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Abstract. In this paper, an adaptive hybrid evolutionary algorithm is proposed
to solve a project scheduling problem. This problem considers a valuable
optimization objective for project managers. This objective is maximizing the
effectiveness of the sets of human resources assigned to the project activities.
The adaptive hybrid evolutionary algorithm utilizes adaptive processes to
develop the different stages of the evolutionary cycle (i.e., adaptive parent
selection, survival selection, crossover, mutation and simulated annealing pro-
cesses). These processes adapt their behavior according to the diversity of the
algorithm’s population. The utilization of these processes is meant to enhance
the evolutionary search. The performance of the adaptive hybrid evolutionary
algorithm is evaluated on six instance sets with different complexity levels, and
then is compared with those of the algorithms previously reported in the liter-
ature for the addressed problem. The obtained results indicate that the adaptive
hybrid evolutionary algorithm significantly outperforms the algorithms previ-
ously reported.
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1 Introduction

Project scheduling is a highly relevant and complex issue in most real-world organi-
zations [1, 2]. Project scheduling generally involves defining feasible start times and
human resource assignments for the project activities, such that a given optimization
objective is achieved. Moreover, to define human resource assignments, it is necessary
to consider the available knowledge about the effectiveness of human resources
respecting the project activities. This is important since the development and the results
of project activities mainly depend on the effectiveness of the human resources
assigned to such activities [1, 2].
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In the past four decades, many kinds of project scheduling problems have been
formally presented and addressed in the literature. However, to the best of the author’s
knowledge, only few project scheduling problems consider human resources with
different effectiveness levels [3, 4], a very important aspect of real-world project
scheduling. These project scheduling problems suppose very different assumptions in
respect of the effectiveness of human resources.

The project scheduling problem presented in [5] supposes that the effectiveness
level of a human resource depends on several factors inherent to its work context (i.e.,
the project activity to which the resource is assigned, the skill to which the resource is
assigned within the project activity, the set of human resources assigned to the project
activity, and the attributes of the resource). This assumption about the effectiveness of
human resources is really valuable. This is because, in real-world project scheduling
problems, human resources generally have different effectiveness levels with respect of
different work contexts, and therefore, the effectiveness level of a human resource is
considered with respect of the factors inherent to its work context [1, 2]. To the best of
the author’s knowledge, the influence of the work context on the effectiveness level of
human resources is not considered in other project scheduling problems presented in
the literature. The problem presented in [5] also considers a valuable optimization
objective for project managers: maximizing the effectiveness of the sets of human
resources assigned to the project activities.

The project scheduling problem presented in [5] is a variant of the known RCPSP
(Resource Constrained Project Scheduling Problem) [6] and, therefore, is an NP-Hard
optimization problem. Because of this, heuristic search and optimization algorithms are
required to solve different problem instances in an acceptable amount of time. In this
respect, to the best of the author’s knowledge, four heuristic search and optimization
algorithms have been presented so far in the literature to solve this problem. Specifi-
cally, a traditional evolutionary algorithm was presented in [5]. In [7], a traditional
memetic algorithm was presented which includes a hill-climbing algorithm into the
framework of an evolutionary algorithm. In [8], a hybrid evolutionary algorithm was
presented which incorporates an adaptive simulated annealing algorithm within the
framework of an evolutionary algorithm. In [9–11], a hybrid evolutionary algorithm
was presented which utilizes semi-adaptive crossover and mutation processes, and an
adaptive simulated annealing algorithm.

These four algorithms follow the stages of the traditional evolutionary cycle (i.e.,
parent selection, crossover, mutation, and survival selection stages) to develop the
evolutionary search. Nevertheless, these algorithms use non-adaptive processes to carry
out all or many of the stages of the evolutionary cycle. In this respect, the four
algorithms use non-adaptive parent selection and survival selection processes, and the
first three of these algorithms use non-adaptive crossover and mutation processes. The
fourth of these algorithms uses semi-adaptive crossover and mutation processes;
however, the adaptability of the behavior of these processes during the evolutionary
search is very limited.

In this paper, the project scheduling problem presented in [5] is addressed with the
aim of proposing a better heuristic search and optimization algorithm to solve it. In this
respect, an adaptive hybrid evolutionary algorithm is proposed which utilizes adaptive
processes to develop the different stages of the evolutionary cycle (i.e., adaptive parent
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selection, survival selection, crossover, mutation and simulated annealing processes).
These processes adapt their behavior based on the diversity of the algorithm’s popu-
lation. The utilization of these adaptive processes is meant for improving the perfor-
mance of the evolutionary search [12–14].

The above-mentioned adaptive hybrid evolutionary algorithm is proposed mainly
because of the following reasons. Evolutionary algorithms with adaptive selection,
crossover and mutation processes have been proven to be more effective than evolu-
tionary algorithms with non-adaptive selection, crossover and mutation processes in the
resolution of a wide variety of NP-Hard optimization problems [12–17]. Thus, the
proposed adaptive hybrid evolutionary algorithm could outperform the heuristic search
and optimization algorithms presented so far in the literature to solve the addressed
problem.

The remainder of the paper is organized as follows. Section 2 presents a brief
review of project scheduling problems reported in the literature which consider the
effectiveness of human resources. Section 3 describes the project scheduling problem
addressed. Section 4 presents the adaptive hybrid evolutionary algorithm proposed for
the problem. Section 5 presents the computational experiments developed to evaluate
the performance of the adaptive hybrid evolutionary algorithm and also an analysis of
the results obtained. Finally, Sect. 6 presents the conclusions of the present work.

2 Related Works

Over the past four decades, different kinds of project scheduling problems which
consider the effectiveness of human resources have been presented in the literature [3,
4]. However, these project scheduling problems suppose very different assumptions
concerning the effectiveness of human resources. In this regards, to the best of the
author’s knowledge, only few project scheduling problems consider human resources
with different effectiveness levels [3, 4], a very important aspect of real-world project
scheduling problems. In this section, the focus is on reviewing the main assumptions
about the effectiveness that have been considered in project scheduling problems
presented in the literature.

In the multi-skill project scheduling problems presented in [19–23], project activ-
ities require a given number of skills for their development, and a given number of
human resources for each skill required. The human resources available for the project
activities master one or several skills. These problems suppose that the human
resources that master a given skill have the same effectiveness level in respect of such
skill.

In the skilled workforce project scheduling problems presented in [24–26], each
project activity requires only one human resource with a given skill. Moreover, the
human resources available for project activities master one or several skills. These
problems suppose that the human resources which master a given skill have the same
effectiveness level in relation to such skill.
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The multi-skill project scheduling problem reported in [27] considers hierarchical
levels of skills. In this regard, the problem supposes that the human resources which
master a given skill have different effectiveness levels in respect of such skill. More-
over, the project activities of this problem require a given number of skills for their
development, a given minimum level of effectiveness for each one of the skills
required, and a given number of human resources for each pair skill-level. Then, this
problem supposes that the human resource sets feasible for a given project activity have
the same effectiveness level with respect to the development of such activity.

In the multi-skill project scheduling problems presented in [28–30], most project
activities require only one human resource with a given skill. The human resources
available for project activities master one or several skills. These problems suppose that
the human resources which master a given skill have different effectiveness levels in
respect of such skill. In addition, these problems suppose that the effectiveness level of
a human resource in a given project activity only depends on the effectiveness level of
the human resource with respect to the skill required for the activity.

In contrast with the project scheduling problems previously mentioned, the project
scheduling problem presented in [5] supposes that the effectiveness level of a human
resource depends on several factors inherent to its work context. Then, different
effectiveness levels can be defined for each human resource regarding different work
contexts. This assumption about the effectiveness of human resources is really
important. This is because, in the context of real-world project scheduling problems,
human resources have very different effectiveness levels in respect of different work
contexts, and therefore, the effectiveness level of a human resource is considered in
respect of the factors inherent to its work context [1, 2]. To the best of the author’s
knowledge, the influence of the work context on the effectiveness level of human
resources is not considered in other project scheduling problems presented in the
literature. Based on the mentioned above, the project scheduling problem presented in
[5] supposes a valuable and novel assumption concerning the effectiveness level of
human resources in the context of project scheduling problems.

3 Project Scheduling Problem Description

In this paper, the project scheduling problem introduced in [5] is addressed. A de-
scription of this problem is presented below.

Suppose that a project contains a set A of N activities, A = {1,…, N}, that has to be
scheduled. Specifically, a starting time and a human resource set have to be defined for
each project activity of the set A. The duration, human resource requirements, and
precedence relations of each project activity are known.

The duration of each project activity j is notated as dj. Besides, it is considered that
pre-emption of project activities is not allowed. This means that, when a project activity
starts, it must be developed period by period until it is completed. Specifically, the dj
periods of time must be consecutive.
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Among the project activities, there are precedence relations. This is because usually
each project activity requires results generated by other project activities. Thus, the
precedence relations establish that each project activity j cannot start until all its
immediate predecessors, given by the set Pj, have completely finished.

To be developed, project activities require human resources skilled in different
knowledge areas. Specifically, each project activity requires one or several skills and
also a given number of human resources for each skill required.

It is considered that qualified workforce is available to develop the activities of the
project. This workforce is made up of a number of human resources, and each human
resource masters one or several skills.

Set SK contains the K skills required in order to develop the activities of the project,
SK = {1, …, K}, and set ARk contains the available human resources with skill
k. Then, the term rj,k represents the number of human resources with skill k required for
activity j of the project. The values of the terms rj,k are known for each project activity.

It is considered that a human resource cannot take over more than one skill within a
given activity, and also a human resource cannot be assigned more than one activity at
the same time.

Based on the assumptions previously mentioned, a human resource can be assigned
different project activities but not at the same time, can take over different skills
required for a project activity but not simultaneously, and can belong to different
possible sets of human resources for each activity.

Therefore, different work contexts can be defined for each available human resource.
It is considered that the work context of a human resource r, denoted as Cr,j,k,g, is made
up of four main components. In this respect, the first component refers to the project
activity j which r is assigned (i.e., the complexity of j, the domain of j, etc.). The second
component refers to the skill k which r is assigned within project activity j (i.e., the tasks
associated to k within j). The third component is the set of human resources g that has
been assigned j and that includes r (i.e., r must work in collaboration with the other
human resources assigned to j). The fourth component refers to the attributes of r (i.e.,
his or her educational level regarding different knowledge areas, his or her level
regarding different skills, his or her experience level regarding different tasks and
domains, the kind of labor relation between r and the other human resources of g, etc.).
In respect of the attributes of r, it is considered that these attributes could be quantified
from available information about r (e.g., curriculum vitae of r, results obtained from
evaluations made to r, information about the participation of r in already executed
projects, etc.).

The four components previously mentioned are considered the main factors that
determine the effectiveness level of a human resource. Because of this, it is assumed
that the effectiveness level of a human resource depends on all the components of his or
her work context. Then, different effectiveness levels can be considered for each human
resource in respect of different work contexts.

The effectiveness level of a human resource r, in respect of a possible context Cr,j,k,g

for r, is notated as erCr,j,k,g. The term erCr,j,k,g refers to how well r can take over, within
activity j, the tasks associated to skill k, considering that r must work in collaboration
with the other human resources of set g. The term erCr,j,k,g takes a real value over the
range [0, 1]. The values of the terms erCr,j,k,g inherent to each human resource available
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for the project are known. It is considered that these values could be obtained from
available information regarding the participation of the human resources in already
carried out projects.

The problem of scheduling a project involves to determine feasible start times (i.e.,
the precedence relations among the project activities must not be violated) and feasible
human resource assignments (i.e., the human resource requirements of project activities
must be met) for project activities such that the optimization objective is achieved. In
this respect, an optimization objective valuable for project managers is considered. This
optimization objective implies maximizing the effectiveness of the sets of human
resources assigned to the project activities. This objective is modeled by Formulas (1)
and (2).

Formula (1) maximizes the effectiveness of the sets of human resources assigned to
the N project activities. In this formula, set S contains all the feasible schedules for the
project in question. The term e(s) refers to the effectiveness level of the sets of human
resources assigned to the project activities by schedule s. The term R(j, s) refers to the
set of human resources assigned to activity j by schedule s. The term eR(j,s) refers to the
effectiveness level corresponding to R(j, s).

Formula (2) estimates the effectiveness level of the set of human resources R(j,s).
This effectiveness level is estimated by calculating the mean effectiveness level of the
human resources belonging to R(j, s).

For a more detailed discussion of the project scheduling problem described here
and, in particular, of Formulas (1) and (2), the readers are referred to the work [5]
which has introduced this problem.

max
8s2S

eðsÞ ¼
XN
j¼1

eRðj;sÞ

 !
ð1Þ

eRðj;sÞ ¼
PRðj;sÞj j

r¼1
erCr;j;kðr;j;sÞ;Rðj;sÞ

Rðj; sÞj j ð2Þ

4 Adaptive Hybrid Evolutionary Algorithm

To solve the addressed problem, an adaptive hybrid evolutionary algorithm is pro-
posed. This algorithm utilizes adaptive processes to develop the different stages of the
evolutionary cycle. These processes adapt their behavior according to the diversity of
the evolutionary algorithm population, to promote either the exploration or exploitation
of the search space. The utilization of these adaptive processes aims to enhance the
performance of the evolutionary search [12–14].

The general behavior of the algorithm is described as follow. This algorithm is an
iterative or generational process. This process starts from an initial population of
solutions. Each solution encodes a feasible schedule for the project to be scheduled.
Besides, each solution has a fitness value that represents the quality of the related
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schedule in respect of the optimization objective of the addressed problem. As men-
tioned in Sect. 3, such objective implies maximizing the effectiveness of the sets of
human resources assigned to the project activities. The iterative process ends when a
predefined number of iterations or generations is reached. Once this happens, the
iterative process provides the best solution of the last population as a solution to the
problem.

In each iteration, the algorithm develops the following stages. First, an adaptive
parent selection process is applied in order to determine which solutions of the current
population will compose the mating pool. Once the mating pool is composed, the
solutions in the mating pool are paired, and a crossover process is applied to each pair
of solutions with an adaptive crossover probability in order to generate new feasible
ones. Then, a mutation process is applied to each solution generated by the crossover
process, with an adaptive mutation probability. The mutation process is applied in order
to introduce diversity in the new solutions generated by the crossover process. Then, an
adaptive survival selection process is applied to create a new population from the
solutions in the current population and the new solutions generated by crossover and
mutation. Finally, an adaptive simulated annealing algorithm is applied to each solution
of the new population, excepting the best solution of this population. The best solution
remains in the population. Thus, the adaptive simulated annealing algorithm modifies
the solutions of the new population.

4.1 Encoding of Solutions

In order to encode the solutions of the population, the encoding introduced in [5] for
project schedules was used. By using this encoding, each solution is encoded by two
lists with a length equal to N, considering that N is the number of activities in the
project to be scheduled.

The first list is a traditional activity list. Each position on this list contains a
different activity j of the project. Each activity j of the project can appear on this list in
any position higher than the positions of all its predecessor activities. The activity list
represents a feasible order in which the activities of the project can be added to the
schedule.

The second list is an assigned resources list. This list contains information about the
human resources of each skill k assigned to each activity of the project. Specifically,
position j on this list contains a detail about the human resources of each skill k as-
signed to activity j of the project.

To decode or build the schedule related to the encoding previously described, the
serial schedule generation method presented in [5] was used. By this method, each
activity j is scheduled at the earliest possible time.

In order to generate the encoded solutions of the initial population according to the
encoding previously described, the random generation process introduced in [5] was
used. By using this process, a very diverse initial population is obtained. This is meant
in order to avoid the premature convergence of the evolutionary search [12].
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4.2 Fitness Function

To evaluate the encoded solutions, a fitness function specially designed was used.
Considering a given encoded solution, the fitness function decodes the schedule s from
the solution by using the serial schedule generation method mentioned in Sect. 4.1.
Then, the fitness function calculates the value of the term e(s) corresponding to
s (Formulas (1) and (2)). This value defines the fitness value of the solution. Note that
the term e(s) takes a real value over the range [0, …, N].

To calculate the value of term e(s), the fitness function uses the values of the terms
erCr,j,k,g inherent to s (Formula 2). As mentioned in Sect. 3, the values of the terms
erCr,j,k,g inherent to each available human resource r are known.

4.3 Adaptive Parent Selection Process

To develop the parent selection on the current population, an adaptive tournament
selection process was defined. This process is an adaptive variant of the well-known
tournament selection process with replacement [12].

In this process, the tournament size T is defined by Formula (3), where PD refers to
the diversity of the current population, and PDMAX refers to the maximum PD
attainable. Then, TH and TL refer to the upper and lower bounds for the tournament
size, respectively.

The term PD is defined by Formula (4), where fmax is the maximal fitness of the
current population, favg is the average fitness of the current population, and (fmax − favg)
is a measure of the diversity of the current population. This measure has been proposed
by Srinivas and Patnaik [31], and is one of the population diversity measures most
well-known in the literature [12].

The term PDMAX is defined by Formula (5), where fMAX and fMIN represent to the
maximum and minimum fitness values attainable, respectively. Note that fMAX and fMIN

correspond to the upper and lower bounds of the fitness function described in Sect. 4.2.
By Formula (3), the tournament size T is adaptive according to the diversity of the

current population. Specifically, when the population is very diverse, T is increased,
promoting the selection of the solutions with high fitness values. This favors the
exploitation of the search space. When the diversity of the population reduces, T is
decreased, increasing the selection chances of the solutions with low fitness values.
This is meant to preserve the diversity of the population and thus to favor the explo-
ration of the search space, with the aim of avoiding the premature convergence of the
evolutionary search.

T ¼ PD
PDMAX

� TH � TL
� �þ TL

� �
ð3Þ

PD ¼ fmax � favg
� � ð4Þ

PDMAX ¼ fMAX � fMINð Þ ð5Þ
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4.4 Adaptive Crossover and Adaptive Mutation Processes

In relation to the crossover process and the mutation process, processes feasible for the
encoding of solutions were defined.

The crossover process is composed by a crossover operator feasible for activity lists
and a crossover operator feasible for assigned resources lists. Regarding the crossover
for activity lists, the one-point crossover operator for activity lists [18] was applied.
Regarding the crossover for assigned resources lists, the uniform crossover operator
was applied [12].

The mutation process is composed by a mutation operator feasible for activity lists
and a mutation operator feasible for assigned resources lists. In relation to the mutation
for activity lists, a variant of the simple shift operator for activity lists [18] was applied.
In relation to the mutation for assigned resources lists, the random resetting operator
[12] was applied.

These crossover and mutation processes are applied with adaptive crossover and
mutation probabilities, respectively. In this regards, an adaptive crossover probability
APc and an adaptive mutation probability APm were defined by Formulas (6)–(7). In
these formulas, PD refers to the diversity of the current population, and PDMAX refers
to the maximum PD attainable, as was mentioned in Sect. 4.3. In Formula (6), the
terms CH and CL represent to the upper and lower bounds for the crossover probability,
respectively. In Formula (7), the terms MH and ML represent to the upper and lower
bounds for the mutation probability, respectively. The term fmax is the maximal fitness
of the population, fmin is the minimal fitness of the population, and f is the fitness of the
solution to be mutated.

By Formula (6)–(7), APc and APm are adaptive according to the diversity of the
current population. In this respect, when the diversity of the population reduces, APc

and APm are increased, promoting the exploration of the search space. This is important
for preventing the premature convergence of the evolutionary search. When the pop-
ulation is very diverse, APc and APm are decreased, promoting the exploitation of the
search space. Therefore, probabilities APc and APm are adaptive according to the
diversity of the population, to promote either the exploitation or exploration of the
search space.

By Formula (7), APm is also adaptive according to the fitness of the solution to be
mutated. In this respect, lower values of APm are defined for high-fitness solutions, and
higher values of APm are defined for low-fitness solutions. This is meant in order to
preserve high-fitness solutions, while disrupting low-fitness solutions to promote the
exploration of the search space.

APc ¼ PDMAX � PD
PDMAX

� �
� CH � CL
� �þCL ð6Þ

APm ¼ fmax � f
fmax � fmin

� �
� PDMAX � PD

PDMAX

� �
� MH �ML
� � þML ð7Þ
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4.5 Adaptive Survival Selection Process

The survival selection process is applied to create a new population from the solutions
in the current population (parent solutions) and the new solutions generated by
crossover and mutation (offspring solutions).

To develop the survival selection, an adaptive deterministic crowding process was
defined. This process is an adaptive variant of the well-known deterministic crowding
process [12, 32].

In this process, offspring solutions compete with their respective parent solutions to
be included in the new population. Specifically, each offspring competes with its
closest parent, considering that the closeness between an offspring solution and a parent
solution is defined based on the distance between their fitness values. When the fitness
value of an offspring solution is better than that of its closest parent solution, the
offspring solution is accepted for the new population. Otherwise, when the fitness value
of an offspring solution is not better than that of its closest parent solution, the offspring
solution is accepted for the new population with a probability poffspring. If the offspring
solution is not accepted, the parent solution is accepted for the new population directly.

The probability poffspring is defined as follows: exp(−DDC/T), where DDC is the
difference between the fitness value of the parent solution and the fitness value of the
offspring solution, and the term T is defined according to the diversity of the current
population. Specifically, T is inversely proportional to the diversity of the current
population, and is calculated as follows: T = 1/PD, where PD refers to the diversity of
the current population, as was mentioned in Sect. 4.3.

By the definition of the probability poffspring, this probability is adaptive based on
the diversity of the current population. In this respect, when the population is very
diverse, the value of T is very low, and therefore the probability poffspring of the process
is also low. Thus, the process preserves the best solutions for the new population,
favoring the exploitation of the search space. When the diversity of the population
decreases, the value of T increases, and therefore the probability poffspring of the process
also increases. Thus, the process introduces diversity into the new population, favoring
the exploration of the search space. This is important to prevent the premature con-
vergence of the evolutionary search.

4.6 Adaptive Simulated Annealing Algorithm

After obtaining a new population by the survival selection process, an adaptive sim-
ulated annealing algorithm was applied to each solution of this population, except to
the best solution of this population which is maintained. This adaptive simulated
annealing algorithm is a variant of the one presented in [9–11], and is described below.

The adaptive simulated annealing algorithm is an iterative process. This process
starts from a given encoded solution s, and a given initial value T0 for the temperature
parameter. The iterative process ends when a given number of iterations I is reached, or
the current value Ti of the temperature parameter is lower than or equal to 0. After this
happens, the solution obtained by the process is provided.

42 V. Yannibelli



In each iteration, the process generates a new encoded solution s’ from the current
encoded solution s by applying a move operator. Then, the process analyzes if the
current solution s should be replaced by the new solution s’. When the fitness value of
the current solution s is worse than that of the new solution s’, the process replaces to
the solution s by the new solution s’. Otherwise, when the fitness value of the current
solution s is better than or equal to that of the new solution s’, the process replaces to
the solution s by the new solution s’ with a probability pnew_solution. This probability is
defined as follows: pnew_solution = exp(−DSA/Ti), where DSA is the difference between
the fitness value of the current solution s and the fitness value of the new solution s’,
and Ti is the current value of the temperature parameter. The probability pnew_solution
mainly depends on the current value Ti of the temperature parameter. If Ti is high,
pnew_solution is also high, and if Ti is low, pnew_solution is also low. The value Ti of the
temperature is reduced by a given cooling factor a at the end of each iteration.

The initial value T0 of the temperature parameter is defined before applying the
simulated annealing algorithm to the solutions of the population. In this case, the value
T0 is defined according to the diversity of the population. In particular, T0 is inversely
proportional to the diversity of the population, and is calculated as follows: T0 = 1/PD,
where PD refers to the diversity of the population, as mentioned in Sect. 4.3. By this
definition of T0, when the population is diverse, the value T0 is low, and therefore the
probability pnew_solution of the algorithm is also low. Thus, the algorithm fine-tunes the
solutions of the population, promoting the exploitation of the search space. When the
diversity of the population reduces, the value T0 increases, and therefore the probability
pnew_solution of the algorithm also increases. Thus, the algorithm introduces diversity
into the population, promoting the exploration of the search space. This is important for
avoiding the premature convergence of the evolutionary search. Based on the above-
mentioned, the algorithm is adaptive according to the population diversity, in order to
promote either the exploitation or exploration of the search space.

This simulated annealing algorithm utilizes a move operator in order to generate a
new encoded solution from a given encoded solution. In this respect, a move operator
feasible for the encoding of solutions was defined. This move operator is composed by
a move operator feasible for activity lists and a move operator feasible for assigned
resources lists. In respect of the move operator for activity lists, the adjacent pairwise
interchange operator [18] was applied. For assigned resources lists, an operator which
is a variant of the random resetting operator [12] was applied.

5 Computational Experiments

To develop the computational experiments, the six instance sets introduced in [7] were
used. Table 1 presents the main characteristics of these six instance sets. Each instance
set contains 40 instances. Each instance of these six instance sets contains information
about a number of activities to be scheduled, and information about a number of
available human resources for developing these activities. For a more detailed
description of these instance sets, the readers are referred to [7].
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Each instance of these six instance sets has a known optimal solution with a fitness
value e(s) equal to N (N refers to the number of activities in the instance). These know
optimal solutions are considered here as references to evaluate the performance of the
adaptive hybrid evolutionary algorithm.

The adaptive hybrid evolutionary algorithm was evaluated on the six instance sets.
Specifically, the algorithm was run a number of 40 times on each instance of the six
instance sets. In order to develop these runs, the parameter setting detailed in Table 2
was used. It is necessary to mention that such parameter setting was defined based on
exhaustive preliminary experiments that showed that this setting led to the best and
most stable results.

Table 1. Main characteristics of the instance sets introduced in [7].

Instance set Activities per instance Possible sets of human resources
per activity

Instances

j30_5 30 1 to 5 40
j30_10 30 1 to 10 40
j60_5 60 1 to 5 40
j60_10 60 1 to 10 40
j120_5 120 1 to 5 40
j120_10 120 1 to 10 40

Table 2. Parameter setting of the adaptive hybrid evolutionary algorithm

Parameter Value

Population size 90
Number of generations 300
Parent selection process
TH 10
TL 4
Crossover process
CH 0.9
CL 0.6
Mutation process
MH 0.3
ML 0.01
Simulated annealing algorithm
I (number of iterations) 25
a (cooling factor) 0.9
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Table 3 presents the results obtained by the adaptive hybrid evolutionary algorithm
for each of the six instance sets. The second column presents the average percentage
deviation from the optimal value (Av. Dev. (%)) for each instance set. The third
column presents the percentage of instances for which the optimal value was reached at
least once among the 40 runs developed (Opt. (%)).

For the instance sets j30_5, j30_10, j60_5, j60_10 and j120_5 (i.e., the five less
complex instance sets), the algorithm obtained Av. Dev. (%) values equal to 0% and
Opt. (%) values equal to 100%. These results indicate that the algorithm has reached an
optimal solution in each of the 40 runs developed on each instance of these sets.

For the instance set j120_10, the algorithm obtained an Av. Dev. (%) value equal to
0.01%. Considering that the instances of j120_10 have known optimal solutions with a
fitness value e(s) equal to 120, this result indicates that the average fitness value of the
solutions obtained by the algorithm is 119.99. Therefore, the algorithm has reached
very high-fitness solutions for the instances of j120_10. Moreover, the algorithm
obtained an Opt. (%) value equal to 100% for j120_10. This result indicates that the
algorithm has reached an optimal solution at least once among the 40 runs developed
on each instance of j120_10.

5.1 Comparison with Competing Heuristic Algorithms

To the best of the author’s knowledge, four heuristic search and optimization algo-
rithms have been presented so far in the literature to solve the addressed problem: a
traditional evolutionary algorithm [5], a traditional memetic algorithm [7] which
incorporates a hill-climbing algorithm into the framework of an evolutionary algorithm,
a hybrid evolutionary algorithm [8] which integrates an adaptive simulated annealing
algorithm into the framework of an evolutionary algorithm, and a hybrid evolutionary
algorithm [9–11] which utilizes semi-adaptive crossover and mutation processes as
well as an adaptive simulated annealing algorithm.

The four algorithms above-mentioned utilize non-adaptive parent selection and
survival selection processes to develop the evolutionary search. Besides, the first three
of these algorithms use non-adaptive crossover and mutation processes. The fourth of
these algorithms uses semi-adaptive crossover and mutation processes; however, the
adaptability of the behavior of these processes during the evolutionary search is very
limited.

Table 3. Results obtained by the adaptive hybrid evolutionary algorithm

Instance set Av. Dev. (%) Opt. (%)

j30_5 0 100
j30_10 0 100
j60_5 0 100
j60_10 0 100
j120_5 0 100
j120_10 0.01 100
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In [7–9], the four algorithms above-mentioned have been evaluated on the six
instance sets presented in Table 1. The results obtained by each of the four algorithms
for these six instance sets are detailed in Table 4, as were reported in [7–9].

According to the results in Table 4, the performance of the algorithm presented in
[9–11] is better than those of the algorithms presented in [5, 7, 8]. Thus, the algorithm
presented in [9–11] may be considered as the best algorithm presented so far in the
literature for solving the addressed problem.

Below, the performance of the algorithm presented in [9–11] is compared with that
of the adaptive hybrid evolutionary algorithm proposed here. For simplicity, the
algorithm presented in [9–11] will be referred as algorithm HEA.

Comparing the results obtained by the algorithm HEA (as detailed in Table 4) with
those obtained by the adaptive hybrid evolutionary algorithm (as detailed in Table 3),
the following points may be mentioned. Both algorithms have obtained an optimal
effectiveness level for j30_5, j30_10, j60_5 and j60_10 (i.e., the four less complex
instance sets). However, the effectiveness level obtained by the adaptive hybrid evo-
lutionary algorithm for j120_5 and j120_10 (i.e., the two more complex instance sets)
is significantly higher than that obtained by the algorithm HEA. Therefore, the adaptive
hybrid evolutionary algorithm outperforms the algorithm HEA on the more complex
instance sets. This is mainly because of the following reasons.

The adaptive hybrid evolutionary algorithm uses adaptive processes (i.e., adaptive
parent selection, crossover, mutation, and survival selection processes) to develop the
evolutionary search. Such processes adapt their behavior according to the population
diversity, to promote either the exploration or exploitation of the search space, and
therefore, improve the performance of the evolutionary search. In contrast with the
adaptive hybrid evolutionary algorithm, the algorithm HEA utilizes non-adaptive
processes (i.e., non-adaptive parent selection and survival selection processes) and
semi-adaptive processes (i.e., semi-adaptive crossover and mutation processes) to

Table 4. Results obtained by the heuristic algorithms reported in the literature for the addressed
problem

Instance
set

Evolutionary
algorithm [5]

Memetic algorithm
[7]

Hybrid
evolutionary
algorithm [8]

Hybrid
evolutionary
algorithm
[9–11]

Av. Dev.
(%)

Opt.
(%)

Av. Dev.
(%)

Opt.
(%)

Av. Dev.
(%)

Opt.
(%)

Av. Dev.
(%)

Opt.
(%)

j30_5 0 100 0 100 0 100 0 100
j30_10 0 100 0 100 0 100 0 100
j60_5 0.42 100 0 100 0 100 0 100
j60_10 0.59 100 0.1 100 0 100 0 100
j120_5 1.1 100 0.75 100 0.64 100 0.1 100
j120_10 1.29 100 0.91 100 0.8 100 0.36 100
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develop the evolutionary search. The non-adaptive processes disregard the population
diversity, and are not able to adapt their behavior during the evolutionary search to
improve the performance of the evolutionary search. The semi-adaptive processes
consider the population diversity; however, the adaptability of the behavior of these
processes during the evolutionary search is very limited. Based on the mentioned
above, the adaptive hybrid evolutionary algorithm has significant advantages to
develop the evolutionary search.

6 Conclusions and Future Work

In this paper, an adaptive hybrid evolutionary algorithm was proposed to solve the
project scheduling problem introduced in [5]. This problem considers a valuable
optimization objective for project managers. Such objective involves maximizing the
effectiveness of the sets of human resources assigned to the project activities.

The proposed adaptive hybrid evolutionary algorithm uses adaptive processes to
develop the different stages of the evolutionary cycle (i.e., adaptive parent selection,
survival selection, crossover, mutation and simulated annealing processes). These
processes adapt their behavior according to the diversity of the evolutionary algorithm
population, to promote either the exploration or exploitation of the search space. The
utilization of these adaptive processes is meant to improve the evolutionary search.

The performance of the adaptive hybrid evolutionary algorithm was evaluated on
six instance sets with very different complexity levels. After that, the performance of
this algorithm on these six instance sets was compared with those of the algorithms
previously reported in the literature for solving the addressed problem. Based on the
obtained results, it may be stated that the proposed adaptive hybrid evolutionary
algorithm significantly outperforms the algorithms previously reported.

In future works, other adaptive processes will be evaluated into the framework of
the hybrid evolutionary algorithm. In particular, other adaptive parent selection,
adaptive survival selection, adaptive crossover and adaptive mutation processes will be
evaluated. Besides, other population diversity measures will be evaluated to adapt the
behavior of the adaptive processes during the evolutionary search.
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