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Preface

Elliptic functions, elliptic integrals and modular forms play a central role in the
theory of analytic calculations of Feynman parameter integrals at higher loop order.
They occur at the next level of complexity after the iterative integrals over certain
alphabets or the nested sums, which host a wide range of simpler structures and
have been studied in detail and applied in many physics calculations during the last
two decades.

The integration-by-part technique, which is widely applied in the solution of
complex calculations, provides a natural way to obtain the associated set of systems
of linear single-variate ordinary differential equations with rational coefficients in
the differential variable x and the dimensional parameter ¢ = D — 4. These can be
systematically decoupled, leading to one ordinary differential equation of high
order. Whenever this equation factorizes into first-order factors, all solutions are
given by iterative integrals. In massive three-loop problems, one observes that this
decoupling cannot be achieved and one is also left with irreducible second-order
systems, normally with more than three singularities. One seeks now ,F-solutions
of these second-order equations, allowing for the main argument being a rational
function in the variable x.

In a large series of cases, these solutions can be expressed by complete elliptic
integrals in case of inclusive quantities. In more differential cases, also incomplete
elliptic integrals may occur. In the former case, the connection to modular forms is
obvious and one seeks solutions in terms of ratios of Dedekind’s #-functions. These
modular forms are either meromorphic or, in more special cases, holomorphic and
are connected to the elliptic polylogarithms and can be expanded into associated g-
series.

Due to this, the mathematics of modular forms is of central importance for the
analytic solution of Feynman diagrams, which motivated the workshop Elliptic
Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, held at
Zeuthen, Germany, October 23-26, 2017. It has been organized and funded in part
as one of the annual workshops of Kolleg Mathematik Physik Berlin. This work-
shop was meant to cover a larger part of related topics in this field bringing together
mathematicians and theoretical physicists presenting survey talks on a variety of
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topics. They are published in this volume together with additional invited contri-
butions. In most of the contributions, aspects of symbolic computation play an
essential role.

A classical approach to elliptic solutions in Feynman diagram calculations relies
on dispersion relations. Their cuts give the excess to the inner phase space structure
of the corresponding graphs, remaining partly invisible by just studying the asso-
ciated differential equations. This method has been reviewed by E. Remiddi. It also
provides a very lucid way in studying even more involved topologies in the future,
providing the corresponding integrand structures up to one or more additional
Hilbert transforms.

In the contributions by L. Adams, S. Weinzierl, C. Duhr et al. and by J. Bliimlein,
a direct link between Feynman integrals evaluating to elliptic integrals and their
representation in terms of modular forms has been given. They appear as iterated
integrals of modular forms. Conversely, one may start with the modular forms and
find the associated differential equations. In general, the solutions are given by
iterated integrals over non-iterative integrals, the simplest of which is ,F-functions.
This applies even to non-decoupling situations of order 3 and larger, with other
non-iterative integrals appearing as iterated letters. In the elliptic case, the holomorphic
modular forms have representations in terms of Lambert—FEisenstein series, while the
meromorphic ones are weighted in addition by powers of Dedekind’s #-function.
M. van Hoeij discussed general analytic solutions of second- and third-order differ-
ential equations with more singularities. Numerical implementations are considered
by C. Bogner et al. on fast converging g-series. Precise numerical implementations of
elliptic functions, the Jacobi ¥-functions, modular forms, elliptic integrals and the
arithmetic—geometric mean have been discussed by F. Johansson.

Elliptic integrals appear in various massive higher-order calculations in quantum
chromodynamics, as pointed out in the contributions by S. Weinzierl, J. Bliimlein,
E. Remiddi and R. Bonciani et al. Currently, very important calculations are those
of the production cross section of top and anti-top quark pairs (R. Bonciani et al.)
and also Higgs boson production at the Large Hadron Collider (LHC) at CERN.
D. Kreimer studied the conceptual relation between scattering theory for Feynman
amplitudes and the structure of suitable outer spaces, motivated by the work of
Vogtmann and Culler. P. Vanhove discussed the relation of Feynman integrals,
toric geometry and mirror symmetry, determining the minimal differential operator
acting on the Feynman integrals considering the maximal cut. In this calculation,
also Calabi—Yau structures are found.

Applications of iterated integrals on an elliptic curve in string perturbation
theory have been reviewed by J. Brodel and O. Schlotterer pointing out the relation
to elliptic multiple zeta values. Related work has been presented by F. Zerbini on
modular and holomorphic graph functions from superstring amplitudes.

H. Cohen discussed the computation of Fourier expansions at all cusps of any
modular form of integral or half-integral weight. Its implementation is available in the
current release of the Pari/GP package. Far-reaching results on Bessel moments are
presented in the contributions by K. Acres, D. Broadhurst and Y. Zhou, along with
Rademacher sums and L-functions. The contribution by M. L. Dawsey and K. Ono
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deals with g-analogs of Euler’s zeta function evaluations. In particular, they put
interesting recent developments by Z.-W. Sun and A. Goswami into a general
framework; to this end, they use state-of-art theory in modular forms and complex
multiplication. R. Hemmecke, C.-S. Radu and L. Ye prove that the ideal of all
polynomial relations among the classical Jacobi ¥-functions are generated by only
two polynomials. This result is accomplished by new ideal-theoretic insight
of elliptic 9J-quotients and sophisticated Grobner basis considerations. J. Frye
and F. Garvan present the two new Maple packages: thetaids and
ramarobinsids. They allow to prove generalized n-product identities using the
valence formula for modular functions, which is also applicable to ¥;-functions and
for finding and proving identities for generalizations of Ramanujan’s G(gq) and
H(g) and extensions by S. Robins. A. Straub and R. Osburn study interpolated
sequences and critical L-values of modular forms.

P. Paule and C. Schneider established new algebraic connections between
summation problems involving generic sequences and difference field/ring theory
taking special care of concrete sequences arising in contexts like analysis, combi-
natorics, number theory and special functions. The elaborated symbolic summation
theory for unspecified sequences can be considered as the first steps toward an
algorithmic framework for the treatment of summation identities involving elliptic
functions or modular forms.

Given the size of the topical area under discussion, the different contributions
can of course only provide a start of further investigation and treatment and they are
not meant to be complete. The field will develop on the physics side first by
applying the different techniques to solve the elliptic cases. By exploring more and
more involved structures beyond this level, one will be naturally lead to much
deeper mathematical structures and even more advanced solution methods. As
experienced in the past, one can be sure that the analytic calculation of complex
Feynman diagrams will trigger quite a series of new developments in mathematics,
and conversely, physics will profit significantly from results already being available
in various branches of mathematics, in particular also, symbolic computation.

The transparencies of the talks presented are available at the page https://indico.
desy.de/indico/event/18291/timetable/#all. Financial support of this conference by
Kolleg Mathematik Physik Berlin is gratefully acknowledged.

Zeuthen, Germany Johannes Bliimlein
Linz, Austria Peter Paule
Linz, Austria Carsten Schneider

September 2018
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Eta Quotients and Rademacher Sums )

Check for
updates

Kevin Acres and David Broadhurst

Abstract Eta quotients on I(6) yield evaluations of sunrise integrals at 2, 3, 4
and 6 loops. At 2 and 3 loops, they provide modular parametrizations of inhomo-
geneous differential equations whose solutions are readily obtained by expanding
in the nome g. Atkin—Lehner transformations that permute cusps ensure fast con-
vergence for all external momenta. At 4 and 6 loops, on-shell integrals are periods
of modular forms of weights 4 and 6 given by Eichler integrals of eta quotients.
Weakly holomorphic eta quotients determine quasi-periods. A Rademacher sum
formula is given for Fourier coefficients of an eta quotient that is a Hauptmodul
for IH(6) and its generalization is found for all levels with genus 0, namely for
N=1,2,3,4,56,7,8,9,10, 12, 13, 16, 18, 25. There are elliptic obstructions at
N =11,14,15,17, 19, 20, 21, 24, 27, 32, 36, 49, with genus 1. We surmount these,
finding explicit formulas for Fourier coefficients of eta quotients in thousands of
cases. We show how to handle the levels N = 22, 23, 26, 28, 29, 31, 37, 50, with
genus 2, and the levels N = 30, 33, 34, 35, 39, 40, 41, 43, 45, 48, 64, with genus 3.
We also solve examples with genera 4, 5, 6, 7, 8, 13.

1 Introduction

Elliptic obstructions to the evaluation of massive Feynman diagrams were recognized
and surmounted more than 50 years ago by Sabry [30]. They occur in two-loop two-
point integrals when three massive particles appear in an intermediate state [11]. The
simplest example is the two-loop sunrise diagram with unit masses in two space-time
dimensions, whose study was revolutionized in 2013, when Bloch and Vanhove [4]
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showed how to parametrize and solve its second order differential equation using eta
quotients on I (6).

Their solution was particularly bold, since they expand in a nome ¢ that is small
near the physical threshold where the external energy w is close to 3. Thus they
achieve fast convergence near the branchpoint that frustrates other methods. The
price to pay is that convergence is slow near any of the other three cusps of I5(6),
whichoccuratw = 0, 1, 0o. We shall show how to use Atkin—-Lehner transformations
of eta quotients to expand about those cusps, achieving optimal efficiency.

Bloch, Kerr and Vanhove [5] conquered the corresponding three-loop problem,
also using eta quotients on I (6), thanks to the remarkable circumstance, noted more
than 40 years ago by Joyce [20], that a transformation of variables relates solutions of
the relevant homogeneous third-order differential equation to products of solutions of
the second-order equation at two loops. Joyce’s observation was made in the context
of the physics of condensed matter. The relevance of his work on the diamond lattice to
Feynman integrals was decoded in [2]. We shall use an Atkin—Lehner transformation
to achieve optimal efficiency at three loops.

The role of IH(6) does not end at three loops. It is of the essence for the on-
shell problems at 4 and 6 loops, where the relevant Bessel moments turn out to be
Eichler integrals of eta quotients that are cusp forms of level 6 with modular weights
4 and 6, respectively. We shall review key results, which were until recently only
conjectures [7—10], tested to many thousands of digits. For an account of how they
were proved [34-37], see the lucid review by Zhou [38].

It is notable that this connection between number theory and Feynman integrals
persists in the real world of four-dimensional space-time. The four-loop radiative cor-
rections to the magnetic moment of the electron in quantum electrodynamics, evalu-
ated with breath-taking skill by Laporta [23], contain a pair of Bessel moments [37]
that are Eichler integrals. We conclude Sect.2 with results that indicate that one
of these is a quasi-period, in the sense of Brown [13]. Moreover we conjecturally
identify quasi-periods at 6 loops.

Section 3 concerns a searching question raised by Johannes Bliimlein at a recent
conference held at the Hausdorff Centre for Mathematics, in Bonn. Is there a closed
formula for the Fourier coefficients of the Hauptmodul of I(6), of the type that
Petersson [26] and Rademacher [22, 27, 28] found for Klein’s j-invariant? We con-
jecturally answer in the affirmative, by giving a formula that serves this purpose for
all levels with genus 0. Moreover we are able to extend its use to higher genera.

2 Eta Quotients in Quantum Field Theory

Broadhurst, Fleischer and Tarasov [12] gave the differential equation for the two-
loop unit-mass sunrise integral in an arbitrary number D of space-time dimensions.
At D = 2, this integral is a Bessel moment [2]

IwH) =4 / Oolo(wx)KS(x)xdx, (1)
0
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where w is the external energy, which enters the Bessel function Iy(wx) via Fourier
transformation. The Bessel function Ky(x) is cubed, since three particles of unit
mass connect the two vertices. Bloch and Vanhove [4] found a very neat modular
parametrization of the differential equation at D = 2, which we here write as

I(Wz) 3772773 771776
< d ) 6 gﬂ w = 4 2 f - 3 27 (2)
q f mn(, UEYE
5 9 2
— 772772776 — 77_2 + n_g _ Z n (6]" — CI )’ Ny = qn/24 l_[(l _ an)’ (3)
3 3 1— 6n
m mom 4q k>0

with eta quotients determining the energy w, the integrating factor f, which is an
elliptic integral determining the discontinuity across the cut for w > 3, and the inho-
mogeneous term g. Two easy integrations of the Lambert series for g then yield

I(w?) ﬂ10g( 1/q) ZXé(")l+q @

f n>0
with y¢(n) = &1 forn = £1 mod 6 and x¢(n) = 0, otherwise. This solution is deter-
mined by the discontinuity across the cut and the finiteness of I(1) = 2 /4 [2]. In
summary: after dividing 7(w?) by the modular form f, with weight 1 and level 6, we
obtain solution (4) by two integrations of the weight 3 modular form g with respect
to z, where ¢ = exp(2miz). Such integrals of modular forms are referred to as Eichler
integrals.

We remark that modular parametrizations of differential equations were used
in [3], to elucidate proofs of rationality of zeta values, and in [21], for problems in
statistical physics.

2.1 Atkin-Lehner Transformations of Eta Quotients

Now set g = exp(2miz) with Jz > 0 and consider the transformations [15]

2z —1 3z—-2 —1 5)

[ = , > = y —> = —,

Z 22 67 — 2 Z 23 67 — 3 < 26 62
which permute the cusps at z = 0, 1 7 3, oo. Then, with g, = exp(2miz),
d \? I1(w?
N ) 7 =&, (6)
( "qu) i)
n5n s mne

@) = 3—3’ f(@) = 2—2, Jo(2) = > 3 (7

MNe NN N3
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5 4 4 5 4.5

ninsn ninn mnn

A2 g = 20, gelr) = 122 (8)
2 13 Ne

8() =

From the alternative differential equations (6), we obtain alternative expansions:

IWH) = 3xm) (1 —gh)? S 6x3(n)

=) =5 =10 - ) =5 ©)
h@) o o 1+q; = o l+4q
W) = 2x0m) (1—¢3)° 1 6x2(n) "

= Z 22 qgn =1(1) - Z 22 33 5 10)
J3(z3) - " 1 —q3 = n l+g+q
I(w?) > — 6 qt

= -3log’(—qe) + ) S ——"—-. (11)
J6(26) &1 ; n1—qp+qg

with x2(n) =0, 1,forn =0, 1 mod 2, and x3(n) = —1,0, 1,forn = —1, 0, 1 mod 3.
Then for any real value of w? there is an optimal choice of nome in which to
expand, which may be determined as follows. Let

=—, wi= 2. (12)

For w? € [—3, 9 — 64/2] set k = 2, else for w? € [9 — 6+/2, 3] set k = 3, else for
wre[3, 9+ 6ﬁ] set k = 1, else set k = 6. Then compute wy, € [«/5, 3+ \/6]
and obtain the optimal nome g; = Q(wy) from

—m agm(1, ﬁ)) . 16x
agm(l, V/T—r) —  G+3)x—1D3

by the lightning-fast process of the arithmetic-geometric mean. This results in a
small real nome g € [— exp(—m/+/3), exp(—m+/2/3)] and hence |g¢| < 0.16304.
Ifk =2,use (9);if k = 3, use (10);if k = 6,use (11);if k = 1 use ¢ = ¢q; in (4) and
extract a Clausen value from

Q(x) = exp ( 13)

n)1+4q" n) 24" 5Cly (/3 51(0
Zxdz) q:C2+Zx6(2) = 2(/3) _ ()' (14)
n>0 n 1- qn n>0 n 1- q” v 27 12
The authors of [6] expand in gy = —¢», thereby encountering n4 and 7n;, in

1 77377377 1 ’7”777
Ju (@) =12 (Z+—> =#, M) =g \z+5 =—%- 15)
2 137112 2 UFURUUAD)

Since they expand about the cusp at w = 0, they inevitably face issues of slow
convergence near the cusps at w = 1, 3, co. Moreover they had to address delicate
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questions of analytic continuation at the on-shell point w = 1. Our procedure of
invariably expanding about the nearest cusp avoids all such problems.

Such use of Atkin—Lehner transformations to achieve efficient expansions in small
nomes is well known to mathematicians who compute with modular forms [16].
We recommend exploitation of the transformations (5) to physicists who encounter
problems that involve the congruence subgroup I (6). For example, the authors of [1]
encountered, at 3 loops, a second-order equation with complicated coefficients and
powers of log(x) in the inhomogeneous term. Their homogeneous equation has a
hypergeometric solution

2 1\2 *x® 20.2 o2\
H) = (=1 (4/3)n(5/3)n (x -9 )

_9(x2+3)§ nl(n+ 1)! (x2 4 3)3

(16)
where (a), = I'(a + n)/I" (a) is the Pochhammer symbol. We obtained

ming\ 1 (n*nd® | n$ng (ming 1\ d\ ndns
H 2 ) =5\ m ot o\ st 3 )47 ) 52 (17
UPUR 2\ nyn3 N"N3 \ 103 3 dg /) ning

as a modular parametrization of the homogeneous solution, where the derivative
with respect to g results from a complete integral of the second kind. It would be
interesting to investigate whether an Atkin—Lehner transformation may be used to
avoid a singularity that was encountered at x = % at intermediate stages of the work
in [1].

For our next advertisement of the virtue of Atkin-Lehner transformation, we
turn to the three-loop equal-mass sunrise integral. Bailey, Borwein, Broadhurst and
Glasser [2] developed the expansion in ¢ of

J@) =38 /Oolo(ﬁx)Kg(x)xdx =7¢3) + 0@). (18)
0

A neat and novel g-expansion comes from exploiting a transformation [2, 20] from
w2, at two loops, tot = 10 — w2l—9 / w2, at three loops. Then we obtain the modular
parametrization

9 6
t=10—w2——2=—64<%) , (19)
w nin3
d 3 J(t 16 16 3 n__ g 3n Sn
B L DA e e A0
dg (wf /3) m 13 =0 I —g
J(@) o) ¢"
S —J(0)+24 , 21
arap =l OFRY S 1)

n>0
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with ¢(n) =0,1,0,-8,0,1, forn =0, 1,2,3,4,5 mod 6. The Pari-GP proce-
dure

z(t)={local (x=2/(sqgrt (4-t)+sqrt(l6-t)),
a=sqgrt((1l-x)"3*(1+3*x)));
I/2*agm(a,4*x*sgrt(x))/agm(a,sqgrt ((1+x) "3*(1-3*x)));}

returns the correct value of z for the nome g = exp(2riz), forall real . Expansion (21)
is highly efficient for ¢ € [—8, 8], where |q| < exp(—~/27/3) < 0.22742. For the

rest of the real r-axis, we exploit the involution z — z¢ = —1/(6z), which gives
t —> tg = 64/t, with fixed points at t = +8. For 7¢ € [—8, 8] we use
( d )3 () 24he(z6) (22)
- T ., — — 26),
“45) Ofse))? ot
3¢,,2n 4n 8 6n
hé(z)z—tsh:l+2h—302n(q +q6 ) (23)
n>0 - q "

J(@) 3 15¢(n+3) —¢(n) 1 + ¢!
— T — _4log(qe) + 24 >, (24)

(Wfe(26))? g ; n? 1—g"

in agreement with the result proved by Bloch, Kerr and Vanhove [5]. Extracting

s = Z 15¢(n+3) —¢m _ 2003)

3 3 (25)

n>0

we achieve a highly efficient expansion in g¢ = exp(—mi/(3z)) for 64/t € [-8, 8],
with a strong check of consistency with (21) in the neighbourhoods of t = £8, where
both expansions work well.

2.2 Eichler Integrals of Eta Quotients for On-Shell
Sunrise Integrals
On-shell sunrise integrals lead us to consider Bessel moments of the form
o0
Ma,b,c) = f I8 () K (x)xdx. (26)
0

For L > 3, the off-shell L-loop integral

S(l)_/oodﬂ /m% ! 27
S R S A N E DR
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has not yielded to the methods given above for L = 2, 3. By contrast, the on-shell
values S; (1) = 2EM (1, L + 1, 1) with L + 2 Bessel functions yield Eichler integrals
of cusp forms of weights 4 and 6 on I(6) at L = 4 and L = 6 loops, namely integrals
of the form fooo f(iy)y*~'dy, where f (z) is a cusp form with weight L and s is a integer
with L > s > 0. First we consider the situation at L = 3 loops, where a modular form
of weight 3 occurs.

At 3 loops, with 5 Bessel functions, the on-shell problem is solved by the weight
3 level 15 cusp form

_fas(=1/(52))

f15@) = (nan9)” + (i)’ = 3 _As(0q" = == =555

n>0

(28)

with complex multiplication in Q(+/—15). If the Kronecker symbol (%) = (%) (%)
is negative, for prime p, then A5(p) = 0. For is > 2, there is a convergent L-series

As(n) 1
B 2(; o l:[ L= As(p— + (5) P~ >
whose analytic continuation is provided by the Eichler integral
L) = T [ st ey (30)
with critical values
L5(1)=%M(1,4,1), L5(2)=§M(2,3,1). 3D

At 4 loops, with 6 Bessel functions, the on-shell problem is solved by the weight
4 level 6 cusp form

fae(=1/(62))

fr6() = (mmamsne)® =Y As(m)g" = i (32)
n>0
For 9is > 5/2, there is a convergent L-series
Ag(n) 1 1 1
L = = 33
6(s) ; ns 1 + 21—s 1 + 31—s [E 1 _Aé(p)p—s _I_p3—2s ( )

whose analytic continuation is provided by the Eichler integral

(2T[)S 00 ] o
) /0 Jas(Gy)y™dy (34)

Lg(s) =
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with critical values
2 2
Le(2) = M (1,5, 1) = M (3,3, 1), (35)
T 3
2 3
Le(1) = ﬁM(Z, 4,1) = ;%(3). (36)

At 6 loops, with 8 Bessel functions, the on-shell problem is solved by the weight
6 level 6 cusp form

e mni 6326

9.9
foo@ = 22”3 + e S pyg = Lo THED )

n>0

For 9is > 7/2, there is a convergent L-series

Ag(n) 1 1 1
L = = 38
S(S) Z ns 1— 2273 14 3275 pl:! 1 _Ag(p)pfs _’_p572s ( )

n>0

whose analytic continuation is provided by the Eichler integral

Lg(s) = m)) /0 fo.s(y)y*'dy (39)
with critical values
4 4 72
Lg(4) = M(l 7,1) = —M(3 5,1) = FLg(z) (40)
4 2772 2772 4
Lg(5) = —M(2 6,1) = 2—M(4 4,1) = 7L8(3) —Lg(l). 41

2.3 Eichler Integrals for Quasi-periods at Level 6

In [13] Francis Brown associated a pair of periods and a pair of quasi-periods to
the weight 12 level 1 modular form A(z) = n%“. The periods are a pair of Eichler
integrals that determine critical values of the L-series at odd and even integers.
No concrete integrals were given for the quasi-periods. Rather it was asserted that
numerical values may be obtained by an undeclared regularization of integrals of a
weakly holomorphic modular form A'(z) = 1/¢q + 0(q2).

In the case of the level 6 modular forms that yield 4-loop and 6-loop Feynman inte-
grals the situation is cleaner, since the periods are Eichler integrals of eta quotients,
Jfa.6 and fs 6, with 4 cusps. Thus we may hope to find weakly holomorphic modular
forms, g4.6 and gg ¢, that yield quasi-periods as well defined Eichler integrals with a
base-point at a cusp free of singularities. A test is provided by the condition that a
2 x 2 determinant formed from a pair of periods and a pair of quasi-periods should
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be an algebraic multiple of a power of 7, as is trivially ensured for modular forms of
weight 2 by Legendre’s relation between pairs of complete elliptic integrals of first
and second kind.

At 4 loops, we achieved this with Eichler integrals

D, M(1,51) 4M(1,5,3) SE,

22 )
2 a4 T4 18 “2)
3Dy, MQ2,4,1) 4MQ2,4,3) E
— = = — 43
5 73 73 + 3 “43)
1+iy
, © | fas |5
[gs] B _/ ' ( l<2|-i ) ¥ dy, (44)
s 173 | 846 (Ty)
w? =3’ (w* +9) 2 3 4
846(z) = Bl f1.6(2) = 59 + 102g" + 945q” + O(q"), (45)
1
D\E, — DyE; = . 46
1By — DoEy = 7 (46)
At 6 loops, it is conjecturally achieved by
d M@1,7,1) 32M (1,7,3) —64M (1,7,5) | _ ﬁ 7
M(2,6,1)32M(2,6,3) — 64M (2,6,5) | — 192
F M@A,7,1) o 32M(1,7,3) —64M (1,7,5 35G
o ( ) 2 ( ) ( ) n 2. 48)
4 76 76 108
9F M2,6,1) » 32M (2,6,3) —64M (2,6, 5 5G
2 _ ( ) 2 ( ) ( ) 4200 (49)
28 7 3 12
9] f6,6 Lty
[ (F; ] = - / ( liv) (3y? — Dy dy, (50)
s 1/v3 86,6< 2’)
(W2 - 3)4 2 3 4 5
86.6(2) = Wf&G(Z) =q+ 369"+ 567q" + 5264q" + O(q’), (51
2 1
FiG, - F,G, = —, 52
162 — 26 1S (52)

where the question marks indicate unproven discoveries, checked to thousands of
digits of numerical precision.

3 Rademacher Sums for Fourier Coefficients
of Eta Quotients

For positive integers N, M and n, we define the Rademacher sums

3 21, (47w /nM N /c)
¢>0, ged(c,N)=1 v nN/MC

Ry m(n) =

K(c,N,M ,n) (53)
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Table 1 Eta quotients T /By of genus 0 with Fourier coefficients Ry 1(n) /Ry, 1(1)

N Ry 1(1) Ty By OEIS
2 4096 ' it A014103
3 729 n’ 02 A121590
4 256 ng n A092877
> 125 nS n$ A121591
6 72 1 ms A128638
! 49 n3 0t A121593
8 32 n3g nin A107035
o 2 m n A121589
10 20 My ms A095846
12 12 M3, T, A187100
13 13 ni n A121597
16 M1t g A123655
18 3T MineN, A128129
% s /N A092885

as sums of Bessel functions multiplied by Kloosterman sums

Ke,NMm= Y exp (M> (54)

c

rell,cl, ged(r,0)=1 Nrs = 1 mod ¢

In (53) the sum is over all positive integers ¢ coprime to N. In (54) the sum is over the
integers r € [1, ¢] coprime to c and s € [1, c] is the inverse of Ny modulo c. It follows
from these definitions that Ry s (n) /M = Ry ,(M)/nandthat Ry » (n) = Ry am (1)
for every positive integer d that divides N.

3.1 Genus0

We found that Ry 1(n)/Ry 1(1) is the coefficient of ¢” in an eta quotient Ty /By
defining an OEIS sequence in the genus O cases of Table 1, where the eta quotients
agree with the canonical Hauptmoduln in [24, Table §].

For n > 0, Rademacher [27] obtained R ;(n) as the coefficient of ¢" of

3

1 3gn 1

Jj@) = 7 (1 + 240 E 1n el ) = — + 744 + 196884q + 0(‘12) (55)
n —q" q

n>0

which is invariant under z+> (az 4+ b)/(cz+d) with integers satisfying
ad — bc = 1.
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We remark that analytic continuation of (53) to n = 0 gives Ry ;(0) = 24, which
differs from the constant term 744 in (55). Our work concerns only the values of
Ry m (n) for integers n > 0.

The congruence subgroup I5H(N) is the group of Mobius transformations with
N |c. The Hauptmodul

5
% — g+ 5¢° +19¢° + 61" + 174¢° +455¢° + 111247 +---  (56)
173
of I'y(6) has a Fourier coefficient R (1) /72 = A128638(n), which we are now able
to evaluate at large n. We found that this Fourier coefficient is odd if and only if the
core (i.e. the square-free part) of n is a divisor of 6. We determined the probably prime
values of A128638(n) for n € [1, 900000000] and found these occur at surprisingly
few values of n, namely these: 2, 3, 4, 9, 32, 48, 324, 578, 864, 121032, 940896,
11723776, 88360000, 180848704, 198443569.
We remark that A128638(900000000), with 66832 decimal digits, would be rather
hard to compute in the absence of a Rademacher-sum formula.

3.2 Further Examples of Integer Sequences

We found several integer sequences of the form Ry y (n)/D, with ged(N, M) =1,
N > M > 1 and integer D, as for example in Table 2.
We identified some of the generating functions, as follows

. 37n12 357712
> Riong' = —3 (8 +— ) (57)
n>0 m m
53 6 53 6
3 Rsag' = 2 (12 + %) (58)
n>0 771 771
72774 72)74
ZR7,2(H)Q" =— (8 + —47> (59)
n>0 m U
. 34,,]3 32n3
> Rop(n)g' = —> (2 - —39) (60)
n>0 M T
1352 1352
3 Risa(nyg = —2 (4 + Z”) (61)
n>0 m m
7718
Y Riga(m)q" =8 (ﬁ - 1) : (62)
n>0 L
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Table 2 Examples of integer sequences Ry y (n)/D

N M D Sequence

3 2 37 8, 339, 6552, 82796, 790896, 6171606, 41232064, 243306300,...

4 3 210 33, 1800, 42412, 633024, 7003278, 62405984, 471069624,
3114275328,...

5 2 53 12, 197, 1824, 12426, 68780, 327819, 1391472, 5383270,
19289244,...

6 5 432 145, 10085, 286435, 5004925, 63619086, 642751655,
5445694040,...

7 2 72 8, 81, 504, 2476, 10248, 37590, 125328, 387384, 1123992,
3092369,...

3 27 9, 132, 1132, 7200, 37566, 169648, 685368, 2532096, 8688909,...
2 34 2,15, 72,287,984, 3051, 8704, 23286, 58968, 142677, 331728,...

10 3 80 6, 63, 418, 2139, 9216, 35004, 120594, 384147, 1146842,
3241083,...

11 8 112 234, 11950, 266994, 3812019, 40551362, 348772038,
2548265460,...

12 5 72 25, 435, 4255, 30255, 174126, 859305, 3766760, 15014775,
55334545,...

13 2 13 4,21, 72,222, 600, 1509, 3536, 7902, 16860, 34740, 69264, 134412,

14 5 56 17,229, 1852, 11213, 55998, 243084, 946991, 3382221,
11242933,...

15 7 45 67, 1398, 15919, 128386, 826187, 4509396, 21688133, 94244610,...

16 3 2’ 3,18, 76, 264, 810, 2264, 5880, 14400, 33583, 75132, 162180,
339296,...

17 3 17 5, 26, 107, 352, 1045, 2814, 7091, 16842, 38225, 83260, 175329,...

18 5 36 10, 95, 580, 2770, 11226, 40340, 132080, 401255, 1145740,
3104412,...

19 2 19 1,4, 10, 25, 55, 116, 229, 440, 809, 1455, 2541, 4354, 7300, 12050,...

Moreover,

nSn3
Y Riga(m)g" =4 (% - 1) (63)
n>0 Me
774
> Ryamg' =3 (3—3 - 1) (64)
n>0 ’71 ’79
2 4
3 Rusng' =4 (% = 1) (65)
n>0 ,71778
5.5
n Pk
> Ries(nq" = 6(% -~ 1) (66)
n>0 e
8. 4
n nn
ZR48,7(”)‘] = 6( 82232 - 1) (67)
n>0 NM4Me
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2
M

> Reas(mq" 2(% - )

n>0 Nimg

,
ZR64,7(”)61n =4 (Z—z - 1) .

n>0 Mg

13

(68)

(69)

When N > 1 has genus 0, Ry y (n) is an integer sequence generated by a poly-
nomial of degree M in the eta quotient that generates Ry ;(n). Thus, for exam-
ple, we may compute the coefficient of ¢" in (125/11)" from a linear combination
of Rademacher-type formulas for Rys p (n) with M € [1, P], using polynomials in

g =2 ,-0Res1(m)q" = 5n25/n; as follows:

D Rasa(ng =28+ ¢

n>0
Y Ras3(mq" = 6g+3g% + ¢
n>0
> Rasa()q" = 12g + 10g* + 4g° + ¢*
n>0

53n6
Y Rass(n)g' =258 +25g° +15¢° +5g* + ¢g° = —2
n>0 m
Y Rase(mq" = 42g +60g” + 44¢> + 21g* + 6g° + g°
n>0
Y Rasa(mq" = T7g + 126g% + 119g° + 70g* + 28g° + 7¢° + ¢
n>0

> Rasg(n)g" = 120g + 260> +288¢> + 210g* + 104¢° + 36¢° + 8¢” + ¢*.

n>0

3.3 Genus 1

The genus go(N) of IH(N) is computed in Pari-GP by a procedure

g0 (N)={1local (f=factor (N), t=vector(4,k,1),p,r,n);

for (k=1,matsize(f) [1],p=flk,1];r=f[k,2];n=p"r;

t[1l]*=n*(1+1/p);t[2]*=if (n==2,1,1f (p%4==1,2));

t[3]*=if (n==3,1,1if(p%3==1,2));

t[4]1*=1£(r%2,2*p" ((r-1)/2), (p+1)*p"(xr/2-1)));
1+t[1]1/12-t[2]/4-t[31/3-t[4]1/2;}

that combines 4 multiplicative functions [18, 25, 31].

(70)
(71)

(72)

(73)
(74)
(75)

(76)

We conjecture that only when N has genus O is Ry ; (r) an integer sequence. To
deal with genus 1, we introduced the additional parameter M into Ry s (n). For each
level N with genus 1, we specify in Table 3 the prime values of M < 1000, coprime

to N, for which Ry p (n) is an integer sequence.
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Table 3 Primes M such that
Ry m (n) is an integer
sequence for N with genus 1

K. Acres and D. Broadhurst

N primes M < 1000

11 19, 29, 199, 569, 809

14 5,11,23,71, 101, 263, 503

15 7,23,31,79, 167,431, 479, 983
17 3,11, 47, 359, 967

19 2,23, 257, 449, 509, 521, 641
20 11, 131, 251, 491, 599

21 23,31,47,71, 127,367, 383, 743
24 7,47, 191, 383, 439

27 M =2mod3

32 M =3 mod4

36 M =5 mod 6

49 M =3,5,6mod7

At genus 1, the criterion for whether Ry s (n) forms an integer sequence is pro-
vided by the Fourier expansion of the unique weight 2 cusp form of level N, which

we denote by fiy = >, Cnv.mq" . Specifically,

fir = (mm)?
Sia = mmanima
15 = mnansnis

f1=q-q—q¢"—2¢ +4q' +3¢° =3¢’ + 24" — 24" + - -
fio =q =24 —2¢" +3¢° —q" + ¢ +3¢" + 49" — 44" ...

o = (m12m0)?

12

Pr=a-C+¢ —4¢" =20 =" ¢ +3¢" + " + 24" + 44" — ¢ + -

JSra = mnaneniz

7 = (13m9)?
fr2 = (mans)?
fr6 = ng

fio = q+q* —q" —3¢* —3¢° + 44"

—q16 —3q18 +4q22...

with explicit formulas for N = 17, 19, 21, 49 given below in (97)—(99).
For N with genus 1, we found that Ry j (n) is an integer sequence if and only if

Cn .y = 0. Moreover

Ry .y (n) = Ry .y (n) — Cy yRy.1(n)

is always an integer sequence, with ENJ (n) = 0, by construction.

(77)
(78)
(79
(80)
81
(82)
(83)
(84)
(85)
(86)
(87)
(88)

(89)
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Table 4 Elliptic curves Ey for N with genus 1

N CN’z CN43 EN
11 -2 -1 Y2 4+ 6XY + 1217 = X3 +38X2 + 363X
14 -1 -2 Y2 4+ 3XY +56Y = X3 +25X2 + 168X
15 -1 -1 Y2 4+ 3XY +45Y = X3 +23X2 + 135X
17 -1 0 Y2 4+ 3XY +34Y = X3 + 18X 2 + 85X
19 0 -2 Y24 19Y = X3 +16X2 + 76X
20 0 -2 Y2 4+20Y = X3 4+ 13X2 + 60X
21 -1 1 Y2 4+ 3XY +21Y = X3 + 13X2 + 42X
24 0 —1 Y24 12Y = X3 +11X2 + 36X
27 0 0 Y2 4+9Y = X3 +9X2 4+ 27X
32 0 0 Y2 +8Y = X3 +6X%+ 16X
36 0 0 Y2 4+6Y =X3+6X%+ 12X
49 1 0 Y2 —3XY = X3 +3X247X
With Gy = Y., o Rv.m (1)q", we found at N = 21 that
NG
7 <% — 1> = Ga1. (90)
NN
nin
3’ <# - 1) = G214+ G2 3+ 26, o1
N2
> (M
7 < 5 — 1> = G214 +2G213+ 5622, 92)
ninzy
3Tnzn;
Tl = G4 —2G21 3 — Gap, 93)
1
3372n 775
——22 = G214 — 56213+ 5Ga12, 94)
nmny
337776772
— =G5 — 26y, 95)
m
33727]37] 773
% = Gy15 —3G214 + 4G22 (96)
1

For each level N with genus 1, we found that (X, Y) = (Gy2, Gy 3) is a point
on an elliptic curve Ey specified in Table 4 and verified up to O(g*°°®). More-
over Gy y = Pyo(X) + P1(X)Y where Py and P; are polynomials with degrees not
exceeding M /2 and (M — 3)/2, respectively.

With N = 21, relations (90)—(92) show that X = G, is determined by an eta
quotient and that ¥ = G»; 3 is determined by 3 eta quotients. The transformation
(X, Y)=(x—5, y—x — 3)yields aminimal model y> + xy = x> — 4x — 1, whose
small coefficients were noted in [19].
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Applying the ellak procedure of Pari-GP to Ey, we reproduce the Fourier
coefficients of fy = Y, Cv.m¢" . Thanks to work recorded at OEIS, we are able
to provide formulas for fy in the 4 cases where a single eta quotient does not suffice,
namely for N = 17, 19, 21, 49:

fir = mmr Yo7 — Yaad1) . fio = Wadss — Yivrio + Yred)? (CH))
_ 3033+ muingnes + ningnongs) _ mang | Tnsnguiy  3n3ngne

S . (98)
21305, 277% 21, 21,4
fio =03 14 (q021.08 + *01a35 — ¢*01.02) . (99)
2 5 o)
M2n Mon a\ (P4n)/2 (n*—n)/2
o= gu= ot b= ) (=) (=) aoo)
M M Man n=—00

with (99) recorded in [14]. At N = 49, we have complex multiplication, with Cy9 , =
0 for prime p = 3, 5, 6 mod 7. Moreover we have a pair of eta quotients,

G 4 G
o Mo _ 9.2 :"_Z:ﬂ, (101)
m 7 UM 72

with Fourier coefficients given by Rademacher sums. The latter is determined by
G492 and Gy9 3. Hence the elliptic curve E49 provides an algebraic relation between
these eta quotients, namely

2y — Tx — 35x% — 49x%)? = (dx + 21x% +28x°) (1 + 7x + 7xH)% (102)

At N =21, we found 2937 eta quotients whose Fourier coefficients are linear
combinations of Ry p (n) with M < 50. Including the unit quotient, the tally of
2938 is the coefficient of x°° in the generating function

1—x+x?— x> +2x4

== a ey

(103)

which predicts a total of 22126 eta quotients with Fourier coefficients determined by
Ry1 . (n) for M < 100. We have identified all of these.

At N = 36, with 9 divisors, the corresponding tallies of eta quotients are spectac-
ularly large. Using Padé approximants, the generating function was found to be

H(x) +x"8H(1/x)

(I —0)*(1 = x)2(1 = xH2(1 —x'2)’
Hx)=1=3x4+6x> =33 +6x* + x> +x° +4x" + 4% +2°, (105)

T36(x) = (104)

giving 49307076 eta quotients with Fourier coefficients determined by R3¢ 5 (1) for
M <50 and 8204657877 for M < 100. We were able to identify all of these, by
taking products of 78 eta quotients found at M < 12 and eliminating redundancies.
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Using more refined methods, we also validated the monstrous tally of 180919436828
for M < 150.

From the denominator of T36(x) = ), o(c(M) + 1)x™ itis clear that the number
c(M) of non-trivial eta quotients determined by our procedures may be found by
polynomial interpolation at integers with the same residue modulo 12. We denote the
result by c(M) = p(M) + q,(M)/12 for M = r mod 12, with a leading polynomial

_ 4 D@43+ )0+ D0+ + 1D ((n+6)* = 7)

P 1935360 -1 (106)
of degree 8 and sub-dominant terms that are at most quadratic:
qo(n) = q3(n) + q4(n) + 35, (107)
q1(n) = gs(n) = g7(n) = q11(n) =0, (108)
2 6?2 -5
q2(n) = q1o(n) = %, (109)
+3)(n+9
g3(n) = go(n) = (”)9# (110)
+4)(n+8
¢5(n) = gs(n) = g2(n) + %@”) (111)
q6(n) = g2(n) + g3(n) + 1. (112)

The situation at the prime levels N = 11, 17, 19 is rather different. Here we have
a wealth of Rademacher sums but only one eta quotient. Consider the case N = 19.
Since fi9 = g + 0(q®), we have Ci92 = 0 and hence Rj9(n) yields integers. As
noted, the sequence Rj9(n)/19 begins with

1,4, 10, 25, 55, 116, 229, 440, 809, 1455, 2541, 4354, 7300, 12050, . ..

This sequence may be developed using 17‘1‘9 /nt, which is determined by G9, and
G193. The elliptic curve relating the latter pair gives an algebraic relation between
G 9> and the eta quotient, namely

s Jerg =14 85+ 1919, s=Go2/19, e = nto/nt, (113)

from which the expansion of s = g + O(¢?) is easy developed, iteratively.
Similarly, at N = 11 and N = 17 we obtain the algebraic relations

£len =1+ 13t + 34 + 1%y, t=Gno/11%, e =n3/n)%, (114)
ufey; = 16 + 64u + 34u* — 17%e17, u= Gi72/17, ez = n/nS, (115)

and hence develop the expansions of t = ¢ + O(¢*) and u = 2¢q + O(g%).
Intermediate between the plethora of eta quotients at N = 36, with 9 divisors,
and their relative scarcity at N = 11, 17, 19, 49, with less than 4 divisors, sit the
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remaining genus 1 levels, N = 14, 15, 20, 21, 24, 27, 32. Proceeding as for N = 21,
we found the generating functions

14+ 20+ 20+ X7

T4 = 0= - - (116)
1l —x+x2—x3+244
Ti5(x) = To1(x) = TSI (117)
1—x4+x2+43 +2x* + 320 +x7 + a8
Tl = 2R — a0 (18)
(14 x%) (h(x) + x°h(1/x))
Tu® = T3 —apa — ey =1 —2x+3x° +2¢°, (119)
1—)C11
L ey 1 ) Yy s Yo g (120
_ 2 3 4 _ 5 6
To(x) = l—x4+x"4+2x" +x x +x (121)

(1 —x)2(1 —x2)2(1 —x%H2

with the coefficient of x™ in Ty (x) giving the number of eta quotients whose Fourier
coefficients are determined by linear combinations of the Rademacher sums Ry 3/ (1)
withM < m.

3.4 Rational Rademacher Sums

There are 5 levels with genus greater than O for which it appears that the Rademacher
sums Ry s (n) arerational for all positive integers M and n,namely N = 27, 32, 36, 49
with genus 1 and N = 64 with genus 3. At genus 1, we convert these rationals to the
integers

Ry (n) = Ry p(n) — Cy m Ry 1(n), (122)

which vanish at M = 1. The rationals Res p (n) do not form integer sequences for
M =1, 2,5 mod 8. To remedy this, we define

8sktr = Y (Roaserr(n) — i Roar () ", (123)
n>0
k1 =Cagk+1,  Ck2 = Caarg1, Crs5s = —C38k45/2, (124)

withk > 0,r € [1, 8] and ¢4, = O forr = 3,4, 6, 7, 8. Then gy, has integer Fourier
coefficients, which vanish for M = 1, 2, 5. Eta quotients appear in

2 2 2 4 7 2.4
83 TNy 84 _MMe 8 _ My 87 _ M 88 _ Mg
LI S N St . Sl e et e g
ning ning mng nmng U
(125)

Moreover, g6 = (4 + g3)g3, &7 =283+ (2 + g3)84, &8 = (4 + g4)ga-
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We found that (X, Y) = (g3 + 2, g4 + 2) is a point on the genus 3 curve
Y(Y24+4) =x* (126)

and that gy = Py(X) + P1(X)Y + P,(X)Y?, withP, a polynomial of degree at most
(M — 4n)/3]. Every eta quotient of that form has Fourier coefficients that are linear
combinations of Rademacher sums at N = 64.

3.5 Genus 2

It is instructive to compare the genus 3 case N = 64 with the genus 2 case N = 50.
For the latter we construct integer sequences as follows:

_ Rso. (n) —d(M)Rso.1(n), for M = 1,4 mod 5,
Rso.m(n) = § Rsom (n) +d(M)Rso2(n), for M = 2,3 mod 5, (127)
RSO,M (n), for M = 0 mod 5,

Y dMd" =fo=q-q+¢ +4" —¢*+2¢ — ¢ —2¢’ + 0(g'""). (128)
M=>0

where fs is the weight 2 level 50 Hecke eigenform whose Fourier coefficients d (M)

are obtained from the L-series of the elliptic curve y(y + x 4+ 1) = x> — x — 2. Then

Gsom =D -0 Rso.y (n)q" vanishes by construction at M = 1, 2 and yields eta quo-

tients at M = 3, 5, with

Gso3  Mn3s Gsos iy

s = -1, 0 = i (129)
M50 UFUE

The Fourier coefficients of Gsg 4 are also identified by an eta quotient: 1_?50,4(;1)/ 10
is the coefficient of ¢*" in the Fourier expansion of 1,5/n;.
We found that (X, Y) = (Gso3, Gs0.4) is a point on the curve

Y 4+4X +5)Y> 42X +5)X +10)Y =X (X +5)(X> +8X +20) (130)

which Sage confirmed as having genus 2.
Proceeding similarly for (X, Y) = (Gy.3, Gy.4) we found the curves

Y3 +5572 —2(X2 4+ 11X — 484)Y = X (X° + 34X 2 + 473X + 2904) (131)
Y3 424X 4+ 69)Y2 + (9X2 + 460X +4761)Y = X (X3 + 55X 2 + 1035X + 6348)
(132)

Y3 +8(X 4+ 13)Y2 +4(X + 13)(3X +52)Y = X (X + 13)(X> +28X +208)  (133)
Y3 42172 + (5X2 + 70X +392)Y = X (X + 14)(X 2 + 14X + 56) (134)
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Y3 +202X +29)¥Y2 — (4X2 — 58X — 841)Y = X (X + 31X2 + 406X + 1682) (135)
Y3 424X +3D)Y2 + (11X2 + 217X +961)Y = X (X3 + 31X 2 + 310X +961) (136)
Y3 —8XY2 — X (2X +259)Y = X (X3 — 10X2 + 148X + 1369) (137)

at N = 22,23, 26, 28, 29, 31, 37, respectively. All have genus 2.

3.6 Genus3

We found these genus 3 curves for N = 30, 33, 34, 35, 39, 40, 41, 43, 45, 48, 64:

Y2(Y —2X)(Y —3X) + X (X% — 30X +75)Y

=X’ 425X (4X —5), with (X, Y) = (G304 + 5. G305 + 10), (138)
YY4+XGX —1)Y?2 —X24X — 11)Y
=X3(X? — 11X 4 22), with (X,Y) = (G334 + 11, G335 + 11), (139)

Y4 +10XY3 + X 21X — 221)Y? +2X (3X% — 119X + 867)Y

=X(X* —2X° 4+51X% — 578X 4 4913), with (X, Y) = (G344 + 17, Gaa5 + 17),
(140)

Y* 4+ 10X —3)Y3 + (31X2 — 210X + 800)Y? + (12X3 + 25X % + 200X — 2000)Y

=X (X*—5X3 —15X2 — 200X —2000), with (X,Y) = (G354 + 20, G355 + 10),
(141)

Y44+ 5XY3 +3X (X + 13)Y? — X (19X 2 — 234X + 507)Y
=X (X* —14X3 +234X% — 1690X +2197), with (X,Y) = (G394 + 13, G395 + 13),

(142)
YH=XX +5X3(X +4) —4Y?), with (X, Y) = (G0.4. Ga0.5). (143)
Y* 4+ (10X —4D)Y? + X (30X —451)Y? + X2(11X — 1681)Y
= X3 (X% + 70X +2214), with (X, Y) = (G414, G415 + 41), (144)
32Y% 4 (40X +43)Y3 + (94X % + 1591X + 9245)Y? + X (49X 2 + 946X + 5547)Y
= X3(X% 421X 4+ 129), with (X, Y) = (G433, G435 — 2G433), (145)
(Y2 +5x)2 =x3X2 - Y), with (X, Y) = (G54 + 5, Gas.5+5), (146)
Y*=X3(X —3)(X —4), with (X,Y) = (Gag 4 +6, Gag5 + 6), (147)
Y(Y? +4) =X*, with (X,Y) = (Ges3 + 2, Gead +2), (148)

where the final curve at N = 64 was already given in (126) and was obtained by
subtractions that make Geyq p vanish at M = 1,2,5. At N = 43, the subtractions
make G4z vanish at M = 1,2, 4. In all other cases with genus 3, Gy y vanishes
forM =1,2,3.
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3.7 Genus 4

At N = 81, we found that (X, Y) = (G315, Gsi,6) lies on the genus 4 curve
V(Y +3)° 4+ 3(X +3)° (Y +3)2Y +3) = (X +3)°,

The Fourier coefficients of X /9 form an integer sequence beginning with
1,2,4,7,13, 21, 35, 55, 87, 132, 200, 295, 434, 625, 897, 1267, 1782, 2475, . ..

for n = 1 to 18. The general term is given by Rademacher sums as

Ry 5(n) + Ry 2(n) _ exp(4m~/5n/9)
9 T 27(4n3/5)1/4

27
1 - o(l . 150
( 32w +/5n o /n)) (120

The Fourier coefficients of Y /9 form an integer sequence beginning with
1,3,6,13,24,45,77, 132,216, 351, 552, 861, 1313, 1986, 2952, 4354, 6336, ...

for n = 1to 17. The general term is given by a Rademacher sum

Ryi5(n) _ exp(4m~/6n/9) <1 27, 0(1/n)>. (151)

9 27123374 U 37den

3.8 Genus5
At N = 72, with genus 5, we obtain integer Fourier coefficients in

Gnm =) Rom®q'. Rpm®) =Rpum — Y p(M)Rmp,(n),

n>0 r=1,2,3,5,7
(152)
Namls/me = Y_ P, mh =Y pang", nemamsne = Y ps(mq’,
n>0 n>0 n>0 (153)
g/ My = Y _psmg"s g =Y (p1(n) —4ps () ¢". (154)
n>0 n>0

Then Gy, vanishes for M = 1,2,3,5,7. Moreover (G724, G72.6) is a point on
the elliptic curve E3q, while (G726, G72,9) lies on Epy4. Eliminating Gy, ¢, we obtain
a genus 5 curve from the resultant:



22 K. Acres and D. Broadhurst

(Y2 4+ 12y 434 —2X +2°) = (X +2° + 1) (X +2° —=2)*,  (155)

61,137} 673031
X =Gnpa= # Y =Gnpo = # —6. (156)
N MeNg NN 12

The Fourier coefficients of X /6 are the integers R;g 1(n)/6 = A128129(n). The
Fourier coefficients of Y /12 form an integer sequence beginning with

3,11, 33,87, 210, 473, 1008, 2055, 4035, 7674, 14196, 25629, 45282, 78472, . ..

for n = 1 to 14. The general term is given by Rademacher sums as

Rys3(n) + Ro1(n) _ exp(m/2n) 3
12 24034 ( - 8n¢2_n+0(1/”)>‘ (157)

3.9 Genus6

Moving on to the genus 6 case N = 121, we determined that subtractions of Ry2; ,(n)
are needed forthe 6 valuesr = 1, 2, 3, 4, 6, 11. The coefficients of these subtractions
are determined by four new forms and two old forms of weight 2 and level 121. The
new forms are the L-series of the elliptic curves y> + xy +y = x* + x> — 30x — 76,
V4y=x3=x>=Tx+10, Y’ +xy=x+x>—2x—7 and > +y =x> —x* —
40x — 221. The old forms are (1;71)* and (1;17121)?. The first two non-zero integer
series are

Ri21,5(n) = Ri21,5(n) — Ri21,4(n) — R121,3(0).,  Ri21,7(n) = Ry21,7(n) + Ri21,6(n).
(158)
We expect their generators, G515 and G217, to define a curve of genus 6 with
degree 7 in G215 and degree 5 in Gz 7. This is indeed the case. We found that
(X,Y) =(Gi215/11, G121,7/11) is a point on the curve

Y3 —20XY* +5X (10X —9)Y? = X (132X% — 64X?% — 33X +31)Y?
+X(33X*495X°% — 48X? —5X +9)Y
+ X (121X — 66X° +23X* +18X> —9Xx2 + 1) (159)
which Sage confirmed as having genus 6. Since integer combinations of Rademacher

sums are computable with ease, we are able to validate this curve up to O(¢g'°?) in
a matter of seconds.
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3.10 Genus 7

Inthe genus 7 case N = 100, we determined that subtractions of Ry (1) are required
for the 7 values r = 1, 2, 3,4, 5,7, 9, with coefficients determined by 6 old forms of
weight 2 and level 100 and a new form

Fi00=q+24° =24 +¢° — 24" + 69" — 4¢"0 — 4% — 647 — 44" +64%° + 0(¢>)
(160)
which is the L-series of the elliptic curve y? = x> — x> — 33x + 62.
We found that (X, Y) = (Gig0.6 + 5, G10o,15 + 10) lies on the genus 7 curve

Yo = x(3x* — 90x3 + 415X 2 — 560X + 200)Y*
—Xx3x° +20x3 —350x7 + 1795X % — 4790% >
+7805X % — 8350X3 + 7325X % — 4625X + 1375)Y2

X (X2 42X 45)(X* —6X3 4+ 14X2 — 10X + 5)2(X* — 5X3 + 15X2 — 25X +25),
(161)

with X /5 = 17277%5 / (77%7750) and the Fourier coefficients of ¥ /10 given by

1, 6, 26, 88, 258, 686, 1688, 3904, 8594, 18142, 36946, 72952, 140184, 262948, . ..

for n = 0 to 13, and in general by (Rjg0,15(1) + 2R00,5(n))/10 for n > 0.

3.11 Genus 8

When N = p2 with prime p = 12k + 1, the genus of IH(N) is given by go(N) =
3k(4k — 1) — 1. Setting kK = 1, we obtain go(169) = 8. Moreover N = 169 is the
largest level with genus 8. We devised a procedure of 8 subtractions that gives integer
sequences 1_3169,M (n) by subtracting multiples of Rje9 (1), with r =1,2,3,4,5,
6, 8, 9. The subtraction coefficients are determined by 8 modular forms of level
169 and weight 2, of which two have Fourier coefficients in Q(\/§). The rest have
coefficients in the cubic number fields x(x2 — 1) = +(1 — 2x?).

Our first non-zero integer sequence occurs at M = 7, where

Ri69.7(n) = Rigo.7(n) — Rig9.6(n) — Rigo.5(n) + Rigo 2(n) (162)

is the coefficient of ¢" in Gg97 = 131169/n1. There is no subtraction at M = 13,
where Gie0,13 = G13,1 = 13n75/n7.

We found that (X, Y) = (G169,7/13, G16v,13/13) is point on a genus 8 curve with
degree 13 in X and degree 7 in Y, namely

6
Y7 = 143XY5 4+ 156X (39X* — 17X +3)Y° + X Y P (X)¥*F, (163)
k=2
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Pr(X) = 26(3211X* — 2249X3 + 819X% — 173X + 19), (164)
P3(X) = 26(21970X° — 18759X° + 8619X* — 2743X> + 663X% — 111X + 10), (165)
Py(X) = 26(169X* — 104X 3 +39X% — 8X + 1)(507X* — 169X > + 26X% — 13X + 3),

(166)
Ps(X) = 13(371293x 10 — 371293X° + 199927x % — 81289x
+28561X% — 8619X° + 2197X* — 481X3 +91X2 — 13X + 1), (167)
Pe(X) = 4826809X '2 — 4826809X ' + 2599051X 0 — 1113879x° + 428415X 3
— 142805X 7 + 41743X° — 10985X° + 2535X* — 507X3 + 91X% — 13X + 1. (168)

3.12 Genus 13

Finally, we studied N = 144, with genus 13. Integer sequences are obtained after sub-
tractionsatr =1,2,3,4,5,6,7,9, 10, 11, 13, 14, 19, with coefficients determined
by 11 old forms and two new forms. The old forms were already encountered as
eta quotients at N = 48 and N = 72. They determine the subtractions for Ry44 ys (1)
when M is divisible by 3 or 2. The new forms relate to the subtractions that are
needed when M is coprime to 6. One of these new forms is the eta quotient

12
fista = 2 = q+4q" +24" = 8¢"° =567 + 44"+ (169)
n$1134
The other has Fourier coefficients determined by the L-series of the elliptic curve
y2 = x3 4+ 6x + 7, which gives

fiagy = g +24° + 4" —2g" — 29" 1 49" — 845 — 5 — 64 — 847 + ...
(170)

We reduced this to a telling combination of 5 eta quotients with weight 2:

7734’7%67772 27712’7%4’7% 477%27748777277144 2’712’734777277%44 477%2"?44

Sfraap = + + - 3 + 3
N48M 144 N36M48M 144 T4 M36M48 M7
(71

w1th Ci(M)+2Cs(M) +4C11 (M) —2C13(M) + 4C19(M ) giving the coefficient of

M in(171), where C,(M )R |44, r(n) is subtracted from R4 ps (1) to make R144 m (n) an
1nteger sequence. The subtraction at r = 7 is determined by the eta quotient in (169)
where the coefficient of g is C; (M) + 4C;(M) + 2C13(M) — 8C19(M ). Hence we
determine all the subtractions by eta quotients.

We are left with 6 values of M < 20 for which Gas y = Zn>0 1_2144,M (n)q" is
non-zero, namely M = §, 12, 15, 16, 17, 18. To produce a genus 13 curve we should
choose a coprime pair of M values. The simplest choice is the pair (8, 15). We know
that (G 44,8, G1a4.18) = (G72.4, G72,9) gives a point on the genus 5 curve (155) found
at N = 72. Moreover (G 144,15, G1a4,18) = (Gas s, Gag¢) gives a point on a genus 3
curve that is not hard to determine. Then, by taking a resultant to eliminate G 44 13,
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we determined that (X, Y) = (Ga.3 + 2, G144,15 + 6) lies on the genus 13 curve

(Y*—8X3*+ 1> = (X3 + D(X® +20x3 —8)? (172)
neatly parametrized by eta quotients as follows

X _mny Y _ ming

(173)

2 aing 6 nink

3.13 Remarks

Remark 1. After we completed this work, Yajun Zhou kindly called our attention
to [17, Theorem 8.12]. The methods used there may be capable of furnishing proofs
of some of our empirical findings in Sect. 3, following the approach that Knopp [22]
attributes to Rademacher [28] as an “entirely fresh viewpoint”, namely by adopt-
ing formulas (53), (54) as definitions of Fourier coefficients of objects Gy » and
demonstrating that the latter have the required modular properties. At genus 0, with
a unique Hauptmodul, that could furnish a proof of Table 1. At higher genera, more
work might be needed.

Remark 2. We conclude this section with a note on the approach in [32, 33] to modu-
lar curves. In [33, Section4.1], Yifan Yang gives modular curves, up to level N = 50,
that are parametrized by quotients of “generalized” Dedekind eta functions [32], in
the many cases where the eta function itself is insufficient to solve the problem.
Moreover his g-expansions are highly singular as ¢ — 0. Our approach was quite
different. We began with an explicit formula (53) that reproduces, at M = 1, the
Fourier coefficients of the genus 0 eta quotients taken as “canonical” Hauptmoduln
in [24, Table 8], which vanish as ¢ — 0. At genus 1, after subtraction of the non-
integer sequence Ry, (1), we obtained Gy p =Y, I_QN, m (n)g" as Fourier series
with integer coefficients, vanishing at ¢ = 0. Then Gy, and Gy 3 parametrize our
modular curve. We were able to extend this to higher genera. It may be that our
explicit Fourier coefficients are capable of reproducing those of Yang’s “general-
ized” Dedekind eta quotients, after performing a Fricke involution z — —1/(Nz)
on his Ansitze. We have not investigated this, since it lay outside the remit of our title.

4 Conclusions

1. Eta quotients on [(6), with 4 cusps, neatly solve the equal-mass two and three
loop sunrise problems, whose differential equations with respect to the external
energy have 4 singular points. This cannot continue, since at higher loops there
is more than one pseudo-threshold.

2. Atkin—Lehner transformations on I(6) yield optimal nomes.
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For the on-shell problem, Eichler integrals of eta quotients on /5 (6) yield Bessel
moments at 4 and 6 loops that are periods or quasi-periods.

Rademacher sums yield the Fourier coefficients of a Hauptmodul for I4(6) and
for all other levels of genus 0.

After subtractions determined by weight 2 cusp forms, they yield the Fourier
coefficients of vast numbers of eta quotients.

They yield the Fourier coefficients of parametrizations of modular curves, irre-
spective of whether the Fourier series are eta quotients.
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