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Abstract. With the rapid development of mobile computing and Web
services, a huge amount of data with spatial and temporal information
have been collected everyday by smart mobile terminals, in which an
object is described by its spatial information and temporal informa-
tion. Motivated by the significance of spatio-temporal range search and
the lack of efficient search algorithm, in this paper, we study the prob-
lem of spatio-temporal range search (STRS), a novel index structure is
proposed, called HOC-Tree, which is based on Hilbert curve and OC-
Tree, and takes both spatial and temporal information into considera-
tion. Based on HOC-Tree, we develop an efficient algorithm to solve the
problem of spatio-temporal range search. Comprehensive experiments on
real and synthetic data demonstrate that our method is more efficient
than the state-of-the-art technique.

Keywords: Hilbert curve · Spatio-temporal · Range search
HOC-Tree

1 Introduction

With the rapid development of mobile computing and Web services, a huge
amount of data [8,9,11,15] with spatial and temporal information have been
collected everyday by smart mobile terminals, such as smart phones, tablets,
wearable devices etc., or devices of Iot which are equiped with GPS or wire-
less modules. In addition, Location Based Services (LBS) and social network
services provide users with location-dependent information and services in dai-
lylife. Everyday a vast number of pictures [10,17,19] and texts with geotags [21–
23]and timestamps are posted to Fackbook or Instagram. Foursquare supports
more than 45 million users who have checked-in more than 5 billion times at over
1.6 million businesses. Users can search any interested information by specified
time interval and geolocation.
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In this paper, we study an important search problem in spatio-temporal
data query area, named spatio-temporal range search (STRS for short). Spatio-
temporal range search aims to retrieval all spatio-temporal objects whose loca-
tion is within a specific geographical region during a time region. In many appli-
cation scenarios, it plays an important role for data management and geo-social
networks. For example, in location-based social networks platforms, such as Face-
book, Twitter, Weibo, etc. Users prefer to make friends with the people who
usually do daily activities in the same geographic region and same time range,
because same daily activities like shopping, doing outdoor exercises, going to cin-
ema, etc. are important factors to establish relationships. Thus according to the
posts with spatio-temporal data, they can find the users who have the same hob-
bies within a given area and given time interval, shown in Fig. 1. The red square
is the geographical range of search for daily activities. Likewise, location based
services like Facebook’s Nearby and Foursquare’s Radar return the friends that
recently checked-in at close proximity to a user’s current location [1,8,14,16]. In
the big data age, as swift growth of the amount of spatio-temporal data, spatio-
temporal range search has become a hot issue in data searching and management
area.

Fig. 1. An example of spatio-temporal search in ocation-based social network services

Motivation. The challenges for the problem of spatio-temporal range search
are two-fold. (i) Due to the massive amount of spatio-temporal objects in lots
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of important applications, large-scale heterogeneous social networks with spatial
and temporal information have been constructed. How to efficient management
and access geo-social data is a core problem. (ii) For the various application
requirements in social network services, high efficient search algorithms need to
be developed by combining spatial and temporal features of social data.

Motivated by the significance of spatio-temporal range search and the lack of
efficient search algorithm, we propose a novel spatio-temporal index structure,
named HOC-Tree based on Hilbert curve and OC-Tree. Besides, we develop an
efficient range search algorithm for STRS problem. OC-Tree is an important
index structure in spatial database area. It is most often used to partition a
three-dimensional space by recursively subdividing it into eight octants. HOC-
Tree is a nature extension of OC-Tree, but it not only inherits the valuable
properties in 3-dimensional partition, such as the data that close in space and
close in time are partition into same cell, but also provides an efficient 3D Morton
code generation mechanism, which can easily and effectively combine the spatial
and temporal information together to support spatio-temporal search.

Contributions. To summarize, our key contributions in this paper are sum-
marized as follows:

(1) We propose a novel spatio-temporal index based on Hilbert curve and
OC-Tree named HOC-Tree to solve the problem of spatio-temporal range
search. To the best of our knowledge, this study is the first time to design
a novel spatio-temporal indexing mechanism for efficient spatio-temporal
range search.

(2) We develop an efficient spatio-temporal range search algorithm based on
HOC-Tree.

(3) We conduct comprehensive experiments on real and synthetic datasets. The
results show that our method can solve spatio-temporal range search effec-
tively and efficiently, and it outperforms the state-of-the-art approaches.

Roadmap. The rest of the paper is organized as follows: We present the related
work in Sect. 2. Section 3 formally defines the problem and describes the index
structure. We elaborate the search algorithm in Sect. 4 and extensive experiments
are presented in Sect. 5. Finally, we offer conclusions in Sect. 6.

2 Related Work

In this section, we review geo-social networks queries and collective spatial
queries, which are two kinds of techniques related to our works.

Geo-Social Networks Queries. A typical geo-social network [9,13,18] com-
bines social networks techniques [12,16] and spatial data queries techniques.
Many research findings from academia and techniques applying to industry have
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been proposed. In industrial circle, the most famous social networks platform,
Facebook, provided a location-based social network service named Nearby [1]
which aims to find the friends who are in the neighborhood of a user currently.
Geoloqi is another analogous platform for building location aware applications.
It provides the service which notifies users when their friends get into a certain
geographical region. Uber is a advanced mobile Internet platform for texi service
based on geo-location information of texi drivers and riders. The riders can search
the near drivers around them and send messages for request. These applications
just only focus on the spatial attributes of data on social networks or cloud
platforms for range search. In academic circles, the problem of spatio-temporal
search is concerned by lots of researchers. In [1], armenatzoglou et al. proposed a
general framework that offers flexible data management and algorithmic design.
The nearest star group query contained in the framework returns the k nearest
subgraphs of m users. In [4], Liu et al. proposed propose the k -Geo-Social Circle
of Friend Query which aims to finds the group g of k + 1 users, which (i) is
connected, (ii) contains u, and (iii) minimizes the maximum distance between
any two of its members. In [6], Scellato et al. proposed three more geo-social
networks metrics: (i) average distance (ii) distance strength, and (iii) average
triangle length. In [20], Yang et al. developed a hybrid index named Social R-
Tree to solve the problem of socio-spatial group query. The studies mentioned
above did not combine the spatial and temporal attributes of objects in database
for searching.

Geo-Social Networks Queries. Collective spatial query is another impor-
tant problem. In [24], Zhang et al. presented a novel spatial keyword query
problem called the m-closest keywords (mCK) query, which aims to aims to
find the spatially closest tuples which match m user-specified keywords. They
proposed a new index named bR*-tree extended from the R*-tree to address
this problem. The R*-tree designed by Beckmann et al., which incorporates a
combined optimization of area, margin and overlap of each enclosing rectangle
in the directory [7]. In [3], Guo et al. proved that answering mCK query is NP-
hard and designed two approximation algorithms called SKECa and SKECa+.
In [2], Deng et al. proposed a generic version of closest keywords search named
best keyword cover which considers inter-objects distance as well as the keyword
rating of objects. In [5], Long et al. studied two types of the CoSKQ problems,
MaxSum-CoSKQ and Dia-CoSKQ. These studies aim to solve the problem of
spatial keyword queries to find a set of objects. They did not develop efficient
index structure and search algorithms for range search in a specific geographical
area and time interval.

3 Model and Structure

This section first presents a Definition of problem, then describes the proposed
data structure, named HOC-Tree, which based on Hilbert curve and OC-Tree.
Table 1 below summarizes the symbols used frequently throughout the paper.
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Table 1. The summary of notations

Notation Definition

D A given data set of spatio-temporal data

o A spatio-temporal object

xi The longitude of a spatio-temporal data

yi The latitude of a spatio-temporal data

ti The timestamp of a spatio-temporal data

hn The value of Morton order in Hilbert curve

L The deepest level of HOC-Tree

ψ The division threshold value for a node in HOC-Tree

v The Morton order of a leaf node in HOC-Tree

q A spatio-temporal range search ([xmin, xmax], [ymin, ymax], [tstart, tend])

d The Euclidean distance between two points in spatial space

3.1 Problem Definition

Definition 1 (Spatio-temporal Object Set). A spatio-temporal object set
can be defined as D = {o1, o2, . . . , on}. Each spatio-temporal object o is associated
with a spatial location o.(xi, yi) and the timestamp o.ti.

Definition 2 (Spatio-temporal Range Search (STRS)). Given a spatio-
temporal objects data set D, a range query is defined as q([xmin, xmax], [ymin,
ymax], [tstart, tend]) where ([xmin, xmax], [ymin, ymax]) is the query spatial region
and ([tstart, tend]) is the query temporal interval, this work aims to select all the
records which satisfy the query q from D.

3.2 Index Structure

In this section, we introduce a novel spatio-temoral index, named HOC-Tree,
which is based on OC-Tree and Hilbert curve. This data structure is the key
technique of this work.

As it will be shown in Subsect. 4.1, the more subspaces overlapping with range
query q, the more time will be consumed when searching HOC-Tree. To solve
this problem, a MBRsign tag data structure is used to reduce non-promising
nodes access, which can avoid unnecessary I/O costs. For each subspace, the
spatial locations of all the points in it can be associated with a minimum bound-
ing rectangle (MBR), so a MBRsign tag is maintained for each non-empty leaf
node to keep the MBR information. For a given range query q, the covering non-
empty leaf nodes which don’t satisfy the spatial constraint will not be accessed in
searching process with the help of tags. HOC-Tree keeps two end points informa-
tion of the MBR, which only require 16 bytes for each non-empty leaf node. The
more detail of using the tags will be described particularly in Subsect. 4.1, where
elucidates the search algorithms. Figure 2 illustrates the structure of HOC-Tree
with MBRsign tags.
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Fig. 2. An example of HOC-Tree with MBRsign tags

The black blocks represent non-empty nodes which contains a list of spatio-
temporal data locations while the white blocks represent empty nodes. Each leaf
node is labeled by its Morton order value according to our approach as mentioned
above, and tags are kept for them to maintain the MBR.

4 Spatio-Temporal Query Algorithms

This section gives exhaustive description of spatio-temporal range search based
on HOC-Tree.

4.1 Range Search Algorithm

Range query q is an essential function in spatio-temporal data processing. In
our algorithms as shown in Algorithm1, this work is done in several stages. The
input query q = ([xmin, xmax], [ymin, ymax], [tstart, tend]) is in three-dimensional
space, where [xmin, xmax] gives the range of longitude, [ymin, ymax] gives the
range of latitude and [tstart, tend] gives the time interval. The output S is a
set of entries inside spatio-temporal query q. This algorithm only accesses the
optimized nodes when searching HOC-Tree. A prune process is executed to check
the entries whether they satisfy the query range or not and remove false positives
to refine results.

Mapping Hilbert Curve Values: For a given range query q, the Hilbert curve
values of covering spatial spaces can be calculated immediately according to the
region ([xmin, xmax], [ymin, ymax]) of q. The function getHilbertValues() maps
the rectangle region into a set of one-dimensional values in line 2.

Finding Spatio-Temporal Covering Cubes: Before searching HOC-Tree in
corresponding regions locally, the function getOverlappingCubes() line in 6 com-
putes the covering nodes which overlap with three-dimensional query range.
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Algorithm 1. Spatio-Temporal Range Search
Input: q : xmin, xmax, ymin, ymax, tstart, tend.
Output: S :set of entries inside query range q.
1: S ← ∅;CoveringSpacialSpaces ← ∅;RegionSet ← ∅;
2: CoveringSpacialSpaces ← getHilbertV alues(xmin, xmax, ymin, ymax);
3: RegionSet ← getRegions(CoveringSpacialSpaces);
4: CoveringNodes ← ∅; Q.Lf ← ∅; Q.Lp ← ∅;
5: for each region ∈ RegionSet do
6: CoveringNodes ← getOverlappingCubes(xmin, xmax, ymin, ymax, tstart, tend);
7: Nf , Np ← Identify(CoveringNodes);
8: for each Node v ∈ Np do
9: MBRCheck(MBRsignv, xmin, xmax, ymin, ymax);

10: end for
11: for each Node v ∈ Np that survive from MBRCheck process do
12: Q.Lp ← getEntriesList(v);
13: end for
14: for each Node v ∈ Nf do
15: Q.Lf ← getEntriesList(v);
16: end for
17: S ← Q.Lf + Prune(Q.Lp);
18: end for
19: return S.

The covering cubes can be partial or full. The left part of Fig. 3 shows a spatio-
temporal range query q (the shaded cube) which would overlap multiple sub-
spaces. For simplicity, the partition of space does not present here. The cubes
overlapping with query range in spatial dimension is illustrated in the right part
of Fig. 3, where the deepest level L of the HOC-Tree is 4. We can see that cube
A has a full spatial overlap while the rest cubes have partial spatial overlap.

For each covering node, it needs to be searched HOC-Tree to get the list
of addresses refer to the locations of data point. All the points in fully spatio-
temporal overlapping cubes will satisfy the spatio-temporal range search which
do not need to do an additional refinement step. Algorithm 2 Identify distin-
guishes these two kinds of covering nodes by Nf and Np, where Nf denotes the
set of fully covering nodes and Np denotes the set of partially covering nodes.
The identification of full overlaps helps to reduce the computation time, which
can avoid unnecessary CPU checking overhead in the refinement step.

Confirming Non-empty Covering Nodes: The benefit of coupling the spa-
tial and temporal information in our index will be more clear in this stage. As
shown in Fig. 3 (right part), the overlap of cube B with query’s spatial dimen-
sional area is very small w.r.t cube A, which has a full overlap. If searching the
index without any spatial discrimination, then a very small overlap (i.e., the cube
B) will need the same I/O costs with that of a full overlap (i.e., the cube A). As a
result, many false positive results will be collected, which have to be later pruned
through the spatial criteria. Especially when the data is skew, there might be a
lot of empty partial covering nodes. This case can happen because the points in
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Fig. 3. Spatio-temporal range search

Algorithm 2. Identify(CoveringNodes)
Input: CoveringNodes.
Output: Np, Nf

1: Nf ← ∅;Np ← ∅;
2: for each region ∈ CoveringNodes do
3: if v is a full overlapping leaf node then
4: add v into Nf ;
5: end if
6: if v is a partial overlapping leaf node then
7: add v into Np;
8: end if
9: end for

10: return Np, Nf .

that cube do not satisfy with the spatial criteria of q. In line 8 to 10, the infor-
mation kept in MBRsign tag is used to check whether the MBR overlap with
the spatial criteria or not. The checking is just needed in partial covering nodes
because the points in full overlaps will all satisfy the spatio-temporal criteria.
The confirmation of non-empty spatial covering nodes can efficiently reduce the
number of false positive results in region search. As shown in Fig. 4, the Morton
values of overlapping nodes (i.e. the nodes in the rectangle marked with dotted
lines) is obtained by the function getOverlappingCubes(), which overlap with the
range query given in Fig. 3. For simplicity, the further division of the Node v3
as shown is omitted here. Then with the help of MBRsign tag, it can further
confirm the non-empty covering nodes (i.e. the Node v3, the Node v7 and the
Node v24), which need to be searched in HOC-Tree.

Searching HOC-Tree: Spatio-temporal adjacent nodes will be stored nearby
each other by this encoding in HOC-Tree. Identifying full and partial covering
nodes helps to reduce the computation time, while confirming non-empty spatial
covering nodes can reduce the number of I/O during searching HOC-Tree. Fur-
thermore, the property of Hilbert curve can ensure that the generated Morton
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value of query range will contain all the valid points, which discussed in Sub-
sect. 3.2. According to the stages described above, the algorithm can get a set of
full covering nodes Nf and a set of non-empty partial covering nodes Np which
need to be searched in HOC-Tree. Line 11 to 16 give the search result by Q.Lf

and Q.Lp, where the notation Q.Lf and Q.Lp denote the sets of entries in full
and partial covering nodes respectively.

Fig. 4. Query overlapping nodes and non-empty covering nodes

Refining Results: The entries in Q.Lp which have partial overlap need further
refinement. There might be some points in partial overlapping nodes that not
satisfy with the spatio-temporal query range. Algorithm 3 Prune checks each
entry in Q.Lp whether it is inside query range or not and removes unrelated
results immediately.

Algorithm 3. Prune(Q.Lp)
Input: Q.Lp

Output: results
1: Results ← ∅;
2: while Q.Lp �= ∅ do
3: for each entry e ∈ Q.Lp do
4: if query range contains e then
5: add e into results;
6: end if
7: end for
8: end while
9: return results.
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5 Experiments

5.1 Experiment Settings and Datasets

With the implementation of HOC-Tree, a comprehensive experimental evalua-
tion is conducted to verify the performance of the scheme in a real cloud envi-
ronment. The locations of all datasets were scaled to the two-dimensional space
[0, 10000]2, and the timestamp of all datasets were scaled to [0, 5000]. In addition,
the spatial region grew from 200 ∗ 200 to 1000 ∗ 1000, the time interval varied
from 200 to 1000, and k changed from 10 to 500. By default, spatial region, time
interval and k were set to 600, 600, 100 respectively. We conducted experiments
on a 3 GHz Intel Core i5 2320 CPU and 8 GB RAM running 64-bit Ubuntu 16.04
LTS.

Three different datasets were used in the experiments, one of which was a
synthetic uniform dataset (UN) generated by program, and others were real-
world datasets, described as following: the first one was collected in Geolife
project [22] (GL) by 182 users from April 2007 to August 2012, the second
one was T-Drive [23,24] (TD) generated by 33 thousand taxis on Beijing road
network over a period of 3 months.

For accurate analyzing and evaluating, STEHIX was chosen as comparative
object, which has a similar index scheme with ours. In each experimental case,
the process was repeated for 5 times and the average value was reported. For
the HOC-Tree in all the tests, the deepest level L was set to 16 and the division
threshold value ψ was set to 200.

5.2 Performance Evaluation

Evaluation on Different Datasets. A series of evaluation was performed
on index construction time, index size and data query performance separately
against three datasets GL, TD and UN, where other parameters had default
settings.

(a) Index sizes (b) Index construction time

Fig. 5. Evaluation on different datasets

Figure 5(a) depicts the rate of space occupying by the index sizes. STEHIX
requires more space due to the two kinds of indices (called s-index and t-index )
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kept for all the entries. The storage cost of the STEHIX increases faster in
larger datasets. In contrast, an index record is maintained for each entry only
once so that our index saves more space in memory. Particularly, HOC-Tree
with MBRsign tag occupies a very small index size compared with HOC-Tree
without MBRsign tag. Figure 5(b) shows the difference of construction time
between HOC-Tree and STEHIX. Due to the simple split and code algorithms
of an HOC-Tree, our method has a shorter constructing time as compared to
STEHIX, which need to traverse two indices during the construction.

The experiment results of range query on different datasets are shown in
Fig. 6, where the spatial region and time interval were both set 600. The query
performance was measured by computing the duration time between when the
regions started searching and when client received all accurate results.

Fig. 6. Data query performance on various datasets

The HOC-Tree demonstrates superior performance in comparison with STE-
HIX. Our analysis is as follows, STEHIX calculates the number of addresses
in s-index and t-index separately to choose the high-selectivity list for further
retrieval. In sense that, each query will decompose into two processes to collect
results in temporal dimension and spatial dimension, which will provoke more
I/O costs. On the other hand, STEHIX uses a period time T to divide all entries
in temporal dimension because of the periodicity in timestamps, which means if
let T = 24 (a period of 24 h is a cycle) and divide T into several segments such as
8 segments, then all the entries will map into the 8 segments by their temporal
information. For a given temporal range query, all results returned by STEHIX
are confused by modulo value, which have same time intervals but different in
dates. Therefore, it will take more time to remove false positive results, which
delays the response time in queries.

HOC-Tree with MBRsign tag improves a little efficiency comparing with
HOC-Tree without MBRsign tag for uniform data (UN), because the benefit of
MBR information maintained in MBRsign is apparently in skew data such as
GL and TD.
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Evaluation on the Effect of Varies Extent in STRS. A series experiments
was conducted to investigate the effect of spatial region and temporal interval
respectively. These experiments purposed to present the benefits of coupling
spatio-temporal information in HOC-Tree and maintaining the MBRsign tag.

In order to show the trend of performance change in different spatial region,
the temporal interval was set as the default value 600. Two representative
datasets were used in the experiments, one was real-world dataset (TD) and
another was uniform synthetic dataset (UN). As shown in Fig. 7(a) and (b), the
time cost on different datasets is plotted.

(a) Spatial region on TD (b) Spatial region on UN

Fig. 7. The effect of varies extent in STRS

Apparently, larger spatial region means larger spatial search area, which
results in longer response time. Therefore, both of two indexes perform bet-
ter when the spatial region is small. On the other hand, the performance of
range query in uniform dataset is better than real-world dataset, which mainly
because that real-world dataset is a skew data. As is evident from the exper-
iments, HOC-Tree shows an improvement over STEHIX especially when the
spatial region is large. Larger spatial query range leads to much more unrelated
entries identified as candidates in STEHIX. It spends much more running time
and CPU cost because of the high computation for refinement step. However,
our index performs better due to the non-fully-decoupling spatial and temporal
properties so that all the points are placed by their spatio-temporal proximity in
HOC-Tree which can help to reduce I/O load when searching trees. For a given
three-dimensional query, HOC-Tree can immediately locate the covering nodes
and explore the corresponding HOC-Tree which is owing to the efficient nodes’
pruning and the use of Morton value. As pointed out earlier, STRS identifies
as more full covering nodes as possible during executing query operation, which
helps to reduce the CPU cost for checking fully satisfied entries.

To evaluate the effect of temporal interval on response time of HOC-Tree and
STEHIX, experiments were conducted in the same manner with the previous one
and spatial region was set as the default value 600. The experimental results are
demonstrated in Fig. 8(a) and (b).
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(a) Temporal interval on TD (b) Temporal interval on UN

Fig. 8. Performance effected by temporal interval

A large temporal query range would cover a lot of partial overlapping nodes,
which fully satisfy with temporal restriction but non-fully satisfy with spatial
restriction. As the temporal query range becomes larger in STEHIX, all these
nodes have to be accessed by s-index and t-index, which increases the number of
I/Os obviously and there are much more candidates to check in the refinement
step while HOC-Tree has removed a lot earlier. Because, a MBRsign tag data
structure is designed in HOC-Tree reduce non-promising nodes access so that
these nodes can be removed earlier to avoid unnecessary I/O costs. Figure 8(a)
and (b) demonstrate the running time of HOC-Tree with and without the tag,
and our index performs better especially for skewed data. In such a scenario, the
MBRsign tag makes full use of non-fully-decoupled spatial and temporal infor-
mation to confirm non-empty spatial covering nodes and thus many unnecessary
I/O load can be avoided. For uniform dataset (UN), tag is still helpful when
there are large number of empty partial overlapping nodes.

6 Conclusions

The problem of spatio-temporal search is very significant due to the increas-
ing amount of spatio-temporal data collected in widely applications. The pro-
posed HOC-Tree is based on Hilbert curve and OC-Tree. Based on HOC-Tree,
we design an efficient algorithm to solve the problem of spatio-temporal range
search. The results of our experiments on real and synthetic data demonstrate
that HOC-Tree is able to achieve a reduction of the processing time by 60–80%
compared with prior state-of-the-art methods.
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