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Abstract. Interaction patterns among individuals play vital roles in
spreading infectious diseases. Understanding these patterns and integrat-
ing their impact in modeling diffusion dynamics of infectious diseases are
important for epidemiological studies. Current network-based diffusion
models assume that diseases transmit through interactions where both
infected and susceptible individuals are co-located at the same time.
However, there are several infectious diseases that can transmit when a
susceptible individual visits a location after an infected individual has
left. Recently, we introduced a diffusion model called same place differ-
ent time (SPDT) transmission to capture the indirect transmissions that
happen when an infected individual leaves before a susceptible individ-
ual’s arrival along with direct transmissions. In this paper, we demon-
strate how these indirect transmission links significantly enhance the
emergence of infectious diseases simulating airborne disease spreading on
a synthetic social contact network. We denote individuals having indirect
links but no direct links during their infectious periods as hidden spread-
ers. Our simulation shows that indirect links play similar roles of direct
links and a single hidden spreader can cause large outbreak in the SPDT
model which causes no infection in the current model based on direct
link. Our work opens new direction in modeling infectious diseases.
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1 Introduction

Analysis of social contact networks is critical to understand and model diffusion
processes within these networks. The contact patterns among individuals signif-
icantly impact spreading dynamics. Thus, a large body of work has attempted
to reveal interactions among the network properties: e.g., temporal properties,
burstiness and repetitive behaviors of contacts and the diffusion dynamics. Most
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of these works assume that the interacting individuals are co-located in the same
physical or virtual space at the same time to create a link [1,2]. However, this
assumption does not hold in many diffusion processes such as airborne infectious
disease spreading, vector borne disease spreading, and posted message diffusion
in online social networks [3,4]. In these diffusion processes, the recipient may
receive the spreading items from the sender without concurrent presence if the
spreading item survives in the deposited location after its generation. This pro-
cess can be explained with an example of airborne disease spreading where an
infected individual deposits infectious particles at the locations where they visit.
These particles can transmit to susceptible individuals who visit the locations
even after the infected individual leaves as the airborne infectious particles sus-
pend in the air for a long time [3,5]. Therefore, susceptible individuals do not
need to be in the same place at the same time with the infected individual to
contract disease.

Our recent work introduced a diffusion model called same place different time
(SPDT) to capture such diffusion processes, e.g., airborne disease spreading. In
the SPDT model, the transmission link is created between two individuals for
visiting the same location within a specified time window [5]. For example, the
infectious particles can transmit from the infected individual who arrived in a
location to susceptible individuals who are present in that location or who arrive
later on. Here, the created link is directional from the infected to the susceptible
individual. We call these links SPDT links with components: (1) direct link when
both individuals are present at the location; and/or (2) indirect link when the
infected individual has left, but the susceptible individual is still present in the
location or arrives later on. The transmission capability of SPDT links depends
on the environmental conditions such as temperature and wind-flow etc. which
determine the particle removal rate [3,5,6]. Thus, an SPDT link is characterized
by the arrival and departure timings of infected and susceptible individuals and
environmental conditions.

In the literature, previous works have aimed to characterize diffusion dynam-
ics based on the interaction mechanisms among individuals [1,7,8]. These works
have studied various aspects of human contact patterns from microscopic prop-
erties such as temporal behavior of contacts, burstiness, inter-event time and
repetitiveness to the higher level structures such as clustering and community
formation among individuals. The microscopic properties control the higher level
structures of social contact networks and hence strongly influence the diffusion
dynamics on it [9,10]. Thus, inclusion of indirect links in the SPDT model may
modify the higher level structures that are present in the current same place
same time (SPST) based individual to individual contact networks and influ-
ence the diffusion dynamic significantly. To the best of our knowledge, this work
is the first to investigate the impact of indirect links occurring at the individual
level through simulation of airborne disease spreading on social contact network.

To study the impact of indirect links, it is required to collect the sufficiently
dense individual level interaction data with high spatial and temporal resolu-
tions. However, it is quite difficult to gather such data for a population over a
sufficient period of time due to privacy issues and the complexity of collection
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methods. Thus, we use synthetic traces generated by our SPDT network model
that provides the SPDT links among the nodes present in the network. This
model is fitted with the real SPDT contact network properties found among the
users of social networking application Momo [11]. The generated SPDT links
contain the timing information of nodes’ interactions mimicking the arrival and
departure of individuals in a location. Thus, SPDT links easily allow quantifica-
tion of infection risk with environmental factors if neighbor nodes of a link are
infected. The infection risk for concurrent interaction between susceptible and
infected individuals is formulated in [12]. We improve this model to find infection
risk for SPDT interaction. In our simulations, disease propagates on networks
following the Susceptible-Exposed-Infected-Recovered (SEIR) epidemic model.

Our main goal is to determine the importance of indirect links for spreading
infections. We first study diffusion dynamics on both the SPDT and the SPST
networks selecting the seed nodes (initiating the spreading process) according
to SPDT link components during their infection periods: having only indirect
links, hidden spreaders, or both direct and indirect links. We gradually increase
the proportion of hidden spreaders and find their impact on the diffusion, and
highlight the inability of current models in capturing the effect of hidden spread-
ers on diffusion. We next explore how the changes in network properties that
arise from the inclusion of indirect links impact the diffusion. We consider nodes
creating small number of direct links when they are infected as seed nodes and
look at the emergence of disease from each single seed node in both the SPST
and the SPDT networks. Finally, we study the potential for disease emerge by
a hidden spreader acting as a single seed node.

The rest of the paper is organized as follows. In Sect. 2, we present the
improved infection risk assessment model for SPDT links. Section 3 describes
our methodology. The experimental setup and analysis of results are presented
in Sect. 4. Section 5 concludes our work and provides future research directions.

2 Infection Risk in SPDT

In this section, we present the methods of determining the infection risk for a
susceptible individual that has SPDT links with the infected individuals. When
an infected individual appears at a location L, he deposits infectious particles
in the proximity of L. The number of infection particles n deposited (through
coughing) per second by an infected individual into the proximity is

n = 0.2fvc (1)

where f is the coughing frequency (coughs/second), v is the volume of each
cough (m3) and c is the concentration of infectious particles in the cough droplets
(particles/m3). If the particles are removed from the space of volume V with a
rate r, the accumulation rate of particles in the proximity can be given by

V
dN

dt
= n − Nr
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where N is the current number of particles at L and r = (1 − b)(1 − g), b is
the infectivity decay rate of particles and g is the air exchange rate from L [12].
The particle concentration at time t after the infected individual arrives at L is
given as ∫ Nt

0

dN

n − Nr
=

1
V

∫ t

0

dt

This leads to
Nt =

n

r

(
1 − e− rt

V

)
(2)

If a susceptible individual stays within the proximity of L from tc to tc + td for a
period td when the infecter is concurrently present at L, the number of particles
inhaled by the susceptible individual with pulmonary rate q for this direct link
is

Ed =
qn

r

∫ tc+td

tc

(
1 − e− rt

V

)
dt

=
qn

r

[(
td + tc +

V

r
e− r(tc+td)

V

)
−

(
tc +

V

r
e− rtc

V

)]
(3)

If the susceptible individual stays with the infected individual as well as after
the latter leaves L, it will have both direct and indirect transmission links. The
number of particles inhaled by the susceptible individual due to the direct link
within the time tc and ta is given by

Ed =
qn

r

[(
ta +

V

r
e− rta

V

)
−

(
tc +

V

r
e− rtc

V

)]
(4)

where ta is the stay duration of infected individual. For the indirect link from
time ta to tc + td, we need to compute the particle concentration during this
period which decreases after the infected individual leaves. The particle concen-
tration at time ta can be given as

Na =
n

r

(
1 − e− rta

V

)

The particle concentration at time t after the susceptible leaves the proximity
at time ta is given by

V
dN

dt
= −Nr

Thus, the concentration at time t will be

∫ Nt

Na

dN

N
= − r

V

∫ t

ta

dt

Thus, we have

Nt = Nae− r
V (t−ta) =

n

r

(
1 − e− rta

V

)
e− r

V (t−ta)
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The susceptible individual inhales particles during the indirect period from ta
to tc + td, quantified by

Ei =
∫ tc+td

ta

qNtdt = −nqV

r2

(
1 − e− rta

V

) [
e− r

V (tc+td−ta) − 1
]

(5)

If the susceptible individual is only present for the indirect period at the prox-
imity, the number of inhaled particles for the period from tc to tc + td is given

Ei =
∫ tc+td

tc

qNtdt = −nqV

r2

(
1 − e− rta

V

) [
e− r

V (tc+td−ta) − e− r
V (tc−ta)

]
(6)

Thus, the total inhaled particles can be given for a susceptible individual by

E = Ed + Ei (7)

The equations determine the received exposure for one SPDT link with an
infected individual, comprising both direct and indirect links. If a susceptible
individual has m SPDT links during an observation period T , the total expo-
sure is

ET =
m∑

k=0

Ek

where Ek is the received exposure for kth link. The probability of infection for
causing disease can be determined by the dose-response relationship defined as

P (I = 1) = 1 − e−σET (8)

where σ is the probability that an infectious particle reaches to the respiratory
tract and initiates infection [13]. It is assumed that inhaling one infectious par-
ticle has 50% chance of contracting the disease [14]. Therefore, we can calculate
σ as

0.5 = 1 − e−σ

σ = 0.693

In this risk formulation, σ is homogeneous for all susceptible individuals.

3 Methodology

For studying the impact of indirect contacts on the spreading process, individual
level interaction data is required. However, it is difficult to collect such data with
sufficiently high contact density, and with high spatial and temporal resolution.
Thus, we generate synthetic individual to individual interaction data using our
developed SPDT network model. This network model includes indirect links of
disease transmission along with direct links in creating SPDT link between two
nodes. Then, the SEIR epidemic model is simulated on this network with disease
parameters of airborne diseases. In this section, we describe our methodology.
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3.1 Contact Network

A network of M nodes is constructed following the approach of activity-driven
temporal network generation where nodes switch between active periods and
inactive periods over the simulation period of T discrete time steps. Active
periods ta mimic staying at a location and allow nodes to create SPDT links
with other nodes while inactive periods tw represent time windows when a node
does not create links to other nodes, but receives SPDT links. The SPDT link
is directed from the host node (as infected) to the neighbor node (susceptible
node). The duration of active periods ta = {1, 2, 3, . . .} are randomly drawn
from P1(ta) ∼ geometric(λ) with the scaling parameter λ. The inactive period
durations tw = {1, 2, 3, . . .} are also drawn from P2(tw) ∼ geometric(ρ) with the
scaling parameter ρ. The value of λ is constant for all nodes but ρ is assigned
heterogeneously to model different frequencies of individuals in visiting loca-
tions. The heterogeneous activation potentiality ρ is drawn from a power law
F1(ρ) ∼ ρ−α with the scaling parameter α.

Corresponding to each active period, an indirect transmission period δ is
added with ta to capture the indirect links of disease transmission. During ta
and corresponding δ, a node creates a specific number of SPDT links d given by

Pr (d) = (1 − μ)μd−1

where μ is the propensity to access public places that is also drawn from the
power law F2(μ) ∼ μ−β with the scaling parameter β. The variations in d capture
spatio-temporal dynamics of social networks.

Each of these SPDT links has the timing characteristics: ta representing
the time duration node stays at the interacted location, tc is the delay time of
neighbor node arrival after the host node appeared, and td is the time duration
neighbor node (end nodes of a link) stays at the interacted location. The link
creation delay tc is drawn from a truncated geometry distribution as follows as

Pr (tc) =
pc (1 − pc)

tc

1 − (1 − pc)ta+δ

where pc is the probability of creating a link with a neighbor. The value of td is
drawn as P3(td) ∼ geometric(pb) with link breaking probability pb. The value
of pc and pb are constant for all nodes in the network.

Nodes maintain their social structure by applying their memory of previous
contacts in selecting new neighbors with the probability Pr(nt +1) = μiθ/(nt +
μiθ), where nt is the number of nodes node i has contacted up to time t. With
greater public accessibility μ, nodes will have higher contact set sizes. They also
need to be selected as a neighbor by more nodes. Thus, the probability of being
selected as a neighbor is p(μj) = μj/M 〈μ〉. The neighbor selection mechanism
also considers that if some nodes have included node j as neighbor, there is ϕ
chance to select them as neighbors by node j.

The network model parameters are fitted with the real SPDT network con-
structed using the 2 million locations updates of 126K users collected over a
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week from the social networking application Momo. The location updates from
Beijing city are applied to estimate the model parameters while the updates from
Shanghai are used to validate the model. The capability of the model to simu-
late the SPDT diffusion process is also verified in detail. We generate synthetic
SPDT networks to conduct our experiments using this model.

3.2 Epidemic Model

For propagating disease on the generated SPDT contact network, we consider
a compartment-based Susceptible-Exposed-Infected-Recovered (SEIR) epidemic
model. In this model, nodes remain in one of the four compartments, namely,
Susceptible (S), Exposed (E), Infectious (I) and Recovered (R). If nodes in the
susceptible compartment receive SPDT links from the nodes in the infectious
compartment, the former will receive the infectious pathogens for both direct and
indirect periods and may contract the disease. At the beginning of contraction,
a susceptible node moves to the exposed (E) state where it cannot infect others.
The exposed node becomes infectious (I) after a latent period. The infectious
node continues to infect other nodes connecting through the SPDT links over its
infection period until they enter the recovered state R [15]. It has been shown
that the latent period is in the range over 1 to 2 days. Our simulations assume
that if a node is infected in the current day of simulation, it starts infecting
others on the next day of simulation. The infection period is shown to be in
the range over 3 to 5 days for influenza-like diseases [16]. As the values can vary
for each individual even for the same disease, we derive the parameters from a
random uniform distribution within the observed empirical ranges.

4 Simulation and Analysis

We conduct various simulation experiments to understand the impact of indirect
transmissions in shaping the epidemic dynamics on the social contact network.
We consider a network of 300K nodes generated by the SPDT network model
for a 32 day period. In this network, nodes create SPDT links that are inclusive
of direct and indirect transmission links. Removing the indirect links from the
above network results in an SPST network with only direct links. Therefore,
the SPDT and SPST networks include the same nodes, but their connectivity
differs due to the presence or absence of indirect links. If a node is infected and
creates only indirect links during its infection period, we refer to this node as
a ‘hidden spreader’. The contribution of hidden spreaders to infections in the
original SPST network is nil while they significantly contribute to spread in the
SPDT network (and thus possibly promote new direct links). In this section, we
explore the extent to which indirect links can impact the disease spread dynamics
on contact networks through intensive simulations.

4.1 Simulation Setup

The generated synthetic SPDT links of 300K nodes provide the traces for running
data-driven disease simulations over a period of T = 32 days. The disease on
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this network propagates according to the SEIR epidemic model. The simulation
at T = 0 starts with some seed nodes that are randomly selected according to
the requirements of experiments described below. The nodes’ disease status are
updated at the end of each simulation day. During each day of disease simulation,
the received SPDT links for nodes are analyzed to find which nodes have received
SPDT links from the infected neighbor nodes. Then, we calculate the particles
inhaled by the susceptible neighbor node for each of these SPDT links according
to Eq. 7 and sum them up to find the infection probability by Eq. 8. I order to
keep the simulations simple, we assume that the inhaled infection particles can
infect susceptible individual with the same rate over the day. The volume V
of the proximity is fixed to a constant value assuming that the distance, within
which a susceptible individual can inhale the infectious particles from an infected
individual, is 40 m [3] and the particles will be available up to the ceiling height
h of 3 m. We assign the other parameters as follows: cough frequency f = 18/h,
total volume of the cough droplets v = 6.7 × 10−3 ml, pathogen concentration
in the respiratory fluid c = 3.7 × 106 pathogens/m3, and pulmonary rate q =
7.5 l/min [17,18]. For each link, the infectivity decay rate b and air exchange
rate g are selected randomly to find particles removal rate r = (1 − b)(1 − g).
The value of b is randomly drawn from the range (0.005, 0.05) min−1 with a
specified mean according to the experiments while g is randomly drawn from
the range (0.25, 5) h−1 with a specified median as the experiments require. The
daily simulation outcomes are obtained for the epidemic parameters: the number
of new infections, the disease prevalence as the number of current infections in
the system and the cumulative number of infections. The statistics of these
parameters provide the results of our experiments.

4.2 Results and Analysis

In the simulation of disease on the SPDT network, the infected nodes can be
divided into two groups based on the SPDT links they form during their infection
periods: (1) nodes with both direct and indirect links; and (2) nodes with only
indirect links, i.e. hidden spreaders. A hidden spreader has zero infection force
in the SPST network but can cause disease in the SPDT network. Thus, the
increase in the proportion P of hidden spreaders in the seed nodes set will reduce
spreading speed in the SPST network while spreading speed is sustained for
SPDT according to the potentiality of the indirect links. In our first experiment,
the simulations begin with 200 seed nodes where we randomly pick 200P seed
nodes from the hidden spreader set and (1-P)200 seed nodes from the non-hidden
spreader set. We vary the value of P from 0 to 1 with the step 0.1. The seed nodes
start infecting at T = 0 and continue infecting for the period of days picked up
randomly from the range (1, 5). With this set of seed nodes, we run simulations
on the both SPST and SPDT networks and repeat 200 times for each value of
P. We set the mean value of b to 0.01 min−1 and the median of g to 1 h−1.

Figure 1 shows the changes in the disease spreading dynamics, averaged
over the 200 simulation runs, for P= {0, 0.2, 0.4, 0.6, 0.8}. For the SPST
network, both prevalence and cumulative infections shrink with increasing
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Fig. 1. Disease diffusion dynamics based on the disease prevalence (a, b) and cumula-
tive infection (c, d) for different P in both SPST and SPDT networks

Fig. 2. Disease prediction performances for changes in P: (a, b) days requires to cause
a specific number of infection since simulation starts and (c, d) error as differences
between same metrics in the SPST and SPDT networks

P (see Fig. 1a and c), as the increased proportion of hidden spreaders as seed
nodes reduces the likelihood of seed nodes to trigger spreading. We also observe
that the rate of reduction in both prevalence and cumulative infections increases
with P, where the shrinking set of non-hidden spreaders among seed nodes
reduces the likelihood of spread more rapidly. The disease prevalences and out-
break sizes decrease significantly for increasing P and dropping rates increase at
the higher P’s. On the other hand, the disease spreading behaviors do not change
much with P in the SPDT network (see Fig. 1b and d). There is a slight time
shift in prevalence with increasing P, yet the size of the epidemic remains similar.
Noting that changes in P result in different proportions of hidden spreaders, the
SPDT results confirm that the potency of hidden spreaders is almost similar to
non-hidden spreaders in determining diffusion outcomes.

We now explore disease prediction performance with changing P in Fig. 2
for delving deeper into the contribution of hidden spreaders. Figure 2(a) and (b)
show the number of days required for causing a specific number of infections and
how it is delayed with changing P. The SPST network fails to predict infection
dynamics causing more delays to reach a specific number of cumulative infections
as P increases (see Fig. 2(a)). The cumulative infections reaches 1000 by day
10 at P = 0 but it is delayed to day 30 when P is 0.8. However, the required
days to reach a number of cumulative infections changes slightly for the SPDT
network in Fig. 2b with changing P as the indirect links have similar impact as
direct links. The differences in outbreak sizes and disease prevalences between
SPST and SPDT networks with the changes in P are shown in Fig. 2(c) and (d).
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As P changes from 0 to 1, the outbreak sizes in SPST network drop by 100% from
3745 to 0 infections. By comparison, the outbreak size drop by 2.7% changes from
7834 to 7625 infections in the SPDT network. Thus, the differences in outbreak
sizes between SPST and SPDT networks vary from 4000 infections for P = 0 to
7625 for P = 1. This indicates that the underestimation of disease dynamics by
SPST model increases with P, i.e. if the disease starts with all hidden spreaders,
it shows no emergence of disease.

Fig. 3. Low connectivity nodes caused outbreaks: (a, b) number of nodes up to a
specific disease prevalence and (c, d) number of nodes up to a outbreak size in both
SPDT and SPST networks

The previous experiments show that the indirect links have strong impact
on the spreading behaviors of diseases. Now, we study how these indirect links
play vital roles at the individual level. To understand this, we investigate how
the low direct connectivity nodes, that directly contact only one or two nodes
during their infection periods through direct links, become important in SPDT
network due to having the indirect links. We identify a low direct connection
set of 10K nodes who have 1 or 2 neighbors in the SPST network over the first
5 days of our generated synthetic traces. Then, we run simulations by iterating
through the nodes in this set to select each node as a seed node at T = 0 on both
SPST and SPDT networks. The seed nodes are able to infect others for 5 days
before recovering from the infectious state. We keep the same mean and median
of previous experiments respectively for b and g. We also run simulations for
3 scenarios (changing b, g and σ) to understand how these nodes play a more
significant role under certain conditions.

The results are presented in Fig. 3 for the nodes that cause outbreak sizes
greater than 10. In the first scenario S-1, we set the parameters: mean of b is
set to 0.01 min−1, median of g to 1 h−1 and σ = 0.69. With this configuration,
we find only 206 nodes can trigger disease in the SPST network. Comparatively,
803 nodes become capable to trigger disease in the SPDT network and their
outbreak size is twice the outbreak sizes in SPST. If we change the value of g to
0.5 h−1 in scenario S-2, the SPDT network allows 840 nodes to trigger disease
while only one more node in the SPST network trigger disease. This is because
the SPDT links are more pronounced for lower g while SPST links remain the
same. If we make the scenario more favorable for spreading disease changing b
to 0.005 min−1 and σ = 0.80 (scenario S-3), both networks offer more nodes to
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trigger disease where 307 nodes trigger disease in SPST network corresponding
to 1649 nodes in the SPDT network. Under extreme conditions, the indirect
links become significant, influencing the disease spreading strongly.

Fig. 4. Hidden spreaders (nodes with only indirect links during their infection periods)
caused outbreaks: (a) number of nodes up to a disease prevalence and (b) number of
nodes up to a specific outbreak size

In the third experiment, we investigate whether single seed nodes that are
hidden spreaders can trigger significant outbreaks. Using the hidden spreader set
from the first 5 days from our first experiment, we study emergence of disease
through all nodes selecting each as seed node at time T = 0 of the simulations.
The simulations are repeated 10 times for each node. We also explore whether
the opportunities of emerging diseases are intensified for the favourable scenario
of low b, g and high σ. The results are presented in Fig. 4. For the first scenario,
we find that 324 nodes cause outbreak sizes greater than 10 with maximum
7656 infections over the 32 day period. The medium spreading scenario allows
53 (16.3%) more nodes to trigger diseases. If the diseases are more infectious
having σ = 0.80 in scenario S-3, 1014 nodes among the 11K nodes (which have
only indirect links during the first 5 days of selected network traces) are capable
to trigger disease. In this favorable spread scenario, the outbreak sizes as well as
maximum prevalence of disease increase with earlier prevalence peaks.

5 Discussion and Future Work

This paper has studied how the SPDT model enhances the opportunities of
disease emergence due to indirect links. These outcomes can guide more robust
policy for controlling the infectious diseases. Our simulations on hidden spreaders
have shown that indirect links are equally important as the direct links in driving
the spread process. The indirect links increase the connectivity of the network
and make it favorable for disease spreading. Running disease simulations from
the low connectivity nodes has shown that 5 times more nodes can contract
the disease if indirect links are considered. Interestingly, we noticed that nodes
having only indirect links, hidden spreaders, can cause outbreaks with as many
as 10K infections. However, these nodes in the SPST model can not infect others
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as they do not have direct links. These outcomes require reconsideration of the
disease spreading models of many infectious diseases.

Our work has some limitations. The infection risk is calculated assuming that
the infection particles are distributed homogeneously in the space, which may
not be true in reality, resulting in scaling of the infection rate and outbreak size.
We only cover particle removal by the air exchange rate and infectivity decay
rate of infectious particles while particles be removed by other factors as well.
The consideration of homogeneous susceptibility to a disease for individuals is
not fully realistic as well. Secondly, we calculate the infection risk at the end of
each simulation day for all links a node receives from the infected nodes. The
infectiousness of the inhaled particle may vary over the course of the day in
reality. These factors can over estimate infection rates and spreading dynamics.

This work also opens some future research directions. It would be interesting
to know why some nodes can initiate diseases. In our simulations, we observed
that indirect links increase the connectivity among the nodes. This arises the
question that the indirect links can lead nodes to become super-spreaders. We
also observed favorable weather conditions caused larger outbreaks as the indi-
rect links become stronger. Another direction can be to investigate how the
SPDT model with its capability to capture human mobility as well as environ-
mental conditions can aid to design optimal diffusion control strategies.
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