only kinship data to fix the variance components in the linear mixed model used for
estimating associations with SNPs, whereas in EMMAX the kinship matrix is
assumed to contribute to the noise covariance.

Instead of making compromises in accuracy, speedups can be obtained also by
careful analysis of the original exact method. The GEMMA carries out a single
Eigen decomposition of the relatedness matrix and uses this to replace several
computationally demanding Eigen decomposition steps in EMMA, thus reducing
the time complexity to quadratic in terms of the number of individuals (Zhou and
Stephens 2012).

Further extension to linear mixed model approach is to model several correlated
phenotypic variables at once. The so-called multi-trait mixed model (MTMM) uses
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similar approximation to EMMAX and P3D to estimate and fix the covariance
matrix before estimating the associations (Korte et al. 2012).

With whole genome sequencing data, genomic loci are not independent. The
so-called epistatic models attempt to identify genetic dependencies between loci.
However, with immensely many different SNP combinations, evaluating all of the
different SNP combinations quickly becomes computationally prohibitive. A proper
solution for this problem has not been found yet. Various different approaches have
been proposed, many of them based on a combination of exhaustive searches and
greedy optimization; see Niel et al. (2015) for a review of the current status.

4.3.3 Pan-Genomes

The pan-genome defines the entire genomic repertoire of a given species or, in
microbiology, the phylogenetic clade (Vernikos et al. 2015). The concept originated
from microbiology where species borders are notoriously difficult to specify and is
presently well established (Vernikos et al. 2015) with a large palette of analysis
software for bacterial pan-genomes (Xiao et al. 2015). Beyond microbial research,
pan-genome analysis has recently gained attention in plant genomics (Golicz et al.
2015), although still relatively few pan-genome studies have been published (see,
e.g., Cao et al. 2011; Li et al. 2014; Wang et al. 2018). The aim in pan-genome
analysis is to divide gene space to so-called core, cloud, and shell genomes where the
split is made according to the prevalence; the core genes are present in all individ-
uals, shell genes in at least two individuals, and cloud genes in only one. The genes
in the different categories appear to differ by their function, for example, in Wang
et al. (2018), the core was observed to be enriched for GO terms related to growth,
development, and reproduction, whereas shell and cloud genomes were enriched for
regulation of immune and defense responses and ethylene metabolism.

One method implementing the pan-genome analysis is eukaryotic pan-genome
analysis toolkit (EUPAN), a software pipeline implemented to detect presence/
absence variation among the genomes of many individuals (Hu et al. 2017). The
method uses a “map-to-pan” strategy, where each of the individual genomes are first
assembled de novo. After this the pan-genome is constructed by mapping the contigs
to a reference genome and identifying non-redundant novel sequences. After ab
initio gene prediction, the presence/absence variation is determined based on reads
mapped against pan-genome sequences. This strategy was used in the rice (Oryza
sativa) pan-genome (Wang et al. 2018).

4.3.4 Ancient DNA and Paleogenomics

Ancient samples and sample collections maintained by natural historical museums
provide invaluable information about ancestral populations. Since they give infor-
mation about the genome up to 1 million years ago, they can be used to study
migration patterns, species evolution, and adaptation. The analysis of ancient DNA
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was initiated in human studies (Green et al. 2010; Rasmussen et al. 2010; Meyer
et al. 2012; Slon et al. 2018), and the research has made it possible to track down
human ancestry across different time scales (Llamas et al. 2017). The main obstacle
in ancient DNA analysis is the sample quality. After the death of an organism, the
DNA molecules get fragmented and degraded over time. The level of degradation
varies across samples and environments but also within the specific sample. So far
the oldest samples where DNA has been sequenced currently date back to around a
million year (Orlando et al. 2015).

Depending on the level of DNA conservation, sequencing typically produces
very short reads, and if assembled also the contigs are very short. These contigs can
be organized by comparing against a modern genome, but for extinct species, this
does not provide a reliable view of the genome structure. Methods such as FPSAC
(Rajaraman et al. 2013) and the further development EWRA (Luhmann et al. 2018)
attempt to solve this problem by estimating the genome structure by comparing
several related species.

The ancient DNA typically contains contamination by modern DNA molecules,
which have limited degradation and fragmentation. These patterns can be used to
remove the contamination in the sample. Implementations include PMDtools
(Skoglund et al. 2014), mapDamage software (Jónsson et al. 2013), as well at
AtLAS, a toolbox for SNP calling in ancient DNA (Link et al. 2017), taking into
account degradation due to postmortem damage (Kousathanas et al. 2016). The
methods analyze reads by looking for hallmarks of DNA degradation and either
remove them (PMDtools) or in the more recent methods recalibrate the base quality
scores according to their probability of being damaged (mapDamage and AtLAS).

In terms of alignment, ancient DNA sequences contain a considerable amount of
damaged bases, which typically accumulate toward read ends. Therefore, for best
quality alignment results, the whole read length should be used for identifying the
mapping region, instead of using so-called seed regions for fast alignment. Addi-
tionally, the phylogenetic distance to the reference genome affects alignment and
should be taken into account (Schubert et al. 2012). Several probabilistic alignment
methods have been developed to take these effects into account, such as BWA
PSSM (Kerpedjiev et al. 2014), sesam (Rasmussen et al. 2010), and Anfo (Briggs
et al. 2007).

4.4 Phylogenomics and Comparative Genomics Analyses

How species are born was the fundamental question by Darwin already in the
nineteenth century, and the answer is still very much unknown. However, in plants,
a common pattern of speciation is the formation of polyploids (Soltis and Soltis
2009). After formation of polyploids, the duplicated genomes start to lose genes in a
so-called fractionation stage, which eventually results in a diploid species. These
phenomena can be studied using phylogenomics and comparative genomics.
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4.4.1 Polyploids

Polyploidy is highly prevalent among plant and fish species. For example, roughly
60–70% of flowering plant lineages have polyploid ancestry; new polyploids are
formed at a frequency of 1 per 100,000 individuals, and approximately 2–4% of
speciation events involve polyploidization (Van de Peer et al. 2009). Compared to
this, the amount of published polyploid reference genomes is relatively small. This is
for several reasons; genetics of polyploid species is more difficult, and genome
assemblies are harder to carry out due to sequence similarity among subgenomes.

Besides reference genomes, high sequence similarity is also a problem in
resequencing because even with a high-quality genome assembly, short reads may
not be long enough to identify the correct subgenome. In case of allopolyploid
species, the genomes of ancestral diploid parents may be used for identifying the
subgenome where the read originates from. For example, in PolyCat software (Page
et al. 2013), a SNP index of homeologous loci between cotton (Gossypium spp.)
subgenomes was used for RNA sequencing reads to identify the subgenome where
they originated from. The same authors have also developed a PolyDog software
(Page and Udall 2015) which, given a reference assembly of an allopolyploid
species, identifies reads that map uniquely to only one of the subgenomes. Both
tools are implemented in the bambam software package (Page et al. 2014).

However, in some cases large effective population size and the resulting high
heterozygosity may help in genome assembly. For example, in the hexaploid
genome of sweet potato (Ipomoea batatas), the high average density of 1 SNP per
58 bp made it possible to phase 30% of the genome into six haplotypes by read-
backed phasing that extended seed regions based on read support (Yang et al. 2017).
Additionally, biological variants can be exploited to obtain good genome assembly
such as aneuploidy (International Wheat Genome Sequencing Consortium 2014) or
doubled haploid (Garcia-Mas et al. 2012; Zhang et al. 2014) individuals.

Overall, the development of tools for population genomic analysis of polyploid
species is still in the very beginning. SuperMASSA software was developed for SNP
genotyping populations where the ploidy level can be unknown (Serang et al. 2012),
whereas the recent R package updog genotypes polyploids by accounting for allelic
bias, over-dispersion, and sequencing errors with an empirical Bayes approach
(Gerard et al. 2018). Further analyses can be carried out, for example, with StAMPP
software, developed for analyzing genetic differentiation and structure of populations
with mixed ploidy levels (Pembleton et al. 2013).

4.4.2 Phylogenomics

SNP calling can be carried out also using several species. In this case, the SNPs
represent nucleotide differences between species. For longer time scales, the SNPs
may be flipping back and forth, especially with gene-coding genomic regions where
the number of neutrally evolving sites is limited due to functional constraints
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imposed by the encoded protein. However, the effect is reduced when a large set of
intergenic SNPs and neutrally evolving SNPs from gene-coding regions are col-
lected. The SNPhylo software estimates phylogeny by first converting the SNPs into
a FASTA-formatted file and then estimating the phylogeny using DNAML from
PHYLIP package (Lee et al. 2014). Alternatively the produced FASTA files can
be used as input to other software for estimating phylogeny, such as RAxML
(Stamatakis 2014).

4.4.3 Comparative Genomics

The evolution of the number and size of gene families is in a key role when studying
the adaptation and evolution of species (Demuth and Hahn 2009), and the variation
also closely ties with population genetics and genomics. Tandemly duplicated genes
may have more relaxed selection pressure (Salojärvi et al. 2017), and in humans,
copy-number variation has been found to be associated with tandem duplication
regions, resulting also in gene duplications (Sudmant et al. 2010).

The general computational methodology to study gene family evolution is fairly
well established. Methods such as OrthoMCL (Li et al. 2003; Chen et al. 2006) and
OrthoFinder (Emms and Kelly 2015) first carry out all-vs-all BLAST using amino
acid sequences from the species under study and then cluster the pairwise similarity
matrix using Markov clustering (Enright et al. 2002). The clusters, orthogroups,
form a set of genes with common ancestry, putative orthologs, and paralogs. It is
worth noting that the grouping is merely computational and possibly mostly repre-
sents the overall gene family behavior. If one would inspect properly validated gene
families with common ancestry and domain composition, they may be split into
several orthogroups or be incorporated into large orthogroups with many more
genes. In Salojärvi et al. (2017), the proper clustering coefficient was searched by
analyzing how well the computational clustering matched with known gene family
splits.

In order to aid downstream analyses, OrthoFinder is also able to infer gene trees for
each orthogroup as well as estimate a rooting for the species tree based on gene
duplication events (Emms andKelly 2017). Themethod also reconciles the gene trees
and produces estimates of gene loss, gain, birth events, or incomplete lineage sorting
using DLCpar (Wu et al. 2014) or its own internal method Recon, making it possible
to directly analyze gene family evolution. The downside of most reconciliation
methods is that the models are not implemented to take into account whole genome
duplications, a feature that is very common in, e.g., plant evolution. However, for
example, Phyldog can model these events (Boussau et al. 2013). Finally, the software
tool ANGES reconstructs ancestral genome maps by analyzing the syntenic organi-
zation of extant related genomes (Jones et al. 2012) and is thus an alternative method
for identifying gene duplication events in the extant species.

A complementary approach to gene tree reconciliation methods is to estimate a
birth-death rate model of gene families. Several probabilistic implementations exist,
such as CAFÉ (De Bie et al. 2006) and Badirate (Librado et al. 2012). Probabilistic
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implementation makes it possible to identify gene families which expand or contract
significantly more than expected based on general behavior.

5 Simulation

Since the evolutionary history of a species can be very complex, involving bottle-
necks, isolated populations, migration, admixture, and introgression events, it is
important to be able to estimate what types of footprints these different events leave
in the population. For this means, several simulators have been developed which can
generate genomic data under different evolutionary scenarios. When comparing the
simulated data to observed population data, it is then possible to identify the likely
population history or simulate the future behavior of a population. Another possible
use for the simulated data is to test the robustness and performance of new statistical
methods under different scenarios. For a thorough review of 42 different simulators,
we refer the reader to Hoban et al. (2012). In addition to these, fastSimCoal2 is a
more recent, highly versatile simulator (Excoffier et al. 2013). Current state-of-the-
art methodology uses approximate Bayesian computation (ABC) to facilitate infer-
ence (Sunnåker et al. 2013).

6 Future Perspectives and Conclusion

In this chapter, we provided a brief overview of different computational tools
available for analyzing population genomics data. The set of tools and the analysis
types listed are by no means comprehensive, since we are missing many important
new and rising fields. For example, the dropping cost of bisulfite sequencing makes it
possible to estimate methylation status of the genome for populations. In humans,
epigenetic variation contributes to the natural variation between populations (Heyn
et al. 2013). A second interesting research field is the estimation of ultrahigh density
linkage maps. With low-cost sequencing, it is viable to sequence whole genomes in
parent-progeny experiments. This produces millions of markers, which is too much
for standard methods that analyze linkage between genomic loci. Recently developed
Lep-MAP3 software is able to manage the additional complexity and provides
reliable estimates even with low-coverage sequencing (Rastas 2017). However,
also metagenomics, population-level RNA sequencing and expression QTLs are
emerging fields within the scope of population genomics.

In summary, the genomics research field is expanding rapidly and will eventually
encompass all research where biological data is produced by sequencing. Reference
genomes for new species are emerging at an increasing rate, and with the dropping
cost of sequencing, whole genome sequencing will be the method of choice for all
analyses. WGS makes it possible to accumulate large population genomic data sets
which can be analyzed for any given purpose beyond the original study. With the
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increasing amounts of data, method development for population genomics is cur-
rently flourishing, with a huge number of different solutions developed for each task.
In time, some of these will prevail and will be incorporated into standard analyses
pipelines; which ones, only time will tell.
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Population and Evolutionary Genetic
Inferences in the Whole-Genome Era:
Software Challenges

Alexandros Stamatakis

Abstract The continuous advances in DNA sequencing technologies are driving a
constantly accelerating accumulation of nucleotide sequence data at the whole-
genome scale. As a consequence, evolutionary biology researchers have to rely on
a growing number of increasingly complex software. All widely used tools in the
field have grown considerably, in terms of the number of features as well as lines of
code and consequently also with respect to software complexity. Complexity is
further increased by exploiting parallelism on multi-core and hardware accelerator
architectures. Moreover, typical analysis pipelines now include a substantially larger
number of components than 5–10 years ago. A topic that has received little attention
in this context is that of code quality and verification of widely used data analysis
software. Unfortunately, the majority of users still tend to blindly trust the software
and the results it produces. To this end, we assessed the software quality of three
highly cited tools in population genetics (Genepop, Migrate, Structure) that are being
routinely used in current data analysis pipelines and studies. We also review widely
unknown problems associated with floating-point arithmetics in conjunction with
parallel processing. Since the software quality of the tools we analyzed is rather
mediocre, we provide a list of best practices for improving the quality of existing
tools but also list techniques that can be deployed for developing reliable, high-
quality scientific software from scratch. Finally, we also discuss some general policy
issues that need to be addressed for improving software quality as well as ensuring
support for developing new and maintaining existing software.
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1 Introduction

With next-generation sequencing (NGS) data coming off age and being routinely
used by now, evolutionary biology is becoming an increasingly quantitative and
computational discipline (see also Barone et al. 2017). These massive amounts of
data have also triggered a paradigm shift from a hypothesis-driven toward a more
data-driven science.

One can also observe a gradual transformation into a true computational science
as evolutionary biology increasingly relies on supercomputers (e.g., Misof et al.
2014 or Jarvis et al. 2014) as well as multi-core servers and accelerator architectures.
This is a transition other disciplines such as astrophysics, geophysics, or fluid
dynamics accomplished decades ago. This transition is challenging because it
requires nontrivial parallel programming techniques (e.g., Alachiotis et al. 2012)
and introduces additional reproducibility issues as well as error sources (i.e.,
nondeterministic program behavior) which we will also briefly discuss in this
chapter.

Apart from the increasing use of parallelism with all its associated complications,
researchers also have to rely on a substantially larger number of increasingly
complex core software components. These core components are mostly written in
C or C++ because they are typically highly compute- and floating point intensive.
By software complexity we refer to the fact that widely used tools in the broad
field of evolutionary biology have grown considerably, in terms of the number of
features, models, and lines of code. For instance, the Bayesian phylogenetic infer-
ence tool MrBayes (Ronquist et al. 2012) had approximately 49,000 lines of code
in 2005 and already about 94,000 in 2014. Furthermore, evolutionary analysis
software now supports a substantially larger set of models (e.g., substitution models,
demographic scenarios, variants of the coalescent, approximate Bayesian computa-
tion approaches), hardware platforms (e.g., GPUs, FPGAs, etc.), and types of
parallelism (e.g., embarrassingly parallel, fine-grain, coarse-grain, multigrain, hybrid
approaches) than a decade ago.

Another challenge is that constantly growing datasets also induce increased
numerical difficulties, as most population genetics codes calculate probabilities for
some quantity and are thus prone to either exhibit numerical underflows (e.g.,
Pavlidis et al. 2013) or yield inaccurate results because of roundoff error propaga-
tion. The deployment of more complex and parameter-rich models further compli-
cates matters, since it is often difficult to devise, for instance, numerically stable
maximum likelihood parameter optimization procedures as these increasingly com-
plex and parameter-rich models may exhibit several local maxima, for instance.

We do not only have to handle the software complexity of stand-alone core
components but also need to consider the increasing number of core components
in current analysis pipelines. In the “Sanger days,” the analysis pipeline for evolu-
tionary analyses used to be straightforward, once the sequences were available. For a
phylogenetic study, it merely consisted of three steps: align! infer tree! visualize
tree. For NGS data and huge phylogenomic datasets, such as the insect transcriptome
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(Misof et al. 2014) or bird genome evolution (Jarvis et al. 2014) projects, the data
analysis pipelines have become substantially longer and more complex. They also
require user expertise in an increasing number of bioinformatics areas (e.g., SNP
calling, orthology assignment, NGS error correction, read assembly, dataset assem-
bly, partitioning of datasets, divergence times inference, etc.). In addition, these
pipelines require a plethora of scripts to transform formats and to assemble
workflows. Even format transformation is not trivial in case of badly specified or
simply inappropriately used data formats which can lead to the incorrect presentation
of results. Such a behavior was recently demonstrated for the widely used Newick
phylogenetic tree file format (Czech et al. 2017). Moreover, helper scripts are
typically written in languages such as perl, a language that is highly susceptible
to coding errors due to lack of typing or python that uses dynamic typing and can
thus not be subjected to a comprehensive type-check either. The term “typing” refers
to the data types of variables (e.g., integer or floating point) that are passed to, and
returned by, functions. Without strict typing a function expecting an integer argu-
ment can be invoked with a floating point value as an argument and exhibit
undefined or unexpected behavior. Thus, programming languages with stricter
type control reduce the potential for errors. Ideally the languages used should be
fully type-safe. Our main concern is that, if each core software component (hence-
forth, we use code as synonym for software) or script component i used in such a
pipeline has a probability of being “buggy” Pi, the probability that there is a bug in
the pipeline increases dramatically with the number of components. If detected too
late, errors in the early data analysis pipeline stages (e.g., NGS assembly, SNP
calling, alignment) for large-scale data analysis projects can have a dramatic impact
on downstream analyses such as coalescent simulations or phylogenetic inferences
as they will all have to be repeated. In fact, this has happened in every large-scale
data analysis project we have been involved in thus far. Given that our field needs to
compete with established computational sciences for scarce supercomputing or
cloud resources, repeating large evolutionary analyses can result in a substantial
waste of computational resources. Current large-scale phylogenomic analysis pro-
jects can require up to 75 million processor hours on supercomputers.

Algorithmic problems that might generally be perceived as “being solved” such
as the alignment of closely related sequences of individuals from a single population
may also exhibit methodological pitfalls. It was shown that errors in multiple
sequence alignments can yield a dramatically increased false-positive rate in tests
for positive selection (Fletcher and Yang 2010) which can, however, be alleviated by
taking alignment uncertainty into account (Redelings 2014). Thus, the alignment
problem is generally not solved. This is true even for apparently simple cases such as
pair-wise sequence alignment algorithms with affine gap penalties. Here, an error in
the initial formulation of the algorithm (Gotoh 1982) has propagated into several
textbooks, university lecture slides, and, more importantly, widely used
implementations (Flouri et al. 2015). While we will not discuss methodological
pitfalls here, we wish to emphasize that they exist and may also lead to incorrect
inferences. In the following we will only focus on software quality and verification
issues in population genetics software.

Population and Evolutionary Genetic Inferences in the Whole-Genome Era. . . 163



Based on the prolegomena, our goals in this chapter are to (1) assess the quality of
current population genetics software and (2) to propose potential solutions, including
software analysis tools, for improving the quality of population genetics software.
We wish to emphasize that the quality measures we deploy only represent one
possible approach to assessing software and reflect a soft probabilistic notion that
“something might perhaps go wrong.” Software quality is not necessarily an indi-
cator for software correctness, but, as demonstrated repeatedly in software engineer-
ing research, a strong correlation does exist (e.g., Briand et al. 1999, 2000;
Casalnuovo et al. 2015).

For assessing software quality, we downloaded and scrutinized – using a common
set of criteria – three widely used and highly cited population genetics codes. An
analogous study has been conducted for a broader range of evolutionary biology
software in Darriba et al. (2018). Based on the software analysis results, we assemble
a list of best practices and discuss some possible policy changes that might contrib-
ute to improving software quality.

It is absolutely not our intention to criticize the developers of the tools we
assessed since they have made major contributions to the field. Instead, our goal is
to emphasize that users should be aware of the fact that software is imperfect and that
software quality should also constitute a criterion for selecting the most appropriate
tool for conducting population genetics analyses.

The remainder of this chapter is organized as follows. In Sect. 2 we assess the
software quality of three widely used population genetics tools. Then, we discuss
some more general issues and additional error sources that are induced by deploying
parallelism for large-scale data analyses in Sect. 4. We conclude our chapter with a
suggestions for best practices in software development in Sect. 5 and discuss
possible policy changes for improving software quality in Sect. 6.

2 Software Quality Analysis of Three Population Genetics
Codes

In our software quality analysis, we focus on core tools that are typically open
source, easy to obtain, and written in C or C++ for computational efficiency. Note
that, it is generally much harder to obtain the scripts used for large-scale empirical
data analysis pipelines deployed for empirical population genetics studies as they are
not always available and generally poorly documented.

While one might expect at least the core tools to exhibit a high software quality
since “they are being used by everyone” and “they yield reasonable results,” this is,
as we will show, not the case for some exemplary standard tools. Note that, in the
following, we only assess the software quality of these core tools using some rather
straightforward yet informative criteria. As stated before, our findings do not imply
that the codes do not work correctly. However, since there exists a strong correlation
between code quality and correctness (Briand et al. 1999, 2000), software of bad
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quality is substantially more likely to yield incorrect results. Our software analysis
results allow for identifying potential weaknesses of the tools which do allow to
deliberately make them fail under specific settings. What we intend to emphasize is
that not enough attention and funding are spent on analyzing as well as improving
the software quality of widely used tools with tens of thousands of citations, since
potential and substantial bugs in these tools can have a dramatic impact on published
research, including the worst-case scenario: the withdrawal of hundreds of papers
due to bugs in one of the core tools.

We want to emphasize that the issue of software verification and correctness
should receive substantially more attention from the application developers but also
from pure computer science that needs to develop novel tools for automatic or at
least semiautomatic verification of complex numerical codes in population genetics
and other areas of bioinformatics.

To explore the software quality and probability of potential software issues, we
analyzed the following three standard population genetics toolkits following a
similar approach as in Darriba et al. (2018): Genepop (two main publications
Raymond and Rousset (1995) and Rousset (2008) have over 19,000 citations;
Google scholar, accessed January 25, 2017), Migrate (the four main publications
Beerli and Felsenstein (1999, 2001), Beerli (2006) and Beerli and Palczewski (2010)
have over 3000 citations; Google scholar, accessed January 27, 2017), and Structure
(over 24,000 citations for the four main papers Pritchard et al. (2000), Falush et al.
(2003, 2007) and Hubisz et al. (2009); Google scholar accessed January 25, 2017).

Note that the results of our analyses merely provide an intuition about what and
how much could potentially go wrong. A detailed study of the warnings and
detection of potential bugs for only one of these programs would require more
than half a year of work for a programmer who is not familiar with the software
which is beyond the scope of this chapter. Our main intention is to assess the current
state, increase awareness about the issue, and provide some simple techniques and
suggestions for improving code quality.

2.1 Experimental Setup

All three codes are written in C/C++ and we analyzed them as follows. Initially, we
simply counted the lines of code (excluding comments) and conducted a so-called
cyclomatic code complexity (McCabe 1976) analysis using the lizard tool (https://
github.com/terryyin/lizard). The cyclomatic complexity provides a measure for
quantifying the control flow complexity in software (for a brief description, see
https://en.wikipedia.org/wiki/Cyclomatic_complexity). Typically, functions with a
complexity exceeding 10 or 15 are judged as being too complex. They should thus,
ideally, be redesigned and restructured such as to increase modularization. Thereafter,
we assessed the amount of code duplication using the simian tool (http://www.
harukizaemon.com/simian/). Then, we deployed the clang/clang++ compiler and
enabled the following warning flags -Weverything -Wno-padded -Wno-float-
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equal -Wno-vla to assess how many warnings the codes generate. Note that the
clang compiler generates a substantially higher number of warnings than the gcc
compiler suite, because it entails a static code analysis tool. Based on our experience, it
reliably detects a significantly higher number of type mismatches in function calls and
variable assignments than gcc. Subsequently, we applied the Linux command
grepassert to all sourcefiles to determine if assertionswere used.Assertions provide
a means of verifying that the code, and more specifically its variables, is in the expected
state, for instance, before a function call returns. The use of assertions essentially allows
for implementing a, at least partial, correctness verification mechanism based on Hoare
Logic (Hoare 1969) which is a formal framework to prove the correctness of code (see
https://en.wikipedia.org/wiki/Hoare_logic). Our working hypothesis is that the more
assertions a software author has inserted, the more he/she has attempted to reason
about the correctness of the code. There also exists a recent software engineering study
using a large collection of C/C++ codes obtained from github which suggests that
functions with assertions do have significantly fewer defects (Casalnuovo et al. 2015).
Finally, we assessed the memory management of the three softwares via the standard
valgrind tool using the --leak-check¼full and --show-
reachable¼yes flags. In the following three sections, we discuss our findings for
the three population genetics tools we assessed.

2.2 Genepop (V4)

The cyclomatic complexity analysis revealed that there are 53 functions with a
cyclomatic complexity greater than 15, the three highest complexity values being
166, 128, and 74. Thus, given those very high numbers, there might be a need to
simplify and modularize several functions. The code duplication analysis revealed
that there are 2252 duplicate lines of code (LoC) in a total of 167 blocks of code,
while the total LoC number without comments is 10, 583. Thus, there are approx-
imately 20% of code duplication that could be avoided to improve maintainability of
the software. Compiling the code with clang generated 1585 warnings, that is,
approximately 1 warning per 7 LoC. We further found that not a single assertion is
used in the entire code. Finally, the memory management analysis with valgrind
(using ./Genepop settingsFile¼sampleSettings.txt Mode¼Batch)
indicated that 984 bytes of RAM are possibly lost and that, at program termination,
19, 056 bytes of RAM are still reachable. In other words, the program does not
properly de-allocate the memory it used, at program termination. This can become
problematic especially if the Genepop main() function is integrated and called by
some larger surrounding C or C++ code several times, because this will generate
memory leaks. However, other memory issues are regularly being fixed by using
valgrind during Genepop development.

At the time of writing this, F. Rousset, the main author of Genepop, was aware of
the above issues. In the meantime, most issues have been taken into account in the
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context of the redesign of Genepop using the R programming language (pers.
comm., June 15, 2017, see https://cran.r-project.org/web/packages/genepop/index.
html).

2.3 Migrate (Version 3.6.11)

For migrate, we only assessed the main source file directory and not the
sub-directories, since the software also includes a plethora of third-party libraries
for random number generation, assembling PDF documents, or compressing files. In
total we detected 148 functions with a cyclomatic complexity greater than 15, the
three highest values being 239, 126, and 114, that is, the top candidates for
restructuring. We further detected 10, 145 duplicate lines in 867 code blocks for
83, 860 LoC in the main source directory (12% of duplicated code). Compiling the
code with clang generated 1818 clang warnings, that is, about 1 warning per
46 LoC. No assertions are used in the source files of the main code directory.
However, some of the third-party libraries such as zlib (compression) or SFMT
(random number generator) do use assertions. Finally, we analyzed the memory
behavior by executing migrate-n with the default test files in the example/
directory of the distribution. We only modified the parameter file as follows (long-
sample¼100 and burn-in¼1000) to obtain reasonable execution times in
conjunction with executing valgrind on top of migrate, since valgrind sub-
stantially increases run-times (typically the factor ranges between 5 and
100 according to the official valgrind documentation). The valgrind tool
reports that 18, 008 bytes of allocated RAM are definitely lost, 7, 903, 896 bytes
of allocated RAM are indirectly lost, 2, 910, 391 bytes of allocated RAM are
possibly lost, and 240, 661 bytes of allocated RAM are still reachable at program
termination.

P. Beerli, the main author of migrate, is aware of the above issues and is currently
working on fixing them in the planned release v3.7.1 of his code (pers. comm., Jan
27, 2017).

2.4 Structure (Version 2.3.4)

Overall, we detected 31 functions with a cyclomatic complexity exceeding 15, the
three highest being 86, 82, and 60. We detected 280 duplicate lines of code in
29 code blocks for a total of 6060 LoC amounting to about 5% of code duplication.
Compiling the code with clang yielded 600 warnings, that is, roughly 1 warning per
10 LoC. We found that only one assertion is being used in source file mymath.c. We
provide the corresponding code snippet below:
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if(z <= 0.)
{
fprintf(stderr,

"lgamma function failed with wrong input (%f)\n",z);
assert(0);
exit(-1);
}

Here we want to show that the assertion is, in fact, not used as intended, because it
will always fail since the Boolean expression it should evaluate is, in fact, a constant
that is set to 0 (i.e., always evaluates to FALSE). Here, the assertion is merely used to
exit the program, and the subsequent command exit(-1) will never be executed
since the code will fail with the assertion prior to executing exit(-1).

The memory check with valgrind and using simulated microsatellite test data
from http://pritchardlab.stanford.edu/software/structure-data_v.2.3.1.html (with the
following settings LABEL¼1, POPDATA¼1, POPFLAG¼1, NUMLOCI¼5,
PLOIDY¼2, MISSING¼-999, ONEROWPERIND¼0) generated no errors whatso-
ever. This is not surprising, since the original Makefile written by the authors
already includes some commented out lines for using valgrind, that is, the tool
was apparently used by the authors to generate code without memory leaks.

J. Pritchard, the main author of Structure, is aware of the above analyses and
issues we detected and has no objections about them (pers. comm., Jan 29, 2017).
The issues we found cannot be fixed in Structure due to lack of manpower.

The usage of valgrind and the lack of manpower for sustainable code main-
tenance lead to the conclusion of this section: if some straightforward standard tools
for improving software quality are routinely used (e.g., valgrind for Structure),
code quality can already be substantially improved. Furthermore, increased long-
term funding for maintaining and occasionally redesigning such important tools
from scratch is required.

3 Impact

The simple code quality metrics deployed in the preceding section only serve as
proxies for software quality. Note that software quality and the probability of
program faults, that is, either a crash of the program or incorrect behavior, are indeed
correlated (see, e.g., Khoshgoftaar and Seliya 2003; Nagappan and Ball 2005). Thus,
these analyses should provide sufficient evidence that additional measures to
enhance software quality are required in the tested tools. This will increase confi-
dence that they do work correctly.

We outline a simple example of how the Structure tool can be made to fail with an
uninformative error message because of a programming error. If we analyze the
warnings produced by the clang compiler, we observe the following programming
error:
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structure.c:3136:17: warning: implicit conversion
changes signedness: 'int' to 'unsigned long'
[-Wsign-conversion]
lambda=calloc(MAXPOPS, sizeof (double));

This warning indicates that MAXPOPS has been defined as a 32-bit signed integer
variable. However, the C function calloc is expecting an unsigned, typically
64-bit integer value of type size_t. Thus, if MAXPOPS is set to a value exceeding
the signed 32-bit integer number range, we expect a failure to occur. To test this,
Structure was executed under the following, admittedly rather unrealistic, setting:

structure -K 3000000000 infile

and yielded the following error message:

Error in assigning memory (not enough space?)
Exiting the program due to error(s) listed above.

This error message is misleading since the actual value of MAXPOPS before the
problematic memory allocation is -1294967296 (value obtained via code instru-
mentation). In fact, the failure occurs because (1) calloc() is invoked with a
negative value since an inadequate integer type is used for allocating memory, (2) no
range check for the command line input parameters is deployed (i.e., the value of -
K 3000000000 exceeds the signed 32-bit integer range), and (3) no assertions to
verify the allowed value range of this variable are used (e.g., assert
(MAXPOPS > 0)).

While this evidently represents a constructed example, this type of programming
error in memory allocations is present in all three tools assessed here. As a conse-
quence, they are all prone to yield analogous program failures. In fact, compiling
Structure with clang yielded 88 cases where either calloc() or malloc() is
invoked with incorrect integer arguments. While this type of programming error will
not constitute a problem for the average use case, it is likely to emerge when
analyzing large datasets. In other words, it limits the scalability of the tools.

As this type of exemplary errors might not affect the correctness of the tools, but
merely their stability, the extremely frequent occurrence of dangerous implicit type
conversions as in the above example is also likely to affect program correctness.
Assessing the correctness of the tools is beyond the scope of this chapter as an
in-depth study of only one tool would require at least a year of work.

Here, our intention is to show that it is relatively straightforward to construct
examples for which the tools will fail and that, given the insights from the area of
empirical software engineering, it is likely that they contain errors.
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4 Numerical and Parallel Computing Challenges

Recent years have witnessed a substantial paradigm change in computer hardware
and programming approaches with the introduction of multi-core architectures and
accelerator systems such as graphics processing units (GPUs) and the Intel Xeon
PHI many-core system. Such architecture-level advancements also have an impact
on code verification, on debugging, and on the reproducibility of results. This is
because the complexity of software development for parallel architectures requires
an additional set of programming skills and also a distinct way of approaching
algorithm design. For instance, parallel computing introduces an additional class
of bugs, so-called race conditions. Race conditions are bugs that only occasionally
appear in a nondeterministic fashion due to varying execution speeds among con-
current threads of execution, yielding parallel software harder to develop, test, and
verify.

In addition, parallelization introduces serious complications with respect to the
reproducibility of analyses. The main problem here is a numerical one. Suppose one
intends to compute a sum over some floating point values fi as f ¼

Pn
i¼1 f i. Further

assume that the data for calculating these individual values fi is distributed to a
certain number of processors p� n. Then, the value f will typically be computed via
a so-called parallel reduction operation as implemented, for instance, in the
MPI_Reduce() collective communication routine of the Message Passing Inter-
face (MPI) that still is the de facto standard for massively parallel computing. Now
assume that p :¼ n∕2. In such a case, each processor will first add two values fiþ fi+1
locally and then invoke MPI_Reduce() to communicate this partial result and
calculate the overall sum f. If we now assume that p :¼ n∕4, each processor will
initially add four values locally and subsequently invoke MPI_Reduce(). For
n :¼ 8 and p :¼ 4, the sum might be computed as {{( f1þ f2)þ ( f3þ f4)}þ
{( f5þ f6)þ ( f7þ f8)}} where the placement of the curly brackets {} denoting the
parallel reduction depends, in fact, on the specific implementation of the
MPI_Reduce() operation. Thus, the addition order induced by {} may also vary
between different MPI implementations. As a consequence, even using different
MPI implementations may induce distinct addition orders for the above sum. Hence,
because of roundoff error propagation, one may obtain different results when
executing code on the same computer system with the same number of processors,
compiled with distinct MPI implementations. Furthermore, if n :¼ 8 and p :¼ 2, the
sum is guaranteed to be executed in a distinct order since the partial sums will
become larger: {( f1þ f2þ f3þ f4)þ ( f5þ f6þ f7þ f8)}. Thus, if the calculations
carried out are numerically sensitive, as they mostly are in population genetics,
since we typically operate with probabilities, we might obtain a signal for positive
selection with two processors but not with four processors due to round-off error
propagation. Note that this type of parallel reduction operation is very common in
parallel codes and that analogous phenomena can be observed for multi-core parallel
programming frameworks such as OpenMP (Open Memory Programming).
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The problem of lacking associativity in floating point operations does not only
apply to parallel programs though. Different compilers such as, for instance, icc
and gcc may choose to reorder instructions (always assuming associativity) in
different ways when code optimization flags (-O switch) are enabled which is
typically the case. Thus, one might obtain different results across compilers or
even for one and the same compiler when distinct optimization levels have been
chosen via -O. We have, in fact, observed both phenomena (deviations within and
across compilers) with RAxML (Stamatakis 2014). Thus, numerical deviations can
also be easily observed for sequential codes, and caution is advised since such
apparently small deviations may lead to a substantial divergence in the final result
(see example provided in Darriba et al. 2018).

In conjunction with the above deviations, it also becomes extremely difficult to
assess the correctness of numerical codes. If such a numerical deviation is detected, it
is often unclear if it is a bug or indeed just a numerical deviation. While one can
conduct a formal roundoff error analysis for an analytical mathematical equation,
this is almost impossible as soon as numerical optimization routines are being used
to optimize the value of that function. Thus, while one could determine a sufficiently
exact value of a function by using arbitrary numerical precision libraries, as soon as
this function needs to be optimized, there is no means to determine the expected or
allowed variance/deviation of the optimized value.

5 Best Practices

There exist several ways in which software quality can be improved. The code
analysis tools and criteria we have deployed in our analysis in Sect. 2 can and should
be applied to all new software being developed. Also, software quality aspects as
well as software analysis tools should receive more attention in programming
courses for undergraduate and graduate students. In the programming courses we
teach at the computer science department of the Karlsruhe Institute for Technology,
we regularly apply the above criteria (usage of assertions, valgrind, clang
compiler warnings, cyclomatic complexity analysis) for grading. In addition, as a
community, we need to interact more intensively with software engineering
researchers at computer science departments, since, after all, we are developing
production level tools. Beyond the simple tools we have analyzed, there exists a
plethora of more advanced software analysis tools such FindBugs for JAVA pro-
grams (http://findbugs.sourceforge.net/) or Cppcheck for C++ codes (http://
cppcheck.sourceforge.net/) that attempt to identify spurious code at a higher level
that can be achieved by compilers. Some of these tools can also be integrated with
github. Developers should keep in mind that investing some effort during initial
program development will reduce the subsequent maintenance load. The main
problem with this is that it is entirely unpredictable whether a prototype software
one has developed will become a widely used bioinformatics tool or not.
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Thus far, we have only discussed code quality, but not addressed code verifica-
tion. A code quality assessment may only provide a notion as to whether a software
tool is more or less likely to exhibit defects. Hence, the question arises how the actual
code verification process could be improved. Firstly, standardized testing procedures
should be applied. Secondly, the results of the tool should be, if possible, compared
with competing codes implementing the same function, provided that such codes
exist. Thirdly, in an ideal world, two independent teams should be working on
developing two independent implementations simultaneously based upon the same
specification whose outputs will then be systematically compared. This is how
aircraft autopilots (usually with three independent teams using at least two distinct
programming languages) are being developed. Evidently, we lack the time and
funding for being able to apply most of the aforementioned techniques for software
verification.

We believe that this is the main problem of bioinformatics software development.
There is insufficient funding for sustainable development, reengineering, and main-
tenance of widely used software tools, given the tremendous citation impact such
tools have but also the harm that can be done (including paper retractions) by
software bugs. Thus, as a community, we need to (1) adopt a standard discipline
of using software analysis tools, (2) put more emphasis on testing and verifying
software, and (3) increase the pressure on funding agencies to implement actions for
sustainable software development and maintenance.

Another important factor to consider is that, while the code is correct, the actual
specification might be incorrect or incomplete. Examples for this are the aforemen-
tioned mathematical issues in Gotoh’s pair-wise alignment algorithm (Flouri et al.
2015) or the erroneous Hastings correction for a widely used topological proposal
mechanism in MCMC-based Bayesian inference of phylogenies (Holder et al. 2005)
that was being used for several years until finally detected and corrected.

Another source of errors that might at least induce reproducibility problems is the
usage of external libraries. Here, we consider library version management as being
the main problem. If a code relies on some external libraries, it might yield distinct
results depending on which version of the library happens to be installed. Thus,
explicit library version management needs to be integrated into our tools to prevent
this. When preparing a study on the impact of false positives for positive selection in
population genetics (Pavlidis et al. 2012), we were, initially, not able to reproduce
our own results. An intense search for the source of the problem revealed that a
simulation tool we were using relied on a random number generator implemented in
the widely used boost C++ library. It turned out that a different version of boost
was installed on the Linux system where we attempted to reproduce our results
which generated a distinct sequence of random numbers for the same random
number seed.
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6 Future Perspectives and Conclusion

We have analyzed three highly cited population genetics tools and assessed their
software quality which tends to be comparatively mediocre. While this does by no
means imply that these three tools work incorrectly, the probability that they do
contain bugs is high based on results from the field of empirical software engineer-
ing. In addition, even if correct, the tools might nonetheless experience failures, in
particular on very large datasets, as we highlight by an appropriate, yet admittedly
constructed, example.

One possible future direction for improving code quality is to make reviewers and
editors of journals that have dedicated software tracks, for instance, systematic
biology, bioinformatics application notes, molecular ecology resources, more
aware of this issue. Thus, reviewers could be asked to conduct analyses similar to
ours when reviewing software papers. We try to already apply this when reviewing
such papers. Alternatively, authors could be asked to submit a code analysis report
(including code duplication, warnings, results of valgrind analyses) together with
their software papers. For standard programming languages such as C/C++ or
JAVA, such tests could, to a large extent, also be automated. Such a policy change
would substantially improve awareness about code quality issues. In fact, we are
currently working on developing an open-source tool for code quality checking that
could be used for this purpose.

Another future direction is to emphasize the importance of code quality in
graduate and undergraduate teaching. In conjunction with this, we also need to
raise the awareness about software quality in the general user community, as we
do with this chapter.

Finally, there is a substantial lack of funding for code development, despite the
fact that widely used software packages contribute enormously to the citation
records of entire departments. Hence, funding agencies should initiate additional
and substantially more funding schemes for software development, redesign, and
verification.
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Abstract Advances in chromatin state mapping, high-throughput DNA sequencing,
and bioinformatics have revolutionized the study and interpretability of epigenomic
variation. The increasing feasibility of obtaining and analyzing detailed information
on epigenetic mechanisms across many individuals and populations has enabled the
study of epigenomic variation at the population level and its contributions to pheno-
typic variation, acclimation, ecological adaptation, and disease traits. Over the past
decade, researchers from disparate life sciences ranging from epidemiology to marine
conservation have begun approaching their subjects through the lens of population
epigenomics. Epigenetic mechanisms involve molecular alterations in chromatin
through DNAmethylation and histone modifications, as well as complex non-coding
RNAs and enzyme machinery, all leading to altered transcription and post-transcrip-
tional RNA processing resulting in changes in gene expression. Genetic and envi-
ronmental variation and stochastic epimutations give rise to epigenomic variation.
Notably, some forms of epigenomic variation are quite stable and in some instances
may be transmitted through one or more rounds of meiosis. Epigenomic variation
can contribute significantly to phenotypic plasticity, stress responses, disease condi-
tions, and acclimation and adaptation to habitat conditions across a wide variety of
organisms during their lifetime but also across multiple generations. The purpose
of this chapter is to provide an overview of population epigenomics concepts,
approaches, challenges, and applications. We discuss the molecular basis of epi-
genetic mechanisms and their variation and heritability across diverse tissues and
taxa. We then discuss the sources of epigenomic variation, within – and among –

population epigenomic variation in plants and animals, and the evolutionary context
of epigenomic variation before reviewing current molecular and bioinformatics
methods for screening epigenomic variation. We then explore the contribution and
association of epigenomic variation with phenotypic and ecological adaptation traits
in plants and common disease conditions in humans and pharmacoepigenomics, as
well as the main challenges and future research directions in population epigenomics.

We emphasize challenges and potential solutions unique to the study of
epigenomes and how those challenges are amplified by the diversity of pathways
by which genes and environments can affect gene expression. With proper applica-
tion and interpretation, the field of population epigenomics will continue to yield
profound insights toward a better understanding of phenotypic plasticity, acclima-
tion, ecological adaptation, heritability, human diseases, and pharmacogenomics.

Keywords DNA methylation · Epigenome-wide association study (EWAS) ·
Evolution · Histone modifications · Missing heritability · Non-coding RNAs ·
Pharmacoepigenomics · Phenotypic plasticity · Population epigenomics · Source and
heritability of epigenomic variation
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1 Introduction

Epigenetics is the study of potentially heritable changes in gene expression that are
not strictly due to nucleotide changes such as substitutions, insertions and deletions
(indels), or other rearrangements of the underlying DNA sequence. Diverse epige-
netic mechanisms detected across all three domains of life are characterized by
genetically, environmentally, and developmentally mediated molecular phenotypes
that may trigger or result from cell differentiation and development, and which
demonstrate varying degrees of heritability through mitosis and meiosis (Cortijo
et al. 2014; Heard and Martienssen 2014). Epigenetic mechanisms involve molec-
ular alterations in chromatin through DNA methylation and histone modifications
and transcriptional and translational interference via non-coding RNAs (Fig. 1;
Johnson and Tricker 2010), leading to altered transcription and post-transcriptional
RNA processing resulting in changes in gene expression. Epigenomics is the
investigation of the interactions among multiple epigenetic mechanisms at the
genome-wide level and how they interact with the genome to influence chromatin
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Fig. 1 The three most commonly investigated epigenetic mechanisms affecting gene expression
are DNA methylation, histone modifications, and non-coding RNA. Reproduced with permission
from D’addario et al. (2013)
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function and gene expression. Epigenomic variation can result from genetic and
environmental factors, as well as from stochastic epimutations (see review in Taudt
et al. 2016).

In a series of papers published in 1942, Conrad Waddington presented the
concept of the “epigenotype” to describe processes of gene regulation suspected to
influence cell differentiation and phenotypic plasticity (Jamniczky et al. 2010;
Waddington 2012; Deans and Maggert 2015). While definitions of epigenetics
now often involve a heritability component following the popularization of that
association by Holliday in 1994, there is still no ultimate consensus of what
constitutes, and thus how to study, epigenetic phenomena (Richards 2006; Deans
and Maggert 2015) nor to what degree epigenetic mechanisms and their effects are
heritable (Pecinka and Scheid 2012; Furrow 2014; Whipple and Holeski 2016).
Irrespective of their heritability, epigenetic mechanisms are indispensable for the
development and survival of most organisms (Zemach and Zilberman 2010).

Population epigenetics was described by Richards (2008) as “emerging as an
active subfield at the interface of molecular genetics, genomics, and population
biology, [that] addresses questions concerning the prevalence and importance of
epigenetic variation in the natural world.” With the development of massive high-
throughput parallel sequencing techniques to assay genome-wide epigenetic marks,
such as bisulfite DNA sequencing, epigenomics has progressed from investigating
individual epigenomes to studying epigenomic variation across populations and
species, leading to the research field of population epigenomics, which is now a
rapidly growing field of basic and applied research.

By distinguishing the contribution of the epigenome to the variation in traits and
gene expression in and among populations, the field of population epigenomics is
unravelling the complexities of the evolutionary process and revolutionizing bio-
technological approaches for improving human health and the environment. The
broad utility of these methods for interrogating non-genetic sources of phenotypic
variation draws researchers from across the life sciences to consider the role of the
epigenome in their respective study systems. This has resulted in notable outcomes,
such as important discoveries in human disease processes (Ling and Groop 2009;
Rodríguez-Paredes and Esteller 2011), environmental toxicology (Birney et al.
2016; Martin and Fry 2018), novel advances in stem cell therapy (Lunyak and
Rosenfeld 2008; Atlasi and Stunnenberg 2017), new approaches in molecular
breeding for the improvement of agronomic crops (King et al. 2010; Zheng et al.
2017), and ambitious concepts and biotechnologies for the conservation of species
and ecosystems in the face of a rapidly warming global climate (Sáez-Laguna et al.
2014; Van Oppen et al. 2017). These advances will undoubtedly reveal new chal-
lenges in the study of epigenomes, as will studying the role of epigenomes at
increasingly complex levels of biological organization.

The objective of this chapter is to provide a discussion of population epigenomics
concepts, methods, challenges, and applications. First, we discuss the molecular
basis of epigenetic phenomena and their taxonomic diversity, tissue specificity, and
heritability. We then examine the evolution and sources of epigenomic variation
before discussing epigenomic variation within and among populations of plants and

182 E. R. V. Moler et al.



animals. Thereafter, we provide an overview of methods used to measure
epigenomic variation and bioinformatics methods for analyzing population
epigenomics data. Subsequently, we review the influence and association of
epigenomic variation with phenotypic and ecological acclimation and adaptation
traits in plants, common disease conditions in humans, and pharmacoepigenomics.
Lastly, we discuss challenges, research needs, and future directions in population
epigenomics.

2 The Molecular Basis of Epigenetic Phenomena

2.1 Epigenetic Mechanisms

DNA methylation, histone modifications, and non-coding RNA are the most well-
studied epigenetic mechanisms. Chromatin is thought to be at the core of epigenetic
gene regulation, affecting gene expression patterns and ultimately the phenotype via
changes in accessibility of the DNA to transcription factors (Chen et al. 2017). The
nucleosome, the basic building block of chromatin, is comprised of approximately
147 bp of negatively charged DNA wound twice around a histone octamer
consisting of heterodimers of H3/H4 and H2A/H2B histones (Hansen 2002). The
N-terminus of a histone molecule is positively charged and contains numerous lysine
and arginine residues that interact with negatively charged DNA, limiting its acces-
sibility to transcription factors (Peterson and Laniel 2004). The bulk of genomic
DNA is incorporated into the nucleosome with around 10–60 residues acting as a
linker region connecting subsequent nucleosomes together (Hansen 2002). Com-
paction of these nucleosome units produces structures of approximately 10 nm in
diameter known as chromatin fibers (Hansen 2002). Like origami, these chromatin
fibers are condensed further, firstly into 30 nm fibers, then into 100–400 nm inter-
phase filaments, and finally into chromosomes (Peterson and Laniel 2004). Organi-
zation of these chromatin structures can be altered by DNA methylation, histone
modifications, and non-coding RNAs that collectively define chromatin states
allowing for either expression (euchromatin) or repression (heterochromatin) of
different genes (Allis and Jenuwein 2016). DNA methylation can result in the
compaction of chromatin, and small RNA can direct DNA methylation to a specific
genomic region via RNA-directed DNA methylation (RdDM) (review in Bernstein
and Allis 2005). Chromatin compaction is known to suppress gene expression by
inhibiting the accessibility to DNA by transcription machinery. Importantly, most
chromatin modifications are reversible (Allis and Jenuwein 2016). The dynamics of
the patterns of chromatin modifications enables biological processes, such as devel-
opment, differentiation, acclimation and adaptation (Taudt et al. 2016). Organisms
from different branches of the tree of life can vary in these mechanisms, some
lineages having lost entire pathways (Zemach and Zilberman 2010).
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2.1.1 DNA Methylation

One of the most frequently studied chromatin modifications in plant, animal, and
fungal genomes is the covalent addition of a methyl group to the fifth carbon of the
cytosine pyrimidine ring, leading to the generation of 5-methylcytosine (5mC)
(Holliday and Pugh 1975; Riggs 1975; Law and Jacobsen 2010). The human
genome contains approximately 28 million CpG dinucleotides, of which 60–80%
are methylated (Taudt et al. 2016). Although different tissues are characterized by
various levels of CpG methylation, CpG islands located in the proximal regions of
gene promoters generally remain unmethylated in animal genomes (Ehrlich et al.
1982).

In mammalian genomes, there are three DNA methyltransferase (DNMT)
enzymes, which add methyl groups to DNA (Edwards et al. 2017). DNMT1, the
maintenance methyltransferase shared across numerous lineages, has an affinity for
hemimethylated CpGs that are generated following DNA replication or during DNA
damage repair (Bostick et al. 2007). Ubiquitin-like containing PHD and RING finger
domains 1 (UHRF1) recruits DNMT1 to hemimethylated DNA, where this enzyme
reproduces the pattern of DNA methylation present on the original strand of DNA
onto the newly synthesized strand (Bostick et al. 2007). DNMT3a and DNMT3b are
de novo DNA methyltransferases that, along with catalytically inactive DNMT3L,
methylate cytosine residues in “naked” unmethylated DNA (Okano et al. 1999).
Although DNMT1 and DNMT3a/b are, respectively, designated as maintenance and
de novo methyltransferases, these functions are not mutually exclusive (Okano et al.
1999; Fatemi et al. 2002).

Global levels of DNA methylation are relatively static in most tissues. However,
during cellular differentiation the DNA methylation status of a fraction of all CpGs
in the genome exhibits dynamic changes that modulate tissue-specific gene expres-
sion (Gifford et al. 2013; Ziller et al. 2013). These alterations in the patterns of
DNA methylation are influenced by the chromatin state through a cross-talk between
methylation/demethylation machinery and histone modifications including H3K9me
and H3K4me (Cedar and Bergman 2009; Du et al. 2015). The removal of 5mC from
DNA can occur either through passive or active demethylation (Smith and Meissner
2013). Passive demethylation is replication-dependent. During this process, 5mC is
being “diluted out” with each successive round of replication in the absence of
DNMT1 and/or UHRF1 (Wu and Zhang 2014). Active DNA demethylation was
initially described in plants where Demeter (DME)/repressor of silencing 1 (ROS1)
family of DNA glycosylases mediate removal of 5mC when coupled with base
excision repair (BER) machinery. In addition to this, a direct removal of the methyl
group from 5mC has also been reported in plants; however, this process is thought to
be thermodynamically unfavorable in mammalian cells (Zhu 2009).

5-Hydroxymethylcytosine (5hmC), an oxidized derivative of 5mC initially iden-
tified in bacteriophages (Wyatt and Cohen 1952), was later found in non-negligible
quantities in the mouse genome (Kriaucionis and Heintz 2009). The ten-eleven
translocation (TET) family of DNA dioxygenase enzymes (TET1–3) was shown to
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catalyze the conversion of 5mC into 5hmC (Tahiliani et al. 2009). Further oxidation
of 5hmC then forms 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by TET
proteins (Ito et al. 2011; He et al. 2011). 5hmC may facilitate passive dilution of
5mC by impairing binding of DNMT1/URHF1 to the hemi-modified DNA (Wu and
Zhang 2014). Moreover, thymine-DNA glycosylase (TDG) can recognize and
excise 5caC and 5fC from DNA (Maiti and Drohat 2011; He et al. 2011). Analo-
gously to DME/ROS1-mediated demethylation in plants, TDG-driven excision of
5caC and 5fC produces an abasic site that can be repaired by BER machinery
resulting in regeneration of non-modified cytosine (Chen and Riggs 2011). In
addition to their roles as intermediates in the processes of active and passive DNA
demethylation, according to multiple studies, the oxidized forms of 5mC (5hmC,
5caC, and 5fC) may have their own functional epigenetic significance (Song and He
2013). Thus, accumulation of 5fC and 5caC at cell-type-specific promoters, which
correlates with transcriptional activity of the corresponding genes, has been
observed during glial/neural and hepatic differentiation, implying a potential role
of these modifications in regulation of gene expression (Wheldon et al. 2014; Lewis
et al. 2017). The TET/TDG/BER-dependent pathway of active demethylation is
most documented for mammalian systems to date.

DNA methylation is usually associated with transcriptional repression and has
been linked to a plethora of biological processes, including X chromosome inacti-
vation, genomic imprinting, heritable repression of retrotransposons, pluripotency
regulation, and gene silencing in development and disease (Edwards et al. 2017;
Iurlaro et al. 2017). In addition to silencing of coding genes, transposon-derived
sequences, such as long interspersed nuclear elements (LINEs), short interspersed
nuclear elements (SINEs), and long terminal repeats (LTRs), are often heavily
methylated in mammals (Edwards et al. 2017). Interestingly, in plants, DNA meth-
ylation also occurs predominantly on repetitive sequences, including transposons
(Zhang et al. 2006). Given that transposable elements are a significant threat to the
genome integrity due to their ability to replicate and integrate randomly throughout
the genome, their tight regulation is of particular importance for the heritable transfer
of genetic information (Fedoroff 2012). Correspondingly, DNA methylation repre-
sents one of the main mechanisms allowing to maintain repetitive elements in a
silenced state in both plants and animals (Law and Jacobsen 2010).

Genomic imprinting is an epigenetic process defined by the expression of genes
in a parental-origin-specific manner (Ferguson-Smith 2011). Imprinting was initially
discovered while studying the inheritance of maize (Zea mays) kernel coloration,
when specific phenotypes were attributed to the parental germline environment of a
gene instead of differences in its DNA sequence (Kermicle 1970). Imprinting has
been reported for mammals, plants, and insects (Kermicle 1970).

X-inactivation is an example of whole chromosome imprinting whereby one of
the female X chromosomes is silenced to equalize its transcriptional output to the
male XY (Plath et al. 2002). Although X chromosome inactivation is instigated by
the ncRNA Xist, DNA methylation is central to maintaining its inactive state
(Csankovszki et al. 2001). In addition to the continued expression of Xist and
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deacetylation of histones, de novo methylation of CpG islands is required for
permanent silencing of the X chromosome (Bird 2002).

Apart from locus-specific changes in 5mC content, two events of genome-wide
DNA demethylation and remethylation occur in mammalian development (Edwards
et al. 2017). One wave of global genome demethylation is observed upon migration
of dividing primordial germ cells toward developing gonads, and the second
demethylation event occurs in cleavage stage embryos soon after fertilization
(Monk et al. 1987; Edwards et al. 2017). These waves of genome-wide demethyl-
ation and subsequent remethylation are currently understood as reprogramming
events and are correlated with the loss of cellular memory and the resetting of
cellular potency (Iurlaro et al. 2017). In contrast, for plants, studies in Arabidopsis
have shown that in pollen, the germline cells do not undergo erasure of DNA
methylation (Slotkin et al. 2009). Rather DNA methylation is lost in the vegetative
nucleus, resulting in re-expression of transposons and the production of small RNAs.
It has been demonstrated that these small RNAs can travel to the germline cells,
where it is suggested they reinforce methylation states (Slotkin et al. 2009).

Although methylation of cytosine is the most abundant and well-studied DNA
modification, adenine within DNA has been shown to be methylated in some
instances (N6-methyladenine, 6mA) (O’Brown and Greer 2016). Until recently,
the presence of 6mA in DNA had been described only for prokaryotes in the context
of host defense mechanisms (Vanyushin et al. 1968). However, since 2015, a
number of studies have documented the presence of this mark in plants, insects,
and mammals (Fu et al. 2015; Greer et al. 2015; Zhang et al. 2015a, b; Liu et al.
2016; Wang et al. 2017; Xiao et al. 2017). Despite indications of its possible
involvement in the regulation of transcription, activity of transposable elements,
embryo development, and inheritance in these systems, potential functional roles of
this DNA modification in eukaryotes remain to be elucidated (Luo et al. 2015; Sun
et al. 2015; Luo and He 2017).

2.1.2 Non-coding RNAs (ncRNAs)

A majority of the non-protein-coding transcripts produced from a genome are
functionally active as RNA molecules and play numerous regulatory roles in the
cell (Uchida and Dimmeler 2015). These RNAs, known as non-coding RNAs
(ncRNAs), are functional transcripts that are not translated into proteins. Classifica-
tion of ncRNAs is often based on size, dividing them into small (<30 nt) and long
(>200 nt) transcripts (Uchida and Dimmeler 2015). Small ncRNAs (sncRNAs)
include microRNAs (miRNAs), small interfering RNAs (siRNAs), Piwi-interacting
RNAs (piRNAs), transfer RNAs (tRNAs), and small nucleolar RNAs (snRNAs).
Ribosomal RNAs (rRNAs) and natural antisense transcripts (NATs) are within the
scope of long ncRNAs (lncRNAs); however numerous other lncRNAs exist (Chen
et al. 2017).
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Micro RNAs (miRNAs)

Almost 40 thousand types of miRNAs have been discovered, and these evolutionarily
conserved single-stranded RNAs (20–24 nucleotides long) are thought to be involved
in many important biological processes by regulating the expression of approxi-
mately half of all genes in a cell post-transcriptionally (Kaikkonen et al. 2011).
Although some miRNAs are transcribed from independent loci, most miRNAs are
clustered and are transcribed as a part of a single polycistronic unit, most commonly
from intergenic regions of the genome (Karius et al. 2012; Uchida and Dimmeler
2015).

Mature miRNA integrates with the RNA-induced silencing complex (RISC) in
order to guide its binding to the 30 untranslated region (UTR) of target mRNA (Bartel
2004). The degree of base pairing between the mature miRNA seed sequence and the
target mRNA 30UTR determines either repression or degradation of the
corresponding mRNA (Li et al. 2010). In case of perfect complementarity between
the seed sequence and mRNA 30UTR, the Argonaute protein cleaves the resulting
complex, whereas non-perfect complementarity usually leads to translational inhi-
bition of mRNAs (Kaikkonen et al. 2011). Thus, via mRNA targeting, miRNAs can
modulate the gene expression patterns for hundreds of different targets and, conse-
quently, influence many biological processes, such as proliferation, differentiation,
and metabolism (Uchida and Dimmeler 2015).

Small Interfering RNAs (siRNAs)

miRNAs and siRNAs are similar in many aspects, including their size (20–24 nt) and
ability to associate with the RISC complex to silence gene function. However, they
have divergent origins and biogenesis pathways (Kaikkonen et al. 2011). Both
require Dicer for processing and the Argonaute family of proteins to support their
silencing abilities, but siRNAs do not rely on Drosha, a class 2 ribonuclease III
enzyme, and are mainly processed from long, linear, fully complementary dsRNAs
as opposed to the stem-loop precursors described for miRNAs (Carthew and
Sontheimer 2009; Kim et al. 2009). Analogously to miRNAs, the extent of comple-
mentarity between siRNA and its target determines the particular mode of siRNA-
dependent silencing, but most siRNAs almost exclusively mediate cleavage and
degradation of their target mRNAs (Kaikkonen et al. 2011).

Initially, only exogenous siRNAs were considered as a primitive form of genome
defense that act in response to foreign nucleic acids including viruses, transposons,
and transgenes (Kaikkonen et al. 2011); however, it soon became apparent that
endogenous siRNAs transcribed from loci containing transposons and repetitive
elements could, similar to exogenous siRNA and piRNAs, contribute to the sup-
pression of transposon activity (Carthew and Sontheimer 2009). Interestingly,
siRNAs have also been associated with sequence-specific silencing through
the upregulation of epigenetic marks that induce formation of heterochromatin
(Kaikkonen et al. 2011).
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PIWI-Interacting RNAs (piRNAs)

piRNAs are 24–31 nucleotides long and are characterized by a 20-O-methyl modi-
fication at the 30, as well as a preference for uridine at the 50 (Siomi and Siomi 2009).
Unlike miRNAs and siRNAs, piRNAs are processed from a single-stranded precur-
sor transcript (Vagin et al. 2006). piRNAs form effector complexes known as
piRNA-induced silencing complexes (piRISCs) with PIWI proteins belonging to a
germline-specific subclass of the Argonaute family (Iwasaki et al. 2015). piRNAs
are transcribed from piRNA clusters, intergenic regions containing large numbers of
different transposons (Kaikkonen et al. 2011; Iwasaki et al. 2015). Initially, piRNAs
were identified in Drosophila, where they are complementary to numerous trans-
posable and repetitive elements (Aravin et al. 2003). Correspondingly, piRNAs act
primarily as the essential regulators of transposon activity within the genome during
germline development (Iwasaki et al. 2015). Interestingly, piRNAs have also been
linked to transposon regulation in somatic cells (Li et al. 2009a; Malone et al. 2009).
As piRNAs are transcribed from loci that are similar to their targets, to successfully
regulate transposition, they need to recognize their “self” genes from “non-self”
transposable elements that are to be targeted (Malone and Hannon 2009). A combi-
nation of diversity in the sequences for target transposons and in piRNA processing
mechanisms makes these RNAs one of the most diverse and the largest subgroups of
ncRNAs (Siomi et al. 2011).

Long Non-coding RNAs (lncRNAs)

Unlike highly conserved sncRNAs that regulate gene silencing through specific base
pairing, long non-coding RNAs (lncRNAs) have low-level sequence conservation
and use diverse mechanisms of regulation which are not yet fully characterized.
Similar to protein-translating mRNA, lncRNAs are transcribed by RNA polymerase
II (Wang and Chang 2011). They are often 50 capped and spliced and contain a
30-polyadenylated tail (Chen et al. 2017). Unlike protein-coding genes, lncRNAs
lack open reading frames (ORF); their encoded RNA sequences are shorter, and the
abundance of the expressed transcripts is lower compared with mRNAs (Wang and
Chang 2011). lncRNAs are enriched in the nucleus compared to the cytoplasm, and
their expression is highly cell type, tissue type, and developmental stage-specific
(Chen et al. 2017).

lncRNAs are commonly classified according to genomic location as sense,
antisense, intronic, intergenic, enhancer, and circular RNAs (Uchida and Dimmeler
2015). Sense lncRNAs usually share the same promoter and overlap with a protein-
coding transcript, whereas antisense lncRNAs are present in the strand opposite to a
protein-coding gene (Uchida and Dimmeler 2015). Intronic lncRNAs are transcribed
from the introns of a translated gene, and long intergenic non-coding RNAs
(lincRNAs) can be found between two transcribed genes. Enhancer RNAs
(eRNAs) are produced from enhancer regions of protein-coding genes, and circular
RNAs are usually formed following the splicing of a protein-coding gene whereby
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the product covalently binds to itself (Uchida and Dimmeler 2015; Chen 2016).
lncRNAs have also been grouped according to their function as imprinting-related,
scaffolds, enhancer activation, and molecular sponges (Uchida and Dimmeler 2015)
but as individual lncRNAs may fulfill several biological roles; therefore, these
groups are not mutually exclusive (Wang and Chang 2011).

The lncRNA Xist, the first functionally characterized lncRNA involved in
imprinting, silences one of two X chromosomes (Brown et al. 1991; Herzing et al.
1997). Xist silences one of the female XX chromosomes to equalize its transcrip-
tional output compared to male XY (Plath et al. 2002). On the active X chromosome,
Xist is silenced in the cis position (self-inactivation); however, on the inactive X
chromosome, Xist is activated both in cis and trans positions (non-self-inactivation)
(Chen et al. 2017).

When a lncRNA acts as a scaffold, it directs different biological activities through
the recruitment of additional functional proteins (Uchida and Dimmeler 2015).
Scaffold lncRNAs represent the most abundant subgroup of these RNAs, a type of
lincRNA consisting of more than 10,000 molecular species (Chen 2016). Unlike
most lncRNAs, lincRNAs are highly evolutionarily conserved across different
species (Guttman et al. 2009). lincRNAs have a distinctive chromatin signature;
their promoter and transcribed regions are marked by trimethylated lysines
4 (H3K4me3) and 36 (H3K36me3) of histone 3, and both are associated with
actively transcribed genes (Khalil et al. 2009; Guttman et al. 2009). Current exper-
imental evidence suggests that lincRNAs act as flexible scaffolds, guiding
chromatin-modifying complexes to particular loci within the genome, enabling the
creation of cell-type-specific epigenetic states and instigating different transcrip-
tional programs (Tsai et al. 2010; Guttman et al. 2011).

The eRNAs are a group of lncRNAs transcribed from enhancers (Uchida and
Dimmeler 2015). eRNAs modulate enhancer activation and range in size from 0.1 to
9 kb (Kim et al. 2010; Kaikkonen et al. 2011). Similar to other lincRNAs, eRNAs are
evolutionarily conserved and have a distinct chromatin signature (Heintzman et al.
2007). eRNA-producing regions are usually characterized by high enrichment of
monomethylated (H3K4me1) and low content of trimethylated lysine 4 on histone
3 (H3K4me3) (Heintzman et al. 2009). As the initiation of eRNA transcription
occurs from RNA polymerase II binding sites, followed by bidirectional elongation
of the transcript, eRNA expression levels positively correlate with those of nearby
mRNAs (Kim et al. 2010; Chen et al. 2017).

Unlike eRNAs, molecular sponges regulate gene expression via sequestering
molecules that interact with a particular region of the genome (Chen et al. 2017).
Circular RNA (circRNA) arising from introns or protein-coding exons via linking
their 30 and 50 ends commonly acts as molecular sponges (Zhang et al. 2013a, b; Jeck
et al. 2013). Although the overall range of biological roles of circRNAs is still rather
unclear, one of their known functions is the sequestration of miRNAs (Uchida and
Dimmeler 2015). A circRNA containing more than 70 conserved miRNA target sites
known as ciRS-7 was shown to act as a sponge for miR-7 in both human and mouse
brain (Hansen et al. 2013). ciRS-7 is strongly associated with Argonaute proteins in
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a miR-7-dependent manner and upregulates miR-7 target levels by suppressing
miR-7 activity (Hansen et al. 2012, 2013).

2.1.3 Histone Modifications

Histones are the core components of the nucleosome. They are of fundamental
importance for the epigenetic regulation of chromatin structure and undergo a
large number of chemical modifications that are considered epigenetic (Hansen
2002). Although the post-translational modifications of histones were known since
the early 1960s (Allfrey et al. 1964), histone modifications were functionally linked
with chromatin structure only in 1997 after achieving a high-resolution X-ray
structural determination of the nucleosome (Luger et al. 1997). The 20–35 residue
amino-N-terminal histone tail extends from the nucleosome unit enabling its inter-
action with neighboring nucleosomes and is instrumental in the folding of nucleo-
somes into higher-order chromatin fibers (Peterson and Laniel 2004; Bannister and
Kouzarides 2011). Histones possess more than 130 post-translational modifications
(PTMs) that include acetylation, methylation, phosphorylation, sumoylation,
ubiquitination, deamination, beta-N-acetylglucosamine, ADP ribosylation, histone
tail clipping, and histone proline isomerization (Bannister and Kouzarides 2011;
Rivera and Ren 2013). Most of these PTMs are observed in both the amino and
carboxyl terminal tails of histones; however, central histone domains can also be
modified (Bannister and Kouzarides 2011). In 2000, the “histone code” hypothesis,
stating that the combined nature of different histone modifications defines different
combinatorial chromatin states, was proposed in several studies (Strahl and Allis
2000; Jenuwein and Allis 2001). According to this hypothesis, the patterns of
histone modifications present at defined locations in the genome can be interpreted
by other proteins resulting in a specific downstream event (Strahl and Allis 2000).
Although consensus has not been achieved for what the “histone code” actually
means, it is generally assumed that histone modifications contribute to control of
gene expression via either structural changes of chromatin or recruitment of tran-
scription factors, coactivators, and suppressors in order to achieve active, poised, or
silenced transcriptional states of the corresponding genes (Peterson and Laniel 2004;
Bannister and Kouzarides 2011; Chen et al. 2017).

2.2 Taxonomic Diversity of Epigenetic Patterns

Although epigenetic mechanisms play a key role in the evolution of phenotypic and
functional biological diversity in myriad animal and plant taxa, and are conserved
across a wide range of species, most fungi and invertebrate animals investigated so
far appear to make less use of DNA methylation than plants and animals (Zemach
and Zilberman 2010; Zhong 2016; Yung and Elsässer 2017). Importantly, many
post-translational modifications originated in prokaryotes as metabolic intermediates
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and acquired an “epigenetic” role only in multicellular organisms (Yung and
Elsässer 2017). Thus, comparative analysis of epigenetic modifications between
different species may provide an insight into both biological roles of epigenetic
marks and the evolution of specific developmental processes (Xiao et al. 2014;
Roadmap Epigenomics Consortium et al. 2015; Zhong 2016; Hardcastle et al. 2018).

Cytosine DNA methylation (5mC) is a major epigenetic modification commonly
found in plants, animals, and fungi (Yung and Elsässer 2017). Its global levels vary
across different eukaryotes, with the amount of cytosine residues that are methylated
representing 0–3% of all the cytosine residues in the genome of insects, 5% in
mammals and birds, 10% in fish and amphibians, and sometimes more than 30% in
the genomes of certain plants (Field et al. 2004). Unlike in mammals, in insects, 5mC
is enriched in the gene bodies of actively transcribed loci, where it is involved in the
control of gene expression (Yan et al. 2015; Jaenisch and Bird 2003). In the
honeybee (Apis spp.), gene body methylation has also been linked with alternative
splicing (Wedd and Maleszka 2016), and an intriguing though disputed finding from
studies of eusocial insects linked 5mC variation with development of different castes
and behavioral patterns (Yan et al. 2014, 2015).

Extensive 5mC variation exists in plants, mediated by a suite of plant-specific
methyltransferases, and correlates strongly with the distribution of transposable
elements across a given genome (Niederhuth et al. 2016; Bewick et al. 2017). Plants
with a more complex genome have a wide distribution of 5mC that, like in mammals,
contributes to preventing transposition of repetitive elements (Zemach et al. 2010).
Similar to insects, plants contain 5mC in a CG context, but also in CHG and CHH
contexts (where H is any base), within approximately a third of gene bodies of
actively transcribed protein-coding genes (Cokus et al. 2008; Lister et al. 2008).
CHG methylation is specifically mediated by CHROMOMETHYLASE 3, while
CHH methylation is specifically mediated by CHROMOMETHYLASE 2. CG,
CHG, and CHH methylation also share a common mediator: DOMAINS
REARRANGED METHYLASE 2. 5mC content and distribution vary significantly
across plant species and have been lost altogether within some algal species (Bewick
et al. 2016, 2017). Thus, Chlorella possesses a highly methylated genome, whereas
Volvox contains only low levels of DNA methylation (Lister et al. 2008).

Importantly, all of the DNMTs in eukaryotes are highly homologous to bacterial
DNA methyltransferases (Goll and Bestor 2005). While in mammals, de novo
methylation is mediated by the DNMT3 class of enzymes, their plant counterparts
belong to the DOMAIN REARRANGED METHYLTRANSFERASE 2 (DRM2)
protein family (Law and Jacobsen 2010; Zhang et al. 2018). Targeting of these
enzymes to DNA significantly differs between these organisms. Mammalian
DNMT3 is recruited to chromatin through its association with histones; however,
DRM2 is targeted to the DNA via siRNAs through RdDM (Law and Jacobsen 2010;
Zhang et al. 2018). RdDM is a major mechanism of DNA methylation in plants that
is generated via a different pathway in plants than in other eukaryotes, consisting of
24 nt small RNAs produced by two RNA polymerases specific to plants: Pol IV
interacting with non-coding RNA produced by Pol V to target DOMAINS
REARRANGED METHYLASE 2 (Matzke and Mosher 2014). There is strong

Population Epigenomics: Advancing Understanding of Phenotypic Plasticity. . . 191



evidence of genetic variants in these plant-specific pathways associated with popu-
lation level differences in DNA methylation (Schmitz et al. 2013b).

The most common DNA modification in prokaryotes is adenine methylation
(6mA), while the role of 5mC in bacteria is rather poorly understood (Vanyushin
et al. 1968; Breiling and Lyko 2015). There are two types of 6mAmethyltransferases
in bacteria: restriction-modification systems, which protect the prokaryotic host from
the invasion of foreign (phage) DNA, and solitary methyltransferases, e.g., Dam
(Wion and Casadesús 2006). In bacterial genomes, 6mA, in combination with
solitary methylases, is implicated in influencing virulence of diverse human and
animal pathogens as well as providing signals for DNA-protein interactions
(Vanyushin et al. 1968; Low et al. 2001; Casadesús and Low 2006; Kahramanoglou
et al. 2012).

In addition to bacterial genomes, 6mA has also recently been identified in a
wide range of multicellular organisms including Arabidopsis, Chlamydomonas,
Drosophila, C. elegans, Tetrahymena thermophila, rice (Oryza sativa), zebrafish
(Danio rerio), pig (Sus scrofa), and Homo sapiens (Fu et al. 2015; Greer et al. 2015;
Zhang et al. 2015a, b; Liu et al. 2016; Wang et al. 2017; Xiao et al. 2018; Zhang et al.
2018). Unlike that of 5mC, the function of 6mA in these organisms is currently
largely unclear. However, it does seem to correlate with activation and/or silencing
of genes in certain biological systems studied to date (Luo et al. 2015; Sun et al.
2015; Luo and He 2017).

Several recent reports have provided experimental evidence for epigenetic-like
functional roles of the active demethylation intermediates 5hmC, 5caC, and 5fC
(Song and He 2013). The generation of 5caC and 5fC in plant genomes in response
to environmental stresses has also been reported (Tang et al. 2014), but not 5hmC
due to the lack of TET enzymes in plants. Moreover, TET homologues and the
oxidized derivatives of 5mC have also been detected in fungi Coprinopsis cinerea,
but their biological roles in these organisms are yet to be elucidated (Zhang et al.
2014).

ncRNAs are present not only in eukaryotes but also in bacteria, archaea, and
viruses (Storz 2002). Numerous early ncRNA studies were carried out in unicellular
eukaryotes (Volpe et al. 2002; Mochizuki et al. 2002). These sncRNAs are among
the most highly conserved sequences in vertebrate genomes, whereas the lncRNAs
have limited evolutionary conservation (Pang et al. 2006; Pollard et al. 2006). One of
the most ancient sncRNAs is the hammerhead ribozyme. This catalytic RNA was
discovered in subviral plant pathogens in addition to archaea, bacteria, and eukary-
otic genomes (Przybilski et al. 2005; Seehafer et al. 2011). Endogenous siRNAs
have also been observed in different species such as plants, worms, flies, and
mammals. However, the complexity of the siRNA biogenesis pathway is not equal
in all organisms (Kim et al. 2009). Within humans, identification of endogenous
siRNAs is limited (Xia et al. 2013). Bacterial siRNAs are not related to eukaryotic
small RNAs. Unlike bacterial siRNAs, endogenous siRNA of eukaryotes is 20–30
nucleotides long and specifically associates with the Argonaute family of proteins
(Kim et al. 2009). Interestingly, the high degree of base pairing between miRNAs
and their target mRNAs leading to target degradation is more commonly observed in
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plants, whereas miRNA-dependent translational repression most commonly occurs
in humans due to imperfect complementarity (He and Hannon 2004).

Unlike eukaryotes, archaea do not contain complex nucleosomal units, but
prototypic histones are associated with DNA packaging in these prokaryotes
(Mattiroli et al. 2017). Moreover, the amino acid sequences forming the contacts
between nucleosomal histones and DNA are conserved between archaea and eukary-
otes indicating an important functional role for these interactions (Mattiroli et al.
2017). The core histone fold, regulatory sites on the histone tail, and histone PTMs
are evolutionarily conserved in protozoans, and most of the components of the
machinery involved in the regulation of PTMs also appear to possess some degree
of evolutionary conservation (Postberg et al. 2010; Talbert et al. 2012). Lysine
acetylation is present in all kingdoms of life; sirtuin deacetylases are conserved
between eukaryotes, archaea, and bacteria; and the catalytic core of the SET domain
of lysine methyltransferases can be found in prokaryotic (bacterial) proteins (Soppa
2010; Alvarez-Venegas 2014; Yung and Elsässer 2017). Furthermore, the donor
molecules employed by the eukaryotes for the generation of some PTMs (e.g., acetyl
CoA and ATP) serve as intermediates involved in metabolic feedback regulation in
prokaryotes (Sharma and Rando 2017).

Thus, despite the diverse roles of specific epigenetic marks in various species,
most of the basic epigenetic mechanisms are of very ancient origin, and, therefore,
elucidating their roles in different contexts should be of immense interest for
understanding the most fundamental principles of the homeostasis and development
of biological systems.

2.3 Cell and Tissue Specificity of Epigenetic Patterns

Epigenetic memory refers to the transmission of gene expression states through
multiple generations of a cell line, independent of initiation signals or genetic
variation (Ng and Gurdon 2008). With few exceptions, the hundreds of cell types
present in a multicellular eukaryote contain identical genomes, yet the functions they
perform differ substantially (Watanabe et al. 2013). This functional variation is
facilitated by changes in gene expression resulting from enhancer-promoter interac-
tions, chromatin assembly, transcription factors, transposable element mobilizations,
and attendant epigenomic modifications (Li et al. 2016). Mechanisms of gene regu-
lation both reflect changes in cellular environments and ontogeny, and collectively
act to progressively silence transcriptionally active gene regions as cell differentiation
proceeds. Once a developing cell becomes committed to a cell fate, it cannot switch to
another cell fate, in part due to accumulated epigenetic modifications that buffer cell
differentiation (Hochedlinger and Plath 2009; Takahashi et al. 2018). Elimination of
the epigenetic memory accumulated during cellular differentiation, exposure to
conducive cellular environments, and induction of embryonic transcription factor
network expression have allowed stem cell researchers to reprogram a wide range of
differentiated somatic cells to a pluripotent state (Lunyak and Rosenfeld 2008;
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Watanabe et al. 2013). Conversely, epigenetic alterations accrued during the cell
differentiation process result in cell populations consisting of an epigenome mosaic.
Therefore, any multi-cell epigenomic study of tissue samples composed of multi-
aged cells, let alone different cell types, constitutes a collection of epigenomes (Jaffe
and Irizarry 2014; Wijetunga et al. 2014). Mixed epigenome samples present chal-
lenges for the analysis and interpretation of epigenomic data, particularly in
epigenome-wide association studies (EWAS), of which investigators are often not
aware (Greally 2017). A study using five publicly available datasets from epigenome-
wide associations between human disease and DNA methylation content of whole
blood found that blood DNA methylation levels explain over 19% of variation in
blood cell-type composition present among study samples (Jaffe and Irizarry 2014).
Similarly, studies of stem cells from diverse cell sources have found that induced
pluripotent stem cells maintain characteristic epigenetic profiles depending on cell
origin even prior to cell reprogramming (Shiota et al. 2002; Watanabe et al. 2013).
Studies of the DNA methylome of multiple tissues from Arabidopsis thaliana found
divergence in methylation profiles across tissue types that also varied in their degree
of divergence based upon sequence context (Fig. 2; Calarco et al. 2012; Kawakatsu
et al. 2016a, b). Together, this suggests a strong potential for spurious epigenomic
associations to confound epigenomic studies any time when samples represent
heterogeneous cell compositions.

Mixed-cell sample deconvolution strategies for simplifying heterogeneous sam-
ples include methods of cell-type sorting via flow cytometric approaches such as
fluorescence-activated cell sorting, immunomagnetic separation, or microfluidic
microchips (Jaffe and Irizarry 2014; Wijetunga et al. 2014), single-cell genome-
wide bisulfite sequencing (Smallwood et al. 2014), and bioinformatics approaches
(Teschendorff and Zheng 2017). Naïve assessment of heterogeneous tissue- and cell-
specific epigenetic profiles clearly presents a significant source of spurious
epigenomic variation, i.e., false detection of epigenomic variation among samples.
However, leverage of cell- or tissue-specific epigenomic variation allows dissection
of the epigenetic contribution to gene expression differences underlying differential
tissue and cell development. For instance, conspicuous tissue-specific DNA meth-
ylation patterns offer useful biomarkers of various human diseases (Hewitt et al.
2017; Keller et al. 2017; Yang et al. 2017), targets for the identification of loci
related to DNA methylation-associated phenotypic variation in response to imposed
environmental stress (Alonso et al. 2017), and methods for quantitative determina-
tion of cell-type proportions present in heterogeneous samples (Baron et al. 2006).
Additionally, cell-type-specific DNA methylation changes in the development of
certain cell lines, such as male and female plant germ cells, have important conse-
quences for the propagation of accumulated epigenetic modifications to daughter
cells via signaling factors, often in the form of small RNAs present in plant sperm
nuclei and seed endosperm (Calarco et a. 2012; Springer and Schmitz 2017).
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2.4 Heritability of Epigenetic Patterns

Characteristic patterns of epigenomic variation occur within subspecies, species, and
populations (Verhoeven et al. 2010; Zemach and Zilberman 2010; Schmitz et al.
2011). The resetting of most epigenetic patterns that occurs during gamete and
zygote formation is necessary to enable zygote cell totipotency, yet epigenetic
patterns are largely conserved within lineages and populations, suggesting the
activity of mechanisms for their transmission through mitosis and meiosis, as well
as their reestablishment from environmental and genetic cues (Schmitz et al. 2011;
Calarco et al. 2012). Interestingly, transmission of gene-independent epialleles (loci
differing in chromatin states among cells or organisms) through meiosis is well
documented in plants, but less so in animals, although plants maintain totipotent
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cells well beyond embryogenesis while animals do not (Calarco 2012). This differ-
ence relates to the tendency of the epigenomes of animals, mammals in particular, to
be erased and then reestablished during zygote formation, while plant epigenomes
undergo far less loss or reprogramming and are instead reinforced during gamete
formation (Heard and Martienssen 2014).

The inheritance of silent gene expression states appears to mostly involve the
transmission of DNA methylation profiles, as evidenced by the finding that qualita-
tive “on/off” effects on gene expression are commonly associated with DNA
methylation (Springer and Schmitz 2017). Meanwhile, the transmission of active
and quantitative gene expression states commonly involves histone variants, espe-
cially the histone variant H3.3. Along with multiple histone modifications, H3.3 is
often enriched at active chromatin sites (Ng and Gurdon 2008). The mechanism
enabling maintenance of a pure epigenetic state (sensu Richards 2006) related to
DNA methylation through mitosis is facilitated by the semiconservative nature of
DNA replication. After mitosis, each daughter cell has one parental DNA strand with
a methylation pattern matching that of the parental cell and one newly synthesized
strand lacking methylation. The resulting hemimethylated state is the preferred
substrate of certain DNA methyltransferases, which preferentially methylate CG or
CHG nucleotides on the new strand paired with methylated complementary
sequences on the parental strand (Adams and Burdon 1985; Ng and Gurdon
2008). Transmission of the histone variant H3.3 depends upon the synthesis and
deposition of H3.3 near chromatin sites already enriched in H3.3, which may occur
in most phases of the cell cycle (Ng and Gurdon 2008). Enrichment of H3.3 near
sites in the mother cell enriched in H3.3 increases the ratio of this histone variant to
the typical H3.1 form, improving the likelihood of H3.3 recruitment into newly
replicated chromosomes, thus maintaining H3.3 density and position along the
chromatin across cell generations. It is misleading, however, to discuss the inheri-
tance of DNAmethylation or histone variants in isolation from the influence of small
RNAs, which play a role in orchestrating many instances of the former. For instance,
patterns of CHH methylation, once lost in the sperm cells and microspores of
A. thaliana, are restored by small interfering RNA (siRNA) and RdDM pathways
associated with regions of active CG demethylation of transposable elements (TEs)
flanking imprinted genes (Calarco et al. 2012).

Transgenerational epigenetic inheritance, i.e., transmission of epigenetic states
through meiosis, requires the transfer of epigenetic phenotypes through the germ
line. Determining that a putatively epigenetic trait with a known source is
transgenerationally heritable requires, at a minimum, observing the persistence of
the trait across generations in the absence of the source (Mirbahai and Chipman
2014). Correlated gene expression and epigenetic profile alterations following
intragenerational epigenome alterations are frequently short-lived in plants,
decaying after a small number of cell cycles, much less transmitting through meiosis.
These short-term responses may cause beneficial phenotypic plasticity, as in the salt-
stress exposure of A. thaliana described by Wibowo et al. (2016) and the multi-
generation drought stress of A. thaliana reported by Van Dooren et al. (2018).
Correlated gene expression and epigenetic profile alterations meeting the conditions
of epigenetic transgenerational inheritance have been demonstrated only for
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intergenerationally accumulated changes in plants, such as the B’ epiallele in maize
that has remained stable through thousands of cell cycles (Richards 2006), mainte-
nance of epigenetic variation across many generations in A. thaliana (Schmitz et al.
2011; Hagmann et al. 2015), and in DNA methylation changes in rice after consis-
tent multi-generational stress exposure (Zheng et al. 2017). No evidence yet exists to
suggest that coupled gene expression-epigenetic alterations resulting from
intragenerational sources of epimutations are transmitted through meiosis in plants
(Pecinka and Scheid 2012), unlike for animal studies such as the study of Nilsson
et al. (2012) describing the transmission of DNA methylation states correlated to the
induction of ovarian disease in rats (Rattus spp.). While environmentally-induced
transgenerational epigenetic inheritance of disease reportedly occurs in rats (Maamar
et al. 2018), more studies are needed to conclude that transgenerational epigenetic
inheritance occurs in mammals (Horsthemke 2018). Nevertheless, there is evidence
for heritable changes in DNA methylation in response to environmental stresses in
plants, but the strength of inheritance depends upon environmental conditions, and
DNA methylation changes could persist through clonal propagation (review in
Richards et al. 2017). In general, the extent to which environmentally-induced
transgenerational epigenetic inheritance occurs and what role it plays in adaptive
evolution remains inconclusive and controversial (Luikart et al. 2018).

However, as described next, a significant aspect of epigenomic variation with
respect to evolution may relate to the fact that phenotypic changes associated with
inheritance of epigenetic alterations have often been found to outpace changes
associated with genetic alterations (Rando and Verstrepen 2007). Two possible
mechanisms for increased rates of phenotypic change related to epigenetic alter-
ations include (1) the effect of 5mC on facilitating cytosine deamination, thereby
increasing rates of point mutations (Feinberg and Irizarry 2010), and (2) increased
TE transposition rates (with attendant altered DNA methylation patterns) following
stress exposure or hybridization – observed to increase the rate of TE inser-
tion � (TE copy)�1 � (generation)�1 from 10�5 to 1, and thereby contributing to
rapid chromosomal rearrangement (Bonchev and Parisod 2013).

3 Sources and Evolution of Epigenomic Variation

Epigenomes provide mechanisms for modifying gene expression according to envi-
ronmental and developmental contexts. Sources of epigenomic variation may be due
to epigenetic variants arising purely from genetic variation, the interaction of genetic
and environmental variation, purely environmental variation, or stochastic
epimutation events. Richards (2006) categorized types of epigenomic variation
based upon the source of variation, as follows: obligatory (a strictly genetic source),
facilitated (the genome facilitates or potentiates an epigenomic state), and pure
(epigenomic variation is due to the environment or stochastic epimutations, not the
underlying genome). The degree to which an epigenome may add to the phenotypic
variation in a population above that already afforded by population genetic variation
depends upon the extent to which an epigenome is pure (Klironomos et al. 2013),
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and whether an epigenomic mechanism is retained by natural selection probably
depends in part upon the costs and benefits of maintaining phenotypic variation.

Retention of an alternate source of phenotypic variation, such as an epigenome,
entails metabolic costs that are outweighed by associated benefits conferred to cells,
organisms, and populations that retain the system. For example, DNAmethylation of
cytosine utilizes S-adenosyl-L-methionine (C15H23N6O5S

+; abbr. SAM), one of the
most metabolically expensive compounds that cells construct, as the donor of methyl
groups (CH3). SAM has a metabolic cost of 12 ATP equivalents per carbon atom,
compared to the cost of 6 ATP equivalents per carbon atom in a glucose molecule
(Adams and Burdon 1985). The high cost of SAM implies that there must be both
sufficient selective advantage for organisms to direct large amounts of metabolic
energy toward SAM biogenesis and strong selective pressure for the parsimonious
consumption of CH3 from SAM. Two crucial functions of DNA methylation and
related epigenetic mechanisms would appear to justify the retention of such a
metabolically expensive system: (1) enabling the regulation of proliferation of
transposable elements and (2) facilitating the generation of myriad cell types,
developmental changes, and phenotypic variation, all from the same underlying
genetic information. It follows then that the epigenetic machinery responsible for
these functions should be retained only to the extent that the machinery contributes
to the adaptation of organisms to their environments without undue costs. For
instance, in stable environments, the benefits of higher variation that may enable
survival in rapidly changing environments may not outweigh the metabolic cost
associated with maintaining high phenotypic variation via pure epigenetic means
(Relyea 2002).

For epigenetic modifications to influence adaptation, these modifications must be
subject to natural selection, which has the following requirements: (1) epigenetic
modifications produce phenotypic variation, (2) related phenotypic variants contrib-
ute to differential fitness, and (3) phenotypic variation generated by epigenetic
modifications are heritable (Darwin 1859). For natural selection to act upon epige-
netic variation similarly to genetic variation, epigenetic variation and its effects must
be sufficiently stable to allow time for multiple selective forces to act upon the
differential fitness it produces (Rahavi and Kovalchuk 2013; Iglesias and Cerdán
2016). Because the duration of an epigenetic change influences its relevance to
adaptation and different sources of epigenetic change have different durations of
influence, understanding the potential for an epigenetically-mediated trait to influ-
ence adaptation requires consideration and investigation of the potential sources of
observed epigenetic variation (Chadha and Sharma 2014).

3.1 Genetic Sources of Epigenomic Variation

Genetic variants associated with epialleles/epigenetic variants and activity of trans-
posable elements (TEs) constitute major genetic sources of epigenetic variation
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(Suzuki and Bird 2008; Taudt et al. 2016; Springer and Schmitz 2017). Whole
genome duplication events (polyploidization) also strongly influence epigenomic
variation, and though the precise role of polyploidization in the generation of
epigenomic variation remains speculative, it is likely to be heavily dependent upon
TE activity (Zhang et al. 2015a, b). See Taudt et al. (2016) for a review of genetic
sources of population epigenomic variation.

Genetic variants strongly associated with variation in methylated DNA loci
operate as distinct quantitative trait loci for epigenetic molecular phenotypes and
are identified through linkage mapping between genetic variants and methylated
DNA loci (Denker and de Laat 2015; Chen et al. 2016; Taudt et al. 2016). QTL
associated with DNA methylation (meQTL), histone variants (hQTL), and large-
scale patterning of histone variants forming variable chromatin domains (chQTL)
may reside near to (cis <50 kb) or hundreds of kb from (trans) an associated
epigenetic phenotype (Taudt et al. 2016). Regardless of the proximity of genetically
determined epigenetic marks, such epigenetic variants follow the same strict Men-
delian patterns of inheritance as the genes they relate to.

Both the cis and trans regulatory genetic mechanisms conditioning both popula-
tion epigenomic variation and individual epigenetic marks have been identified in a
wide variety of species, and numerous meQTL and hQTL have been identified
(Taudt et al. 2016). For example, 15% of the >3 million genome-wide CpG sites
in humans were found to be associated with meQTL (McClay et al. 2015), and
nearly all meQTL were found in cis configuration (Taudt et al. 2016). All hQTL
detected in the human study were also in cis configuration (review in Taudt et al.
2016). In a study of the genome-wide differentially methylated regions (DMRs) and
whole genome DNA sequences in worldwide natural accessions of Arabidopsis,
Schmitz et al. (2013a) found that 35% of the DMRs could be associated with
meQTL, with 26% of the associations mapped in cis and 74% in trans configuration.
In another study, Schmitz et al. (2013b), using recombinant inbred lines of
A. thaliana for examining the inheritance of DNA methylation, reported that
>90% of DMRs mapped to a meQTL, implying that up to 10% of DMRs detected
in the study may relate to non-genetic factors. A study of maize showed that nearly
half of the DMRs identified across 51 genotypes were significantly associated with
meQTL in cis configuration with or within DMRs (Eichten et al. 2013). Further-
more, many of the DMRs identified in this study occurred near TEs, a common
finding in epigenome-wide association studies reflecting the often-cited suspected
origin of DNA methylation as a means to regulate TE mobilization (Fedoroff 2012).
Many cis-acting meQTLs in plants are thought to be due to SNP alleles tagging
nearby structural variants, such as TEs, that spread methylation into flanking regions
(see Taudt et al. 2016). A study of the extent of trans-acting hQTL in mice showed
that roughly 25% of histone variants are under genetic control in trans configuration
to the histone variants detected (Baker 2018).

The stochastic transposition of repetitive gene sequences, resulting from the
mobilization of transposable elements, is both a result and a source of epigenetic
variation (Fedoroff 2012; Liang et al. 2014). Mobilization of transposable elements
is expected to be followed by a feedback cascade that results in TE remethylation
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either rapidly in cells without compromised methylation pathways or after multiple
rounds of DNA replication, leading to eventual TE silencing (Bousios and Gaut
2016). If TEs escape silencing due to environmentally or developmentally induced
disruption of the DNA methylation machinery, TEs may proliferate within the
genome and spread TE DNA fragments (i.e., targets of regulation by DNA methyl-
ation) and genetic regulatory networks throughout the genome (Rey et al. 2016).
This was shown to occur in the genome of Populus spp., where cytosine methylation
patterns were altered up to 2 kb upstream and downstream of TE insertion sites,
which strongly correlated to altered gene expression resulting from the methylation
of transcription factor binding sites located within the region of modified methyla-
tion near TE insertions (Liang et al. 2014). The coupled activities of DNA methyl-
ation, TEs, and altered gene expression via modified transcription factor activity
suggest that DNA methylation not only regulates but also provides a mechanism for
realizing selective advantages from retaining TEs. Otherwise, TEs likely would not
persist within genomes since there would be sufficient selective pressure to eliminate
deleterious, unregulated stochastic TE insertions resulting in chromosomal disrup-
tions, with potentially negative consequences (Kazazian 1998), through selection or
homologous recombination (Fedoroff 2012; Bonchev and Parisod 2013). Differ-
ences in numbers and sites of TE insertion likely relate to more than merely the
specific genomic site into which a TE is inserted, as TE insertion typically elicits a
flood of gene-silencing DNA methylation proximal and even distal to the insertion
site (Fedoroff 2012; Rey et al. 2016).

3.1.1 Environmental Sources of Epigenomic Variation

Though genetic mutations that affect epigenetic variation occur at a relatively
constant rate, exposure to environmental stresses, such as temperature extremes,
drought, and toxins can lead to altered epigenetic states through numerous mecha-
nisms. The best understood mechanisms include TE activation or mobilization and
accelerated rates of somatic mutation of genes linked to epialleles, such as epigenetic
modifier genes (Fedoroff 2012; Bonchev and Parisod 2013; Liang et al. 2014;
Greenblatt and Nimer 2014; Weng et al. 2014; Rey et al. 2016). Epigenetic alter-
ations resulting from environmental perturbation is a stochastic process with the
fundamental result of increasing phenotypic variation, which may by chance result
in adaptive changes in gene expression along with less beneficial outcomes
(Feinberg and Irizarry 2010; Becker and Weigel 2012; Calarco et al. 2012). For
instance, random TE insertions at particular genomic sites were found to increase the
capacity of wild populations of Drosophila melanogaster to adapt to temperature
and precipitation regimes (Bonchev and Parisod 2013). A population of wild barley
(Hordeum spp.) growing vigorously on a dry site was found to have more full-length
TE insertions and less truncated LTR retrotransposon insertions than a nearby
population occupying a more favorable, moist habitat (Bonchev and Parisod
2013). On the other hand, dozens of mammalian diseases are known to result from
retrotransposon insertions, demonstrating the stochastic and unbiased nature of TE
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transposition (Kazazian 1998). In another A. thaliana study, mobilization of the
ONSEN retrotransposon via heat shock stress was observed in plants with an
impaired siRNA pathway but not in wild-type plants or those not exposed to the
heat stress, resulting in the formation of a “stress memory” in siRNA-impaired plants
(Ito et al. 2011). While it is inaccurate to consider the stress memory as a Lamarckian
“trigger” capable of inducing a specific phenotypic change yielding more heat-
tolerant plants, the stress memory is associated with the activation of novel regula-
tory genetic networks that by chance may result in the generation of heat tolerance
upon which natural selection could act.

The well-documented environmentally-responsive quality of TEs represents a
mechanism through which the environment may indirectly influence epigenomic
variation. However, there are numerous examples of environmental influences
directly altering epigenetic phenotypes without apparent genetic influences, though
in most cases it is still possible that undetected trans-acting genetic variants are
involved (Greally 2017; Richards et al. 2017). Studies have, however, demonstrated
that patterns of epigenetic variation may be substantially altered quite independently
of genetic variation in plants shown to have minimum genetic variation after
growing for a number of generations (Schmitz et al. 2011, 2013b) and after con-
trolled environmental exposures to stresses such as vernalization (He et al. 2003),
drought (Zheng et al. 2017; Van Dooren et al. 2018), tissue culturing (Stroud et al.
2013), vegetation density reduction in a natural setting (Herrera and Bazaga 2016),
exposure to plant defense hormones (Verhoeven et al. 2010), and nutrient withhold-
ing (Verhoeven et al. 2010). Divergent epigenetic variation was also detected in a
monozygotic human twin study of DNA methylation profiles correlated to diabetes
(Zhao et al. 2011) and lifestyle differences (Fraga et al. 2005a). Numerous studies
taking a survey approach have also reported putative differences in epigenomic
profiles independent of genetic variation detected through various genotyping assays
in plants (Lira-Medeiros et al. 2010; Herrera et al. 2013; Latzel et al. 2013), fungi
(Zimmerman et al. 2016), fish (Mirbahai and Chipman 2014), mice (Wilson and
Sengoku 2013), and human toxicology studies (summarized by Martin and Fry
2018).

3.2 Evolution of Epigenomic Variation Within Populations

A means for achieving greater phenotypic diversity and plasticity (phenotypic
diversity arising in the same genotype in response to different environments) was
implicit in Waddington’s original formulation of the concept of epigenetics. By
providing a source of phenotypic variation independent of population-level changes
in allele frequencies, and by influencing the extent of phenotypic variation possible
via a given gene � environment interaction, epigenetic phenomena may provide a
critical stepping stone between phenotypic plasticity and the stabilization of
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expression of facultatively plastic (canalized) phenotypic responses (Johnson and
Tricker 2010; Grativol et al. 2012; Schlichting and Wund 2014; Richards et al.
2017). Given that environmental variation will inevitably favor the ability of a
population to adapt to new conditions, the ability to activate mechanisms for
enhancing phenotypic diversity could be profoundly beneficial (Sultan 2000;
Nicotra et al. 2010; Baythavong 2011). A brief review of the role of phenotypic
diversity and plasticity in the process of evolution will help to clarify their interaction
and the potential relevance of epigenetics to evolution.

Microevolution is a stochastic process that occurs within and among populations,
whereby drift and selection act upon mutations (Hendry and Kinnison 2001), which
may eventually lead to conspicuous trait and species divergences (Dobzhansky
1937). Phenotypic plasticity refers to the capacity of a genotype to express different
behavioral, morphological, and physiological responses depending on the environ-
ment in which it occurs (Price et al. 2003; Schlichting and Wund 2014). Increased
variation in a phenotypic trait due to phenotypic plasticity may soften the impact of
an environmental stressor on a population before natural selection acts upon popu-
lation gene frequencies (West-Eberhard 2005). The degree and rate of persistence or
reduction in the phenotypic plasticity of a population depend heavily upon the range
of environmental variation to which a population must continually adapt and the
adaptive landscape of a population (Price et al. 2003). Such plastic developmental
responses may represent past functionalities or functions produced by de novo
changes in gene regulation that reveal previously hidden portions of a reaction
norm to natural selection, such as previously silenced genes (Sultan 2003; West-
Eberhard 2005; Rey et al. 2016), which may result either from coordinated cellular
responses to specific environmental stimuli or arise through pure chance (Price et al.
2003). Enhanced trait variation produced by epigenetic variation could enhance the
efficiency of genetic accommodation by increasing the variation in phenotypes that
arise from a given genotype, thereby potentially increasing the frequency of pheno-
types that confer selective advantages under a given environmental regime
(Schlichting and Wund 2014). No matter what their source, plastic phenotypic
responses to stress can delay the trait-purifying step of selection that eventually
shifts a population’s fitness peak toward a new adaptive peak or, alternatively,
eliminates a population altogether due to a lack of short-term capacity to adjust to
a stressor (Fig. 3; Price et al. 2003).

The duration of the delay between initial phenotypic responses and selection for
adaptive traits that track the new adaptive peak is proportional to the level of
plasticity for adaptive traits in a population and the nature of the adaptive landscape
(Price et al. 2003). Multiple adaptive peaks in an evolutionary landscape, due to high
environmental heterogeneity, for instance, may select for increased phenotypic
plasticity, while high plasticity is likely to delay adaptation and any concomitant
reductions in plasticity that must precede canalization of an adaptive phenotype,
possibly leading to subsequent genetic assimilation (Price et al. 2003; Baythavong
2011; Schlichting and Wund 2014). Accordingly, a population with low to moderate
plasticity, yet sufficient plasticity to move a population’s fitness peak toward a new
adaptive peak, may adapt to the new environment more rapidly than a highly plastic
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population. Meanwhile, populations with a history of rapid genetic assimilation due
to the stability or homogeneity of their environments are less likely to survive
stochastic, extreme environmental stresses (Price et al. 2003; Aitken et al. 2008).

In a controlled study of two genetically uniform inbred lines of A. thaliana with
different levels of variation in DNA methylation patterns (i.e., epigenetic recombi-
nant inbred lines, abbr. epiRILs; Johannes et al. 2009), one line with highly variable
genome-wide DNA methylation patterns (epigenetically diverse) and one line with
low variation (epigenetically uniform), it was concluded that epigenetic diversity
accounted for enhanced resilience and growth (Latzel et al. 2013). The two epiRILs
were studied for their responses to both a common pathogen and interspecific
competition. These studies revealed that the epigenetically diverse genetic line
produced 40% more biomass than the epigenetically uniform line, and morpholog-
ical differences between the lines were more pronounced when plants were under
biotic stress. In another epiRIL study of A. thaliana, Cortijo et al. (2014) described
the phenotypic outcomes of induced methylation of numerous genomic regions and
found that inducing methylation accounted for 60–90% of the heritability for
flowering time and primary root length through the F3 generation. Importantly, the
study showed that these traits can be propagated through artificial selection and that
the methylated regions related to the traits of interest were also variable within
natural populations of A. thaliana, suggesting that natural selection would likely
act upon these epigenetic traits in the same manner as strictly genetically based
evolution (Cortijo et al. 2014). Epigenetic mechanisms, especially DNA methyla-
tion, may, thus, facilitate the acclimation response of organisms to a variety of

Fig. 3 Plasticity contributes to a peak shift in changing environments; bold line shows mean
fitness; bold dashed line shows the shift of mean fitness in a new environment; thin solid line shows
trait distribution in the old environment; thin dotted line shows trait distribution after plastic
response to new environment. Reproduced with permission from Price et al. (2003)
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abiotic and biotic stresses through phenotypic plasticity (see also Richards et al.
2017). Hence, epigenomic variation has been described as a potentially significant
source of variation in plants and animals in response to climate change (Bräutigam
et al. 2013).

3.3 Epigenomic Variation Within and Among Populations
and Species

The description of epigenomic variation within and among populations and species
is in its early stages. The epigenome is more complex than the genome in that it is
subject to direct genetic, developmental, and environmental influences at short time
scales and consists of diverse mechanisms. The presence and prevalence of epige-
netic mechanisms, especially the machinery involved in DNA methylation, differ
across taxa as shown by comparative epigenomics studies across phyla and within
angiosperms (Niederhuth et al. 2016) with some model species like Drosophila spp.
and Caenorhabditis spp. lacking some methylation mechanisms found in other
organisms. Additional differences, such as germline differentiation occurring later
in development for plants than animals (Sharma 2013) and less complete demethyl-
ation during reproduction in plants (Heard and Martienssen 2014), also suggest
substantial differences in the distribution and type of population epigenomic varia-
tion across taxa. Furthermore, the epigenome is a phenotype as well as in some
instances having the potential to facilitate the inheritance of other phenotypes
(Greally 2017). Thus, epigenomic variation within and among populations and
species is logistically more difficult to ascertain and describe than genomic variation,
and thus underlying theory for the former has been slower to develop (Banta and
Richards 2018). The population and species distribution of epigenomic variation is
just beginning to be explored in natural populations (Richards et al. 2017), with
studies on a small number of model systems, particularly maize and A. thaliana,
providing more detailed insight. Nevertheless, evidence so far suggests that
epigenomic variation is widespread in wild populations of plants (Schmitz et al.
2013b; Niederhuth et al. 2016) and animals (review in Hu and Barrett 2017).

3.3.1 Sex Differences and the Epigenome

Based on biological mechanisms and empirical results from quantitative genetics,
patterns and frequencies of epigenetic inheritance are expected to vary between
sexes. There are differences between sexes in epigenome reprograming, and sexes
differ in the opportunity for transmission of cytoplasmic signaling molecules
(Calarco et al. 2012; Jiang et al. 2013; Heard and Martienssen 2014). Meanwhile,
quantitative genetic studies of maternal and paternal effects have found variable
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effects of the sexes (Roach and Wulff 1987; Galloway and Etterson 2007;
Bonduriansky and Head 2007). Parental effects are not equivalent to epigenetics,
but epigenetics is one mechanism by which parental effects can be transmitted (Vogt
2017). In Mimulus guttatus, crosses in controlled breeding and a demethylation
treatment together demonstrated that both male and female parents demonstrated
transgenerational induction of increased glandular trichome production in response
to simulated insect damage, and the paternal effect persisted after demethylation
treatment, whereas the maternal effect did not (Akkerman et al. 2016). This is
suggestive of a methylation-dependent transmission in the maternal line and some
other mechanism, such as siRNA, meditating the paternal effect (Akkerman et al.
2016). In zebrafish (Danio rerio), the sperm methylome is the one passed to early
embryos (Jiang et al. 2013). In non-model species, sex differences in epigenetic
inheritance have been detected by methylation-sensitive amplified polymorphism
(MSAP) data. For instance, a methylome fragment analysis assay in a conifer full-sib
family found greater inheritance of fragments from the maternal line than the
paternal line (Avramidou et al. 2015).

Gender-specific methylation patterns in some species (Janoušek et al. 1996;
Piferrer 2013) suggest that methylation may influence sex determination or
sex-related trait expression (Chatterjee et al. 2016). Plant taxa that have more
recently evolved dioecy from monoecious ancestors are useful models for investi-
gating the evolution of sex-determining mechanisms (Bräutigam et al. 2017). In
Populus balsamifera, the genome region associated with sex determination includes
a gene encoding methyltransferase. There are also overall sex differences in meth-
ylation levels across the P. balsamifera genome, and methylation difference between
the sexes is greatest at one gene within the region associated with sex determination
(Bräutigam et al. 2017). In sea bass (Centropristis striata), with mixed genetic and
environmental sex determination, temperature variation early in the development
alters methylation patterns suggesting a role for epigenetics in environmental sex
determination (Piferrer 2013).

3.3.2 Epigenomic Variation Within and Among Plant Populations

A relatively detailed picture of methylome variation among and within populations
of the model plant A. thaliana has emerged from a series of studies examining
natural variation and offspring of multi-generation crosses. Methylation of TE-rich
regions of the genome is high and relatively consistent across individuals and time
(Vaughn et al. 2007; Becker et al. 2011). Gene regions are less methylated but are the
source of a large fraction of DMRs detected. Instability of gene region methylation
status generates novel variation (Schmitz et al. 2011). These DMRs can be inherited
but experience high rates of loss or back-mutation in contrast with gene sequence
variation (Becker et al. 2011; Van der Graaf et al. 2015). This combination of
phenomena is probably the reason for the observation that after 31 generations, the
accumulation of differences in the epigenome is not different from the accumulation
of differences in the genome (Becker et al. 2011). Intriguingly, DMRs show less
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association with two potential promoters of methylation, transposable elements and
small interfering RNAs.

A. thaliana accessions vary substantially in TE composition, and this variation
coincides and interacts with methylation variation to impact gene expression
(Underwood et al. 2017). Geographic surveys of A. thaliana suggest an association
of low temperature with lower methylation of TEs that may result from temperature-
related natural selection acting on genetic control of methylation levels (Underwood
et al. 2017). A genome-wide association study (GWAS) analysis of methylation
found substantial genetic control of methylation (Kawakatsu et al. 2016a, b) and that
the epigenomic changes were particularly associated with immunity genes.

Research in crop plants, which has provided a large proportion of insights into
population epigenomics, highlights some potential differences between A. thaliana
and most other plants. Arabidopsis houses a small genome with low levels of
methylation and TEs relative to other plants. Thus, epigenomes of other plant taxa
may serve more important roles in generating phenotypic variation within and
among populations (Kawakatsu et al. 2016a, b; Song and Cao 2017). On the other
hand, comparative analysis of angiosperm methylomes suggests that clonal propa-
gation and other common crop production methods may lead crops to have a
different distribution of epigenomic variation than plants that are not cultivated
(Niederhuth et al. 2016). For instance, a greater proportion of the rice genome
consists of TEs, with correspondingly higher levels of methylation as compared to
A. thaliana (Song and Cao 2017). Furthermore, differences in the types of TEs
occurring in the genomes of Asian and African rice species account for most
observed variation in those genomes (Wang et al. 2015). Among rice subspecies,
differences in TEs predominate (Song and Cao 2017). Epigenetic differences
between subspecies were also well correlated with gene expression differences
(He et al. 2010), and hybrids showed high levels of non-additive epigenetic varia-
tion, especially for methylation as well as for transcription differences (He et al.
2010).

Maize has long been a model species for the study of TEs due to the pioneering
work of McClintock (1951). A selection experiment in rice found extensive meth-
ylation and morphological changes accompanying an artificial selection experiment
(Zheng et al. 2017). Approximately 30% of the methylation variants were inherited
by additional generations after the removal of selective pressure. A study comparing
a Chilean land race of maize to a maize reference genome found increases in long
non-coding RNAs that respond to salt and boron stress in the landrace, demonstrat-
ing within-species variation is yet another potential epigenetic regulatory mechanism
(Huanca-Mamani et al. 2018). In summarizing studies that included epigenome
profiling across diverse accessions in five plant species, mostly crops, Springer
and Schmitz (2017) noted that substantial variation occurs despite high conservation
of methylomes and that this variation can potentially be harnessed for crop improve-
ment both in cases of environmental induction and transgenerational inheritance.

Various Populus species have served as model tree species for genomics studies,
and they are also well suited to epigenomics work because of the ease of clonal
propagation. Common garden tests containing clonal replicates, implemented in
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multiple habitats, allows the separation of the effect of genomes and environments
on epigenomes and outward phenotypes, enabling some insight into epigenomic
variation and its consequences (Whipple and Holeski 2016). Two studies of clonally
reproduced Populus spp. cuttings and cultivars grown in distinct environments, and
then clonally reproduced again for growing a second clonal “generation” in another
common environment, provide insight into environmental sources of epigenomic
variation (Raj et al. 2011; Schönberger et al. 2016). Differences in the previous
growing conditions of clones resulted in differentially methylated regions and
differences in miRNA expression among clonal individuals currently growing in
the same environment. Some of these epigenetic changes were also related to
changes in gene expression.

For most non-model plant systems, population epigenomics work is in its infancy
and consists of assays on anonymous surveys of methylated restriction sites, as
recently reviewed by Richards et al. (2017). Other studies may not encompass the
entire genome but are still important in this young field for investigating associations
between traits and stably-inherited epialleles (Richards 2006; Jablonka and Raz
2009; Richards et al. 2017). Common findings presented in papers on non-model
plant species reviewed in Richards et al. (2017) demonstrate that often, but not
always, observed epigenomic variation is greater than genomic variation and that
epigenomic variation is frequently correlated with environmental or trait variation.
For example, Gugger et al. (2016) studied DNA methylation variation in 58 natural
populations of Quercus lobata sampled across the species’ range and found signif-
icant associations of 43 single methylation variations (SMVs) with each of the
four climate variables. One recent addition to these types of studies is a counter
example where genomic variation was found to be greater than epigenomic variation
in a deciduous shrub Vitex negundo var. heterophylla (Chinese chastetree) (Lele
et al. 2018). In another recent study, by combining field and common garden trait
measures as well as epigenomic assays, Groot et al. (2018) showed that some of
the epigenomic variation in the shrub species Scabiosa columbaria was inherited
and appeared to be environmentally induced. The epigenomes and genomes of
plants grown in the field were correlated, but not for garden-grown plants. Addi-
tional work is needed to determine the mechanism of inheritance of epigenome
variation and to what degree observed variation is genetically determined, facili-
tated, or pure.

Additional insights into natural variation in epigenomes have come from studies
of forest trees, especially Norway spruce (Picea abies). Long-running provenance
trials established across wide environmental gradients with the same source
populations enabled the detection of not only genetic source but also temperature
during seed development (embryogenesis), to offspring phenological traits in this
species (Kvaalen and Johnsen 2008, Johnsen et al. 2009). The epigenetic memory of
the environmental temperature during Norway spruce embryogenesis was shown to
consistently and reproducibly affect phenology of the resulting trees in a manner
often ascribed to ecotypes and gradual phenotypic differences across environmental
clines (Yakovlev et al. 2012; Carneros et al. 2017). Further study found an associ-
ation of miRNAs and transcriptome variation with seed development temperature
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(Yakovlev et al. 2016; Yakovlev and Fossdal 2017). The latest efforts to characterize
the miRNA expression in this species identified over 1,000 highly expressed
miRNAs, more than half of which were differentially expressed across temperature
treatments. Many of these miRNAs themselves target genes involved in epigenetic
regulation. Studies that do not explicitly assay the epigenome but make inventive use
of biological systems allowing inference of potential epigenetic phenomena have
also provided insights into epigenomic variation among populations. For instance,
Dewan et al. (2018) used grafted clonal Populus nigra to show that there are similar
temperature effects during seed production on offspring traits. And clonal propaga-
tion in contrasting environments with Pinus pinaster has been used to infer the
likelihood of an epigenetic component to seedling performance (Zas et al. 2013).

Hybridization and polyploidization can increase the occurrence of epigenetic
alterations, which may serve as mechanisms to cope with genomic instability
resulting from hybridization or generate novel phenotypic variation (Paun et al.
2010; Jackson 2017). Two orchid species have gone through independent allopoly-
ploid hybridization events across multiple sites and climates, providing a model
system for surveying epialleles associated with hybridization and ecotypic differen-
tiation. Paun et al. (2010) detected epialleles that showed patterns of selection
and strong association with climatic variation. Additional studies could elucidate
whether the epialleles are induced by the environment each generation, stably
inherited, or the result of an undetected genetic variant (Balao et al. 2016).

3.3.3 Epigenomic Variation Within and Among Animal Populations

Despite the attention to epigenetic mechanisms involved in human diseases, little
attention has been devoted to human population epigenomic variation (Kelly et al.
2017). In a worldwide survey of human epigenomic variation, Carja et al. (2017)
found evidence that patterns of variation closely follow genetic variation and are
likely largely under genetic control, with much greater stability than is generally
found in plants. Similarly, other authors found population variation in methylation
within genic regions with genetic control likely, but with the genes involved also
varying across human populations (Fraser et al. 2012). A third study, which more
closely mimics designs seen in non-model plant species, made comparisons of
geographically distinct populations where genetic difference predominated, versus
genetically similar populations occupying recently divergent environments (Fagny
et al. 2015). For geographically dispersed populations, most methylome variation
seemed to be attributable to genetic loci controlling methylation states. In addition,
the methylation differences were predominately located at metabolic and develop-
mental genes. For genetically similar populations in contrasting environments, there
was less evidence of genetic control of the epigenome, and the loci with methylation
differences were co-located with immune system genes (Fagny et al. 2015). Finally,
in a comparative study of human and mouse DNA methylation, differentially
methylated regions among individuals were disproportionally found in developmen-
tal genes for both species (Feinberg and Irizarry 2010).
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In general, animals have not been investigated for natural variation in the
epigenome to the same extent as plants (Vogt 2017). There are, however, examples
in animal studies of greater epigenome diversity than genome diversity (as reviewed
in Vogt 2017). Invasions by genetically uniform individuals, as may occur in asexual
animal species, can be useful for understanding associations of the epigenome with
environmental variation and/or trait variation (Vogt 2017). For instance, in an
introduced, parthenogenic snail (Cornu spp.), greater epigenomic and trait variation
were associated with differences between habitats (Thorson et al. 2017).

4 Methods for Screening Population Epigenomic Variation

DNAmethylation and chromatin modification states are the most heavily studied of all
epigenetic marks due to the accessibility of the associated assays, with most studies
conducted on DNA methylation. Variation in DNA methylation among individuals
and populations is usually determined by examining DMRs and differentially meth-
ylated positions (DMPs, SMVs, or single methylation polymorphisms – SMPs) – akin
to single nucleotide polymorphisms (SNPs). These data are then used for downstream
analyses for determining various population epigenomic parameters and associations
with various phenotypic, disease, and adaptive traits. Here, we first briefly describe
the molecular methods used for assaying the epigenomic marks/variants and then
bioinformatics methods for determining epigenomic states and epigenotypes.

4.1 Molecular Methods

4.1.1 Global Methylation and Methylation-Sensitive Marks

Global DNA methylation analyses are mostly used to address questions regarding
the extent and proportion of methylation present in a genome and do not enable high-
resolution detection of the sequence context in which methylation occurs. Since the
discovery of DNA methylation using paper chromatography (Hotchkiss 1948),
chromatography-based methods have been regarded as a gold standard approach
for the analysis of global DNA methylation due to their accuracy and reproducibility
(Ettre 2001). Thin-layer chromatography (TLC) and high-performance liquid chro-
matography (HPLC) (Friso et al. 2002; Magaña et al. 2008) are currently the most
extensively used chromatographic methods for assessing the global levels of
5-methylcytosine (5mC). In TLC-based techniques, purified DNA is digested to
mononucleotides using nuclease P1 and then separated on a thin-layer chromatog-
raphy plate based on their distinct size and mobility (Kuchino et al. 1987). The
relative intensity of the spots (proportional to the amount of each analyte) can be
visualized using various techniques (Oakeley 1999). To confirm separation of 5mC
from unmethylated cytosine (C), 5mC monophosphate is usually run in parallel on a
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control plate (Oakeley 1999). While highly accurate, TLC has a limited resolution
compared to HPLC (Reich and Schibli 2007). First employed by Kuo and colleagues
for the global analysis of methylated cytosine, HPLC is one of the oldest and most
accurate tools for analysis of global DNA methylation (Kuo et al. 1980). In this
approach, DNase I, nuclease P1, and alkaline phosphatase are used for hydrolysis of
DNA into individual deoxyribonucleosides that are then separated by reverse-phase
high-pressure liquid chromatography (Kuo et al. 1980). The separated analytes
obtained from as little as 3 μg of the total DNA can be subsequently detected
using ultraviolet absorption at 254 and 280 nm (Kuo et al. 1980; Armstrong et al.
2011).

Further development of chromatographic methods led to their coupling with mass
spectrometry that provided a unique advantage for understanding the chemical com-
position of separated analytes. Most widely used variants of these techniques include
thin-layer chromatography mass spectrometry (TLC-MS) (Song et al. 2005) and
HPLC-MS (Friso et al. 2002; Le et al. 2011). During TLC-MS andHPLC-MS, analytes
separated using chromatographic methods are passed through the mass spectrometer
for confirmation of known chemical species, identification of novel bases, and quan-
titative measurement of the analytes (Song et al. 2016; Chowdhury et al. 2017). This
coupling of chromatographic methods with mass spectrometry recently resulted in
the identification of oxidized forms of 5mC, 5-hydroxymethylcytosine (5hmC),
5-formylcytosine (5fc), and 5-carboxylcytosine (5caC) in mammalian genomes
(Kriaucionis and Heintz 2009; Tahiliani et al. 2009; Ito et al. 2011; He et al. 2011).
The combination of chromatographic andMSmethods is currently extensively used for
the identification and analysis of the 5mC oxidative derivatives (e.g., Zhang et al.
2012a, b).

Although the chromatography- and spectrometry-based methods offer an unpar-
alleled accuracy and precision for detection of DNA modifications, these approaches
do not provide any spatial information necessary to understand the biological
functions of DNA methylation in tissue and organs with cell-type-specific DNA
methylation patterns (Abakir et al. 2016). Generation of the 5mC-specific antibody
allowed the development of immunochemical techniques that offer a robust and
rapid analysis of global levels of DNA methylation as well as other DNA modifica-
tions in individual cells of different tissues (Santos and Dean 2006; Abakir et al.
2016). Although the immunochemical techniques currently employed for the detec-
tion of global DNA methylation in mammalian systems may vary in detail, they
essentially involve the same steps. Among these are fixation of the cells or tissue
sections in 4% paraformaldehyde (PFA), their permeabilization with a detergent
(e.g., 0.1% Triton X-100), and depurination of the DNA using hydrochloric acid
(HCl) to facilitate antibody access to DNA (Santos and Dean 2006; Abakir et al.
2016). Next, the samples are treated with specific anti-5mC antibody, and, finally, a
fluorescent-labelled secondary antibody is used to visualize the 5mC signal by
conventional or confocal microscopy (Santos and Dean 2006; Kremer et al. 2012).
Importantly, the immunochemical techniques can also be employed for co-detection
of 5mC with other DNA modifications (e.g., 5hmC, 5fC, or 5caC) (Ruzov et al.
2011; Almeida et al. 2012). Moreover, this protocol has recently been modified by
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incorporating peroxidase-conjugated secondary antibody and tyramide signal ampli-
fication step that adds in an unprecedented sensitivity to the immunochemical
detection of DNA modifications (Globisch et al. 2010; Wheldon et al. 2014; Abakir
et al. 2016).

Importantly, the techniques described above do not provide information regard-
ing the sequence specificity of observed DNA methylation. In contrast, employing
methylation-sensitive isoschizomers of restriction enzymes (e.g., HpaII sensitive to
DNA methylation and a methylation-insensitive MspI that both can recognize the
same DNA restriction site depending on whether it is methylated or not) can lead to
determining the global sequence-specific patterns of DNA methylation based on
their fingerprints (Waalwijk and Flavell 1978; Lindsay and Bird 1987). This tech-
nique and its variants, such as MSAP and methylation-sensitive amplified fragment
length polymorphism (MS-AFLP), though not quantitative, are particularly appeal-
ing in ecological and evolutionary studies where reference genomes are often not
available (Reyna-Lopez et al. 1997; Yaish et al. 2014; Alonso et al. 2015). However,
as the ability of isoschizomers to differentiate 5mC from unmethylated cytosine is
restricted to sites of recognition of the corresponding enzymes, these methods have
limited resolution (Yaish et al. 2014; Richards et al. 2017). To improve the resolu-
tion of the isoschizomer-based analysis, a modification of these techniques,
EpiRAD, has recently been developed (Peterson et al. 2012; Schield et al. 2016).
This technique is based on the use of barcoded adaptors that allow fragmentation of
the samples by different pairs of restriction enzymes before size selection, amplifi-
cation, and sequencing of the fragments (Peterson et al. 2012; Schield et al. 2016).
The MSAP, MS-AFLP, and EpiRAD methods yield information on polymorphic
DNA methylation loci and DNA methylation epigenotypes.

4.1.2 Bisulfite Sequencing

As both 5mC and C have the same base-pairing characteristics, identification of the
methylation status of individual nucleotides had been a major hurdle for DNA
methylation analysis prior to the advent of bisulfite sequencing. Although sodium
bisulfite deaminates cytosine bases to uracil, thus changing the genomic DNA
sequence, such treatment does not affect methylated cytosine (Clark et al. 2006).
Subsequent PCR amplification of the bisulfite-treated DNA fragments leads to
incorporation of unmethylated cytosines in place of the 5mC, while bisulfite-
modified unmethylated cytosine (C) is being amplified as thymine (T); therefore,
these bases can be discriminated from each other by standard sequencing techniques
(Sanger and Coulson 1975; Sanger et al. 1977). Direct bisulfite sequencing based on
the use of strand-specific PCR primers for amplification of the bisulfite-converted
DNA followed by cloning of the amplified fragments into a vector and sequencing of
the corresponding insert was developed by Frommer and colleagues in 1992
(Frommer et al. 1992; Clark et al. 2006). Since then, bisulfite sequencing has been
widely used for determining the DNA methylation status of individual CpGs at both
the level of single loci and genome-wide (Eckhardt et al. 2006; Kawakatsu et al.
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2016a, b). As conventional bisulfite sequencing requires a cloning step, it is a
low-throughput and time-consuming method. These limitations of conventional
bisulfite sequencing were overcome by the introduction of pyrosequencing, where
the ratio of C (methylated cytosine) and T in bisulfite-treated PCR fragments is
determined by the amounts of C and T incorporated by DNA polymerase during
sequencing reaction (Wong et al. 2006; Yaish et al. 2014). Unfortunately, use of
pyrosequencing for the analysis of DNA methylation patterns in eukaryotes with
large genomes is limited due to its prohibitively high cost (Zilberman and Henikoff
2007; Kacmarczyk et al. 2018). Thus, Meissner and colleagues introduced the
reduced representation bisulfite sequencing (RRBS) as a more affordable alternative
to pyrosequencing (Meissner et al. 2005). RRBS combines restriction digestion
(to enrich for CpG-containing regions) and bisulfite sequencing to provide methyl-
ation analysis at single base resolution (Meissner et al. 2005). Although the tech-
nique is popular among epigeneticists due to its relatively low cost, its limitations
consist of low sequencing coverage of some genomic regions that may originate
from the incomplete digestion of methylated CpGs by restriction enzymes (Gu et al.
2011). More recently, employing the next-generation “sequencing by synthesis”
approach together with bisulfite sequencing, numerous studies have provided
genome-wide DNA methylation map (Cokus et al. 2008; Lister et al. 2008).
Typically, genomic DNA is fragmented and ligated with Illumina adapters in
which all cytosines are methylated and then bisulfite converted; the sites of methyl-
ated cytosines in the genome are revealed by deep sequencing (Cokus et al. 2008;
Lister et al. 2008; Ziller et al. 2013). Bisulfite-converted DNA sequences can be
processed for identifying DMRs, DMPs, SMVs, and/or SMPs.

Despite extensive use of bisulfite sequencing for analysis of DNA methylation
patterns, it has several important limitations (Kacmarczyk et al. 2018). Specifically,
incomplete bisulfite conversion may result in false detection of unmethylated cyto-
sines as methylated, though standard bisulfite conversion kits typically achieve high
conversion rates (Kurdyukov and Bullock 2016). Although prolonged bisulfite
treatment has been shown to reduce such false positives, it can also result in
degradation of the DNA (Grunau et al. 2001). These limitations highlight the
delicate balance between achieving full conversion of unmethylated cytosines and
retaining DNA integrity (Kurdyukov and Bullock 2016). Another major limitation
of conventional bisulfite sequencing is its inability to discriminate between 5mC and
its oxidized derivative, 5hmC (Nestor et al. 2010). To investigate the function of the
relatively large quantities of 5hmC in mammalian genomes, recently, there has been
several modifications of conventional bisulfite sequencing that allow mapping of
5hmC have been developed. One of them is based on chemical conversion of 5hmC
to 5fC, which is called as unmethylated cytosine during sequencing (Booth et al.
2012, 2013). Yu and colleagues described an alternative technique that involves
conversion of 5hmC to β-glucosyl-5-hydroxymethylcytosine (5gmC) protecting
5hmC from further oxidation (Yu et al. 2012). After this conversion, all 5mC
bases are oxidized to 5caC by recombinant TET1 protein followed by the bisulfite
treatment that, subsequently, converts 5caC to uracil leaving the original 5hmC
(transformed to 5gmC) unaffected and called as C in sequencing reaction
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(Yu et al. 2012). Moreover, Neri and colleagues developed the methylation-assisted
bisulfite sequencing (MAB-seq) that allows mapping of 5fC and 5caC distribution
patterns (Neri et al. 2016). In this method, bacterial CpG methyltransferase M.SssI
converts unmethylated cytosines to 5mC (called as cytosine after bisulfite treatment)
discriminating it from 5fC and 5caC transformed to uracil by bisulfite. Collectively,
these methods can be used to determine the patterns of 5mC and all of its oxidation
derivatives at single base resolution.

More recently, single molecule sequencing technologies (e.g., MinION, Oxford
Nanopore Technologies) were employed for the discrimination of 5mC from
non-methylated cytosine based on their distinct ionic currents (Rand et al. 2017).
Although still in development, this approach looks very promising as it overcomes
the need for chemical treatment of DNA for mapping the methylation patterns
(Simpson et al. 2017).

4.1.3 NGS ChIP Sequencing

The composition and chemical nature of proteins interacting with DNA define
chromatin states in eukaryotic genomes (Ren et al. 2000). Chromatin immunopre-
cipitation (ChIP) is a method that allows mapping of the sites of protein-DNA
interactions using antibodies raised against specific chromatin-associated proteins
or histone modifications (Jackson and Chalkley 1981). Most of the ChIP protocols
typically include the following steps: cross-linking of DNA/chromatin-associated
proteins using formaldehyde, sonication of recovered chromatin into shorter frag-
ments, selective pulldown of the DNA bound by the protein of interest using specific
antibodies, purification of the immunoprecipitated DNA fragments, and their anal-
ysis by qPCR or next-generation sequencing (NGS) (Buck and Lieb 2004). This
approach has been extensively used for studying transcription (Weinmann and
Farnham 2002; Valouev et al. 2008), DNA replication (Jackson and Chalkley
1981; Gadaleta et al. 2015), and cellular identity (Whyte et al. 2013; Rehimi et al.
2016).

Analogously to ChIP, specific antibodies raised against 5mC and its oxidized
derivatives can also be used for immunoprecipitation of DNA fragments enriched in
specific modifications in a technique termed DNA immunoprecipitation (DNA-IP or
DIP; meDIP for 5mC-DNA-IP) that, in combination with high-throughput sequenc-
ing (HTS), is instrumental in determining the genomic distribution of these epige-
netic marks in different systems (Weber et al. 2005; Pomraning et al. 2009).
Moreover, meDIP can also be combined with ChIP for mapping the patterns of
5mC on DNA bound by the protein of interest (Mikkelsen et al. 2007; Moison et al.
2015). These approaches allow determining and comparing genome-wide distribu-
tions of histone modifications, specific histone variants, transcription factors, and
DNA modifications (Novak et al. 2006).

Importantly, there are several factors that may affect the reliability of ChIP and
DIP datasets (Lentini et al. 2018). Most crucial of them is the sensitivity and
specificity of the antibody used in the immunoprecipitation (Spencer et al. 2009).
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Moreover, a recent study reported that the intrinsic affinity of IgG for short
unmodified tandem repeats may affect DIP-based genome profiling resulting in
false positive rate of 55 to 99% (Lentini et al. 2018). Thus, normalization of the
DIP datasets not only for input but also for IgG controls seems important for the
reliable immunoprecipitation-based analysis of DNA modifications. Another impor-
tant limitation of these techniques is that, unlike bisulfite sequencing-based
approaches, neither of them yields single base resolution data.

4.1.4 sRNA Sequencing

Primarily evolved as a key defense system for silencing of parasitic foreign genetic
material (Storz 2002; Lu et al. 2005), small RNAs (sRNAs) have also been shown to
play critical roles in gene regulation and post-transcriptional silencing of gene
expression (Studholme 2012). As sRNAs are usually less than 40 nt in length,
several specific approaches have been designed for their capture and analysis of
their distribution (Lu et al. 2005; Hafner et al. 2008). Although these approaches
differ in their throughput and amount of required input material, they all involve
isolation of sRNA, sRNA enrichment by size selection, ligation of the 50 adaptors to
both ends of sRNAs, conversion of sRNA into cDNA, and amplification/sequencing
of corresponding cDNA fragments (Shendure and Ji 2008). Until recently, sRNA
sequencing studies were mainly using either pyrosequencing or ABI Solid sequenc-
ing platforms; however, polymerase-based sequencing by synthesis on the Illumina
sequencing platform is currently the most popular approach for sRNA analysis
(Creighton et al. 2009; Eminaga et al. 2013).

In summary, although none of the current methodologies allow complete
deciphering of chromatin states across individuals, creative integration of the
described methods should help in furthering our understanding of how epigenetic
variation influences evolution.

4.2 Bioinformatics Methods

Bioinformatics is performed on sequence data and other information provided by
molecular assays for epigenomic variant and epigenotype calling and downstream
analyses. Since most of the downstream analyses after epigenomic variant and
epigenotype calling are similar to those used in population genomics, here we
focus only on the bioinformatics methods used for epigenetic variant and
epigenotype calling. An overview of bioinformatics methods used in population
genomics is provided by Salojärvi (2018) in this book.

Bioinformatics analysis has become the rate-limiting step in all epigenomics
analyses. Decreasing costs coupled with greater ease and speed of sequence data
generation has resulted in the need to process increasingly large and complex
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datasets. As HTS replaces arrays, individual samples are themselves larger and more
complex, while multiplex sequencing has provided a means for the simultaneous
sequencing of up to thousands of different samples. Bioinformatic analysis is now
the most time-consuming step of most epigenomics studies. The type of data that are
produced can also determine what downstream analyses are possible. It is, therefore,
necessary for any epigenomics experiment to carefully consider how the data are to
be managed and analyzed at the outset of a project. The number and type of
bioinformatics programs and methods have proliferated alongside the data being
produced. As a result, a fully comprehensive review of bioinformatics methods is
beyond the scope of this chapter. Instead, we will highlight important aspects of
bioinformatics analyses and common themes and emphasize key downstream steps
unique to each method.

4.2.1 Microarray Data

Microarray data can provide information on single base methylation status and
differentially methylated sites. Analysis of microarray data is more straightforward
and computationally less intensive than that of sequencing data. Despite platform
specifics, the basic output of microarrays consists of a measurement of fluorophore
intensity from hybridization. Each signal of the array is derived from a set of probes
of known sequence and typically known location in the genome. This prevents the
need for subsequent mapping to the genome and simplifies downstream analyses. It
also limits the dynamic range of measurement based on the number of available
probes and often limits the resolution of the data and the potential for conducting
further analyses on the dataset.

For both arrays and sequencing, the “raw” data which researchers usually work
with have already undergone initial processing by proprietary software specific to
each platform. This step, known as “feature extraction” for microarrays, converts
scanned images into formats which may be specific to that platform (e.g., CEL for
Affymetrix) (Grant et al. 2007). The first step in bioinformatics analysis for most
researchers is to import these data formats and apply quality control (Fig. 4). This
involves the creation of a variety of diagnostic plots for the identification of
problematic arrays, missing data, etc. and filtering of these data (Grant et al. 2007).

Normalization is a critical step in analysis, used to reduce technical variation
between arrays (Fig. 4). Proper normalization and the method used are dependent
upon a number of factors, from overall experimental design to the specific platform
used (Grant et al. 2007). Normalization methods and differential analyses commonly
used in expression analyses may not be appropriate for ChIP-chip or other such
assays (Buck and Lieb 2004). A special note should be made about the Illumina
Infinium BeadChip technology (Illumina Inc.), whose HumanMethylation450 array
is one of the most widely used for population-scale epigenomics in humans. A
number of specialized programs have been developed for its analysis (see Morris and
Beck 2015).
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Fig. 4 A typical workflow for bioinformatics analysis of whole genome bisulfite sequencing
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4.2.2 Sequencing Data

Declining costs, higher resolution, increased dynamic range, and the availability of
more downstream analytical approaches together make HTS an increasingly attrac-
tive assay for population epigenomics. The downside of HTS is the greater challenge
of bioinformatics analysis. For any sequencing-based epigenomics assay for which
a reference genome is available, the key first step typically involves mapping
sequenced reads onto the genome. This requires the following steps, which are
common in the analysis of other types of HTS data: quality control, adapter and
quality trimming, alignment, and post-alignment filtering (Figs. 4 and 5). Commonly
used tools can be used for each of these steps. Alternatively, pipelines have been
developed for many applications that combine all steps.

As for microarrays, quality control is an initial assessment of the raw data based
on sets of common metrics, such as base quality, adapter contamination, overrepre-
sented sequences, GC content, etc. This step itself usually does not involve any
filtering of the data, and perhaps the most commonly used tool is FastQC. Read
trimming is then used to improve mappability of the raw data to the genome. This is
done by removing low-quality bases and contamination from adapter sequences.
Versatile tools like Cutadapt (Martin 2011) and Trimmomatic (Bolger et al. 2014)
can perform all these steps (and more) at once.

Next, reads are aligned or mapped back to a reference genome, a task for which a
number of excellent programs are available. Several of the most commonly used
programs include Bowtie (Langmead et al. 2009), its successor Bowtie 2 (Langmead
and Salzberg 2012), BWA-MEM (Li 2013), and its predecessors BWA (Li and
Durbin 2009) and BWA-SW (Li and Durbin 2010). Duplicated reads arising from
library construction bias downstream analyses, and it is typically not possible to
accurately analyze reads that map to multiple locations. For most analyses, tools
such as SAMtools (Li et al. 2009b) and Picard (http://broadinstitute.github.io/picard/)
can be used to mark or remove these.

4.2.3 Enrichment-Based Sequencing

Most sequencing-based chromatin assays work by enriching for DNA from regions
marked by a particular chromatin modification. These include methods specific to
certain histones and histone modifications (ChIP-seq), methylated DNA (MeDIP-
seq, MBD-seq, etc.), and DNA accessibility (DNase-seq, ATAC-seq, FAIRE-seq,
MNase-seq, etc.). When mapped back to a reference genome, sequencing reads
should stack up over these regions (Fig. 4). This creates “peaks” which can be
distinguished from the background and could identify patterns of chromatin modi-
fications among individuals (Fig. 5). It is often recommended to sequence unbound
input DNA or DNA from a non-specific antibody to use as a control for background
noise. Depending on the assay, these peaks represent where a particular chromatin
state is found or not found. Numerous peak calling programs have been developed,

Population Epigenomics: Advancing Understanding of Phenotypic Plasticity. . . 217

http://broadinstitute.github.io/picard/


Normalization & 
Differential Analysis

Mark PCR Duplicates &
Remove Multimappers

Raw Sequencing Reads

Quality Control

Quality Metrics

Adaptor & Quality Trimming

Align Reads to Genome

ChIP-seq Input Control

ChIP-seq Input Control

Peak Calling

Sample 1

Sample 2

Sample 3

ChiP-seq Input ControlFig. 5 A typical workflow
for bioinformatics analysis
of ChIP-sequencing data

218 E. R. V. Moler et al.



as detailed by Bailey et al. (2013). An important consideration in choosing a
program is whether or not the chromatin modification being assayed will create
“broad” or “narrow” peaks. Transcription factors and other DNA-binding proteins
are often limited to specific sequences, creating “narrow” peaks that are more easily
detected computationally. However, some chromatin modifications often span large
regions with no central peak, posing a greater computational challenge. For example,
MACS is one of the most widely used programs for peak calling, applicable to both
narrow and wide peaks (Zhang et al. 2008), while programs like SICER (Xu et al.
2014) were developed specifically for application to broad peaks.

When comparing samples, differential peak calling is used to identify differences
in the amplitude of peaks and then infer differences in chromatin or protein binding
from differential peak amplitudes (Fig. 5). Normalization between samples is an
important consideration and remains one of the more challenging aspects of such
analyses. One of the most straightforward and commonly used approaches is to
normalize by sequencing depth, but more sophisticated methods have also been
developed. One approach to differential peak calling is to apply methods originally
developed for RNA-seq such as DESeq/DESeq2 (Love et al. 2014; Anders and
Huber 2010) or edgeR (Robinson et al. 2010) to identify differences in read counts at
previously determined peaks. This strategy is incorporated in the DiffBind program
(Stark and Brown 2011; Ross et al. 2010). Other approaches are used in programs
like MAnorm (Shao et al. 2012). Comprehensive comparisons of differential peak
calling methods are available (Bailey et al. 2013; Steinhauser et al. 2016).

4.2.4 Bisulfite Sequencing

While the processing and mapping of sequencing data described above applies to
most sequencing applications, bisulfite sequencing methods require additional con-
siderations (Fig. 4). These include whole genome bisulfite sequencing (WGBS),
RRBS, and variations such as Tet-assisted bisulfite sequencing (TAB-seq). This is
due in part because the conversion of unmethylated Cs to Us during bisulfite
treatment, and then to Ts during subsequent PCR, artificially introduces additional
sequence variation between the sequencing reads and the reference genome. This
reduces mappability, causing certain quality metrics to diverge from expected
values. Furthermore, the methylation data from each read is “strand-specific,” and
so the specific strand from which a read originates from must also be identified. To
address these issues, several mapping strategies have been devised. Figure 4 dem-
onstrates one such general strategy as used by pipelines like Methylpy (Schultz et al.
2015), Bismark (Krueger and Andrews 2011), BS Seeker and BS Seeker2 (Chen
et al. 2010; Guo et al. 2013), Bison (Ryan and Ehninger 2014), and the BSmooth
algorithm (implemented in R package bsseq) (Hansen et al. 2012). This mapping
scheme works by temporarily converting all Cs in reads to T (G to A for reverse
reads) in silico, which are then mapped to a “forward reference” where all Cs in the
genome have been converted to T and a “reverse reference” where all Gs have been
converted to A. Best hits can then be identified, data merged, and the original read
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sequence restored. Other strategies from the one just described have also been
developed and implemented in programs such as BSMAP (Xi and Li 2009).

Ultimately, it is typically desirable to use bisulfite sequencing data to identify
DMPs, SMVs, or DMRs between individuals (Fig. 4). Calling individual sites as
methylated or unmethylated remains challenging and is highly dependent upon
factors such as sequencing coverage and sources of error. Pipelines like Methylpy
(Schultz et al. 2015) incorporate statistical methods of determining the methylation
status of each individual site from a single sample. Multiple programs are available
for the determination of DMPs and DMRs between samples. Some pipelines, such as
Methylpy (Schultz et al. 2015) and bsseq (BSmooth) (Hansen et al. 2012) incorpo-
rate mapping and DMP/DMR calling in the same package. Several stand-alone
programs are also available, such as DSS (Feng et al. 2014). Bioinformatics software
developers have also recently begun incorporating machine learning algorithms,
such as in the program HOME (Srivastava et al. 2017). Some programs, like
methylKit (Akalin et al. 2012), were developed with additional considerations for
RRBS data. See Shafi et al. (2018) for a review of DMP and DMR calling software.

5 Association of Epigenomic Variation with Phenotypes
and Ecological Acclimation and Adaptation

Individuals within populations often exhibit broad phenotypic variation in morpho-
logical, physiological, and behavioral traits. This variation partially reflects differ-
ential selection upon phenotypes by environmental conditions particular to a given
location, which is essentially the basis of local adaptation. In part, this is because
individuals with heritable phenotypes that are well-adapted to their environments are
likely to display fitness advantages over local conspecifics and thereby increase the
frequency of these phenotypes within the local population. Population and landscape
genomics studies frequently use correlative or association approaches to link vari-
able genomic regions or specific alleles and haplotypes to environmental conditions
or phenotypes (Balkenhol et al. 2017 – see the chapter in this book). However,
genetic variation, such as SNPs, indels, and copy number variants (CNVs), may not
be the only heritable variation contributing to local adaptation. Epigenetic modifi-
cations that affect adaptive traits may also be important for local adaptation in
response to rapidly changing environments (Richards et al. 2010). Epigenetic mod-
ifications display a range of stability and heritable duration depending on their type
and the function they serve and in some cases persist through meiosis. In contrast to
genetic variation, the universality and role for such transgenerational epigenetic
variation in natural plant systems remain incompletely known and controversial.
However, examples from controlled plant studies demonstrating transgenerational
epigenetic inheritance have generated an increase in research aimed at understanding
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this departure from typical Mendelian inheritance. The implications of
transgenerational epigenetic inheritance for evolutionary processes are essentially
unexplored (Cushman 2014).

The forms of epigenetic regulation that are most ecologically important, and most
well-described, separate into two groups including (1) enzymatically controlled,
reversible covalent modifications of DNA and histone proteins, most often methyl-
ation, and (2) the activity of siRNAs which influence and in some cases dictate the
former group (Nicotra et al. 2010). However, the relative ease of laboratory pro-
cedures for the study of 5mC have resulted in strong representation of this mecha-
nism in studies of epigenetic variation (Birney et al. 2016; Richards et al. 2017).
5mC in CG, CHG, and CHH (where H can be A, C, or T) nucleotide contexts
silences transposable elements and influences the expression of genes related to
numerous ecologically important traits (Law and Jacobsen 2010). Meanwhile, the
heritability of histone modifications remains less well-explored (Eichten et al. 2014;
Verhoeven et al. 2016), but see Nightingale et al. (2006). Here, we provide an
overview how epigenetic variation (epialleles) influences phenotypes and ecological
acclimation and adaptation by exploring what is known about epigenetic control of
ecologically and environmentally important traits and some approaches that can be
employed to investigate the possible role of epigenetic mechanisms in phenotypic
variation and ecological acclimation and adaptation.

Recent studies suggest that epigenetic mechanisms and epigenomic variation
contribute significantly to phenotypes, abiotic and biotic stress responses, disease
conditions, adaptation to habitat, and range distributions in a variety of organisms
(review in Richards et al. 2017). However, most related studies have so far focused
on plants and humans. Therefore, in this section, we briefly discuss the association of
epigenomic variation with phenotypic, growth, disease, and ecological acclimation
and adaptive traits in plants. The next section of this chapter explores this aspect in
human disease conditions.

5.1 Phenotypic Traits

The adaptive genetic variation found in plants is commonly studied using GWAS
that investigate how variable genomic markers (mainly SNPs) associate with vari-
ation of adaptive phenotypic traits (Korte and Farlow 2013) and environmental
factors (such as climatic factors) using environmental association analysis (EAA)
(Rellstab et al. 2015), often employing common garden approaches, which control
for environment variation, to sort out genetic variation (Ingvarsson and Street 2011).
Common garden and reciprocal transplant studies are useful for assessing pheno-
typic variation, partitioning variation into genetic and environmental components,
and assessing the heritability of phenotypic variation. However, even with very large
SNP datasets, these approaches often fail to identify SNPs associated with pheno-
types, and the problem of the so-called missing or unexplained heritability persists
(Talbot et al. 2017). This phenomenon occurs where variation in measured
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phenotype is explained only by a small portion of genetic and environmental
variation, leaving much of the variation unaccounted for. This unaccounted-for
variation could in part be due to epigenetic mechanisms and epigenomic variation.

In the absence of genetic variation (Schmitz et al. 2013a), the same approaches
used in population genomics, such as GWAS and EAA (Fig. 6), can be applied to
investigate epigenetic associations with environmental heterogeneity, phenotypic
variation, or both (Verhoeven et al. 2016). The presence of genetic and environ-
mental variation drastically complicates the interpretation of epigenomic investiga-
tions due to interactions among the epigenome, the genome, and the environment in
which they occur. Until recently, most studies of epigenetic variation have been
based on methylation-sensitive amplified fragment length polymorphisms
(MS-AFLPs) and related MS-RFLPs. While such non-sequencing-based approaches
provided initial insights into patterns of genome methylation, they do not allow
interrogation of epigenomic variation across the entire genome, which invites the
strong possibility of falsely detecting positive associations to methylation variants
(Verhoeven et al. 2016; Greally 2017). While these low-resolution approaches are
very informative for certain questions and study systems, whole epigenome or
RRBS does a better job of detecting epigenetic variation across an entire genome
and improves insight into the proportion of the epigenome under genetic control
(Eichten et al. 2013). RRBS is particularly effective for assessing numerous samples
of non-model species where de novo assembly of the epigenome will be required to
understand patterns of methylation.

Fig. 6 After disentangling the confounding effects of genetic variation, relationship between
epigenetic variation and local adaptation can be investigated through different approaches. EAA
can be used to associate epigenetic variation with environmental heterogeneity such as climate or
soil factors. EWAS can be used to associate epigenetic variation with variation in phenotypes either
in the wild or in designed common gardens. epiQTLs can be used to assess patterns of heritability
and variation in phenotypes with different environmental conditions in common gardens. A
combination of analysis is likely to be the most informative. SMV single methylation variant,
DMRs differentially methylated regions. Modified from Rellstab et al. (2015)
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5.1.1 Environment Association Analysis: Outlier Detection

Outlier analysis is also used in population genomics to identify loci potentially
involved in adaptive traits. Outlier tests assess patterns of allele frequencies to detect
those that do not match the general patterns found throughout the rest of the genome,
that is, they deviate from selectively neutral expectations (Luikart et al. 2003). In
general, whole genome or reduced representation genomics facilitate the identifica-
tion of thousands to millions of SNPs that can be screened for these outlier patterns,
and then the loci can be correlated with environmental heterogeneity (Balkenhol
et al. 2017). In epigenetic environmental association analysis (epiEAA), patterns of
genome-wide or targeted 5mC can be correlated with environmental heterogeneity.
Research on the role of DNA methylation in plants to variable environmental
conditions has been demonstrated in the model plant A. thaliana (Dowen et al.
2012), for which stress-induced regulation of immune response was associated with
5mC variants, suggesting the importance of environmental context for epigenetic
regulation of pathogen defense.

In wild plant populations, epiEAA has been used to assess 5mC variation in
relation to habitat type and climate. For example, using RRBS, Gugger et al. (2016)
associated SMVs found in Quercus lobata with climate variables across the species
range in California. They found 43 SMVs associated with climate variables, notably
maximum temperature. Interestingly, the 43 SMVs tended to occur in or near genes
that were known to be involved with plant response to environment. Another EAA,
using MS-AFLP, found that patterns of 5mC in Spartina alterniflora and Borrichia
frutescens were significantly associated with salinity gradients representing different
habitat types (low, moderate, and high salinity) (Foust et al. 2016). The association
of epigenetic variation was interesting because it differed from genetic variation,
where S. alterniflora had no association with genetic variation and habitat type and
Borrichia frutescens had a genetic association in addition to the epigenetic associ-
ation suggesting that environmental factors had at least a role in DNA methylation
(Foust et al. 2016). More studies are needed to assess the extent to which genetics,
pure epigenetic traits, and the environment drive these patterns of epigenetic varia-
tion in wild populations.

5.1.2 Epigenome-Wide Association Studies

In contrast to EAA approaches, which link epigenomic variation to environmental
conditions, phenotype approaches can also be used to relate epigenetic/epigenomic
variation to evolutionarily important or adaptive phenotypes. Almost any plant
phenotype exhibiting variation or plasticity may be epigenetically controlled. Epi-
genetic variation may be genetically controlled, but environmental variation may
also result in heritable DNA modifications, resulting in epigenetically-regulated
plasticity (Feinberg and Irizarry 2010). In order for transgenerational epigenetic
plasticity to be evolutionarily important, the variation needs to be adaptive and
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heritable (Whipple and Holeski 2016). In EWAS, whole methylome or reduced
representation methylomes can be scanned for DMRs and SMVs that can then be
statistically associated with adaptive phenotypes. Controlled, replicated studies
involving common garden and epiRILs will continue to serve a critical role in
determining the extent to which genotypes explain observed correlations between
sample phenotypes and epigenomes (Fig. 7); see also Richards et al. (2017).

5.1.3 Untangling Genetic vs. Epigenetic Control of Phenotypes

Several studies have addressed the correlation between genetic variation and epige-
netic variation with differences in environment (Dubin et al. 2015; Meng et al. 2016;
Taudt et al. 2016). For example, high epigenetic differentiation among populations
of Fallopia spp. and epigenetic loci associated with microhabitat conditions suggest
that these loci could contribute to phenotypic variation in genetically depauperate
populations (Richards et al. 2012). In another case, Helleborus foetidus plants had
higher epigenetic variation compared to genetic variation, and epigenetic markers

Fig. 7 Conceptual
workflow for EWAS.
Source populations are
sampled. Either (a) wild
populations are bisulfite
sequenced and phenotypes
are measured or (b, c) seeds
are collected and grown in
common gardens where
controlled crosses can be
made or known pedigrees
can be used. They can then
be bisulfite sequenced, and
phenotypes can be measured
under different
environmental conditions or
experimental treatments.
Finally, identified variable
epigenomic marks or
regions can be statistically
associated with variation in
measured phenotypes (d).
Different sources or
different family lines can be
tested under different
environment or
experimental conditions,
and changes in phenotypes
can be measured (c). By
controlling for genotype,
epigenetic contribution can
be inferred
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were significantly associated with whole plant functional traits suggesting that
epigenetic diversity allows plants to exploit a more broad range of ecological
conditions (Medrano et al. 2014). Given evidence of heritability of beneficial
epigenetic variation, it can be argued that epigenetic variation is acclimative/adap-
tive. For example, epigenetic variation within and between populations of Viola
cazorlensis was correlated with adaptive divergence (Herrera and Bazaga 2010).

5.1.4 epiQTL

Epigenomic variation at a single locus can be assessed by treating it as a quantitative
trait (QTL) and calculating its heritability (Taudt et al. 2016). If epigenetic inheri-
tance is absent and calculated heritability estimates are greater than zero, this
suggests that epigenomic variation is under genetic control. However, if heritability
estimates are zero, then variation may be a product of variation in environmental
factors and epigenetically controlled plasticity. The use of EWAS can be used to
detect variants (see Box 2 in Taudt et al. 2016), but to date most EWAS have been
conducted in human disease studies or in model plant systems (e.g., Birney et al.
2016; Chen et al. 2016).

5.2 Ecologically and Environmentally Relevant Traits

When multiple replicated genotypes are grown together in the same environment
(common garden), the genetic component of the phenotype can be identified pro-
viding insight into ecologically and environmentally relevant traits in plants. One
approach is to use epiRILs to identify individuals with known epialleles, and then
using reciprocal inbred lines/clones assesses variation in phenotype in different
environments. Epigenetic recombinant inbred lines have been developed in model
plants, for example, A. thaliana, and are a powerful tool that may help assess the role
of transgenerational epigenetic variation on adaptive phenotypes (Johannes et al.
2009; Reinders et al. 2009). Using high-resolution sequencing approaches, thus,
allows the identification of epiQTLs (here epiQTLs are quantitative trait loci that are
pure epigenetic variants, rather than obligatory or facilitated) and can aid in the
quantification of the role of epigenetic variation and selection for evolutionarily
important traits.

In A. thaliana, EWAS and high-throughput phenotyping were used to identify
DMRs in epiRILs, and identified epiQTL were then associated with defense com-
pounds and flowering time (Aller et al. 2018). This study concluded that variation in
DNA methylation accounted for less phenotypic variation than that accounted for by
genetic variation. Nonetheless, analysis of epigenetic variation in plants and their
associated phenotypes have provided important insights into the role of epigenetic
regulation of acclimative and adaptive traits. For example, studies of A. thaliana have
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shown heritable epigenetic variation in ecologically important traits, such as flower
symmetry (Cubas and Vincent 1999), flowering time (Johannes et al. 2009), and
methyltransferase regulation (Dubin et al. 2015; Kawakatsu et al. 2016a, b). Related
studies in non-model organisms remain less common, and studies in wild populations
are even rarer.

Several studies have found correlations between ecologically and environmen-
tally relevant plant traits and epigenetic variation in methylation state (Table 1). For
example, levels of cytosine methylation have been correlated with leaf shape
(Herrera and Bazaga 2013), floral symmetry (Cubas and Vincent 1999), whole
plant functional traits (Medrano et al. 2014; Lele et al. 2018), flowering time
(Johannes et al. 2009), cold tolerance (Xie et al. 2015), salinity tolerance (Foust
et al. 2016), disturbance (Herrera et al. 2016), disease susceptibility (Dowen et al.
2012; Sollars and Buggs 2018), and climate (Platt et al. 2015; Gugger et al. 2016)
(Table 1). DNA methylation patterns have also been correlated with shifts in species
ranges (Richards et al. 2012; Xie et al. 2015), functional diversity in terms of
productivity and stability of plant populations (Latzel et al. 2013), and inbreeding
depression in plants (Vergeer and Ouborg 2012).

6 Association of Epigenetic Mechanism and Epigenomic
Variation with Human Diseases,
and Pharmacoepigenomics

Epigenetic mechanisms have been implicated in several biological processes in
humans, such as development, cell differentiation, X chromosome inactivation,
and genomic imprinting (Kiefer 2007). During the last decades, a large number of
studies have focused on elucidating the role of epigenetics in pathogenesis, progres-
sion, and response to treatment of different diseases (Murrell et al. 2013). Recently,
an increasing number of population epigenomics studies in humans have focused on
investigating associations between epigenomic variation and disease conditions
through EWAS. Here, we provide an overview of association of epigenetic mech-
anism and epigenomic variation with human diseases.

6.1 Genomic Imprinting Diseases

Initial evidence for the importance of epigenetics in the pathogenesis of human
disease came from studies of genomic imprinting, a mechanism underlying the
monoallelic expression of a gene according to its parental origin (Reik 1989).
Certain imprinting-related diseases, e.g., Beckwith-Wiedemann syndrome (BWS),
lead not only to developmental abnormalities but also to somatic overgrowth and
predisposition to childhood malignancies, highlighting the importance of epigenetic
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Table 1 Selected studies showing associations of epigenomic variation with phenotypic, disease,
and adaptive traits in plants using epiEAA or EWAS

Traits Species Method Results Reference

Floral
symmetry

Linaria
vulgaris

RFLP/cDNA Methylation of Lcyc gene
alters floral symmetry
from bilateral to radial

Cubas and
Vincent
(1999)

Methylation
state

Taraxacum
officinale

Multivariate
analysis

Progeny of abiotically
stressed parent plants was
raised in a common gar-
den and screened for
changes in methylation
state. Environmental
stress increased epige-
netic variation in
offspring

Verhoeven
et al.
(2010)

Epigenetic
variation

Viola
cazorlensis

MS-AFLPs
epigenetic
vs. genetic
variation
(correlation)

Epigenetic structure
within and between
populations found to
correlate to adaptive
phenotypes

Herrera
and Bazaga
(2010)

Methylation
state, height

Oryza sativa L. RR Methylome/
MSAP

Nutrient deficiency
(Nitrogen) alters heritable
methylation profiles

Kou et al.
(2011)

Pathogen
defense genes

Arabidopsis
thaliana

Whole genome
methylation

Variation in DNA meth-
ylation associated with
abiotic stress alters gene
expression

Dowen
et al.
(2012)

Methylation
state

Japanese knot-
weed (Fallopia
spp.)

MS-AFLPs
epigenetic
vs. genetic
variation
(GenAlEx)

High epigenetic differen-
tiation among sites with
evidence of some epige-
netic loci responding to
local microhabitat condi-
tions, suggesting that epi-
genetics may contribute to
phenotypic variation in
genetically depauperate
populations

Richards
et al.
(2012)

Methylation
profiles, leaf
type

Ilex aquifolium
(Aquifoliaceae)

MSAP LME MSAP markers were sig-
nificantly associated with
leaf shape (prickly vs.
non-prickly). DNA from
prickly leaves had signifi-
cantly less methylation

Herrera
and Bazaga
(2013)

Whole plant,
leaves, regen-
erative traits

Helleborus
foetidus

LME genetic
vs. epigenetic
variation

Plants had higher epige-
netic vs. genetic variation.
13% of MSAP markers
were significantly associ-
ated with plant traits.
Epigenetic diversity may
allow plants to exploit a
broad range of ecological
conditions

Medrano
et al.
(2014)

(continued)
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Table 1 (continued)

Traits Species Method Results Reference

CpG
methylation
polymorphisms

Quercus lobata EWAS CpG methylation poly-
morphisms correlated to
local adaptation to climate

Platt et al.
(2015)

Cold tolerance Ageratina
adenophora

Whole genome
methylation

A decrease in methylated
sites was associated with
an increase in freezing
tolerance and linked to the
ICE1 epiallele for
demethylation. Epige-
netics correlates with cold
tolerance and is associ-
ated with invasibility in
crofton weed in China

Xie et al.
(2015)

Climate,
maximum
temperature

Quercus lobata EAA/RRBS 43 SMVs significantly
associated with four cli-
mate variables. CG meth-
ylation is important in
locally adaptive evolution
or plasticity in plants

Gugger
et al.
(2016)

Salt tolerance,
habitat type

Spartina
alterniflora;
Borrichia
frutescens

EAA/MS-AFLP Sampled two salt marsh
perennials along high,
mid, and low salinity
gradients in GA. Found
evidence of epigenetic
variation associated with
habitat (salinity),
suggesting epigenetic
control of salt tolerance

Foust et al.
(2016)

Leaf shape and
photosynthetic
traits

Populus
simonii

MS-AFLPs/
EWAS Popula-
tion epigenomic
variation

413 methylation sites
were used to partition
P. simonii into three dis-
tinct populations. Epige-
netic subpopulations were
associated with environ-
mental variation. Associ-
ation analysis identified
methylated regions that
may influence photosyn-
thesis and leaf
development

Ci et al.
(2016)

Whole plant,
leaves, regen-
erative traits

Vitex negundo
var.
heterophylla

MS-AFLPs
epigenetic
vs. genetic
variation (corre-
lation/Mantel)

Both genetic and epige-
netic diversity were low
between habitats within
sites, suggesting a genetic
basis of adaptation to
habitats and significant
correlation between epi-
genetic (but not genetic)
variation and plant
phenotypes

Lee et al.
(2017)

(continued)
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mechanisms for the pathogenesis of cell proliferation-related defects and tumorigen-
esis (Weksberg et al. 2003). Correspondingly, several studies show preferential loss
of maternal alleles in the 11p15.5 region of the BWS-associated imprinted chromo-
somal area in BWS-related tumors (Soejima and Higashimoto 2013), providing
evidence that epigenetics and imprinting contribute to etiology and development
of BWS (Zoghbi and Beaudet 2016). There is currently a large body of experimental
evidence on the contribution of epigenetic mechanisms to pathogenesis and devel-
opment of a wide range of human diseases, including cardiovascular (Martinez et al.
2015), kidney-related (Reddy and Natarajan 2011), and neurological diseases
(Landgrave-Gómez et al. 2015) and cancer (Bennett and Licht 2018).

6.2 Cardiovascular Diseases

Cardiovascular diseases include hypertension, cardiomyopathy, arrhythmias, athero-
sclerosis, andmyocardial infarction (Duygu et al. 2013). Epigenomic profiling of DNA
methylation revealed hypomethylation of promoter regions and hypermethylation of
gene bodies in patients with primary and secondary cardiomyopathies (Movassagh
et al. 2011). In addition to changes in the patterns of DNAmethylation, elevated levels
of miR-499 have also been associated with heart failure in both hypertrophy and
cardiomyopathy (Matkovich et al. 2012), and increased levels of mir-208 have been
shown to induce hypertrophy and fibrosis (Van Rooij et al. 2006). Importantly,
overexpression of mir-208 serves as a clinical diagnostic predictor of heart failure
(Satoh et al. 2010). Moreover, DNA methylation, histone modifications, and
miR-mediated regulation have all been implicated in hypertension development (Papait
et al. 2013). Thus, decreased global 5-methylcytosine (5mC) content correlates with
hypertension suggesting that global DNA hypomethylation is indicative of the pro-
gression of this disease (Smolarek et al. 2010). In contrast to global hypomethylation of
the genome, methylation of the 11βHSD2 promoter region is associated with the
disruption of 11βHSD2-mediated conversion of cortisol into cortisone in hypertension
(Friso et al. 2008;Udali et al. 2013). The subsequent imbalance of cortisol and cortisone
promotes the pathogenesis of hypertension (Friso et al. 2008) that, apart from impacting

Table 1 (continued)

Traits Species Method Results Reference

Flowering
time, defense
compounds

Arabidopsis
thaliana

epiQTL Variation in DNA meth-
ylation was lower than
that of genetic variation

Aller et al.
(2018)

Disease
susceptibility

Fraxinus
excelsior

Whole genome
methylation

Genes associated with
disease susceptibility
were differentially
methylated

Sollars and
Buggs
(2018)
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the cardiovascular system, leads to the development of kidney-related diseases
(Quinkler and Stewart 2003).

6.3 Kidney-Related Diseases

The kidney is a complex multicellular organ that can be affected by various
environmental signals (Adli et al. 2015). Different kidney cell types acquire distinct
profiles of epigenetic marks during renal development and nephrogenesis (Patel and
Dressler 2013; Adli et al. 2015). During the last decade, a number of studies have
focused on the role of DNA methylation in chronic kidney diseases including
diabetic nephropathy (Reddy and Natarajan 2011). Specific changes of DNA meth-
ylation in the diabetes susceptibility genes (e.g., UNC13B) were reported for patients
with diabetes (Bell et al. 2010). Moreover, genome-wide profiling of 5mC revealed
that DNA methylation of enhancers of the key fibrotic genes is altered in patients
with chronic kidney disease leading to overexpression of the corresponding genes
(Ko et al. 2013). Specific histone modifications were also implicated in the alter-
ations of expression of fibrotic, cell cycle, and inflammatory genes causing chronic
kidney diseases (Sun et al. 2010). Correspondingly, both hyperacetylation of his-
tones and increased H2K4me were associated with changes in insulin expression
leading to the development of diabetes (Ling and Groop 2009).

6.4 Neurodegenerative Diseases

Epigenetic mechanisms are the critical determinants of cell-type-specific gene
expression taking place during development of the brain (Keverne 2014), a highly
complex and specialized organ, wheremost cell types originate from neural stem cells
(Leto et al. 2016). Deregulation of epigenetic marks contributes to the development of
several neurological diseases that are characterized by damage of neurons in specific
brain regions (Landgrave-Gómez et al. 2015). For example, transcriptional repression
of a number of genes involved in the pathogenesis of X syndrome and schizophrenia
is associated with hypermethylation of the corresponding loci (Rangasamy et al.
2013). Similarly, several studies carried out in post-mortem brain samples of patients
with Alzheimer’s disease showed hypermethylation of genes associated with disease
progression (Lu et al. 2013) and global DNA hypomethylation (Mastroeni et al.
2009). Parkinson’s disease is another neurodegenerative disease that is correlated
with impaired DNAmethylation (Miranda-Morales et al. 2017). Hypomethylation of
the SNCA gene, which encodes α-synuclein, contributes to the pathogenesis of this
disease via structural changes or overexpression of this protein leading to its aggre-
gation and abnormal gene expression (Kaidery et al. 2013). Moreover, microRNAs
(miRNAs), such as miR-133b and miR-34b/c that have critical roles in maturation of
dopaminergic neurons and packaging/trafficking of α-synuclein, are dysregulated in
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the brain of Parkinson’s patients (Kim et al. 2009; Miñones-Moyano et al. 2011).
Several miRNAs are also deregulated in Alzheimer’s disease (Landgrave-Gómez
et al. 2015). Thus, miRNAs involved in the processing of amyloid precursor protein
(APP) (e.g., miR-124) are downregulated in Alzheimer patients, resulting in impaired
splicing of APP (Smith et al. 2011) followed by aggregate generation of small
β-amyloid (Aβ) peptides which are the main cause in the development of this disease
(Zhang et al. 2011). Importantly, the ectopic expression of miR-124 can rescue this
splicing defect (Smith et al. 2011).

6.5 Cancer

A large number of recent studies focus on both the role of epigenetic mechanisms in
cancer progression and the potential for targeted manipulation of epigenetic readers,
writers, and erasers for cancer treatment (Bennett and Licht 2018). Most population
epigenomics studies also target cancer. Specific alterations in the DNA methylation
patterns are associated with both the initiation and progression of cancer (Wajed
et al. 2001). Both global hypomethylation and hypermethylation of CpG islands of
tumor suppressor genes represent characteristic features of cancer epigenomes
(Feinberg and Vogelstein 1983). For instance, the CDKN2A gene encodes a
cyclin-dependent kinase inhibitor p16INK4A that is crucial for cell cycle regulation
(Li et al. 2012). Hypermethylation of its promoter has been found in a wide range of
tumors, is thought to lead to uncontrolled cell cycle progression, and correlates with
poor overall survival in patients suffering from non-small cell lung and colorectal
cancers (Xing et al. 2013). Furthermore, p73, a gene closely related to p53, was also
found to be hypermethylated in lymphomas (Pei et al. 2011). Similar to promoters of
tumor suppressor genes, promoter regions of DNA repair genes are often
hypermethylated in cancer (Lahtz and Pfeifer 2011). This is usually associated
with gene repression that, in turn, leads to cancer initiation (Lahtz and Pfeifer
2011). Thus, hypermethylation of the BRCA1 promoter results in reduced overall
survival in breast cancer (Zhu et al. 2015), and hypermethylation of the MLH1
promoter is commonly found in endometrial carcinomas and is associated with
microsatellite instability (Esteller et al. 1998).

Although specific genomic regions are hypermethylated in many tumors, the key
feature of cancer genomes is their global hypomethylation (Rodriguez et al. 2006).
Importantly, the overexpression of proto-oncogenes and growth factors that are
critical for cancer progression and development is often associated with
hypomethylation of their promoters (Szyf et al. 2004). Moreover, genomic instabil-
ity has also been reported for different tumors, possibly related to hypomethylation
of retrotransposable elements and their subsequent aberrant mobilization (Daskalos
et al. 2009; Ross et al. 2010).

The oxidized forms of 5mC are also of high importance for tumor pathogenesis
according to a number of recent studies (Ficz and Gribben 2014), with
5-hydroxymethylcytosine (5hmC) levels significantly reduced in many cancers
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(e.g., breast, colon, and lung cancers) compared with the levels of this mark in
normal tissues (Yu et al. 2012). This reduction in 5hmC content correlates with
tumorigenesis and tumor progression in hematopoietic and solid tumors (Ficz and
Gribben 2014). In myeloid malignancies, reduced 5hmC levels often correlate with
TET2 mutations (Abdel-Wahab et al. 2009; Ko et al. 2010), but, interestingly, the
reduction of 5hmC levels in gliomas does not appear to be linked to mutations in
TET proteins (Kraus et al. 2015). Surprisingly, unlike those of 5hmC, the levels of
5-carboxylcytosine (5caC) are elevated in some breast cancers, gliomas, and pedi-
atric brain tumors suggesting that low 5hmC does not necessarily correlate with
inactivation of TET-dependent oxidation of 5mC (Eleftheriou et al. 2015;
Ramsawhook et al. 2017). Thus, it is likely that TET proteins may mediate prefer-
ential oxidation of 5mC to 5caC in some tumors which is in line with the reported
significance of TET proteins and TET/TDG/5caC-dependent DNA demethylation
for specification of glial and hepatic lineages (Wheldon et al. 2014; Lewis et al.
2017). Therefore, the oxidation of 5mC to 5caC in adult and pediatric brain tumors
may represent an epigenetic signature of these cancers reflecting their likely neural
progenitor/stem cell origin (Ramsawhook et al. 2018).

In addition to DNA methylation, the levels and distribution of histone modifica-
tions and miRNAs are also altered in cancers (Kunej et al. 2011; Sawan and
Herceg 2010). Thus, the balance between histone acetylation and deacetylation
was reported for many different tumors (Ropero and Esteller 2007). Increased
histone acetyltransferase activity leads to hyperacetylation and the activation of
proto-oncogenes in certain cancer types, whereas hypoacetylation results in silenc-
ing of tumor suppressor genes (Biswas and Rao 2017). Specifically, loss of lysine
16 acetylation (H4K16ac) and trimethylation of lysine 20 (H4K20me3) of histone
H4 have been linked to a variety of cancers (Fraga et al. 2005b). Lysine
methyltransferase SUV39H1 maintains genome stability; however, in acute
myeloid leukemia, it causes abnormal methylation of H3K9 resulting in silencing
of the p15INK4B tumor suppressor gene (Lakshmikuttyamma et al. 2010).

MiRNAs can contribute to the pathogenesis of cancer either directly or via the
control of expression of epigenetic writers and readers (Kunej et al. 2011). Indeed,
hypermethylation of miR-148 in breast cancer cells leads to tumor growth and
metastasis, whereas its reactivation rescues the phenotype (Lujambio et al. 2008).
Moreover, miR-124, the most prevalent miRNA in the brain, was found to be
abnormally regulated in glioblastoma (GBM) (Karsy et al. 2012). This is particularly
interesting as recent studies suggest that miR-124 may act as a tumor suppressor
gene and could be useful in treating human GBM (Qiao et al. 2017).

6.6 Epigenome-Wide Association Studies in Human Disease

Recent advances in next-generation sequencing and bioinformatics allowed
performing large-scale studies of human disease-associated epigenetic variation
(Rakyan et al. 2011). A number of such epigenome-wide association studies focused
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on genome-wide profiling of DNA methylation in different pathological conditions
have been published over the last few years, and the corresponding datasets are
currently available for the community (Rakyan et al. 2011). An EWAS that inves-
tigated potential links between metabolome and DNA methylation patterns identi-
fied an interesting association of differential DNA methylation with diabetes and
smoking (Petersen et al. 2014). Another EWAS demonstrated association of high-
density lipoprotein cholesterol (HPL-C) with the methylation status of a CpG site
localized near the DHCR24 gene, which is involved in cholesterol biosynthesis and
is associated with metabolic traits (Braun et al. 2017). EWAS have also revealed a
potential association of age-independent cardiovascular risk with DNA methylation
(Fernández-Sanlés et al. 2018) and potential relationship between DNA methylation
status of genes encoding liver enzymes and hepatic steatosis (Nano et al. 2017).
Furthermore, EWAS have revealed significant associations of DNA methylation
with kidney function (Chu et al. 2017), type 2 diabetes (Meeks et al. 2017), panic
disorder (Shimada-Sugimoto et al. 2017), cardiovascular diseases (Nakatochi et al.
2017), cancer (Xu et al. 2013), chronic obstructive pulmonary disease and lung
function (Lee et al. 2017), and other conditions.

Despite the majority of EWAS are purely correlational, they provide invaluable
information that allows identification of potential targets for future in-depth mech-
anistic analysis and, thus, are of high importance for development of future specific
epi-drugs. Also, caution should be exercised in the experimental design of EWAS to
minimize or eliminate spurious associations (see Birney et al. 2016).

6.7 Epigenetic Biomarkers of Disease

Despite the large volume of information on epigenetic mechanisms of human dis-
eases, there are currently no Food and Drug Administration (FDA) approved diag-
nostic tests relying solely on targeting epigenetic marks or the corresponding writer/
reader proteins. However, there are several disease diagnostic tests incorporating
epigenetic determinants (Kronfol et al. 2017). One of them is Cologuard, a screening
test that examines the DNA methylation levels of the BMP3 and NDRG4 genes in
combination with KRAS mutations and hemoglobin analysis (Kronfol et al. 2017).
The methylation status of the MGMT promoter is used to predict the response to the
temozolomide therapy in glioblastomamultiforme (Thon et al. 2013). Temozolomide
alkylates or methylates DNA at the N-7 or O-6 positions of guanine residues
causing DNA damage and, eventually, tumor cell death (Zhang et al. 2012a).
Hypomethylation at theMGMT promoter leads to expression of the O6-alkylguanine
DNA acetyltransferase resulting in DNA repair inhibiting cell death caused by
temozolomide (Esteller et al. 2000).
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6.8 Epigenetic Drugs

While research on epigenome therapeutics is still in its infancy, the development of
drugs targeting the epigenome attracts considerable attention from researchers
working in the fields of epigenetics and biomedical science (Zhang et al. 2012b).
These drugs are referred to as “epi-drugs” and are classified according to their targets
as DNA methyltransferase inhibitors (DNMTi), histone acetyltransferase inhibitors
(HATi), histone methyltransferase inhibitors (HMTi), histone demethylase inhibi-
tors (HDMi), and histone deacetylase inhibitors (HDACi) (Kronfol et al. 2017).

DNMTi drugs inhibit DNA methylation and are divided into two groups:
(1) nucleoside analogues/DNA binders and (2) antisense oligonucleotides (Singh
et al. 2018). The first group of DNMTis integrates into the DNA and forms
complexes with DNMTs promoting their degradation resulting in global reduction
of DNAmethylation (Stresemann and Lyko 2008). The first FDA-approved epi-drug
targeting DNMTs was 5-azacytidine (Vidaza), an analogue of cytidine with the
substitution of a nitrogen atom to a carbon atom in the 5-position of the heterocyclic
ring (Jones and Taylor 1980). Vidaza has been used for clinical treatment of chronic
myelomonocytic leukemia and myelodysplastic syndrome (Santi et al. 1984). As
there are several limitations of Vidaza use, such as metabolic instability, low
specificity, and induction of several side effects (Yoo and Jones 2006), other
5-azacytidine analogues including 5-aza-deoxycytidine, 5-fluoro-deoxycytidine
(5-FC), zebularine, and S110 have been recently developed (Derissen et al. 2013).
5-FC has already been enrolled in clinical trials for the treatment of advanced solid
tumors and acute myelomonocytic leukemia (Newman et al. 2015).

Another group of DNMTs is represented by molecules that do not integrate into
the DNA but directly bind DNMTs and inhibit their activity (Singh et al. 2018).
MG98, an antisense oligonucleotide, interacts with the 30UTR of DNMT1 inhibiting
methylation and promoting the expression of tumor suppressor genes (Amato 2007).
However, due to poor efficacy and increased toxicity, it failed in clinical trials
(Amato 2007).

Since patterns of histone deacetylation are often altered in cancer and metabolic
diseases, HDACi epi-drugs are under development to inhibit the removal of the
acetyl group from acetylated histones (Valente and Mai 2014). Several HDACis
have been approved by the FDA (Eckschlager et al. 2017). One of them, Vorinostat,
a histone deacetylase inhibitor that suppresses cell proliferation and promotes cell
cycle arrest, is used for the treatment of cutaneous T-cell lymphoma (Xue et al.
2016). HMT inhibitors are the molecules that specifically target histone lysine
methyl transferases (HKMTs) and protein arginine methyl transferases (PRMTs)
competing with either their substrate or their cofactor S-adenosyl-L-methionine
(SAM) for binding sites in the enzyme (Kronfol et al. 2017). There are currently
three HMTi molecules at phases I/II of clinical trials: GSK126, EPZ6438
(Tazemetostat), and CPI-1209, which are all SAM inhibitors of enhancer of zeste
homologue 2 (EZH2) (Castillo-Aguilera et al. 2017). These compounds are sup-
posed to be used for the treatment of lymphomas and advanced solid tumors
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(GSK126 and EPZ6438) as well as metastatic castration-resistant prostate cancer
(CPI-1209) (Castillo-Aguilera et al. 2017). Another group of epi-drugs that target
histone demethylases are the HDMis which are divided into two groups: the amine
oxidases/histone demethylases (Lysine-specific demethylases LSD1/2) and the
Jumonji C (JmjC) domain-containing histone demethylases (Morera et al. 2016).
ORY-1001, a molecule that inhibits LSD1, is currently at phases I/II of clinical trials
for the treatment of relapsed acute leukemia (Maiques-Diaz and Somervaille 2016).
In preclinical studies, ORY-1001 has been found to reduce progression of acute
myeloid leukemia (Maes et al. 2018). Additionally, a number of HATis are currently
in preclinical studies for the treatment of several hematopoietic and solid tumors;
however these studies are mainly restricted to in vitro experiments (Biswas and Rao
2017). Specifically, these are the compound C646, a small molecule inhibitor of the
p300/CBP HAT family, and PU139 that inhibits several HAT subfamilies (Bowers
et al. 2010). C646 was shown to inhibit cell growth in lung and prostate cancer cell
lines and to cause growth arrest in melanoma lines, whereas PU139 was able to
block neuroblastoma xenograft growth in mice (Gajer et al. 2015).

In summary, there is a large volume of experimental evidence supporting the
association of abnormal regulation of epigenetic pathways with the development and
progression of several diseases including cancer. Large-scale epigenetic profiling of
different epigenetic-related diseases is warranted in order to target particular epige-
netic regulators and develop highly specific epi-drugs.

7 Future Perspectives and Needs

Population epigenomics is a rapidly developing discipline at the intersections of
molecular biology, physiology, population genetics and genomics. Variation in
phenotypes, ecological acclimation and adaptation, and disease conditions represent
just a few areas of research that have realized substantial advances by adopting
population epigenomics methods. The recent development of RRBS sequencing has
enabled high-resolution investigation of epigenomes of non-model organisms and
across wild populations. However, numerous fundamental questions and challenges
remain to be addressed in the field of population epigenomics, including:

• What is the extent of epigenomic variation within and between populations, and
how closely does it follow patterns of genomic variation?

• To what extent is epigenomic variation influenced by genetic elements, environ-
mental factors, and stochastic epimutations, and how do interactions among those
sources of variation influence epigenomes? To what extent is genetically and
environmentally induced epigenomic variation inherited transgenerationally?
What conditions influence the number of mitotic and meiotic events through
which an epigenetic phenotype may persist?

• How might epigenomic variation contribute to evolutionary processes? Does
epigenomic variation facilitate strictly acclimation or both acclimation and
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adaptation? Is epigenomic variation by itself sufficient to provide acclimation and
adaptation under changing climate and environment conditions? How best can
population epigenomics be applied to conserve or improve the sustainable use of
natural resources and to treat human diseases?

In addition to the above challenges, there is an urgent need to improve cost-
effective molecular and bioinformatics methods and to develop general principles in
the field of epigenomics to generate robust experimental designs that will enable the
accurate interpretation of results from population epigenomics studies. The current
dearth of general principles and evolutionary theory concerning the role of the
epigenome presents serious challenges to research in population epigenomics. This
lack is due in part to the wide variety of epigenetic mechanisms that exist and their
divergence across evolutionary histories, which often precludes the generalization of
principles drawn from studies of model organisms to studies of wild systems
(Richards et al. 2017). Additionally, epigenomes are far more complex than
genomes and require association testing against the entire underlying genome in
order to determine the extent to which the two are intertwined.

The bulk of our discussion has centered upon the three most commonly studied
epigenetic mechanisms included in the epigenome (DNA methylation, histone
modifications and variants, and non-coding RNAs). Other mechanisms also exhibit
epigenetic properties, such as post-translational propagation of altered protein struc-
ture via prions (Halfmann and Lindquist 2010), ultrastructural chromatin compart-
mentalization producing topologically associated genomic domains (Jost et al.
2014), and microbial symbionts (Woodward et al. 2012). The epigenome, if limited
to the three most commonly studied mechanisms, may largely constitute a molecular
phenotype of an underlying genotype (Eichten et al. 2013; Greally 2017). How
closely an epigenome adheres to the underlying genotype depends upon numerous
factors and is especially dependent upon which mechanism is under consideration.
There is a need for improved attribution of epigenetic states to genetic variation
distant from or near to epialleles, such as trans-acting and cis-acting genetic ele-
ments, respectively. Disentangling genetic from non-genetic controls of observed
epigenetic variation, in particular – the identification of false positives due to reverse
causation – remains one of the largest challenges to the accurate interpretation of
epigenomic data (Birney et al. 2016).

As our knowledge of the diversity of epigenetic marks continually expands
(Stöger and Ruzov 2018), so does our need for new bioinformatics tools. Most of
the bioinformatics tools that are used in population epigenomics research have
been developed for population genomics analyses, and there is a need to develop
bioinformatics methods, tools, and pipelines that are specific to the analysis of
epigenomic data. Furthermore, there is a need to improve upon sequencing and
genotyping technologies for population epigenomics studies to enhance the preci-
sion and cost-effectiveness of these technologies.

In contrast to genetic or genomic variation, epigenomic variation shows tissue
and cell-specific patterns. Sampling a pool of cells and tissues from an individual can
bias results and can yield erroneous conclusions, including spurious associations
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with traits (see Birney et al. 2016). This results in an urgent need for quality control
over experimental designs. To do so, individual tissues and cell types can be sorted
and analyzed separately. Studies of mixed-cell samples should adopt strict bioinfor-
matics measures to account for tissue and cell-type heterogeneity. Development of
standards regarding sequencing read lengths and bioinformatics quality control is
also needed to aid in the detection of epigenomic variation attributable to repetitive
genomic regions and transcription factor binding sites.

Two major obstacles to the accurate interpretation of epigenomics studies
discussed by Greally (2017) and Birney et al. (2016) are reverse causation and
spurious associations. The problem of reverse causation in epigenomics is exempli-
fied by interactions among methylation of the 5-carbon position of the DNA
nucleotide cytosine (5mC), transcription factors, and transposable elements. For
example, many instances of variation in 5mC may indicate, rather than cause,
transcriptional regulation due to transcription factor binding prior to transcription,
which alters local patterns of the enzyme-mediated covalent bonding of a methyl
group (CH3) to cytosines (Greally 2017). Transposable element mobilization, which
often alters gene expression (Agrawal 2001), may also represent both a cause and an
outcome of 5mC dynamics (Fedoroff 2012). Spurious associations are likely to
occur when a genetic basis for polymorphic chromatin-modifying molecular pheno-
types evade detection, leading to the false conclusion that correlations between
phenotypic traits and epigenetic phenomena are gene-independent. For instance, it
has been estimated that approximately 22–80% of 5mC variation among the
genomes of humans (Birney et al. 2016), and half of DMRs in maize, are signifi-
cantly associated with genomic SNPs (Eichten et al. 2013). Further, 5mC varies not
only among individual genomes but also across tissue and cell types within a single
genome and even within a single chromosome over time. This flexibility of 5mC
patterning results from the differential activity of multiple enzymes that are respon-
sible for de novo methylation, the maintenance of methylation states across cell
cycles, organismal ontogeny, as well as parental imprinting. However, depending on
whether loci that encode enzymes associated with altered DNA methylation states
occur locally (i.e., cis-acting methyl-QTLs, <50 kb from altered methylation states)
or remotely (i.e., trans-acting methyl-QTLs, >50 kb and <2 Mb from altered
methylation states) to a site with polymorphic methylation, genome-epigenome
association assays will likely fail to detect causal genetic polymorphisms unless
conducted using high-resolution epigenome profiles from samples representing cells
of the same type and developmental stage. Fortunately, analytical tools and exper-
imental approaches for averting the problems of reverse causation and spurious
associations exist and are continually improving.

Overcoming these challenges will yield tremendous advances in fundamental and
applied fields of research, such as contributing to the solution of the missing
heritability problem (Whipple and Holeski 2016), developing new ways to combat
the ravages of climate change (Nicotra et al. 2010; Bräutigam et al. 2013), and
providing new approaches to some of the most widespread human diseases (Ling
and Groop 2009; Bell et al. 2010; Bennett and Licht 2018).
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8 Conclusion

Technical and conceptual advances have enabled the application of epigenomics
tools to the interrogation of population processes, yielding profound advances in
diverse fields of life science research. Awareness of the challenges to the accurate
interpretation of epigenomic data will improve the ability to conduct cross-study
comparisons in epigenomics and enable the development of general principles
regarding the current role of epigenomic patterns across living systems. This will
open new avenues for the application of epigenomics tools to environmental and
medical subjects. While model systems will be instrumental in the development of
general principles in epigenomics research, parallel studies in wild systems are likely
to remain crucial as a reference for the relevance of findings gained from controlled
studies. Ultimately, epigenomics tools and principles will be most useful when
considered in light of the context in which the mechanisms evolved, within
populations.
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Abstract Landscape genomics is a rapidly advancing research field that combines

population genomics, landscape ecology, and spatial analytical techniques to explic-

itly quantify the effects of environmental heterogeneity on neutral and adaptive

genetic variation and underlying processes. Landscape genomics has tremendous

potential for addressing fundamental and applied research questions in various

N. Balkenhol (*)

Wildlife Sciences, University of Goettingen, Büsgenweg 3, G€ottingen 37077, Germany

e-mail: nbalken@gwdg.de

R.Y. Dudaniec

Department of Biological Sciences, Macquarie University, E8B Eastern Road,

North Ryde, Sydney, NSW 2109, Australia

e-mail: rachael.dudaniec@mq.edu.au

K.V. Krutovsky

Department of Forest Genetics and Forest Tree Breeding, University of Goettingen,

Büsgenweg 2, G€ottingen 37077, Germany

Department of Ecosystem Science and Management, Texas A&M University,

2138 TAMU, College Station, TX 77843, USA

N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences,

3 Gubkina Str., Moscow 119333, Russia

Genome Research and Education Center, Siberian Federal University,

50a/2 Akademgorodok, Krasnoyarsk 660036, Russia

e-mail: konstantin.krutovsky@forst.uni-goettingen.de

J.S. Johnson

Department of Geography, Texas A&M University, MS 3147, College Station,

TX 77843-3147, USA

School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA

Dorena Genetic Resource Center, 34963 Shoreview Dr, Cottage Grove, OR 97424, USA

e-mail: jsjohnson@tamu.edu; jeremy.johnson@nau.edu; jeremysjohnson@fs.fed.us

Om P. Rajora (ed.), Population Genomics: Concepts, Approaches and Applications,
Population Genomics [Om P. Rajora (Editor-in-Chief)],

https://doi.org/10.1007/13836_2017_2, © Springer International Publishing AG 2017

261

http://crossmark.crossref.org/dialog/?doi=10.1007/13836_2017_2&domain=pdf
mailto:nbalken@gwdg.de
mailto:rachael.dudaniec@mq.edu.au
mailto:konstantin.krutovsky@forst.uni-goettingen.de
mailto:jsjohnson@tamu.edu
mailto:jeremy.johnson@nau.edu
mailto:jeremysjohnson@fs.fed.us
https://doi.org/10.1007/13836_2017_2


research fields, including ecology, evolution, and conservation biology. However, the

unique combination of different scientific disciplines and analytical approaches also

constitute a challenge to most researchers wishing to apply landscape genomics. Here,

we present an introductory overviewof important concepts andmethods used in current

landscape genomics. For this, we first define the field and explain basic concepts and

methods to capture different hypotheses of landscape influences on neutral genetic

variation. Next, we highlight established and emerging genomic tools for quantifying

adaptive genetic variation in landscape genomic studies. To illustrate the covered

topics and to demonstrate the potential of landscape genomics, we provide empirical

examples addressing a variety of research question, i.e., the investigation of evolution-

ary processes driving population differentiation, the landscape genomics of range

expanding species, and landscape genomic patterns in organisms of special interest,

including species inhabiting aquatic and terrestrial environments. We conclude by

outlining remaining challenges and future research avenues in landscape genomics.

Keywords Adaptive landscape genetics • Environmental association analysis

(EAA) • Functional connectivity • Genome-wide association studies (GWAS)

• Genotype-environment association (GEA) • Landscape resistance • Local

adaptation • Outlier loci • Seascape genomics
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1 Introduction

Any geneticist will agree that environmental conditions can substantially affect the

genetic variation of natural populations, with important consequences for ecological

and evolutionary processes and phenomena. For instance, selection pressures induced

by the heterogeneous environment can promote local adaptation by favoring different

alleles in different spatial localities (e.g., Hedrick et al. 1976; Richardson et al. 2014),

just as historical or contemporary environmental barriers to gene flow (e.g., ice-

covered areas during glacial periods, landscape features such as roads) can increase

genetic differentiation among formerly connected populations (e.g., Hitchings et al.

1997) due to genetic drift. In some cases, local adaptation due to natural selection and

reduced gene flow can ultimately lead to speciation, making genetic variation a

fundamental level of the biodiversity hierarchy (Via 2002; Primack 2014). Neverthe-

less, explicitly accounting for spatial environmental heterogeneity in genetic studies –

especially those dealing with recent and contemporary population genetics at fine

spatial scales – has seen an unprecedented growth only in the last ca. 15 years (Storfer

et al. 2010; Dyer 2015a). In part, this is due to the emergence of the field of landscape

genetics, which was formally introduced in a seminal paper by Manel et al. (2003),

and later extended towards landscape genomics (Luikart et al. 2003; Joost et al.

2007). In essence, landscape genetics can be defined as . . . research that combines
population genetics, landscape ecology, and spatial analytical techniques to explic-
itly quantify the effects of landscape composition, configuration, and matrix quality
on micro-evolutionary processes, such as gene flow, drift, and selection, using neutral
and adaptive genetic data. (Balkenhol et al. 2016a, p. 3). Basically, one can simply

replace “population genetics” with “population genomics” to define landscape geno-

mics (see Sect. 2.1 for details). While several earlier landscape genetic studies exist

(e.g., Pamilo 1988; Merriam et al. 1989; Barbujani and Sokal 1990; Manicacci et al.

1992; Gaines et al. 1997; see also Manel et al. 2003), the recent growth of landscape

genomic studies can be attributed to two main factors. First, landscape genomic

studies are nowadays facilitated by novel technologies that make it possible to gather

and analyze genetic and environmental data at large quantities and at high qualities.

For instance, next-generation sequencing (NGS) allows us to quantify genetic vari-

ation in many individuals at dense genomic coverage at decreasing costs (e.g., Luikart

et al. 2003; Andrews et al. 2016). Similarly, environmental data can be obtained at

high spatial and temporal resolutions for large study areas from remote sensing

devices, such as satellites or drones (e.g., Pettorelli et al. 2005; Anderson and Gaston

2013). Increased computational power also enables us to actually handle and analyze

these large, spatially explicit data sets in a reasonable amount of time (e.g., Kidd and

Ritchie 2006; Paul and Song 2012).

Second, the swift rise of landscape genomics can also be attributed to the

increased interest in the ecological and evolutionary consequences of contemporary

environmental change, such as habitat loss and fragmentation or human-expedited

climate change. Specifically, understanding and predicting the consequences of

ongoing environmental changes can be regarded as a major research need in the

current Anthropocene, where humans are causing substantial environmental
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changes and associated biodiversity losses (e.g., Haddad et al. 2015). Due to the

technological advances mentioned above, landscape genomics has tremendous

potential for contributing to such research, so it is not surprising that the number

of landscape genomic studies has been rising exponentially since 2003 (Storfer

et al. 2010; Dyer 2015a). However, getting started in landscape genomics can still

be a daunting task, because the field amalgamates concepts, data, and methods from

seemingly disparate disciplines that relatively few scientists are familiar with.

Furthermore, many of the analytical approaches employed in landscape genomics

develop very rapidly, making it challenging to keep up-to-date with all methods and

concepts that are relevant for a landscape genomic study.

Here, our goal is to provide a general introduction to the field of landscape

genomics. The chapter complements other recent work that provided a more general

overview of landscape genetics (Balkenhol et al. 2016b), because we here focus more

strongly on genomic approaches for landscape genetics and specifically address genet-

icists interested in applying landscape genomic approaches.Because of this,we assume

that readers are familiar with basic population genetic concepts, which are discussed

elsewhere (e.g., Waits and Storfer 2016) and in two other chapters of this book.

The chapter starts with a description of basic concepts and definitions that are a

prerequisite for understanding the remaining sections. Next, we briefly summarize

concepts and approaches for neutral landscape genomics, before focusing on more

novel approaches that are particularly suitable for adaptive landscape genomics (see

Sect. 2.1 for definition of the different terms). To illustrate the covered concepts and

methods, we provide several empirical examples of landscape genomic applica-

tions, and finally outline several remaining challenges and future opportunities in

landscape genomics.

2 Basic Concepts and Definitions

We can distinguish two components of genetic variation, namely the amount of

genetic variation (genetic diversity, sometimes also called genetic variability) and

the spatial distribution of genetic variation (genetic structure, e.g., via measures of

genetic differentiation or genetic distances). Both components of genetic variation can

be quantified using loci or genomic regions that are affected by selection (adaptive

genetic variation) and those loci or regions that are not affected by it (neutral genetic

variation). However, it is important to note that genetic data showing signs of selection

may not actually be under selection, because selection may actually be acting on other

loci or regions that the analyzed genetic data are linked to. Similarly, genetic data that

appear to be selectively neutral could still be under selection, for example when

selection acts upon highly polygenic traits so that the influence of selection on

individual loci or small genomic regions is too small to be detected. In general, it is

hard to truly discriminate selectively neutral from selectively adaptive genetic varia-

tion, except in a few cases, such asmicrosatellite or SNP variation controlled by loci in

the noncoding regions. Nevertheless, we here follow the vast majority of publications
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that use the term adaptive genetic data to refer to those loci or regions that show signs

of selection, and neutral genetic data for those loci or regions that do not show any

evidence of selection. Depending on whether we use neutral or adaptive genetic data,

we can focus on different underlying processes and research questions (Fig. 1).

Furthermore, landscape genomic studies can focus on analyzing environmental

effects on neutral or adaptive genetic variation per se, which is particularly inter-

esting for geneticists investigating the emergence and maintenance of genetic

variation in nature. Alternatively, studies can use landscape genomic approaches

to investigate how the environment impacts the processes that underlie observed

patterns of genetic variation, which is often most interesting for ecologists who

study effective dispersal (i.e., migration) and gene flow, and evolutionary biologists

studying natural selection, adaptation, etc.

2.1 Landscape Genetics vs. Genomics

Given the different types of genetic variation, processes, and questions that land-

scape genetic studies can focus on, we can distinguish between “neutral” and

“adaptive” landscape genetics (Holderegger et al. 2006). While the former focuses

on putatively neutral processes, such as gene flow and genetic drift, the latter

focuses on adaptive processes, such as selection and local adaptation. Since geno-

mic approaches greatly facilitate the detection of loci or genomic regions under

selection (e.g., Andrews et al. 2016), the term landscape genomics is now often

used for studies seeking to identify environmental influences on adaptive genetic

variation (Schwartz et al. 2009; Hand et al. 2015). In contrast, the term landscape

genetics usually applies to studies dealing with selectively neutral genetic markers

Fig. 1 Conceptual chart illustrating adaptive and neutral landscape genomics. Note that the

processes of interest overlap between the two types of landscape genomics, and the greatest

insights can be accomplished by combining neutral and adaptive data
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and underlying processes (Manel and Holderegger 2013). However, it is possible to

conduct an adaptive landscape genetic study without applying population geno-

mics, for example through the use of established quantitative trait loci (QTLs) that

are known to be under selection (Holderegger et al. 2006; Manel et al. 2010).

Similarly, it is possible to conduct a neutral landscape genomic study, for example

when an NGS approach is used to develop thousands of single-nucleotide poly-

morphisms (SNPs) and then choosing only those that are likely not under selection

(i.e., by excluding outlier loci, e.g., Whitlock and Lotterhos 2015). This subset of

tentative selectively neutral SNPs can then be used to evaluate landscape influences

on neutral gene flow (e.g., Rasic et al. 2014).

While we acknowledge that not all of the examples we discuss in this chapter

have been derived from genome-wide sequencing approaches, genomic data will

undoubtedly become the standard for all landscape genetic studies in the near

future, and the difference in nomenclature between landscape genetics and geno-

mics will further diminish and eventually disappear. Hence, we here use the term

landscape genomics to encompass all studies that explicitly test for environmental

impacts on genome-wide genetic variation, even if they do not (yet) rely fully on the

whole genome sequencing approaches. However, we distinguish between neutral

landscape genomics and adaptive landscape genomics, depending on the type of

genetic data and the processes of interest (Fig. 1). Ideally, neutral and adaptive

landscape genomics should be combined to fully elucidate the ecological and

evolutionary processes affecting different components of genetic variation (Hand

et al. 2015; Balkenhol et al. 2016c). However, since underlying assumptions, data

types, and methods differ for these two types of landscape genomics, we discuss

them separately in Sects. 3 and 4, respectively.

2.2 Influences of Spatial Environmental Heterogeneity
on Genetic Variation

From conceptual and analytical standpoints, genetic variation can be influenced by

local environmental conditions, as well as the environment occurring in-between
sampling locations (Fig. 2).

Local environmental conditions can include, for example, factors such as local

climate, or habitat characteristics such as vegetation type and quality. Local envi-

ronmental conditions can be measured at sampling locations, within areas, or

around sampling locations or areas, for example within a certain radius around

sampling points or habitat patches (Wagner and Fortin 2013; Pflüger and Balkenhol
2014). Local environmental conditions can induce spatially varying selective

pressures, which directly affect adaptive genetic variation (Schoville et al. 2012).

The local environment can favor certain alleles over others, or select against

migrant individuals or their offspring via natural or sexual selection (e.g., Nosil

et al. 2005). Local environmental conditions can also bias dispersal, for example
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when dispersing individuals prefer to settle into specific environments, or into

environments that are similar to their natal environment (Wang and Bradburd

2014). Additionally, local environmental conditions can impact local population

sizes and carrying capacities, which impact drift and also density-dependent dis-

persal and resulting patterns of gene flow (Pflüger and Balkenhol 2014).

The environment in-between locations can include barriers that impede gene

flow or corridors that facilitate it. More generally, the environment in-between

locations can be characterized in terms of landscape resistance, which essentially

reflects the probability that organisms will successfully cross a particular environ-

ment (Zeller et al. 2012). The resistance of a landscape is largely determined by

the intervening “matrix,” which is the term used to describe the landscape found

in-between sampling locations that is not primary habitat of the study species. The

matrix can alter levels of gene flow among locations, because matrix quality

Fig. 2 Potential environmental influences on genetic variation. The green areas show sampling

locations or patches, with local environmental conditions indicated by different green color

shades. The red gradient represents the heterogeneous quality of the landscape matrix. Left:

Local environmental conditions, such as habitat type and quality, can directly impact genetic

variation via natural selection, but can also impact drift and effective dispersal, for example when

the local carrying capacity affects population size or density-dependent emi- and immigration.

Right: Environmental conditions in-between locations can impact effective dispersal and resulting

gene flow. In nature, both local and in-between influences will be important for shaping both

neutral and adaptive genetic variation
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impacts effective dispersal (i.e., dispersal leading to successful reproduction),

either because individuals respond to environmental heterogeneity during dispersal

movements, or because the environment experienced during dispersal alters their

survival (Zeller et al. 2012). Many studies have shown that the quality and hetero-

geneity of the matrix (i.e., its resistance) can have profound influences on effective

dispersal, gene flow, and resulting patterns of genetic variation (e.g., reviewed in

Waits et al. 2016). Analyzing such in-between environmental characteristics is

probably the most novel contribution that landscape genomics has made to popu-

lation genetic studies (Holderegger and Wagner 2008; Manel and Holderegger

2013). While local environmental characteristics, such as patch size or climate,

have been considered in many genetic studies even before the terms landscape

genetics and landscape genomics were coined (see, e.g., Keyghobadi 2007), explic-

itly including the effects of landscape structure is relatively new. Landscape

structure basically consists of two components, called composition and configura-
tion. While composition refers to the amount of certain elements within a landscape

(e.g., percentage of area covered by different vegetation types), landscape compo-

sition refers to the spatial arrangement of these elements (Fig. 3).

The spatial arrangement of the landscape is particularly important for analyzing

the effects of the landscape matrix on functional connectivity, or the degree to

which a landscape facilitates the dispersal of individual organisms (or their prop-

agules) and resulting gene flow (Taylor et al. 2006).

Fig. 3 Landscape composition and configuration. Two hypothetical landscapes with the same

composition (i.e., number of blue, yellow, and brown cells), but different configuration (i.e.,

spatial arrangement of differently colored cells). Assuming that a study species cannot move

through the blue cells, the left landscape can actually still be crossed (i.e., the cells in the landscape

are still functionally connected, as demonstrated by the red path), even though the left landscape

looks more fragmented than the right one
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2.3 Analytical Steps

To reflect the different potential genetic influences of the local environment and the

matrix, Wagner and Fortin (2013) presented a conceptual framework for the spatial

analysis of landscape genetic data. They distinguish among analytical approaches

that are based on nodes, neighborhoods, links, or boundaries. While the first two

types of methods are most appropriate for analyzing effects of the local environ-

ment on genetic variation, the latter two methods are most suitable for analyzing

effects of the environment in-between the sampled locations. Importantly, the

different environmental influences are not mutually exclusive and probably often

interact in nature. Thus, to fully understand the effects of environmental heteroge-

neity on genetic variation, landscape genomic studies should ideally test and

contrast multiple hypotheses relating to different influences.

To assess these various effects, landscape genomic studies essentially have to

conduct three analytical steps (Balkenhol et al. 2016a). First, they have to quantify

genetic variation so that the genetic data captures the patterns and micro-

evolutionary processes of interest. Second, they have to quantify environmental

heterogeneity so that the landscape data reflects different hypotheses to be tested.

Finally, they have to statistically link genetic and environmental data so that

landscape-genetic hypotheses can be tested explicitly. In reality, these different

steps are not always separated, for example because some methods simultaneously

accomplish steps 2 and 3. However, to get started with landscape genomics, it often

helps to envisage the analysis along these three steps. Hence, we encourage readers

to keep the three analytical steps in mind when reading the next sections, where

we describe different analytical approaches for neutral and adaptive landscape

genomics.

3 Neutral Landscape Genomics

Landscape genomic studies based on selectively neutral genetic data often focus on

environmental effects on genetic structure. Specifically, most neutral landscape

genomic studies analyze environmental effects on functional connectivity, as

defined above. To test for environmental effects on functional connectivity, most

studies statistically compare measures of genetic similarity with measures of

landscape connectivity among sampling units, which may be either individuals or

populations (i.e., groups of individual). Individual-based analyses have been shown

to have higher power for detecting landscape-genetic relationships (Landguth et al.

2012; Prunier et al. 2013), and are especially suitable for continuously distributed

species. However, population-based analyses remain meaningful whenever genetic

populations can be defined and delineated with no or little uncertainty, or when

analyses are conducted between distinct spatial areas, such as management units.
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3.1 Distance-Based Analysis Framework

Regardless of how sampling units are defined, most studies use a distance-based

analysis for their inferences (Storfer et al. 2010; DiLeo and Wagner 2016). For this,

genetic dissimilarity is usually estimated in the form of genetic distances or indices

of genetic differentiation, such as FST values. Higher values of these pairwise

estimates are interpreted as indicating lower levels of gene flow and underlying

functional connectivity. These values are then compared to estimates of functional

landscape connectivity, which are often calculated in the form of effective dis-

tances. These effective distances account for the hypothesized heterogeneity of the

landscape and can reflect different landscape-genetic hypotheses (Fig. 4).

Fig. 4 Hypotheses typically tested in neutral landscape genomics, with blue arrows depicting the

effective distances estimated to reflect each hypothesis. (a) Isolation-by-distance (IBD) is tested by
correlating genetic with geographic distances among locations (straight-line). (b) To test isolation-
by-barrier (IBB), the occurrence or number of linear barriers found in-between locations is

calculated. (c) Testing isolation-by-resistance (IBR) requires the estimation of effective distances

that account for the heterogeneous resistance of the landscape. (d) For isolation-by-environment

(IBE), environmental (dis-)similarities are estimated that quantify the differences in local envi-

ronmental conditions among sampling locations
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3.1.1 Isolation-by-Distance (IBD)

An often-tested hypothesis is based on the classical IBD model originally devel-

oped by Wright (1943). In this model, gene flow among locations is affected by the

geographic (i.e., straight-line) distance separating them (Fig. 4a). The strength of

IBD depends on the scale of the study area in relation to the dispersal distance of the

species, and the model assumes a homogeneous environment. IBD has been

confirmed in many study systems, and it often serves as a null model in both neutral

and adaptive landscape genomics.

3.1.2 Isolation-by-Barrier (IBB)

The first alternative to IBD is the hypothesis of IBB (Fig. 4b). Here, effective

dispersal and resulting gene flow are assumed to be influenced by linear barriers

that cross the study area either partially or completely. Barriers can include

mountain ranges, rivers, roads, habitat edges, etc. and can impede gene flow either

completely or partially. Analyzing IBB within the distance-based framework can,

for example, be accomplished via a dummy matrix, where those sampling location

pairs that are separated by a barrier receive a value of 1, whereas locations not

separated by a barrier receive a pairwise value of 0. Alternatively, the number of

times that a straight line between two sampling locations crosses potential barriers

can be used to estimate a pairwise effective distance reflecting IBB.

3.1.3 Isolation-by-Resistance (IBR)

The third and perhaps most prominent landscape-genetic hypothesis is termed IBR

(Fig. 4c). This hypothesis considers the heterogeneous resistance of the landscape

matrix to movement and gene flow (McRae 2006). To test IBR, various types of

effective distances can be estimated that account for the resistance of the environ-

ment by calculating the least-costly route among pairs of sampling locations. The

two most commonly used effective distances accounting for landscape resistance

are based on (a) least-cost and (b) circuit-theoretic algorithms. Least-cost algo-

rithms attempt to find the single, least-costly path, and essentially assume that a

dispersing individual has perfect knowledge of the entire landscape and moves

through it in an optimal fashion (Adriaensen et al. 2003). In contrast, circuit-theory

considers all possible pathways among locations, assumes that individuals move

across the landscape randomly, and that their probability of crossing a certain area

of the landscape depends on the resistance of that area (McRae et al. 2008). Another

option for capturing the landscape resistance among sampling locations is to use

transects or corridors of a certain width connecting sampling locations, and to

quantify the resistance within these transects (e.g., van Strien et al. 2012).
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Landscape Resistance Surfaces All of these approaches are based on resistance

surfaces, which are spatial data layers where each raster cell of the study landscape

receives a value that represents the hypothesized resistance of the landscape in that

cell. For example, in Fig. 5, two variables are hypothesized to influence landscape

resistance in a hypothetical species that preferentially moves through forest, but

tends to avoid high-elevation areas. For the variable “landcover,” the resistance

value is set to 1 (no resistance), if a cell is covered by forest, and 10 otherwise.

Similarly, for the variable “elevation,” resistance values range from 1 (lowest

elevation) to 10 (highest elevation). The combined resistance surface reflecting

both variables ranges from 2 to 20. Based on each surface, effective distances

based on least-cost or circuit-theoretic algorithms can be calculated. Many other

approaches for parameterizing and optimizing resistance surfaces exist, and they

can reflect various hypotheses of linear or nonlinear relationships between the

landscape data and resistance to gene flow (e.g., Dudaniec et al. 2013, 2016;

Mateo-Sanchéz et al. 2015). The resistance surface leading to effective distances

that show the strongest statistical association with the genetic distances is chosen as

Fig. 5 Illustration of landscape resistance surfaces. For both variables “landcover” and “eleva-

tion” resistance values range from 1 (lowest resistance) to 10 (highest resistance). Based on each

surface, effective distances can be calculated, for example using least-cost paths (gray lines). Note
that in this example, the route of the least-cost path is the same for the “landcover” and the

combined surface, but the cumulative costs distance is different between all three surfaces
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the surface that best captures the impacts of landscape resistance on gene flow and

spatial genetic structure.

Since resistance values are only hypothesized (i.e., the true impact of the

environment on effective dispersal in the study species is not known with certainty),

many different combinations of variables and different resistance values of each

variable have to be evaluated in empirical studies (Cushman et al. 2006). Due to the

complexity of this task, many options exist for parameterizing and evaluating

resistance surfaces, and we refer readers to the comprehensive reviews of Spear

et al. (2010, 2016) for further details. In landscape genomics, the main result of

resistance surface modeling is one or several pairwise matrices of distances (in cost

units or electric current values) that measure the effective separation distance

between any two sampling locations. Each matrix reflects a different hypothesis

of how the study species might be influenced by landscape resistance. The best

representation of landscape resistance can then be identified by statistically com-

paring these different distances to the measures of genetic distances among sam-

pling units, essentially identifying which resistance hypothesis best explains the

observed genetic distance.

3.1.4 Isolation-by-Environment (IBE)

The fourth major hypothesis in neutral landscape genomics is IBE (Fig. 4d). Under

this hypothesis, the degree of genetic differentiation among sampling units should

increase with increasing environmental dissimilarity (Wang and Bradburd 2014).

Put differently, higher levels of gene flow should occur among locations that are

more similar with respect to local environmental conditions, such as habitat type,

temperature, or precipitation. IBE can arise from many different processes, both

adaptive and neutral, as discussed in Sect. 5.1.

To test for IBE, effective distances among sampling locations are usually

calculated in the form of environmental distances (also called environmental

resemblances, similarities, or dissimilarities). These distances essentially estimate

a pairwise measure of how close sampling units are in the single or multivariate

variable space, so that location pairs with more similar environmental conditions

will have lower pairwise environmental distance (i.e., low dissimilarity, high

similarity or resemblance). A variety of such environmental distance metrics exist

and their advantages and limitations are, for example, discussed in Legendre and

Legendre (2012).

Importantly, within the distance-based analytical framework commonly applied

in neutral landscape genomics, IBE is the only hypothesis that considers local

environmental conditions, rather than influences of the environment in-between

sampling locations (i.e., distance, barriers, or resistance).

As stated before, the different hypotheses are not mutually exclusive, and all of

them can and should be considered in landscape genomic studies. Also, it should be

noted that there are many other approaches for quantifying neutral genetic variation

and environmental heterogeneity that we have not discussed here. For example,
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there is a suite of methods for detecting (local) linear barriers to gene flow, such as

Monmonier’s algorithm (Monmonier 1973) or the Wombling method (Womble

1951; Crida and Manel 2007). Results of these methods can be compared to the

spatial occurrence of environmental boundaries, such as habitat edges or roads

(Blair et al. 2012). Similarly, genetic structure is now often quantified using a

variety of genetic clustering methods, for example via the well-known software

STRUCTURE (Pritchard et al. 2000; see also François and Waits 2016 for a review

of genetic clustering methods). The outcome of such clustering methods can either

be used directly for landscape genetic inferences, or they can be used to estimate

genetic distances among individuals, which then can be compared to effective

distances for enhanced ecological insight (e.g., Balkenhol et al. 2014).

3.2 Statistically Linking Neutral Genetic
and Environmental Data

A large variety of statistical approaches exists for the final analytical step, where

genetic variation and environmental variables have to be linked statistically

(Wagner and Fortin 2013, 2016). Analytical methods commonly used in other

fields (e.g., standard regression) can generally not be used in neutral landscape

genomics, because we are dealing with pairwise data (genetic and effective dis-

tances among all pairs of sampling locations), and because data often show signif-

icant positive spatial autocorrelation, basically meaning that data from locations

that are close in space tend to be more similar than data from locations far apart. In

essence, both of these challenges lead to non-independent data values that violate

fundamental assumptions of most standard statistical methods. Hence, the final step

often requires the use of special analytical techniques that can deal with the data

structure typically encountered in neutral landscape genomics. A detailed review of

existing methods for this is beyond the scope of this chapter, and readers are

referred to Wagner and Fortin (2016) for a thorough overview of the various

available approaches.

Within the distance-based framework outlined above, assessing the relative

support for the different landscape genetic hypotheses is often particularly chal-

lenging because the various effective distances can be strongly correlated with each

other. This challenge is especially severe when effective distances are compared

that have been calculated from different parameterizations of the same resistance

surface (Zeller et al. 2016). The most commonly used methods are still the Mantel

test and the partial Mantel test (Storfer et al. 2010; DiLeo and Wagner 2016), which

are basically correlation approaches with significance values estimated via a spe-

cific permutation approach. Mantel tests have been severely criticized for various

reasons, and alternative approaches should be used whenever possible (Balkenhol

et al. 2009; Legendre and Fortin 2010; Guillot and Rousset 2013; Legendre et al.

2015). However, there is currently no consensus on the most appropriate method for
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statistically testing associations between environmental and neutral genetic data.

More studies are required to assess the relative utility of different methods for

specific research questions and data sets.

In sum, a large variety of methods are available for neutral landscape genomics,

and their application to different terrestrial and aquatic systems has already led to

important findings in ecology, evolution, and conservation biology (see, e.g., Wang

et al. 2013; Selkoe et al. 2016a; Waits et al. 2016). This large analytical variety is

also one of the main challenges for current studies, because it hinders the compa-

rability of results, and choosing among methods is not trivial (see Sect. 6). How-

ever, we highlight that in addition to methodological considerations, another,

perhaps even more important aspect for neutral landscape genomics is the precise,

a priori definition of multiple, testable hypothesis. This is also important for guiding

general study design and sampling in landscape genomics (Balkenhol and Fortin

2016). Thus, rather than getting lost in analytical details, we encourage researchers

to first and foremost focus on defining good research questions and design land-

scape genomic studies that lead to strong scientific inferences.

4 Adaptive Landscape Genomics

Most studies cited above have actually not used genome-wide approaches to

quantify genetic variation, but instead have largely relied on microsatellites or

relatively short sequences of mitochondrial DNA. Such data are appropriate for

addressing questions related to neutral genetic data and underlying processes, but

are not quite suitable for addressing landscape genomic research questions dealing

with selection and adaptation. For these kinds of questions, we usually have to

identify loci or regions under selection, and then statistically relate this adaptive

genetic data to environmental heterogeneity. Storfer et al. (2016) distinguish four

general frameworks for accomplishing this: (a) a correlative framework that is

based on outlier detection and/or environmental association analysis, (b) a pheno-
typic framework which relies on quantitative trait loci (QTL) or genome-wide

association studies (GWAS), (c) a framework based on candidate genes, and
(d) a framework based on exomes and transcriptomes. We discuss all of these

frameworks below, but largely focus on correlative approaches, and especially

environmental association analysis (EAA). This is arguably the most widely

used framework in landscape genomics right now, it seems to outperform other

approaches for identifying adaptive genetic variation in heterogeneous environ-

ments (Jones et al. 2013), and it is the only of the four frameworks that directly

incorporates environmental data into the detection of selection.
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4.1 Correlative Approaches

Correlative landscape genomic approaches often rely on identifying loci or regions

under selection via different types of “outlier detection” methods. As pointed out by

Luikart et al. (2003), this population genomics approach aims at finding the genes

whose diversity patterns do not follow the ones of the rest of the genome. This

is greatly facilitated by high-throughput sequencing techniques, which enable

genome-wide genotyping and sampling of genetic markers that may be situated

in, or linked to, functional genes that are under selection. Popular “reduced repre-

sentation” sequencing approaches to obtain genome-wide markers such as Single

Nucleotide Polymorphisms (SNPs) include Restriction-site Associated DNA

Sequencing (RADseq, Miller et al. 2007) or Genotype by Sequencing (GBS, Elshire

et al. 2011; Narum et al. 2013) and target enrichment (Dasgupta et al. 2015; Lu et al.

2016, 2017; Suren et al. 2016). Details on these approaches can be found in another

chapter of this book specifically focusing on genotyping and sequencing technol-

ogies in population genetics and genomics.

These techniques can recover numerous (100s to 1,000s) genetic markers that

can then be partitioned into neutral and selective loci using a wide variety of

statistical approaches (e.g., Günther and Coop 2013; Whitlock and Lotterhos

2015). The idea beneath is that a gene under selection will not obey to the neutral

forces rather than by selection that shape genetic variation and hence show geno-

type frequencies that cannot be explained by the neutral theory of molecular

evolution. The fixation index (FST) and the deviation from Hardy-Weinberg

proportions (FIS) are popular measures of the genetic differentiation among

populations for a specific gene. For example, SNPs under putative selection may

be identified using FST outlier tests, which identify loci with higher or lower FST

than expected from the FST distribution expected under neutrality. Numerous

statistical tests have been designed to detect genes significantly differing in these

proxy variables in comparison to the rest of the genome. The earliest types of

significance tests developed for outlier loci detection are listed by Luikart et al.

(2003). More recently, elaborated statistical analysis of FST has been developed

following Bayesian approaches (e.g., BAYESCAN, Foll and Gaggiotti 2008) or

analyses based on principal components (e.g., PCadapt, Duforet-Frebourg et al.

2016). Hoban et al. (2016) provide an in-depth review of the advantages and

limitations of such “genome-scan” approaches for finding signals of local adapta-

tion. Once adaptive genetic data have been identified, it can be statistically com-

pared among different landscapes or among different environmental categories

(e.g., Turner et al. 2010).

4.1.1 Environmental Association Analysis (EAA)

Alternatively or in addition to outlier detection, EAA can be used to detect

signatures of local adaptation to environmental heterogeneity. EAA is at the
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interface of bioinformatics, genomics, spatial statistics, and landscape ecology and

uses correlation studies between the genomic data and the environment to identify

genes either potentially linked to candidate genes or the genes themselves under

selection. Note that various other terms are used to describe EAA, including that the

terms “genetic-environment correlation” or “genotype-environment association”

(GEA, e.g., Whitlock and Lotterhos 2015).

Luikart et al. (2003) were the first to realize the potential of combining landscape

genetic analyses with population genomic data. The first implementation of such an

approach was published by Joost et al. (2007) in a study dedicated to the detection

of candidate loci for selection in insect and livestock species.

Environmental association studies relate environmental variation to genetic

polymorphisms, searching for correlative indication of evolutionary responses

to spatial heterogeneity (Holderegger et al. 2010). Such associations depend on

precisely describing environmental conditions, which require elaborated engineer-

ing tools for high-resolution, area-wide coverage of microsite characteristics. In

parallel, a whole-genome perspective should enable one to identify potentially

adaptive loci or genomic elements, which can then be tested for how they correlate

with variation in site conditions (Parisod and Holderegger 2012).

Numerous tools have been developed to perform EAA analysis, each differing

mainly by the type of model employed, the statistical procedure used to test for the

association, and the way population structure is dealt with (see below; Rellstab et al.

2015). EAA can be performed with various statistical approaches, including logistic

regressions (Stucki et al. 2016; Joost et al. 2007; Carl and Kühn 2007), matrix

correlations (Hancock et al. 2011; Fischer et al. 2013), general linear models

(Zulliger et al. 2013; Manel et al. 2012; Bradbury et al. 2013a; Legendre et al.

2012), and mixed effect models (Frichot et al. 2013; Coop et al. 2010). Excellent

reviews and comparisons of the different analytical approaches for EAA can be

found in Rellstab et al. (2015) and Forester et al. (2016).

4.1.2 Accounting for Population Structure

Regardless of the statistical approach chosen to conduct EAA, a specific issue is the

incorporation of population structure as a confounding factor. Individuals close

in space tend to be genetically similar, producing a gradient of neutral genetic

differentiation that might overlap with environmental gradients and result in false

signals of adaptation (Rellstab et al. 2015; Joost et al. 2013).

The earliest EAA methods did not incorporate the neutral genetic structure and

simply aimed at testing the association between genotype frequencies and environ-

mental gradients (Joost et al. 2007; Carl and Kühn 2007). These approaches tend to
increase the false discovery rate but are less demanding in terms of calculation

(Rellstab et al. 2015). More recently, several methods have been developed to take

into account population structure (Rellstab et al. 2015). Among them some are

employing mixed effects models (Rellstab et al. 2015), such as BayEnv (Coop et al.

2010; Günther and Coop 2013), LFMM (Frichot et al. 2013), or BayPass (Gautier
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2015), while BayEscEnv is based on an alternative model (de Villemereuil and

Gaggiotti 2015). The inclusion of population structure in the models allows these

methods to get a relatively low false positive rate (De Mita et al. 2013; Frichot et al.

2013; Forester et al. 2016). These approaches interpret the overall variance within

the genotype matrix as neutral genetic structure (Rellstab et al. 2015). This can be a

major drawback, if the considered population is not genetically structured and can,

therefore, result in a loss of statistical power. Moreover, these methods use Markov

Chain Monte Carlo (MCMC) as stochastic algorithm, which requires multiple runs

in order to obtain representative results (Rellstab et al. 2015; Coop et al. 2010;

Frichot et al. 2013). The computation time requested is therefore substantial

(Rellstab et al. 2015; Stucki et al. 2016). For this reason, high performance

computation methods like Samβada (Stucki et al. 2016) can be a valuable alterna-

tive. The population structure can be previously investigated using specific tools

like ADMIXTURE (Alexander et al. 2009), STRUCTURE (Pritchard et al. 2000),

Localdiff (Duforet-Frebourg and Blum 2014), or a principal component analysis

(PCA, Patterson et al. 2006). If the population structure is meaningful, the coeffi-

cients of membership to the subpopulations can be included in a bivariate model;

otherwise a univariate model is employed considering the environmental variables

by themselves (Stucki et al. 2016).

4.1.3 Global and Local Spatial Autocorrelation

Beyond detection of selection signatures, it is possible to quantify the level of

spatial dependence in the distribution of genotypes analyzed. This measure of

spatial autocorrelation refers to similarities or differences among neighboring

individuals that cannot be explained by chance. Assessing whether the geographic

location has an effect on allele frequency is especially important in landscape

genomics since statistical models assume independence between events. Thus, if

individuals with similar genotypes tend to concentrate in space, spurious correla-

tions may co-occur with specific values of environmental variables. On the other

hand, spatial independence of data strengthens the confidence in the detections.

Samβada software (Stucki et al. 2016) measures the global spatial autocorrela-

tion in the whole dataset with Moran’s I, as well as the spatial dependency of each

point with Local Indicators of Spatial Association (LISA, Moran 1950; Anselin

1995). In practice, LISAs are computed by comparing the value of each point with

the mean value of its neighbors as defined by a specific weighting scheme based on

a kernel function. Both a spatially fixed kernel type relying on distance only and a

varying kernel type considering point density can be used. There are three fixed

kernels (moving window, Gaussian, and bi-square) and a varying one (nearest

neighbors). The sum of LISAs on the whole dataset is proportional to the Moran’s
I (Anselin 1995). Significance assessment relies on an empirical distribution of the

indices. For Moran’s I, genotype occurrences are permutated among the locations

of individuals of the whole dataset and a pseudo p-value is computed as the

proportion of permutations, for which I is equal to – or more extreme (higher for
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a positive Moran’s I or lower for a negative Moran’s I ) – than the observed I. For
LISA, the pseudo p-value is separately computed for each point (individual), by

keeping the value of the individuals of interest fixed and permuting its neighboring

points with the rest of the dataset.

Once a diagnostic of spatial dependence in loci of interest has been carried out, a

clever approach is to develop spatially explicit models that directly include autocor-

relation. SGLMM (Guillot et al. 2014) provides such a model; however, the current

R-based implementation does not fit the computational requirements of whole-

genome analysis. Alternatively, Geographically Weighted Regressions (GWR) mea-

sure the spatial stationarity of regression coefficients by fitting a distinct model for

each sampling location. The number of neighboring points considered for each

sampling location is given by the weighting scheme. These models allow some

local coefficients to differ between sampling points while some “global” coefficients

are common to all points (Fotheringham et al. 2002; Joost et al. 2013). Thus GWR

enable building a null model where the constant term may vary in space and then

refining it by adding a global environmental effect for all locations. Comparing these

twomodels would enable assessing whether the global environmental effect is needed

to describe the distribution of the genotype. The key advantage of allowing the

constant term to vary in space is to take spatial autocorrelation into account in the

models. This way, GWR allow investigating the spatial behavior of loci showing

selection signatures with standard logistic regressions and may help to distinguish

between local adaptation and population structure in landscape genomics. However,

GWR models require a fine-tuning of the weighting scheme from the user, which

restrains their application to very large datasets. Another method borrows from

techniques that examine changes in species community composition through space,

but instead assesses the effect of environmental gradients on changing allele

frequencies using Generalized Dissimilarity Modeling (GDM) or Gradient Forest

(GF) analysis (Fitzpatrick and Keller 2015). The GDM/GF approach may be applied

to any system but is particularly useful for range expanding species (see Sect. 5.2), as

it allows the effects of geography to be filtered out (e.g., by integrating latitude and

longitude into the model) as well as neutral genetic processes (Fitzpatrick and Keller

2015).

4.1.4 Combining EAA Approaches

In the sections above, we listed strengths and drawbacks of several EAA approaches.

It is important to point out that all of these approaches have implicit common

assumptions concerning the functional relationship between allele distribution and

environmental variables (Joost et al. 2013). In particular, such a relationship needs to

be constant and requires time to be established after environmental change arises

(Joost et al. 2013). A good way to deal with the uncertainty in the results produced by

EAA analysis is the combination with other adaptive landscape genomics approaches

(see below), and also the combination of multiple EAA approaches. Loci that are

detected to be under selection by different methods can alleviate the weaknesses of
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each approach, thus leading to greater reliability of inferences (Rellstab et al. 2015).

Similarly, combining population genomics approaches (i.e., outlier detection) with

EAA can cope with the intrinsic limitations of each paradigm (Rellstab et al. 2015;

Joost et al. 2013).

4.2 Phenotypic Approaches

Another approach for identifying loci under selection involves finding associations

between genetic variation and fitness-relevant phenotypes. Quantitative Trait Loci

(QTL) mapping has been employed way before the advent of genome-wide scan-

ning technologies and represents nonetheless a powerful tool to detect genes

responsible for adaptation (Ehrenreich and Purugganan 2006; Stinchcombe and

Hoekstra 2008). In QTL mapping, the genetic contribution to a measurable pheno-

type is investigated by crossing two parental individual differing in this phenotype

and by analyzing how the genetic markers segregate with the phenotype in the

successive generations (Stinchcombe and Hoekstra 2008). When studying adapta-

tion, it is therefore necessary to focus on a phenotype on which the selection force

acts (Ehrenreich and Purugganan 2006). The onset of genomics allowed to increase

the accuracy of mapping the QTLs, but didn’t help overcoming the major limita-

tions of this approach: the need for an experimental breeding and the certainty about

the adaptive phenotype (Borevitz and Chory 2004; Stinchcombe and Hoekstra

2008).

GWAS solve many of the abovementioned shortcomings of the QTL mapping.

GWAS accompanied the appearance of high-throughput technologies for genetic

marker identification and investigates the association between quantifiable pheno-

types and genome-wide genetic markers (McCarthy et al. 2008). This method

requires a large sample size, but overcomes the need for experimental breeding

(McCarthy et al. 2008). It also has a higher resolution for marker-trait associations,

and some of these associations could be rather causative and not only due to the

close linkage between markers and causative genes. By using adaptive, trait-related

phenotypes, GWAS can facilitate the search for the genetic variants responsible for

the adaptation (Morris et al. 2013). After identifying adaptive genetic variation

through QTLs or GWAS, this variation can be statistically linked to environmental

data. Some EAA studies have even directly employed GWAS-inspired methods

considering environmental variables as phenotypes (Bradbury et al. 2013a; Eckert

et al. 2009; Porth et al. 2015), stressing therefore the symmetry between these two

paradigms (Rellstab et al. 2015).
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4.3 Candidate Genes

Rather than scanning the whole genome for loci potentially under selection (as in

GWAS), the candidate gene approach makes use of information available from

model species (i.e., those with an annotated reference genome), where adaptive

genes or gene regions have already been identified. Focusing on these regions in

phylogenetically related non-model species can increase the chances of finding

signals of selection. The candidate gene approach applied to adaptive traits can lead

to the detection of gene variants implied in an adaptive response (Pel et al. 2009).

The candidate loci can be chosen because of the homology with genes of known

function in other species, proximity to the genomic region associated with a

phenotype, because of the function predicted from its sequence, or from studies

of mutants (Pflieger et al. 2001; Rellstab et al. 2015). The candidate gene approach

represents an appealing source of genetic information in EAA analysis when costs

or other technical reasons do not allow for a complete coverage of the genome

(Rellstab et al. 2015). In a landscape genomics context, candidate genes have been

statistically linked to habitat types (Hoekstra et al. 2006) and climate (Sork et al.

2016), and the framework will likely be used more often in future studies (see also

Bragg et al. 2015).

4.4 Exomes and Transcriptomes

The fourth and final framework for adaptive landscape genomics identified by

Storfer et al. (2016) also relies heavily on high-throughput sequencing data. The

large amounts of high-quality data make it possible to analyze exome and

transcriptome variation, i.e., the types and amounts of RNAs that could be associ-

ated with differences in gene regulation among different environments. Approaches

for exome and transcriptome analysis are discussed by Storfer et al. (2016), who

highlight the potential of these approaches for creating novel data, and hence new

insights on how environmental change alters gene expression. However, while

exome and transcriptome analyses indeed have tremendous potential for elucidat-

ing adaptive landscape genomic processes, they have not yet been applied in an

actual landscape genomic study.

5 Examples of Landscape Genomics Applications

Both neutral and adaptive landscape genomic approaches have been applied to a large

variety of organisms and to address a substantial diversity of research questions.

Indeed, the scope of landscape genomic applications is ever-increasing, and is now

stretching well beyond the focus on plants and animals inhabiting terrestrial
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ecosystems (e.g., Manel et al. 2003). For example, metagenomic sequencing of

microorganisms enables understanding of microbial community structure and the

landscape or climatic characteristics that determine their diversity and persistence,

and landscape genomic analyses are beginning to be explored in this area (reviewed

in Dudaniec and Tesson 2016). In addition to community structure, metagenomics

may also allow for identification of functional, adaptive genes among microorgan-

isms, which may be used in a landscape genomics framework as done for macro-

organisms (Dudaniec and Tesson 2016). Similarly, landscape genomic approaches

are now used to understand the spread and dynamics of pathogens in heterogeneous

environments (Biek and Real 2010; Alamouti et al. 2014; Schwabl et al. 2017).

Here, we provide several examples of landscape genomic applications that have

either not been covered elsewhere, or because they nicely illustrate the high

flexibility of landscape genomics approaches in nontypical “landscapes” (e.g.,

seascapes, see Sect. 5.4). We refer readers to other recent publications that provide

more detailed reviews on specific systems or taxa, e.g., Montgelard et al. (2014) for

terrestrial mammals, Selkoe et al. (2016a, b) for aquatic systems, and Dyer (2016)

for plants in general.

5.1 Landscape Genomics of Terrestrial Organisms

In this section, we provide a critical review of how landscape genomics has been

used to assess both neutral and adaptive genomic variation in terrestrial plant and

animal organisms. Though our review of the literature is not exhaustive, the articles

chosen should serve as a barometer for the state of research in this niche area of the

field. We feel that the papers reviewed here provide a sufficient overview of where

the field has been, and where it is heading.

5.1.1 Landscape Genomics of Forest Trees

Forest trees are ideal model organisms illustrating the use of landscape genomics

within terrestrial systems. Forests are charismatic components of many landscapes

and keystone species in many ecosystems. They provide habitat for a wide range of

species and are a central component of the landscape matrix. Yet beyond their

ecological function, forest trees are economically important and provide a wide

range of ecosystem services to society (Costanza et al. 1997). Because of their

economic importance many tree species are exploited, and the remaining land-

scapes can become disconnected and fragmented, leading to concerns about the

preservation of genetic diversity and adaptive capacity (Krutovsky et al. 2012;

Ratnam et al. 2014). In conjunction with man-made landscape fragmentation,

climate change (Allen et al. 2010) and forest disturbance (Dale et al. 2001) threaten

large tracts of these long-lived species. As patches of forest become less function-

ally connected cascading effects may disrupt the flow of energy and nutrients
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destabilizing the entire system. In order to better understand how changes in climate

and landscape structure will affect the long-term stability and resilience of terres-

trial systems, like forests, researchers must find ways of linking the processes of

gene flow, dispersal, and adaptation to landscape change.

Because of their unique life history characteristics and high levels of genomic

and phenotypic variation, forest trees are good models for understanding evolution

and population processes (González-Martı́nez et al. 2006; Sork et al. 2013). Like

other terrestrial plants, trees are fixed in space and cannot directly move away from

changing environments. Thus, their ability to respond to change is limited to

dispersal, local adaptation, and phenotypic plasticity (Aitken et al. 2008). While

assessing genetic versus plastic response in forest trees remains a challenge (but see

Benomar et al. 2016), landscape genomics allows us to investigate both migration

and adaptation across many spatial scales and across a wide range of environmental

heterogeneity (Johnson et al. 2016, 2017a, b).

The Beginnings of Forest Tree Landscape Genomics

Forest ecologists and geneticists have long realized that seed and pollen dispersal

must be understood within a spatial and temporal framework (Loiselle et al. 1995;

Schupp and Fuentes 1995; Sork et al. 1999). Understanding landscape connectivity

and gene flow, with an emphasis on barrier detection and the effects of forest

fragmentation, and its impacts on the distribution of genetic variation and diversity

has been a common focus in terrestrial systems. Until recently, neutral genetic

variation assessed using microsatellite markers (SSRs) was the primary genetic

approach. Most of the work assessed functional connectivity. While the use of

selectively neutral genetic markers such as SSRs was very important for under-

standing demographic and neutral processes in forest systems, they did not allow

for the direct assessment of adaptation and selection in the face of change. Fortu-

nately, recent progress in genomics and nucleotide sequencing provides researchers

with practically unlimited numbers of markers including both selectively neutral

(such as SSRs and SNPs in noncoding regions) and potentially affected by selection

(for instance, non-synonymous SNPs). Arguments were made for understanding

forest fragmentation on seed and pollen gene flow (Smouse and Sork 2004; Sork

and Smouse 2006), evolutionary adaptation in forest trees (González-Martı́nez et al.

2006; Holderegger et al. 2008; Kremer et al. 2012; Sork et al. 2013; Lepais and

Bacles 2014), and a broad incorporation of landscape genomics into plant and tree

research (Holderegger et al. 2010). Many of these papers highlighted the benefits of

landscape genomics in investigating how forests will respond to global ecological

change, yet the generality and transferability of single species studies have recently

been questioned (Calic et al. 2016), and a shift from descriptive to predictive studies

still has not been fully achieved (Manel and Holderegger 2013).
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Neutral Landscape Genomics of Forest Trees

An important avenue of landscape genomics using neutral genetic variation has been

to identify barriers impacting gene movement. For example, estuarine barriers and

ocean currents were found to restrict gene flow in the mangrove species Avicennia
germinans, Rhizophora mangle, and Rhizophora mucronata (Ceron-Souza et al.

2012; Wee et al. 2014), and ocean barriers limited gene flow in sandalwood

(Santalum insular) (Lhuillier et al. 2006). Likewise, barriers have been detected in

terrestrial landscapes. Mountain ranges have been found to restrict gene flow in ash

(Fraxinus mandshurica) (Hu et al. 2010), birch (Betula maximowicziana) (Tsuda
et al. 2010), and oak (Quercus lobata) (Ashley et al. 2015), and decreasing river size
was found to restrict gene flow in cottonwood (Populus fremonti) (Cushman et al.

2014). In their study of valley oak (Q. labata), Ashley et al. (2015) found that not only
did mountain ranges restrict gene flow, but wide open expanses also limited the

movement of pollen. Though mountain ranges and landscape features can limit gene

flow, the finding is not universal. A range wide study of sweet chestnut (Castanea
sativa) identified population genetic structure, but did not identify barriers to dispersal
using Monmonier’s algorithm, concluding that the large population differentiation

was due to divergent selection and not barriers to genemovement (Martin et al. 2012).

Another major focus of forest landscape genomics using neutral genetic varia-

tion is the assessment of the effects of forest fragmentation on the distribution of

genetic diversity. From conservation and management perspectives, understanding

how the spatial configuration of harvest tracts or the pattern of disturbance impacts

landscape connectivity and gene flow is of critical importance to preserving genetic

diversity (Krutovsky et al. 2012; Ratnam et al. 2014). In the case of forest frag-

mentation, many studies have shown trees to be resilient to fragmentation due to

long distance dispersal and high levels of pollen gene flow among forest fragments

(Savolainen et al. 2007; O’Connell et al. 2006, 2007). Fragmented landscapes were

found to be functionally connected in oak species, Quercus macrocarpa and

Q. sclerophylla (Craft and Ashley 2007; Wang et al. 2011, 2012), mountain

hemlock, Tsuga mertensiana (Ally and Ritland 2007; Johnson et al. 2017a, b),

service tree, Sorbus domestica (Kamm et al. 2009, 2010), mountain birch, Betula
pubescens (Truong et al. 2007), white spruce, Picea glauca (Fageria and Rajora

2013; O’Connell et al. 2006, 2007), and papaya, Carica papaya (Chavez-Pesqueira
et al. 2014). In contrast, an analysis of cottonwood, P. fremonti found increased

fragmentation resulted in decreased genetic diversity with important conservation

implications for other terrestrial species (Cushman et al. 2014).

Abiotic factors can also impact gene flow. Temporal patterns of wind speed and

direction can shape spatial genetic structure in forest species. The seasonal differ-

ences in wind direction explained the spatial genetic structure of Engelhardia
roxburghiana due to timing of pollen and seed release (Wang et al. 2016). Few

studies have incorporated wind timing, or other temporally variable factors into

landscape genetic analysis in terrestrial systems.

Within a range wide context, genetic diversity is often structured according to

the center-periphery (central-peripheral or central-marginal) model. In this model
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higher gene flow from large central populations into small peripheral ones main-

tains genetic diversity (Kremer et al. 2012). It is often associated with a reduction in

the adaptive potential of individuals at the edge, because the influx of individuals

adapted to the center of the range counters the impact of selection for traits suitable

to the surrounding environment (e.g., gene swamping) (Kirkpatrick and Barton

1997; Lenormand 2002; Gaston 2009; Kubisch et al. 2014). On balance, there are

cases where curtailment of gene flow to marginal populations at range edges can

reduce genetic diversity within the marginal populations. Populations of eastern

white pine (Pinus strobus) in northern Ontario had significantly lower allelic

diversity and effective population size at the margins than did central populations

(Chhatre and Rajora 2014).

Studies assessing postglacial colonization of northern landscapes have shown

forest trees to be capable of long distance dispersal and gene flow, despite the

negative effects of diversity loss due to bottleneck effects (Roberts and Hamann

2015). This phenomenon has been demonstrated in pequi, Caryocar brasiliense
(Diniz-Filho et al. 2009), Sitka spruce, Picea sitchensis (Holliday et al. 2012),

eastern white pine (Zinck and Rajora 2016), and mountain hemlock, Tsuga
mertensiana (Ally et al. 2000; Johnson et al. 2017a, b).

Adaptive Landscape Genomics of Trees

A handful of papers helped initialize the landscape genomic approach in forest trees

using genome-wide SNP and AFLP markers to identify putative loci under selec-

tion for different climatic variable using EAA (Table 1). The bioclimatic factors of

temperature and precipitation were associated with outlier loci in white spruce,

Picea glauca (Namroud et al. 2008), black spruce, Picea mariana (Prunier et al.

2011), black alder, Alnus glutinosa (Cox et al. 2011), and European beech, Fagus
sylvatica L. (Cuervo-Alarcon 2017). An EAA identified SNP loci associated with

aridity, precipitation, and temperature in loblolly pine, Pinus taeda (Eckert et al.

2010a, b; Chhatre et al. 2013). A nice example of the EAA approach in forest trees is

the association of outlier loci with serotiny in lodgepole pine, Pinus contorta
(Parchman et al. 2012). It was found that 50% of phenotypic variation was associated

with just 11 loci across three different populations.

Recently, landscape genomics has been combined with common garden

approaches to associate genomic variation with phenotypic variation across envi-

ronmental gradients (Table 1). Sork et al. (2010) used SSRs to correlated geo-

graphic patterns of genetic variation to climate using ecological niche modeling in

California valley oak (Q. lobata), illustrating that, historically, the species was

connected across its range through dispersal, and that observed genetic structure

was thus related to climatic adaptation and not dispersal limitation. By combing

common gardens with landscape genomic analysis we have the potential to separate

out genotype by phenotype by environment interactions (Lepais and Bacles 2014).

The approach has been used in a variety of system to link specific phenotypic traits

to geographic gradients of environmental and climate variables. Leaf size was
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Table 1 Selected landscape genomic studies of forest trees using adaptive genetic markers

Species Markers

Analysis and

approach Inference Reference

Picea glauca 534 SNPs FST outlier Candidate genes

were identified and

associated with

temperature and

precipitation

Namroud et al.

(2008)

Pinus taeda 3,059 SNPs Association 8 outlier SNPs

associated with

aridity and

genome-wide pop-

ulation structure

Eckert et al.

(2010b)

Pinus taeda 1,730 SNPs Association/gen-

eralized linear

mixed model

(GLMM)

48 SNPs were cor-

related to PCs

describing temper-

ature, precipita-

tion, and winter

aridity

Eckert et al.

(2010a)

Alnus glutinosa 163/154 AFLPs Association Identified 4 outlier

loci associated

with climate,

mainly

temperature

Cox et al.

(2011)

Picea sitchensis 339 SNPs Outlier 14 SNP outliers,

asymmetrical gene

flow from center to

edge effects adap-

tive capacity

Holliday et al.

(2012)

Picea mariana 583 SNPs Outlier 26 SNPs identified

as outliers associ-

ated with tempera-

ture and

precipitation

Prunier et al.

(2011)

Populus
balsamifera

335 cand. SNPs

412 ref. SNPs

FST outlier 46 outlier SNPs

identified and

associated with

Arabidopsis
flower-time

network

Keller et al.

(2012)

Abies alba
Larix decidua
Pinus cembra
Pinus mugo

249 SNPs

267 SNPs

459 SNPs

693 SNPs

Association Seasonal mini-

mum temperature

was the most

important climate

variable for all

species; genetic

data were corre-

lated with

geography

Mosca et al.

(2012)

(continued)
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Table 1 (continued)

Species Markers

Analysis and

approach Inference Reference

Pinus contorta 97,616 SNPs Association 11 loci were asso-

ciated with serot-

iny, explaining

50% of genetic

variation

Parchman

et al. (2012)

Eucalyptus
gomphocephala

7 SSRs

11 EST-SSRs

FST outlier/

association

2 EST-SSRs were

identified as

undergoing diver-

sifying selection;

these loci were

associated with

climate and gradi-

ent variables; the

study identified

adaptive genetic

markers

Bradbury et al.

(2013a)

Picea rubens 61 SNPs in

36 candidate

genes

Outlier/

association

This study

assessed how cli-

mate and pollution

led to local adap-

tation; 7 SNP loci

were associated

with climate in

older trees

(cohort), while

3 SNP loci were

associated with

pollution in youn-

ger trees (cohort)

Bashalkhanov

et al. (2013)

Pinus taeda 2,665 unigene

based SNPs

Outlier/associa-

tion/principal

component anal-

ysis/logistic

regression/

Bayesian mixed

linear model

implemented in

BAYENV

Multiple associa-

tions with latitudi-

nal, elevational,

and climatic vari-

ables were

identified

Chhatre

(2013); K. V.

Krutovsky and

V. E. Chhatre,

(unpublished)

Alnus glutinosa 1,990 SNPs Common garden

+ outlier and

association

Phenotypic varia-

tion in leaf size is

linked with outlier

analysis and asso-

ciated with varia-

tion in temperature

De Kort et al.

(2014)

(continued)
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Table 1 (continued)

Species Markers

Analysis and

approach Inference Reference

Populus
trichocarpa

29,354 SNPs Common garden

+ outlier and

association

Heritability was

strong for phenol-

ogy traits com-

pared to biomass/

growth traits; vari-

ability was associ-

ated with latitude,

max day length,

and temperature of

tree origin

McKown et al.

(2014)

Abies alba
Larix decidua

231 SNPs

233 SNPs

IBD vs.

IBA/outlier

Both isolation and

adaptation occur at

landscape scales;

2–7 outlier SNPs

were associated

with temperature

and soil

Mosca et al.

(2014)

Pinus
massoniana
Pinus
hwangshanensis

25 candidate

genes

Isolation with

migration and

adaptation

Ecological diver-

gence of two spe-

cies associated

with climate

Zhou et al.

(2014)

Pinus
lambertiana

475 SNPs Common garden

+ outlier and

association

SNPs were associ-

ated with 5 pheno-

typic traits and

11 environmental

variables; 6 SNPs

were associated

with phenotype

and 31 with envi-

ronmental vari-

ables; 2 SNPs

associated with

both phenotype

and environment

and 1 of those was

associated with

carbon isotope and

soil/climate

factors

Eckert et al.

(2015)

Pinus
lambertiana

186 SNP

candidates

Neutral popula-

tion genetic

structure/outlier

The candidate

approach identi-

fied 2 population

clusters and 9 can-

didate SNPs asso-

ciated with

drought

Vangestel

et al. (2016)

(continued)
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Table 1 (continued)

Species Markers

Analysis and

approach Inference Reference

Quercus lobata 195 SNPs

40 candidate

genes

Candidate gene/

association

3 SNPs were asso-

ciated with bud

burst and

flowering; 2 SNPs

were associated

with temperature

and precipitation;

these associations

varied with cli-

mate and provide

support for spa-

tially divergent

selection

Sork et al.

(2016)

Abies alba 267 SNPs in

175 candidate

genes

Candidate gene/

association

16 SNPs showed

divergent selec-

tion; all outlier

SNPs were associ-

ated with winter

drought and one of

them showed

selection in rela-

tion to elevation;

2 FST outliers

suggested adaptive

divergence for

date of bud flush

and growth rate

Roschanski

et al. (2016)

Pinus cembra
Pinus mugo

768 SNPs

1,152 SNPs

Outlier/

association

Outlier and asso-

ciation analysis

tested to what

degree elevation

effected genomic

diversity; low

genomic differen-

tiation was found;

outliers were asso-

ciated with tem-

perature and

precipitation;

5 SNPs were in

common between

the species and

associated with

abiotic stress

response; temper-

ature was shown to

be an important

component of

adaptive potential

Mosca et al.

(2016)

(continued)
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linked with range wide temperature variation in A. glutinosa (De Kort et al. 2014).

Variability in phenology was associated with latitude, maximum day length, and

temperature of tree origin in black cottonwood, Populus trichocarpa (McKown

et al. 2014). In a broad analysis of sugar pine (Pinus lambertiana) Eckert et al.
(2015) associated five different phenotypic traits, including height, bud flush,

carbon isotope, and nitrogen concentration, and 11 environmental variables with

hundreds of genome-wide SNPs. Their analysis revealed an association with both

phenotype (carbon isotope) and environment (soil/climate factors associated with

water availability) at a single SNP locus.

The candidate gene framework discussed in Sect. 4.3 has also been increasingly

used in forest systems (Table 1). Phenotype (bud burst/flowering) and environment

(temperature and precipitation) were found to vary with climate in Q. lobata (Sork

et al. 2016), and P. lambertiana candidate loci were associated with drought

(Vangestel et al. 2016). A novel assessment of tree age structure in red spruce

(Picea rubens) found that candidate loci in older trees were associated with climate

while candidate loci in young trees were associated with air pollution (Bashalkhanov

et al. 2013). Candidate loci associated with photoperiod were found to vary with

latitude, temperature, and precipitation in balsam poplar, Populus balsamifera (Keller
et al. 2012). Additionally, the approach has been used to assess ecological divergence

between two closely related species Pinus massoniana and Pinus hwangshanensis
(Zhou et al. 2014). Though many association studies have focused on single gene

effects, multilocus effects may provide a better correlation with environmental pre-

dictors. Single gene outlier analysis approaches were compared to single and

multilocus environmental association analyses in eastern white pine where among-

population multilocus genetic covariance had a much higher correlation with climate

Table 1 (continued)

Species Markers

Analysis and

approach Inference Reference

Pinus strobus 44 SNPs FST outlier SNPs in 25 candi-

date genes were

identified and

associated with

19 bioclimatic

variables

Rajora et al.

(2016)

Fagus sylvatica
L.

13 microsatellite

markers and

70 SNPs in

24 climate adap-

tation related

candidate genes

Outlier/associa-

tion/principal

component anal-

ysis/logistic

regression/

Bayesian mixed

linear model

implemented in

BAYENV

Association with

environmental

variables was

detected for

24 (34.3%) SNPs,

and 5 (7.14%) of

them were identi-

fied also as FST

outliers

Cuervo-

Alarcon

(2017)
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factors than did single gene effects (Rajora et al. 2016). The aforementioned study

used a population graph approach (Dyer and Nason 2004; Dyer 2015b) to construct

among-population multilocus covariance genetic distances (cGD) separately for the

SSR and SNP loci based on the topology of the constructed population graphs. This

approach is an emerging method in landscape genomics that can account for patterns

of population genetic structure where FST outlier approaches that rely on unreason-

able assumptions fail (Dyer 2015b; Murphy et al. 2016).

Comparative Landscape Genomics in Forest Trees

To date, most landscape genomic studies in forest trees, and terrestrial systems more

broadly, have focused on single species. Comparative studies are now being

conducted to identify if similar landscape and climate processes affect different

species within a landscape in the same way. Assessing neutral genomic variation, a

multispecies study found that different landscape processes best explained population

genomic structure in Bursera simarubra, Ficus insipida, and Brosimum alicastrum
(Poelchau and Hamrick 2012). Differences in pairwise FST between populations of

the three species were each associated with different environmental variables using

partial Mantel’s tests: environmental niche distance in B. simarubra, geographic
distance in F. insipida, and historic barriers in B. alicastrum. A multispecies study

in Abies alba, Larix decidua, Pinus cembra, and Pinus mugo used SNPs developed

from a common gene pool to identify common associations with climate, environ-

ment, and population genomic structure (FST). A multivariate approach found

that SNPs in all four species were strongly correlated with principle components

corresponding to seasonal minimum temperature. However, individually each species

was also correlated with a wide range of environmental variables (Mosca et al. 2012).

This study was further expanded upon to test if either isolation by distance (IBD) or

isolation by adaptation (IBA) was responsible for the differences among the

populations of each of the two species: Abies alba and Larix decidua (Mosca et al.

2014). As it turns out, both IBD and IBA were present, and even though IBD was

stronger than IBA, after accounting for geographic distance, 2–7 outlier loci were

associated with temperature and soil (Mosca et al. 2014) (Table 1).

5.1.2 Landscape Genomics of Wildlife

The vast majority of landscape genomic studies in terrestrial wildlife have focused

on neutral processes, particularly concerning dispersal movements and resulting

patterns of gene flow (Storfer et al. 2010). These landscape genomic studies

focusing on wildlife connectivity have recently been reviewed by Waits et al.

(2016) and will therefore not be discussed here. Instead, we highlight three recent

studies on adaptive landscape genomics in non-model terrestrial vertebrates

that nicely illustrate the diversity of landscape genomic approaches for wildlife

research.
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Relating Candidate Genes to Parasite Load in Red Grouse

Wenzel and Piertney (2015) selected 12 candidate genes previously developed for

red grouse (Trichostrongylus tenuis) using genomic and transcriptomic data. These

genes were chosen based on their association with various physiological functions,

including regulation of immune responses. Wenzel and Piertney (2015) then used

both population- and individual-based statistical approaches to relate variation in

these genes to gastrointestinal nematode burden of the sampled birds. The various

population genomic approaches identified only few associations of genetic varia-

tion with nematode burden, and these associations varied strongly among different

statistical methods. In contrast, the individual-based analysis clearly identified

signatures of natural selection, with nine of the 12 tested loci showing significant

associations with parasite load. While this study focused on a phenotypic trait (i.e.,

nematode burden) and did not relate variation in candidate genes to environmental

heterogeneity, it accounted for landscape-level management actions and spatial

sampling design in the statistical analysis. Importantly, the study demonstrates that

landscape genomic approaches where allelic variation of individuals is statistically

linked to environmental data have higher power to detect loci under selection

compared to classical population genomic approaches.

Detecting Selection-Driven Loci and Environmental Associations in Dall’s
Sheep

The study by Wenzel and Piertney (2015) took advantage of previously developed

candidate genes in a species that is relatively well researched under both natural and

experimental settings. When such candidate genes are not available for the study

species, information from other closely related species can be helpful. For example,

Roffler et al. (2016a) used targeted exon capture to discover SNPs in Dall’s sheep
(Ovis dalli dalli) using available sequences from candidate genes in a closely

related wild species (bighorn sheep, Ovis canadensis) and the domestic sheep

(Ovis aries) genome. They used the discovered SNPs to genotype 476 Dall’s
sheep from across their range and applied two outlier tests and one EAA approach

to detect signatures of selection. Across the three statistical methods, nine genes

were identified as selection-driven, and they all were significantly correlated with

precipitation, temperature, latitude, longitude, and elevation. These results indicate

adaptation to local environmental conditions, especially because five of the selection-

driven candidate genes are associated with immune responses and respiratory health,

respectively, in the species in which they were originally discovered. The study by

Roffler et al. (2016a) is an excellent example of how to maximize the interpretability

and eco-evolutionary meaningfulness of adaptive landscape genomic studies in

non-model wildlife species, for which whole genome data is not yet available.
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Disentangling Processes Causing Genomic Differentiation in Islands Foxes

When genomic information for closely related (model) species is not available,

high-throughput sequencing technology can be used to sample genomic variation

across a large portion of the genome. For example, Funk et al. (2016) used RADseq

to develop 5,293 SNP loci for the island fox (Urocyon littoralis). They then used

this genomic data to test whether differentiation among six island fox populations

off the coast of southern California was mainly explained by drift or local adapta-

tion. Using a combination of statistical methods, Funk et al. (2016) concluded that

overall genomic differentiation among the six islands was largely explained by

strong drift. However, different outlier tests suggested between 3.3 and 6.6% of the

loci to be under selection. While none of the utilized EAA approaches could detect

any significant associations with these loci and environmental data, genomic differ-

entiation estimated from the outlier loci matched patterns of morphological simi-

larity among the sampled populations. These results suggest that despite strong

drift, divergence due to local adaptation explains at least some of the selection-

driven genomic variation, and that the tested environmental data do not reflect

heterogeneity in underlying selection pressures.

These examples show that adaptive landscape genomics can help to advance our

understanding of selection and local adaptation in non-model terrestrial wildlife

species. Two particularly interesting research topics that can be addressed using

landscape genomics relate to the evolutionary processes underlying IBE, and to

range-expanding species in changing environments. We discuss these two topics in

the next sections.

5.2 Using Landscape Genomics to Study IBE and Underlying
Evolutionary Processes

Patterns of IBE can result from many different processes, both selective and neutral

(Wang and Bradburd 2014). Divergent selection is frequently invoked and may be

the primary mechanism driving IBE (Kawecki and Ebert 2004; Nosil et al. 2005).

When populations inhabiting different environments are locally adapted, natural or

sexual selection can act against dispersers with phenotypes adapted to a different

environment, limiting the reproductive success of dispersers moving between

habitats (Servedio 2004; Nosil 2004; Nosil et al. 2005; Safran et al. 2013). We

can expect the strength of selection to be proportional to the difference between the

environment to which an individual is adapted and the environment to which it has

dispersed. Thus, nonnative individuals will experience an increasing reduction in

fitness, relative to native individuals, when dispersing into increasingly different

environments. This, naturally, reduces gene flow between divergent environments

and leads to a pattern in which genetic differentiation increases with the environ-

mental differences between populations (Sexton et al. 2014; Wang and Bradburd

Landscape Genomics: Understanding Relationships Between Environmental. . . 293



2014). Moreover, when selection is generally weak or incomplete, dispersers that

are reproductively successful in a new environment may produce offspring with

traits, or combinations of traits, that are not ideally suited to the local environment.

This can result in these offspring having reduced fitness compared to offspring from

native parents and will lead to a further reduction in long-term gene flow between

divergent environments (Servedio 2004; Nosil et al. 2005). The agents of selection

that act upon adult dispersers and offspring of native and nonnative parents may be

the same, but could also be very different – for instance, if different agents of

selection act at different times of year or on different life history stages (Wang and

Bradburd 2014). Finally, even when selection is absent, biased dispersal, in which

different individuals or populations have a preference for dispersal to different

habitats, can also produce a pattern of IBE (Edelaar et al. 2008; Bolnick et al. 2009;

Edelaar and Bolnick 2012). Though biased dispersal can be linked to divergent

selection – for instance, if a trait associated with biased dispersal provides a fitness

advantage in a particular environment – but it need not – for instance, when

dispersers avoid novel habitat or have a preference for their natal habitat (Davis

and Stamps 2004; Feder and Forbes 2007; Rosenblum and Harmon 2011; Bolnick

and Otto 2013).

Under any of these scenarios, studying IBE can be a gateway to investigating

how evolutionary processes play out over a landscape. The various selective

processes that can generate IBE form natural links to examining divergent natural

and sexual selection, and how they drive microevolutionary responses (Lee and

Mitchell-Olds 2011; Sexton et al. 2014). What the agents of selection acting on

spatial genetic variation are and how selective agents and the strength of selection

vary across space are sure to feature prominently in future landscape genomics

work (Wang and Bradburd 2014). Even when the mechanisms underlying IBE are

not selective in nature, interesting questions about what processes lead to the

evolution of biased dispersal or that lead to divergent habitat preferences in

different populations can still be asked (Davis and Stamps 2004; Bolnick et al.

2009). There are now a number of rigorous empirical studies that have investigated

IBD and IBE to examine how evolutionary processes play out over a landscape and

influence the evolution of genetic and phenotypic diversity (Sexton et al. 2014).

These studies have been performed in diverse taxa, and there are no particular study

organisms in which these studies are more valuable than others. However, several

of the earliest studies that explicitly considered IBE were performed in lizards

(Anolis spp.), and a nice set of empirical studies that were conducted on lizard

species in different parts of the world exists and presents excellent examples of how

landscape genomics can be used to investigate evolutionary processes.

To examine whether the ecological and evolutionary processes across land-

scapes will generate similar genetic patterns in closely related species, Wang

et al. (2013) performed a comparative landscape genetic analysis of 17 species of

Anolis lizards from the Greater Antilles using structural equation modeling (SEM).

As a form of latent variable modeling, SEM allowed them to infer the contributions

of individual environmental variables to IBE without any a priori knowledge or

expectation for how they should be weighted. Anolis lizards on the Greater Antilles
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evolved through repeated adaptive radiations, in which species diversified to fill

available environmental niche space. There are now species on each island with

traits adapted to particular parts of the vertical habitat structure, and together these

species, with convergent traits that have evolved for the microhabitat in which they

are found, compose what are called ecomorph classes. The adaptive radiations and

ecomorph evolution mean that multiple congeneric species are now found in

sympatry, presenting an excellent opportunity to examine how the same landscape

affects genetic diversity in different species. Landscape heterogeneity on each

island is quite diverse, encompassing a range of ecosystems and environmental

clines in temperature and precipitation that often form xeric to mesic habitat

gradients. Wang et al. (2013) sampled an average of 21 populations per species,

spanning a wide variety of the environmental conditions on each of the four Greater

Antillean islands.

The results of their SEM analysis revealed a pattern that was fairly consistent

across most species in the study, in which IBD explained 36.3%, and IBE explained

17.9% of the variance in genetic distances between populations (Wang et al. 2013).

So, overall, the geographic distance between populations had about twice as much

of an effect on genetic divergence as the differences in their environments did. This

result was quite consistent between the species within islands, suggesting that

congeneric species experience the landscape in similar ways, but there were some

distinct differences between islands. For instance, the species on Hispaniola

showed a stronger pattern of IBE than IBD, while the species on Jamaica showed

only minimal signals of IBE (Fig. 6).

The SEM analysis also found that temperature gradients were the primary

drivers of IBE, while precipitation gradients also contributed strongly in some

species (Wang et al. 2013). Altogether, these results suggest that, in addition to

geographic isolation, local adaptation or biased dispersal also played an important

Fig. 6 The proportion of variance in genetic distances explained by isolation-by-distance (IBD)

and isolation-by-environment (IBE) among populations of Anolis lizards from the four Greater

Antillean islands. For each island, the mean estimates of IBD (red) and IBE (blue) for each study

species inhabiting the island are presented, error bars represent one standard deviation from the

mean (modified from Wang et al. 2013)
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role in population genetic divergence in the Greater Antillean Anolis lizards, and
that ecological and evolutionary processes on landscape (and species responses to

landscape composition and configuration) can affect related species in similar

ways, resulting in similar evolutionary outcomes.

To test evolutionary hypotheses about the factors that generate population

divergence and biodiversity in the tropics, Freedman et al. (2010) investigated

divergence and selection along ecological gradients in a species of rainforest

skink (Trachylepis affinis) in Cameroon using a set of genome-wide amplified

fragment length polymorphisms (AFLPs) and generalized dissimilarity modeling,

a form of nonlinear regression modeling. Their study landscape included multiple

environmental gradients, including habitat clines from lowland to montane forest

and a forest-savanna ecotone, and it also encompassed several regions that formed

refuges for skink populations during the last glacial maximum. The goal of the

study was to test whether diversification occurred across ecological gradients (the

ecological speciation/diversification hypothesis, Smith et al. 1997) or out of glacial

refugia (the Pleistocene forest refuge hypothesis, Mayr and O’Hara 1986; Moritz

et al. 2000).

The results of their GDM analysis identified that neutral genetic differentiation

occurred primarily along the forest-savanna ecotone and found evidence of both

IBD and IBE, which was primarily associated with variation in precipitation

(Freedman et al. 2010). They also found evidence for a set of loci under divergent

selection along the forest-savanna ecotone, which matched a pattern of morpho-

logical divergence in fitness-related traits along the same ecotone. Two other sets of

loci, also bearing signatures of divergent selection, were significantly differentiated

across the lowland-montane forest gradient and between glacial refugia. Thus,

although divergent selection was detected between lowland and montane forests

and between glacial refugia, it does not appear to inhibit gene flow between these

different environments. Whether selection and a reduction in gene flow are suffi-

cient to initiate reproductive isolation remains unclear, but the strong evidence for

divergent selection on adaptive loci across the forest-savanna ecotone associated

with greater genome-wide neutral genetic divergence provides stronger support for

the ecological diversification hypothesis than for the Pleistocene forest refuge

hypothesis (Freedman et al. 2010).

To investigate the microevolutionary processes that govern population genetic

and morphological divergence, Barley et al. (2015) studied IBD and IBE in sun

skinks (Eutropis multifasciata) in Southeastern Asia using a panel of genome-wide

SNPs and Bayesian geostatistical modeling (Bradburd et al. 2013). Skinks, as a

clade, express a great deal of morphological conservatism across different species,

with considerable cryptic diversity and many species showing only a few distin-

guishable differences. So, Barley et al. (2015) also measured a suite to morpholog-

ical traits for all of the individuals they sampled to see if this general pattern was

found within species as well. They collected specimens from 20 populations spread

out on a landscape encompassing highly heterogeneous habitat on mainland South-

east Asia and the nearby Philippine Islands Archipelago. Thus, some regions of the

study area contained relatively contiguous stretches of suitable habitat, while others
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were highly fragmented. In addition, both the islands and the mainland housed

several broad climate gradients often associated with local topography.

The results of the above skink study showed that, as expected, the more isolated

populations in fragmented areas showed higher levels of genetic differentiation

overall. The skink populations showed a clear pattern of IBD but no discernible

signal of IBE, and thus it appears that divergent selection or biased dispersal plays

little, if any, role in generating overall genomic divergence in this species (Barley

et al. 2015). Comparing the phenotypic divergence between populations (PST) to

their genetic divergence (FST) revealed that populations were less morphologically

differentiated than expected based on their overall levels of genetic isolation

(PST < FST). Thus, some selective mechanism is needed to explain why the

populations have not diverged morphologically to the extent expected purely

from neutral population divergence. One such mechanism, as presented by the

authors, is stabilizing selection on the measured morphological traits, which effec-

tively constrains phenotypic divergence in this system (Barley et al. 2015). Hence,

this study illustrates that even when no pattern of IBE is detected, landscape

genomic studies that explicitly account for environmental heterogeneity can still

reveal the evolutionary processes driving the distribution of genetic and phenotypic

variation on a landscape. In this case, it’s actually stabilizing selection, rather than

divergent selection, that governs morphological evolution in sun skinks, which

appears broadly consistent with the evolutionary processes that control morpholog-

ical evolution between species of skinks as well (Barley et al. 2015).

Future work investigating IBE is poised to take advantage of new genomic

resources and the declining cost of genome sequencing technologies. An exciting

area of development will be characterizing how spatial patterns, including IBD and

IBE, vary among different sites across the genome. We already know that genomic

divergence can be highly heterogeneous (Nosil et al. 2008, 2009), because some

evolutionary forces act on the entire genome, while others are highly localized

(Nosil et al. 2009; Turner and Hahn 2010; Flaxman et al. 2013). New studies can

investigate why some regions of the genome show greater IBE than others, and

which environmental factors contribute to these patterns in different loci (Wang and

Bradburd 2014). We generally expect that loci associated with adaptive traits will

show elevated IBE when populations are locally adapted, but adaptive loci could

also show less IBE than the genomic background when they are advantageous

across different environments. For instance, Fountain et al. (2016) found evidence

for positive selection on loci underlying traits associated with dispersal ability in

populations of Glanville fritillary butterflies inhabiting fragmented landscapes, and,

intuitively, loci linked to traits like dispersal ability are among those expected to

show different patterns of IBE. Hence, many opportunities now exist for increasing

our understanding of the diverse evolutionary processes, often linked to spatial

environmental variation, that act heterogeneously across the genome and for better

understanding the processes driving genome evolution in general.
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5.3 Landscape Genomics of Range-Expanding Species
Under Changing Climate Conditions

As climate change proceeds, the evolutionary processes that govern species range

shifts and expansions are becoming increasingly under focus. Landscape genomics

approaches, in combination with modeling, offer unmatched tools for examining

these processes in changing environments. However, the challenges of detecting

patterns of adaptive variation along environmental gradients occupied by range

shifting or invasive species are not trivial. During a range expansion, allelic

richness and heterozygosity may decline along the axis of the expansion due to a

series of founder events and stochastic allele loss (White et al. 2013). Since this can

generate genetic drift in the same direction of species’ colonization, allele frequen-
cies can be driven to fixation, making it problematic to distinguish neutral

from adaptive genetic signatures (Klopfstein et al. 2006; Frichot et al. 2015). This

phenomenon of “allele surfing,” whereby rare alleles become more frequent at

range expansion fronts according to the strength of genetic drift rather than selec-

tion, can increase population genetic differentiation and confound signatures of

local adaptation (Klopfstein et al. 2006). Notably allele surfing may also promote

adaptation as well when beneficial alleles are “surfed” on the wave of expansion

(Gralka et al. 2016), but deleterious alleles may also be “surfed” at the range

expansion front (Travis et al. 2007).

Considering the effects of genetic drift in EAA analysis is particularly important

given that environmental variation typically corresponds with latitudinal or altitu-

dinal gradients from which genetic samples are obtained. Therefore, both environ-

mental gradients and expansion axes are often aligned when species are tracking

their environmental niches during expansion (Frichot et al. 2015; Lancaster 2016).

Not accounting for genetic drift may increase the likelihood of erroneous EAAs

because neutral allele frequencies can behave similarly to those under environmen-

tal selection. As mentioned above, spatial analysis of allele frequencies across

environmental gradients can be used to tease apart genetic drift from selection

processes. Local Indicators of Spatial Association (LISA) analysis is mentioned

above and addresses the effect of spatial autocorrelation on allele frequencies (e.g.,

Stucki et al. 2016). Another approach for applying landscape genomics to range

expanding species is the use of GDM/GF analysis mentioned earlier. The GDM/GF

approach may be applied to any system but it is particularly useful for range

expanding species as it allows the effects of geography and neutral processes to

be filtered out (Fitzpatrick and Keller 2015). The latter can be accounted for by

integrating a pre-identified set of neutral genes into the model and evaluating their

contribution relative to putative candidate genes under selection via their allele

frequency response curve (termed “allelic turnover”) across environmental gradi-

ents (Fitzpatrick and Keller 2015). For example, a putatively adaptive gene in a

temperature-sensitive species (e.g., a butterfly) may show a twofold allelic turnover

at 18�C along a temperature gradient, but if allelic turnover of the neutral “refer-

ence” genes shows an identically shaped fourfold response at 18�C, our confidence
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in this gene being adaptive becomes diminished. Alternatively, if the neutral allelic

turnover shows a 0.5-fold change with a response curve that differed in shape to the

adaptive candidate genes, this would offer greater support that the relationship we

see in the candidate gene is adaptive to the environmental gradient. This method

offers a useful approach for identifying thresholds of adaptation in species affected

by climate change and diverse environments, such as those undergoing range shifts

and expansions. The ability to identify thresholds of adaptation can aid in making

predictions about species distributions, climate sensitivity, and persistence.

In addition to environmental adaptation, range expanding and invasive species

often exhibit differential morphological or developmental traits along their range

(e.g., Ducatez et al. 2016), but the evolutionary bases of these traits are rarely teased

apart from environmental effects (but see Buckley et al. 2012; Swaegers et al.

2015). Many traits under selection may be highly polygenic (i.e., many small-effect

loci under weak selection) and detecting loci under selection may be difficult in

these cases. Notably, EAA analyses are likely to be more sensitive at detecting

multiple loci under weak selection compared with FST outlier tests (Frichot et al.

2013, 2015), which are best used for detecting large-effect loci under strong

selection (Whitlock and Lotterhos 2015). Given the multiple selection pressures

exerted upon species from both abiotic and biotic sources during range expansion,

teasing apart which loci are associated with environmental or phenotypic variables

is likely to result in many overlapping and correlated loci of both small and large

effects.

In the absence of a reference genome or candidate genes, EAA enables identi-

fication of loci that may be involved in local adaptation along environmental

gradients occupied by range expanding species. There are a few examples to date

that document increased signatures of selection for adaptive loci at range expanding

edges. For example, a study on European damselflies (Coenagrion scitulum,
Swaegers et al. 2015) documents parallel, non-neutral evolutionary changes in

allele frequencies within independent expanding edge populations with respect to

flight performance and thermal regime. In addition, evidence for genetically deter-

mined phenotypic differences was obtained along the range expansion (Swaegers

et al. 2015), which is an important step for teasing apart changes resulting from

heritable genetic variation versus trait plasticity (Merilä and Hendry 2014). An

earlier study investigated a butterfly range expansion with AFLP (Amplified Frag-

ment Length Polymorphisms) genetic markers using an “Isolation by Adaptation”

(IBA) approach based on partial Mantel tests (Nosil et al. 2008), and found

significant associations among allele frequencies with habitat type, independent

of colonization history (Buckley et al. 2012). Furthermore, a study examining

adaptive evolution in range expanding bank voles (Myodes glareolus) found a

loss of genetic diversity (with SNPs) towards the range margin due to genetic

drift, no increase in deleterious alleles, but an increase in outlier loci that coded

for functional genes, suggesting enhanced selection (White et al. 2013). Lower

genetic diversity and signatures of natural selection were also detected in marginal

populations of eastern white pine (Chhatre and Rajora 2014).
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Although more complex models can now be used to examine range expansion

effects on local adaptation (e.g., Schumaker 2013; Landguth et al. 2016) empirical

studies using EAA methods are still relatively few, but offer a promising approach

for validating simulation findings and ultimately understanding how species are

spatially responding to climate change. By identifying the spatial distribution of

adaptive variation in species that are shifting their ranges, we may be better able to

manage for species’ current and potential habitat, novel species’ interactions, the
spread of invasive species, or the diseases that expanding species carry into new

areas.

5.4 Seascape Genomics: Applying Landscape Genomics
in Aquatic Environments

Seascape genomics is a natural extension of landscape genetic approaches, with

great relevance to conservation and management of marine species (Gagnaire et al.

2015; Selkoe et al. 2016a, b; Kelly and Phillips 2016; Riginos et al. 2016).

However, there are distinct differences between marine and terrestrial settings

that affect the spatiotemporal distribution of species and genes. Solid barriers to

movement are rare in the sea. While the fluid environment might seem like a vast

shapeless surface promoting homogeneous, diffusive spread of migrants, in fact,

strong currents create asymmetrical and circuitous pathways that channel drifting

particles and counteract diffusion. Mapping dispersal corridors and quantifying

dispersal resistance differ dramatically between landscapes and seascapes. Appli-

cation of resistance modeling (e.g., McRae et al. 2008; Spear et al. 2016) has been

stymied by the unidirectional nature of marine dispersal by ocean currents. Most

marine species disperse during a tiny larval stage that can last from minutes to

months, potentially taking them hundreds of kilometers in the currents before

metamorphosis into a sedentary or mobile adult. Successfully reaching suitable

adult habitat may require careful timing of reproduction for spawned larvae

to exploit countercurrents, upwelling cycles, and gyres that may return offspring

to natal habitat after forays into open ocean currents, and also active behaviors to

counteract passive drifting (Paris et al. 2007; Morgan 2014). Thus, understanding

functional connectivity and not just structural connectivity associated with currents

is critical for seascape genetics (Selkoe et al. 2016a). There is strong interest in

testing the link between ocean currents and gene flow by comparing outputs of

ocean circulation models and genetic data, and in fact, disagreement of outputs is

not uncommon (e.g., White et al. 2010; Selkoe and Toonen 2011).

Aside from current flows, sharp gradients in the ocean’s temperature, salinity,

and oxygen also act as obstacles to successful dispersal and gene flow, even in

larger bodied species such as fishes (Caldwell and Gergel 2013). For the American

lobster, Homarus americanus, two disparate current systems contribute to the

neutral genetic divergence of lobster populations, which is further cemented by
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local adaptation to temperature (Benestan et al. 2016). Temperature is especially

critical to marine ecosystems (Bowen et al. 2016), acting at macro scales to define

distributions of marine biodiversity (Belanger et al. 2012), as well as micro scales

to, e.g., set timing of spawning (Afán et al. 2015). Due to the combination of large

species ranges and exothermic physiology, spatial temperature differences – a.k.a.,

the “therma-scape,” – appear to very commonly shape marine population genetic

structure at both neutral and adaptive markers (Conover et al. 2006; Selkoe et al.

2016a).

Marine study systems have an important role to play in uncovering the dynamics

of local adaptation in the face of high dispersal (Hauser and Carvalho 2008). Local

adaptation may be especially apparent in marine species due to their large effective

population sizes which lead to low rates of drift and higher rates of weak selection,

selective sweeps, and diversifying selection (Nielsen et al. 2009). Large effective

population size also leads to long-lasting genome-wide impacts of founder effects

following colonization (Orsini et al. 2013). Seascape genomics studies hold prom-

ise to uncover drivers of fine-scale genetic divergence, and are rapidly overturning

long-standing beliefs that marine populations are genetically homogeneous over

large scales, even in cases of highly mobile species (Gaither et al. 2016). These

advances collectively provide powerful insights for conservation and management

strategies (Bradbury et al. 2013b; von der Heyden et al. 2014; Gagnaire et al. 2015;

Riginos et al. 2016).

Most marine genomic studies utilize SNP discovery in conjunction with outlier

tests to detect islands of genomic differentiation and the environmental drivers

leading to ecological differentiation rather than allopatric speciation. The low

genetic differentiation common to marine populations increases power to detect

“true” outliers if the population is at drift-migration equilibrium. However, it can

lead to high false positive rates if the population is not at equilibrium. These

nonequilibrium situations may be common in nearshore environments due to

widespread impacts of past sea level fluctuation, glaciation, or recolonization

following stochastic events such as storm surges (Marko and Hart 2011). Increasing

the “q-value threshold” in outlier detection with BayScan or similar methods can

reduce false positives. For example, BayScEnv incorporates a locus-specific term to

account for nonequilibrium effects (de Villemereuil and Gaggiotti 2015), which is

needed to minimize false inference of selection, which can ultimately impact

management applications such as delineation of fishery stocks. Gagnaire et al.

(2015) detail methods well suited to detecting low rates of spatial genetic differ-

entiation and revealing the role of clines in marine connectivity, such as metrics of

haplotype sharing and focusing on rare alleles, or “migrant tracts” of DNA seg-

ments that resist recombination after admixture.

The handful of seascape genomics studies published to date focused primarily on

species with high-value fisheries, and overall there is a strong bias toward temperate

systems compared to polar and tropical zones (Selkoe et al. 2016a). Nevertheless,

the first crop of seascape genomic studies provides fascinating insights into the

interaction between the genome and environment (Riginos et al. 2016). Here, we
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highlight a few empirical examples that speak to the complexity of how environ-

ment shapes population genetics in a dynamic ocean setting.

The three-dimensionality of the seascape requires careful measurement of an

organism’s environmental influences. For example, a study on Atlantic cod, Gadus
morhua, revealed that salinity and oxygen at spawning depth, rather than at the sea

surface, best explained outlier loci (Berg et al. 2015). The complex life histories of

marine species often factor into which seascape factors drive population structure.

In the cod example, some outlier loci were associated with genes involved in egg

buoyancy (which impacts a developing egg’s exposure to high salinity surface

waters), highlighting the critical role of early life stages in shaping local adaptation.

Focusing on single life history stages will miss some of the more subtle processes

affecting overall structure. Von der Heyden et al. (2007) show differentially

structured populations of adult and juvenile Cape hakes (Merluccius paradoxus),
suggesting different environmental factors influence the spatial genetics of each

stage. Marine populations show not only temporal genetic shifts across age classes,

but also responses to dramatic inter-annual and decadal-scale changes in the ocean

environment. Sampling at single time points can miss these ephemeral dynamics

that can produce lasting signatures of selection or isolation. For example, Henriques

et al. (2016) used three successive years of sampling of the shelf-associated hake,

Merluccius capensis, that in years with increased upwelling and associated low

oxygen water events show a distinct movement of fish from the northern range

southwards associated with physiological tolerance to hypoxia. The ephemeral

pattern in these anomalous years disrupts an otherwise stable barrier limiting

gene flow between regions.

The future success of seascape genetics will be shaped, in part, by overcoming

obstacles to de novo genome assembly. For example, high levels of heterozygosity

must often be bred out of organisms in captivity, which is often not possible for

marine species. As of 2015, only 18 genomes of marine species had been assem-

bled, compared to ~70 for terrestrial species (Kelley et al. 2016). The power of

whole genome assembly and annotation promises to provide deeper insights into

the function and interactions of gene regions in local adaptation (Hemmer-Hansen

et al. 2014). The stickleback fish was an early target of whole genome assembly due

to interest in understanding recurrent marine–freshwater evolution by the lineage

(Jones et al. 2012). Strong signatures of directional selection were found on every

chromosome for the three-spined stickleback (Gasterosteus aculeatus), with many

loci linked to strong salinity and temperature gradients over the sampling domain

(Guo et al. 2015). In contrast, the Atlantic cod genome shows SNP outliers to be

highly clustered within three chromosomes, where chromosomal inversions led to

“islands of divergence” within the genome (Bradbury et al. 2013b). Despite very

high neutral gene flow, the repression of recombination in the inverted regions has

enabled oceanic and coastal cod population to adapt to local oxygen, temperature,

and salinity regimes throughout its species range (Sodeland et al. 2016).

Seascape genomics have thus far highlighted an array of factors influencing the

spatial distribution of species and genes in marine systems. However, the majority

of factors tested are abiotic, thereby limiting our understanding of the ecological
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context of species distributions. A major aim of future studies should be the

incorporation of ecological factors, such as species and community-level interac-

tions, to begin to elucidate this poorly characterized component shaping marine

biodiversity and future responses to climate change.

6 Remaining Challenges and Future Research Avenues
in Landscape Genomics

As shown throughout this chapter, the potential of landscape genomics for funda-

mental and applied research is substantial. The increasing interest in the field

has led to the rapid development of a large variety of analytical approaches for

assessing landscape-genomics influences. This variety is a challenge in several

ways. First, it makes it difficult to obtain an overview of landscape genomics as a

beginner, to choose among the available methods for analyzing empirical data sets,

and to keep up-to-date as a more experienced landscape geneticist. There will never

be a single analytical approach that is optimal for addressing all types of landscape

genomics research questions, and interdisciplinary collaboration in research and

teaching will continue to be a cornerstone for progress in landscape genomics.

Nevertheless, more studies are needed that identify those methods that work

particularly well or particularly poorly for different systems and questions, and

provide practical advice on how to conduct both neutral and adaptive landscape

genomics studies for specific research questions. Simulation studies are an impor-

tant way of testing methods (Hoban et al. 2012), and they have already provided

valuable assessments of different methods and sampling designs in landscape

genomics (see Landguth et al. 2016).

Second, the variety of approaches, with their different assumptions, advantages,

and limitations, also makes it challenging to synthesize results obtained from

landscape genomics studies. The choice of analytical methods, and the choice of

landscape-genomic hypotheses tested with them, can strongly influence conclu-

sions of a study (Balkenhol et al. 2009; Jaquiery et al. 2011). Again, simulation

studies are an excellent way for testing the reliability of drawn conclusions (e.g.,

Gauffre et al. 2008), and to assess in how far results of a specific study can be

extrapolated to other study systems (e.g., other landscapes or species). In addition to

simulations, several studies have suggested that using more than one method for

final inferences can increase reliability and certainty in landscape genomics (e.g.,

Balkenhol et al. 2009; Rellstab et al. 2015; Rajora et al. 2016).

Third, due to the remaining methodological issues in landscape genomics, too

little progress has been made on the theoretical and conceptual development of

landscape genomics. Currently, landscape genomics is often viewed merely as a set

of tools for statistically linking environmental and genomic data, and one can

rightfully question whether this justifies the definition of a distinct scientific field.

For instance, Dyer (2015a) showed that most studies using the term “landscape

genetics” can actually be defined as a highly nonuniform set of population genetic
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studies, and that the scope of the so-called landscape genetic studies is still very

limited. Dyer (2015a) argued that to develop landscape genomics into a distinct

field, much more emphasis should be placed on theory development that links

individual- and population-based patterns and processes, and that amalgamates

ecology and evolution in a truly interdisciplinary way. This view is supported by

Balkenhol et al. (2016b, c), who called for a shift in landscape genomics from the

current, statistical, and pattern-oriented framework towards an eco-evolutionary

and process-oriented framework. Developing the theory underlying such a frame-

work is a major research task, but will be vital for understanding how and why

genetic variation is influenced by environmental heterogeneity across spatial and

temporal scales.

Another challenge of current landscape genomic studies is adequate study design

and sampling. Too often, genetic and genomic data are gathered for other research

purposes, and landscape genomic questions are only considered after sampling is

finished. This can impede our ability to draw strong scientific inferences about

landscape-genomic relationships, and targeted sampling should instead be preferred

(e.g., Storfer et al. 2007; Manel et al. 2010). Specifically, deriving hypotheses or

expectation about how the environment potentially influences genetic variation

(Fig. 2) before sampling can greatly enhance our power to detect these influences,

if they indeed exist (Balkenhol and Fortin 2016).

Apart from spatial considerations in sampling design, one must also consider the

genomic sequencing strategy employed and the genomic resources available for the

study organism. Reduced-representation sequencing methods like Genotyping by

Sequencing (GBS), Restriction-Site Associated DNA sequencing (RADseq: Miller

et al. 2007), and RNA sequencing are popular methods for obtaining many thou-

sands of single nucleotide polymorphism markers (SNPs) that may be neutral or

adaptive (Narum et al. 2013). However, the number of markers obtained and hence

the ability to detect genes under selection from such sequencing methods may be

influenced by library preparation method, density of SNPs according to genome

size, the bioinformatics parameters applied to SNP filtering, and for identifying

gene function, the existence of an annotated reference genome or transcriptome

(discussed in Lowry et al. 2017). However, the resources available for most projects

are well below those required for whole genome sequencing of every sample,

making reduced-representation sequencing an appropriate and informative choice

for the objectives of most landscape genomics projects.

6.1 Future Research in Landscape Genomics

What will the future of landscape genomics likely hold? First, we envisage that in

the next years, the variety and complexity of analytical approaches will increase

even further. After all, the increasing availability of genomic data will also lead to

new approaches and statistical methods for analyzing them. As stated above,

comparing and evaluating existing as well as novel methods are in high demand
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for the applicability of landscape genomics. We are hopeful that after a phase of

rapid development, landscape genomics will eventually identify a set of methods

that work particularly well for specific questions, while other, problematic methods

will disappear from the field. For example, several very helpful studies already exist

that compare different approaches for identifying adaptive genetic variation in

landscape genomics (e.g., Rellstab et al. 2015; Forester et al. 2016; Hoban et al.

2016; Rajora et al. 2016) and that highlight issues with some of the more prominent

laboratory techniques used in these approaches (e.g., RADseq, Lowry et al. 2017).

In addition to reducing methodological issues, the future of landscape genomics

will likely be characterized by an expanded research scope that will include

additional concepts, data types, and processes. Specifically, we see great potential

for future research avenues in landscape genomics along the following topics.

6.2 Landscape Genomics and Nongenetic Data

In the future, increasing effort will likely be given to amalgamating landscape

genomics with other research approaches producing nongenetic data. For instance,

habitat models derived from presence-absence or occurrence data are often used to

parameterize resistance surfaces in landscape genomics (e.g., Wang et al. 2008;

Engler et al. 2014). However, recent landscape genomic studies have shown that

habitat models do not always adequately capture landscape influences on effective

dispersal and resulting genetic structures (Mateo-Sanchéz et al. 2015; Roffler et al.

2016b), because habitats are used differently during dispersal compared to other

behaviors, such as foraging (e.g., Benz et al. 2016; Ziólkowska et al. 2016; Abrahms

et al. 2017). A better option for parameterizing resistance surfaces in animals might

hence be actual movement data, which can be gathered at increasingly fine spatial

and temporal resolutions using satellite-telemetry. A variety of methods exist for

distinguishing different behaviors within individual movement paths (reviewed in

Edelhoff et al. 2016) and for quantifying how dispersal behavior is influenced by

environmental heterogeneity (e.g., Cushman and Lewis 2010). Similarly, landscape

genomic data can be combined with demographic estimates of population size,

survival, or fecundity to understand the interplay between local demography and

population genomics in heterogeneous environments. Addressing the complex

questions involving demography and genomics can already be accomplished via

simulations, for example in software CDMetaPOP (Landguth et al. 2017).

6.3 Landscape Genomics and Eco-Evolutionary Dynamics

Collecting demographic data in combination with genomic data is also important

for investigating eco-evolutionary dynamics, which refers to tight feedback mech-

anisms between ecological and evolutionary processes (Pelletier et al. 2009;
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Legrand et al. 2016). An increasing number of studies shows that these feedbacks

can occur across ecological timescales, meaning that evolution acts fast enough to

influence the ecology of organisms within a few generations (e.g., Fronhofer and

Altermatt 2015; DeLong et al. 2016). Since a major goal of landscape genomics is

to understand and eventually predict the consequences of ongoing contemporary

environmental change for genetic variation, future studies should consider eco-

evolutionary dynamics and assess how the potential for adaptive evolution impacts

the genetic response of populations of species in changing environments. For this, it

will be particularly vital to consider the polygenic architecture of many traits that

influence the survival and reproductive success of individuals. Understanding

environmental selection pressures on these traits and their underlying genes will

require landscape genomic approaches that statistically link multi-locus variation to

environmental heterogeneity (e.g., Rajora et al. 2016). Most EAA approaches in

landscape genomics use only a single locus at a time, but several of the methods

discussed in Sect. 4.1.1 can also test for multi-locus signatures of selection. Forester

et al. (2017) compared the reliability of several EAA approaches for detecting

selection acting on multiple loci and demonstrated substantial differences among

methods. These differences likely also depend on underlying demographic history

and sampling design, and future studies are needed to clarify how environmental

effects on polygenic selection can best be detected.

6.4 Landscape Community Genomics

Recently, Hand et al. (2015) suggested “landscape community genomics (LCG)” as

a framework for assessing the eco-evolutionary responses of multiple species in

complex and dynamic environments. The sampling design for LCG requires land-

scape genomic studies to be conducted for at least two interacting species (i.e., a

community) in multiple, diverse study landscapes. LCG also requires the combi-

nation of adaptive and neutral landscape genomics that we have advocated through-

out the chapter, but with several additional benefits. First, analyzing multiple

species within the same landscapes makes it possible to assess the generality of

findings and hence can help to synthesize results across species and landscapes

(e.g., Dudaniec et al. 2016). Second, LCG can account for biotic interactions among

species, such as competition or coevolution. These biotic interactions can influence

spatial genetic variation, but are seldom considered in current landscape genomic

studies. Third, LCG explicitly considers the interaction between biotic and abiotic

(i.e., environmental) factors shaping genetic variation, thus potentially resulting in

the most thorough picture of how genetic variation is shaped in nature. Finally,

LCG can ultimately also help to evaluate how environmental impacts on commu-

nity genetics will alter ecosystem properties, because important factors shaping

ecosystems are indirectly impacted by genetic variation (e.g., the distribution,

abundance, structure, demography, and interaction of coexisting populations;

306 N. Balkenhol et al.



Whitham et al. 2006). In sum, LCG can be seen as the most advanced type of

landscape genomic study, and the framework will likely lead to important insights

on eco-evolutionary dynamics in heterogeneous and changing environments.

6.5 Application of Landscape Genomics in Conservation
Management

Clearly, landscape genomics has great potential for conservation management.

However, while the gap between conservation practitioners and population genet-

icists is already an issue for any genetic study, the uptake by conservation managers

from even more complex genomic studies is even more challenging (Hoffmann

et al. 2015; Shafer et al. 2015). There is indeed still a large gap between scientists

working within the field of genetics and those dealing with conservation problems

on the ground. Several studies identified this science policy gap (e.g., Hoban et al.

2013; Taylor and Soanes 2016) which is getting even more prominent when it

comes to the field of genomics (Shafer et al. 2015). However, for many of the

pressing conservation topics, genomic tools may be able to get us further than using

classic neutral genetic approaches. For the field of landscape genomics, this is

specifically true when adaptive genetic variation could be used for inferring the

potential of local populations to changing environments. However, until now in

conservation contexts this has been rarely used so far and then mostly focusing on

population correlations or single candidate gene approaches (Shafer et al. 2015).

While there is a strong need from the conservation community to better evaluate if

species or populations may be able to adapt to certain environmental conditions

there is still quite some uncertainty involved in how the results of landscape

genomic analyses should actually be interpreted. While more and more adaptive

loci can be identified, methods are still developing fast in screening such loci and in

analyzing large amounts of data. This calls for validation studies, multispecies

approaches, and also common garden experiments to actually demonstrate that our

results are of practical relevance.

7 Conclusion

To conclude, landscape genomics provides a complex but powerful framework for

addressing fundamental and applied research questions in many different fields. As

discussed throughout this chapter, concepts and methods in the field advance

rapidly. On the one hand, this makes it challenging to establish and maintain a

thorough overview of newest developments and to discern subtle analytical nuances

from crucial improvements. On the other hand, the large diversity of neutral and
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adaptive landscape genomic approaches associated with the swift progress in the

field makes it particularly vibrant and exciting.

Soon we will begin to see whole genome comparisons across heterogeneous

landscapes allowing researchers to identify a broad array of ecological and climatic

factors influencing neutral and adaptive processes. In the future it will be important

to move beyond an assessment of population genetic structure in single species to

infer potential future responses to climate and landscape change and to begin to

predict how communities of species will respond based on our knowledge of

adaptive capacity (Holderegger et al. 2010; Storfer et al. 2010; Neale and Kremer

2011; Manel and Holderegger 2013; Sork et al. 2013). Finding general responses

across multiple species and further assessing multilocus effects will continue to be

important goals for future landscape genomic studies (Calic et al. 2016; Rajora et al.

2016).

We are convinced that we have only just begun to realize the potential of

landscape genomics, but as highlighted above, there is much room – and need –

not only for methodological, but also for conceptual and theoretical improvement in

landscape genomics (see also Dyer 2015a; Balkenhol et al. 2016c). Hence, we are

curious to see how the field will develop from here, and hope that this chapter will

help to further motivate population geneticists to apply and enhance landscape

genomics.
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Merilä J, Hendry AP. Climate change, adaptation, and phenotypic plasticity: the problem and the

evidence. Evol Appl. 2014;7:1–14.

Merriam G, Kozakiewicz M, Tsuchiya E, Hawley K. Barriers as boundaries for metapopulations

and demes of Peromyscus leucopus in farm landscapes. Landsc Ecol. 1989;2:227–35.

Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA. Rapid and cost-effective polymor-

phism identification and genotyping using restriction site associated DNA (RAD) markers.

Genome Res. 2007;17:240–8.

Monmonier M. Maximum–difference barriers: an alternative numerical regionalization method.

Geogr Anal. 1973;3:245–61.

Montgelard C, Zenboudji S, Ferchaud A, Arnal V, van Vuuren BJ. Landscape genetics in

mammals. Mammalia. 2014;78:139–57.

Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950;37:17–23.

Morgan SG. Behaviorally mediated larval transport in upwelling systems. Adv Oceanogr.

2014;2014:364214.

Moritz C, Patton JL, Schneider CJ, Smith TB. Diversification of rainforest faunas: an integrated

molecular approach. Annu Rev Ecol Syst. 2000;31:533–63.

Morris GP, et al. Population genomic and genome-wide association studies of agroclimatic traits in

sorghum. Proc Natl Acad Sci. 2013;110:453–8.

Mosca E, Eckert AJ, Di Pierro EA, Rocchini D, La Porta N, Belletti P, Neale DB. The geograph-

ical and environmental determinants of genetic diversity for four alpine conifers of the

European Alps. Mol Ecol. 2012;21:5530–45.
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Paleogenomics: Genome-Scale Analysis
of Ancient DNA and Population
and Evolutionary Genomic Inferences

Tianying Lan and Charlotte Lindqvist

Abstract Ancient DNA analysis has in the last 30 years grown into a compelling
research tool that has radically transformed many scientific fields. In particular,
methods of extracting ancient DNA that is often highly degraded and advances in
genome sequencing technologies within the last decade have revolutionized genetic
research of extinct and ancient lineages. Insights into ancient genomes, and their
links to modern ones, hold unparalleled promise to capture the numerous processes
of organismal evolution and their responses to a changing world. Hence, genomic-
scale sequencing of up to several-thousand-year-old remains has contributed sub-
stantially to our understanding of the impacts of Pleistocene glaciations in shaping
the Earth’s biodiversity and organismal distributions, the process of domestication,
the history of diseases, and our own history as humans. In this chapter, we review
some of the advances in ancient DNA sequencing and give examples of recent case
studies in paleogenomic research.

Keywords Ancient DNA · DNA degradation · Domestication · Genomics ·
Metagenomics · Next-generation sequencing · Targeted enrichment

1 Introduction

The study of ancient DNA (aDNA) refers to the analysis of historical or ancient
biological samples that have not been archived with the intent of subsequent
molecular analyses, e.g., specimens stored in museum collections or excavated
from caves, permafrost, ice cores, or archeological or paleontological sites. After
the death of an organism, its DNA is rapidly degraded by endogenous nucleases and
other chemical processes, as well as exogenous microorganisms that feed on and
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degrade macromolecules, resulting in DNA fragmentation, base modifications, and a
reduction of overall DNA amounts (Pääbo et al. 2004). Although some environ-
mental circumstances, such as rapid desiccation, low temperatures, and high salt
concentrations, can slow down the DNA degradation process (Lindahl 1993a, b),
eventually the accumulative effects of postmortem DNA decay will become so
extensive that no useful molecules are left (Hofreiter et al. 2001). The methods of
DNA amplification developed in the 1980s brought incredible reports of DNA in
specimens many millions of years old, but it was subsequently predicted that no
measurable DNA would survive for more than 100,000 years (Lindahl 1993a, b).
However, with the advent of genome sequencing technologies and continuous
improvements in aDNA methods, this date has continually been pushed back.
Because DNA from extinct species and populations can provide a direct window
into the past, aDNA facilitates observations of changes in genetic diversity over
time. Over the last 30 years, aDNA research based mostly on high copy number
mitochondrial DNA (mtDNA) sequence fragments has been informative in answer-
ing questions about organismal relationships and timings of divergence, as well as
hypotheses of geological and environmental events and their impact on genetic
changes and biogeographic patterns. However, it is in the last decade with advances
in high-throughput massively parallel DNA sequencing – also termed next-
generation sequencing – that we have experienced the most transformative period
in aDNA research. Such scaled-up analyses of genomic-level aDNA, or paleo-
genomics, are delivering insights into the impacts of the Pleistocene glaciations at
the organismal level and even complex evolutionary histories of ancient and extinct
organisms, including our own history, and are transforming our knowledge of the
history of plant and animal domestications and sweeping historical pandemics. This
chapter gives a review of the history of aDNA research and the status of the
applications and promises of paleogenomics. We present some case studies of
ancient and extinct organisms, from humans to microbes. While recognizing the
immense value of decade-old historical samples, e.g., specimens archived in
museum collections that can give insight into historical responses to anthropogenic
perturbations, and despite that they exhibit patterns of DNA degradation and must
often be treated similarly to ancient specimens, here we mainly focus on studies of
specimens and remains hundreds to thousands of years (kyr) old.

2 From Paleogenetics to Paleogenomics

Over three decades ago, aDNA sequencing was initiated by using bacterial cloning of
short fragments of DNA retrieved from a museum specimen of the quagga, an extinct
member of the horse family, as well as of Egyptian mummies (Higuchi et al. 1984;
Pääbo 1985). Although these early results were irreproducible (Pääbo et al. 2004),
these studies suggested that endogenous DNA, which is generally limited to very low
levels of short and damaged fragments, was retrievable from ancient specimens.
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The development of the polymerase chain reaction (PCR) in the 1980s (Saiki et al.
1985) greatly facilitated targeting and amplifying the low level of surviving DNA
molecules in ancient specimens. Consequently, the number and range of aDNA studies
expanded rapidly (Fig. 1), and remarkable reports of DNA recovered from up to many
million-year-old amber inclusions were published (Cano et al. 1992; DeSalle et al.
1992; Cano andBorucki 1995).Many of these claims, also referred to as “antediluvian”
DNA (Lindahl 1993a, b), were later revealed to be impossible to replicate or clear the
results of contamination. However, with increasing knowledge about postmortem
DNA damage patterns, improvements of DNA extraction methodology, and rigorous
laboratory standards of contamination control and authentication criteria, results based
on the PCR-basedmethod becamemore reliable, and they continue to be used routinely
in aDNA studies to obtain mostly short, overlapping DNA amplicons. As a result, a
large number of comprehensive phylogenetic and population genetic studies on both
extinct and extant species have been carried out, achieving significant discoveries.
Nevertheless, due to the requirement for prior knowledge about the target sequences,
the limited inferential possibilities from analyses of short sequence fragments, the focus
on high copy number mitochondrial and chloroplast DNA, and the nonrecombining
nature of such organellar DNAs, PCR-based approaches are infeasible in large-scale
studies and for interpretations of complex evolutionary histories.

2.1 Next-Generation Sequencing and Related Technological
Advancements in Paleogenomic Studies

Sanger sequencing, as a first-generation sequencing technology, is still an effective way of
sequencing smaller sets of amplified fragments from degraded DNA templates. However,
its limited throughput and relatively high cost generate major barriers to large-scale
genomic studies, as demonstrated by the costly and long process of sequencing the first
human genome (Lander et al. 2001). In the mid-2000s, the advent of next-generation
sequencing (NGS) technologies, which allow billions of molecules to be sequenced
simultaneously, opened the gate for massively parallel genome sequencing and to the
“paleogenomic” era.

Importantly, aDNA is characterized by extremely short fragments, which is actu-
ally ideal for NGS, sincemost NGS platforms as a first step require that the input DNA
template is fragmented into smaller pieces. Along with the continually increasing
accuracy and throughput of NGS and the decreasing price per nucleotide base, the
number of aDNA studies has increased dramatically in the last two decades (Fig. 1).
Just within the last few years, many ancient genomes, ranging from pathogenic
bacteria to vertebrate genomes and numerous ancient human genomes, have been
sequenced (see Table 1 for some references). In addition to enabling high-coverage
nuclear and mitochondrial genome sequencing, NGS made it possible to obtain
ultrashort aDNA fragments (~30–50 bp) that were abundant in a diverse range of
ancient specimens but were too short to be routinely amplified by PCR. Although
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NGS technologies provide a much more feasible and efficient strategy for aDNA
sequencing and clearly have transformed aDNA research, they are not free of prob-
lems. For example, sequencing error rates (~0.1–15%) are higher than that of
traditional Sanger sequencing, and the damaged nucleotides in aDNA further inflate
these error rates. Moreover, the substantial loss of endogenous DNA during library
construction and the inflation of exogenous DNA content during amplification remain
major challenges. In order to take full advantage of NGS technologies in aDNA
research, comprehensive studies seeking to improve the efficiency of the key techno-
logical steps, such as DNA extraction, library construction, and hybridization enrich-
ment, have been performed and are discussed in the following sections.

2.2 Ancient DNA Extraction

Despite the massive technological improvements and decreasing costs of NGS sequenc-
ing, the efficiency of the NGS approach for sequencing ancient genomes is largely
determined by the amount of endogenous DNA recovered from archeological and
paleontological samples (hereafter referred to as ancient samples), which contain both
endogenous and exogenousDNA. It has been demonstrated that inmost ancient samples,
endogenous DNA contents are very low, often less than 1% of the total DNA content
(Orlando et al. 2011). Only in very rare cases, e.g., particular environmental conditions
(Miller et al. 2008) or sample types (Gilbert et al. 2007), will endogenous DNA content
ratios exceed 50% (Rasmussen et al. 2010; Reich et al. 2010; Prufer et al. 2014;
Palkopoulou et al. 2015; Botigue et al. 2016). This is due to the spontaneous damage
taking place after organismal death, such as oxidation and hydrolysis, which results in
fragmentation and chemical modification of the DNA molecules (Thomas and Gilbert
2006). In contrast, exogenous DNA, which is usually from environmental contaminants
such as bacteria and fungi, is often abundant. Unlike modern genome studies, it is
impractical to obtain more DNA by increasing starting material in ancient genome
studies, since thematerial available for destructive sampling is usually limited. Therefore,
multiple DNA extraction methods, proven replicable and robust and maximizing the
yield of endogenous DNA, have been developed.

⁄�

Fig. 1 (continued) where aDNA research constituted sequencing of bacterial clones (Pääbo 1985);
(2) The PCR period where astonishing reports of DNA from up to many million-year-old
specimens were published (Golenberg et al. 1990; Cano et al. 1992; DeSalle et al. 1992; Soltis
et al. 1992; Cano et al. 1993; Woodward and Bunnell 1994), also referred to as “antediluvian”
DNA (Lindahl 1993a, b); (3) A more somber period in aDNA research where new laboratory
standards and authentication of aDNA were introduced; and (4) The paleogenomic era where NGS
and other new technologies have been applied to ancient DNA. The chart comprises a total of 3,166
publications, including original research, technical, and review papers from public database
searches (as of December 2016) (SciFinder, Scopus, Web of Science, PubMed, Wiley), followed
by manual curation in EndNote X7. Timeline of selected milestones in the first decade of
paleogenomic research is shown
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Since the successful recovery of DNA material from dried muscle of the extinct
quagga in 1984 (Higuchi et al. 1984), a range of aDNA extraction methods has been
extensively tested and developed for different types of ancient samples, including bones,
dental remains, feces, hairs, soft tissues, and sediments (Gamba et al. 2016). One of the
most commonly adopted aDNA extraction methods is the in-solution, silica-based DNA
extraction method developed by Rohland and Hofreiter (2007). This method was
optimized for degraded bones and dental remains and later optimized for increasing
sample throughput by using columns for washing and elution steps (Rohland et al. 2010).
The in-solution silica-based method has been successful in various aDNA studies,
including retrieval of DNA from Neanderthal, Denisovan (Meyer et al. 2012), and, the
oldest successfully ancient genome to date, an ~700-kyr-old permafrost horse sample
(Orlando et al. 2013). More recently, Dabney and colleagues (2013) developed a silica
column-based method that significantly outperformed the in-solution method in the
recovery of ultrashort fragments (<50 bp). By using thismethod,mitochondrial genomes
were reconstructed from an ~400-kyr-old cave bear and an ~400-kyr-old hominin, the
oldest non-permafrost samples successfully sequenced to date. DNA extraction methods
based on silica columns increase not only the total yield of DNA but also the relative
abundance of endogenous DNA and its molecular diversity (Gamba et al. 2016).
Optimizations focusing on reducing the exogenous fraction have also been tested, such
as eliminating exogenous DNA prior to sample digestion (Korlevic et al. 2015; Cruz-
Dávalos et al. 2016), adding a bleach wash or additional digestion steps (Ginolhac et al.
2012; Der Sarkissian et al. 2014; Damgaard et al. 2015; Boessenkool et al. 2016), and
using enrichment for methylation marks depleted in bacterial genomes (Seguin-Orlando
et al. 2015). The bleachwash step, for example, can have a negative impact onDNAyield
in some cases (Lan et al. unpublished data). Furthermore, it has been shown that aDNA
yields differ in different parts of the bones or teeth. For example, significantly higher yield
was observed in the denser part of the ancient human petrous bone (Pinhasi et al. 2015).
Thus, sampling strategy, such as using the densest part of an ancient bone or the dentine
of a tooth (Allentoft et al. 2015; Damgaard et al. 2015), should also be taken into account
for optimizing the aDNA extraction procedure.

Despite successes achieved by improvement in aDNA extraction methods, stud-
ies have shown that only a small fraction (or even none) of the endogenous DNA can
be recovered by most DNA extraction methods (Gilbert et al. 2007; Barta et al.
2014). By comparing the fragment length distributions from the ~700-kyr-old horse
and ~400-kyr-old cave bear sequences, Hofreiter et al. (2015) speculated that
substantially more DNA may be recovered from the horse sample if using a more
efficient extraction method. Therefore, further optimizations maximizing the amount
and representation of endogenous DNA are required.

2.3 NGS Library Preparation of aDNA

As one of the key steps in the NGS sequencing procedure, several standard library
preparation protocols were developed for different NGS platforms (Margulies et al.
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2005; Bentley et al. 2008). The first aDNA studies applying NGS approaches (Green
et al. 2006; Poinar et al. 2006) achieved important breakthroughs in the aDNA
research field. However, the standard library preparation protocols that were used
were soon demonstrated to be poorly suitable for the extremely low quantities of
damaged aDNA and resulted in substantial loss of endogenous DNA (Noonan et al.
2005; Green et al. 2006). A number of research groups have worked on optimizing
library preparation protocols and improving the conversion efficiency of aDNA into
NGS libraries for both double- and single-stranded-based methods (Fig. 2) (Maricic
and Paabo 2009; Meyer and Kircher 2010; Briggs and Heyn 2012; Gansauge and
Meyer 2013; Bennett et al. 2014).

2.3.1 Double-Stranded Library Preparation

The common strategy for NGS library preparation requires ligation of sequencing
adapters to fragmented double-stranded DNA followed bymultiple purification steps.
Two methods have been used for the ligation of adapters. The blunt-end method,
which was developed by 454 Life Sciences, ligates partially double-stranded adapter
pairs to the blunt-end-repaired double-stranded DNA template. The Y-shaped adapter
method, which was introduced by Illumina, ligates the Y-shaped adapter with a
T-overhang to both ends of DNA templates that carry A-overhangs created by an
A-tailing reaction. Improvements to specifically increase the conversion efficiency in
aDNA library preparations include using heat treatment rather than NaOH to release
streptavidin-coated beads, using quantitative PCR to determine the amounts of
libraries for emulsion PCR, removing uracil miscoding lesions, which are abundant
in damaged DNA, and minimizing purification steps (Fortes and Paijmans 2015). It is
noteworthy that the application of enzymatic treatment (e.g., USER enzyme mix),
which removes abasic cytosines deaminated into uracils, followed by repairing of the
DNA fragments prior to adapter ligation, has shown great success in increasing the
accuracy of DNA sequences determined while maintaining DNA sequence yield
(Briggs et al. 2010; Reich et al. 2010; Meyer et al. 2012; Fu et al. 2014; Seguin-
Orlando et al. 2014; Orlando et al. 2015; Rasmussen et al. 2015a, b; Rohland et al.
2015; Bos et al. 2016; Hofmanova et al. 2016). However, drawbacks due to the nature
of aDNA cannot be avoided. For example, if damaged DNA molecules carry single-
stranded breaks on both strands, they cannot be utilized, and there is significant loss of
DNA molecules caused by the washing steps when silica spin columns are used
(20–80%, Lan et al. unpublished data) or when carboxylated beads are employed.
Also, when using the blunt-end method, 50% of the DNA templates that receive
nondistinct adapters by chance are lost from the library (Bennett et al. 2014).

2.3.2 Single-Stranded Library Preparation

Recently, a single-stranded library preparation method was specifically developed
for the sequencing of aDNA on the Illumina platform (Gansauge and Meyer 2013)
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DNA extraction

Sequencing Library
construction

Illumina Sequencing

Enrichment
(optional)

biotinylated RNA
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denaturation

capture with streptadvin-coated magnetic beads

denaturation and release
target molecules

hybridization

adapter fill-in

Indexing oligo

blunt-end repair

adapter
ligation

P5

P7

Indexing PCR
index
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release
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qPCR
(optional)
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b

Fig. 2 A pipeline for performing Illumina sequencing from ancient specimen. Following DNA
extraction, qPCR can be performed to examine endogenous DNA level for estimating input for
library preparation and targeted enrichment (Enk et al. 2013). Illumina sequencing libraries are
usually constructed through either (a) a double-stranded protocol (Meyer and Kircher 2010) or (b) a
single-stranded protocol (Gansauge and Meyer 2013). A bead capture enrichment protocol (Car-
penter et al. 2013; Enk et al. 2014) can be performed to enrich target sequences prior to sequencing
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and then expanded to the Ion Torrent platform (Bennett et al. 2014). This method
initially uses a single-stranded DNA ligase and a biotinylated adapter to capture and
immobilize single-stranded DNA molecules to streptavidin-coated beads. A PCR
reaction using the bound-to-bead DNA molecules as template is then performed to
generate double-stranded DNA, followed by a second adapter blunt-end ligation.
The single strand is then released from the beads by heated denaturation and used to
complete the adapter sequence through an amplification reaction. All reaction steps
are carried out while the DNA is tightly bound to the beads, and this largely reduces
the loss of molecules during washing steps. In addition, DNA molecules with single-
stranded breaks on both strands are disassembled into multiple fragments in the
single-stranded method, and each fragment has an independent chance of being
recovered in the library. Hence, this method has been highly efficient in building
NGS libraries from Denisovan and Neanderthal samples (Meyer et al. 2012; Prufer
et al. 2014), as well as 30–50 bp DNA fragments from a ~400-kyr-old cave bear
(Dabney et al. 2013) and a ~400-kyr-old hominin (Meyer et al. 2014). The conver-
sion efficiency of this method, i.e., the efficiency of conversion of input DNA
fragments to DNA molecules that can be sequenced, was calculated to be about
30–70%, and the sequence yield is at least sixfold higher compared with the double-
stranded method when using the same DNA extract (Gansauge and Meyer 2013). It
was also suggested that the single-stranded method converts a higher proportion of
endogenous DNA relative to exogenous DNA in most samples studied (Bennett
et al. 2014). Although this method is currently believed to be the most efficient,
improvements to increase the conversion efficiency and reduce the cost and prepa-
ration time are still needed.

2.4 Targeted Enrichment

For ancient samples with low endogenous DNA contents, substantial shotgun sequencing
is often needed to generate sufficient coverage for the genomic regions of interest. The
direct shotgun sequencing approach is not only costly but also impossible in somecases due
to limited quantities of ancient material. To address this issue, hybridization enrichment
(also referred to as targeted capture) has been used to enrich sequencing libraries for
selected genomic regions, e.g., a single chromosome, exome, a subset of SNPs, or organelle
genomes and even whole nuclear genomes (Briggs et al. 2009; Burbano et al. 2010;
Maricic et al. 2010; Carpenter et al. 2013; Fu et al. 2013, 2016; Castellano et al. 2014;
Enk et al. 2014). This approach uses synthesized baits that have high-sequence similarity to
the target genomic regions to capture and immobilize the desired DNA fragments through
hybridization, either in solution (Fig. 2) (Bos et al. 2014; Enk et al. 2014; Haak et al. 2015;
DugganAna et al. 2016; Fu et al. 2016) or onmicroarrays (Burbano et al. 2010; Fortes and
Paijmans 2015; Bos et al. 2016; Paijmans et al. 2016; Spyrou et al. 2016), whereas the
non-hybridized fragments are washed away via several washing steps. The end product
should then contain a much higher ratio of targeted endogenous DNA versus exogenous
DNA, making the subsequent sequencing more precise and yielding higher coverage at a
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lower cost. In addition, it has been suggested that shorter DNA fragments have higher
hybridization efficiency than longer fragments (Hodges et al. 2007), naturally introducing a
bias against exogenous contaminating DNA that is generally expected to be longer than
endogenous aDNA. One study showed that endogenous DNA had been significantly
enriched from less than 5% in the pre-enrichment library to over 70% in the after-
enrichment library following in-solution hybridization enrichment (Enk et al. 2014).
Furthermore, the flexibility of hybridization enrichment has been shown to allow for
cross-species capture for species with no prior sequence information available, using
baits designed from a close relative – an effective approach to investigate aDNA from
non-model organisms or extinct lineages.

To date, many hybridization enrichment protocols have been applied to aDNA
research from a variety of species, including hominids (Briggs et al. 2009; Burbano
et al. 2010; Carpenter et al. 2013; Fu et al. 2013, 2016; Castellano et al. 2014), mammals
(Dabney et al. 2013; Zhang et al. 2013; Enk et al. 2014; Mohandesan et al. 2016), plants
(Avila-Arcos et al. 2011), andmicrobes (Bos et al. 2011;Devault et al. 2014a, b;Bos et al.
2016; Spyrou et al. 2016), demonstrating the tremendous potential of this approach.
Commercial hybridization enrichment assays are available for studying human and
model organisms and their close relatives (Bodi et al. 2013; Elhaik et al. 2013), while
custom-designed assays also have been developed and optimized for non-model organ-
isms (Maricic et al. 2010; Bi et al. 2012; Enk et al. 2014). Small-scale mitogenome
enrichment, which has been broadly applied in many aDNA studies, is usually feasible
for most ancient samples due to the high abundance of mtDNA, while whole-genome
enrichment is still not very cost-effective for large-scale sequencing of ancient genomes,
especially for population-level studies on samples with very low levels of endogenous
DNA content. Whole-genome enrichment has, however, been successfully carried out in
Neanderthal and mammoth genome studies (Carpenter et al. 2013; Enk et al. 2014).
Furthermore, for extinct species with no closely related reference genome available, it is
infeasible to design highly efficient whole-genome custom baits. Whole exome capture
(Castellano et al. 2014) may be an alternative approach, since the exome is generally
more conserved than other regions of the genome, making cross-species capture over
medium evolutionary distances more feasible (Cosart et al. 2011; Bi et al. 2012).

For designing a custom enrichment protocol, it is important to be aware that
aDNA hybridization enrichment is very sensitive. It has been found that even within
the same experiment, the enrichment rate (endogenous DNA proportion after
enrichment to the proportion before enrichment) for different samples often varies
significantly (Carpenter et al. 2013; Enk et al. 2013, 2014). The reason for different
enrichment rates lies in many factors that can impact the efficiency of hybridization,
e.g., sequence similarity between bait and target, hybridization temperature, bait
type, bait tiling, bait concentration, and post-hybridization washing temperatures
(Avila-Arcos et al. 2011; Bodi et al. 2013; Li et al. 2013). In addition, intrinsic
factors, such as low levels of endogenous DNA, highly fragmented DNA molecules,
and complexity of aDNA handling, are added to factors inherent to the capture
protocol. Several studies have been carried out to investigate the impact of different
parameters for aDNA capture and to optimize experimental conditions, such as bait-
tilling densities, bait molecular features, and amounts of starting DNA (Enk et al.
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2013; Cruz-Dávalos et al. 2016; Paijmans et al. 2016). However, due to the com-
plexity of the enrichment approach and the characteristics of aDNA, capture param-
eters need to be carefully addressed during the design stage of the capture assay, and
more investigations of the effects of different capture parameters are warranted.

3 Paleogenomics Applications: Paleogenomic Case Studies
from Humans to Pathogens

Advances in genome sequencing technologies have dramatically transformed the use of
aDNA. In afirst attempt at paleogenomic sequencing, shotgun sequencingof amplification-
independent metagenomic libraries was performed and yielded ~27 kb of cave bear (Ursus
spelaeus) genome sequence (Noonan et al. 2005). In the following year, using a combina-
tion of Sanger andmassively parallel pyrosequencing, ~65 kb of nuclear genome sequence
data was recovered from a 38-kyr-old Neanderthal specimen (Noonan et al. 2006). These
first experiments demonstrated two major problems of the cloning-based, high-throughput
sequencing approach: most of the sequences produced came from exogenous contaminant
DNA, so only tiny fractions of the genome could be reconstructed, and bacterial cloning
posed a heavy experimental load. Additionally, the cost for sequencing was high. Never-
theless, these first studies demonstrated the prospects of genome-scale sequencing from
ancient specimens containing very low levels of endogenous DNA, and advances in NGS
technologies and library preparation protocols have largely resolved some of these prob-
lems. Consequently, new paleogenomes are being reported at an increasing rate today. To
date, many complete or partial paleogenomes have been recovered, particularly from
hominins but also other animals, plants, and microorganisms (Table 1), addressing many
key questions in unraveling and reconstructing the evolution history of extinct and extant
species. In the following sections, we will present major applications of paleogenomes and
review some recentfindings for a selection of species, ranging fromhominins to pathogens.

3.1 Human Paleogenomics

3.1.1 Archaic Hominins

Representing a groundbreakingmilestone in paleogenomics, the sequencing and analysis
of genomes from two extinct archaic hominins, Neanderthals and Denisovans, which are
the closest relatives of anatomically modern humans, not only offered a complementary
approach for understanding hominin evolutionary history but also provided remarkable
technical advancements for generating and analyzing aDNA data. Since their first
discovery in 1856, remains left by Neanderthals have been found across Eurasia, from
Western Europe to Central and Northern Asia. In 2010, the first draft Neanderthal
genome was assembled at ~1.3-fold coverage from a combined sequencing dataset
derived from three female bone specimens found in the Vindija Cave in Croatia and
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dated to 38–44 kyr ago (Green et al. 2010). Four years later, as a consequence of
improvements in aDNA extraction and sequencing techniques, as well as owing to the
exceptionally high endogenous DNA content and minimal contamination levels, a
52-fold high-quality genome was obtained from a female Neanderthal fossil (the Altai
Neanderthal) recovered in a ~50-kyr-old layer in the Denisova Cave in Southern Siberia
Altai Mountains, and a low-coverage draft genome (0.5-fold) was generated in the same
study from an approximately 60–70-kyr-old Neanderthal infant from the Mezmaiskaya
Cave in the Caucasus (Prufer et al. 2014).

Unlike the abundant fossil records of Neanderthals, Denisovans are known only
from a finger bone and two molars excavated at the Denisova Cave. Initially, the
morphologies of the finger bones and the molar were not informative enough to
ascertain which hominin group they belonged to. Although mtDNA sequence indi-
cated that the mitogenome diverged from the Neanderthal-modern human clade
approximately 1 million years ago (Krause et al. 2010), the identity of the finger
bone remained questionable until researchers published a ~1.9-fold coverage nuclear
genome in 2010 (Reich et al. 2010), suggesting that this bone belongs to a group
distinct from both Neanderthals and modern humans. Later in 2012, by using a new
single-stranded DNA library preparation method, a draft Denisovan genome was
obtained at 30-fold coverage from the same finger bone with less than 1% modern
human contamination, showing a quality comparable to that of modern genomes
sequenced at a similar depth (Meyer et al. 2012).

Analyses of these genomes have suggested that Neanderthal and Denisovan
populations shared a common origin and split approximately 381–473 kyr ago and
that their common ancestor diverged from the ancestors of modern humans around
550–765 kyr ago (Prufer et al. 2014). Demographic histories showed that a decline in
population size occurred in both archaic populations sometime before 1 myr ago,
whereas an expansion took place in the ancestral population to modern humans. The
population size of Neanderthals was estimated to have been only about a tenth that of
modern humans, despite a broad distribution across Eurasia. Similar population size
was estimated for the Denisovan genome (Meyer et al. 2012; Prufer et al. 2014).
Coinciding with the reduced effective population size, extremely low heterozygosity
was found in both the Neanderthal and Denisovan genomes, indicating that the
genetic diversity of the populations to which the ancient specimens belonged was
very low compared with that of modern humans.

Admixture analyses based on the vast genomic data have revealed extensive infor-
mation regarding gene flow among archaic hominins and modern humans. All Neander-
thal genomes sequenced to date showed significantly more derived alleles shared with
non-Africans than with sub-Saharan Africans and that Neanderthal ancestry contributed
1.5–2.1% of modern Eurasian genomes (Prufer et al. 2014), suggesting that gene flow
occurred between the ancestors of non-Africans andNeanderthals outsideAfrica. Further
studies indicated this geneflowwas fromNeanderthal to the common ancestor ofmodern
Eurasians and that this most likely occurred at an early stage of the out-of-Africa
expansion around 50–65 kyr ago, before the divergence of Europeans (Sankararaman
et al. 2012; Fu et al. 2014). Consistent with living at a time closer to the time of geneflow,
two genomes from 37- to 45-kyr-old ancient Eurasians show longer segments of
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Neanderthal ancestry than those in present-day humans (Fu et al. 2014; Seguin-Orlando
et al. 2014). Interestingly, a significantly higher level of Neanderthal ancestry was found
in East Asians than in Europeans, suggesting either that there was an additional pulse of
Neanderthal gene flow into the ancestor of Eastern Asians after they diverged from
Europeans or that the proportion of Neanderthal ancestry in Europeans was reduced by
interbreeding with a modern human group that did not admix with Neanderthals (Wall
et al. 2013;Kim andLohmueller 2015;Vernot andAkey 2015). Similarly, theDenisovan
genomewas found to contribute to the gene pool of modern humans, however, through a
different history of admixture. Denisovan ancestry was estimated to contribute 4–6% in
genomes ofMelanesians, aboriginal Australians and other Southeast Asian islanders, and
to a lower level (~0.2%) in other mainland Asian and Native American populations
(Reich et al. 2011; Meyer et al. 2012; Prufer et al. 2014). It was suggested that gene flow
from Denisovans to the ancestor of modern populations in Oceania possibly occurred in
Southeast Asia approximately 44–54 kyr ago (Reich et al. 2011; Sankararaman et al.
2016). Additionally, Denisovans themselves appear to have received admixture from
other archaic hominin groups. It has been proposed that gene flow from Neanderthals
contributes at least 0.5% of the Denisovan genome, and an additional gene flow that
contribute 0.5–8%was fromanunknownarchaic hominin group, possiblyHomoerectus,
which diverged from other hominins more than 1 myr ago (Prufer et al. 2014). Overall, it
is evident that the evolutionary history of archaic hominins and modern humans is
complex, and more admixture events will likely be revealed through future finding on
new fossils. Unfortunately, DNA is not likely to be preserved in the many interesting
fossil remains from equatorial or otherwise warm regions, including that of the enigmatic
Homo floresiensis fromMalesia, extraction and sequencing efforts on which have so far
been unsuccessful (Stringer 2014).

Genome sequences of archaic hominin genomes have also helped pinpoint genetic
changes that may set modern humans apart from their extinct relatives by identifying
DNA features carried bymodern humans that differ from archaic hominins and great ape
genomes. A genome-wide catalog of these genetic changes was established based on
1,094modern human genomes and the high-quality archaic hominin genomes; it consists
of ~30,000 single nucleotide substitutions and ~4,000 indels, among which only
96 amino acid substitutions were identified (Prufer et al. 2014). Among the 87 genes
carrying fixed amino acid changes, several genes related to brain development were
found to express more often in the ventricular zone of the developing neocortex than
genes carrying silent substitutions (Prufer et al. 2014). However, our limited understand-
ing of how those genetic changes relate to phenotypes makes it difficult to accurately
predict their functional consequences, and further functional investigations will be
necessary to clarify whether or how these changes affect phenotypes in modern humans.

3.1.2 Ancient Anatomically Modern Humans

Genome sequences from ancient remains of anatomically modern humans have facili-
tated a number of breakthroughs in inferring past population histories by providing access
to genetic variation that existed in past populations but possibly lost in the modern-day
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genetic pool. The first ancient human genomewas sequenced from permafrost-preserved
hair of a ~4-kyr-old Paleo-Eskimo at an average depth of 20� (Rasmussen et al. 2010).
The ancestry analysis suggested the population the Paleo-Eskimo individual belonged to
had migrated from Siberia to North American Arctic approximately 5.5 kyr ago. This
migration is proposed to be independent of the ones giving rise to the Inuit and other
NativeAmericans (Rasmussen et al. 2010). The genetic continuity displayed in the Paleo-
Eskimo population indicated that extensive gene flow occurred among local groups,
which likely resulted in a large overall effective population size. The Paleo-Eskimos
survived in the Arctic for more than 4 kyr until they were eventually replaced by the
Neo-Eskimos, ancestors of present-day Inuit, less than 700 years ago (Raghavan et al.
2014a, b).

Since the sequencing of the Paleo-Eskimo genome, numerous ancient human genomes
have been analyzed, shedding light on major questions in the population history of
anatomically modern humans. One such question is who were the first inhabitants of the
Americas (Fig. 3). The hypothesis of a Siberian origin for contemporary Native Americans
is supported by the genome sequencing of a 24-kyr-old Siberian individual fromMal’ta in
South Central Siberia (Raghavan et al. 2014a, b). TheMal’ta individual was found to share
genetic affinities to both West Eurasian and modern-day Native Americans and was
estimated to contribute to 14–38% of current Native American ancestry. Considering the
strong Eastern Asian genetic component found among Native Americans (Schurr and
Sherry 2004), it is likely that NativeAmericans are admixed between populations that were
related to theMal’ta lineage and one ormore unknownEastAsian lineages (Raghavan et al.
2014a, b). The first and the oldest ancient Native American genome was sequenced from
remains of a child excavated at the Anzick site, Montana, USA (Rasmussen et al. 2014).
The Anzick child, buried approximately 12.6 kyr ago, is believed to belong to the Clovis
culture – the earliest archeological complex in the Americas. The analyses suggested that
the Clovis metapopulation, from which the Anzick child genome originates, is closely
related to all indigenous American populations and was directly ancestral to many con-
temporary Native Americans, supporting a pre-Clovis occupation of the Americas. Inter-
estingly, similar amounts of the Mal’ta genetic signal were found in the Anzick and
contemporary Native American genomes, indicating the early admixture event involving
theMal’ta-like lineage happened at least 12.6 kyr ago. Furthermore, the Anzick population
is more closely related to Central and South Americans than to northern North Americans,
whereas the genome sequences obtained from the 8,500-year-oldKennewickMan found in
Washington showed great affinity with several contemporary Native North American
populations (Rasmussen et al. 2015a, b). This evidence suggests that the divergence of
twoNative American lineages likely occurredmore than 12.6 kyr ago. Consistent with this
finding, a large-scale genomic study involving 31 modern and 23 ancient human genomes
also inferred that northern North Americans diverged from southern North Americans and
Central and SouthAmericans ~13 kyr ago, while all Native Americans diverged from their
ancestors ~20 to 23 kyr ago (Raghavan et al. 2015).

The peopling of Europe is another major controversial topic that has been enlight-
ened by paleogenomic studies. Decades of debates have been focused on understand-
ing the origin of agriculture in Europe, including whether the spread of agriculture
was from cultural diffusion within indigenous hunter-gatherers or from demic
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diffusion of Near-Eastern farmers during the Neolithic transition (Bramanti et al.,
2009). In recent years, numerous genomes have been obtained from ancient humans
in Eurasia that have provided invaluable clues into the complex genetic structure of

Fig. 3 Population history of Native Americans. Genomic evidence from a 24-kyr-old Siberian
individual Mal’ta suggests that ancestors of contemporary Native Americans migrated from Siberia
in a single wave no earlier than 23 kyr ago, separate from the Inuit (smaller arrow), and that they
were likely admixed with one or more East Asian lineages (dashed line). Evidence obtained from a
12.6-kyr-old Anzick-1 and an 8.5-kyr-old Kennewick Man suggested a split between northern
North American lineages and Central and South American lineages likely occurred more than 12.6
kyr ago. Adapted from Raghavan et al. (2015)
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Europeans, providing compelling evidence to support the demic diffusion model
(Keller et al. 2012; Skoglund et al. 2012; Lazaridis et al. 2014; Raghavan et al.
2014a, b; Seguin-Orlando et al. 2014; Allentoft et al. 2015; Haak et al. 2015;
Mathieson et al. 2015; Fu et al. 2016; Hofmanova et al. 2016; Lazaridis et al.
2016). The first ancient European genome was sequenced from a 5.3-kyr-old Copper
Age Tyrolean Iceman discovered in the Ötztal Alps (Keller et al. 2012). Surprisingly,
the Iceman genome showed a greater genetic affinity to extant Sardinians than to the
present-day population inhabiting the Alps. Similarly, a 5-kyr-old Scandinavian
farmer was found to have closer genetic ties to extant Southern Europeans than to
extant Northern Europeans (Skoglund et al. 2012). These findings suggest that
admixture likely occurred between ancient Southern European farmers and Northern
European hunter-gatherers due to the demic diffusion of Neolithic farmers 8–6 kyr
ago (Keller et al. 2012; Skoglund et al. 2012). Substantial evidence of demic diffusion
was obtained from genomes of several Anatolian and Aegean individuals dated to
4,000–7,600 BC; these data similarly suggested that Near-Easterners migrated into
Europe via two independent routes and that admixture betweenmigrating farmers and
local hunter-gatherers occurred throughout the Neolithic era (Hofmanova et al. 2016).
It is becoming clear that the peopling of Europe has been a very complex process and
that multiple migrations from distinct populations might have influenced the present-
day genetic make-up of Europeans. First, a revised three-waymixture demic diffusion
model was introduced by studies of genomes from several 7–8-kyr-old individuals
fromWestern and Central Europe (Lazaridis et al. 2014), the 24,000-year-old Mal’ta
Siberian genome (Raghavan et al. 2014a, b), and the 37-kyr-old Eastern Eurasian
(Seguin-Orlando et al. 2014). According to this model, at least three different ancient
populations contributed to the ancestry of present-day Europeans: (1) indigenous
Paleolithic West European hunter-gatherers, (2) ancient North Eurasians related to
Upper Paleolithic Siberians, and (3) early Near-Eastern Neolithic farmers. A genome-
wide SNP analysis of 69 ancient Europeans later suggested a massive westward
migration from the Pontic steppe ~4.5 kyr ago that involved the Yamnaya – an
Early Bronze Age population whose culture appeared to have replaced the Neolithic
farming cultures in temperate Eastern Europe by 3,000 BC, in what is also known as
the Bronze Age transition. It was found that the Yamnaya share ancestry with ancient
North Eurasians (Haak et al. 2015). Together with the findings from over 100 Bronze
Age ancient Eurasian genomes (Allentoft et al. 2015), the demic diffusion model was
further refined by identifying the Yamnaya population as one of the sources of ancient
North Eurasian ancestry that contributed to present-day Europeans.

Because aDNA survival is negatively correlated with temperature, nuclear genomic
sequences from fossils at lower latitudes, such as Africa, South America, and Australia,
aremuch less abundant. To date, only one paleogenomic study successfully reconstructed
an ancient African genome, which was sequenced at 12.5� coverage from a 4.5-kyr-old
individual found in Mota Cave in southeastern Ethiopia (Llorente et al. 2015). This
individual was found to have a genetic tie to the contemporary Ethiopian populations that
live in this region, indicating population continuity until present. Given that the Mota
population predates the West Eurasian backflow that occurred ~3 kyr ago, there was no
West Eurasian introgression found in the Mota genome, and it was suggested that this
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genome can act as an ideal unadmixed African reference for future studies. In Eastern
Asia, paleogenomic studies are also scarce. Only a partial genome was obtained from a
40-kyr-old modern human discovered in the Tianyuan Cave near Beijing. It was inferred
that this individual belonged to the common ancestral population of present-day East
Asians and Native Americans and that it had already diverged from the ancestors of
present-day Europeans (Fu et al. 2016). Recently, genomes were recovered from several
individuals of prehistoric Himalayan populations dated to 3.15–1.25 kyr ago that showed
a strong genetic similarity to contemporary high-altitude East Asians (Jeong et al. 2016).
These genomeswere found to share high-altitude-adaptive allelic signatureswith present-
day Tibetans, suggesting that the high-altitude populations maintained a long-term
stability in genetic structure since East Asians colonized this region. Thus, acculturation
or cultural diffusion rather than large-scale introgression from non-East Asians might
have been responsible for the temporal changes inmaterial culture andmortuary behavior
in the region (Jeong et al. 2016).

3.2 Non-hominin Vertebrate Paleogenomics

Although most paleogenomic studies have so far focused on uncovering ancient human
history, another major branch is based on non-hominin vertebrates. Successful retrieval of
genomes from fossils dating back beyond 100 kyr (Miller et al. 2012; Orlando et al. 2013;
Lan et al. 2016) broke the Middle Pleistocene time barrier of paleogenomics and gave
promise for rebuilding genomes from Early Pleistocene fossils. Although recovery of such
aDNA is still largely from remains preserved in permafrost and at high latitudes, the
potential exists for retrieving genome-scale data from many vertebrate and other animal
groups, also from lower-latitude environments. In the following, we review some recent
advances in mammalian paleogenomics, focusing on nearly complete or partial ancient
genomes reconstructed from the extinct woolly mammoth (Mammuthus primigenius),
polar bear (Ursus maritimus), dog (Canis lupus familiaris), and horse (Equus ferus) and
the impact these studies have had from genetic changes associated with extinction and
domestication to ancient demographic trajectories and past interspecific admixture events.

3.2.1 Woolly Mammoth

The woolly mammoth was among the most abundant megafaunal species during the
Pleistocene and early Holocene of the Northern Hemisphere, but it became extinct in its
mainland range about 10 kyr ago (Stuart et al. 2004). A few isolated island populations
persisted into the Holocene and finally went extinct roughly 3.7 kyr ago (Vartanyan et al.
2008). The woolly mammoth is one of the most studied prehistoric animals due to ample
specimens of soft tissue and hair mostly recovered from permafrost, which is considered to
be an excellent environment for preservation ofDNA (Poinar andStankiewicz 1999; Smith
et al. 2001;Willerslev et al. 2004). A number of partial or full mitogenomes of mammoths
were retrieved early on, and they were used to infer phylogenetic relationships to extant
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elephants (Krause et al. 2006;Rogaev et al. 2006;Debruyne et al. 2008;Gilbert et al. 2008).
Thefirst efforts to sequence thewoollymammoth nuclear genome also occurred during the
first stages of the paleogenomic era and not surprisingly resulted in low-genome coverage
(Poinar et al. 2006; Miller et al. 2008). More recently, high-quality genomes were
sequenced to investigate mammoth demographic history and genetic changes leading up
to its extinction (Palkopoulou et al. 2015), as well as pinpointing genes possibly associated
with adaptations to the Arctic (Lynch et al. 2015). One specimen, which yielded 11-fold
genome coverage, was derived from a mainland population 45 kyr old, when the
populations were flourishing, while another that yielded 17-fold genome coverage was
from the last-surviving island population. The demographic trajectories of the two speci-
mens appeared to be nearly identical, revealing an ancient bottleneck and a steep decline in
effective population size in the ancestral island populations at the start of the Holocene.
Reduced genome-wide heterozygosity and accumulation of detrimental mutations were
found in the island specimen, delivering thefirst direct evidence of genetic stochasticity due
to small population size contributing to population extinction (Palkopoulou et al. 2015;
Rogers and Slatkin 2016).

3.2.2 Polar Bear

The polar bear, whose main habitat is largely shaped by the extent of Arctic sea ice,
has become a symbolic species for understanding how climate change and glacial
oscillations impact species evolution and biodiversity. Complete genomes from
ancient polar bear remains might provide invaluable clues regarding the adaption
of the species to the extreme conditions of the Arctic, after splitting from its lower-
latitude sister species, the brown bear. Such fossil genomes could also illuminate the
intertwined evolutionary histories of the two species. However, the polar bear fossil
record is extremely poor because their remains most likely disappear into the ocean
after they die on the sea ice. In 2012, a draft genome was sequenced from the oldest
known polar bear fossil, a stratigraphically validated ~120-kyr-old jawbone from the
Norwegian archipelago of Svalbard (Miller et al. 2012), for the first time success-
fully pushing the limits of a vertebrate genome toward the Middle Pleistocene. This
specimen was recently re-investigated to obtain a new draft assembly at ~1.8-fold
coverage. Genome-wide, SNP-based admixture analyses of this ancient genome
together with multiple modern genomes suggest that the ancient polar bear shares
less gene flow with brown bears compared to extant polar bears (Lan et al. 2016).
These findings imply introgression from ancestral brown bears into the ancestor of
the modern polar bear lineage. A more complete genome from the ancient polar bear
remains may help clarify whether past interspecies introgression correlated with
climate oscillations and how it impacted the adaptation of polar bear to the Arctic
environment.
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3.2.3 Dog Domestication

Through a complex domestication process, the dog emerged as the first domestic animal
before the advent of settled agriculture. Although many archeological fossils and numer-
ous genome sequences frommodern dogs are available (Freedman et al. 2014; Pilot et al.
2015; Shannon et al. 2015), claims on their origin, the domestication process, and the
early evolutionary history still remain controversial, largely because of highly insufficient
genetic studies on ancient dog genomes. In 2016, two studies almost simultaneously
published the first high-quality ancient dog genomes and conducted comprehensive
analyses to reconstruct their intricate evolutionary histories (Botigue et al. 2016; Frantz
et al. 2016). One study recovered a 28-fold coverage genome from a Late Neolithic dog
dated back to ~4.8 kyr ago and mitochondrial sequences from 59 ancient dogs that lived
between ~3 and 14 kyr ago in Ireland (Frantz et al. 2016). The other study obtained two
ninefold coverage genomes, one each from an Early Neolithic ~7-kyr-old dog and a Late
Neolithic ~4.7-kyr-old dog from central Europe (Botigue et al. 2016). Consistently, both
studies discovered that all ancient dog genomes carry a low copy number of the AMY2B
gene, which is associated with starch digestion and normally is present at high copy
number in modern dog genomes, indicating the adaptation to starch-rich diets occurred
after the advent of agriculture during the Neolithic period. However, the two studies
proposed contradictory hypotheses on the domestication process. The former study
suggested that two independent domestication events from two genetically distinct
wolf populations might have occurred in Eastern and Western Eurasia, respectively.
During the Late Neolithic, dogs from Eastern Eurasia dispersed westward together with
human migrations and partially replaced the indigenous Paleolithic ancient domesticates
(Frantz et al. 2016). Opposing this hypothesis, the latter study observed genomic
continuity and shared ancestry from the Early Neolithic to modern dog genomes in
Europe, although substantial gene flow from Indian dogs was found in the Late Neolithic
genome (Botigue et al. 2016). To clarify the long-lasting debate on dog domestication,
sequencing more genomes from ancient dogs across Eurasia is critically needed.

3.2.4 Horse Domestication

The earliest archeological evidence of horse domestication dates back to ~5.5 kyr ago.
However, the genetic processes underlying horse domestication remain enigmatic,
largely because the near-extinct wild relatives are not available for comparative genomic
studies. Several studies in recent years have investigated ancient horse genomes at a series
of time points to reconstruct horse domestication history (Orlando et al. 2013; Schubert
et al. 2014; Der Sarkissian et al. 2015; Librado et al. 2015). The first ancient horse
genome was sequenced at approximately 1.12-fold coverage from a ~700-kyr-old
permafrost-preserved fossil found at the Thistle Creek site, Canada (Orlando et al.
2013). The success of this study raised the upper limits of DNA survival in vertebrate
remains by almost six times, from ~120 kyr BP, the oldest polar bear genome, to ~735
kyr BP, setting the current record for the oldest eukaryote genome ever sequenced. A
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subsequent study implemented genome-wide scans of positive selection to uncover the
genetic changes associated with domestication by comparing two high-coverage (7.4-
and 24.3-fold) ancient genomes obtained from pre-domestication horses with modern
genomes from a wide collection of domestic breeds (Schubert et al. 2014). This study
identified a set of 125 loci that possibly have undergone domestication-related positive
selection, including genes likely associated with physiological adaptations to human
utilization, including cognitive changes associated with taming horses (Schubert et al.
2014). In addition, the study discovered that the modern domestic horse genome carries
significantly higher deleterious mutation loads than pre-domestication horse genomes,
reflecting the side effect of selective breeding or “cost of domestication,” which is
proposed to be caused by repetitive bottlenecks during the domestication process (Schu-
bert et al. 2014). Similarly, another study demonstrated that a bottleneck associated with
~110 years of captivity has largely impacted the genetic diversity of Przewalski’s horse
(Der Sarkissian et al. 2015). Genomes of horse remains excavated from Yakutia were
observed to have significant genetic discontinuity between a 5.2-kyr-old ancient genome
and contemporary genomes, indicating that present-day Yakutian horses are genetically
distinct from the now-extinct population that inhabited Yakutia in the mid-Holocene
(Librado et al. 2015). The introduction ofmodernYakutian horses possibly accompanied
the migration of the Yakut people around the thirteenth to fifteenth centuries.

3.3 Plant Paleogenomics

During the last three decades of aDNA research, ancient plant remains in general have
attracted much less attention than remains from ancient humans or vertebrates. Theoret-
ically, ancient plant remains, most of which are seeds, pollen, and wood, should preserve
aDNAwell. There have been successful extractions of aDNA from various types of plant
tissue preserved in charred, desiccated, or waterlogged conditions (Schlumbaum et al.
2008). Small-scale genetic analyses of ancient plant DNA have been performed on
several domesticates, such as maize (Zea mays) (Jaenicke-Despres et al. 2003), barley
(Hordeum vulgare) (Palmer et al. 2009), cotton (Gossypium) (Palmer et al. 2012), and
wheat (Triticum) (Li et al. 2011; Bilgic et al. 2016), and have greatly informed research
into the origin, domestication process, patterns of adaptation, and subsequent diffusion of
crops. However, despite major advances in NGS technologies and aDNA protocols,
progress toward reconstructing complete genomes from ancient plants has been lagging.
Themain challenge owes to a lack of modern reference genomes, a usually large genome
size, and complex genome organization with large portions of repetitive elements and
varying ploidy levels. Recently, the first attempts to obtain high-quality genomes of
ancient barley and maize remains were finally successful.
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3.3.1 Barley

As one of the founder crops of the Early Neolithic agricultural societies, domesticated
barley (Hordeum vulgareL.) remains from~10,000BCwere found at archeological sites
in the Fertile Crescent (Zohary et al. 2012). A recent study reconstructed paleogenomes
from five 6-kyr-old barley grains excavated at a cave in the Judean Desert in Israel
(Mascher et al. 2016). Preserved under hot and arid conditions, the ancient desiccated
barley grains contained sufficient amounts of endogenous DNA. The highest depth of
coverage among the obtained paleogenomes was 20-fold, which is remarkable consid-
ering the barley reference genome (barley cv.Morex) is ~5.1Gb. Combining both ancient
and modern sequence data, the results showed that the genomes of ancient domesticated
barley appear remarkably similar to those of proximate extant landraces, although gene
flow was observed between domesticated and sympatric wild populations. Thus, the
major domestication events likely occurred more than 6 kyr ago.

3.3.2 Maize

The complex evolutionary history of maize (Zea mays L. ssp.mays) and its domestication,
which occurred between 10 and 6.25 kyr ago in Mexico, has long been studied using
genomic data from modern samples. Recent large-scale paleogenomic studies profoundly
complemented the previous findings to clarify the process of domestication and early
adaptations (da Fonseca et al. 2015; Ramos-Madrigal et al. 2016). One of the studies
used a capture-based approach to acquire ~10� coverage of exons from 348 genes in
32 ancientMexicanmaize samples dating back 0.75–6kyr ago. Population genetic analysis
identified several genes showing evidence of adaptation to arid Southwest American
conditions, including genes relevant to drought tolerance and sugar content (da Fonseca
et al. 2015). Another paleogenome at 1.7� coverage was successfully rebuilt from a 5.31-
kyr-oldmaize cob excavated in theTehuacánValley ofMexico.Compared againstmodern
landraces and the wild teosinte grasses, this ancient sample was demonstrated to represent
the basal lineage to all modern varieties. The observation of a mix of both ancestral and
derived states in genes related to domestication suggested that the ancient sample is an
intermediate step between maize and teosinte, highlighting the gradual process of maize
domestication.

3.4 Paleogenomics of Pathogenic Microorganisms

To date, high-quality paleogenomes of pathogenic microorganisms have been obtained
for multiple infectious agents, including Yersinia pestis (Bos et al. 2011, 2016; Wagner
et al. 2014; Rasmussen et al. 2015a, b; Feldman et al. 2016; Spyrou et al. 2016);
Mycobacterium leprae (Schuenemann et al. 2013), a member of the Mycobacterium
tuberculosis complex (Bos et al. 2014); a fungus-like eukaryote pathogen Phytophthora
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infestans (Martin et al. 2013; Yoshida et al. 2013); Vibrio cholera (Devault et al. 2014a,
b); a periodontal pathogen Tannerella forsythia (Warinner et al. 2014); and the smallpox
Variola virus. Genomes of ancient pathogens have provided invaluable insights into the
origin, phylogeography, pathogenicity, evolution, and adaptation of the targeted patho-
gen in emerging and reemerging infections. We here review some of these studies.

3.4.1 Yersinia pestis

In 2011, the first microbial paleogenome was reconstructed at 30-fold coverage for the
bacterium Yersinia pestis from European Black Death victims dating to the fourteenth
century. As one of themost virulent pathogens,Y. pestis is known to have been responsible
for threemajorhumanplaguepandemics throughouthistory,namely, thePlagueofJustinian
(sixth and eighth centuries AD), the second waves of pandemics (mid-fourteenth-century
BlackDeath until themid-eighteenth centuryAD), and the third pandemic (mid-nineteenth
century until mid-twentieth centuryAD).However, deciphering the evolutionary history of
Y.pestisbyusingmolecular clockshasbeengreatlycompromiseddue toextensivevariation
in nucleotide substitution rates among lineages (Cui et al. 2013; Wagner et al. 2014) and
resulted in considerable uncertainty over the origin of this bacterium, how long it caused
epidemic disease in human populations, and whether the lineages causing the three pan-
demics sharedcommonetiologic agents.Toanswer thesequestions, several researchgroups
reconstructedmultiple Y. pestis paleogenomes from human skeletal remains dating back to
thehistoricalpandemics, aswell as longbeforeanyrecordedhistoryofpandemics (Boset al.
2011;Wagner et al. 2014; Rasmussen et al. 2015a, b; Bos et al. 2016; Feldman et al. 2016;
Spyrou et al. 2016), and it was confirmed that Y. pestis was the causative agent for the
historical pandemics. The lineages associated with the first pandemic were found to be
different from the ones associated with the other pandemics and the modern lineage likely
derived from the lineage associated with the second pandemic wave (Wagner et al. 2014;
Feldmanetal.2016).Itwasalsoinferredthatthemostrecentcommonancestor(MRCA)ofall
Y.pestis lineagesexistedmorethan5kyrago,andanancientless-pathogeniclineageacquired
the genetic changesmaking it highly virulent by 3 kyr ago (Rasmussen et al. 2015a, b).

3.4.2 Mycobacterium tuberculosis

Mycobacterium tuberculosis infections, also known as TB, were widespread in the past
and still remain an emerging global threat. Although TB has had a long history with
humans, the origin, the earliest hosts, and the evolutionary history of this disease still
remain unclear. Ancient M. tuberculosis DNA fragments have been retrieved from
samples from ancient Egypt, ancient Rome, and pre-Columbian America (Spigelman
et al. 2015), allowing researchers to trackgenetic changes in the ancestral strains, aswell as
how they established and adapted in human populations. The significance of these aDNA
studies was well illustrated by a paleogenomic analysis focusing on elucidating the
transmission path of TB in the NewWorld (Bos et al. 2014). Previous phylogeographic
evidence based on modern strains ofM. tuberculosis suggested that TB was introduced
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post contact in the NewWorld; however, abundant archeological evidence indicates the
presenceof tuberculosis in theNewWorldbeforeEuropean contact (Roberts andBuikstra
2003; Bos et al. 2014). To resolve the conflict, three mycobacterial genomes were
recovered from 1-kyr-old pre-Columbian Peruvian human skeletons, directly revealing
that a member of theM. tuberculosis complex infected humans before contact (Bos et al.
2014). Meanwhile, dating approaches, which showed vastly different coalescence esti-
mates in previous studies due to lack of ancient data, indicated a MRCA of the
M. tuberculosis complex less than 6 kyr ago. Indeed, the history of TB has been proven
to be far more complex than previously expected, and more ancient genomes recovered
forM. tuberculosis in the near future will likely help clarify the phylogeographic history
of TB.

3.4.3 Mycobacterium leprae

Leprosy, which results from infection with the pathogen Mycobacterium leprae, is
another disease that afflicted humankind throughout history. The pathogen was wide-
spread in Europe until it suddenly declined and essentially disappeared between the
fourteenth and sixteenth centuries. To investigate the disappearance of leprosy from
Europe and the relationship between ancient and modern strains, multiple genomes of
M. leprae were obtained from tenth- to fourteenth-century human skeletal remains
(Schuenemann et al. 2013; Mendum et al. 2014). Comparative genomics revealed
significant genomic conservation during the past 1,000 years, suggesting the sudden
decline of leprosy in the sixteenth centurywas not likely due to the loss of virulence in the
ancient strain. Additionally, phylogenetic studies suggest a European origin for leprosy in
the Americas and that a MRCA of allM. leprae strains existed ~3 kyr ago.

3.4.4 Phytophthora infestans

Phytophthora infestans, an oomycete that is the causative agent of potato late blight, was
responsible for the catastrophic Irish potato famine and severe crop losses in the rest of
Europe during the nineteenth century. Genetic information on the P. infestans strain that
caused the Great Famine and its relationship to modern strains remained unknown until
two research groups simultaneously reconstructed several paleogenomes of P. infestans
from nineteenth-century herbarium collections (Martin et al. 2013; Yoshida et al. 2013).
High endogenous DNA content retained in the herbarium collections allowed high-
coverage assemblies of the relatively large genome (~240 Mb) of P. infestans. Interest-
ingly, the historical strains are closely related to a modern genotype, but compared to
modern strains, the historical strains that caused the Great Famine possessed a number of
different infection-related genes. Presumably, these genes were gradually replaced by a
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new set of infection-related genes due to selection pressure caused by introduction of
resistance genes from wild potato relatives into the potato genome to fight against potato
blight. Divergence time estimation indicated that the historical P. infestans strains only
persisted for about 50 years until being replaced by the closely related modern genotype.

3.4.5 Variola

Compared to genome sequencing of ancient bacterial pathogens, paleogenomics of
viruses is highly underdeveloped, largely due to the fragility of most viruses and the
relatively low number of virions relative to host or environmental DNA in infected
materials (Harkins and Stone 2015). Among the most devastating human diseases
over the past hundreds of years, smallpox is the only disease eradicated by vaccina-
tion. This infectious disease is caused by the variola virus (VARA), and hypotheses
on the origin of VARA and how it evolved following immunization date to more
than two centuries ago but remain a matter of debate (Li et al. 2007; Babkin and
Babkina 2015). Studies of ancient smallpox viral strains could be an exceptional
opportunity to elucidate virus biology and evolution, but very few studies dedicated
to ancient VARA have been successful. A ~180 kb draft genome of ancient VARA
from a Lithuanian child mummy dating back to the seventeenth century showed
strong conservation in gene content and arrangement between genomes from sev-
enteenth- and twentieth-century strains, while molecular dating indicated that the
VARA lineages eradicated during the twentieth century had only been in existence
for 200 years (Duggan Ana et al. 2016). The impact of widespread vaccination on
the selection pressure acting on virulence evolution remains uncertain but may be
addressed with recovery of additional paleogenomes reconstructed from ancient
strains.

3.5 Paleometagenomics

Since the initial analyses based on PCR and cloning of coprolites from the extinct Shasta
ground sloth (Nothrotheriops shastensis) (Poinar et al. 1998), next-generation sequenc-
ing of DNA from environmental samples (eDNA), including the human microbiome
(Adler et al. 2013;Warinner et al. 2014;Warinner et al. 2015), has taken aDNA research
to the ecosystem level. Usually based on a metabarcoding approach, or high-throughput
sequencing of amplicons targetingmicrobial, fungal, plant, and animal DNA, analysis of
ancient DNA from sediments (sedaDNA) is a relatively new tool that can provide
ecological insights into past environments and habitats, including faunal and floral
changes over time (Pedersen et al. 2015; Thomsen and Willerslev 2015; Birks and
Birks 2016). Particularly in very cold conditions, DNA can be preserved in sediments
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that are hundreds of thousands of years old (Willerslev et al. 2003, 2007), but various
other environments and time frames have also been analyzed (e.g., Haile et al. 2007;
Parducci et al. 2012; Boessenkool et al. 2014; Willerslev et al. 2014; Epp et al. 2015;
Smith et al. 2015; Alsos et al. 2016). Analysis of sedaDNA offers an important comple-
ment to classical morphological analysis to obtain a more complete picture of past
biodiversity in paleoecological surveys (Parducci et al. 2015). For example, in a study
of lake sediments from Svalbard going back over 8,000 years, all but two genera of
vascular plants identified as macrofossils were identified with sedaDNA, which also
identified additional taxa, including algae and bryophytes, and more species per sample
(Alsos et al. 2016). The moderate changes in terrestrial vegetation over the Holocene
suggested a resilience of the tundra flora in the face of climatic changes. Another study
explored both nematode and plant diversity in 242 sediment samples from across the
Arctic, spanning the last 50 kyr (Willerslev et al. 2014). This study showed that theArctic
vegetation was dominated by non-graminoid herbaceous vascular plants (forbs) until
around the last glacial maximum where diversity declined markedly and after which the
vegetation became dominated by woody plants and grasses. The authors suggested that
this turnover may have been associated with the massive decline of megafaunal
populations after the LGM (Willerslev et al. 2014). However, there are caveats using a
metabarcoding approach based on universal primers and PCR, including potential bias
toward preferential amplification of certain taxa and failure to detect particularly rare taxa
(Pedersen et al. 2015). The extent of future promises of sedaDNA will likely depend on
moving from metabarcoding approaches to true metagenomic shotgun sequencing.

4 Beyond the Genome

In addition to sequencing of paleogenomes, it has been demonstrated that proteins,
epigenetic patterns in DNA, and RNA preserved in ancient specimens can also be
used to infer evolutionary relationships and adaptation associated with molecular
changes. Proteins, which were shown to be able to survive in fossils for periods of
time orders of magnitude greater than for DNA (Collins et al. 2002; Torres et al.
2002; Palmqvist et al. 2003; Asara et al. 2007; Schweitzer et al. 2007; Organ et al.
2008; Schweitzer et al. 2009; Buckley and Collins 2011; Wadsworth and Buckley
2014), may provide a source of genetic information that is otherwise not accessible
via aDNA analysis, especially in fossils beyond the limits of aDNA survival.
Protein-derived information was initially retrieved in fossils using immunological
approaches (Lowenstein 1980; Shoshani et al. 1985; Avci et al. 2005; Schweitzer
et al. 2007). However, these approaches were considered unreliable owing to
possible non-specific reactions with contaminants (Brandt et al. 2002). Recently,
advances in protein sequencing and mass spectrometry techniques have enabled the
complex mixture of proteins – the proteome – to be analyzed in ancient specimens.
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Protein sequences have been obtained from many ancient samples, including
dinosaurs (Asara et al. 2007; Organ et al. 2008; Schweitzer et al. 2009, 2013),
Neanderthals (Nielsen-Marsh et al. 2005), South American ungulates (Buckley
2015; Welker et al. 2015), giant ground sloths (Buckley et al. 2015), and mammoth
(Cappellini et al. 2012), as well as extant horses (Ostrom et al. 2006) and bovids
(Wadsworth and Buckley 2014). Currently, ancient proteomic analysis mainly
focuses on inferring evolutionary relationships from long-extinct organisms
(Schweitzer et al. 2009; Buckley 2015; Buckley et al. 2015; Welker et al. 2015).
For example, the close relationship between birds and dinosaurs proposed by
morphological studies was confirmed by phylogenetic analysis of collagen
sequences obtained from dinosaurs (Schweitzer et al. 2009).

Paleoepigenetics,which refers to the investigation of epigeneticmodifications in ancient
genomes, offers an opportunity to examine the evolutionary process of phenotypic plas-
ticity and to gain insight into evolutionary processes that cannot be inferred from genetics
alone. It has been demonstrated that DNA methylation patterns can survive in ancient
specimens preserved under various environmental conditions and over a large temporal
span, with examples including Neanderthals, Denisovans, ancient modern humans, bison,
woolly mammoths, polar bears, equids, and barley (Briggs et al. 2010; Llamas et al. 2012;
Gokhman et al. 2014; Pedersen et al. 2014; Smith et al. 2014; Seguin-Orlando et al. 2015;
Hanghoj et al. 2016). Postmortem deamination converts methylated cytosine into thymine,
while it converts non-methylated cytosine into uracil. Thus, an ancient epigenome can be
reconstructed by discriminating between deaminated cytosine bases that become thymine
versus those that become uracil. This strategy was successfully applied to generate a
nucleosome map from a Saqqaq individual (Pedersen et al. 2014) and to reconstruct
methylation maps from a Neanderthal and a Denisovan (Gokhman et al. 2014). Overall,
the DNA methylation patterns of archaic humans and the Saqqaq individual do not differ
significantly from modern humans, with the exception of the limb development-related
HOXD gene clusters, of which the epigenetic changes may have played a key role in the
recent evolution of human limbs (Gokhman et al. 2014). A genomic methylation profile
was also investigated in archeological barley, showing an elevated degree of genomic
methylation in one of the samples, which potentially was caused by environmental stress,
such as viral infections (Smith et al. 2014). More recently, a bioinformatic pipeline
(epiPALEOMIX) was developed to automate the characterization of ancient epigenomes.
This pipeline was successfully applied to obtain methylation signatures from shotgun
sequence data of 35 ancient genomes ranging from ancient humans to mammals (Hanghoj
et al. 2016).

Ancient RNA represents a new dimension in the study of ancient biomolecules.
Several studies, mostly from plant seeds, show that RNA can be preserved for decades
to hundreds of years (Fordyce et al. 2013; Guy 2013; Ng et al. 2014; Smith et al. 2014;
Guy and Gerard 2016). A partial transcriptome obtained from ancient maize kernels
has offered an opportunity to directly test evolutionary changes in gene expression
during the domestication process (Fordyce et al. 2013). The characterization of viral
RNAgenomes in ancient seedsmay also shed light on species interactions (Guy 2013;
Ng et al. 2014; Smith et al. 2014; Guy and Gerard 2016).
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5 Conclusions and Future Perspectives

The bulk of paleogenomic research so far has largely focused on human evolution, from
leading-edge studies of extinct archaic hominin genomes and their implications for our
knowledge of anatomically modern human evolution to population genomic analyses of
ancient remains of modern humans from the Americas and Eurasia. However, at an
accelerating rate over the last decade, and paralleling advances in genome-scale sequenc-
ing technologies and increasing understanding of DNA damage patterns and ancient
DNA recovery, ancient DNA research has also contributed to discoveries among
microbes, plants, and other animals and has provided increasing insight into paleodiets
and paleoenvironments. As methods continue to improve, and more complete and
annotated genomes become available from living organisms that can function as refer-
ences against which paleogenomes can be mapped, we will undoubtedly see increasing
numbers of genomes from extinct species and populations as well. DNAdegradation and
exogenous contamination will continue to pose limitations to the extent of paleogenomic
sequencing and assembly, but high-coverage archaic hominin genomes (Meyer et al.
2012; Prufer et al. 2014) that have brought the standard of paleogenomes to that of
modern genomes give promise to the future of paleogenomic research. Future steps in
technology, including transcriptomic, epigenetic, and proteomic analyses coupled with
functional studies, may further bring paleogenomics toward the level of modern geno-
mics. Nevertheless, studies of ancient DNA will continue to provide an unparalleled
complement to modern genomics and multiple other disciplines. For example, recovery
of ancient DNA unearthed an entire new lineage of extinct hominins, the Denisovans,
based on genome sequencing alone (Meyer et al. 2012). Future genome sequencing of
additional Denisovan and Neanderthal individuals coupled with epigenetic, transcrip-
tional, and functional studies could offer remarkable insights into ancient human pheno-
types and how they may have impacted the evolution of modern humans (Simonti et al.
2016). Similarly, future studies of ancient genomes, epigenomes, and transcriptomes
from a multitude of other species, populations, and ecosystems can be expected to
continue to expand our understanding of past environmental impacts in shaping the
Earth’s biodiversity and organismal demography, distributions, and adaptive responses
and help inform current and future trends.

Finally, the resurrection of extinct species, also referred to as “de-extinction,” is a
new area of interest that has gained attention in recent years. For example, it has been
suggested that resurrecting the mammoth has become a realistic prospect because of
CRISPR/Cas9 (Cong et al. 2013; Mali et al. 2013), a novel gene-editing technology
that could help create a hybrid embryo, in which mammoth traits such as small ears,
subcutaneous fat, long shaggy hair, and cold-adapted blood would be programmed
into an Asian elephant. However, multiple ethical issues associated with such efforts
have been raised (Sherkow and Greely 2013; Sandler 2014). Future survival of such
hybrid animals that resurrected species would likely represent would depend on
available habitats, interactions with other species and their environment, and close
monitoring and management, and most such animals would likely have to live a life
in captivity. Knowing that elephants often do not fare well in captivity and that Asian
elephants today are on the brink of extinction raises further questions regarding the
ethics and potential success of woolly mammoth de-extinction experiments.
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Genome-Wide Association
Studies and Heritability Estimation
in the Functional Genomics Era

Dunia Pino Del Carpio, Roberto Lozano, Marnin D. Wolfe,
and Jean-Luc Jannink

Abstract Genome-wide association studies (GWAS) are designed to detect the
statistical association between genomic markers and phenotypic data in order to
identify loci that control complex traits and more recently to quantify the relative
amount of trait variance that arises from genetic sources. Moreover, many genomic
resources have been generated and analytical tools developed to bring together
information linking GWAS results to causal variants. This book chapter is an
incredible effort to bring together information about current aspects of genome-
wide studies and the concept of heritability. In the first section of this book chapter,
we discuss the most critical concepts and experimental considerations in order to
follow GWAS. In the later sections, we explore how researchers are trying to answer
the question of whether using functional genomic data can improve the power of
GWAS in complex phenotypes and if so far has led us to important biological
insights. We review the core concept of heritability, its practical applications, and
the classical (pre-genomics) methods for measurement, which largely remain rele-
vant. Finally, we outline the genomic resources available for GWA studies. Also,
based on what is available for humans, we identify what are the most critical
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resources that need to be developed for other species by contrasting the human
genomic resources with resources being developed in plant and animal models.

Keywords Data mining · Functional genomics · Genomics · Genome-wide
association study · Heritability · Meta-analysis · Network · Pathways · Post-GWAS

1 Introduction

Many important traits in humans, animals, and agricultural crops have a complex
nature: they are controlled by many genes and by environmental factors. The
genotype-phenotype connection has been studied, i.e., through linkage mapping
approaches, such as quantitative trait locus (QTL mapping) in biparental crosses
and genome-wide association studies (GWAS) in diversity and crossing panels.

To unravel the genetics of complex diseases, genome-wide association studies
(GWAS) have become one of the most important genomics and statistical approaches
to increase our understanding of the biology of complex traits through the identifica-
tion of how many loci control a trait and the estimation of effects of polymorphisms
on a trait. In human genetics, GWAS is commonly applied to identify genetic risk
factors and understand the genetic basis of common diseases, and in plants it is a
breeding tool for the identification of markers for marker-assisted selection.

In order to identify marker-trait associations, linkage disequilibrium (LD) has to
occur in the chosen mapping population/diversity set. LD is an important concept in
population genetics because it summarizes the genetic variation that occurred within
a population through its evolutionary history. LD is a statistical measure of genetic
distance among genetic variants that is dynamically affected over time. The extent of
chromosomal linkage is affected by several factors such as natural selection, genetic
drift, population subdivision and bottlenecks, inbreeding, inversions, and gene
conversion. LD decay over time reflects the history of recombination, and it can
affect our ability to precisely identify disease/trait variants; long-distance linkage
disequilibrium lowers mapping resolution, while short-distance linkage disequilib-
rium increases the resolution to identify QTL regions.

Among the key factors that have increased the power of genome-wide studies are
high-throughput phenotyping, availability of genome-wide sequence data, large
study samples, and unbiased analytical tools. In many GWAS, marker polymor-
phisms have been detected through genotyping by sequencing or SNP arrays that
represent a subset of the whole-genome polymorphism present in a species. Further,
whole-genome sequencing and methodological developments such as genotype
imputation, which relies on nearby allelic LD, have dramatically increased the
number of variants available for association studies. In these studies, a marker is
declared to be significantly associated with a trait, because first the marker passed a
stringent level of statistical significance and, second, because the marker can be
directly causative or indirectly associated with a trait due to its high LD with a
causal variant.
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Although the list of putative SNPs associated with traits has incremented, it is still
difficult to unravel the underlying biology behind these associations. After GWAS
reveals a number of statistically significant associations, the next obvious step has
been to accumulate evidence that will help the researcher to prioritize variants for
follow-up studies. The question of how to discern causal from LD-related variants
within a haplotype block has deserved special attention in order to avoid false
positives.

Prioritization approaches include, among others, the incorporation of diverse
sources of omics data information, in silico genome annotation (including noncod-
ing regulatory regions), and pooling samples for meta-analyses.

In brief, the design of a GWA study requires the following common steps:
(1) scanning of genetic and phenotypic variation in a sample population; (2) selection
of a statistical model with the inclusion of a correction, for population structure or
relatedness to remove spurious associations; (3) identification of associated and
linked variants; and (4) follow-up post-GWAS sustained by biological evidence
and functional annotation (Fig. 1). More recent studies, for validation purposes,
specifically target candidate functional SNPs through genomic engineering
approaches, i.e., genome editing (Sander and Joung 2014), to compare the effects
of modified alleles on a trait.

Due to the steady reduction in genotyping costs, the creation of large research
consortia, and database development, massive amounts of genome-wide data are
currently available for scientists to uncover the genetic basis of complex traits at a
large scale (see later sections). In this book chapter, we cover the basis of GWAS
providing a description of emerging advances and considerations of experimental
design, statistical methods, functional annotation, post-GWAS and meta-analyses,
and genomic resources, and we discuss the use of GWAS models to estimate the
amount of heritable genetic variation. We finally highlight the advantages of GWAS
for the identification of causal genes, describe its limitations, and provide future
directives and perspectives to follow genome-enabled studies.

2 Experimental Design of Genome-Wide Association
Studies

To follow a genome wide association study it is important to consider the following:
traits more amenable to genome-wide association studies, sample size and allelic
diversity, phenotyping, and population stratification and relatedness. Following on
these considerations, it seems likely that for most complex traits increasing sample
size, to capture smaller effect or rarer genetic variants, improving phenotype quan-
tification, carefully considering genetic diversity panels, and scaling trait capturing
methods will increase the power to detect genetic signals. In the following section,
we briefly describe the experimental design parameters and statistical considerations
to follow genome-wide association studies.
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2.1 Sample Size and Allelic Diversity

Under the infinitesimal model, quantitative traits are controlled by many loci each
with an infinitely small effect (Fisher 1918; Bulmer 1971). Genome-wide associa-
tion studies (GWAS) have been successful in identifying common variants
(by convention those with allele frequency above 5%) associated with common
diseases or quantitative traits. The loci detected by GWAS are merely the largest
effect sizes drawn from a gamma or similar distribution (Hayes and Goddard 2001)
with an underlying additive effect. Traits underpinned by common variants can
display favorable results in GWA studies because these variants generate large
trait variation in the mapping population; therefore, the GWAS will have an ade-
quate detection power. On the other hand, the scenario where the trait under study is
controlled by many genomic locations (polygenic model) with solely small effects or
by many rare variants presents a challenge for GWAS. The adequate sample size of a
GWA study to detect associations for polygenic traits is a function of the genotyping
method, allele frequency, and effect size (Visscher et al. 2017). In plants, sample size
is also a function of the mating system: in selfing species, LD is maintained over long
genetic or physical distances, while in outcrossing species, LD declines more rapidly
(see later section). In general, association studies for polygenic traits, where the
proportion of variance explained by individual variants is small, benefit larger
experimental sample sizes to detect associated loci.

For many experiments, current sample sizes available for genome-wide associa-
tion studies are not sufficient to detect the majority of the associated variants. One
affordable solution is to have a population sample where we can try to maximize the
level of genetic variance to be representative of the allelic diversity present in a
species. In plants these sampled populations are also called “core collections” and
are usually composed from germplasm seedbank accessions that have been exten-
sively phenotyped. However, by following such approach, we can introduce genetic
heterogeneity that can reduce the correlation between phenotype and a specific
variant (Korte and Farlow 2013). Although genome-wide studies have increased
sample size by densely sampling local populations, this approach can reduce the
presence of variants demonstrative of the global diversity in that species (Long et al.
2013; Huber et al. 2014).The issue of sample size has been brought to the forefront
by the observation of so-called missing heritability. When a GWAS is not suffi-
ciently powered, it will only uncover variants accounting for a small fraction of the
heritability, mostly due to the stringent threshold used to identify significant associ-
ations. Joint consideration of all common SNPs has increased the proportion of
heritability explained although it does not lead directly to an improved genetic
predictor of risk because it does not identify individual loci (Yang et al. 2010;
Gibson 2012).
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2.2 Phenotyping

Another important aspect for the detection of genetic variants for complex traits is
how traits are measured, with measuring problems hindering the detection of associ-
ation signals (van der Sluis et al. 2010). Using simulation studies van der Sluis et al.
(2010) found that phenotypic components, such as complexity, measurement bias,
and resolution, could dilute the genetic signal. These issues are important for complex
traits, such as psychological, psychiatric, and other (e.g., medical) traits, but do not
necessarily apply to phenotypes for which the measurement is simple. Quantitative
traits are difficult to dissect because there may be underlying attributes which can be
either a group of correlated variables or variables that are closely related at the
biological level (Mackay 2014; Sun and Wu 2015). An additional constraint is that
many of the important traits in crop plants are the product of dynamic processes that
are difficult to assess and measure. With the advent of new technologies for high-
throughput phenotyping, in plant science, mostly motivated by the need for high-
yielding and stress-tolerant plants, it is currently possible to obtain multidimensional
phenotypic data. Phenomics enables the characterization of the “phenome,” which
refers to the phenotype as a whole (Soulé 1967) through the use of multidisciplinary
techniques, such as sensors, image analysis, and robotics (Houle et al. 2010). High-
throughput phenotyping improves collection over time, which allows the modeling of
the dynamical behavior of phenotypic traits. Most advances in phenotyping have
taken place in image analysis and sensor technology development. Various imaging
methodologies, such as visible light imaging, infrared imaging, fluorescence imaging,
imaging spectroscopy, etc., are being used to collect multilevel phenotype data from
macroscopic to molecular scale over a few seconds to weeks (Sozzani et al. 2014).

The analysis of digital images has emerged as a nondestructive method to extract
plant trait information in a high-throughput holistic manner (Clark et al. 2013;
Fahlgren et al. 2015; Walter et al. 2015). From image processing, a wide number
of morphological traits in plant can be extracted using customized analytical tools
(Wang et al. 2009; Hartmann et al. 2011; Green et al. 2012; Karaletsos et al. 2012;
Bucksch et al. 2014). In a recent Arabidopsis study, the observation of growth
dynamics by automatic imaging and growth modeling led to the identification of
time-specific quantitative trait loci (QTLs) and QTLs related to the whole growth
curve (Bac-Molenaar et al. 2015).

2.3 Population Stratification and Relatedness

Confounding effects can cause spurious associations when the GWAS population
under study is a mixture of samples with differences in their allele frequencies and in
the trait of interest. That is, any marker allele that is at different frequencies in
subpopulations with different levels of the trait will be associated with the phenotype
(Ewens and Spielman 1995; Pritchard and Rosenberg 1999). These spurious
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associations arise between a phenotype and markers that are not linked to any causal
loci, which can result in the identification of false-positive associations in the
structured populations (Lander and Schork 1994).

In the presence of population structure, statistical models can account for pheno-
typic covariance due to population structure and familial relatedness with a genomic
relationship matrix (Yu et al. 2006; Kang et al. 2008, 2010; Zhang et al. 2010b). The
genomic relationship matrix is built with the available single nucleotide polymor-
phisms (SNPs) and included as a random term in a linear mixed model.

The two most widely used approaches to modeling population structure are
model-based estimation of ancestry and principal component analysis (PCA).
Genetic ancestry has been introduced as a correction for population stratification.
With this approach samples are assigned to subpopulation clusters. Model-based
clustering approaches, such as STRUCTURE and ADMIXTURE, have been widely
used to infer population structure (Pritchard et al. 2000; Alexander et al. 2009).
Principal component analysis is a statistical approach that has also been used to
model the ancestry differences between cases and controls in human diseases (Price
et al. 2006). Using principal component-based methods by estimating major axes of
the pairwise genetic similarity matrix, family relatedness can be captured but not all
of the sample structure. Software such as EIGENSTRAT included in the
EIGENSOFT package has been used to compute principal components to correct
for stratification and increase power to detect true associations (https://www.hsph.
harvard.edu/alkes-price/software/).

2.4 Recombination Rate and Linkage Disequilibrium

In any association study, with a number of markers coming from a genotyping
platform, markers are distributed over the genome under study and causal mutations
are not necessarily assayed directly. In these cases, we rely on the presence of strong
linkage disequilibrium (LD) between the identified marker loci and the underlying
causal variants (Garner and Slatkin 2003). The extent of LD is relevant in the context
of an association study because it will determine the number and density of markers as
well as the experimental design (Flint-Garcia et al. 2003). Additionally, after a GWA
study is performed, LD decay is generally taken into account to define the extent of a
region in base pairs, in which to identify SNPs in high LD with a representative
marker. Once the SNPs in a region have been defined, these are generally used for
prioritization purposes such as annotation to predict functional SNPs, or they can be
annotated into structural genomic categories, i.e., genic or intergenic locations (Chen
et al. 2014; Pal et al. 2015). Linkage disequilibrium (LD) can be defined as the
covariance of the inheritance of an allele of one SNP and the inheritance of an allele
of another SNP within a sampled population. Two variants that differ greatly in allele
frequency cannot be in high LD. Thus, if an observed SNP and an unobserved causal
variant segregate at different frequencies, they will be in low LD regardless of their
physical distance from each other (Nei and Li 1973), and the power to associate them
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will be low (Muller-Myhsok and Abel 1997). Among the statistics proposed to
measure LD, the descriptive statistic D takes a value that is specific for a set of alleles
such thatDAB¼ 0 indicates linkage equilibrium and DAB 6¼ 0 linkage disequilibrium
or nonrandom association of alleles. In its simplest form, linkage disequilibrium
between a pair of loci can be represented asDAB¼ pAB – pApB which is the difference
between the frequency of gametes carrying the pair of alleles A and B at two loci
( pAB) and the product of the frequencies of those alleles ( pA and pB) (Slatkin 2008).

Other popular statistical approaches that look to normalize D are |D0| and r2. D0

uses the theoretical maximum of D to do the normalization, while r2 uses a
correlation coefficient (Lewontin 1964; Hill and Robertson 1968). The maximum
value of r2 is a function of the allele frequencies of two loci, and it decreases with the
magnitude of the minor allele frequency difference between the loci (Wray 2005;
Amos 2007; Eberle et al. 2007; VanLiere and Rosenberg 2008). Within a popula-
tion, the degree of LD reflects the influence of factors such as population history,
population size, recombination rate, and forces that cause gene frequency evolution
(Garner and Slatkin 2003; Wray 2005; Slatkin 2008). LD between a particular pair of
loci or in a genomic region depends on local recombination rates. In a population
undergoing random mating, recombination events cause chromosomal segments
which contain linked loci to be broken apart until they eventually become indepen-
dent (Zhu et al. 2008). The effective recombination rate is related to the reproduction
mode that a species exhibits (Nordborg and Donnelly 1997). In selfing species,
recombination is less effective because individuals are more likely to be homozy-
gous at a given locus than in outcrossing species. In rice (Oryza sativa), Arabidopsis
(Arabidopsis thaliana), and wheat (Triticum aestivum) (Nordborg 2000; Garris et al.
2005; Zhang et al. 2010a), which are self-pollinating species, LD extends much
further in comparison with outcrossing species, such as maize (Zea mays), grapevine
(Vitis vinifera), and rye (Secale cereale) (Tenaillon et al. 2001; Myles et al. 2009; Li
et al. 2011), and conifers (e.g., Pavy et al. 2012). Genome structure and the rate of
recombination in different regions across the genome also affect the structure of
LD. In human, the relationship between LD decay and “hotspots” in recombination
for the major histocompatibility complex (MHC) is well documented as well as the
different patterns of LD in the genome (Jeffreys et al. 2001; Teo et al. 2009). In
plants, for maize, there is broad evidence for heterogeneity in rates of recombination
across the genome, where repetitive regions showed virtually no recombination
events (Yao et al. 2002).

3 GWAS Models, Methods, and R Packages and Software
Available

3.1 Statistical Models and Methods

Statistical methods used in GWAS have been extensively but briefly reviewed (Zhu
et al. 2008; Hayes 2013; Lipka et al. 2015). One of the frequently employed GWAS
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model is the linear mixed model which allows the incorporation of fixed effects
which account for population structure as a covariate and a random effect correction
that accounts for the level of relatedness within a population (Yu et al. 2006). In the
implementation of linear mixed models, population stratification (population struc-
ture and principal components) is included as a fixed effect in the regression model,
while the random effect covariance is included to model the genetic correlation
between individuals. Following Henderson’s matrix notation (Henderson 1975), the
linear mixed-model regression takes the form:

y ¼ Xβ + Zu + ε.

Here, y is a n � 1 vector of the phenotype. The unknown vector β contains
estimates of fixed effects, usually including genetic marker and population structure,
with design matrix X. The vector u is a random effect, the best linear unbiased
prediction (BLUP) which represents the predicted breeding value [given the speci-
fication of a covariance matrix (see below)], for each individual. Z is a design matrix
pointing observations to genotype identities and ε is a vector of residuals. Typically,
we assume residuals in ε are independent and identically distributed with mean of
zero, and variance σ2E and a covariance matrix often denoted R but equal to the
identity matrix I, where the u and ε are normally distributed with null mean and
variance additive genetic variance σ2A:

Var
u
ε

� �
¼ G 0

0 R

� �

In a genetic mixed model, we expect the elements of u, in contrast to ε, to be
correlated because individuals have common ancestors and thus share alleles that are
identical by descent. We model this by specifying a covariance matrix for the levels
of u, often denoted G ¼ σ2AK, where K is a genetic relatedness kinship matrix
derived from markers.

The vector of phenotypes then has the following covariance matrix:

var yð Þ ¼ V ¼ ZGZT þ R

where R ¼ Iσ2e and σ2e is the residual variance.
The variance in the levels of u is the variance in breeding values or, in other words,

the additive genetic variance σ2A, the crucial parameter for heritability estimation
(which will be the focus of a latter section).

3.2 Multiple Testing Corrections

The appropriate interpretation of GWAS results for complex traits is dependent on
determining the correct P-value threshold for statistical significance. As the number
of statistical tests increases with the number of markers included in the analysis, so
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does the probability of finding at least one of them to be statistically significant when
it is not (i.e., a “type I” error). Statistical procedures accounting for multiple testing
have been used in the genome-wide setting and vary depending on how conservative
they are. Among conservative methods are the Bonferroni correction (Bonferroni
1935), which can be overly conservative, and the Šidàk-Bonferroni approach (Abdi
2007) which becomes very conservative when the number of comparisons becomes
large and when the tests are not independent. A less stringent method is to control
for the proportion of false-positive associations typically expressed as false discov-
ery rate (FDR). In the Benjamini and Hochberg correction, P-values are ranked
from smallest to largest. Each P-value is then compared to a Benjamini-Hochberg
critical value: (rank/number of tests) � (false discovery rate) (Benjamini and
Hochberg 1995).

3.3 GWAS Analysis Software and R Packages

Statistical models for association mapping have been implemented in several soft-
ware packages (briefly described below). Development of new algorithms has been
motivated by the need for an improvement in computational speed. The computation
time of each method can be broken down into three steps: (1) building the genomic
relationship matrix (GRM/kinship), (2) estimating variance components, and
(3) computing association statistics for each SNP (Yang et al. 2014).

3.3.1 EMMAX: Efficient Mixed-Model Association eXpedited

When mixed linear models were first developed for association mapping, the
variance parameters were estimated accounting for the fact that the total variance
explained by all markers except by the candidate marker may vary across candidate
markers in the case of markers of large effect (Kang et al. 2008). Because of the
increase in the number of markers for computational efficiency, the repetitive
variance component estimation was avoided (Kang et al. 2010). Following this
approach, the variance parameters are estimated only once for each dataset and
globally applied to each marker. The algorithms “EMMA eXpedited” (called
EMMAX) and “population parameters previously determined” (called P3D)
(Zhang et al. 2010b) use pre-estimated variance components. These approximate
methods implemented in the software programs EMMA eXpedited (EMMAX) and
TASSEL (P3D) have since then been widely used in GWAS (genome.sph.umich.
edu/wiki/EMMAX).
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3.3.2 FaST-LMM: Factored Spectrally Transformed Linear Mixed
Models

FaST-LMM is a program written in python for performing both single-SNP and
SNP-set genome-wide association studies (GWAS) on extremely large datasets
(Lippert et al. 2011). It provides a fast implementation of an exact or approximate
model for computation of the test statistics (https://github.com/MicrosoftGenomics/
FaST-LMM). In this approach, the estimation of the relationship matrix is produced
using a selected set of SNPs, which show the strongest linear correlation with the
trait of interest through the FaST-LMM-Select procedure. This algorithm also
reduces the computational time by a spectral decomposition of the genetic similarity
matrix.

FaST-LMM has the advantage, along with EMMAX and Mendel, of internally
imputing missing data at any (genetic or non-genetic) covariate, which can make it
convenient for implementing stepwise conditional analyses.

3.3.3 GRAMMAR-Gamma (GenABEL R Package)

The Grammar-Gamma method is a fast variance component-based two-step method
implemented in the software GenABEL (Aulchenko et al. 2007b). This method is
derived from the original GRAMMARmethod in which the residuals from the LMM
are first estimated and treated as phenotypes for a genome-wide association study
using a standard linear model (Amin et al. 2007; Aulchenko et al. 2007a). Similarly
to GRAMMAR, the GRAMMAR-Gamma method produces unbiased SNP effect
estimates and test statistics that do not require any deflation but involve the calcu-
lation of a GRAMMAR-Gamma correction factor γ (Svishcheva et al. 2012).
Developers of the GRAMMAR-Gamma method suggest the use of this method for
association testing in whole-genome re-sequencing studies of large human cohorts.

3.3.4 MTMM: Multitrait Mixed Model

MTMM method is an extension of a standard linear mixed model used to perform
GWAS of correlated traits (Korte et al. 2012). This multitrait mixed-model method
can be applied to phenotypes from different measurements, with correlation due to
pleiotropy, and to traits that were measured under different environmental condi-
tions. A GitHub repository of the MTMM R scripts can be found at https://github.
com/Gregor-Mendel-Institute/mtmm.
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3.3.5 GCTA

This software was developed in the context of addressing the “missing heritability”
problem estimating the variance explained by chromosomes or at a whole-genome
level (Yang et al. 2011a). GCTA uses files in PLINK format and estimates the
genomic relationship matrix from the user input genomic markers. In building the
GRM, candidate markers can be excluded via a leave-one-chromosome-out analysis
implemented in GCTA software (GCTA-LOCO) (http://cnsgenomics.com/software/
gcta/index.html).

3.3.6 TASSEL

Tassel is a stand-alone or command line program which implements several GWAS
methods (Bradbury et al. 2007). The “compressed MLM” option decreases the
effective sample size of datasets by clustering individuals into groups. The comput-
ing complexity function is thus reduced from the cubic of the number of individuals
to the cubic of a smaller number of groups. Additional implemented approaches are
“population parameters previously determined” (P3D) (Zhang et al. 2010b) that
eliminate the need to recompute variance components. Further options in TASSEL
5 are imputation by FILLIN and FSFHap; kinship and PCA can be calculated with
user input genomic markers (Swarts et al. 2014).

3.3.7 GAPIT

Genomic Association and Prediction Integrated Tool (GAPIT) is an R package
(Lipka et al. 2012). GAPIT was developed to perform genome-wide association
study and genomic prediction following the unified mixed model, EMMA, the
compressed mixed linear model, and P3D/EMMAX (Kang et al. 2008; Zhang
et al. 2010b). After running, GAPIT automatically reports results in a series of tables
and graphs (http://zzlab.net/GAPIT/).

4 Making Sense of GWAS with Functional Genomic Data

In a classic GWAS approach, thousands or even millions of SNPs are tested
individually for a statistical association with the trait under investigation. In this
kind of analysis, each SNP is treated the same way irrespective of its location in the
genome or its proximity to regulatory elements or genes known to be important.
Over the years, GWA studies have been able to identify thousands of reproducible
statistical associations for a wide range of phenotypes (Pickrell 2014). Complex
traits are usually influenced by many genes with small effects, and the associated
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SNPs have been found to be located in regions outside genes, suggesting an
important role for regulatory elements (Glazier et al. 2002; Hindorff et al. 2009;
Visscher et al. 2012; Wallace et al. 2014). Moreover, some studies have shown
consistent patterns of enrichment of these polygenic effects in specific genome
annotation or categories: SNPs tagging regulatory and genic elements highly
enriched, introns little enriched, and intergenic regions negatively enriched (Schork
et al. 2013).

In the next section, we review different methods to identify functional regions
across the genome and how researchers have started to use this information to make
a better sense of GWAS results.

4.1 Functional Genomic Data

As soon as the human genome was sequenced in 2001, it was evident that 99% of the
more than three billion base pairs that constitute our genome do not code for proteins
(Lander et al. 2001; Kellis et al. 2014). Two sources of evidence supported the fact
that noncoding regions might have functionally significant elements: evolutionary
conserved regions in noncoding elements and GWAS hits for disease-causing
variants in these elements. In this context the “Encyclopedia of DNA Elements”
(ENCODE) was launched in September 2003 as a public research project with the
aim to identify all functional elements in the human genome (ENCODE Project
Consortium 2012). Defining “function,” however, has been a source of major
controversy in the human genomics community; the ENCODE Project, for example,
stated that their data allow them to “assign biochemical function for 80% of the
genome, in particular outside of the well-studied protein-coding regions” (ENCODE
Project Consortium 2012). On the other hand, evidence suggests that less than 10%
of the genome is evolutionarily conserved through purifying selection (Graur et al.
2013; Rands et al. 2014), which is in disagreement with previous estimates. In an
effort to define functional DNA elements in the human genome and alleviate the
controversy, the ENCODE Project presented an article reviewing the three different
sources of functional evidence with its advantages and pitfalls (Kellis et al. 2014).
The first line of evidence is comprised of the genetic approaches that evaluate the
phenotypic consequences of mutations (as in GWAS); the second line of evidence is
evolutionary, which quantifies selective constraints; and the final line of evidence is
biochemical that measures evidence of molecular activity. An important conclusion
is that our understanding of “genomic function” is still limited and that efforts to
better define genome elements should focus on integrating these three approaches to
gain better insight into the role they play in human biology. In the next section, we
explore the evolutionary and biochemical evidence of “function” and the methods
developed within each category. Later in the chapter, we will learn how scientists are
integrating functional elements of the genome with GWAS information.
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4.2 Evolutionary Evidence

This type of evidence is mainly based on comparative genomics and detects
sequences that are likely to have undergone selection. The main concept relies on
alignment of the genome of divergent species and looks for sequences that have
maintained their similarity through evolution. Software like GERP (Cooper et al.
2005), PhastCons (Siepel et al. 2005), and GERP++ (Davydov et al. 2010) are able
to identify sites under evolutionary constraint. Briefly, Genomic Evolutionary Rate
Profiling (GERP) is a framework that produces position-specific estimates of evo-
lutionary constraint by using maximum likelihood evolutionary rate estimation.
GERP identifies regions with nucleotide substitution deficits and quantifies them
in terms of the “rejected substitution” (RS) score, which is defined as the number of
substitutions under neutrality minus the number of substitutions observed at each
position (Cooper et al. 2005). PhastCons is also a software program that identifies
evolutionary conserved elements through a multiple alignment given a phylogenetic
tree (Siepel et al. 2005). However, this software uses a phylogenetic hidden Markov
model (phylo-HMM) rather than the maximum likelihood approach used by GERP.
Finally, GERP++ uses the same framework as GERP but with significantly faster
and more statistically robust maximum likelihood estimation. Additionally, this
algorithm can group constrained positions into constrained elements and assign
P-values to the predictions (Davydov et al. 2010). High GERP conservation scores
can be correlated with GWAS hits, showing an overlap of genetic and evolutionary
evidence of function at the significant SNP hit positions (Tulah et al. 2013;
Al-Tassan et al. 2015).

4.3 Biochemical Evidence

This category is comprised of any evidence of cellular or enzymatic activity pro-
cesses acting on DNA. The ENCODE Project applied a wide variety of assays to
identify genomic regions falling into five categories: regions expressing long and
short RNAs, regions occupied by transcription factors or other regulatory elements,
open chromatin regions, regions showing methylation or specific histone modifica-
tions, and finally genomic regions that are able to physically interact with each other
(Kellis et al. 2014). We will explore some of the more than forty assays that
ENCODE has used to discover these functional elements. None of the following
assays are restricted to human cells, and most of them are applicable to other
animals, plants, or bacteria.

4.3.1 Gene Expression (RNA-Seq)

RNA sequencing (RNA-seq) (Nagalakshmi et al. 2008) comprises a set of experi-
mental procedures that generates cDNA sequences derived from RNA molecules
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that are later deep sequenced (Han et al. 2015). RNA-seq allows the characterization
of RNAs present in a sample and to quantify their abundance at the same time.
Briefly, millions of short segments are sequenced from random positions of the input
RNAs, called short reads. These reads are later mapped onto a reference genome.
The number of reads aligned to each gene gives a measure of its expression level
(Finotello and Di Camillo 2015). RNA-seq allows for analysis of the transcriptome
with single base pair resolution and low background noise. Since it offers a greater
specificity and sensitivity for both detection of transcripts and estimates of expres-
sion, it has replaced any hybridization-based technologies (microarrays). Addition-
ally, this technique is not limited to species or transcript specific probes, so that
RNA-seq can detect novel transcripts, indels, and previously unknown changes,
even in species lacking a reference genome. Recently, after analyzing a large set of
RNA-seq data, it was found that more that 85% of the human genome is transcribed
(Hangauer et al. 2013). Most of these sequences belong to a specific class of
intergenic transcripts: the long intergenic noncoding RNAs (lincRNAs). Other
transcript classes which have been identified using RNA-seq include miRNAs
(microRNAs), siRNAs (small interfering RNAs), and other small RNAs such as
eRNAs (enhancer RNAs) or snRNAs (small nucleolar RNAs) which are involved in
regulation of RNA stability, modulation of chromatin states, or protein translation
(Kim et al. 2010; Trapnell et al. 2010; Andersson et al. 2014; Han et al. 2015).

4.3.2 Chromatin Immunoprecipitation Assays

Chromatin immunoprecipitation assays followed by deep sequencing (ChIP-seq) is a
technique capable of detecting protein-DNA physical interactions and chemical
modifications of histone proteins (Furey 2012). Through the use of this technique,
a detailed map of binding sites for transcription factors and core transcriptional
machinery can be identified. Together with nucleosome positioning and the dynamic
modification of histones, these binding sites are paramount to the understanding of
the regulatory networks that govern biological processes (Jiang and Pugh 2009;
Farnham 2009). The ChIP process enriches a DNA sample with the transcription
factor (TF ChIP-seq) or modified nucleosomes (ChIP-seq) of interest using specific
antibodies. In the TF ChIP-seq, the proteins and DNA are cross-linked and then
digested with an exonuclease; later, the cross-linked segments are immuno-
precipitated, and the DNA is purified and deep sequenced. The process is quite
similar in ChIP assays that aim to map histone marks; however, in this case
micrococcal nuclease (MNase) digestion is used to fragment the DNA. Protocols
can vary depending on the target protein or tissue; basic steps and modifications have
been reviewed elsewhere (Park 2009; Ku et al. 2011; Furey 2012). The ENCODE
Project hosts the “Factorbook” repository that presents results on ChIP-seq for
167 transcription factors across 837 experiments as of October 2016 (Factorbook,
http://www.factorbook.org/). This page also integrates the data with other ENCODE
assays such as ChIP-seq of histone marks and nucleosome occupancy. The
modENCODE database (modENCODE, http://www.modencode.org/) has available
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transcription factor binding sites for D. melanogaster and C. elegans. ChIP-seq is
not restricted to animal models and has been applied in the model plant A. thaliana to
study the genome-wide positional distribution of the transcription factor binding
sites (Yu et al. 2016).

4.3.3 Open Chromatin (DNase-Seq, FAIRE-Seq, MNase-Seq, ATAC-
Seq)

The chromatin state in eukaryotic cells depends largely on the stage of the cell cycle.
For example, during interphase, the chromatin is structurally loose allowing the
transcription machinery to reach DNA. But even in this overall “loose” state, the
local structure of chromatin is tightly regulated and plays a central role in gene
regulation (Mellor et al. 2005). It is now well understood that transcriptional
activation coincides with nucleosome perturbation (Boeger et al. 2003; Lee et al.
2004; Shu et al. 2011; Tsompana and Buck 2014) at promoters, enhancers, silencers,
and insulators due to transcription factor binding (Tsompana and Buck 2014). These
“perturbed” or “open chromatin” sites are now known as the primary positions for
regulatory elements (John et al. 2011). One of the main differences between chro-
matin accessibility approaches and ChIP-seq is that the former does not use anti-
bodies, thus capturing the genome-wide chromatin landscape and reducing the bias.
Below we briefly discuss the most commonly used methodologies for genome-wide
chromatin profiling.

DNase-seq

Early observations that active genes were preferentially digested by the nonspecific
double-strand endonuclease DNase I (Weintraub and Groudine 1976) provided the
first demonstration that active genes exhibited an altered chromatin conformation
that made them susceptible to digestion. These genomic regions were named
thereafter as “DNase I hypersensitive sites” (DHSs) (Weintraub and Groudine
1976; Keene et al. 1981; Tsompana and Buck 2014). High-throughput DNase assays
(DNase-seq) have been developed taking advantage of the drop of sequencing prices
and the increased quality of the data (Crawford et al. 2006; Tsompana and Buck
2014). Briefly, chromatin is digested by DNase I endonuclease: fragments generated
are size selected to enrich for fragments produced in highly sensitive regions.
Afterward, fragments are amplified, sequenced, and mapped back to the reference
genome (Meyer and Liu 2014). One drawback of DNase-seq is that it requires a large
number of cells as starting material and that the DNase I enzyme carries an intrinsic
cleavage bias cutting preferentially in certain sequences independently of its chro-
matin state (Dingwall et al. 1981; Meyer and Liu 2014). Despite these inconve-
niences, DNase-seq is being widely used by the ENCODE consortium and is
currently the gold standard chromatin accessibility assay in humans.
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FAIRE-Seq

FAIRE-seq stands for “Formaldehyde-Assisted Isolation of Regulatory Elements,”
and while it is considered one of the simplest open chromatin methods, it has the
highest background noise (Giresi et al. 2007; Giresi and Lieb 2009). In FAIRE-seq
formaldehyde is employed to cross-link chromatin to capture protein-DNA interac-
tions. Thereafter, chromatin is sheared using sonication and phenol-chloroform is
used to isolate the fragmented DNA which is sequenced later (Giresi and Lieb 2009).

MNase-Seq

MNase-seq is a technique which employs an enzymatic cleavage approach in which
the enzyme used for DNA digestion is the micrococcal nuclease (MNase), an endo-
exonuclease that digests DNA not protected within a nucleosome (Meyer and Liu
2014). This technique differs from the ones previously described because it provides
an indirect measurement of chromatin accessibility. Rather than reporting open
chromatin regions, MNase-seq provides a genome-wide characterization of average
nucleosome occupancy and positioning (Barski et al. 2007; Schones et al. 2008).

ATAC-Seq

ATAC-seq that stands for Assay for Transposase-Accessible Chromatin with high-
throughput sequencing is a recently developed method for fast and sensitive
epigenomic profiling of open chromatin, DNA-binding proteins, and nucleosome
position (Buenrostro et al. 2013). This technique employs a hyperactive Tn5
transposase loaded with adaptors for high-throughput DNA sequencing in a process
called “tagmentation” (Adey et al. 2010). This assay can simultaneously fragment
and tag the genome with sequencing adaptors. The idea behind this technique is
that Tn5 transposase is not able to integrate in DNA regions packed in nucleosomes;
thus, integration and posterior sequencing will be enriched for open chromatin
regions.

One of the advantages of this technique is that it can detect nucleosome position-
ing, chromatin accessibility, and TF binding simultaneously. Moreover, the amount
of starting material is three to five orders of magnitude lower, while the sensitivity
and specificity obtained are similar to DNase-seq (Buenrostro et al. 2013). More-
over, the protocol is less complex and not as time consuming as other assays such as
DNase-seq or FAIRE-seq. This technique is envisioned to become the preferred
method for the study of open chromatin in the future (Tsompana and Buck 2014).
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4.3.4 Chromosome Conformation Capture (Hi-C)

It is now recognized that three-dimensional organization of chromatin can affect
gene expression. Hi-C is a technique that captures genome-wide long-distance DNA
interactions (Belton et al. 2012; Ay et al. 2015). The basic Hi-C procedures consists
of cross-linking cells with formaldehyde, then digesting the DNA with a restriction
enzyme, marking the cut-ends with biotin, and ligating them. Finally, DNA is
purified, and fragments with biotin are sequenced using paired-end reads (Ay et al.
2015). After using this technique, we can have a clear panorama of interacting DNA
regions. This interaction can happen even when the DNA fragments are largely
separated in regard to their physical position on a genome. Biologically important
processes like the enhancer-promoter interactions can be captured by this technique.
Hi-C experiments have been conducted in a wide variety of organisms, including
plants (Grob et al. 2014; Liu et al. 2016), bacteria (Le et al. 2013; Marbouty et al.
2015), and fruit fly (Li et al. 2015b), and in numerous human and mouse cell
lines (Lieberman-Aiden et al. 2009; Zhang et al. 2012; Rao et al. 2014; Grubert
et al. 2015).

5 Measuring Heritability in Relation to GWAS
and the Genetic Architecture of Complex Traits

The goal of a GWAS is, in general, to identify key genetic loci underlying pheno-
typic variability in traits of interest. The relative amount of trait variance that is due
to genetics versus environmental and measurement variability is an important
indicator of how successful a GWAS can be expected to be effective. That is,
when most variability for a trait is not genetic in origin, it will be difficult to isolate
genetic signal from nongenetic noise.

The proportion of total variability in a trait that arises from genetic sources is
known as the heritability (Falconer and MacKay 1996; Visscher et al. 2008;
Vinkhuyzen et al. 2013). Indeed, the heritability of a phenotypic character is one
of the most central genetic parameters in all genetics-related fields. For researchers
seeking to understand the genetic basis of complex traits, using GWAS, heritability
represents the theoretical upper limit for discovery. Thus, an estimate of the herita-
bility of a trait should be viewed as an essential statistic for interpreting the results of
a GWAS.

In the section that follows, we discuss how the completion of the first GWAS led
to a very large discrepancy between traditional estimates of heritability and the (tiny)
amount of cumulative variance explained by significant hits. This led to the concept
that heritability was “missing” and had to be found. Efforts to understand the
“missing” heritability have pushed the field forward in a number of ways, notably
including the identification of techniques for using genome-wide markers to obtain
estimates of genetic variance.
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After reviewing the theoretical concept and the classical methods for estimation,
we put particular focus on modern methods that leverage GWAS data in order to
estimate heritability. Estimation methods that utilize GWAS-type data include the
Haseman-Elston regression (HE) and various forms of the linear mixed model
(LMM).

Heritability is covered as an essential topic in statistical genetics (Lynch and
Walsh 1998, Falconer and MacKay 1996), and more modern developments in
theory/methodology have also been reviewed recently (Visscher 2008; Vinkhuyzen
et al. 2013). However, the continuing fall in price of genome-wide data and the
corresponding explosion in efforts to elucidate the genetic architecture of traits in
many organisms have driven rapid developments in methodology for measuring
heritability, particularly using genome-wide data (Visscher et al. 2008; Yang et al.
2010; Vinkhuyzen et al. 2013; Speed and Balding 2015).

5.1 Defining Heritability

Heritability is measured by partitioning the phenotypic variability σ2P
� �

in a popu-
lation into genetic σ2G

� �
and environmental σ2E

� �
variances. The genetic variance, σ2G,

is frequently partitioned further into variance due to a linear allele substitution or
additive effects at each causal locus σ2A

� �
, a nonlinear dominance or interaction

between alleles at the same locus σ2D
� �

, and to epistasis, the interactions of alleles at

different loci σ2Epi

� �
. Epistatic variance can, of course, be defined more specifically

in terms of two-locus σ2AA; σ
2
AD; σ

2
DD

� �
, three-locus (e.g., σ2AAA, σ

2
AAD, σ

2
ADD, etc.),

and higher-order interactions; we will use σ2Epi for short. Given this partition of
variance, heritability is defined as having two types:

Heritability in the broad-sense (H2):

H2 ¼ σ2G
σ2P

¼ σ2G
σ2G þ σ2E

Heritability in the narrow-sense (h2):

h2 ¼ σ2A
σ2P

5.2 Nonanalytical Factors Influencing Heritability

Before covering the old and new methods for estimating heritability, which can
drastically influence the value and meaning of the estimate, it is important to
recognize the biological factors that influence the heritability. Heritabilities are not
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fixed, knowable quantities; they can only be estimated and estimates for various
reasons can vary widely. Genetic variance depends on allele frequencies in the
population. Genetic variances can change across generations (e.g., under natural or
artificial selection), populations, and datasets as alleles are lost, fixed, or gained.
Furthermore, there can be genotype-by-environment (GxE) interaction such that, in
effect, genetic architecture of a trait and, thus, heritability can differ between
environments (Falconer and MacKay 1996; Lynch and Walsh 1998; Holland et al.
2003; Visscher et al. 2008; Vinkhuyzen et al. 2013).

The denominator of the heritability depends on environmental and other
nongenetic sources of variability. Environmental sources of phenotypic variance
come in many forms, including but not limited to maternal environments, local-scale
or field-level variability, seasonal or climatic, cage or heard effects, age, etc. These
factors are important to recognize, particularly when comparing multiple estimates
for the same trait.

Finally, we note that the manner in which σ2E is handled depends on the goal of the
research. For example, in human genetics and plant and animal breeding, environ-
mental factors that can be explicitly controlled are most often removed from σ2P
before analysis (Visscher et al. 2008), the reasoning for breeding being that a known
and controllable factor (e.g., location) is not expected to influence selection accuracy
and thus is not relevant to the prediction of selection response (Holland et al. 2003).

Geneticists studying humans are not interested in selection and selection
response. Instead, the goal is usually the trait prediction based on information
about pedigree or genome (de Los Campos et al. 2013). Thus fixed, controllable
parameters are typically removed before estimating heritability (Visscher et al.
2008). Ultimately for breeding and human genetics, the goal is often to know what
proportion of unaccounted for variation comes from genetic sources. In contrast to
breeders, geneticists studying evolution under natural selection must incorporate all
phenotypic variability in the denominator. The reason for this is that evolutionary
fitness depends on the full expression of the phenotype regardless of its source.

5.2.1 Heritability and Response to Selection

Although we alluded to this above, we emphasize here the use of heritability for
understanding and predicting responses to selection. The univariate (single trait)
response to selection can be modeled by the breeder’s equation:

R ¼ h2S

Here the cross-generation change in the mean phenotype of the population, R, is
equal to the heritability, h2, times the selection differential, S. The selection differ-
ential, S, is the difference between mean of individuals selected as parents of the next
generation and the mean of current population as a whole (Falconer and MacKay
1996; Lynch and Walsh 1998). Heritability also represents, by definition, the
correlation between true breeding values and the phenotype and thus tells about
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maximum possible accuracy for predicting the phenotype (Meuwissen et al. 2001;
Heffner et al. 2009; Goddard 2009). As mentioned previously, a number of envi-
ronmental and other experiment-dependent factors influence heritability estimates.
Therefore, estimation of heritability, which involves partitioning these variances,
can be a useful exercise for comparing trials, although this should be done with
caution because of reasons described above.

Heritability has been measured on many traits, in many different species, and has
been reviewed in a number of contexts in several excellent publications (e.g.,
Falconer and MacKay 1996; Visscher et al. 2008; Vinkhuyzen et al. 2013). Our
goal in this section is not to highlight any particular trait or organism, but rather to
focus on the methodology and the purpose of heritability estimation, generally.

5.3 Classical Methods of Heritability Estimation

Individuals who share common ancestors resemble to each other to a degree often
proportional to the closeness of their relationship (Fisher 1918; Falconer andMacKay
1996). This is a crucial observation in quantitative genetics; that is why all methods of
estimating heritability revolve around the measurement of phenotypic similarity and
its covariance with the (expected) proportion of the genome-shared identical by
descent (IBD) between relatives (Falconer and MacKay 1996; Speed and Balding
2014, 2015).

The choice of the types of relatives to be used for heritability estimation often
depends on practical circumstances, and different choices have advantages and
limitations. In general, more variation around the expected proportion of the
genome-shared IBD is expected for more distant relatives leading to greater sam-
pling variance in heritability estimation (but see below regarding the measurement of
genomic realized relationships between distant relatives). In contrast, the closer the
relatives used in a study, the more precise the estimate of heritability becomes, but a
higher potential bias occurs because of environmental and nonadditive (e.g., dom-
inance) genetic factors (Falconer and MacKay 1996; Visscher et al. 2008; Zuk et al.
2012; Vinkhuyzen et al. 2013; Speed and Balding 2014, 2015).

5.3.1 Parent-Offspring Regression

The use of parent-offspring relationships is relatively straightforward. Phenotypic
measurements of each of a sample of offspring are regressed on the mean value of
their parents (also called the midparent value), and the slope of regression line
measures the heritability. Alternatively, offspring values can be regressed on one
of the parents, for example, on the father’s phenotypic values. Parent-offspring
regression is simple to do and is not as biased by common environmental factors
as some other methods are, but requires large sample sizes for precision
(Vinkhuyzen et al. 2013).
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5.3.2 Sibling Analysis

In nonhuman genetic studies, large full- and half-sib populations are often available.
It is then possible, using analysis of variance, to partition variance within and among
families and due to male and female parents. An easy example is a population, where
each of a series of sires is mated to several dams and, ideally, multiple progenies per
dam are measured. It is easy to see how variance can be partitioned into among-dam
σ2Dam
� �

, among-sire σ2Sire
� �

and within-family σ2Within

� �
components. However, the

translation of these components into additive and nonadditive genetic variance
components necessary to obtain a heritability estimate can be complicated and is
covered in detail in several other texts (Falconer and MacKay 1996; Lynch and
Walsh 1998). For example, it can be shown that the variance among sires is the

covariance among half-siblings and is equivalent to
1
4
σ2A. One of the more serious

limitations to this approach, aside from the need to create the necessary population in
the first place, is for a balanced sample size in terms of numbers of sires, dams, and
offspring.

5.3.3 Twin Studies

In humans, family sizes are small and mating designs obviously cannot be
implemented. For this reason, one of the most useful methods for estimating
heritability involves the comparison of mono- (MZ) to dizygotic (DZ) twins. Dif-
ferences between MZ twins are expected to be purely due to (common) environ-
mental factors (as they are clones), while differences among DZ twins can include
both genetic and environmental sources. Specifically, cov MZð Þ ¼ σ2G þ σ2CE,
where σ2CE is the variance due to common environment. In contrast,

cov DZð Þ ¼ 1
2
σ2A þ 1

4
σ2D þ 1

4
σ2AA þ 1

8
σ2AD� � �σ2CE. In a typical design, only the cov

(MZ), cov(DZ), and σ2P are measured. Thus, aside from σ2A, a trade-off must be made
where either nonadditive variance or common environmental effects are partitioned.
This leads to an potential upward bias to twin-based estimates of h2 (Falconer and
MacKay 1996; Zuk et al. 2012; Vinkhuyzen et al. 2013). Estimates of heritability
done using this approach, using very large samples, have been treated as the “truth”
by many researchers and play a major role in the controversy over “missing”
heritability (see below).

5.3.4 Haseman-Elston Regression

Haseman-Elston regression is a relatively simple approach, originally developed for
estimating variance explained at a marker locus, that is easily extendable to a
complex pedigree or, rather, a population with variation in relatedness beyond
parent-offspring. The squared difference in phenotype between pairs of individuals

382 D. Pino Del Carpio et al.



is regressed on a measure of their additive genetic relatedness, and the slope obtained
is equal to�2σ2A, and the intercept is 2σ2P (Haseman and Elston 1972; Yang et al.
2010; Chen 2014; Golan et al. 2014). Measures of genetic relatedness can come from
pedigree or from genomic relationship matrices (GRMs) constructed using SNP data
available in typical GWAS datasets. The Haseman-Elston (HE) regression is cur-
rently the state-of-the-art method for estimating SNP heritability from ascertained
case/control samples (Haseman and Elston 1972).

5.4 Linear Mixed-Model Estimation

The heritability estimation procedures described above are generally applied either
using closed-form equations or least-squares methods, which are susceptible to
several limitations: imbalance in datasets cannot usually directly handle experimen-
tal cofactors with the exception of Haseman-Elston regression and cannot take
advantage of complex pedigrees. The linear mixed model (LMM) described in the
first section of this book chapter, known commonly as the “animal model,” was
developed in the 1950s and 1960s (Henderson 1953, 1975, 1976; Vinkhuyzen et al.
2013; Gianola and Rosa 2015) and addresses all of these limitations. The original
purpose of this model in animal science was breeding value prediction, for example,
for bulls in dairy herds that could not be directly evaluated for milk production
(Henderson 1975). For the purpose of heritability estimation, this model is useful
because one of its few parameters is the variance in breeding values (i.e., additive
genetic variance component, σ2A) (Visscher et al. 2008).

In order to estimate heritability using the LMM, the matrix G must be specified
based on some kind of information, namely, pedigree, DNA markers, and/or
sequence data (Vinkhuyzen et al. 2013; Speed and Balding 2015), and therefore
much of our remaining discussion will be concerned with the construction of G.
Originally, mixed models were very challenging to apply because, unlike least
squares, they require iterative procedures like restricted maximum likelihood
(REML) or Markov chain Monte Carlo (MCMC). However, advances in computing
power and analytic methods have made LMM estimation tractable even on very
large (thousands or even millions) records.

Note that in GWAS, a genome-wide marker-based estimate of kinship is often
incorporated in a LMM to control for population structure (Yu et al. 2006; Kang et al.
2008, 2010). In other words, the contrast between heritability estimation and GWAS
with LMMs is whether the random genotype effect is the focus (estimating h2) or a
nuisance variable (GWAS). Although our focus is on continuous traits, we note that
when applied with appropriate caution, LMMs can be extended to apply to case-
control and other kinds of binary and categorical traits (Lee et al. 2011).
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5.5 Measurements of Relatedness and Estimates
of Heritability with Genetic Markers

The matrix G, like all variance-covariance matrices, is square and symmetrical, with
dimensions N � N, where N is the number of individuals to be analyzed. The
diagonals contain measures of within-individual variance, which intuitively is related
to the degree of homozygosity and thus inbreeding (Vinkhuyzen et al. 2013); specif-
ically the diagonals are defined as 1 + F, where F is the individual inbreeding
coefficient. The classical kinship matrix, sometimes called the numerator relationship
matrix, is constructed from pedigrees. Pedigree-based matrices measure the expected
(average) relationships calculated as the proportion of the genome-shared IBD. That
is, they assume pedigree founders are completed unrelated and noninbred (inbreeding
coefficient, F¼ 0), and they assign equal relatedness to all members within a family.
Relationship coefficients are 1/2k, with k being the number of generations separating a
pair of individuals (Falconer and MacKay 1996; Vinkhuyzen et al. 2013), and can be
summed if individuals share multiple common ancestors.

Genetic markers, especially dense genome-wide SNP marker data, have made it
possible, not just to conduct mapping with GWAS but also to measure genetic
relatedness with high precision. The first attempts to use molecular markers for
heritability estimation were motived by a lack of pedigree in wild populations
of plants and animals, using either a method similar to Haseman-Elston regression
(Ritland 1996, 2000; Mousseau et al. 1998) or the animal model (LMM, Kruuk 2004).

Dense genome-wide markers have enabled a major advance in this area. Pedi-
grees measure only the expected relationship among and within families, with
individuals within a nuclear family all assumed to be equally related to each other
and to their parents (Falconer and MacKay 1996). However, because parents and
founders of the pedigree are not in fact unrelated, and because of stochasticity in
recombination and segregation of chromosomes, there is variation around the expec-
tation of relatedness within and among families; this phenomenon is known as
Mendelian sampling (Speed and Balding 2015).

With a high density of markers, it is possible to precisely estimate the realized
(actual) relationships in any dataset, even among nominally unrelated individuals.
One of the first uses of genome-wide markers for heritability estimation was by
Visscher et al. (2006), who calculated realized IBD proportions using 1717 markers
conditioned on known pedigree for 3375 full-sib pairs. The authors used this
information to estimate the heritability of human height and obtained an estimate
of 0.80, in agreement with previously published values. Because the estimate was
done within families, it was possible for the authors to claim that the measure was
free of the assumptions of typical twin studies regarding common environmental and
dominance variance. In a follow-up study, with more markers and over 11,000 full-
sib pairs, it was possible to partition the genetic variance between chromosomes in
order to compare with the extant of GWAS results and set a target for future mapping
studies (Visscher et al. 2007).
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In a landmark paper, Yang et al. (2010), following work by animal and plant
breeders (VanRaden 2008, 2009; Heffner et al. 2009; Hayes et al. 2009), demon-
strated the use of genome-wide markers to construct the kinship matrix G and
estimate the heritability of human height with LMM. The development was in part
motivated by the results of GWAS in which significant SNPs failed to explain more
than a few percent of the expected heritability of complex traits (see GWAS and the
“missing” heritability below). The genomic relationship between a pair of individ-
uals j and k is denoted Ajk and was specified as follows:

Ajk ¼ 1
M

XN
i

xij � 2pi
� �

xik � 2pið Þ
2pi 1� pið Þ

Here xi is the number of reference alleles (0, 1 or 2) at the ith SNP for individual
j or k, pi is the frequency of the ith reference allele, and M is the number of SNP
markers.

By solving the LMM with the matrix A as above, it was possible, in effect, to fit
all markers simultaneously rather than the single-marker regression and P-value
threshold approach of GWAS. This work by Yang et al. (2010) expanded on
previous sibling studies (e.g., Visscher et al. 2006) by analyzing nominally unrelated
individuals. The approach of Yang et al. (2010) enabled the analysis of GWAS
datasets, which greatly expanded the available number of samples for heritability
estimation. Furthermore, the authors reasoned that using unrelated individuals
eliminated confounding of common environments, although it opened the possibility
of bias due to population stratification, which they controlled and tested for with
various strategies. Yang et al. (2010) analyzed human height variation in Europeans
withG constructed with ~300 K SNP markers and obtained an estimate of h2¼ 0.45.
Although lower than previous twin-based estimates, this result was significant
because it explained much more variance than had existing GWAS (see below).
The LMM and related methods are implemented in the free and continuously
underdevelopment software, GCTA (Yang et al. 2011a).

5.6 GWAS and the “Missing” Heritability

Before discussing further the developments involving the estimation of heritability
using genome-wide markers, we cover the topic of “missing” heritability. This topic
is at the intersection of GWAS (in humans) and the heritability of complex traits.

Following the completion of some of the first, large-scale GWA studies (e.g.,
Gudbjartsson et al. 2008; Lettre et al. 2008; Weedon et al. 2008), researchers found
that only a very small portion of the heritability for human height that they expected
(based largely on twin studies) could be explained by genome-wide significant
markers. Human height serves as a model for complex trait genetics, and its study
actually led to the development of regression analysis (Galton 1886) and the linking
of Mendelian genetics with quantitative variation (Fisher 1918). Human height is
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known to have an extremely polygenic genetic architecture and high heritability
(~0.8 or greater; Silventoinen et al. 2003; van Dongen et al. 2012), which is in stark
contrast to the GWAS explained variance circa 2008 of ~5%. The discrepancy was
perhaps dramatically dubbed “the case of the missing heritability” (Maher 2008).

Taking all possible traits, genetic architectures, populations, and other factors into
account, it is very unlikely that a single mechanism explains all of the missing
heritability, and several key hypotheses can be considered (Maher 2008; Manolio
et al. 2009; Gibson 2012). The first hypothesis is that there are very many loci with
small effects, which GWAS are not powerful enough to detect. Support for this
hypothesis would come from a gradual decrease in the “missing heritability” as
sample size and marker density of GWAS increase (Maher 2008; Manolio et al.
2009; Gibson 2010). Initial studies explained less than 5% of the variance for height
and had ~100 K people and 500 K variants (Gudbjartsson et al. 2008; Lettre et al.
2008; Weedon et al. 2008). Increasing sample size and density to 180 K people with
2.3 million SNPs explained 10% of the variance (Lango Allen et al. 2010). Increas-
ing further to 250K people with 2.5M markers explained 16% of the variance
(Wood et al. 2014), and those authors were able to capture 29% of the variance by
lowering the significance threshold and implementing the method of Yang et al.
(2010, 2011a, b). These results taken together provide support for the small effects
spectrum argument, at least for human height.

The second major possibility is that there are rare variants (frequency <1%) with
moderate effect size, which cannot be tagged by marker loci. This is a problem
because GWAS and marker-based heritability estimates rely on LD to tag causal
variants. If causal variants are rarer than genotyped markers (usually >1%), then
their variance will be poorly tagged (Gibson 2012; Speed et al. 2012; de los Campos
et al. 2015). Therefore, it is argued that sequencing-based, haplotype, and other
forms of association studies will be needed (Maher 2008; Manolio et al. 2009;
Gibson 2012; Zuk et al. 2014). Haplotype mapping projects, for example, in humans
(1000 Genomes Project Consortium 2010), cattle (Daetwyler et al. 2014), and maize
(Chia et al. 2012), involving the whole-genome sequencing of large numbers of
genetically representative individuals, have been implemented in part to address this
issue. Methods to adjust LMM estimates for LD differences between markers and
causals are also an active area of research, which is covered in more details below
(Speed et al. 2012; Gusev et al. 2013; Lee et al. 2013; de los Campos et al. 2015;
Yang et al. 2015a).

There are assortments of additional factors. One of the strongest is simply the fact
that the “missingness” of heritability is based upon comparison to twin studies,
which can be upwardly biased estimates because of environmental and/or nonaddi-
tive genetic confounding (Falconer and MacKay 1996; Visscher et al. 2008; Zuk
et al. 2012). Others include the existence of causal structural or copy number variants
that aren’t well tagged by existing marker data, the shear amount of noise (i.e., false
negatives) in GWAS data, genotype-by-environment interaction, and epigenetic or
trans-generational and genetic background effects (Maher 2008; Manolio et al. 2009;
Eichler et al. 2010; Gibson 2010). Whatever the cause of “missing” heritability for a
particular trait or dataset is, explaining it, however intellectually satisfying, is not
necessarily practical or the end goal of GWAS (Manolio et al. 2009).
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5.7 Recent Developments in Mixed-Model Estimation
of Heritability

Here, we review some of the latest advancements in mixed-model estimation of
heritability. Most notably are efforts to adjust estimates for the bias that LD can
create. Yang et al. (2010) first acknowledged that differences in allele frequency
between markers and causal variants could bias estimates. In an excellent review and
simulation study, de los Campos et al. (2015) show that even sequencing-level
studies, which include the causal variants in the data, will be biased because many
markers will be in linkage equilibrium. They argue that methods to adjust for LD are
needed, but will likely never fully solve the problem.

Using extensive simulations, Speed et al. (2012) found that mixed-model esti-
mates of heritability were robust to violations of four key assumptions: (1) the
genetic architecture is infinitesimal in nature, (2) all markers have equal variances
and (3) are drawn from a Gaussian (normal) distribution, and (4) the same is true of
residual or error variances. However, they identified variation in the level of LD
across the genome as a major source of bias leading to over- or underestimation of
variance in different regions. They proposed scaling marker genotypes in order to
down-weight SNPs with lots of local LD. They do this by multiplying SNP geno-
types by

ffiffiffiffiffi
wj

p
, where wj is a weight on the jth marker. The analytical method of

deriving wj is somewhat involved, but it has the effect of producing an unbiased
estimate of heritability regardless of the patterns of LD across the genome. This
approach is implemented in the free and user-friendly software LDAK (Speed et al.
2012; Speed and Balding 2014). Despite the performance of their method in
simulation, the authors obtained the same answer for human height as did Yang
et al. (2010), a result which they hypothesized was because over-tagged regions and
under-tagged ones balance out, at least in this case.

Lee et al. (2013) subsequently argued that LDweighting was not an ideal approach
for very dense genotyping data. Instead, they propose a fairly simple approach: minor
allele frequency or MAF stratification. The MAF stratification approach works by
partitioning genetic variance with multiple variance components, each with a geno-
mic relationship matrix constructed with SNPs in a different MAF bin (e.g., 0.01 to
0.1, 0.1 to 0.2, etc.). Because high LD is only possible when markers have similar
allele frequency, partitioning the variance in this way enables better tagging of causals
across the frequency spectrum and leads to an estimate of h2 that is robust to a range of
genetic architectures. In response to this study, Speed et al. (2013) argue that if
properly tuned, their LD-weighting method is still valid for ultradense marker data
and shows that the combination of LDAK plus MAF stratification can improve upon
either approach.

Two additional methods for LD adjustment have been published. The first of these
is a weighting method called the “LD residual” in which each marker’s genotypes are
regressed against the set of other markers within a sliding window (e.g., 100 kb) and
the residuals of the regression are then used to construct a genomic relationshipmatrix
(Gusev et al. 2013). The method was effective but was very similar to LDAK in
comparisons.
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The final and most recent approach, GREML-LDMS, combines MAF stratifica-
tion with LD stratification and is implemented in the popular GCTA software (Yang
et al. 2015b). GREML-LDMS involves first calculating an LD score for each SNP,
defined as sum of LD r2 between that variant and all variants within a 20 megabase
region centered on the focal variant. The mean LD score across variants in a sliding
window is then calculated. Markers were then stratified into four quartiles of
mean LD scores and further grouped into seven MAF bins, leading to the creation
of 28 LD and MAF stratified genomic relationship matrices, which were used in
a mixed-model analysis. The authors compared GREML-LDMS to both MAF-
stratified LDAK (Speed et al. 2012, 2013; Speed and Balding 2014) and the
LD-residual approach (Gusev et al. 2013) and found it to be more stable and less
biased then either across a range of scenarios.

The study of Yang et al. (2015a, b), using GREML-LDMS, includes an empirical
analysis of 44 K individuals with 17.6 M imputed variants. The authors found an
excess of variance, which was explained by low frequency and rare variants and that
the effects of those variants, based on GWAS, tended to be negative. They suggest
an evolutionary interpretation in which new mutations tend to decrease height or
increase obesity (BMI) and are thus deleterious to fitness and are thus kept at low
frequencies in populations by purifying selection. Finally, GREML-LDMS
explained 56% of the variance in height. The authors cite newer twin studies that
estimate the heritability at 69%, which they argue may still be overestimated.
Combined with a calculation, incorporating even rarer variants into their analysis
would increase their estimate further: the posit that the heritability of human height is
likely between 0.6 and 0.7 and thus the “missing” heritability is in fact negligible.

Finally, while the majority of our discussion focuses on heritability in the narrow-
sense, both parametric (Vitezica et al. 2013; Muñoz et al. 2014; Wolfe et al. 2016)
and nonparametric (Gianola and van Kaam 2008; De los Campos et al. 2010),
genomic relationship matrices can be used to partition the genetic variance into
both additive and nonadditive components and thus to estimate heritability in the
broad- and narrow-senses, simultaneously.

5.8 Partitioning Heritability/Variance Based on Functional
Genome Annotations

For complex traits, much of the heritability is explained by SNPs that do not reach
the significance threshold in GWAS (Yang et al. 2010). For most traits, the associ-
ated variants cumulatively explain just a small proportion of the total heritability
(Manolio et al. 2009). Genomic relationship matrices combined with linear mixed
models have also been used to partition genetic variance in several other contexts.
These include chromosome-scale heritability (Yang et al. 2011b; Speed and Balding
2014) and different functional categories of SNPs (Gusev et al. 2014). Others have
used this methodology for GWAS in an approach known as heritability mapping
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(Nagamine et al. 2012; Shirali et al. 2016). In this context, Yang et al. (2011a, b)
suggested an alternative to hypothesis testing and QTL identification. Instead, the
authors propose to focus on the variance explained by all SNPs together (Yang et al.
2011b; Schork et al. 2013). The authors calculated the variance explained by each
chromosome separately. This research opened the path to a broad area of study in
quantitative genetics, the partitioning of genetic variance or heritability that is
associated with functional categories rather than just chromosome segments.
Recently, joint estimation of heritability from functional, category-specific variance
components was proposed to assess enrichment (Gusev et al. 2014). In this study
GWAS data from over 100,000 samples were analyzed for 11 traits. Using variance
component methods, they confirmed that some functional categories contributed
disproportionally to the heritability, but unlike previous studies, this approach
inferred relevant biological function from all SNPs simultaneously instead of one
GWAS hit at a time. One of the constraints for the variance components approach is
the need of individual genotypes as input, whereas currently the largest GWAS
analyses are conducted through meta-analysis using only summary statistics avail-
able from individual studies. In an effort to make this kind of approach more
feasible, a new methodology for partitioning heritability was introduced called
“stratified LD score regression,” which uses summary statistics from GWAS and
LD information from an external reference panel (Finucane et al. 2015).

6 Meta-analysis Methods

A myriad of GWAS studies have successfully identified variants associated with a
phenotype of interest. However, single GWAS can be underpowered, due to small
population size, and in many cases, the associated variants explain little of the
disease risk variability.

The NHGRI-EBI Catalog of published genome-wide association studies (http://
www.ebi.ac.uk/gwas/home) as of September 2016 contains 2520 studies and 24,218
unique SNP-trait associations (P-value �5.0 � 10�8).

In meta-analyses, GWAS from independent studies are aggregated without the
need of phenotypic and genotypic data to be available. As a result of combining
information, power is gained for the identification of statistically significant variants
that exceed a study-wide threshold. Initially, meta-analyses were retrospective
studies carried out by combining summary statistics from previously published
studies. However, the International HapMap Project and the 1000 Genomes Project
(HapMap 2003; The 1000 Genomes Project Consortium 2015) have provided to the
research community resources that are now commonly used for imputation in single
GWAS and meta-analysis. Both projects characterize human genetic variation by
itemizing common and rare/low-frequency variants and describe the patterns of
linkage disequilibrium in the human genome. A large list of profiles for more than
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400 consortia can be found at consortiapedia (http://consortiapedia.fastercures.org/
consortia/) with information on consortium's mission, structure, data sharing, part-
ners, and more.

Currently, prospective meta-analysis studies go through preliminary stages in which
certain criteria have to be met such as compatibility in the design of the study and
definition and measurement of the trait under analysis (Evangelou and Ioannidis 2013).
To achieve the compatibility in the design of theGWAS, a number of research groups can
agree to cooperate prior to the beginning of the study. Individual research groups that are
part of a large meta-analysis study conduct quality control checks for each SNP and
impute at a whole-genome level usually with a reference panel. Further in the study,
association statistics for each SNP are computed, and these summary statistics are
provided to the meta-analysis centers. A comprehensive protocol describing state-of-
the-art procedures to conduct and perform QC of large-scale genome-wide association
meta-analysis GWAMAs has been published (Winkler et al. 2014). Several studies have
been successful in leveraging the information from isolated studies by increasing sample
size. Meta-analyses of GWAS of blood lipids, BMI, blood pressure, and other disease
biomarkers have led to the identification of new loci undetected by earlier, smaller
GWAS (Swerdlow et al. 2016).

Meta-analysis studies can combine GWAS results from different phenotypes with
a similar disease connotation. For example, in an inflammatory bowel disease (IBD)
study by combining autosomal genotype-level data from 15 GWAS of Crohn’s
disease and/or ulcerative colitis, two common forms of IBD, 71 new associations to
IBD were identified (Jostins et al. 2012). After the first stage of the meta-analysis in
which significant variants are identified, a set of secondary analyses can be performed
such as expression quantitative locus, gene expression, pathway analyses, and
protein-protein interaction analyses, among others (Panagiotou et al. 2013). Addi-
tionally, to prioritize variants that met genome-wide significance threshold, associ-
ated genes can be screened against co-expression networks and tested for enrichment
in gene ontology terms.

A meta-analysis including data from 16 studies from the EArly Genetics and
Lifecourse Epidemiology (EAGLE) Consortium and the Australian Asthma Genet-
ics Consortium (AAGC) identified ten loci influencing allergic sensitization. In this
study, to identify the molecular mechanisms underlying each of the ten loci, they
searched for cis-acting expression quantitative trait loci (eQTLs) using gene expres-
sion data obtained from six cell types or tissues (Bønnelykke et al. 2013). Functional
and enrichment analyses are frequently the follow-up procedure to genome-wide
meta-analyses. In a meta-analysis for Dupuytren’s disease (DD), based on three
datasets comprising in total 1580 cases and 4480 control samples from Germany,
Switzerland, and the Netherlands to understand the pathogenesis of DD, GWAS
results were integrated with the whole transcriptome data (Becker et al. 2016). In this
study functional modules were identified of genes/proteins overrepresented in DD
case/control datasets.

The final output of a meta-analysis is an overall synthesis of the results of the
series of single GWAS included in the analysis. The main statistical approach to
perform a meta-analysis is to combine P-values or to estimate the magnitude of the
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effects sizes from the combined studies (Li and Ghosh 2014). Possible differences
among the GWA studies are detected through heterogeneity tests with the most
popular ones being I2 and Cochran’s Q (Zeggini and Ioannidis 2009).

Meta-analysis methods can be classified as P-value based or regression coeffi-
cient based. Fisher’s combined probability test (Fisher 1932) and Stouffer’s Z-test
model the data or the effect sizes from the combined studies. In Fisher’s method,

X2
F ¼ �2

X k

i¼1
ln Pi½ �, where Pi is the P-value for the ith study and k is the number

of studies in the meta-analysis. When all of the null hypotheses of the k tests are true,
the X2

F will have a X2 distribution with 2k degrees of freedom.

In the Z-transform test,
X k

i¼1
Zi=

ffiffiffi
k

p
, the sum of these Zi’s, divided by the square

root of the number of tests, k, has a standard normal distribution if the common null
hypothesis is true. An alternative method is the weighted Z-test, which has more
power and more precision than does Fisher’s test. One of the most important
limitations of the methods described above is that they do not address between-
study heterogeneity.

Based on regression coefficients, meta-analysis can be conducted on the basis of a
fixed effect or random effect model. Under the fixed effect model, the true effect size
is assumed to be identical for all studies, and the effect size variation between studies
is considered as a random error (Ioannidis et al. 2007). Under the random effects
model, the goal is not to estimate one true effect, but to estimate the mean of a
distribution of effects. Software available for meta-analyses have been extensively
described and reviewed elsewhere (Bax et al. 2007; Wallace et al. 2009; Magi and
Morris 2010; Viechtbauer 2010; Willer et al. 2010). Commonly used bioinformatics
tools and software used for GWAS meta-analysis are METAL, GWAMA,
MetABEL, PLINK, and functions within R packages. The CRAN Meta-Analysis
Task View (https://cran.r-project.org/web/views/MetaAnalysis.html) lists R pack-
ages classified according to their functionally within the different stages of a meta-
analysis.

7 Post-GWAS Prioritization/Data Mining

A GWAS output is typically a list of selected loci with P-values below a significant
threshold. However, the interpretability of results is severely impaired by the
uncertainty over which exact SNP is the causal variant due to the existence of
variants in linkage disequilibrium. Dense genotyping arrays that contain all common
SNPs within previously identified risk loci have been used in fine mapping studies
(Spain and Barrett 2015). Genotyping platforms used by international consortia in
GWAS for diverse diseases and traits comprise the Immunochip (Trynka et al.
2012a), the Metabochip (Voight et al. 2012), the iCOGS array (Michailidou et al.
2013), and the OncoArray (http://epi.grants.cancer/gov/oncoarray/).

With the availability of whole-genome sequence data, SNP variants prioritized
through GWAS can be annotated and identified as causal variants based on their
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position in coding and noncoding regions of a genome. Challenges arise when these
variants are functionally annotated and the identified SNPs are outside of protein-
coding genes, which can indicate an underlying regulatory role. Many GWAS
signals have been found to be significantly overrepresented in regulatory regions
of the genome and directly implicated in complex disease etiology (Hindorff et al.
2009; Nica et al. 2010; Nicolae et al. 2010; Ernst et al. 2011; Maurano et al. 2012;
Schaub et al. 2012).

Different criteria and methods can be applied to prioritize the genetic variants
identified in GWAS. Most of these methods involve enrichment tests, functional
characterization, and integration into biological pathways. A popular approach is to
identify the genes carrying significant variants and test for enrichment in gene
ontology terms or prioritize genes based on protein-protein interaction networks or
pathway databases, such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG), Reactome, Molecular Signatures Database (MSigDB), the network data
exchange (NDEx), and ConsensusPathDB, among others (Ogata et al. 1999; Rossin
et al. 2011; Pratt et al. 2015; Herwig et al. 2016). Possible shortcoming when
following theseannotation-based enrichment methods is a strong bias toward prior
available knowledge.

With advances in high-throughput technologies, data from a breadth of large-
scale omics profiling can be used to model the interactions that occur from DNA to
phenotype through intermediate molecular traits. GWAS results from complex traits
have shown the involvement of many loci with small effects possibly interacting
with few genes of moderate effect. Within this context, systems genetic approaches
have been proposed to reveal the genetic basis of complex traits through a frame-
work that includes the identification of loci through GWAS, genomic analyses,
investigation of the effect and variation of multiple intermediate molecular pheno-
types and network modeling, and causal inference analysis to construct the
molecular circuitry from genotype to phenotype (van der Sijde et al. 2014; Ritchie
et al. 2015).

Recently, Claussnitzer et al. (2015) provided a candidate mechanistic basis for the
association between the FTO obesity-associated locus and obesity. The FTO study is
the result of a combination of public resources (epigenomic annotations, chromo-
some conformation, and regulatory motif conservation), targeted experiments for
risk and nonrisk haplotypes (enhancer tiling, gene expression, and cellular profiling),
and directed perturbations in human primary cells and mouse models (regulator-
target knockdown and overexpression and CRISPR-Cas9 genome editing).

Methods such as Data-driven Expression Prioritized Integration for Complex
Traits (DEPICT, www.broadinstitute.org/depict) are not driven by phenotype-
specific hypotheses and consider multiple lines of complementary evidence to
accomplish gene prioritization, pathway analysis, and tissue/cell type enrichment
analysis (Pers et al. 2015). A powerful resource to dissect gene regulatory networks
across tissues and higher-order networks across multiple tissues is the Encyclopedia
of DNA Elements (ENCODE). Similar databases, like the Genotype-Tissue Expres-
sion (GTEx) Project (http://www.gtexportal.org/home/), study the relationship
between genetic variation and gene expression and other molecular phenotypes in
multiple reference tissues.
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7.1 Integrating GWAS Results and Functional Elements
in the Genome

As previously reviewed, most of the SNPs associated with human diseases are located in
noncoding regions even after accounting for LD and fine mapping (Tak and Farnham
2015). Moreover, most SNPs in LD with these “index” SNPs fall also into these
noncoding regions leaving researchers with a large possible list of causative SNPs to
test. It is necessary then to prioritize SNPs from this list for further analysis when testing
for causality. Besides the methods previously described, SNPs associated with a specific
disease or trait can be prioritized using functional annotations discovered with the
methods listed in the genome functional annotation section.

In a typical functional enrichment analysis, the most strongly associated SNPs in a
GWAS are examined to test whether they fall disproportionately under a certain
genomic category (Pickrell 2014). These kinds of studies first identified that GWAS
were enriched in protein-coding exons, promoters, and UTRs (Hindorff et al. 2009;
Schork et al. 2013), but recently with the availability of resources, such as ENCODE,
an increasing number of studies are finding significant enrichments toward functional
genomic regions far away from coding sequences. For example, one study systemat-
ically investigated the association of multiple types of ENCODE data with disease-
associated SNPs across 4724 GWAS for 470 different traits. The study found that
36% of the associated SNPs are in DNase I hypersensitive sites (DHS) and 20% fall
within a ChIP-seq peak in at least one cell line (Schaub et al. 2012). Similarly, Ernst
et al. (2011) mapped nine chromatin marks across nine human cell types to define
15 chromatin states and found that disease variants are enriched in enhancers identi-
fied in the relevant cell types (Ernst et al. 2011). These findings are also consistent
with a recent association study in type 1 diabetes (T1D) that found that fine-mapped
T1D-associated SNPs are located in active enhancers (Onengut-Gumuscu et al. 2015;
Li et al. 2015a). This pattern of enrichment toward functional or regulatory genomic
regions is not limited to human cells; Rodgers-Melnick et al. (2016) used a modified
version of the classic MNase-seq protocol that tags open chromatin preferentially
under light digestion (Vera et al. 2014), to investigate the chromatin landscape in
maize. They found that MNase-hypersensitive (MNase HS) regions were associated
with gene expression, epigenetic modifications, and patterns of recombination and
that, although they map to less than 1% of the maize genome, consistently explain a
large portion of the heritable phenotypic variance (~40%) in several complex traits
(Rodgers-Melnick et al. 2016).

7.2 Modeling with Functional Annotations

Enrichment test and heritability partitioning assays have shown that several func-
tional regions are important for the regulation of several traits and diseases helping to
make sense of GWAS results. However, can the rich source of functional genomic
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information that is available nowadays lead to an improvement in GWAS power?
We will explore in the next paragraphs some of the efforts that carried tried out to
answer this question.

Several studies have found that, in some cases, SNPs associated with a trait are
enriched in regulatory regions in specific cell types (Ernst et al. 2011; Trynka et al.
2012b; Gerasimova et al. 2013; Karczewski et al. 2013). Gerasimova et al., for
example, were able to predict which cell types contribute to asthma, based on an
overlap of the disease-associated SNPs with regulatory regions in a given cell type
(Gerasimova et al. 2013). Moreover, they envisioned that it would be possible to
rerun the GWAS analysis with higher power by limiting the SNPs to those being in
regulatory regions of cell types relevant to the trait or disease. Taking this one step
further, Pickrell (2014) built a hierarchical model to jointly analyze GWAS and
multiple genomic annotations (Pickrell 2014). Using this statistical framework, the
study analyzed data for 18 diseases and 450 genome annotations. The joint model
was able to identify a sparse set of biologically interpretable annotations without
prior knowledge of the biology of the phenotype. More importantly, the joint model
approach was able to exploit the functional annotations to identify high-confidence
associations that did not reach genome-wide significance (Pickrell 2014).

Bayesian mixture model (BayesR) is a method that jointly fits all genotypes and
allows to map causal variants, study genetic architecture, and provide genomic
predictions for genotyped but un-phenotyped individuals (Kemper et al. 2015;
Moser et al. 2015). However, this Bayesian framework assumes that all genotypes
are equally likely to affect the trait of interest, ignoring any prior biological knowl-
edge. MacLeod et al. (2016) presented an extension of BayesR that can incorporate
prior biological information by defining categories of variants likely to be enriched
for causal mutations (MacLeod et al. 2016). In the proof-of-concept study, BayesRC
increased both the power to detect causal variants and the accuracy of genomic
prediction.

7.3 Networks and Pathways

A pathway is composed of a number of genes that are coordinated to accomplish a
biological process. In GWA studies, the identified variants can be mapped onto
genes, which can in turn be assigned to a biological pathway or to networks of
expression data/protein complex (Wang et al. 2010; Leiserson et al. 2013). Pathway-
based analysis methods can be broadly defined based on the algorithms used.
Examples include overrepresentation analysis, gene set-based scoring, multivariate
approaches, and topological-based analysis (Jin et al. 2014). The original pathway-
based analyses were performed with microarray data motivated by the fact that
functionally related genes which are also found to be co-expressed can help to
identify relevant pathways (Subramanian et al. 2005). Pathway Commons stores
biological pathway information that is outsourced from public pathways
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(http://www.pathwaycommons.org/) and provides links to different apps to visualize
and analyze pathways.

For the interpretation of GWAS results, the use of interaction networks can help
to prioritize genes that are known to interact with other genes, which are part of a
biological pathway of interest. In a network, the levels of interaction among genes
are represented by relationships as the ones established in molecular experiments. In
general, the vertices of a network represent genes and their encoded protein product,
while the edges join these vertices due to a biochemical interaction. Edge weights
represent biological evidence coming from sources such as tissue-specific expres-
sion, pathway membership, common functional annotations, and similar domain
composition (Gilman et al. 2011).

Protein-protein interaction networks (PPIs) describe interactions, such as the
relationship of proteins within a protein complex or under certain biological condi-
tions. The subsets of PPI are often obtained in small-scale studies that describe
protein binding, and the results are often available in online databases (Sardiu and
Washburn 2011). The most frequently used protein-protein interaction (PPI) net-
works include experimental and prediction databases such as Human Protein Inter-
action Database HPRD (Peri et al. 2004), Biological General Repository for
Interaction Datasets BioGRID (Stark et al. 2006), search tool for the retrieval of
interacting genes/proteins STRING (von Mering et al. 2005), database of interacting
proteins DIP (Xenarios et al. 2002), Munich Information Center for Protein
Sequences (MIPS) (Mewes et al. 1999), and Reactome (Vastrik et al. 2007; Fabregat
et al. 2016). Network-assisted search for enriched protein-protein interactions
(PPIs) is based on the P-values for genes identified through GWAS. Reactome FI
(http://www.reactome.org/ used as the PPI reference dataset. This dataset contains
11,879 nodes and 217,249 edges and is by design enriched for true biologically
functional relationships (Wu et al. 2010).

Protein interaction network-based pathway analysis (PINBPA) for genome-wide
association studies (GWAS) has been developed as a Cytoscape app, to enable
analysis of GWAS data in a network fashion (Wang et al. 2015a). PINBPA requires
gene-level summary statistics (P-values) generated usually by Versatile Gene-based
Association Study (VEGAS) program. VEGAS reads in SNP association P-values
annotate SNPs in genes, produce a gene-based test statistic, and then use simulation
to calculate an empirical gene-based P-value (Liu et al. 2010). For the network
analysis with PINBPA, a set of genes with significant P-values is used to search for
gene-modules using a greedy search algorithm. Relevant modules are selected based
on a z-score and network size.

A popular genomic tool implemented as an R package is dmGWAS which is a
dense module searching (DMS) method that applies a greedy algorithm to search for
modules in a PPI network (Jia et al. 2011). Recently, the R package dmGWAS 3.0
was used to search for enriched modules in Dupuytren’s disease using gene-based
P-values as node weights and differential co-expression of genes as edge weights
(based on the whole transcriptome dataset) (Becker et al. 2016). Additionally, the
newly developed EW_dmGWAS algorithm implemented in dmGWAS 3.0 was used
to integrate GWAS signals and gene expression profiles to extract dense modules
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from a background PPI network. In EW_dmGWAS differential gene co-expression
(DGCE) is used to infer edge weights of network modules in the human PPI network
(Wang et al. 2015b).

Although pathway membership can help to prioritize genes from sets of signif-
icant variants, its effectiveness is limited when biological functional information
is incomplete and when genes are solely selected based on a similar functional
annotation. Alternatively, to overcome this problem, it has been proposed that SNPs
reported by GWAS act as seeds for LD-based query regions. PrixFixe is an R
package (http://llama.mshri.on.ca/~mtasan/GranPrixFixe/html/), which uses shared-
function or “cofunction” networks (CFNs) to prioritize genes. In brief, SNPs are
mapped to a genomic region within an LD range, nearby genes are defined as
candidates, and functional connections are identified between genes across distinct
candidate sets (Tasan et al. 2014).

8 Epigenome-Wide Association Studies (EWAS)

The comprehensive search for causative variation has expanded from eQTLs,
transcription factor binding sites, DNase hypersensitive sites, histone modifications
to microRNAs, and DNA methylation studies. MicroRNAs (miRNAs) are a family
of small noncoding RNAs that play important regulatory roles in many physiological
and disease processes principally at the posttranscriptional level (Ambros 2004;
Miska 2005). An integrative analysis of the NHGRI GWAS catalog and the 1000
Genomes databases identified 211,687 trait-/disease-associated single nucleotide
polymorphisms (TASs). Of these, 12, 41, and 2041 TASs occur within miRNA
precursors, miRNA promoter regions, and 3-UTRs, respectively (Bulik-Sullivan
et al. 2013). miRNAs may regulate chromatin structure by regulating key histone
modifiers, and taken together, miRNAs can be considered important players in the
epigenetic control of gene expression (Chuang and Jones 2007; Wise et al. 2015).

The term epigenetics was first used by Conrad Hal Waddington back in 1939; he
defined epigenetics as the study of changes in phenotype without changes in
genotype (Waddington 2012; Allis and Jenuwein 2016). Now we know that most
of these changes are transduced by epigenetic mechanisms that can modify the
expression patterns of an organism cells in a heritable fashion without altering the
DNA sequence (Allis and Jenuwein 2016). One classic example of an epigenetic
phenomenon is cell differentiation in a multicellular organism; while cells have an
identical genotype, the developmental process generates a vast number of cells with
differentiated expression profiles and cellular functions (Goldberg et al. 2007).

Over the years, however, epigenetics has adopted different meanings with inde-
pendent roots; Adrian Bird, for example, proposed amodern and broader definition as
“the structural adaptation of chromosomal regions so as to register, signal, or perpet-
uate altered activity states” (Bird 2007). Despite the troubles in defining epigenetics,
the molecular mechanisms underlying it are well described and include DNA
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methylation, histone modifications, noncoding RNAs, nucleosome remodeling, and
histone variants (Handy et al. 2011; Rakyan et al. 2011; Allis and Jenuwein 2016).

Epigenome-wide association studies (EWAS) have emerged as a different way of
applying genome-wide assays to identify regions of the genome that could be
affecting individual phenotypes (Birney et al. 2016). Most EWAS use DNA meth-
ylation, as this epigenetic mark is easily profiled using current microarray and
sequencing technologies (Yong et al. 2016). DNA methylation marks in the genome
can be interpreted as a proxy for the GxE interaction, and at specific sites, methyl-
ation can affect gene expression (Lin et al. 2016). EWAS looks for differentially
methylated regions (DMR), where the pattern observed is discriminatory between
cases and controls. EWAS assumes that different levels of methylation at certain
locus would be associated or even be causal of an observed phenotype (Rakyan et al.
2011; Birney et al. 2016).

EWAS have been used in large-scale studies in humans including cancer (Michels
et al. 2013), autoimmune diseases (Jeffries and Sawalha 2015), mental health
problems (Shimada-Sugimoto et al. 2017), and chronic conditions (Ligthart et al.
2016), among others. This novel method presents exciting opportunities to discover
association that might be heavily affected by environmental interactions and to
generate new insights into disease mechanisms and transcriptional regulation affect-
ing phenotypes.

The epigenetic signatures are variable over time complicating the design and
interpretation of EWAS results (Michels et al. 2013). Several studies have stressed
the importance of using good practices to minimize spurious associations and
noncausal associations (Michels et al. 2013; Birney et al. 2016). These studies
agreed that to improve the interpretability of epigenetic studies, a good experimental
hypothesis is paramount for success. Other considerations include accounting for
cell subtype heterogeneity, controlling for population structure, choosing an appro-
priate DNA methylation profiling protocol, and whenever possible trying to validate
the results with a different molecular technique. Birney et al. (2016) suggested that
genotyping and profiling the transcriptome of the same individuals under study
would allow for a better interpretation of the epigenetic changes.

9 Genomic Resources for Genome-Wide Association
Studies

In this section, we provide some examples of the genomic resources available for a
few representative species. Most of the information covered here is related to the
development of large consortia for whole-genome sequencing projects and the
generation of databases to share tools and genotypic and phenotypic resources.
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9.1 Resources for Genome-Wide Association Studies
in Humans

In humans, during the past years, genome-wide association studies have identified a
large number of associations between genomic regions and complex human disease
including type 1 diabetes (Barrett et al. 2009), type 2 diabetes (Saxena et al. 2007;
Scott et al. 2007; Zeggini et al. 2007) , bipolar disorder (Scott et al. 2009), Crohn’s
disease (Franke et al. 2010), and several others (WTCCC 2007; Pickrell 2014).

Genome-wide association studies have been successful in humans due to the
design of these studies in which hundreds of thousands or millions of SNPs are
genotyped in large cohorts of individuals. A catalog of published GWA studies is
kept in the NHGRI-EBI Catalog of published genome-wide association studies
(http://www.ebi.ac.uk/gwas). In Table 1, we summarize some of the results found
in this repository for the leading causes of death and disability in the United States
according to the CDC: heart disease, stroke, cancer, type 2 diabetes, obesity, and
arthritis (https://www.cdc.gov/chronicdisease/overview/). Many of these discoveries
are the result of the development of human genetic variation catalogs of such as the
HapMap, the Wellcome Trust Case Control Consortium (WTCCC), and the 1000
Genomes Project.

The International HapMap Project was launched in October 2002 as a database
of human sequence variation at a genome-wide level. It was composed of research
groups located worldwide with genotyping centers being responsible for genotyping
samples on chromosomal regions previously assigned (HapMap 2003). Single
nucleotide polymorphisms (SNPs) identified throughout the genome have been
made accessible through dbSNP database in NCBI (http://www.ncbi.nlm.nih.gov)
following the data-release principles of a “community resource project.” However,
the NCBI HapMap webpage on June 16, 2016, announced that NCBI is retiring the
HapMap resource due to low number of users accessing the data through this portal.

The 1000 Genomes Project ran between 2008 and 2015 and set out to provide a
comprehensive description of common human genetic variation by the application of
whole-genome sequencing to a diverse set of individuals from multiple populations.

The project has finalized with the reconstruction of the genomes of 2504 indi-
viduals from 26 populations using a combination of low-coverage whole-genome
sequencing, deep exome sequencing, and high-density microarrays (Consortium
et al. 2010; The 1000 Genomes Project Consortium 2015). The primary use of
the 1000 Genomes Project data has been the imputation of SNP variants in lower
SNP density datasets. In order to maintain the resources generated by this project,
the international genome sample resource (IGSR) has been created (http://www.
1000genomes.org).

The Wellcome Trust Case Control Consortium (WTCCC) was formed in 2005
to explore the utility, design, and analyses of GWA. Fifty research groups from
the United Kingdom active in researching the genetics of common human diseases
compose this consortium. In 2007, the WTCCC presented GWA studies of
2000 cases and 3000 shared controls for seven complex human diseases of
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major public health importance: bipolar disorder (BD), coronary artery disease
(CAD), Crohn’s disease (CD), hypertension (HT), rheumatoid arthritis (RA), type
1 diabetes (T1D), and type 2 diabetes (T2D) (WTCCC 2007). Further rounds of
GWAS WTCCC1-3 have been carried out since the founding of the consortium
(http://www.wtccc.org.uk).

9.2 Resources for Genome-Wide Association Studies
in Plants

In plants, the research community has mirrored the progress made in humans with
the HapMap Project with the generation of similar resources. Due to its relevance as
a crop model, the initiative was led by maize (Zea mays) researchers in 2009 with the
publication of a first-generation haplotype map of maize (Gore et al. 2009). The
project targeted the genetic variation of the maize genome using sequencing tech-
nology. HapMap 1 characterized a diverse panel of 27 inbred lines (representative of
maize breeding efforts and worldwide diversity)—founders of the maize nested
association mapping (NAM) population. HapMap 2 characterized 103 inbred lines
representing a wide breadth of the Z. mays lineage, comprising 60 improved maize
lines, including the parents of the maize nested association mapping (NAM)
population, 23 maize landraces, and 19 wild relatives (17 Z. mays ssp. parviglumis
and 2 Z. mays ssp. mexicana) (Chia et al. 2012). For the maize haplotype
version 3 (HapMap3), an international consortium of maize research groups com-
bined resources to build whole-genome sequencing data from 916 maize lines,
covering pre-domestication and domesticated Zea mays varieties across the world
(Bukowski et al. 2017).

Medicago truncatula is a close relative of alfalfa (M. sativa) that serves as a model
for investigating the genetics and evolution of legume-rhizobia symbiosis (Stacey
et al. 2006; De Mita et al. 2007; Heath and Tiffin 2007) in addition to the genetics
and evolution of symbiosis with rhizobia and mycorrhizal fungi (Harrison 2005).
The Medicago HapMap Project is an international consortium with the task of
re-sequencing a diversity panel of 384 inbred lines using Illumina next-generation
technology (www.medicagohapmap.org). The resources generated by this project
have been used for GWA studies of symbiotic and agronomic traits, linkage disequi-
librium, evolution, and drought, among others (Branca et al. 2011; Paape et al. 2013;
Stanton-Geddes et al. 2013; Kang et al. 2015).

In wheat (Triticum), the first article from the wheat HapMap Project described the
global patterns of diversity and selection in the wheat genome (Jordan et al. 2015).
The Wheat HapMap variation data of 62 diverse wheat lines was re-sequenced using
the whole-exome capture (WEC), and genotyping-by-sequencing (GBS) approaches
are freely available for download at the sequence repository hosted by URGI at
INRA (https://wheat-urgi.versailles.inra.fr/Seq-Repository/Variations).
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The NextGen Cassava Project was launched with the objective—among others—
of implementing genomic selection in African breeding programs (http://www.
nextgencassava.org/). In addition, phenotypic and genotypic data generated is avail-
able in CassavaBase, a centralized, user-friendly, and reliable database (Fernandez-
Pozo et al. 2015). Moreover, within the project framework, a cassava haplotype map
through deep sequencing 241 diverse accessions identified >28 million segregating
variants.

9.3 Resources for Genome-Wide Association Studies
in Animals

Due to its important contribution to human nutrition, the generation of genomic
resources in animals has been more significant and rapid in the case of the domes-
ticated cattle (Bos taurus and Bos taurus indicus). The Bovine Genome Consortia
composed by both HapMap and Bovine Genome Sequencing and Analysis Consor-
tium had led this effort and represent an extensive collaboration involving more than
300 scientists from 25 different countries (Elsik et al. 2009; Gibbs et al. 2009). In
2009, the Bovine Genome Sequencing and Analysis Consortium published the
genome sequence of the taurine cattle, which provided a valuable resource that has
since then helped to accelerate livestock genetic improvement for milk and meat
production (Elsik et al. 2009).

The Bovine HapMap Consortium characterized the genome structure and annota-
tion with 37,470 single-nucleotide polymorphisms (SNPs) and examined the related-
ness in 497 cattle from 19 geographically and biologically diverse breeds (Gibbs et al.
2009). The 1000 Bull Genomes Project on the other hand aimed to build a dataset of
sequence variant genotypes of individuals that can provide the bovine research
community with genomic resources for imputation of genetic variants into smaller
genotypic dataset for genomic prediction and genome-wide association studies in all
cattle breeds (http://www.1000bullgenomes.com/). In the first phase of the 1000 Bull
GenomesProject,whole genomesof 234 cattlewere sequenced, and following aGWA
approach, they identified variants associated with milk production and curly coat
(Daetwyler et al. 2014).

The 1000 Bull Genomes Project data has been used to test the accuracy of
imputation (van Binsbergen et al. 2014) and more recently for targeted imputation
in QTL regions based on significance in previous pathway studies, GWAS, BayesR
analysis, and signature of selection in the genome (Raven et al. 2016). Similar
HapMap initiatives have been followed for other species such as Ovis aries
(sheep) (http://www.sheephapmap.org/) and Sus scrofa (pig) (Groenen et al. 2010).
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10 Final Thoughts on Genome-Wide Association Studies

10.1 Advantages

The availability of large datasets has allowed scientists to work toward the identifi-
cation, in human genetics, of genetic risk factors for common diseases and in plants
of markers that can be utilized in marker-assisted selection approaches for breeding.
The creation of consortia toward the identification of genes/markers associated with
complex traits has increased collaboration among labs. More importantly the scien-
tific community from different fields has benefited from data generated that can be
used for functional annotation of associated markers.

Whereas, in the past, most studies of genetic architecture required extensive
pedigree or specially designed populations (mating designs), it is now possible to
estimate the amount of heritable genetic variation in almost any dataset where
genome-wide marker and phenotype information are available. The mixed-model
framework for investigating genetic architecture is extremely flexible and can be
used to fit almost any model and thus almost any dataset. As we have discussed,
genomic mixed models do not only allow estimation of the overall additive genetic
variance but can be used in a variety of additional ways. These include partition
variance according to chromosome or genome segments, estimating dominance and
epistatic variances, testing GWAS results for gene ontology enrichments, and
assessing the relative importance of rare versus common alleles.

10.2 Limitations

Perhaps the most important caveat for both GWAS and genomic-mixed model-based
is the unavailability of whole-genome sequence datasets; this is the case particularly
in plants. Although imputed datasets are available, there is a risk that the genetic
variants in low frequency are not detected because of insufficient sample sizes for
imputation of rare variants. So far, genome-wide-associated variants can only
explain a certain proportion of the genetic variance for a number of phenotypes;
the heritability that remains unexplained can be due to variation on the estimates
because genetic architecture is not a fixed, completely knowable quantity. Instead,
genetic architecture is a property of a definable population at a particular moment in
time. We will never discover all causal variants for a trait nor will describe the full
range of their interactions both with other causal variants (epistasis) and the envi-
ronment (GxE).

Genomic mixed models can be computationally intensive to fit. When the number
of individuals increases beyond a few thousands, especially if there is replication
and/or additional variance components to fit, computers with large amounts of
memory and many processors may be required. Most software designed for very
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large datasets (tens of thousands to millions) are developed for human genetics and
do not handle replication.

As described above, variation in the amount linkage disequilibrium between
markers across the genome can generate bias upward or downward of heritability
estimates. While, as we discussed, there are approaches to attempt to deal with this,
there is currently no way to know how much or what kind of bias occurs. Similarly,
unaccounted for or otherwise unknown experimental error and environmental var-
iance can impact variance estimates. For example, in human genetics, datasets
unaccounted for shared environments among study individuals could lead to infla-
tion of genetic variance.

10.3 Future Directions and Perspectives

Most of the associated loci identified to date contain hundreds of variants in LD and
are located outside protein-coding regions. Current GWAS approaches make it very
difficult to identify specific causal variant due to a lack of power and pervasive LD
patterns between the individuals analyzed. As a consequence, the biological mech-
anisms driving these marker-trait associations are poorly understood.

In the future, we foresee GWAS approaches relying on a systems biology
approach that will allow to integrate different sources of information, including
genetic, biochemical, and evolutionary evidence coupled with appropriate molecular
assays that will allow to fully assess the impact of genetic changes onto phenotypes.
For complex quantitative traits, the challenge is even bigger as they might be driven
by a large number of variants with small effects. In this context, we think that new
approaches are necessary; the “omnigenic model” (Boyle et al. 2017), for example,
proposed that “disease-risk is largely driven by genes with not direct relevance to
disease” and that these genes might be affecting the phenotypes indirectly by
interacting with a much smaller number of core genes with direct effect. This kind
of approaches together with the development of efficient GWAS frameworks that
incorporate functional information (Yang et al. 2017) might supercharge the discov-
ery of causal mutations and the biology underlying each phenotype investigated.

The methodology for estimating heritability with marker data, such as those
available in GWAS datasets, remains a rapid area of growth and development. The
data available for GWAS and heritability estimation continues to grow and expand at
a rapid rate. Not only are marker densities continuing to grow in density and shrink
in cost, but also the size of populations and the number of species in which these
methods can be applied are still growing quickly.

The number and complexity of phenotype data that are measured for the purpose
of studying their genetic architecture is also growing. Increasingly, researchers are
collecting transcriptomes, metabolomes, proteomes, and a multitude of highly mul-
tivariate, whole-organismal phenotypic measures on hundreds and thousands of
genotyped individuals. Highly multivariate phenotype data means that multivariate
mixed-model approaches will be a major area for development in the field of

Genome-Wide Association Studies and Heritability Estimation. . . 411



genomic heritability estimation. We will be challenged not just to consider univariate
variances but also the genetic covariances among traits. Indeed, the structure of
genetic variances and covariances among traits is a key property of a population,
which can determine what trait combinations can and cannot evolve.

There is still much computation and software development that is needed to
enable fast and easy analysis of unprecedented amounts of data. Mixed models
need to be flexible, fast, and easy to apply by the increasingly broad range of
researchers with diverse backgrounds and analytic needs. Some examples of theo-
retical and methodological developments that we expect in the future include
improvements to our ability to detect and adjust for linkage disequilibrium in
genomic mixed models and improvements in the partitioning of genetic variance
components.

11 Conclusions

It is estimated that almost 40,000 associations have been found in humans. However,
some people may argue that GWAS have not yet delivered its initial promise as we
have not developed cures for all the diseases we have found associations for. We
must rethink GWAS not as the magic bullet but just as another layer of information
that will allow us to grasp onto the molecular mechanisms that ultimately generate
the phenotypes observed.

Genome-wide association analysis and estimation of heritability should now be
considered complementary endeavors in the study of the inheritance of complex
traits. While GWAS will locate and describe the effects of key QTLs, usually those
that have larger effects, genomic mixed-model estimates of heritability and related
genetic variances will provide the context for interpreting the importance of those
QTL relative to other genetic and environmental factors.
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Abstract Prediction of phenotypes is not only used for selection and breeding in
animal and plant populations but also for the assessment of specific phenotypes,
especially predisposition to diseases and disorders in human populations. The use of
genetic markers has been shown to be useful for prediction and selection for pheno-
typic traits. The concept of using genetic markers for prediction of breeding values or
phenotypes was suggested many decades ago, but applications of marker-assisted
selection were limited due to the low number of markers that could be genotyped and
the low number of confirmed quantitative trait loci (QTL) that could be selected upon.
Genomic selection, in contrast, utilizes dense genetic markers across the whole
genome for the prediction of phenotypes as all QTL can be assumed to be in linkage
disequilibrium with at least one marker. Genomic selection allows thereby choosing
the genetically best individuals without the need to confirm QTL. The concept of
genomic selection, proposed in 2001, has since been further developed and applied.
Nowadays, genomic selection is widely applied in breeding populations of plants and
animals for the selection of future breeding individuals. The chapter introduces the
general concept of genomic selection. It further discusses relevant prerequisites for
the application of genomic selection, including genotyping platforms and reference
populations. Some of the methods applied today as well as suggested advancements
of methods are introduced. The final part of the chapter describes briefly applications
in animal, plant, and human populations (status when writing this chapter), before
concluding with some general notes on genomic selection.
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1 Introduction: Genomic Selection in a Nutshell

The possibility to change the distribution of a trait in animal and plant populations by
means of selection has been developed tremendously over the last 100 years. We
have gained insight into principles of population genetics and have been able to
formulate these principles in terms of statistical models. Quantitative genetic theory
is based on the principles of Mendelian inheritance and explains how selection of
individuals affects the development of a population in future generations and thereby
connects genetics on an individual level to population changes.

Models for genomic selection can be interpreted using quantitative genetic theory,
connectingchangesonapopulation level to the set of genotypesobservedonan individual
level. The idea is that most genes have some effect on a trait and that the sum of all gene
effects for an individual can be predicted as genomic breeding values (GEBVs) using
markers in linkagedisequilibriumwith the causativegenes. In practice, this is donebyfirst
estimating the combined genetic effects for each individual of a reference population and
subsequently using this information to predict GEBVs for the selection candidates. This
requires that extensive genotype information is available both for the reference population
and the selection candidates, which has only been possible for the past two decades.

Modern genotyping technologies enable genotyping of many individuals for a larger
number of genome-wide markers at affordable cost. These advances in genotyping
technologies have been exploited in genomic selection to compute GEBVs (Fig. 1).
Hence, a reference population needs to consist of individuals with both genotype and
phenotype information. Marker effect estimates from the reference population are com-
bined with genotypes of selection candidates to predict the genetic potential of the
selection candidates. Animals with the most desirable genetic potential are kept for
breeding to become parents of the next generation of individuals.

The progress in the field ofmedium- and high-throughput genotyping platforms along
with decreased costs for marker detection via sequencing technologies enhanced the use
of genomic information in breeding (Davey et al. 2011). In 2001,Meuwissen et al. (2001)
published their landmarkpaperon theuseof genome-wide selectionorgenomic selection,
proposing amarker-based selectionmethodology that incorporatesmarker information of
many (dense) markers in the prediction model. Only a decade later, this method was
already employed and implemented in (dairy cattle) breeding programs, and estimated
breeding values (EBVs) based on genomic data (GEBVs) were officially published in a
number of countries (Patry 2011). The use of genomic selection has also been a major
interest for the breeding of crop species (Heffner et al. 2009;Cabrera-Bosquet et al. 2012).
A number ofmethods for the estimation of effects have been suggested (Meuwissen et al.
2001; Habier et al. 2007; de los Campos et al. 2009; Zhong et al. 2009; Kizilkaya et al.
2010), and further developments are on the way, some of which will be detailed later.
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1.1 How Genomic Selection Really Works

Meuwissen et al. (2001) argue that linkage disequilibrium between markers and
quantitative trait nucleotides (QTNs) is the driving force behind genomic prediction.
Observing nearby genetic markers supplies information about the QTN, if there is a
close association between a marker and the QTN. Given the linkage disequilibrium
between QTN and markers as driving force, many expectations and speculations
about the behavior of genomic selection have been put forward (e.g., about benefits
of whole-genome sequence, across-breed genomic prediction), but more often than
not, those expectations and speculations have not been consistent with real data.

Understanding of themechanisms of genomic prediction became clearer whenHabier
et al. (2007) showed that accuracies of genomic breeding values were substantially larger
than zero even if markers and QTNs were in linkage equilibrium. Genetic markers can
capture family relationships and thereby contribute to the accuracy of estimating genomic

Fig. 1 Schematic overview of the concept of genomic selection including the reference population
with both genotype and phenotype individuals and the selection candidates with genotype infor-
mation. Information on breeding values (BV) will be used to select parents from the population of
selection candidates
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breeding values. Habier et al. (2013) described this and investigated the contribution of
three information sources to the accuracy of genomic breeding value estimation: markers
capturing additive genetic relationships, co-segregation, and linkage disequilibrium.

When the training population is small, much of the accuracy of genomic breeding
values is due to markers describing family relationships. A consequence is that the
predictive ability rapidly decays over generations. Only if training populations are
large, marker estimates reflect more of the effect of actual QTNs nearby instead of
additive genetic relationships, and predictions are persistent for more generations.

2 Background

2.1 History of Human-Introduced Genetic Changes
to Populations

Selective breeding in both plant and animal species started many thousands of years
ago. Genetic change over time was achieved by selecting the best-fit individuals as
parents, such that the next generation of individuals was, on average, superior to the
parent generation. Selection based on phenotypic criteria has been performed since
the domestication of species (Rosenberg and Nordborg 2002; Morrell et al. 2012).
While early selection was based on the observation of phenotypes within a group of
individuals, more sophisticated tools are used for selection in plant and livestock
populations as they are used in farming today. At the beginning of the eighteenth
century, Robert Bakewell (1725–1795) established modern breeding by introducing
systematic and structured selective breeding (Sweeney and McCouch 2007).

The demonstration of inheritance and the discovery of basic rules of inheritance by
Gregor JohannMendel in the middle of the nineteenth century established the beginning
of modern genetics. The complexity of phenotypes and their inheritance could then be
explained by their genotypes via rules of allele sharing across generations. Thereafter this
had a major impact on animal and plant breeding.

Many of the basic statistical tools used in quantitative genetics were developed in the
late nineteenth and early twentieth century by Francis Galton and Karl Pearson. In 1918,
Ronald Aylmer Fisher used statistical models to demonstrate the resemblance between
relatives and introduced the analysis of variance (Walsh 2001). Further milestones of
breeding were laid by Jay Laurence Lush from the 1930s and Charles Roy Henderson
from the 1970s and their suggestion of the use of statistical models (Lush 1933, 1947;
Henderson 1975a, b). During the twentieth century, many statisticians, quantitative
geneticists, and breeders contributed to the development and implementation of different
breeding schemes in livestock and plants based on knowledge of trait inheritance and
statistical approaches.
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2.2 Basic Quantitative Genetics Relevant for Breeding

The basic concept of quantitative genetics, applied in breeding, is that an individual’s
phenotype P is determined by its genotypic value G and its environment E (Walsh
2001):

P ¼ G + E

The genotypic value can be decomposed into additive (A), dominance (D), and
epistatic (I ) values in which A accounts for the average effects, D for the interaction
between alleles at one locus, and I for the interaction between alleles at different loci:

G ¼ Aþ Dþ I

A relevant measure applied in quantitative genetics is the narrow-sense heritabil-
ity, h2, which is the proportion of the total phenotypic variance P due to the additive
genetic effects A:

h2 ¼ Var Að Þ=Var Pð Þ
The heritability can be used to describe the phenotypic similarity between relatives

or trait variation due to additive genetic effects.
The heritability is also used for the prediction of the response to selection, in the

so-called breeder’s equation. This equation describes the change of the population
mean over one generation or the response to selection ΔZ, with an applied selection
differential S (Falconer and Mackay 1996; Lynch and Walsh 1998; Xu and Hu
2010):

ΔZ ¼ h2 S

When the heritability of a trait is close to zero, the response will be very little even
if there is strong selection on that trait.

Quantitative genetic analyses initially focused on decomposition of phenotypic
variance into underlying components (like A, E) for quantitative traits (i.e., traits
involving many genes and influenced by environment). More recently, the possibility
to genotype individuals for DNA markers allowed the attention to shift to identifica-
tion of chromosomal regions with (large) effects on quantitative traits: quantitative
trait loci (QTL). Single nucleotide polymorphisms (SNPs) that are causative of the
QTL are hereinafter referred to as quantitative trait nucleotides (QTNs).

2.3 Examples of Breeding Programs and Selection Decisions

Breeding programs aim to change certain traits toward a breeding goal in a population.
The duration until the genetically improved individuals are available for breeding is
expressed as the generation interval. The generation interval is relevant for the genetic
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and economic gains in a breeding program: a shorter interval means that improvement
can be achieved earlier. Quantitative genetic theory has underpinned the design of
selection schemes of plant and livestock populations for many decades. The molec-
ular genetic background of traits has been integrated as a selection tool more recently.
The application of these tools in breeding programs has aided selection of the
individuals with the best genetic merit for the traits of interest. The true genetic
merit, i.e., the true breeding value, of an individual is mostly unknown, and estimated
breeding values can be used to predict how well offspring will perform.

Breeding programs aim to identify the best individuals for breeding to produce the
next and improved generation. Differences across species regarding the reproduction
capacity and the breeding goal traits influence the design of a breeding program.
Crossing of lines can be used to create lines with a new combination of characteristics.
Crossbreeding often exploits hybrid vigor, or heterosis. Heterosis effects are difficult
to predict and are mainly realized in the first generation of crossbreeding. Overcoming
cross-incompatibility is relevant in some species in order to allow new trait combi-
nations. The final goal of crossing is to produce a generation with superior traits from
each of the parental lines. A conflict exists between the need for diversity within the
core breeding population and at least some degrees of uniformity within the produc-
tion. Nucleus populations or diversity panels can be used to ensure the existence of
diverse lines. These nucleus populations are, in many species, kept centrally by few
breeding organizations, which define the breeding goals and design the breeding
schemes (Figs. 2 and 3).

The breeding goal describes which traits are important for genetic improvement and
their relative importance. But not all traits aremeasured on the selection candidates; some
traits are only collected from relatives, and this information can be used for prediction of
breeding values for selection candidates based on basic principles of population genetics.
The more accurate a trait can be measured, the more accurate selection is. Especially
when traits are influenced by other factors, such as the environment, the accuracy of
selection might be negatively affected. Evaluation of performance in a controlled envi-
ronment is one option to reduce the impact of environmental variation on accuracy of
selection, and an alternative option is the evaluation of traits under various environmental
conditions.

Plant lines with improved traits are still mainly selected based on their phenotypic
appearance. However, many generations are needed to produce cultivars with the
desired characteristics through conventional breeding, as well as (multilocation)
testing (Sharma et al. 2002). There are several constraints in plant breeding including
varying outdoor conditions to be accounted for. Also the modes of reproduction
influence the possibilities of plant breeding as crossbreeding is restricted in some
species.

Improvement schemes for livestock populations are often organized around a nucleus
herd. Own performance and performance of relatives (offspring, sibs, parents) are
evaluated for the identification of individuals with the best genetic merit. The pedigree
plays a major role for developing breeding schemes and mating decisions in animal
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breeding. The genetics of sires can be distributed widely via artificial insemination. The
evaluation of the genetic merit targets therefore mainly the sires in livestock populations,
as they have a great genetic impact on their population (Gerrits et al. 2005; Funk 2006).

2.4 Selective Breeding Using Molecular Markers

Selection of breeding stock and lines based on phenotype and pedigree data allowed to
improve many breeding populations. But traits are based on changes at the level of the
DNA. It has, therefore, been suggested that using genetic information based on the
inherited part of the individual, its DNA, will allow a better prediction of the genotypic
value and, therefore, the phenotypic value of an individual or its real breeding value. As
first suggestions for the use of (molecular) marker information in breeding programs
(Dekkers and Hospital 2002), marker-assisted selection (MAS), marker-assisted recur-
rent selection (MARS), and marker-assisted breeding (MAB) were discussed. For a
successful implementation of DNA information in selection scheme information, such

Fig. 2 Example of a traditional breeding scheme in dairy cattle (Bos taurus) with the time frame on
the right side and the different stages of the breeding cycle on the left. Young bulls for selection are
born in month 0 and in month 12 mated to cows. Daughters are born in month 24 and mated in
month 36. The granddaughters of the bulls for selection are born, and data on relevant traits (e.g.,
milk yield, fertility, disease resistance) of the bull’s daughters is collected. Information on these
traits for one lactation is then available in month 60, and bulls can be selected for breeding based on
their daughter’s first lactation performance
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as identification of markers, successful genotyping and validation of genotype and allele
frequency in a large amount of individuals are required. Additionally, validated associ-
ation of the geneticmarker with the trait of interest and an assessment of themarker effect
in a breeding program are needed. Furthermore, any potential negative effects on other
economically important traits need to be excluded.

Selection using genetic markers has been suggested as a preferredmethod for traits
for which phenotypic selection is more difficult, such as traits with low heritability.
Other examples are traits for which the assessment of the phenotypes is difficult and
cost-extensive or can only be done late in life. It has also been shown that MAS is
particularly effective for traits with (one or few) major QTL effects (Gupta et al. 2010;
Cabrera-Bosquet et al. 2012). Not only is the increased accuracy of selection due to
the use of markers in breeding programs the main advantage of MAS but also the
minimization of phenotyping (Bernardo and Yu 2007). In plant breeding, MAS can
also be applied in year-round breeding nurseries or greenhouses where phenotypic
data are less meaningful as their correlation to field data is low. Marker information
can, in such settings, allow a prediction of the phenotypes (Lorenzana and Bernardo
2009). But costs for the identification of useful genetic markers and the implementa-
tion of such markers are relatively high compared to the gain achieved. Somemarkers

Fig. 3 Example of a traditional breeding scheme in pigs (Sus scrofa) with the time frame on the
right side and the different stages of the breeding cycle on the left. Young boars from paternal lines
for selection are born in month 0 and at month 12 mated to sows from maternal lines. Crossbred
offspring are born in month 16 and tested in performance test stations or on farms. The offspring of
the boars for selection are slaughtered, and the information from fattening period and slaughter-
house are collected. Information from reproduction and production is available at approximately
month 26, and boars can be selected for breeding based on breeding values predicted using the
offspring performance
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are also population- or family-specific. It has been, for this and other reasons, stated
that MAS is not well suited for the improvement of crops (Jannink et al. 2010). The
identification of useful markers is time-consuming, and as many traits are influenced
by multiple genes, also a higher number of markers would be needed for MAS for
each single trait (Gupta et al. 2010). Only relatively few causative mutations have
been identified (in livestock) and implemented as a routine component in breeding
programs.

3 Genomic Selection Designs and Strategies

3.1 Designing Genotyping Platforms

One of the prerequisites of the application of genomic selection is the availability of
information from genetic markers across the genome. Many genetic markers were
identified using methods such as Sanger sequencing and their information, for example,
collected in the NCBI database (https://www.ncbi.nlm.nih.gov/). When next-generation
sequencing (NGS) was accessible to a larger number of researchers, the amount of
information increased significantly as whole-genome sequences were available. This
allowed the discovery ofmany potentialmarkers, such as SNPs. The time required for the
sequencing of the full genome of an individual and the costs for it have been reduced
significantly during the last decades (Goodwin et al. 2016). The genome of many species
has been sequenced, and genotyping arrays have been developed based on the sequence
information (Table 1), but the progress on the assembly of a good reference genome, the
availability of full genome sequence information from multiple lines and varieties, and
the development of SNP arrays capturing the complex and repetitive genome of plants is
slow (Somers et al. 2003; Ganal and Roeder 2007; Trebbi et al. 2011). While genome-
wide high-throughput genotyping platforms are available for many livestock species, the
progress in the development of such platforms for plants has been slower.

The gene density differs widely between livestock and plant species. However, it is
mainly the extent of linkage disequilibrium that plays a major role for the application of
molecular genetic tools in breeding andMAS (Chao et al. 2010). Linkage disequilibrium
is strongly related to the population history, especially resulting from evolutionary
history, mating system, population size, admixture, recombination rate, and selection
(Heffner et al. 2009). The decay of linkage disequilibrium varies not only with increasing
physical distance of loci between species but also between populations of the same
species and across chromosomes (Remington et al. 2001; Maccaferri et al. 2005; Chao
et al. 2007;Mather et al. 2007; Tenaillon et al. 2008). Structures of linkage disequilibrium
depend also on the breeding scheme; plant breeders, for example, often use full-sib
families created from crosses of inbred parents, and linkage disequilibrium will be
extensive within each family (Zhong et al. 2009). The marker density required for
genomic selection will therefore depend on the population and breeding structure.
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3.2 Designing Reference Populations

A reference population, also called as discovery or training set, describes the breeding
stock for which information on the relevant traits, including data in multiple environ-
ments if relevant, is available. The individuals of the reference population are genotyped,
and information on their pedigree or relationship is available. Two approaches are
generally offered for the reference population: (1) an established reference population
before the start of the next breeding cycle (e.g., in multiple-stage selection) and (2) the
prediction using a reference set from the same generation as the selection candidates (e.g.,
in one-stage selection) (Marulanda et al. 2016). The decision on the structure of the
reference population and the relationship to the population of selection candidates is
relevant in a genomic selection breeding scheme. Deterministic functions to predict the
accuracy of genomic breeding values include the size of reference population (Daetwyler
et al. 2008): a larger reference population leads to a higher accuracy. When genomic
selection was firstly applied and tested in dairy cattle, only bulls were utilized in the
reference population. For these bulls, information on the tested progeny were available
(as reviewed by VanRaden 2008; Hayes et al. 2009a). As it was assumed that larger
training populations result in more reliable predictions, initiatives to pool reference
populations across countries emerged, such as the European initiative EuroGenomics
(Lund et al. 2011) or a collaboration between the USA and Canada (VanRaden et al.
2009a, b; Muir et al. 2010). It had been pointed out in a review that such international
collaborations are desirable (Dürr and Philipsson 2012), because they result in reference
populations of tens of thousands progeny-tested dairy bulls. Similar approaches have also
been taken in thewheat breeding community to develop universal training populations by
merging large phenotype dataset (e.g., by the Wheat Initiative’s Expert Working Group
on Wheat Breeding Methods and Strategies) (Bassi et al. 2016). Such international
connections of data are still less advanced in beef cattle (Berry et al. 2016) and other
livestock. The size of the reference population is often restricted by the costs. The increase
of the reference population might lead to a shift away from the collection of phenotypes,
but collaborations might allow the elaboration of more phenotypes in a larger reference
population. A reduction of testing with fewer locations or replications in exchange of
more genotyped and phenotyped lines in the reference population has been suggested in
plant breeding to balance limited resources when increasing the reference population
(Longin et al. 2015).

Implementation of genomic selection led to changes in dairy cattle breeding
programs, with less emphasis on progeny testing and selection of fewer bulls, and
genotyping of females has become a necessary complement to maintain and update
reference populations. It has also been a concern in other breeding schemes that the
introduction of genomic selection will reduce the phenotypic evaluation and might
have potential drawbacks in the future.

The size of the reference population depends on the resources, and this will determine
the accuracy of genomic prediction. Also the structure of the reference population and the
relationship to the selection candidates influence the required size of the reference
population. One of the first observations of genomic prediction applied to the real data
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in dairy cattle was that the accuracy of genomic breeding values was dependent on
whether or not the sire of the selection candidate was in the reference population. This
observationwas further sustained by studies on the distance between reference population
and population of selection candidates (e.g.,Habier et al. 2010), reporting that accuracy of
genomic breedingvalues decreasedwith decreasing additive genetic relationship between
bulls in reference population and selection candidates. These observations are also
influenced by the structures of the populations, such as the linkage disequilibrium and
QTL effects. The accuracy of prediction is lower when reference and selection
populations are less related. Adding individuals to the reference population will not
always lead togains, as itwill largelydependon the relationship to the selectioncandidates
(Calus 2016), thus the ability to cover the linkage disequilibrium between markers and
QTL of the selection candidates. Furthermore, if the genetic diversity or the allele
frequencies in the selection candidates change, an update of the training population is
needed (Bassi et al. 2016). The degree of relatedness within a reference population was
also shown to affect the prediction accuracy in livestock, where low relationships among
animals in the reference population result in the highest accuracy of genomic breeding
values (Pszczola et al. 2012).Sucha strategyprobablyensures thewidest rangeofpossible
genotypes present in the reference population. Especially in dairy cattle, where genomic
selection has beenwidely applied, discussions on the actual optimum size of the reference
population are ongoing. An example using cows in the reference population suggested
that an initial size of 2000 cowswould still require that information from600 cowshave to
be added every year to keep the accuracies constant (Pszczola and Calus 2015). In
Holstein Friesian dairy cattle, the size of the reference population exceeds today more
than 30,000 bulls worldwide.

Differences in the design of the reference population in plant breeding do also
depend on the mating system of plants. A study using F6 wheat lines showed that a
reference population of 700 lines allowed the highest predictive abilities. The tested
lines were derived from three different crossing and selfing schemes each based on
60 parental lines (Cericola et al. 2017). Inbreeding plants have higher levels of
linkage disequilibrium compared to the population-wide linkage disequilibrium in
outbreeding plants. The size of the reference populations has to be larger in out-
breeding plants, unless genomic prediction is performed only within families (Lin
et al. 2014). Such difficulties can be aligned to multi-breed populations in livestock
breeding. The design of the reference population has to follow the criteria stated
above also in multi-breed populations. Discussions on the size of the reference
population will therefore seldom be concluded in a single number, but the general
statement of “the more the better” will be relevant. Bassi et al. (2016) reported that
the size of the reference population varies in plant breeding scenarios and can vary
from 60 to 10,000 individuals. They also concluded that the size should be as big as
possible but that other criteria such as relatedness and trait heritability have to be
taken into account (Bassi et al. 2016).
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4 Methods and Models Applied in Genomic Selection

A lot of efforts have been devoted to the development of models for genomic prediction,
and this section presents an overview of the methods. The methods first proposed, and
still commonly used, assume a linear relationship between the phenotype on the one
hand and genotypes on the other hand. More recently, nonparametric approaches have
been proposed that are less dependent on assumptions like linearity and multivariate
normality, among others.

Comparisons of genomic prediction methods have in most cases only identified small
differences in the predictive performance from the empirical data, but the differences are
expected to increase with larger reference populations. There are several reasons why
there might still be small differences in performance between prediction methods.
Firstly, the genetic architecture of majority of the traits considered for genomic predic-
tion points toward a polygenic mode of inheritance (i.e., many QTN with relatively
small effects), and only a few traits are influenced by a smaller number of QTN with a
large effect. Secondly, the validation horizon is often short; methods relying on markers
tracing genetic relationships perform well to predict breeding values in the next gener-
ation, and advantages of methods exploiting linkage disequilibrium are small. Predictive
ability tends to decrease if there are more generations between the selection candidates
and the reference population, more so for methods that rely on markers tracing genetic
relationships than for methods exploiting linkage disequilibrium. Thus, larger differ-
ences between methods can be observed with a longer validation horizon. In addition,
we should expect larger differences in performance between prediction methods as the
sizes of the reference populations increase in the future.

4.1 Parametric Methods

Consider the linear regression equation where a phenotype is modeled as the sum of
additive marker effects:

yi ¼ μþ
Xp
j¼1

Zijuj þ ei ð1Þ

Here yi is the phenotypic observation for individual i, μ is the population mean
(ignoring any systematic fixed effects to keep notation simple), p is the number of
markers, Zij is the genotype coding for individual i for marker j, uj is the additive
marker effects, and ei is the residual effect. The equation is written in matrix form as

y ¼ μþ Zuþ e ð2Þ
where y is a vector of observations (length n), Z is a matrix with genotypes, u is a
vector of marker effects, and e is a vector of random residuals. Genomic breeding
values for selection candidates are estimated as
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bas ¼ Zsbu, ð3Þ
where Zs is the matrix with genotypes for the selection candidates andbu the estimated
marker effects.

Treating marker effects as fixed effects yields the ordinary least squares model
considered by Meuwissen et al. (2001), but the predictive performance of this model
was poor. The number of markers is usually much higher than the number of
observations, and the challenge is to obtain estimates of marker effects that yield
good predictive performance of genomic breeding values. This can be achieved by
elaborated prior distributions of marker effects (i.e., treating marker effects u as
random effects) and/or choice of estimation method. Estimation methods that have
been evaluated rely on variable selection, shrinkage, or a combination of both. A
short summary of the shrinkage methods is given in the sections below; an extensive
treatment of all different approaches is outside the scope of this text, and readers are
referred to reviews (e.g., de los Campos et al. 2013a; Gianola 2013; Kärkkäinen and
Sillanpää 2013).

Shrinkage methods attempt to balance goodness of fit and predictive value by
minimizing an objective function consisting of a measure of lack of fit (e.g., residual
sum of squares or log likelihood) and a penalty term that causes estimates to be
shrunk toward zero. Several options exist for the penalty term: in ridge regression,
the penalty is proportional to the sum of squares of estimates of u (L2 norm), and in
LASSO (least absolute shrinkage and selection operator), the penalty is proportional
to the sum of absolute values of u (L1 norm). The elastic net algorithm uses a
weighted combination of the sums of squares and sums of absolute values of u as
penalty.

The choice of penalty term corresponds to assuming a specific distribution for the
marker effects u. For instance, application of ridge regression is equivalent to best
linear unbiased prediction (BLUP) of marker effects when marker effects are
assumed to follow a normal distribution with mean zero and a variance that is the
same for all markers (VanRaden 2008). Other prior distributions for marker effects
that have been considered in the context of genomic prediction are the Student
distribution (Bayes A) and the Laplace distribution (Bayesian LASSO).

Variable selection methods exploit the assumption that only a small proportion of
explanatory variables affect the outcome. The motivation to employ variable selec-
tion methods in genomic prediction is that not all genetic markers will be associated
with a QTN. The expected effect of markers not associated with the QTN would then
be zero. Meuwissen et al. (2001) proposed Bayes B, a variable selection approach
where a large portion (π) of the markers was expected to have a zero effect and the
remaining proportion (1–π) an effect drawn from a Student distribution. In their
approach, the parameter π had to be specified a priori, but other solutions have been
put forward to estimate this parameter from the data (e.g., Habier et al. 2011). The
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number of components in the mixture is not restricted to two, and prior distributions
consisting of multiple mixtures have been applied [e.g., Bayes R (Erbe et al. 2012)].

Equation (2) is referred to as the SNP model because it models the SNP effects u
(length of u is equal to the number of markers, p). Interestingly, the SNP model can
be reparametrized by substituting Zu with a vector of genomic breeding values a
(length equal to the number of individuals, n). Hence, Eq. (2) can be written as

y ¼ μþ aþ e ð4Þ
If marker effects are normally distributed ueN 0; Iσ2u

� �� �
, the distribution of a

reduces to

a � N ZZ 0σ2u
� � ¼ N 0;Gσ2a

� �
, ð5Þ

where G can be regarded as the realized genetic relationships between individuals.
So, the element on row i and column j in the matrix Gσ2a is the covariance between
phenotypes of individual i and j.

This approach is commonly referred to as GBLUP. The advantage of this re-
parameterization is that genomic breeding values can be predicted using models and
software similar to those used for pedigree-based breeding value estimation (with the
pedigree-based relationship matrix replaced by a genomic relationship-based
matrix). Furthermore, since the number of individuals in the reference population
is typically much smaller than the number of markers, the computational demands
are much lower.

The variance components σ2u and σ2a are the same if ZZ0 ¼ G. By scaling all
columns in Z to have zero mean and variance 1/p, the variance σ2a can be interpreted
as the additive genetic variance for the trait, and G is the genomic relationship
matrix.

The effectiveness of GBLUP depends on how well the genomic relationship (derived
frommarkers) reflects the actual relationships at QTN. This finding (de los Campos et al.
2013b) motivates studies on other approaches to construct the genomic relationship
matrices. These differ, for example, in the definition of the base population (Meuwissen
et al. 2011), in the age of the relationships they trace (e.g., Sun et al. 2016), or in the
weight that is given to chromosomal segments (e.g.., Shen et al. 2013).

4.2 Semiparametric Methods

In this section, we present GBLUP models where the genomic relationship matrix
G can either be smoothed, which will decrease the difference in genetic correlations
between individuals, or G can be made more rugged to increase the differences in
genetic correlations between individuals. These models can be advantageous because
they tend to remove noise in the G matrix and give better genomic predictions when,
for instance, marker interaction effects are simulated.
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The first models presented are geostatistical kriging and reproducing kernel Hilbert
space models. The term kriging is used in the geostatistical literature and is equivalent to
empirical BLUP. The aim of kriging in geostatistics is to model the correlation between
observations located on a map. The pair-wise correlations depend on the distance
between the positions where the observation was recorded. By modeling each position
as a random effect, the values at positions without any observation can be predicted. This
is similar to genomic prediction, but instead of having relatedness (based on genetic
markers), the distances between geographical positions are used.

A common family of correlation functions used for kriging is the family of Matérn
covariance functions (named after the Swedish statistician Bertil Matérn). It depends
on a couple of tuning parameters and the Euclidean distance between geographical
positions. In the application for genomic prediction, the covariance function depends
on the Euclidean distance between individuals in terms of their additive relationship.

Ober et al. (2011) showed that the kriging model gives better genomic predictions
than the standard GBLUP model for simulated interaction effects. They also discuss
the similarity and differences of the kriging model with the reproducing kernel
Hilbert space (RKHS) approach of Gianola and van Kaam (2008). Similarly as for
geostatistical kriging models, RKHS finds a correlation matrix that smooths the
genomic correlation matrix (Morota and Gianola 2014).

Both spatial kriging and RKHS models have been shown to outperform GBLUP
in genomic predictions when marker interaction effects are included in simulations.
However, they are usually based on an additive specification of the marker data with
the coding of marker genotypes being evenly spaced integers (such as 0, 1, and 2).
Hence, they are not developed specifically for fitting nonadditive marker effects but
are nonetheless much more flexible than the standard GBLUP model resulting in
better genomic predictions.

4.3 Models Including Nonadditive Effects

Many animal and plant breeding schemes involve crossing of different breeds or lines or
genotypes with the goal of harnessing the beneficial effects of breed complementarity
and heterosis. The basis of heterosis are nonadditive effects like dominance or even
interactions between loci (Falconer and Mackay 1996). It can be useful to include these
effects in the statistical models, if these effects contribute substantially to the traits. The
basic idea is to decompose the genotypic value into additive (A), dominance (D), and
epistatic (I) values.

4.3.1 Models Including Dominance Effects

The SNP model that fits simultaneously additive and dominance effects of SNPs can
be written as
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y ¼ μþ Zuþ Xd þ e, ð6Þ
where a vector of dominant SNP effects d is included for each of the p SNP markers
and an element in the matrix X, xij, is the indicator variable for the heterozygous
genotype of the jth SNP for individual i (Toro and Varona 2010).

In the standard SNP-BLUP, both additive and dominant effects are assumed to
have normal distributions:

u � N 0; Iσ2u
� �

, d � N 0; Iσ2d
� �

,

The equivalent GBLUP model is

y ¼ μþ gþ e ð7Þ
Here g is a vector of genomic breeding values (of length n) with
V gð Þ ¼ Gσ2u þ Dσ2d,

where G is the additive and D the dominance genomic relationship matrix.

4.3.2 Models Including Epistatic Effects

The SNP-BLUP model can be extended to include interaction effects between alleles
at different loci:

y ¼ μþ ZuþWvþ e ð8Þ
where v is the marker interaction effect, a normally distributed random effect, and the
matrix W is constructed so that

Wj ¼ Zi � Z

with subscript giving column index with j ¼ (i � 1)p + i where p is the number of
columns in Z and � is the direct Hadamard product. Thus, W has n rows and p � p
columns.

The equivalent GBLUP model is

y ¼ μþ gþ e ð9Þ
with V gð Þ ¼ Gσ2u þ Hσ2v and H ¼ G � G is the epistatic relationship matrix.

However, the extensions of GBLUP in Eqs. (7) and (9) are expected to increase
prediction accuracies only if training populations are large, so that marker estimates
reflect more the effect of actual QTNs nearby, instead of additive genetic relationships.
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5 Accuracies of Genomic Estimated Breeding Values

Accuracies of genomic estimated breeding values are used to quantify the predictive
performance and how well can the model predict the real phenotypes of the selection
candidates based on information from the reference population. Several attempts
have been made to derive deterministic formula to predict accuracy of genomic
breeding values (e.g., Goddard et al. 2011). The predictive performance is com-
monly summarized with two statistics: correlation between genomic breeding values
and phenotypes and the coefficient of regression of phenotypes on genomic breeding
values. Phenotypes can be actual observations, summary statistics like daughter/
progeny deviations (VanRaden and Wiggans 1991), or de-regressed breeding values
(Garrick et al. 2009).

Genomic selection studies commonly include an assessment of the predictive
performance. This should avoid overfitting of the model that occurs easily as the
number of marker effects to estimate is often much larger than the number of
observations. Cross-validation is widely used as a technique to assess predictive
performance. It divides the reference population into a training and a validation set,
estimates marker effects in the training set, and then validates these. Various cross-
validation designs have been applied: (1) two-generation scheme, (2) k-fold cross-
validation, and (3) repeated subsampling validation. In the two-generation scheme,
individuals are assigned to the training or test set based on their generation number
or year of birth. The youngest individuals are included in the test set. In a k-fold
cross-validation, individuals are divided into k disjoint sets of equal size. In each
fold, one set is used for testing, and the other k�1 sets are used for training. This
splitting is repeated until all sets have been used once for testing. In the repeated
subsampling scheme, the reference population is randomly split into a large (e.g.,
95%) training and a small testing (e.g., 5%) set. Again the splitting is repeated many
times. All these cross-validation schemes have advantages and disadvantages, some
of which are discussed by Morota and Gianola (2014), but there is no consensus
about which one is the best. The two-generation scheme is the scheme closely
resembling a practical genetic evaluation scenario and is the cross-validation scheme
most often applied in genomic selection studies.

The purpose of genomic evaluation applied in practice is to predict the performance of
future offspring. However, the offspring may be several generations separated from the
reference population. In dairy cattle, for example, only the second or third generation of
ancestors of selection candidates is included in the reference population in an efficient
genomic selection scheme. Nevertheless, most cross-validation studies in dairy cattle have
a validation horizon of at most one generation. This is similar in plant populations,
especially in the discussed one-stage selection, which is the more common genomic
selection scheme (Marulanda et al. 2016). Such a short validation horizon has two main
consequences: (1) the predicted accuracy of selection is too optimistic, and (2) the
comparison of models may not reflect the actual performance of the models. For example,
models better at capturing linkage disequilibrium betweenmarkers andQTNs are expected
to perform better for a longer validation horizon than models heavily relying on genetic

Genomic Selection 449



markers tracing family relationships. A design with a short validation horizon might be a
problem in outbreeding plants, as population-wide linkage disequilibrium is large and
predictions are more feasible using a family design.

As a concluding remark, the design of a cross-validation study needs to mimic the
intended use of genomic breeding values, such that the estimated predictive ability is
consistent with the actual application in mind, and several opportunities exist to
improve cross-validation studies.

6 Further Advancements of Methods

The methods and models for the use in genomic predictions are continuously advanced.
Some of the suggested extensions of the concept of genomic selection are described here.
Such extensions are the inclusion of methods for the manipulation of genomes (genome
editing), more detailed information (biological information, data on transcriptome or
proteome), or improved genotyping tools (use of sequence information and the concept
of genomic selection 2.0).

6.1 Integration of Genetically Engineered Individuals

Genetically engineered or genetically modified plants can be found in the food produc-
tion chain, while the first genetically modified livestock species has only recently been
approved for consumption by the FDA after an approximately 20-year approval period.
Different techniques can be used for the modification of genomes including transfor-
mations, such as microinjection and electroporation. Transformations were the first
modifications successfully applied in plant and livestock species. Other modifications
include gene knockouts or knock-ins, which are more common in model species like
mice, to test the functions and effects of genes. The inhibition of genes for a short time
can be done using, for example, RNA interference (RNAi) employing short RNAs.
Many of these methods, especially the modification of individuals using transforma-
tions, are rather unspecific, and multiple trials need to be done until the modification is
successful. Examples of modifications include changes of the product composition [e.g.,
golden rice (Oryza sativa)], introduction of resistance/tolerance against pathogens [e.g.,
ringspot virus-resistant papaya (Carica papaya)], resistance/tolerance against insects
[e.g., potato (Solanum tuberosum)], resistance/tolerance against herbicides [e.g., soy-
bean (Glycine max)], abiotic stress tolerance [maize (Zea mays)], and pollination control
system (e.g., maize) in plants as well as enhanced growth [AquAdvantage® salmon
(Salmo salar)], enhanced production [alpha-lactalbumin pigs (Sus scrofa)], enhanced
metabolism (EnviroPig®), and the production of human drugs [lysozyme goat (Capra
aegagrus hircus)] in livestock (Forabosco et al. 2013).

A more recently developed method to modify parts of the genome is genome
editing, which allows the targeted change of one or few nucleotides at a specified
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position in the genome. Genome editing requires programmable nucleases, which
were firstly identified in 1996. Methods commonly used for genome editing include
zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN),
and the Cas9-guide RNA system (CRISPR) (Gaj et al. 2013). Genome editing is of
major interest in plants and also in livestock since modifications are more targeted
and success rates are higher. While traditional modifications were applied in plants,
their applications were more restricted in livestock. The opportunities offered by
genome editing have therefore led to a huge interest of the livestock research
community. More than 300 edited pigs, cattle (Bos taurus), and sheep (Ovis aries)
have been developed since 2011, using nonhomologous end joining or homology-
dependent repair (Tan et al. 2016). Edited animals were produced via zygotes or
somatic cells. The technique can be used to produce animals as potential organ
donors (pig), disease models (pig), bioreactors (cattle), and founder animals of
genetic lines with enhanced productivity (cattle, sheep, goat) and to introduce
disease resistance into populations (pig) (Proudfoot et al. 2015). Other traits of
interest in livestock are especially the horn phenotype in cattle, mastitis resistance
in dairy cattle, and resistance to the African swine fever in pigs. The selection for
some of these traits cannot be achieved using other breeding methods since relevant
alleles are not present in the population (e.g., resistance to African swine fever). The
selection of other traits will require long selection periods with a high risk of
inbreeding, for example, if the frequency of the alleles is too low to allow selection
without loss of diversity (e.g., selection against horns).

The introduction of such new tools into livestock breeding programs will require
that relationships between individuals are taken into account to decrease the risk of
higher inbreeding. A simulation study suggested that the application of a combina-
tion of genomic selection and “promotion of alleles by genome editing” might lead
to substantial improvements of response to selection (Jenko et al. 2015). However,
one prerequisite of genome editing is that QTNs are identified. It was furthermore
suggested that the breeding programs need to be adapted to avoid a rapid depletion
of genetic variation in the population.

6.2 Inclusion of Biological Information

The initial and currently applied idea of genomic selection is that of a black box
approach, where knowledge of the function of the markers used for selection is not
considered. Nevertheless, incorporating genotypes from whole-genome SNP arrays
into existing evaluation systems has been successful in increasing the accuracy of
EBV of young animals for commonly recorded traits (Lôbo et al. 2011; Northcutt
2011; Wiggans et al. 2011). However, the applicability of these predictions is limited
to selection within breeds as the prediction ability of the estimated marker effects is
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highly dependent on the relationship between the reference population and the
selection candidates (Boichard et al. 2016).

If the black box approach of genomic selection is overcome and additional
biological information is available, genomic evaluation may become more accurate,
especially for crossbreed predictions. One of the initiatives to improve accuracies is
the “1000 bull genome project” (Daetwyler et al. 2014). The objective of this project
is to make the sequence data of over 1000 influential sires available. This should
improve imputation, genome-wide association studies (GWAS), and genomic pre-
diction and, more importantly, promote the identification of causal variants.

The availability of accurately annotated genomes, both structural and functional, is
essential for the biological insight into traits (Stein 2001). In order to relate markers to
genes and phenotypes, a fully assembled genome with known gene locations and
structures, information on noncoding RNA, regulatory and repetitive regions is required.
Moreover, the functional annotation like gene ontology (GO) classification that describes
products of eukaryotic cells in terms of molecular function, biological processes, and
cellular components, as well as descriptions of metabolic and signaling pathways and gene
regulatory networks, can provide valuable information. Currently, several such databases
are available and updated continuously for a variety of species. Some examples are the GO
browser agriGO (Du et al. 2010) that represents 45 agricultural species, including plant,
fungi, insect pests, and livestock species, and the Reactome (Croft et al. 2011), MetaCyc
(Caspi et al. 2014), and KEGG (Kanehisa et al. 2008) databases that integrate genomic,
chemical, and systemic functional information.

The incorporation of biological information into the genomic evaluation can be
done in various ways. A simple and straightforward approach is the selection of
subsets of markers from the whole-genome SNP arrays that are associated with genes
or metabolic pathways of interest. This could be extended to include a polygenic
component, using pedigree relationships to account for the rest of the genome
(Snelling et al. 2011). Moreover, the priors of Bayesian models could be shaped
by biological knowledge and become more informative (MacLeod et al. 2016).

6.3 Transcriptome and Proteomic Assisted Selection

High-throughput technology is not only applicable to the information of the genome but
also transcriptome, proteome, and metabolome. Information on the transcriptome, such
as data from RNA sequencing, does provide information on mutations within the
genome and adds knowledge of probable functionality as only expressed genes will
contribute to the phenotype. High-throughput platforms such as expression arrays may
further allow collecting expression information for many loci and individuals. High-
throughput platforms do also exist for the analysis of the proteome (Chawade et al.
2016). Peptide-based selection using mass spectrometry might assist selection for certain
phenotypes. Its application had been tested in plants and allowed the selection for traits
for which no good genetic markers were available (Chawade et al. 2016). The analysis
of metabolites and their variance was suggested as another (post-genomic) tool for
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improved selection (Fernie and Schauer 2009). The use of metabolomics-assisted
breeding, possibly in combination with sequencing and reverse genetics, might be useful
for a number of traits including selection for resistance and tolerance traits in plants
(Zamir 2001; Morandini and Salamini 2003; McCouch 2004; Takeda and Matsuoka
2008; Fernie and Schauer 2009). The feasibility of the use of expression profiles or
protein signatures in future breeding systems has yet to be explored. A combination of
tools based on traits might be a possible scenario for the improved selection especially
for the improvement of complex traits.

6.4 Alternative Genotyping Methods

Genotyping of many individuals or lines is a prerequisite for genomic selection. The
density of genotyping platforms required for a reliable prediction depends on the
population of selection candidates and its genome structure. Genotyping arrays with
various densities are available. The use of customized and population-specific arrays
with lower marker density to genotype selection candidates and combining these
with sequence data of influential ancestors of the selection candidates can reduce
costs for genomic selection. Such approaches display alternatives to the use of high-
density genotyping arrays and are applied in some breeding programs. The imputa-
tion of genotypes can additionally be used to increase the information content. The
process of imputation implies that genotypes are predicted, which are not directly
assayed in a sample. Ancestors will be genotyped using information on the full
genome sequence or high-density marker arrays. If information on such dense
genotyping is available, most haplotypes in the populations are covered and thus
can be implied in individuals with information on fewer genetic markers (Marchini
and Howie 2010). The increase of genotype information in the population might
improve the accuracy of genomic selection (Druet et al. 2014). Imputation can also
be used for the correction of genotyping errors. However, one essential step to allow
accurate imputation is the correct phasing of the genomic information (Hickey 2013;
Hickey et al. 2014).

Other alternatives to higher- or lower-density genotyping arrays exist. These should
allow to reduce costs by skipping the need to develop genotyping arrays. The use of
genotyping by sequencing (GBS) opens opportunities to fill the gap between highly
explored lines of major interest and non-reference lines (Spindel et al. 2013; Williams
et al. 2014). Genotyping by sequencing is especially of interest when little or no genomic
information is available, no dense genotyping platform exists, or genetically highly
diverse material is used. This approach is also useful for large genomes. It is therefore of
interest especially in plant breeding. However, well-established bioinformatic infrastruc-
tures are required to fully explore genotyping by sequencing.
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6.5 Genomic Selection 2.0

The term “genomic selection 2.0” was introduced based on the advance of tools for
genotyping and sequencing (Hickey 2013). It was suggested that, while progress has
been made using genomic selection in general, the large amounts of sequence data
generated could be utilized even more. Genomic selection 2.0 is based on the use of
big data and the availability of sequence data in combination with imputation
methods and aims to integrate new methodologies for the integration of de novo
mutations and variants different from SNPs. The genomic information of a huge data
set in combination with phenotypic information should be powerful to identify QTNs
for many traits. Genomic selection 2.0 intends to avoid sequencing at a high depth,
which is not feasible for breeding derived from a large number of male ancestors, as
in livestock breeding, or many potential breeding lines, as in plants. The choice of a
lower-coverage sequencing for all individuals could assist to discover the haplotypes
and allow the imputation to full sequences for all individuals. The power of meth-
odologies will depend on the advancement of applications such as imputation
algorithms, technologies for genotyping, and infrastructure of bioinformatic analysis.
Furthermore a new generation of genomic selection is an important step to allow
higher recombination in populations. It should allow the integration of de novo
mutations, occurring from random events during recombination or being introduced
by methods such as genome editing (Hickey 2013).

7 Genomic Prediction Applied in Animal, Plant,
and Human Populations

7.1 Examples of Genomic Selection in Livestock

7.1.1 Cattle (Bos Taurus)

The practical application of genomic selection is of immense interest in dairy cattle, where
GEBVs are now common selection criteria across many countries (http://www.interbull.
org 2013). This is not the case for other livestock populations, especially in populations
where crossbreeding is used, such as pig or beef cattle. Also the lack of phenotypes and
genotypes for a reliable prediction of a GEBV or the focus on traits with lower heritability,
such as fertility in beef cattle, does restrict the use of genomic selection (Johnston et al.
2012). Genomic selection is expected to be more cost-efficient compared to traditional
selection schemes as it allows the reduction of the expensive evaluation of phenotypes and
allows an earlier selection of male animals for further breeding. A concern is often the cost
for genotyping (of the reference population), but with the ongoing development of
genotyping platforms, this might be less of a problem in the near future. Changes might
need to be applied to the structure of the breeding industry, which will require a long-term
planning (Johnston et al. 2012). But the question is how genomic selection is implemented
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in different breeding programs, and which relevant aspects of the species and breeding
program have to be taken into account?

Genomic selection is today a selection scheme in dairy cattle, especially Holstein
Friesian, in many countries (Patry 2011). Decreased costs for genotyping had progressed
genomic selection to a routine in some herds (Hayes et al. 2009a; Hayes et al. 2009b).
Jannink et al. (2010) stated that the implementation of SNP information will reduce the
costs for genetic evaluation. The cost for obtaining marker information can be equal to
the costs to collect phenotypic information from 10 to 20 daughters per bull. Selection in
dairy cattle is focused on bulls, and many breeding programs focus on genotyping solely
bulls. Costs for genotyping can therefore be kept relatively low. The breeding decisions
can be made by preselecting young bulls for further testing in the so-called preselection
scheme. An alternative option to make use of the genotypes is the turbo scheme which
allows the earlier selection of new breeding bulls (Pryce and Daetwyler 2012; Bouquet
and Juga 2013). Additional genotyping of cows will allow a better assessment of
additional traits and to increase the size of the reference population. One advantage of
genomic selection in dairy cattle is the drop of the length of the generation interval from
around 5 to 6 years in traditional dairy cattle breeding programs to around 1.5 years
when using genomic selection (Pryce and Daetwyler 2012). The increase of the genetic
gain in general might be attached to the risk of higher inbreeding as it might reduce the
number of genetically superior breeding animals. Genetic markers should therefore also
be used to avoid loss of diversity by carefully observing the remaining of haplotypes and
the structure of the population (Young et al. 1988).

The implementation of genomic selection is also of major interest for beef cattle
breeding, for which generation intervals are also long. A number of differences compared
to dairy cattle exist, including the lower rate of the use of artificial insemination and the use
of crossbreeding. The lower rate of artificial insemination, compared with dairy cattle,
reduces the contribution of a selected individual to the genetic progress in the population at
large and thereby reduces the amount of resources that can be invested in genotyping. The
genetic makeup of populations is relevant, and genomic selection would probably be
restricted to purebred operations. Predictions in crossbred populations are not as accurate
as compared to those in purebred populations. Beef cattle populations are less uniform
compared to dairy cattle populations, crossbreeding is common, and both Bos taurus and
Bos indicus populations are a part of breeding schemes (Garrick 2011). The effective
population size in many beef cattle population is low as is the number of bulls with reliable
EBVs. This will restrict the reference population and the reliability of the estimated
GEBVs (Johnston et al. 2012). The combination of data across countries and/or across
breeds is an option to overcome the small size of reference populations, but higher-density
marker panels might be required to reach reliable predictions when using such datasets
(de Roos et al. 2009). Genotypes of cows can also be included to achieve larger reference
populations, additionally allowing farmers to select superior cows (Saatchi et al. 2012).
This would allow a better selection for fertility, one of the most important traits in cows,
which has a low heritability. The inclusion of cows in the selection scheme would require
changes to traditional breeding using progeny testing, which focusses largely on bulls.
Genomic selection in beef cattle could thereby lead to a more balanced breeding goal via
inclusion of animals and traits at the farm level.
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Genomic Selection in Dairy Cattle
The seminal publication by Schaeffer (2006) illustrated that adoption of
genomic selection could decrease the costs of running a breeding program
and increase genetic progress, compared to progeny test schemes that had been
in place for many years. The development of a high-density SNP array
(Matukumalli et al. 2009) removed a last practical hindrance for the imple-
mentation of genomic selection.

The first official release of genomic breeding values was in 2009 in the
USA (Wiggans et al. 2011). At that time, just over 5000 progeny-tested bulls
were included in the reference population. Using an approach resembling
Bayes A, reliabilities of genomic breeding values were on average 50%
(VanRaden et al. 2009a, b). This meant an increase of 23% in reliability
compared to the reliability of parent averages.

Dairy producers in the USA were quickly to adopt the technology, and by
2012 half of the Holstein service sires were genotyped as young bulls, i.e.,
bulls with just genotype information and no daughter information (Hutchison
et al. 2014). Also breeding companies made changes to their breeding pro-
grams and started to use genotyped young bulls as sires of sons. As a
consequence, Hutchison et al. (2014) and García-Ruiz et al. (2016) could
observe a significant decrease in the generation interval.

Evidence of increased of genetic gain due to genomic selection was
presented by García-Ruiz et al. (2016), who reported that the genetic gain
for yield increased twofold after the introduction of genomic selection. For
fertility, life span, and udder health, even larger increases in genetic gain were
observed, in agreement with the prediction that genomic selection would be
especially useful for traits with low heritability.

In recent years, focus has been expanded from genotyping predominantly
males to genotyping females as well. In July 2017, a new milestone was
reached in US dairy genetics with the submission of the two millionth
genotyped animal to the US dairy database (Press release, 2017; https://
queries.uscdcb.com/News/CDCB%20AGIL%20Two%20Million%20Geno
type%20Mark.pdf). Genotyping females will allow commercial dairy farmers
to make more informed breeding decisions in their own herd but also provides
new opportunities for improved herd management.

7.1.2 Sheep (Ovis aries) and Goats (Capra aegagrus hircus)

Breeding of small ruminants, sheep and goats, varies as the size and structure of
enterprises differ between countries. Small ruminants are especially part of the
production system in low-income countries as the resource inputs are low. However,
larger breeding cohorts exist in countries with options for higher input and selective
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breeding based on performance information (van der Werf 2007). Differences in the
management, structure, and size of the populations and breeding programs depend
on the product (meat, wool, or milk) and also the location of the farm. The use of
local breeds is more common for sheep and goat breeding; thus populations are small
and breeding is more often country-specific. The integration of genomic selection
into breeding programs is especially discussed for countries with large breeding
populations, such as Australia, New Zealand, Great Britain, South Africa, or France.
Reference populations have been established in some countries for the collection of
reliable phenotypes (Swan et al. 2012). The main restriction of the application of
genomic selection in small ruminants is the lack of the data/information on a large
number of phenotypes, which is necessary for the creation of a reliable reference
population. The shorter generation interval in small ruminants (compared to cattle)
and the relatively high genotyping costs will restrict the genetic gain when using
genomic selection. Effective population sizes are often large in small ruminants as
these populations are usually more heterogeneous compared to other livestock
populations. And finally natural service is still more common in many sheep
breeding schemes, which will restrict the number of possible fertilizations from
each ejaculate to one. More rams are required when natural service is used instead of
artificial insemination. Other relevant points to be considered when applying geno-
mic selection in small ruminants are the options for the size of the reference
population (Shumbusho et al. 2013); population-specific factors in sheep, including
seasonality of the production system; small-scale use of artificial insemination; and
low value of individual animals, which will require different approaches of genomic
selection compared to dairy cattle (Baloche et al. 2014). Predictions using crossbreed
animals are also relevant in sheep. This should allow the application of genomic
selection in a larger range of breeding populations and covering existing breed
diversities in populations.

7.1.3 Pigs (Sus scrofa)

Separate selection schemes at the nucleus level, one for the paternal production-
oriented breeds and one for the maternal reproduction-oriented breeds, exist in pig
breeding. This structure needs to be considered when using genomic selection.
Traditional selection has a larger focus on performance traits with a selection of
superior sire lines for improved carcass and meat traits. While genomic selection in
male lines can improve selection efficiency/effectiveness, phenotypes of relatives
might be needed to increase the reference population (Tribout et al. 2012). Genomic
selection could also take better care of the selection for maternal traits. The shift of
the focus to maternal traits will especially be feasible when total costs of genotyping
are reduced. Simulation studies have shown the improved accuracies of selection for
economically important traits also in female purebred lines (Lillehammer et al. 2011;
Tribout et al. 2012). However limitations exist for the prediction of performance of
crossbred animals, which are usually used in the final stages of the production and
often as maternal lines. Genetic correlations between traits in cross- and purebred
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animals are less than 1 (Dekkers 2007). Suggestions to overcome the limitation of
the less than unity genetic correlation between crossbred and purebred performance
have been made, such as the integration of QTL information into breeding decision.

7.1.4 Poultry/Chicken (Gallus gallus domesticus)

Poultry has dual use and is therefore bred in different lines to allow for differential
selection for egg and meat production. The generation interval in poultry is relatively
short with 1 to 1.5 years, and the rate of genetic improvement in traditional breeding
is more than double in chicken compared to cattle or pigs. The implementation of
genomic selection could reduce the generation interval to only 6 months. But the
population sizes need to be carefully evaluated to reduce costs of genotyping on the
one hand while not reducing the effective population size. Adequate genotyping
platforms have been recently developed, and first predictions showed the potential
for genomic selection to increase genetic gain in poultry breeding (Preisinger 2012).
However, the advantage and cost-efficiency over conventional breeding have to be
proven before genomic selection could be applied as a selection tool in privately
owned poultry breeding companies (Preisinger 2012). Hypothetical studies have
also suggested the implementation of genomic selection in broiler lines. However,
genotyping strategies need to be chosen carefully to reduce costs without the loss of
important information on marker-phenotype relationship (Avendaño et al. 2010).

7.1.5 Aquaculture

The introduction of genomic selection has also been discussed in aquaculture, especially
fish. Genotyping tools will enable to control inbreeding, but costs are currently the main
inhibitor for a quick adoption of genomic selection in fish breeding schemes (Nielsen
et al. 2011). Male and female fishes have many offspring; the contribution of male and
female individuals to the breeding cohort is therefore high. If the use of genomic markers
can improve selection in fish breeding, the expected genetic gain can be twice as high
compared to traditional selection using BLUP. The use of genetic markers could also
assist controlling inbreeding more effectively (Nielsen et al. 2011). Aquaculture breed-
ing programs might need to be redesigned entirely to accommodate genomic selection.
Such changes can be a reduction of number of families or reduced phenotypic evaluation
(Sonesson and Meuwissen 2009; Nielsen et al. 2011). A combination of traditional
BLUP estimation, preselection of candidates, and low-density genotyping arrays might
be one possibility. It could reduce costs for genotyping many potential parents and thus
reduce the expected genetic gain only slightly (Lillehammer et al. 2013).
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7.2 Examples of Genomic Selection in Companion Animals

Estimated breeding values are used successfully for selection in some horse and dog
populations, and genomic selection is discussed for further improvement. The lack
of large enough reference populations is often the restricting factor for the imple-
mentation of genomic selection. Most dog breeds are based on a few founders, and
the effective population size is relatively small. The use of genetic markers for
selection is feasible. Genotyping arrays are available for both horses and dogs.
Genetic markers should improve the predictive ability and lead to a more accurate
selection. On the other hand, many of the traits used for selection are complex and
not always measureable on a reasonable objective scale. The implementation of
genomic selection will require a careful design of an appropriate reference popula-
tion with reliable and relevant phenotypes.

7.2.1 Dogs (Canis lupus familiaris)

Only a few studies have investigated the application of genomic selection in dogs
(Sánchez-Molano et al. 2015). Dog breeding is usually done based on pedigrees and
phenotypic measurements. Breeding goals include improved health with traits
aligned to the breed standard while avoiding inbreeding. Inherited disorders, such
as hip dysplasia, heart problems, and certain kinds of cancer, put traditional dog
breeding into negative lights and need to be taken into account in breeding programs.
Since traits related to health often have a late onset, information from genetic markers
using data from a large reference population would therefore be useful. The use of
genomic selection or prediction models would also allow a better correction for
environmental factors (among which the influence of the breeder). Problems to
overcome in dog breeding before genomic selection could be applied are the need
of collecting data from many dogs for developing a reference population of appro-
priate size and the need for reliable phenotypes and for continued phenotype
collection after the introduction of genomic breeding values. Genomic selection is
a potential tool to improve selection and especially traits related to welfare (such as
health or inherited defects) of pedigree dogs.

7.2.2 Horses (Equus ferus caballus)

The sport horse industry aims for a more accurate selection to reach high genetic
improvements. Generation intervals in horses are around 8–10 years, and earlier
selection, for example, by using genetic markers (Haberland et al. 2012; Stock et al.
2016), could increase the rate of genetic improvement. Some of the traits of interest
are also related to behavior and temperament, which are difficult to measure
objectively. The establishment of international collaborations is not always straight-
forward. Limited exchange of genetic material leaves many small and (semi-)
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isolated populations at risk of decreasing effective population sizes, increased
inbreeding, and potential increase in prevalence of inherited diseases. Large refer-
ence populations with reliable phenotypes are needed to apply genomic selection
with high accuracies. Genomic selection will improve accuracies achieved with
EBVs in young animals and also horses imported from other countries for which
only scarce information on relatives is available in the importing country. Genomic
selection will be especially useful for traits with late onset and low heritability. In a
comparison of several selection strategies against osteochondrosis, van Grevenhof
(2011) found genomic selection to be a realistic option for the Dutch warmblood
population. Similar to dog breeding, a very relevant aspect in horse breeding is the
structure of many small-sized studs and fewer large enterprises, compared to
livestock breeding, with its challenges to achieve the level of collaboration needed
to put in place an organized scheme necessary for a successful implementation of
genomic selection. Also international collaborations will be necessary as they have
the potential to increase the reference population.

7.3 Examples of Genomic Selection in Crop Plants

The status of the implementation of genomic selection in different crop species
varies. Genomic selection is of interest to the public and private crop breeding
community. One main reason for the search of improved selection tools is the stable
and high costs for phenotyping. As little can be done to reduce costs per line, the only
option is a reduction of the number of lines to be phenotyped. The crop breeding
community hopes for a significant reduction of costs for the development of new
breeding lines when using genomic selection instead of traditional phenotypic
selection (Heffner et al. 2009; Heffner et al. 2011; Resende et al. 2012b). But the
implementation of genomic selection will depend on costs for genotyping and the
availability of whole-genome sequencing and/or genotyping platforms. Crop breed-
ing programs are versatile, and strategies for the implementation of genomic selec-
tion will need to be adjusted for each breeding program. Hybrid vigor or heterosis is
important in many crop breeding populations, and models for genomic selection
should also be able to take nonadditive effects into account (Duvick 1999).

Traditional selection is often based on phenotypic selection. Breeding of inbred
lines for the production of hybrids and crossing of diverse parental lines for the
production of new inbred lines in successive cycles of selfing are the two main
strategies. Phenotypes might differ between the plant materials used for selection in
early and advanced cycles of breeding because the number of tested lines in early
cycles is often too large for a cost-effective collection of all relevant phenotypes. The
use of phenotypes from the final cycles of breeding might therefore reflect more
useful data as they will most accurately reflect the final product. The estimation of
marker effects based on advanced cycles of selection (Zhao and Xu 2012) needs to
be considered carefully. Nonadditive effects due to heterosis or inbreeding effects
can change the prediction accuracies. The choice of the reference population has to
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consider these effects. Also the structure of the reference populations is important,
and one option for a high accuracy of prediction is that individuals in reference and
validation subpopulations should show a close relationship (Asoro et al. 2011).

An additional difficulty in crop species is the impact of genotype by environment
(GxE) effects on performance of lines (Lorenzana and Bernardo 2009; Heffner et al.
2011). Advanced generation populations in traditional breeding are therefore tested
across different environments. The adaptability of crop lines is a relevant criterion for
the successful production in the field. The evaluation of genotyped lines across
different environments can increase the gain and cost-efficiency of genotyping
(Bertin et al. 2010; Xu and Hu 2010; Morrell et al. 2012). Sequencing of selected
lines in combination with the repeated collection of phenotypic data has been another
suggestion to overcome an inaccurate estimation of genomic breeding values caused
by genotype by environment effects (Morrell et al. 2012).

7.3.1 Rice (Oryza sativa/Oryza glaberrima)

Reports on genomic selection in rice are rare, and pedigree breeding based on pheno-
types is still the predominant breeding method (Li and Zhang 2013). Successes have, for
example, been made in increase of yield, but yield potential needs further improvement
in the future. Also selective breeding success stories to improve complex traits (such as
drought tolerance) are limited. One of the reasons for this limitation is the lack of
information on reliable phenotypes especially from hybrid breeding, which is increas-
ingly common in rice (Yan et al. 2011). There is furthermore little genetic variation in
the current breeding populations; genotyping might assist to adjust breeding strategies to
avoid the loss of important genes due to a more narrow gene pool (Breseghello 2013).
Genotyping can also assist to identify more diverse parental lines, which can then be
used to achieve high heterosis effects in crossbred populations (Chen et al. 2013). But
more research is needed to fully exploit the possibilities of genomic selection in rice.

7.3.2 Maize (Zea mays)

Large efforts are underway for the implementation of genomic selection in maize,
another important crop in many countries around the globe. Significant improve-
ments have been made since the domestication, and there is little resemblance
between the original Balsas teosinte (Zea mays ssp. parviglumis) before domestica-
tion and modern maize plants today. Improvements are especially focused on tassel,
ear, cob, and kernel characteristics, flowering traits, as well as resistance to drought
and pathogens. Genomic selection will improve the breeding process further as it
allows the prediction of untested lines, including testcrosses, in advanced breeding
populations (Albrecht et al. 2011). One additional advantage of the application of
genomic selection in maize is the reduction of the generation interval. Phenotypic
evaluation is not required throughout the entire selection process when genomic
selection is used, and generations of lines can be bred in greenhouses (Zhao et al.
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2012). The design of the reference population requires good knowledge of the
population structure and genetic relationships within and across relevant lines
(Albrecht et al. 2011; Windhausen et al. 2012). Biparental or diversity panels and
testcrosses are important/useful in maize breeding. Advanced breeding populations
are often based on the performance in many testcrosses. But genotyping of all
testcrosses will be expensive, and preselection is required. Genetic markers can be
used to investigate genetic differences between lines to select more diverse individ-
uals for crossing (Albrecht et al. 2011). Different strategies for genomic selection are
being tested in maize. International centers, such as the International Maize and
Wheat Improvement Center (CIMMYT), drive research in this sector.

7.3.3 Wheat (Triticum aestivum)

It has been shown that the implementation of genomic selection can lead to higher
genetic gain per unit time and cost reduction compared to traditional pedigree-based
selection in wheat (Burgueno et al. 2012). But the use of related populations in the
reference and selection set is a major factor to achieve a reliable accuracy when using
genomic selection in wheat (Crossa et al. 2013). Information from the reference
population for predictions needs to be collected in environments which are similar or
the same to those of the selection candidates as environments play a major role
(Crossa et al. 2011, 2013). Accuracies across field trials can be increased when
information based on many lines and different environments are included in the
modeling of the genetic effects (Burgueno et al. 2012; Dawson et al. 2013). Wheat
breeding focusses on a number of traits, including grain yield, quality traits, toler-
ance to abiotic stresses (drought and heat), and disease resistance, as listed in a
review from the CIMMYT breeding scheme (Guzman et al. 2016). A good pheno-
typic recording of disease traits is important for the selection of more resistant lines.
However, evaluation of infection traits is time-consuming and costly. Genomic
selection can be used as a strategy to improve the gene pool for resistance (Rutkoski
et al. 2011) and also other relevant agronomic traits. It allows the implementation of
historic information and the prediction of many traits at the same time. No additional
costs may incur if lines are selected based on predicted phenotypes from genomic
information as shown in the example of the first wheat line traits of the CIMMYT
breeding program (Guzman et al. 2016).

Genomic Selection in Spring Bread Wheat: CIMMYT’s Breeding
Efforts
The International Maize and Wheat Improvement Center (CIMMYT) has
discussed the use of genomic selection for the improvement of their wheat
and maize breeding programs early on. The spring bread wheat program is one
of the examples in which genomic selection has been tested, and details of the

(continued)
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program have been described in Battenfield et al. (2016), and a summary is
provided here.

The F7 spring bread wheat lines were derived from F5 lines, which were
tested and evaluated for quality traits for 1 year in Mexico. Superior lines from
testing were chosen for advanced end-use quality testing. Five plants per lines
were used for genotyping using genotyping by sequencing with further impu-
tation of missing genotypes. Marker effects were calculated using a number of
models including ridge regression best linear unbiased predictor, reproducing
kernel Hilbert space, partial least squares regression, elastic net, and random
forest. The efficiency of the models in predicting breeding values was tested
using cross-validation on data across multiple years trained at 80% randomly
selected data to predict 20% masked data, as well as forward prediction trained
on all prior data. The data collection for the described spring bread wheat
modeling started with trials harvested in 2010 and included a total of 47,817
lines in the yield trial, of which 7858 lines had been screened for quality. From
a total of 5520 of these lines, phenotypes and genotypes were available
until 2015.

When comparing the results of predictions using cross-validation and
forward prediction, it was concluded that cross-validation will likely lead to
an overestimation of the prediction ability of genomic selection. On the other
hand, only small differences were observed between the predictive abilities of
using different models for genomic selection. Correlations between the
observed and predicted phenotypes differed for different traits and varied
between years. The response to selection using phenotypic and genomic
selection increased between 35% (test weight, kg h L�1) and 147%
(alveograph P, tenacity divided by L, extensibility, mm mm–1). One main
advantage when implementing genomic selection in the CIMMYT spring
bread wheat program is the possibility to select for phenotypes, such as
wheat quality, which will, in a phenotypic selection program, only be used
as selection criteria during late stages of the breeding program. This advantage
is common to many other crop species, most of which evaluate major traits of
interest only late in the breeding pipeline. Accuracies from the tested models in
the spring bread wheat program were high enough to allow the application of
genomic selection and increased with larger training populations. Genomic
selection will allow a reduced phenotypic evaluation, which currently requires
more seed material and which represents a considerable cost factor. While
genomic selection might not replace the collection of phenotypes, it will allow
early selection of future breeding material. A 1.4 to 2.7 times greater gain from
selection was further predicted when the number of selection candidates
increases from 2000 to 10,000. The implementation of genomic selection in
the CIMMYT spring bread wheat breeding program has started in 2012, and it
is predicted that it will enable the selection for specific end-user traits.
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7.3.4 Barley (Hordeum vulgare)

A shorter breeding cycle and thereby early selection gain is also the expectation
when using genomic selection in addition to phenotypic evaluation in barley breed-
ing. The accuracy of genomic selection is higher if correlations between reference
and selection populations are high and/or trait heritabilities are low (Iwata and
Jannink 2011). Typical traits used in the breeding goals are yield or yield-related
traits (grain dry matter yield or thousand kernel weight), quality traits, and resis-
tances against diseases. A carefully selected reference population may allow an
improvement using genomic selection compared to phenotypic selection even in
biparental crosses (Jannink et al. 2010). But the predictive ability depends often on
the relatedness, the population structure needs therefore to be taken into account, and
the number of markers required will depend on population structure and the linkage
phase (Thorwarth et al. 2017). A reference population might use more inbred or
highly replicated samples, more diverse samples, or lines different from the popu-
lation used for phenotypic selection. Genomic selection might also help to improve
decisions on crossbreeding (Bernardo 2010), if a reference population is well
selected. This is especially relevant in self-pollinating plants, such as barley,
where time-consuming crossing by hand is required in order to produce biparental
crosses. However, some studies express concerns regarding the risks of lower
genetic variation due to the loss of favorable alleles (Jannink 2010), especially
when breeding cycles are shorter.

7.3.5 Other Crop Species

Other crop species, with complex breeding goals, are forage plants, for which the
aim is to increase production as well as maximize perennial persistency. Perennial
forage grass [mostly ryegrass (Lolium perenne)] plots should be used with a consis-
tent quality and quantity over many years; deployment of hybrid breeding is,
therefore, not applicable (Wilkins and Humphreys 2003). Genomic selection should
especially improve the prediction when correlations between phenotypic evaluation
and performance are low, such as for complex traits or traits that could be recorded
only in advanced reproduction cycles. The use of genetic markers might assist the
reduction of the lengthy periods for phenotypic selection (Hayes et al. 2013;
Resende et al. 2014). However, data and sample management from parental lines,
including recordings of pedigree information, need to be improved. Genomic selec-
tion should allow a focus on a few traits during the phenotypic evaluation and will
enable to control that relevant alleles remain in the breeding cohort (Resende et al.
2014). The use of genetic markers might be more efficient for the introgression of
specific genes compared to backcrossing (Wilkins and Humphreys 2003).

Application of genomic selection has, until now, been less discussed for other
crop species including examples from the genus Brassica (Cowling et al. 2009;
Cowling and Balazs 2010; Cullis et al. 2010; Wurschum et al. 2014), oats (Avena
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sativa) (Asoro et al. 2011), potato (Solanum tuberosum) (Barrell et al. 2013), sugar
beet (Beta vulgaris) (Hofheinz et al. 2012; Wurschum et al. 2013), sugarcane
(Saccharum officinarum) (Gouy et al. 2013), or soybean (Glycine max) (Shu et al.
2013). Some restrictions are the availability of genotyping tools, sizes of possible
reference populations, as well as the need for further improvements in evaluation of
phenotypes.

It had been suggested that modifications to breeding programs (such as number of
lines per breeding cycle, number of test staged in the program, more collaborations
between breeders) might be needed to achieve economic gain via genomic selection
(Cowling and Balazs 2010; Hayes et al. 2013). It is important to keep in mind that
the selection unit is not a single plant but a heterogeneous line, variety or plot.
Genomic selection needs to be adapted to address the traits and structure of the
distributed product, breeding schemes which are used to produce seeds from inbred
or hybrid lines for the use by farmers.

7.4 Examples of Genomic Selection in Trees

The generation interval, breeding cycle, and duration until phenotypes can be
evaluated in tree breeding are long. The identification of better estimators for the
quality seedlings for the production is therefore a major interest for the forest and
fruit tree industry. Advantages of using genomic selection will arise mainly from the
shorter selection cycles (Iwata et al. 2011).

7.4.1 Forest Trees

Testing different scenarios of genomic selection in eucalyptus breeding for height
and diameter at multiple ages allowed the total breeding cycle to be halved (Resende
et al. 2012a). Intensive progeny testing can be eliminated, and a second clonal trial
will not be needed allowing for good economic returns (Resende et al. 2012b).
Methods to reduce the maturity age (breeding duration) and speed up propagation
are already implemented in tree breeding. However, emphasis should be put on
reducing the testing phase if the total breeding interval needs to be reduced (Resende
et al. 2012a). Even though it had been concluded that genomic selection will,
alongside other reproductive methods, decrease the total time of a breeding cycle
in conifers, it has also been seen that models predicted early during the breeding
cycle, for example, in seedlings, have only limited applicability for the selection of
older trees. Also the comparisons of predictions across locations did not lead to high
accuracies for all scenarios (Resende et al. 2012a). Additionally, genetic regions
explaining trait variation were often population-specific as shown using eucalyptus
populations (Resende et al. 2012b). Older data and genotypes within the same
breeding scheme including crossings of the same elite trees might therefore be
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more useful to create a reference population aiming for high accuracies, as suggested
in some of the scenarios in conifers (Iwata et al. 2011).

A number of studies had been conducted to identify markers associated with
relevant traits (e.g., wood quality, wood formation, growth, hardiness, drought
response, disease resistance) in trees, but not many of those markers are currently
being used in breeding programs (Thavamanikumar et al. 2013). Genomic selection
has been tested as a theoretic approach in forest trees using simulated datasets;
however, many studies show the application of real data (e.g., Resende et al. 2012a;
Beaulieu et al. 2014b). Genomic selection has especially been suggested as a useful
tool in elite breeding programs where relatively low number of markers are adequate
to cover structures of linkage disequilibrium (Thavamanikumar et al. 2013). But the
rapid decay of linkage disequilibrium in most tree populations is one of the main
problems identified in studies. It was suggested that this limitation could be avoided
when using elite trees and thereby introducing a genetic bottleneck. A prediction
model built on data from progeny of crosses between elite trees can additionally be
used to select elite trees via genomic selection. A study compared estimated breeding
values and genomic breeding values using cross-validation within clones from half-
sib families of loblolly pine (Pinus taeda). Even though derived accuracies were
relatively high, this was suggested to be due to family linkage rather than identified
historic linkage disequilibrium as only few genetic markers were used (Zapata-
Valenzuela et al. 2012). A study in maritime pine (Pinus pinaster Ait.) showed
good predictive ability for different traits, despite the low marker coverage and low
linkage disequilibrium (Isik et al. 2016). A more comprehensive breeding scheme
was simulated for a population of conifers (Iwata et al. 2011) for which different
scenarios were tested for a 60-year breeding program in a seed orchard. The use of
genetic markers in a genomic selection scheme could also provide additional
information on parentage since some of the traditional tree breeding programs, for
example, in eucalyptus breeding, are open-pollinated (Zelener et al. 2005). Studies
have also shown the potential of genomic selection to improve traits in spruce
compared to traditional pedigree-based selection (Beaulieu et al. 2014a, b; Ratcliffe
et al. 2015; Lenz et al. 2017). The potential of genomic selection over traditional
breeding has been shown in recently domesticated or undomesticated populations of
trees (e.g., white spruce) but has been suggested for within populations or families
due to the low marker coverage (Beaulieu et al. 2014a, b).

Genomic Selection in Eucalyptus
Conventional tree breeding is typically characterized by long breeding cycles.
Hybrids are often preferred in Eucalyptus breeding schemes as they are
superior to their parents in the most relevant traits, including growth, wood
quality, and biotic and abiotic stress resistance as they inherit relevant char-
acteristics from each of the parents (Tan et al. 2017). The cycle of a conven-
tional breeding scheme in Eucalyptus can take between 12 and 18 years;

(continued)
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genomic selection does, therefore, offer new opportunities as it might reduce
this cycle. However, when selecting superior tree clones in hybrid eucalypt
breeding, both additive and nonadditive effects are relevant (Resende et al.
2017). Relatedness of selection and training population can additionally lead
to over- or underestimation of the prediction accuracy. It was suggested that a
high marker density will be advantageous in such situations (Resende et al.
2017).

Tan et al. (2017) and Resende et al. (2017) used the Illumina Infinium
EuCHIP60K, which includes more than 45,000 SNPs to study controlled
crossings of E. urophylla and E. grandis trees. The aim was to test genomic
selection for the selection of superior F2 individuals for traits height, volume,
circumference at breast height, basic wood density, and screened pulp yield.
Genomic best linear unbiased prediction, ridge regression best linear unbiased
prediction, Bayesian LASSO, and reproducing kernel Hilbert space regression
were tested in these studies. Predictive abilities of the genomic selection
models differed based on the selection scheme, with the highest predictive
abilities obtained from cross-validation in a between-family selection includ-
ing full- and half-sib individuals (Resende et al. 2017). The mean accuracies
varied between 0.34 and 0.54 depending on the traits and reached maximums
of 0.73 to 0.87 in the best scenario based on relatedness. The predictive ability
using different models varied from 0.27 to 0.274, but all models of genomic
selection did outperform other pedigree-based predictions. Also this study
showed that the relationship between training and selection candidates, as
well as the size of the training population, had a large impact on the predictive
ability (Tan et al. 2017).

It was concluded from both studies that (a) genomic selection will reduce
the time until superior breeding lines are selected and (b) data obtained from
genotyping provide additional information on the genomic relationship matrix
and can be used for the estimation of heritability. However further issues need
to be resolved, such as the selection across generations and environments. The
inclusion of nonadditive effects and the estimation in hybrid breeding as
purebred parents will not provide information for accurate predictions in
hybrid offspring.

7.4.2 Fruit Trees

Traits of interest for breeders of fruit trees are fruit quality (e.g., firmness, astrin-
gency, soluble solids, and acidity), precocity, yield, and disease resistance. The
selection using traditional methods is difficult as most of these traits are polygenic
or complex and controlled by many genes. Information using genetic markers may
allow to identify relevant QTL, but methods like MAS are only applicable for traits
with a few QTL with major effects, while genomic selection allows the prediction of
the total genetic value or phenotype and is thus more applicable for complex traits
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(Kumar et al. 2012a). Only a few studies have evaluated the potential of genomic
selection in fruit trees, such as apple (Malus domestica), grapes (Vitis vinifera), or
pear (Pyrus) (Kumar et al. 2012a; Kumar et al. 2012b; Iwata et al. 2013; Myles
2013). Most of the molecular markers used in apple breeding have focused on
resistance traits and applied markers for marker-assisted selection. But such single-
gene markers did not provide a method for long-time disease resistance selective
breeding because pathogens or pests did develop new strategies to overcome such
resistances (Kumar et al. 2012a). Genomic selection is suggested as a possibly better
alternative as it incorporates multiple markers and might allow a selection including
genes with smaller effects. Two alternative strategies are suggested: the use of
genomic selection for parent selection (as in forest trees for the elite parent lines)
or for the selection of future cultivars (Kumar et al. 2012a). Preliminary results in an
apple and pear tree population have indicated that genomic selection will allow
selection prior to expensive phenotypic evaluation and might have the potential to
speed up the selection process. However cross-validation within the same generation
of trees has been used to derive the accuracies (Kumar et al. 2012a; Iwata et al.
2013). The application of genomic selection in crossbred individuals is relevant in
fruit trees. Crossbred scenarios will require the prediction of nonadditive effects.
One additional point of consideration is the use of grafts. Full-sib families are
commonly used in apple breeding programs, and seedlings are grafted onto clonal
rootstocks, a strategy which differs from the cloning used for phenotypic evaluation
in forest trees (Kumar et al. 2012a).

If genomic selection in tree breeding can provide similar accuracies as conven-
tional breeding, it will be able to increase genetic gain and reduce sizes and costs for
breeding programs significantly. But strategies need to be developed to allow either
long-term effects with low decay of accuracy over several generations or options for
a cost-efficient regular updating of the prediction model. It has yet to be shown how
genomic selection will perform in crossbred situations and across multiple genera-
tions, as many of those studies apply their simulation in a single generation only
(Grattapaglia and Resende 2011; Kumar et al. 2012a; Zapata-Valenzuela et al. 2012;
Iwata et al. 2013).

7.5 Examples of Genomic Prediction Applied on Human
(Homo sapiens) Populations

Genomic prediction has been suggested as a useful tool in assessing genetic predispo-
sition for human diseases and personalized medicine (de los Campos et al. 2010;
Makowsky et al. 2011). However, genomic prediction has not been successfully applied
to any great extent in humans yet. Nevertheless, the models for genomic selection have
been successful in human studies to estimate the heritability of complex traits (Yang
et al. 2010).
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The accuracy of genomic predictions in a test population with estimates based on
trait values measured in a reference population depends largely on the variance in
relatedness between pairs of individuals in the test and reference populations or
equivalently the mean linkage disequilibrium over all pairs of loci (Goddard et al.
2011). In humans, linkage disequilibrium is small, and useful genomic prediction
would therefore require a very large reference set. Consequently, genomic prediction
has not been found to be as useful as in animal and plant populations with larger
linkage disequilibrium.

The statistical models developed for genomic selection have been found to be
extremely valuable in human genetics for heritability estimation. Separating genetic
and environmental effects in humans has been notoriously difficult in the past
because human populations generally consist of small families where relatives
share many environmental factors. Yang et al. (2010) showed that by combining
all SNP information from practically unrelated individuals (i.e., pair-wise genomic
correlations between individuals typically smaller than 0.1) in a GBLUP, it is
possible to estimate the heritability of complex traits. By using unrelated individuals,
any possible confounding of genetic and environmental effects is eliminated.

8 Future Directions and Perspective

Many of the genomic selection research and development efforts focused on improv-
ing the accuracy of genomic breeding values, exploring a large range of parametric
and nonparametric models for genomic prediction. While the application of genomic
selection requires robust machinery for genomic prediction, it is important to realize
that the real benefits of genomic prediction can only be harvested when accompanied
by changes in the breeding program. Optimizations of breeding strategies that utilize
genomic breeding values are thus far underexplored, and much gain can be expected
from studies on novel and innovative breeding schemes. Synergies between genomic
selection and reproduction techniques and/or genome editing are examples of com-
ponents of such breeding schemes. Another example of an element to consider in the
design of breeding schemes is that strategies for genotyping selection candidates can
affect the composition of the future reference population, giving rise to a complex
optimization problem if the aim is long-term genetic improvement.

Genotype information can also be used for population management. This relates
not only to conservation of populations at risk but also for the maintenance of genetic
variability in commercial populations. Genomic selection was believed to have a
positive impact on rates of inbreeding, but the first indications of experience from the
field report increased rates of inbreeding in genomic breeding schemes. However,
there remains much scope for development of genomic tools that consider both
genetic progress and maintenance of genetic diversity.

There is much potential to utilize genomic information for prediction of pheno-
types of animals, plants, and trees, in order to tailor management, similar to utilizing
genomic prediction for personalized medicine discussed in the context of human
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genetics. For example, mating schemes can be optimized using genomic information
to avoid inbreeding or to capitalize on hybrid vigor and other nonadditive genetic
effects. Moreover, knowledge about the predisposition to certain diseases can be
used to direct preventive measures to individuals with elevated risk.

In summary, genomic information can in the first place be used to enhance genetic
gains and offers also opportunities for improved management, at various levels.

9 Conclusions

Since the first suggestion of genomic selection and prediction in 2001, the devel-
opment of genotyping methods has allowed the introduction of this advanced
selection tool across many populations. Breeders are hoping for an easier and
more accurate selection tool, which allows an earlier selection of advanced lines
or individuals. Early estimations based on information from dairy populations
revealed that the application of genomic selection should increase the rate of genetic
gain and that genomic selection has the potential to revolutionize animal breeding
(Schaeffer 2006; Hayes et al. 2009a; Thornton 2010; Goddard 2012). Similar
improvements have also been predicted for plant breeding. It has been shown in
studies using empirical and simulated data that the use of genetic markers will
accelerate breeding and reduce the generation interval/time for the development of
new varieties (Rudi et al. 2010). Genomic selection in combination with high-
throughput phenotyping might revolutionize the selection for complex traits
(Cabrera-Bosquet et al. 2012). In Holstein Frisian dairy cattle, the implementation
of SNP information was predicted to provide as much information as real data from
phenotypes from 10 to 20 daughters per bull (Jannink et al. 2010). Available SNP
information would thereby allow to collect phenotypic records from fewer offspring
with no loss of accuracy. However, statistical models for different breeding scenar-
ios have to be developed (Heslot et al. 2012). Inclusion of nonadditive effects, such
as heterosis or genotype by environment interactions, will be relevant for some traits
and in some populations. Improved phenotyping has to be established as the
accuracy and throughput of phenotype measurements are currently the main limiting
factors (Lorenzana and Bernardo 2009).

There is little doubt that genomic selection is a success in the main dairy cattle
breed, Holstein Friesian. Genomic selection is also practiced in other dairy cattle
breeds, but not as successful in terms of accuracy of selection as in the Holstein
breed, and it remains unclear if the successes can be repeated in other species. Further
advancements in technology are needed in situations with complex population
compositions and genome structure. Massive sequencing at low coverage (genomic
selection 2.0) and better use of biological knowledge as priors in genomic prediction
are promising directions of future developments. Good knowledge on the function-
ality of mutations is imperative, to be able to target the right QTN in selection and
avoid unwanted side effects.
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The statistical models used for genomic selection in livestock have been proven
useful to estimate heritabilities in human genetic studies. Genomic prediction has
also been suggested as a tool to predict genetic predisposition of human health
disorders, even though not many success stories are documented to date. Similar to
prediction phenotypic in humans, genomic prediction has potential to be useful for
management purposes at agricultural farms to optimize production processes.
Sequencing data is currently used in breeding populations, but reliability of the
data and the information acquired from the data have to be questioned: how complex
can data be in order to be implemented in prediction models and how much
background do we need on the inheritance of genome structures different from
polymorphisms. There is little doubt that the inclusion of more information on
genotypes will improve predictions. Whether the inclusion of information from
molecular genetic markers will be advantageous to other phenotypic and environ-
mental measures is probably a question of costs, rather than results.

The current advances of the methods, some of which introduced here, need
further discussion. Methods and models will need to be tested from case to case,
and different models might be needed for different traits. Much of the benefits from
genomic selection arise from the possibility to determine the outfall of Mendelian
sampling as soon as a DNA sample can be taken. The phenotypes can therefore be
predicted with higher accuracy as exact genotypes are already known. It thus seems
pertinent to determine the accuracy of Mendelian sampling deviations calculated
from genomic breeding values, and to consider that statistics in the comparison of
models and methods, apart from some exceptions (e.g., Rius-Vilarrasa et al. 2012),
this is rarely done.

The validation of prediction models needs careful consideration. Accuracies based
on cross-validation might not reflect accuracies of selection achievable in breeding
schemes applied in practice. Many of the current selection schemes in plant breeding
are based on phenotypes recorded during the first steps of selection, which may be
different from those for the final breeding goal. The correlations to final breeding goal
might therefore be low. Application of genetic markers will allow a better prediction
of early selection. However, accuracies should be calculated based on models appli-
cable to real breeding populations.

Despite the current pitfalls, the concept of genomic selection has led to a number of
advances driven by the need for improved selection in plant and livestock populations. It
has contributed to the fast application of genotyping and sequencing tools in nonhuman
populations. It has also opened new opportunities and advanced options for methods for
prediction models. Phenotyping has been put in the spotlight again, as reliable pheno-
types are required for accurate predictions. The options of a better use of phenotypes have
led to an extension of measurements and inclusion of complex traits, especially such
related to health/welfare and sustainability, into selection schemes.While such progress is
not solely based on the development of genomic selection, the new opportunity for the
use of genome-wide marker sets for the prediction in populations has assisted such new
opportunities.
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Part IV
Population, Evolutionary and Ecological

Genetics Applications and Inferences



Population Genomics Provides Key
Insights in Ecology and Evolution

Paul A. Hohenlohe, Brian K. Hand, Kimberly R. Andrews,
and Gordon Luikart

Abstract Population genomic tools have revolutionized many aspects of biology,
as detailed throughout the chapters of this volume. In particular, population geno-
mics has provided key insights into ecological and evolutionary processes in natural
and managed populations. These studies address a wide range of questions, includ-
ing demography, phylogeny, genetics of ecologically relevant traits, and adaptation.
They have also facilitated the conservation and management of biodiversity and
harvested populations. Rather than exhaustively document the applications of pop-
ulation genomics in ecology and evolution, in this chapter we provide perspectives
on a few key issues confronting researchers seeking to use population genomic tools
in non-model systems. A wide variety of molecular and computational genomic
approaches are available and have been used in ecological and evolutionary studies.
There is no single best approach; rather, the genomic approach used should be
tailored to best address the particular study goals and guided by the biology of the
system. A large number of trade-offs, costs, and benefits distinguish genomic
approaches, which we discuss below. To illustrate these issues, we focus on several
published case studies and assess how the research questions were addressed.
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1 Introduction

1.1 Defining Population Genomics in Ecology and Evolution

Population genomic approaches are applied to a wide and growing range of ques-
tions in ecology and evolution (Table 1). Some of these questions are long-standing
subjects of traditional population genetic studies, but genomic tools provide greatly
improved accuracy or the ability to use far fewer sampled individuals. Other
questions in ecology and evolution, particularly those that involve identifying
specific loci with functional importance, are newly accessible with genomic
approaches. The experimental design, molecular techniques, and analytical tools
used also vary widely, and a major challenge of applying genomic tools in ecology
and evolution is choosing among all of these options. We discuss these consider-
ations in detail below, highlighting a number of published studies that provide
illustrative examples of population genomics in ecology and evolution.

There are multiple ways to define the term “genomics” and to distinguish
population genomics from population genetics. Traditional population genetics has
a long and rich history over the past century, and much of the classical theory of
population genetics (e.g., Fisher 1958; Wright 1978) was developed before there was

Table 1 Examples of research issues in ecology and evolution that are addressed with population
genomic approaches

Issue in ecology and evolution Analytical methods and metrics

Broad-sense genomics

Estimation of genetic diversity Heterozygosity, allelic diversity, nucleotide diversity

Effective population size Linkage disequilibrium (LD), two-sample methods

Population structure, admixture Bayesian clustering, principal component
analysis (PCA)

Source population assignment Clustering methods

Inbreeding Identity-by-descent methods

Narrow-sense genomics

Mapping phenotypic traits Genome-wide association studies (GWAS)

Fine-scale demographic history Coalescent, diffusion approximation methods

Fine-scale estimates of current his-
toric hybridization

Phylogenetic, haplotype-based methods

Loci for local adaptation Outlier methods, genotype-environment association
(GEA), multilocus covariance

Loci for inbreeding depression GWAS

Loci for adaptive introgression Outlier, cline analysis

Defining population units on local
adaptation

Outlier, GEA

These are split into “broad-sense” and “narrow-sense” genomic studies (see text for definitions of
these terms). Also shown are some of the classes of analytical approaches used to address each
issue, illustrated by examples given in the text. For all of these questions, many different genomic
approaches may be used, from reduced representation to whole-genome sequencing
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a large body of empirical data against which to test it. Molecular population genetic
studies in natural populations began in the 1970s with allozyme methods (e.g.,
Lewontin 1974), and early empirical discoveries led to fundamental changes in
our understanding of the forms and amount of genetic variation present in natural
populations and the evolutionary forces influencing it (Kimura 1983). From there,
the development of new techniques continued to spur the field forward (Allendorf
2017). The advent of PCR (Mullis and Faloona 1987) and Sanger sequencing
(Sanger et al. 1977) opened the way to investigating DNA sequence variation at
specific loci to address ecological and evolutionary questions, notably the field of
molecular systematics (Moritz and Hillis 1996).

A number of other genetic marker types have been developed in recent decades,
such as short regions of mitochondrial DNA (Avise 1994) and microsatellites
(Selkoe and Toonen 2006), which have become widely used and facilitated studies
of genetic variation within natural populations in a wide range of organisms.
However, these techniques are limited to a relatively small number of loci, and
most require some prior identification of loci, for example, in order to develop PCR
primers. In most cases, such as microsatellites, these genetic markers are assumed to
represent a random sample of genetic variation across the genome, and are often
assumed to reflect neutral evolutionary forces that affect genomes as a whole, such as
demography or population structure. Traditional genetic markers like microsatellites
have been used to identify functionally important loci (e.g., quantitative trait loci
[QTL] in studies of laboratory crosses; Cresko et al. 2004). Nonetheless, because of
their sparse distribution across the genome, these loci have had limited utility for
addressing a core issue in ecology and evolution: the genetics of adaptation in
natural populations.

The current revolution in genomics has been driven by next-generation sequenc-
ing technologies that allow heterogeneous pools of DNA fragments – i.e., pools of
DNA fragments that differ in sequence and come from multiple locations across the
genome – to be sequenced in parallel and in very large numbers (Mardis 2008). This
changes the scaling relationship between the number of markers and the workload
required for data generation. So, for example, increasing the number of microsatel-
lite or Sanger-sequenced loci in a traditional study may require a concomitant
increase in the number of primers to be validated or the number of PCRs to be
conducted; in contrast, with next-generation sequencing, large increases in marker
number can be achieved simply by adjusting the protocol or increasing the total
amount of sequencing (see discussion of these trade-offs below). A simple definition
of the term “population genomics” could rely solely on this technological advance,
encompassing any study that uses next-generation sequencing and related recent
technological advances to assay a large number of loci across the genomes of
individuals sampled from one or more populations. This is the “broad-sense”
definition of genomics of Garner et al. (2015).

Many population genomic studies under the broad-sense definition address ques-
tions that were tractable with traditional markers such as microsatellites, but the
increase in number of loci sampled may improve precision and accuracy of the
results. We discuss examples of such studies below and also the question of when to
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use next-generation sequencing (i.e., broad-sense genomic tools) to address ques-
tions that can still be answered with traditional genetic methods. In some cases, the
questions addressed with genomic tools are long-standing in ecology and evolution,
but the dense sampling of the genome with genomic approaches provides novel
insight by revealing much finer-scale patterns. These include estimation of phylog-
eny, where the different evolutionary histories among regions of the genome can be
distinguished, and demographic history, where much finer time scales of inference
are possible.

Narrower definitions of population genomics as distinct from genetics emphasize
the novel concepts or questions addressed in genomic studies that were previously
intractable with traditional methods (Black et al. 2001; Luikart et al. 2003; Allendorf
2017). In ecology and evolution, a central goal is to detect particular loci associated
with selection, adaptation, or ecologically relevant traits and to distinguish these
from a genome-wide background (Luikart et al. 2003). When a physical or linkage
map of the genome is available, sequence or marker data can be placed in a genomic
context along chromosomes or linkage groups, and particular regions of the genome
that are influenced by evolutionary forces like selection can be identified (Luikart
et al. 2018). Even in the absence of a reference map, however, the number of genetic
markers possible in studies of non-model organisms allows a qualitative shift in the
inferences that can be drawn regarding adaptive processes. As we discuss in more
detail below, these inferences do not always require complete sampling of all
functionally important parts of the genome.

Here we propose a narrow-sense definition for population genomics in ecology
and evolution: a population genomic study is one in which genetic loci are sampled
to a sufficient density across the genome that there is an appreciable likelihood of
detecting any genomic regions that are associated with fitness or ecologically
relevant traits and distinguishing these factors from background evolutionary forces
that affect the genome as a whole. Below we describe some examples of such
“narrow-sense” population genomics.

1.2 Overview of Approaches

Molecular techniques for population genomics in ecology and evolution fall into a
few broad categories (Box 1; see also Luikart et al. 2018; Holliday et al. 2018). The
range of techniques presents a number of trade-offs in the density and distribution of
genetic variation that is sampled across the genome, as well as the number of
individual and population samples that may be included given a study’s budget,
the computational resources required, and the types of inferences that can be made
from the data. Importantly, many of the techniques are applicable in cases where
little or no prior genomic information is available. This has democratized the field of
genomics, opening vast areas of biodiversity to detailed genomic study that was
previously impractical.
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Box 1 Taxonomy of Methods for Population Genomics in Ecology
and Evolution
Traditional genetic methods: These methods include Sanger sequencing of
particular loci and any non-sequence-based method for genotyping a set of
loci. In some cases, some prior genetic knowledge is required to target specific
loci, for instance, to develop PCR primers for amplification. Depending on the
loci targeted (e.g., mitochondrial or coding versus noncoding nuclear DNA)
and the rate at which it evolves, sequence data can provide insights into a range
of time scales from ecological population-level processes to long-term phylo-
genetic relationships among taxa. Non-sequence-based genotyping methods
include allozymes, restriction-fragment analyses, and microsatellites. These
techniques are used to produce genotypes for a set of loci across individuals,
and these techniques are often most useful for ecological and evolutionary
insights within species.

Whole-genome sequencing (WGS): One approach in population genomics
is simply to sequence the complete genome of every individual in a sample
(e.g., Jones et al. 2012; Ellegren et al. 2012; Robinson et al. 2016). Typically,
this is done when a reference genome assembly or physical map is available,
so that short-sequence reads from sampled individuals can be aligned against
the reference. This approach is also called “whole-genome re-sequencing”
because a reference genome has already been sequenced for the species.
Samples can either be individually sequenced at high enough coverage to
provide individual-level genotype data or pooled to provide population-level
allele frequency data. An advantage of WGS is that in addition to identifying
single-nucleotide variation, larger-scale genetic variants such as insertion/
deletion, copy number variants, and inversions can be identified that may
play an important role in adaptation (e.g., Chain et al. 2014; Feulner et al.
2015).

Reduced representation sequencing: While whole-genome sequencing
costs continue to decline, making it feasible for ecological and evolutionary
studies, it often may not be the most efficient allocation of sequencing effort
given the goals of a study, and it imposes substantial bioinformatic burdens.
An alternative is to focus sequencing on a reduced representation – a subset –
of the genome, so that sequencing effort can be spread across many more
individual or population samples. There are several ways to focus on a subset
of the genome:

Anonymous reduced representation sequencing includes techniques in which
sequencing cannot be targeted at prior-defined loci and may not even be
known beforehand. The most common family of such techniques is restric-
tion site-associated DNA sequencing (RADseq; Andrews et al. 2016), a
group of techniques united by their use of restriction enzymes to focus

(continued)
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Box 1 (continued)
sequencing effort on DNA fragments adjacent to enzyme recognition sites.
Restriction enzymes digest DNA at characteristic short (4–8 bp) nucleotide
sequences that may occur anywhere in the genome. While the distribution
of recognition sites may be biased to some degree (e.g., by GC content or
methylation sensitivity), RADseq loci are essentially a random sample
across the genome and occur in both coding and noncoding regions.

Transcriptome sequencing focuses sequencing effort on the subset of the
genome that is transcribed, by reverse transcribing RNA to DNA during
construction of sequencing libraries (Wang et al. 2009; Ekblom and
Galindo 2011). In many organisms, such as vertebrates, the transcriptome
is a small fraction of the total genome size. To the extent that adaptive
variation exists in coding regions (or in regulatory regions tightly linked to
coding regions), this approach can increase the chances of identifying
adaptive variants, but it also may provide a biased sample of the genome
relative to neutral evolutionary processes such as demography.

Sequence capturemethods use a prior designed set of probes to focus sequenc-
ing effort on a set of hundreds to tens of thousands of loci (Jones and Good
2016). Probes may target genes of interest, putatively neutral loci, or any
combination, but they must be designed ahead of time based on prior
sequence information. For large, complex genomes, capture methods may
allow researchers to avoid repetitive or non-informative genomic regions
(McCartney-Melstad et al. 2016). A recent approach combines RADseq
and sequence capture, in a protocol called “rapture,” to target a subset of
previously identified RADseq loci for efficient genotyping across a large
number of individuals (Ali et al. 2016).

Multiplex PCR amplicon sequencing is a set of techniques for efficiently
amplifying multiple loci with standard PCR primers and then using next-
generation sequencing techniques to sequence these loci across many
individuals in a single experiment. Like sequence capture methods, multi-
plex amplicon sequencing requires some prior work to identify loci and
design PCR primers, which may target SNPs or other previously identified
polymorphisms useful for population genetic studies. An example is the
protocol developed by Campbell et al. (2015), called “Genotyping in
Thousands by sequencing” (GT-seq), which can target roughly 50–500
loci. GT-seq uses dual barcoding to allow up to thousands of individuals to
be multiplexed in a single lane of Illumina sequencing and later separated
bioinformatically. Because it targets a relatively modest number of loci,
multiplex amplicon sequencing is not suited for conducting, for instance, an
initial genome scan for selection, but rather expanding from an initial list of
loci of interest to a wider set of populations or individual samples.

488 P. A. Hohenlohe et al.



How should researchers choose a population genomic approach in an ecological
or evolutionary study? The overriding consideration is the goal of the study; the
choice of method should be driven by the particular question(s) being addressed and
the type of data that would best answer them, given the biology of the system
(Andrews and Luikart 2014; Benestan et al. 2016). Methods differ widely in their
power to make statistical inferences in natural populations, as well in the cost
associated with each method and the trade-offs inherent in sampling design. While
no approach is ideal in all cases, the range of options provides flexibility in
addressing particular study goals and biological systems and adjusting to constraints
of total cost and laboratory or bioinformatics expertise. Within each of the methods
in Box 1, there is also wide latitude to adjust technical details, in addition to
sampling and experimental design, to tailor genomic techniques to each scientific
question. Optimizing these details depends on a large number of considerations
(Box 2); a few are discussed in more detail below and illustrated by case studies later
in the chapter.

Box 2 Key Questions in Designing a Population Genomic Study
Before embarking on a population genomic study in ecology and evolution,
researchers would be well-advised to answer as many of the questions below
as possible. These answers will drive the best molecular and bioinformatic
approaches to be used, as well as sampling design.

• What are the goals of the study, and what type of data would provide the
best statistical power of inference?

• Are genomic techniques necessary at all? Or would a traditional population
genetic tool be sufficient and less expensive in time and resources?

• What are the characteristics of the genome? (e.g., total genome size,
proportion made up of genic regions, amount of duplicate sequence from
whole-genome duplication or transposable elements, etc.)

• What are the prior genomic resources available? (e.g., Is there a genetic
map or transcriptome assembly available? Is there a reference genome
sequence from the focal species, and how well assembled and annotated
is it? Or is there a reference genome from a related species, and if so how
divergent?)

• What proportion of the genome, or number of markers, is necessary to
cover?

• What are the budget limitations? Total sequencing cost is allocated across
several factors: proportion of the genome interrogated, number of markers,
number of individuals or populations, length and type of sequencing reads,
and depth of coverage.

• What bioinformatics expertise and computational resources would be
required to analyze the data?

(continued)
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Box 2 (continued)
• How important is reproducibility of the set of loci and compatibility of the

data with future studies, for example, applying a similar technique in a
related taxon?

• To what extent is the data designed to solely address a particular question or
to provide a base of genomic information for multiple future studies?

The first question when designing a study should be: Are genomic approaches
appropriate or needed at all? Traditional genetic approaches remain effective tools
for addressing a range of questions in ecology and evolution, such as demography,
population structure, parentage or sibship, or detection of hybridization. In systems
where a technique is established (for instance, where a set of microsatellite loci has
been validated), it may be most efficient to avoid the expense and bioinformatic
burden of using next-generation sequencing. In addition, this allows newly collected
data to be completely compatible with previous studies, for instance, in long-term
monitoring studies. However, in the absence of any prior tools or established pro-
tocols, genomic techniques like RADseq can be applied to simultaneously identify
and genotype a large number of markers across many individuals. For ecological and
evolutionary studies of non-model organisms, some genomic techniques are now
more cost-efficient than traditional genetic techniques for an initial foray into a new
system, even when the focal questions could be addressed with traditional tech-
niques. Furthermore, the use of broad-sense genomics may often improve the
accuracy and precision of population genetic estimates and lay the groundwork for
further narrow-sense genomic studies.

1.3 How Much of the Genome Should Be Assayed?

Genomic techniques differ widely in what proportion of the genome of each sample
is examined. At one extreme, whole-genome sequencing (WGS) provides nearly
complete genetic information for each sample, and on the other, reduced represen-
tation methods can be dialed down to just a few hundred markers (Andrews et al.
2016; Jones and Good 2016; Ali et al. 2016). As sequencing costs continue to drop,
it may seem intuitive to choose the first option – WGS of every sample in a study.
However, the costs of WGS still limit most researchers in ecology and evolution to
far fewer samples than are optimal to address many research questions, although new
techniques may change that in the near future (Therkildsen and Palumbi 2017).
There are ways to increase the number of individuals sampled with WGS, for
instance, by pooling or low-coverage sequencing. However, a further consideration
is that WGS data can impose a substantial computational burden. Researchers in
nearly any population genomic study should plan to spend more time on bioinfor-
matics than data generation, and this is certainly true for WGS data. In addition,
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growth in computational processing and storage capacity has not kept pace with
growth in sequence data-generating capacity. Thus, the bioinformatic costs, beyond
the sequencing costs, may outweigh the benefits of WGS data for many ecological
and evolutionary studies. Nonetheless, WGS and reduced representation genomic
data provide different types of information that are appropriate for addressing
different questions in ecology and evolution, as illustrated by case studies below.

As an alternative to WGS, anonymous reduced representation techniques like
RADseq can provide a wide range of marker densities across the genome. Some
recent discussion has centered around the question of whether the RADseq family of
techniques can generate sufficient marker density to address ecological and evolu-
tionary questions (Lowry et al. 2016; McKinney et al. 2017; Catchen et al. 2017).
A key consideration is the extent of linkage disequilibrium (LD) across the genome,
which effectively scales the density of markers to the proportion of the genome that
can be assessed. This is because the signature of evolutionary forces like selection
acting at any particular location in the genome will only be measurable if that
location is in LD with one or more assayed markers. LD typically decays with
distance along a chromosome, although this decay is often far from smooth; in some
cases there may be regions of relatively high LD, called “haplotype blocks,”
punctuated by breakpoints that may reflect locations of elevated recombination
rate (Dawson et al. 2002). The extent of LD is not just characteristic of a species
but varies among populations due to demographic history, selection, chromosomal
structural variation, and other factors (Dunning et al. 2000; Reich et al. 2001).
Accordingly, there is vast variation by several orders of magnitude among biological
systems in the size of haplotype blocks and thus the density of markers needed to
sample a large proportion of them (McKinney et al. 2017).

Under the broad-sense definition of population genomics, many study goals do
not require sampling even a majority of haplotype blocks; rather, only a relatively
small sampling of the genome is required. Many of these questions could be
answered with traditional genetic techniques. However, the increase in markers
with genomics can improve accuracy and precision (e.g., below we discuss the
relative value of microsatellite loci versus single-nucleotide polymorphism (SNP)
loci for statistical inference).

Under the narrower definition of genomics, the proportion of haplotype blocks
that are sampled determines the likelihood of detecting functionally important loci
(Tiffin and Ross-Ibarra 2014; Catchen et al. 2017). However, even when the goal is
to distinguish adaptive variation from the neutral background in a genome scan
approach, many scientific questions do not require finding all adaptive loci. Such
questions include: Is there a signature of adaptation across the sampled portion of the
genome, either within or between populations (Epstein et al. 2016; Funk et al.
2016)? What is the geographic distribution of adaptive variation (White et al.
2013; Ferchaud and Hansen 2016)? Does population structure or phylogeny at
adaptive or ecologically relevant loci match that across the rest of the genome
(Funk et al. 2012; Wagner et al. 2013)?

In a study addressing these narrow-sense genomic questions in the context of
predicted climate change, Bay et al. (2018) identified loci associated with climate
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variables across the range of yellow warblers (Setophaga petechia) using RADseq.
They then assessed genomic vulnerability as the mismatch between current and
predicted allele frequencies based on genotype-environment association analyses, in
order to predict the species’ capacity to adapt to future conditions. They found that
populations showing recent declines also tend to be more vulnerable to future
selection pressures, potentially informing conservation and monitoring efforts. Stud-
ies like Bay et al. (2018), and those addressing the questions above, are narrow-sense
genomic ones because they rely on identifying adaptive loci and distinguishing them
from the genome-wide background; but they do not require identification of all
adaptive loci, let alone functional validation of them. Instead, only a subset of
adaptive loci may be detected, but these are still sufficient to address the study goals.

2 Broad-Sense Genomics

2.1 Selectively Neutral Processes

Population genomic approaches can provide more accurate estimates of genetic
statistics than traditional techniques. For example, compared to pedigree-based
estimates of inbreeding, genomic techniques can provide more accurate estimates
of individual and population-level inbreeding. This results from surveying enough
markers to determine the actual level of identity by descent within each individual,
rather than the expectation based on pedigree relationships (Kardos et al. 2015;
Luikart et al. 2018). Population genomic data can also provide greater power to
detect inbreeding depression; for example, Hoffman et al. (2014) observed a much
higher correlation of fitness and heterozygosity using SNPs compared to
microsatellites in harbor seals (Phoca vitulina), because their RADseq approach
yielded over 14,000 SNP loci.

Several recent studies have directly compared the utility of microsatellites versus
genomic SNP data, such as that derived from RADseq or other reduced representa-
tion approaches. Because of the number of possible alleles, each microsatellite locus
contains potentially much more information than a single SNP locus, which is
typically expected to have just two alleles. However, the number of SNP loci
commonly available in genomic studies often more than compensates for the
lower information content per locus. For example, Malenfant et al. (2015) and
Jeffries et al. (2016), studying polar bears (Ursus maritimus) and crucian carp
(Carassius carassius) respectively, found that a RADseq dataset better detected
fine-scale population structure than microsatellites. For crucian carp, this was true
even when a much smaller sample of individuals per population was used for the
RADseq data (Jeffries et al. 2016). Similarly, a study of the Amazonian plant species
Amphirrhox longifolia using ~4,000 ddRAD loci found that sample sizes of eight
were sufficient to estimate diversity when�1,000 SNPs were used, and sample sizes
as low as two provided accurate estimates of FST when >1,500 SNPs were used
(Nazareno et al. 2017). These cases illustrate that even when the sample of
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individuals is far too small to estimate allele frequency or FST at any single locus
with any accuracy, a large number of loci can still accurately estimate the average
FST across the genome (Nazareno et al. 2017). Similarly, Puckett and Eggert (2016)
found that 1,000 SNP loci outperformed 15 microsatellites in assignment of Amer-
ican black bears (Ursus americanus) to their natal range. In contrast, Fischer et al.
(2017) found that estimates of genetic diversity in Arabidopsis populations were not
closely aligned between microsatellite and SNP datasets. In fact, heterozygosity at
SNP loci was more closely correlated with allelic richness in microsatellite loci than
with heterozygosity at microsatellite loci, possibly a result of the different mutation
processes in each type of locus.

It is useful to consider the “conversion rate” between microsatellites and SNPs in
terms of the information content for different types of analyses. For example, Kaiser
et al. (2016) found that a panel of 97 SNPs was equivalent to 6 microsatellite loci in
estimating parentage in black-throated blue warblers (Setophaga caerulescens).
Elbers et al. (2017) found that 100 SNP loci were required to correlate with the
results of 10 microsatellite loci in estimating population differentiation (FST) in the
gopher tortoise (Gopherus polyphemus), but 800 SNPs were needed to correlate with
the same 10 microsatellites in estimating expected and observed heterozygosity.
Note that the absolute estimates of FST and heterozygosity (and other population
genetic statistics, like effective number of breeders Nb; Linløkken et al. 2016) may
differ between SNPs and microsatellites because of the different mutation rates
involved. Overall, these studies put the “conversion rate” between SNPs and
microsatellites at anywhere from 10:1 to 80:1, depending on the analysis. However,
it is typically feasible to get several orders of magnitude more SNP markers than
microsatellites in most cases, in which case the conversion rate no longer matters
(Fischer et al. 2017). For example, the study by Elbers et al. (2017) above
subsampled their SNP markers from a dataset of nearly 18,000 SNP loci from
sequence capture.

2.2 Neutral Population Genetic Structure and Population
Units

The broad-sense definition of genomics includes the use of genomic tools to improve
upon accuracy, precision, and efficiency compared to previous genetic approaches
for estimates of, for example, population structure (see below), levels of admixture
and inbreeding (Kardos et al. 2015, 2016), or effective population size (Ne). For
example, Larson et al. (2014) used RADseq data to estimate Ne in Chinook salmon
(Oncorhynchus tshawytscha) using the method NeEstimator (Do et al. 2014), which
relies on linkage disequilibrium among loci. In this case having a genetic map of the
genome can allow the removal of physically linked loci, which can downwardly bias
estimates of Ne (Park 2011; Larson et al. 2014). Larson et al. (2014) found that
estimates of Ne based on 1,118 RADseq-derived SNPs had far smaller confidence
intervals compared to estimates based on 39 previously identified SNP loci.
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In the case of identifying genetic structure among populations, the increased
precision of genomic tools may identify genetic differentiation that was cryptic to
traditional methods. For instance, a phylogeographic study using RADseq for a
mosquito (Wyeomyia smithii) in eastern North America revealed insights into demo-
graphic history that were not identified using traditional markers (Emerson et al.
2010). In this study, the authors used RADseq of pooled population samples to
estimate consensus genotypes at a large number of SNP loci for each population and
then used these data in a phylogenetic analysis. Because most of the populations
are the result of recolonization from refugia following the last Pleistocene
glaciation, genetic differentiation among them is relatively recent (beginning
22,000–19,000 years ago). Whereas previous mitochondrial DNA sequence data
produced poorly resolved relationships among current populations, the pooled
RADseq approach revealed a distinct geographic pattern of recolonization north-
ward and then westward (Fig. 1). One possible factor in this discrepancy is that
mitochondrial DNA sequence represents a single locus with different inheritance
patterns than nuclear loci, while genomic techniques can sample a large number of
loci across the much larger nuclear genome. Particularly in cases like this, with

Fig. 1 Improvement of phylogeographic inference in the mosquitoWyeomyia smithii using broad-
sense population genomic tools. (a) Maximum likelihood tree of relationships among populations
based on mitochondrial COI sequence data. (b) Maximum likelihood tree based on 3,741 nuclear
SNP loci derived from pooled RADseq data. Modified from Emerson et al. (2010)
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recent differentiation among populations within a species, loci across the genome
may reflect different phylogenetic histories due to incomplete lineage sorting and
migration after formation of the populations. Analytical methods should account for
this discrepancy in phylogenetic history among loci.

Genomic approaches also provide great promise for increased power in popula-
tion assessments and stock identification for managed or harvested species, partic-
ularly marine taxa. Stock identification in harvested species is important for
conservation and management of populations to avoid overharvest and local popu-
lation extirpation (Palsbøll et al. 2007). For example, Benestan et al. (2015) used
RADseq for American lobster (Homarus americanus) to define populations that
were previously unresolved using microsatellite markers and to identify a set of loci
that could assign individuals to source populations despite the weak genome-wide
population structure for this species (mean FST ¼ 0.00185). The authors identified
and genotyped 10,000 SNPs using RADseq and then identified a subset of 3,000
high-FST loci (identified using a training set of samples and validated on an inde-
pendent set, following Anderson (2010)) that assigned individuals to their source
location with 80% success. Low genome-wide values of FST are expected to be
characteristic of wide-ranging taxa with long-distance dispersal and large Ne

(Bernatchez 2016). However, functionally important differentiation may occur at a
small number of loci, and genomic approaches can identify these loci for ecological
and evolutionary inferences. Even if the study goal is not to identify functionally
important loci or loci under selection (as it is in “narrow-sense” genomic studies
discussed below), the ability of genomic techniques to identify so many markers that
a subset of highly differentiated markers can be extracted allows for finer-scale
discrimination of population structure.

2.3 Phylogenomics

Genomic tools are increasingly being used for assessing phylogenetic relationships
among species and higher taxa (Chan and Ragan 2013; McCormack et al. 2013; Ree
and Hipp 2015; Barrett et al. 2016). A major challenge for such phylogenomic
studies is that the many parts of the genome sampled by genomic tools may represent
different lineage histories, and this has required building on traditional phylogenetic
tools that assume a single history. Several different genomic techniques are applied
in phylogenomics, including anonymous reduced representation techniques such as
RADseq (Ree and Hipp 2015), targeted sequence capture (Bragg et al. 2016), and
even whole-genome sequencing (Jarvis 2016). In this latter case, whole-genome data
provided a detailed phylogeny and comparative genomic study of an entire verte-
brate class, birds (Jarvis 2016). But even for short-sequence techniques such as
RADseq, the accessible scale of taxonomic resolution can be quite deep (e.g., over
80-million-year divergence in octocorals, Paragorgia spp.; Herrera and Shank
2016). However, Leaché et al. (2015) found conflicting results from sequence
capture and RADseq phylogenetic estimates in phrynosomatid lizards. Interestingly,
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the best concordance between the sequence capture and RADseq-based SNP trees
occurred when less conservative filtering was applied to the RADseq data, providing
a large set of SNPs (roughly 16,000) with substantial missing data. This suggests that
conservative filtering of genomic SNP data may cause misestimation in some cases.

While conflicting gene trees among loci can be a problem when the goal is to
estimate a single species tree, variation among loci may reflect truly different
evolutionary histories because of reticulate evolution (Vargas et al. 2017). The
power of modern sequencing technology allows for phylogenetic estimation across
multiple species or groups on a landscape, so that patterns of reticulate evolution and
conflicting gene trees can be examined in a comparative framework (Edwards et al.
2016). While this can challenge the development of new demographic models and
phylogenetic analysis tools (Edwards et al. 2016), it can also reveal insights into the
adaptive consequences of hybridization and introgression (Keller et al. 2013;
Nadeau et al. 2014; further discussion below).

3 Narrow-Sense Genomics

3.1 Detecting Ecologically Relevant and Adaptive Variation

At the heart of many population genomic studies in ecology and evolution is the
detection of adaptive or functionally important loci (Luikart et al. 2003, 2018). One
way to identify such loci is traditional genetic mapping techniques, made more
powerful with the density of loci provided by population genomic approaches.
Quantitative trait locus (QTL) mapping is possible for species that can be crossed
experimentally (e.g., Miller et al. 2012; Liu et al. 2014) or for which pedigrees are
known for natural populations (e.g., Slate et al. 2002; Beraldi et al. 2007; Santure
et al. 2013). Genome-wide association studies (GWAS) are also feasible, even in
many natural populations of ecological or evolutionary interest, in part because of
the “democratization” of genomic techniques to non-model organisms. Some natural
systems may be particularly well-suited to this approach; for instance, Nadeau et al.
(2014) took advantage of a natural hybrid zone between phenotypically divergent
butterfly (Heliconius spp.) subspecies to map wing color traits.

A long-standing method to distinguish adaptive loci from the genome-wide
background is to identify high-FST outliers that are suspected to be under divergent
natural selection among populations (Lewontin and Krakauer 1973; Beaumont and
Nichols 1996). Outlier tests have received some criticism and perhaps been
misapplied in some cases (Hermisson 2009; Hohenlohe et al. 2010; Hoban et al.
2016), in part because methods differ in model assumptions. Violations of model
assumptions, such as historic demographic fluctuations, can increase variance in FST

among loci and create false positives (Hohenlohe et al. 2010; Whitlock and
Lotterhos 2015).

More recently, parallel to the development of landscape genetics and genomic
approaches, there is increased interest in directly associating allele frequencies with
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environmental variables, through genotype-environment association tests (GEAs;
Joost et al. 2007; Coop et al. 2010; Hancock et al. 2011; Fumagalli et al. 2011;
Schoville et al. 2012; Frichot et al. 2013; Rellstab et al. 2015; Forester et al. 2016;
Hoban et al. 2016). GEAs are conceptually similar and complementary to GWAS
approaches in that gene frequencies are associated with environmental factors,
whereas in GWAS loci are associated with phenotypic traits. In humans, where
very large sample sizes are feasible, several studies have used GEAs to identify
important loci linked to environmental factors (Hancock et al. 2011; Fumagalli et al.
2011). In most ecological and evolutionary studies, samples sizes of both individuals
and number of markers may be much smaller.

The move toward GEAs has been prompted by greatly increased availability of
environmental and genomic data and growing understanding that signatures of
adaptive selection can be difficult to distinguish from the selectively neutral genomic
background (Schoville et al. 2012). For example, genetic variation underlying
polygenic traits may be difficult to detect because the effect size and allele frequency
shifts at any single locus may be quite small (Bernatchez 2016). Simulation-based
studies have found that, in general, GEAs have more power to detect loci under
selection than outlier-based approaches but have higher rates (20–50%) of false
positives (De Mita et al. 2013; Frichot et al. 2013; Forester et al. 2016). Recent work
has also suggested that multivariate approaches (principal component analysis,
redundancy analysis, and population graphs) might help reduce the number of
false positives and maintain reasonable power to detect true correlations (Forester
et al. 2016; Rajora et al. 2016). Several other methods are also available for detecting
loci under selection from population genomic data, and they are appropriate for
different population scenarios, data types, types of selection, and time scales
(Hohenlohe et al. 2010; Rajora et al. 2016; Luikart et al. 2018).

Bernatchez (2016) outlined a number of factors that can maintain adaptive
variation in natural populations and therefore make signatures of adaptation difficult
to identify. These include soft selective sweeps, traits with a polygenic basis,
epistatic interactions among genes, epigenetics, and various types of balancing
selection. Under these conditions, selection does not often drive single beneficial
alleles to fixation; rather, the response to selection is relatively slight shifts in allele
frequencies. In the potentially large number of cases in which adaptation depends on
a large number of loci, detecting selection may be improved by alternative
approaches. For instance, a promising recent approach in outlier tests for local
adaptation is to focus on allele frequency covariance among loci, rather than allele
frequency variation at individual loci (LeCorre and Kremer 2012; Rajora et al. 2016;
Lind et al. 2017). Although reliably detecting adaptive loci remains challenging, a
large and growing number of studies have detected adaptive variation with popula-
tion genomic tools and provided insights into multiple aspects of species biology
(Luikart et al. 2018). Below we discuss a few case studies.
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3.2 Adaptive Population Structure

Advances in the discovery of non-neutral (i.e., candidate adaptive) markers have
improved our ability to examine how selection shapes population genetic structure
and how and why population structure differs at fitness-related loci compared to the
genome-wide background dominated by neutral forces like demography. Recent
genomics studies have revealed significant adaptive divergence at outlier loci, even
in systems of high gene flow, such as marine organisms and forest trees. This is
especially apparent in marine species, presumably because of large effective popula-
tion sizes and large dispersal differences, which reduce neutral population divergence
and allow for selection to act effectively on adaptive loci (Limborg et al. 2012;
Corander et al. 2013; Hess et al. 2013; Milano et al. 2014). Genomic patterns of
adaptive divergence often vary across spatial scales within a species, and adaptive loci
often reveal finer-scale differentiation than neutral loci (Matala et al. 2014; Hand et al.
2016). Simulation-based modeling has further shown that inferences about local
adaptation based solely on neutral genetic markers risk incorrectly identifying the
underlying mechanisms driving population structure (Landguth and Balkenhol 2012).

In one example, Steane et al. (2015) used genome-wide diversity array technol-
ogy (DArTseq; Sansaloni et al. 2011) to identify and genotype 16,122 high-quality
dominant markers (presence/absence) in gimlet trees (Eucalyptus salubris; Steane
et al. 2014). E. salubris is an obligate seeder that does not survive wildfire; however,
it is also a key species for revegetation in a moderate (mesic) to arid region in
Southern Australia (Nicolle 2006; Steane et al. 2015). Steane et al. (2015) identified
a set of 24 putatively adaptive loci that showed high rates of differentiation (FST> 0.7
and many close to fixation) between two cryptic lineages in E. salubris, which
appeared to be associated with climate adaptation along a strong aridity gradient.
In this case, genome-wide scans were essential in identifying putatively adaptive
markers of high differentiation that otherwise would have gone undetected by
traditional neutral genetic techniques or phenotypic traits alone.

Killer whales (Orcinus orca) provide another example illustrating how neutral
and adaptive markers can show different patterns of genetic structure. This species is
the most widely distributed marine mammal. Despite the propensity for long-range
dispersal and the movement of individual social groups over wide geographic
ranges, there appears to be very little ancestral dispersal among sympatric ecotypes
that differ in foraging behavior (Moura et al. 2014; Morin et al. 2015). Mitogenomes
and 42 independent nuclear loci were found to be in concordance, indicating very
limited gene flow among ecotypes (Morin et al. 2015). Moura et al. (2014) further
identified a set of putatively adaptive loci (168 of 3,281 variable SNPs). Neutral
genetic structure agreed with previous studies in identifying significant differentia-
tion between populations in sympatry. However, adaptive genetic structure differed
from neutral patterns and included a reduced set of high-FST outliers (FST > 0.7)
with putative physiologically relevant function related to digestion and reproduction
(Moura et al. 2014). The difference in neutral vs. adaptive genetic differentiation
offered additional evidence that differentiation among sympatric populations was
related to ecological processes more so than genetic drift.
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3.3 Adaptive Introgression and Hybridization

Hybridization and introgression have important evolutionary consequences, and
understanding these consequences is aided by dense, genome-wide marker cover-
age. Several powerful tools have been developed for inferring historical patterns of
hybridization and introgression from population genomic data (e.g., TreeMix,
Pickrell and Pritchard 2012; ALDER, Loh et al. 2013). In systems of hybridizing
native and non-native species, introgression can lead to genetic extinction of the
native (and often endangered) species (Allendorf et al. 2010).

One of the most well-studied systems involves the Flathead River system in the
Northern Rocky Mountains, USA (Boyer et al. 2008; Muhlfeld et al. 2009, 2014;
Hohenlohe et al. 2011, 2013; Amish et al. 2012; Hand et al. 2015; Kovach et al.
2015, 2016). Here, native westslope cutthroat trout (Oncorhynchus clarkii lewisi) is
greatly threatened by hybridization with rainbow trout (O. mykiss), the world’s most
widely introduced fish (Halverson 2010). Hohenlohe et al. (2013) showed improved
accuracy in measuring individual admixture proportions when using 3,180 diagnos-
tic SNPs vs. 7 microsatellite loci (Boyer et al. 2008). The use of paired-end RADseq
in this study allowed for identification of candidate genes by providing longer
contiguous sequence around significant SNPs than previous approaches. Subsequent
work included the publication of a reference genome (Berthelot et al. 2014) and the
identification of more diagnostic markers for identifying parental ancestry, made
possible with a larger sample of individuals and reference-based rather than de
novo locus identification (Hand et al. 2015). These technical advances further refined
the understanding of the system, revealing that selection in hybridized populations
acts primarily against genetic variation from the invasive rainbow trout (Kovach
et al. 2016).

Two more illustrative examples of adaptive introgression, and its signature on
genomic variation, are from cichlid fish and butterflies. Keller et al. (2013) used
RADseq in closely related cichlid taxa (Pundamilia and Mbipia species) from Lake
Victoria. Five taxa were identified by several phenotypic traits, including male
coloration. Across much of the genome, the taxa are poorly differentiated, but a
subset of loci putatively associated with adaptive differentiation suggests two intro-
gression events among lineages within the group that carried genetic variation for
male coloration and opsin alleles (Keller et al. 2013). Similarly, Nadeau et al. (2014)
examined striking color pattern differentiation among subspecies of the butterfly
Heliconius melpomene, using RADseq to identify both loci under divergent selec-
tion (high-FST outliers) and loci associated with phenotypic variation in color pattern
(GWAS). They found that signatures from both FST outlier tests and GWAS
converged on a small number of major effect loci, providing evidence that narrow
hybrid zones are maintained by strong selection on color pattern.
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3.4 Demographic History

Genomic data provide a powerful ability to reconstruct the demographic history of
populations. Previous genetic markers, such as microsatellites and mitochondrial
DNA sequence, allowed some inference of historical fluctuations in population size
using bottleneck tests and approximate Bayesian computation (ABC) methods (e.g.,
Fontaine et al. 2012; Spurgin et al. 2014). However, genomic data can provide much
greater statistical power with ABC methods (Cornuet et al. 2014). For instance, large
numbers of SNP loci can be used to estimate the allele frequency distribution, which
can be used to test alternative models of demographic history across a set of
populations using the method ∂a∂i (Gutenkunst et al. 2009). This method can test
for changes in population size (expansion, contraction) as well as migration among
populations (Fig. 2). While developed originally for human populations, with the
advent of genomic techniques for non-model species, ∂a∂i has been applied widely.
For instance, this type of demographic inference can be conducted in a comparative
framework, as across six taxon pairs of birds that share similar distribution patterns
in disjunct South American dry forest habitats (Oswald et al. 2017).

Estimation of demographic history from SNP data can be combined with detec-
tion of outlier loci that show greater differentiation between populations and differ-
ential patterns of gene flow among populations. For instance, Leroy et al. (2017)
used ∂a∂i and ABC to infer the history of four European white oak species (Quercus
spp.). They found that a long period of isolation generated some reproductive
barriers, but that recent secondary contact due to postglacial warming resulted in

Fig. 2 Demographic scenarios tested in lamprey ecotypes. Four general models are shown for the
history of two populations since divergence: strict isolation, isolation with migration, ancient
migration, and secondary contact. In each model, parameters are estimated for the population
sizes and timing of events. Reproduced with permission from Rougement et al. (2016)
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secondary contact and gene flow at some loci, but not uniformly across the genome.
Similarly, Rougement et al. (2016) illuminated the effect of migration on divergently
selected loci in two lamprey species (Lampetra spp.), and Schield et al. (2017)
applied a range of tests for migration and selection in western diamondback rattle-
snakes (Crotalus atrox). All of these studies used reduced representation methods to
genotype several thousand SNP loci across dozens to hundreds of individuals,
illustrating the ability of this sampling design to be informative about adaptive
variation.

Alternatively, the whole-genome sequence of even a single diploid individual can
be used to infer the historical course of effective population size using pairwise
sequentially Markovian coalescent (PSMC; Li and Durbin 2011). For instance,
McManus et al. (2016) reconstructed the demographic history of lowland gorillas
(Gorilla spp.), identifying a population contraction that appears to correspond with
reduction in forest cover at the end of the last glacial maximum. Similarly,
Nadachowska-Brzyska et al. (2016) linked climate changes to population fluctua-
tions in Ficedula flycatchers (Fig. 3). Both of these studies emphasize that individ-
uals from different populations are likely to exhibit different demographic histories,
as might be expected, and a critical assumption in these analyses is that the
sequenced individuals are representative of the population unit under study. Addi-
tionally, historic population structure can violate assumptions of the model and lead
to false signatures of fluctuations in population size (Mazet et al. 2016). A way
around these problems may be newer methods that allow analysis of multiple
individuals, such as SMC++ (Terhorst et al. 2017). In addition to demographic
reconstruction, WGS data can be used in a comparative framework to identify
adaptive loci across closely related species, as illustrated in a study of large cats
(Panthera spp.; Cho et al. 2013).

Demographic fluctuations have important consequences for current levels of
genetic diversity and adaptive potential in natural populations. For instance, two
studies have addressed this issue in island foxes (Urocyon littoralis) using two
different genomic methods. Island foxes persist in six populations, each restricted
to a separate island off the coast of Southern California, that have historically small
population sizes in addition to recent bottlenecks. Robinson et al. (2016) used
whole-genome sequencing of a single fox from each island (with the exception of
one island represented by two individuals) and found extremely low levels of
heterozygosity and the presence of deleterious variants. The approach of using
WGS in a very small number of samples is justified here, because populations are
likely to be well-mixed within each island and avoid the violation of assumptions
mentioned above (Mazet et al. 2016). Funk et al. (2016) addressed the issues of
genetic diversity in island foxes using RADseq. This approach assayed far fewer loci
but across a total of 188 individuals. This study similarly found low levels of genetic
diversity within each population. Because of the larger number of individuals
sampled, it was possible to use FST outlier tests to detect selection, and despite the
low overall diversity and differentiation among islands due to drift, there was also
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evidence of adaptive divergence among islands. Note that the study by Funk et al.
(2016) is a case where not all haplotype blocks, and thus not all potentially adaptive
loci, were sampled with the RADseq approach; nonetheless, a narrow-sense geno-
mic question (is there evidence for adaptive differentiation among populations?) was
still able to be answered.
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Fig. 3 Reconstruction of the demographic history of populations of (a) collared flycatchers
(Ficedula albicollis) and (b) pied flycatchers (Ficedula hypoleuca), using the pairwise sequentially
Markovian coalescent (PSMC) method (Li and Durbin 2011) on whole-genome sequence data. As
illustrated here, PSMC can result in uncertainty at recent time scales, but it allows comparative
demographic inference among related taxa occupying the same region. Modified from
Nadachowska-Brzyska et al. (2016)
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4 Conclusions and Future Perspectives

Population genomics has provided numerous insights into ecological and evolution-
ary processes in natural and managed populations. The wealth of molecular and
analytical techniques provides great flexibility in tailoring a population genomic
approach to the goals of any particular study and the challenges of any particular
biological system. The field is changing rapidly. The cost of acquiring sequence data
continues to drop, and novel analytical techniques incorporate improved models of
genomic processes and increased statistical power. In particular, whole-genome
sequencing may be the best-suited approach to an expanding range of population
genomic applications, but nonetheless a variety of reduced representation and
targeted sequencing approaches are likely to continue to provide efficient alterna-
tives. It is imperative for researchers in ecology and evolution to educate themselves
about the trade-offs involved in designing population genomic studies. With careful
consideration of the range of options, population genomics will continue to provide
remarkable insights into ecological and evolutionary processes.
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Inferring Demographic History Using
Genomic Data

Jordi Salmona, Rasmus Heller, Martin Lascoux, and Aaron Shafer

Abstract Characterizing population histories has been a major focus in evolution-

ary and conservation biology for decades. Driven by a desire to understand popula-

tion histories, researchers have been modeling simple demographic scenarios with

genetic data since the 1970s. In the last decade, the availability of genomic data and

the number of demographic inference methods have dramatically increased and

constitute a continuously evolving sub-discipline within population genetics.

Genome sequences—both reduced representation and whole-genome sequencing

and re-sequencing—contain a trove of information related to population histories

and permit reconstructing complex demographic scenarios. In combinationwith new

powerful and flexible analytical methods, population demographic inference from

genomic data has revealed surprising, dynamic, and conservation-relevant histories.

This chapter discusses recent advancements in demographic inferencemade possible

by genome sequence and new analytical tools. As the theory and models of demo-

graphic inference have matured, and data sets have grown, likewise has the recog-

nition of limitations and confounding effects. We caution that the increasing
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sophistication of methods should not override the critical evaluation of the

researcher. Demographic inferences with genomic data offer powerful windows

into the past but we encourage users to recognize inherent limitations of model

assumptions, use simulations to identify potential biases, and include complemen-

tary and supporting analyses.

Keywords Approximate-Bayesian computation • Coalescent • Effective

population size • Genealogy • Haplotypes • Migration

1 Introduction and a Brief History

There is a long-standing and ongoing interest in understanding population histories.

Stories about human expansion and dispersal patterns have captivated audiences for

decades, while quantifying changes in effective population size (Ne) and migration

rates are vital information for understanding organismal biology and informing

resource conservation and management. On a broad scale the two most commonly

invoked drivers of population change are climate or environmental change and

anthropogenic disturbance (Barnosky et al. 2004; Nelson et al. 2006). Environmen-

tal changes are known to be a major factor in shaping biodiversity, both among and

within species. For example, climate change and the ensuing habitat and vegetation

changes are recognized to have a strong impact on biodiversity and populations

(Parmesan and Yohe 2003; Thuiller 2007). In other cases, human activities have

been shown to be the main driver of fluctuations in wild species (Fahrig 2003;

Vitousek et al. 1997) and will continue to be for the foreseeable future (McKee et al.

2004). Consequently, from both an applied and basic research standpoint, there is

considerable interest in characterizing demographic histories with the ultimate goal

of identifying the factors shaping species distributions and population fluctuations

over time.

Inferring demographic histories presents a practical challenge because the time

frames addressed generally exceed human documentation, are patchily or sparsely

represented in the fossil and pollen records, or cannot be inferred from recent

trends. This leads to a considerable level of uncertainty or only enables broad

inference surrounding population parameter estimates in lieu of alternative methods

and data. In such cases, population genetics provides a powerful framework for

addressing questions related to demography because it uses data from contempo-

rary individuals to infer historical events. Population genetic approaches capitalize

on the fact that historical demography strongly affects the genetic variation

observed across the genomes of contemporary individuals.

The idea that molecular data contains information on the evolutionary history of

populations traces back to the beginning of the twentieth century (e.g., Hirschfeld

and Hirschfeld 1919). But not until the 1970s did population geneticists begin to

develop statistical tools and summary statistics that could be used to infer
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demographic history from genetic polymorphism data. These methods (Table 1)

can be classified using three basic criteria:

1. The type of information used (e.g., summary statistics, site frequency spectrum,

mutation and recombination rates);

2. The class and inheritance of genetic markers (e.g., cpDNA, mtDNA vs. nuclear,

microsatellites loci vs. DNA sequences);

3. The model assumptions and inferable demographic scenarios.

The first genetic attempts to understand the demographic history of populations

were reached through the use of summary statistics, specifically assessing devia-

tions from expected values under an equilibrium model (e.g. Ewens 1972; Watter-

son 1974, Tajima 1989), measuring heterozygosity excess (Luikart and Cornuet

1998), and comparing the number of microsatellite alleles to the allelic size range

(Garza and Williamson 2001; Table 1). These summary statistics were eventually

packaged in easy-to-use software, and have become very popular notwithstanding

their known limited statistical power (Hoban et al. 2014; Peery et al. 2012). Despite

recent increase in the application of genome-scale data, many of these methods and

approaches remain the backbone of demographic inference.

A key breakthrough came from the development of the coalescent theory (Box 1;

Hudson 1983; Kingman 1982; Tajima 1983) that played a prominent role in

demographic inference using population genetics. This was followed by an inte-

gration of coalescent theory and likelihood approaches describing the probability of

the data given a particular model. Spurred on by the availability of sequence and

microsatellite data and increased computing power, approaches that derived likeli-

hoods based on classical population genetics or coalescent theory started to appear

in the 1990s. These coalescent-based methods allowed estimating parameters, such

as changes in effective population size (Ne), mutation (μ) and migration rates (M ),

and split times (T ) under a specific demographic model (Beaumont 1999, 2003;

Storz and Beaumont 2002; Wakeley and Hey 1997).

Box 1. The Coalescent

Until the 1980s the forward in time Wright-Fisher (WF) model (see Glossary)

was the main population genetics model. The WF model, together with

diffusion approximations, yielded results on, for example, the probability of

fixation of new mutations and their expected time to fixation (or loss) under

various conditions. While the WF model was a natural choice when trying to

(continued)
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Table 1 Non-exhaustive list of demographic inference methods for (population) genomic data

Method

Used

marker

Used

information

Assumed

model

Estimated

parameters Reference(s)

HHn Mapped

SNPs

Identity by

descent/state

segments

Ne

fluctuations

Ni (MacLeod et al.

2009, 2013)

PSMC Long

DNA

strands

Coalescence

time and

recombination

Ne

fluctuations

Ni, for

T > 104
(Li and Durbin

2011)

MSMC Long

DNA

strands

Coalescence

time and

recombination

Ne

fluctuations

Ni, T (Schiffels and

Durbin 2014)

fastNeutrino SNPs Folded and

unfolded SFS

Ne

fluctuations

Ni (Bhaskar et al.

2015)

Doris Long

range

haplotypes

Identity by

descent/state

segments

Ne fluctua-

tions and

IM model

N0, Ni, θ,
T, m

(Palamara and

Pe’er 2013;
Palamara et al.

2012)

Inferring

demography

from IBS

Long

range

haplotypes

Identity by

descent/state

segments

IM model N0, Ni, θ,
T, m

(Harris and Niel-

sen 2013)

TNSFS SNPs Segregating

site/sample

size ¼ TNSFS

Ne recent

growth

N0, N1, θ,
T

(Chen et al.

2015)

TRACTS Phased

SNPs

Local ancestry

tract

Non-

admixed

populations

m over

time

(Gravel 2012)

diCal Phased

SNPs

Coalescence

time and

recombination

Ne

fluctuations

Ni (Sheehan et al.

2013)

PopSizeABC Mapped

SNPs

Folded 1D

SFS + LD

Ne

fluctuations

Ni (Boitard et al.

2016)

Stairway plot SNPs Unfolded or

folded 1D SFS

Ne

fluctuations

Ni (Liu and Fu

2015)

Linkage

disequilibruim

SNPs Runs of homo-

zygosity and

coalescence

time

Ne

fluctuations

Ni (MacLeod et al.

2013)

bSFS SNPs SFS Ne fluctua-

tions and

IM model

N0, Ni, θ,
T, m

(Lohse et al.

2016)

# SNPs 2DSFS IM model N0, Ni, θ,
T, m

(Kern and Hey

2016)

Jaatha SNPs SFS, 2DSFS Ne fluctua-

tions and

IM model

Ni (Naduvilezhath

et al. 2011)

aSFS SNPs SFS from sev-

eral

co-distributed

species

Ne

fluctuations

Ni (Xue and

Hickerson 2015)

(continued)
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Box 1 (continued)

predict future changes in genetic diversity, it was limited when it came to

historical inferences. Here, the n-coalescent offered a simple and elegant

solution and has become one of the most widely used population genetics

models. The coalescent was proposed by Kingman (1982) as a continuous-

time approximation to the Wright-Fisher model when the population size is

large. Hudson (1983) and Tajima (1983) gave more intuitive derivations and

there are excellent reviews (Hudson 1990; Nordborg 2001; Marjoram and

Joyce 2010) and books (Hein et al. 2005; Wakeley 2008) on the coalescent

but we briefly explain important aspects.

The n-coalescent models the ancestry of a sample of n sequences (from a

single locus) backwards in time. It assumes that the sample size n is small

compared to the total size of the population 2N, with 2N reflecting the number

of chromosomes in a diploid population. Coalescent events, where two con-

temporary sequences have a common ancestor, link the n-sequences in the

genealogy. If the number of sequences is 2N, the probability that two gene

sequences have a common ancestor in the previous generation is 1/2N. The
probability that two genes among a sample of size n have a common ancestor

in the previous generation is:

n n� 1ð Þ½ �=2� 1=2N ¼ n n� 1ð Þ1=4N:

So the probability that two of the n genes have a common ancestor

t generations back in time is given by the geometric distribution:

1� n n� 1ð Þ=4Nð Þ½ �t�1 � n n� 1ð Þ=4N:

As N is large the geometric distribution will converge to an exponential

distribution: if one rescales the process by 2N, then the coalescence times are

exponentially distributed with mean n(n � 1)/2. Figure 1 shows the

(continued)

Table 1 (continued)

Method

Used

marker

Used

information

Assumed

model

Estimated

parameters Reference(s)

δaδi SNPs SFS, 2DSFS,

3DSFS

Ne fluctua-

tions and

IM model

N0, Ni, θ,
T, m

(Gutenkunst

et al. 2009)

fastsimcoal2 SNPs SFS, 2DSFS,

nDSFS

Any given

model

Any given

parameter

(Excoffier et al.

2013)

ABC Any kind

of marker

User defined Any given

model

Any given

parameter

(Beaumont et al.

2002)

Ne effective population size, Ni effective population sizes across time, N0 current effective

population size, Nt ancient effective population size, T divergence time, θ 4Neμ, m migration rate

among populations, IM isolation with migration, LD linkage desequilibrium, SFS site frequency

spectrum, SNP single nucleotitic polymorphism, ABC approximate Baeysian computation
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Box 1 (continued)

coalescent process for a sample of six sequences taken from a population of

size 2N. In this example it takes on average 2N/15 generations to go from six

lineages to five lineages, 2N/10 to go from five lineages to four lineages, and

so on until we reach the Most Recent Common Ancestor (MRCA) of the

sample. Strikingly, the genealogy is dominated by the last event: roughly, half

of the time is spent waiting for the last coalescent event! An important

consequence of the coalescent model is the realization that gene genealogies

are highly variable, hence, everything else being equal, two independent

genes might have very different genealogies. This has a profound impact on

the way we carry out population genetics inferences: in a single, random

mating, constant size population following the standard coalescent, it is

generally more informative to increase the number of loci rather than the

number of individuals. Most populations are structured or have gone through

population size changes so having a large, carefully sampled set of sequences

is crucial to obtaining reliable demographic inferences in these cases.

To be of general interest and not simply a mathematical curiosity, a model

must be robust to departures from its basic assumptions. A large number of

studies have shown this to be a case of the n-coalescent. In particular,

(continued)

E[Tk]

2N/1

2N/3

2N/6

2N/10
2N/15Present time

Fig. 1 Illustration of the standard coalescent model in a diploid population 2N. The expected

coalescence times from k to k�1 lineages (for instance, 2N/15 is the expected time to go from 6 to

5 lineages) are on the right. E(T ) denotes the expected age of the most recent common ancestor

given k lineages
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Box 1 (continued)

processes occurring on two time scales, one fast and one slow, for example,

partial selfing (Nordborg and Donelly 1997), seed banks (Kaj et al. 2001) or

population structure with high migration (Wakeley 2008) will lead to gene

genealogies with a topology very similar to that of the standard coalescent

model. The gene genealogies are simply obtained by a rescaling of the

effective population size. For example, selfing is a very fast process (with a

probability of coalescence of ½) and outcrossing a slow one (the coalescent

rate is now ½N) that therefore dominates the coalescence process. The

coalescent with partial selfing is then the standard coalescent with Ne ¼ N
(2�s) where s is the selfing rate (Nordborg and Donelly 1997). Selection or

recombination cannot be easily accommodated and led to new processes,

namely the ancestral selection graph (Krone and Neuhauser 1997) or the

ancestral recombination graph (Griffiths and Marjoram 1997). The latter is at

the root of new models of demographic inferences such as PSMC (Li and

Durbin 2011) discussed later on in this chapter.

In parallel to recent computational power and data availability increase, models

have grown in complexity and are becoming more realistic. For example, Whitlock

and McCauley (1999) showed that most assumptions related to migration rate

estimates under the island model were violated in nature. Recent developments

have made possible the joint estimation of several populations’ size changes

(Gutenkunst et al. 2009; Hey and Nielsen 2004; Kuhner 2006) and/or inferences

extended to multiple mutation models (Heled and Drummond 2008; Leblois et al.

2014; Nikolic and Chevalet 2014; Wu and Drummond 2011). Importantly, as we

transition from genetic to genomic-based inference of population history and

demography, many of these methods can simply be scaled up to accommodate

the larger data sets.

Here we provide an overview of demographic inference in the age of genomics.

Our focus will be on methods and interpretations and we draw on examples from

wildlife and simulation studies. Many methodological advances are directly attrib-

utable to studies focusing on human history; however, genomic inference of human

historical demography is a complex and controversial subject deserving a chapter of

its own. We therefore focus on non-human examples. The remaining chapter is

divided into three parts: (1) the application of traditional demographic approaches

to genomic data; (2) the development of demographic approaches specific to large-

scale genomic data; and (3) a discussion of the key parameters and limitations. The

goal of this chapter is to provide a bridge linking the large number of available

methods and growing number of genomic data sets. We hope this chapter provides a

useful resource for both beginners and experienced researchers interested in under-

standing demographic and population histories.
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2 The Site Frequency Spectrum (SFS) and Demographic
Inference

Perhaps the most fundamental yet under-appreciated aspect of genomic data is the

site frequency spectrum (SFS—Fig. 2), also referred to as the allele frequency

spectrum. The SFS is the distribution of the allele frequencies of a given set of loci

(often SNPs) in a population or sample (Evans et al. 2007; Fisher 1930; Kimura

1964; Wright 1938). Many important population genetic statistics such as Tajima’s
D and FST can be derived from the SFS (Nielsen et al. 2009; Wakeley 2008). With

genome-wide data most of the methods used for estimating population genetic

parameters from a few loci are not applicable or become computationally intracta-

ble when methods rely on the explicit representation of a coalescent tree for each

site or locus (Nielsen and Slatkin 2013). Several methods based on the SFS allow

for the consideration of thousands of sites simultaneously, without assuming that

they all have the same tree (Nielsen and Slatkin 2013). The SFS represents the

distribution of the alleles by classes of frequency (i.e. singletons, doubletons, etc.)

and its statistical properties in terms of population demographic history are gener-

ally well understood under the coalescent and the diffusion models of neutral

evolution (Fu 1995; Griffiths 2003; Griffiths and Tavaré 1998; Kimura 1955;

Polanski et al. 2003; Živković and Stephan 2011). Two key advantages of

SFS-based methods are that they can correctly estimate demographic models with

a small number of polymorphisms (e.g., Adams and Hudson 2004; Shafer et al.

2015) and missing data can be accounted for (Gutenkunst et al. 2009).

Several types of SFS can be calculated leading to a few important terms and

concepts. The number of populations or species considered is reflected in the

terminology: the SFS which is denoted as 1dSFS for a single population can be

extended for two populations (2dSFS or jointSFS) or even more than two

populations, in which case we use the term joint-SFS. Both the 1dSFS and 2dSFS

are easily visualized (Figs. 2 and 3) while the presentation of multiple (>2)

dimensions limits visual presentation of the joint-SFS. The 1dSFS is simply the

distribution of minor allele frequencies. The prior knowledge of the ancestral allelic

state is further factored in with unknown ancestral allelic states termed folded SFS

and known ancestral states termed unfolded SFS (Fig. 2). The unfolded SFS

contains more information (see Fig. 3) but is dependent on knowing the ancestral

allelic state that by definition is unknown. Using data from one to several closely

related outgroups can polarize the mutations and be a proxy for inferring the

ancestral and derived nucleotide states (Gutenkunst et al. 2009; Hernandez et al.

2007). Multiple species alignments together with ad-hoc tools (e.g., Paten et al.

2008a, b) are helpful in this regard and several approaches have been proposed to

aid in the correct identification of ancestral states (Hernandez et al. 2007; Hwang

and Green 2004; Matsumoto et al. 2015). One can also include an error term in the

model to quantify the uncertainty in the ancestral state inference (Burgarella et al.

2015). Because identifying ancestral states is still subject to several limitations,
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sources of bias and uncertainties, analyzing the folded-SFS is quite common and

often incurs fewer sources of errors (e.g., Qiu et al. 2015).

For “n” diploid samples, the unfolded 1dSFS will be a vector (2n + 1) of the

proportion of sites carrying “k”-mutations and can include counts of ancestral

monomorphic state (not shown in Fig. 1; see Fig. 3). In other words, the derived

allelic class no. 8 in Fig. 2 represents homozygous derived alleles, while class

no. 0 (not shown) represents homozygous ancestral alleles. Changes in Ne will

distort the gene genealogies and impact the frequency distributions across the SFS,

and this is what is used to infer population size changes. For example, an expanding

population (say a species colonizing recently deglaciated terrain) will have more

singletons in the 1dSFS than a population of constant size. Conversely, a declining

population will show a deficit of singletons. By fitting the frequency spectrum

expected under a particular demographic model to the observed SFS, relative

changes in Ne can be inferred (Boitard et al. 2016; Excoffier et al. 2013; Gutenkunst

et al. 2009; Liu and Fu 2015).

For a 2dSFS with N individuals, the plot (Fig. 3) reflects the total number of

segregating sites in which the derived allele (or minor allele if folded SFS) is

Fig. 2 Calculating and representing 1-dimensional site frequency spectrum (1dSFS) with a simple

dataset. The data are presented by 15 variants (SNPs) typed for four diploid individuals. The folded

1dSFS is based on the counts of the minor alleles’ frequency in the sample (blue bar plot). The
unfolded 1dSFS calculated based on the counts of the derived alleles’ frequency in the sample (red
bar plot). All allele, Freq frequency
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observed with the corresponding frequency in each population. Interpreting the

2dSFS is somewhat less intuitive as each cell—which corresponds to 2n � 2n
combination of alleles with counts in population 1 and counts in population 2—

must be connected to a scale bar. Visual interpretations aside, the 2dSFS contains an

incredible amount of information about population size fluctuations, population

divergence, migration, and selection. For example, in recently diverged populations,

the density of alleles in the 2dSFS will be concentrated along the diagonal reflecting

a recent, shared history (Fig. 3, upper plots). In contrast, for highly divergent

populations, most of the SFS density is concentrated along the axes as most alleles

are private (Fig. 3, lower plots). Similarly, migration from one population to another

will result in increased shared alleles (see Fig. 2; Gutenkunst et al. 2009).

Fig. 3 Two dimensional site frequency spectrum (2D-SFS) obtained from simulated populations

diverging recently (5 generations ago) and historically (5,000 generations). Plots based on 10,000

SNPs and 10 diploid samples per population
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Calculating SFS is highly sensitive to the SNP calling approach and quality of

the data (e.g., coverage, error rate, bioinformatics pipeline; Han et al. 2013; Nielsen

et al. 2012; Shafer et al. 2017), and the outgroup species or method used to polarize

the derived allele. To tackle the biases originating from genotype calling, the SFS

can be estimated directly from a genotype likelihood considering both coverage and

base quality (Korneliussen et al. 2014; Nielsen et al. 2012). Several approaches

have been proposed to infer relaxed demographic history from SFS (Table 1). The

Stairway plot (Liu and Fu 2015) and PopSizeABC (Boitard et al. 2016) make use of

1dSFS to infer the population size fluctuations over time of a single population.

Although using very different approaches, both methods allow preliminary analysis

of the populations’ demographic histories and are useful for developing hypotheses

and priors for building and comparing more complex scenarios. These methods

have in particular shed light on the ancestry of killer whale (Orcinus orca) ecotypes
(Foote et al. 2016) and cattle breeds (Boitard et al. 2016). Several approaches have

been proposed to resolve speciation and divergence events under the isolation with

migration model (Naduvilezhath et al. 2011; Kern and Hey 2016). Furthermore,

model-based approaches implemented in ∂a∂i (Gutenkunst et al. 2009) and

fastsimcoal2 (Excoffier et al. 2013) offer the possibility to compare complex

scenarios from 1d and joint-SFS, including population size changes, population

splits, and divergence, and enable estimating parameters of interest like migration.

Methods analyzing the SFS have gained recent popularity—particularly due to their

fast computing ability—allowing the comparison of very complex scenarios for

large range of organisms. For instance, Schubert et al. (2014) successfully applied

∂a∂i in combination with other approaches to date horse (Equus ferus ssp.

caballus) domestication, Arnold et al. (2015) unraveled the evolution of tetraploidy

in Arabidopsis arenosa, and Malaspinas et al. (2016) resolved population history

from rather complex models. Recently developed, the aggregate SFS of several

co-distributed species (aSFS) provides a useful framework to test for simultaneous

demographic changes in response to environmental changes (Xue and Hickerson

2015).

3 Approximate Bayesian Computation and Demographic
Inference

We have introduced coalescent theory (Box 1) and alluded to Approximate Bayes-

ian Computation (ABC) in the previous section. A key development in population

genetics has been the merger of these two areas. While coalescent simulations are

extremely fast, the likelihood estimates are computationally taxing (Marjoram and

Tavaré 2006). ABC methods rely on summary statistics (but see Sousa et al. 2009)

and simulations, not likelihoods, thus circumventing the need for likelihood calcu-

lations in population genetics (Beaumont et al. 2002). In the case of demographic

inference, a common approach has been to use a coalescent sampler (e.g., ms;
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Hudson 2002) under a wide distribution of parameter values (referred to as a prior

in the Bayesian framework). For example, in a simple isolation model one might

choose to run one million coalescent simulations with each simulation reflecting a

different split time taken from a distribution within the prior. Each simulation has a

series of summary statistics calculated, for example heterozygosity and FST, that

are then compared to the same summary statistics generated from the observed data.

A subset of simulations close to the observed value(s) are retained and used to infer

the demographic parameters of interest. Model selection via Bayesian posterior

probabilities can then be conducted, but this is an area of active debate (Robert et al.

2011).

The above is a cursory overview of ABC and there are many ABC variants and

considerations users need to be aware of (see Beaumont 2010; Bertorelle et al.

2010; Csilléry et al. 2010). However, both whole-genome and reduced representa-

tion sequencing approaches, along with SNPs are compatible with ABC and the

coalescent (Li and Jakobsson 2012; Shafer et al. 2015). Virtually any demographic

scenario can be tested, provided it can be simulated. Collectively, this has led to the

growing popularity and increased availability of user-friendly software devoted to

demography (Cornuet et al. 2014; Pavlidis et al. 2010; Wegmann et al. 2010;

Csilléry et al. 2012; Boitard et al. 2016). Another attractive aspect is that the critical

coalescent parameters Rho (ρ) and Theta (Θ), whose distribution is generally poorly
known, can be given priors and estimated in the ABC framework. In experiments

where sequencing error might be a problem, error models can be used to transform

simulated data and this appears to improve ABC parameter estimates (Veeramah

et al. 2015). This versatility is a key attribute of ABC-based demographic inference.

Turning millions of sequence reads into a handful of summary statistics does

have its limitations. For short-read genomic data and SNPs, while ρ can effectively

be ignored, coalescent simulations based on a reasonable Θ produce primarily

monomorphic sites, wasting considerable computer resources or forcing short-

cuts that lead to biased estimates (Shafer et al. 2015). The available independent

summary statistics are limited with these data as the more powerful linkage-based

statistics are not available. Consequently, historical changes in Ne such as bottle-

necks are difficult to infer (Shafer et al. 2015, 2017), but it should be noted that

contemporary Ne estimates are tractable with linkage-based approaches (Waples

et al. 2016). For large-scale re-sequencing data, despite the speed of the coalescent,

the number of replicate simulations does become a limiting factor. For example, Li

and Jakobsson (2012) required 7,000 computer hours to complete 50,000 simula-

tions reflecting 10,000 genome regions of size 100 kb. Despite the availability of

standalone packages, no general rules apply and each data type and set of models

requires its own unique exploration (Bertorelle et al. 2010). ABC is relatively quick

and easy to run, but this to some extent blurs the underlying intricacies of the model

and data, and thus as in all models, researchers should be aware of potential biases

and limitations and customize the ABC to their data and system.
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4 The Development of Demographic Approaches Specific
to Large-Scale Genomic Data

The use of the SFS and ABC existed prior to the large-scale generation of genomic

data, and many of the standard methods were simply scaled up. However, new

methods dependent on genomic data have emerged, often with very exciting results.

Most notably was the publication of pairwise sequentially Markovian coalescent

(PSMC) method (Li and Durbin 2011). It was built upon the theoretical work of

Wiuf and Hein (1999), McVean and Cardin (2005), and Marjoram and Wall (2006)

that developed sequential Markovian coalescent algorithms to approximate the

coalescent model for large chromosome fragments undergoing recombination.

This method was revolutionary as it uses information from just one diploid genome.

The key feature of PSMC is that it relies on the coalescence to estimate the time to

the most recent common ancestor of two alleles at a given locus. Because the rate of

coalescent events is inversely proportional to Ne, Ne can be estimated. Conceptually

the method simply moves along chromosome encountering older and younger tracts

that reflect different population histories resulting in estimates of Ne over time.

Looking at two examples in Fig. 4, in example 1, Nadachowska-Brzyska et al.

(2015) applied PSMC to 38 different bird whole genomes, showing expansions and

contractions coinciding with climate cycles have been a common feature of many

bird species during the Quaternary period (Fig. 4a). Importantly, the divergent Ne

paths are consistent with speciation and lineage splitting and corroborated conser-

vation listings based on long-term population declines. Similarly, using ancient

DNA and PSMC, Palkopoulou et al. (2015) documented the demographic decline

of wooly mammoth.

Subsequently, Schiffels and Durbin (2014) tweaked the method to allow multi-

ple genomes, known as multiple sequentially Markovian coalescent (MSMC). One

of the nice aspects of MSMC is that it allows for preliminary dating of population

(Warren et al. 2015) and species splits (Wang et al. 2016) because the Ne estimates

converge when the sampled individuals share a common ancestor. In example

2 (Fig. 4b), Warren et al. (2015) showed Ne trajectories of five vervet subspecies

based on whole-genome re-sequencing consistent with their known geographic

ranges and histories of isolation, ultimately supporting relative stable populations

over time. Although robust SMC inferences require relatively high coverage (18�)

and low missing data (low 25%; Nadachowska-Brzyska et al. 2016), MSMC

requires phased data (Schiffels and Durbin 2014) and sudden and recent estimates

in Ne are difficult to recover with the PSMC (Li and Durbin 2011). In addition, all

estimates assuming panmixia (thus impacting more than MSC) are strongly

influenced by population structure (Box 2). That said, these methods have really

galvanized the population genetics community, allowing estimates of the long-term

population and species history via analysis of genetic variation across the entire

genome.
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Box 2. The Problem of Population Structure

Population structure can confound analyses of population size changes over

time. The basic problem is illustrated in Fig. 5. In a structured population, the

probability of coalescence changes dynamically over time as a function of the

migration process. Therefore, structure forces the genealogy of a sample to

deviate from a standard, non-structured coalescent process.

Even though the potentially confounding effect of population structure on

demographic inference was identified as early as Wakeley (1999), the major-

ity of methods developed to detect population size change rely on the

assumption that samples were obtained from populations that can be approx-

imated by aWright–Fisher model (i.e., assuming panmixia). In the real world,

population structure is nearly ubiquitous and most natural populations form

spatial networks interconnected through gene flow.

An attempt to assess the effect of a very common type of population

structure (Isolation-by-distance; IBD) came relatively recently (Leblois

(continued)

Fig. 4 Two example studies using the pairwise sequentially Markovian coalescent (PSMC) and

multiple sequentially Markovian coalescent (MSMC) methods. (a) Multiple PSMC plots from

flycatcher species from (Nadachowska-Brzyska et al. 2016). (b) MSMC plots of vervet subspecies

from (Warren et al. 2015)

524 J. Salmona et al.



Box 2 (continued)

et al. 2006). Using a simulation-based approach, Leblois et al. (2006) dem-

onstrated that IBD frequently leads to spurious demographic inferences.

Städler et al. (2009) showed that population structure influences the expecta-

tions of summary statistics and could lead to artifacts of population contrac-

tion or growth. The development of full-likelihood coalescent-based methods

and later the Bayesian skyline plot methods (Drummond et al. 2006) led to

widespread interest in inferring population size change from genetic data, and

many studies have applied these methods with varying degrees of attention to

the possible confounding effect of structure. These methods share the

assumption of panmixia and no immigration outlined above (but see Kuhner

2006). The persistent structure effect in these more sophisticated methods

was only recently revisited by (Nielsen and Beaumont 2009; Chikhi et al.

2010) and Heller et al. (2013) using simulated data under various stationary

but structured population scenarios. These studies quantified the structure

effect and identified parameter ranges and sampling schemes under which

false bottleneck signals are likely. Similarly, Li and Durbin (2011) were

(continued)
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Fig. 5 A schematic representation of how population structure and sampling influences demo-

graphic inference. Figure taken from Orozco-terWenge (2016)
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Box 2 (continued)

aware that the Ne estimates from the PSMC were strongly influenced by

population structure. Despite having been known for a long time and repeat-

edly demonstrated, the structure effect is frequently ignored in PSMC appli-

cations and others, possibly because it is mistakenly believed that structure is

not an issue when a single genome is used.

The structure effect in PSMC has been investigated in a series of recent

studies by Mazet et al. (2015, 2016). These authors developed a statistical

approach to disentangle structure from population size change using the

information of one individual in the case of two simple models (Mazet

et al. 2015). In addition they introduced the IICR (inverse instantaneous

coalescence rate), equivalent to effective population size in panmictic

models, but potentially “misleading in structured models” (Mazet et al.

2016). Mazet et al. (2016) showed that any PSMC result showing changes

in population size has an analogous scenario of structured populations with

changes in migration.

An important pattern that has repeatedly emerged is that the sampling

scheme interplays in complex, yet readily explained ways with population

structure to create confounding demographic signals. As a general observa-

tion, sampling only one deme tends to increase the strength of spurious

signals (Chikhi et al. 2010; Heller et al. 2013; Peter et al. 2010; Städler

et al. 2009). Conversely, sampling individuals from several demes tended

to reduce the occurrence of spurious signals. However, when comparing

pooled (several individuals from several demes, but not all demes) and

scattered sampling (one individual from each deme) of structured

populations, it is hard to make direct and general recommendations. A recent

study showed that scattered sampling is less prone to falsely detecting

bottlenecks, but also has reduced power to detect those (Heller et al. 2013).

Several strategies have been proposed to circumvent or reduce the

confounding effect of structure. (Chikhi et al. 2010; Heller et al. 2013; Städler

et al. 2009) all suggested population sampling strategies to minimize struc-

ture confounding effects. Further, alternative approaches offer the possibility

to specifically test the relative fit of structured and nonstructured models

using ABC (Csilléry et al. 2010; Peter et al. 2010; Wegmann et al. 2010;

Heller et al. 2012) or the joint-SFS (Excoffier et al. 2013; Gutenkunst et al.

2009). Including unsampled populations (Beerli 2004) in the model is also

advisable when an influx of genetic material is suspected. In summary,

structure is ubiquitous in nature yet poorly reflected in the history of methods

for inferring population size changes. As a bare minimum, all studies under-

taking demographic inference should apply some means of testing the sensi-

tivity of their results to population structure.
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Prior to PSMC and MSMC, animal breeders had been interested in using whole-

genome sequence and large-scale SNPs to identify regions of the genome that are

identical-by-descent. Such regions are manifested in long stretches of identical

sequence termed runs of homozygosity (ROH). Mating between individuals with

a more recent common ancestor results in longer ROH (Kardos et al. 2015). ROH

are of particular interest in studying inbreeding depression and its genetic basis; in

the demographic context, however, many short ROH are indicative of small Ne in

the past, whereas long ROH are indicative of a recent decrease in Ne (Kardos et al.

2016). Simply quantifying the size and distribution of ROH gives clear insights into

demographic history (Kirin et al. 2010). Macleod et al. (2013) extended this and

developed a coalescent model relying on ROH. This model summarizes linkage

disequilibrium among ROH that is used to infer Ne. The model works on unphased

single and multiple diploid genomes, and works well for more recent estimates of

Ne. This method lends itself well to the use of SNPs, but in natural populations

>100,000 SNPs and SNPs from a closely related species, if not conspecific, are

required to accurately recover the ROH landscape (Shafer et al. 2016).

5 Identifying and Recognizing Limitations

“Essentially, all models are wrong, but some are useful” (Box et al. 1987). Popu-

lation genetics models are not an exception to this rule. Models typically assume

panmixia and non-overlapping generations while this is seldom true in nature (but

see Moran 1958). Furthermore most methods developed to detect population size

change assume a single population with no structure (see Box 2), a unique popu-

lation size change, and a typical Poisson distribution of reproductive success

(random mating). Moreover, there is a confluence of genetic signatures that could

be the result of different evolutionary processes such as population structure,

admixture events, selection, mutation and recombination, and population size

change. Thus, to conclude that a specific demographic history has shaped the

analyzed genomic data, one must first reject reasonable alternative explanations

based on the model’s known limitations.

An important take home message is that the use of genomic data does not

necessarily lead to a more accurate demographic inference (Mazet et al. 2016). If

the model assumed is fundamentally miss-specified, it will lead to a misleading

result, and increasing the amount of data simply provides increased precision for an

inaccurate parameter. Best-practice would be to first address the following

questions:

1. Is the experimental design appropriate for addressing a demographic question?

2. To what extent do the genomic data or system violate the key assumptions of the

model?

3. Is the assumed model somewhat realistic given the sample and the species

biology?
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Sampling should be planned considering the major impact it has on statistical

power and the putative structure of the population. Similarly, consideration of the

impact of unsampled or “ghost populations” (Beerli 2004) on the SFS and summary

statistics should be factored into the model. Unsampled populations are likely the

case for many natural populations and including such a ghost population in the

model would be advisable (Excoffier et al. 2013). Simulating data to test the model

is generally a good idea as it will allow for the robustness of results to be fully

assessed (Excoffier et al. 2013; Excoffier and Foll 2011; Li and Jakobsson 2012;

Shafer et al. 2015). These two later points—modeling unsampled populations and

simulating data—are likely not appealing for research groups interested in quick

turnaround times, but are critical for proper evaluation and could easily become

standard practice with only adding a few additional weeks to studies.

Earlier we alluded to misspecification of models. It is important to recognize that

demographic models require parameter values that are generally provided by the

user. This might be prior to running the model, or after when converting coalescent

units to biological values. Inaccurate generation times, mutation rates or specified

demographic scenario will impede accurate inferences at they are factored into Θ
and ρ that are central to most demographic models. While we have saved this

section to the end, in many ways it is the most important.

Generation time. Despite having an understandable definition (see Glossary),

generation time is typically an unknown parameter in natural populations of long-

lived animals and plants whose reproduction span can extend over many decades.

Estimating generation time requires long-term behavioral and demographic studies

and often equate to best guesses. A range of values taken from ecological param-

eters or from a closely related species can be applied with various formulas

proposed (e.g., Bienvenu et al. 2013). It should be noted that generation time is

used as a scaling parameter, meaning it simply gets factored into the estimate post-

hoc, but can alter time estimates if inaccurate.

Mutation rate and models. Mutation models are generally unknown, but

likelihood-based approaches devoted to their estimation are available (Posada and

Crandall 1998). Many of these substitution models have been scaled up (Carvajal-

Rodrı́guez 2008) and are most applicable to forward-in-time simulations. The
uncertainties associated with mutation rate (μ) subject to large variation across

lineages and marker type are numerous (Ho 2014; Moorjani et al. 2016). Therefore,

mutation rate uncertainty is often a main driver behind large confidence intervals

associated with time estimates. For most species and type of markers, mutation rate

is unknown, and can be approximated using values of closely related species (e.g.,

Heller et al. 2012) or subjected to a large prior (Storz and Beaumont 2002). When

possible mutation rate can be estimated using dated ancient DNA to reduce dating

uncertainties (e.g. Allentoft et al. 2015; Orlando et al. 2013). Dating results should

thus always be interpreted cautiously, and presented together with mutation model

and rate parameter priors.

Recombination rate. Recombination rate (r) can be effectively ignored with

unlinked SNP and RADseq data (Shafer et al. 2015). With long contiguous

sequences, improper recombination rates will adversely impact parameter estimates
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(Li and Jakobsson 2012). Similar to mutation rates, having a large prior or treating

r as a nuisance parameter are appropriate courses of action. While debatable, r is
more system and genome specific than μ and thus requires special attention as it will
impact parameter estimates and accuracy.

Simulations and iterations. Both SFS and ABC methods will require users to

decide as to the number of simulations or iterations to perform. Assessing model

convergence and prior distributions should be regularly conducted, even at the cost

of added computation time. There is no golden rule as to the number of simulations

but they will likely number in the tens of thousands if not more (Li and Jakobsson

2012; Robinson et al. 2014; Shafer et al. 2015).

6 Concluding Remarks and Future Prospects

Methods aimed at inferring demographic history can generally not retrieve demo-

graphic events older than 2Ne generations (4Ne for diploid species) as power fades

rapidly upon moving back in time. This is because most alleles will coalesce in the

recent past: in the standard coalescent all alleles except two coalesce before 2Ne

generations ago, but it takes more than 2Ne generations to reach the MRCA, with

only a few independent lineages probing deep the past (Li and Durbin 2011; Mazet

et al. 2015). The advent of genomic sequences, and for example, development of

the SMC approaches (Li and Durbin 2011; Schiffels and Durbin 2014; Sheehan

et al. 2013) has taken advantage of the fact that hundreds of thousands of indepen-

dent loci have independent coalescent histories, allowing reconstruction of demo-

graphic histories up a million years ago. The increasing panel of approaches have

gained in complexity and realism (Table 1), now allowing for multiple size changes

that fit more closely to the population fluctuations expected over climate oscilla-

tions (e.g. Boitard et al. 2016; Nikolic and Chevalet 2014; Schiffels and Durbin

2014; Wu and Drummond 2011). Moreover, several methods now allow for

estimation of demographic parameters within the framework of complex models

integrating population splits, multiple population, gene-flow, admixture events,

bottleneck and growth (e.g., Excoffier et al. 2013; Gutenkunst et al. 2009).

This chapter attempts to provide a bridge linking the large number of available

methods and growing number of genomic data sets. The SFS is a fundamental

summary statistics that is often not fully understood by practitioners; therefore, we

focused a lot on the SFS as it is a central aspect of demographic inference using

genomic data. Both the coalescent and ABC methods also featured prominently and

are reflective of current applications and popularity. Approaches like forward-in-

time simulations were not examined, simply because of computational limitations

and lack of widespread use although that is likely to change in the near future. We

hope in subsequent versions of this chapter they will feature more prominently.
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Glossary

Approximate Bayesian computation (ABC) compares summary statistics from

observed and simulated data to make demographic and statistical inferences.

ABC does not rely on computing a likelihood-function.

Bottleneck a massive and temporary reduction in (effective) population size that

results in an associated reduction of genetic diversity.

Genetic drift changes in the frequency of alleles due to random mating (and allele

segregation in diploids). Changes are more pronounced in small populations.

Coalescent theory mathematical model governing the expected distribution of

coalescence times back to a common ancestor in a population sample.

Diffusion approximation approximation of the Wright-Fisher (WF) model that

leads to a continuous time stochastic process that is easier to study mathemat-

ically. It is used to derive useful formulas such as the expected time to fixation of

a mutation.

Divergence time (T ) estimated divergence time between two populations mea-

sured as the number of generations, typically divided by 2Ne.

Effective population size (Ne) the size of an idealized (Wright-Fisher) population

with the same amount of genetic drift as the given real population. In most

organisms, effective size is less than census size because of factors such as

overlapping generations, reproductive inequality, and sex bias.

Genealogy the ancestral relationship, for a particular segment of the genome,

among sampled chromosomes. This takes the form of a branching tree for

non-recombining data, but becomes a tangled graph (the “ancestral recombina-

tion graph”) with recombination.

Generation time is the average interval between identical life history stages

across successive generations. Generation time is often expressed in years.

Migration (M ) is the average number of migrants entering each population per

generation defined as 4Nem where m is the proportion of individuals per gener-

ation in each population that are immigrants.

Recombination the process of exchanging genetic material between homologous

chromosomes during meiosis resulting in new combinations of alleles in the

resulting gametes.

Rho (ρ) is the population-scaled recombination rate defined as 4Ner in diploid

organisms.

Panmictic population a population in which all pairs of individuals are equally

likely to mate.

Site frequency spectrum (SFS) also called the allele frequency spectrum, is the

distribution of the allele frequencies of a given set of loci in a sample, and is

often visualized as a histogram.

Tajima’s D a summary statistic that compares two estimators of the population-

scaled mutation rate Θ to detect departures from the standard coalescent model.

Departures can reflect demography or selection.
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Theta (Θ) is the population-scaled mutation rate equal to 4Neμ in diploid organ-

isms. It is the product of the Ne and mutation rate μ and measures the capacity of

a population to maintain genetic variability. Among organisms of similar μ, it
functions as a measure of relative effective population size.

Wright-Fisher model is a discrete-time model of stochastic reproduction (see

also genetic drift) that assumes a population of size N, random mating, and

non-overlapping generations.
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Advancing Biogeography Through
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Jeremy S. Johnson, Konstantin V. Krutovsky, Om P. Rajora,
Keith D. Gaddis, and David M. Cairns

Abstract Biogeography is a multifaceted field that integrates geography, geology,
ecology, and biology to investigate both historical and ecological questions of how
spatial and temporal patterns of varying environmental factors impact the distribu-
tion of species and their evolutionary history. Genomes contain imprints of these
impacts and, when such genomic imprints are rightly deciphered and interpreted, can
help us address these questions. In the past 10 years, incredible advances have been
made with respect to acquiring and deciphering genome sequences. The advances in
genomics and bioinformatics and the decreasing costs of nucleotide sequencing have
reduced many of the barriers to using genomics in biogeography. Here, we introduce
some of the strategies and approaches from population genomics that can be
integrated into biogeography research. First, we introduce the field of biogeography
and define the two well-established broad subdisciplines of ecological and historical
biogeography along with the traditional methods that they use. Next, we present
examples of how population genomics approaches can be used to address
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biogeographic questions. To illustrate how both ecological and historical biogeog-
raphy can benefit from adopting a population genomics approach, we outline our
own research on mountain hemlock as a case study. We also briefly discuss the
application of biogeography in biological conservation. We conclude the chapter by
discussing some of the remaining challenges and future research avenues that
become possible by integrating population genomics into biogeography research.

Keywords Biogeography · Dendrogenomics · Ecological biogeography · Historical
biogeography · Next-generation sequencing · Paleogenomics · Phylogenomics ·
Reduced representation genomics · SNPs · Species distribution modeling

1 Introduction

Biogeography is a multifaceted discipline that integrates the fields of geography,
geology, ecology, and biology. The discipline has a long history (nearly two
centuries) focused on understanding the origin, abundance, distribution, and evolu-
tionary history of species along with the processes that structure it (Mayr 1942;
Andrewartha and Birch 1954; Hutchinson 1959; MacArthur 1960). Biogeographers
tackle questions that seek to unravel patterns of biological diversity, focusing on the
physical (geographic) and ecological (evolutionary) processes responsible for struc-
turing these patterns (Fosberg 1976).

More broadly, a unique aspect of any multifaceted integrative discipline, such as
biogeography, is the capacity of its members to conduct research on the periphery of
the field, allowing interdisciplinary or multidisciplinary research to flourish
(Baerwald 2010; Millington et al. 2011a). Case in point, the technological advances
of the past decade in genomics, associated with high-throughput sequencing and the
availability of bioinformatics approaches, have provided a unique opportunity to
advance and unify biogeography research by assimilating population genomics
concepts and approaches (Johnson et al. 2016).

Ecological and historical biogeography have long been distinguished as separate
components of plant geography (Candolle 1820). And today, the modern core in
biogeography is still characterized by both historical and ecological approaches, but
interest in human-environment interactions and applied conservation has grown
within the field (Millington et al. 2011b). The application of biogeographical
principles, theories, and analysis in biological conservation has been recently termed
as conservation biogeography (Whittaker et al. 2005). Ecological biogeographers
(Hengeveld 1993; Cox et al. 2016; Blumler et al. 2011) and geographical ecologists
(Veblen 1989) study contemporary ecological processes acting on current patterns of
species distribution, while historical biogeographers study the origin and evolution-
ary history of species and the long-term changes in the distribution of organisms in
conjunction with past processes (Veblen 1989; MacDonald 2003; Cox et al. 2016;
Lomolino et al. 2017; Blumler et al. 2011). Biogeographers studying human-
environment interactions focus on the interrelationships between people and their
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environment, investigating how humans adapt to and change their environment
(MacDonald 2003; Cowell and Parker 2004). Conservation biogeography, a
subdiscipline of conservation biology, incorporates both ecological and historical
biogeography to address questions of biodiversity conservation (Whittaker et al.
2005). In all of these subdisciplines, inclusion of genomic variation can further serve
as a proxy for process/pattern relationships, and its inclusion will advance and unify
the discipline of biogeography.

The aim of this chapter is to provide context and encouragement for biogeogra-
phy scholars to adopt and incorporate population genomics concepts and approaches
into their research in order to increase the resolution at which they address funda-
mental biogeographical research questions. We begin by discussing the questions of
interest in biogeography and the current methods used to address these questions in
both the ecological and historical contexts. Following this discussion, we elaborate
on how population genomics can assist biogeography in gaining better insights into
spatial patterns of organisms. Because biogeographers approach their research from
different perspectives, depending on whether they are focused on historical or
ecological processes and patterns, in this chapter, we treat these two research
avenues separately with the caveat that a combination of both ecological and
historical approaches is needed for a holistic treatment of an organism’s biogeogra-
phy. To demonstrate how population genomics can be integrated into biogeography
in a unified way, we outline our own research on mountain hemlock (Tsuga
mertensiana) as a case study example. Finally, we conclude the chapter with a
discussion of challenges and future research directions, with an emphasis on the
importance of interdisciplinary and multidisciplinary research and theoretical con-
siderations. While this chapter focuses mostly on plant biogeography, as nearly all
geographic biogeography has over the last century (Millington et al. 2011b), the
population genomics approaches we discuss are applicable to zoogeography and
animal biogeography. We direct readers interested in a more detailed treatment of
biogeography as it is treated in geography departments to MacDonald (2003) and
Millington et al. (2011a).

2 Biogeography Questions and Subdisciplines

Within the field of geography, biogeography falls into the sub-domain of physical
geography. Broadly defined, biogeography assesses how geology, climate, the
physical environment, biotic interactions (including humans), and evolutionary
processes have shaped and continue to shape the distribution of life. For instance,
there are well-known relationships between the distribution of organisms and pat-
terns in temperature, light, and moisture (Schimper 1903), often along subtle envi-
ronmental gradients. These associations can be strongly correlated with the species
distribution and are codified in the concept of the fundamental niche (Hutchinson
1959). When the factors linked to the physical environment are taken together with
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biological interactions, such as competition, and patterns of disturbance, we can infer
the species niche, though rarely it is possible to completely characterize it.

Biogeographers are interested in the processes that result in changing species’
distributions. Approaches used to answer these questions vary widely between
theoretical and empirical approaches and span over population- and community-
level analysis. And as all good geographers do, biogeographers make maps focusing
on the distributions of species, with an emphasis on the size, shape, and continuity of
the distributions through time. The focus of the analysis may be on historical
patterns, such as vicariance and speciation, or it may emphasize explaining current
patterns as well as forecasting the future changes in distribution or community
composition resulting from changing climate and disturbance regimes. Indeed,
currently, one of the most intriguing questions in biogeography is how ongoing
climate change will affect the distribution of species and their populations. All of
these questions have, in one form or another, been addressed over the past 200 years.

The temporal scale of the question will usually dictate the type of analysis.
Temporally, microscale analysis, as an example, on the order of 10–100s of years
can usually be performed by sampling vegetation directly, while longer macroscale
questions, on the order of 100–100,000s of years, will rely on various proxy
methods, such as sediment and ice cores, pollen, or tree rings (see Delcourt et al.
1982, Fig. 2). Below, we briefly discuss several (but certainly not all) of the common
population-based approaches currently used in both historical and ecological bioge-
ography in order to contextualize the questions that are addressed in biogeography.
As you will notice, many of the methods can be applied to both sub-domains of
biogeography. Here our focus is on population-level analysis as it most closely
aligns with the tools that population genomics can contribute to the field of bioge-
ography (Fig. 1).

2.1 Ecological Biogeography

The primary focus of ecological biogeography is to understand the ecological
processes that influence the current patterns of species distribution. The causes of
these patterns are repeatedly related to different temporally varying aspects of their
spatial location, including the abiotic physical environment, positive and negative
biological interactions, and patterns of periodic disturbances and stresses.

2.1.1 Physical Environment

The physical environment acts as the abiotic template for which patterns of vegeta-
tion are reflected. Landscape- and regional-scale analyses of population distributions
are partially influenced by varying patterns of temperature, moisture, nutrients, soil,
and their topographic position. And because these factors fluctuate spatially, they are
often spatially autocorrelated. We know that individuals found close together usually
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experience the same abiotic environmental conditions compared to those that are
found more distant. We can identify some of these patterns by mapping the distri-
bution of a species along with measurements of their physical environment to
identify correlations and associations. Classic ecological biogeography studies
have done just this. An obvious example is that of Alexander von Humboldt
(1769–1859), considered as the father of biogeography, and his observations on
Mount Chimborazo. It is there he noted that vegetation type changed predictably
with altitude. Importantly, he observed that the transition of vegetation types
mirrored that of changes in the latitudinal distributions of vegetation globally (Von
Humboldt and Bonpland 1805). Prominently, von Humboldt noted that these
changes corresponded to changes in the physical environment with an emphasis
on temperature, climate, and atmospheric pressure. von Humboldt inspired two
centuries of ecological biogeographers to investigate patterns of vegetation-
environment associations. A striking example of the physical environment’s role

Fig. 1 A conceptual model of biogeography and its unification through population genomics and
an evolutionary underpinning. Ecological biogeography is concerned with the contemporary
ecological processes acting on patterns of species distribution, while historical biogeography
addresses questions about the origin and evolutionary history of species and their long-term changes
in their distribution. Both subfields of biogeography use a diverse set of methods, approaches, and
theory to address their respective questions. Ecological biogeography is more concerned with biotic
and abiotic interactions and the role of short-term disturbances and most closely aligns with
microevolutionary processes, while historical biogeography focuses on longer temporal scale
process associated with geology and macroevolution. Both ecological and historical biogeographies
will benefit from the inclusion of population genomics approaches, and, in fact, under the theory of
evolution, population genomics can help to unify the two subdisciplines of biogeography
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in generating biogeographical patterns is that of the alpine tree line position. At a
global scale, there is a thermal growth constraint that occurs when mean growing
season temperature is below 6.7�C, which limits the advance of forests and results in
the spatial location of the alpine tree line ecotone (Körner 1998; Körner and Paulsen
2004). Correlative analysis of this type has benefited greatly by the revolution in
geographic information systems and ecoinformatics.

2.1.2 Biological Interactions

While abiotic factors and the physical environment have an important role in spatial
and temporal patterns of species distributions, biotic factors are also important. The
role of interspecific competition was demonstrated by Connell (1961) when he
showed that the distribution of barnacles (Cirripedia spp.) in the intertidal zone
was controlled by abiotic factors (desiccation) at their upper distribution, but,
surprisingly, interspecific competition reduced their distribution at their lower dis-
tribution. Since Connell’s study, a great deal of research on biological interactions,
such as competition, predation, mutualism, amensalism, parasitism, and commen-
salism, has shown that their non-mutually exclusive interactions are important
influences of species distributions. Moreover, in plants, the role of biological vectors
for pollination and seed dispersal is critically important (Potts et al. 2010; Ashman
et al. 2004).

2.1.3 Disturbance

Lastly, ecological biogeography studies the changing patterns of disturbance and its
role in the distribution of plant populations. In some cases, biological interactions are
characterized as a disturbance, for example, pest outbreaks, but other disturbances
are the result of wind, fire, water, and ice in addition to humans. Disturbance is any
discrete event in space and time that “disrupts” a population and changes the
composition and/or configuration of components of the physical and biotic environ-
ment (White and Pickett 1985). Natural disturbances are, in fact, an important
component of plant regeneration and population health and contribute to complex
landscape heterogeneity. There are several types of disturbances that are frequently
studied in ecological biogeography. Fire has been studied rather extensively in
biogeography because of its widespread occurrence and higher return frequency,
which has provided a way to investigate patterns of vegetation dynamics and
successional replacement in forests (Veblen et al. 1994) and grasslands (Bond and
Keeley 2005). Additional examples of studies of disturbance include wind
(Kleinman and Hart 2017), drought (Woodhouse et al. 2010), and ice (Lafon and
Speer 2002) disturbances.
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2.2 Historical Biogeography

In contrast to ecological biogeography, historical biogeography addresses questions
over longer temporal scales ranging from thousands to millions of years in the past.
Furthermore, historical biogeography often addresses larger spatial scales consisting
of regions to global scales. The focus of many historical biogeography questions
centers on understanding the role of geological processes on species distributions,
the spread of organisms, and species evolution.

2.2.1 Geology

George-Louis Leclerc, Comte de Buffon (1701–1788) noted how distant but envi-
ronmentally similar locations had distinct assemblages of biological life (Buffon
1791). This observation, appropriately titled “Buffon’s Law,” is also known as the
first principle of biogeography and has generated many questions concerning the
observed patterns of vegetation globally. Not only did ecologically similar locations
often have different assemblages of flora and fauna, but sometimes distant locations
had surprisingly similar assemblages. Shortly thereafter, Charles Lyell (1797–1875)
championed James Hutton’s (1726–1797) influential theory of uniformitarianism
which led to the realization that Earth is much older than had previously been
thought. In spite of the great advances of the forefathers of biogeography, they
had no knowledge of the dynamic nature of the Earth and so could not explain many
of their observations on the distribution of life. Why, in fact, did Buffon see different
species in ecologically similar locations? Why were fossil remains of similar species
found in geographically distant regions? At this point biogeographers predominantly
invoked long-distance dispersal or the rise of unlikely land bridges as the standard
explanation for biogeographical patterns (Schickhoff et al. 2014), in many cases
without any reasonable evidence to the contrary. Alfred Wegener’s (1880–1930)
(1924) Pangea supercontinent and the theory of continental drift explained many of
the disjunct biogeographical patterns, but his theory lacked a viable mechanism that
would allow continents to move around. It wasn’t until the 1960s, when suboceanic
observations of mid-oceanic ridges and the theory of seafloor spread became known
(Hess 1962; Heezen 1960) along with the support from research in paleomagnetism
(Vine and Matthews 1963), which provided evidence that continents did in fact
move. The theory of plate tectonics (Dietz 1961) was accepted, and this revelation
provided an alternative explanation to dispersal in explaining biogeographic distri-
butions and patterns. Plate tectonics ushered in a new chapter in biogeography, one
where alternative theories of the causes of historic biogeographic patterns could be
tested (Wiley 1988).

Vicariance is a process whereby patterns of isolated disjunct populations result
from a continuous range splitting, either through orogenic events or tectonics (Giller
et al. 2004). But shifting continents alone could not explain all of the patterns of
biological diversity. Climate also changed through time. Louis Agassiz (1807–1873)
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postulated that a great ice age had occurred. The expansion and retraction of ice
sheets throughout the Quaternary had a profound impact on the distribution of life.
By combining an understanding of the timing of continental drift with the distribu-
tion of fossils and historic climates, biogeography began to pinpoint the origin of
taxa based on physical characteristics of extant and extinct species and their
observed spatial location.

2.2.2 Spread

While geology provides a theoretical basis and an alternative mechanism to the
Darwinian dispersalist explanations for the historic distribution of species, dispersal
itself was still an important process shaping biogeographic patterns at historical
scales. The spread and radiation of species via dispersal has been one of the primary
foci of historical biogeography. In particular, long-distance dispersal, or jump
dispersal as it is often referred to, is of the greatest interest in historical biogeogra-
phy, though diffusion is also an important aspect of understanding past colonization
processes.

There are several reasons that plants disperse. At ecological scales, plants dis-
perse to avoid direct competition for resources with their parents and close neighbors
and also to avoid inbreeding and the deleterious effects that come with inbreeding
depression (Howe and Smallwood 1982; Nathan and Muller-Landau 2000). Sec-
ondly, and at much longer time scales, plants disperse to expand their range and take
advantage of new suitable habitat or, when needed, as a means to escape deteriorat-
ing habitat (Willson and Traveset 2000). Historic climate change throughout the
Quaternary, associated with alternating glacial interglacial periods, was a significant
factor impacting the distribution of plants in the northern hemisphere (Davis 1981).
One of the more intriguing historical biogeographical observations was made by
Clement Reid (1899). Reid, a paleobotanist, understood that, based on estimated
rates of seed dispersal at the end of the nineteenth century, in order for the oak
(Quercus spp.) trees in northern Britain to reach their current geographic position, it
would have taken nearly a million years to travel the distance from their glacial
refugia. This of course was not true, and based on the data gleaned from the
paleorecord, Reid’s observation led him to speculate about the role of long-distance
dispersal in recolonization of northern landscapes following Pleistocene glaciations
(discussed in Skellam 1951; Clark et al. 1998). In this case, the other alternative was
that small populations of species survived in situ in microrefugia and did not, in fact,
disperse long distance to recolonize northern environments (Hylander et al. 2015;
Rull 2009). Biogeographers are now starting to generate empirical datasets, mostly
thanks to genetic analysis, that can begin to capture long-distance dispersal events,
despite the extreme difficulty in measuring and observing these dispersal events.

Another line of evidence in support of long-distance dispersal as a process
generating biogeographic patterns stems from observations of biological life on
islands – a research area termed island biogeography. The diversity of life on islands
can be explained by the equilibrium theory of island biogeography (MacArthur and
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Wilson 1963, 1967), which states that species richness is a function of island
distance to a colonizing source and the size (area) of the island. In this theory,
large close islands should harbor the highest species richness, while small distant
islands should be species poor in comparison. These patterns emerge from species
dispersal capabilities and extinction rates on the island. However, the fact alone that
life exists on islands, especially when new islands rise or following defaunating
volcanic events sensu Krakatau (Whittaker et al. 1989), is a testament to the dispersal
capabilities of many organisms (Diamond 1974). Thanks in part to the development
of phylogeography approaches, this hypothesis can be explored. Today both
dispersalist and vicariance biogeographies remain vital research areas in historical
biogeography.

2.2.3 Evolution

The history of evolutionary thinking is long and well documented, and there are
many volumes dedicated to its study. There are also many excellent popular treat-
ments of the subject that we direct readers to (Mayr 1942, 1982; Wilson 1992). It is
not our intention to review the vast literature on the roles of evolution in the creation
of biodiversity and biogeogrpahic patterns, and some other chapters in this book
provide excellent examples and discussions on this topic. However, it is worth
mentioning several of the key theories that are important to historical biogeography.
The names of Charles Darwin (1809–1882) and Alfred Russel Wallace (1823–1913)
are undoubtedly familiar to all, and the importance of the theory of evolution by
natural selection cannot be understated. It is important that dispersal and vicariance
processes, though Darwin and Wallace were unaware of the latter, resulted in the
historic separation of species. As a product of physical separation, reproductive
isolation occurs, and natural selection through survival of the fittest rewards repro-
ductively superior individuals resulting in the shifts of the gene pools (allele
frequencies) of populations with the effect of a gradual (or sometimes not so gradual)
divergence of species and ultimately speciation.

Many questions of interest in historical biogeography arise from a desire to
understand how species come into existence, why they are able to live in a specific
environment, and ultimately what cause them to go extinct. The large number of
species concepts is a testament to the fact that we still have an incomplete under-
standing of the definition of a species. Despite this fact, most definitions of species
propose that some form of isolation (either reproductive or geographic) is usually
required for species to diverge and evolve into a new lineage (but there is a growing
body of research exploring the idea of speciation with ongoing gene flow (Christe
et al. 2017; Menon et al. 2018; Yang et al. 2017)). Novel genetic variation and
sometimes beneficial traits arise through random genetic mutation. Allopatric spe-
ciation, in its simplest form, results from geographic isolation where separation by
physical distance or physical barriers arrests the spread of novel variation from
reaching isolated populations of the species (Mayr 1947). Over time, the populations

Advancing Biogeography Through Population Genomics 547



diverge and become reproductively isolated and evolve new traits leading to new
species formation.

In contrast to allopatric speciation, some speciation events occur without the aid
of physical separation. In this case, variation within the geographical range leads to
speciation and is referred to as sympatric speciation. Plant divergence and sympatric
speciation can result from temporal shifts in phenology and thus reproductive
isolation, for example, the timing of flowering (Silvertown et al. 2005; Hancock
et al. 2011). In either case, some form of isolation can lead to genetic drift and natural
selection for genetic variation that improves reproductive success or against varia-
tion that reduces reproductive success and ultimately contributes to the rise of new
species. Within the field of population genetics, some of the primary explanations for
evolutionary divergence and genome reorganization include founder effects, bottle-
necks, selection, and the effects of small population size (Endler 1977; Hewitt 1996).

Our discussion above has provided a brief look at some of the classic questions
that both ecological and historical biogeography addresses. Although our discussion
is far from exhaustive, it is clear that multiple interacting factors, dispersal, vicari-
ance, and speciation, are responsible for the historical spatial pattern of biological
life, while ongoing changes to the physical environment, biological interactions, and
patterns of disturbance are influencing ongoing changes in species distributions.

3 Traditional Approaches in Biogeography

Within the framework of both ecological and historical biogeography discussed
above, we will explore some of the traditional approaches that both subdisciplines
of biogeography use to address their respective questions with an eye toward
demonstrating how population genomics can improve the resolution and perfor-
mance of these approaches. Again, the separate subdisciplines of biogeography are
split to focus on ecological and historical biogeography.

3.1 Ecological Biogeography

In order to understand the contemporary distributions of plants, ecological biogeog-
raphy must combine an understanding of the roles of the biotic and abiotic environ-
ment with the process of disturbance. Practitioners of ecological biogeography use
many different approaches to investigate biogeographical questions. Often a com-
bination of field-based methods, physiological experimentation, spatial analysis, and
simulation modeling are used to test hypotheses about the current spatial patterns of
species. Ultimately ecological biogeography strives to understand the causes of
species distributions and to predict how these processes will change future distribu-
tional patterns. Here, we explore some of the methods and approaches frequently
used in ecological biogeography to address the questions outlined above.
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3.1.1 Species Distribution/Ecological Niche Modeling

Though the terms can be confusing, ecological niche modeling (ENM) or species
distribution modeling (SDM) is a method that allows biogeographers to assess what
ecological (usually topoclimatic) factors are important predictors of a species’ actual
or potential distribution (Franklin and Miller 2009). In brief, a species’ range is
predicted based on the correlation between the presence or absence of a species at a
specific geographic location and the unique ecological and geographic factors that
occur at that location. The implementation of this approach has been facilitated by
the development of Maximum Entropy (MaxEnt) modeling (Phillips et al. 2006) and
other multiple regression-based methods (Franklin and Miller 2009). Despite the
wide use of SDMs and ENMs in biogeography, there are still many problems
associated with sampling biases and correct parameterization of the models that
must be addressed (Phillips et al. 2009; Kramer-Schadt et al. 2013).

The original article introducing MaxEnt (Phillips et al. 2006) has been cited more
than 8,000 times at the time of writing this chapter and over 1,500 times since 2017
serving as a testament to its popularity and ease of use in creating SDMs. More
advanced SDMs are now being created using machine learning approaches, such as
boosted regression trees and random forests as well as generalized additive and
linear mixed models (Shirk et al. 2018). Shirk et al. (2018) generated a suite of SDM
of southwestern white pine (Pinus strobiformis) to identify the roles of the climate,
soil, and topography and predicted the current and future range of this pine. Their
findings showed that different areas of the range would either expand or contract
with the predicted future climate change. Their findings are important as they
illustrate the vulnerability of the species to multiple hazards, including their suscep-
tibility to the non-native invasive pathogen Cronartium ribicola, responsible for the
white pine blister rust disease, which has spread into the species range. The study
also illustrates the need for inclusion of population genomics data into SDM as the
range of southwestern white pine consists of unique genetic populations that are
likely locally adapted and will respond differentially to the multiple threats.

SDM approaches are being used to understand how species’ ranges will change in
the future and to inform management and conservation decisions (Ferrarini et al.
2016). Biogeography has focused mostly on the climatic relationships between
species and their distributions (Franklin 2010), but a growing number of models
are starting to incorporate life history traits and biological interactions (Pöyry et al.
2008; Iverson et al. 2011; Araújo et al. 2005; Fordham Damien et al. 2013).

3.1.2 Landscape Ecology

Often ecological biogeographers found in geography departments today have
adopted a landscape ecological approach. Landscape ecology spawned from a desire
to understand how the spatial composition and configuration of the landscape
(matrix) influenced the processes responsible for patterns of species distributions,
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and not solely the inverse relationship of processes and its influence on the pattern
(Kupfer 1995, 2011; Turner 1989; Forman and Godron 1981). Changing patterns of
landscape heterogeneity thus have cascading effects on processes governing the
distributions of species, in particular patterns of energy and material fluxes,
dispersal, and functional connectivity in plants (Pickett and Cadenasso 1995).

The first step in landscape ecology is to quantify landscape patterns. This involves
quantifying both the composition of the landscape and its configuration. The com-
position of the landscape is related to different types or kinds of landscape elements
(forests, farms, towns), while the configuration is described by their spatial arrange-
ment at a specific scale (Kupfer 2011; Wiens 1989). The process of quantifying
landscape patterns is facilitated by advances in remote sensing and geographic
information systems. For the study of plants, the role of landscape fragmentation,
habitat loss, and broadscale land-cover change is of particular interest
(Haines-Young and Chopping 1996).

The basic approach after identifying the analytical objective (e.g., what environ-
mental processes determine the landscape pattern of species distribution) is to
quantify the landscape based on the appropriate spatial extent, thematic content,
and resolution (Cushman et al. 2016). The analytical step then involves statistically
relating the landscape patterns to various indices and metrics designed to help
explain landscape structure (Kupfer 2012). Ecological biogeographers with a land-
scape ecology research program often focus on the role of humans and their role in
biogeographic patterns (Chhetri et al. 2017) and oftentimes focus on applied con-
servation biogeography and management priorities such as reserve design (Kupfer
1995). Several ecological biogeography studies have used landscape ecological
approaches to study the role of global change on spatial patterns of vegetation. For
example, the impacts of landscape structure change on southern pine beetle out-
breaks were assessed using landscape simulation models finding that patterns of host
aggregation in addition to landscape structure were important determinants of pest
outbreak severity (Cairns et al. 2008). Naito and Cairns (2011), using a remote
sensing approach, studied the spatial patterns of shrub expansion in the arctic finding
that topographic position and hydrologic characteristics were important factors
associated with the amount of expansion, specifically showing that shrubs were
expanding preferentially into wetter environments. The role of environmental feed-
backs has been explored by combining simulation and observational analysis to test
the role of positive feedbacks on spatial patterns of alpine tree line finding that
directional feedbacks associated with wind contributed to observed patterns at tree
line (Alftine and Malanson 2004).

3.1.3 Dendrochronology-Based Approaches

Patterns of disturbance are often reflected in the annual growth of trees. Forest
dynamics associated with disturbance can be assessed because a disturbance event
can be precisely dated based on the location of a disturbance scar relative to annual
tree rings. One aspect of dendrochronology is concerned with identifying specific
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events, usually some sort of disturbance, recorded in the life of trees and shrubs and
is used to reconstruct the history of the environment (Harley et al. 2018). A common
biogeographical analysis is to reconstruct fire or pest history and their role in stand
dynamics. This approach identifies fire scars or insect galleries within cross sections
of trees and then dates them to outbreak cycles or reconstructs fire return intervals.
Examples are plentiful and have in the past explored the impact of insect outbreaks
on forest structure (Veblen et al. 1991), the relationship between fire regime and
climate (Grissino-Mayer and Swetnam 2000), and the role of management and
policy (fire suppression) on vegetation structure (Flatley et al. 2015; Lafon et al.
2017), and identified ice storm disturbance in forests (Lafon and Speer 2002).

The data obtained from these studies has led to a better understanding of
disturbance regimes in a variety of systems and can be used to better inform forest
management activities. Dendrochronology, as we will discuss, is also an important
approach in unraveling historical biogeographic patterns and climate events.

3.1.4 Genetics Approaches

Simply finding correlations with the physical environment may not be enough to
determine how patterns of species distributions will change in the future. All
biological life has at least one life history stage, where an individual moves. For
example, trees do not move for the vast majority of their life; however seed and
pollen dispersals do allow the movement of propagules prior to establishment and
growth. The capacity of an individual to move in response to changing environmen-
tal conditions or shifts in resource availability ultimately will impact the acclimation
and adaptability of the population and the species as a whole. It also will influence
the patterns of the species distribution in the future. Many aspects of the physical
environment constrain the movement of individuals and organisms. If movement is
restricted by barriers, and populations become geographically isolated, then they
may become genetically depauperate, and their capacity to evolve novel responses to
ecological change will be reduced. When this happens local populations may go
extinct, or, worse, entire species may blink out of existence. For this and other
reasons, ecological biogeography often assesses population-level demographic pro-
cesses to understand the role of the physical environment on distribution patterns. In
plants, it has been very difficult to determine the patterns of individual propagule
movement (Cain et al. 2000; Nathan et al. 2002; Nathan 2006), and many early
studies relied on mathematical models to reconstruct patterns of dispersal (Hamilton
and May 1977; Skellam 1951; Clark 1998). Methods of tracking biological move-
ment have most often been observational in nature and include the use of tagging and
tracking (Kays et al. 2015), seed traps (McCaughey and Schmidt 1987; Bullock and
Moy 2004), or capture mark and release methods (Levey and Sargent 2000; Xiao
et al. 2006). All of these methods have provided useful insight into biological
movement but suffer from challenges associated with quantifying the tail of the
dispersal distribution, specifically measuring long-distance dispersal. In some cases,
the use of genetic markers has provided an alternative to measuring plant movement.

Advancing Biogeography Through Population Genomics 551



For instance, inference of pollen and propagule movement and dispersal has been
carried out in many plant species using genetic markers (Markwith and Scanlon
2006; Gaddis et al. 2016; Degen et al. 2004). More direct measures of dispersal have
also been conducted using genetic markers and parentage analysis (Piotti et al. 2009;
Dow and Ashley 1996; Johnson et al. 2017c; Ismail et al. 2017; Robledo-Arnuncio
and Gil 2004; González-Martínez et al. 2002). In some instances, both approaches
have been combined and compared to better understand plant movement
(Oddou-Muratorio and Klein 2008). Recently, Bullock et al. (2017) assessed
168 empirically derived dispersal kernels spanning 144 vascular plant species and
classified them into different dispersal modes. They showed that because of variation
in dispersal mode, long-distance dispersal (at the 95th percentile of the kernel) varied
quite a lot. By combining data on dispersal distance with species distribution models,
ecological biogeographers can better predict the future range of species and rate of
movement (Hamann et al. 2015; Loarie et al. 2009). O’Connell et al. (2007), using
allozyme genetic markers, provided empirical evidence for extensive pollen-
mediated gene dispersal between natural stands of a widespread northern temperate
and boreal conifer, Picea glauca, in a landscape fragmented by agriculture and lake
water in north-central Ontario, Canada. The average minimum pollen dispersal
distance in outcrossed matings was found to be 619 m.

3.2 Historical Biogeography

Throughout our discussion of historical biogeography, it is clear that the role of earth
history, dispersal, and evolution is intertwined. Many of the questions of interest in
historical biogeography are thus related in terms of answering these high-level
questions. Because we cannot go back in time and observe various biological
patterns and historical events, we must rely on proxy data to reconstruct the past
and infer patterns and processes. Several different types of proxy data have been
used to address historical patterns, and each one provides a different degree of spatial
and temporal resolution.

3.2.1 Dendrochronology-Based Approaches

At shorter temporal scales (1,000s of years), many historical biogeographers focus
on understanding species-climate relationships using dendrochronological
approaches. This approach, similar to the use of dendrochronology in ecological
biogeography, is concerned with assessing growth patterns reflected in the
interannual growth rings of trees and shrubs. The growth rings of several trees can
be compared and used to infer the climate record using cross dating techniques.
Finally, these data can be used to reconstruct historic climates and their role
in biogeographic patterns (Fritts 1976). Growth patterns in trees often reflect
landscape-scale climate variation (temperature, precipitation, herbivory)
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(Speer 2010) and indicate how past conditions influenced growth at the species level.
Tree rings provide an indication of how physiological mechanisms constrain growth
as a result of, for example, moisture and/or temperature (Park Williams et al. 2012).
The ring width, density, and pattern of tree rings allow a time series of climate
growth relationships to be developed and indicate how changes in environmental
stress relate to a tree’s ability to grow well (Speer 2010). Case in point, ring width
indices (RWI) in several subalpine species have been correlated with temperature
and precipitation to inform our understanding of the past and future vegetation
dynamics within the system and yield data on both spatial and temporal factors
limiting growth at a species’ range limit (Taylor 1995; MacDonald et al. 1998;
Young et al. 2011). Moreover, dendrochronology-based approaches have been used
to assess vegetation dynamics along environmental gradients. Patterns of growth
within the alpine tree line ecotone are tightly linked with climate, and reconstruction
of demographic patterns allows patterns of regeneration and ecotone movement to be
inferred (Elliott 2012; Chhetri and Cairns 2016; Danby and Hik 2007).

3.2.2 Paleo-Based Approaches

Reconstructing patterns of plant colonization and range dynamics and identifying
the climatic constraints on these distributions are an important research area in
historical biogeography. Palynology is a paleo-based approach where fossil pollen
or plant micro-/macrofossils (seeds, leaves, cones, plant pieces, and charcoal) are
used as proxies to reconstruct prior distributions and environmental conditions. By
combining maps of past distributions with radiocarbon dating and analysis of
oxygen isotope from ice and sediment cores, species arrival dates and estimates of
climate can be derived. In essence, this method tracks the accumulation of pollen
(and microfossils) within peat, lake, and marine sediment cores and dates them. In
pollen analysis, at first, pollen will be limited in quantity, but as a species colonizes
closer to a core sampling site, the fraction of pollen should increase allowing the
timing and geographic position of the range to be estimated by studying their
stratigraphy (MacDonald 2003). Though not a perfect representation of vegetation
assemblages and their distribution, it does provide synoptic information about
expansion and contraction of populations in response to broadscale historic climate
changes (usually at the scale of the Quaternary) and provide a means to inform
general community composition and historic vegetation dynamics. Importantly, this
allowed not only the spatial pattern of biodiversity to be explored, but it also allowed
researchers to infer what climatic conditions species were adapted to.

Global reconstructions of climate from proxy data have improved our under-
standing of past climates on the order of millennia (Mann and Jones 2003) to the
entire Holocene (Marcott et al. 2013). By combining paleo-based methods with
modeling approaches, researchers are beginning to more accurately map range
positions (Bruening et al. 2018). Much of this research has focused on northern
migration of plants in North America and Europe following Quaternary glaciations.
Several studies have used palynological and paleo-based approaches to reconstruct

Advancing Biogeography Through Population Genomics 553



historic migration of forest species. Patterns of postglacial spread of European beech
(Fagus sylvatica) following the last glacial maximum were assessed using over
400 pollen records allowing both the location of refugia and the pathways of
recolonization to be reconstructed in Europe (Magri 2008). Mountain hemlock
(Tsuga mertensiana) pollen and macrofossil data were extracted from sediment
cores in the Rocky Mountains of Idaho, USA, and used to reconstruct Holocene
long-distance dispersal of the species from its coastal refugia to isolated populations
in Idaho (Herring et al. 2017). A combination of pollen and oxygen-isotope analysis
was used to reconstruct vegetation dynamics in the Swiss Alps during the late glacial
interstadial. Interestingly, this analysis showed that species composition has no
modern analog and that the assemblages of species changed through immigration
and extinction over the historic record (Ammann et al. 2013). Classic biogeography
studies have used pollen analysis to reconstruct forest movement following the last
glacial maximum (Webb 1987; Delcourt and Delcourt 1981; Davis 1981).

3.2.3 Phylogeography and Molecular Population Genetics Approaches

Within historical biogeography, the use of molecular genetic markers and population
genetics concepts and approaches has been extensive. Cladistics and phylogenetic
analyses have provided historical biogeography the ability to assess the history and
evolution of lineages. Cladistics was developed so that morphological traits or
endemism patterns could be compared among taxa and evolutionary history could
be inferred (Hennig 1979). Cladistics is used in historical biogeography to place
taxon together based on their trait differences or similarities, assuming that species
with similar traits share a common ancestor from which the traits were inherited. The
problem here is that it can be difficult to assess if similar traits are the result of
convergent or parallel evolution (Cox et al. 2016). This problem was solved when
cytoplasmic DNA (mitochondrial or chloroplast DNA in plants), with a known rate
of mutation (Kimura 1968), was used to identify the timing of evolutionary diver-
gence. Knowing the timing of these historic events helped identify if the processes of
divergence were related to dispersal, vicariance, or even sympatric diversification
(Avise 2000; Avise et al. 1987). For example, several different molecular markers,
including allozyme (Wheeler and Guries 1982; Parker and Hamrick 1996), amplified
fragment length polymorphisms (AFLPs) (Despres et al. 2002), and microsatellites
(Mayol et al. 2015) have contributed much to our understanding of the role of
Quaternary climate change on patterns of range expansion and contraction (Parducci
et al. 2012; Hewitt 2004). In fact, much of the current distribution of vegetation in
North America has been influenced by the glacial cycles of the Quaternary (Shafer
et al. 2010). Moreover, microsatellite analysis has helped to sharpen our understand-
ing of evolution and adaptation through oscillating glacial cycles (Provan and
Bennett 2008; Hewitt 1996; Petit et al. 2003). In forest trees, phylogeographic
methods have provided an avenue to assess population divergence (Gugger et al.
2010) and postglacial migration and phylogeographic patterns (e.g., Zinck and
Rajora 2016). Combining SDM, phylogography and fossil improve the identification
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of the locations of climate refugia during the last glacial maximum (Shafer et al.
2010; Parducci et al. 2012). Zinck and Rajora (2016) studied the range-wide genetic
diversity and population structure of 33 eastern white pine (Pinus strobus)
populations using 12 nuclear and three chloroplast microsatellite markers and
applied approximate Bayesian computation approach to test various evolutionary
scenarios. Their results supported the presence of two main postglacial
recolonization routes originating from a single southern refugium in the
mid-Atlantic plain. One route gave rise to populations at the western margin of the
species’ range in Minnesota and western Ontario, and the second route gave rise to
central-eastern populations, which branched into two subgroups: central and eastern.
The phylogeographic patterns were consistent with the fossil pollen data.

4 Population Genomics Approaches as Applied
in Biogeography

Population genomics assesses population data obtained from whole (or nearly
whole)-genome sequences in both nuclear and organelle genomes (or genomic
DNA constituting the combined nuclear and organelle DNA) to determine the origin,
amount, and outcome of genetic variation within a spatial framework as well as the
factors contributing to the variation. Genetic variation is often categorized as either
adaptive or selectively neutral. The latter form of variation is affected mostly by
selectively neutral factors, such as genetic drift and gene flow (e.g., Krutovsky et al.
2012), as the affected genomic regions have no apparent effect on the fitness of the
organism through changes in survival and reproduction as suggested by Kimura’s
neutral theory of molecular evolution (Kimura 1979). Because natural selection is
mostly absent from the portions of the genome that are selectively neutral, they serve
as indicators of demographic patterns, population ancestry, and the influence of
ecological and geographic heterogeneity on gene flow (Selkoe and Toonen 2006)
and are of particular interest in studies of large-scale patterns of species distribution.
Nevertheless, neutral genetic variation cannot easily be associated with environmen-
tal factors unless those factors impact population-level dynamics, such as population
size, gene flow, or the system of mating (Holderegger et al. 2010). In contrast,
adaptive genetic variation, by definition, has been under selection. Studying spatial
patterns of adaptive genetic variation is critical to our understanding of the effects of
past climate change, landscape and land use change, and human-environment
interactions and may inform our predictions of future evolutionary potential and
local adaptation in the event that the selecting agents remain the same or similar to
the past (Holderegger and Wagner 2008; Stapley et al. 2010; Savolainen et al. 2013).
Understanding the past provides an opportunity to improve future predictions of
biodiversity. On balance, improving our ability to quantify how species are adapting
to changing environmental conditions will help us to prioritize management strate-
gies and allocate resources for conservation goals (Hoban 2018). Combining both
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historical and ecological biogeography approaches will provide the most useful
insights into future patterns of biodiversity. It is within this context that population
genomics can best contribute to biogeography research.

Population genomics is already making important contributions to biogeography
research. Here we provide examples of population genomics approaches that can be,
and are being, used to address many of the questions laid out in Sect. 2. We break
down biogeography into its two primary components: ecological biogeography and
historical biogeography.

4.1 Ecological Biogeography

Population genomics can improve the understanding of ecological biogeography by
providing an additional layer of biological information that is useful in assessing
adaptive evolution and local adaptation to changing environments as well as allow
ecologically relevant traits to be considered. Moreover, population genomic data will
contribute to better predictions of species distributions in the face of multiple threats,
such as climate change and invasion by novel pathogens. Here we discuss how
population genomics can provide benefits to several aspects of ecological
biogeography.

4.1.1 Species Distribution Modeling

Understanding how species will respond to climate change, invasive pathogens, and
shifting disturbance regimes will become an increasingly important goal for resource
managers and conservationists. Both ecological and historical biogeography
(discussed in Sect. 3.1.1) use SDMs to understand past and future distributions. In
order to improve hindcasts of past ranges and forecast future distributions, and avoid
the assumption of niche uniformity across the species range, traditional SDMs and
ENMs must begin to include genomic variation as a predictor of these patterns
(Razgour 2015; Gotelli and Stanton-Geddes 2015). By including genomic variation,
a species can be clustered into genetically distinct populations across its range and
patterns of ancestry, and admixture can be considered. SDMs can then account for
spatial patterns of local adaptation and assess the potential for species niche diver-
gence or convergence (Gotelli and Stanton-Geddes 2015).

New approaches that combine population genomics, SDMs, and genotype-
environment associations are beginning to provide this level of prediction. For
example, Ikeda et al. (2016) included population genetic structure of Fremont
cottonwood (Populus fremontii) to test if including genetic data would improve
ecological niche models. Their results showed that inclusion of demographic genetic
variation improved the predictability of the models 12-fold. Moreover, each of the
three genetic ecotypes identified was associated with different climatic factors
suggesting that under future climate change, niche divergence may occur. Similar
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work using the plant model Arabidopsis thaliana found that SDMs that included
neutral genomic variation could improve spatial predictions of conservation-relevant
genetic units (Marcer et al. 2016).

An alternative approach, and one that uses population genomic data more
specifically, is to view genomic variation within a sampling site in a way similar
to species assemblages in community ecology. In this way, tens to hundreds of
thousands of SNP markers and their site-level allele frequencies can be compared
between several sample sites along an environmental or climatic gradient, and their
association with environmental measures can be identified. This multivariate
approach, thus, facilitates prediction and mapping of genomic variation across the
landscape and improves predictions of adaptive potential. In essence, a genomically
informed ecological niche model (gENM) can be created. This approach was
demonstrated across the range of balsam poplar (Populus balsamifera), where
multidimensional genomic variation was mapped by reducing its dimensionality
using the principal components analysis and then the first three PCs were used to
map the genomic variation in geographic space (Fitzpatrick and Keller 2015). In
addition to predicting the spatial pattern of genomic variation, Fitzpatrick and Keller
(2015) showed that adaptive variation, related with phenology, was strongly asso-
ciated with temperature.

At the population level, intraspecific genomic variation determines how sensitive
a given population is to environmental change and thus their capacity to adapt
locally. The combination of exposure to changing climate and decreased levels of
genomic diversity can reduce adaptive capacity in a population. This is especially
true in species with reduced dispersal capabilities. By identifying the diversity and
type (neutral or adaptive) of population genomic variation and also quantifying the
exposure to climate change, the vulnerability of a population can be assessed, and
management actions can be prioritized. Razgour et al. (2017) introduced a frame-
work that combined genomics and SDM to identify populations under threat from
climate change. In their study, Razgour et al. (2017) combined genome-environment
associations and outlier tests with SDM to assess range shift potential along with the
level of genomic diversity available to respond to climate change in the bat Plecotus
austriacus. They showed that changing niche suitability would likely limit
dispersability of the bat and reduce its evolutionary potential due to geographic
isolation, drift, and small population size.

Clearly ecological biogeography can better predict the outcome of global envi-
ronmental change by including genomic variation in predictive distribution models
as opposed to assuming genetic uniformity as has been the custom. Spatial genotype-
environment associations allow predictions of adaptive capacity to be considered
when considering how to manage populations.

4.1.2 Landscape Ecology and Landscape Genomics

Landscape ecological analysis is one area of ecological biogeography that has
greatly benefited from the inclusion of genomic data and population genomics
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approaches more specifically. Over the past 15 years, an analytical approach has
emerged to address both biological movement and adaptation and its relationship to
landscape heterogeneity, a field coined as landscape genetics (Manel et al. 2003).
The topic of landscape genetics and genomics is covered by Balkenhol et al. (2017)
in this book. However, we would be remiss if we did not mention one aspect of
landscape genomics that is of great interest in ecological biogeography employing
landscape ecology. Specifically, we will discuss landscape connectivity.

Biological movement occurs in all organisms at one time or another and is
essential for the survival of a species in the presence of shifting niches and biological
interactions. Our landscape ecology discussion (Sect. 3.1.2) noted how the spatial
arrangement of landscape elements (forests, farms, grasslands) and patterns of
topography and climate influence a species niche. Understanding how the compo-
sition and configuration of the landscape influence effective movement (seed and
pollen dispersal) of propagules and genes between discrete patches, populations, or
metapopulations is described as the species functional connectivity (Auffret et al.
2017). There have been major advances in population connectivity studies by adding
genomic variation and genetic distance measures into landscape ecology models
(Dyer and Nason 2004; Dyer 2015). Circuit and graph theory-based approaches have
been the most popular. Graph approaches are based on a model where populations or
individuals are treated as nodes and the length of the connection between nodes is
measured as genetic distance. A heuristic approach is used to remove connections
between nodes and produce an optimal graph with the least total number of connec-
tions having the greatest power to explain overall connectivity. Using this frame-
work, each population can be assessed for its importance in maintaining genetic
connectivity and gene flow. Moreover, the graph can be superimposed onto the
landscape in order to identify areas with greater or lesser connectivity based on the
relative distance, which can inform identification of landscape features that facilitate
or impede movement (Dyer and Nason 2004; Dyer 2007, 2015; Dyer et al. 2012;
Garroway et al. 2008). Also, the population graph approach could be used for
understanding the multilocus architecture of local adaptation in plants (see Rajora
et al. 2016).

Circuit theory-based approaches improve upon classic least-cost path approaches
by examining all possible pathways across a landscape in lieu of identifying a single
optimal route across a region (McRae and Beier 2007; McRae et al. 2008; Shah and
McRae 2008). A specific landscape or climatic layer can be examined as a cost
surface (called a resistance surface) with areas ranked as allowing for greater or
lesser movement. All potential pathways between two target populations are exam-
ined relative to this resistance surface (McLean et al. 2016; Franklin and Krueger
1968; Etterson et al. 2016; Sork et al. 2010), estimating the pairwise resistance, a
value that accounts for geographic distance between locations and the ease with
which an individual may move across the landscape via all possible routes (McRae
and Beier 2007). This method compares alternative resistance hypotheses to explain
genetic distance between sampling locations and identify those variables that best
explain movement in a given area (Orsini et al. 2013; Sexton et al. 2014;
Ruiz-Gonzalez et al. 2015). The most popular program currently used for this
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approach is Circuitscape (Shah and McRae 2008) and assesses electrical nodes that
are connected by a series of conductors. More numerous or larger connections
enhance electrical current flow. Electric circuit theory can be translated into individ-
uals and populations being represented by the nodes and the resistance of the
landscape being measured as the degree of connectivity between nodes (McRae
2006; McRae and Beier 2007; McRae et al. 2008, 2013; Shah and McRae 2008).

Several studies have combined SDMs with connectivity modeling and genetic
variation to identify the level of connectivity in both plants and animals. This
approach was used in the riparian species Populus angustifolia. Genetic connectivity
was assessed using resistance modeling and SDMs finding that riparian corridors
facilitated connectivity, while terrestrial uplands were two and half times more
resistant to gene flow (Bothwell et al. 2017). Moreover, historic migration and
landscape connectivity of a long-lived conifer Tsuga mertensiana were assessed
using a combination of SDMs, electric circuit theory, and genomic data consisting of
6124 SNPs. This study found that patterns of genomic diversity were correlated with
recent climate resistance and not mid-Holocene climate resistance (Johnson et al.
2017b). Studies of animals, too, have demonstrated the utility of using genomic
variation and landscape characteristics to assess functional connectivity. Razgour
et al. (2017) used thousands of anonymous SNPs in Plecotus austriacus, the gray
long-eared bat, to identify connectivity between populations and to identify populations
that may be threatened by future climate change due to reduced connectivity and
isolation. One of the important insights from the analysis of landscape functional
connectivity is that many barriers to gene flow are cryptic across heterogeneous
landscapes and require high-resolution genomic data to detect (Micheletti and Storfer
2017). This insight means that including genomic resolution data into connectivity
analysis will vastly improve our knowledge of gene flow and biological movement.

Lastly, most plants have a wide range of variation in traits associated with fitness
and are locally adapted to the environment in which they are found (Savolainen
2011). Though some variation in traits can be associated with genetic drift and gene
flow, much of the trait variability is the product of natural selection from spatially
varying environmental factors on traits beneficial to a specific environment,
suggesting that the variation will differ across the species range (Sork 2018).
Understanding the genomic basis of local adaptation will improve our predictions
of the future spatial distribution of species under scenarios of rapid climate change.
And population genomics approaches are being widely used to understand the
genetic architecture of local adaptation in plants, animal, and other organisms (see
the chapter “Landscape Genomics: Understanding Relationships Between Environ-
mental Heterogeneity and Genomic Characteristics of Populations” in this book).

4.1.3 Dendrogenomics

Dendrogenomics is a combination of dendrochronology and population genomics,
whereby phenotypes related to annual incremental growth (dendrophenotypes) can
be associated with a plant’s genome using genome-wide association techniques
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(Evans et al. 2018). Past measures of growth in common gardens have been mostly
restricted to height and diameter, which, as a single snapshot in time, may not
accurately reflect the genetic architecture controlling fitness and local adaptation
(Alberto et al. 2013). Dendrogenomics and the use of dendrophenotypes provide a
longitudinal collection of phenotypes that will provide a higher-resolution picture of
how trees have responded to past disturbance and climate fluctuations.

The dendrogenomic approach has only recently been introduced, but it has
already yielded important support for local adaptation and the role of climatic
constraints (Housset et al. 2018). Some early examples of dendrogenomics include
the work by Johnson et al. (2017a) who tested hypotheses about variation in growth
along an environmental gradient and its association with individual genomic diver-
sity and by Heer et al. (2018) who test for associations between growth and adaptive
genes during stress and disturbance events. In particular, Heer et al. (2018) identified
dendrophenotypes in Abies alba, including the slope of the standardized tree ring
index to identify the start of a period of stress linked with air pollution and drought
and their association with fitness genes. They identified 15 genes associated with
different dendrophenotypes that were related to drought stress and photosynthesis.

This is an area of population genomics that shows great promise for biogeogra-
phy. Biogeographers, as we have already shown, are quite comfortable using
dendroecological approaches, and by including genomics an additional layer of
biological inference can be made, improving our understanding of adaptability and
resilience under multiple environmental hazards and shifting disturbance regimes.

4.2 Historical Biogeography

It is important to mention again that because natural selection does not apparently
affect large portions of the genome that are supposedly selectively neutral, they serve
as indicators of demographic patterns, population ancestry, and the influence of
ecological and geographic heterogeneity on gene flow (Selkoe and Toonen 2006).
The historic conditions associated with founder and bottleneck events, small popu-
lation size, and genetic drift leave a long-lasting mark on the gene pool of a
population. Historical biogeography is benefiting from population genomics in
several areas. Because of this, putatively neutral genomic variation can be used to
assess historical biogeographic patterns. Some of the most important research
avenues include demography, historic species distribution, colonization, dispersal,
and evolution of lineages. Here we discuss how population genomics can benefit
several aspects of historical biogeography.

4.2.1 Population Genomic Structure and Gene Flow

Demographic processes can be inferred by assessing the level of genetic distinctness
or subdivision that occurs between spatially coherent populations. Distinct patterns
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in population genomic variation can result from the conflicting effects of genetic
drift and gene flow. Genetic drift will cause populations to become more genetically
different, while gene flow will make them more similar. Because of ecological and
geographic heterogeneity and isolation, gene flow is usually spatially restricted.
Thus, based on the permeability of the landscape and the degree of physical
separation, after successive generations, genetic drift will lead to an identifiable
differentiation among populations. The high ability to discriminate between
populations using population genomics information can often provide an improved
understanding of the causes of historic changes in species distributions.

Population genomics allows one to assess population genetic structure by
assessing numerous variable loci spread across the entire genome. There are several
metrics in population genetics developed to look at the partitioning of genetic
variation between subpopulations and the whole population based on neutral geno-
mic regions. For instance, the most common metric used to determine the level of
population substructure or subdivision is FST (Wright 1949), wherein larger FST

values indicate that two or more distinct populations of a species are more differen-
tiated and, if selection is not considered, supposedly experienced less gene flow
between them than populations with lower values. By comparing genetic differences
between populations, measured as FST, with landscape and ecological variables
separating sites, it is possible to identify the spatial and ecological processes that
are contributing to population connectivity. The literature is full of population
genomic studies assessing patterns of genetic structure and admixture and have
been evaluated in forest trees (Menon et al. 2018; Johnson et al. 2017b; Geraldes
et al. 2014), shrubs (Xu et al. 2017; Lee et al. 2018), and wild flowers (Puzey et al.
2016; Barker et al. 2016). One of the advantages of using a population genomics
approach to investigate population structure over inferences made using previous
methods is that fine-scale patterns of introgression, hybridization, and speciation can
be elucidated more easily and more precisely. For example, Menon et al. (2018)
found in a range-wide analysis of southwestern white pine (Pinus strobiformis) and
limber pine (Pinus flexilis) that gene flow was ongoing during species divergence
and that species boundaries were a result of disruptive selection. Another example is
the use of mitochondrial genomic markers to infer past colonization history of forests
during Quaternary glaciations. Semerikov et al. (2018) sequenced 3 genomic mito-
chondrial markers in 90 populations of Scots pine (Pinus sylvestris) and identified
7 mitotypes of the species that reflect the split between western and eastern
populations. Five of the mitotypes were found in the species western range with
one mitotype in the east and one shared between east and west. Their findings
provide support for a European and Ural refugia and recolonization to the east
following glaciations. Both of these examples illustrate the level of insight into
demographic processes that heretofore was difficult to obtain without genomic-level
data. By using a genomics approach, historical biogeography will enhance our
understanding of the history and spread of biodiversity. Case in point, Populus
alba and Populus tremula admixture and backcrossing in Europe was explored
using allozyme markers, finding that natural P. alba x P. tremula hybrids were
backcrossing more with P. alba than with P. tremula (Rajora and Dancik 1992).
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However, the more detailed recent studies using genome-wide approaches
(RAD-seq and whole-genome resequencing) provided a higher resolution of the
admixture patterns between P. alba and P. tremula, shedding light on their ancestral
admixture, fine-scale chromosomal ancestry, pre- and post-zygotic barriers and
selection maintaining reproductive isolation, genomic divergence and identification
of speciation genes, and biogeography (Christe et al. 2016, 2017). Such information
and resolution were not possible to obtain using allozymes. Population genomics
research also revealed that in natural interspecific hybrids between P. balsamifera
and P. trichocarpa, there was more introgression from P. balsamifera to
P. trichocarpa than the reverse (Suarez-Gonzalez et al. 2018). These two examples
illustrate that using genomic resolution data can provide more precise and detailed
information than previous genetic approaches.

4.2.2 Paleogenomics

Paleogenomics, a term coined by Birnbaum et al. (2000), is concerned with the study
of ancient DNA (aDNA) as a way to untangle the historical patterns of species
distributions, paleopopulation dynamics, and evolution. Paleogenomics can aid in
reconstruction of historic distributions of floras and patterns of colonization follow-
ing the glacial events of the Quaternary using new genomic tools, which allow the
analysis of aDNA (including paleoenvironmental aDNA and paleodietary aDNA).
Ancient DNA can be obtained from samples collected from lake sediments, peats,
permafrost soils, preserved megafaunal gut contents, coprolites, and other sources of
preserved DNA with the potential to reconstruct floristics from the last 800 kyr
(Birks and Birks 2015). In particular, this line of analysis may provide support
identifying the locations of micro and macro glacial refugia.

To date, most paleogenomic studies have combined palynological analysis
(pollen and macrofossil) with aDNA to reconstruct flora. Using ancient mtDNA
extracted from lake sediment, Parducci et al. (2012) explored the historic distribution
of Picea abies finding that the species survived glaciation in glacial refugia showing
that they were present earlier than indicated by pollen analysis alone. Another study
sequenced the trnL plastid region and part of the ITS1 spacer region from aDNA in
242 permafrost samples across the arctic representing 50 kyr of plant diversity and
tracked the changes in plant composition through time (Willerslev et al. 2014). Other
paleogenomic studies have used lake sediment (Boessenkool et al. 2014; Epp et al.
2015; Alsos et al. 2015), peats (Parducci et al. 2015), soils (Wilmshurst et al. 2013),
and with aDNA alone in preserved middens (Murray et al. 2012). In general, aDNA
is used in combination with pollen or other fossil data to both expand and validate
reconstructions. As an exemplar of this approach, Parducci et al. (2015)
reconstructed a European flora from the past 40 kyr and found that by including
aDNA they could include five additional species that were undetected by either
pollen or macrofossils alone and they were able to improve their reconstruction of
glacial flora.
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4.2.3 Phylogenomics

While much of population genomics has been firm in the wheelhouse of biologists
with a focus on microevolutionary processes, phylogenetic and phylogeographic
research have had a longer relationship with historical biogeography as well as an
association with phylogenetic biology and macroevolutionary processes (Avise
2009). Phylogenetic studies explicitly deal with spatial and temporal dimensions
of evolution and genealogy among taxa, while phylogeography tends to focus on
untangling conspecific evolutionary lineages. While phylogenetics has relied on
generating cladograms of taxa based on similarities or differences in phenotypic
characters and more recently molecular characters, phylogeography has, from the
start, relied on molecular-level variation to generate gene trees. In either case, the use
of genetic markers in phylogenetic or phylogeographic research to date has relied
heavily on cytoplasmic DNA, either mitochondrial or chloroplast sequences due to
their known mutation rates based on the molecular clock (Kimura 1968). The
emergence of high-throughput nucleotide sequencing is allowing a far more detailed
analysis of evolutionary relationships to be resolved. This is an important shift in
understanding the evolutionary history of species because when assessing gene trees
from cytoplasmic DNA, usually only a small snapshot of a species genealogical
history is represented (Avise 2010). Although challenges exist, generation of nuclear
gene trees will be a major step forward in phylogenetics and phylogeography as they
transition into phylogenomics.

The use of reduced representation genomic approaches, such as restriction-
associated DNA sequencing (RAD-seq), and the incorporation of SNP markers
have proven to be one of the most beneficial approaches in phylogenomics
(McCormack et al. 2013; Leaché and Oaks 2017) because detailed patterns of
phylogeography and insipient speciation can be discovered compared to past
approaches (Emerson et al. 2010).

A comparison of SNP versus traditional microsatellite markers found that use of
SNPs increased phylogeographic resolution and was better able to reconstruct past
divergence events in red mangrove (Rhizophora mangle) (Hodel et al. 2017). This
study showed that although microsatellites resulted in higher values of FST,
RAD-seq, and a genomic approach, was able to resolve a classic phylogeographic
break, where microsatellites could not.

Another classic example of combining phylogeography and RAD-seq involved
the pitcher plant mosquito (Wyeomyia smithii), where Emerson et al. (2010) used the
approach to resolve genetic structure and evolutionary direction in the species
following Pleistocene glaciation in the southern Appalachian Mountains, USA.
They found a phylogeographic separation of W. smithii into both a northern and
southern group, a finding that agrees with the current distribution of the species. It is
likely that the northern clade originated from a southern glacial refugium. Impor-
tantly, using only genomic data, Emerson et al. (2010) showed that high-throughput
genomics could be used in a phylogeographic framework to resolve evolutionary
history of a species. The RAD-seq approach has been used successfully to resolve
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phylogeographic relationships in several tree species (Hodel et al. 2017; Zhou et al.
2018; Deng et al. 2018; Fitz-Gibbon et al. 2017; Hipp et al. 2018), as well as other
diverse taxa (Herrera and Shank 2016; Wagner et al. 2013).

Another genomic approach is the use of ultraconserved genomic elements
(UCEs) and conserved ortholog sets (COS) (Krutovsky et al. 2006; Faircloth et al.
2012). This approach is allowing comparable genomic regions to be analyzed across
species and across millions of years of evolutionary history. UCEs, in particular,
allow comparable DNA fragments from distantly related species to be aligned and
compared so that evolutionary history can be inferred. Faircloth et al. (2012)
demonstrated the utility of this approach by sequencing 2020 UCEs in 10 Amniota
genomes and then using the UCE-anchored loci successfully recovered the known
phylogeny of 9 non-model avian species.

Challenges, of course, still exist for phylogenomic studies using genomic data
(Leaché and Oaks 2017). However, the exponential increase in phylogenomic
studies using SNP data is evidence that historical biogeographers have a powerful
new tool for assessing the evolutionary history of organisms.

Lastly, a growing literature is championing the inclusion of SDMs in
phylogenomic studies (Alvarado-Serrano and Knowles 2014; Scoble and Lowe
2010). In particular, the use of SDMs allows for the development and evaluation
of phylogeographic hypothesis by hindcasting or forecasting a species niche
(Richards et al. 2007) and allowing researchers to identify hypothesized locations
of past populations (Knowles et al. 2007) or to infer the future distribution and
divergence of species. Biogeography, as mentioned in Sect. 3.1.1, has been at the
forefront of developing SDMs, and a more refined understanding of the origin,
spread, and diversity of life can be achieved by combining population genomics
approaches and SDMs into historical biogeography.

5 Population Genomics Inference of Mountain Hemlock
(Tsuga mertensiana Bong (Carr)) Biogeography: A Case
Study

To illustrate how a population genomics perspective can be integrated into bioge-
ography research, we provide a case study using an example of our own research on
mountain hemlock (Tsuga mertensiana Bong (Carr)) on the Kenai Peninsula, Alaska
(Johnson et al. 2017a, b, c). Global ecological change is a serious threat to biodi-
versity at all scales. Changes in temperature and precipitation along with the
introduction of invasive pathogens, shifts in disturbance regimes, and changes in
land cover and land use will have unforeseen consequences for biological life.
Knowing how plants have responded to changes in the past climate and accounting
for alternative future responses will help managers and policy makers plan for the
future. We conducted a multiscale genomic study to understand how a long-lived
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conifer tree, mountain hemlock, has responded to past climate variability and to
assess its potential to respond to future changes.

We used a biogeographic and population genomics approach based on double-
digest restriction-associated DNA sequencing (ddRAD-seq) (Peterson et al. 2012) to
address both historical and ecological research questions. Specifically we sought
(1) to determine if isolated stands of mountain hemlock on the Kenai Peninsula of
Alaska were glacial relicts or the product of rare long-distance dispersal following
glacial retreat (Johnson et al. 2017b), (2) to test if local seed production or dispersal
from beyond the ecotone is driving tree line dynamics (Johnson et al. 2017c), and
(3) to test if individual trees with higher average genomic diversity were better able
to grow at alpine tree line (Johnson et al. 2017a). This combination of hypotheses
allowed us to test ecological biogeography hypothesis about patterns of contempo-
rary seed dispersal, potential rates of migration in response to climate change, and
patterns of adaptability and also allowed us to address historical biogeography
questions related to gene flow and forest response to Pleistocene glaciation.

Mountain hemlock is a highly outcrossed, monoecious, wind-pollinated species
with large winged seeds and pollen (Owens and Molder 1975; Means 1990; Ally
et al. 2000). The tree species is usually found in cool wet environments along the
Kenai coastal, alpine, and subalpine zones and is a major component of the forest
along the Gulf of Alaska coast. Mountain hemlock stand expansion and migration
are related to length of growing season, a function of winter temperature and
snowpack, and summer temperatures and moisture availability (Peterson and
Peterson 2001; Taylor 1995). High elevation mountain hemlock growth correlates
negatively to spring snowpack depth and positively to summer growing season
temperature (Taylor 1995; Peterson and Peterson 2001). Additionally, warm July
temperatures result in increased seed production (Woodward et al. 1994). These
combinations of factors suggest that the species will migrate to higher elevations and
latitudes as climate change advances.

Climate on the Kenai is boreal maritime with both temperature and precipitation
gradients from east to west. Nearly all of the Kenai was covered by the late
Wisconsin Cordilleran ice sheet approximately 26,000–14,500 years ago (Rymer
and Sims 1982; Ager 2007). A few microrefugia have been proposed to have
harbored species during this glaciation in the northwest Kenai Mountains and the
eastern Kenai Lowlands (Jones et al. 2009). Though there is no palynological
evidence of mountain hemlock being present in these purported microrefugia during
the past glaciation, their survival there cannot currently be ruled out.

We sampled needle tissue from eight populations across the Kenai Peninsula
consisting of ten individuals per population to assess intraspecific genomic variation.
At one site, we conducted an exhaustive sampling of 168 individuals to assess both
seed movement within the alpine tree line ecotone and to assess the relationship of
dendrophenotypes with observed individual heterozygosity. We extracted genomic
DNA from all individuals and used ddRAD-seq to generate a dataset of 6124 SNPs
for our analysis.

We created both contemporary and mid-Holocene SDMs and generated a resis-
tance surface based on the species climate niche. We then calculated population
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genetic distance and landscape resistance matrices to test our alternative hypotheses
related to our expectations of glacial microrefugia or long-distance dispersal using
circuit analysis. Additionally we conducted an exclusion-based parentage analysis to
quantify seed dispersal distance and direction and to estimate immigration of seeds
into the alpine tree line ecotone.

Lastly, it has been hypothesized that trees with higher levels of genomic diversity
(measured as average individual heterozygosity (IndHet) should have more stable
growth patterns (Babushkina et al. 2016; Mitton 1978). We tested this hypothesis
related to local adaptation by combining dendroecology with our genomic dataset.
We assessed if the dendrophenotypes of average tree ring width (AvrTRW) and
variance in tree ring width (VarTRW) were correlated with IndHet.

Our historical analysis showed that genomic diversity and population genomic
structure differed between isolated stands of mountain hemlock and those found
across the rest of the peninsula. An isolation-by-resistance approach based on
electrical circuit analysis identified high landscape connectivity and conductance
across the peninsula. Genetic variation was primarily explained by landscape resis-
tance and not geographic distance (isolation-by-distance) based on redundancy
analysis (Fig. 2a). These findings suggest that mountain hemlock colonized the
peninsula via long-distance dispersal and repeated founding events accompanied
by high levels of ongoing gene flow. To address ecological biogeographic questions,
we studied patterns of dispersal and growth at the local scale (Fig. 2b). To better
understand contemporary patterns of dispersal, an exclusion-based parentage anal-
ysis identified seed dispersal events ranging from 1.44 m to 326.85 m with a mean
dispersal distance of 73 m (Fig. 2d). Most seeds arrived as immigrants from beyond
the tree line. Overall direction of dispersal was downslope with the longest dispersal
events occurring in that direction. However, a few dispersal events did allow seeds to
move to higher elevations suggesting a capacity to advance tree lines to higher
elevations (Fig. 2c). Long-distance dispersal was quantified at the 99th percentile of
the dispersal curve and accounted for dispersal at distances greater than 450 m
(Fig. 2d). This analysis indicates that mountain hemlock tree line stability is not
necessarily controlled by local seed production but via seed immigration from
beyond the study area and at distances greater than 0.5 km.

Lastly, our analysis of genomic adaptability found that there was no significant
correlation between IndHet and either AvrTRW or VarTRW. However, AvrTRW
and VarTRW were significantly correlated (P < 0.01) suggesting that under poor
growing conditions, trees grow poorly regardless of the level of individual genomic
diversity.

This combination of research represents a novel integration of genomics and
geography to answer a pertinent set of questions allowing us to have a deeper
understanding of how plants may respond to shifting climate conditions. Moreover,
this analysis demonstrates how using population genomics allows biogeography to
holistically address questions spanning both historical and ecological subfields of the
discipline.
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Fig. 2 Population genomic analysis of mountain hemlock at historical (a) and ecological time
scales (b–d) and landscape (a) to local spatial scales (b–d). (a) Kenai Peninsula, Alaska, with eight
sampling populations (green dots). Species distribution modeling (SDM) was used to generate a
contemporary resistance surface that was used to generate a matrix of resistance distances (current)
between each population, characterizing the ease at which propagules could move across the
landscape as a function of the climatic niche. Additionally, pairwise Fst was calculated to test for
isolation-by-geographic distance (gray lines). Redundancy analysis found that contemporary
climate was the best explanation for observed genomic variation (P < 0.05). (b) The site-level
analysis located in the north-central portion of the Kenai Peninsula (red dot). The spatial arrange-
ment of trees cored and sampled along a single transect were used to conduct both a parentage
analysis and an assessment of adaptive growth potential. The size of the purple circle is a function of
the age of the tree. (c) The wind rose shows the magnitude and direction of dispersal events
identified from our exclusion-based parentage analysis. Color of the wind rose corresponds to
dispersal distance, and each segment represents a dispersal event. Most dispersal events were
downslope; however, several dispersal events did move seeds to higher elevations over relatively
long distances (20–200 m). (d) The empirical dispersal events were used to parameterize a dispersal
kernel, so that the 99th percentile of the tail could be quantified to calculate long-distance dispersal.
Of the probability distribution functions fit, the Weibull distribution best fit the empirical data based
on Akaike information criterion (AIC), and long-distance dispersal was quantified as seed move-
ment greater than 0.4 km (from Johnson et al. 2017c)



5.1 Application of Biogeography in Biodiversity
Conservation: Conservation Biogeography

Concerns about the future of biodiversity globally have been growing over the past
few decades as a result of human-modified landscapes and climate change. Species
extinctions have been occurring at a rapid pace, and it has been proposed that
biogeographic research can contribute to biodiversity conservation through the
vehicle of conservation biogeography (Whittaker et al. 2005). This biogeography
research uses many of the tools that we have discussed in this chapter. Conservation
biogeography is an applied biogeography that aims to address questions of biodi-
versity conservation and distributional dynamics. In particular, conservation bioge-
ography relies on the use of SDMs to identify ecological factors that correlate with
species distribution (niche) in order to better manage biodiversity and set conserva-
tion priorities (Franklin 2010). As we have already demonstrated, using population
genomics and landscape genomics methods in conjunction with SDMs will allow the
identification of cryptic barriers to dispersal and gene flow as well as the locations of
potential refugia (Scoble and Lowe 2010). The inclusion of genomic-scale data will
lend additional rationality to conservation decisions.

Incorporating population genomic variation can improve conservation decision
support models that are frequently used to prioritize landscapes and species for
protection by further identifying variation in locally adapted populations so that
conservation models are not static across the range of the species. Population
genomics approaches that identify portions of a species range with higher adaptive
capacity associated with projections of future environmental conditions would be
candidates for conservation. As an example of conservation biogeography incorpo-
rating molecular tools, Kraft et al. (2010) used intergenic transcribed spacer (ITS)-
based estimates of age for 337 neoendemics in the California flora and data on the
range size to identify high areas of biodiversity (hotspot). They found that contrary
to the prevailing thoughts on biodiversity hotspots in California, their combined
molecular and distributional data shifted the estimates of high endemism from the
coast toward the desert and Great Basin regions of the state. Importantly, they
showed that many of the areas of high endemism fall outside of the current protected
areas and illustrate how inclusion of molecular-level data can improve our decision
on how to prioritize conservation areas.

Biogeography theory, specifically island biogeography, has been used exten-
sively in reserve design oscillating between the single large or several small
(SLOSS) model as it applies to size and geographic isolation of reserve patches
(Diamond 1975). Understanding the population genomic ramifications of these
designs including the functional connectivity and degree of reproductive isolation
and its effect on genomic diversity is important. However, the intervening matrix
characteristics must also be considered (Kupfer et al. 2006). Additionally, our
current underestimation of global biodiversity, in particular at the microscales,
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known colloquially as the Linnean shortfall (Lomolino et al. 2017), and our lack of
knowledge about the corresponding geographic distribution of their ranges, known
as the Wallace shortfall (Lomolino 2004), mean that we do not have a complete
picture of global biodiversity. Here, again, genomic approaches such as environ-
mental DNA (eDNA) sequencing and metagenomics can help improve our catalog-
ing of species and their distribution by identifying the community composition of
microscopic organisms that have been difficult to identify.

6 Challenges and Future Research Avenues

The toolbox that biogeography has at its disposal is quite diverse as we have
demonstrated. This list of tools, concepts, and approaches is by no means complete,
and geographers have long adapted and adopted techniques and theories from many
other fields of science. By incorporating a population genomics approach, biogeog-
raphy will be able to address many of the fundamental questions that have long been
intractable due to costs and limited biological resolution. For instance, identifying
how organisms move across the landscape and respond to fragmentation and climate
change or testing how geographic isolation and the possible reductions in genetic
diversity will lead to speciation, extinction, or adaptation. We can begin to address
these questions using population genomics and geographic techniques.

Tobler’s first law of geography states that “everything is related to everything
else, but near things are more related than distant things” (Tobler 1970). This is a
testable hypothesis using genetics and genomics techniques. One example is the
process of dispersal in forest trees; gene flow between populations occurs in two
ways, either by pollen or seed dispersal. In both cases, in order for gene flow to take
place, successful establishment of a seedling must occur, known as effective dis-
persal (Cain et al. 2000). So, to evaluate Tobler’s first law, biogeographers must first
ask the question: Do the relationships of trees to each other decrease with increasing
distance as would be expected by chance (Degen et al. 2004)? In general, gene flow
is expected to demonstrate less differentiation between neighboring populations than
distant ones (Muir and Schlötterer 2005). Ally and Ritland (2007) tested the spatial
genetic structure of Tsuga mertensiana and found that relatedness of individual trees
decreased with increasing pairwise distance, thus supporting Tobler’s first law.
Similar pattern was observed for Thuja occidentalis (Pandey and Rajora 2012).

There are a number of challenges that affect biogeography and its incorporation
of population genomics. Though the costs of genomics and genetics analysis have
decreased substantially, and specialized expensive equipment has become easily
available via sequencing services and genome centers, a functional theoretical
understanding of molecular and population genetics is required to interpret results
appropriately (Allendorf et al. 2010, 2012; Benestan et al. 2016). Currently, a few
biogeographers have appropriate experience with the genetics theory, but this must
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change. Without a base understanding of the genetics theory, it will be difficult to
design a research project and interpret the results in a meaningful way.

MacDonald (2000) realized that biogeographers have tremendous opportunities
to contribute to research that will make transformative advances to the well-being of
the planet and suggested that in order to take advantage, interdisciplinary research
teams will be essential. Assembling teams of researchers with unique specialties
and in-depth expertise can allow for quite productive research. We agree with
MacDonald (2000) that participating in interdisciplinary teams that include geneti-
cists, bioinformaticians, and biogeographers and allow groups to take advantage of
new technological advances will allow biogeography to flourish.

Population genomics challenges associated with study design and interpretation
have been discussed in this book. In addition to the problems associated with study
design and interpretation, there are also issues of data overload. At present, the
amount of genomic and environmental data generated far outstrips our ability to
store and analyze it (Parisod and Holderegger 2012). The sequencing capabilities of
high-throughput massively parallel sequencing techniques are on the order of bil-
lions of base pairs. Improved bioinformatics techniques are critical to future
advancement in the use of genetic and environmental data (Pop and Salzberg
2008) in ecological biogeography.

The acquisition of geographic and spatial data has also exploded, similarly to
genomic data, and is on track to outstrip the analytical capabilities of researchers
without proper informatics system and algorithm improvements. Much of the rapid
increase in environmental spatial data acquisition is a result of automated sensor
development and deployment and decreased costs of use over the last couple of
decades (Guillot et al. 2009). Porter et al. (2012) suggested a sister field to bioin-
formatics termed ecoinformatics. Developments in sensor design, signal processing
algorithms, wideband communication systems, and new storage techniques are
among the problems that must be overcome if research is to optimize the vast
quantities of new data (Baraniuk 2011). If next-generation massively parallel
sequencing can generate billions of nucleotide records, high-capacity sensors also
have the ability to collect billions of records a year. Baraniuk (2011) pointed out that
a bottleneck exists and that, in 2011, the amount of data generated exceeded twice
the global storage capacity.

In both bio- and ecoinformatics, it will be important in the future to improve on
the quality assurance and quality control of the vast quantities of data and the
methods used for analysis. From system design to data transmission, analysis, and
storage advances in automated methods will be essential. We believe, as Porter et al.
(2012) stressed in their conclusions, that it will be imperative for future ecologists
and biologists, and we add biogeographers, to have a basic understanding of
informatics allowing them to navigate the technological tools that will enable them
to analyze ecological and sensor data helping them to answer interdisciplinary
questions.
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7 Future Direction in Biogeography

From a biogeography perspective, adopting a population genomics approach,
facilitated by a dramatic increase in the number of variable genome-wide markers
used, will advance the field by leaps. Adoption of this approach should improve the
precision of estimating species distributions, rates of movement, functional connec-
tivity, historical evolution of lineages, and population demographic parameters, such
as effective population size. Variations on whole-genome sequencing and reduced
representation sequencing of populations to assess their intraspecific variation
will permit the analysis of genomic diversity at a much higher resolution compared
to past genetic markers, such as microsatellites, AFLPs, and allozymes. High-
throughput sequencing approaches can allow rapid marker identification that can
be compared and combined across a diverse set of collaborators and laboratories.
Population genomics approaches will further open up the possibility of screening
individuals and populations for adaptive loci, which will improve our assessment of
populations that may be vulnerable to rapidly changing environments. Biogeogra-
phy research has long integrated methods and approaches from a diverse array of
research fields, and the rewards of adopting a population genomics perspective will
propel both ecological and historical biogeography forward, as well as unify the two
subdisciplines under an overarching theory of evolution. Indeed, the most important
discoveries are likely to come about by combining these two approaches. As
population genomics methods and models improve, the depth to which biogeogra-
phy inquiry can be addressed will flourish, and questions, such as what will the
spatial pattern and configuration of future species distributions look like as a result of
climate change, that have heretofore been beyond our grasp will finally be addressed.
Novel technologies and bioinformatics pipelines in conjunction with high-
throughput phenotyping and open-source analytical packages are still emerging.
As these technologies mature and costs are further reduced, biogeography can
move from assessing gene flow and landscape connectivity using neutral genetic
markers to identifying putatively adaptive loci as targets of selection. Moreover, an
increase in the availability of full-genome sequences will make possible whole-
genome comparisons across geographic regions allowing for the identification of a
broad array of ecological and climatic factors influencing biological processes.

As we move forward, it will be important to move beyond an assessment of
population genetic structure to infer potential future responses to climate and
landscape change and to begin to predict how species will respond based on our
knowledge of adaptive capacity (Holderegger et al. 2010; Storfer et al. 2010; Neale
and Kremer 2011; Manel and Holderegger 2013; Sork et al. 2013). Finding general
responses across multiple species will continue to be an important research goal
(Ćalić et al. 2015). A recent adoption of landscape genomics approaches in com-
munity ecology, known as landscape community genomics (Hand et al. 2015), could
be incorporated into biogeography to improve our understanding of species assem-
blages and their responses to global change.
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8 Conclusions

Population genomics will greatly enhance the resolution at which biogeography
questions can be addressed through both ecological and historical lenses. Incorpo-
rating the evolutionary perspective that population genomics approaches provide has
the potential to unify the discipline of biogeography in all of its various disciplinary
configurations (e.g., geography, biology, geology, and ecology). The rapid advance-
ment in genomics technologies and the affordability of sequencing will allow
various approaches outlined here to be tailored to a wide range of research
endeavors. In the future, we may see field-based sequencing, affordable whole-
genome sequencing, and a wave of epigenetic approaches that will allow very
precise and detailed investigation of the origin, spread, and distribution of species
as well as their potential future patterns.
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Adaptation Without Boundaries:
Population Genomics in Marine Systems

Marjorie F. Oleksiak

Abstract From the surface, the world’s oceans appear vast and boundless. Ocean
currents, which can transport marine organisms thousands of kilometers, coupled
with species that spend some or all of their life in the pelagic zone, the open sea,
highlight the potential for well-mixed, panmictic marine populations. Yet these
ocean habitats do harbor boundaries. In this largely three-dimensional marine
environment, gradients form boundaries. These gradients include temperature, salin-
ity, and oxygen gradients. Ocean currents also form boundaries between neighboring
water masses even as they can break through barriers by transporting organisms
huge distances. With the advent of next-generation sequencing approaches, which
allow us to easily generate a large number of genomic markers, we are in an
unprecedented position to study the effects of these potential oceanic boundaries
and can ask how often and when do locally adapted marine populations evolve. This
knowledge will inform our understanding of how marine organisms respond to
climate change and affect how we protect marine diversity. In this chapter I first
discuss the major boundaries present in the marine environment and the implications
they have for marine organisms. Next, I discuss the how genomic approaches are
impacting our understanding of genetic connectivity, ocean fisheries, and local
adaptation, including the potential for epigenetic adaptation. I conclude with
considerations for marine conservation and management and future prospects.
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1 Introduction

The world’s oceans are seemingly without boundaries. This vast environment covers
70% of the world and contains approximately 2.2 million eukaryotic marine species
(Mora et al. 2011). The world’s oceans’ apparent boundlessness results from this
vast environment combined with the large distances ocean currents can transport the
eggs, larvae, and juveniles of many marine species. The combination of this dis-
persal potential with highly mobile adults in many marine species results in species
occupying large areas encompassing diverse marine ecosystems. Not surprisingly,
many genetic studies have shown apparent panmixia in ocean populations.

Historically, genetic studies using a few presumably neutral markers show little
genetic differentiation among many marine species’ populations (Waples 1998;
Conover et al. 2006). Population genetic studies use FST values (Wright 1949),
which measure the genetic variance among populations relative to the total variance
(within plus between), to determine interpopulation genetic differentiation. Indeed,
the average FST value across 57 marine fish species was 0.062, while the median was
only 0.02 (Ward et al. 1994; Waples 1998) (though note that in very large
populations, even low FST values can be statistically significant), and many marine
species with dispersive life stages show limited genetic differentiation (Palumbi
2003). Based on selectively neutral markers, it has been shown that even rare,
long-distance dispersal can maintain genetic homogeneity between populations
(Waples 1998). Additionally, many marine species have large population sizes,
which also tend to minimize genetic divergence due to genetic drift, because the
amount of change due to neutral processes decreases as the population size increases
(Kliman et al. 2008). Overall, many large marine populations show minimal among-
population genetic differentiation at neutral loci.

This historical perspective is changing. Recently, biologists have gone from
looking at a few targeted genes or a few genetic markers to looking at whole
genomes, and this is rapidly changing our perspective from the idea of well-mixed
populations to that of intraspecific differences – some due to local adaptations – that
reflect the ecological settings of local populations (Hand et al. 2015; Rudman et al.
2015; Barabas and D’Andrea 2016; Messer et al. 2016; Wood and Brodie 2016).
This challenges the assumptions about marine species dispersal and raises the
questions: how connected are marine populations, what physical and biological
factors affect this connectivity, how rampant is local adaptation, and what are the
biological, evolutionary, and conservation implications?

The change in our perspective about the adaptive potential of marine organisms
despite large dispersal in large part reflects the availability of genome-wide infor-
mation facilitated by next-generation sequencing (NGS) technologies that allow us
to sequence many thousands of genes in any organism (Crawford and Oleksiak
2016). Population biologists have gone from looking at target genes or a few genetic
markers to looking at whole genomes using these high-throughput sequencing
technologies. For marine species, these recent genomic approaches have opened
up the world of marine population genomic studies because now one can quantify
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the nucleotide variation at thousands of loci without needing a complete reference
genome. Instead, by sampling loci across the genome, NGS can be applied and used
to analyze any species, from those with small genomes (million of base pairs, bp) to
those with very large genomes (100 s of billions of bp). Yet, even though NGS can
be applied to most marine species, many marine species are logistically difficult to
study because they are often difficult to observe, collect, identify, and study either in
situ or in the laboratory.

For marine species that can be studied, NGS offers two different approaches for
conducting genomic studies, each with different challenges: (1) sequencing whole
genomes or (2) sequencing selected portions of genomes (selected fragments,
expressed sequences, or targeted sequences). Sequencing the complete or whole
genome of marine organisms offers the advantage of identifying nearly all informa-
tive DNA sequence changes. Yet, whole genome sequencing for non-model species
is not trivial because genome assembly requires high-performance computing and
extensive bioinformatics (Willette et al. 2014). This problem becomes much more
severe for population genomic studies where many hundreds of individuals need to
be compared to determine fisheries stocks, demographic parameters, or adaptive
changes. Thus, until whole genome bioinformatics methods (e.g., starting with
whole genome assembly and annotation followed by variant detection and analyses)
for hundreds of individuals are possible, a more effective approach for many studies
on marine species is likely to use the second approach of selective sequencing
(though see Therkildsen and Palumbi (2016) for progress on whole genome
sequencing for multiple individuals and Reid et al. (2016, 2017) for a population
genomics approach using whole genome sequencing). The exceptions are commer-
cially important species, especially fish species, with an abundance of resources
(Nielsen et al. 2009b).

For marine species without whole genome resources, population genomic studies
are more likely to sequence only a portion of the genome or a reduced subset of a
species’ genome, for example, transcriptomes (transcriptome or gene expression
studies are not discussed here though they have been used with a wide variety of
marine organisms to infer adaptation and response to climate change (Oleksiak
2010; Stillman and Armstrong 2015)), a selected subset of the genome (e.g.,
exome capture hybridization followed by sequencing (Ng et al. 2009)) or a reduced
representation of the genome (e.g., Rad-seq (Baird et al. 2008; Etter et al. 2011) or
genotyping by sequencing, GBS (Elshire et al. 2011)), where tens of thousands of
restriction endonuclease fragments are sampled and sequenced). These genomic
approaches allow researchers to identify and quantify single nucleotide polymor-
phisms (SNPs) for marine population genomics studies. The development of thou-
sands of polymorphic DNA markers provided by high-throughput sequencing
approaches has given researchers the unprecedented capability to interrogate across
the entire genomes of virtually any species. Researchers can use these partial
genomic approaches on just about any intractable marine species, as long as the
appropriate samples can be collected. The advantage of these genomic approaches is
that they require little development. That is, unlike microsatellites that require
extensive marker development, including identification and optimization, these
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genomic approaches remove one of the bottlenecks in ecological genetic and
genomic studies. For difficult-to-study marine species, this capability opens the
door to studies that identify populations, population parameters, population struc-
ture, and the processes that affect these attributes.

2 Major Population Boundaries in the Oceans

2.1 Environmental Temperature Changes

Many marine populations are large and inhabit environments without obvious
physical barriers. Coupled with high dispersal of different life stages, this suggests
that populations should be panmictic. Yet physical barriers do exist in marine
environments, and these barriers can isolate populations and potentially drive both
random (genetic drift) and adaptive variation among populations. What are these
physical barriers?

One of the most important physical barriers is temperature differences among
population locations. Indeed, the fronts and major currents defined by Dana’s
temperature boundaries (Dana 1853) continue to define the major pelagic habitats
in the world’s oceans (Spalding et al. 2012). Although temperature changes in the
oceans are not as extreme as those on land, water’s large heat capacity, which is
approximate 4 times that of air, and large heat conduction, which is approximately
25 times that of air (Ricklefs 1979), means that most marine organisms are ecto-
therms and have body temperatures equal to the water temperature. Thus because of
water’s heat conduction and capacity, water temperature differences directly affect
body temperatures and metabolic processes that rely on temperature: there is a two-
to threefold change in chemical and physiological processes with every 10�C change
in temperature. Consequently, temperature clines have long been recognized as
important features for marine organism distributions (Dana 1853) (Fig. 1), with
temperatures affecting either survival or reproduction (Hutchins 1947).

A classic example of temperature affecting fitness and causing natural selection
occurs in the saltmarsh minnow, Fundulus heteroclitus. F. heteroclitus is distributed
along a steep thermocline, the East Coast of the United States of America. Here, for
every degree latitude change, there is approximately a 1�C temperature change.
Thus, F. heteroclitus populations living in Maine experience approximately >12�C
colder mean annual temperatures than F. heteroclitus populations living in Georgia.
This thermal cline is thought to be responsible for the adaptive divergence in enzyme
biochemistry and expression (Powers et al. 1991; Oleksiak et al. 2002).

A well-characterized example of adaptive divergence is lactate dehydrogenase B
(LDH-B) in F. heteroclitus (Fig. 2). LDH-B has two common alleles and is expressed
in the heart, liver, and red blood cells (Powers et al. 1991). The two common LDH-B
allele frequencies are strongly differentiated with latitude. Elegant enzymatic studies
showed that not only do LDH-B alleles vary with latitude, so too do catalytic
efficiencies (Place and Powers 1979, 1984). One allele (LDH-Ba), which is fixed
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in southern populations but nearly absent from northern populations (Place and
Powers 1978), has the highest catalytic efficiency near 40�C. In contrast, the
alternative allele (LDH-Bb), which is common in northern F. heteroclitus
populations, has the highest catalytic efficiency near 10�C. In fact, LDH-B allele

Fig. 1 Average sea surface temperature. Note the variation of the temperature by latitude, from the
warm region along the equator to the cold regions near the poles. Image courtesy of NASA/Goddard
Space Flight Center
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frequency is a function of latitude between northern Maine and South Carolina, a
distance of over 1,600 km, and is consistent with kinetic variation among the LDH-B
genotypes (Powers et al. 1991). The differences in LDH-B enzyme kinetics have
important biological effects. The LDH-B genotypes affect hemoglobin-oxygen
affinity, hatching time, and adult swimming performance (DiMichele and Powers
1982a, b; DiMichele et al. 1991). In addition to biochemical differences between
LDH-B alleles, there are adaptive differences in LDH-B enzyme levels, which
compensate for colder northern temperature and affect cardiac metabolism
(Crawford and Powers 1989; Pierce and Crawford 1997; Podrabsky et al. 2000).
These studies, with functional enzyme biochemistry tied to evolved gene expression,
provide one of the clearest examples of natural selection occurring in natural
populations.

This adaptive divergence in enzyme kinetics and expression occurs in
F. heteroclitus, which do not have a pelagic larval stage and have a relatively
small home range (Lotrich 1975; Able et al. 2006, 2012). With limited dispersal,
one might expect natural selection to affect genotypes along a temperature cline. In
contrast, during sexual reproduction the sea anemone (Metridium senile) releases
sperm and eggs into the water column. Fertilized gametes drift in the plankton for
1–6 months before settling and metamorphosing into juveniles. Due to this relatively
long pelagic larval duration (pld), M. senile can spread hundreds of kilometers from
its origins (Hoffmann 1981). Yet, M. senile phosphoglucose isomerase (GPI) allele
frequencies vary along a steep thermal gradient (Hoffmann 1981), and similar to
LDH-B alleles, the different alleles differ in their kinetic properties, with greater
differences evident at low temperatures. Consistent with temperature maintaining
this allelic variation, the allelic variants showed the highest pentose-shunt metabolic
flux differences at low temperatures (Zamer and Hoffmann 1989).

A final example of temperature effects on marine community structure is exem-
plified by enzymatic studies across closely related barracuda species (genus
Sphyraena), including north temperate, subtropical, and south temperate species.
Lactate dehydrogenase-A (LDH-A) proteins in six barracuda species have different
apparent Kms for substrate and cofactor. For all species, Km increases with increas-
ing assay temperature. However, the Kms for the six species are all the same when
measured at the fish’s normal temperature (Holland et al. 1997). This conservation of
Kms arises from ~1.7-fold differences in the Kms when they are measured at a
common temperature. These barracuda species have evolved different LDH-A pro-
teins, yet unlike F. heterclitus populations that inhabit waters that differ by up to
12�C, the barracuda only inhabit waters that differ by 3–4�C. This suggests that even
small temperature changes can drive natural selection, and thus global climate
change might have significant effects on ectotherm survival and evolution.

Temperature clearly affects the population structure in the above examples.
Indeed, temperature alone can predict 53–99% of the present day population struc-
ture along coastlines for shallow benthic faunas (Belanger et al. 2012). Yet because
temperature differences often fall along a latitudinal cline, care must be taken to
differentiate adaptive responses from demographic ones (Vasemagi 2006; Strand
et al. 2012).
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2.2 Salinity Changes

Salinity is another potential barrier in the marine environment, especially near
coastlines, which can be significantly affected by freshwater input and evaporation
from tidal pools and estuaries. Dealing with changing salinities can be energetically
costly due to the need to either osmoregulate or osmoconform to maintain homeo-
stasis. The blue mussel, Mytilus edulis, is an osmoconformer and accumulates
intracellular organic osmolytes to match the ambient osmotic pressure in response
to increased salinities. M. edulis’ life history suggests that M. edulis populations
should exhibit little genetic structure. They release fertilized eggs into the water
column, and pelagic larvae remain in the water column for 3–7 weeks and can travel
several hundred kilometers before settling (Newell 1989). Indeed, many loci exhibit
little differentiation in protein polymorphisms (Levinton 1976). However, M. edulis
LAP (leucine aminopeptidase I) alleles and LAP activities are associated with
changing salinity. LAP’s importance for osmoregulation is the production of
amino acid osmolytes: LAP cleaves neutral or hydrophobic amino acids from
N-terminal polypeptide ends, and M. edulis release these free amino acids into the
cytosol to balance increased osmotic pressure due to increased salinity. Although
adult M. edulis populations have altered LAP allele frequencies dependent on
salinity, different LAP allele frequencies are not found in the settling larvae
suggesting that differential juvenile mortality establishes the allelic difference in
response to the salinity cline (Hilbish and Koehn 1985). This adaptive divergence
occurs despite high gene flow.

The above four enzymatic studies characterizing allele frequency differences in
targeted genes (LDH-B, GPI, LDH-A, and LAP) reveal biochemical differences that
can be related to environmentally dependent, whole organism physiology. Thus,
they illustrate how environmental variation can shape and maintain allele frequency
differences between populations even in populations with high gene flow. Such local
adaptation is dependent on gene flow and selection and often involves a genotype by
environment interaction (Conover et al. 2006).

2.3 Ocean Currents

In contrast to temperature and salinity clines, ocean currents tend to homogenize
populations by increasing gene flow between populations. Ocean currents are
continuous, directed movement of seawater generated by forces, such as wind
combined with the Coriolis effect, temperature and salinity differences, and breaking
waves. Winds plus the Coriolis effect drive ocean surface currents. They can move
huge volumes of water in well-defined, predictable patterns. Many currents are fast
with strong thermal boundaries between the surrounding ocean water. These surface
currents can transport marine species’ eggs and larvae long distances. They also can
form fronts, where two currents or water masses collide or where eddies shoot off.
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Because many marine species have long pelagic larval durations (pld), marine
populations thousands of kilometers apart can be well-connected (Kinlan and
Gaines 2003).

Currents can enhance the connectivity among populations, yet currents and the
resulting fronts formed between distinct water masses also can form important
physical barriers in the world’s oceans. These water mass differences can impose
selection pressures or gene flow barriers, resulting in genetic differentiation between
continuously distributed marine organisms (Saunders 1986). The genetic differenti-
ation of marine organisms based on geographic distributions can reveal
phylogeographic patterns where populations diverge and there is similar population
structure for one or many species. Similar phylogeographic patterns among inde-
pendent species suggest similar vicariant histories potentially related to periodic
environmental changes during the Pleistocene as well as the species’ life history
patterns and dispersal capabilities (Avise 1992). Many of these marine
phylogeographic patterns are found near land, for example, Cape Canaveral, Florida,
on the East Coast of the United States (Avise 1992) and the Indo-West Pacific
marine environment (Mcmillan and Palumbi 1995; Williams and Benzie 1998;
Barber et al. 2000). Cape Mendocino off the California coast of the United States
is another region where range limits of multiple species suggest a sharply delimited
transition zone, yet here, intraspecific genetic divergences are not common
(Burton 1998).

In contrast to these near shore oceanographic features, the Antarctic Polar Front
has been proposed as a biogeographical barrier in an open-ocean environment
(Clarke et al. 2005). The Antarctic Polar Front (Fig. 3) forms a barrier where cold,
northward-flowing Antarctic waters meet the relatively warmer waters of the sub-
antarctic and prevent a free north-south water exchange. The Antarctic Polar Front is
large and deep. It has strong prevailing currents and a steep (3–4�C) temperature
cline (Eastman 1993). Even if organisms do traverse this front, the temperature
difference across the front likely limits many Antarctic and subantarctic species from
establishing viable populations: it is too hot or too cold on the other side. A number
of taxa show genetic divergence between South American and Antarctic locations.
These include a variety of species, many with long-lived larvae, such as ribbon
worms (Thornhill et al. 2008), bivalves (Page and Linse 2002), brittle stars (Hunter
and Halanych 2008), krill (Patarnello et al. 1996), fish (Shaw et al. 2004), and
colonial alga (Medlin et al. 1994). These data show that even though these species
can disperse over large geographic areas, the Antarctic Polar Front and associated
Antarctic Circumpolar Current form a physical oceanographic barrier that restricts
such dispersal over evolutionary time (Thornhill et al. 2008).

Another potential oceanographic barrier to population connectivity is the Eastern
Pacific Barrier. The Eastern Pacific Barrier is an ~5,000 km stretch of uninterrupted
water with depths between 5,000 and 8,000 km (Grigg and Hey 1992) that separates
the central from the eastern Pacific Ocean. While the Eastern Pacific Barrier is not a
barrier to fish (Rosenblatt and Waples 1986; Lessios et al. 1998; Lessios and
Robertson 2006), sea urchins, Tripneustes sp. (Lessios et al. 2003), and crown-of-
thorns seastar, Acanthaster planci (Nishida and Lucas 1988), it does form an almost
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complete barrier for the coral Porites lobata, a coral species with potentially long-
lived larvae (Baums et al. 2012). Interestingly, on an island just north and west of the
Galapagos, there is a Pacific P. lobata population that is more genetically similar to
western populations than the geographically closer eastern Pacific populations.
However, this population did not migrate further south and east to the Galapagos,
~3,000 km closer than the western populations and on the same side of the Eastern
Pacific Barrier, suggesting that other factors, potentially temperature, were also
limiting its dispersal. This highlights the importance of interacting factors, both
biotic and abiotic, in affecting population differentiation.

2.4 Other Potential Barriers

A variety of other potential physical barriers exist in the world’s oceans. Many of
these are exacerbated by human activities. These include suitable habitat availability
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(Burton et al. 1979; Riginos and Nachman 2001), hypoxia (Breitburg et al. 2009),
and pollution (Bozinovic and Oleksiak 2011; Hamilton et al. 2016). Further, it is
often not just one factor that promotes genetic differentiation in marine populations
but instead is the combined effects of multiple factors. For instance, genetic differ-
entiation of the subtidal fish Axoclinus nigricaudus, which has benthic eggs but
planktonic larvae, cannot be explained by a single factor and instead is correlated
with the combined effects of biogeography, geographical distance, and habitat
availability (Riginos and Nachman 2001). The dispersion potential of many if not
all of the physical barriers can be affected by biological factors as well. Certainly, the
variety of different species’ dispersal patterns across the same geographic range
involving the same currents suggests the importance of life history and dispersal
capability in shaping population structure. Thus, in addition to physical processes,
biological processes such as local adaptation, reproductive strategy, and larval
behavior (e.g., Swearer et al. 2002; Jones et al. 2005; Almany et al. 2007; Shulzitski
et al. 2016) can influence the genetic structuring of marine organisms despite their
long-distance dispersal potentials. For many organisms inhabiting the marine envi-
ronment, it is the interaction between the physical and biological processes that
drives their population structures. The challenge remains to understand biological
processes in the context of the physical environment, and for questions of population
structure, genomic approaches now give us an incredibly powerful toolbox to
address this challenge.

3 Population Genomics in the Oceans

The studies described above targeted specific genes or a small number of putatively
neutral markers (e.g., mitochondrial sequences or microsatellites). Yet now with
NGS approaches, we can interrogate across whole genomes, which provides us with
readily available genetic markers spread across the entire genome. These hundreds to
thousands of widely distributed genetic markers provide two benefits for population
genetic studies. First, the large number of markers and broad genomic coverage
provide greater confidence in estimating neutral population genetic parameters, such
as effective population size and migration rate, and allow us to more confidently
establish neutral expectations (Allendorf et al. 2010). Second, because loci under
selection should be affected by demography and evolutionary history differently
than neutral loci, population genomic approaches also enhance the ability to identify
adaptive or functionally important loci and genes (Luikart et al. 2003). In large
marine populations with generally low FST values for neutrally evolving genes, loci
under directional selection may be easier to distinguish from neutral expectations
(Nielsen et al. 2009b) and are indicative of hidden population structure, which may
be important for conservation or to enhance our understanding of biological ocean-
ographic processes.

The idea that restricted gene flow, with resulting non-neutral DNA polymorphism
patterns, occurs between marine populations is converging with the idea of much
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more nuanced environmental gradients, and knowledge of the rapidity and breadth
of these non-neutral changes. It will greatly enhance our understanding of how life
adapts to global change. Yet, this same population genomics approach has the
potential drawback that while we can identify loci apparently under selection, we
often lack functional data to “prove” adaptation or natural selection. Unlike earlier,
targeted gene studies, follow-up functional studies will often be lacking, leaving us
to simply postulate functional effects. This is especially true when natural selection
acts on polygenic traits. That is, if selection is acting on many genes, each with a
small effect, then functional assays need to take into consideration many different
allelic combinations across many loci. For example, a biallelic trait affected by 2 loci
will have 9 genotypes, 1 affected by 3 loci will have 27, and 1 affected by 4 loci will
have 81. Even with today’s gene editing capabilities, which work across species
(Jinek et al. 2012), it is incredibly difficult to study the functional outcomes of
polygenic effects, especially in non-model, multicellular organisms, and both eco-
logical and physiological knowledge of the organism under study will be crucial for
interpreting genomic data. Thus, linking potentially adaptive loci to biologically
important phenotypes remains challenging, especially for many marine species,
which often cannot be reared or even maintained in the laboratory (Oleksiak
2016). Even so, genomic results provide a powerful starting point to complement
and direct functional approaches to better understand adaptive variation in marine
populations.

3.1 Genetic Connectivity and Phylogeography

High-throughput genomic approaches have made it relatively easy to study the
genetic connectivity of any marine species (but see Waples and Gaggiotti (2006)
and Gagnaire et al. (2015) for problems defining marine populations) and also
provide an excess of genetic markers with which to explore adaptive variation in
both space and time (Crawford and Oleksiak 2016). Most of these plentiful genetic
markers support conclusions of previous research using fewer, neutral markers. For
example, a genotyping by sequencing approach – where next-generation sequencing
is used to genotype hundreds of individuals at a time at many loci – identified
approximately 1,320 SNPs in populations of the estuarine fish, sailfin molly
(Poecilia latipinna). Fish inhabiting three geographically close, salt marsh flats
(within 10 km of each other) in the Florida Keys showed little genetic differentiation
(FST values <0.0125 for most SNPs [less than 1.25% of the variance among
populations relative to the total]) (Nunez et al. 2015). These data support previous
studies using allozymes and microsatellites (Trexler et al. 1997; Apodaca et al.
2013), also suggesting few differences among South Florida sailfin molly
populations. In addition to confirming the genetic connectivity of these populations,
these data also identify a small percentage of loci (~1.4%) that are potentially
adaptive. These loci show FST values that are unlikely to occur relative to random
permutations of loci with similar heterozygosities and identify population structure
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not visible using neutral loci (Fig. 4). Furthermore, these excessive FST values
suggest adaptive divergence due to local environments.

Similar results have been found for the threatened staghorn coral, Acropora
cervicornis, the fastest growing Caribbean coral. Staghorn coral populations
between Florida and sites in the Caribbean show significant genetic structure only
across large geographic distances in both nuclear and mitochondrial genes (Vollmer
2007), suggesting restricted gene flow reflecting ocean currents that potentially
isolate populations. Yet, within the Florida Reef Tract, the third largest barrier reef
system in the world, extending from Biscayne Bay to the Tortugas Banks (nearly
240 km) and bounded by the Florida Current to the east, analysis of A. cervicornis
using microsatellites showed little population differentiation and no significant
population structure (Baums et al. 2010). Recently, genotyping by sequencing was
used to genotype A. cervicornis individuals along the Florida Reef Tract at ~4,700
loci. While most of the genetic diversity (>90%) was found to reside within
populations similar to previous studies, the genomic analyses showed significant
variation along the Florida Reef Tract, including 300 SNPs with significant FST
values and significant divergence relative to distance even over small spatial scales
(Drury et al. 2016). These studies highlight the ability of population genomic
approaches to identify previously unresolved population structure. While this
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might simply reflect the higher number of genomic markers and thus not be
biologically relevant (Hedrick 1999), diagnostic genetic markers allow for popula-
tion discrimination and source population identification, which are important aspects
for regulating protected populations or for defining marine protected areas (MPAs).

The greater resolution of genetic differences based on population genomic
approaches has been found in an increasing number of other studies for many diverse
marine taxa. For instance, population genomic analyses using high-confidence SNPs
identified highly resolved phylogeographic relationships for natural populations of
the sea anemone (Nematostella vectensis), a developing cnidarian model for com-
parative and ecological genomics. This resolution was not achieved in previous
studies using traditional markers (Reitzel et al. 2013). Similarly for Pacific lamprey
(Entosphenus tridentatus), a highly dispersive anadromous fish with high gene flow,
a genotyping by sequencing approach using ~4,000 genetic markers showed that
although neutral variation identified some evidence of more than one population,
similar to previous studies using fewer genetic markers, analyses of adaptive vari-
ation, which was associated with geography and life history, found a much finer
genetic structure scale within the broad regions sampled (Hess et al. 2013). Simi-
larly, greenlip abalone (Haliotis laevigata) showed very low differentiation using
8,786 putatively neutral loci but 5 divergent population clusters using 323 candidate
adaptive loci (Sandoval-Castillo et al. 2018). These studies demonstrate that geno-
mic approaches can identify population structure that is not apparent when using a
few neutral markers.

3.2 Genomic Impacts on Ocean Fisheries

Understanding population structure is important for managing fisheries stocks
because independent fisheries stocks are likely to have independent population
dynamics and respond differently to changing environmental conditions and fishing
pressures. An important fish stock in North Atlantic waters is Atlantic herring
(Clupea harengus); previous studies using a limited number of genetic markers
found no genetic differentiation between Atlantic herring sampled from different
regions. Atlantic herring is a pelagic fish in North Atlantic waters. It is a major food
source for many marine animals and is widely used for producing fish feed for
aquaculture (Lamichhaney et al. 2012). Thus, understanding the genetic differenti-
ation between herring stocks is critical for sustainably managing this species. Using
transcriptome sequencing, more than 440,000 SNPs were identified across herring
from a wide geographic range, and most showed no allele frequency differences
among populations. However, in contrast to this lack of genetic differentiation for
most loci, several thousand SNPs (2–3%) showed strong allele frequency differences
(Lamichhaney et al. 2012) and define a number of genetically distinct herring
populations in the North Atlantic. Many of the differentiated loci are correlated
with salinity and associated with osmoregulation in other species, suggesting that
salinity differences across geographic regions might be driving the genetic
differentiation.
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Population genomic approaches have been used with a number of other
commercially important marine species, and there has been an exponential
increase in fisheries-related population genomic studies from 2009 to 2014
(Valenzuela-Quinonez 2016). For example, another important fish stock in North
Atlantic waters is turbot (Scophthalmus maximus), which inhabits the European
continental shelf. Among 20 turbot populations collected from across its range,
genotyping via double-digest RAD sequencing showed that this flatfish species is
structured into four main regions: Baltic Sea, Atlantic Ocean, Adriatic Sea, and
Black Sea. Genetic variation correlates with temperature and salinity, suggesting that
these two parameters are driving the genetic differentiation (Prado et al. 2018). In
another study, a targeted genome scan was used specifically to determine whether
Atlantic cod (Gadus morhua) populations are adapted to local environmental con-
ditions (Nielsen et al. 2009a) and showed stable interpopulation variation over a
24-year time period. This interpopulation variation was better correlated with
spawning ground temperature and/or salinity conditions during spawning than
with geographic distance. While the mechanisms maintaining local adaptation
despite high gene flow are still poorly understood, a subsequent study hints at the
importance of genomic architecture: cod populations locally adapted to low salinity
fjord environments have a significant overrepresentation of a large (~5 Mb)
chromosomal rearrangement (Barth et al. 2017).

Additional population genomic studies show limited effective dispersal that
structures sea scallop (Placopecten magellanicus) populations along eastern North
America (Van Wyngaarden et al. 2016), two well-defined anchovy ecotypes for
the European anchovy (Engraulis encrasicolus) collected from Atlantic and
Mediterranean locations that correlate with habitat (Montes et al. 2013), and spatially
varying selection acting on glass eels (an intermediary stage in the eel’s complex life
history between the leptocephalus stage and the juvenile [elver] stage) in the
otherwise panmictic European eel, Anguilla anguilla (Pujolar et al. 2014), and
American eel (Anguilla rostrata) (Gagnaire et al. 2012). Studies in two different
lobster species, the southern rock lobster (Jasus edwardsii) and American lobster
(Homarus americanus), identified genetic markers that can be used for assignment
tests to the original population (Benestan et al. 2015; Villacorta-Rath et al. 2016).
These findings show that using the large number of genetic markers available
through population genomic approaches can improve the identification of fine-
scale structure and be used to better define appropriate stock management scales
and conservation units in these commercially valuable species. Additionally, these
approaches can be used to identify population origins, which is critical for enforcing
management policies.

However, not all population genomic approaches reveal previously unknown
population structure. For instance, in a commercially harvested abalone species
(Haliotis rubra) from southeastern Australia, genotyping by sequencing results
using up to 1,700 SNPs indicate high levels of gene flow and no significant genetic
structure within or between benthic reef habitats across 1,400 km of coastline (Miller
et al. 2016). Given that abalone along this coast inhabit reef patches up to at least
6,600 m apart, this suggests that recruitment success along this coast does not
predominantly depend on local reef sources.
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3.3 Local Adaptation

Overall, most marine population genomic studies comparing between groups or
populations consistently identify a few percentages of SNPs with elevated diver-
gence, which exceeds neutral expectations. Thus, in addition to resolving previously
unresolved population structure, marine genomic studies also are revealing a
plethora of potentially adaptive loci. Perhaps the most well-known example of a
marine organism adaptation using genomic approaches is repeated stickleback
(Gasterosteus aculeatus) adaptation from oceanic to freshwater habitats. A genome
scan using over 45,000 SNPs identified parallel genetic divergence across indepen-
dent populations in both previously characterized and novel genomic regions
(Hohenlohe et al. 2010). How quickly stickleback freshwater adaptation occurs
was addressed in a subsequent population genomic study that examined sticklebacks
from freshwater habitats that were only recently colonized by sticklebacks from
ocean populations. These freshwater habitats were formed on earthquake-uplifted
islands in Alaska in 1964. Fifty years later, these populations have phenotypically
diverged from the oceanic phenotypes to nearly the same extent as much older
freshwater stickleback populations and also show genetic divergence between oce-
anic and freshwater populations (Messer et al. 2016). The lower genetic divergence
between oceanic and freshwater stickleback populations compared to the divergence
among the freshwater populations suggests independent invasions of the freshwater
habitats and further differences among freshwater habitats that have occurred within
the last 50 years, despite likely recurrent gene flow between oceanic and freshwater
populations.

The stickleback study suggests that freshwater adaptation occurs quickly, within
the first few decades of freshwater invasion, and raises the question of how rapidly
adaptation occurs in nature. With strong selection, directional selection is often
rapid. For example, four independent F. heteroclitus populations have adapted to
strong pollution clines within 50 generations (Reid et al. 2016). Similarly, intro-
duced Chinook salmon (Oncorhynchus tshawytscha) show rapid trait divergence
between populations within at most 30 generations (Quinn et al. 2001), and the
Atlantic silverside (Menidia menidia) showed selection for slower or faster growth
rates in response to size-selected harvest in just 4 generations (Conover and Munch
2002). While this last example is due to artificial selection in the laboratory, there is a
growing body of evidence that rapid phenotypic evolution is common in nature
(Messer et al. 2016).

While geographically varying selection is widely accepted as an important factor
for maintaining genetic variation, less attention has been paid to temporally fluctu-
ating selection (Messer et al. 2016). Temporal fluctuations as exemplified by cold
years in the North Atlantic with a general warming trend associated with global
warming have affected species distributions (Wethey et al. 2011). What is less well
understood is whether these types of temporal variations affect genetic diversity
within a species or divergence among populations. Since global warming is associ-
ated with higher variation in climatic conditions, understanding the effect of tempo-
ral variations is an important avenue for future population genomics research.
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Population level genomics will allow us to better understand genetic variation
over time as well as space. This may be particularly relevant for marine populations
with large, well-connected populations harboring lots of genetic variation. Impor-
tantly, shifting habitats and environmental conditions as might be influenced by
seasonal current shifts, large-scale ocean-atmosphere oscillations (e.g., El Niño/
Southern Oscillation or ENSO, Antarctic, Arctic, and North Atlantic Oscillations
among others), as well as environmental disturbances due to local (e.g., pollution
and eutrophication) and global (e.g., global warming and ocean acidification
(Sunday et al. 2014)) climate change can cause strong directional selection and
require a rapid evolutionary response. We now have the resolution to analyze very
recently diverged populations at the genomic level, even due to seasonal changes
(Garud et al. 2015). Understanding the relevant time scales and ecological factors
affecting rapidly fluctuating selection will require extensive sampling of both
populations and relevant environmental parameters (Messer et al. 2016) and will
have important implications for how we protect and manage marine populations in
today’s changing environments.

3.4 Epigenomic Adaptation

In contrast to local adaptations, which become hardwired into organisms’ genomes,
epigenetic changes provide organisms with alternative ways to deal with changing
environments. Epigenetic changes are heritable changes in the genome that do not
alter the DNA sequence (Deans and Maggert 2015), and the best studied epigenetic
modification is DNA methylation. DNA methylation studies across 17 eukaryotic
genomes, including marine species genomes, suggest that gene body methylation is
conserved between plants and animals (Zemach et al. 2010). Other major epigenetic
modifications include chromatin remodeling, histone modifications, and noncoding
RNA mechanisms. These epigenetic mechanisms are shared across most taxa.

At the population level, environmental epigenomic studies of marine organisms
are just beginning and mostly focus on DNA methylation. For marine populations
impacted by rapid environmental change, epigenetic mechanisms may give
impacted populations enough time to genetically adapt. This may be especially
important for sessile marine invertebrates that have no choice but to cope with the
environment they inhabit. Interestingly, a study examining the role of genome-wide
DNA methylation in the adaptation of a marine stickleback population to freshwater
conditions found that the genes that harbor genetic and epigenetic changes were not
the same, suggesting that epigenetic adaptation complements but does not replace
natural selection (Artemov et al. 2017).

Examples concerning epigenetic effects due to environmental change include
studies examining pollution, temperature, and pCO2 effects. Thus, environmental
pollutants have been shown to affect genomic methylation levels in three-spined
stickleback (Aniagu et al. 2008), flatfish dab liver tumors (Mirbahai et al. 2011), and
European eels (Pierron et al. 2014). Across fish species living at different
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temperatures, polar fishes exhibit higher DNA methylation levels than tropical and
temperate fishes (Varriale and Bernardi 2006). In the context of global environmen-
tal change, a recent study in an Antarctic marine polychaete showed both physio-
logical and epigenetic responses to increased temperatures. When cultured in the
laboratory, the Antarctic polychaete Spiophanes tcherniai rapidly responded to
increased temperatures: within 4 weeks of a high temperature stress (from �1.4�C
to +4�C), metabolic rates return to normal. Additionally, these worms showed an
11% increase in CpG methylation state genome wide, with 85% of changes showing
a net increase in methylation (Marsh and Pasqualone 2014). Similarly, larval
European sea bass exposed to just 2�C warmer temperatures, the temperature
increase predicted by recent global warming models, changed both global DNA
methylation and the expression of ecologically relevant genes related to DNA
methylation, stress response, and muscle and organ formation (Anastasiadi et al.
2017). Another example relevant to global environmental change occurs in corals
exposed to increased CO2 levels to simulate ocean acidification. Two different reef-
building coral species, Pocillopora damicornis and Montipora capitata, were
exposed to ambient and ocean acidification conditions in common garden tanks
for ~6 weeks. Pocillopora damicornis showed an epigenetic response, while
Montipora capitata did not (Putnam et al. 2016). Not surprisingly, inducible DNA
methylation varies by taxa.

Environmental change also occurs for invasive species and invasive species
dynamics, which can provide insight into how populations might adapt to rapid
environmental change. During the expansive phase of a recent invasion (within
2 years), pygmy mussel (Xenostrobus securis) showed significantly reduced global
methylation levels. In older introductions such epigenetic signatures of invasion
were progressively reduced. Decreased methylation was interpreted as a rapid way
of increasing phenotypic plasticity that would help invasive populations to thrive. As
reported for introduced plants and vertebrates, epigenetic variation could compen-
sate for relatively lower genetic variation caused by founder effects (Ardura et al.
2017). Overall, epigenetic changes may be a rapid and powerful way in which
marine organisms can respond to rapid environmental change.

4 Conservation and Management Considerations

Both population connectivity and how organisms are able to and do adapt to
changing environments have significant implications for how marine systems are
conserved and managed. Population connectivity is critically important when con-
sidering how best to manage valuable resources such as ecosystem diversity and is
unknown for the vast majority of marine species. If source populations are not
protected, marine protected areas will be ineffective. Thus, the ability of a marine
protected area to sustain locally endangered populations depends on its connectivity
to other protected areas or other non-endangered populations and requires an
understanding of larval and adult exchange between locations (Palumbi 2003).
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Population connectivity is unknown for many marine species and with the many
potential physical and biological barriers to dispersion cannot be assumed to be
boundless. Furthermore, with today’s changing environments, population connec-
tivity will change. This is evident with man-made habitat fragmentation but also with
more subtle changes such as increasing mean annual ocean temperatures. Increased
temperatures are causing range expansion for many species by allowing adults to
survive and reproduce in the higher latitudes (Sorte et al. 2010; Chen et al. 2011).
However, increased temperatures also will shorten pelagic larval duration for many
species due to increased metabolism (O’Connor et al. 2007). Thus, this shortened
pelagic larval duration will limit connectivity even as adult ranges increase. Under-
standing the biological and environmental interactions and how they affect marine
connectivity will remain an important factor for successfully protecting marine
diversity.

The identification of potentially adaptive loci in marine populations also has
implications for marine management and conservation. In the oceans, adaptive
population differentiation occurs across different spatial scales and for species
with different life histories. Understanding local adaptation provides insights into
how organisms will deal with climate change and thus how best to manage and
conserve marine species with climate change. Studies of domestication and exper-
imental selection in yeast are making it clear that local adaptation over ecological
time scales selects from standing genetic variation (Burke et al. 2014; Boitard et al.
2016). This highlights the need to protect genetic diversity in marine populations if
these populations are to retain the ability to respond to a changing environment.
However, an open question is whether or how much of all the potentially adaptive
genetic differences recently revealed by population genomic studies are relevant for
conservation and species management. Given the complexity of adaptation in the
marine environment with fluctuating selective pressures, likely polygenic adaptation
where many genes have small, nonmeasurable effects (Rockman 2012), and the fact
that neutral and adaptive markers provide different types of information (Funk et al.
2012), indeed, the best conservation approach may simply be to preserve as much
genetic variation as possible so that species can maintain the full extent of their
evolutionary potential (Pearse 2016).

Regardless of whether or not newly discovered adaptive loci will or should
impact management decisions, these potentially adaptive loci do have an important
role in marine conservation with respect to identifying population origin. This is
important for exploited and endangered species because illegal, unregulated, and
unreported fishing significantly contributes to fish population overexploitation and
negatively affects population and ecosystem recovery. Illegal, unregulated, and
unreported fishing in high seas causes economic losses between $10 and $23.5
billion annually and is highly correlated with governance (Agnew et al. 2009).
The ability to identify and keep track of the origin of fishery products along the
supply chain will make controlling and enforcing regulations easier (Ogden 2008),
and genetic markers identified with population genomics approaches provide this
ability. For example, genome scans were used with four economically important
fish species (Atlantic cod [Gadus morhua], Atlantic herring [Clupea harengus],
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sole [Solea solea], and European hake [Merluccius merluccius]), all threatened by
overfishing and illegal, unregulated, and unreported fishing activities, to identify
genetic markers with high genetic differentiation. These markers correctly assigned
93–100% of individuals to correct population origin. Thus, this marine population
genomics approach provides a powerful, readily developed, and standardizedmeans to
identify population origin and thus enhance fishing governance (Nielsen et al. 2012).

5 Conclusions and Future Prospects

Marine population genomics has given us the unprecedented ability to resolve
population structure, identify genetic divergence among populations, and detect
selectively important genes. These data are important because they inform us
about the conservation genetics of isolated populations, the genes affecting impor-
tant phenotypes (e.g., reproductive schedules) and the frequency and effectiveness of
adaptive change in a changing environment. An ever-expanding number of genomic
studies suggest that marine species have greater population structure than previously
appreciated. Additionally, many of these studies identify lots of loci apparently
evolving by natural selection over both long and short evolutionary time scales. A
growing challenge will be to determine the functional effects of these loci evolving
by natural selection and predict which of the genetic differences revealed by
population genomic approaches are relevant for conservation and species manage-
ment. Regardless, these loci allow high-resolution stock identification and have
important implications for regulating illegal fishing. The number and frequency of
loci apparently evolving by natural selection suggests that natural selection is more
effective than currently appreciated, resulting in marine populations adapted to local
environmental conditions. If it is true that natural selection is more effectively
shaping population-specific genotypes, it suggests that current climate changes
will be mitigated by adaptive change in many marine organisms with sufficient
genetic variation (Crawford and Oleksiak 2016). This optimism is tempered by the
realization that while one or many species may adapt to climate change, the spatial
and temporal interactions among species could alter and have negative effects on
ecosystems.

The prospects and challenges for marine population genomics are similar to those
for any natural population, marine or terrestrial. In addition to linking genotype to
phenotype to determine the functional effects of loci evolving by natural selection,
which is especially difficult when life histories are unknown and the species them-
selves cannot be cultured as is still true for many marine species, further challenges
include understanding the genetic architecture underlying adaptive phenotypes in the
presence of gene flow in large marine populations without strict boundaries and
assessing changing population dynamics in today’s fast-changing environments.
Whole genome sequencing of marine organisms (along with the bioinformatic
tools to analyze these sequences and genomes) is accelerating. This in turn will
accelerate whole genome sequencing of marine populations, allowing us to study the
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genomic landscapes and allelic diversity variance within and between populations
truly at the genome-wide level (Ellegren 2014). Consequently, by further developing
marine population genomics, it will be possible to better understand how populations
respond to and are affected by their environment and eventually gain insight into
how population dynamics affect ecosystem functioning as a whole.
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Population Genomics of Speciation
and Admixture

Nicola J. Nadeau and Takeshi Kawakami

Abstract The application of population genomics to the understanding of specia-
tion has led to the emerging field of speciation genomics. This has brought new
insight into how divergence builds up within the genome during speciation and is
also revealing the extent to which species can continue to exchange genetic material
despite reproductive barriers. It is also providing powerful new approaches for
linking genotype to phenotype in admixed populations. In this chapter, we give an
overview of some of the methods that have been used and some of the novel insights
gained. We also outline some of the pitfalls of the most commonly used methods and
possible problems with interpretation of the results.

Keywords Admixture · Divergence · Hybrid zone · Hybridisation · Introgression ·
Population genomics · Speciation

1 Introduction

Speciation is a fundamental process in evolution, giving rise to biological diversity
(Box 1). It involves the divergence of populations, with the establishment of
reproductive isolation (RI) being an essential feature for maintaining distinctive
characteristics of the incipient species (Coyne and Orr 2004). The emerging field
of speciation genomics makes use of dense genome-wide markers to understand how
genetic differences build up within the genome and to identify genetic loci that
contribute to speciation (Butlin 2008; Nosil and Feder 2012; Seehausen et al. 2014).
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Gene flow between diverging populations slows down genome divergence by
homogenising genetic variation. Establishment of barrier loci involved in RI is
also difficult in the face of gene flow because such loci may be quickly eliminated
by selection, and therefore, key questions in speciation research are how differences
accumulate and how RI mechanisms are established (Coyne and Orr 2004). Speci-
ation genomics studies have shown that divergence can persist in the face of gene
flow, with sharing of alleles being detected to a greater or lesser extent between a
wide range of taxa, including those that are considered good species (Payseur and
Rieseberg 2016). By studying species at different points along the ‘speciation’ or
‘divergence continuum’, from those that have diverged little to species that may not
even be sister to one another, we are starting to understand how genetic differenti-
ation has accumulated within the genome (Feulner et al. 2015; Nadeau et al. 2013;
Riesch et al. 2017; Seehausen et al. 2014). However, species may currently maintain
distinctive features despite some ongoing gene flow, but this does not mean that
these differences were accumulated initially in the face of gene flow (i.e. in sym-
patry, Box 1). Hybridisation can happen in different spatial contexts, from narrow
hybrid zones where parapatric populations meet, to complete sympatry (Abbott et al.
2013). Similarly, there can be a diversity of different temporal contexts, ranging
from brief periods of secondary contact to continuous contact with divergent selec-
tion. Distinguishing these different scenarios from genomic data is not straightfor-
ward (Payseur and Rieseberg 2016). Therefore, empirical studies need to be
interpreted in the light of a sound theoretical understanding of how differences
accumulate in the genome under different scenarios (Nosil and Feder 2012; Payseur
and Rieseberg 2016).

Box 1 Definitions and Concepts

Speciation – the separation of populations, originally able to interbreed, into
distinct species, no longer able to interbreed freely. This definition depends
on the species definition being used. The strict biological species concept
demands complete reproductive isolation between species, while other
definitions may relax this (Coyne and Orr 2004). Speciation genomics
studies often consider taxa below the species level, with the idea being
that these may be in the early stages of speciation (Seehausen et al. 2014)
(see ‘The speciation continuum’).

Sympatry – occurring together or with overlapping geographic areas. Sympat-
ric speciation occurs without any physical barriers to gene flow.

Allopatry – occurring in separate, nonoverlapping geographic areas. Allopatric
speciation occurs when populations are physically isolated and so unable to
exchange genetic material.

Parapatry – occurring in partially overlapping geographic areas or areas with a
partial barrier between them.

(continued)
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Box 1 (continued)
Reproductive isolation (RI) – a reduction or absence of gene flow between

populations beyond that caused by geographic barriers, usually due to
incompatibilities in the reproductive systems of the organisms, either
before fertilisation (prezygotic, e.g. timing of reproduction, courtship,
mate choice or physical incompatibilities) or after fertilisation (post-
zygotic, e.g. inviable or infertile offspring, offspring with reduced fitness).

The speciation continuum – the idea that speciation proceeds gradually and so
it should be possible to observe populations with different levels of diver-
gence that are at different points long the continuum. By studying these
populations, we can understand how speciation proceeds. One possible
problem with this paradigm is that some of the populations with low levels
of divergence may be at a stable point and not in fact proceeding towards
becoming full species.

Genome scan – an analysis of genome-wide genetic markers to detect loci with
elevated genetic differentiation. In this chapter we are mostly referring to
scans of FST between two populations in order to detect loci that are under
divergent selection or exhibit reduced gene flow between populations.

Speciation/differentiation islands – regions of the genome showing increased
levels of differentiation between two populations. These are usually
inferred to contain genetic loci responsible for maintaining differences
between the populations.

Admixture – mixing of genetically distinct populations through interbreeding.
Hybridisation – mating between individuals of different species or distinct

populations.
Introgression – the transfer of genetic loci from one species to another

following hybridisation and repeated backcrossing.
Gene flow – the movement of genetic material between populations, usually by

migration and interbreeding.
Hybrid zone – a restricted geographic region where phenotypically or genet-

ically distinct populations or species meet and interbreed, forming hybrids.
Cline – a spatial transition from one genotypic or phenotypic form to another,

or a change in allele frequency across a geographical region.
FST (also known as Wright’s fixation index) – a measure of genetic differen-

tiation between populations varying between zero (no difference) and one
(a fixed genetic difference). It involves comparing how similar two indi-
viduals from the same subpopulation are as compared to the total popula-
tion, so giving a measure of the amount of genetic variance that can be
explained by population structure. The formula normally used for DNA
sequence data is: FST ¼ πBetween�πWithin

πBetween where πBetween and πWithin are the

pairwise genetic differences between individuals sampled from within a
(sub)population (πWithin) or from different populations (πBetween).

(continued)
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Box 1 (continued)
Hard sweep – a selective sweep by positive selection acting on a new

mutation. This results in advantageous variants reaching fixation in a
population. Genetic variation at sites that are tightly linked to the selected
sites is eliminated by genetic hitchhiking.

Soft sweep – selection acting on variants that segregate in a population as
standing genetic variation. These variants may not confer a selective
advantage in one population or under one set of conditions but do so in
another population under different conditions. Because the selected vari-
ants are present in a variety of different genetic backgrounds, variation at
linked sites is not reduced to the same extent as in a hard sweep.

Linkage disequilibrium (LD) – the non-random association of alleles at dif-
ferent loci within a population. This is most often due to physical linkage
between loci but can also be found between unlinked loci. For example,
unlinked loci under divergent selection between two populations will tend
to be in LD. LD is also elevated in admixed populations because of
associations between loci coming from the same parental population.

Barrier loci – positions in the genome that contribute to restriction of
gene flow between diverging populations. These loci may be involved in
various types of reproductive isolation, including divergent ecological
selection (extrinsic reproductive isolation), mate choice (pre-mating repro-
ductive isolation), egg-sperm incompatibility (post-mating-prezygotic
reproductive isolation) and hybrid sterility/inviability (post-zygotic repro-
ductive isolation).

Studies of speciation have long made use of hybrid zones (Box 1), where distinct
populations or species come into contact and interbreed (Kawakami and Butlin
2012). When high-resolution genomic tools were not available, studying phenotypic
variation and few loci within and across hybrid zones provided useful insight into the
nature of barriers to gene exchange and the selective forces at play in keeping distinct
populations from fully mixing (Barton and Hewitt 1985). Building on this solid
foundation, population genomic analyses of hybrid zones can bring new insights at a
much finer scale, for example, determining the extent and nature of barriers to gene
flow by characterising how much of the genome is being exchanged (Gompert et al.
2017; Harrison and Larson 2016). In this chapter, we explore the new insights that
population genomics approaches are bringing to the field of speciation research, as
well as how population genomics of admixed populations and hybrid zones can help
to identify the genetic basis of phenotypic differences more broadly. Key systems in
the speciation genomics literature are summarised in Table 1.
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Table 1 Key systems in population genomic studies of speciation and admixture

System Key studies

Humans Homo Admixture mapping within modern human populations (Shriver et al.
2003). Analysis of admixture with ancient Homo species (Patterson
et al. 2012; Sankararaman et al. 2012)

Bears Ursus Analysis of admixture and divergent selection between brown and
polar bears (Liu et al. 2014b)

Rabbits Oryctolagus Divergence scan and admixture analysis between parapatric species
(Carneiro et al. 2014)

House mice Mus Cline analyses of a hybrid zone between species (Gompert and
Buerkle 2009; Janoušek et al. 2012; Teeter et al. 2008). Modelling of
population history and gene flow (Duvaux et al. 2011)

Flycatchers Ficedula Divergence scan of parapatric species (Ellegren et al. 2012). Effect of
linked selection and recombination rate on divergence patterns (Burri
et al. 2015)

Crows Corvus Divergence scan of parapatric species and identification of genes
controlling colour differences (Poelstra et al. 2014)

Sparrows Passer Divergence scan and admixture analyses of parapatric species (Elgvin
et al. 2017)

Darwin’s finches
Geospiza

Within and between species divergence scans, admixture analyses and
identification of a genes controlling beak shape (Han et al. 2017;
Lamichhaney et al. 2015, 2017)

Great tits Parus Divergence scans between populations, leading to identification of a
divergently selected beak shape gene (Bosse et al. 2017)

Warblers Vermivora Divergence scans and admixture modelling in hybridising species
leading to identification of genes controlling colour differences
(Toews et al. 2016)

Sticklebacks
Gasterosteus

Divergence scans in parallel populations and at different levels of
divergence, identifying repeated selection of the same alleles (Feulner
et al. 2015; Jones et al. 2012b). Identification of genes controlling
phenotypic differences (Chan et al. 2010; Colosimo et al. 2005)

Whitefish Coregonus Divergence scans and admixture analyses between parallel population
pairs (Gagnaire et al. 2013; Renaut et al. 2012; Rogers et al. 2001)

Reef fish Hypoplectrus Divergence scans within and between species (Picq et al. 2016; Puebla
et al. 2014)

Fruit flies Drosophila Divergence scans at multiple levels of divergence (Begun et al. 2007;
McGaugh and Noor 2012). Cline analysis within species, identifying
genes controlling phenotypic differences (McKechnie et al. 2010;
Turner et al. 2008). Admixture analyses (Pool et al. 2012)

Neotropical butterflies
Heliconius

Divergence scans and association mapping across hybrid zones
(Nadeau et al. 2014). Divergence scans and admixture analyses at
multiple levels of divergence (Martin et al. 2013; Nadeau et al. 2013)

Stick insects Timema Divergence scans between parallel population pairs and allele fre-
quency changes in relocation experiments (Soria-Carrasco et al. 2014).
Divergence scans at multiple levels of divergence (Riesch et al. 2017).
Identification of loci controlling colour variation (Comeault et al.
2015)

(continued)
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2 Genomic Signatures of Speciation and Reproductive
Isolation

High-throughput sequencing technologies allow biologists to investigate genome-
wide patterns of genetic differentiation between diverging populations (Seehausen
et al. 2014; Wolf and Ellegren 2016). Speciation can be driven by extrinsic (envi-
ronmental) factors where divergent selection reduces gene flow between populations
or by intrinsic factors where genes incompatible in a foreign genomic background
result in reduced fitness in hybrids (Coyne and Orr 2004). The former is known as
ecological speciation, where locally adapted populations are exposed to divergent
ecological selection in different environments, leading to the establishment of
barriers to gene flow (Nosil 2012). The latter cases are formulated by theoretical
models where epistatic interactions of incompatible alleles at multiple loci have
evolved in diverging populations, resulting in a reduction in hybrid fitness
(Dobzhansky-Muller incompatibility) (Dobzhansky 1936; Muller 1940; Orr 1995).
However, this binary classification does not fit all situations; for example, local
adaptation may be mediated by epistatically interacting alleles that could also give
rise to reduced hybrid fitness. Regardless of the types of reproductive barriers, the
genic model of speciation predicts that genetic differentiation is initially accumu-
lated at a small number of genomic regions that are under selection associated with
RI. These barrier loci are resistant to gene flow, either by ecological divergent
selection or intrinsic incompatibility, while the rest of the genome is homogenised
by gene flow (Wu 2001).

Table 1 (continued)

System Key studies

Fruit fly Rhagoletis Divergence scans, cline analysis and experimental evolution indicat-
ing many divergent loci between host races (Egan et al. 2015; Michel
et al. 2010). Divergence scans at different levels of divergence (Powell
et al. 2013)

Mosquitos Anopheles Divergence scans, identifying inversions between forms (Turner et al.
2005). Divergence scans between species (Caputo et al. 2016).
Divergence scans and admixture analyses at multiple levels of diver-
gence (Crawford et al. 2015)

Periwinkles Littorina Divergence scans between multiple parallel ecotype pairs, showing
low levels of shared divergence outliers (Ravinet et al. 2016)

Poplar trees Populus Admixture mapping of quantitative trait differences between
hybridising species (Lindtke et al. 2013). Admixture analysis of sev-
eral parallel hybrid zones to identify RI loci (Lindtke et al. 2012)

Monkey-flowers
Mimulus

Cline analysis across an ecotype hybrid zone (Stankowski et al. 2017).
Studies of divergence and admixture between species (Brandvain et al.
2014; Vallejo-Marín et al. 2015)

Sunflowers Helianthus Divergence scans at multiple levels of divergence (Andrew and
Rieseberg 2013). Genomic cline analysis across hybrid zones
(Gompert and Buerkle 2009)
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Barrier loci could be established in the face of gene flow or in geographically
isolated populations. In the case of gene flow, the level of genetic differentiation is
kept low in regions unlinked to the barrier loci, whereas under geographic isolation,
genetic differentiation accumulated during the allopatric period may be eroded by
gene flow following secondary contact occurring across the genome except in
regions containing barrier loci. In both cases, at the very onset of speciation, the
genomes of two diverging populations may be characterised as a small number of
regions with elevated differentiation surrounded by regions of low differentiation
(hence often referred to as ‘differentiation islands’ or ‘genomic islands of diver-
gence’ as an oceanic island metaphor) (Nosil and Feder 2012; Turner et al. 2005). In
addition, it has been proposed that restricted gene flow near differentiation islands
can allow for the sequential accumulation of additional barrier loci at neighbouring
sites, and as a result, these differentiation islands can increase in height and width as
speciation proceeds (Via 2012). As additional barrier loci accumulate in a genome,
either at proximal or distal regions of existing differentiation islands, the strength of
RI increases and genetic differentiation would increase across the whole genome
(Fig. 1). There is a suggestion from both theory (Feder et al. 2012; Flaxman et al.
2014) and empirical evidence (Riesch et al. 2017) that this increase does not occur
linearly and that there may be a ‘tipping point’ in either the strength of RI or the
number of differentiated regions, at which point populations transition from having a
small number of differentiation islands to effectively genome-wide differentiation
(Nosil et al. 2017). Nevertheless, the idea of differentiation islands has motivated a
number of researchers to characterise genome-wide patterns of genetic differentia-
tion between closely related species and between diverging lineages, aiming to
characterise underlying genetic mechanisms of RI.

2.1 Genome Divergence Scans to Identify Barrier Loci

There are an increasing number of studies reporting heterogeneous patterns of
genomic differentiation (Ellegren et al. 2012; Nadeau et al. 2012, 2014; Renaut
et al. 2013; Turner et al. 2005; Via et al. 2012), but interpretation of these differen-
tiation islands is not as straightforward as one might think based on the genic model
of speciation. Specifically, it remains challenging to determine whether the differ-
entiation islands evolved as a result of speciation (i.e. ‘speciation islands’) or by
other processes independent of the evolution of RI mechanisms (i.e. ‘incidental
islands’) (Cruickshank and Hahn 2014). Under the genic model of speciation,
gene flow plays a critical role in the formation of differentiation islands by
homogenising genetic diversity between species at the vast majority of genomic
regions that do not harbour loci involved in RI. However, there are several studies
reporting similar patterns of heterogeneous differentiation between geographically
isolated populations, which have no apparent contemporary gene flow between them
(Martin et al. 2013; Renaut et al. 2013; Vijay et al. 2016). Incomplete lineage sorting
of ancestral polymorphisms and stochasticity in allele frequency changes can result
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in heterogeneity in genetic variation between closely related species even in the
absence of current gene flow, especially when selection acts on linked neighbouring
sites (Cruickshank and Hahn 2014; Nachman and Payseur 2012; Noor and Bennett
2009). Selection in this case can be either positive or negative (background/purifying
selection) and does not have to be directly associated with RI mechanisms. The
rationale is that recurrent positive and negative selection removes polymorphisms
not only at target sites of selection but also at neighbouring sites in linkage disequi-
librium (LD). This process, collectively referred to as ‘linked selection’ (Cutter and
Payseur 2013), can create regions with locally reduced effective population size
(Ne), which in turn accelerates lineage sorting, decreases genetic diversity (π), and
increases differentiation (FST). Because the effect of linked selection is a function of
the density of target sites for selection (e.g. gene density) and local recombination
rate, the magnitude of lineage sorting and, hence, genetic differentiation is inherently
heterogeneous across a genome. Therefore, it is necessary to understand the
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Fig. 1 Three models for the evolution of differentiation islands. (a) Speciation island model
without geographic isolation. Gene flow maintains low genetic differentiation throughout the
speciation continuum by homogenising genetic materials elsewhere in genomes of diverging
populations except loci involved in divergent selection and reproductive isolation (red triangles).
As speciation progresses (from the top to the bottom panels), new reproductive isolation loci are
accumulated either at proximal region to the existing differentiation islands or at novel regions. This
makes the differentiation islands higher and wider. (b) Speciation island model with geographic
isolation. Genetic differentiation is initially accumulated in geographically isolated populations (top
panel). Reproductive isolation loci are also accumulated during this period. Upon secondary contact
(middle panel), gene flow erodes genetic differentiation elsewhere in a genome except reproductive
isolation loci. Additional reproductive isolation loci may be accumulated, further strengthening the
barrier to gene flow. (c) Incidental island model. Because of the heterogeneity in recombination rate
and gene density (purple line and green rectangles, respectively, in the top panel), shared ancestral
polymorphisms between diverging populations are removed more extensively at regions of low
recombination rate and high gene density. This results in non-uniform reduction of nucleotide
diversity (π) in each population (middle panel) and heterogeneous differentiation landscape (bottom
panel)
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underlying genetic mechanisms and evolutionary processes in the formation of
differentiation islands.

One way of distinguishing these two scenarios is to compare patterns of genetic
differentiation along a genome between multiple pairs of closely related species with
different divergence times. An important assumption is that conserved recombina-
tion rate and genome structure among closely related species, such as gene density
and distribution, result in shared patterns of genetic differentiation by linked selec-
tion. There are several studies showing that differentiation islands observed both in
very early stages of speciation (i.e. less divergent pairs of species) and more
advanced stages of speciation (i.e. more divergent pairs of species) likely represent
‘incidental islands’, while population-specific differentiation islands represent can-
didate ‘speciation islands’ (Andrew and Rieseberg 2013; Burri et al. 2015; Poelstra
et al. 2014; Renaut et al. 2013; Vijay et al. 2016). In addition, at the early stage of
speciation, ‘speciation islands’ can be distinguished from heterogeneous genomic
differentiation shaped by linked selection unrelated to RI, because strong divergent
selection can create a small number of extremely differentiated regions with long
haplotype blocks (Andrew and Rieseberg 2013; Poelstra et al. 2014).

Due to the increasing accessibility of genome-wide polymorphism data in various
organisms, the genome scan approach is a tractable first step towards the under-
standing of the genetic basis of reproductive isolation by characterising genetic
differentiation along a genome. One advantage of this approach is that phenotypic
differences do not need to have been previously characterised, meaning that it has
the potential to identify loci underlying novel divergently selected traits. In addition,
it can be a powerful tool for detecting divergently selected regions between readily
interbreeding taxa, because it makes use of the genomic signatures left by both
selection and gene flow. However, deciphering underlying mechanisms for the
formation of differentiation islands (i.e. divergent selection related to reproductive
isolation vs. linked selection) remains a challenge, not only because these two
processes can take place simultaneously but also because these two processes
would leave very similar signals (Yeaman et al. 2016). One way forward is to
combine trait information with genome scan analysis, by which one can further
narrow down the candidate genomic regions from numerous differentiation islands
identified by the genome scan. In practice this has rarely been done for traits that
were not already well characterised or genetically mapped. A study by Toews et al.
(2016) on warblers is one of the few examples to use an outlier approach to identify
anonymous outlier loci and to then link these to phenotypic differences between
populations (Fig. 2), although, even in this case, the phenotypes were well-
characterised differences in colouration. The process of linking anonymous loci to
phenotypes necessarily starts with an informed guess, which makes it difficult for the
genome scan approach to identify really novel or unexpected divergently selected
traits (but see Bosse et al. 2017). Although undoubtedly useful for characterising the
patterns of divergence across the genome, genome scan analysis alone may have a
limited power to identify causal genes for reproductive isolation. In section 3, we
describe approaches that gain additional power from the information present in
admixed populations to identify barrier loci and those loci underlying divergent
traits more broadly.
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2.2 Key Examples of Applications of Genome Divergence
Scans in Speciation Population Genomics

Here we outline ‘genome scans’ performed on the three-spine stickleback
(Gasterosteus aculeatus) to show how genetic differentiation accumulates along a
genome at different stages of the ‘speciation continuum’. Two avian examples,
highlighting some of the issues with interpretation of divergence scans, are also
presented. Additional examples are summarised in Table 1 and have been reviewed
elsewhere (Haasl and Payseur 2016; Ravinet et al. 2017; Wolf and Ellegren 2016).

Fig. 2 FST outlier scan between golden-winged and blue-winged warblers (Vermivora chrysoptera
and V. cyanoptera) identified six divergent regions between species, four of which contained
candidate plumage colour genes. Associations between these loci and particular plumage colour
elements were then confirmed by characterising particular SNPs in a larger number of individuals,
including hybrids. Reprinted from Toews et al. (2016), with permission from Elsevier
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2.2.1 Three-Spine Stickleback

The three-spine stickleback provides a powerful model system for studying the
genetic basis of adaptation and ecological speciation. This small fish is widely
distributed in the Northern hemisphere and shows a remarkable history of indepen-
dent colonisation from the marine environment to freshwater ecosystems after the
glacial retreat (ca. 12,000 years ago) (Bell and Foster 1994). Freshwater and marine
ecotypes show marked differences in body size and shape, colouration, courtship
behaviour, trophic specialisation, the number of skeletal armour plates, and spine
length (Fig. 1a) (McKinnon and Rundle 2002). The repeated observation of these
morphological and behavioural shifts at multiple locations in North America and
Europe suggests that the selection pressures associated with the colonisation of
freshwaters have been instrumental in driving recurrent/parallel evolution. In fact,
parallel evolution of freshwater-adapted phenotypes has likely been facilitated
through repeated selection of rare genetic variants segregating in the marine ancestor
(Colosimo et al. 2005; Jones et al. 2012b; Roesti et al. 2015). After the colonisation
of freshwaters, populations have further diversified into several distinctive ecotypes.
For example, populations in open water lake habitat show ecologically distinctive
life history traits by having pelagic lifestyle feeding on zooplankton (‘lake ecotypes’
or ‘limnetic ecotypes’), whereas populations in rivers and small stream habitat show
a benthic lifestyle by feeding on macroinvertebrates (‘stream ecotypes’ or ‘benthic
ecotypes’) (Berner et al. 2010; Moser et al. 2015). In both cases, increases in allele
frequency of adaptive variants in newly colonised habitat may leave a specific
signature in their genomes, and genome scan analysis, in theory, can detect such a
signature as an elevated differentiation relative to the surrounding genomic regions.
Moreover, repeated occurrence of differentiation islands at the same genomic loca-
tion between multiple, independent pairs of ecotypes is commonly taken as evidence
of parallel evolution at the molecular level (Hohenlohe et al. 2010). However, linked
selection unrelated to adaptive divergence could also contribute to the parallel
evolution of differentiation islands because these ecotypes likely share common
genomic features important to the magnitude of linked selection across a genome,
such as variation in gene density and recombination rate, which would then result
in positive correlation in the magnitude of differentiation between ecotype
comparisons.

Several studies have identified key genes associated with phenotypic traits that
confer adaptation to the newly colonised habitat in sticklebacks (Chan et al. 2010;
Colosimo et al. 2005). For example, higher predation pressure in open-water habitat
(either in marine populations or lake populations) than small stream populations, has
resulted in more complete lateral armour plates (Bell and Foster 1994; Berner et al.
2010; Roesti et al. 2015). Allelic variation at the Ectodysplasin (Eda) gene on
chromosome 4 is strongly associated with phenotypic variation in this trait (Berner
et al. 2014; Colosimo et al. 2005), representing a prime candidate for selection.
Another well-studied candidate gene for adaptive evolution is Pituitary homeobox
transcription factor 1 (Pitx1) gene, whose regulatory mutations resulted in partial or
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complete loss of pelvic spines in freshwater ecotypes (Chan et al. 2010). While EDA
represents a classic case for adaptation from standing genetic variation, the evolution
of Pitx1 has involved repeated de novo mutations in multiple populations. Therefore,
these loci offer an opportunity to test a predicted genomic pattern, in which divergent
selective sweeps increase genetic differentiation at these loci, while ongoing gene
flow maintains low differentiation at the genomic background.

To identify putative genomic regions under divergent selection, several studies
took a population genomics approach to characterise genome-wide patterns of
genetic differentiation between marine and freshwater ecotypes and between lake
and stream ecotypes by using RAD-sequencing approaches and whole-genome
re-sequencing approaches (Deagle et al. 2011; Feulner et al. 2015; Hohenlohe
et al. 2010, 2012; Jones et al. 2012a, b; Roesti et al. 2012, 2014, 2015). The first
genome-wide survey of genetic differentiation identified nine differentiation islands
in three comparisons of ancestral oceanic populations versus derived freshwater
populations in Alaska by using over 45,000 RAD sequencing markers (Hohenlohe
et al. 2010). Jones et al. (2012b) further expanded sampling populations (21 locations
across Northern hemisphere) as well as the number of SNPs covering the entire
assembled genome and identified 174 regions of elevated differentiation between
marine and freshwater ecotypes with median size of 3 kb with 5% false discovery
rate (FDR). Consistent with the a priori expectation, the EDA locus showed elevated
differentiation in both studies, confirming that genome scan analysis can recover
signatures of divergent selection; however, Ptx1 was not located at differentiation
islands despite the apparent phenotypic differences between the ecotypes
(Hohenlohe et al. 2012; Jones et al. 2012b). The insignificant genetic difference at
Ptx1 could be interpreted as (1) weak or no selection on Ptx1 or (2) difficulties in
detecting a selective signature by this approach if adaptive causal variants are found
in multiple haplotype backgrounds (i.e. ‘soft sweeps’, see Box 1) (Hohenlohe et al.
2010). In addition to these a priori candidate genes, other differentiation islands
contained a number of genes with functions related to skeletal traits, response to
osmotic stress, signal response, behavioural interaction between organisms, amine
and fatty acid metabolism, cell–cell junctions, WNT developmental signalling,
epithelial barrier, and immune functions (Jones et al. 2012a, b), which represent
candidate genes for functional analysis. Importantly, there are many other differen-
tiation islands distributed in intergenic regions, implying that adaptive divergence
can involve changes in both protein coding genes and non-coding regulatory regions
(Jones et al. 2012b).

Lake and stream population pairs also provide a useful system for parallel
evolution of differentiation. For instance, after colonisation to Lake Constance in
Central Europe, small creeks and streams connected to the lake were subsequently
colonised by stickleback populations (Roesti et al. 2015), thus possibly representing
much more recent divergence than the marine-freshwater comparison. Despite the
short evolutionary time window, Marques et al. (2016) identified 37 differentiation
islands that consisted of 1–26 SNPs. Importantly, 19 out of these 37 differentiation
islands were consistently identified in two pairs of stream and lake ecotypes,
indicating potential parallel change in allele frequency driven by ecological
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adaptation. Three other tributaries of Lake Constance also showed heterogeneous
genetic differentiation with 2–25 highly differentiated SNPs scattered across the
genome in at least one of the three comparisons of lake versus stream populations
(Roesti et al. 2015). All three comparisons showed a similar shift in allele frequency
at these loci, supporting the parallel action of similar ecological pressure at the
genomic level.

An important difference from the marine-freshwater comparison is that signature
of selection at the Eda locus is much weaker in the lake-stream comparison as
represented by the inconsistent elevation of genetic differentiation at this locus
among population pairs (Roesti et al. 2015). This may possibly be because of recent
recolonisation history in the lake-stream system where the selective sweep is likely
incomplete. An additional complication with regard to the genetic differentiation at
the Eda locus is that adaptive alleles can be unconditionally favoured in both stream
and lake populations on Vancouver Island in Canada, which generates a peculiar
pattern where genetic differentiation is reduced at Eda locus due to the fixation of
shared ancestral haplotypes, while the surrounding neutral regions of the Eda locus
are characterised as elevated differentiation (Roesti et al. 2012, 2014). Unconditional
selection on the adaptive alleles at the Eda locus, if any, could be due to similar
ecological selective pressure in lakes and streams on Vancouver Island, whereas
selective pressure may be more contrasting in the Lake Constance system in Central
Europe because of its larger size. Altogether, this highlights difficulties and chal-
lenges in using genome scans to detect signatures of selective sweeps, even at
genomic regions with strong candidate genes under ecological selection.

Since stickleback recolonisation has likely taken place independently at different
times, multiple pairs of lake-stream populations can also provide an opportunity to
test how differentiation islands emerge and increase in number and size along the
speciation continuum (Fig. 1). If an increase in differentiation in the background
genomic region is accompanied by increase in the number and size of differentiation
islands as predicted by the genic model of speciation, then population pairs with
higher genome-wide differentiation should have more and wider differentiation
islands than population pairs with lower genome-wide differentiation. Feulner
et al. (2015) compared genetic differentiation (measured as FST) among five pairs
of lake-stream populations in the Northern Hemisphere, with varying degrees of
genome-wide FST, ranging from 0.10 to 0.28 (Fig. 3b). They found no apparent
growth of differentiation islands despite the significant difference in the background
FST, which may partly be due to population-specific selection for each locality and/or
differences in the extent of divergent selection. Similar patterns were also found in
Timema stick insects (Riesch et al. 2017), although evidence for the growth of
differentiation islands has been reported in Heliconius butterflies (Nadeau et al.
2013). Theoretical studies have suggested that the differentiation islands could
grow in size by accumulating additional RI loci in the presence of gene flow, but
their growth may require specific conditions composed of rather narrow parameter
space, such as low migration, strong selection, low level of differentiation in
background regions, and locally reduced recombination rate (Feder and Nosil
2010; Yeaman et al. 2016). In addition, since a transition from an early stage of
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speciation with detectable differentiation islands to an advanced stage with genome-
wide differentiation (Fig. 1) may happen rapidly, detecting signals for the growth of
differentiation islands may be challenging (Feder and Nosil 2010). Additional
empirical studies may refine these theoretical models to predict necessary conditions
for broadening the regions of differentiation under various demographic scenarios.

Linked selection also plays a critical role in the formation of heterogeneous
differentiation landscape along the stickleback genome by removing genetic varia-
tion, particularly at low recombination regions. Like many other species (Auton et al.
2012; Kawakami et al. 2014), recombination rate is highly variable along the
stickleback genome with the rate generally increasing towards the ends of chromo-
somes (Roesti et al. 2013). This ‘U-shape’ distribution of recombination events
along a chromosome is inversely correlated with genetic differentiation at a global

Fig. 3 Divergent phenotypes of three-spine stickleback (G. aculeatus) and genome-wide patterns
of genetic differentiation between ecotypes. (a) Freshwater (top) and marine (bottom) ecotypes.
Reprinted by permission from Macmillan Publishers Ltd: Nature (Jones et al. 2012b), copyright
2012 (b) Distribution of FST along a genome in five pairs of stream and lake ecotypes with different
levels of genome average FST (smallest at the top and biggest at the bottom panels). Note that
location of loci that are exceptionally different (i.e. elevated FST, coloured dots) is not always
conserved between population pairs, and the number and intensity of these high differentiation
regions are not correlated with background level of FST. Reprinted from Feulner et al. (2015) under
the Creative Commons Attribution License
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genomic scale (Roesti et al. 2012, 2013), supporting an action of linked selection
where lineage sorting takes place much more extensively at low recombination
regions by the removal of shared ancestral genetic variation by positive selection
or negative (background) selection (Fig. 1). The strong influence of linked selection
at low recombination regions is consistent with the pattern reported in a wide variety
of species (Burri et al. 2015; Martin et al. 2016; Vijay et al. 2016; Wang et al. 2016).
These studies also show that the effect of linked selection is stronger at gene dense
regions because the extent of the removal of genetic variation at physically linked
sites is proportional to gene density. Given the significant correlation between
genetic diversity and recombination rate, it is important to take into account the
variation in recombination rate between diverging populations, which can poten-
tially create population-specific patterns of diversity landscape along a genome
(Kawakami et al. 2017; Smukowski and Noor 2011).

2.2.2 Flycatchers

Collared flycatcher (Ficedula albicollis) and pied flycatcher (F. hypoleuca) have
been intensively studied to identify divergence in life history traits, traits under
sexual selection (e.g. plumage colour and song), and hybrid fitness reduction
(Qvarnström et al. 2010). Both species are small migratory passerine birds that
overwinter in sub-Saharan Africa but return to their breeding ranges in summer in
Europe. Occasional hybridisation has been reported at regions where two species
overlap in central Europe (Svedin et al. 2008), but reproductive isolation is near
complete despite their relatively recent divergence (<1 million years)
(Nadachowska-Brzyska et al. 2013). By sequencing whole-genomes of 20 individ-
uals (10 individuals/species), Ellegren et al. (2012) discovered that the pattern of
genetic differentiation was highly heterogeneous along the genome with about
50 regions with elevated differentiation between species (measured by FST). To
further investigate underlying mechanisms for the formation of these ‘differentiation
islands’, Burri et al. (2015) expanded the samples to other flycatcher species. These
multi-population and multi-species comparisons revealed similar patterns of genetic
differentiation both within species and between species, regardless of their diver-
gence time (Fig. 4), indicating that shared genomic features among these Ficedula
species are likely responsible for the emergence of differentiation islands. In fact,
recombination rate estimated based on the linkage map in collared flycatcher
(Kawakami et al. 2014) and the density of coding sequence were significantly
correlated with genetic diversity (π) and genetic differentiation (FST and dXY),
suggesting that ‘linked selection’ plays a more predominant role than gene flow in
the formation of differentiation islands in flycatcher.

Population Genomics of Speciation and Admixture 627



2.2.3 Crows

The Corvus crow species complex in Eurasia (Corvus [corone] corone,
C. [c]. cornix, C. [c]. orientalis and C. [c]. pectoralis) represents another classic
example of speciation in birds (Mayr 1942). This species complex has been exten-
sively studied to understand genetic mechanisms of the traits under divergent
selection, which are the key in the maintenance of stable hybrid zones (Fig. 5)
(Randler 2007). Because RI between carrion crow (C. [c]. corone) and hooded crow
(C. [c]. cornix) is incomplete with frequent backcrossing of hybrids, this pair of taxa
may be at an earlier stage of the speciation continuum than the flycatcher species
pair. By using the whole genome sequencing approach, Poelstra et al. (2014)
identified five ‘differentiation islands’ based on FST outlier analysis. The largest
differentiation island, identified on chromosome 18, harboured genes associated
with colour pigmentation and visual perception, which are likely responsible for
differences in plumage colour and assortative mating. In addition, long-range
sequencing analysis using PacBio and Nanopore optical mapping revealed that
this region coincided with putative centromeric region, suggesting that the combined
effect of low recombination and positive selection resulted in the elevated genetic
differentiation (Weissensteiner et al. 2017). In addition, Vijay et al. (2016) identified
several differentiation islands in the other species pairs (Siberian hybrid zone
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Fig. 4 (a) About 20 genomes per population were sequenced (collared flycatcher [F. albicollis],
pied flycatcher [F. hypoleuca], atlas flycatcher [F. speculigera], and semicollared flycatcher
[F. semitorquata]). Outgroup species were red-breasted flycatcher (F. parva) and snowy-browed
flycatcher (F. hyperythra) (not shown). Four populations each of collared flycatcher and pied
flycatcher were sampled across Europe (E Spain, CZ Czech Republic, B Baltic, S Sweden,
H Hungary, I Italy), which allowed within-species comparisons. (b) Genetic difference (FST)
along an example chromosome (chromosome 11). Differentiation islands observed in
collared-pied comparison (green) were also observed in collared-atlas comparison (orange),
collared-semicollared comparison (red), collared-red-breasted comparison (dark red), and collared-
snowy-browed comparison (black). Importantly, the differentiation island starts emerging within
species comparisons (I-H collared flycatcher populations [dark blue] and I-B collared flycatcher
populations [light blue]). Modified from Burri et al. (2015) with permission
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between C. [c] cornix and C. [c] orientaris and Asian hybrid zone between
C. [c] orientaris and C. [c] pectolaris) (Fig. 5). Importantly, the locations of these
islands were mostly different from the ones identified in the corone-cornix hybrid
zone, and consequently, genes identified on the differentiation islands hardly
overlapped between three species pairs. Nevertheless, these differentiation islands
also contained genes involved in pigmentation and melanogenesis, suggesting that
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Fig. 5 (a) Distribution of Corvus crow species complex. (b) The corone-cornix hybrid zone in
central Europe was used in Poelstra et al. (2014), revealing a strong genetic difference on
chromosome 18 (top panel). The cornix-orientalis comparison (middle panel) and the orientalis-
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Modified from Vijay et al. (2016) with permission
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parallel divergent selection acts on plumage colour at multiple independent hybrid
zones but on different genes in the same melanogenesis pathways. The pattern found
in the crow species complex is quite contrasting to that found in Heliconius butter-
flies, in which the parallel patterns of phenotypic divergence are largely based on
selection acting on the same genomic regions (Nadeau et al. 2014).

3 Using Admixture to Identify Genes Underlying Divergent
Traits

Hybrid zones or other situations in which phenotypically distinct populations meet
and interbreed provide a valuable opportunity to study the genetic basis of divergent
traits. It has long been recognised that hybrid zones can act as natural laboratories in
which many generations of crossing generate novel genetic combinations and the
potential to identify loci contributing to adaptive phenotypic differences (Barton and
Hewitt 1985). However, it is only relatively recently, with the advent of population
genomics approaches, that this potential has begun to be realised.

3.1 Clines

The rate of change in allele frequency across a cline can be used to infer the strength
of divergent selection acting on that locus if the average dispersal distance for the
organism is also known (Barton and Hewitt 1985). This approach has been used
extensively for single loci or phenotypes but has rarely been used with population
genomic data. Nevertheless, it does have the potential to narrow down lists of
candidates identified through outlier scan approaches by identifying the loci with
the steepest allele frequency changes and with cline centres corresponding to the
centre of the hybrid zone or phenotypic transition. Stankowski et al. (2017) applied
this approach to a hybrid zone between monkey-flowers (Mimulus aurantiacus) with
different floral traits and found that just 130 out of the 426 most differentiated loci
had clines similar to that of the phenotypic trait (Fig. 6).

It is also possible to use sets of hybrid individuals to infer ‘genomic clines’ that
can be independent of geographical clines. The method, developed by Gompert and
Buerkle (2009) and Gompert and Alex Buerkle (2010), uses multiple loci to estimate
a genomic background level of admixture for each individual and then detects loci
that deviate significantly from this neutral background rate across the population.
These loci can either show increased rates of introgression, indicating that they are
under positive selection and sweeping through both populations (or spreading from
one to the other), or reduced introgression, indicating that they are under divergent
selection and not spreading between the populations (Fig. 7). The admixture pro-
portions generated by this method can also be useful for inferring the age of the
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hybrid zone and the strength of barriers to gene flow, by establishing the proportions
of early versus late generation hybrids that are present (Gompert et al. 2014; Nadeau
2014). However, unlike the geographic cline approach, where populations may
differ at only a small number of loci, the genomic cline approach requires the
parental populations to have marked allele frequency differences in order to recon-
struct a background genomic cline.

3.2 Admixture Mapping

The most widely used approach for identifying genetic loci underlying a particular
trait is to perform controlled laboratory crosses. Offspring from F2 or backcross
generations can be genotyped with a relatively small number of parentally informa-
tive markers to identify the inheritance of large chromosomal blocks and to charac-
terise where recombination breaks have occurred. This is then used to generate a
dense linkage map and identify the genomic location of either Mendelian loci or
quantitative trait loci (QTL) (many descriptions of these methods have been
published previously, e.g. Liu 1997). This approach has been extensively and
successfully used but is limited to taxa that can be reared in captivity and can usually
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Fig. 6 Geographic clines across a hybrid zone between yellow and red forms of monkey-flowers
(Mimulus aurantiacus) for 426 highly differentiated loci (top 1% of the FCT distribution). The red
line shows the cline at the colour controlling locus, MaMyb2. The dashed line is the average cline
across all 426 loci. Most markers have cline slopes shallower than those seen at the known
divergently selected locus, suggesting that only a subset are under divergent selection, despite all
showing high differentiation. Reproduced from Stankowski et al. (2017), with permission
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only identify fairly large genomic intervals because of the limited number of
recombination events that occur within a limited number of offspring and a few
generations.

Admixture mapping has the same underlying rational as linkage mapping using
crosses, but instead uses naturally admixed populations (Winkler et al. 2010). This

Fig. 7 Genomic clines from a simulated data set. (a) Across all loci and individuals. Loci are
ordered based on map locations, and individuals are ordered based on their hybrid index (fraction of
alleles coming from population 1). Each block in the plot denotes an individual’s genotype at that
locus (dark green, homozygous population 1; green, heterozygous population 1/population 2; light
green, homozygous population 2). (b) Hybrid index of each individual. (c) Clines at three individual
loci (black lines, proportion homozygous population 1; dashed lines, proportion heterozygous)
compared to the 95% confidence intervals for the genomic background (dark green and light green).
The left plot shows a locus under selection, the middle plot is a locus linked to this, and the right plot
is a locus not under selection. The circles show the raw genotype data for each individual.
Reproduced from Gompert and Alex Buerkle (2010), with permission
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also relies on the mixing populations being sufficiently genetically distinct that they
will consistently differ at many positions across the genome, allowing blocks of the
genome in admixed individuals to be assigned to one or other of the parental
populations (Fig. 8). It then looks for statistical associations between inheriting a
particular chromosomal block from one parental population and a trait found in that
population. The main applications of admixture mapping have been to map pheno-
typic and disease traits in admixed human populations, for example, African
Americans who can trace their ancestry to both African and European populations
(Shriver et al. 2003). However, it can also be applied to other species, particularly
where genetically distinct populations meet and mix in hybrid zones. For example,

Fig. 8 Schematic
representation of admixture
between two starting
(parental) populations, on
one pair of chromosomes,
over a limited number of
generations (F1–F6). After
many generations (Fx), the
genotypes of the two
populations have become
homogenised, except for
regions tightly linked to
those under divergent
selection, which resembles
the situation of divergence
in sympatry. Populations in
which distinct genomic
blocks can be assigned to
one or other parental
population are suitable for
admixture mapping, while
those that are more
genetically homogenous are
more suitable for genome-
wide association mapping
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QTL for leaf morphological traits have been mapped in naturally occurring hybrids
of white poplar (Populus alba) and European aspen (Populus tremula) tree species
(Lindtke et al. 2013). The Populus system is ideally suited to admixture mapping
because the parental populations (species in this case) show marked allele frequency
differences and natural hybrid zones occur at the boundaries of the preferred habitat
(flood plain vs. upland) of each species.

A major advantage of admixture mapping over traditional QTL mapping using
crosses is that there are likely to have been many generations of hybridisation and
recombination, leading to small ancestry blocks, giving the potential to map loci to
narrow genomic intervals. However, in reality the power of admixture mapping to
identify QTL decreases with the number of generations of admixture (Lindtke et al.
2013), because the genomic blocks inherited from each parental population become
too small to be identified. Ultimately this comes down to the same issue as low
genetic differentiation between the parental populations; many generations of
hybridisation will erode the genetic differentiation between the parental populations,
leading to an inability to assign genetic markers to a population of origin (Fig. 8).

3.3 Genome-Wide Association Mapping

In situations in which genetic differentiation between parental populations is too low
to allow admixture mapping, a suitable alternative approach can be to use genome-
wide association (GWA) mapping. This method is dealt with in detail in another
chapter, but it is worth highlighting some of the considerations when applying this
technique to hybrid zone populations. Like admixture mapping, GWA mapping was
first developed for human populations, with the idea of being able to map loci linked
to disease susceptibility. Although this approach has been reasonably successful, a
major limitation has been that the traits being mapped are usually due to rare alleles,
after all, alleles causing disease will tend to be removed by purifying selection. This
is compounded in cases of complex phenotypes, where individual loci often have
small effect sizes (Fig. 9). Together, these factors mean that extremely large sample
sizes are needed in order to have the power to detect loci (Bush and Moore 2012;
Kardos et al. 2016).

In contrast, loci controlling traits that differ across hybrid zones will usually have
alleles at high frequency on either side of the hybrid zone. Therefore, sampling
evenly from across the hybrid zone will tend to sample each allele at around 50%,
making these potentially extremely powerful situations in which to use GWA
mapping (Fig. 9). In addition, many traits that differ across hybrid zones have
been found to be controlled by major-effect loci (Nadeau et al. 2014; Scordato and
Safran 2016). In these situations, relatively small numbers of individuals (less than
100) can be sufficient to identify loci underlying phenotypic differences using a
GWA framework. For example, just 30 individuals sampled from across a natural
hybrid zone were successfully used to map major effect loci controlling colour
pattern differences in the butterfly Heliconius melpomene (Nadeau et al. 2014)
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(Fig. 10). Hybridising populations will also tend to have relatively high linkage
disequilibrium (LD) between loci within the genome (Box 1), with the extent
depending on the level of genetic differentiation between the parental populations
(as well as general factors such as population size and recombination rate). High LD
will also tend to increase the power of GWA studies, particularly when reduced
representation sequencing is used, due to larger numbers of loci being in LD with the
causative site (Kardos et al. 2016). However, high LD between loci, especially the
long-range LD that can occur in contact zones, will also increase the false positive
rate and make fine mapping of functional variants more difficult.

Population structure, causing genome-wide LD between unlinked loci, is a
consideration for all GWA studies (Segura et al. 2012). However, it can be partic-
ularly problematic for hybrid zones. Even if there is little genetic differentiation
between parental populations, a trait that changes along a linear transect will tend to
be correlated with genome-wide genetic differences due to isolation by distance. For
traits controlled by large-effect loci that change rapidly over short geographical
distances, such as wing pattern in H. melpomene (Fig. 10), the problem is reduced
because loci tightly linked to those controlling the traits will tend to show much
stronger associations with phenotype than other loci in the genome. Similarly, a
GWA study identified a major-effect locus controlling colour pattern in the stick
insect Timema cristinae (Comeault et al. 2015). In this case the colour pattern
morphs are cryptic on different host plants, which occur in mosaic patches within
the landscape. In mosaic hybrid zones with high gene flow, such as this, background
genetic structure is more likely to be decoupled from divergently selected loci (Nosil
et al. 2002), making GWA mapping a potentially powerful tool. However, for traits
that change gradually and linearly with distance and have a polygenic architecture,
disentangling real versus correlated genetic associations is likely to be difficult.
Although many ecologically relevant traits are likely to follow this pattern, there
have been few attempts so far to apply GWA mapping to polygenic traits with broad
geographic clines, perhaps because of the inherent challenge this poses. However,
efficient mixed model approaches have been successfully used to control for

Fig. 9 The power of
genome-wide association
studies increases with both
the minor allele frequency
and the effect size of the
underlying loci. Traits that
segregate across hybrid
zones will tend to have a
balanced allele frequency
and in many cases are also
controlled by large-
effect loci
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complex population structure in GWA studies of humans and plants (Berg and Coop
2014; Segura et al. 2012; Zhou and Stephens 2012), demonstrating the potential of
GWA mapping to identify the genetic basis of complex traits that show clinal
variation.

In summary, the presence of admixture between populations or species provides a
valuable opportunity to identify loci that are divergently selected or control partic-
ular phenotypes. There are several methods for detecting these loci, and their
applicability depends partly on the extent of gene flow between species. Methods

Fig. 10 Identifying loci underlying divergently selected traits in the butterfly Heliconius
melpomene: a comparison of genomic differentiation and phenotypic association methods. (a)
Butterflies from high elevation (left) and low elevation (right) near Tarapoto in Peru have very
different wing colour patterns (photographs courtesy of Mathieu Joron). A narrow hybrid zone
exists between these populations, which are maintained by strong positive frequency dependent
selection, due to predator recognition of particular warning colour patterns (Mallet and Barton
1989). (b) Genome-wide differentiation (FST) between high and low elevation populations shows
little background differentiation and few regions of high differentiation predicted to be under
divergent selection (red points). Each point represents one SNP. (c) Genome-wide association
mapping of red colour pattern elements (red points) and yellow colour pattern elements (yellow
points) from 30 individuals, including 10 with hybrid phenotypes, from across the hybrid zone. This
clearly identifies distinct loci for each trait, which correspond to the two most prominent divergently
selected loci. The patterns of phenotypic association are less noisy than the patterns of genomic
differentiation. Produced with data from Nadeau et al. (2014)
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that test for associations between genotype and phenotype are the most powerful
(Crawford and Nielsen 2013) and arguably also the most informative in terms of
understanding the underlying selective pressures.

4 Detecting Hybridisation and Gene Flow Between Species

A major insight from population genomics studies has been the extent and preva-
lence of gene flow between species at multiple levels of divergence. Genome-wide
markers allow introgressed variation to be identified, quantified and the history of
hybridisation modelled through time, as never before. A large number of methods
have emerged for identifying, quantifying and/or characterising gene flow between
species, which are summarised in Table 2 taken from a thorough review of the
topic by Payseur and Rieseberg (2016). Some of these methods overlap with those
described in the previous sections for characterising divergently selected loci.
Detecting gene flow is in some regards the inverse of this, and for populations
where gene flow is high, these methods can be appropriate. However, for situations
in which gene flow is rare or more ancient, more sensitive methods are needed.

Studies of humans have again largely paved the way in these approaches,
motivated by the question of whether modern humans hybridised with Neanderthals
during their colonisation of Europe. Sequencing of Neanderthal mitochondrial DNA
did not reveal any evidence for hybridisation, with all Neanderthal sequences
forming a cluster distinct from that of modern humans (Caramelli et al. 2006).
However, genome-wide sequencing revealed an excess of genetic variants shared
between Neanderthals and present-day Eurasian populations as compared to present-
day African populations, suggesting gene flow may have occurred between
Neanderthals and Eurasian modern humans (Green et al. 2010). This analysis was
formalised as the D-statistic (or ABBA-BABA test), which uses an outgroup to test
for an excess of shared derived SNPs between two putatively hybridising taxa
(Fig. 8). Unfortunately this analysis has some problems, the most significant being
that similar patterns of shared derived SNPs can be found if spatial population
structure is present in the ancestral populations that both species diverged from,
which is likely to have been the case in these archaic hominins (Durand et al. 2011;
Eriksson and Manica 2012).

Nevertheless, subsequent studies using other approaches have also found evi-
dence for gene flow between Neanderthals and modern humans. Sankararaman et al.
(2012) used the extent of LD within the genomes of present-day Europeans to
confirm and date the periods of gene flow with Neanderthals. LD is expected to
break down with time, so if shared genetic variants were due to ancient population
structure then blocks of LD would be shorter than if these were due to introgression
events. Based on the size of the LD blocks containing variants shared between
Europeans and Neanderthals, they concluded that introgression occurred between
37,000 and 86,000 years ago, long after the split between modern humans and
Neanderthals. Subsequently, Lohse and Frantz (2014), estimated the maximum
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likelihood fit to models of admixture or ancestral population structure, using small
non-recombining blocks of the genomes of two modern humans and a Neanderthal.
They found strong support for Neanderthal admixture and obtained higher estimates
of the rate of admixture (3.4–7.3%) than previous methods.

The Heliconius butterflies are another system in which population genomics has
been used to characterise the extent and timing of gene flow between species. It
had long been suspected that species within this genus did hybridise occasionally
in the wild, with hybrids even found between fairly distantly related species
(Dasmahapatra et al. 2007). The first population genomic evidence for gene flow
between species again used ABBA-BABA D-statistics to show an excess of
shared derived variants between sympatric sister species as opposed to allopatric
populations of these species (Heliconius Genome Consortium 2012) (Fig. 11). In
this case it was hard to envisage a scenario under which ancestral population
structure could have given rise to these shared variants, because increased levels
of shared variants were found in multiple sympatric population pairs in different
geographic locations (Martin et al. 2013; Nadeau et al. 2013). However, other
problems with the D-statistic were revealed. In particular, D-statistics do not reliably
give the location of introgressed variants in the genome because genome-wide
patterns are strongly correlated with nucleotide diversity, and simulations revealed
that they could not reliably be used to compare the extent of gene flow between loci
(Martin et al. 2014). Instead a different statistic, f, has been proposed, which also
makes use of ABBA-BABA patterns but was found to be more robust to variation in
nucleotide diversity and a better estimator of localised gene flow within the genome
(Fig. 11).

A wide range of population genomic methods for inferring gene flow between
species now exist. While some of these, such as ABBA-BABA and FST, are
attractive because of their intuitive simplicity, they can be influenced by factors
other than migration and do not provide estimates of the rate or timing of gene flow.
Undoubtedly better are methods that test the fit of population genomic models,
which can include varying amounts and timings of gene flow and can also incorpo-
rate factors such as population structure and varying population size to either
patterns of nucleotide variation (Lohse and Frantz 2014) or the frequency spectrum
of genetic variants (Gutenkunst et al. 2009). Roux et al. (2016) used an approximate
Bayesian computation (ABC) framework to assess the extent of gene flow between
61 pairs of diverse animal species/populations from across the divergence contin-
uum. They found a strong relationship between a simple divergence metric, Da
(relative divergence, corrected for within-species diversity, which is strongly corre-
lated with FST) and the extent of gene flow. However, both distinct species with
virtually no gene flow and populations with high gene flow were present within a
‘grey zone’ between 0.5 and 2% net synonymous divergence, demonstrating the
increased power of model-based approaches to detect and quantify gene flow.
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5 Future Perspectives

As with all areas of population genomics, the field is moving quickly, with new
methods and approaches continually being developed. The field of speciation geno-
mics essentially started with genome scans for divergence or differentiation outliers,
but the challenges in this approach are now widely appreciated (Ravinet et al. 2017).
Comparative genome scan approaches using multiple pairs of species can provide a

A A

A A

B B

B B

African humans European humans Neanderthals Chimpanzees

P1 P2 P3 O
H. melpomene
French Guiana

H. melpomene
Peru

H. timareta
Peru

outgroup
Heliconius 

D(P1,P2,P3,O) = CABBA+CBABA

CABBA-CBABA

f =
(CABBA-CBABA)(P1,P2,P3,O)

(CABBA-CBABA)(P1,P3,P3,O)

Fig. 11 ABBA-BABA methods for detecting gene flow between species. Initially formulated to
test for introgression from Neanderthals (P3) into modern European humans (P2), by comparison to
an outgroup (O) and an ingroup that would not have experienced gene flow (P1, Africans in this
case) (Green et al. 2010). The coloured lines show the situation of incomplete lineage sorting, where
ABBA and BABA patterns can arise due to polymorphism in the ancestor of P1, P2 and P3, which is
sorted between the species. Without gene flow, an equal number of ABBA and BABA sites should
be present, while gene flow will increase the number of ABBA sites. The D-statistic measures the
relative proportion of ABBA to BABA sites, with CABBA and CBABA being counts of the number of
sites showing ABBA and BABA patterns, respectively. The f statistic was initially proposed to
quantify the fraction of the genome shared through introgression, by comparing the difference
between CABBA and CBABA to the maximum difference possible by substituting P2 for P3 (Green
et al. 2010). This statistic and variations thereof were also proposed to be more suitable for
identifying introgressed regions of the genome, for example, to test if colour pattern controlling
loci had introgressed between sympatric populations of the butterflies Helcionius melpomene and
H. timareta (Martin et al. 2014). Butterfly photographs courtesy of Mathieu Joron
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powerful framework to distinguish differentiation islands containing barrier loci
from high divergence regions not directly associated with barriers to gene flow
(incidental islands) (Burri 2017). Nevertheless, we also need an explicit null
model, to understand how baseline genetic diversity varies under background
selection at linked sites (Comeron 2017; Ravinet et al. 2017). Current differentiation
outlier analyses implicitly assume uniform Ne along a genome and stable Ne over
evolutionary time (i.e. uniform and stable recombination rate and gene density), but
we are increasingly aware of the heterogeneity of these parameters associated with
variation in the effect of background selection. Signatures of selection at barrier loci
can be detected by comparing the observed patterns of genetic diversity with those
expected under a null model with background selection. Ideally, detailed recombi-
nation maps for the organism in question would be used to simulate baseline genetic
diversity, but such maps are rarely available. However, a broad ‘U-shape’ recombi-
nation landscape (i.e. higher recombination rate at the both ends of chromosomes)
appears to be a general pattern in various species (Berner and Roesti 2017) and can
be used as a proxy for species without detailed recombination maps.

The problems raised by variable Ne across the genome are not unique to diver-
gence measures and will also influence other metrics such as cline shape and ABBA-
BABA D-statistics (Gompert et al. 2017; Martin et al. 2014). Neutral processes
(drift) and background selection combined with variation in recombination and
mutation rates across the genome will produce variation in cline shapes. Therefore,
to reliably detect either barrier loci or adaptively introgressed loci between species,
null distributions for genomic clines and admixture proportions are needed. These
should again ideally take into account recombination rate variation across the
genome (Payseur and Rieseberg 2016). In addition, if the ultimate goal is to
understand the role of natural selection in speciation, outlier loci detected by any
method need to be linked to the phenotypes they control. Therefore, studies of
genomes alone can only take us so far and need to be partnered with a detailed
understanding of the phenotypes and ecology of the organisms in question.

The recent advances in long-read sequencing (e.g. PacBio and Oxford Nanopore),
linked read sequencing (e.g. 10� Genomics) and long-range scaffolding technolo-
gies (e.g. optical mapping and Hi-C chromosome conformation capture) are begin-
ning to substantially improve the contiguity of reference genomes. For instance,
recently published reference genomes of mosquito (Aedes aegypti), grey mouse
lemur (Microcebus murinus) and hooded crow (Corvus [corone] cornix) cover
almost entire chromosomes, including highly repetitive regions, such as centromeres
and pericentromeric regions (Dudchenko et al. 2017; Larsen et al. 2017;
Weissensteiner et al. 2017). These regions tend to have low recombination rate
due to their heterochromatic nature and likely coincide with elevated differentiation
(Ellegren et al. 2012), possibly due to the effect of selection at linked sites. Impor-
tantly, one of these low recombination regions in crows contained several genes
associated with plumage colour difference, which are likely to be under divergent
selection (Fig. 5) (Poelstra et al. 2014).

Long-read and long-range sequencing technologies are also key tools for the
identification of large structural variants, such as inversions and translocations
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(Peichel et al. 2017). Chromosomal rearrangements have been suggested to play a
key role in speciation by suppressing recombination and extending the effects of
linked barrier loci (Kirkpatrick and Barton 2006; Navarro and Barton 2003; Noor
et al. 2001; Rieseberg 2001). These models suggest that selection can facilitate the
establishment and spread of new chromosomal mutations that harbour combinations
of alleles contributing to local adaptation, or that rearrangements protect combina-
tions of alleles that contribute to reproductive isolation from being disrupted by
recombination. There are a growing number of examples showing an association
between inversions and segregating phenotypes under divergent selection (Feder
et al. 2003; Lowry and Willis 2010; McGaugh and Noor 2012; Turner et al. 2005).
However, in other systems, such as Heliconius, divergence at many loci can be
maintained in the absence of major structural variants or suppression of recombina-
tion (Davey et al. 2017). It is therefore not clear whether recombination modifiers,
such as inversions, or more generally regions of low recombination (as found in
crows), are necessary for the process of divergence with gene flow. New sequencing
technologies will provide new insights into the frequencies of structural polymor-
phisms and their potential roles in speciation.

6 Conclusions

As high-throughput sequencing technologies have become accessible to many
evolutionary biologists, there are a number of empirical studies published every
year, describing genetic differences between genomes of diverging species and
quantifying the level of gene flow between hybridising taxa. Nevertheless, despite
the prediction based on the genic model of speciation (Wu 2001), genomic regions
of elevated differentiation do not always harbour genes involved in RI or divergent
selection. This does not necessarily mean that the model or analytical approaches are
incorrect, but we need to develop an analytically tractable null model to predict
genome-wide pattern of genetic diversity. Hybrid zones and admixed populations
have been known as powerful model systems in speciation research for decades, but
the advent of big population genomic data allows to fully exploit the power of these
research systems by applying both traditional cline analysis and GWA. A combina-
tion of emerging new sequencing technologies and the development of analytical
models will further provide a clearer picture of species divergence in the face of gene
flow and identify barrier loci and their relative roles in the process of speciation.
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Population Genomics of Colonization
and Invasion

Shana R. Welles and Katrina M. Dlugosch

Abstract Population genomic analyses can reveal the mechanisms shaping the
evolution of colonizing and invasive taxa, as for any species, including the funda-
mental processes of mutation, genetic drift, gene flow, and selection. Colonization
events associated with species introductions, range shifts, and invasions pose a
number of unique evolutionary questions, however, for which population genomic
approaches are especially well-equipped to answer. These include quantifying the
extent of founder effects, genetic bottlenecks, gene flow, and admixture that give rise
to successful colonizing populations, identifying the nature and architecture of
adaptive variation that resides in these populations (including types of mutations,
their effect sizes, and their standing levels of variation), disentangling signatures of
adaptation from other mechanisms of evolution, and identifying the ecological traits
that have been the targets of natural selection and might be directly involved in the
evolution of colonizing ability itself. We address each of these topics in this chapter,
highlighting examples of recent research and the potential for population genomics
to provide answers to some of the most pressing questions in the biology of
colonizing and invasive species.

Keywords Adaptation · Admixture · Colonizers · Gene flow · Genetic drift ·
Invasive species · Mutations · Phylogeography · Population genetics

1 Introduction

Throughout the evolutionary and ecological history of life, lineages have colonized
new locations through their natural modes of dispersal and, more recently, through
the aid of humans (Baker 1955; Elton 1958; Parmesan and Yohe 2003; Jeschke and
Strayer 2005; Vermeij 2005; Ellis et al. 2012a). The propagules that establish new
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populations are necessarily samples of genotypes from one or more source
populations. Population genetics predicts that such sampling and establishment of
genotypes in new environments should often be associated with significant genetic
changes, including founder effects, genetic bottlenecks, and adaptation to the new
environment (Baker and Stebbins 1965; Nei et al. 1975; Carroll et al. 2003; Excoffier
et al. 2009a; Barrett et al. 2017). Human-mediated species introductions are provid-
ing many examples of colonization events that are observable on contemporary
timescales, and indeed there are now many documented cases of evolutionary
changes in introduced species (Lee 2002; Cox 2004; Colautti and Barrett 2013;
Bock et al. 2015; Colautti and Lau 2015). Moreover, evidence is accumulating that
evolutionary changes are not only common during colonization but also that they
might contribute directly to colonization success and the evolution of highly inva-
sive species (Ellstrand and Schierenbeck 2000; Facon et al. 2011; Williams et al.
2016; Ochocki and Miller 2017; Wagner et al. 2017).

Population genomic approaches offer the opportunity to identify the mechanisms
underlying evolutionary changes during colonization. A mechanistic understanding
of colonization genetics and evolution is central to addressing many open questions
in the biology of colonizing and invasive species, particularly how evolutionary
changes may enhance or impede the success of colonizers (Fig. 1). These questions
generally revolve around understanding the role that each of the major evolutionary
forces (selection, gene flow, genetic drift, and mutation) play in shaping phenotypes
in a novel habitat. In this chapter we address the following areas:

• Phylogeography and historical demography. We start by considering the identi-
fication of the source(s) and demographic history of colonizing populations.
Historical context is fundamental to uncovering the evolutionary changes that
have occurred during colonization and inferring the action of specific evolution-
ary forces. Population genomic inference of historical demography has revolu-
tionized these efforts.

• Genetic drift. During both founding events and expansion into new regions, small
populations and/or inbreeding could lead to strong genetic drift. An active area of
theoretical, genomic, and ecological research is considering whether these effects
are strong enough to create barriers to successful colonization and/or adaptation
in novel environments.

• Gene flow. Gene flow among colonizing populations, between introductions from
different sources (admixture), and between species (hybridization) could amelio-
rate the effects of genetic drift or provide particularly favorable genetic combi-
nations for colonizers. Population genomic approaches are especially powerful
for uncovering what impact these different types of gene flow have on genetic
variation, adaptive variation, and fitness.

• Selection. Colonized environments almost certainly present novel patterns of
selection for founding populations, and there is mounting evidence that adaptive
evolution is a common feature of colonization. Population genomics offers
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opportunities to disentangle responses to selection from other forms of evolution
and can provide insights into the genetic changes that might have had the most
impact on ecological success in a new environment.

• Mutation. Finally, we consider how population genomic approaches can give
insights into the mutations underlying variation in colonizer phenotypes. The
types of mutation, their frequency of de novo formation during colonization, and
their propensity to form standing genetic variation in source populations will
interact with genetic drift, gene flow, and selection to influence ecological
variation and colonization success.

Fig. 1 Major open questions in the study of colonization and invasion, at each stage of colonization
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2 Inferring the History of Colonization and Invasion

The first step in any study of colonization genetics is the reconstruction of coloni-
zation history. It is crucial to know the source(s) of colonizers in order to set up
appropriate comparisons for studies of genomic and trait evolution, and the accuracy
with which sources are identified will affect the power and quality of any subsequent
analyses (Dlugosch and Parker 2008; Estoup and Guillemaud 2010; Tiffin and
Ross-Ibarra 2014; Cristescu 2015). Source populations can vary greatly in their
genetic structure, composition, and resulting phenotypes (Colautti et al. 2009).
Misidentification or insufficient characterization of sources can lead to erroneous
conclusions about colonization events, even inferences of genetic changes that are
opposite of the true history of evolution in colonizing populations (Dlugosch and
Parker 2008; Colautti and Lau 2015).

Genetic, especially population genetic, tools have long been used to identify the
sources of colonizing populations, both ancient and contemporary (Avise 1994).
While historical records can provide important information about introduction
pathways for human-mediated introductions, the specific source(s) of colonists
that contributed genetic material to founding populations is still often complex or
unclear, and historical information for many (if not most) colonization events is
incomplete or lacking (Estoup and Guillemaud 2010; Cristescu 2015). Genetic
determination of source populations relies on identifying unique genetic features
(i.e., private alleles, allele frequency patterns) of different native populations and
associating these with the genetic makeup of the colonizing populations, using
methods that include phylogenetic trees or networks, genetic distances among
populations, and/or inference of the probability of observing the colonizing popula-
tion given different possible sources (e.g., through comparisons of model likelihood)
(Gutenkunst et al. 2009; Knowles 2009; Estoup and Guillemaud 2010). Analyses
that reconstruct colonizing population genetics from source genotypes can then be
used to infer additional historical features, such as the number of independent
introductions, effective population sizes, and the amount and direction of gene
flow between populations (Emerson et al. 2001; Knowles and Maddison 2002;
Knowles 2009).

Genome-scale population genetic information can be particularly powerful for
historical reconstruction because of the high resolution afforded by a large dataset of
polymorphisms, which can provide many opportunities to observe private alleles
and unique multi-locus allele frequency signatures (Brumfield et al. 2003; Emerson
et al. 2001). A variety of genome-scale population genetic methods have been
explored for this purpose (e.g., AFLPs; Meudt and Clarke 2007), but the field is
now rapidly expanding through the use of high-throughput reduced-representation
nuclear genomic sequencing methods (e.g., GBS, RADseq), as well as whole
genome sequencing and resequencing. These methods typically identify many
thousands of nucleotide polymorphisms across the genome, maximizing the infor-
mation available for historical inference as well as our ability to analyze the datasets
with powerful models of nuclear sequence evolution (Narum et al. 2013).
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One of the most common approaches for understanding colonization history
through population genomic datasets is the use of a Bayesian clustering algorithm
in the program Structure (Pritchard et al. 2000; Raj et al. 2014) with a staggering
~20,000 citations in Google Scholar at the time of this writing. Structure performs
Bayesian assignment of individuals to a given number of population clusters,
maximizing Hardy-Weinberg and linkage equilibrium within clusters. Colonizing
populations can be assigned to a defined set of source clusters, or clustering can be
done simultaneously on colonizer and source individuals (to evaluate whether
colonists naturally cluster with source individuals). This method is operationally
easy to carry out and was a breakthrough for the study of colonization, particularly
because the approach allowed the quantitative inference of mixed ancestry and
because it allowed the inference of geographic structure (i.e., genetically distinct
source regions and unique founding populations) from data without a priori knowl-
edge of population boundaries.

There are several limitations to using a clustering approach to make conclusions
about colonizing population ancestry, however, and the authors of Structure in
particular have long recommended it as primarily an exploratory tool (Pritchard
et al. 2000; Falush et al. 2016; Novembre 2016). Colonization histories can be
complex in terms of the number of contributing source populations, evolution
post-colonization, and gene flow among different founding lineages. Clustering
methods have been shown to suffer from poor accuracy under complex evolutionary
histories (Estoup and Guillemaud 2010). Particularly where there is genetic admix-
ture or incomplete lineage sorting in divergent populations, the clustering algorithms
can produce incorrect assignment of admixed ancestry (Kalinowski 2011; Falush
et al. 2016; Novembre 2016; Wang 2016). Additionally, the full range of a species
can be large, including geographic areas that may be logistically difficult or impos-
sible to sample. Unsampled source populations are likely to lead to incorrect
conclusions regarding colonization history when using a clustering approach; how-
ever incomplete sampling can limit the ability to reconstruct invasion history under
any of the available methods to date (Guillemaud et al. 2010; Cristescu 2015).

More recently, demographic inference methods have been used to explicitly
evaluate support for alternative evolutionary scenarios. For example, competing
models may include the presence or absence of bottlenecks, different source
populations, unsampled source populations, and gene flow (Fig. 2). Demographic
inference methods compare the observed dataset with multiple simulated datasets
created under different demographic and genetic histories (Bertorelle et al. 2010;
Csilléry et al. 2010). The probability of observing the data under alternative evolu-
tionary histories is calculated, and the best fitting model can be identified. Historical
information and exploratory analyses (such as Structure) can be used to inform
decisions about how to delineate populations and which competing scenarios to
select for alternative models.

Demographic inference is computationally intensive, and multiple programs are
currently available for the data simulation, calculation of summary statistics for each
simulation, and likelihood of each scenario. Particularly popular are coalescent
simulations in the approximate Bayesian computation (ABC) framework. Available
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programs for this approach differ in the scenarios that they can model, ease of use,
and speed (often with trade-offs among these features). DIYABC (Cornuet et al.
2008) and PopABC (Lopes et al. 2009) are the most user-friendly and commonly
used programs. ABCtoolbox (Wegmann et al. 2010) is a powerful command-line
program that can model many introduction scenarios and can be easily integrated
with other programs. Additional implementations are available in the R statistical
environment [abc (Csilléry et al. 2010), EasyABC (Jabot et al. 2013), abcrf

Fig. 2 Examples of
colonization scenarios that
can be tested under
competing models of
historical demography,
including (a) genetic
bottlenecks during
founding, (b) serial
colonization events into the
same region, (c) admixture
among multiple source
populations, (d) admixture
with unsampled source
populations, and (e) sources
of new colonization events
within an expanding range

660 S. R. Welles and K. M. Dlugosch



(Pudlo et al. 2016)]. Coalescent methods are also not the only approaches available
for historical demography. For example, δaδi uses a diffusion approximation to
model the evolution of the joint allele frequency spectrum of populations under
alternative models, with very fast computation times relative to ABC simulations
(Gutenkunst et al. 2009; Huber et al. 2014; Qi et al. 2017).

The power of these genomic approaches can be demonstrated by a recent
phylogeographic study of the plant yellow starthistle (Centaurea solstitialis). Native
to Eurasia, the plant is highly invasive in its introductions to the Americas (Gerlach
1997). A previous microsatellite-based study had found evidence for admixture in
the major invasions of California, USA, largely based on clustering assignments
(Eriksen et al. 2014). Barker et al. (2017a) generated a large double-digest RADseq
dataset for the species and used an ABC approach to test several alternative models
of both the recent introduction history and the history of ancient colonization among
genetically differentiated regions of the native range. Using this approach, Barker
et al. (2017a) found strong support for a model with no admixture in the recent
introduction to California. Instead, ancient admixture was identified within the
native source region for the introductions. This case illustrates both the difficulty
of assigning admixture under clustering methods and the power of current popula-
tion genomic techniques to resolve complex colonization histories across multiple
time scales.

Although demographic inference models are a powerful approach to reconstruct-
ing invasion histories, they do have limitations (Estoup and Guillemaud 2010). It can
be difficult to distinguish between some scenarios; for example, it is typically
difficult to distinguish between a single large founding population and serial colo-
nization from the same source population. The quality of the results is limited by the
thoroughness of the sampling and the number of genetic markers used. Alternative
models must be chosen by the user and may not include the true history. Despite
these limitations, the combination of high-throughput population genomic sequenc-
ing and powerful models of historical demography maximizes our ability to differ-
entiate between colonization scenarios that produce only subtle differences in
genetic patterns.

3 Genetic Drift: Founder Effects, Bottlenecks, Inbreeding,
and Allele Surfing

Genetic drift has the potential to be one of the most important evolutionary forces
operating during colonization, due to genetic sampling effects inherent in the
establishment of a limited number of dispersing propagules, as well as the small
effective population sizes experienced as populations establish and spread (Nei et al.
1975; Frankham 2005). These effects are relevant for understanding patterns of
genetic variation and differentiation in colonizing populations, but they may also
have important impacts on the establishment, spread, and persistence (i.e., the
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ecology) of founding events. There is evidence that some founding populations
might face negative fitness consequences of genetic drift due to fixation of delete-
rious alleles (Briskie and Mackintosh 2004), reduced genetic diversity (Crawford
and Whitney 2010; Szűcs et al. 2014, 2017), and reduced efficacy of selection
(Peischl et al. 2015). These challenges to colonization have led invasion biologists
to suggest a “genetic paradox of invasion,” in which introduced species rapidly
expand their range in novel environments despite being expected to suffer the
deleterious effects of genetic drift during founding (Allendorf and Lundquist 2003;
Frankham 2005).

The prevalence of genetic bottlenecks during colonization is an especially active
area of current research. Although theory suggests that reductions in genetic diver-
sity associated with small population sizes during colonization should be common,
empirical observations from contemporary species introductions indicate otherwise
(Gray et al. 1986; Barrett et al. 1990; Kolbe et al. 2004; Dlugosch et al. 2015a).
Surveys of the literature have suggested that human-mediated colonization events
are associated with only very weak genetic bottlenecks in most (though not all)
cases (Dlugosch and Parker 2008; Uller and Leimu 2011), and a recent analysis of
transcriptome evolution across several related taxa found no evidence of excess
fixation of deleterious alleles in colonists (Hodgins et al. 2015). On the other
hand, persistent signatures of genetic bottlenecks can be seen in historical cases
(Ramachandran et al. 2005; Moreau et al. 2011; Domingues et al. 2012), and long-
distance colonization (such as of remote islands) appears to be associated with
evolutionary changes consistent with very small founder sizes (Baker 1955; Pannell
2015).

Of particular recent interest is the potential for strong effects of genetic drift as
colonizing populations expand across space. If dispersal tends to originate from the
leading edge, chance increases in allele frequency at the wave front can quickly lead
to stochastic fixation of those alleles, a pattern known as “allele surfing” (Edmonds
et al. 2004; Excoffier et al. 2009a). Allele surfing is expected to lead to increased
homozygosity at the leading edge and increased differentiation among different
regions of the leading edge (Hallatschek et al. 2007; Excoffier and Ray 2008; Peischl
and Excoffier 2015; Peischl et al. 2015). Both of these patterns have been observed
along expansion trajectories in recently colonizing populations (Ramakrishnan et al.
2010; Graciá et al. 2013; White et al. 2013; Pierce et al. 2014). In general, the effects
of allele surfing are expected to be weaker under high levels of gene flow, which will
tend to restore diversity to the wave front (Pierce et al. 2014; Peischl et al. 2015). The
accumulation of empirical studies will be valuable for revealing both the extent to
which allele surfing affects colonization events and the persistence of these effects
over evolutionary time.

A surfing allele can have the appearance of responding to selection during range
expansion, rapidly increasing in frequency relative to the genetic background. Allele
surfing can be random, however, and should often lead to reduced response to
selection and the fixation of deleterious alleles (“expansion load”) at the wave
front (Peischl and Excoffier 2015; Peischl et al. 2015). Signatures of surfing effects
on adaptive variation have been found in humans as well as experimental studies of
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microbial populations, though it is notable that in some cases the surfing of rare
beneficial mutations to high frequency can lead to increased response to selection
and overall fitness gains (Hallatschek et al. 2007; Moreau et al. 2011; Gralka et al.
2016).

Population genomic datasets offer opportunities to shed light on the influence of
genetic drift during colonization by quantifying the magnitude of genetic bottlenecks
and effective population size changes experienced during colonization. As discussed
above, historical demography provides inferences of past effective population sizes
and testing of alternative models with and without genetic bottleneck events
(Knowles 2009). Genomic datasets are also powerful for identifying signatures of
genetic drift through serial founding events and allele surfing during range expan-
sion (Moreau et al. 2011; White et al. 2013). Such analyses are increasingly
recognized as critical for distinguishing evolution due to genetic drift from evolution
due to adaptation during colonization (Keller and Taylor 2008; Colautti and Lau
2015), and they can help to identify whether there is likely to be sufficient statistical
power available for distinguishing the action of selection in colonization events that
have experienced strong genetic drift (Poh et al. 2014).

For example, White et al. (2013) studied the population genomics of the intro-
duced bank vole (Myodes glareolus) invading Ireland. Using multiple transects from
the introduction core to the leading edge of the invasion, they identified declines in
genetic diversity at 5979 SNPs (using GBS) along each transect, consistent with
predictions from allele surfing dynamics. They did not find increases in putative
deleterious mutations, however, suggesting that any expansion load is weak in this
case. The authors were able to use consistent changes in allele frequency along all
transects to identify candidates for likely responses to selection, because allele
surfing predicts the fixation of different random variants at different locations
along the wave front. In this way, they identified several outliers with strong
potential to affect ecologically important phenotypes.

For studies of adaptive variation during colonization, population genomics will
be valuable for helping to clarify whether species typically experience losses of
ecologically relevant trait variation during colonization. Stronger genetic bottlenecks
are expected to reduce opportunities for adaptation, but this outcome depends on the
genetic architecture of traits, and the relationship between relevant trait variation and
colonization dynamics in natural populations is still poorly understood (Dlugosch
et al. 2015a). Studies that identify adaptive variation in the source region and follow
this variation through population genetic analyses of colonizing populations would
be particularly useful for illuminating these relationships.

4 Gene Flow, Admixture, and Hybridization

Gene flow between colonizing populations derived from different colonization
events, different source populations, and different species has the potential
to strongly influence the genetics and success of colonizers (Ellstrand and
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Schierenbeck 2000; Sakai et al. 2001; Lee 2002; Kolbe et al. 2004; Lavergne and
Molofsky 2007). If genetic bottlenecks are occurring during founding or range
expansion, gene flow among colonizing populations will restore diversity and
counteract deleterious effects of genetic drift (Dlugosch and Parker 2008; Blackburn
et al. 2015). Where gene flow occurs between divergent populations or species, it can
result in substantial fitness benefits from the resulting novel combinations of alleles,
even in the absence of genetic bottlenecks (Ellstrand and Schierenbeck 2000; Rius
and Darling 2014).

There is a general hypothesis that admixture and hybridization may be especially
beneficial to colonizers, particularly in the context of introduced and invasive species
(Ellstrand and Schierenbeck 2000; Hufbauer 2008, 2017; Verhoeven et al. 2011;
Rius and Darling 2014). Among invasive species, multiple introductions of a species
into an area are common and often include introductions from different parts of the
native range, resulting in admixture (Dlugosch and Parker 2008; Uller and Leimu
2011; Dlugosch et al. 2015a). A recent survey estimated that almost 40% of
introduced species studied have been identified as admixed (Barker et al. 2017b).
In cases of hybridization between different species, multiple cases of particularly
successful invaders of hybrid origin have been identified (Ellstrand and
Schierenbeck 2000; Drake 2006; Lavergne and Molofsky 2007; Keller and Taylor
2010). Determining where admixture and hybridization have occurred and their
potential contributions to adaptive variation has thus become a key goal of many
studies of colonizing species (Rius and Darling 2014).

Population genomics is a powerful tool for identifying and quantifying patterns
of gene flow, admixture (gene flow between divergent populations of the same
species), and hybridization (gene flow between different species) (Payseur and
Rieseberg 2016). As mentioned above, by testing of alternate models of historical
demography, gene flow and admixture events can be identified, even where these
events were obscure or difficult to pinpoint with previous approaches (Gompert and
Buerkle 2013). Moreover, population genomic tools can identify the specific regions
of the genome involved in introgression events [e.g., HapMix (Price et al. 2009),
RASPberry (Wegmann et al. 2011), popanc (Gompert 2016)]. Determining the
sources of individual loci or blocks of loci in genomes is particularly important for
identifying alleles that might be under positive selection and the source of adapta-
tions that arise during colonization (Gompert et al. 2016). Assigning ancestry to loci
in genomic data is complicated by uncertainty in sequence data, identifying an
appropriate model of hybridization and assigning potential source and opportunities
for gene flow, and properly accounting for variation in recombination and selection
(Gompert et al. 2016; Payseur and Rieseberg 2016). Recent models have worked to
better account for these issues in admixed populations (e.g., Gompert and Alex
Buerkle 2010; Gompert and Buerkle 2012; Gompert 2016).

There are several genetic mechanisms that can contribute to fitness effects
resulting from the mixture of divergent source populations, and population genomic
approaches can assist in distinguishing among them. These mechanisms include
increases in adaptive variation, rescue of genetic load, overdominance, under-
dominance, and epistasis (Barker et al. 2017b; Hufbauer 2017). Population genomic
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analyses of admixture can indicate that hybrid combinations at particular loci are
disfavored (underdominant), favored (overdominant), or interacting among loci
(epistatic) and that individual alleles from different sources are favored universally
(adaptive, potentially rescuing genetic load) or only under certain environments
(locally adaptive). These alternative outcomes can reveal whether admixed/hybrid
populations are favorable variants to colonizing populations and whether these
mechanisms are likely to be at work in many colonizing species.

For example, a study by Nolte et al. (2009) examined 168 microsatellite loci in a
range expanding hybrid species of sculpin (Cottus perifretum) and its secondary
contact zones with a parental native lineage. Over 20% of loci showed under-
dominance, which would promote isolation of the lineages, but almost 30% of loci
appeared to be under selection for introgression into the colonizer. A small subset of
these loci displayed patterns consistent with overdominance or epistasis and patterns
different among different contact zones, indicating that some patterns of selection
were local. This study nicely demonstrates the ability of genomic analyses to
decompose the various potential effects of gene flow on colonization, even in
complex demographic scenarios.

5 Selection and Adaptive Evolution

One of the most exciting applications of population genomics is the identification of
loci that are likely to be evolving in response to natural selection. Colonizers should
often encounter novel environments and associated novel patterns of selection
(Waddington 1965). Colonization events create outstanding opportunities to link
these differences in the environment to adaptations. Moreover, the success of
colonization itself may be enhanced by rapid adaptation to new conditions
(Thompson 1998; Sakai et al. 2001). Colonizers are known to experience differences
in biotic interactions, climate, availability of resources, and disturbance regimes
relative to their source regions, often with opportunities to evolve changes in
resource allocation which favor their success (Colautti et al. 2004; Balanyá et al.
2006; Lee and Gelembiuk 2008; Dlugosch et al. 2015b; Koskella 2015). Adaptive
evolutionary shifts in response to novel selection regimes may therefore be central to
initial establishment and spread after colonization (García-Ramos and Rodríguez
2002; Colautti and Barrett 2013; Colautti and Lau 2015).

Comparisons between colonizing populations and their source populations can
allow for powerful inferences of loci under differential selection between ranges.
Shifts in allele frequencies between ranges at individual loci, relative to the remain-
der of the genome, suggest the influence of selection. These approaches will be
affected by the completeness with which polymorphisms in the genome have been
sampled (i.e., whether loci under selection or linked markers have been captured),
the strength of selection and allele frequency divergence at individual loci, and the
influence of demographic history, which will affect the likelihood of observing
signatures of selection against the genomic background (Oleksyk et al. 2010;
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Berg and Coop 2014; Poh et al. 2014; Tiffin and Ross-Ibarra 2014; François et al.
2016; Lowry et al. 2017). Genomic comparisons can focus on identifying loci with
evidence of selective sweeps, loci with particularly high divergence between
populations associated with divergent adaptations, or loci with allele frequency
correlations to particular environmental variables (indicating adaptation to local
environments). Each of these three approaches (Fig. 3) can provide insights to

Fig. 3 Population genomic approaches to identifying loci under selection during colonization.
The effects of selection on allele frequencies (colored circles) are shown on the left, and their
signatures as outliers (blue) relative to patterns among other loci (black) are shown on the right.
Approaches include scans for (a) selective sweeps, (b) allele frequency divergence, and (c)
associations with environmental variables. Metrics of selective sweeps in (a) include losses of
diversity, shifts in the allele frequency spectrum, and linkage disequilibrium around a locus

666 S. R. Welles and K. M. Dlugosch



adaptive divergence in different ways and may reveal unique sets of candidate loci
involved in different aspects of colonization.

Selective sweeps occur when a rare variant is favored and rises to high frequency
in a population, resulting in exceptionally low diversity, high linkage disequilibrium,
and shifts in the allele frequency spectrum near the locus under selection (Kaplan
et al. 1989; Braverman et al. 1995; Kelly 1997; Fay and Wu 2000; Oleksyk et al.
2010). In a “hard” selective sweep, the favored allele is extremely rare (e.g.,
occurring as a new mutation or in a single colonist in a founding population) and
sweeps to high frequency in a single genetic background. Alleles at nearby variable
sites will “hitchhike” along with the sweep, producing a large signal of exceptionally
low diversity, long shared haplotypes, high linkage disequilibrium, and a skewed
site frequency spectrum in the area of the genome. Hard sweeps are relatively easily
detectable by scans for these features, though the strength of the signal will decay
with time and recombination events that break up the hitchhiking markers (Thornton
and Jensen 2007; Oleksyk et al. 2010; Pritchard and Di Rienzo 2010; Tiffin and
Ross-Ibarra 2014). In contrast, selection from standing variation, wherein favored
alleles occur in many genetic backgrounds, will produce a “soft” sweep with a much
weaker signal in these types of scans for selection (Hermisson and Pennings 2005).
Many colonizers might demonstrate particularly clear signatures of selective sweeps,
where adaptation has been relatively recent and extant source populations can
provide an accurate comparison that is not obscured by large changes in demography
or selection since divergence. For example, Li et al. (2017) recently compared
nucleotide diversity of two lineages of weedy rice to their crop progenitors and
identified several very strong peaks around regions of low relative diversity, indi-
cating areas of the genome that have likely experienced a selective sweep during the
evolution of weediness.

Alternatively, adaptation may also be detectable as elevated differentiation
between populations at particular loci, rather than as a loss of diversity (particularly
for soft sweeps). Any test statistic that quantifies population divergence can be
calculated for each locus or region of the genome and used to identify outlier loci
putatively under selection, though FST is the most commonly used metric for these
types of analyses (Thornton and Jensen 2007; Porto-Neto et al. 2013; Tiffin and
Ross-Ibarra 2014). Neutral expectations and thresholds for identifying outliers must
be established by defining expected relationships among diverging populations.
Approaches to this include simulating a specific demographic history [e.g., as in
FDIST2 (Beaumont and Nichols 1996), Arlequin (Excoffier et al. 2009b)] or assum-
ing divergence from a single common ancestral genepool [such as might be appro-
priate for direct source-colonist comparisons, e.g., as in BayeScan (Foll and
Gaggiotti 2008)]. These methods are sensitive to having identified accurate popula-
tion structure and are prone to false-positive from bottlenecks and rapid range
expansions (Narum and Hess 2011; de Villemereuil et al. 2014; Poh et al. 2014).
New methods that infer the history of coancestry between populations show partic-
ular promise for addressing some of these issues (Lotterhos and Whitlock 2014).

Finally, candidate loci underlying adaptive variation can also be identified as
those that correlate particularly strongly with environmental variables among
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colonizing populations, source populations, or both. This can be done using genome-
environment association methods, which test for correlations between allele fre-
quencies and ecologically relevant variables, ideally after taking into account pop-
ulation structure (Joost et al. 2007; Coop et al. 2010; Frichot et al. 2013, 2015;
Hoban et al. 2016). These methods generally rely on identifying loci with strong
linear relationships with environmental variables [e.g., as in BayEnv (Coop et al.
2010) and LFMM (Frichot et al. 2013)], and recent advances have focused on
resolving issues of population structure and allele frequency estimation (Günther
and Coop 2013; de Villemereuil et al. 2014; Lotterhos and Whitlock 2014; de
Villemereuil and Gaggiotti 2015). A very different approach was recently suggested
by Fitzpatrick and Keller (2015), who leverage advances in nonlinear community
modeling approaches [Generalized Dissimilarity modeling (Ferrier et al. 2007) and
Gradient Forests machine learning (Ellis et al. 2012b)] to identify allele-environment
relationships rather than species-environment relationships. This latter approach is
especially intriguing, because it offers the possibility of identifying nonlinear and
threshold adaptations to the environment, which are likely to be common in nature.
For example, the authors identified a threshold response of circadian clock alleles to
temperature gradients in balsam poplar (Populus balsamifera) (Fitzpatrick and
Keller 2015).

Several studies have used selection scans to identify candidate loci for adaptation
during colonization of a new range, generating insights into the types of genetic
variation involved and their potential ecological functions. For example, Puzey and
Vallejo-Marín (2014) used whole genome resequencing data to scan for shifts in
the site frequency spectrum to detect positive selection in introduced populations of
monkeyflower (Mimulus guttatus). Regions putatively under selection were asso-
ciated with flowering time and abiotic and biotic stress tolerance and included
regions associated with a chromosomal inversion polymorphism between the native
and introduced range. Zenni and Hoban (2015) scanned for loci with high diver-
gence during range expansion of loblolly pine (Pinus taeda), using a SNP assay of
previously identified polymorphic loci. They identified 25 loci with outlying diver-
gence, most of which were unique to different range expanding populations, and
25% of which were also associated with a climate gradient. As mentioned above
regarding genetic drift, White et al. (2013) used a different type of scan for divergent
loci in the invasive black vole (Myodes glareolus). The authors estimated covariance
in allele frequencies (using RADseq) among parallel transects from the core to the
edge of the current expansion. This approach will detect loci that have risen to high
frequency in all of the edge populations, reflecting parallel adaptation to the same
selective environment, and they find support for candidate loci with potential effects
on immunological functions and behavior. Their method is particularly notable for
taking into account the potential for allele surfing during range expansion, assuming
that there is no gene flow connecting edge populations.

Finally, Vandepitte et al. (2014) scanned for high divergence outliers in the
introduced range of Pyrenean rocket (Sisymbrium austriacum subsp. chrysanthum)
using SNPs generated through RADseq. Several candidate loci aligned to
transcriptome sequences and were associated with flowering phenology. A particularly
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powerful aspect of this analysis was the inclusion of historical specimens, an approach
available to many studies of recent colonization. Candidate loci in this study showed
increasing divergence over time in historical specimens, supporting the hypothesis of
response to selection in the colonized range, rather than a founder effect as the source
of allele frequency change.

6 Mutation: The Genetic Basis of Adaptive Variation

Whether adaptations often derive from new mutations or standing genetic variation
is a major open question in evolutionary biology (Hermisson and Pennings 2005). It
seems particularly likely that rapid evolution of colonizing populations will occur
most often where there is standing adaptive variation from the source region present
in the founders (Barrett and Schluter 2008), though colonizing populations also
provide many opportunities for new mutations to arise and become targets of
selection (Dlugosch et al. 2015a; Exposito-Alonso et al. 2018). Studies that identify
both source location(s) and the alleles that have contributed to adaptation in colo-
nizing populations should shed light on the importance of standing variation vs. new
mutations, though identification of standing variation can be obfuscated by limited
sampling and accurate determination of homology (Barrett and Schluter 2008).

Population genomic approaches have been the primary avenue for identifying the
mutations underlying adaptation in colonizing species (Fig. 4), particularly outside
of model systems with well-studied mutation lines. Species that have been involved
in colonization events over relatively recent periods of time, such that colonizing
populations have not diverged into reproductively isolated species, are in fact
especially well-suited to these approaches (Dlugosch et al. 2015a). These species
are likely to include adaptive variation within and among extant populations across
the range, facilitating genetic mapping, the identification of current targets of
selection, and phenotypic observations of genetic variants in native and invaded
environments. Ecologically important loci can be identified through a combination
of “top-down” (forward genetic) and “bottom-up” (“reverse ecology” and candidate
gene) genomic tools (Fig. 4). A top-down genetic approach begins with phenotypic
traits that are known to vary between colonizing and source genotypes and are
thought to be relevant to adaptation. Association between traits and loci responsible
for them can be determined using a genome-wide association study (GWAS; e.g.,
Hamilton et al. 2015) or quantitative trait locus (QTL; e.g., Linde 2001) mapping
population to correlate allelic states with phenotypic differences. Alternatively and
complementary, in bottom-up approaches, loci of interest may come from candidate
genes showing patterns of divergence or selection in colonizing populations (known
as “reverse ecology”; Li et al. 2008) or a priori candidate loci thought to be important
from work in model systems (e.g., Krieger and Ross 2002; Nachman et al. 2003;
Mueller et al. 2014). Candidate loci may suggest their associated phenotypes based
on information from model systems, which can then be tested with GWAS or QTL
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approaches, or increasingly through targeted allele substitution experiments (e.g.,
CRISPR; Hwang et al. 2013).

Once a locus that affects adaptive variation has been identified, the distribution of
this variation can be observed across colonization events and its potential for impacts
on colonization studied. There are several different categories of genetic variants that
may be particularly relevant in the context of colonization:

1. Large vs. small effect loci. Quantitative traits can vary as a result of allelic
variation at loci with large individual effects and at loci with small individual
effects on the phenotype. Mendelian traits vary as a result of alleles at one or a
few loci, which therefore have large effects on the phenotype by definition. The
differences between large and small effect loci are important to the study of
colonization for several reasons. Beneficial large effect mutations should be less
likely than small effect mutations to be lost to genetic drift, because they experience
stronger selection (Kimura 1985; Orr 1998). Large effect mutations can also
facilitate jumps across low fitness valleys in adaptive landscapes, with large
resulting effects on ecology (Wright 1932; Whitlock et al. 1995; de Visser and
Krug 2014). On the other hand, traits governed by large effect loci will also be the
most susceptible to changes of variation due to genetic drift, or increases in variation
due to gene flow (Fig. 5; Baker and Stebbins 1965; Dlugosch et al. 2015a).

Fig. 4 Approaches to identifying the genetic basis of ecologically important trait variation.
Top-down approaches (forward genetics) identify regions of the genome associated with specific
traits, while reverse ecology approaches identify regions of the genome that appear to be under
selection. The two approaches are complementary and can be used in concert to identify regions
with known phenotypic effects that appear to be under selection. Figure modified with permission
from Dlugosch et al. (2015a)
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Therefore, a large effect allele can amplify the impacts of genetic drift and gene
flow on a colonizing phenotype and may therefore have more potential to
alter establishment and/or spread (though certainly adaptation can still occur
through evolution at loci of small effect; Olson-Manning et al. 2012). Large
effect loci appear to be common in natural populations (Louthan and Kay 2011;
Olson-Manning et al. 2012), and so they are likely to play a significant role in
colonization genetics (Dlugosch et al. 2015a).

2. Chromosomal inversions. Chromosomal inversions were some of the first muta-
tions associated with adaptive variation, including in colonizing populations

Fig. 5 The genetic
architecture of ecologically
important traits will shape
how population bottlenecks
during colonization impacts
quantitative trait variation.
Allelic variants (acting to
increase [+] or decrease [�]
the trait value) are shown in
proportion to their
frequency in a population.
(a) Traits governed by many
loci of small effect are
expected to change little in
mean or variance. (b) Traits
that include a locus of large
effect may shift in both
mean and variance in
response to either fixation or
frequency shifts at large
effect loci. Figure reprinted
with permission from
Dlugosch et al. (2015a)
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(Carson 1965; Dobzhansky 1965). These structural rearrangements of chromo-
somes can place particular loci in close physical proximity and suppress recom-
bination, preserving coadapted gene complexes and/or making a larger effect
locus out of multiple loci of smaller effect, which may be particularly advanta-
geous during range expansion (Hoffmann and Rieseberg 2008; Yeaman 2013;
Kirkpatrick and Barrett 2015). Both the invasion of Australia by Drosophila
melanogaster (Hoffmann and Weeks 2007) and the invasion of the Americas by
D. subobscura (Prevosti et al. 1988; Pascual et al. 2007) show evidence of rapid
adaptation in chromosomal inversion frequencies. Three-spined sticklebacks
(Gasterosteus aculeatus) have an inversion (and several other large effect loci)
that contributes to the repeated evolution of freshwater and benthic forms during
their post-Pleistocene invasion of freshwater lakes (Jones et al. 2012).

3. Copy number variants. Copy number variants (i.e., gene duplications) are now
known to be one of the major forms of mutation differentiating closely related
species and individuals of the same species (Lynch and Conery 2000; Freeman
et al. 2006). Copy number changes occur frequently and appear much more likely
than other types of mutations to avoid deleterious effects, because they are copies
of existing, functioning genes (Kondrashov 2012; Hirase et al. 2014; Żmieńko
et al. 2014). These features suggest that copy number variants could be a major
source of both standing variation and new mutations that are beneficial for
colonizing species. This area is not well-studied to date, but appropriate genome
resequencing data should be increasingly obtainable for non-model organisms
(Demuth and Hahn 2009; Tiffin and Ross-Ibarra 2014).

4. Genome size and transposable element variation. Genome size has been associ-
ated with differences in the rate of DNA replication and in cell size, suggesting
the potential for developmental and physiological effects of this kind of genomic
variation (Beaulieu et al. 2008, and references therein). Genome variation has
been studied most extensively in plants, which span three orders of magnitude in
genome size (Tenaillon et al. 2010). In members of this group, genome size has
been positively correlated with seed size, minimum generation time, and cell size
and negatively correlated with relative growth rate (Grotkopp et al. 2004).
Consistent with the idea that colonizers might benefit from fast development
times (Baker 1965), plants with small genome sizes are relatively overrepresented
among weedy and invasive taxa (Kuester et al. 2014). A recent study of the
invasive slender wild oat (Avena barbata) found smaller median genome sizes in
invading genotypes than in those from the native range (Crosby et al. 2014).
Variation in genome size is typically the result of variation in transposable
element (TE) content (Tenaillon et al. 2010). TEs have the potential to expand
or contract very quickly and therefore may be a key source of variation during
colonization (Stapley et al. 2015). In particular, TEs may proliferate in response
to conditions often encountered during colonization, including environmental
stress and hybridization (Wessler 1996; Kashkush et al. 2003; Grandbastien
et al. 2005; Ungerer et al. 2006; Maumus et al. 2009). TEs can have phenotypic
effects both through genome size and through insertions into functional regions,
and they have been associated with adaptation during range expansions in
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Drosophila melanogaster (Aminetzach et al. 2005); invasive knotweed, Fallopia
japonica (Richards et al. 2012); house sparrow, Passer domesticus (Schrey et al.
2012); ants, Cardiocondyla obscurior (Schrader et al. 2014); and mosquito,
Toxorhynchites amboinensis (Zhou et al. 2014). Population genomic information
about genome size can be readily obtained using flow cytometry (Doležel et al.
1998), and information about TE variation can be obtained through low coverage
genome sequencing (Straub et al. 2012).

5. Polyploidy. Colonizing genotypes might benefit from the duplication of
entire genomes via polyploidy (Stebbins 1985; te Beest et al. 2012; Welles and
Ellstrand 2016). While polyploid formation can involve a large increase in
genome size, evidence suggests that polyploids have a positive association with
colonization, independent of negative associations between genome size and
colonization within ploidy (Pandit et al. 2014). Polyploids may benefit from
additional copies of functional regions of the genome as well as novel gene
combinations in the case of allopolyploid (hybrid) lineages (te Beest et al.
2012; Pandit et al. 2014). Recent studies have suggested that polyploids may
have greater phenotypic flexibility in gene expression in response to environ-
mental differences (Kondrashov 2012; Mattenberger et al. 2017; Mutti et al.
2017), a characteristic which could benefit colonizers experiencing new environ-
ments in some cases (Huang and Agrawal 2016; Lohman et al. 2017; Wellband
and Heath 2017).

A growing number of studies have identified the genetic basis of phenotypic
divergence of colonizing populations (Bock et al. 2015). QTL mapping studies have
identified major-effect as well as minor-effect loci influencing the propensity of
Johnsongrass (Sorghum halepense) to produce asexually via rhizomes (Paterson
et al. 1995); flowering time differences among ecotypes of the invasive plant
shepherd’s purse (Capsella bursa-pastoris; Linde 2001); a variety of traits involved
in range expansion of the sunflower, Helianthus annuus texanus (Whitney et al.
2015); and morphological changes involved in the colonization of freshwater lakes
by sticklebacks, Gasterosteus aculeatus (Jones et al. 2012). Hamilton et al. (2015)
map the genetic basis of fitness using a GWAS approach and compare the pheno-
typic effects of loci associated with adaptation to environment in the native range of
the model Arabidopsis thaliana between the native and introduced ranges. Candi-
date gene approaches have successfully revealed adaptive evolutionary changes in
coat color in deer mice (Peromyscus maniculatus) colonizing new habitats (Linnen
et al. 2013) and social recognition in invasive supercolonies of both the fire ant
(Solenopsis invicta) and the Argentine ant (Linepithema humile; Tsutsui et al. 2000,
2003; Krieger and Ross 2002). In the case of the ants, the loss of variation at these
loci during founder events has resulted in decreased conspecific aggression and
increased invasiveness, providing some of the most famous examples of the effects
of genetic bottlenecks on colonization and invasion.

Many of these studies suggest an important role for standing variation of large
effect mutations. As we accumulate studies of the genetic basis of colonizer pheno-
types, it may be useful to consider whether certain types of traits are more likely to
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have standing variation at large effect loci, influencing the types of traits that might
evolve rapidly during colonization. For example, a recent review of QTL studies in
plants concluded that large effect loci have been found more often in traits governing
biotic interactions than in traits associated with adaptation to abiotic conditions
(Louthan and Kay 2011). If true, then this might suggest that there is greater
potential for adaptation in some of the very traits hypothesized to be most important
to the success of colonizing populations (Keane and Crawley 2002).

7 Conclusions and Future Perspectives

Recent advances in sequencing and population genomics have begun to address
many open questions in the biology of colonization and invasion. Reconstructing the
introduction history of invasive species using demographic inference models that
allow for explicit modeling of genetic bottlenecks, admixture between independent
introductions, serial introductions, and unsampled populations has allowed for an
increased understanding of patterns of colonization and has provided the basis for
making appropriate comparisons to source populations in further evolutionary
studies. Recent population genomic studies have begun to tease apart evolution
occurring due to founder effects, genetic drift, and gene flow associated with both
initial founder events and range expansion. This knowledge is improving our ability
to identify loci that are likely targets of positive selection during colonization and to
elucidate the genetic basis of adaptive evolution in colonizers.

Determining what loci are under selection gives further traction on several
important issues surrounding how evolution might alter the fates of colonizers.
Once candidate loci are identified, it is possible to ask whether genetic bottlenecks
or other stochastic processes have altered variation available for adaptation, whether
adaptive variants have introgressed through admixture or hybridization, and whether
loci involved in adaptation are present as standing variation in source populations or
whether they might represent critical new mutations. Connecting loci under selection
with their phenotypic effects further offers opportunities to understand the type of
traits that are shaping colonizer ecology, such as biotic interactions or climatic
gradients. Colonizers present both opportunities and challenges in this area, because
selection and divergence may be recent and more easily detected and studied, but
these species will also be affected by complex nonequilibrium demography, includ-
ing genetic bottlenecks and allele surfing, that may obscure responses to selection.

The next step forward for population genomics of colonizing and invasive species
will be to link shifts in gene frequencies and other population genetic metrics with
shifts in evolutionary ecology associated with evolution during expansion (Dlugosch
et al. 2015a). Making these strides requires broad collections of genotypes from both
the source and colonized ranges, characterization of genomic variation in these
genotypes, detailed abiotic and biotic environmental data from habitats across the
range, and quantification of phenotype and fitness in these environments. While such
combinations of data are not trivial to assemble, the studies highlighted in this
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chapter already bring together much of this information. Further, new techniques are
becoming accessible for non-model colonizers. For example, ultra-long read single-
molecule sequencing is facilitating efficient de novo whole genome assembly,
identification of structural variants, and phasing of haplotype information in highly
heterozygous outbred genotypes (e.g., Oxford Nanopore; Jain et al. 2018; Michael
et al. 2018). Additionally, gene editing technology such as CRISPR/Cas9 (Bortesi
and Fischer 2015) combined with forward and reverse approaches to identifying loci
of interest (Fig. 4) will advance our ability to connect genotypic variation to its
consequences for adaptation in ecologically relevant traits. Indeed, studies that link
population genomics with population ecology promise to fundamentally advance
our understanding of how ecology might rapidly evolve during the nearly ubiquitous
process of colonization in the evolutionary history of species.
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Population Genomics of Crop
Domestication: Current State
and Perspectives

Philippe Cubry and Yves Vigouroux

Abstract Genomics has enabled access to unprecedented amounts of genomic and
transcriptomic data. Studies of crop domestication have benefited from these datasets
for deeper insights into when, where, and how crops were domesticated. Although
genomics makes it possible to answer such questions, it also creates new technical
and methodological challenges. Such large genomic and transcriptomic datasets
provide the opportunity to advance from descriptive to hypothesis testing studies.
Several model-based methods are now available to test hypotheses and to trace the
history of crops. Studies of gene expression and of ancient DNA are new very active
fields which hold great promise. Here, we review some key questions concerning
crop domestication and discuss how genomics can help answer these questions and
what interesting new approaches could be used in the future. As genomics data
continue to become available, domestication studies will advance our knowledge not
only of well-known domestication models, such as rice and maize, but also of other
currently less widely studied crops. We will then be able to test general hypotheses
associated with domestication across species.

Keywords Crop plants · Domestication · Evolution · Genomes · Inference of
evolutionary history · Population genomics · Selection

1 Introduction

The transition to agricultural society is a key step in human history and evolution. The
study of crop and animal domestication provides valuable information on where and
when this transition took place. Studying domestication history also offers the oppor-
tunity to tackle adaptation at very short time scales. In the last decade, the production
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of huge genomic data has enabled a better understanding of the domestication
processes that determined where, when, and how crops were domesticated. However,
these analyses have not been exempt from controversy. For example, rice (Oryza
sativa) domestication is considered to be the result of a single event by some (Molina
et al. 2011; Huang et al. 2012; Choi and Purugganan 2018) and multiple domestication
events by others (Civáň et al. 2015; Wang et al. 2018). Even though genomic data
provide a wealth of information, understanding crop evolution requires elaborating
and testing models that make it possible to proceed “from storytelling to story testing”
(Gerbault et al. 2014). Fortunately, genomic data make such inferences possible. Here,
we focus on key issues, methods, and questions concerning crop domestication.
Population genomics offers an excellent opportunity to improve our understanding
of domestication. The full strength of population genomics methods is still rarely used
for the study of crop domestication. We hope this chapter will lead to their wider use.

We first review the particularity of crop genomic sequences and the nature of the
variant we are looking at. Most of the inferences made about crop domestication rely
on single nucleotide polymorphism (SNP) in the genomes, the quality of which is of
paramount importance. How we call SNP might make our analysis useless. Very
special care is required at this step, and we believe it to be a step that has been largely
neglected up to now. We then review different methods used to infer the evolution-
ary history of crop domestication, along with their advantages and drawbacks. We
believe using model-based hypothesis testing should become a standard approach in
the field and, to this end, present the most promising advances in spatial modeling of
crop domestication. Domestication is also associated with marked morphological
changes. The genetic basis of domestication first benefited from the identification of
quantitative trait loci (QTL) and more recently from genome selection scanning. We
highlight what we have learned and in which direction the field is moving.

Finally, next-generation sequencing approaches make it possible to obtain ancient
DNA gene expression data more easily and to investigate the methylation of DNA
and histone. A lot of knowledge about plant domestication can be acquired using
these very new techniques. A few recent studies produced very promising results,
paving the way for major discoveries in the years to come.

2 Genomic Resources for Crop Domestication Studies

The number of the sequenced genomes available for the study of crop domestication
has expanded considerably in the last 10 years. In June 2018, 606 sequence-
assembled plant genomes were available in GenBank. However, the genomes are
in different states of completeness and different stages of assembly. The difficulty
involved in assembling plant genomes is directly linked to their particular complex-
ity: (1) their high genetic diversity and (2) the high proportion of repetitive
sequences. Genomic studies of domestication are now mainly associated with
resequencing using either whole-genome resequencing (Wang et al. 2018) or partial
sequencing of the genome using genotyping by sequencing (Elshire et al. 2011),
sequencing of the expressed fraction of the genome using RNAseq (Bellucci et al.
2014; Sarah et al. 2017), or sequence capture (Mariac et al. 2014; da Fonseca et al.
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2015). These approaches first require mapping reads to a reference genome and then
SNP genotype calling. Depending on the method, the number and quality of SNPs
will also vary (Berthouly-Salazar et al. 2016). In this chapter, we focus mainly on
whole genome resequencing, but a large number of approaches can easily deal with
partial sequencing of the genome.

2.1 Mapping Reads

Different softwares for mapping sequence read to a reference genome exist, for
example, BWA (Li and Durbin 2009), SOAP2 (Li et al. 2009), BWA-MEM
(Li 2013), Bowtie2 (Langmead and Salzberg 2012), Stampy (Lunter and Goodson
2011), and NGM (Sedlazeck et al. 2013). These mapping programs display different
degrees of sensitivity to sequence divergence from the reference genome; for
example, NGM and Stampy are better for reads that diverge from the reference
than BWA (Lunter and Goodson 2011; Sedlazeck et al. 2013). Consequently for
highly divergent species, like maize (Zea mays), some authors use both Bowtie and
Stampy (Brandenburg et al. 2017). In addition, algorithms that allow high sequence
divergence, like Stampy, can be very time-consuming. Choosing good mapping
tools is important and depends on the expected diversity among the resequenced
individuals. For some applications, using different mapping tools and assessing
concordance have been suggested (Kofler et al. 2016).

2.2 SNP Calling: Probabilistic Approach (or Not)?

Partly due to the size of plant genomes, only a handful of plants with high genome
coverage are available for genomic studies. For example, roughly twofold genome
coverage was used for the study of domestication of Asian rice, Oryza sativa (Huang
et al. 2012), while one study of maize domestication study used fivefold coverage
(Hufford et al. 2012). Low genome coverage has a direct effect on heterozygote
genotype calling. With an average depth of 1�, many SNPs in the genome would be
covered once or twice, and consequently we would only be able to call one out of the
two alleles of a heterozygous genotype. But the other more direct consequence of
low genome sequence coverage is dealing with a high percentage of missing data
and sequencing errors. To get around the problem, one first has to consider the
uncertainty involved in genotype calling and decide which the best strategy is to use.
One of the useful strategies for low genome coverage is to circumvent genotype
calling and instead use an analysis based on genotype likelihood. During the process
of genotype calling, one of the first steps after mapping is to calculate genotype
likelihood. Considering a two-allele SNP (which most are), there are ten possible
combinations (AA, AC, AG, AT, CC, CT, CG, GG, GG, TT) for a diploid individ-
ual. The first step in calling SNP is estimating the likelihood of these different
genotypes. This leads to a genotype probability with a simple two-allele marker
and a reference nucleotide 0 (could be A, T, C, G) to calculate the genotype
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likelihood of genotypes 0/0, 0/1, and 1/1. The genotype calling could be clear-cut with
a strong probability of a 0/0 genotype and almost zero for 0/1 and 1/1. But with low
genome coverage, probability of two of the three genotypes might be quite high. If one
has only one read and it harbors a nucleotide 1, then we do not know if the genotype is
1/1 or 0/1. So either we call the genotype or deal with the probabilistic nature of the
genotype. High coverage genome data makes it possible to call SNP with strong clear-
cut decision-making rules, but low genome coverage doesn’t allow such an unambig-
uous decision. One strategy has, thus, been to directly consider the uncertainty in the
genotype calls by conducting an analysis based on genotype likelihood rather than on
the actual genotype. A set of methods has been developed to perform such analyses
using ANGSD (Korneliussen et al. 2014; Durvasula et al. 2016). And other analyses
can also be conducted using the same type of data. For example, using such an
approach, one can assess deviation from the expected neutral diversity distribution
using Tajima’s D statistics or analysis of population structure with approach using
NGSADMIX (Skotte et al. 2013). These strategies take the uncertainty for genotype
calling directly into account in the analysis. One of the useful statistics that can be
extracted using this type of probabilistic approach is the site frequency spectrum. Such
a strategy is particularly useful in the case of low genome coverage.

2.3 Chloroplast Genome Diversity Studies

In a resequencing study, it is also possible to study the diversity not only of the nuclear
genome but also of the whole chloroplast (Tong et al. 2016). Such a study could throw
light on the origin and diffusion of the crop species. Specific pipelines are now available
to minimize the noise associated with the identification of the SNP in the chloroplast
genome (Scarcelli et al. 2016). This approach should be easy evenwith lesswell-known
cultivated species (Moreira et al. 2016). Not limiting a study to the nuclear genome is a
wise strategy for the study of domestication, as gene flow in pollen and seeds may have
differed considerably during the evolutionary history of crops. The whole chloroplast
genome analysis helped to disprove local domestication of tree gourd (Cujete cujete) in
Amazonia (Moreira et al. 2016, 2017a, b). These datasets also prove wild gene flow
between Amazonian wild species (Cujete amazonica) and tree gourd is used by local
population to shape fruit morphology and size (Moreira et al. 2017b).

2.4 Plant Nuclear Genomes Lead to Assess Diversity in Lowly
Repeated Region

Plant genomes are still not fully annotated or fully assembled. There is a set of
known continuous sequences (contigs), assembled into a scaffold and then into a
pseudo-chromosome. There is a patchwork of known sequences separated by a large
number of unknown sequences. Our assemblies are generally associated with a large
number of contigs (Fig. 1) separated by unknown sequences. One of the known
complexities contributing to difficulties in assembling plant genomes is the
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occurrence of repeated sequences in the plant genomes. As plant genomes can be
very repetitive, a large fraction of short-sequenced reads map to multiple locations.
As these reads have multiple possible mapping positions, they are filtered out during
SNP calling (Fig. 1). Consequently, we can only clearly identify SNPs in the most
unique part of the genome. At present, it is generally still not possible to fully
investigate the repetitive parts of the genome. In the future, increasing read length
could allow these repeated regions and more structural variation to be revealed and
used, but as of now, the most widely used mapping strategy generally focuses on a
subset of the genome: lowly repeated regions.

3 Population Genomic Inferences of Evolutionary History
of Crops

Identifying centers of the origin of crops has been a long-standing research venue in
the study of domestication from the early work of botanist Vavilov et al. (1992). The
main questions are: Where did the crop plants originate? Where crop plants were
originally domesticated? What are the wild relative’s populations closest to the
cultivated populations?

3.1 Inferring Changes in Effective Population Size Resulting
from Domestication

Genomic SNP data have made it possible to infer changes in effective population
size resulting from the domestication events using the pairwise sequentially

NNNNNNNNN NNNNNNNNN NNNNNNNNNA
AAA
T

T

A
AAC
C

C

Contig with unique 
sequence

Contig with 
repetitive 
sequence

Read with multiple likely
mapping

Contig only found 
in the reference

SNP1 SNP2

Fig. 1 Mapping and calling variants. The genomes available to date are associated with contigs
separated by unknown sequences (NNNN here). Some region/gene might be absent in the plant
under study (nomapped reads on some contigs), some reads could bemapped to two locations (in red
in the figure), and some reads could map perfectly to only one contig. Only this unique sequence
contig is usually available to call the SNP and the genotype. Consequently, our dataset is an island of
informed genome sequences with SNPs and regions with no information (no SNP, no data)
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Fig. 2 Comparison of methods for the inference of domestication bottlenecks. We tested several
methods for the inference of past demography from genome data. Two methods were based on
whole genome data from either 2 (PSMC’) or up to 16 (MSMC) haplotypes and use the local
density of polymorphisms along the genome to infer coalescence trees, which are then used to
estimate the timing and relative importance of changes in the effective population size. The third
method (Stairway plot) also relies on coalescence theory to estimate the timing of size changes as
well as their related effective size but is based on the site frequency spectrum obtained from



Markovian coalescent model (PSMC) (Li and Durbin 2011) or the multiple sequen-
tially Markovian coalescent (MSMC) (Schiffels and Durbin 2014) algorithm. The
underlying model is based on coalescence with recombination. These methods
estimate the rate of coalescence, a rate that could be directly translated into effective
population size based on coalescent theory including recombination. For PSMC,
two-phased chromosomes of a single individual were considered. The fragment of
each chromosome in a strictly allogamous species was present in two different
individuals in the previous generation and consequently in four different individuals
the generation before that and eight different individuals in the generation before that
and so on. Thus the two alleles studied in the original individual (rapidly) reveal the
history of a whole population. If we consider a coalescence with only two alleles
and an effective size N, the probability of a coalescent time t a generation ago is
P(T2 ¼ t) ¼ 1/2N (1–1/2N )t�1 (Hein et al. 2004). Consequently, the mean time of
coalescence is 2N (Hein et al. 2004). This method, based on only two chromosomes,
has most coalescent time around 2N for a population of a fixed size. Hence, inference
about the coalescence time will be accurate around this value, but the method will
not be very precise for shorter time scales (<<2N ). Extension to up to eight
individuals with MSMC allows more precision at a shorter time scale, but it is still
relatively limited. Two approaches have been proposed allowing inference on
shorter time scale: the stairway plot (Liu and Fu 2015) or SMC++ (Terhorst et al.
2017). These methods allow a large number of individual to be analyzed. With large
numbers of individuals, many coalescence events occur very early and consequently
provide a lot of information at this shorter time scale. Consequently, these methods
allow more effective inference of effective population size at shorter time scales. The
proposed strategy is to combine the short-term (stairway, SMC++) approach and the
longer term (PSMC/MSMC) to make inferences concerning population size dynam-
ics (Liu and Fu 2015). Simulation studies modeling a domestication bottleneck
illustrate the difference between the methods (Fig. 2). The stairway plot is effective
at the short time scale, while PSMC/MSMC methods are effective at longer time

⁄�

Fig. 2 (continued) genome-wide polymorphisms. To test the accuracy of these methods to study
domestication history, we simulated a domestication bottleneck starting 7,000 generations in the
past by an instant decrease in the population effective size from an ancestral size of 100,000 to a
bottleneck size of 3,000. This effective size was constant for 6,000 generations before there was a
significant increase in the population effective size up to 20,000. We simulated 12 independent
sequences of 20Mb, with a mutation rate per base per generation θ¼5.2� 10–4 and a recombination
rate of 0.8� θ. We simulated either 2, 16, or 163 haplotypes for analysis using PSMC’, MSMC, and
Stairway plot, respectively. Each analysis was performed using default parameters. The outcomes of
the analysis for the three methods were then plotted on a log scale, with the timing of the events
(in generations) on the x-axis and the effective size on the y-axis (PSMC’ blue, MSMC red, and
Stairway green in the three upper panels) alongside simulated history (black lines). In order to
analytically compare the three methods, we then computed an error rate based on the percentage of
error in the estimated effective size relative to the simulated one at each point of inference (lower
panel). The inference of recent events was more accurate when a large panel of haplotypes was
considered (Stairway plot), while accuracy was better with the other methods when looking at more
ancient events
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scales (Fig. 2). The use of the MSMC approach in maize enabled characterization of
the very rapid increase in maize population size after domestication in the last
thousand years, from less than 105 individuals to roughly 1010 individuals
(Beissinger et al. 2016). This study revealed a long bottleneck, or at least a long
period with a relatively low effective population size, from 1,000 to 10,000 years
ago. In African rice, inference based on whole genome data also suggests a very long
bottleneck over more than 15,000 years (Meyer et al. 2016; Cubry et al. 2018). This
result may seem surprising since the oldest known domestication (wheat, Triticum
spp.) occurred only around 10,000 to 12,000 years ago. However, recent analyses
suggest that the same long decline in effective population size also occurred in the
wild population of wild African rice. The long bottleneck observed in wild African
rice mirrors the known period of drying of the Sahara (Cubry et al. 2018) and the
move of the Poaceae community from the Sahara to the Sahel (Cubry et al. 2018).
Consequently, this long period of low effective population size is not specific to the
cultivated rice and is not probably directly linked to domestication. A complete
domestication of African rice is known to have occurred around 2,800 years before
present (Cubry et al. 2018). The conclusion is that drying of the Sahara might have
triggered domestication by depletion of wild resources (Cubry et al. 2018). Finally,
we have to consider the limits associated with the use of the above methods. One
relatively important aspect rarely investigated in these different studies is the impact
of the imperfect nature of the genome assemblies and annotations: the number of
missing data, phasing error, and low coverage on this analysis. Structure and gene
flow will also bias the inferred effective population size, since the hypothesis implied
in these methods (PSMC/MSMC/SMC++) is that the population is isolated. So,
despite the limits to using this method, recent applications in maize and rice have
produced some very interesting inferences as outlined above (Cubry et al. 2018).
Used more widely, these approaches could provide valuable insights into crop
domestication.

3.2 Origin of Crop Domestication: A Model-Based Approach

The question of the geographical origin of crops is often framed as a dual question: is
domestication associated with a single or several origins? Did domestication occur
once or several times? While using this way of questioning is interesting, it is also
limiting because an increasing number of studies recognize the role wild diversity
might have played not only at the beginning of crop domestication but also during
diffusion from its original location (Molina et al. 2011).

The study of the origin of domestication in maize (Matsuoka et al. 2002) and
wheat (Heun et al. 1997) pinpointed the closest wild populations to the cultivated
form. For maize, the region of origin is located in the Balsas basin south of Mexico
(Matsuoka et al. 2002). For wheat, South-eastern Turkey was identified as the likely
most proximate wild populations (Heun et al. 1997). These studies (Heun et al. 1997;
Matsuoka et al. 2002) were mainly based on phylogenetic approaches to assess the
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proximity of wild and cultivated samples. The phylogenetic methods assume that
gene flow is negligible. Consequently the results from such analyses might some-
times be very difficult to interpret; thus phylogenetic methods are not the most
statistically sound approaches. Model-based inferences are certainly one of the best
approaches to understand the origin and spread of crop species.

Several model-based inference approaches have been developed in the last
decade to study demographic history using either likelihood or pseudo likelihood
approaches, e.g., FastSimCoal (Excoffier et al. 2013), ∂a∂i (Gutenkunst et al. 2009),
or more broadly, approximate Bayesian computation [ABC, (Beaumont et al.
2002)]. Inferences based on ∂a∂i (Gutenkunst et al. 2009) were used to investigate
if Asian rice was domesticated once or twice, and the results pointed to a single
origin (Molina et al. 2011). The initial study was done with 600 gene fragments
(Molina et al. 2011). The result was the subject of wide debate but was finally partly
validated with genomic data (Huang et al. 2012). However, the issue is still the
subject of debate, and several recent studies suggest up to three independent
domestication events (Civáň et al. 2015; Wang et al. 2018). All authors acknowledge
the role of wild to cultivated gene flow during rice domestication and diffusion (Choi
and Purugganan 2018), which completely reshaped rice diversity. We have to
acknowledge that using model-based inference allows a better statistical approach
to hypothesis testing (Gerbault et al. 2014) and that such model-based inference will
make it possible to (1) better infer crop evolutionary history and (2) assess how much
confidence we can have in a given hypothesis. We hope such approaches will be
used by the different research groups to allow statistical testing of the different
hypotheses around domestication in the future.

Among the different methods available, the ABC approach is particularly suitable
for use with more complex models. ABC is based on extensive simulation of a given
model and assessment of whether the model output fits the observed data. The fit was
originally assessed using the “proximity” of summary statistics, for example, het-
erozygosity, differentiation, or the number of alleles, but could also be done using
the whole site frequency spectrum (SFS). The different steps of the ABC approach
(Csilléry et al. 2010) are (1) selecting the parameters of the model from a prior
distribution, (2) running the simulation using these parameters, (3) assessing the
proximity of the model output (summary statistics or SFS) to the real dataset, and
(4) deriving the posterior distribution of the parameters from the improved simula-
tion. In pearl millet (Pennisetum glaucum), this approach enabled validation of a
model showing a marked increase in population size, gene flow between cultivated
and wild species, and an inference about the timing of domestication around
5,000 years ago (Clotault et al. 2012). But the ABC approach can also be used to
address more complex models.

3.2.1 Testing Complex Models

One of the interesting aspects of both the FastSimCoal (Excoffier et al. 2013) and the
ABC approach is that they both offer the opportunity to test models with gene flow
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and the origin from several wild populations. This approach made it possible to
prove that during the diffusion of apple (Malus spp.) cultivation from Asia to
Europe, local European wild species contributed to the European cultivated diversity
(Cornille et al. 2012, 2014).

3.2.2 Toward Spatial Models and Inference of Crop Origin

One interesting prospect for this type of approach in crop population genomics
concerns the identification of the origin of crops. Indeed, spatial models could be
built using geo-referenced genomic data and then used to infer the most likely spatial
origin of a given crop. Only a few such studies have been conducted on plants to date
(François et al. 2008), but this type of study holds great promise for the future. A set
of 76 individuals and a set of 876 nuclear loci were used for the study of the origin of
Arabidopsis in Europe (François et al. 2008). The spatially explicit diffusion of the
crop was simulated using SPLATCHE2 (Ray et al. 2010), which simulates popula-
tion diffusion. A first simulation of forward-in-time diffusion was run using a
stepping stone model (Fig. 3a) in which migration originates from a neighboring
population. Each population (deme) is colonized and can then colonize another
neighboring population. Parameters that allow migration (or not) can be included
in the model as a friction matrix, for example, allowing diffusion in mountain areas
(or not) (Fig. 3b). The simulation creates a population migrating from the initial
population (Fig. 3c, d) and consequently creating a wave of advancing colonization.
Although such studies are very rare in plants, they certainly hold great promise to
resolve issues such as single or multiple origins, since both single and multiple
origins can be implemented in the model. Such studies will also make it possible to
go further by assessing the relative contribution of different origins to the diversity
observed today. One recent application of these approaches to the study of the origin
of domestication was African rice (Cubry et al. 2018). The model considered an
origin of domestication throughout the Sahel, and the ABC spatial approach gave the
probable origin of the crop as the inner delta of Niger in what today is Mali (Cubry
et al. 2018). Interestingly, the oldest known cultivated archeological remain was
found in the same area (Cubry et al. 2018).

Analysis of origin could also be conducted based on the study of successive
bottlenecks associated with migration. An original study used a decrease in hetero-
zygosity to trace the roots of human migration (Handley et al. 2007). A recent study
used the same idea based on the ψ statistic by measuring the difference in derived
allele frequency between two populations (Peter and Slatkin 2013). From one
population close to the origin and the second population sampled further away, the
statistic increased. Using the same idea as the one used to triangulate the origin of a
cellphone call using antennae, it is also possible to infer the origin of diffusion (Peter
and Slatkin 2013, 2015). Such a study on plants would also make it possible to check
whether or not several origins are possible (Peter and Slatkin 2015). The limits of
this method need to be assessed in the context of wild/cultivated gene flow in crops,
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but, whatever the results, this type of method will certainly enable better as well as be
a complementary inference of the origin of the diffusion of a crop.

4 Selection and Genetic Basis of Domestication

Crop domestication is associated with major phenotypic changes (Doebley et al.
2006). Understanding the genetic basis of these major changes is an important
research objective. The first study of the basis of domestication phenotypes was
done using controlled crosses and mapping of quantitative trait loci (Doebley et al.
1990; Poncet et al. 2002).

Fig. 3 Simulation of Arabidopsis thaliana diffusion. The diffusion of Arabidopsis thaliana was
simulated using populations or demes that fit the actual map of Europe and are represented by
circles in panel (a). A map allowing migration to be restricted was built using mountains as the main
barrier to diffusion (b). Diffusion from a population to the neighboring population and growth of the
population were simulated (c). The overall simulation created a wave of advancing colonization (d).
This type of simulation allows inference of the origin of the migration of Arabidopsis in Europe and
different diffusion routes. Reproduced from François et al. (2008)
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One of the early conclusions of comparison across species is the convergence of
the same quantitative trait loci (QTLs) involved in domestication across crop plant
species (Paterson et al. 1995). However, when this hypothesis was first proposed, we
only knew few of the genes underlying these domestication QTLs. One of the first
plant domestication genes cloned following a QTL analysis was a gene that plays a
major role in maize aerial ramification, tb1 (Doebley and Stec 1991; Doebley et al.
1995, 1997; Wang et al. 1999). The insertion of a transposon in the promoter region
of its genes changed its regulation, and this allele was selected for reduced plant
aerial ramification during maize domestication (Clark et al. 2006; Studer et al. 2011).
Interestingly, a recent study showed that the same gene is associated with inflores-
cence branching in bread wheat (Dixon et al. 2018). In rice, a similar convergence
for an erect phenotype is associated with independent loss-of-function mutations of
the PROG1 gene in Asian (Tan et al. 2008) and African (Cubry et al. 2018) rice.
Another gene, PROG7, was also recently associated with the erect phenotype in
African rice (Hu et al. 2018). However, interactions between the two genes (PROG1
and PROG7) are not known and require further investigation. Overall, the original
hypothesis of convergent domestication seems to hold true for the identification of
the QTLs underlying genes. These results are also true for one of the key traits
associated with domestication in cereals, the loss of the shattering or brittle-rachis
phenotype. Attached seeds are easily harvested, which was a key step in cereal
domestication. Fixation of varieties with almost complete loss of shattering or brittle
rachis took several thousand years in rice, wheat, and barley, Hordeum vulgare
(Purugganan and Fuller 2009). The genetic basis of this phenotype is well known in
a large set of cereals (Table 1) and suggests strong convergence of domestication
effects. Studies on rice suggest that SH4 was selected during rice domestication in
both Asian and African (Konishi et al. 2006; Wu et al. 2017) rice. The two genes
TfBr1A and TfBr1B found in wheat (Avni et al. 2017) present a loss of function and

Table 1 Discovery of non-shattering genes and allele selected during cereal domestication

Species Genes
Transcription
factor Type

Pleiotropic
effect

Asian
rice

qSH1 Yes Homeobox Awn
length

(Konishi et al. 2006;
Magwa et al. 2016; Li
et al. 2006)SH4 Yes Trihelix –

qSH3 –

African
rice

SH3/SH4 Yes Trihelix Grain size (Win et al. 2017; Wu
et al. 2017)

SH5 Yes Homeobox – Cubry et al. 2018

Wheat TtBtr1A-B No – – (Avni et al. 2017)

Q Yes AP2 Yield and
grain shape

(Xie et al. 2018)

Barley Btr1 No – – (Pourkheirandish et al.
2015)Btr2 No – –

Sorghum Sh1 Yes YABBY – (Lin et al. 2012)
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are associated with a non-brittle-rachis phenotype. These two genes are homologs of
the Btr1gene found in barley (Pourkheirandish et al. 2015). In barley, loss of
function in one of the two genes Btr1 and Btr2 is necessary for the same non-
brittle-rachis phenotype (Pourkheirandish et al. 2015). Altogether, the genes identi-
fied in the last 10 years point to the occurrence of several convergent selections of the
same set of genes in independent domestication events.

Genes selected during and after domestication events share very interesting
characteristics. A total of 55 to 63% of the selected genes are transcription factors
(Doebley et al. 2006; Meyer and Purugganan 2013). From 30 to 43% of the
mutations found in these genes are regulatory changes (Doebley et al. 2006;
Meyer and Purugganan 2013). Finally, more than 50% of the mutations found in
these genes are loss of function (Doebley et al. 2006; Meyer and Purugganan 2013).
One of the hypotheses associated with selection for regulatory change mutations is
the reduced pleotropic impact such changes could have on other phenotypic traits
(Doebley and Lukens 1998; Lukens and Doebley 2001).

With the new development in genomics, the identification of key genes associated
with domestication and after domestication now relies on the detection of selection
from genome-wide selection scans. Strong domestication selection led to a signature
of diversity for the selected genes. For strongly selected genes, this signature implies
a marked decrease in genetic diversity, stronger differentiation from their wild
relatives, and stronger linkage disequilibrium around the genes. Some seminal
studies began using detection across the genome even before full genomes became
available. One such genome-scan study was conducted on maize to identify the
signatures of selection during domestication using genic microsatellites (Vigouroux
et al. 2002). The study revealed ten microsatellites showing evidence of selection
under stringent criteria and provided evidence for selection sweep for MADS box
transcriptional regulator gene during maize domestication (Vigouroux et al. 2002).
With genomic datasets, the selection tests used now are based on (1) the site
frequency spectrum within a given population, like Tajima’s D (Tajima 1996) or
the composite likelihood test (Nielsen et al. 2005); (2) differentiation which between
populations is assessed using the SFS (XP-CLR) or directly by calculating a
differentiation index, such as FST (Chen et al. 2010); and (3) using haplotypes
and – more broadly – linkage disequilibrium (Sabeti et al. 2002; Ferrer-Admetlla
et al. 2014; Garud et al. 2015). Depending on the intensity of selection and if
selection is complete or selection is on standing variation, the magnitude of the
selection signal will vary, and each method will have a different power of detection
(Vitti et al. 2013). A recent RAID test that combines different statistics seems
interesting (Alachiotis and Pavlidis 2018). This composite test enables detection of
strong selection, and this powerful method is good for mild bottlenecks (Alachiotis
and Pavlidis 2018). The authors also highlight the fact that gene flow seriously
challenges the detection of selection (Alachiotis and Pavlidis 2018).

Detection of selection led to a long list of domestication genes, but they do not
always pinpoint to a likely selected phenotype. One recent example of the success of
genome selection scan approach is the identification of the gene PROG1 during
African rice domestication (Cubry et al. 2018). This gene is associated with an erect
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architecture phenotype and showed convergent selection in African and Asian
rice domestication (Cubry et al. 2018). In maize, using a genome-scan approach,
Hufford et al. (2012) reported that genes involved in a flowering pathway (zagl1
and GRMZM2G448355) and gibberellin pathway (GRMZM2G152354 and
GRMZM2G036340) have been under selection before or after domestication. But,
not all the genes identified as underlying a QTL linked with domestication were
found in a genome-wide selection scan. More than 50% of the genes associated
with domestication are loss-of-function alleles (Doebley et al. 2006; Meyer and
Purugganan 2013). Mutations leading to a loss-of-function allele are certainly more
frequent, and independent mutation could also lead to different nonfunctional alleles.
Most of the tests for selection are tailored for identifying strongly selected single
new mutation, i.e., hard sweep. If several alleles are present, signatures of selection
are soft (Hermisson and Pennings 2017), and detection of selection of hard sweep
is impaired. Specific statistics using haplotype homozygosity (Garud et al. 2015)
and now machine learning approaches (Schrider and Kern 2016, 2017) are currently
being developed for the detection of such soft signatures of selection. Future
research should investigate the possible role of soft selection (Hermisson and
Pennings 2017) in domestication, which might lead to a better understanding of
how functional diversity was shaped during domestication.

Identifying genes under selection is a key to understanding domestication, but
key questions about the intensity and the date of the selection are rarely investigated.
One seminal paper proposed a method to make such inferences concerning the
timing (t) and intensity of selection (s) (Przeworski 2003). The method was used
to study the maize tga1 gene (Wang et al. 2005) and led to a high estimated selection
coefficient: s ¼ 0.035. The strength of selection across genes associated with
domestication across the maize genome was estimated at 0.015 (Hufford et al.
2012). When only genes associated with selection during maize improvement
were considered, the average strength of selection was lower: 0.011 (Hufford et al.
2012). New methods have recently been developed to facilitate inferences about the
timing of selection using approximate Bayesian computation (Nakagome et al. 2016)
or hidden Markovian model (Smith et al. 2018). Beyond the identification of key
domestication genes, these methods will advance our understanding of the timing of
key adaptations during domestication and will also certainly provide new insights
into the process.

5 Ancient DNA and Selection Inference

Ancient DNA (aDNA) has only rarely been investigated in plant domestication
studies. In maize, Jaenicke-Després et al. (2003) studied the diversity of three
genes, teosinte branched 1 (tb1), prolamin box binding factor (pbf), and sugary1
(su1), and provided valuable information about when these genes were selected. For
tb1, the maize allele repressed axillary meristem growth. The pbf and su1 genes were
shown to play a role in seed protein storage and starch quality, respectively. A study
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of 4,500-year-old archeological remains showed that the alleles of both tb1 and pbf
resemble those found in modern maize (Jaenicke-Després et al. 2003), so these
alleles were certainly selected early on in the domestication process. For sugary1,
two mutant alleles only appeared around 1,800 years ago (Jaenicke-Després et al.
2003). The study provided vital information on the timing of the selection process
during domestication. Recently, 32 archeological samples made it possible to trace
the evolutionary history and selection of maize in the southwest United States
(da Fonseca et al. 2015). That study was based on hybridization capture of 348 target
genes and helped identify the signatures of selection again notably on sugary1
during the last 6,000 years. This study gives a glimpse into both the selectively
neutral history of maize using archeological remains and the dynamics of selection.
Using genomic prediction of polygenic traits, it was even possible to reconstruct the
phenotype of a 2,000-year-old corn in the southwestern United States from ancient
DNA (Swarts et al. 2017). Such studies will certainly be easier in the future due to
improvements in the protocol to study ancient DNA and should be of particular
interest for the study of crops growing in dry environments where archeological
remains can survive for thousands of years. Results obtained from aDNA studies in
the last few years are impressive. Hopefully, the next 10 years will see a wealth of
studies using ancient DNA to document domestication.

6 The Cost of Domestication

Fixation of deleterious mutations is a balance between the strength of selection and
the strength of the drift parameter 1/2N (Ohta 2002). When the absolute value of the
selection is stronger than 1/2N, then selection is a stronger force than drift. Con-
versely, when the absolute value of the selection coefficient is lower than 1/2N, then
drift becomes a driving force. Knowing that most mutations are deleterious (Eyre-
Walker and Keightley 2007), if the effective population size of crop plants is low, the
slightly deleterious mutations will not be counter selected. Consequently, they might
end up fixed in the population. As cultivated crops have been subject to serious
bottlenecks, one would expect several deleterious mutations to be fixed or at least
brought to high frequency by the effect of drift. This deleterious mutation load will
consequently be shared by all cultivated plants. The term “the cost of domestication”
was coined to describe the fixation of such deleterious mutations. There are still only
a few studies documenting the cost of domestication associated with plant domes-
tication (Li et al. 2006; Nabholz et al. 2014; Wang et al. 2017; Moyers et al. 2018).
This phenomenon is observed in Asian rice, African rice (Lu et al. 2006; Nabholz
et al. 2014; Liu et al. 2017), and in maize (Wang et al. 2017). A recent study
documents the increased occurrence of deleterious alleles in five domesticated
animals and two domesticated plant species (Makino et al. 2018). Such rare delete-
rious allele variants are also linked to the deregulation of gene expression (Kremling
et al. 2018). Altogether, it appears that domestication has its own burdens.
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The study of the cost of domestication will be facilitated by the increased
availability of genomics data. What also needs to be investigated is, if the existence
of domestication costs is confirmed, what are the consequences of gene flow for wild
relatives? Does gene flow enable purging of deleterious mutations?

7 Crop Domestication Beyond DNA

The access to inexpensive next-generation sequencing data enables studies of gene
expression (RNA sequenced data, mi, and siRNA), methylation of DNA, or of
histone linked with plant domestication. Such data will certainly advance our
understanding of selection during the domestication of a crop and notably how the
consequences of selection of certain key genes led to a cultivated phenotype. For
example, we could now ask how the expression of micro and small RNA was
reshaped during domestication (Ta et al. 2016). The comparison of African rice
inflorescence at different stages in wild Oryza barthii and cultivated O. glaberrima
(Ta et al. 2016) revealed a striking difference in transcript expression during the
development of the panicle in the cultivated and the wild relative. A broad category
of transRNA was differentially expressed in a way suggesting that a regulator of this
transRNA was selected during domestication (Ta et al. 2016). Further study is
needed to better understand this pattern, but interesting questions were raised
concerning how domestication can reshape the regulation of key organs like the
inflorescence in cereals.

Cis-regulation was also the subject of a study associated with crop domestication.
A general hypothesis postulates that the cis-regulation allele is a preferential target of
selection during adaptation. This question was addressed in the context of domes-
tication using an RNAseq approach (Lemmon et al. 2014). This type of experiment
requires the creation of an F1 hybrid between a cultivated and a wild plant to obtain
RNAseq data from the two alleles (wild and cultivated) with a similar background.
This setup makes it possible to eliminate trans-effects on allele expression, because
the trans regulator allele will be present in the F1 and consequently will act on both
wild and cultivated alleles. In maize, the study by Lemmon et al. (2014) suggests that
both cis-regulation associated with the domestication allele and cis-regulation are
more frequent in ear tissue than in the leaf and stem (Lemmon et al. 2014). However,
it is also possible to assess relative changes in expression between selected and
nonselected genes found to be associated with domestication (Hufford et al. 2012).
The variation in gene expression was found to be reduced in maize compared to
teosinte (Hufford et al. 2012), but this may reflect the relative loss of cis-regulated
alleles in cultivated maize, i.e., it could simply be the consequence of the domesti-
cation bottleneck. However, one important feature detected was a 7% increase or
decrease in expression in cultivated maize compared to teosinte (Hufford et al.
2012). This result could be a sign of selection of alleles with a cis-regulation effect
during domestication (Hufford et al. 2012), and if this pattern is found across species
is now technically possible.
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8 Conclusion and Future Outlook

In this chapter, we focused on population genomics of domestication in key cereals
like maize and rice, crops for which population genomics studies are the most
advanced. However, a large set of species with a reference genome is now available,
and with the cost of sequencing going down, genomic datasets could be obtained for
non-model species. As more genomics data become available, we will be able to
tackle the question in domestication genomics across different crops. Here, we argue
that model-based inference should become the standard approach to test hypotheses
associated with crop domestication, such as a single versus several origins. With the
increased availability of genome sequences, such approaches will be easy to transfer
from well-known crops to less widely used models. Such model-based inference will
allow us to move from “storytelling to story testing” (Gerbault et al. 2014).

The study of selection associated with domestication needs to take the evolution-
ary history of crops more into account (Vigouroux et al. 2002; Tenaillon et al. 2004).
New methods using machine learning are based on such modeling. Consequently in
the near future, detection of selection will certainly also benefit from the develop-
ment of models to build a neutral expected baseline of diversity to detect outlier loci.
Progress in this field will initially be made in human or animal population genomics.

Ancient DNA is still a relatively new field in crop domestication research, and
exciting results have been published in the last 5 years (da Fonseca et al. 2015;
Swarts et al. 2017). We expect that these approaches will provide extraordinary
insights into plant domestication in the years to come.

Finally, with genomics, we now have access to a wealth of data on gene
expression, gene regulation, DNA, and histone methylation. These new methods
have already added invaluable knowledge to the study of domesticated plants
(Kremling et al. 2018), and we are just at the beginning. Altogether, a very exciting
era is starting for the study of plant domestication using genomics.
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Population Genomics of Animal
Domestication and Breed Development

Samantha Wilkinson and Pamela Wiener

Abstract Domesticated animals have a rich and complex history, comprising
several population-shaping events, which has resulted in an assortment of distinctive
phenotypes and highly specialised breeds that meet a variety of human needs. The
availability of whole genome sequences and single nucleotide polymorphism (SNP)
arrays for the major domestic animal species allows for a thorough interrogation of
the genomic landscape of breeds using population genomic approaches. In this
chapter, we synthesise insights gained into the processes of domestication and
breed development from the patterns of diversity mapped across domestic genomes,
with particular focus on cattle (Bos taurus taurus and Bos taurus indicus), chicken
(Gallus gallus domesticus), dog (Canis lupus familiaris), pig (Sus scrofa) and sheep
(Ovis aries) breeds. First, we evaluate the current state of genome-wide diversity
within domestic animals, a topic of importance considering concerns over the
continuing erosion of genetic variation within breeds. Second, we review the
growing catalogue of selective sweeps found for key phenotypic traits in domestic
animals, illustrating that breeds have been intensively selected for a range of breed-
defining traits (e.g. coat colour, horn morphology, ear carriage and body size) and
production traits (e.g. milk production, muscular conformation, reproduction and
meat quality). Finally, we discuss insights into the selection history of domestic
animals and the genetic architecture of phenotypic traits and we address the future
management of genetic diversity in domestic breeds.

Keywords Coat colour · Dairy breeds · Domestication genetics · Effective
population size · Genomic diversity · Meat breeds · Phenotypic traits · Signatures
of selection · SNPs
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1 Introduction

Domestication and breed development is a complex process that has produced an
estimated 7,616 distinctive breeds worldwide, collectively possessing an extraordi-
nary array of phenotypic characteristics (FAO 2015). Domestic animals have long
been considered useful models to advance the understanding of the evolutionary
processes that accompany population change because they have experienced a large
number of population-shaping events over a relatively short evolutionary timescale
compared to natural and human populations. Charles Darwin used breeds as exam-
ples to support the theory of natural selection in his publication on the domestication
in plants and animals, in which he reflected on the “infinite diversity of many
varieties of our domesticated productions” and the selective breeding practices of
the nineteenth century (Darwin 1868). Breeds have been moulded over time by a
combination of human-mediated pressures, including small founder populations,
bottlenecks, isolation of reproductive breeding pools, intense artificial selection,
cross-breeding and use of favoured sires. These factors can, to varying degrees,
influence the evolutionary forces (selection, mutation and random genetic drift)
that affect the genetic composition of breeds. Population genetics concepts and
approaches, whilst principally designed to characterise the genetic structure of
human and natural populations (Hartl and Clark 2007), can be equally applied to
domestic breeds. The revolution in genomic technology and increasing availability
of thousands (and in some cases, millions) of genome-wide single nucleotide poly-
morphisms (SNPs) for the majority of domestic animal species provides an unprec-
edented opportunity to densely probe the variation spread across domestic genomes,
thus transporting us into the era of population genomics of domesticated animals.

In this chapter, we review the application of population genomics approaches to
domestic animals to advance the knowledge of genetic changes that have accompa-
nied domestication and breed development. In order to introduce the topic, we first
provide a brief history of domestication and breed formation to highlight the human
societal pressures and evolutionary forces that domestic populations have experi-
enced and subsequently we outline population genomic tools, i.e. genotyping
resources and statistical methods, used by animal geneticists. In the main section
of the chapter, we describe: (1) the genetic patterns that have arisen from the
demographic events experienced by breeds and (2) the genetic variation underlying
the selection for desired phenotypes and the genes identified to have a functional
influence on the selected phenotypes. Through a series of examples, we aim to
convey that population genomics is a highly powerful and informative tool to
advance our understanding of the genetics underpinning the complex history
of animal domestication and breed development and that new and developing
techniques will continue to increase the impact of this research area.
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2 Domestic Animals

2.1 A Brief History of Animal Domestication and Breed
Development

The initial stages of animal domestication likely involved separating small sets of
less aggressive animals from the ancestral populations and gradually subsuming
them into the human community, independently for each of the major domesticated
species (Clutton-Brock 1999). Subsequently, from the centre points of the original
domestication events, animal stock would have accompanied migrating human
populations thereby increasing the geographical spread of domestic animals across
the world. In new environments, there likely followed a combination of local
adaptation and selection for desirable traits, leading to the early emergence of
different breeds (FAO 2015). The eighteenth century saw the commencement of a
more organised approach to livestock production that led to rapid change in livestock
breeds (Hall and Clutton-Brock 1988), pioneered by the likes of Robert Bakewell,
one of the first British agriculturists to implement a systematic breeding method for
horses (Equus caballus), sheep (Ovis aries) and cattle (Bos taurus taurus). Animals
were monitored and carefully selected to breed for improved performance of key
production traits from earlier maturation and increased prolificacy to growth rate.
Breeds gradually evolved to fill a variety of functional roles from the single-purpose
meat-providing pig (Sus scrofa) to the multi-purpose meat, dairy and wool sheep and
working, hunting and guard dogs (Canis lupus familiaris). Furthermore, appearance-
related characteristics, such as ear shape, body shape and coat colour, were also
subject to selective breeding to create populations exhibiting particular phenotypes.
This led to the development of distinctive breeds each possessing a collection of
shared phenotypic attributes, as exemplified for pig and cattle breeds in Figs. 1 and 2.
From the late eighteenth and early nineteenth century, breed societies and kennel
clubs were founded, which can be viewed as the first acknowledgement of the
genetic and phenotypic distinctiveness of breeds (Hall and Clutton-Brock 1988).
By requiring animals to meet morphological criteria and keeping the herdbooks
closed (thereby confining the breeding pool), these organisations were instrumental
in maintaining the phenotypic integrity and uniformity within breeds. This complex
history of population-shaping events stretching several hundred years led to the
development of an extraordinary number of animal breeds, with a current estimated
worldwide count of 1,019, 1,514, 694, 543 and 1,155 for cattle, chickens, horses,
pigs and sheep, respectively (FAO 2015).

The next major chapter in the history of domestic animals was the introduction of
a highly systematic management to achieve greater efficiency and output for meat,
dairy and reproduction traits, from circa 1950s onwards. Intensive selection was
channelled through the development of sophisticated statistical methods (e.g. esti-
mated breeding values (EBVs)) thereby enabling the identification of animals with
superior genetics for desired traits combined with advancements in reproductive
technologies, such as artificial insemination. This produced a framework of breeding

Population Genomics of Animal Domestication and Breed Development 711



pyramids where the genetics of a few breeding individuals contributed to the gene
pools of large commercial populations, particularly for cattle, pigs and chickens
(Gallus gallus domesticus). Gains were also concentrated on choice high-performing
breeds within species, leading to the dominance of certain breeds in the livestock
industry, such as Holstein-Friesian cattle for milk production. Although output from
the livestock sector grew at an unprecedented rate in the latter half of the twentieth
century, the consequence of focusing selection on a small set of breeds was the
extinction of breeds considered less productive. There was an estimated loss of
184, 60, 87, 107 and 160 breeds, for cattle, chickens, horses, pigs and sheep,
respectively, during the twentieth century (FAO 2015).

Fig. 1 An assemblage of European pig breeds to illustrate the array of phenotypic diversity present
in domestic pigs. Clock-wise from top-left: Wild boar, Landrace, Large Black, Tamworth, Glouces-
tershire Old Spots and British Saddleback. Compiled by Ian Hesketh, with photo attributes
clockwise from top-left: Luc Viatour [GFDL, CC BY-SA 3.0 or CC BY-SA 2.5-2.0-1.0], Zeilog
(Own work) [GFDL or CC BY-SA 3.0], Tamsin Slater [CC BY-SA 2.0], Keith Evans [CC BY-SA
2.0], Jon Whitton [CC BY-NC-ND 2.0], Amanda Slater from Coventry, England (Gloucester Old
Spot Boar) [CC BY-SA 2.0] and jon smith “una nos lucror” from Stamford, England (saddleback
pig) [CC BY-SA 2.0]. All via Wikimedia Commons except for the Large Black by Keith Evans via
geograph (www.geograph.org.uk) and the Tamworth by Jon Whitton via Flickr (https://www.flickr.
com/photos/jwhittox/2371374460/in/photostream/). License abbreviations correspond as follows:
CC BY-SA 2.0, CC BY-SA 2.5-2.0-1.0, CC BY-SA 3.0, CC BY-NC-ND 2.0 and GFDL are https://
creativecommons.org/licenses/by-sa/2.0, https://creativecommons.org/licenses/by-sa/2.5-2.0-1.0,
https://creativecommons.org/licenses/by-sa/3.0, https://creativecommons.org/licenses/by-nc-nd/2.
0/ and www.gnu.org/copyleft/fdl.html
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2.2 Pre-genomic Research on the Genetic Basis of Animal
Domestication

As a result of the fundamental importance of domestic animals for human society,
great effort has gone into mapping loci, identifying genes, detecting causative
variants and unravelling biological mechanisms associated with production traits,
such as growth, milk production and meat quality, and key breed-defining charac-
teristics, such as coat colour (see reviews: Andersson and Georges 2004; Goddard
and Hayes 2009; Wiener and Wilkinson 2011). Additionally, domestic animals have
long been exploited as model systems to investigate the complexity of genotype–
phenotype relationships (Andersson and Georges 2004; Megens and Groenen 2012).
This is because the population-shaping events that occurred during the development
of domestic breeds happened over a relatively short timescale, and this was
followed by a strict maintenance of breed phenotypic uniformity, and in so

Fig. 2 An assemblage of European taurine cattle breeds to illustrate the array of phenotypic
diversity present in domestic cattle. Clock-wise from top-left: Murray Grey, Aberdeen Angus,
Limousin, Jersey, Hereford, Holstein, Charolais and Montbeliarde. Compiled by Ian Hesketh, with
photo attributes clockwise from top-left: Cgoodwin (Own work) [GFDL or CC BY 3.0], brittgow
(CC BY-SA 2.0), Budotradan (Own work) [CC BY-SA 3.0], Storye book (Own work) [CC BY
3.0], User Robert Merkel on en.wikipedia (US Department of Agriculture) [Public domain], Keith
Weller/USDA (www.ars.usda.gov: Image Number K5176-3) [Public domain], Robert Scarth
[flickr.com (“Taken by me, Robert Scarth”)] [CC BY-SA 2.0] and groms78 (photo prise dans
une prairie du Haut-Doubs) [GFDL or CC BY-SA 3.0]. All via Wikimedia Commons, except for
the Aberdeen Angus photo via Flickr (https://www.flickr.com/photos/brittgow/4782264442).
License abbreviations correspond as follows: CC BY-SA 2.0, CC BY-SA 3.0, CC BY 3.0 and
GFDL are https://creativecommons.org/licenses/by-sa/2.0, https://creativecommons.org/licenses/
by-sa/3.0, https://creativecommons.org/licenses/by/3.0 and www.gnu.org/copyleft/fdl.html
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doing, the associated genetic changes have been amassed and conserved within
contemporary breeds. Prior to the availability of high-density genomic resources,
microsatellites were employed in linkage mapping studies of experimental crosses
to isolate quantitative trait loci (QTL) (e.g. ear variation in pig breeds, Wei et al.
2007) and diversity studies to characterise the genetic variation amongst breeds
(e.g. genetic diversity in chicken breeds, Wilkinson et al. 2012). This foundation of
work on the genetic basis of animal domestication and breed development informs
the design and interpretation of subsequent population genomic studies.

3 Tools to Characterise Genomic Variation in Domestic
Animals

The complexity of domesticated animals, evidenced by the large number of breeds,
different production types and diversity of phenotypes, requires a range of popula-
tion genomic approaches to decipher the genetic basis of animal domestication and
breed development. One approach is to conduct large-scale population genomic
studies sampling hundreds of commercial and traditional breeds from diverse
geographical locations worldwide (e.g. cattle, Bovine HapMap Consortium 2009;
sheep, Kijas et al. 2012). Alternatively, the focus can be narrowed to concentrate on
the genetics of specific breeds, for example, dominant commercial breeds
(e.g. Holsteins, Hayes et al. 2008), commercial lines within a breed (e.g. broiler
chicken lines, Stainton et al. 2015), pooled breeds based on a shared phenotype
(e.g. ear type in pigs, Wilkinson et al. 2013), production types (e.g. beef versus dairy
cattle, Hayes et al. 2009) and breeds from different geographical locations
(e.g. African taurine versus European taurine cattle, Orozco-terWengel et al.
2015). Furthermore, the ancestral wild progenitors of some domestic species still
exist today in the wild and incorporating ancestral genotypic data into analyses
provides a unique opportunity to gain additional insight into the domestication
process (Muir et al. 2008).

The two key requirements to conduct population genomic studies on domestic
breeds, dense genotypes and statistical methodology, are briefly described below.

3.1 Sequencing and Single Nucleotide Polymorphism Arrays

The technological infrastructure required to obtain high-density genotype data for
population genomic studies is well established for domestic animals. High-quality
reference genomes have been assembled for most major domestic species (cattle,
Bovine Genome Sequencing and Analysis Consortium 2009; chicken, International
Chicken Genome Sequencing Consortium 2004; dog, Lindblad-Toh et al. 2005;
goat, Bickart et al. 2017; horse, Wade et al. 2009; pig, Archibald et al. 2010; sheep,
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Jiang et al. 2014). DNA sequencing of pools of animals led to the discovery of
millions of genetic variants in the domestic genomes. For example, roughly 2.8
million SNPs were typed for chickens (International Chicken Polymorphism Map
Consortium 2004) and 2.2 million SNPs were detected in cattle (Bovine HapMap
Consortium 2009). This has led to the development of custom-made commercial
SNP chips containing thousands of genetic variants spread across the genomes for
cattle (Matukumalli et al. 2009), chickens (Groenen et al. 2011; Kranis et al. 2013),
dogs (Lindblad-Toh et al. 2005), goats (Tosser-Klopp et al. 2014), horses (McCue
et al. 2012), pigs (Ramos et al. 2009) and sheep (Kijas et al. 2009). The inexpensive
availability of these SNP panels allows for samples to be genotyped quickly, in bulk
and at a modest cost. Furthermore, as prices continue to fall, next-generation
sequencing is increasingly being used to discover and characterise variants
within empirical studies (e.g. cattle breeds, Hayes et al. 2010; pig breeds, Amaral
et al. 2011).

3.2 Population Genomic Methods

Levels of genomic diversity in breeds can be characterised by estimating a range of
parameters, such as heterozygosity (H ) (e.g. chickens, Rubin et al. 2010), nucleotide
diversity (π) (e.g. chickens, International Chicken Polymorphism Map Consortium
2004) and Watterson’s nucleotide diversity (θ) (e.g. pigs, Amaral et al. 2011). An
additional key parameter to consider as a diversity estimate is the effective popula-
tion size (Ne), which is the number of reproducing individuals in an idealised
population. It is an important concept in population genetics because genetic drift,
the predicted rate of loss of genetic diversity in a finite population, is directly related
to Ne (Kilman et al. 2008). Hill (1975, 1981) also showed that the levels of linkage
disequilibrium (LD) between genetic markers are shaped by changes in Ne over time
and thus can be used to estimate current and past Ne. LD between closely linked loci
reflects the historic population size whilst LD between distant loci is indicative
of more recent Ne (Hill 1975, 1981). Extending this concept, Hayes et al. (2003)
showed that, assuming a linear increase in population size, LD between loci at a
specific recombination distance (c) reflects ancestral Ne 1/2c generations in the past.
Thus, LD patterns across the genome can be leveraged to chart the demographic
history of breeds.

Patterns of localised LD and genetic diversity can also be exploited to identify
genomic regions that may have experienced diversifying selection. When a locus is
driven towards fixation due to selection, neutral loci in LD with the selected locus
will also show this pattern (Maynard Smith and Haigh 1974). This phenomenon is
termed as the “hitchhiking effect” and whilst the selected locus is the target, the
genomic region as a whole will experience a reduction in genetic diversity due to the
hitchhiking effect. This genomic signature will gradually erode as recombination
events occur within the region. There are several within- and between-population
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selection mapping approaches (i.e. methods to identify genomic regions that show
evidence of past or current selection) designed to exploit these genetic patterns,
thereby identifying candidate signals associated with selection.

An easily applicable approach is to scan the genomes within breeds for regions
that exhibit measureable reductions in genetic diversity (i.e. high levels of homozy-
gosity) by estimating measures such as average observed heterozygosity (Hobs)
(e.g. dogs, Quilez et al. 2011), nucleotide site diversity (h) (e.g. chickens, Stainton
et al. 2017), pooled heterozygosity (HP) (e.g. chickens, Rubin et al. 2010) and
standardised heterozygosity (ZHP) (e.g. pigs, Rubin et al. 2012). A commonly
used between-population approach is to measure genetic differentiation between
two or more populations using FST (Wright 1951) and its derivatives such as di
(Akey et al. 2010). These methods measure the variation in allele frequencies
amongst two or more populations to identify regions of differentiation between
populations where SNPs with the highest genetic differentiation are considered
candidates of differential selection (Cavalli-Sforza 1966; Lewontin and Krakauer
1973). A regular practice with both FST and diversity genome scans is to apply a
sliding window to smooth out stochastic variation between SNPs that may arise from
genetic drift (Weir et al. (2005), who suggested this for FST single-locus estimates).
This is a logical step to adopt in selection mapping analyses as the hitchhiking
phenomenon leads to a localised allelic fixation for a set of neighbouring markers
and a sliding window helps to distinguish these from stochastic locus-by-locus
variation. A large number of studies in dogs and various livestock species have
successfully identified isolated signatures of selection by estimating genetic differ-
entiation between breeds (e.g. Flori et al. 2009; Akey et al. 2010; Kijas et al. 2012;
Wilkinson et al. 2013; Kemper et al. 2014).

An alternative set of approaches characterises the genetic diversity of extended
genomic regions. The “long-range haplotype” (LRH) test (Sabeti et al. 2002) iden-
tifies regions of slow decay in homozygosity, which are indicative of alleles that
rapidly arose to high frequency due to selection (dragging with it neutral variants via
hitchhiking) before recombination could break down the long-range LD. The related
“integrated Haplotype Score” (iHS) measures the extent of decay in extended haplo-
type homozygosity (EHH) around a core haplotype for the derived allele relative to
the ancestral allele (Voight et al. 2006). The XP-EHH statistic extends these methods
by incorporating a cross-population approach to identify regions of homozygosity in
one population relative to polymorphic regions in another population (Sabeti et al.
2007). Examples of the application of these methods in livestock include studies on
cattle (e.g. Rothhammer et al. 2013; Kemper et al. 2014), pigs (e.g. Ma et al. 2015; Li
et al. 2016), chickens (e.g. Li et al. 2012a; Liu et al. 2016) and sheep (e.g. Lv et al.
2014). There are several additional selection mapping methods also designed to
identify signatures across the genome characteristic of the hitchhiking effect: diver-
sity and/or LD patterns (Kelly 1997; Kim and Nielsen 2004; Wiener and Pong-Wong
2011; Jacobs et al. 2016) and extreme allele frequencies or significantly distorted site
frequency spectra (Kim and Stephan 2002; Nielsen et al. 2005).

Finally, the genome-wide association approach is also worth mentioning. In a
genome-wide association study (GWAS), the genotype (i.e. each SNP) is regressed
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onto the phenotype to identify SNPs significantly associated with a particular
phenotype, which can include traits important in domestication or breed develop-
ment (e.g. those related to production or breed characteristics). This technique can be
applied within breeds, where quantitative measurements are used as the phenotypes,
or across breeds, where breed averages of the measurements are commonly used.

4 Genome-Wide Diversity of Domestic Animals

Knowledge of the demographic trends in animal domestication and breed develop-
ment suggests that the genomic landscape of domestic breeds has changed markedly
over time. Characterisation of genomic patterns such as LD and genome-wide
diversity has provided further insights on the historical narrative of domestic animals
and on the contemporary genetic diversity of breeds.

4.1 Change in Population Size

The patterns of LD and trajectories of Ne over time largely mirror the changes in
population sizes that domestic animals experienced during domestication and breed
development. Across a range of domestic species, estimates of Ne for ancestral
populations were relatively large prior to domestication and fell slowly after domes-
tication, as subsets of animals were derived from wild progenitor populations during
the early stages of domestication. A more rapid decline in Ne followed after
breed formation, and this was likely due to the commencement of systematic
breeding in the eighteenth century (cattle, Bovine HapMap Consortium 2009;
Orozco-terWengel et al. 2015; dogs, Gray et al. 2009; Boyko et al. 2010; Stern
et al. 2013; pigs, Uimari and Tapio 2011; Badke et al. 2012; Ai et al. 2013; sheep,
Kijas et al. 2012, 2014; horses, McCue et al. 2012).

The intensity of human-mediated pressures has also varied amongst breeds and
this is reflected in different estimates of Ne between breeds, as evaluated from
differences in LD decay. Disentangling LD patterns amongst taurine cattle breeds
reveals that the commercial milking breeds Brown Swiss, Holstein and Jersey have
amongst the highest LD at both shorter and longer distances, suggesting small early
domesticated populations and subsequent population contraction due to intense
selection along with the use of popular sires (Bovine HapMap Consortium 2009).
Likewise, the commercial beef taurine breeds, such as Aberdeen Angus, Charolais
and Limousin, have high levels of LD at shorter distances (Bovine HapMap Con-
sortium 2009; Hoze et al. 2013). However, the decay in LD with increasing distance
is faster for these breeds such that LD levels are on average slightly higher in dairy
than beef breeds at intermediate to longer distances (Hoze et al. 2013), suggesting
small early domesticated populations but less severe population contraction for the
beef breeds. These LD patterns are reflected in the current Ne of these breeds: very
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low for the mainstream dairy breeds (<100), whilst slightly higher for the beef
breeds (110–174) (Bovine HapMap Consortium 2009). Indicine (Bos taurus
indicus) breeds, on the other hand, have lower LD levels, especially at shorter
distances, suggesting that their ancestral population was far larger than that of taurine
cattle (Bovine HapMap Consortium 2009; Pérez O’Brien et al. 2014).

In contrast to cattle, levels of LD between markers at both shorter and longer
distances are notably lower in sheep breeds, which is reflected in the relatively high
current Ne estimates for sheep breeds (Kijas et al. 2012, 2014). Even commercially
important sheep breeds, like the Scottish Blackface and Scottish Texel, have fairly
high levels of Ne, estimated at 528 and 305, respectively (Kijas et al. 2012). Kijas
et al. (2014) postulated that the relatively higher Ne estimated for sheep breeds is due
to a broader sampling of ancestral genetic pools at the early stages of domestication,
followed by milder bottleneck events and more extensive gene flow amongst
populations during the formation of breeds.

Dog breeds are a compelling example of the pressure that domestication and
breed development can have on the genomic landscape. Similar to cattle, dogs
possess high levels of LD at short distances (Lindblad-Toh et al. 2005; Boyko
et al. 2010; Stern et al. 2013), but as the distance between loci increases, the decay
in LD is much slower in dogs compared to other domestic animals (Fig. 3). This
persistent and extended level of high LD concurs with the documented history of
dogs, with this domestic species experiencing arguably the most intense of popula-
tion pressures, including extremely small founder populations, an absence of gene
flow and breeding of highly related individuals to fix fashionably desired traits.
However, the extent of intermediate to long-range LD varies between breeds, as can
be seen in Fig. 3, from a very slow decay in LD levels observed in the Boxer to a
very sharp decay in the Jack Russell Terrier (Boyko et al. 2010). As with other
domestic species, the differences in LD patterns suggest that the magnitude of
selection (and with it, bottlenecks) varied between breeds, which may be due in
part to human keenness to mould certain breeds.

4.2 Genetic Diversity

The erosion of genetic diversity in domestic breeds caused by long and continued
intense selection for genetic improvement is an increasing concern amongst animal
geneticists and policy-makers (e.g. DEFRA 2006, 2009; Ajmone-Marsan and
GLOBALDIV Consortium 2010; Bruford et al. 2015; FAO 2015). Reductions in
estimated Ne over time in domestic animals as well as evidence of diminished
genetic diversity are often used to exemplify the consequences of human-mediated
selection pressures on population genetic structure (Ajmone-Marsan and
GLOBALDIV Consortium 2010; Groeneveld et al. 2010; Bruford et al. 2015).

By exploiting the ancestor–descendant relationship, Muir et al. (2008) investi-
gated the levels of SNP diversity in broilers, layers, non-commercial chicken breeds
(i.e. fanciers) and the wild progenitor of the domestic chicken, the Red Jungle Fowl
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(Gallus gallus). The study found that an estimated 50% of ancestral alleles were not
present in current commercial chicken populations, suggesting a massive loss in
ancestral genetic diversity over the course of several bottlenecks. Furthermore, SNP
detection through whole genome sequencing found lower levels of heterozygosity in
commercial poultry lines (range of 0.74� 10�3

–3.88� 10�3) compared to a pool of
Red Jungle Fowl birds (4.07 � 10�3) (Rubin et al. 2010). Cattle breeds are another
example used to demonstrate the effects that intense selection pressures and indus-
trial consolidation may have had on genomic diversity. Despite the global population
size of commercial dairy cattle breeds numbering in the millions, the Ne of these

Fig. 3 Patterns of linkage disequilibrium (LD) in dogs shows extensive long-range LD within most
breeds but not across breeds. Shown are LD decay curves (mean r2) within dog breeds, village dogs
and gray wolves, and between breeds (calculated from dogs selected from 10 different breeds). This
figure is adapted from the article “A simple genetic architecture underlies morphological variation
in dogs” by Boyko et al. (2010). PLoS Biology;8:e1000451 (https://doi.org/10.1371/journal.pbio.
1000451). The original article is open access distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited
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breeds is very low (~150) after a sharp decline from a large ancestral population (Ne

of ~90,000) (Bovine HapMap Consortium 2009; Qanbari et al. 2010; Orozco-
terWengel et al. 2015). The genomic diversity within dog breeds has also apparently
declined, exemplified by the presence of extensive runs of homozygosity (ROHs)
extending over hundreds of kilobases and scattered across more than 25% of the
genome of many dog breeds (Boyko et al. 2010; Vaysse et al. 2011). Likewise, Ne is
extremely low for most dog breeds, where one study examining population size
amongst 112 breeds found an extremely narrow range of Ne, with estimates
extending from 53 for the Bull Terrier to 230 for the Chihuahua (Dreger et al. 2016).

Loss of genetic diversity may have a negative impact on the biological fitness of
individuals and an adverse effect on the long-term viability of populations, as
conservation genetic theory stipulates that genetic diversity provides species and
populations with adaptive potential (Frankham et al. 2010). Unfavourable health
changes that have accompanied selection in some domestic breeds provides evi-
dence that genetic erosion could have a detrimental effect, as discussed for chickens
(Dawkins and Layton 2012), cattle (Oltenacu and Broom 2010) and dogs (Bateson
and Sargan 2012; Farrell et al. 2015). In commercial dairy cattle, one negative effect
that has accompanied genetic gains in milk production is a reduction in fertility
occurring in the latter half of the twentieth century (Walsh et al. 2011). Research
shows that there was a genetic component to this trend, with a negative genetic
correlation between milk production and reproductive performance (Berry et al.
2016). Recognising the problem of reduced fertility for the dairy industry, further
study has revealed that genetic variation exists for the trait: although the heritability
for fertility is low, at <10%, the coefficient of genetic variation (a unit-free measure
of the magnitude of genetic variation) is similar to some production traits (Berry
et al. 2016). This suggests that fertility traits can be incorporated into breeding
objectives (Wall et al. 2003) and, indeed, improvements in the reproductive perfor-
mance of dairy cattle have been observed from the early twenty-first century (Pryce
et al. 2014).

Despite indications that intense selection pressures and industrial consolidation
have negatively impacted genome-wide variation within some breeds, there is also
evidence that a healthy reservoir of genetic diversity still exists in many domestic
species. First, nucleotide diversity within certain breeds has been found to be
reasonably high. Despite the low Ne of cattle breeds, the Bovine HapMap
Consortium (2009) found a considerable amount of nucleotide diversity within
Aberdeen Angus and Holstein (~1.4 � 10�3), reportedly higher than that found in
human populations. Many European pig breeds have been found to have higher or
similar levels of genomic diversity to their ancestral progenitor, the European wild
boar (Amaral et al. 2011; Bosse et al. 2012). This likely reflects a combination of
past events: a reduction in population size of European wild boar and the introgres-
sion of Asian pig alleles into the European pig breed gene pool to introduce desired
traits. Second, even where genetic homogeneity is observed within many breeds,
domestic species as a whole (i.e. pooling across breeds) still harbour considerable
levels of genetic diversity. Unlike the persistent and extensive LD levels observed at
longer distances within dog breeds, across dog breeds (i.e. mean LD decay), there is
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a rapid decay in LD with increasing distance (Fig. 3), similar to that found in free-
ranging “village dogs” and humans (Lindblad-Toh et al. 2005; Boyko et al. 2010).
Additionally, a comprehensive SNP discovery analysis of 24 chicken lines found
that whilst a substantial proportion (~23%) of detected SNPs were shared amongst
the different chicken types (broiler, layer and inbred lines), a key observation was
that a notable percentage of SNPs were unique to each type (9.3%, 20.5% and 0.8%,
respectively) (Kranis et al. 2013). A conservation scheme proposed by Muir et al.
(2008) for poultry stocks, but equally applicable for other domestic animals, is that
lost diversity within breeds can be (partially) recovered by outcrossing to improve
within-breed variability.

5 Mapping Genomic Variation Associated with Phenotypic
Traits in Domestic Animals

Domestic animals have been selected for a suite of biological characteristics, which
can be roughly grouped into two categories: (1) visually striking hallmark physical
characteristics that are used to define breeds and (2) production traits that are selected
to increase output. Mapping signatures of selection using population genomic
approaches has illuminated our understanding of the genetics underpinning pheno-
typic traits, the strength of selective pressures and the traits preferred during domes-
tication and breed development.

5.1 Breed-Defining Appearance Traits

5.1.1 Coat Colour

Since early domestication, domestic animals have been selected for a striking array
of coat colours and patterns (see Figs. 1 and 2; Cieslak et al. 2011). The genetics of
coat colour has longed intrigued biologists, including Sewall Wright who addressed
pigment production in mammals (Wright 1917). Following detailed genetic dissec-
tion of coat colour mutations in mouse (Mus musculus) (Jackson 1991), studies have
investigated coat colour in domestic animals, looking at modes of inheritance, gene
mechanisms, causative mutations, gene interactions and constructing the pathways
involved in pigment cell development (Cieslak et al. 2011; Linderholm and Larson
2013).

Population genomics has built on this work, uncovering evidence of diversifying
selection at major coat colour genes (e.g. ASIP, EDNRB, KIT, KITLG,MC1R,MITF,
PMEL17 and TYRP1; Cieslak et al. 2011) in domestic animals. In cattle, a common
coat colour pattern is the pied animal, whereby pigmented spots are displayed on a
white background, as seen for black and white pied Holstein and red and white pied
Montbeliarde breeds. An FST contrast between these two pied breeds detected a
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signature of selection at the MC1R gene (Flori et al. 2009). Hayes et al. (2010)
carried out a GWAS of Holstein, with the proportion of black present on the coat as
the quantitative phenotype, and detected signals of association at the KIT and MITF
genes, along with a third locus (PAX5). For other coat phenotypes, Kemper et al.
(2014) found evidence of selection at several coat colour genes in a number of cattle
breeds using either within- (iHS) or between-population (FST) selection mapping
methods: MC1R (Limousin, Charolais, Aberdeen Angus, Holstein and Murray
Grey), KIT (Hereford and Holstein), PMEL (Charolais, Aberdeen Angus and Murray
Grey) and KITLG (Hereford). In sheep, a strong FST signal distinguished white
versus non-white breeds at SNPs genotyped within ASIP (Li et al. 2013) and in a
global FST scan of a collection of sheep breeds, Kijas et al. (2012) reported signals
underlying KIT andMITF. Likewise, population genomic studies of dog breeds have
detected signatures of diversifying selection underlying coat colour genes such as
ASIP, MC1R and MITF (Karlsson et al. 2007; Akey et al. 2010; Boyko et al. 2010).

In contrast, identifying signatures of selection at the major coat colour genes KIT
and MC1R has been inconsistent in pig breeds, with some studies reporting sweeps
(Amaral et al. 2011; Ma et al. 2015) and others failing to detect signals (Rubin et al.
2012; Wilkinson et al. 2013), although there is evidence that these genes control coat
colour in some pig breeds (Andersson and Plastow 2011). Strong signatures of
selection have, however, been found at other coat colour genes in pig breeds.
Wilkinson et al. (2013) conducted an FST scan of pig breeds and identified genetic
signals of diversifying selection near EDNRB in the spotted Gloucestershire Old
Spots (Fig. 4) and near KITLG in the Berkshire (black with white extremities). It was
proposed that the two phenotypes are of an Asian origin, the result of introgression
of Asian pigs into the European pig breeding pool from the late eighteenth century.
Sequence data for EDNRB revealed two non-synonymous changes in the first exon
of the endothelin receptor B gene unique to Gloucestershire Old Spots amongst a set
of European pig breeds, but shared by some Asian pig breeds. Selection mapping
solely in Chinese pig breeds also detected strong signatures of selection at the
EDNRB locus in white belted pigs (Ai et al. 2013; Wang et al. 2015) and weaker
signatures of selection in black pigs with the white extremity phenotype (Lu et al.
2016), supporting the role of this gene in coat colour in Asian pigs.

Beyond colourful coat patterning observed in domestic breeds, the genetic basis
of additional coat attributes has been investigated. Cadieu et al. (2009) performed a
multi-breed dog GWAS of three furnishing traits: moustache and eyebrows, hair
length and hair curl and identified three genomic regions, containing the genes
RSPO2, FGF5 and KRT71, with these three genes accounting for most (80%) of
the variation for these phenotypes.

5.1.2 Body Size

Within domestic animal species, there is an extraordinary range in body size, from
the diminutive 70 cm Shetland Ponies to the 2 m tall Percheron horse or the smallest
dog breed, the Chihuahua weighing in at ~1.5 kg being towered by the Great Dane,
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which weighs up to 90 kg. In dogs, a linkage mapping study of Portuguese Water
Dogs detected at least six QTLs associated with the genetic architecture of body
size, with a QTL of large effect found on chromosome 15 (Chase et al. 2002). A
subsequent genome scan revealed an interval of high FST differentiating small and
large dog breeds on chromosome 15 centred around the gene insulin growth factor
1 (IGF1) (Sutter et al. 2007), with a 20-SNP haplotype at the gene accounting for
15% of variation in body size. Three multi-breed selective sweep analyses detected
genetic variants on several chromosomes associated with body size in dogs (Fig. 5),
including the IGF1 locus (Akey et al. 2010; Boyko et al. 2010; Vaysse et al. 2011),
concurring with the earlier linkage mapping study that the genetic basis of skeletal
size in dogs comprises several genomic regions. The studies also highlighted several
candidate genes from the other chromosomal regions, including HGMA2, SMAD2,
STC2 and LCORL, most of which have been previously associated with body size
variation in other mammalian species (e.g. humans, Lango Allen et al. 2010).

The genes associated with body size in dogs have likewise been identified
underlying signatures of selection for the same trait in other domestic animals. A
multi-breed GWAS of small versus large horse breeds revealed four genomic
regions (including the LCORL, HMGA2 and ZFAT genes) accounted for 83% of
the variation in stature in horses (Makvandi-Nejad et al. 2012). Whilst cattle have not
been strongly selected for body size (see Fig. 2), there are differences in stature
amongst breeds and a comprehensive review (Randhawa et al. 2014) catalogued
12 strong genetic signals for this trait, with LCORL, PLAG1 and SMAD2 genes
repeatedly identified in multiple cattle breed selection mapping studies (Bovine
HapMap Consortium 2009; Flori et al. 2009; Rothhammer et al. 2013; Druet et al.
2013; Kemper et al. 2014; Zhao et al. 2015). Similarly, the genome of commercial
pig breeds was scanned using a ZHP approach and regions of homozygosity were
identified that contain LCORL and PLAG1 genes (Rubin et al. 2012).

5.1.3 Facial Profiles

Facial morphology of domestic animals encompasses a number of external features
and variation in size, shape and length of different anatomical parts can together
result in a montage of diverse facial profiles, as can be seen for pig breeds in Fig. 1.
One key breed-defining facial feature is the size and carriage of ears in domestic dogs
and pigs. Early linkage mapping studies followed by selective sweep analyses have
illuminated the genetic architecture of this trait in pig breeds (for detailed discussion
see Case Study 1).

Case Study 1 Unravelling the Genetic Basis of Variation in Ear
Morphology in Pig Breeds
One subtle but striking physical characteristic that varies amongst pig breeds is
ear morphology. The ancestral state of this phenotypic trait is an upright or

(continued)
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prick ears, as seen in wild boar. In pig breeds, ears vary from an upright stance
to a more intermediate phenotype that is partially upright and then to floppy
long ears that drape down over the front of the face (see Fig. 1).

Ear phenotypes are a major pig breed-defining characteristics and
ascertaining its genetic control will enhance understanding the genes and
pathways governing morphological diversity. QTLs associated with ear mor-
phology were first identified in intercrosses between the prick-eared Large
White pigs and floppy-eared Meishan pigs (Wei et al. 2007). Amongst several
QTLs, those with major effect and significant at the genome-wide level
(P < 0.01) were detected on chromosomes 5 and 7 of the porcine genome
for both ear size and erectness measurements (chromosome 5: at 51 cM and
43 cM and chromosome 7: both at 70 cM) (Wei et al. 2007). A larger study on
a cross between intermediate-eared Duroc and floppy-eared Erhualian identi-
fied 23 genome-wide significant QTLs, with the largest effect found on
chromosome 7 (56–60 cM), explaining more than 40% of the variance in ear
weight and area and 15.7% of variance in ear erectness (Ma et al. 2009). The
next largest QTL was on chromosome 5 (59–73 cM), explaining more than
12% of the variance in ear weight, area and erectness.

To determine if population genomics could deepen the understanding of the
genetic architecture of ear morphology traits, Wilkinson et al. (2013) scanned
the porcine genome for regions of genetic differentiation between diverse ear
phenotypes in European pig breeds. Pig breeds were grouped into different
ear categories and FST pairwise sliding window mapped three regions
showing very strong signatures of selection (FST > 0.4), one on chromosome
5 and two on chromosome 7 (Fig. 6). The region on chromosome 5 extended
from 31.74–33.78 Mb and was uncovered in the differentiation between prick-
vs. floppy-eared pigs and intermediate- vs. floppy-eared pigs. The first region
on chromosome 7 extended from 31.86–34.19 Mb and differentiated only the
prick- vs. intermediate-eared pigs. Finally, the second region on chromosome
7 extended from 55.43–58.19 Mb was uncovered in the differentiation
between prick- vs. intermediate-eared pigs and intermediate- vs. floppy-
eared pigs.

The findings from Wilkinson et al. (2013) are in concordance with those
from the earlier linkage mapping studies, that ear morphology in pig breeds is
likely controlled by two or three loci of major effect located on chromosomes
5 and 7, with additional QTLs of smaller effect scattered across the remainder
of the porcine genome. Furthermore, the signal on porcine chromosome 5 is a
strong candidate controlling mammalian ear morphology because its genomic
position is orthologous to a region on the canine genome associated with ear
morphology in dog breeds (see Fig. 5) (Boyko et al. 2010; Vaysse et al. 2011;
Webster et al. 2015).

(continued)
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Both the QTL and selection mapping study in European pig breeds revealed
that ear morphology in pigs is of a simple genetic architecture and causative
putative genes have been identified. Four genes resided in the region of
differentiation on chromosome 5: WIF1, LEMD3, MSRB3 and HGMA2
(Fig. 6) and Wilkinson et al. (2013) proposed the candidate gene LEMD3 as
it was located closest to the peak FST-window. HMGA2 was proposed as a
contender for pig ear morphology in another study as SNPs in the gene were
significantly associated with variation in ear size (Li et al. 2012b). Yet, a
GWAS found 35 SNPs on chromosome 5 to be significantly associated with
ear size in pig breeds spanning a region of 30.14–40.92 Mb and identified a
450-kilobase interval where genotype frequencies were near fixation, and this
covered WIF1 and LEMD3 (Zhang et al. 2015). An additional study found
three SNPs genotyped in the MSRB3 gene to be significantly associated with
ear size in a pig breed intercross and there was higher mRNA expression of
MSRB3 in pigs with larger ear size (Zhang et al. 2015). The dog GWAS
studies suggested MSRB3 and HGMA2 as candidate genes due to the proxim-
ity of the associated SNPs (Boyko et al. 2010; Vaysse et al. 2011). With little
agreement on candidate gene(s), Wilkinson et al. (2013) sequenced the region
encompassing the genomic signal on porcine chromosome 5 to determine if
variants in the coding sequence could pinpoint a plausible molecular mecha-
nism associated with the diverse ear phenotypes in pigs. However, no
non-synonymous variants distinguished prick- and floppy-eared pig breeds,
suggesting that regulatory elements may be involved in the genetic architec-
ture underlying ear morphology.

In contrast to chromosome 5, little attention has been turned towards
identifying candidate genes and mutations associated with ear morphology
on pig chromosome 7. Wilkinson et al. (2013) proposed the gene ADAMTSL3
as it occurred near the peak FST-window for the second signal on the chromo-
some. Ren et al. (2011) mapped a QTL to a 2 cM region on chromosome 7 and
a 630-kilobase selective sweep was identified where majority of SNPs were
near fixation. Of the nine genes in this region, the gene PPARDwas considered
to be a strong candidate due to its role in lipogenesis, and sequencing led to the
discovery of a missense mutation (G32E) in a functionally conserved domain
of this gene (Ren et al. 2011). The mutation was significantly associated
with variation in ear size and downregulated β-catenin production in the
Wnt/β-catenin signalling pathway. However, PPARD (36.13–36.21 Mb) fell
outside the FST signals found on chromosome 7 by Wilkinson et al. (2013).
Furthermore, it appears that the G32E mutation identified by Ren et al. (2011)
is associated with ear morphology in Asian pig breeds but not European pig
breeds. Whilst the derived 32E allele was found at high frequency in Asian
large floppy-eared breeds, the 32G allele was near fixation for both European
and Asian wild boar, Asian small prick-eared breeds and all European pig

(continued)
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breeds including the floppy-eared British Saddleback, Gloucestershire Old
Spots and Large Black (Ren et al. 2011). Thus, these results suggest that the
G32E mutation may have been selected for in Asian floppy-eared pigs but not
European floppy-eared pigs. Therefore, PPARD cannot be considered as a
candidate for the floppy ear phenotype across all pigs. In conclusion, selection
mapping has clearly shown that strong selection for certain ear phenotypes has
driven associated alleles to fixation, but further sequencing and gene expres-
sion analyses are required to establish the biological mechanisms underlying
ear morphology in pig breeds.

Phenotypic variation in skull shape, a trait that includes a number of different
cranial anatomical features such as skull length, skull width and snout length, has
also been widely selected in domestic animals. In dogs, variation in this trait ranges
from long-snouted breeds, such as Collies and German Shepherds, to squashed and
widened skulls (brachycephaly), such as Bull dog and Boxer, to unique breed-
defining features like the “dome head” of the Chihuahua (Schoenenbeck and
Ostrander 2013). An initial case-control GWAS design contrasting short- and
long-muzzled dog breeds identified multiple significant SNPs on chromosome
1 and observed an appreciable reduction in heterozygosity (as measured using HP)
in brachycephalic breeds centred around the genes THBS2 and SMOC2 (Bannasch
et al. 2010). More comprehensive studies using linear and geometric measurements
took multiple points across the cranium and mapped genetic signals for skull shape
to several chromosomes (Fig. 5), including that on chromosome 1 (Boyko et al.
2010; Schoenebeck et al. 2012). Subsequent functional analysis identified a trans-
posable element within SMOC2 associated with a significant reduction in SMOC2
gene expression levels in brachycephalic dogs (Marchant et al. 2017). Sequencing of
an additional candidate region on chromosome 32 also revealed a missense mutation
in the gene BMP3 that was near fixation in all small brachycephalic dog breeds
examined (Schoenebeck et al. 2012).

Whilst there is also considerable phenotypic variation in skull shape amongst the
pig breeds, perhaps the most evident difference is between domestic pigs and their
ancestor, the wild boar (S. scrofa), where domestication has produced a marked
reduction in snout and skull length (Fig. 1). By utilising data from the ancestral
population, Wilkinson et al. (2013) detected a 2 Mb block of high genetic differen-
tiation on porcine chromosome 2 between European pig breeds and wild boar. This
region was orthologous to the one found on canine chromosome 1 associated with
brachycephaly in dog breeds, and contained, amongst 17 genes, THBS2 and
SMOC2.

A final facial feature to consider, one of both evolutionary and breeding
importance, are horns. This trait has a broad spectrum of phenotypes ranging from
large elaborate horn structures, particularly for the males, to the absence of horns
(“polled”) in both sexes. Breeding for the absence of horns in domestic animals was
likely because their ancestral function (self-defense and sexual selection) was no
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longer a requirement (Zeder 2012) and their presence can cause injury to human
handlers.

In sheep, linkage mapping of two-horned morphology identified a single QTL of
large effect on chromosome 10 associated with horn length and type in the feral Soay
sheep breed (Johnston et al. 2010) and an experimental cross of domestic horned and
polled sheep breeds (Montgomery et al. 1996). Following on from this, a GWAS
confirmed the association on chromosome 10 and found that a single SNP in the 30

untranslated region (UTR) of the RXFP2 gene explained 76% of the genetic varia-
tion in horn size in Soay sheep (Johnston et al. 2011). The role of RXFP2 in
controlling two-horned morphology in sheep has subsequently been confirmed in
other breeds. Kijas et al. (2012) conducted a selective sweep analysis using FST,
contrasting domestic horned and polled sheep breeds, and identified a genetic signal
at the locus RXFP2 (Fig. 7). Kardos et al. (2015) detected a region of reduced
heterozygosity, as measured by ZHP, surrounding the RXFP2 locus in the feral
Rocky Mountain bighorn sheep (Ovis canadensis). Subsequent sequencing of
RXFP2 found a 1.8 kb insertion in the 30UTR of the gene present in horned sheep,
but absent from polled animals (Wiedemar and Drögemüller 2015).

Kijas et al. (2016) posed the question of whether the four-horned phenotype is
under the same genetic control as the two-horned phenotype in domestic sheep. A
GWAS of two-horned (coded as controls) and four-horned (coded as cases) sheep
breeds interestingly found no evidence of association at the RXFP2 locus for the
four-horned phenotype. Instead, a single strong association was identified on chro-
mosome 2, which contained, amongst other candidate genes, a HoxD gene (Kijas
et al. 2016). Nonetheless, it appears that both the two-horned and four-horned
phenotypes in domestic sheep breeds have a simple genetic architecture.

5.2 Production Traits

5.2.1 Milk Production

Worldwide, milk is one of the most important nutritional daily food sources and this
production trait has arguably experienced the strongest recent selective pressure,
particularly to meet the demands of an expanding global human population. Inten-
sive breeding for increased milk production commenced in the 1940s and 1950s with
the development of artificial insemination techniques and of statistical methodology
to estimate breeding values using large pedigrees (examples of dairy cattle breeds are
shown in Fig. 2). In less than half a century, the average milk yield from dairy cows
almost doubled, with ~56% of this increase attributed to genetics (Van Raden 2004).
Genetic studies on milk production traits have identified QTLs (Khatkar et al. 2004)
and validated the contribution of several candidate genes (ABCG2, DGAT1, GHR,
casein cluster and prolactin genes; Thaller et al. 2003; Cohen-Zinder et al. 2005;
Schennink et al. 2007; Banos et al. 2008; Sun et al. 2009).
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Fig. 7 A genome scan of differential selection between two-horned and polled sheep identifies a
strong selective sweep on ovine chromosome 10. The top panel shows levels of genome-wide
genetic differentiation between two-horned (Dorset Horn and Merino) and polled (Poll Dorset and
Poll Merino) sheep breeds, plotted with respect to genomic position: black dots represent SNP FST
values and the red line corresponds to a smoothed FST. The strongest signal was on ovine
chromosome 10 from 27.87 to 29.47 Mb and zooming in the bottom panel shows smoothed FST
values in this genomic region for horned contrasted against polled breeds (red line), between a pair
of horned breeds (green line) and between a pair of polled breeds (blue line). This figure is
reproduced from the article “A genome wide survey of SNP variation reveals the genetic structure
of sheep breeds” by Kijas et al. (2012). PLoS Biology;10(2):e1001258 (https://doi.org/10.1371/
journal.pbio.1001258). The original article is open access distributed under the terms of the
Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which per-
mits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited
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Holsteins are the globally dominant breed of the dairy industry and initial
selection mapping studies focused on this breed to ascertain if breeding for increased
milk production had imparted signatures of selection at milk production genes. In
this breed, several regions of decay in homozygosity have been found on bovine
chromosome 6, including the region covering the ABCG2 gene (Hayes et al. 2008),
and another covering the casein cluster (Qanbari et al. 2010). By calculating allele
frequency differences between Holsteins and the Aberdeen Angus beef breed, Hayes
et al. (2009) identified strong signals near the DGAT1 and GHR genes. Associations
at these genes have also been detected in other dairy breeds; for instance, in a larger
study of ten dairy and beef breeds, XP-EHH was calculated between the two cattle
types and the genes from the casein cluster as well as ABCG2, DGAT1 and GHR
were found underneath some of the selective sweeps (Rothhammer et al. 2013).
Another multiple breed study (Kemper et al. 2014) found evidence of differential
selection at DGAT1 when Holstein and Jersey dairy breeds were contrasted against
beef breeds and within-breed iHS signals were identified at the GHR and ABCG2
loci in the dairy breeds. Similarly, strong associations were found at DGAT1 and
GHR in a GWAS investigating specific milk properties (milk, fat and protein yields)
in Finnish Ayrshire, Danish Red and Swedish Red dairy cattle breeds, shown in
Fig. 8 (Iso-Touru et al. 2016).

Sheep, whilst not prominent in the contemporary dairy industry, were also
historically treated as dual purpose and bred for increased milk output. A global
FST scan of worldwide sheep detected a signal of differentiation at a prolactin gene
(PRLR) (Kijas et al. 2012). Gutiérrez-Gil et al. (2014) adopted a strategy of exploring
the levels of genetic differentiation between pairs of related dairy and meat sheep
breeds and found some overlap with selection signatures associated with milk
production in cattle, including at the locus ABCG2, suggesting convergent selection
in the two domestic species.

5.2.2 Meat Production

The key trait for improvement in beef cattle is breeding for increased proportion of
muscle content relative to overall carcase size. One such phenotype termed “double
muscling” is characterised by a substantial increase in muscle content and has been
bred across many taurine beef populations. Initial studies revealed the candidate
gene and mutations in the coding sequence associated with doubling muscling.
Then, selection mapping uncovered evidence of reduced heterozygosity at the
candidate locus in certain beef populations (this is discussed in detail in Case
Study 2).
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In addition to overall levels of meat (muscle), meat characteristics are important
to the livestock industry because of their effects on eating quality and consumer
perception. As a trait, meat quality comprises a collection of characteristics, one of
which is fatty acid composition. In pigs, the higher concentrations of saturated and
mono-unsaturated fatty acids and lower concentrations of polyunsaturated fatty
acids found in the Duroc breed compared to other commercial breeds has been
linked with overall improved eating quality (Cameron and Enser 1991; Warriss et al.
1996). A genome scan of differentiation between the Duroc and other European pig
breeds mapped a signature of selection to chromosome 14 (Wilkinson et al. 2013).
Wilkinson et al. (2013) proposed that this genetic signal was associated with fatty
acid composition in the Duroc because it overlapped a previously identified QTL for
fatty acid composition in the breed (Uemoto et al. 2012) and contained two genes
with known roles in fatty acid synthesis (ELOVL3 and SCD). A GWAS confirmed
that this genomic region has a major effect on fatty acid composition in Duroc pigs,
associated with a number of fatty acid phenotypes: saturated fatty acid, monounsat-
urated fatty acid, oleic acid (C18:1) and the ratio of oleic to stearic acid (C18:1/
C18:0) (Ros-Freixedes et al. 2016).

Meat characteristics have also been monitored in beef cattle to ensure optimum
quality. The amount of intramuscular fat (IMF) that gives a marbled appearance to
meat influences its palatability (taste, texture and tenderness). Aberdeen Angus, the
British beef breed, is known for its relatively high amount of marbling and there is a
major genetic component to the trait (roughly 48% heritability) in Aberdeen Angus,
suggesting that IMF can be selected to improve beef palatability (MacNeil et al.
2010). Mapping the allele frequency differences between Aberdeen Angus and
Holstein, Hayes et al. (2009) identified a signature of selection at thyroglobulin
(TG), a gene known to influence IMF content and Rothhammer et al. (2013) using
XP-EHH also detected a region of divergent artificial selection near the TG gene in
Belgian Blue cattle.

Case Study 2 Double Muscling and Signatures of Selection at GDF-8
in Beef Cattle Breeds
In the early nineteenth century, animals with a heavily sculpted muscular
appearance began to emerge in herds of European cattle breeds like Belgian
Blue and Piedmontese. This visually striking physical phenotype is commonly
known as double muscling (Fig. 9) and these cattle are prolific producers, with
large amounts of muscle mass and desirable carcass cuts with a low fat
percentage. These characteristics result in an increased final carcass value,
with financial implications for beef production. Systematic breeding has made
double muscling a widespread phenotype in many contemporary European
beef-breed populations.

Double muscling was long known to be heritable in cattle and studies in the
1990s showed that the gene responsible for the phenotype is myostatin

(continued)
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(MSTN) or growth and differentiation factor (GDF-8) (Grobet et al. 1997;
McPherron and Lee 1997). GDF-8 is a member of the transforming growth
factor β superfamily, a group of factors that regulate development and tissue
homeostasis, and the myostatin protein acts by repressing muscle cell growth
and differentiation. Mutations at the gene inhibit the activity of the protein,
leading to an increase in the number of skeletal muscle fibres, thereby pro-
ducing the double-muscling phenotype in cattle. In Belgian Blue and a number
of other breeds, double-muscled animals carry an 11-base pair deletion in the
third exon of the gene, which causes a frameshift that leads to a stop codon in
the bioactive carboxy-terminal domain resulting in a truncated protein and loss
ofGDF-8 function (Kambadur et al. 1997; Grobet et al. 1997). In Piedmontese
cattle, double-muscled animals carry a G ! A transition in the same exon,
which results in an amino acid change from cysteine to tyrosine (Kambadur
et al. 1997), thereby altering a disulphide bridge required for proper confor-
mation of the protein (Berry et al. 2002).

Population genomic studies have since been performed to ascertain the
impact of intensive selection for double muscling on genetic diversity sur-
rounding the GDF-8 locus in various beef cattle breeds. Early population
genetic studies with markers typed in the region of GDF-8 showed strong
evidence of selection near the gene in several double-muscled cattle breeds
(Wiener et al. 2003) and different patterns of diversity observed across breeds
suggested that the oldest origin of the 11-bp mutation was in the Belgian Blue
breed (Wiener and Gutierrez-Gil 2009). Subsequent genome-wide studies of

(continued)

Fig. 9 Three beef cattle breeds with the double muscling phenotype. Clockwise from left: Belgian
Blue, Limousin and Piedmontese. Figure compiled by Ian Hesketh, with photo attributes clockwise
from left: dieses Foto wurde von mir selbst gemacht [Public domain], Budotradan (Own work)
[CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)] and Vicki Johnson [CC BY-SA
4.0 (https://creativecommons.org/licenses/by-sa/4.0)], all via Wikimedia Commons
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double-muscled cattle also detected selection-induced patterns of diversity in
the region of GDF-8. In Belgian Blue, a scan for heterozygosity across the
genome uncovered a large selective sweep extending 504 kb containing GDF-
8 where most alleles were at fixation (Fig. 10) (Druet et al. 2013, 2014). By
implementing the iHS test to compare the homozygosity at ancestral alleles
relative to derived alleles within Piedemontese and Limousin, signatures of
selection were identified at GDF-8 in both breeds (Bovine HapMap Consor-
tium 2009). Other studies have since reaffirmed these findings for Limousin
using the iHS (Zhao et al. 2015), EHH (Gurgul et al. 2015) and haplotype
homozygosity methods (Kemper et al. 2014).

Heavily muscled phenotypes associated with GDF-8 are not limited to
cattle but are also observed in other mammals, including sheep, horses and
dogs. An early study of the muscular Texel sheep breed mapped a QTL
associated with the trait to the ovine chromosome that harbours GDF-8 and

(continued)

Fig. 10 Multi-method selection mapping in Belgian Blue cattle revealed a strong sweep on bovine
chromosome 2 at theGDF-8 (MSTN) gene. The top panel shows the sweep probability estimated by
Sweepy (red line), SNP heterozygosity (grey line), genetic differentiation (measured as FST)
between Belgian Blue and the dual purpose “Blancs Bleus Mixtes” (orange dots) and dairy Holstein
(blue dots). The bottom panel shows the position of genes, including GDF-8 (MSTN)
(6.21–6.22 Mb), taken from Ensembl Bos taurus version 74.1 (UMD3.1). This figure is reproduced
from the article “Selection in action: dissecting the molecular underpinnings of the increasing
muscle mass of Belgian Blue Cattle” by Druet et al. (2014). BMC Genomics; 15:796 (https://doi.
org/10.1186/1471-2164-15-796). The original article is open access distributed under the terms of
the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited
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went on to show that a point mutation in the 30UTR of the gene creates a target
site for microRNAs involved in expression in the muscle (Clop et al. 2006).
Kijas et al. (2012) contrasted three populations of the Texel sheep breed with
other global sheep breeds and found the highest FST values to be associated
with SNPs in the ovine genomic region of GDF-8. Petersen et al. (2013)
applied the FST-statistic, di (Akey et al. 2010), to differentiate the short-
distance sprinting muscular Quarter horse against the leaner Paint horse and
identified a 5.5 Mb region on equine chromosome 18 encompassing GDF-8.
Subsequent sequencing of the gene identified a short interspersed element
(SINE) insertion in the promoter and an SNP in the first intron, which were
significantly associated with muscle fibre composition in the Quarter horse.

These signatures of selection in beef cattle and other domesticated animals
illustrate that favoured variants at GDF-8 have been swept to fixation in
certain populations as a result of breeding to increase the proportion of animals
with high levels of muscling.

5.2.3 Reproduction

Enhancement of livestock productivity is also addressed through improving the
reproductive performance of animals. A feature that distinguishes domestic animals
from their wild counterparts is that reproduction is not seasonally regulated in
domestic animals as in natural populations. Rubin et al. (2010) conducted a selective
sweep analysis of four layer and four broiler lines using ZHP and near complete
homozygosity was observed in a 40 kb segment encompassing the thyroid stimulat-
ing hormone receptor (TSHR) gene. The thyroid system is known for its role in
regulating seasonal reproduction in birds and mammals (Nakao et al. 2008) and
sequencing of the gene in domestic chicken lines showed a non-conservative
missense mutation in domestic chickens but not in the Red Jungle Fowl. A subse-
quent study adopted a paleogenomic approach whereby archaeological chicken
samples dated from ~280 B.C. to the eighteenth century A.D. were densely
genotyped to assess temporal variation at “domestication genes” (Flink et al.
2014). Extensive variation was found at the TSHR locus in the ancient samples
compared to their modern counterparts, suggesting that selection for year round
reproduction of chickens occurred in the last 500 years rather than during early
domestication (Flink et al. 2014) (for further discussion on paleogenomics of
domestic breeds see Box 1).

Although domestic animals have been bred for improved reproductive perfor-
mance, as already discussed earlier in this chapter, compromised fertility in com-
mercial dairy cattle breeds is a serious problem for the industry. Genomic regions
that have a large effect on reproductive performance in dairy cattle have been
mapped (Fortes et al. 2013; Khatkar et al. 2014). A recent GWAS of a fertility
index in a group of commercial dairy cattle breeds found the strongest association on
chromosome 12 and subsequent sequencing identified a 660 kb deletion on this
chromosome in Finnish Ayrshire and Swedish Red dairy cattle breeds (Kadri et al.
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2014). The study found that despite the lethality of this deletion, causing embryonic
death in homozygotes, it is maintained at surprisingly high frequencies (23% in
Swedish and 32% in Finnish Red cattle) because of the positive effect it has on milk
production traits. This knowledge has far-reaching practical applications: mating
plans that limit the use of carrier sires can be implemented to manage the frequency
of such deleterious mutations in breeding populations.

6 Insights from Applying Population Genomics
to Domesticated Breeds

The growing number of population genomic studies has contributed significantly to
disentangling the genetics underpinning animal domestication and breed develop-
ment. A cursory examination of the patterns of diversity of whole genomic land-
scapes suggests that each cattle, chicken, dog, pig and sheep breed has a unique
genomic profile, but comparing patterns of genetic variation amongst breeds and
species reveals shared attributes. This suggests that whilst different pressures have
been imparted on individual species and breeds, they have at times experienced
similar selective and demographic forces.

Assembling the signatures of selection identified for a range of different pheno-
types in domestic animals has deepened our understanding of the domestication and
breed development process, along with providing insights into the genomic archi-
tecture of phenotypic traits. There are numerous examples where selective sweeps
for phenotypic traits are orthologous across domestic species and different breeds,
evidenced by the repeated detection of the same genomic regions and genes for
analogous morphological traits (Gutiérrez-Gil et al. 2015). Comparable genetic
signals at the dairy-related ABCG2, DGAT1 and GHR genes have been found in
global populations of the Holstein, Jersey and Guernsey dairy cattle breeds and at
ABCG2 in dairy sheep breeds. Furthermore, there is less evidence of selection at the
casein cluster and prolactin genes, suggesting weaker selection pressures acting on
the latter group of milk genes in both sheep and cattle breeds. Stature is another good
example of consistent genetic signatures across multiple domestic species and
breeds. Moreover, the genes identified are also a subset of the 500+ genes implicated
in controlling height in humans (Lango Allen et al. 2010). Interestingly, the complex
genetic control of human height compared to the relatively simpler genetic archi-
tecture of body size in some domestic animals could reflect different selection
pressures, such that artificial selection for stature in domestic animals may have
been a far stronger force than natural selection acting on human height. A role for
convergent evolution is further supported by shared derived phenotypes (e.g. floppy
ear morphology) across species. The existence of shared signatures of selection
across domestic species and breeds suggests that common breeding goals were, in
some cases, independently enforced and selection acted on the same genes.
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A narrative of marked differences in the genetic architecture across traits is also
emerging from population genomic studies of domestic breeds. Certain traits appear
to have a simpler genetic architecture, where the phenotypes are governed by a few
loci of large effect. Breed-defining morphological traits, such as coat colour, stature
and ear morphology, fall into this category because relatively few but strong
signatures of selection have been mapped for these traits. For instance, Makvandi-
Nejad et al. (2012) showed that roughly 83% of the genetic variation in body size in
horses was captured by four loci and Rimbault et al. (2013) concluded that variants
at six genes explained approximately half of the reduction in body size of small dog
breeds. Similarly, three very strong genetic signals differentiated flat, intermediate
and prick-eared pig breeds suggesting that these few genomic regions play a major
role in controlling variation in ear morphology in pigs (Wilkinson et al. 2013).
Furthermore, given the simple genetic architecture of these traits, there is a unique
opportunity to identify the sequence variants that are likely major determinants of the
phenotypes. Many domestic breed studies have taken the next step to sequence
selective sweep regions to elucidate the molecular basis of phenotypes, thereby
furthering the narrative of the history of breed development and its effect on genomic
variation (e.g. sequencing of the EDNRB region to isolate the causative variant
of coat spotting phenotype in the Gloucestershire Old Spots pig breed, Wilkinson
et al. 2013).

In contrast, other traits show more complex genetic architecture, where pheno-
types appear to be associated with many loci and the distribution of their effects
varies. Unlike the breed-defining morphological traits of domestic breeds, most
commercial traits, such as meat, dairy and reproduction traits, appear to have more
complex genetic architectures. Signatures of selection have been detected for these
traits, like the strong signals found at the milk production genes ABCG2,DGAT1 and
GHR (and in some studies, the casein genes). However, these genes comprise a small
subset of the 344 QTLs/genes linked to milk production, as catalogued by Ogorevc
et al. (2009). There are further examples where selection mapping has struggled to
uncover signals for quantitative traits, even where a causative variant is known to be
a major determinant of a phenotype. Pig breeders have selected for increased muscle
mass and a single nucleotide change in the insulin growth factor 2 (IGF2) gene has a
large effect on muscle growth, with the mutation reported to have swept through the
European pig breeds (Van Laere et al. 2003). However, genome scans have failed to
pinpoint a signature of selection at IGF2 in commercial pig breeds selected for
increased muscle content (Rubin et al. 2012; Wilkinson et al. 2013). Similarly, pig
breeds have been selected for increased reproductive performance (e.g. ovulation
rate, number of teats and litter size) yet selection mapping has not uncovered
persuasive genetic signals corresponding to established reproductive QTLs and
genes (Buske et al. 2006). Comparison of findings from linkage mapping versus
signature of selection studies for complex traits was addressed in two cattle studies
and both reported a low concordance between the genomic positions of QTLs versus
selective sweeps (Wiener et al. 2011; Kemper et al. 2014).

There are several reasons to explain why selection mapping has failed to unravel
some genotype–phenotype relationships in domestic animals. First, substantial
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sequence complexity may surround a locus that influences a phenotypic trait. The
coat colour gene KIT, which is a major determinant of several coat types in pigs
(wild, belt, patch and dominant white types), incorporates various combinations of
duplications and deletions of sequence blocks associated with different coat types
(Rubin et al. 2012). Although the haplotype diversity at KIT in pigs may result from
strong selection, it may be too complex for standard selection mapping methods to
uncover. Second, at the core of selection mapping methods is that they search for
genomic footprints of reduced heterozygosity or genetic differentiation (Nosil and
Buerkle 2010) such that the methods are only likely to detect evidence at strongly
divergent genomic regions (see Rajora et al. 2016). For complex traits, selection
likely affects hundreds, if not thousands, of loci spread across the genome, causing
smaller changes in allele frequencies, each of which has a minor effect on phenotypic
variation. Single-locus population genomic approaches are unlikely to detect these
widespread signatures of weaker selection. Therefore, multi-locus approaches for
deciphering the genetic architecture of polygenic quantitative traits are needed
(Rajora et al. 2016). Additionally, the varying success at uncovering loci associated
with key production traits versus breed-defining traits could be due to the duration of
selection pressures. Evidence suggests that selection for different coat colour phe-
notypes has occurred since the early stages of domestication (Cieslak et al. 2011)
whilst strong selection for meat, dairy and reproduction has only occurred over the
last few hundred years.

The intense process of artificial selection for genetic improvement in domestic
animals can have far-reaching unfavourable consequences. It is clear that the events
experienced by domestic animals, from the small pools of individuals isolated at the
early stages of domestication and the intense selection that followed, have dimin-
ished Ne considerably in breeds. To some extent, genomic diversity has been eroded
with successive generations, which may be related to the negative health problems
arising in some domestic breeds. However, where issues are recognised by breeders
then steps can be taken to manage the situation. The example of the dairy industry
showed that: (1) genetic variation for traits of concern (e.g. fertility) in modern
breeds exists and can be harnessed to counter the deleterious effects of intense
selection for other traits (e.g. milk production) and (2) the highly structured man-
agement system and comprehensive recording in place for commercial breeding
allows for monitoring of traits and the flexibility to broaden breeding objectives to
manage unfavourable changes. Furthermore, considerable levels of diversity still
exist in domestic animal genomes and this genetic resource can be maintained
through effective and managed breeding decisions.

7 Future Trends and Perspectives

Over the past decade, the field of population genetics of domestic breeds has been
transformed, with breakthroughs in genomics and genotyping technology and devel-
opment of computational infrastructure. Population-scale genomic datasets have
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been produced for many domestic species and breeds, from which variation across
genomes has been extensively mined to decipher the genetic basis of domestication
and breed development. The coming years will see extensive genotyping and
sequencing of additional breeds which will allow further questions on the evolution
of phenotypes to be addressed in population genomic studies.

Population genomics has been applied unevenly across domestic breeds world-
wide (e.g. Mwai et al. 2015), predominantly focusing on mainstream commercial
breeds, unsurprisingly considering their economic importance. Indeed, whilst there
have been a number of studies investigating breed diversity worldwide (e.g. sheep,
Kijas et al. 2012), genomic and phenotypic resources are still lacking for many
non-commercial and traditional breeds, particularly those from the less developed
and more inaccessible parts of the globe (Bruford et al. 2015). Population genomic
analyses of more indigenous breeds will not only provide a more comprehensive
understanding of the global history of animal domestication but also insights into the
genetic basis of novel geographic-specific important traits.

Large-scale acquisitioning of non-commercial and traditional breed samples will
also supplement current data, increasing the catalogue of genotype–phenotype
resources. Such data could be a novel population genomic resource at the disposal
of the livestock industry. It is generally recognised that the goals of the livestock
industry have moved beyond improvement of milk, meat and reproduction traits (for
which monumental strides have already been made over the last several decades) to
incorporate additional challenges. Worldwide, the future brings with it the potential
for irreversible changes in environmental conditions that may have a detrimental
effect on livestock productivity and thus breeds adapted to more extreme climates
will provide biological information as well as genetic resources that may benefit
other populations. A second area of concern for the livestock industry is the
increasing occurrence of infectious diseases and outbreaks in large herds that can
have potentially devastating economic consequences. Certain breeds are known to
be more resistant to particular diseases and identifying resistance-specific signatures
of selection can provide genetic information that could be harnessed to counteract
production losses associated with infectious diseases. For instance, N’Dama cattle
are considered to be more tolerant to the disease trypanosomiasis, caused by vector-
borne protozoan parasites of the genus Trypanosoma, compared to other more
economically productive African and non-African cattle breeds. A cross-population
analysis between N’Dama and less trypanotolerant breeds using a combination of
selection mapping approaches identified selective sweeps and genes associated with,
amongst other functions, the immune system (Kim et al. 2017). This example nicely
illustrates the potential value of more indigenous and less productive breeds as a
genomic resource. Thus, a more concerted effort is required to characterise the
genome-wide diversity of traditional breeds and beneficial phenotypes from devel-
oping countries, through multi-national collaborations, to build long-term resources
for the livestock industry.

The experimental designs of population genomic studies of domestic breeds are
also progressing beyond population-scale datasets of one or a set of breeds to
incorporate a priori links between genotype data and particular phenotypes. For
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example, Moradi et al. (2012) genotyped thin and fat tailed sheep breeds with the
aim of solely identifying selective sweeps (assessed using FST) associated with one
trait, fat deposition. A design such as this in population genomic selection mapping
studies, where breeds that exhibit extremes of a phenotype are sampled, thereby
linking genotypes and phenotypes, allows the detection of trait-specific genetic
signals that may not be otherwise uncovered in general large-scale population
genomic breed studies.

Another emerging area of population genomics that is proving powerful
in deciphering the animal domestication process is paleogenomics, the use of
ancient DNA to draw inferences about genetic processes (MacHugh et al. 2017). As
suggested by the name, paleogenomic analyses involve sequencing (or genotyping) of
mitochondrial DNA, candidate genes or whole genomes for ancient wild and domes-
ticated samples. These sequences can then be compared to modern sequences or,
where samples are available, analysed at multiple time-points in the past. Ancient
DNA has alreadymade significant contributions to the understanding of the evolution
of phenotypes and domestication, particularly for the horse but also for other livestock
and dogs (see Box 1 detailing a few studies), and it is likely that this approach will be
increasingly important in future studies on domesticated species.

Box 1 Paleogenomics of Domestic Breeds
Paleogenomics involves comparing the genomic profiles of ancient and con-
temporary samples to characterise genetic changes that have occurred along an
evolutionary timescale. This allows the various stages of the domestication
process to be explored for the occurrence of population-shaping
events (admixture, introgression, selection, origins and migration), making
paleogenomics a highly powerful approach that can provide a unique insight
into animal domestication.

Paleogenomics is a growing section within the field of population genomics
of domestic breeds (see Sect. 7) and it has already started to illuminate the
history of domestication, from the demographic trends of early domestic
populations to the evolution of phenotypes. Phylogeographical analyses of
ancient DNA have produced genetic networks revealing the geographic
locales of domestication centres (e.g. cattle and pigs), routes of migration
(e.g. pigs and chickens) and levels of admixture between wild and domestic
ancestors (e.g. cattle, pigs and horses) (described in detail by MacHugh et al.
2017).

Specific genes associated with phenotypic traits considered of importance
in animal domestication have been studied through the examination of allele
frequency patterns over time. In archaeologically preserved chicken speci-
mens dating from ~280 B.C. to the eighteenth century A.D., extensive genetic
variation was found at two genes reputedly selected for during chicken
domestication, TSHR, associated with reproduction, and BCDO2, associated

(continued)
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Box 1 (continued)

with yellow skin colour (Flink et al. 2014) (see Sect. 5.2.3). These genes were
previously hypothesised to be selected for during the early stages of chicken
domestication because there is evidence of strong selective sweeps at TSHR
and BCDO2 in contemporary chickens, whilst the derived alleles are absent in
the Red Junglefowl (Rubin et al. 2010). However, as genetic diversity is
evident at these genes in chickens dated up to the sixteenth to eighteenth
century, it suggests that the selection at these loci occurred fairly recently
(Flink et al. 2014).

Coat colour is another phenotypic trait that has been the focus of a number
of paleogenomic domestic breed studies, as it is considered a key desired trait
since the early stages of domestication (Cieslak et al. 2011). In horse samples
dated from the Late Pleistocene to the Iron Age, allelic variation at eight coat
colour genes suggests an increase in coat colours early in domestication
(Ludwig et al. 2009). A subsequent study found that the allelic frequency
distribution changed in coat colour genes over time, showing an increase in
spotted coats later in domestication and a return to predominance of horses
with solid coats in medieval times (Wutke et al. 2016).

Beyond candidate genes, whole-genome sequencing of ancient and modern
samples to carry out genome-wide selection scans has provided insight into
additional historic selective pressures and levels of introgression. Park et al.
(2015) examined modern cattle against the ancestral British wild auroch
genome, revealing evidence for ancient introgression of local aurochs into
domesticated cattle of the British Isles. Librado et al. (2017) compared the
genomes of ancient horses sampled from burial sites across the Central Asian
steppes with their modern counterparts, identifying an extinct lineage that
contributed to current populations and found fewer deleterious mutations in
pre-domestication horses than modern animals.

8 Conclusions

The combined application of genome-wide SNP markers and population genetics
methodology has proved to be a powerful and easily applicable approach to advance
our understanding of the history of domesticated animals. Population genomics has
revealed the impact that demographic and selective forces have had on variation
across the genomes of domestic breeds. In addition, this area of research has
deepened our understanding of the genetic architecture of phenotypic traits, the
strength of selective pressures and the suite of characteristics desired in domestic
breeds. It is also important to remember that population genomics is one step on the
road of unravelling the genetic basis of phenotypic traits. After uncovering a
genomic region showing evidence of selection, gene(s) and causative variants that
play a functional role in determining the phenotype should be identified, followed by
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functional studies to determine the specific effect(s) of variants. With increasingly
inexpensive and efficient genotyping and whole-genome sequencing options, com-
bined with the application to more breeds and phenotypes, population genomics will
continue to be a powerful tool to contribute to the understanding of the history of
domesticated animals and the genetic dissection of important traits.
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Population Genomics of Domestication
and Breed Development in Canines
in the Context of Cognitive, Social,
Behavioral, and Disease Traits

Kristopher J. L. Irizarry and Elton J. R. Vasconcelos

Abstract Dogs are unique because they are known to be the first species domesti-
cated by humans, have the greatest morphological variation among terrestrial mam-
mals, and exhibit unique bonds with humans. Yet, until very recently, the history of
domestication and the associated consequences of this artificial selection have been
a matter of speculation. Domesticated dogs are the ideal organism to study popula-
tion genomics of domestication and the impact artificial selection has had on
cognitive, social, behavioral, and disease traits. Because dogs have been associated
with humans for tens of thousands of years, they are uniquely suited to investigate
the genetic basis of selection for dietary adaptation during the agricultural revolu-
tion. Through a variety of large-scale genomics approaches, the history and conse-
quences of dog domestication are no longer a matter of speculation. This chapter
delves into the ancient origins of human-canine interactions and follows the domes-
tication of wolves into dogs with a particular focus on (a) the selection of phenotypes
underlying the strong bond between humans and their companion dogs, (b) the
morphological variation underlying dog breeds, and (c) the genetic basis of canine
diseases. The historical picture that is beginning to emerge provides a genomics
framework for understanding why and how the dog became “our best friend.”
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1 Introduction

Dogs (Canis lupus familiaris) are fondly referred to as “our best friends,” and among
all organisms on this planet are the species most closely associated with humans.
They live in our houses, sleep in our beds, ride in our cars, and even cuddle with
us on the couch, while we read and relax. Our shared history extends back tens
of thousands of years. This is by far, the longest ever genetic experiment and
continues today, with designer dogs selected from crosses of established breeds to
produce new and unique combinations of traits. For much of our shared coexistence,
the actual impact of domestication and artificial selection has been a matter of
speculation.

A wide-held belief is that domestication simply caused dogs to lose their fear
of humans. However, the footprints of selection (meaning the specific versions of
particular genes selected for in the dog genome during artificial selection) can
be detected using population genomics methods. Furthermore, the role these genes
play in physiology and biochemistry can be determined using information from
prior studies in humans, mice, and other “model” organisms. For example, if one
were to identify a gene in wolves (Canis lupus) associated with a particular trait and
observe that this gene has many different variants in the wolf population, but only a
tiny fraction of variants within domesticated dogs, this might provide support for the
hypothesis that selection for a particular variant of this gene occurred during artificial
selection.

Questions such as “How are dogs different from wolves?” and “What regions of
the dog genome encode the traits humans selected for when dogs were domesti-
cated?” are within the realm of scientific investigation. Population genomics
methods provide strategies for decoding the phenotypic consequences of patterns
of genetic variation in specific populations. By comparing patterns of genetic
variation between two populations (such as wolves and domestic dogs or between
Chihuahuas and Great Danes) specific phenotypic differences between
the populations can be associated with precise regions of the genome. Such app-
roaches, coupled with comparative genomics and bioinformatics methods, enable
us to uncover the particular genes selected during artificial selection and identify
the traits these genes encode in the dog genome. Together, this information provides
answers to questions about domestication and breed formation.

This chapter presents an informative review detailing genomics aspects of canine
domestication and breed formation, with a particular emphasis on cognitive, social,
behavioral, and disease traits. The goal of this chapter is to provide a framework
for understanding how population genetics and genomics methods have been used
to decipher the domestication history and resulting phenotypes that are observed
in dogs today. The chapter opens with a brief review of some archeological samples
of ancient canids and the results of their genetic analysis. Dogs are the oldest
domesticated species and therefore have the longest shared history with humans
among all life on the planet. Subsequently, the chapter explores the cognitive and
behavioral changes that dogs underwent during their domestication and discusses
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a number of studies that have identified the genes underlying these augmented
phenotypes that connect them to humans as both companion and working animals.

Next, dog domestication from wolves is presented in the context of sequencing
datasets and polymorphic marker analyses. These studies helped elucidate the early
history of the dog domestication process. Dogs are known for exhibiting a tremen-
dous amount of phenotypic variation within the species. The chapter then explores
the morphological variation and methods employed to deduce the genetic mecha-
nisms underlying this morphological variation. Finally, the chapter delves into
clinically relevant phenotypes between specific dog breeds and genes, mutations,
and genomic regions underlying these breed-associated diseases. Ultimately, this
chapter presents the culmination of our current genetic understanding of canid
domestication and provides numerous examples of the specific phenotypes under-
lying the transformation of ancestral wolves into the dogs we live with today.

2 Time and Place of Dog Domestication

Population genomics methods have offered an unprecedented opportunity to unravel
the mysteries underlying dog domestication. These powerful and data-dense genetic
approaches have refined our understanding of how dogs transformed from wolves
into the hundreds of breeds that exist today. Moreover, through these studies the
genomic basis underlying morphological variation between dog breeds is emerging.
Through a combination of genetic association studies, whole genome sequencing,
and gene expression studies, the veil covering our evolutionary history with dogs has
finally been lifted, and the initial discoveries consist of many surprises that, when
viewed in the context of “our best friend,” make a lot of sense.

2.1 Archeological Evidence

One of the most fundamental and frequently contemplated questions relating
humans and dogs is “When were dogs initially domesticated?” This is a particularly
important question that lies at the heart of the human-animal bond. Ovodov et al.
(2011) describe the discovery of 33,000 years old incipient dog remains within
the Altai Mountains of Siberia including a complete skull and mandible that were
excavated from the site in 1975 (Fig. 1). Evidence of human occupation within the
vicinity of the skull and mandible date back approximately 50,000–100,000 years
ago and correspond to hunter gatherers that remained in a single location for multiple
months at a time (Ovodov et al. 2011).
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2.2 Genetic Analysis of Archeological Samples

In 2015 Lee et al. reported the sequencing and phylogenetic analysis of a particular
mitochondrial (mt) genomic region, a polymorphic portion of the canine mitochon-
drial genome that exhibits a 10 bp repeat region that varies by both number of copies
and sequence variation between individuals. The data was derived from a 360,000-
to 400,000-year-old Canis cf. variabilis mandible (Fig. 2) obtained from a region in
Siberia (Fig. 3) from which multiple ancient and contemporary canid samples have
been identified. The study yielded mtDNA region sequence data for all samples
investigated leading to the discovery of nine haplotypes. Phylogenetic analysis of the
data indicated that the Canis cf. variabilis sample clustered with other wolf samples
from Asia and Russia.

Of particular interest in the Lee et al. (2015) study was the analysis of the
haplotypes across ancient wolf samples and contemporary dog breeds. The results
indicated that haplotypes obtained from 8,750-year-old samples (site 1 on the map)
and 28,000-years-old samples (site 2 on the map) are indistinguishable from

Fig. 1 33,000-year-old dog skull and mandible represent early stage of canine domestication. (a)
Aerial view, (b) profile, (c) palate, (d) left mandible, (e) left lower tooth row (scale on ruler in cm).
Subtriangular hole in the skull is the place of initial sampling for carbon-14 dating in 2007.
Originally published in Ovodov et al. (2011)
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haplotypes observed in geographically diverse dog breeds that exist today (Fig. 3).
A surprising result was that the haplotype observed in the 47,000-year-old canid
sample was quite distinct from other wolf haplotypes but differed by only a few
mutations from haplotypes observed in the present-day dogs. Taken together, these
results provide support for the idea that genetic contributions of ancient Siberian
wolves, including possibly Canis cf. variabilis, may have contributed to the genetic
structure of the domestic dog gene pool.

Interestingly, dog domestication appears to have occurred in multiple locations
at different times. For example, Thalmann et al. (2013) sequenced the complete
mitochondrial genomes of 18 prehistoric canids and compared the results to modern
dogs and wolves using maximum likelihood, coalescence, and Bayesian approaches
to ascertain phylogenetic relationships. Their findings suggest that contemporary
dogs derive their mitochondrial genomes from European canids (Thalmann et al.
2013).

A 2015 study reported by Shannon et al. employed a 185,805-marker genotyping
array to investigate the population structure of 4,676 purebred dogs (representing
over 160 breeds) and 549 free-ranging village dogs representing 38 countries. The
results identified certain geographical subsets of village dogs that appear to be
derived almost exclusively from European origins, while village dogs from countries
such as Vietnam, India, and Egypt have trace amounts of European admixture,
supporting an origin of domestication within Central Asia instead (Shannon et al.
2015).

Fig. 2 A 360,000- to 400,000-year-old Canis cf. variabilis mandible obtained from Siberia.
Originally published in Lee et al. (2015)
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3 Domestication of Dogs from Wolves

The phenotypic variation among domestic dogs is a consequence of the artificial
selection imposed during their domestication and subsequent morphological pheno-
typic variation that occurred during stratification into different breeds. As of 2018,
the American Kennel Club (AKC) recognizes close to 200 distinct dog breeds
with additional breeds added each year (http://www.akc.org/). In comparison, the
United Kennel Club (UKC) recognizes more than 300 different breeds (https://
www.ukcdogs.com) and adds new breeds to the list over time. Similarly, the largest
kennel club in the world, Fédération Cynologique Internationale (FCI), currently
recognizes close to 350 unique dog breeds (http://www.fci.be). Interestingly, there
are dog breeds that are not formally recognized by a breed club. Recently, designer
dogs, which are crosses between dogs of different breeds, have gained in popularity.
These breeds, lineages, and designer dogs represent pools of dogs that share subsets
of genetic variation and together represent one of the most phenotypically diverse
species on the planet.

3.1 Early Dog History and Models of Dog Domestication

A recent study of early dog history attempted to characterize the ancestral relation-
ships between dogs and wolves (Lindblad-Toh et al. 2005). This approach used deep
genome sequencing of (a) three gray wolves (each centered on a geographical region
presumed to correspond to a geographical dog domestication site), (b) two basal
dog lineages (the Dingo and Basenji), and (c) the golden jackal (Freedman et al.
2014). In this study the investigators also had access to the Boxer genome because
the initial dog genome sequenced published in 2005 was obtained from a female
Boxer (Lindblad-Toh et al. 2005). The distribution of samples is illustrated in Fig. 4.

Fig. 4 Geographical
distribution of canid
samples in genome
sequencing study of early
dog history. Originally
published in Freedman et al.
(2014)
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Among the data generated across the six canid genomes were 11.2 billion
sequencing reads producing over 10.2 million single nucleotide polymorphisms.
From this data, the authors inferred effective population sizes based on genome-wide
heterozygosity within each genome using a pairwise sequential Markovian coales-
cent method. By considering an average mutation rate of 1 � 10�8 per generation,
the investigators suggest that the dog population underwent a 16-fold reduction
over the past 50,000 years. To determine admixture among the genomes, the
authors used the nonparametric “ABBA-BABA” test for gene flow between diver-
gent populations. The results of the study were used to construct three models of dog
domestication (Fig. 5) that each includes estimates of population divergence and
post-divergent gene flow between sample populations.

The three models (Fig. 5) differ in how the ancestral population of wolves
ultimately gave rise to different wolf populations and dogs such as the Boxer, the
Basenji, and the Dingo. Figure 5a illustrates the model most consistent with the

Fig. 5 Models of canine domestication derived from genome sequencing study of early dog
history. Divergence times, effective population sizes (Ne), and post-divergence gene flow inferred
by G-PhoCS in joint analysis of the Boxer reference genome and the sequenced genomes of
two basal dog breeds, three wolves, and a golden jackal. The width of each population branch is
proportional to inferred population size, and stated ranges of parameter estimates indicate 95%
Bayesian credible intervals. Horizontal gray dashed lines indicate timing of lineage divergences,
with associated means in bold, and 95% credible intervals in parentheses. Migration bands are
shown in green with associated values indicating estimates of total migration rates, which are equal
to the probability that a lineage will migrate through the band during the time period when the two
populations co-occur. Panels show parameter estimates for (a) the population tree best supported by
genome-wide sequence divergence, (b) a regional domestication model, and (c) a single wolf
lineage origin model in which dogs diverged most recently from the Israeli wolf lineage (similar
star-like divergences are found assuming alternative choices for the single wolf ancestor). Estimated
divergence times and effective population sizes are calibrated assuming an average mutation rate
of 1 � 10�8 substitutions per generation and an average generation time of 3 years. Originally
published in Freedman et al. (2014)
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genome-wide sequencing divergence. In this model, the Boxer, Basenji, and Dingo
exhibit a lineage from the ancestral wolf population that is distinct from the Chinese
wolf, the Israeli wolf, and the Croatian wolf. Figure 5b shows a model in which
the Dingo splits off from the Chinese wolf lineage, the Basenji splits from the Israeli
wolf lineage, and the Boxer splits from the Croatian wolf lineage. Finally, Fig. 5c
represents a model in which all three dogs (Basenji, Dingo, and Boxer) split from the
Chinese wolf rather than the ancestral wolf population (as shown in Fig. 5a).

Shearin and Ostrander (2010) provide a quantifiable measure of similarity
between dogs and wolves stating that domestic dog differs from its closest ancestor,
the gray wolf, by just 0.04% in nuclear protein-coding DNA sequence. In other
words, dogs share 99.06% of their protein coding genome with wolves.

4 Evolution and Selection of Cognitive and Behavioral
Traits During Canine Domestication

A long-standing question many have asked relating to human domestication of
dogs is “During artificial selection was there any selection for cognitive, behavioral,
or communication phenotypes that may have contributed to a strong interspecific
bond between humans and their companion dogs?” The strength of the human-
animal bond is so strong that dogs are fondly referred to as humans’ “best friends.”
Subsequently, it seems plausible that artificial selection during domestication may
have contributed to divergent phenotypes from wolves that underlie the social
interactions between dogs and humans.

4.1 Gene Expression Differences in Brains of Dogs
and Wolves

Saetre et al. (2004) investigated the mRNA expression levels of 7,762 genes in
dogs, wolves, and coyotes (Canis latrans) in three regions of the brain: the hypo-
thalamus, the amygdala, and the frontal lobe. Interestingly, the RNA was obtained
from postmortem brains and hybridized to human microarrays. Cross-species micro-
array hybridization is inherently challenging, and the extent of sequence divergence
between the species (human, dog, wolf, and coyote) contributes to interspecific
variation in hybridization efficiency. Nonetheless, the investigators chose to focus
on a set of genes that exhibited brain region specificity for one of the three brain
regions compared to the other two. Specifically, the selected inclusion criteria
required that at least a twofold difference in expression was necessary to consider
a gene as brain region specific (Saetre et al. 2004).
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In the first set of the gene expression experiments, 156 genes were identified as
having region-specific expression in all three species. In a second set of experiments,
114 genes exhibiting expression differences between species within each brain
region were identified. Next average interspecies expression differences were deter-
mined for all 114 genes. These findings led to the observation that in the amygdala
and frontal lobe, average differences in expression were close to 30% and similar
across all three species. However, the average expression difference in the hypo-
thalamus was around 20% with a difference between coyotes and wolves of merely
13% (background “noise” was 9%). When wolves and dogs were compared for
hypothalamus gene expression, there was an average difference of 24%, and the
difference between dogs and coyotes was 22%. Gene Ontology (GO) analysis was
performed for the 25 genes that exhibited GO annotation. The results indicated that
25 genes shared annotation of overrepresented GO terms (and only 2 were expected
by random chance alone). The enriched terms included neurogenesis, cell-cell
signaling, and neurotransmission. Among the genes exhibiting such annotation,
many were downregulated in the hypothalamus of dogs. Two of these genes are
the neuropeptides NPY and CALCB implicated in energy regulation, feeding behav-
ior, and the hypothalamic pituitary adrenal (HPA)-associated neuroendocrine stress
response. Perhaps domestication of dogs occurred, in part, through genetic variation
that modulates gene expression levels in particular regions of the brain underlying
stress response phenotypes (Saetre et al. 2004).

4.2 Population Differentiation Between Native Dogs
and Wolves

A similar study by Li et al. (2013) employed a pairwise population differentiation
between Chinese native dogs and gray wolves. Chinese native dogs are dogs that live
as human commensals and were included in the study to capture the genetic structure
of dogs prior to the recent stratification associated with breed creation. Furthermore,
the authors chose to compare genome-wide divergence between the Chinese native
dogs and German Shepherds obtained from Germany. A total of 48,455 SNPs were
selected after filtering, and the average distance between the SNPs across the
genome was 23 kb. A final set of 1,878 SNPs were identified, corresponding to
the top 5% of the distribution, with FST > 0.05 and mean FST ¼ 0.63 between
Chinese native dogs and wolves. These SNPs can be considered to be under strong
selection (Li et al. 2013).

Gene Ontology biological process enrichment analysis revealed that 347 genes
were associated with behavior, and of those, 224 were associated with locomotor
behavior. The analysis of SNPs exhibiting highest FST values between Chinese
native dogs and German Shepherds lacked the extent of exacerbated brain expres-
sion that was observed among the genes identified between the Chinese native dogs
and the wolves. The authors make the case that human artificial selection during the
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primary splitting of dogs from wolves was associated with rapid brain evolution.
Furthermore, they connect the emergence of dog-specific behaviors during domes-
tication with altered gene expression changes in their brains (Li et al. 2013).

4.3 Whole Genome Sequence Differences Between Dogs
and Wolves

Li et al. (2014) compared the published resequenced genomes of three wolves and
ten dogs (five ancient dogs, five contemporary dogs) to an additional three wolves
and three Chinese native dog genomes that the group sequenced to identify regions
of the genome exhibiting the most dramatic differences between dogs and wolves.
A common hypothesis associated with dog domestication is that human artificial
selection resulted in altered stress response phenotypes, which facilitated dogs and
humans living in closer proximity than wolves and humans. Li et al. argue that if
stress-response phenotype was “selected” during domestication, one would expect to
see evidence of fixed alleles within genes mediating the phenotype to remain fixed
today (Li et al. 2014).

Surprisingly, fixed SNPs within the genes GRIK3, GABRA5, GRIK2, BCL2, and
MECP2 were identified in the analysis, and GO enrichment identified the following
biological processes as the most significantly enriched: adenylate-cyclase-inhibiting
G-protein-coupled receptor activity and glutamate receptor signaling pathway.
Glutamate is the brain’s main excitatory neurotransmitter and regulates behaviors,
emotions, cognitive abilities, as well as learning and memory. The gene expression
analysis of the GRIK2 gene indicated that it exhibited greater levels of expression
in dog prefrontal cortex compared to wolf prefrontal cortex ( p ¼ 0.0006) (Li et al.
2014).

Although not statistically significant, BCL2 and GABRA5 also exhibit changes
that distinguish the dog from the wolf. A weighted gene co-expression network
analysis revealed that GRIK2, GRIK3, GABRA5, and MECCP2 exhibit co-
expression patterns that place them all in the same coregulatory network. The
authors make the case that, during the early stages of domestication, wolves with
better learning and memory phenotypes would “come close to human settlements
more frequently, acquire greater food resources, and thus had greater opportunities
to survive (with little disadvantage). These individuals would exhibit nonaggressive
response because they would understand that the presence of humans was harmless,
and thus would have a weakened fear response.” The authors propose that instead of
reduced fear response, domestication of dogs occurred via selection for excitatory
synaptic plasticity, which would alter dog behavior and cognition to the point where
dogs could learn the meaning of human gestures and respond more favorably to
human commands (Li et al. 2014). The idea that artificial selection during domes-
tication altered the canine brain to enhance dog memory is an exciting and poten-
tially transformative event in human-animal history.
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5 Genetic Effects of Dog Domestication

Domestication events can create bottlenecks and consequently reduce genetic diver-
sity, reduce effective population size, and increase inbreeding. Understanding the
relationship between the genomic signals observed in the data and the evolutionary
mechanisms that contributed to those signals is critical if one hopes to understand
how the domestication and selective breeding history of contemporary dog breeds
exploited the morphological plasticity encoded in the ancestral canine genome.
Boyko et al. (2010) suggest long runs of homozygosity (ROHs) are the result
of inbreeding associated with recent selection events, such as breed formation.
In contrast, the authors attribute haplotype diversity and linkage disequilibrium
(LD) occurring across genomic scales less than a megabase as indicative of more
ancestral population processes (Boyko et al. 2010).

The first question addressed by Boyko et al. (2010) was to investigate genomic
signatures of canine demographic history by analyzing (1) the pairwise SNP LD,
(2) the haplotype diversity across 15-SNP windows, and (3) the extent of ROHs
greater than a megabase. They discovered that although the LD extends over 1 Mb
within every breed assessed across the entire population of dogs, it decays very
quickly. This observation implies that identity-by-descent (IBD) segments are
shared across numerous breeds and are quite small. The ROHs observed were longer
and occurred more frequently in breed dogs than wolves or the village dogs.
Individuals from almost all breeds exhibited between 10 and 50 ROHs greater
than 10 Mb. The exception was the Jack Russell Terriers, which showed fewer
ROHs and higher levels of genetic diversity than the other breeds (Boyko et al.
2010).

Autozygosity, which occurs when both chromosomes in a diploid organism are
derived from the same ancestor, indicates that inbreeding has occurred. Current
models suggest “inbreeding depression” is an increase in autozygosity coupled with
an increased risk in homozygosity at rare, partially recessive, deleterious mutations.
To investigate the impact of autozygosity, it is important to accurately identify real
autozygous ROHs from the larger set of often non-autozygous ROHs in a sample
(Boyko et al. 2010). Non-autozygous ROHs, stretches of homozygous SNPs that are
actually heterozygous at unmeasured variants, are less likely to contain rare, partially
recessive, deleterious mutations in homozygous form. Subsequently, an important
criterion for defining ROHs – rather than SNP-by-SNP homozygosity – is to assess
autozygosity. It is important to identify ROHs that are not autozygous and are
identical-by-state (IBS) from ROHs that are autozygous and are identical-by-descent
(IBD) (Howrigan et al. 2011).

According to Boyko et al. (2010), autozygosity was detected at high levels in
all breeds with Jack Russell Terriers having the lowest average autozygosity (7.5%)
and Boxers having the highest (51%). Interestingly, only a few breeds contained
genomic regions that were autozygous in all breed members genotyped at the
megabase scale. The exception was Basenjis, which showed evidence of high
haplotype diversity coupled with high autozygosity. Together these two conditions
are suggestive of a recent genetic bottleneck following breed formation that caused
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greater levels of inbreeding than would otherwise be expected in the population.
According to the breed history, Basenjis in the United States were derived from a
relatively small founder population. Linkage disequilibrium (LD), associated with
regions of chromosomes encoding shared alleles from common ancestors along a
chromosome, is known to extend greater genomic distances within breeds than
it does among breeds or within wolves. The analysis performed by the authors
indicates that the between-breed LD is much greater than wolf LD which provides
support for a bottleneck in dogs during domestication (Boyko et al. 2010).

These results support the idea that dramatic genomic selection occurred within the
dog genome on multiple time scales. One time scale, for example, corresponds to an
ancient domestication selection process when dogs were selected for affiliation with
humans. Afterwards, a more recent breed-radiation selection process occurred where
closed breeding pools were created to transform the ancestral genetic variation into
breed-specific pockets of genetic and morphological phenotypic uniformity.

6 How Did Domestication-Modulated Oxytocin Mediated
Phenotypes

6.1 Oxytocin-Mediated Social Phenotypes in Dogs

The neuropeptide hormone, oxytocin, has a well-established role underlying social
bonding in mammals where, through evolution, it has mediated hierarchical social
relationships as well as organization of social interactions. In humans, oxytocin
coordinates parental responses after physical contact with offspring, interactions
between sexual partners, interactions with friends, and empathetic interactions
with strangers (Feldman 2017).

Romero et al. (2014) described a prosocial role for oxytocin in dogs. They
suggested that oxytocin facilitates prosocial interactions among dogs and humans.
Furthermore, they make the point that evolutionary selection pressure may have
contributed to the maintenance of neurological mechanisms associated with social
bonding due to the adaptive value of long-lasting social relations (Romero et al.
2014).

6.2 Genetic Variation in Dog Oxytocin Receptor

The role of oxytocin signaling in the human-animal bond suggests that it is possible
that domesticated dogs were artificially selected for more affiliative relationships
with humans through allelic variation within genes mediating oxytocin signaling.
And indeed there is evidence for considerable genetic variation within the oxytocin
receptor in canids, as well among different dog breeds (Kis et al. 2014; Bence et al.
2017).
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Kis et al. (2014) investigated three polymorphisms within the receptor located
within either the 50 UTR or the 30 UTR of the gene. They genotyped 103 Border
Collies (46 males, 57 females), consisting of two subpopulations (59 from Hungary
and 44 from Belgium). Additionally, they genotyped a single population of 104
German Shepherd dogs (58 male, 46 female) and assessed behavioral pheno-
types across five specific tests: (1) greeting the dog, (2) separation from owner,
(3) problem-solving, (4) threatening stranger, and (5) owner hiding from dog.
The study results demonstrated evidence of an association between the G-allele
of -212AG polymorphism and the behavioral phenotype of decreased owner prox-
imity seeking in both breeds. Additionally, the authors report an association of the
rs8679684 polymorphism with friendliness; however, the breeds exhibited divergent
associations with the A-allele in German Shepherds exhibiting higher friendliness
phenotype scores, while in Border Collies, the A-allele was linked to decreased
friendliness (Kis et al. 2014). Note that the -212AG polymorphism was subsequently
renamed to the -213 AG polymorphism as the genomic coordinates for the canine
oxytocin receptor were refined.

Bence et al. (2017) characterized nine oxytocin receptor polymorphisms in
four different canid species. Their study included three novel oxytocin receptor
polymorphisms identified through direct sequencing of the gene and regulatory
regions in two Eurasian gray wolves, four North American timber wolves,
three Beagles, three Border Collies, three German Shepherds, three Golden
Retrievers, and three Siberian Huskies. This sequencing led to the identification of
-74C/G, 18575C/T, and a microsatellite marker occurring between positions
18772–18792. They also included the three polymorphisms reported in 2014 by
Kis et al., -213A/G, 19208A/G (previously called -212A/G and 19131A/G, respec-
tively), and rs8679684. Additional three polymorphisms were identified in public
database searches (Bence et al. 2017). Allele frequencies were assessed in 689 pure-
bred dogs (70 Beagles, 144 Border Collies, 128 German Shepherds, 43 Golden
Retrievers, 22 Groenendaels, 32 Hungarian Vizslas, 49 Labrador Retrievers,
40 Malinois dogs, 138 Siberian Huskies, and 23 Tervurens) as well as 42 wolves
(34 Eurasian gray, 6 North American timber, 2 Alaskan), 6 golden jackals, 8 Dingos,
and 45 Asian street dogs.

The results revealed that only the -213A/G G-allele, -94C/T C-allele, -74C/G
C-allele, -50C/G C-allele, rs22927829 T-allele, rs8679684 T-allele, and 19208A/G
G-allele were detected in all four species. Interestingly, -213A/G A -allele, -50C/G
G-allele, and 19208A/G A-allele are only found in wolf and dog, with the wolf
having a higher allele frequency than the dog in each case. The rs22927829 A-allele
was only detected in dog and Dingo, while the rs8679684 A-allele was found only in
dogs. Across the dog breeds and wolf, Bence et al. (2017) reported that only two of
the polymorphisms exhibited evidence of both alleles in Border Collie, Golden
Retriever, Labrador Retriever, Hungarian Vizsla, Beagle, Tervuren, Groenendael,
Malinois, German Shepherd, Husky, and wolf (-94T/C, -74C/G). The -213A/G
polymorphism, for which the G-allele was implicated in owner proximity seeking
(Kis et al. 2014), lacked evidence of the G-allele in Tervuren and Groenendael
breeds. These results underscore the notion that phenotypic variation in social
behavior may exist across dog breeds (Bence et al. 2017).
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6.3 Visual Communication and Oxytocin

Nagasawa et al. (2015) investigated the physiological consequence of gazing behav-
ior between dog and owner. The rationale for this study was based on the idea that
human-like modes of communicating, such as mutual gaze, may have been selected
in dogs during domestication by humans. The authors refer to maternal oxytocin
levels rising in human mothers when mother-infant gazing occurs. They designed
experiments to test the hypothesis that an oxytocin positive feedback loop may be
induced by gaze between dogs and their human owners. From the results of their
experiments, the authors suggest the existence of a self-perpetuating positive feed-
back loop mediated by oxytocin in the human-dog bond. The authors characterize
the human-dog bond as being similar to the maternal-infant bond because both
bonds are associated with oxytocin positive feedback loops across the bond mem-
bers. Nagasawa et al. (2015) extrapolate from their results and suggest that gazing
behavior between dog and owner over thousands of years of domestication and
cohabitation conferred social rewarding effects to both humans and dogs. They
further point out that this oxytocin release, in both the dog and the human, would
result in a deepening of the mutual relationship and further promote interspecies
bonding (Nagasawa et al. 2015). They also examined whether an oxytocin loop may
have been acquired during dog domestication or whether it is shared among canids
that did not undergo domestication by employing hand-raised wolves in their
research (Nagasawa et al. 2015). The wolves did not exhibit long periods of gazing
at humans. The authors interpret this finding to mean that wolves do not engage in
mutual gaze as a means of social communication and interaction with humans.
Furthermore, the authors point out that in wolves, eye contact is considered a threat
among conspecifics and wolves generally avoid eye contact with humans (Nagasawa
et al. 2015).

6.4 Interbreed Differences in Oxytocin-Mediated Phenotypes

Dog breeds differ in social behavior in response to oxytocin. Kovacs et al. (2016)
demonstrated the existence of interbreed differences in social behavior associated
with intranasal oxytocin in two dog breeds (Siberian Husky and Border Collie)
representing distinct genetic lineages. Kovacs et al. genotyped the dogs (18 Siberian
Huskies and 16 Border Collies) on the -213A/G oxytocin receptor polymorphism
and identified an association between the dog’s genotype and social behavior
(Kovacs et al. 2016).

The path to canine domestication resulted in selection for traits contributing to
enhanced social bonding with humans and increased perception of human commu-
nication and nonverbal gestures. The acquisition of these traits allowed dogs to
inhabit a unique social niche among humans. Persson et al. (2016) employed a high-
density SNP chip and identified SEZ6L as a gene exhibiting an association with
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variation in social traits. SEZ6L has been implicated in autism, a phenotype in
which social interaction and communication deficits occur. Other genes located
in proximity to the identified haplotype block in the study include ARVCF, which
has been linked to schizophrenia, and TXNRD2 and COMT, two genes that play roles
in schizophrenia and social disorders (Persson et al. 2016).

7 Regions of the Dog Genome Exhibiting Evidence
of Positive Selection During Domestication

7.1 Identification of Positively Selected Genes in Dogs
Compared to Wolves

Wang et al. (2013) performed a genomic analysis to identify genes that exhibit
evidence of positive selection. They highlight the point that artificial selection acting
on dogs occurred in two phases. The first phase was defined by the domestication of
dogs from wild canids. These descendants of wolves shared living environments
with humans and subsequently shared human dietary resources. The second phase
was much more recent, occurring over the last few hundred years when morpholog-
ical variation was created leading to the diverse array of breeds and the physical
phenotypes that define them. Wang et al. (2013) suggest that genes selected during
the first phase should be shared among all dogs today and designed the experimental
approach in this context. Specifically the authors looked for regions of the genome
that contain relatively low levels of diversity between dogs and high levels of
diversity between wolves and dogs. Regions of the dog genome that contained
low levels of diversity in wolves were excluded from the analysis to prevent the
identification of genomic regions exhibiting low diversity in dogs that were inherited
directly from wolves without selection during domestication (Wang et al. 2013).

Among a set of 17,661 orthologous gene pairs between dogs and humans, 1,708
and 233 genes exhibited evidence of positive selection for humans and dogs,
respectively. Gene Ontology enrichment analysis identified terms such as “regula-
tion of digestion,” “negative regulation of intestinal phytosterol absorption,” “regu-
lation of lipid transport,” “axon,” “neuron projection,” “cell projection,” “gamete
generation,” “sexual reproduction,” and “reproductive process in a multicellular
organism.” These terms are particularly interesting because they reflect three major
themes of evolutionary selection during the initial phase of dog domestication:
(1) digestion, (2) reproduction, and (3) neurological process (Wang et al. 2013).

Strikingly, among these three functional categories, the authors identified
orthologous genes between dogs and humans that show evidence of positive selec-
tion in both species. Those genes include ABCG5, ABCG8, PLA2G10, and PRSS1
associated with nutrition. The genes GRM8 and SLC6A4 were identified within
the neurological process group. Among the genes implicated in reproduction,
BFAR, BRE, ITGB1,MET, STK17B, and ZMYM2 were identified as being positively
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selected in both dogs and humans and are involved in cancer, apoptosis, and cell
cycle as genes within the reproductive category. Of particular interest are the
neurological genes, GRIM8 and SLC6A4, which correspond to glutamate receptor
metabotropic 8 and the serotonin transporter, respectively. These genes modulate
phenotypes associated with autism and personality traits in humans (Wang et al.
2013).

7.2 Selection for Enhanced Starch Digestion
in Domestic Dogs

A major event in the domestication of dogs was the selection for a starch diet.
Axelsson et al. (2013) used approximately four million SNPs to identify multiple
genes associated with starch digestion and fat metabolism that exhibit evidence of
selection in dogs (Axelsson et al. 2013). Specifically, the authors identified ten genes
implicated in digestion and fat metabolism that were associated with specific muta-
tions found in dogs. These results provide genetic evidence that domesticated dogs
adapted to survive on starch-rich diets compared to the carnivorous diets of their
wolf ancestors.

In a follow-up study, Arendt et al. (2014) found that high amylase activity in dogs
was correlated with pancreatic amylase (AMY2B) copy numbers in the genome. The
authors characterized the distribution of AMY2B copy numbers across 20 breeds and
showed that considerable heterogeneity in AMY2B copy number exists across dog
breeds, ranging from 6 to 14 copies per genome. Dogs living with humans that were
exposed to agricultural advances during the prehistoric rise of agriculture benefitted
from these dietary resources. Arendt et al. (2016) determined that adaptation to
starch diets did not occur early in dog domestication but rather occurred in sub-
populations that were exposed to starch-rich diets. Their results show high levels of
AMY2B copy numbers in most domesticated dogs but relatively few in dogs origi-
nating from the Arctic. This is consistent with the historical geographic spread of
agriculture (Arendt et al. 2016).

Reiter et al. (2016) demonstrated that positive selection continued to act on
dogs that were exposed to starch-rich diets well after dog domestication had
occurred. The authors analyzed the relationship between starch-rich diets and dog
breeds to gain a better understanding of the relationship the dietary starch played
in AMY2B copy numbers. Their results demonstrate that dogs exposed to dietary
starch exhibit higher allele frequencies of diploid AMY2B repeats. This relationship
can be seen within specific dog breeds, such as the Shar Pei and Pekingese (exposed
to high-starch diets) compared to the Siberian Husky and Alaskan Malamute
(exposed to low-starch diets) as illustrated in Fig. 6 (Reiter et al. 2016).
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7.3 Functional Polymorphisms Exhibiting Fixed Alternative
Alleles in Dogs and Wolves

Another study investigating genomic regions targeted by selection during dog
domestication was described by Cagan and Blass (2016). Their approach leveraged
searching a comprehensive canine polymorphism database to identify polymorphic
markers that are highly differentiated between wolves and dogs. Their approach
led to the identification of 11 genes for which functional variants are fixed for
alternative alleles in dogs and wolves. A pathway analysis of the genomic regions

Fig. 6 Diet and AMY2B copy number variation. (a) Density plot of ddPCR diploid AMY2B copy
number for dogs that traditionally consumed high-starch diets and low-starch diets. Density reflects
frequency with which a given diploid copy number appears in each population. (b) Tukey boxplot
of diploid AMY2B copy number for dogs that traditionally consumed high-starch diets and
low-starch diets. (c) Tukey boxplot of diploid AMY2B copy number for specific dog breeds that
traditionally consumed high-starch diets and low-starch diets. Originally published in Reiter et al.
(2016)
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containing the polymorphic markers with FST > 0.75 identified “adrenaline and
noradrenaline biosynthesis pathway,” “axon guidance mediated by netrin,” “dopa-
mine receptor-mediated pathway,” “nicotine pharmacodynamics pathway,” “alpha
adrenergic pathway,” and “gonadotropin-releasing hormone receptor pathway.” The
authors point out that each pathway was represented by multiple genes. Furthermore,
computational analysis suggested that within each of the pathways, there are genes
with putatively functional variants (Cagan and Blass 2016).

The authors state that domestication of dogs likely selected for reduced fight
or fight responses, which are, in part, mediated by pathways such as “adrenaline
and noradrenaline biosynthesis pathway” (nine genes with potentially functional
variants), “dopamine receptor-mediated signaling pathway” (eight potential func-
tional variant genes), “alpha adrenergic receptor signaling pathway” (five potential
functional variant genes). The identification of neuro-related pathways further lends
support to the idea that behavioral phenotypes were selected during the initial phase
of dog domestication when wolves and dogs first began diverging (Cagan and Blass
2016).

8 Genetic Structure of Dog Breeds

After dog domestication, the next most frequently pondered questions about dogs
are: “How were the different breeds created?” and “What components of the genome
are responsible for the morphological phenotypes that define these breeds?”
Answers to these questions lie at the heart of many population genetics/genomics
studies carried out on dogs.

8.1 Dog Genome Sequence and Genetic Diversity

Studies revealing the sequence of the dog genome and canine genetic variation have
provided considerable information about the population structure of purebred dogs
and the relationship between different breeds. The dog genome sequence, derived
from a female Boxer, was published in 2005 (Lindblad-Toh et al. 2005). The Boxer
was selected due to the decreased heterozygosity within the breed and an expected
easier genome assembly process than would be expected for a dog with much greater
heterozygosity (Lindblad-Toh et al. 2005).

The genome was sequenced with the whole genome shotgun approach resulting
in over 31 million sequence reads corresponding to 7.5� coverage of the ~2.4 billion
base pair genome. The assembly was anchored to dog chromosomes with data
derived from previously constructed cytogenetic and radiation hybrid maps.
The resulting genome sequence enabled the identification of an initial set of
19,300 protein-coding genes. An analysis of 13,816 1:1:1 orthologs between
human, mouse, and dog provided lineage-specific data on synonymous (KS) and
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non-synonymous (KA) changes. This allowed the investigators to calculate the
KA/KS ratio, which provides a measure of the strength of selection acting on protein
coding genes. As part of their analysis, the authors determined the median KA/KS

ratios and discovered that the ratio differed substantially across each of the lineages.
Their results placed the KA/KS ratio within the dog lineage in between the mouse and
human lineages. The authors relate this finding to the population genetics theory that
associates strength of purifying selection with increased effective population size.
Their results are consistent with this theory as smaller mammals (such as mouse)
tend to have larger effective population sizes (Lindblad-Toh et al. 2005).

To better understand canine genetic diversity, three distinct SNP datasets were
analyzed. Lindblad-Toh et al. (2005) identified a total of 770,000 SNPs within the
Boxer genome. The authors also compared a previously assembled 1.5� coverage
draft sequence of the poodle genome (Kirkness et al. 2003) to their sequence of the
Boxer. The comparison identified 1,460,000 SNPs between the two dog breeds
(Kirkness et al. 2003). Additionally, Lindblad-Toh et al. (2005) generated shotgun
sequencing data from 9 diverse dog breeds, 4 gray wolves, and 1 coyote using
22,000 sequencing reads from each that resulted in a set of 440,000 SNPs. A 1,283
subset of these SNPs were validated by resequencing which indicated a true positive
rate of 96% (Lindblad-Toh et al. 2005).

8.2 Single Nucleotide Polymorphisms in the Dog Genome
and Inference of Bottleneck Events

A comprehensive SNP map was constructed from the above three SNP datasets
resulting in a final SNP map of more than 2.5 million SNPs. On average, any two
dogs will have a single nucleotide polymorphism within approximately every
thousand base pairs between members of different breeds, while members of the
same breed will have a SNP within 1,500 bp of their genomes. According to their
analysis, the gray wolf (1/580 bp) and the coyote (1/420 bp) exhibit greater genetic
variation than the Boxer. Within the Boxer assembly itself, a SNP occurs within
roughly every 3,000 bp. Based on their identification and analysis of SNPs, the
authors conclude that a set of 10,000 SNPs is sufficient for genetic association
studies in dogs (Lindblad-Toh et al. 2005).

As part of their analysis, Lindblad-Toh et al. (2005) modeled the population
history of the domestic dog. Specifically, they built a mathematical model in which a
dog population experienced both an ancient and a recent bottleneck. The results of
their coalescent method fit well with their genetic data when they set the ancient
bottleneck to 9,000 generations ago (27,000 years ago), with a population size of
13,000 and an inbreeding coefficient of F ¼ 0.12, and to the more recent breed-
creation bottleneck 30–90 generations ago (90–270 years ago). The authors also
used the modeling approach to generate estimates of breed-specific bottlenecks that
were consistent with known histories of the breeds. The breed that exhibited the
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poorest fit to the two bottleneck model was the Akita which was created in Japan
about 450 generations ago and then underwent a subsequent bottleneck in the 1940s
when it was introduced into the United States (Lindblad-Toh et al. 2005).

8.3 Number of Dog Breeds

Worldwide, there are over 400 recognized dog breeds. The American Kennel Club
recognizes 192 dog breeds as of 2018, and each year one million dogs are registered
by the AKC with over half of all annual AKC dog registrations corresponding to just
10 breeds.

8.4 Microsatellite Analysis of the Genetic Structure of 85 Dog
Breeds

An initial analysis of 85 dog breeds (genotyping 5 unrelated dogs from each breed)
was conducted using 96 microsatellite markers that spanned the canine genome with
an average density of approximately 30 Mb (Parker and Ostrander 2005). The results
indicated that a purebred dog could be assigned to its breed of origin 99% of the
time. During the analysis, it was discovered that almost 40% of all genetic variation
occurring in dogs is detectable when comparing dogs across breeds, for example,
when comparing a Great Dane to a Chihuahua versus comparing one Chihuahua
to another Chihuahua. This is considerably greater than what has been observed
in humans, where just 5–10% of all human genetic variation occurs between
populations and races. The genotyping data was used to cluster the 85 breeds
based on genetic similarity. Although most breeds mapped cleanly to a single
cluster, some breeds such as Australian Shepherd, Bichon Frise, Flat-Coated
Retriever, Great Dane, Lhasa Apso, and Pug mapped to more than one cluster
(Fig. 7) (Parker and Ostrander 2005).

8.5 Genetic Diversity Differences in Dog Breeds

Quignon et al. (2007) assessed the extent of genetic diversity inherent in Bernese
Mountain Dogs (BMD), Flat-Coated Retrievers (FCR), Golden Retrievers (GR), and
Rottweilers (ROT) sampled in equal proportions from the United States and Europe.
The goal of the study was to better understand how genetic variation within dogs
of the same breed varies by geographic location. Genetic studies in dogs can be
confounded by population stratification resulting in false-positive associations when
population substructure exists within a breed. This can be particularly problematic
when studies are designed assuming that all dogs within a breed share the same level
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and type of genetic variation. A set of 722 SNPs from four loci on chromosome
1 was genotyped in 120 dogs (Quignon et al. 2007). The investigators determined
that the GR exhibited the greatest number of polymorphic SNPs (66.6%), while the
fewest polymorphic SNPs were detected in the BMD. The FCR had 57.7% poly-
morphic SNPs, and the ROT had 54.4% polymorphic SNPs (Quignon et al. 2007).

Fig. 7 The population structure of 85 dog breeds. The dataset includes five unrelated dogs from
each of the 85 breeds that have been genotyped using 96 (CA)n repeat-based microsatellites that
spanned the dog genome at an average density of 30 Mb. Clusters were obtained using the computer
program Structure, which implements a Bayesian model-based clustering algorithm that attempts to
identify genetically distinct subpopulations based on patterns of allele frequencies. Four distinct
clusters described by Parker et al. are depicted as colored circles: cluster one is yellow, cluster two is
blue, cluster three is green, and cluster four is red. Breeds associated with each cluster are listed
within the appropriate circle, and examples of breeds are shown in the pictures. Some breeds show
similarity to more than one cluster and are listed in the overlapping space. Originally published in
Parker and Ostrander (2005)
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The finding that dog breeds are not homogenous populations underscores the
importance of population substructure when considering case-control genetic asso-
ciation studies. The authors state that variation in allele frequencies can arise through
a population’s genetic history, ancestral geographical distributions, mating practices,
and both reproductive expansions and bottlenecks. Moreover, Quignon et al. indi-
cate that besides population stratification arising from variation in geographical
origin, artificial selection during breeding for phenotypic traits such as coat color,
herding, hunting, olfactory capabilities, memory, and cognitive ability can also result
in undetected population structure when those breeds are used in genetic studies
(Quignon et al. 2007). This study highlights the fact that although members of a dog
breed may share similar physical traits, each dog is genetically a unique individual.

8.6 Genome-Wide Genetic Structure and Evolution of Dogs
Versus Wolves

Vonholdt et al. (2010) carried out a genome-wide analysis of 48,000 SNPs in
912 dogs (representing 85 breeds) and 225 gray wolves (across 11 globally distrib-
uted populations). The goal of the study was to gain a better understanding of the
evolutionary and geographical history that gave rise to the dramatic diversification of
phenotypes observed in dogs today. The authors used Bayesian clustering methods
to identify any dog breeds that may have evidence of admixture with wolves. A
relatively small set of breeds, considered ancient dog breeds, were identified and
include breeds such as Afghan Hound, Akita, Alaskan Malamute, Basenji, Chinese
Shar Pei, Chow Chow, Dingo, and Siberian Husky to name a few. Based on
historical information, these ancient dog breeds have origins dating back more
than 500 years ago (Vonholdt et al. 2010).

To determine the main contribution of genetic diversity in domestic dogs,
Vonholdt et al. (2010) considered whether a single wolf population clustered with
dogs in neighbor-joining trees by taking into account allele sharing of individual
SNPs, 5-SNP haplotypes, and longer multi-SNP haplotypes for individuals and
breed groupings. Their results indicated that only for individual SNPs and 5-SNP
haplotypes Middle and Near Eastern gray wolves clustered with dogs. Moreover,
in this analysis all other wolves clustered together as a single genetic entity separate
from dogs. Then they tested whether haplotypes sharing of modern and ancient dog
breeds could be associated with any distinct wolf populations. For this analysis,
North American wolves were used as a negative control based on existing models
of dog domestication excluding North America as the center of dog domestication
(Vonholdt et al. 2010).

The results demonstrated that the extent of shared haplotypes between dogs
and North American wolves was lower than sharing between dogs and Old-World
wolves. More importantly, they discovered that for 5-SNP haplotypes, sharing was
greater between Middle Eastern wolves and modern dog breeds than between other
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populations of wolves. For longer multi-SNP haplotypes, the authors report that
most breeds exhibit the greatest haplotype sharing with Middle Eastern wolves,
including geographically diverse breeds such as Basenji, Bassett Hound, Borzoi, and
Chihuahua. In separate analysis, the Akita, Chinese Shar Pei, Chow Chow, and
Dingo shared most strongly with Chinese wolves. Finally, the authors note that for
the 5-SNP and longer multi-SNP haplotype analyses, the Basenji shared the most
haplotypes with Middle Eastern gray wolves than any other domestic dogs. It is
worthwhile to point out that Basenjis are a dog breed having a Middle Eastern origin.
The authors interpret this result as indicating that the Basenji had a large effective
population size early in domestication or, alternatively, they have been recently
backcrossed with wolves. Taken together, the authors conclude that the Middle East
is the main source of genetic diversity in dogs with possible minor contributions
derived from Europe and Asia (Vonholdt et al. 2010).

Vaysse et al. (2011) described a comprehensive high-density genotyping analysis
of genomic regions exhibiting evidence of selection in 509 dogs across 46 diverse
breeds and 15 wolves using 170,000 evenly spaced SNPs. Evolutionary relation-
ships between the sampled subjects were assessed by building a neighbor-joining
tree from the genetic distances in the comprehensive genotyped dataset (Fig. 8).
Visualizing this tree led to the following conclusions: (1) dogs from the same
breed clustered together as is expected from closed gene pool breeding groups,
(2) relatively no structure is present within the breeds which is consistent with
modern dog breeds arising from a common set of ancestors rather quickly, and
(3) the internal branches for Boxer and wolf are longer than those for other breeds
which make sense because SNP discovery occurred using genomic sequence data
from the Boxer genome and the longer wolf branches likely represent greater
evolutionary distance compared to the other dog breeds (Vaysse et al. 2011).

9 Genomic Basis for Morphological Variation Between Dog
Breeds

Although dog domestication began at least 15,000 years ago, it wasn’t until the
Victorian era, roughly 200 years ago, that artificial selection for breed standards in
dogs first began. The phenotypes observed in the breeds of today represent extremes
of morphological variation (Fig. 9) (Shearin and Ostrander 2010).

Phenotypic variation across breeds is the consequence of a variety of physical
traits associated with numerous anatomical regions. Variation in skeletal morphol-
ogy is associated with differences in body size, leg size, and skull shape between
breeds. Tremendous variation in hair phenotypes gives rise to differences in coat
texture, length, and color within different breeds (Fig. 9).

778 K. J. L. Irizarry and E. J. R. Vasconcelos



9.1 Head Phenotype

Brachycephaly is a phenotype resulting in a dramatic decrease in muzzle length
accompanied by decreased length of the related bones (Fig. 10). Additionally,
brachycephalic dog breeds, such as the Boxer, Bulldog, French Bulldog, and
Pekingese, have slightly shortened and widened skulls.

An “across-breed” study was designed to investigate the genetic basis of the
brachycephalic phenotype. This genome-wide association study design required
control breeds lacking the brachycephalic phenotype and included dolichocephalic
(long muzzle) and mesaticephalic (intermediate muzzle length) breeds. The dolicho-
cephalic and mesaticephalic breeds included Akitas, Belgian Tervurens, Black

Fig. 8 Neighbor-joining tree constructed from raw genetic distances representing relationships
between samples. 170,000 SNPs were genotyped in 46 diverse dog breeds plus wolves using the
Canine HD array. The Boxer branches are longer, which likely represent the influence of ascer-
tainment bias, as the SNPs were discovered from sequence alignments involving the Boxer
reference sequence. Originally published in Vaysse et al. (2011)
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Russian Terriers, Bloodhounds, Dalmatians, German Shepherds, and Great Danes.
Bannasch et al. (2010) identified the location of the dog genomic region responsible
for the brachycephalic phenotype using an across-breed genome-wide association
approach. Using the Affymetrix Version 2 Custom Canine SNP arrays to generate
genotype calls, the authors successfully identified a brachycephalic head locus that
mapped to a region of chromosome 1 between 59.5 and 59.8 Mb (Bannasch et al.
2010). To more clearly delineate the region of association, the investigators used
88 affected dogs and 185 unaffected dogs to genotype a set of 49 SNPs overlapping
the most significantly associated region of the originally identified interval. The
results of this genotyping revealed a smaller 31 kb genomic interval that overlapped
a homozygous haplotype encoding a single gene, THBS2 within brachycephalic
breeds (Bannasch et al. 2010).

Schoenebeck et al. (2012) searched for additional genes modulating the
multigenic phenotype and cranioskeletal features differentiating dolichocephalic
skulls from brachycephalic skulls. In order to more completely characterize the
anatomical and geometric differences associated with phenotypic variation in canine
skull shape, the authors digitally captured 51 stereotyped anatomical landmarks
from 533 skulls obtained from museums representing 120 breeds and 4 gray

Fig. 9 Morphological variation in the dog. Dog breeds display extremes of morphological varia-
tion including body size and proportion, head size and shape, coat texture, color, and patterning.
Clockwise from the left: the Bloodhound, the Chinese crested, the Dandie Dinmont Terrier, the
Scottish Deerhound, the long-haired Chihuahua, and the French Bulldog (Original Image: Mary
Bloom, American Kennel Club). Originally published in Shearin and Ostrander (2010)
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wolf subspecies. The variance captured in Principal Component 1 (PC1) (59%
variation) corresponds to anatomical differences in rostrum length and angle, palate
and zygomatic arch width, and depth of neurocranium, which comprise the
cranioskeletal features giving rise to either a brachycephalic or dolichocephalic
skull phenotype (Fig. 11).

Schoenebeck et al. (2012) used one set of breed samples for phenotypic
measurements (the museum specimens) and another set of breed samples (the
DNA samples) for genotyping because purebred dogs conform to a specific mor-
phological standard that is shared among members of the breed. Morphological
phenotypes, such as skull shape, are uniformly constrained by the breed. Strong
genotype associations were found with PC1 (i.e., variations in skull morphology
differentiating brachycephalic skull phenotype from dolichocephalic skull pheno-
type) associated with polymorphic markers located at specific locations within
domestic dog, Canis familiaris, chromosomes (denoted CFA): CFA5.36476657,
CFA24.26359293, CFA30.35656568, and CFA32.8384767. Some additional
markers were weakly implicated on CFA9, CFA13, and CFA30 and another one
on CFAX (Schoenebeck et al. 2012).

Schoenebeck et al. (2012) reasoned that skull shape variation is a consequence of
artificial selection, and therefore they expected the major loci to exhibit reduced
observed heterozygosity (Ho) and elevated genetic differentiation (FST), both of
which are strong indicators of selective sweeps. The CFA32 quantitative trait
locus (QTL) was selected as a major focus because it was in the top 2 most
associated non-allometric loci that showed strong evidence of selection. The shared

Fig. 10 Brachycephaly in
dogs. Comparison of
photographs (Photos Mary
Bloom, courtesy of AKC)
and skulls from a German
Shepherd dog with a wild-
type skull shape
(non-brachycephalic) and a
brachycephalic Boxer.
Originally published in
Bannasch et al. (2010)

Population Genomics of Domestication and Breed Development in Canines. . . 781



haplotypes for CFA32 QTL among six of the seven most brachycephalic breeds
(Boston Terrier, Bulldog, Brussels Griffon, French Bulldog, Pekingese, and Pug)
defined a 190 kb genomic region in between 8.15 and 8.34 Mb, within which
two genes (PRKG2 and BMP3) were located (Schoenebeck et al. 2012).

In order to ascertain genotype-phenotype association within this interval,
Schoenebeck et al. (2012) performed whole genome sequence survey from 11
dogs of diverse skull phenotype (including the brachycephalic breeds of Bulldog
and Pekingese breeds). The authors identified the SNP at position 8,196,098 that
causes a missense mutation in BMP3 in which a phenylalanine is changed into a
leucine (F452L mutation). The substitution of leucine in place of phenylalanine was

Fig. 11 Quantitative and qualitative assessments of PC1 on canine cranioskeletal shape. (a) Gray
wolf (mesocephalic, ancestor to dogs) (b) Afghan hound (dolichocephalic), (c) Leonberger
(mesocephalic), (d) Pug (brachycephalic). (e) Surface scans of a gray wolf skull illustrate morpho-
logical changes associated with PC1. Columns (left to right) are dorsal, lateral, and rostral views.
Top row: a gray wolf skull morphed by positive PC1. Middle row: a gray wolf skull (no morphing).
Bottom row: a gray wolf skull morphed by negative PC1. Pseudocoloring of the gray wolf skull
indicates rostrum (ros) and neurocranium (nc). Line indicates width of the zygomatic arches (za).
Originally published in Schoenebeck et al. (2012)
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predicted to be disruptive to the BMP3 functional structure. Upon comprehensive
genotyping of 842 dogs across 113 breeds, it was found that the F452L mutation
is almost always fixed in brachycephalic breeds. This suggests that the missense
polymorphism may be the underlying cause for the brachycephalic phenotype
(Schoenebeck et al. 2012).

9.2 Genomic Basis of Breed-Associated Morphological Traits

A fundamental question in canine genomics is “What genomic mechanism enabled
selective breeding to produce the tremendous diversity of morphological phenotypes
observed in present day dog breeds?” Boyko et al. (2010) addressed this question
by genome-wide scans of SNP variation and genome-wide association mapping of
morphological traits using 60,968 SNP genotypes of 915 dogs covering 80 domestic
dog breeds coupled with 83 wild canids and 10 outbred African shelter dogs. The
genotype map was combined with external measurements using breed standards,
museum specimens, and individual dogs to identify genomic regions associated
with breed-specific phenotypic variation among 57 morphological traits. One of
the purposes of the study was to assess whether most breed-associated phenotypic
variation is the consequence of large-effect QTLs or whether most of the observed
phenotypic differences arise via the action of many QTLs of relatively weak effects.
The answer to this question will provide a better understanding of how domestica-
tion and artificial selection have impacted the dog’s genome (Boyko et al. 2010).

Boyko et al. (2010) performed a genome-wide scan to detect signatures of recent
selection and allele sharing between dog breeds. Because the data supports the idea
that relatively little sharing of IBD segments occurs among individuals from differ-
ent breeds, it is reasonable to expect that when coincident sharing occurs between
breeds with a similar phenotype, the shared genomic segments are likely encoding
the genetic variation for that trait. The top 11 most extreme FST regions of the dog
genome contained SNPs with FST � 0.57 and having a minor allele frequency
(MAF) � 0.15 (Boyko et al. 2010). Among the 11 regions detected with high FST,
6 are tightly linked to genetic variation known to affect canine morphological
phenotypes. For example, the 167 bp insertion in RSPO2 was associated with the
fur growth and texture phenotype; the IGF1 haplotype was associated with small
body size; an inserted retrogene (Fgf4) was associated with short limb length; and
three genes modulating coat color phenotypes in dogs were also associated with the
identified intervals ASIP, MC1R, and MITF. Additional regions with high FST were
identified: CFA10.11465975 (associated with body weight) and CFA1.97045173
(associated with muzzle length) (Boyko et al. 2010).

Boyko et al. (2010) performed the genome-wide association scans by measuring
55 morphological parameters in order to identify genotype-phenotype associations,
especially morphological traits that vary between dog breeds. Additionally, the
authors included genomic regions contributing to variation in body size (variation
is greatest across dog breeds than any other terrestrial species) as well as ear
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Fig. 12 Summary of associations across genomic regions for multiple traits. Each row corresponds
to a trait [either (a) absolute or (b) proportional], and each column corresponds to a genomic region
that has been found associated with at least one trait. The shading of each rectangle shows the R2
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floppiness. The genomic scan for body size [where body size ¼ log (body weight)]
resulted in the identification of multiple significant associations. The six strongest
signals occurred at CFA15.44226659, CFAX.106866624, CFA10.11440860,
CFAX.86813164, CFA4.42351982, and CFA7.46842856. Interestingly, the first
four signals identified in the body size variation scan correspond to some of the
highest FST values identified in the genome, along with CFA4 which has an
FST ¼ 0.46, consistent with diversifying selection among breeds for body size.
Interestingly, in all six regions, wolves are not highly polymorphic (MAF < 0.1),
and except for the CFA10 signal, the derived allele is at highest frequency in small
breeds (Boyko et al. 2010).

Another trait that exhibits considerable variation across breeds is ear type. All
adult wild canids have erect ears, yet dog breeds are fixed for a variety of ear
positions including floppy ears. This juvenile type trait is retained by adults of
certain breeds in a variety of domesticated mammals, such as dogs, cattle, goats,
and rabbits. SNPs associated with breeds fixed for erect or floppy ears were
identified and shown to be associated with a single interval on CFA10 that may
underlie the ear position phenotype (Boyko et al. 2010). A third trait of interest in the
Boyko et al. (2010) study was muzzle length, which varies tremendously across dog
breeds. Similar to floppy ears, short snout is another paedomorphic trait. The
strongest association signals were CFA1.59832965 and CF5.32359028, having
FST values of 0.55 and 0.42, respectively. These polymorphisms are only found in
brachycephalic breeds at high allele frequency (Boyko et al. 2010).

Boyko et al. (2010) constructed a multi-SNP predictive model for each trait. For
the models of body weight, ear type, as well as most of the measured traits, the
majority of the breed-associated variance was observed in fewer than four loci
(Fig. 12). Correlated traits, such as femur length and humerus length, exhibited
similar SNP associations. For the set of 55 measured traits, the average proportion
of variance explained by the top 1, 2, and 3 SNP models was R2 ¼ 0.52, 0.63,
and 0.67, respectively. The authors made the case that, after controlling for body
size, mean proportion of variance explained by the models was still considerable,
with R2 ¼ 0.21, 0.32, and 0.4, respectively. It is worth mentioning that the most
significant genomic regions were similar even using naïve association scans that did
not control for population structure. In terms of breed mapping, relatively little
population structure was shared among the breeds. Subsequently, whatever portion
of the population structure, which might have been shared among the breeds, was
small enough to avoid biasing the association inferences (Boyko et al. 2010).

Boyko et al. (2010) state, for the majority of traits investigated, that a few QTLs
of large effect determined the phenotype differences between breeds. These QTLs
mapped to specific locations on Canis familiaris chromosomes (CFA). As an
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Fig. 12 (continued) statistic of the single marker model for the trait for all significant associations
( p < 5.0e�5 for absolute external traits, p < 1.0e�4 for skeletal and proportional traits after
correcting for population structure). When multiple SNPs in the region are significant, the largest
value of the R2 statistics is reported. Originally published in Boyko et al. (2010)
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example, they site the proportional height at withers for which they identified a large-
effect QTL on chromosome CFA18, where they had previously determined a fgf4
retrogene that confers the phenotype associated with the chondrodysplasia dispro-
portional dwarfism in Basset Hounds, Corgis, and Dachshunds. Similarly, skull
shapes were largely determined by genomic regions on CFA1, CFA5, CFA26, and
CFA32, along with CFAX.105274087–106866624 region (also associated with
body size). Most of these regions were also associated with dental phenotypes
along with a strong association on CAF16. It seems that the relationship between
phenotypes and associated genomic intervals in domestic dog breeds can be best
described as a set of related phenotypes under the direct control of a few genomic
regions (Boyko et al. 2010).

10 Genes, Mutations, and Genomic Regions Contributing
to Clinically Relevant Phenotypes (Disease Conditions)
in Dog Breeds

In the past few years, new advances have been achieved using genome-wide
association studies (GWAS) and high throughput sequencing to unveil novel muta-
tions in dog populations associated with clinically relevant phenotypes. These
phenotypes span numerous organs, cell types, and body systems. Some interesting
examples across a variety of body systems and dog breeds are described below.

10.1 Cardiovascular

Cardiovascular disease affects different dog breeds including the Newfoundland,
Whippet, and Doberman Pinscher. Mitral valve degeneration is the most prevalent
type of heart disease in dogs and is acquired during aging as degenerative lesions
accumulate on the mitral valve. Over time, these lesions result in abnormal valve
morphology and function. In severe cases, the mitral valve may prolapse and cause
undesirable phenotypes, such as mitral regurgitation and left-sided congestive heart
failure.

Stern et al. (2015) used the 170,000 canine high-density (HD) genotyping SNP
chip and identified a region in the vicinity of position 57,770,326 on canine
chromosome 15, which is near the interval of 58,506,916 and 60,140,841 that was
also associated with mitral valve disease compared to normal dogs lacking evidence
of mitral valve disease. Within this region is follistatin-related protein 5 precursor as
well as some other genes including neuropeptide Y receptors. A region on chromo-
some 2 also exhibited partial evidence of association peaking at 37,628,875 which
is in proximity to rho GTPase-activating protein 26. In the discussion, the authors
implicate follistatin-related protein 5 with another gene (WFIKKN2) that is involved
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in metalloproteinase inhibition activity. Because metalloproteinase activity has been
considered a part of the mitral valve disease pathophysiological mechanisms, these
two genes represent viable candidates for the undesirable clinical trait of mitral valve
disease (Stern et al. 2015).

The Doberman Pinscher is one of the most commonly reported canine breeds
with familial dilated cardiomyopathy, which has been linked to congestive heart
failure and sudden cardiac death. Meurs et al. (2012) performed a GWAS using a
commercial “Canine Genome Array” containing 49,663 SNP markers and identified
a locus on CFA14 (Meurs et al. 2012). Fine-mapping of additional SNPs localized a
potential haplotype at 23,774,190–23,781,919 region from the same chromosome.
DNA sequencing identified a 16 bp deletion in the 50 donor splice site of intron
10 from the gene encoding the mitochondrial pyruvate dehydrogenase kinase
4 (PDK4) in affected dogs. The authors next demonstrated that PDK4 transcripts
derived from the homozygous deletion genotype exhibit decreased expression
of exons 10 and 11. This study tested 232 animals, with 66 affected and 66
unaffected Doberman Pinschers, plus 100 healthy dogs from 11 other breeds. The
target mutation was identified in 54 out of 66 affected dogs (82%, with 45
heterozygotes and 9 homozygotes) and 26 out of 66 of unaffected dogs (39%,
with 18 heterozygotes and 8 homozygotes). Some of the 100 unaffected dogs,
representing 11 other breeds, appeared to show the mutated allele as well. Electron
microscopy of myocardium from affected dogs demonstrated several mitochondrial
disorganization features, suggesting a dysfunction of PDK4 enzyme due to the
mutation (Meurs et al. 2012). The fact that the presence of an associated allele
may not always correlate with the associated phenotype underscores the complexity
of genetics.

The Irish Wolfhound is another breed that is predisposed to cardiac disease,
specifically dilated cardiomyopathy, with up to 20% of dogs in the breed exhibiting
the undesirable clinical phenotype. Philipp et al. (2012) performed a genome-
wide association study using 190 Irish Wolfhounds. Dilated cardiomyopathy
phenotypes were diagnosed with echocardiographic exams. Control dogs were at
least 7 years old with no signs of the dilated phenotype. The authors identified six
loci corresponding to CFA1 at 123,630,555; CFA10 at 24,159,608 (ARHGAP8
gene); CFA15 at 61,260,406 (FSTL5 gene); CFA17 at 58,604,566; CFA21 at
40,670,543 (PDE3B gene); and CFA37 at position 31,801,266. The authors report
that their associated regions overlapped with genes known to cause dilated cardio-
myopathy in humans (Philipp et al. 2012). The human form of dilated cardiomyop-
athy is a cause for heart transplants, and in the absence of transplantation, chronic
heart failure can occur. About half of human cases are inherited, and more than
60 genes have been implicated in the pathology (Toro et al. 2016).

In another example of cardiovascular phenotypes in dogs, Stern et al. (2014) used
a pedigree analysis of 45 Newfoundlands, of which 9 exhibited a subvalvular aortic
stenosis (SAS) phenotype. Twelve additional dogs in the pedigree displayed systolic
heart murmur phenotypes along with either evidence of aortic insufficiency or
a subvalvular ridge or both. When dogs with the aortic insufficiency and/or sub-
valvular ridge phenotypes were bred to normal dogs, offspring displayed undesirable
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cardiac phenotypes. A genome-wide association study followed by genomic
sequencing identified a mutation in the exonic region of the phosphatidylinositol-
binding clathrin assembly protein gene (PICALM). Interestingly, PICALM is
involved in morphogenesis of the heart. Stern et al. (2014) report that the phenotype
is likely caused by a 3 bp exonic insertion in the PICALM (599K_600LinsL
mutation) that was detected and associated with the development of SAS in that
breed. Immunohistochemistry validated the presence of PICALM protein in the
canine myocardium and area of the subvalvular ridge. Overall, 96.1% of the
SAS-affected Newfoundland dogs displayed the codon insertion mutation (34.6%
homozygous and 61.5% heterozygous), while only 26% of non-affected ones pos-
sessed the mutation (4.3% homozygous and 21.7% heterozygous). The authors state
that none of 180 control dogs of 30 different breeds possessed the mutation in any
form (Stern et al. 2014).

Following the report by Stern et al. in 2014, Drogemuller et al. (2015) provided
evidence suggesting that the mutation reported by Stern et al. may not in fact be the
causative allele associated with subvalvular aortic stenosis in Newfoundlands.
Among the evidence presented, Drogemuller et al. (2015) question the experimental
design that was used, pointing out that (a) the number of cases and controls used in
the association study would not provide the expected power needed to identify a
locus associated with a nondominant mode of inheritance (Drogemuller et al. 2015).
Furthermore, Drogemuller et al. (2015) report a replication of portions of the original
study and fail to reproduce the findings reported by Stern et al. (2014).

10.2 Endocrinology

An endocrine phenotype of clinical interest is obesity. Obesity and greater food
motivation were found as a genetic predisposed disorder in Labrador retrievers
(Raffan et al. 2016). The associated gene is pro-opiomelanocortin (POMC) that
encodes a pro-protein which is cleaved into several bioactive peptides, including
b-MSH (melanocyte-stimulating hormone) and b-endorphin. The associated geno-
type is a 14 bp deletion responsible for a frameshift after the glutamate at the position
188 (p.E188fs). It is predicted to disrupt the coding sequence of POMC and cause
loss of production of b-MSH and b-endorphin which results in increased body
weight with a mean effect size of 1.90 kg per deletion allele. Therefore, it indicates
a dominant dosage effect trait. Adiposity and food motivation were polymorphism
associated phenotypes in both Labrador Retrievers and the closely related Flat-Coat
Retrievers (FCRs). The mutation is significantly more common in Labradors
selected to become assistance dog breeding stock (allele frequency ¼ 0.45) than
those selected to be companions (allele frequency ¼ 0.12) (Raffan et al. 2016). In
humans, POMC mutations that produced aberrant forms of b-MSH reveal that this
is an important hormone in controlling appetite and obesity development (Challis
et al. 2002; Lee et al. 2006). Mice selectively lacking b-endorphin are hyperphagic
and obese (Appleyard et al. 2003). Taken together, these findings suggest that the
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loss of both neuropeptides in dogs carrying POMC p.E188fs could contribute to the
observed obese phenotype.

10.3 Ophthalmology

Progressive retinal atrophy (PRA) is a group of inherited eye diseases characterized
by retinal degeneration that culminates to blindness in dogs and is often described
as the equivalent of retinitis pigmentosa (RP) in humans. It is noteworthy that PRA
in dogs has been reported in over 100 dog breeds. Three studies, two in Golden
Retrievers and one in Shelties, have uncovered three PRA-related genes. The first
study in Golden Retrievers leveraged a genome-wide association study design to
ultimately identify a frameshift mutation within the canine solute carrier gene
SLC4A3. The undesirable allele was present in 56% of PRA dogs and exhibited
recessive inheritance with 100% penetrance (Downs et al. 2011).

The second study in Golden Retrievers (GRs), used GWAS in 10 PRA cases and
16 controls, identifying an association of a 737 kb chromosome 8 (CFA8) locus
containing six genes with a clinical ocular phenotype. Two of the genes (TTC8 and
SPATA7) have already been described as RP-associated in humans. TTC8 encodes a
protein that is a part of the BBSome complex which is responsible for ciliary
membrane biogenesis. Affected dogs showed a single nucleotide deletion in TTC8
exon 8. The frameshift mutation is predicted to cause a premature stop codon. In the
investigated cohort, this genotype (TTC8 c.669delA) is recessive, segregating cor-
rectly in 75.9% of the tested cases (22/29), whereas none of the PRA controls are
homozygous for the mutation, only 3.5% carry the PRA-associated allele, and 96.5%
are homozygous wild type (Downs et al. 2014).

Identifying genes associated with PRA provides a mechanism for developing
breeding programs that can eventually remove these undesirable alleles from
affected breeds. The pathophysiology and clinical progression of PRA have been
well characterized within the Swedish Vallhund dogs by Cooper et al. (2014). A
third study reported by Wiik et al. (2015) identified the CNGA1 gene on CFA13 as a
novel PRA-related locus using a genome-wide association approach with 15 Shet-
land Sheepdog (Sheltie) cases and 14 controls. CNGA1 is also known to be involved
in human RP. This gene encodes a protein involved in phototransduction, by
forming cGMP-gated cation channel in the plasma membrane that allows depolar-
ization of rod photoreceptors. Sequencing of this gene in affected Shelties identified
a 4 bp deletion in exon 9 (c.1752_1755delAACT). Similar to the TTC8 mutation in
Golden Retrievers, CGNA1 also alters the translation frame and generates a trun-
cated protein caused by premature termination codon (Wiik et al. 2015).

Besides PRA, other ocular phenotypes affect dogs, such as glaucoma. Two
metalloprotease genes ADAMTS10 and ADAMTS17 are implicated in primary
open angle glaucoma (POAG) in dogs: the former in Beagle (Kuchtey et al. 2013)
and Norwegian Elkhound breeds (Ahonen et al. 2014) and the latter in Basset Hound
and Basset Fauve de Bretagne breeds (Oliver et al. 2015). Regarding the latter study,
226 Basset Hounds and 27 Basset Fauve de Bretagne dogs were provided an
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ophthalmic examination and diagnosed for POAG. The affected Basset Hounds
displayed homozygosity for a 19 bp deletion in ADAMTS17 exon 2 that leads to a
frameshift predicted to form a truncated protein. Fifty clinically unaffected Basset
Hounds were genotyped for this mutation as either heterozygous or homozygous for
the wild-type allele. The affected Basset Fauve de Bretagne dogs contained a
nonsynonymous substitution in ADAMTS17 exon 11 causing a glycine to serine
amino acid exchange (G519S) in the disintegrin-like domain that might be related to
protein dysfunction. Unaffected Basset Fauve de Bretagne dogs were either hetero-
zygous for the mutation (5/24) or homozygous for the wild-type allele (19/24).
Therefore, evidence suggests that both independent POAG-associated mutations
are recessive in the two different breeds examined (Oliver et al. 2015).

10.4 Craniofacial

Wolf et al. (2015) described a mutation on the dog’s chromosome 27,
encoding a frameshift mutation within the ADAMTS20 metallopeptidase gene
(c.1360_1361delAA or p.Lys453Ilefs*3), that leads to a cleft lip with or without
cleft palate (CL/P) phenotype in the Nova Scotia Duck Tolling Retriever (NSDTR).
This undesirable phenotype exhibits a recessive mode of inheritance (Wolf et al.
2015). CL/P is the most commonly occurring craniofacial congenital disorder.
Interestingly, the same study that found ADAMTS20 as the CL/P-target gene in
NSDTR dogs has also reported a suggestive association of the same gene to CL/P
human cases in a family-based association analysis (DFAM) using a Guatemalan
cohort composed of 25 CL/P phenotypes, 420 unaffected relatives, and 392 controls.
In dogs, the mutation alters the reading frame and generates a premature stop codon
within the metalloprotease domain of ADAMTS20 protein. In humans it seems to be
associated with the SNP rs10785430 within ADAMTS20, but further studies are
required to assure whether it alters the protein function.

10.5 Dermatology

Canine atopic dermatitis (CAD) is a chronic inflammatory skin disease triggered
by environmental allergens that react with epithelial and immune cells. GWAS and
fine-mapping analyses revealed a 9-SNP-containing haplotype overlapping PKP2
gene that predisposes German Shepherd dogs to CAD. PKP2 encodes plakophilin-2
protein, which is involved in the synthesis of desmosomes, a cell adhesion structure
(Tengvall et al. 2016). The haplotype spans ~280 kb on chromosome 27 (CFA27)
which encompasses a rare ~48 kb locus shared only with other high-risk CAD
breeds. Transient transfections followed by luciferase reporter assays indicated that
seven out of the nine CAD-associated SNPs within that haplotype appeared to have
enhancer activity with allelic differences in either epithelial or immune cells. These
cells include Madin-Darby canine epithelial cell line from Cocker Spaniel (MDCK),
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human keratinocyte cell line (HaCaT), human T cell line (Jurkat), and human
erythromyeloblastoid leukemia cell line (K562). A top SNP (CFA27:19,086,778)
displayed high activity in keratinocytes with 11-fold induction of luciferase
transcription by the risk allele (T/T) versus 8-fold by the control allele (C/C)
( p ¼ 0.003). It also mapped close (~3 kb) to an ENCODE skin-specific enhancer
region. Those experiments suggest that GSDs’ predisposition to CAD is associated
with multiple variants combined in a risk haplotype that may contribute to an altered
expression of the PKP2 gene in immune and epithelial cells (Tengvall et al. 2016).

10.6 Pigmentation

A recessive genotype, within the solute carrier family 45, member 2 gene
(SLC45A2), is responsible for albinism in dogs. The SLC45A2 protein is found
in melanocytes, and, although its exact function is still being studied, it is likely
to be involved in melanin synthesis. A large deletion (g.27,141_31,223del) in
SLC45A2 was associated with oculocutaneous albinism (OCA) in Doberman
Pinschers (Fig. 13) that were homozygous for that mutation, whereas the albino
Lhasa Apso showed homozygosity for a nonsynonymous substitution in the seventh
exon of SLC45A2 (c.1478G > A) that resulted in a switch from glycine to aspartate
(p.G493D) (Wijesena and Schmutz 2015). This same study revealed that an albino
Pekingese, two albino Pomeranians, and one albino mixed breed dog that was small
and long-haired were also homozygous for the 493D allele. Colored offspring from
those small long-haired albinos were heterozygous for this allele, clearly indicating
that it is a recessive genetic trait. Structural bioinformatics investigation has
predicted that the 11th transmembrane domain (where the 493rd amino acid is
located) from the SLC45A2 (p.G493D) protein has an altered structure, which
might be deleterious for the proper protein function and, consequently, leads to the
albino phenotype due to the lack of melanin production. However, an albino Pug
was genotyped as homozygous for the 493G allele, indicating that although 493D
allele is related to albinism in some small, long-haired dog breeds, it does not explain
all albinism in dogs (Wijesena and Schmutz 2015).

10.7 Musculoskeletal

Mosher et al. (2007) identified the myostatin gene as the cause of increased muscle
mass in Whippets. Interestingly, Whippets, like Greyhounds, are bred for racing.
The Whippet is a small dog breed weighing approximately 9 kg. Within the
population of race-bred Whippets, a “Bully Whippet” phenotype emerged in
which heavily muscled Whippets were produced by breeders (Fig. 14). Although
owners report that the Bully Whippets are healthy with some incidents of muscle
cramping, they are never the less euthanized as they do not conform to the breed
standard. The authors report that a total of 22 Whippets were sequenced across the
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Fig. 13 Ocular phenotype of white Doberman Pinschers. Images taken from white Doberman
Pinschers (top row) and black standard-color Doberman Pinscher (bottom row). An image of white
Doberman Pinscher head (a) demonstrates lightly pigmented nose, lips, and eyelid margins
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three exons and most of the introns in the myostatin gene. Among those sequenced,
all four with the Bully Whippet phenotype were homozygous for a 2-bp deletion
within the third exon that removes nucleotides 939 and 940 resulting in a premature
stop codon. Of the five dogs that sired or whelped a Bully Whippet, all were
heterozygous for the 2-bp deletion mutation. None of the remaining 13 Whippets,
which all lacked the bully phenotype and had no familial history of the phenotype,
carried the 2-bp deletion mutation (Mosher et al. 2007).

The authors determined that the bully phenotype displayed a simple auto-
somal mode of inheritance. Furthermore Mosher et al. (2007) provided statistical
support for the idea that heterozygous Whippets contain, on average, 17% more
mass per centimeter of height compared to homozygous wild-type Whippets
( p-value ¼ 0.00017). When the authors analyzed the genotypes of 85 racing dogs,
for which racing results were available, an association between the mutation and
racing performance was detected. Specifically, among dogs that were heterozygous
for the mutation (N ¼ 12), 66% were classified as top racers, while less than 17% of
wild-type dogs received the same top ranking (n ¼ 72). The Bully Whippets are too
heavily muscled to perform well in races, while the heterozygotes exhibit ideal
racing performance associated with lean muscle. The authors ultimately sequenced
15 different breeds and determined the haplotypes spanning the myostatin gene
(Mosher et al. 2007).

10.8 Neoplasia

Cancers are genetically inherited diseases that occur in multiple species including
dogs and humans. Identifying tumorigenesis-associated mutations is of great
importance in veterinary medicine; dog’s neoplasias are also valuable spontaneous
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Fig. 13 (continued) compared with the same darkly pigmented structures in SDP (e). A closeup
image of WDP eye (b) shows nonpigmented leading edge of the nictitating membrane (NM),
tan-colored iris base transitioning to blue at pupillary margin, and oval-shaped dyscoric pupil
aperture. The black arrowheads (in b) demarcate a region of significant iridal stromal thinning
that was noted on examination to transilluminate (not shown in image) with retroillumination by
light reflected from the tapetum lucidum. SDP eye (f) shows darkly pigmented margin of the
nictitating membrane (NM) and brown iris with a round pupil aperture. WDP gonioscopy image (c),
which allows visualization of structures lying within the iridocorneal angle (in images c and g, this
region lies between the words “LIMBUS” and “IRIS”), shows that fibers of the pectinate ligament
(demarcated by black arrowheads) are of a similar tan color to the iris base, whereas fibers of the
pectinate ligament (demarcated by white arrowheads) are dark brown in SDP (g). WDP fundus
image (d) shows yellow-colored tapetum lucidum (labeled “TAPETUM”) and significant
hypopigmentation of the retinal pigment epithelium and choroid allowing visualization of the
choroidal vasculature. SDP fundus image (h) shows green-colored tapetum lucidum (labeled
“TAPETUM”) and heavy pigmentation of the non-tapetal fundus. For orientation purposes, images
taken at higher magnification (b–d and f–h) have the superior (S) and inferior (I) globe positions
labeled. Originally published in Winkler et al. (2014)
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models for better understanding human cancer. The same GWAS approach can
also be applied in cancer. For instance, a GWAS containing 39 dog glioma cases
and 141 controls from 25 dog breeds identified a significant locus on chromosome
26 (CFA26) (Truvé et al. 2016). Resequencing of a 3.4 Mb target region was
performed, revealing 56 SNPs that best fit the association pattern between
the resequenced cases and controls. Three candidate genes were highly associated
with glioma susceptibility: a calcium-/calmodulin-dependent protein kinase 2
(CAMKK2), a P2X ligand-gated ion channel 7 (P2RX7), and an mRNA translation
reinitiation factor (DENR) that influences the migration of cerebral cortical neurons
in mice (Haas et al. 2016).

Similarly, an investigation into canine mast cell tumors (CMCT) made use of
GWAS in Golden Retrievers from two continents [127 from the United States
(70 cases and 57 controls) and 146 from Europe (71 cases and 75 controls)],
identifying different regions in the genome associated with risk of CMCT in the
two populations (Arendt et al. 2015). Sequencing of GWAS-rescued regions and
subsequent fine-mapping identified a GNAI2 SNP associated with development of
CMCT. The GNAI2 gene encodes an alpha subunit of guanine nucleotide-binding
proteins (G proteins) that are transducers in various transmembrane signaling
systems and play a role in cell division. The identified SNP introduces an alternative
splice form that gives rise to a truncated protein. In addition, CMCT-associated

Fig. 14 Whippets with each of the three potential myostatin genotypes. (a) Dogs have two copies
of the wild-type allele (+/+). (b) Dogs are heterozygous with one wild-type allele and one mutant
cys ! stop allele (mh/+). (c) Dogs are homozygous for the mutant allele with two copies of the
cys ! stop mutation (mh/mh). All photos represent unique individuals except for the top and
middle panels in the right-hand column. Originally published in Mosher et al. (2007)
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haplotypes harboring the hyaluronidase genes HYAL4, SPAM1, and HYALP1 on
CFA14 and HYAL1, HYAL2, and HYAL3 on CFA20 were identified as separate
risk factors in US GRs and European GRs. This suggests that turnover of hyaluronic
acid is important for the development of CMCT (Arendt et al. 2015).

It appears that tumorigenesis and cancer associated phenotypes may arise through
a variety of mechanisms within the dog. Borge et al. (2015) assessed copy number
variations using microarrays to assess genotypes within 117 canine mammary
tumors obtained from 69 dogs. The authors point out that cancer cell genomes differ
from the host genome through single nucleotide polymorphisms, gain/loss of large
chromosomal regions via duplication/deletion of large genomic segments, and
expanded/contracted copy numbers of certain loci. Borge et al. (2015) employed
the Illumina 170 K canine HD array. Their analysis identified a number of genes
with known cancer associations in humans that were frequently amplified or deleted
in canine mammary tumors. Some of the genes frequently amplified in the tumors
included BCL6, FGFR2, MITF, MYC, and NPM1, while genes exhibiting deletion
loss within canine mammary tumors included PTEN, BMPR1A, KDM5C, KDM6A,
and PRF1 (Borge et al. 2015).

Squamous cell carcinoma of the digit (SCCD) in Standard Poodle (STPO) is a
locally aggressive cancer that affects only dark coat color individuals. GWAS
in 31 STPO SCCD cases and 34 unrelated black STPO controls detected a SNP
peak on canine chromosome 15 (Karyadi et al. 2013). Fine-mapping pinpointed a
region on the KIT Ligand (KITLG) locus. KITLG is a pleiotropic factor that acts in
the development of both germ and neural cells as well as in hematopoiesis, which is
involved in cell migration. Interestingly, the polymorphism within this locus impli-
cated in modulating risk for squamous cell carcinoma appears to be a copy number
variant within the transcriptional control region of the KIT locus that is predicted to
contain regulatory enhancer elements (Karyadi et al. 2013).

Other mechanisms underlying susceptibility to cancer have been identified.
Ferraresso et al. (2014) conducted an in-depth analysis of canine diffuse large
B-cell lymphoma (DLBCL) and identified the downregulation of tissue factor
pathway inhibitor 2 (TFPI-2) as a hallmark of lymph nodes associated with
DLBCL. Moreover, the authors demonstrated that hypermethylation of the TFPI-2
promoter, which increased as a function of age, correlated with decreased expression
levels of the gene and demonstrated the age-dependent epigenetic alterations
associated with canine DLBCL (Ferraresso et al. 2014).

Melin et al. (2016) performed a GWAS and identified three regions within
the canine genome associated with mammary tumors in English Springer Spaniels.
The study design consisted of 332 individuals, corresponding to 188 cases and
144 controls. The most significant genomic region was located on chromosome
11 and exhibited a complex architecture of numerous haplotypes spanning the
centrosomal cell cycle regulator CDK5 regulatory subunit-associated protein
2 (CDK5RAP2). The genomic region spanned 700 kb and was refined to a smaller
region of 446 kb. Within this region numerous SNPs, some of which are non-
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synonymous and may alter protein function, were identified. Melin et al. (2016)
assessed the relationship between the observed haplotypes using a phylogenetic tree
approach and then calculated the frequency of cases and controls among the different
haplotype groups. The cases within haplotype group 1 exhibited a lower frequency
than in haplotype groups 2 and 3. The authors report that within this region of the
genome, there are numerous noncoding RNAs such as miRNAs and snoRNAs,
potentially implicating RNA-mediated interactions as contributing to mammary
tumor susceptibility within this breed (Melin et al. 2016).

10.9 Many Clinically Relevant Traits in German Shepherd

Interestingly, the amount of genetic information about individual dog breeds is
continuing to grow rapidly. The German Shepherd dog has been the focus of
numerous genetic studies, and the results have opened the door to identification
of genetic markers implicated in a significant number of phenotypes, many of which
are associated with clinically relevant traits, such as atopic dermatitis and degener-
ative myelopathy (Table 1). Such knowledge provides opportunities for employing
genotyping technology in the artificial selection of next-generation German
Shepherds.

11 Conclusions and Future Perspectives

The tremendous wealth of dog genetics and genome information elucidated over the
last couple of decades has dramatically altered our understanding of how the dog
was domesticated and how artificial selection shaped it into the companion we live
with today. There is no doubt that the 30,000 years of selective breeding have given
rise to the dogs of today through the selection for specific traits that contribute to the
dog’s social fitness within human environments. Unfortunately, that same selection
has contributed to undesirable clinical phenotypes in dogs as well. The tools of
genomics have opened up the possibilities of inferring evolutionary history of dogs
as well as the resulting impacts on the genome. Through the lens of genetics, we are
able to discern exactly what biochemical molecules were altered in specific breeds
during the domestication process. Furthermore, this window into the genome has
allowed us to carefully begin to dissect the molecular events contributing to specific
morphological phenotypes within particular breeds as well as the undesirable
phenotypes associated with disease. These results, taken together, provide clear
evidence that selection occurs in the presence of selective pressure and that artificial
selection in dogs is an ongoing process. It is interesting to contemplate how dogs will
continue to evolve in the future. No doubt it will be at the hands of humans; however,
the tools available for aiding the artificial selection process are exponentially more
powerful than they were during the original domestication and breed radiation
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events. Prior to the advent of genomics and genome-wide association studies,
artificial selection relied on phenotyping specific animals and breeding them for
purposely bred traits. However, the combination of genotyping technology with
genomic markers associated with phenotypes of interest allows genetically informed
breeding plans to be developed to simultaneously maximize the phenotypes of
interest while minimizing the time to achieve the desired artificial selection.

Many breed fanciers are actively working with kennel clubs and geneticists to try
to breed out specific undesirable clinical phenotypes like cancer from their lines.
This is a challenging process, and consequences of such approaches may result in
unintended losses of heterozygosity and alleles within the breed. However, these
consequences must be weighed against the backdrop of health for each breed. As the
number of genetic markers implicated in dog traits continues to grow, the opportu-
nities for breeding dogs with unique combinations of phenotypes will also increase.
Novel breeds may emerge, that have a significantly reduced incidence of undesirable
clinical phenotypes. Additionally, it is equally likely that designer dog breeds may
be produced that possess unique combinations of morphological phenotypes that
previously never co-occurred within the same breed. Combinatorial possibilities are
quite literally endless.

Recently, designer dogs (hybrids of two different breeds) have come into fashion.
Some dog fanciers view these emerging breeds as a destruction of the underlying
breeds. However, others view these dogs as valuable companions and worthwhile
pets. One example of such a designer dog is the Labradoodle, a dog produced by a
cross of the Labrador Retriever with the Poodle. Considering the combinatorial
explosion of pairs that can be crossed from 300 or 400 distinct dog breeds, there
are between 44,850 and 79,800 distinct 2-breed designer dog breeds that can be
produced from these 300 or 400 breeds, respectively. Furthermore, combining four
different breeds to produce a hybrid dog results in more than one billion distinct
four-breed combinations.

The demonstrated plasticity of the dog genome represents a powerful mechanism
for creating and selecting phenotypes. It is likely that within another 1,000 years,
dogs will be selected for combinations of phenotypes and traits that were once
thought impossible. It will be truly exciting and breathtaking to witness the evolu-
tionary journey humans will take with dogs.

Although to date dogs appear to have gone through two distinct selection
processes, (1) an initial domestication followed by (2) an expansion of breeds
more recently, beginning right now, dogs are entering the third selection process,
one that will be carried out with the full scientific capability of the human species
and where dogs end up will be anyone’s guess.

The discoveries made in dog population genomics have been achieved using
technology, such as genome sequencing, genotyping arrays, and gene expression
arrays. This technology was developed in the past few decades. However, new
genomics technology such as RNA sequencing, which provides advantages over
microarray-based expression studies, will further open the window to understand
complex patterns of gene expression associated with dog domestication, health, and
disease. Additionally, the emerging tools associated with epigenetics will
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undoubtedly provide a greater understanding of how phenotypic variation in dogs
can arise through epigenetic regulation of genes. This information will elucidate the
underlying mechanisms contributing to gene silencing and clarify why individuals
with the same genotypes may exhibit strikingly different phenotypes.

In conclusion, the journey from speculation to knowledge has been very exciting.
Moreover, although we have learned some new and important things about dogs, we
still have much more to learn. Because dogs are considered to be the first species
domesticated by humans, they are the ideal organism to study population genomics
and unravel the mysteries underlying domestication and the impact artificial selec-
tion has had on anatomical, cognitive, dietary, social, behavioral and disease traits.
Through thousands of years living among humans, dogs and humans have shared
an extremely strong social bond (Fig. 15). The behavioral and cognitive basis for
this bond is beginning to emerge from numerous studies aimed at deciphering the
footprints of selection in the dog genome. This is a very exciting time for genomics
and for dogs. As we gain a more detailed understanding of our interspecific rela-
tionship that evolved over the millennia, we will undoubtedly gain a scientific
appreciation for what our hearts already know, and what we already know is that
dogs are our best friends.

Acknowledgments Dr. Irizarry acknowledges the role his father and mother had in inspiring him
to write this chapter by introducing Dr. Irizarry to the human-animal bond through special relation-
ships with family dogs. Furthermore, Dr. Irizarry wishes to acknowledge the many conversations he
had with his parents about cognition, dogs, domestication, and what makes dogs “our best friend.”

Fig. 15 The human-animal bond was formed through the domestication of wolves into the
companion animals we call dogs. Today, millions of dogs are members of human families. The
strength of the human-animal bond is frequently represented in media, art, songs, movies, novels,
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genetic and phenotypic variation, 363
genetic risk factors, 362
genomic relationship matrix, 367
genomic resources

in animals, 409
in humans, 398–408
in plants, 408–409

Grammar-Gamma method, 371
heritability

definition, 378, 379
functional genome annotations,

388–389
genome-shared IBD, 381
haplotype mapping projects, 386
Haseman-Elston regression, 382–383
human height, 385
large-scale GWA studies, 385
linear mixed-model estimation, 383
marker-based heritability, 386
measurements of relatedness, 384–385
Mendelian genetics, 385
missing heritability, 386
mixed-model estimation, 387–388
nonanalytical factors, 379–381
parent-offspring regression, 381
sibling analysis, 382
twin studies, 382
whole-genome sequencing, 386

limitations, 410–411
linkage disequilibrium, 362, 367–368
loci associated with traits within

populations, 22–24
mapping, 634–637
marker polymorphisms, 362
meta-analysis methods, 389–391
MTMM method, 371
multivariate mixed-model approaches, 411
NHGRI-EBI catalog, 389
omnigenic model, 411
phenotyping, 366
post-GWAS prioritization

annotation-based enrichment
methods, 392

dense genotyping arrays, 391
DEPICT, 392
dmGWAS, 395–396
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ENCODE, 392, 393
FTO study, 392
functional annotations, 393–394
functional enrichment analysis, 393
large-scale omics profiling, 392
MNase-hypersensitive (MNase HS)

regions, 393
MNase-seq protocol, 393
pathway-based analysis methods, 394
PINBPA, 395
PPIs, 395
single nucleotide polymorphisms

(SNPs), 393
principal component analysis, 367
sample size and allelic diversity, 365
schematic representation, 363, 364
Šidàk-Bonferroni approach, 370
statistical model, 363, 368–369
STRUCTURE, 367
on system biology approach, 411
Tassel, 372

Genome-wide epigenetic assay, 182
Genomically informed ecological niche model

(gENM), 557
Genomic Association and Prediction Integrated

Tool (GAPIT), 372
Genomic breeding values (GEBVs), 428, 429
Genomic clines, 630, 632
Genomic Evolutionary Rate Profiling

(GERP), 374
Genomic imprinting, 185
Genomic islands of divergence, 619
Genomic resources

chloroplast genome diversity studies, 688
mapping and calling variants, 688–689
mapping reads, 687
single nucleotide polymorphism, 687–688

Genomic selection
biological information, 451–452
breeding programs

in dairy cattle, 432, 433
design of selection schemes, 432
generation interval, 431–432
heterosis effects, 432
pedigree, 432
in pigs, 432, 434
plant breeding, 432
selection of stock and lines, 433–435

breeding values, 449–450
in companion animals

dogs (Canis lupus familiaris), 459
horses (Equus ferus caballus), 459–460

in crop plants

barley (Hordeum vulgare), 464
GxE effects, 461
maize (Zea mays), 461–462
other crop species, 464–465
rice (Oryza sativa/Oryza glaberrima), 461
spring bread wheat, 462–463
traditional selection, 460
wheat (Triticum aestivum), 462

in dairy cattle, 456
EBVs, 428
elastic net algorithm, 445
estimation methods, 445
GBLUP models, 446, 447
GBS, 453
GEBVs, 428, 429
genetic architecture, 444
genome editing, 450–451
genomic selection 2.0, 454
genotype information, 469–470
genotyping arrays, 453
genotyping platforms, 435–441
in homo sapiens populations, 468–469
human-introduced genetic changes, 430
imputation, 453
linkage disequilibrium, 429
in livestock, 451

aquaculture, 458
cattle (Bos taurus), 454–455
goats (Capra aegagrus hircus), 456–457
pigs (Sus scrofa), 457–458
poultry/chicken (Gallus gallus

domesticus), 458
sheep (Ovis aries), 456–457

marker-based selection methodology, 428
modification of individuals, 450
nonadditive effects

dominance effects, 447–448
epistatic effects, 448

nonparametric approaches, 444
parametric methods, 444–446
predictive performance, 445
QTN, 429–431
quantitative genetic theory, 428
reference population, 442–443, 460–461
RKHS models, 447
shrinkage methods, 445
SNP model, 446
transcriptome and proteomic assisted

selection, 452–453
in trees

eucalyptus, 466–467
forest trees, 465–466
fruit trees, 467–468
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Genomic selection (cont.)
US dairy database, 456
validation horizon, 444
variable selection methods, 445

Genomic selection 2.0, 454
Genomic variation

population genomic methods, 715–717
sequencing and single nucleotide

polymorphism arrays, 714–715
Genotype by environment (GxE) effects, 461
Genotype-environment association (GEA)

method, 19–20, 277, 497, 556
Genotyping-by-sequencing (GBS), 39, 453
Geographically Weighted Regressions

(GWR), 279
Geographic clines, 630, 631
Golden Retrievers (GRs), 789
Gotoh’s pair-wise alignment algorithm, 172
Grammar-Gamma method, 371
Graph theory-based approaches, 558
GREML-LDMS, 388
GWAS, see Genome-wide association studies

(GWAS)

H
Hard sweep, 616
Haseman-Elston regression, 382–383
Head phenotype, 779–783
Heterozygosity (H), 715
High-performance liquid chromatography

(HPLC), 209
High-throughput sequencing methods

DNA and RNA library preparation, 98–100
genome complexity reduction method (see

(Genome complexity reduction
(GCR) method))

library strategy
multiplexing in single lane, 101–102
paired-end sequencing mode, 100–101
single-end read lengths, 100
Solexa sequencing strategy, 100

whole-genome sequencing and
re-sequencing, 101, 111–112

Histochemical staining techniques, 84
Histone deacetylation, 234
Histone quantitative trait loci (hQTL), 53
Histones modifications, 190
Historical biogeography, 540

evolution, 547–548
geology, 545–546
population genomics approaches

genomic structure and gene flow,
560–562

paleogenomics, 562
phylogenomics, 563–564

spread, 546–547
traditional approaches

dendrochronology-based approaches,
552–553

molecular population genetics
approaches, 554–555

paleo-based approaches, 553–554
phylogeography, 554–555

Historical demography, 656
Hitchhiking effect, 715
Human-mediated colonization events, 662
Human paleogenomics

anatomically modern humans, 337–341
archaic hominins, 335–337

Hybridisation, 614, 615
Hybrid zones, 615, 616
5-hydroxymethylcytosine (5hmC), 184–185,

192, 210, 212, 231–232

I
Identical-by-state (IBS), 766
Identity-by-descent (IBD) segments, 766
Illumina, 113
Illumina GoldenGate assay, 96
Illumina Infinium iSelect BeadChip, 96
Inbreeding depression, 766
Incidental islands model, 620, 621
Individual heterozygosity (IndHet), 566
Integrated Haplotype Score (iHS), 716
International genome sample resource

(IGSR), 398
International HapMap Project, 398
International Maize and Wheat Improvement

Center (CIMMYT), 462–463
Introgression, 615
Island biogeography, 546
Island fox (Urocyon littoralis), 293
Isolation-by-barrier (IBB), 271
Isolation-by-distance (IBD) model, 271
Isolation-by-environment (IBE), 273–274
Isolation-by-resistance (IBR), 271–273, 566
Isozymes, 85

J
Jumonji C, 235
Juvenile type trait, 785
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K
Kidney-related diseases, 230
Kimura’s neutral theory, 555

L
Lactate dehydrogenase (LDH), 85
Lactate dehydrogenase-A (LDH-A), 592
Lactate dehydrogenase B (LDH-B), 590, 591
Lake ecotypes, 623
Lamarckian-type mechanism, 50
Landscape community genomics (LCGs),

306–307
Landscape connectivity, 558
Landscape ecology

population genomics approaches, 557–558
traditional approaches, 549–550

Landscape genomics, 307–308, 558–559
adaptive (see (Adaptive landscape genomics))
analytical steps, 269
applications, 281–282
challenges, 303–304
composition and configuration, 268
consequences of environmental changes,

263–264
in conservation management, 307
definition, 263
and eco-evolutionary dynamics, 305–306
forest trees, 282–293

adaptive, 285, 290–291
beginnings, 283
comparative, 291
neutral, 284–285

future research in, 304–305
genetic variation

components, 264
spatial environmental heterogeneity

influences on, 264–268
landscape community genomics, 306–307
vs. landscape genetics, 265–266
neutral (see (Neutral landscape genomics))
next-generation sequencing, 263
and nongenetic data, 305
range-expanding species under climate

changing conditions, 298–300
seascape genomics

currents and gene flow, 300–301
high-value fisheries, 301–302
life histories of marine species, 302
local adaptation, 301
marine vs. terrestrial settings, 300
signatures of directional selection, 302
SNP, 301
spatial distribution of species and genes,

302–303

studies of forest trees, 286–290
studying IBE

evolutionary processes, 294
GDM analysis, 296
genomic resources, 297
in Greater Antillean Anolis lizards

species, 294–296
pattern of, 293–294
rainforest skink (Trachylepis

affnis), 296
SEM analysis, 295–296
sun skinks (Eutropis multifasciata),

296–297
of wildlife, 291–293

Landscape resistance surfaces, 272–273
Limnetic ecotypes, 623
Linear mixed-model estimation, 383
Linkage disequilibrium (LD), 362, 367–368,

616, 620, 635, 715, 766, 767
genetic diversity, 719–721
patterns, 719

Linkage map
combination of physical map and, 37
description, 31
GD information from, 34
genotype-phenotype associations, 32
identify independent loci, 31
numbers of mapped loci, 31
recombination rate variations, 31–32
usages, 37

Linked selection, 620, 626, 627
Linking anonymous loci, 621
Livestock productivity, 737
Local adaptation, 601–602
Local Indicators of Spatial Association (LISA)

analysis, 298, 300
Long Non-coding RNAs (lncRNAs),

188–190
Long-range haplotype (LRH) test, 716
LUMPY, 137

M
Mammuthus primigenius, 57
Mantel tests, 274
Mapping genomic variation

breed-defining appearance traits
body size, 722, 724
coat colour, 721–723
facial profiles, 724–730

production traits
meat, 732–737
milk, 730, 732, 733
reproduction, 737–738

Mapping reads, 687
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Markov Chain Monte Carlo (MCMC), 278
Massively parallel sequencing (MPS), 38
Maximum Entropy (MaxEnt) modeling, 549
MAXPOPS, 169
Meat production

characteristics, 734
double muscling phenotype, 732, 734–737
fatty acid phenotypes, 734
intramuscular fat, 734
multi-method selection mapping, 736

Mendelian genetics, 385
Mendelian loci, 631
Message Passing Interface (MPI), 170
Metagenomics, 48–49, 569
Metatranscriptomic, 49–50
Methylation-assisted bisulfite sequencing

(MAB-seq), 213
Methylation quantitative trait loci (meQTL), 53
5-methylcytosine (5mC), 184
Microarray data, 215–216
Microrefugia, 565, 566
Micro RNAs (miRNAs), 187
Microsatellite analysis, 554
Microsatellite-based study, 661
Microsatellites, 90–92
Microscale analysis, 542
Mitral valve degeneration, 786
Molecular population genetics approaches,

554–555
Mountain hemlock

average tree ring width, 566
biodiversity conservation, 568–569
ddRAD-seq, 565
definition, 565
individual heterozygosity, 566
isolation-by-resistance approach, 566
microrefugia, 565, 566
population genomic analysis, 566, 567
variance in tree ring width, 566

MrBayes, 162
MSMC, see Multiple sequentially Markovian

coalescent (MSMC) method
Multi-breed selective sweep analyses, 724
Multi-method selection mapping, 736
Multiple sequentially Markovian coalescent

(MSMC) method, 523, 524, 527,
691, 692

Multiplex PCR amplicon sequencing, 488
Multiscale genomic study, 564–565
Multi-SNP predictive model, 785
Multitrait mixed model (MTMM)

method, 371

Mutation
bottom-up approaches, 669, 670
chromosomal inversions, 671–672
copy number variants, 672
definition, 657
genome size, 672
large vs. small effect loci., 670–671
polyploidy, 673
top-down approaches, 669, 670
transposable element variation, 672–673

Mycobacterium leprae, 347
Mycobacterium tuberculosis, 346–347

N
Narrow-sense genomics

adaptive population structure, 498
demographic history, 500–502
GEAs, 497
hybridization and introgression, 499
multivariate approaches, 497
outlier tests, 496
QTL mapping, 496
questions, 491–492

ncRNAs, see Non-coding RNA (ncRNAs)
NeEstimator method, 493
Neurodegenerative diseases, 230–231
Neutral landscape genomics, 269

conceptual chart, 265
distance-based analysis

isolation-by-barrier, 271
isolation-by-distance model, 271
isolation-by-environment, 273–274
isolation-by-resistance, 271–273

hypotheses typically tested, 270
individual-based analyses, 269
population-based analyses, 269
statistically linking between environmental

data and, 274–275
NEXTflex RNA-Seq Kit, 111
Next-generation sequencing (NGS), 213, 263,

588–589
advantage, 327
average genome coverage, 328–329
data, 162
library preparation

double-stranded library preparation, 324
Illumina sequencing, 331, 332
single-stranded library preparation,

331–333
modern reference genome, 328–329
ultrashort aDNA fragments, 325
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NHGRI-EBI catalog, 389
Non-coding RNA (ncRNAs)

classification, 186
definition, 186
long non-coding RNAs, 188–190
micro RNAs, 187
PIWI-interacting RNAs, 188
small interfering RNAs, 187

Non-hominin vertebrate paleogenomics
dog domestication, 343
horse domestication, 343–344
polar bear, 342
woolly mammoth, 341–342

Nonlinear community modeling
approaches, 668

Non-neutral DNA polymorphism patterns,
596, 597

Nonparametric “ABBA-BABA” test, 762
Nontrivial parallel programming

techniques, 162
Nucleotide diversity, 715, 721

O
Ocean currents, 593–595
Oligonucleotide microarrays, 45
OmegaPlus, 144
Omnigenic model, 411
1-Dimensional site frequency spectrum

(1dSFS), 518, 519
OpenMP (Open Memory Programming), 170
ORY-1001, 235
Oxford Nanopore, 114–115
Oxytocin mediated phenotypes

genetic variation, 767–768
interbreed differences, 769–770
social phenotypes, 767
visual communication, 769

P
Pacific Biosciences, 114
Pairwise sequentially Markovian coalescent

(PSMC) method, 523, 524, 526–527,
689, 691

Pairwise sequential Markovian coalescent
method, 762

Paleoepigenetics, 350
Paleogenomics, 56–57, 562

aDNA extraction methods, 327, 330
genome-scale sequencing, 335
human paleogenomics, 335–341
next-generation sequencing, 325, 327–329

NGS library preparation
double-stranded library preparation, 324
Illumina sequencing, 331, 332
single-stranded library preparation,

331, 333
non-hominin vertebrate paleogenomics

dog domestication, 343
horse domestication, 343–344
polar bear, 342
woolly mammoth, 341–342

paleometagenomics, 348–349
of pathogenic microorganisms

Mycobacterium leprae, 347
Mycobacterium tuberculosis, 346–347
Phytophthora infestans, 347–348
variola virus, 348
Yersinia pestis, 346

PCR period, 325, 326
plant paleogenomics, 344–345
population genomics approaches, 562
shotgun sequencing, 335
targeted enrichment, 333–335
traditional approaches, 553–554

Paleometagenomics, 348–349
Parapatry, 614
Parent-offspring regression, 381
PCR, see Polymerase chain reaction (PCR)
Pharmacoepigenomics, 234–235
Phosphatidylinositol-binding clathrin assembly

protein gene (PICALM), 788
Phylogenetic analyses, 554
Phylogenomics, 149–150, 563–564
Phylogeography, 554–555, 597–599, 656
Phytophthora infestans, 347–348
piRNA-induced silencing complexes

(piRISCs), 188
Pituitary homeobox transcription factor

1 (Pitx1) gene, 623, 624
PIWI-interacting RNAs (piRNAs), 188
Plant mtDNA, 87
Plate tectonics, 545
PLINK, 139
Polymerase chain reaction (PCR), 88–90,

325, 326
Polyploidy, 148, 149, 673
Pool-Seq method, 112
Population connectivity, 603, 604
Population genomic analyses, 137–138

all-purpose tools, 138
ANGSD, 139
PLINK, 139
R packages, 139
Vcftools, 139
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Population genomic analyses (cont.)
comparative genomics analysis, 150–151
evolutionary population genomics analyses,

143–144
ancient DNA and paleogenomics,

147–148
genome-wide association studies,

146–147
genomic patterns of selection, 144–145
pan-genomes, 147

phylogenomics, 149–150
polyploids, 148, 149
population genetics and demography,

139–140
admixture analyses, 141
introgression, 142
mutation rate, 143
population history, 142–143
population structure, 140–141

Population genomics, 61
ABBA-BABA D-statistics, 641, 642
adaptive introgression of alleles, 29–30
admixture, 29–30

admixture mapping, 630–634
clines, 630–632
definition, 615
genome-wide association mapping,

634–637
key systems, 616–618
occurrence, 29

anonymous reduced representation
sequencing, 487–488

application of, 11
bioinformatics, 46–47
breed development, 738–740
broad-sense genomics

allele frequency, 493
definition, 7
inbreeding depression, 492
mitochondrial DNA sequence, 494
vs. narrow-sense genomics, 7–8
NeEstimator method, 493
phylogenomics, 495–496
phylogeographic study, 494
SNP loci, 492–494
stock identification, 495

cDNA microarrays, 45
chromosomal rearrangements, 644
colonization and invasion

admixture, 664, 665
gene flow, 656, 663–664
genetic drift, 656, 661–663
historical demography, 656

history, 658–661
hybridization, 664
mutation, 657, 669–674
phylogeography, 656
selection, 656–657
stages, 656, 657

comparative genome scan approaches,
642–643

conservation and management, 603–605
crop plants (see (Crop domestication))
definition, 4, 485, 486, 491
detecting and characterising gene flow,

637–640
developments of, 8–9
domestic animals

cattle breeds, 711, 713
genetic and phenotypic distinctiveness,

711–713
genetic diversity, 718–721
history, 711
mapping genomic variation (see

(Mapping genomic variation))
pig breeds, 711, 712
population genomic methods, 715–717
population size, 717–719
pre-genomic research, 713–714
sequencing and single nucleotide

polymorphism arrays, 714–715
ecological biogeography

dendrogenomics, 559–560
landscape ecological analysis, 557–558
landscape genomics, 558–559
species distribution modeling, 556–557

in ecology and evolution, 484, 486
emerging approaches

metagenomics, 48–49
metatranscriptomic, 49–50
paleogenomics, 56–57
population epigenomics, 50–54
proteomics approaches, 55–56

empirical data, 485
estimating parameters with genome-wide

markers
Bayesian clustering analysis, 13, 14
genetic variation and effective

population size, 12–13
historical demographic patterns, 13–15
phylogenomics, 16
population structure and

phylogeography, 13
principal components analysis, 14

future perspectives, 59–60
gene expression, 45–46
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genetic differentiation, 17–18
genetic (linkage) map

combination of physical map and, 37
description, 31
GD information from, 34
genotype-phenotype associations, 32
identify independent loci, 31
numbers of mapped loci, 31
recombination rate variations, 31–32
usages, 37

genomic study designing, 489–490
genomic vulnerability, 492
GWAS (see (Genome-Wide Association

Studies (GWAS)))
hard selective sweeps, 16–17
Heliconius butterflies, 641
historical biogeography

genomic structure and gene flow,
560–562

paleogenomics, 562
phylogenomics, 563–564

hybrid zones, 29–30
identifying adaptively differentiated

populations, 27–29
inbreeding and inbreeding depression in

wild, 24–26
landscape genomics

GEA analyses, 19–20
identifying environmental factors, 19
landscape community genomics, 21
signatures of polygenic adaptation,

20–21
library preparation methods, 103
linkage disequilibrium, 490, 491
linked read sequencing, 643
locations of loci, 30–38
long-range scaffolding technology,

643–644
long-read sequencing, 643–644
methods, 715–717
molecular population genetic studies, 485
multiplex PCR amplicon sequencing, 488
narrow-sense genomics

adaptive population structure, 498
vs. broad sense genomics, 7–8
definition, 5–6
demographic history, 500–502
GEAs, 497
hybridization and introgression, 499
multivariate approaches, 497
outlier tests, 496
QTL mapping, 496
questions, 491–492

next-generation sequencing, 485, 486, 490
in oceans

environmental temperature changes,
590–592

epigenomic adaptation, 602–603
genetic connectivity and

phylogeography, 597–599
genomic impacts, 599–600
local adaptation, 601–602
ocean currents, 593–595
physical and biological processes, 596
salinity, 593

oligonucleotide microarrays, 45
PCR primers, 485
perspective and conceptual framework, 4–6
physical map

combination of linkage map and, 37
description, 31
GD information from, 34
genotype-phenotype associations, 32
identify independent loci, 31
numbers of mapped loci, 31
recombination rate variations, 31–32
usages, 34–36

positive selection, 58
reduced representation sequencing, 487

DArT, 40
massively parallel sequencing, 38
RAD capture, 40
RADseq, 39, 46, 490, 491
targeted sequence capture, 39–40

reference genomes sequence, 41–42
RNAseq, 46
Sanger sequencing, 485
sequence capture methods, 488
speciation, 29–30

barrier loci, 619–622
crow, 628–630
definition, 613, 614
Dobzhansky-Muller incompatibility, 618
ecological speciation, 618
extrinsic/intrinsic factors, 618
flycatcher, 627–628
genomics, 613
key systems, 616–618
three-spine stickleback, 623–627

traditional genetic methods, 487
transcriptome sequencing, 488
transcriptomics, 45
WGS, 487, 490

identifying selective sweeps and
candidate genes, 42–44

and resequencing, 42–45, 111–112
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Population-level demographic processes, 551
Population proteomics, 55–56
Principal Component 1 (PC1), 781
Progressive retinal atrophy (PRA), 789
Protein interaction network-based pathway

analysis (PINBPA), 395
Protein-protein interaction networks (PPIs), 395
PSMC, see Pairwise sequentially Markovian

coalescent (PSMC) method

Q
QTL mapping studies, 673
Quantifying landscape patterns, 550
Quantitative genetic theory, 428
Quantitative trait loci (QTL), 266, 280, 496,

631, 634, 686, 696, 781–783
Quantitative trait nucleotides (QTN), 429–431

R
RAD Capture, 40
RADseq, 39, 490, 491
Read trimming software, 131–132
Red grouse (Trichostrongylus tenuis), 292
Reduced representation bisulfite sequencing

(RRBS), 212
Reference genomes sequence, 41–42
Reproducing kernel Hilbert space (RKHS)

models, 447
Reproductive isolation (RI), 613–615, 618–619
Restriction-associated DNA sequencing

(RAD-seq), 563–564
Restriction fragment length polymorphisms

(RFLPs)
chloroplast DNA variation analysis, 87–88
discovery of, 86
genomic DNA variation, 88
for human diseases and disorders, 88
mitochondrial DNA variation analysis,

86–87
type II restriction enzymes, 86

Restriction site-associated DNA sequencing
(RADs), 39

Reverse ecology, see Bottom-up genetic
approaches

Ring width indices (RWI), 553
RNA-directed DNA methylation (RdDM), 183
RNAseq (whole transcriptome shotgun

sequencing), 46
ROH (runs of homozygosity), 59
R packages, 139
Runs of homozygosity (ROHs), 720, 766

S
SAMtools, 133, 217
Sanger sequencing, 485
Seafloor spread, 545
Seascape genomics

currents and gene flow, 300–301
high-value fisheries, 301–302
life histories of marine species, 302
local adaptation, 301
marine vs. terrestrial settings, 300
signatures of directional selection, 302
SNP, 301
spatial distribution of species and genes,

302–303
Sea surface temperature (SST), 590, 591, 595
Selective sweeps, 666, 667
Sequence capture method

bait design, 107–108
congeneric exome capture, 110
microarray method, 107
near-target capture, 109
off-target capture, 108–109
pooling after capture, 110

Sequence capture methods, 488
Sequencing and single nucleotide

polymorphism arrays, 714–715
Sequencing-based (pool-seq) genome-wide

scan, 43
Sequencing data, 217
SFS, see Site frequency spectrum (SFS)
SGLMM model, 279
Sibling analysis, 382
Šidàk-Bonferroni approach, 370
Simulation, 151
Single large or several small (SLOSS)

model, 568
Single molecule real-time (SMRT) sequencing

strategy, 114
Single molecule sequencing technologies, 213
Single nucleotide polymorphisms (SNPs),

128–129, 446, 686
calling methodology, 132–133

ANGSD, 134
DeepVariant, 134
filtering, 135–136
Freebayes, 133–134
Genome Analysis Toolkit, 133
RADseq, 134–135
read alignment, 132
SAMtools, 133
SNP annotation, 134

description, 95
genotyping arrays
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Affymetrix Axiom, 96
conversion rates, 97
custom array-based genotyping

solutions, 96
Illumina GoldenGate assay, 96
Illumina Infinium iSelect BeadChip, 96
variant detector arrays, 95–96

microsatellites, 95
phasing, 136
quality control

issues affecting, 129–131
read trimming, 131–132
tools for sequencing data, 131–132

Single-stranded library preparation, 331–333
Site frequency spectrum (SFS)

δaδi, 521
fastsimcoal2, 521
1dSFS, 518, 519
PopSizeABC, 521
Stairway plot, 521
2D-SFS, 518–520

Small interfering RNAs (siRNAs), 187
Small-scale mitogenome enrichment, 334
SNPs, see Single nucleotide polymorphisms

(SNPs)
Soft sweep, 616
Software complexity

algorithmic problems, 163
Bayesian phylogenetic inference tool

MrBayes, 162
NGS error correction, 162–163
numerical and parallel computing

challenges, 170–171
scripts language, 163
software quality, 164–165

best practices for improving, 171–172
core tools, 164
experimental setup, 165–166
future direction for improving, 173
genepop (V4), 166–167
impact, 168–169
migrate (version 3.6.11), 167
structure (version 2.3.4), 167–168

of stand-alone core components, 162
Southern blot hybridization, 88
Speciation

definition, 613, 614
Dobzhansky-Muller incompatibility, 618
ecological speciation, 618
extrinsic/intrinsic factors, 618
genome divergence scans

barrier loci, 619–622
crow, 628–630

flycatcher, 627–628
three-spine stickleback, 623–627

genomics, 613
Speciation continuum, 614, 615
Speciation/differentiation islands, 615
Speciation islands model, 620, 621
Species distribution modeling (SDM), 549
Squamous cell carcinoma of the digit

(SCCD), 795
sRNA sequencing, 214
SST, see Sea surface temperature (SST)
Starch gel electrophoresis, 84
Stream ecotypes, 623
STRUCTURE software, 274, 278
Suppress gene expression, 183
Sympatry, 614

T
Targeted sequence capture, 39–40
Tassel, 372
Tet-assisted bisulfite sequencing

(TAB-seq), 219
Thin-layer chromatography (TLC), 209–210
Thin-layer chromatography mass spectrometry

(TLC-MS), 210
Three-spine stickleback

adaptation and ecological speciation, 623
allelic variation, 623
distribution, 623
divergent phenotypes, 625, 626
Eda locus, 625
freshwater and marine ecotypes, 623
Pitx1, 624

Thymine-DNA glycosylase (TDG), 185
Thyroid system, 737
Top-down genetic approach, 669, 670
Traditional approaches

ecological biogeography
dendrochronology-based approaches,

550–551
genetics approaches, 551–552
landscape ecology, 549–550
species distribution/ecological niche

modeling, 549
historical biogeography

dendrochronology-based approaches,
552–553

molecular population genetics
approaches, 554–555

paleo-based approaches, 553–554
phylogeography, 554–555

Transcriptomics, 45
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Transgenerational epigenetic inheritance,
50, 51

Transposable element (TE) variation, 672–673
Trimmomatic, 131, 217
TruSeq Synthetic Long Read, 113
Twin studies, 382
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