
Coding 3D Connected Regions with F26
Chain Code

Osvaldo A. Tapia-Dueñas1, Hermilo Sánchez-Cruz1(B), Hiram H. López2,
and Humberto Sossa3,4

1 Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas,
Av. Universidad 940, 20131 Aguascalientes, Ags., Mexico

black.osvo@gmail.com, hsanchez@correo.uaa.mx
2 Department of Mathematical Sciences, Clemson University, Martin Hall O-2,

Clemson, SC 29634-0975, USA
hlopezv@clemson.edu

3 Instituto Politécnico Nacional-CIC,
Av. Juan de Dios Bátiz S/N, Gustavo a Madero, 07738 Mexico City, Mexico

hsossa@cic.ipn.mx
4 Tecnológico de Monterrey, Campus Guadalajara,

Av. Gral. Ramón Corona 2514, 45138 Zapopan, Jal., Mexico

Abstract. There are many applications in different fields, as diverse as
computer graphics, medical imaging or pattern recognition for industries,
where the use of three dimensional objects is needed. By the nature of
these objects, it is very important to develop thrifty methods to repre-
sent, study and store them. In this paper, a new method to encode sur-
faces of three-dimensional objects that are not isomorphic to the plane is
developed. In the proposed method, a helical path that covers the contour
is obtained and then, the Freeman F26 chain code is used to encode the
helical path. In order to solve geometric problems to find optimal paths
between adjacent slices, a modification of the A star algorithm was car-
ried out. Finally, our proposed method is applied to three-dimensional
objects obtained from real data.

Keywords: Voxel-based objects · Chain code
Three-dimensional objects · Helical path

1 Introduction

Today, the representation and recognition of 3D objects is a very active field
in computer vision. There is a great amount of applications that require 3D
images to solve real-life problems, such as medical images, where 3D imaging
plays an important role in supporting experts to provide more accurate diagnos-
tics. There are also applications in the preservation of cultural heritage, games,
mechanical construction, security and surveillance, computer-aided design (i.e.,
CAD systems) and in general, in computer vision and pattern recognition. In
the literature have appeared proposals to represent a 3D object through another
c© Springer Nature Switzerland AG 2018
I. Batyrshin et al. (Eds.): MICAI 2018, LNAI 11289, pp. 3–14, 2018.
https://doi.org/10.1007/978-3-030-04497-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04497-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-04497-8_1

4 O. A. Tapia-Dueñas et al.

of smaller dimension, which allows an analysis and recognition. In particular,
skeletonization has been used for different reasons [1–3]. Although the skele-
tons maintain the topological properties of the underlying object and can give
qualitative results, the original object losses geometric information [1–5].

Other descriptors notably used are the chain codes, which represent move-
ments through the contour of the object. The way in which the contour is visited
and the kind of movements that can be produced by different codes, have been
exploited for representation and compression, and has attracted the attention of
many researchers [6–9].

For the three-dimensional case, there are important proposals for the use
and exploitation of chain codes but they have not been used as heavily as in
the two-dimensions, being currently a very fertile field [10–12]. In the literature,
coding of three-dimensional objects of surfaces that are isomorphic to the plane
is presented [13], however, in this work we address the problem of coding surfaces
that are not isomorphic to the plane, taking into account the different geometries
that are presented, to solve the problem of finding the shortest path that allows
to optimally encode the transition from one slice to another, of the given 3D
object to encode.

This paper is organized as follows. In Sect. 2, we provide some definitions.
In Sect. 3, we explain how to encode a 3D object in a helical path, whereas in
Sect. 4 we describe the algorithm used to find the shortest path between one slice
and another. In Sect. 5, the application of our method is presented. Finally, in
Sect. 6 we give some conclusions and further work.

2 Definitions

In this section we give the most important concepts and definitions used to
throughout the paper.

Definition 1. A voxel, v, is a resolution cell of a 3D grid with Cartesian coor-
dinates c(x, y, z) and an intensity value Iv ∈ {0, 1}. If Iv = 0, we say that the
voxel is a 0-voxel; on the contrary, we say that it is a 1-voxel.

Definition 2. A voxel v0 can share its faces, edges and/or vertices, depending
on the 6, 12, 18 or 26-neighborhood, which are defined as follows: N6(v0) =
{v|de(v0, v) = 1}, N12(v0) = {v|de(v0, v) =

√
2}, N18(v0) = {v|de(v0, v) ≤ √

2}
and N26(v0) = {v|de(v0, v) ≤ √

3}, where de is the Euclidean distance between
v0 and its neighbor voxel, v.

Definition 3. A 3D object is a connected component composed of 1-voxels,
which is immersed in a 3D array of columns, rows and slices. Each slice is com-
posed by zero or more connected regions: Rs

0, Rs
1, · · · Rs

m, where s refers to the
s-th slice.

Definition 4. If c1 are the coordinates of voxel v1, c2 the coordinates of voxel
v2, and b = c2−c1, then v1 is in the vicinity of v2 if and only if b ∈ B = {(i, j, k)},
with i, j, k ∈ {−1, 0, 1}\{(0, 0, 0)}. The set B is called the grid basis.

Coding 3D Connected Regions with F26 Chain Code 5

Definition 5. A path is a sequence of adjacent ordered voxels, P =
{v1, v2, . . . , vp}, such that v1 is adjacent to v2,v2 is adjacent to v3, . . . , vp−1 is
adjacent to vp. The vector set PB = {b1, b2, . . . , bp−1} ⊂ B it is called basis of
path P.

Definition 6. We give symbols to each of the elements of the grid base
B as follows: a = (1, 0, 0), b = (1, 1, 0), c = (0, 1, 0), d = (−1, 1, 0), e = (−1, 0, 0),
f = (−1,−1, 0), g = (0,−1, 0), h = (1,−1, 0), i = (1, 0, 1), j = (1, 1, 1), k = (0, 1, 1)
l = (−1, 1, 1),m = (−1, 0, 1), n = (−1,−1, 1), o = (0,−1, 1), p = (1,−1, 1),

q = (1, 0,−1), r = (1, 1,−1), s = (0, 1,−1), t = (−1, 1,−1), u = (−1, 0,−1),
v = (−1,−1,−1), w = (0,−1,−1), x = (1,−1,−1), y = (0, 0, 1), z = (0, 0,−1),

So, the alphabet we use is F26 =
{
a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u,

v, w, x, y, z
}
, and the coding is obtained when each vector bk is taken from

PB = {b1, b2, . . . , bn−1} associating its respective symbol in F26.

3 Helical Path to Encode 3D Objects

Helical coding allows the chain codes to save starting coordinates as much as
possible, while the region in the current slice is a neighbor of the previous region,
there is a path to go from n-th voxel (vn(s)) to the first unvisited voxel (v1(s+1)),
which allows to recover the shape of the object without need to know in which
coordinate we start to codify.

The helical coding is carried out in the following way:

1. Do s → 0 and define Z as the number of total slices of the 3D grid.
2. While s < Z + 1.
3. Visit the first unvisited voxel, v1(s), of current slice. If it does not exist

s → s + 1, go to 2.
4. Encode the contour Rs

k and obtain vn(s).
5. Find(v1(s + 1)). If it does not exist s → 0, go to 3.
6. s → s + 1. Go to 2.

The Find(·) function introduced in the previous algorithm is implemented
considering the following cases, which are generated by the geometry of the
object. Figure 1 shows an object composed of two slices, where dark voxels in
upper slice represent the contour of the region Rs+1

1 .

Case 1. v1(s + 1) ∈ N26(vn(s)) (Fig. 1a).
Case 2. It is possible to draw a discrete straight line from vn(s) to v1(s+ 1)
as the shortest path (Fig. 1b).
Case 3. It is not possible to draw a discrete straight line from vn(s) to
v1(s+ 1), since there are 0-voxels between them, for this reason the path can
not be created, unless a concavity must be surrounded. This causes that the
original v1(s + 1) could change, since in the i-th step, a voxel of the contour
of Rs+1

k′ has the smallest de with respect to the last voxel of the current path
(Fig. 1c).

6 O. A. Tapia-Dueñas et al.

Case 4. There are two candidates v1(s + 1), because both have the same
distance with respect to vn(s) (Fig. 1d).

We must validate which Rs+1
k′ is a neighbor of Rs

k, selecting the correct
v1(s+1) we use A* to go from vn(s) to v1(s+1). To solve these cases, algorithm
A* is detailed in Sect. 4.

Fig. 1. Four different cases to consider for the starting and target points due to the
geometry of the objects.

3.1 Used Symbols of F26

To codify our 3D object, the 26 symbols of F26 are not necessary. Part of the
strategy, is to first visit each slice and encode its contours, so we can use eight
different vectors for each visited region, Rs

k, since the vectors point to one of
the four faces of each voxel, plus four towards the edges. So, the symbols {a,
b, c, d, e, f, g, h} are required. On the other hand, once the contour is visited,
the next step is to move to the contiguous slice, i.e., from Rs

k to Rs+1
k′ , thus, we

need vectors that point to any of its four edges or four vertices, plus one more
symbol corresponding to the top face. So, the symbols {i, j, k, l, m, n, o, p, q}
are used. Therefore, 17 symbols are required, at most.

4 Modifications to A* Algorithm

A* algorithm searches for the shortest path from an initial point to a target point
[14]. This heuristic uses information relative to the place where the objective is
located to select the next direction to be followed. The formula used to select

Coding 3D Connected Regions with F26 Chain Code 7

the next point in the configuration space is: f(v) = h(v) + g(v), where v is the
current cell, h(v) is the heuristic distance (Manhattan, Euclidean or Chebyshev)
from v to the destination cell and g(v) is the cumulative cost of moving from the
initial state to the state v. Each adjacent point of the current one is evaluated
by the formula f (v). The point with the smallest value of h(v) is selected as the
next in the sequence [15].

The algorithm A* used for a grid configuration space is restricted to 8-
connectivity. This means that we can find a path that is based on the connection
between the closest cells. Due to the discretization of the plane, there may be
zigzag movements to emulate the straight lines.

In the literature, the target cell does not change under any conditions. In
this paper we find that the target point is the closest, and the starting cell is not
in the same plane than the target cell. Taking into account these requirements,
we modify the A* so that the target cell can be modified.

4.1 Conflict Zones for A*

Since we want to encode the shape of a three-dimensional object with a simple
curve, i.e. collisions or repeated paths are not permitted, when looking for the
shortest path, we avoid to go through 1-voxels that are part of the contour, since
it was already visited. A drawback of doing this is that if a column or row only
contains 1-voxels that are part of the contour, the A* is not able to find a viable
path, so, we must validate this fact before using the algorithm. When this case
is presented, we use one of two structuring elements, one to add 1-voxels to the
column, and the other to add 1-voxels to the row.

Figure 2(a) shows that going from vn(s) to v1(s + 1), there is no path that
satisfy our conditions. To solve this, we validate each column or/and row that
exist between vn(s) and v1(s + 1). If the row or column is one with less than
three 1-voxels, the structuring element is used. Figure 2(b) shows the result of
applying the structuring element.

(a) Before using structuring elements (b) After using structuring elements

Fig. 2. Example of how to use structuring elements in conflictive zone to use A*.

8 O. A. Tapia-Dueñas et al.

4.2 Pseudocode of Our A* Modified

For our proposals, we have used A* with adaptations to achieve the optimal path
between vn(s) and v1(s + 1). We introduce the matrices M and E composed of
1s and 0s to represent the regions, by following the next steps.

1. If there is a path to go from vn(s) to v1(s + 1) in Rs
k.

M → Rs
k.

E → Rs+1
k′ .

2. else If there is a path to go from vn(s) to v1(s + 1) in Rs+1
k′ .

M → Rs+1
k′ .

E → Rs
k.

3. Fill the matrix h.
Fill the matrix h with × if c(i, j) of M is 1, which represents a 1-voxel
of the contour, label with ∞ any other case. We fill the matrix g in the
same way as h.
Consider c(i, j) of vn(s), and do dij → 0.
Store c(i, j) in open list.
Do

For each neighbor c(i′, j′) of N8(c(i, j)), if its value is equal ∞ in h
and 1 in M, calculate the Manhattan distance as following:

di′j′ → dij + 1 if c(i′, j′) ∈ N4(c(i, j))
di′j′ → dij + 2 if c(i′, j′) ∈ N8c(i, j) \ N4(c(i, j))

(1)

Each c(i′, j′) is stored in the open list.
Search in open list c(i′, j′), such that di′,j′ is the smallest and remove
c(i′, j′) from the open list and do the Eq. (2).

dij → di′j′

c(i, j) → c(i′, j′).
(2)

While open list is not empty.
4. Fill the matrix g.

Obtain c(i, j) → vn(s), dij → 0.
Store c(i, j) in open list.
Do

For each neighbor c(i′, j′) of N8(c(i, j)), if its value is equal ∞ in h
and 1 in M, do:

di′j′ → dij + 10 if c(i′, j′) ∈ N4(c(i, j))
di′j′ → dij + 14 if c(i′, j′) ∈ N8(c(i, j)) \ N4(c(i, j)).

(3)

Each c(i′, j′) is stored in the open list.
Search in open list c(i′, j′), such that the sum di′j′ in h + di′j′ in g is
the smallest and remove c(i′, j′) from the open list.
Obtain the Euclidean distance of 1-voxel from the contour of E to dij .
The one with the smallest distance is now v1(s + 1).

Coding 3D Connected Regions with F26 Chain Code 9

While v1(s + 1) /∈ N8(c(i, j)).
5. Obtain the shortest path.

Obtain the c(i, j) of v1(i + 1).
While v1(s + 1) /∈ N8(c(i, j))

Add c(i, j) to the shortest path.
Search c(i′, j′)∈ N8(c(i, j)), such that its di′j′ is the smallest in g.
Assign c(i, j) → c(i′, j′).

To illustrate an example, consider the need to go from vn(s) to v1(s + 1)
through an optimal path, Fig. 1(c) is used for this purpose. To achieve this, let
Rs

k and Rs+1
k′ the two contiguous regions. If there is a path to go from vn(s) to

v1(s + 1) in Rk, we associate M with Rs
k and E with Rs+1

k′ (Fig. 3(a) and (b),
respectively).

Following our modified A* method, the first step is to fill the matrix h with
‘×’ if c(i, j) of M is ‘1’, which represents a 1-voxel of the contour, and we fill
with ∞ in any other case (see Fig. 3(c)). We fill the matrix g in the same way
as h (see Fig. 4).

0 1 1 1 1 1 1
0 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 0 0 0
1 1 1 1 0 0 0
0 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 1 1 1 1 1

(a)

0 0 0 0 1 1 1
0 0 0 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

(b)

∞ × × × × × ×
∞ × ∞ ∞ ∞ ∞ ×

×

×

× ∞ ∞ ∞ × ×
× ∞ ∞ × ∞ ∞ ∞
× ∞ ∞ × ∞ ∞ ∞
∞ × ∞ ∞ × × ×
∞ ∞ × ∞ ∞ ∞
∞ ∞ × × × × ×

(c)

Fig. 3. Matrices (a) M, (b) E , and (c) h, respectively.

Next step is to assign a number greater than or equal to zero to each c(i, j),
such that the value of c(i, j) is equal to ∞ in h and ‘1’ in M. This number is
the Manhattan distance. We start by making dij = 0 in (i, j) of h, where c(i, j)
is the coordinate of vn(s).

The Manhattan distance is calculated as described in the algorithm of mod-
ified A* (Eq. (1)).

The coordinates c(i′, j′) are stored in the open list to remember the cell to
visit their neighbors. We search in this list the coordinates c(i′, j′), such that
di′j′ is the shortest. We remove c(i′, j′) from the list and solve the assignations
of Eq. (2).

We continue with the calculation of the Manhattan distance of each c(i′, j′)
in the open list, until it is empty. The matrix h becomes as in Fig. 5.

If the value of c(i, j) is ∞ in g and ‘1’ in M, we subsequently assign to each
c(i, j) a number greater than or equal to zero. We start by making dij = 0 in the
cell (i, j) of g, where c(i, j) is the coordinate of vn(s). Each number is calculated
by Eq. (3).

10 O. A. Tapia-Dueñas et al.

∞ × × × × × ×
∞ × ∞ ∞ ∞ ∞ ×

×× ∞ ∞ ∞ × ×
× ∞ ∞ × ∞ ∞ ∞
× ∞ ∞ × ∞ ∞ ∞
∞ × ∞ 34 × × ×
∞ ∞ × 30 20 10 0
∞ ∞ × × × × ×

Fig. 4. Matrix g

∞ × × × × × ×
∞ × 9 10 11 12 13
× 9 8 9 × × 14
× 8 7 × ∞ ∞ ∞
× 7 6 × ∞ ∞ ∞
∞ × 5 4 × × ×
∞ ∞ × 3 2 1 0
∞ ∞ × × × × ×

Fig. 5. Matrix h.

The coordinates c(i′, j′) are stored in the open list to remember the coordi-
nates of the square in which we need to visit its neighbors. We search in this
list the coordinates c(i′, j′), such that the sum of di′j′ in h plus di′j′ in g is the
smallest, we remove c(i′, j′) from the list and solve the Eq. (3).

We use E to obtain the Euclidean distance of each 1-voxel from the contour
of Rs

k to dij . The one with the smallest Euclidean distance is now v1(s + 1).
We continue calculating each c(i′, j′) that complies with the aforementioned
conditions, until v1(s + 1) ∈ N8(c(i, j)).

Fig. 6. Final position of v1(s + 1).

On this example, it is true that when surrounding the concavity, v1(s + 1)
changes (Fig. 6), because there is a voxel (vp(s + 1)) in the contour represented
in E , which is the closest to the current voxel (v0(s)). This causes vp(s + 1) to
be v1(s+1). As in the subsequent steps, there is no other vp(s+1) that is closer
to v0(s), whereas v1(s + 1) does not change until the algorithm ends.

The last step is to find the shortest path between vn(s) and v1(s+1). Assign
c(i, j) → v1(s + 1). While vn(s) /∈ N8(c(i, j)), we do: store c(i, j) in the short
path list. Search c(i′, j′) ∈ N8(c(i, j)), such that its di′j′ is the smallest in g.
Assign c(i, j) → c(i′, j′).

Thus, in our example the optimal path from vn(s) to the definite tar-
get found, v1(s + 1), is P = {(7, 7, 1), (7, 6, 1), (7, 5, 1), (6, 4, 1), (5, 4, 2)}, where
(7,7,1) and (5,4,2) are the coordinates of vn(s) and v1(s + 1), respectively.

Coding 3D Connected Regions with F26 Chain Code 11

Finally, the chain code of the helical path representing the two contours is:
S = 771ceefeffgghgaaaaacceedcbaadefpefgahhaacceed.

5 Experiments

To test our method, we found helical paths to a sample of 3D objects. We used
surfaces directly from the voxelization implicit in a data set. These models were
previously treated to simplify and eliminate noise in the data.

The models used come from different sources and helped us to test our
methodology. We accessed the Stanford Computer Graphics Laboratory site:
http://graphics.stanford.edu/data and the Suggestive Contour Gallery site:
http://gfx.cs.princeton.edu/proj/sugcon/models.

Figure 7 presents the results of applying our method to obtain the helical
path that describes the surface of the contour of each object. The figures show

Fig. 7. Helical path found in a sample test: (a) Lion, (b) Heptoroid, (c) Dragon and
(d) Penguin (Color figure online)

http://graphics.stanford.edu/data
http://gfx.cs.princeton.edu/proj/sugcon/models

12 O. A. Tapia-Dueñas et al.

Fig. 8. On the left, the helical path of the penguin head object is shown. On the right,
case 3 is exemplified with the contour voxel representation.

Table 1. Frequency of F26 symbols

Symbol Objects

Dragon Heptoroid Lion Penguin

cc 39 42 22 7

a 15934 20912 10414 13440

b 7332 13232 4165 3204

c 8895 27156 5079 2333

d 9252 13175 4003 2015

e 14939 20723 10419 12438

f 5884 13001 4200 3785

g 12524 27392 4828 2095

h 6871 12724 4153 1615

i 301 734 215 39

j 93 168 42 9

k 4 66 5 5

l 30 105 24 27

m 13 21 10 36

n 47 141 50 24

o 17 14 4 0

p 48 110 33 44

q 31 11 3 17

lF26 82215 149685 47647 41126

different colors in their helical path to indicate the different connected compo-
nents, that recursively were visited to complete the chain coding. Figure 7(a)
Lion has 22 different colors, Fig. 7(b) Heptoroid has 42, Fig. 7(b) Heptoroid has
39 and Penguin just has 7.

Coding 3D Connected Regions with F26 Chain Code 13

Fig. 9. Probability of occurrence of each symbol.

In Fig. 8 (left) is shown the helical path of the object called Penguin, where
Case 3 of our modified A* is exemplified. In this case it is necessary to sur-
round the concavity that exists between vn(s) and v1(s + 1). This is presented
in Fig. 8 (right). This representation only contains the 1-voxels that are part of
the contours of coded regions.

On the other hand, Table 1, presents frequencies of the code symbols F26,
as well as the length of the chain code (lF26) and the number of connected
components (cc) that each object has. The heptoroid object has the longest
chain code, while the penguin object has the smallest. As can be seen in the
Fig. 9, the presence of the first eight symbols of F26 is much greater than the
rest, and of them, symbols a and b are those that appear most likely, followed
by g and c. This type of information and analysis is important for dealing with
recognition and compression problems.

6 Conclusions and Further Work

We have presented a new method to encode surfaces of voxel-based objects that
are not isomorphic to the plane, by means of helical paths. One of the advan-
tages of our work is that the length of the chain code is optimized by visiting the
centers of the voxels that make up the contours, as well as finding the shortest
trajectories between the slices, preserving the topological and geometric proper-
ties. Several applications may result from the work presented here. Information
and analysis of the data obtained by the probability of the appearance of the
symbols is an important topic to address problems of recognition and compres-
sion. So, a future work is to exploit this type of codification for such purposes. As

14 O. A. Tapia-Dueñas et al.

another future work, it is suggested to analyze the chain code of the helical path,
to find dominant points, and thus reduce to a greater extent the information of
the shape-of-object without missing valuable information of it.

Acknowledgements. Osvaldo A. Tapia-Dueñas was partially supported by CONA-
CyT. H. Sánchez-Cruz thanks Universidad Autónoma de Aguascalientes, under Grant
PII18-8 for the support. Hiram H. López was partially supported by CONACyT,
CVU no. 268999, project “Network Codes”, and by Universidad Autónoma de Aguas-
calientes. H. Sossa thanks the Instituto Politécnico Nacional and CONACyT for the
economical support under funds: SIP 20180730 and 65 (Fronteras de la Ciencia), respec-
tively to undertake this research.

References

1. Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algo-
rithms. IEEE Trans. Vis. Comput. Graph. 13(3), 530–548 (2007)

2. Punam, K., Borgefors, S., Borgefors, G., di Baja, G.S.: A survey on skeletonization
algorithms and their applications. Pattern Recogn. Lett. 76, 3–12 (2016). Special
Issue on Skeletonization and its Application

3. Jin, D., Iyer, K.S., Chen, C., Hoffman, E.A., Saha, P.K.: A robust and efficient
curve skeletonization algorithm for tree-like objects using minimum cost paths.
Pattern Recogn. Lett. 76(C), 32–40 (2016)

4. Svensson, S., Nystróm, I., di Baja, G.S.: Curve skeletonization of surface-like
objects in 3D images guided by voxel classification. Pattern Recogn. Lett. 23(12),
1419–1426 (2002)

5. Arcelli, C., di Baja, G.S., Serino, L.: Distance-driven skeletonization in voxel
images. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 709–720 (2011)

6. Sánchez-Cruz, H., Rodŕıguez-Dagnino, R.M.: Compressing bilevel images by means
of a three-bit chain code. Opt. Eng. 44, 44–44–8 (2005)

7. Yong, K.L., Alik, B.: An efficient chain code with Huffman coding. Pattern Recogn.
38(4), 553–557 (2005)

8. Echávarri, L., Aguinaga, R., Neri-Calderón, A., Rodriguez-Dagnino, R.M.: Com-
pression rates comparison of entropy coding for three-bit chain codes of bilevel
images. Opt. Eng. 46, 46–46–7 (2007)

9. Yong, K.L., Wei, W., Peng, J.W., Alik, B.: Compressed vertex chain codes. Pattern
Recogn. 40(11), 2908–2913 (2007)

10. Freeman, H.: Computer processing of line-drawing images. ACM Comput. Surv.
6(1), 57–97 (1974)

11. Bribiesca, E.: A chain code for representing 3D curves. Pattern Recogn. 33(5),
755–765 (2000)

12. Sánchez-Cruz, H., López-Valdez, H., Cuevas, F.J.: A new relative chain code in
3D. Pattern Recogn. 47(2), 769–788 (2014)

13. Salazar, J.M., Bribiesca, E.: Compression of three-dimensional surfaces by means
of chain coding. Opt. Eng. 54, 54–54–12 (2015)

14. Cui, S.G., Wang, H., Yang, L.: A simulation study of A-star algorithm for robot
path planning, pp. 506–509, January 2012

15. Duchó, F., et al.: Path planning with modified a star algorithm for a mobile robot.
Proc. Eng. 96, 59–69 (2014). Modelling of Mechanical and Mechatronic Systems

	Coding 3D Connected Regions with F26 Chain Code
	1 Introduction
	2 Definitions
	3 Helical Path to Encode 3D Objects
	3.1 Used Symbols of F26

	4 Modifications to A* Algorithm
	4.1 Conflict Zones for A*
	4.2 Pseudocode of Our A* Modified

	5 Experiments
	6 Conclusions and Further Work
	References

