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Abstract. In the exploitation stage of a geothermal reservoir, the estimation of
the bottomhole temperature (BHT) is essential to know the available energy
potential, as well as the viability of its exploitation. This BHT estimate can be
measured directly, which is very expensive, therefore, statistical models used as
virtual geothermometers are preferred. Geothermometers have been widely used
to infer the temperature of deep geothermal reservoirs from the analysis of fluid
samples collected at the soil surface from springs and exploration wells. Our
procedure is based on an extensive geochemical data base (n = 708) with
measurements of BHT and geothermal fluid of eight main element composi-
tions. Unfortunately, the geochemical database has missing data in terms of
some compositions of measured principal elements. Therefore, to take advan-
tage of all this information in the BHT estimate, a process of imputation or
completion of the values is necessary.
In the present work, we compare the imputations using medium and medium

statistics, as well as the stochastic regression and the support vector machine to
complete our data set of geochemical components. The results showed that the
regression and SVM are superior to the mean and median, especially because
these methods obtained the smallest RMSE and MAE errors.
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1 Introduction

In the exploration stage of a geothermal reservoir, the estimation of bottomhole tem-
peratures is a fundamental activity to estimate the available energy potential and the
feasibility of exploiting its resources for the generation of electric power [1]. For this,
there are low cost geothermometric tools that allow obtaining an approximate bot-
tomhole temperature based on the chemical composition of the sampled fluids of
natural manifestations of geothermal reservoirs (thermal springs, geysers or volcanoes).

Today there are several geothermometric tools reported in the literature, several of
which tend to overestimate temperatures, due in large part to the fact that the amount of
data available for development is small or its origin is unreliable.

For the development of a geothermometric tool that improves the estimations of
bottomhole temperatures, a geochemical data base of n = 708 is available, which
contains measured temperatures and concentrations of eight main components of wells
producing different parts of the world. Unfortunately, the geochemical database shows
absence of data in some variables since they were not reported by the original authors.

The missing data in the geochemical database represents a limitation to attack the
problem of estimation of bottomhole temperatures, since incomplete data sets can cause
bias due to differences between observed and unobserved data. The most common
approach to managing missing values is the analysis of complete cases [2]. However,
Allison [3] observed that this approach reduces the sample size and study power.
Alternatively, this problem can be solved by means of data imputation, which consists
of the replacement of missing data by calculated values [4].

The imputation can be generally classified into statistical techniques and machine
learning [5]. This work compares the performance of four statistical techniques for the
imputation of missing data [6]: mean, median, stochastic linear regression, and Support
Vector Machines (SVM). In the imputation of the geochemical database, using the
techniques mentioned above, the data set (n = 150) that did not contain missing data
were extracted, which were later split into two groups, a for training and another for
testing. The results showed that the stochastic regression and SVM methods estimated
more precise missing values than the substitution methods by the mean and median.

The rest of the document is organized as follows: Sect. 2 presents some studies
related to the imputation of the mean, median, stochastic regression and SVM. Sec-
tion 3 describes the mechanisms of missing data, as well as the proposed techniques for
imputation of the geochemical database. Section 4 includes the information of the data,
the experimental configuration and the results obtained from the evaluation of the
performance of each method. Finally, the conclusions of the document and future work
are exposed in Sect. 5.

2 Literature Review

Currently, no reported works have been found in the literature in which the imputation
to geothermal fluids data is performed. However, there are reports studies in other
areas, such as environmental pollution, air quality and medicine. Norazian, et al. [7]
and Noor [8] applied the interpolation and imputation of the mean in a set of PM10
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concentration data, simulated different percentages of missing data, and concluded that
the mean is the best method only when the number of missing values is small. Razak,
et al. [9] evaluated the methods of imputation of the mean, hot deck and maximization
of expectations (EM) in PM10 concentrations, and concluded that the error of these
methods is considerable when the percentage of missing data is very high (e.g., 50%).
Junninen, et al. [10] compared the performance of various imputation methods in a set
of air quality data, and concluded that multivariate statistical methods (e.g., regression-
based imputation) are superior to univariate methods (e.g., linear, spline and nearest
neighbor interpolation). Yahaya, et al. [11] compared univariate imputation techniques
(e.g., mean, median, nearest neighbor, linear interpolation, spline interpolation and
regression) in Weibull distributions, and obtained that no single imputation technique is
the best for each sample size and for each percentage of missing values.

On the other hand, the imputation of values in the medical area has also been
applied. Jerez, et al. [12] applied several methods of statistical imputation (e.g., mean,
hot-deck and multiple imputation), and machine learning techniques (e.g., multi-layer
perceptron, self-realization maps and k-nearest neighbor) in an extensive real breast
cancer data set, where methods based on machine learning techniques were the most
suited for the imputation of missing values. Engels, et al. [13] compared different
methods of imputing missing data on depression, weight, cognitive functioning, and
self-rated health in a longitudinal cohort of older adults, where the imputations that
used no information specific to the person, such as using the sample mean, had the
worst performance. In contrast, Shrive, et al. [14] compared different imputation
techniques for dealing with missing data in the Zung Self-reported Depression scale,
and showed that the individual mean and single regression method produced similar
results, when the percent of missing information increased to 30%. Also, Newman [15],
Olinsky, et al. [16], Aydilek, et al. [17] reported comparative studies of various
imputation techniques such as stochastic regression, fuzzy c-means and SVR. Finally,
Wang, et al. [18] demonstrated that the SVR impute method has a powerful estimation
ability for DNA microarray gene expression data.

3 Methods to Treat Missing Data

The reasonable way to handle missing data depends on how the data points are missing.
In 1976 Rubin [6] classified the data loss into three categories. In your theory, each data
point has some probability of missing. The process that governs these probabilities is
called the response mechanism or missing data mechanism. To explain these three
categories Z is denoted as a variable with missing data, S as a set of complete variables,
Rz as a binary variable that has a value of 1 if the data in Z is missing and 0 if observed.
The categories of the Rubin classification can be expressed by the following statements:

Missing Completely At Random (MCAR)

Pr Rz ¼ 1jS;Zð Þ ¼ Pr Rz ¼ 1ð Þ ð1Þ
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That is, the probability of missing a value in Z does not depend either on S or Z and
therefore its estimates cannot depend on any variable.

Missing At Random (MAR).

Pr Rz ¼ 1jS;Zð Þ ¼ PrðRz ¼ 1jSÞ ð2Þ

Where the loss of a value in Z depends on S but not on Z, therefore its estimation
can depend on S.

Missing Not At Random (MNAR)

Pr Rz ¼ 1jS;Zð Þ ¼ Pr Rz ¼ 1jZð Þ ð3Þ

The absence of data in Z depends on Z itself, to generate estimates under this
assumption, special methods are required.

Rubin’s distinction is important, since his theory establishes the conditions under
which a method to deal with missing data can provide valid statistical inferences. On
several occasions, the assumption that data loss is MAR is acceptable and that a
treatment can be resorted to using imputation methods. Unfortunately, the assumptions
that are necessary to justify a method of imputation are generally quite strong and often
unverifiable [3].

3.1 Proposed Methods

The present work focuses on the imputation of the geochemical database based on the
assumption that the loss is MAR. The available information may be used to estimate
the missing values. The use of the complete analysis method Schafer [2] was discarded,
which consists in ignoring the records that contain missing data, because applying this
method is practical only when the number of incomplete records is less than 5% of the
total data and the data loss is of the MCAR Buuren type [19]. The geochemical
database is incomplete in more than 50% and its MAR type loss is assumed.

The single imputation methods are broadly classified into statistical and machine
learning techniques [5]. The most commonly imputed forms of imputation are sub-
stitution by means, median and stochastic regression [15]. Within the current machine
learning techniques, we can find of SVM. The imputation with statistical techniques
provides estimates of lost values by replacing them with the observed data. When the
variables are continuous, the simplest statistical parameters based on the mean and
median are used.

3.2 Mean and Median Imputation

Substitution by the mean is an imputation technique where the missing data for any
variable is completed with the average of the observed value of that variable [20]. The
average is obtained by Eq. 4.
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�x ¼
Pn

i¼1 xi
n

ð4Þ

On the other hand, impute the median is done from an ordered vector that contains
the observed data of an incomplete variable, the missing values of said variable are
imputed through Eq. 5.

~x ¼ X nþ 1
2½ �; if n is even

~x ¼
X nþ 1

2½ � þX n
2½ �

2 ; if n is odd
ð5Þ

The use of these techniques entails the disadvantage that the variance of the
imputed variable is systematically underestimated.

3.3 Imputation Stochastic Regression

A slightly more robust but popular method is stochastic regression, in which the
variable with the missing data uses all other variables to produce a regression equation
(depending on the complete cases).

Ŷ ¼ b0 þ b1X1þ . . .þ bpXPþ � ð6Þ

where b0 is the intersection, b1; . . .bp are the rate of change of Ŷ for a unit change in

X1; . . .;XP correspondent X1; . . .;XP are the predictors and � random noise added to Ŷ .
The random error term is a normal random variant with a mean of zero and a standard
deviation equal to the standard error of the estimation of the regression equation [15].
The addition of the random error is a method used to avoid that the variance of the
imputed variable is underestimated, and the correlations with the imputed variable are
overestimated.

The most important thing when modeling the equation for an incomplete variable is
the selection of predictors. The inclusion of as many predictors as possible tends to
make the MAR assumption more plausible [3]. The missing values are replaced with
predicted values of the regression equation.

One strategy for selecting predictive variables is to inspect their correlations and the
response indicator, the latter measures the percentage of observed cases of one variable
while there is absence in another. This means that a variable that has good correlation
with the target variable must also have a high proportion of observed data to be a
predictor.

3.4 SVM Imputation

In supervised learning techniques, imputation is considered a pattern classification task
[5]. In them the missing values are the output obtained and the observed values are the
inputs used for the training of the models. SVM is one of the machine learning
techniques currently used for imputation.
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Support Vector Regression (SVR) proposed by Drucker et al. [21], is the regression
version of Support Vector Machines [22]. This method fits a hyperplane to a contin-
uous dependent variable y in terms of one or more continuous independent variables,
i.e. y ¼ f x; hð Þ, where y 2 R is the dependent variable, x 2 R

N is a vector of N
independent features, and h 2 R is a vector of model parameters. SVR estimates the
hyperplane by minimizing the Structural Risk which guarantees a good generalization
of the model by controlling its complexity [21]. This control is achieved by wrapping
the hyperplane with a margin which (a) constrains the number of points that the
function can represent, and (b) obtains a f in terms of a subset of the train sample which
is called Support Vectors (SV). Additionally, SVR can handle data noise and non-
linearity: the former is achieved by including slack variables into the model’s formu-
lation, whereas the latter is achieved by the Kernel Trick [23]. Although SVR has been
neatly defined elsewhere [21], for the sake of completeness we now provide its
formulation:

Max:W a; a�ð Þ
¼ � 1

2

Pm
i;j¼1 ai � a�j

� �
ai � a�j

� �
/ xið Þ;/ xj

� �� �� e
Pm

i¼1 a�i þ ai
� �

þ Pm
i¼1

a�i � ai
� �

yi

subject to
Pm

i¼1 ai � a�i
� � ¼ 0

0� ai; a�i �C; 8i ¼ 1; . . .;m;

ð7Þ

where C is the complexity penalization term, e is the width of the margin, / is the
kernel function, and a; a� corresponds to the weights of each element in the train set.
Particularly, those a; a� � 0 correspond to the SV.

4 Experimentation

The main objective of this work is to evaluate the proposed unique imputation tech-
niques, applied to a set of geochemical data to increase the sample that has and thus
allow the development of a geothermometric tool that better estimates the bottomhole
temperatures of a geothermal reservoir. To do this, we have a geochemical database
with 708 rows, each one represents a well producing geothermal energy, by 9 columns
that correspond to the measured temperature (°C) of the well and the chemical con-
centrations of Li, Na, K, Mg Ca, Cl, SO4 and HCO3 given in mg/L. Table 1 shows the
descriptive statistics and the total of missing values.

As shown in Table 1, the temperature and the Na and K components have no
missing data. However, the components Li, Mg, Ca, Cl, SO4 and HCO3 are incomplete.
Figure 2 shows the percentages that represent the missing data of each variable
(Fig. 1).

Variables such as Li and HCO3 are incomplete by more than 50%. To avoid
discarding possible useful data for the development of a geothermometric tool that
improves the bottomhole temperature estimates of a geothermal energy producing well,
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Table 1. Statistical information for bottomhole temperatures and compositional database of
geochemical fluids.

Variable Min Median Mean Max SD Na

Temperature (°C) 59 230 217 359 69.86 0
Li (mg/L) 0.02 6.40 14.03 215 24.31 452
Na (mg/L) 22 1,416 11,472.20 565,578.60 52,014.33 0
K (mg/L) 0.55 196.50 1,583.50 66,473.40 6,755.31 0
Mg (mg/L) 0.001 0.18 114.60 3,920 512.24 114
Ca (mg/L) 0.06 17 2,302.73 55,600 7,685.21 44
Cl (mg/L) 2 1,714 6,918 52,4690 28,522.53 157
SO4 (mg/L) 0.60 51.80 140.3 2,500 246.94 191
HCO3 (mg/L) 0 88.50 349.5 3,074 566.55 412

Minimum value (Min), maximum (Max), mean (Mean), median, standard
deviation (SD) and the number of missing data (Na) of each variable contained
in the geochemical database.

Fig. 1. Histogram of missing data. Shows the percentage of missing data in each variable of the
geochemical database. The temperature, Na and K have no missing values, but the rest of the
variables there is a percentage of missing data: Li 63%, HCO3 58%, SO4 26%, Cl 22%, Mg 16%,
Ca 6%.
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unique imputation methods were implemented, using statistical techniques such as
mean, median and stochastic regression and machine learning. such as SVM.

4.1 Experimental Configuration

The geochemical database was divided into two sets. A complete set with the 150 rows
that have all their observed chemical elements and another with the 558 records with
missing data. From the complete data set, 120 rows (80%) were taken for training of
the models of each variable and 30 rows (20%) for testing. From the training set, the
mean and median of each incomplete variable were obtained and the values obtained
replaced the missing values of the incomplete set.

For the stochastic regression and SVM imputation, we first analyzed the relation-
ship between the observed data of the variables, by means of the pairwise correlation
and the response indicator (described in Sect. 3) to determine the predictor variables
that would be included in the model of incomplete variables.

Figure 2a shows the correlation of the observed data for each pair of variables in
the geochemical database. Figure 2b shows the percentage of observed data of one
variable while the other variable has lost data. For example, to determine the predictive
variables of Li, according to Fig. 2a, Li has a correlation above 0.5 with Na, K, Ca and
Cl, as well as a correlation very close to 0 with Temperature, Mg, SO4 and HCO3.
Moreover, according to Fig. 2b, when Li has missing data, the variables Temperature,
Na, K and Ca have a proportion of data observed in more than 75%. Therefore, the
predictive variables of Li can be Na, K and Ca.

The same analysis was carried out to select the predictive variables of the rest of the
incomplete variables of the geochemical database. It is important to mention that in
some variables very low correlations were found with the other variables and at the

Fig. 2. (a) Correlation matrix shows the correlation of the observed data for each pair of
variables; the yellow boxes indicate a correlation of 1, while the blue boxes indicate a close
negative correlation to 0. (b) Response indicator indicates the percentage of observed data of one
variable while the other variable has lost data, the yellow color indicates 100% and the blue 0%.
The Temperature, Na and K have columns in blue totally since these variables do not contain
missing data. Both are read from left to right, from bottom to top. (Color figure online)
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same time when the variable had missing data, they were also missing in the rest of the
variables. Despite this, the variables that obtained the highest values in comparison
with the others were selected as predictors. The predictors for each incomplete variable
are shown in Fig. 3.

4.2 Method Validation

To quantify the accuracy of the imputation models in the prediction of missing data, the
two precision measures detailed below were used:

Root Mean Squared Error (RMSE) which indicates the variance in the estimates,
has the same units as the measured and calculated data. The smaller values indicate a
better concordance between the true values and the estimated ones.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc � xmð Þ2

D Er
ð8Þ

Mean Absolute Error (MAE) like the RMSE, smaller values of MAE indicate a
better concordance between the true and calculated values. MAE outputs a number that
can be directly interpreted since the loss is in the same units of the output variable.

MAE ¼ xc � xmj jh i ð9Þ

4.3 Results and Discussion

The imputation techniques were implemented in the set of test data extracted from the
complete set of the database, with this the RMSE and MAE errors could be measured
between the predicted and the measured values. Tables 2 and 3 show the results of
RMSE and MAE of the estimates of the mean, median, stochastic regression and SVM.

Fig. 3. Predictors matrix indicates in purple the predictors of each incomplete variable. It reads
from left to right, from bottom to top.
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The results presented in Tables 2 and 3 show that the imputations by the mean and
median have the highest errors in most of the experiments compared to the stochastic
regression and SVM methods. With the exception, for the variables Mg (16% of
missing data) and HCO3 (58% of missing data), in which the imputation of the median
was the best according to the MAE parameter. On the other hand, the stochastic
regression was the best (according to RMSE and MAE) in the imputation of the
variables of Ca and Cl, which presented 16% and 22% of missing data, respectively.
While, the SVM method obtained the best results (according to RMSE) in the esti-
mation of Li (63% missing data), Mg (16% of missing data), SO4 (26% missing data)
and HCO3 (58% of Missing data). Finally, with these results it was found that the best
methods to estimate the lost values of the variables of Ca and Cl is the stochastic
regression; and for the variables Li, Mg, SO4 and HCO3 is SVM.

5 Conclusions

In this paper, the unique imputation methods were compared by means, median,
stochastic regression and SVM, applying them in a geochemical data set of geothermal
fluids. This study is aimed at obtaining a complete and larger geochemical database that
allows the development of a geothermometric tool that best estimates the bottomhole
temperatures of a geothermal reservoir. From the complete data set, the training (80%)
and testing (20%) sets were obtained. From training set, the mean and median values

Table 2. Comparison of RMSE values obtained by the imputation methods of the mean,
median, stochastic regression and SVM.

Variable Mean Median Stochastic regression SVM

Li 12 13.21 13.99 8.10
Mg 18.99 15.11 134.28 12.60
Ca 4,329.27 4,363.56 213.83 2,493.21
Cl 18,832.98 19,049 340.43 11,223.85
SO4 126.43 133.97 127.38 83.14
HCO3 361.06 375.39 457.45 204.26

Table 3. Comparison of MAE values obtained by the imputation methods of the mean, median,
stochastic regression and SVM.

Variable Mean Median Stochastic regression SVM

Li 10 9.30 7.98 10.69
Mg 17.40 3.96 32.14 57.65
Ca 1,011.15 868.33 96.72 147.21
Cl 5,828.08 5,271.19 145.86 227.34
SO4 78.50 58.97 52.71 85.92
HCO3 191.08 135.29 183.73 230.97
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were calculated to replace the missing values, as well as the regression and SVM
imputation models were developed.

To evaluate the performance of these methods, two indicators were calculated, the
mean absolute error (MAE) and mean square error (RMSE) between the test set and the
values estimated by the methods. The results showed that the stochastic regression and
SVM are superior to the mean and median. From these performance indicators, it is
concluded that the best methods to estimate the lost values of the variables of Ca and Cl
are stochastic regression; and for the variables Li, Mg, SO4 and HCO3 is SVM.
Therefore, both techniques were used for the completion of the geochemical database.

As future work, our task will be to analyze the statistical distribution of the
imputation errors for the possible choice of more sophisticated validation parameters
not sensitive to the presence of discordant values. On the other hand, the future plans
for the project are to carry out a detailed study of the new complete geochemical
database to develop a new geothermometric model.
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