
Full Model Selection in Huge Datasets
and for Proxy Models Construction

Angel Dı́az-Pacheco(B) and Carlos Alberto Reyes-Garćıa

Computer Science Department, Instituto Nacional de Astrof́ısica,
Óptica y Electrónica (INAOE), Luis Enrique Erro No.1, Santa Maŕıa Tonantzintla,

72840 San Andrés Cholula, Puebla, Mexico
diazpacheco@inaoep.mx

Abstract. Full Model Selection is a technique for improving the accu-
racy of machine learning algorithms through the search of the most ade-
quate combination on each dataset of feature selection, data preparation,
a machine learning algorithm and its hyper-parameters tuning. With the
increasingly larger quantities of information generated in the world, the
emergence of the paradigm known as Big Data has made possible the
analysis of gigantic datasets in order to obtain useful information for
science and business. Though Full Model Selection is a powerful tool, it
has been poorly explored in the Big Data context, due to the vast search
space and the elevated number of fitness evaluations of candidate models.
In order to overcome this obstacle, we propose the use of proxy models
in order to reduce the number of expensive fitness functions evaluations
and also the use of the Full Model Selection paradigm in the construction
of such proxy models.

Keywords: Big Data · Model Selection · Machine learning

1 Introduction

Data can be considered as an expenditure in storage or a valuable asset, this
valuation relies on the analysis made to such information. One of the main ten-
dencies to analyze data is the use of machine learning techniques though, to
choose an adequate learning algorithm to a specific dataset is not a trivial task.
This process requires to find the combination of algorithms together with their
hyper-parameters to achieve the lowest misclassification rate in a wide search
space [17]. Other factors that have a major impact in the generalization capac-
ities of a classification algorithm are: feature selection and data-preparation.
These factors, in combination with the selection of a classification algorithm
integrates the Full Model Selection paradigm (FMS). Under this paradigm, every
factor combination represents a set of data transformations and performing the
learning process over the training set [6]. Although this paradigm is useful, has

The first author is grateful for the support from CONACyT scholarship no. 428581.

c© Springer Nature Switzerland AG 2018
I. Batyrshin et al. (Eds.): MICAI 2018, LNAI 11288, pp. 171–182, 2018.
https://doi.org/10.1007/978-3-030-04491-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04491-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-04491-6_13


172 A. Dı́az-Pacheco and C. A. Reyes-Garćıa

been poorly explored in the Big Data context due the huge search space and the
time every transformation and learning process takes in a dataset of this context.
FMS has been addressed as an optimization problem varying the search tech-
nique employed. As an example, in [11] a hybrid method based on grid search and
the theoretic hyper-parameter decision technique (ThD) of Cherkassy and Ma for
the algorithm SVR (Support Vector Regression) was proposed. In [12] a genetic
algorithm was employed for the hyper-parameter tuning of the SVM algorithm.
In [6] they tackled and defined the full model selection problem with the use of
a particle swarm optimization algorithm (PSO), in [9] a PSO algorithm was also
used but just for hyper-parameter optimization for the ls-SVM algorithm mean-
while in [2] was proposed the use of the bat algorithm for solving FMS. Similar
problems where the computing time is prohibitive, have been approached in the
literature by means of proxy models also known as surrogate functions. A proxy
model is a computationally inexpensive alternative to a full numerical simula-
tion and can be defined as mathematically, statistically, or data-driven model
defined function that replicates the simulation model output for selected input
parameters [1]. Some of the main approaches analyzed can be grouped as follows:
(a) The surrogate function is based on a single regression algorithm
to predict the fitness in the objective or objectives to optimize. In [5] a
neural network based on fuzzy granules was employed as a proxy model. In [15]
a multi-objective genetic algorithm assisted by surrogate functions was proposed
for model selection. A neural network with the parameters selected by hand was
employed in order to predict each objective. Every generation, the surrogate pre-
dicts the performance of the individuals and the promissory ones were evaluated
by the complete fitness function and the neural networks were re-trained with
the new samples. (b) Model selection is employed in order to increase
the quality of the surrogate functions. An island model genetic algorithm
is employed in [4] for model selection and hyper-parameter optimization. The
GA is combined with the Expected Improvement algorithm (EI) for the selection
of the interest data points that can improve the performance of the surrogate
model. In [14] the model selection is performed among several algorithms with
their hyper-parameters previously configured by hand. From all the analyzed
works we can see two fundamental aspects for the development of this work.
The first one is that, the full model selection problem could be benefited by the
use of surrogate models in order to reduce the high number of fitness evaluations
during the search step. The second one is that, proxy models can be used as a
way to reduce the fitness evaluations and also guide the search process as a com-
pass, therefore, a wise decision is to built the best compass possible and a way to
do that is through the FMS paradigm. This work has the following organization.
In Sect. 2 we present some background on Big Data and MapReduce. Section 3
describes our proposed algorithm. Section 4 shows the experiments performed to
test the validity of our proposal. Finally, Sect. 5 presents the conclusions.



Full Model Selection in Huge Datasets and for Proxy Models Construction 173

2 Big Data and the MapReduce Programming Model

MapReduce was introduced by Dean and Ghemawat in 2004 with the goal of
enabling the parallelization and distribution of big scale computation required to
analyse the large datasets. This programming model was designed to work over
computing clusters and it works under the master-slave communication model.
In MapReduce a computing task is specified as a sequence of stages: map, shuffle
and reduce that works on a dataset X = {x1, x2, ..., xn}. The map step applies
a function μ to each value xi to produce a finite set of key-value pairs (k, v). To
allow for parallel execution, the computation of function μ(xi), must depend only
on xi. The shuffle step collects all the key-value pairs produced in the previous
map step, and produces a set of lists, Lk = (k; v1, v2, ..., vn) where each of such
lists consists of all values vi, such that ki = k for a key k assigned in the map
step. The reduce stage applies a function ρ to each list Lk = (k; v1, v2, ..., vn),
created during the shuffle step, to produce a set of values y1, y2, ..., yn. The reduce
function ρ is defined to work sequentially on Lk but should be independent of
other lists Lk, where k

′ �= k [7]. A widespread definition of Big Data describes
this concept in terms of three characteristics of information in this field: Vol-
ume, Velocity and Variety [18] referring to the huge quantity, the high speed of
generation and the different formats of the information. This definition does not
provide rules to identify a dataset that belongs to Big Data and the justification
of using a dataset in the literature only considers its size. The size of a dataset is
relative to resources available to manage it and, in a country like Mexico (where
this research was done), the availability of specialized hardware is an important
limitation. Taking these factors into account, we propose an alternative defini-
tion of Big Data relative to the FMS problem. We propose that a huge dataset
for the model selection problem must to accomplish two rules: (1) The dataset
size is big enough that at least one of the considered classification algorithms
in their sequential version cannot process it. (2) The dataset size is defined by
their file size considering the number of instances (I) and features (F) as long as
I � F.

3 PSMS for FMS and Proxy Model Construction

One of the most popular and successful algorithms to perform the FMS analysis
is the PSMS algorithm proposed by [6]. This algorithm is based on the PSO
algorithm which is a population-based search inspired by the behavior of biolog-
ical communities that exhibit both individual and social behavior [6]. PSMS is
faster and easy to implement because relies in just one operator unlike the evo-
lutionary algorithms. Due to the aforementioned reasons the PSMS algorithm
was chosen and adapted to MapReduce in order to deal with datasets of any
size.

3.1 Codification and Functioning

The solutions encoded in PSMS needs to be codified in a vector called particle.
Each particle xt

i = [xt
i,1, x

t
i,2, ..., x

t
i,16, ] is encoded as follows: In position 1 the



174 A. Dı́az-Pacheco and C. A. Reyes-Garćıa

fitness of the potential models is stored. Position 2 allows to determine which
operation will be done first: data-preparation or feature selection. Position 3 indi-
cates if the data-preparation step will be done. Positions 4 to 6 are parameters
for the data-preparation step (method identifier, parameter 1 and parameter 2).
Position 7 determines if the feature selection step will be done. Positions 8 and 9
are for the feature selection step (Method identifier and number of features to be
selected respectively). Positions 10 to 16 are for the machine learning algorithm
construction. The range of values that every element in the vector can take is as
follows: [0–100]; [0, 1], [0, 1], [1, 30], [1, NF], [1, 50], [0, 1], [1, 5], [1, NF], [1, 6],
[1, 2], [1, 4], [1, 100], [1, 60], [1, 400], [−20, 20] with NF = Number of Features. At
each time t, each particle, i, has a position in the search space. A set of particles
S = {xt

1, x
t
2, ..., x

t
m} is called a swarm. Every particle has a related velocity value

that is used to explore the search space and the velocity of such particle at time
t is as follows V t

i = [vt
i,1, v

t
i,2, ..., v

t
i,16] where vt

i,k is the velocity for dimension k
of the particle i at time t. The search trajectories are adjusted employing the
following equations:

vt+1
i,j = W × vt

i,j + c1 × r1 × (pi,j − xt
i,j) + c2 × r2 × (pg,j − xt

i,j) (1)

xt+1
i,j = xt

i,j + vt+1
i,j (2)

from the previous equations pi,j is the value in dimension j of the best solution
found so far, also called personal best. pg,j is the value in dimension j of the
best particle found so far in the swarm. Regarding to c1, c2 ∈ R, are constants
weighting the influence of local and global best solutions, and r1, r2 ∼ U [0, 1]
are values that introduce randomness into the search process. The inertia weight
W controls the impact of the past velocity of a particle over the current one,
influencing the local and global exploration. As in the original paper, the inertia
weight is adaptive and specified by the triplet W = (wstart, wf , wend); where
wstart and wend are the initial values of W , wf indicates the fraction of iterations
in which W is decreased. W is decreased by W = W − wdec from the first
iteration where W = Wstart to the last iteration where W = wend and wdec =

wstart−wend

Number of iterations [6].

3.2 Models Evaluation

This version of PSMS was developed under Apache Spark 1.6.0, that is based
on MapReduce. Apache Spark was selected because of its enhanced capacity to
deal with iterative algorithms and the possibility to perform data processing in
main memory (if memory capacity allows it). An analysis of the advantages of
Spark over traditional MapReduce is out of the scope of this work, but we refer
to [19]. The cornerstone of Apache Spark is the RDD or Resilent Distributed
Dataset which is a collection of partitioned data elements that can be processed
in parallel [8]. As described above, the models evaluation stage is comprised of
data preparation, feature selection, and training of a classification algorithm, in
the following algorithms this process is described.



Full Model Selection in Huge Datasets and for Proxy Models Construction 175

Algorithm 1. Data preparation
1: procedure DataPrep(DataSet,particle)
2: Return(DataSet.map(row → row.toArray.map(col → Transform(col,particle))))
3: � The Transform function is applied to every column of each row in the RDD according to the

parameters encoded in the particle
4: end procedure

Algorithm 2. Feature Selection
1: procedure FeatSelection(DataSet,particle)
2: numFeat = particle(9)
3: rankRDD = DataSet.map(row → RankingCalculation(row))
4: � The RankingCalculation function obtains the ranking of the features of the dataset
5: reducedRDD = rankRDD.map(row → getF(row,numFeat))
6: � The function getF is applied to every row in rankRDD and returns a reduced dataset
7: Return(reducedRDD)
8: end procedure

Algorithm 3. Classification
1: procedure Classification(DataSet,particle)
2: NumFolds = 2
3: kFolds = createFold(DataSet,NumFolds)
4: � The createFold function creates an RDD for k-Fold Cross validation
5: error=kFolds.map {
6: case(Training,Validation)
7: � The dataset is separated in Training and Validation partitions
8: model = createModel(Training, particle)
9: � The createModel function create a model using the parameters codified in the particle

10: PredictedTargets = Validation.map(Instance → model.predict(Instance.features))
11: � Performs the predictions in the validation set
12: accuracy= getAcc(PredictedTargets,Validation.targets)
13: � Obtains the accuracy in each fold
14: error = 100-accuracy
15: Return(error)
16: }
17: meanError=error.sum/error.length
18: Return(meanError)
19: end procedure

In the proposed version of PSMS, the mean error over the 2-fold cross val-
idation is used in order to evaluate the performance of every potential model.
During the test stage in the development of the algorithm, different number of
folds were evaluated (2, ...,10) without significant differences, but adding to the
computing time factor, the 2-fold cross validation was the best choice. As to
choose a single final model is not a trivial decision, another major change in
our PSMS version was that the final model is a weighted ensemble of the best
models found during the search process.

3.3 Proxy Model Construction Through the FMS Paradigm

As mentioned earlier, the search space of the FMS problem is huge even if restric-
tions are imposed to hyper-parameter values. The bio-inspired search methods



176 A. Dı́az-Pacheco and C. A. Reyes-Garćıa

have proved a high capacity to deal with this kind of problems and, particularly,
PSMS has shown that is capable to solve the FMS problem. It is not easey to
asses the complexity of the FMS problem, which varies from linear to quadratic
or higher orders. The fitness function in a normal execution of PSMS should be
evaluated ρ = m × (I + 1) times, where m is the swarm size and I the number
of iterations. Supposing that the complexity of a model λ is bounded by λ0, the
complexity of PSMS will be bounded by ρ × λ0. The computing time of FMS
is related to the dimensionality and size of the dataset, and when high volume
datasets are analyzed, MapReduce allows to divide the load among MapReduce
nodes. Although the complexity is the same (λ0 × ρ), the computing time is
reduced to manageable levels. An excellent alternative to reduce the computing
time, is through the use of proxy models in order to reduce the value of ρ and
to guide the search in a similar fashion of a compass. An effective way to built
the best compass possible is through PSMS, to automate the selection of the
best combination of regression algorithm, feature selection and data prepara-
tion of the meta-dataset. In this work, the meta-dataset, was built employing
the particles evaluated by the PSMS algorithm for FMS in huge datasets. All
the evaluated particles, are vectors that describe combinations of factors that
represent a full model along with the particle performance, therefore, the meta-
dataset constitutes a regression problem in order to predict the performance of
new not analyzed particles and just to evaluate those that are promising. For the
PSMS algorithm assisted by proxy models constructed with the FMS paradigm
(onwards FMSProxy-PSMS), we used the regression and data-preparation algo-
rithms available in the machine learning tool WEKA [10]. As feature selection
algorithm the Principal Components Analysis (PCA) was employed because the
available algorithms for FS need discrete classes in order to perform an analysis
and of course the problem at hand is a regression problem with a continuous tar-
get. Finally the process of the FMSProxy-PSMS algorithm can be described as
follows: (1) Evaluate all the particles in the first “N” iterations of the algorithm
with the costly fitness function, (2) use this particles to build a first proxy model
that will be used during the next “N” iterations, (3) evaluate the promising par-
ticles with the costly fitness function and discard the rest, (4) after complete “N”
iterations build a new proxy model, (5) iterate until the termination criteria is
met. All the particles evaluated with the costly fitness function are stored in a
separated file used as meta-dataset.

4 Experiments and Results

With the purpose to evaluate the proposed algorithm performance, we exper-
imented with the datasets shown in Table 1. The datasets “Synthetic 1” and
“Synthetic 2” were created using the tool for synthetic datasets generation in
the context of ordinal regression: “Synthetic Datasets Nspheres” provided in [16].
Despite of have been developed for ordinal regression, the tool can be properly
adjusted for traditional binary or multi-class problems and provides the mecha-
nism to control the overlaps and classes balance. Another major feature of the



Full Model Selection in Huge Datasets and for Proxy Models Construction 177

aforementioned datasets is its intrinsic dimension. The intrinsic dimension (ID)
is the minimum number of parameters needed to represent the data without
information loss [13]. The id of the employed datasets was estimated with the
“Minimum neighbor distance estimator” (MNDE) [13] and the “Dimensionality
from angle and norm concentration” (DANCO) estimator [3]. The importance of
the estimation of the “id” of each dataset is to ensure that each dataset represent
a different computational problem and, therefore, that proposed algorithm have
the capability to deal with a wide range of problems and in the context of this
work also with datasets of different sizes. In the Table 2 the calculated intrinsic
dimension using the aforementioned estimators is shown.

Table 1. Datasets used in the experiments.

Datasets Data points Attributes Samples by class Type of

variables

File size

RLCP 5749111 11 (5728197;20915) Real 261.6MB

KDD 4856150 41 (972780;3883369) Categorical 653MB

Synthetic 1 200000000 3 (100000000;100000000) Real 5.5GB

Higgs 11000000 28 (5170877;5829123) Real 7.5GB

Synthetic 2 49000002 30 (24500001;24500001) Real 12.7GB

Epsilon 500, 000 2000 (249778;250222) Real 15.6GB

Table 2. Intrinsic dimension of the datasets.

Datasets MNDE DANCO

RLCP 2 2

KDD 1 1

Synthetic 1 3 3

Higgs 12 15

Synthetic 2 22 28

Epsilon 160 78

The performance of the proposed approach FMSProxy-PSMS was contrasted
against the complete search (PSMS) and a surrogate-assisted version of PSMS
based on a Multi-layer perceptron (onwards MLP-PSMS) as in [15] whose hyper-
parameters were determined with a grid search at the beginning of the process
and during the rest of the search was just re-trained with the new samples of the
meta-dataset. The termination criteria of PSMS was to complete 50 iterations,
this in conjunction with a swarm size of 30 particles means that the search
explored 1500 possible models before to build the final model. As mentioned
earlier the proxy model approach can be though as a reduction of the expensive
fitness functions or as a compass that can guide the search and, therefore, the



178 A. Dı́az-Pacheco and C. A. Reyes-Garćıa

best model must be find earlier in the search. With this in mind, as a termination
criteria of the surrogate-assisted searches, the evaluation of a certain number of
models was employed. In this case, the termination criteria was set to complete
500 evaluations with the expensive fitness function with no differences in the
increment of this value (500, 1000, 1500 evaluations). In order to obtain an
statistical power of 90% in an ANOVA test, 20 replications for every dataset were
performed. Each replication was performed with a particular random sample of
the data points with different random samples among replications. The dataset
was divided in two disjoint datasets with 60% of the data samples for the training
set and 40% for the test set. In Table 3, the mean error of the contrasted methods
is shown.

Table 3. Mean classification error obtained in the test dataset by FMSProxy-PSMS,
MLP-PSMS and PSMS, over 20 replications. The best results are in bold

Dataset FMSProxy-PSMS MLP-PSMS PSMS

RLCP 0.059 ± 0.123 0.426 ± 1.593 0.052 ± 0.001

KDD 0.079 ± 0.003 2.556 ± 7.638 0.156 ± 0.134

Synthetic 1 15.865 ± 0.005 15.863 ± 0.004 15.862 ± 0.004

Higgs 30.193 ± 0.685 29.491 ± 2.220 28.299 ± 0.057

Synthetic 2 6.682 ± 0.003 6.682 ± 0.003 6.681 ± 0.005

Epsilon 28.816 ± 2.762 32.223 ± 5.397 54.008 ± 0.926

From previous table, the best method was PSMS, obtaining the lowest errors
in the datasets RLCP, Synthetic 1, Higgs and Synthetic 2. The second best in the
comparative was FMSProxy-PSMS in the datasets KDD and Epsilon. As was
mentioned before, the complete search PSMS, explores 1500 models before to
find the best model, and the surrogate-based methods only explores 500 models.
In order to understand the search process of the methods under evaluation, Fig. 1
is provided.

The previous figure shows the approximate number of evaluation models in
the “X” axis and the estimated error of the best particle found in the “Y” axis
in Higgs dataset. It can be seen that PSMS got the lowest error with 39.2%, the
second best was FMSProxy-PSMS with 42% and finally MLP-PSMS with 42.2%.
Regarding to the number of evaluated models, MLP-PSMS was the fastest with
68 models evaluated until build the final model, FMSProxy-PSMS with 120 mod-
els and finally PSMS with 1220 evaluated models. Though, PSMS was the best
in the comparative with a mean error of 28.299%, the surrogate-based searches
were pretty near with 29.491% for MLP-PSMS and 30.193% for FMSProxy-
PSMS with an smaller amount of models evaluations. Regarding to computing
time factor, in Fig. 2, average execution times are shown as a bar chart in each
dataset. The experiments were performed in a workstation of 12 threads with a
Intel(R) Xeon(R) CPU E5-2695 at 2.40 GHz and 30 GB in RAM.



Full Model Selection in Huge Datasets and for Proxy Models Construction 179

Fig. 1. Evolution of the search of the proposed methods in dataset Higgs. In X axis
are the number of evaluated models (as a way to point out the progress of the search)
and in Y axis the estimated error.

Fig. 2. Bar chart with the average execution time (in minutes) performed in 20 replica-
tions in each dataset. Each color represent a different dataset and bars are grouped by
algorithm. The standard deviation is depicted as a solid black line on the bars. (Color
figure online)

On Fig. 2 it can be appreciated the average execution times of contrasted
algorithms with the aforementioned hardware configuration. With no surprise,
highest execution times are for PSMS (the complete search), while surrogate-
assisted approaches are considerably faster and specially for Epsilon dataset.
Due its random nature (the initial swarm is randomly initialized), PSMS has also



180 A. Dı́az-Pacheco and C. A. Reyes-Garćıa

the largest standard deviation, but, taking into account that all the surrogated
versions of PSMS have a random initial swarm too, we can conclude that a proxy
model is capable to guide the search in an effective way. Concerning to standard
deviation, a simpler visual analysis shows that FMSProxy-PSMS has a smaller
standard deviation that traditional approach (MLP-PSMS). Finally, although
computing times of FMSProxy-PSMS are no the smallest in all datasets, results
in Table 3 shows that this approach is almost as good as the complete search but
with moderate to low execution times. In order to find significant differences in
the performance of the evaluated methods, an ANOVA test was performed. In
the following table the results of the test are shown (Table 4).

Table 4. F-statistic obtained from the ANOVA test and q-values from the Tukey HSD
test for performing all possible pairwise comparisons among the proposed strategies
for the final model construction. The critical values at the 95% confidence level for
the ANOVA test are 3.16 (F(2,57)) for all datasets. The critical values at the 95%
confidence level for the Tukey HSD test are 3.44 (57 degrees of freedom). Cases that
exceed the critical value are considered as a difference that is statistically significant
at the fixed level and are marked with an asterisk (*)

Dataset ANOVA F FMSProxy-PSMS
vs MLP-PSMS

FMSProxy-PSMS
vs PSMS

RLCP 1.076 1.7785 0.035

KDD 2.039 2.511 0.079

Synthetic 1 1.629 2.070 2.328

Higgs 10.189* 2.338 6.313

Synthetic 2 0.486 0.346 1.344

Epsilon 298.013* 4.303 31.819

The statistic tests shows that there are almost no differences in the perfor-
mance of the surrogate-based algorithms except in the Epsilon dataset where
the lowest error was obtained by the FMSProxy-PSMS algorithm. Regarding to
PSMS it can bee seen that exist significant differences in the Higgs dataset and
the Epsilon dataset, with PSMS winning in the Higgs dataset and FMSProxy-
PSMS winning in the Epsilon dataset. From Table 2 it can be seen that from the
perspective of the intrinsic dimension analysis, the Epsilon dataset is the hard-
est one in the comparative with an ID of 160/78 against the one of Higgs with
12/15. Considering the previous analysis, we can see that the FMSProxy-PSMS
algorithm is almost as good as PSMS in a wide range of dataset sizes and with
different intrinsic dimensions. The exploration performed by the FMSProxy-
PSMS algorithm is more conservative than the one performed by MLP-PSMS
and therefore, the guide provided by the proxy models created under the FMS
paradigm promote a better exploration of the search space that leads to better
final models than using a single regression algorithm as proxy model. The mean
error obtained by FMSProxy-PSMS in the dataset Epsilon shows its capacity



Full Model Selection in Huge Datasets and for Proxy Models Construction 181

to perform a better exploration than the complete search of PSMS with just a
third part of the explored models (500 against 1500). Though the creation of a
new proxy model based on the FMS paradigm every so often could be think as
a major drawback of our approach, the time employed in the process is nothing
in comparison to the transformation and training on a big dataset. The time
dedicated to the training and transformation of the dataset of just one model
commonly take several hours even under MapReduce and considering that a
good search explores several potential models, the time of the entire process
takes a lot more. A final consideration of our proposed approach shows that
although the traditional approach of proxy model makes a quicker search, the
FMS approach reduces the time employed and also perform a better exploration.

5 Conclusions

The full model selection paradigm provides a way to improve the predictive
accuracy of learning algorithms and to determine the best one for a determined
dataset, which is of big help because there is no a thumb rule to chose an algo-
rithm for a dataset. This paradigm is poorly explored in the context of huge
datasets due to the higher computing times intrinsically related to the size of
the dataset. As a way to perform a reduction of the time employed in the search,
the use of proxy models in conjunction with the FMS paradigm was proposed
in this work. The use of the FMS paradigm in the construction of proxy models
showed an improvement over traditional proxy models based on a single regres-
sion algorithm, performing a better exploration of the search space and reducing
the number of the explored models to a third part in comparison to the complete
search. Though the construction of FMS-based proxy models every so often could
be think as a major drawback of our approach, it is not hard to see that the time
employed is insignificant in comparison to the time employed in the training in
a big dataset of several non promising models that will not be used in the final
model construction. Our approach provides a tool comparable to a compass to
provide a better guide of the search and reducing the time of the process.

References

1. Alenezi, F., Mohaghegh, S.: A data-driven smart proxy model for a comprehensive
reservoir simulation. In: Saudi International Conference on Information Technology
(Big Data Analysis) (KACSTIT), pp. 1–6. IEEE (2016)

2. Bansal, B., Sahoo, A.: Full model selection using bat algorithm. In: 2015 Interna-
tional Conference on Cognitive Computing and Information Processing (CCIP),
pp. 1–4. IEEE (2015)

3. Ceruti, C., Bassis, S., Rozza, A., Lombardi, G., Casiraghi, E., Campadelli,
P.: DANCo: dimensionality from angle and norm concentration. arXiv preprint
arXiv:1206.3881 (2012)

4. Couckuyt, I., De Turck, F., Dhaene, T., Gorissen, D.: Automatic surrogate mod-
eltype selection during the optimization of expensive black-box problems. In: Pro-
ceedings of the 2011 Winter Simulation Conference (WSC), pp. 4269–4279. IEEE
(2011)

http://arxiv.org/abs/1206.3881


182 A. Dı́az-Pacheco and C. A. Reyes-Garćıa

5. Cruz-Vega, I., Garćıa, C.A.R., Gil, P.G., Cortés, J.M.R., Magdaleno, J.d.J.R.:
Genetic algorithms based on a granular surrogate model and fuzzy aptitude func-
tions. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2122–
2128. IEEE (2016)

6. Escalante, H.J., Montes, M., Sucar, L.E.: Particle swarm model selection. J. Mach.
Learn. Res. 10(Feb), 405–440 (2009)

7. Goodrich, M.T., Sitchinava, N., Zhang, Q.: Sorting, searching, and simulation in
the mapreduce framework. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O.
(eds.) ISAAC 2011. LNCS, vol. 7074, pp. 374–383. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25591-5 39

8. Guller, M.: Big Data Analytics with Spark: A Practitioner’s Guide to Using Spark
for Large Scale Data Analysis. Apress, New York City (2015). https://www.apress.
com/9781484209653

9. Guo, X., Yang, J., Wu, C., Wang, C., Liang, Y.: A novel LS-SVMs hyper-parameter
selection based on particle swarm optimization. Neurocomputing 71(16), 3211–
3215 (2008)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

11. Kaneko, H., Funatsu, K.: Fast optimization of hyperparameters for support vector
regression models with highly predictive ability. Chemom. Intell. Lab. Syst. 142,
64–69 (2015). https://doi.org/10.1016/j.chemolab.2015.01.001, http://linkinghub.
elsevier.com/retrieve/pii/S0169743915000039

12. Lessmann, S., Stahlbock, R., Crone, S.F.: Genetic algorithms for support vector
machine model selection. In: 2006 International Joint Conference on Neural Net-
works. IJCNN 2006, pp. 3063–3069. IEEE (2006)

13. Lombardi, G., Rozza, A., Ceruti, C., Casiraghi, E., Campadelli, P.: Minimum
neighbor distance estimators of intrinsic dimension. In: Gunopulos, D., Hofmann,
T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol.
6912, pp. 374–389. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23783-6 24

14. Pilat, M., Neruda, R.: Meta-learning and model selection in multi-objective evolu-
tionary algorithms. In: 2012 11th International Conference on Machine Learning
and Applications (ICMLA), vol. 1, pp. 433–438. IEEE (2012)

15. Rosales-Pérez, A., Gonzalez, J.A., Coello Coello, C.A., Escalante, H.J., Reyes-
Garcia, C.A.: Surrogate-assisted multi-objective model selection for support vector
machines. J. Neurocomputing 150, 163–172 (2015)

16. Sánchez-Monedero, J., Gutiérrez, P.A., Pérez-Ortiz, M., Hervás-Mart́ınez, C.: An
n-spheres based synthetic data generator for supervised classification. In: Rojas,
I., Joya, G., Gabestany, J. (eds.) IWANN 2013. LNCS, vol. 7902, pp. 613–621.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38679-4 62

17. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combineds-
election and hyperparameter optimization of classification algorithms. In: Proceed-
ings of the 19th ACM SIGKDD International Conference on Knowledgediscovery
and Data Mining, pp. 847–855. ACM (2013)

18. Tlili, M., Hamdani, T.M.: Big data clustering validity. In: 2014 6th International
Conference of Soft Computing and Pattern Recognition (SoCPaR), pp. 348–352.
IEEE (2014)

19. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016)

https://doi.org/10.1007/978-3-642-25591-5_39
https://www.apress.com/9781484209653
https://www.apress.com/9781484209653
https://doi.org/10.1016/j.chemolab.2015.01.001
http://linkinghub.elsevier.com/retrieve/pii/S0169743915000039
http://linkinghub.elsevier.com/retrieve/pii/S0169743915000039
https://doi.org/10.1007/978-3-642-23783-6_24
https://doi.org/10.1007/978-3-642-23783-6_24
https://doi.org/10.1007/978-3-642-38679-4_62

	Full Model Selection in Huge Datasets and for Proxy Models Construction
	1 Introduction
	2 Big Data and the MapReduce Programming Model
	3 PSMS for FMS and Proxy Model Construction
	3.1 Codification and Functioning
	3.2 Models Evaluation
	3.3 Proxy Model Construction Through the FMS Paradigm

	4 Experiments and Results
	5 Conclusions
	References




