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Abstract. Over the last years, dictionary learning method has been
extensively applied to deal with various computer vision recognition
applications, and produced state-of-the-art results. However, when the
data instances of a target domain have a different distribution than that
of a source domain, the dictionary learning method may fail to perform
well. In this paper, we address the cross-domain visual recognition prob-
lem and propose a simple but effective unsupervised domain adaptation
approach, where labeled data are only from source domain. In order to
bring the original data in source and target domain into the same dis-
tribution, the proposed method forcing nearest coupled data between
source and target domain to have identical sparse representations while
jointly learning dictionaries for each domain, where the learned dictionar-
ies can reconstruct original data in source and target domain respectively.
So that sparse representations of original data can be used to perform
visual recognition tasks. We demonstrate the effectiveness of our app-
roach on standard datasets. Our method performs on par or better than
competitive state-of-the-art methods.

1 Introduction

In the past decade, machine learning has been widely used for various com-
puter vision applications, such as multimedia retrieval [1–3], image classification
[4–9], object detection [10–13], person re-identification [14–18], etc. Traditional
machine learning methods often learn a model from the training data, and then
apply it to the testing data. The fundamental assumption here is that the train-
ing data and testing data have the same distribution. However, in real-world
applications, it cannot always guarantee that training data share the same dis-
tribution with testing data. Therefore, it may produce very poor results when
the testing data and training data have the different distributions since the
training model is no longer optimal on testing data. For example, applies image
classification classifier trained on amazon dataset to phone photos in real life.
Face recognition model trained on frontal and well-illumination images to recog-
nize non-frontal poses and less-illumination images. This often viewed as visual
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domain adaptation problem which has been increasing interest in understanding
and overcoming.

Domain adaptation aims at learning an adaptive classifier by utilizing the
information between source domain with a plenty of labeled data and target
domain which is collected from a different distribution. Generally, we can divide
domain adaptation into two settings depending on the availability of labels in
the target domain data: semi-supervised domain adaptation, and unsupervised
domain adaptation. In scenario of semi-supervised domain adaptation, labeled
data is available in both source domain (with a plenty of labeled data) and target
domain (with a few labeled data), while in scenario of unsupervised domain
adaptation labeled data are only available from source domain. In this paper,
we mainly focus on unsupervised domain adaptation which is a more challenging
task, and more in line with the real-world applications.

Many recent works [19–21] focus on subspace based method to tackle visual
domain adaptation problems. In [21], Li et al. determined a feature subspace
via canonical correlation analysis (CCA) [22] for recognizing faces with differ-
ent poses. In [19], Gopalan et al. using geodesic flows to generate intermedi-
ate subspaces along the geodesic path between source domain subspace and
target domain subspace on the Grassmann manifold. In [20], Gong et al. pro-
posed Geodesic Flow Kernel (GFK), which computes a symmetric kernel between
source and target points based on geodesic flow along a latent manifold.

Fig. 1. The overall schema of the proposed framework.

In last few years, the study of dictionary learning based sparse representation
has received extensive attention. It has been successfully used for a variety of
computer vision applications. For example, classification [23], recognition [24]
and denoising [25]. Using an over-complete dictionary, signal or image can be
approximated by the combination of only a few number of atoms, that are chosen
from the learned dictionary. One of the early dictionary learning algorithms was
proposed by Olshausen and Field [26], where a maximum likelihood (ML) learn-
ing method was used to sparsely encode images upon a redundant dictionary.
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Based on the same ML objective function as in [26], Engan et al. [27] developed
a more efficient algorithm, called the method of optimal directions (MOD), in
which a closed-form solution for the dictionary update has been proposed. More
recently, in [28], Aharon, Elad and Bruckstein proposed the K-SVD algorithm
by generalizing k-means clustering and efficiently learns an over-complete dic-
tionary from a set of training signals. This method has been implemented in a
variety of image processing problems.

The most existing dictionary based methods assuming that training data
and testing data come from the same distribution. However, the learned dic-
tionary may not be optimal if the testing data has different distribution from
the data used for training. Learning dictionaries under different domain is a
challenging task, and gradually become a hot research over the last few years.
In [29], Jia et al. considered a special case where corresponding samples from
each domain were available, and learn a dictionary for each domain. Qiu et al.
[30] presented a general joint optimization function that transforms a dictionary
learned from one domain to the other, and applied such a framework to applica-
tions such as pose alignment, pose illumination estimation, and face recognition.
Zheng et al. [31] proposed a method achieved promising results on the cross-view
action recognition problem with pairwise dictionaries constructed using corre-
spondences between the target view and the source view. In [32], Shekhar et
al. learn a latent dictionary which can succinctly represent both the domains
in a common projected low-dimensional space. Ni et al. [33] learn a set of sub-
spaces through dictionary learning to mitigate the divergence of source and tar-
get domains. Huang and Wang [34] proposed a joint model which learns a pair
of dictionaries with a feature space for describing and associating cross-domain
data. In [35,36], Zhu and Shao proposed a weakly-supervised framework learns a
pairwise dictionaries and a classifier while considering the capacity of the dictio-
naries in terms of reconstructability, discriminability and domain adaptability.

In this paper, we present an unsupervised domain adaptation approach
through dictionary learning. Different from above dictionary learning based
domain adaptation methods, our method directly learning adaptive dictionaries
in low-level feature space and with no need for labels either in source domain
or target domain during dictionary learning process. Our method is inspired by
[35,36], which forcing the similar samples in the same class to have identical
representations in the sparse space. However, our method is unsupervised, we
assume that the nearest coupled low-level features in the original space should
maintain their relationship in the sparse space (i.e. these coupled features have
the same sparse representation). According to this main idea, we learn a transfor-
mation matrix, which selected the nearest data in source domain to each target
data. Then the dictionaries for each domain are jointly learned by these selected
source data and target data. The data from each domain can be encoded by their
dictionaries and then represented by sparse features. Thus, SVM classifier can
be trained using these sparse features, and predicting test data on the learned
classifier. The learning framework is performed by a classic and efficient dic-
tionary learning method, K-SVD [28]. We demonstrate the effectiveness of our
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approach on standard cross-domain datasets, and we get state-of-the-art results.
An overall schema of the proposed framework is shown in Fig. 1.

1.1 Organization of the Paper

The structure of the rest of the paper is as follows: In Sect. 2, we present our
unsupervised domain adaptation dictionary learning algorithm and introduce the
classification scheme for the learned dictionary. Experimental results on object
recognition are presented in Sect. 3. Finally, the conclusion of this work is given
in Sect. 4.

2 Proposed Method

2.1 Problem Notation

Let Is = {Is,i}Ns
i=1, and It = {It,j}Nt

j=1 be the data instances from the source and
target domain respectively, where Ns and Nt denote the number of samples.
Each sample from Is and It has a set of d-dimensional local features, thus each
sample can represented by Is,i = {I1s,i, I

2
s,i, ..., I

Mi
s,i } and It,j = {I1t,j , I

2
t,j , ..., I

Mj

t,j }
in source and target domain respectively, where Mi and Mj denote the number
of local features. Then, the set of local features of source and target domain can
be denoted as Ys ∈ R

d∗Ls , and Yt ∈ R
d∗Lt respectively, where Ls and Lt denote

the number of local features in the source and target domain.

2.2 Dictionary Learning

Here, we give a brief review of classical dictionary learning approach. Given a set
of d-dimensional input signals, Y ∈ R

d∗L, where L is denoted as the number of
input signals. Then, learning a K-atoms dictionary of the signals Y , D ∈ R

d∗K ,
can be obtained by solving the following optimization problem:

{D,X} = argminD,X‖Y − DX‖2F
s.t. ∀i, ‖xi‖0 ≤ T0

(1)

where D = [d1, d2, ..., dK ] ∈ R
d∗K denotes the dictionary, X = [x1, x2, ..., xL] ∈

R
K∗L denotes the sparse coefficients of Y decomposed with D, and T0 is the

sparsity level that constraint the number of nonzero entries in xi.
The performance of sparse representation strictly lie on dictionary learn-

ing method. The K-SVD algorithm [28] is a highly effective dictionary learning
method that focuses on minimizing the reconstruction error. In this paper, we
will solve our formulation of unsupervised domain adaptation dictionary learning
based on the K-SVD algorithm.
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2.3 Unsupervised Domain Adaptation Dictionary Learning

Now, consider a more general scenario, where we have data from two domains,
source domain Ys ∈ R

d∗Ls , and target domain Yt ∈ R
d∗Lt . We wish to jointly

learning corresponding dictionaries for each domain. Formally, we desire to min-
imize the following cost function:

{Ds,Dt,Xs,Xt}
= argminDs,Dt,Xs,Xt

‖Ys − DsXs‖2F
+ ‖Yt − DtXt‖2F s.t. ∀i, [‖xs

i‖0, ‖xt
i‖0] ≤ T0

(2)

In addition, in order to maintain the relationship in original feature space, we
assume that the nearest coupled low-level features in the original space should
also be the nearest couple in the sparse space. Now the new cost function is
given by:

{Ds,Dt,Xs,Xt}
= argminDs,Dt,Xs,Xt

‖Ys − DsXs‖2F
+ ‖Yt − DtXt‖2F + C([XsXt])

s.t. ∀i, [‖xs
i‖0, ‖xt

i‖0] ≤ T0

(3)

where Ds = [ds1, d
s
2, ..., d

s
K ] ∈ R

d∗K is the learned source domain dictionary,
Xs = [xs

1, x
s
2, ..., x

s
Ls

] ∈ R
K∗Ls is the sparse coefficients of source domain,

Dt = [dt1, d
t
2, ..., d

t
K ] ∈ R

d∗K is the learned target domain dictionary, and
Xt = [xt

1, x
t
2, ..., x

t
Lt

] ∈ R
K∗Lt is the sparse coefficients of target domain. The

function C(·) is defined as the distance in the new sparse space of original nearest
couples, a small C(·) indicates the data maintain more relationship in new sparse
space. This idea is inspired by [35,36], in their method, this function is designed
to measure the distances of similar cross-domain instances of the same class.
However, our method is exactly unsupervised and directly perform on low-level
feature. Thus, the function C([XsXt]) is defined as:

C([XsXt]) = ‖Xt − XsP‖2F (4)

where P ∈ R
Ls∗Lt is the transformation matrix which records the nearest couples

between the original data in source and target domain, P can be represented by:

P =

⎛
⎜⎜⎜⎜⎝

Φ(ys
1, y

t
1) ... ... Φ(ys

1, y
t
Lt

)
...

. . .
...

...
. . .

...
Φ(ys

Ls
, yt

1) ... ... Φ(ys
Ls

, yt
Lt

)

⎞
⎟⎟⎟⎟⎠

(5)

where Φ(ys
i , y

t
j) is the Gaussian distance between data in original feature space:

Φ(ys
i , y

t
j) =

1√
2π

e(−
ys
i
2−yt

j
2

2 ) (6)
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Then, P can be computed by selecting the maximum entry in each column
and set to 1 while the other entries are set to 0:

P = (i, j) =

{
1 if P (i, j) = max(P (:, j))
0 otherwise.

(7)

Thus, Eq. (3) can be written as:

{Ds,Dt,Xs,Xt}
= argminDs,Dt,Xs,Xt

‖Ys − DsXs‖2F
+ ‖Yt − DtXt‖2F + ‖Xt − XsP‖2F
s.t. ∀i, [‖xs

i‖0‖xt
i‖0] ≤ T0

(8)

Assuming P leads to a perfect mapping across the sparse codes Xt and Xs,
and each nearest couple has an identical representation after encoding, then
‖Xt − XsP‖2F = 0. Thus Xt = XsP , we can rewritten Eq. (8) as:

{Ds,Dt,Xs,Xt}
= argminDs,Dt,Xs,Xt

‖(Ys − DsXs)P‖2F + ‖Yt − DtXt‖2F
= argminDs,Dt,Xs,Xt

‖YsP − DsXsP‖2F + ‖Yt − DtXt‖2F
= argminDs,Dt,Xs,Xt

‖YsP − DsXt‖2F + ‖Yt − DtXt‖2F
s.t. ∀i, ‖xt

i‖0 ≤ T0

(9)

2.4 Optimization

We can written Eq. (9) as:

{D̃, X̃} = argmin
˜D, ˜X‖Ỹ − D̃X̃‖2F

s.t. ∀i, ‖x̃i‖0 ≤ T0

(10)

where Ỹ =
(

YsP
Yt

)
, D̃ =

(
Ds

Dt

)
,and X̃ = Xt. Thus, such optimization problem

can be solved using the K-SVD algorithm [28].

2.5 Object Recognition

Given the learned Ds and Dt, we obtain sparse representations of the train-
ing data in source domain and testing data in target domain respectively. For
each image, we obtain a set of sparse representation Xi = [xi,1, xi,2, ..., xi,Mi

] ∈
R

K∗Mi , where Xi,j is the sparse representation of jth feature in image i, K
denotes the dictionary size, and Mi is the number of local feature in image i.
Then each image represented by a K-vector global representation through max
pooling the sparse codes of local features, and then we use linear SVM classifier
for cross-domain recognition.
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(Amazon) (Caltech)

(DSLR) (Webcam)

Fig. 2. Example images from the LAPTOP category on four datasets.

3 Experiments

In this section, we evaluate our domain adaptation approach on 2D object recog-
nition across different datasets.

Experimental Setup: Following the experiment setting in [20], we evalu-
ate our domain adaptation approach on four datasets: Amazon (images down-
loaded from online merchants), Webcam (low resolution images by a web
camera), Dslr (high-resolution images by a SLR camera), and Caltech-256
[37]. We regard each dataset as a domain. Figure 2 shows sample images
from these datasets, and clearly highlights the differences between them. We
extract 10 classes common to all four datasets: BACKPACK, TOURING-BIKE,
CALCULATOR, HEADPHONES, COMPUTER-KEYBOARD, LAPTOP-
101, COMPUTER-MONITOR, COMPUTER-MOUSE, COFFEEMUG, AND
VIDEO-PROJECTOR. There are 2533 images in total. Each class has 8 to 151
images in a dataset. We use a SURF detector [38] to extract local features over all
images. For each pair of source and target domains, we use 20 training samples
per class for Amazon/Caltech, and 8 samples per class for DSLR/Webcam when
used as source. To draw complete comparison with existing domain adaptation
methods, we also carried out experiments on the semi-supervised setting where
we additionally sampled 3 labeled images per class from the target domain.
We ran 20 different trials corresponding to different selections of labeled data
from the source and target domains and testing all unlabeled data in target
domain. Our baseline is BOW, where all the images were represented by 800-bin
histograms over the codebooks trained from a subset of Amazon images. Our
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Fig. 3. Cross dataset object recognition accuracies on target domains with unsuper-
vised adaptation over the four datasets (A: Amazon, C: Caltech, D: Dslr, W: Webcam).

Fig. 4. Cross dataset object recognition accuracies on target domains with semi-
supervised adaptation over the four datasets (A: Amazon, C: Caltech, D: Dslr, W:
Webcam).

method is also compared with Metric [39], SGF [19] and GFK [20]. Note that,
Metric [39] is limited to the semi-supervised setting.

Parameter Settings: For our method, we set dictionary size K = 512, and
sparse level T0 = 5 for each domain.

Results: The average recognition rate is reported in Figs. 3 and 4 for unsuper-
vised and supervised settings respectively. It is seen that the baseline BOW has



24 Z. Zhong et al.

the lowest recognition rate, all domain adaptation methods improve accuracy
over it. Furthermore, GFK [20] based method clearly outperforms Metric [39]
and SGF [19]. Overall, our method consistently demonstrates better performance
over all methods except for one pair of source and target combination a little
less than GFK [20] in the unsupervised setting.

4 Conclusions

In this paper, we presented a fully unsupervised domain adaptation dictionary
learning method to jointly learning domain dictionaries by capturing the rela-
tionship between the source and target domain in the original data space. We
evaluated our method on publicly available datasets and obtain improved per-
formance upon the state of the art.
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