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Abstract. The variable nature of solar power output from PhotoVoltaic
(PV) systems is the main obstacle for penetration of such power into the elec-
tricity grid. Thus, numerous methods have been proposed in the literature to
construct forecasting models. In this paper, we present a comprehensive com-
parison of a set of prominent methods that utilize weather prediction for future.
Firstly, we evaluate the prediction accuracy of widely used Neural Network
(NN), Support Vector Regression (SVR), k-Nearest Neighbours (kNN), Multi-
ple Linear Regression (MLR), and two persistent methods using four data sets
for 2 years. We then analyze the sensitivities of their prediction accuracy to 10–
25% possible error in the future weather prediction obtained from the Bureau of
Meteorology (BoM). Results demonstrate that ensemble of NNs is the most
promising method and achieves substantial improvement in accuracy over other
prediction methods.
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Support Vector Regression � Nearest neighbours � Regression

1 Introduction

Solar power is one of the prominent sources of renewable energy and expected to
contribute to a major share of electricity generation in future. Many countries have been
installing large-scale solar PV plants and connecting them to grid to meet their elec-
tricity demand. For example, in 2015–2016 solar power generation in Australia
increased by 24% and accounted for 3% of its total energy generation [1]. By the year
2050, Australia also aims to generate 29% of the electricity from solar PV systems [2].

However, unlike the traditional sources of energy, power output from solar PV
plants fluctuates because of its dependency on meteorological conditions. This fluc-
tuation imposes substantial challenges on achieving high level penetration of solar
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power into the electricity grid [3]. A rapid unexpected change in the PV output power
creates grid operational issues and negatively affects the security of supply. Reliable
prediction of solar PV power output at different horizons is therefore critical to com-
pensate the negative consequences related to variability in generation.

The prominent methods for solar power prediction are based on machine learning
techniques such as NN (e.g. [4, 5]), SVR (e.g. [6]), and kNN (e.g. [7]); and statistical
methods such as MLR and Autoregressive methods [8, 9]. Pedro and Coimbra [10]
studied the performance of several methods for 1 and 2 h ahead prediction using a data
set consisting of only previous solar power data. Although various weather information
(such as solar exposure, temperature, and rainfall) have significant influence on the
power output, they excluded the weather information and used only previous power
data as inputs as their primary goal was to develop the baselines for further evaluation.

Long et al. [11] evaluated the performance of four methods using a data set that
included weather parameters in addition to previous power as the inputs. However,
they considered forecasting the cumulative power output for a day. Predicting daily
total power output has very limited use in practical applications for real-time grid
operation as the power output largely varies at different times of a day (see Fig. 1
showing the variability of solar power outputs at different times during the days)
depending on the weather condition.

A review of the relevant literature suggests the predictive performance of the
existing methods were evaluated on different data sets and for different forecasting
scenarios (such as different prediction horizons). Hence, their computational accuracy
reported in the literature is not readily comparable and does not convince to demon-
strate the superiority of any single method over others. Therefore, it can be concluded
that despite numerous approaches proposed and many notable achievements cited

Fig. 1. Variability of solar PV power output at different times from 7:00 am to 5:00 pm for all
days in 2015 (sample data set name UQC)
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systematic comparison of different methods utilizing weather data accompanied by
analysis of their sensitivities to error in future weather prediction is very limited. In this
paper, we address this deficit in the literature and provide a comprehensive evaluation
of a group of solar power forecasting methods that utilize weather prediction for future.
In contrast to the previous work our contributions can be summarized as follows:

We compare a set of prominent methods for the task of predicting the output power
profile for a day - i.e. predicting all the power outputs at half-hourly intervals for a day.
Forecasting daily power profile is crucial for real time unit dispatching, gird reliability,
and supporting energy trading in the deregulated markets. Firstly, we evaluate the 4
state-of-the-art and 2 baseline methods using 4 different data sets for two years 2015–
2016 collected from the largest flat-panel grid connected PV plant in Australian. We
then analyze the sensitivities of those methods to error in weather prediction for future
by considering 10–25% noise in weather data obtained from BoM. This has been done
to evaluate the robustness of the prediction methods in dealing the uncertainty asso-
ciated with weather prediction. To the best of our knowledge this has not been
investigated before in the literature.

2 Data Sets and Problem Statement

2.1 Solar Power Data

We use the data from the largest flat-panel PV system in Australia which has been
located at the St Lucia campus of University of Queensland, Brisbane. It has a capacity
of 1.22 MW and consists of about 5000 solar panels installed across four different sites:
University of Queensland Centre (UQC), Sir Llew Edwards Building (LEB), Car Park
1 (CP1) and Car Park 2 (CP2). We use data from all four sites and consider the data
from each site as a separate case study.

For each site, we collect the solar power output data in 1 min interval for 2 years –
2015 and 2016. For each day we use the data from 7:00 am to 5:00 pm since the solar
power outputs have been recorded as either zero or not available outside this 10-h
window, due to the absence (or very small amount) of solar irradiation. This leads to
2 � 365 � 600 = 438,000 1-min measurements for each site. The 1-min data is
publicly available at [12]. The 1-min data was then aggregated into 30-min intervals by
averaging every 30 consecutive measurements, resulting in 20 measurements per day
and 2 � 365 � 20 = 14,600 measurements in total for each site.

2.2 Weather Data

We also collect the meteorological data for the four variables – solar exposure, rainfall,
sunshine hours, temperature and wind speed, for the same time period and from the
nearest weather station of the PV sites, from BoM Australia [13]. These are among the
widely cited weather variables affecting the solar power output from PV systems.

All data (PV power, solar exposure, rainfall, sunshine hours, temperature, and wind
speed) has been normalized to the range of [0, 1].
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2.3 Problem Statement

Given

1. a time series of previous solar power outputs up to the day d: P ¼ P1;P2;P3; . . .;Pd½ �,
where Pi ¼ ½p1i ; p2i ; p3i ; . . .; pni � represents the power profile for day i, i.e. n observa-
tions of the power outputs measured at half-hourly intervals (n = 20 for our case);

2. a time series of previous weather data from BoM up to day d: W ¼ W1;W2;W3;½
. . .;Wd; �, whereWi is the weather data for day i. Wi is a 6-dimensional vector of the
daily global solar exposure (SE), rainfall(R), sunshine hours (SH), maximum wind
speed (WS), and maximum and minimum temperature (T), Wi ¼ SEi;Ri; SHi;½
WSimax; T

i
max; T

i
min�.

3. predicted weather data Wdþ 1 for day d + 1.

Goal: forecast Pdþ 1 - half-hourly solar PV power profile for the next day dþ 1
using predicted weather data Wdþ 1 for day d + 1 as input. It is important to note that
unlike other methods, only kNN requires: (1) previous weather data up to day d to
select the k neighbours (days) nearest to predicted weather data Wdþ 1 for target day
d + 1, and (2) previous power outputs of the k selected neighbours (days) to compute
the prediction for Pdþ 1.

3 Methods

For comparison, we consider four most prominent methods in the literature: NN, SVR,
kNN, and MLR, and two persistent methods as baselines. All the methods use fore-
casted weather profile as input to predict the daily solar power curve for next day.

3.1 NN

To build NN based prediction model, we use multilayer perceptron NN. Approaches
based on such NN are the most popular for solar power prediction. NN can learn and
estimate complex functional relationships between the input and output variables from
examples. However, the performance of NN depends on the network architecture and
the random initialization of weights. To reduce this sensitivity, we apply an ensemble
of NNs. Ensembles are shown to be more accurate than a single NN in previous works
(e.g. [14]) using the same data sets.

To develop ensemble of NNs we follow [14, 15]. We first construct V different NN
structures by varying the number of neurons in hidden layer from 1 to V. For each
structure SveV , we then build an ensemble Ev that consists of n NNs (we used n = 10).
Each member of the ensemble Ev has the same structure Sv, i.e. the same number of
hidden neurons, but is initialized to different random weights. Each of the n members
of ensemble Ev has been trained separately on the training data using the Levenberg
Marquardt (LM) algorithm. The NN training has been stopped when there is no
improvement in the error for 20 consecutive epochs or a maximum number of 1000
epochs is reached.
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To predict the half-hourly power outputs for a given day, the individual predictions
of the ensemble members are combined by taking their median value, i.e. the prediction

for time (half an hour) h for day d + 1 is: P̂dþ 1
h = median P̂dþ 1

h;NN1
; . . .; P̂dþ 1

h;NNn

� �
, where

P̂dþ 1
h;NNj

is the prediction for h generated by an ensemble member NNj, h = 1,…, 20 and

j = 1, …, n.
The performance of each ensemble Ev was evaluated on the validation set. The best

performing ensemble, i.e. the one with the lowest prediction error, is then selected and
used to predict testing data.

3.2 SVR

SVR is an advanced machine algorithm that has shown excellent performance for solar
power forecasting [6, 16]. The key idea of SVR is to map the input data into a higher
dimensional feature space using a non-linear transformation and then apply linear
regression in the new space. The task is formulated as an optimization problem. The
main goal is to minimize the error on the training data, but the flatness of the line and
the trade-off between training error and model complexity are also considered to
prevent overfitting.

Solving the optimization problem requires computing dot products of input vector
in the new space which is computationally expensive in high dimensional spaces. To
help with this, kernel functions satisfying the Mercer’s theorem are used - they allow
the dot products to be computed in the original lower dimensional space and then
mapped to the new space.

Since SVR can have only one output, we divide the daily load curve prediction task
into 20 subtasks (i.e. predicting power output for each half-hourly time separately) and
build a separate SVR prediction model for each subtask.

The selection of kernel function is important for SVR, and is done by empirical
evaluation. After experimenting with different kernel functions, we selected the Radial
Basis Function (RBF) kernel as it achieved the best performance on the validation data.

3.3 kNN

kNN is an instance based method for forecasting. The main concept of kNN is selecting
a subset of training examples whose inputs are similar to the inputs of test example, and
use the outputs of that training subset to predict the outputs for the test example.

To forecast the power outputs for the next day d + 1, kNN firstly obtains the
weather profile Wdþ 1 for d + 1 from the weather forecast report. It then finds the
k nearest neighbors of d + 1. This is done by matching the weather profile of all
previous days ending with d and finding the k most similar days. This leads to a
neighbour set NS ¼ q1; . . .:; qk;

� �
where q1; . . .:; qk are the k closest days to day d + 1,

in order of closeness computed using a distance measure between weather profiles of
the neighbors to that for d + 1. The prediction for the new day is the weighted linear
combination of the power outputs for the k nearest neighbors:
P̂dþ 1 ¼ 1P

s�NS
as
:
P

s�NS as:P
h
s .
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The weights as are computed by following [17]: as ¼ dist Wqk ;Wdþ 1ð Þ�dist Ws;Wdþ 1ð Þ
dist Wqk ;Wdþ 1ð Þ�dist Wq1 ;Wdþ 1ð Þ,

where dist is the Euclidian distance measure, and k is the number of neighbors. The
optimal value for k can be set by applying kNN method on the training data set, i.e. it is
the one that minimizes the prediction error for training data set.

3.4 MLR

MLR is a classical statistical method for forecasting. It assumes linear relationship
between the predictor variables and the variable that is predicted, and uses the least
square method to find the regression coefficients. In this work we apply Weka’s
implementation of linear regression. It has an inbuilt mechanism for input variable
selection based on the M5 method. This method firstly builds a regression model using
all inputs and then removes the variables, one by one, in decreasing order of their
standardized coefficient until no improvement is observed in the prediction error given
by the Akaike Information Criterion (AIC). Similar to SVR, for MLR we train one
model for each half-hourly time since MLR can have only one output.

3.5 Persistent Methods

We also implement two persistent methods as baselines for comparison.
The first persistent method (Bmsday) firstly selects the most similar previous day

(s) in the historical data based on the weather profile where the similarity is measured
by Euclidean distance between the weather profiles of d + 1 and s. It then uses the
power output for the day s as the predictions for the day d + 1. This means the
prediction for P̂dþ 1 ¼ P̂1

dþ 1; P̂
2
dþ 1; . . .; P̂

20
dþ 1

� �
is given by Ps ¼ p1s ; p

2
s ; . . .; p

20
s

� �
.

Obviously Bmsday is same as kNN if only a single neighbour is considered in kNN.
The second persistent method (Bpday) considers the power outputs from the pre-

vious day d as the predictions for the next day d + 1, i.e. the predictions for P̂dþ 1 ¼
P̂1
dþ 1; P̂

2
dþ 1; . . .; P̂

20
dþ 1

� �
are given by Pd ¼ p1d; p

2
d; . . .; p

20
d

� �
.

4 Simulation Settings

4.1 Training and Testing Data

We divide the data for each case study into two non-overlapping subsets – training and
testing. The training set consists of all the samples from the year 2015 and has been
used to build the prediction models. This applies to all the models expect NN and SVR.
For NN and SVR 90% of the samples from the training set has been used to train the
models and remaining 10% (validation set) has been used for parameter selection (such
as selecting the number of hidden neurons for NN and kernel for SVR). During the
training phase we used actual weather data Wdþ 1 for target day d + 1 as input since
training was performed offline and we do not have access to the historical weather
prediction.
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On the other hand, testing set consists of all the samples from the year 2016 and has
been used to evaluate the accuracy of the prediction models.

4.2 Evaluation Metrics

To evaluate the accuracy of forecasting models, we use Mean Relative Error (MRE).
MRE is one of the widely cited measure for the accuracy of solar power prediction and

defined as: MRE ¼ 1
D

1
H

PD
d¼1

PH
h¼1

phd�P̂h
d

R

���
���� 100%.

where phd and P̂h
d are the actual and predicted power outputs for day d at time h,

respectively; D is the number of instances (days) in the testing data; H is the total
number of predicted power outputs for a day (H = 20 for our task), and R is the range
of the power output.

For comparison of prediction models, we also compute the improvement in
accuracy between two prediction models A and B as:

improvement A;Bð Þ ¼ jMREA�MREBj
MREB

� 100%.

5 Results and Discussion

Table 1 presents the accuracy (MRE) of the prediction models using actual weather
data for target day as input as we do not have access to the historical weather pre-
diction. The statistical significance for differences in accuracy for each pair of pre-
diction models are also shown Table 2. Results show that ensemble of NNs is the most
accurate model and outperforms all other prediction models including two baselines in
all data sets, except SVR for EBD data set. The overall improvements of accuracy for
NNs ensemble are 0.18–2.94% over SVR, 23.77–56.06% over kNN, 1.04–3.14% over
MLR, 5.34–30.35% over Bmsday, and 14.82–39.25% over Bpday. All the improvements
of NNs ensemble are also statistically significant at p � 0.05 except the difference
between NNs ensemble and SVR for CP2 data (see Table 2).

SVR and MLR come next in the ranking with SVR being slightly better. Even
though SVR and MLR shows similar performance, the difference in accuracy between
them is statistically significant for all data sets except UQC. Besides, although NN
shows the highest accuracy, the performance of SVR and MLR is not too far behind:
MRE = 7.75–12.01% for NNs ensemble vs 7.77–11.89% for SVR and 7.98–12.24%

Table 1. Accuracy results (MRE) of all prediction models evaluated on four data sets.

NN SVR kNN MLR Bmsday Bpday

CP1 9.43 9.50 19.19 9.53 11.72 11.95
CP2 7.75 7.77 17.65 7.98 11.13 13.46
EBD 12.01 11.89 15.76 12.24 12.69 14.10
UQC 8.45 8.70 16.38 8.72 11.26 13.90
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for MLR. In addition, both SVR and MLR outperform kNN and two baselines and their
improvements over kNN and baselines are statistically significant too (see Table 2).

On the other hand, kNN provides the lowest accuracy among all the prediction
models – they even unexpectedly outperformed by the baselines Bmsday and Bpday.

From the poor performance of kNN compared to Bmsday, it can be said the using more
than 1 similar day to compute the prediction next day is not quite beneficial.

Table 2. Statistical significance test (two-sample t-test) of pair-wise differences in accuracy for
the prediction models: T = statistically significant at p � 0.05 and F = not statistically
significant. Four letters in a cell indicates results on the four data sets – CP1, CP2, EBD and
UQC respectively; for example T, T, F, T in row #1, column #2 indicate that difference in
accuracy between NN and SVR are statistically significant for CP1, EBD, and UQC data sets, but
not significant for CP2 data set.

NN SVR kNN MLR Bmsday Bpday

NN T, F, T, T T, T, T, T T, T, T, T T, T, T, T T, T, T, T
SVR T, T, T, T T, T, T, F T, T, T, T T, T, T, T
kNN T, T, T, T T, T, T, T T, T, T, T
MLR T, T, T, T T, T, T, T
Bmsday T, T, T, T

Table 3. Accuracy of all prediction models after adding noise in weather data.

NN SVR kNN MLR Bmsday Bpday

With 10% added noise in weather data
CP1 9.32 9.72 18.98 9.85 12.60 11.95
CP2 8.17 8.39 18.31 8.72 12.14 13.46
EBD 12.50 12.50 17.05 12.70 14.37 14.10
UQC 8.90 9.49 17.55 9.57 12.35 13.90
With 15% added noise in weather data
CP1 9.91 10.14 18.04 10.38 12.62 11.95
CP2 8.83 9.09 17.80 9.55 12.34 13.46
EBD 12.48 13.08 17.40 13.14 14.78 14.10
UQC 9.43 10.26 17.24 10.41 12.83 13.90
With 20% added noise in weather data
CP1 10.14 10.72 17.52 11.12 12.62 11.95
CP2 9.42 9.90 17.55 10.54 12.20 13.46
EBD 13.16 13.82 17.52 13.74 14.37 14.10
UQC 10.16 11.12 17.04 11.42 12.69 13.90
With 25% added noise in weather data
CP1 10.47 11.40 17.37 12.02 12.84 11.95
CP2 9.88 10.76 17.48 11.65 12.67 13.46
EBD 13.73 14.63 17.62 14.47 14.73 14.10
UQC 10.49 12.03 17.01 12.53 13.13 13.90
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It is important to note that results in Table 1 have been computed using measured
weather data for future as we do not have access to historical weather prediction.
However, in practical applications, the models require predicted weather data Wdþ 1 for
day d + 1 from BoM. The performance of the solar power forecasting models sub-
stantially depends on the accuracy of such weather prediction. Therefore, to check the
robustness of the prediction models and analyse their sensitivity to the error in weather
prediction, we evaluate their accuracy by adding 10–25% random noise to measured
weather data.

Table 3 presents accuracy of all prediction models after adding different level of
noise in weather information in the test data sets. Figures 2, 3, 4 and 5 shows the
comparison of how much the accuracy (MRE) for different models are affected by error
in future weather prediction for CP1, CP2, EBD and UQC data sets respectively (kNN
are excluded for better visualization since its MRE range is much higher). We can see
that only the accuracy of Bpday is unaffected by the error in weather data since it
considers the power outputs from previous day as the outputs for next day irrespective
of the changes in weather.

The prediction error (MRE) for all other models (except kNN) rises and shows an
increasing trend as the error in the future weather information increases from 10–25%.
The MRE after adding noise in the weather data reaches to the range of 8.17–13.73%
for NNs ensemble, 8.39–14.63% for SVR, 8.72–14.47% for MLR, and 11.13–14.78%
for Bmsday.

On the other hand the MRE of kNN shows slight improvement or remains similar
as error in weather goes up. Although it is unexpected and quite opposite to the case for
remaining models, it does not make any difference in the ranking of models as the
MRE of kNN is still far behind than two baselines.
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Fig. 2. MRE of prediction models for different level of error in weather data: CP1 data set
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Moreover, comparison of MRE results from Tables 1 and 3 shows that the ranking
of all prediction models after adding noise to actual weather data follows the same
order as it was before adding the noise: NNs ensemble being the most accurate fol-
lowed by SVR, MLR, baselines, and kNN. Despite the performance of the all pre-
diction models (except kNN) deteriorates after adding noise to weather data, the
difference in accuracy between the NNs ensemble and other models becomes more
prominent as the noise goes from 10–25% (see Figs. 2, 3, 4 and 5). This indicates that
NN model is more robust in handling the error in weather prediction for future and able
to forecast the solar power outputs for next day even the weather profile for next day
does not exactly matches with the weather prediction obtained from BoM.
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Fig. 3. MRE of prediction models for different level of error in weather data: CP2 data set
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Fig. 4. MRE of prediction models for different level of error in weather data: EBD data set
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In summary, considering the overall accuracy and ability to handle the uncertainty
associated with the weather data for future, ensemble of NNs is the most effective
among all the models used for comparison.

6 Conclusion

In this paper, we present a comprehensive assessment of a set of prominent methods for
forecasting day ahead solar power output profile. We evaluate the performance of
ensemble of NNs, kNN, SVR, MLR and two baselines using 4 different sets of data
collected for 2 years. The presented results show that ensemble of NNs is the most
accurate prediction method and achieves considerable improvement of accuracy over
all other methods. Ensemble of NNs also has been found to be very successful in
dealing the error in weather prediction - its performance is less sensitive to inaccuracies
in weather prediction for future. Although the performance of SVR and MLR also
found comparable to NNs, the difference in accuracy between any of these two models
and NNs increases significantly as the error in weather forecast increases. Therefore,
we conclude that ensemble of NNs is more viable for practical application for fore-
casting solar power outputs from PV systems.
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