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Abstract. The proliferation of social media in communication and
information dissemination has made it an ideal platform for spreading
rumors. Automatically debunking rumors at their stage of diffusion is
known as early rumor detection, which refers to dealing with sequen-
tial posts regarding disputed factual claims with certain variations and
highly textual duplication over time. Thus, identifying trending rumors
demands an efficient yet flexible model that is able to capture long-
range dependencies among postings and produce distinct representations
for the accurate early detection. However, it is a challenging task to
apply conventional classification algorithms to rumor detection in ear-
liness since they rely on hand-crafted features which require intensive
manual efforts in the case of large amount of posts. This paper presents
a deep attention model based on recurrent neural networks (RNNs) to
selectively learn temporal representations of sequential posts for rumor
identification. The proposed model delves soft-attention into the recur-
rence to simultaneously pool out distinct features with particular focus
and produce hidden representations that capture contextual variations
of relevant posts over time. Extensive experiments on real datasets col-
lected from social media websites demonstrate that the deep attention
based RNN model outperforms state-of-the-art baselines by detecting
rumors more quickly and accurately than competitors.

Keywords: Early rumor detection · Recurrent neural networks
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1 Introduction

The explosive use of contemporary social media in communication has witnessed
the widespread of rumors which can pose a threat to the cyber security and social
stability. For instance, on April 23rd 2013, a fake news claiming two explosions
happened in the White House and Barack Obama got injured was posted by a
hacked Twitter account named Associated Press. Although the White House and
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Associated Press assured the public minutes later the report was not true, the
fast diffusion to millions of users had caused severe social panic, resulting in a loss
of $136.5 billion in the stock market1. This incident of a false rumor showcases
the vulnerability of social media on rumors, and highlights the practical value
of automatically predicting the veracity of information.

Fig. 1. For social media posts regarding a specific event, i.e.,“Trump being disqualified
from U.S. election”, tokens like “Donald Trump”, “Obama” and “disqualified” appear
extremely frequently in disputed postings.

Debunking rumors at their formative stage is particularly crucial to mini-
mizing their catastrophic effects. Most existing rumor detection models employ
learning algorithms that incorporate a wide variety of features and formulate
rumor detection into a binary classification task. They commonly craft features
manually from the content, sentiment [1], user profiles [2], and diffusion patterns
of the posts [3–5]. Embedding social graphs into a classification model also helps
distinguish malicious user comments from normal ones [6,7]. However, feature
engineering is extremely time-consuming, biased, and labor-intensive. Moreover,
hand-crafted features are data-dependent, making them incapable of resolving
contextual variations in different posts.

Recent examinations on rumors reveal that social posts related to an event
under discussion are coming in the form of time series wherein users forward or
comment on it continuously over time. Meanwhile, as shown in Fig. 1, during
the discussion of arbitrary topics, users’ posts exhibit high duplication in their
textual phrases due to the repeated forwarding, reviews, and/or inquiry behav-
ior [8]. This poses a challenge on efficiently distilling distinct information from
duplication and timely capturing textual variations from posts.

The propagation of information on social media has temporal characteristics,
whilst most existing rumor detection methodologies ignore such a crucial prop-
erty or are not able to capture the temporal dimension of data. One exception
is [9] where Ma et al. uses an RNN to capture the dynamic temporal signals of
rumor diffusion and learn textual representations under supervision. However,
as the rumor diffusion evolves over time, users tend to comment differently in
various stages, such as from expressing surprise to questioning, or from believ-
ing to debunking. As a consequence, textual features may change their patterns

1 http://www.dailymail.co.uk/news/article-2313652/AP-Twitter-hackers-break-news-
White-House-explosions-injured-Obama.html.

http://www.dailymail.co.uk/news/article-2313652/AP-Twitter-hackers-break-news-White-House-explosions-injured-Obama.html
http://www.dailymail.co.uk/news/article-2313652/AP-Twitter-hackers-break-news-White-House-explosions-injured-Obama.html
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with time and we need to determine which of them are more important to the
detection task. On the other hand, the existence of duplication in textual phrases
impedes the efficiency of training a deep network. In this sense, two aspects of
temporal long-term characteristic and dynamic duplication should be addressed
simultaneously in an early rumor detection model.

1.1 Challenges and Our Approach

In summary, there are three challenges in early rumor detection to be addressed:
(1) automatically learning representations for rumors instead of using labor-
intensive hand-crafted features; (2) the difficulty of maintaining the long-range
dependency among variable-length post series to build their internal representa-
tions; (3) the issue of high duplication compounded with varied contextual focus.
To combat these challenges, we propose a novel deep attention based recurrent
neural network (RNN) for early detection on rumors, namely CallAtRumors
(Call Attention to Rumors). The overview of our framework is illustrated in
Fig. 2. For one event (i.e., topic) our model converts posts related to one event
into feature matrices. Then, the RNN with soft attention mechanism automat-
ically learns latent representations by feed-forwarding each input weighted by
attention weights. Finally, an additional hidden layer with sigmoid activation
function using the learned latent representations to classify whether this event
is a rumor or not.

Fig. 2. Schematic overview of our framework.

1.2 Contributions

The main contributions of our work are summarized in three aspects:

– We propose a deep attention neural network that learns to perform rumor
detection automatically in earliness. The model is capable of learning continu-
ous hidden representations by capturing long-range dependency an contextual
variations of posting series.

– The deterministic soft-attention mechanism is embedded into recurrence to
enable distinct feature extraction from high duplication and advanced impor-
tance focus that varies over time.
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– We quantitatively validate the effectiveness of attention in terms of detection
accuracy and earliness by comparing with state-of-the-arts on two real social
media datasets: Twitter and Weibo.

2 Related Work

Our work is closely connected with early rumor detection and attention mecha-
nism. We will briefly introduce these two aspects in this section.

2.1 Early Rumor Detection

The problem of rumor detection [10] can be viewed as binary classification
tasks. The extraction and selection of discriminative features significantly affects
the performance of the classifier. Hu et al. first conducted a study to analyze
the sentiment differences between spammers and normal users and then pre-
sented an optimization formulation that incorporates sentiment information into
a novel social spammer detection framework [11]. Also the propagation patterns
of rumors were developed by Wu et al. through utilizing a message propagation
tree where each node represents a text message to classify whether the root of
the tree is a rumor or not [3]. In [4], a dynamic time series structure was proposed
to capture the temporal features based on the time series context information
generated in every rumor’s life-cycle. However, these approaches requires daunt-
ing manual efforts in feature engineering and they are restricted by the data
structure.

Early rumor detection is to detect viral rumors in their formative stages in
order to take early action [12]. In [8], some very rare but informative enquiry
phrases play an important role in feature engineering when combined with clus-
tering and a classifier on the clusters as they shorten the time for spotting
rumors. Manually defined features has shown their importance in the research
on real-time rumor debunking by Liu et al. [5]. By contrast, Wu et al. proposed
a sparse learning method to automatically select discriminative features as well
as train the classifier for emerging rumors [13]. As those methods neglect the
temporal trait of social media data, a time-series based feature structure [4] is
introduced to seize context variation over time. Recently, recurrent neural net-
work was first introduced to rumor detection by Ma et al. [9], utilizing sequential
data to spontaneously capture temporal textual characteristics of rumor diffusion
which helps detecting rumor earlier with accuracy. However, without abundant
data with differentiable contents in the early stage of a rumor, the performance
of these methods drops significantly because they fail to distinguish important
patterns.
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2.2 Attention Mechanism

As a rising technique in natural language processing problems [14,15] and com-
puter vision tasks [16–18], attention mechanism has shown considerable discrim-
inative power for neural networks. For instance, Bahdanau et al. extended the
basic encoder-decoder architecture of neural machine translation with attention
mechanism to allow the model to automatically search for parts of a source
sentence that are relevant to predicting a target word [19], achieving a com-
parable performance in the English-to-French translation task. Vinyals et al.
improved the attention model in [19], so their model computed an attention
vector reflecting how much attention should be put over the input words and
boosted the performance on large scale translation [20]. In addition, Sharma et
al. applied a location softmax function [21] to the hidden states of the LSTM
(Long Short-Term Memory) layer, thus recognizing more valuable elements in
sequential inputs for action recognition. In conclusion, motivated by the success-
ful applications of attention mechanism, we find that attention-based techniques
can help better detect rumors with regards to both effectiveness and earliness
because they are sensitive to distinctive textual features.

3 CallAtRumors: Early Rumor Detection with Deep
Attention Based RNN

In this section, we present the details of our framework with deep attention for
classifying social textual events into rumors and non-rumors.

3.1 Problem Statement

Individual posts contain very limited content due to their nature of shortness
in context. On the other hand, an event is generally associated with a number
of posts making similar claims. These related posts can be easily collected to
describe an event more faithfully. Hence, we are interested in detecting rumor
on an aggregate (event) level instead of identifying each single posts [9], where
sequential posts related to the same topics are batched together to constitute an
event, and our model determines whether the event is a rumor or not.

Let E = {Ei} denote a set of given events, where each event Ei =
{(pi,j , ti,j)}ni

j=1 consists of all relevant posts pi,j at time stamp ti,j , and the
task is to classify each event as a rumor or not.

3.2 Constructing Variable-Length Post Series

Algorithm 1 describes the construction of variable-length post series. To ensure
a similar word density for each time step within one event, we group posts into
batches according to a fixed post amount N rather than slice the event time
span evenly. Specifically, for every event Ei = {(pi,j , ti,j)}ni

j=1, post series are
constructed with variable lengths due to different amount of posts relevant to
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Input : Event-related posts Ei = {(pi,j , ti,j)}ni
j=1, post amount N , minimum series length

Min
Output: Post Series Si = {T1, ..., Tv}

1 /*Initialization*/;
2 v = 1; x = 0; y = 0;
3 while true do
4 if ni ≥ N × Min then
5 while v ≤ �ni

N � do
6 x = N × (v − 1) + 1;
7 y = N × v;
8 Tv ← (pi,x, ..., pi,y);
9 v + +;

10 end
11 Tv ← (pi,y+1, ..., pi,ni

);

12 else
13 while v < Min do
14 x = � ni

Min � × (v − 1) + 1;

15 y = � ni
Min � × v;

16 Tv ← (pi,x, ..., pi,y);
17 v + +;

18 end
19 Tv ← (pi,y+1, ..., pi,ni

);

20 end

21 end
22 return Si;

Algorithm 1. Constructing Variable-Length Post Series

different events. We set a minimum series length Min to maintain the sequential
property for all events.

To model different words in the post series, we calculate the tf-idf for the
most frequent K vocabularies within all posts. Finally, every post is encoded by
the corresponding tf-idf vector, and a matrix of K×N for each time step can be
constructed as the input of our model. If there are less than N posts within an
interval, we will expand it to the same scale by padding with 0s. Hence, each
set of post series consists of at least Min feature matrices with a same size of
K (number of vocabularies) × N (vocabulary feature dimension).

3.3 Long Short-Term Memory (LSTM) with Deterministic Soft
Attention Mechanism

To capture the long-distance temporal dependencies among continuous time post
series, we employ following Long Short-Term Memory (LSTM) unit which plays
an important role in language sequence modelling and time series processing [22–
26] to learn high-level discriminative representations for rumors:

it = σ(Uiht−1 + Wixt + Vict−1 + bi),
ft = σ(Ufht−1 + Wfxt + Vfct−1 + bf ),
ct = ftct−1 + it tanh(Ucht−1 + Wcxt + bc),
ot = σ(Uoht−1 + Woxt + Voct + bo),
ht = ot tanh(ct),

(1)
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where σ(·) is the logistic sigmoid function, and it, ft, ot, ct are the input gate,
forget gate, output gate and cell input activation vector, respectively. In each of
them, there are corresponding input-to-hidden, hidden-to-output, and hidden-
to-hidden matrices: U•, V•, W• and the bias vector b•.

In Eq. (1), the context vector xt is a dynamic representation of the relevant
part of the social post input at time t. To calculate xt, we introduce an attention
weight at[i], i = 1, . . . ,K, corresponding to the feature extracted at different
element positions in a tf-idf matrix dt. Specifically, at each time stamp t, our
model predicts at+1, a softmax over K positions, and yt, a softmax over the
binary class of rumors and non-rumors with an additional hidden layer with
sigmoid(·) activations (see Fig. 3(c)). The location softmax [21] is thus, applied
over the hidden states of the last LSTM layer to calculate at+1, the attention
weight for the next input matrix dt+1:

at+1[i] = P (Lt+1 = i|ht) =
eWi

�ht

∑K
j=1 eW �

j ht
i ∈ 1, . . . , K, (2)

where at+1[i] is the attention weight for the i-th element (word index) at time
step t + 1, Wi is the weight allocated to the i-th element in the feature space,
and Lt+1 represents the word index and takes 1-of-K values.

(a) The soft attention mechanism (b) Unfolded model structure

Fig. 3. (a) The attention module computes the current input xt as an average of the
tf-idf features weighted according to the attention softmax at. (b) At each time stamp,
the proposed model takes the feature slice xt as input and propagates xt through
stacked layers of LSTM and predicts next location weight at+1. The class label yt is
calculated at the last time step t.

The attention vector at+1 consists of K weight scalars for each feature dimen-
sion, representing the importance attached to each word in the input matrix
dt+1. Our model is optimized to assign higher focus to words that are believed
to be distinct in learning rumor/non-rumor representations. After calculating
these weights, the soft deterministic attention mechanism [19] computes the
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expected value of the input at the next time step xt+1 by taking weighted sums
over the word matrix at different positions:

xt+1 = EP (Lt+1|ht)[dt+1] =
K∑

i=1

at+1[i]dt+1[i], (3)

where dt+1 is the input matrix at time step t + 1 and dt+1[i] is the feature
vector of the i-th position in the matrix dt+1. Thus, Eq.(3) formulates a deter-
ministic attention model by computing a soft attention weighted word vector∑

i at+1[i]dt+1[i]. This corresponds to feeding a soft-a-weighted context into the
system, whilst the whole model is smooth and differential under the determin-
istic attention, and thus learning end-to-end is trivial by using standard back-
propagation.

3.4 Loss Function and Model Training

In model training, we employ cross-entropy loss coupled with l2 regularization.
The loss function is defined as follows:

L = −
C∑

c=1

yt,c log ŷt,c + γφ2, (4)

where yt is the one hot label represented by 0 and 1, ŷt is the predicted binary
class probabilities at the last time step t, C = 2 is the number of output classes
(rumors or non-rumors), γ is the weight decay coefficient, and φ represents all
the model parameters.

The cell state and the hidden state for LSTM are initialized using the input
tf-idf matrices for faster convergence:

c0 = fc

(
1
τ

τ∑

t=1

(
1
K

K∑

i=1

dt[i]

))

,

h0 = fh

(
1
τ

τ∑

t=1

(
1
K

K∑

i=1

dt[i]

))

,

(5)

where fc and fh are two multi-layer perceptrons, and τ is the number of time
steps for each event sequence. These values are used to compute the first location
softmax a1 which determines the initial input x1.

4 Experiments

In this section, we evaluate the performance of our proposed methodology in
early rumor detection using real-world data collected from two different social
media platforms.
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4.1 Datasets

We use two public datasets published by [9]. The datasets are collected from
Twitter2 and Sina Weibo3 respectively. Both of the datasets are organised at
event-level with the ground truth verified via Snopes4 and Sina Community
Management Center5. In addition, we follow the criteria from [9] to manually
gather 4 non-rumors from Twitter and 38 rumors from Weibo for comprehensive
class balancing. Note for Tweet datasets, some posts are no longer available when
we crawled those tweets, causing a 10% shrink on the scale of data compared with
the original Twitter dataset and this is a main cause for a slight performance
fluctuation compared with the results in other papers.

Table 1 gives statistical details of the two datasets. We observe that more than
76% of the users tend to repost the original news with very short comments to
reflect their attitudes towards those news. As a consequence, the contents of the
posts related to one event are mostly duplicate, which can be rather challenging
for early rumor detection tasks.

Table 1. Statistical details of datasets. PPE stands for posts per event.

Dataset Total users Total posts Events Rumors Non-rumors Avg. PPE Min. PPE Max. PPE

Twitter 466,577 1,046,886 996 498 498 1,051 8 44,316

Weibo 2,755,491 3,814,329 4,702 2,351 2,351 811 10 59,318

4.2 Settings and Baselines

The model is implemented using Tensorflow6. All parameters are set using cross-
validation. To generate the input variable-length post series, we set the amount of
posts N for each time step as 5 and the minimum post series length Min as 2. We
selected K = 10,000 top words for the construction tf-idf matrices. We randomly
split our datasets with the ratio of 70%, 10% and 20% for training, validation and
test respectively. We apply a three-layer LSTM model with descending amount
of hidden states (specifically 1,024, 512 and 128). The learning rate is set as 0.001
and the γ is set to be 0.005. Our model is trained through back-propagation [27]
algorithm, namely Adam [28]. We iterate the whole training process until the
loss value converges.

We evaluate the effectiveness and efficiency of CallAtRumors by comparing
with the following state-of-the-art approaches in terms of precision and recall:

2 www.twitter.com.
3 www.weibo.com.
4 www.snopes.com.
5 http://service.account.weibo.com.
6 https://www.tensorflow.org.

http://www.twitter.com/
http://www.weibo.com/
https://www.snopes.com/
http://service.account.weibo.com
https://www.tensorflow.org
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– DT-Rank [8]: This is a decision-tree based ranking model using enquiry
phrases which is able to identify trending rumors by recasting the problem as
finding entire clusters of posts whose topic is a disputed factual claim.

– SVM-TS [4]: SVM-TS can capture the temporal characteristics of from con-
tents, users and propagation patterns based on the time series of rumors’
lifecycle with time series modelling technique applied to incorporate carious
social context information.

– LK-RBF [12]: We choose this link-based approach and combine it with the
RBF (Radial Basis Function) kernel as a supervised classifier because it
achieved the best performance in their experiments.

– ML-GRU [9]: This method utilizes basic recurrent neural networks for early
rumor detection. Following the settings in their work, we choose the multi-
layer GRU (gated recurrent unit) as it performs the best in the experiment.

– CERT [13]: This is a cross-topic emerging rumor detection model which can
jointly cluster data, select features and train classifiers by using the abundant
labeled data from prior rumors to facilitate the detection of an emerging
rumor.

4.3 Effectiveness and Earliness Analysis

In this experiment, we take different ratios of the posts starting from the first
post within all events for model training, ranging from 10% to 80% in order
to test how early CallAtRumors can detect rumors successfully when there are
limited amount of posts available. Through incrementally adding training data
in the chronological order, we are able to estimate the time that our method
can detect emerging rumors. The results on earliness are shown in Fig. 4. At
the early stage with 10% to 60% training data, CallAtRumors outperforms four
comparative methods by a noticeable margin. In particular, compared with the
most relevant method of ML-GRU, as the data proportion ranging from 10% to
20%, CallAtRumors outperforms ML-GRU by 5% on precision and 4% on recall
on both Twitter and Weibo datasets. The result shows that attention mechanism
is more effective in early stage detection by focusing on the most distinct features
in advance. With more data applied into test, all methods are approaching their
best performance. For Twitter dataset and Weibo Dataset with highly noticable
duplicate contents in each event, our method starts with 74.02% and 71.73%
in precision while 68.75% and 70.34% in recall, which means an average time
lag of 20.47 h after the emerge of one event. This result is promising because
the average report time over the rumors given by Snopes and Sina Community
Management Center is 54 h and 72 h respectively [9], and we can save much
manual effort with the help of our deep attention based early rumor detection
technique.

Apart from numerical results, Fig. 4(e) visualises the varied attention effects
on a detected rumor. Different color degrees reflect various attention degrees paid
to each word in a post. In the rumor “School Principal Eujin Jaela Kim banned
the Pledge of Allegiance, Santa and Thanksgiving”, most of the vocabularies
closely connected with the event itself are given less attention weight than words
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Fig. 4. The charts in (a)–(d) reveal the performance for all methods with accumulative
training data size. The effect of attention mechanism is visualized via (e). (Color figure
online)

expressing users’ doubting, esquiring and anger caused by the rumor. Despite the
massive duplication from users’ comments, by implementing textual attention
mechanism, CallAtRumors is able to lay more emphasis on discriminative words,
thus guaranteeing high performance in such case.

5 Conclusion

Rumor detection on social media is time-sensitive because it is hard to eliminate
the vicious impact in its late period of diffusion as rumors can spread quickly
and broadly. In this paper, we introduce CallAtRumors, a novel recurrent neu-
ral network model based on soft attention mechanism to automatically carry
out early rumor detection by learning latent representations from the sequen-
tial social posts. We conducted experiments with five state-of-the-art rumor
detection methods to illustrate that CallAtRumors is sensitive to distinguishable
words, thus outperforming the competitors even when textual feature is sparse
at the beginning stage of a rumor. In our future work, it would be appealing
to investigate more complexed feature from opinion clustering results [29] and
user behavior patterns [30] with our deep attention model to further improve
the early detection performance.
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