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Preface

Elliptic functions, elliptic integrals and modular forms play a central role in the
theory of analytic calculations of Feynman parameter integrals at higher loop order.
They occur at the next level of complexity after the iterative integrals over certain
alphabets or the nested sums, which host a wide range of simpler structures and
have been studied in detail and applied in many physics calculations during the last
two decades.

The integration-by-part technique, which is widely applied in the solution of
complex calculations, provides a natural way to obtain the associated set of systems
of linear single-variate ordinary differential equations with rational coefficients in
the differential variable x and the dimensional parameter e ¼ D� 4. These can be
systematically decoupled, leading to one ordinary differential equation of high
order. Whenever this equation factorizes into first-order factors, all solutions are
given by iterative integrals. In massive three-loop problems, one observes that this
decoupling cannot be achieved and one is also left with irreducible second-order
systems, normally with more than three singularities. One seeks now 2F1-solutions
of these second-order equations, allowing for the main argument being a rational
function in the variable x.

In a large series of cases, these solutions can be expressed by complete elliptic
integrals in case of inclusive quantities. In more differential cases, also incomplete
elliptic integrals may occur. In the former case, the connection to modular forms is
obvious and one seeks solutions in terms of ratios of Dedekind’s g-functions. These
modular forms are either meromorphic or, in more special cases, holomorphic and
are connected to the elliptic polylogarithms and can be expanded into associated q-
series.

Due to this, the mathematics of modular forms is of central importance for the
analytic solution of Feynman diagrams, which motivated the workshop Elliptic
Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, held at
Zeuthen, Germany, October 23–26, 2017. It has been organized and funded in part
as one of the annual workshops of Kolleg Mathematik Physik Berlin. This work-
shop was meant to cover a larger part of related topics in this field bringing together
mathematicians and theoretical physicists presenting survey talks on a variety of
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topics. They are published in this volume together with additional invited contri-
butions. In most of the contributions, aspects of symbolic computation play an
essential role.

A classical approach to elliptic solutions in Feynman diagram calculations relies
on dispersion relations. Their cuts give the excess to the inner phase space structure
of the corresponding graphs, remaining partly invisible by just studying the asso-
ciated differential equations. This method has been reviewed by E. Remiddi. It also
provides a very lucid way in studying even more involved topologies in the future,
providing the corresponding integrand structures up to one or more additional
Hilbert transforms.

In the contributions by L. Adams, S. Weinzierl, C. Duhr et al. and by J. Blümlein,
a direct link between Feynman integrals evaluating to elliptic integrals and their
representation in terms of modular forms has been given. They appear as iterated
integrals of modular forms. Conversely, one may start with the modular forms and
find the associated differential equations. In general, the solutions are given by
iterated integrals over non-iterative integrals, the simplest of which is 2F1-functions.
This applies even to non-decoupling situations of order 3 and larger, with other
non-iterative integrals appearing as iterated letters. In the elliptic case, the holomorphic
modular forms have representations in terms of Lambert–Eisenstein series, while the
meromorphic ones are weighted in addition by powers of Dedekind’s g-function.
M. van Hoeij discussed general analytic solutions of second- and third-order differ-
ential equations with more singularities. Numerical implementations are considered
by C. Bogner et al. on fast converging q-series. Precise numerical implementations of
elliptic functions, the Jacobi #-functions, modular forms, elliptic integrals and the
arithmetic–geometric mean have been discussed by F. Johansson.

Elliptic integrals appear in various massive higher-order calculations in quantum
chromodynamics, as pointed out in the contributions by S. Weinzierl, J. Blümlein,
E. Remiddi and R. Bonciani et al. Currently, very important calculations are those
of the production cross section of top and anti-top quark pairs (R. Bonciani et al.)
and also Higgs boson production at the Large Hadron Collider (LHC) at CERN.
D. Kreimer studied the conceptual relation between scattering theory for Feynman
amplitudes and the structure of suitable outer spaces, motivated by the work of
Vogtmann and Culler. P. Vanhove discussed the relation of Feynman integrals,
toric geometry and mirror symmetry, determining the minimal differential operator
acting on the Feynman integrals considering the maximal cut. In this calculation,
also Calabi–Yau structures are found.

Applications of iterated integrals on an elliptic curve in string perturbation
theory have been reviewed by J. Brödel and O. Schlotterer pointing out the relation
to elliptic multiple zeta values. Related work has been presented by F. Zerbini on
modular and holomorphic graph functions from superstring amplitudes.

H. Cohen discussed the computation of Fourier expansions at all cusps of any
modular form of integral or half-integral weight. Its implementation is available in the
current release of the Pari/GP package. Far-reaching results on Bessel moments are
presented in the contributions by K. Acres, D. Broadhurst and Y. Zhou, along with
Rademacher sums and L-functions. The contribution by M. L. Dawsey and K. Ono
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deals with q-analogs of Euler’s zeta function evaluations. In particular, they put
interesting recent developments by Z.-W. Sun and A. Goswami into a general
framework; to this end, they use state-of-art theory in modular forms and complex
multiplication. R. Hemmecke, C.-S. Radu and L. Ye prove that the ideal of all
polynomial relations among the classical Jacobi #-functions are generated by only
two polynomials. This result is accomplished by new ideal–theoretic insight
of elliptic #-quotients and sophisticated Gröbner basis considerations. J. Frye
and F. Garvan present the two new Maple packages: thetaids and
ramarobinsids. They allow to prove generalized g-product identities using the
valence formula for modular functions, which is also applicable to #i-functions and
for finding and proving identities for generalizations of Ramanujan’s GðqÞ and
HðqÞ and extensions by S. Robins. A. Straub and R. Osburn study interpolated
sequences and critical L-values of modular forms.

P. Paule and C. Schneider established new algebraic connections between
summation problems involving generic sequences and difference field/ring theory
taking special care of concrete sequences arising in contexts like analysis, combi-
natorics, number theory and special functions. The elaborated symbolic summation
theory for unspecified sequences can be considered as the first steps toward an
algorithmic framework for the treatment of summation identities involving elliptic
functions or modular forms.

Given the size of the topical area under discussion, the different contributions
can of course only provide a start of further investigation and treatment and they are
not meant to be complete. The field will develop on the physics side first by
applying the different techniques to solve the elliptic cases. By exploring more and
more involved structures beyond this level, one will be naturally lead to much
deeper mathematical structures and even more advanced solution methods. As
experienced in the past, one can be sure that the analytic calculation of complex
Feynman diagrams will trigger quite a series of new developments in mathematics,
and conversely, physics will profit significantly from results already being available
in various branches of mathematics, in particular also, symbolic computation.

The transparencies of the talks presented are available at the page https://indico.
desy.de/indico/event/18291/timetable/#all. Financial support of this conference by
Kolleg Mathematik Physik Berlin is gratefully acknowledged.

Zeuthen, Germany Johannes Blümlein
Linz, Austria Peter Paule
Linz, Austria Carsten Schneider
September 2018
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Eta Quotients and Rademacher Sums

Kevin Acres and David Broadhurst

Abstract Eta quotients on Γ0(6) yield evaluations of sunrise integrals at 2, 3, 4
and 6 loops. At 2 and 3 loops, they provide modular parametrizations of inhomo-
geneous differential equations whose solutions are readily obtained by expanding
in the nome q. Atkin–Lehner transformations that permute cusps ensure fast con-
vergence for all external momenta. At 4 and 6 loops, on-shell integrals are periods
of modular forms of weights 4 and 6 given by Eichler integrals of eta quotients.
Weakly holomorphic eta quotients determine quasi-periods. A Rademacher sum
formula is given for Fourier coefficients of an eta quotient that is a Hauptmodul
for Γ0(6) and its generalization is found for all levels with genus 0, namely for
N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25. There are elliptic obstructions at
N = 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49,with genus 1.We surmount these,
finding explicit formulas for Fourier coefficients of eta quotients in thousands of
cases. We show how to handle the levels N = 22, 23, 26, 28, 29, 31, 37, 50, with
genus 2, and the levels N = 30, 33, 34, 35, 39, 40, 41, 43, 45, 48, 64, with genus 3.
We also solve examples with genera 4, 5, 6, 7, 8, 13.

1 Introduction

Elliptic obstructions to the evaluation ofmassive Feynman diagramswere recognized
and surmounted more than 50 years ago by Sabry [30]. They occur in two-loop two-
point integrals when three massive particles appear in an intermediate state [11]. The
simplest example is the two-loop sunrise diagramwith unit masses in two space-time
dimensions, whose study was revolutionized in 2013, when Bloch and Vanhove [4]
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2 K. Acres and D. Broadhurst

showed how to parametrize and solve its second order differential equation using eta
quotients on Γ0(6).

Their solution was particularly bold, since they expand in a nome q that is small
near the physical threshold where the external energy w is close to 3. Thus they
achieve fast convergence near the branchpoint that frustrates other methods. The
price to pay is that convergence is slow near any of the other three cusps of Γ0(6),
which occur atw = 0, 1,∞.We shall showhow to useAtkin–Lehner transformations
of eta quotients to expand about those cusps, achieving optimal efficiency.

Bloch, Kerr and Vanhove [5] conquered the corresponding three-loop problem,
also using eta quotients onΓ0(6), thanks to the remarkable circumstance, noted more
than 40 years ago by Joyce [20], that a transformation of variables relates solutions of
the relevant homogeneous third-order differential equation to products of solutions of
the second-order equation at two loops. Joyce’s observation was made in the context
of the physics of condensedmatter. The relevanceof hisworkon thediamond lattice to
Feynman integrals was decoded in [2]. We shall use an Atkin–Lehner transformation
to achieve optimal efficiency at three loops.

The role of Γ0(6) does not end at three loops. It is of the essence for the on-
shell problems at 4 and 6 loops, where the relevant Bessel moments turn out to be
Eichler integrals of eta quotients that are cusp forms of level 6 with modular weights
4 and 6, respectively. We shall review key results, which were until recently only
conjectures [7–10], tested to many thousands of digits. For an account of how they
were proved [34–37], see the lucid review by Zhou [38].

It is notable that this connection between number theory and Feynman integrals
persists in the real world of four-dimensional space-time. The four-loop radiative cor-
rections to the magnetic moment of the electron in quantum electrodynamics, evalu-
ated with breath-taking skill by Laporta [23], contain a pair of Bessel moments [37]
that are Eichler integrals. We conclude Sect. 2 with results that indicate that one
of these is a quasi-period, in the sense of Brown [13]. Moreover we conjecturally
identify quasi-periods at 6 loops.

Section3 concerns a searching question raised by Johannes Blümlein at a recent
conference held at the Hausdorff Centre for Mathematics, in Bonn. Is there a closed
formula for the Fourier coefficients of the Hauptmodul of Γ0(6), of the type that
Petersson [26] and Rademacher [22, 27, 28] found for Klein’s j-invariant? We con-
jecturally answer in the affirmative, by giving a formula that serves this purpose for
all levels with genus 0. Moreover we are able to extend its use to higher genera.

2 Eta Quotients in Quantum Field Theory

Broadhurst, Fleischer and Tarasov [12] gave the differential equation for the two-
loop unit-mass sunrise integral in an arbitrary number D of space-time dimensions.
At D = 2, this integral is a Bessel moment [2]

I(w2) = 4
∫ ∞

0
I0(wx)K

3
0 (x)xdx, (1)
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where w is the external energy, which enters the Bessel function I0(wx) via Fourier
transformation. The Bessel function K0(x) is cubed, since three particles of unit
mass connect the two vertices. Bloch and Vanhove [4] found a very neat modular
parametrization of the differential equation at D = 2, which we here write as

−
(
q
d

dq

)2 I(w2)

6f
= g, w = 3η2

2η
4
3

η4
1η

2
6

, f = η6
1η6

η3
2η

2
3

, (2)

g = η5
2η

4
3η6

η4
1

= η9
3

η3
1

+ η9
6

η3
2

=
∑
n>0

n2(qn − q5n)

1 − q6n
, ηn = qn/24

∏
k>0

(1 − qnk), (3)

with eta quotients determining the energy w, the integrating factor f , which is an
elliptic integral determining the discontinuity across the cut for w > 3, and the inho-
mogeneous term g. Two easy integrations of the Lambert series for g then yield

I(w2)

f
= π log(−1/q)√

3
− 3

∑
n>0

χ6(n)

n2
1 + qn

1 − qn
(4)

with χ6(n) = ±1 for n = ±1mod 6 and χ6(n) = 0, otherwise. This solution is deter-
mined by the discontinuity across the cut and the finiteness of I(1) = π2/4 [2]. In
summary: after dividing I(w2) by the modular form f , with weight 1 and level 6, we
obtain solution (4) by two integrations of the weight 3 modular form g with respect
to z, where q = exp(2π iz). Such integrals of modular forms are referred to as Eichler
integrals.

We remark that modular parametrizations of differential equations were used
in [3], to elucidate proofs of rationality of zeta values, and in [21], for problems in
statistical physics.

2.1 Atkin–Lehner Transformations of Eta Quotients

Now set q = exp(2π iz) with �z > 0 and consider the transformations [15]

z �−→ z2 = 2z − 1

6z − 2
, z �−→ z3 = 3z − 2

6z − 3
, z �−→ z6 = −1

6z
, (5)

which permute the cusps at z = 0, 1
2 ,

1
3 ,∞. Then, with qk = exp(2π izk),

−
(
qk

d

dqk

)2 I(w2)

6fk(zk)
=gk(zk), (6)

f2(z) = η6
2η3

η3
1η

2
6

, f3(z) = η2η
6
3

η2
1η

3
6

, f6(z) = η1η
6
6

η2
2η

3
3

, (7)
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g2(z) = η5
1η3η

4
6

η4
2

, g3(z) = η4
1η2η

5
6

η4
3

, g6(z) = η1η
4
2η

5
3

η4
6

. (8)

From the alternative differential equations (6), we obtain alternative expansions:

I(w2)

f2(z2)
=

∞∑
n=1

3χ3(n)

n2
(1 − qn2)

2

1 + q2n2
= I(0) −

∞∑
n=1

6χ3(n)

n2
qn2

1 + q2n2
, (9)

I(w2)

f3(z3)
=

∞∑
n=1

2χ2(n)

n2
(1 − qn3)

3

1 − q3n3
= I(1) −

∞∑
n=1

6χ2(n)

n2
qn3

1 + qn3 + q2n3
, (10)

I(w2)

f6(z6)
= −3 log2(−q6) +

∞∑
n=1

6

n2
qn6

1 − qn6 + q2n6
, (11)

withχ2(n) = 0, 1, for n = 0, 1mod 2, andχ3(n) = −1, 0, 1, for n = −1, 0, 1mod 3.
Then for any real value of w2 there is an optimal choice of nome in which to

expand, which may be determined as follows. Let

w2
1 = w2, w2

2 = w2 − 9

w2 − 1
, w2

3 = 9

w2
, w2

6 = 9

w2
2

. (12)

For w2 ∈ [−3, 9 − 6
√
2] set k = 2, else for w2 ∈ [9 − 6

√
2, 3] set k = 3, else for

w2 ∈ [3, 9 + 6
√
2] set k = 1, else set k = 6. Then compute wk ∈ [√3,

√
3 + √

6]
and obtain the optimal nome qk = Q(wk) from

Q(x) = exp

(−π agm(1,
√
r)

agm(1,
√
1 − r)

)
, r = 16x

(x + 3)(x − 1)3
, (13)

by the lightning-fast process of the arithmetic-geometric mean. This results in a
small real nome qk ∈ [− exp(−π/

√
3), exp(−π

√
2/3)] and hence |qk | < 0.16304.

If k = 2, use (9); if k = 3, use (10); if k = 6, use (11); if k = 1 use q = q1 in (4) and
extract a Clausen value from

∑
n>0

χ6(n)

n2
1 + qn

1 − qn
= C2 +

∑
n>0

χ6(n)

n2
2qn

1 − qn
, C2 = 5Cl2(π/3)√

27
= 5I(0)

12
. (14)

The authors of [6] expand in qM = −q2, thereby encountering η4 and η12 in

fM (z) = f2

(
z + 1

2

)
= η3

1η
3
4η6

η3
2η3η12

, gM (z) = g2

(
z + 1

2

)
= − η11

2 η7
6

η5
1η3η

5
4η12

. (15)

Since they expand about the cusp at w = 0, they inevitably face issues of slow
convergence near the cusps at w = 1, 3,∞. Moreover they had to address delicate
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questions of analytic continuation at the on-shell point w = 1. Our procedure of
invariably expanding about the nearest cusp avoids all such problems.

Such use ofAtkin–Lehner transformations to achieve efficient expansions in small
nomes is well known to mathematicians who compute with modular forms [16].
We recommend exploitation of the transformations (5) to physicists who encounter
problems that involve the congruence subgroupΓ0(6). For example, the authors of [1]
encountered, at 3 loops, a second-order equation with complicated coefficients and
powers of log(x) in the inhomogeneous term. Their homogeneous equation has a
hypergeometric solution

H (x) = (x2 − 1)2

9(x2 + 3)

∞∑
n=0

(4/3)n(5/3)n
n!(n + 1)!

(
x2(x2 − 9)2

(x2 + 3)3

)n+1

(16)

where (a)n = Γ (a + n)/Γ (a) is the Pochhammer symbol. We obtained

H

(
3
η2
1η

4
6

η4
2η

2
3

)
= 1

2

(
η14
1 η10

6

η22
2 η2

3

+ η6
1η

4
6

η12
2 η2

3

(
η4
1η

8
6

η8
2η

4
3

+ 1

3

)
q
d

dq

)
η6
2η3

η3
1η

2
6

(17)

as a modular parametrization of the homogeneous solution, where the derivative
with respect to q results from a complete integral of the second kind. It would be
interesting to investigate whether an Atkin–Lehner transformation may be used to
avoid a singularity that was encountered at x = 1

3 at intermediate stages of the work
in [1].

For our next advertisement of the virtue of Atkin–Lehner transformation, we
turn to the three-loop equal-mass sunrise integral. Bailey, Borwein, Broadhurst and
Glasser [2] developed the expansion in t of

J (t) = 8
∫ ∞

0
I0(

√
tx)K4

0 (x)xdx = 7ζ(3) + O(t). (18)

A neat and novel q-expansion comes from exploiting a transformation [2, 20] from
w2, at two loops, to t = 10 − w2 − 9/w2, at three loops. Then we obtain the modular
parametrization

t = 10 − w2 − 9

w2
= −64

(
η2η6

η1η3

)6

, (19)

(
q
d

dq

)3 J (t)

(wf /3)2
= 24h, h = η16

2

η8
1

− 9
η16
6

η8
3

=
∑
n>0

n3(qn − 8q3n + q5n)

1 − q6n
, (20)

J (t)

(wf /3)2
= J (0) + 24

∑
n>0

φ(n)

n3
qn

1 − qn
, (21)
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with φ(n) = 0, 1, 0,−8, 0, 1, for n = 0, 1, 2, 3, 4, 5 mod 6. The Pari-GP proce-
dure

z(t)={local(x=2/(sqrt(4-t)+sqrt(16-t)),

a=sqrt((1-x)ˆ3*(1+3*x)));

I/2*agm(a,4*x*sqrt(x))/agm(a,sqrt((1+x)ˆ3*(1-3*x)));}

returns the correct value of z for the nomeq = exp(2π iz), for all real t. Expansion (21)
is highly efficient for t ∈ [−8, 8], where |q| ≤ exp(−√

2π/3) < 0.22742. For the
rest of the real t-axis, we exploit the involution z �−→ z6 = −1/(6z), which gives
t �−→ t6 = 64/t, with fixed points at t = ±8. For t6 ∈ [−8, 8] we use

(
q6

d

dq6

)3 J (t)

(wf6(z6))2
= −24h6(z6), (22)

h6(z) = − t6h = 1 + 2h − 30
∑
n>0

n3(q2n + q4n − 8q6n)

1 − q6n
, (23)

J (t)

(wf6(z6))2
= −4 log3(q6) + 24

∑
n>0

15φ(n + 3) − φ(n)

n3
1 + qn6
1 − qn6

, (24)

in agreement with the result proved by Bloch, Kerr and Vanhove [5]. Extracting

C3 =
∑
n>0

15φ(n + 3) − φ(n)

n3
= 2ζ(3)

3
(25)

we achieve a highly efficient expansion in q6 = exp(−π i/(3z)) for 64/t ∈ [−8, 8],
with a strong check of consistency with (21) in the neighbourhoods of t = ±8, where
both expansions work well.

2.2 Eichler Integrals of Eta Quotients for On-Shell
Sunrise Integrals

On-shell sunrise integrals lead us to consider Bessel moments of the form

M (a, b, c) =
∫ ∞

0
I a0 (x)Kb

0 (x)x
cdx. (26)

For L > 3, the off-shell L-loop integral

SL(t) =
∫ ∞

0

dx1
x1

. . .

∫ ∞

0

dxL
xL

1

(1 + ∑L
j=1 xj)(1 + ∑L

k=1 1/xk) − t
(27)
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has not yielded to the methods given above for L = 2, 3. By contrast, the on-shell
values SL(1) = 2LM (1,L + 1, 1)with L + 2 Bessel functions yield Eichler integrals
of cusp forms of weights 4 and 6 onΓ0(6) at L = 4 and L = 6 loops, namely integrals
of the form

∫ ∞
0 f (iy)ys−1dy, where f (z) is a cusp formwith weight L and s is a integer

with L > s > 0. First we consider the situation at L = 3 loops, where a modular form
of weight 3 occurs.

At 3 loops, with 5 Bessel functions, the on-shell problem is solved by the weight
3 level 15 cusp form

f3,15(z) = (η3η5)
3 + (η1η15)

3 =
∑
n>0

A5(n)q
n = − f3,15(−1/(15z))

(−15)3/2z3
(28)

with complex multiplication in Q(
√−15). If the Kronecker symbol

( p
15

) = ( p
3

) ( p
5

)
is negative, for prime p, then A5(p) = 0. For 	s > 2, there is a convergent L-series

L5(s) =
∑
n>0

A5(n)

ns
=

∏
p

1

1 − A5(p)p−s + ( p
15

)
p2−2s

(29)

whose analytic continuation is provided by the Eichler integral

L5(s) = (2π)s

Γ (s)

∫ ∞

0
f3,15(iy)y

s−1dy (30)

with critical values

L5(1) = 5

π2
M (1, 4, 1), L5(2) = 4

3
M (2, 3, 1). (31)

At 4 loops, with 6 Bessel functions, the on-shell problem is solved by the weight
4 level 6 cusp form

f4,6(z) = (η1η2η3η6)
2 =

∑
n>0

A6(n)q
n = f4,6(−1/(6z))

62z4
. (32)

For 	s > 5/2, there is a convergent L-series

L6(s) =
∑
n>0

A6(n)

ns
= 1

1 + 21−s

1

1 + 31−s

∏
p>3

1

1 − A6(p)p−s + p3−2s
(33)

whose analytic continuation is provided by the Eichler integral

L6(s) = (2π)s

Γ (s)

∫ ∞

0
f4,6(iy)y

s−1dy (34)
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with critical values

L6(2) = 2

π2
M (1, 5, 1) = 2

3
M (3, 3, 1), (35)

L6(1) = 2

π2
M (2, 4, 1) = 3

π2
L6(3). (36)

At 6 loops, with 8 Bessel functions, the on-shell problem is solved by the weight
6 level 6 cusp form

f6,6(z) = η9
2η

9
3

η3
1η

3
6

+ η9
1η

9
6

η3
2η

3
3

=
∑
n>0

A8(n)q
n = − f6,6(−1/(6z))

63z6
. (37)

For 	s > 7/2, there is a convergent L-series

L8(s) =
∑
n>0

A8(n)

ns
= 1

1 − 22−s

1

1 + 32−s

∏
p>3

1

1 − A8(p)p−s + p5−2s
(38)

whose analytic continuation is provided by the Eichler integral

L8(s) = (2π)s

Γ (s)

∫ ∞

0
f6,6(iy)y

s−1dy (39)

with critical values

L8(4) = 4

9π2
M (1, 7, 1) = 4

9
M (3, 5, 1) = π2

9
L8(2), (40)

L8(5) = 4

27
M (2, 6, 1) = 2π2

21
M (4, 4, 1) = 2π2

21
L8(3) = π4

54
L8(1). (41)

2.3 Eichler Integrals for Quasi-periods at Level 6

In [13] Francis Brown associated a pair of periods and a pair of quasi-periods to
the weight 12 level 1 modular form Δ(z) = η24

1 . The periods are a pair of Eichler
integrals that determine critical values of the L-series at odd and even integers.
No concrete integrals were given for the quasi-periods. Rather it was asserted that
numerical values may be obtained by an undeclared regularization of integrals of a
weakly holomorphic modular form Δ′(z) = 1/q + O(q2).

In the case of the level 6modular forms that yield 4-loop and 6-loop Feynman inte-
grals the situation is cleaner, since the periods are Eichler integrals of eta quotients,
f4,6 and f6,6, with 4 cusps. Thus we may hope to find weakly holomorphic modular
forms, g4,6 and g6,6, that yield quasi-periods as well defined Eichler integrals with a
base-point at a cusp free of singularities. A test is provided by the condition that a
2 × 2 determinant formed from a pair of periods and a pair of quasi-periods should
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be an algebraic multiple of a power of π , as is trivially ensured for modular forms of
weight 2 by Legendre’s relation between pairs of complete elliptic integrals of first
and second kind.

At 4 loops, we achieved this with Eichler integrals

D2

2
= M (1, 5, 1)

π4
= 4M (1, 5, 3)

π4
+ 5E2

18
(42)

3D1

5
= M (2, 4, 1)

π3
= 4M (2, 4, 3)

π3
+ E1

3
(43)

[
Ds

Es

]
= −

∫ ∞

1/
√
3

⎡
⎣ f4,6

(
1+iy
2

)

g4,6
(
1+iy
2

)
⎤
⎦ ys−1dy, (44)

g4,6(z) = (w2 − 3)2(w4 + 9)

8w4
f4,6(z) = 5q + 102q2 + 945q3 + O(q4), (45)

D1E2 − D2E1 = 1

24π3
. (46)

At 6 loops, it is conjecturally achieved by

det

[
M (1, 7, 1) 32M (1, 7, 3) − 64M (1, 7, 5)
M (2, 6, 1) 32M (2, 6, 3) − 64M (2, 6, 5)

]
= 5π6

192
, (47)

F2

4
= M (1, 7, 1)

π6

?= 32M (1, 7, 3) − 64M (1, 7, 5)

π6
+ 35G2

108
, (48)

9F1

28
= M (2, 6, 1)

π5

?= 32M (2, 6, 3) − 64M (2, 6, 5)

π5
+ 5G1

12
, (49)

[
Fs

Gs

]
= −

∫ ∞

1/
√
3

⎡
⎣ f6,6

(
1+iy
2

)

g6,6
(
1+iy
2

)
⎤
⎦ (3y2 − 1)ys−1dy, (50)

g6,6(z) = (w2 − 3)4

16w4
f6,6(z) = q + 36q2 + 567q3 + 5264q4 + O(q5), (51)

F1G2 − F2G1
?= 1

4π5
, (52)

where the question marks indicate unproven discoveries, checked to thousands of
digits of numerical precision.

3 Rademacher Sums for Fourier Coefficients
of Eta Quotients

For positive integers N , M and n, we define the Rademacher sums

RN ,M (n) =
∑

c>0, gcd(c,N )=1

2π I1(4π
√
nM /N/c)√

nN/Mc
K(c,N ,M , n) (53)
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Table 1 Eta quotients TN /BN of genus 0 with Fourier coefficients RN ,1(n)/RN ,1(1)

N RN ,1(1) TN BN OEIS

2 4096 η242 η241 A014103

3 729 η123 η121 A121590

4 256 η84 η81 A092877

5 125 η65 η61 A121591

6 72 η2η
5
6 η51η3 A128638

7 49 η47 η41 A121593

8 32 η22η
4
8 η41η

2
4 A107035

9 27 η39 η31 A121589

10 20 η2η
3
10 η31η5 A095846

12 12 η22η3η
3
12 η31η4η

2
6 A187100

13 13 η213 η21 A121597

16 8 η2η
2
16 η21η8 A123655

18 6 η2η3η
2
18 η21η6η9 A128129

25 5 η25 η1 A092885

as sums of Bessel functions multiplied by Kloosterman sums

K(c,N ,M , n) =
∑

r∈[1,c], gcd(r,c)=1

exp

(
2π i(Mr − ns)

c

)∣∣∣∣
Nrs = 1 mod c

. (54)

In (53) the sum is over all positive integers c coprime toN . In (54) the sum is over the
integers r ∈ [1, c] coprime to c and s ∈ [1, c] is the inverse ofNrmodulo c. It follows
from these definitions thatRN ,M (n)/M = RN ,n(M )/n and thatRN ,M (n) = RdN ,dM (n)
for every positive integer d that divides N .

3.1 Genus 0

We found that RN ,1(n)/RN ,1(1) is the coefficient of qn in an eta quotient TN/BN

defining an OEIS sequence in the genus 0 cases of Table 1, where the eta quotients
agree with the canonical Hauptmoduln in [24, Table 8].

For n > 0, Rademacher [27] obtained R1,1(n) as the coefficient of qn of

j(z) = 1

η24
1

(
1 + 240

∑
n>0

n3qn

1 − qn

)3

= 1

q
+ 744 + 196884q + O(q2) (55)

which is invariant under z �→ (az + b)/(cz + d) with integers satisfying
ad − bc = 1.
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We remark that analytic continuation of (53) to n = 0 gives R1,1(0) = 24, which
differs from the constant term 744 in (55). Our work concerns only the values of
RN ,M (n) for integers n > 0.

The congruence subgroup Γ0(N ) is the group of Möbius transformations with
N |c. The Hauptmodul

η2η
5
6

η5
1η3

= q + 5q2 + 19q3 + 61q4 + 174q5 + 455q6 + 1112q7 + · · · (56)

of Γ0(6) has a Fourier coefficient R6,1(n)/72 = A128638(n), which we are now able
to evaluate at large n. We found that this Fourier coefficient is odd if and only if the
core (i.e. the square-free part) of n is a divisor of 6.We determined the probably prime
values of A128638(n) for n ∈ [1, 900000000] and found these occur at surprisingly
few values of n, namely these: 2, 3, 4, 9, 32, 48, 324, 578, 864, 121032, 940896,
11723776, 88360000, 180848704, 198443569.

We remark thatA128638(900000000), with 66832 decimal digits,would be rather
hard to compute in the absence of a Rademacher-sum formula.

3.2 Further Examples of Integer Sequences

We found several integer sequences of the form RN ,M (n)/D, with gcd(N ,M ) = 1,
N > M > 1 and integer D, as for example in Table 2.

We identified some of the generating functions, as follows

∑
n>0

R3,2(n)q
n = 37η12

3

η12
1

(
8 + 35η12

3

η12
1

)
(57)

∑
n>0

R5,2(n)q
n = 53η6

5

η6
1

(
12 + 53η6

5

η6
1

)
(58)

∑
n>0

R7,2(n)q
n = 72η4

7

η4
1

(
8 + 72η4

7

η4
1

)
(59)

∑
n>0

R9,2(n)q
n = 34η3

9

η3
1

(
2 + 32η3

9

η3
1

)
(60)

∑
n>0

R13,2(n)q
n = 13η2

13

η2
1

(
4 + 13η2

13

η2
1

)
(61)

∑
n>0

R16,3(n)q
n = 8

(
η18
2

η12
1 η6

4

− 1

)
. (62)
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Table 2 Examples of integer sequences RN ,M (n)/D

N M D Sequence

3 2 37 8, 339, 6552, 82796, 790896, 6171606, 41232064, 243306300,…

4 3 210 33, 1800, 42412, 633024, 7003278, 62405984, 471069624,
3114275328,…

5 2 53 12, 197, 1824, 12426, 68780, 327819, 1391472, 5383270,
19289244,…

6 5 432 145, 10085, 286435, 5004925, 63619086, 642751655,
5445694040,…

7 2 72 8, 81, 504, 2476, 10248, 37590, 125328, 387384, 1123992,
3092369,…

8 3 27 9, 132, 1132, 7200, 37566, 169648, 685368, 2532096, 8688909,…

9 2 34 2, 15, 72, 287, 984, 3051, 8704, 23286, 58968, 142677, 331728,…

10 3 80 6, 63, 418, 2139, 9216, 35004, 120594, 384147, 1146842,
3241083,…

11 8 112 234, 11950, 266994, 3812019, 40551362, 348772038,
2548265460,…

12 5 72 25, 435, 4255, 30255, 174126, 859305, 3766760, 15014775,
55334545,…

13 2 13 4, 21, 72, 222, 600, 1509, 3536, 7902, 16860, 34740, 69264, 134412,
…

14 5 56 17, 229, 1852, 11213, 55998, 243084, 946991, 3382221,
11242933,…

15 7 45 67, 1398, 15919, 128386, 826187, 4509396, 21688133, 94244610,…

16 3 25 3, 18, 76, 264, 810, 2264, 5880, 14400, 33583, 75132, 162180,
339296,…

17 3 17 5, 26, 107, 352, 1045, 2814, 7091, 16842, 38225, 83260, 175329,…

18 5 36 10, 95, 580, 2770, 11226, 40340, 132080, 401255, 1145740,
3104412,…

19 2 19 1, 4, 10, 25, 55, 116, 229, 440, 809, 1455, 2541, 4354, 7300, 12050,…

Moreover,

∑
n>0

R18,2(n)q
n = 4

(
η6
2η

2
3

η6
1η

2
6

− 1

)
(63)

∑
n>0

R27,2(n)q
n = 3

(
η4
3

η3
1η9

− 1

)
(64)

∑
n>0

R32,3(n)q
n = 4

(
η2
2η

4
4

η4
1η

2
8

− 1

)
(65)

∑
n>0

R36,5(n)q
n = 6

(
η5
2η

5
3

η7
1η

3
6

− 1

)
(66)

∑
n>0

R48,7(n)q
n = 6

(
η8
2η

4
3

η8
1η

2
4η

2
6

− 1

)
(67)
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∑
n>0

R64,3(n)q
n = 2

(
η2η

2
4

η2
1η8

− 1

)
(68)

∑
n>0

R64,7(n)q
n = 4

(
η7
2

η6
1η8

− 1

)
. (69)

When N > 1 has genus 0, RN ,M (n) is an integer sequence generated by a poly-
nomial of degree M in the eta quotient that generates RN ,1(n). Thus, for exam-
ple, we may compute the coefficient of qn in (η25/η1)

P from a linear combination
of Rademacher-type formulas for R25,M (n) with M ∈ [1,P], using polynomials in
g = ∑

n>0 R25,1(n)qn = 5η25/η1 as follows:
∑
n>0

R25,2(n)q
n = 2g + g2 (70)

∑
n>0

R25,3(n)q
n = 6g + 3g2 + g3 (71)

∑
n>0

R25,4(n)q
n = 12g + 10g2 + 4g3 + g4 (72)

∑
n>0

R25,5(n)q
n = 25g + 25g2 + 15g3 + 5g4 + g5 = 53η65

η61
(73)

∑
n>0

R25,6(n)q
n = 42g + 60g2 + 44g3 + 21g4 + 6g5 + g6 (74)

∑
n>0

R25,7(n)q
n = 77g + 126g2 + 119g3 + 70g4 + 28g5 + 7g6 + g7 (75)

∑
n>0

R25,8(n)q
n = 120g + 260g2 + 288g3 + 210g4 + 104g5 + 36g6 + 8g7 + g8. (76)

3.3 Genus 1

The genus g0(N ) of Γ0(N ) is computed in Pari-GP by a procedure

g0(N)={local(f=factor(N),t=vector(4,k,1),p,r,n);

for(k=1,matsize(f)[1],p=f[k,1];r=f[k,2];n=pˆr;

t[1]*=n*(1+1/p);t[2]*=if(n==2,1,if(p%4==1,2));

t[3]*=if(n==3,1,if(p%3==1,2));

t[4]*=if(r%2,2*pˆ((r-1)/2),(p+1)*pˆ(r/2-1)));

1+t[1]/12-t[2]/4-t[3]/3-t[4]/2;}

that combines 4 multiplicative functions [18, 25, 31].
We conjecture that only when N has genus 0 is RN ,1(n) an integer sequence. To

deal with genus 1, we introduced the additional parameterM into RN ,M (n). For each
level N with genus 1, we specify in Table 3 the prime values ofM < 1000, coprime
to N , for which RN ,M (n) is an integer sequence.
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Table 3 PrimesM such that
RN ,M (n) is an integer
sequence for N with genus 1

N primes M < 1000

11 19, 29, 199, 569, 809

14 5, 11, 23, 71, 101, 263, 503

15 7, 23, 31, 79, 167, 431, 479, 983

17 3, 11, 47, 359, 967

19 2, 23, 257, 449, 509, 521, 641

20 11, 131, 251, 491, 599

21 23, 31, 47, 71, 127, 367, 383, 743

24 7, 47, 191, 383, 439

27 M = 2 mod 3

32 M = 3 mod 4

36 M = 5 mod 6

49 M = 3, 5, 6 mod 7

At genus 1, the criterion for whether RN ,M (n) forms an integer sequence is pro-
vided by the Fourier expansion of the unique weight 2 cusp form of level N , which
we denote by fN = ∑

M>0 CN ,M qM . Specifically,

f11 = (η1η11)
2 (77)

f14 = η1η2η7η14 (78)
f15 = η1η3η5η15 (79)
f17 = q − q2 − q4 − 2q5 + 4q7 + 3q8 − 3q9 + 2q10 − 2q13 + · · · (80)
f19 = q − 2q3 − 2q4 + 3q5 − q7 + q9 + 3q11 + 4q12 − 4q13 . . . (81)
f20 = (η2η10)

2 (82)
f21 = q − q2 + q3 − q4 − 2q5 − q6 − q7 + 3q8 + q9 + 2q10 + 4q11 − q12 + · · · (83)
f24 = η2η4η6η12 (84)
f27 = (η3η9)

2 (85)
f32 = (η4η8)

2 (86)
f36 = η46 (87)

f49 = q + q2 − q4 − 3q8 − 3q9 + 4q11 − q16 − 3q18 + 4q22 . . . (88)

with explicit formulas for N = 17, 19, 21, 49 given below in (97)–(99).
For N with genus 1, we found that RN ,M (n) is an integer sequence if and only if

CN ,M = 0. Moreover

RN ,M (n) = RN ,M (n) − CN ,MRN ,1(n) (89)

is always an integer sequence, with RN ,1(n) = 0, by construction.
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Table 4 Elliptic curves EN for N with genus 1

N CN ,2 CN ,3 EN

11 −2 −1 Y 2 + 6XY + 121Y = X 3 + 38X 2 + 363X

14 −1 −2 Y 2 + 3XY + 56Y = X 3 + 25X 2 + 168X

15 −1 −1 Y 2 + 3XY + 45Y = X 3 + 23X 2 + 135X

17 −1 0 Y 2 + 3XY + 34Y = X 3 + 18X 2 + 85X

19 0 −2 Y 2 + 19Y = X 3 + 16X 2 + 76X

20 0 −2 Y 2 + 20Y = X 3 + 13X 2 + 60X

21 −1 1 Y 2 + 3XY + 21Y = X 3 + 13X 2 + 42X

24 0 −1 Y 2 + 12Y = X 3 + 11X 2 + 36X

27 0 0 Y 2 + 9Y = X 3 + 9X 2 + 27X

32 0 0 Y 2 + 8Y = X 3 + 6X 2 + 16X

36 0 0 Y 2 + 6Y = X 3 + 6X 2 + 12X

49 1 0 Y 2 − 3XY = X 3 + 3X 2 + 7X

With GN ,M = ∑
n>0 RN ,M (n)qn, we found at N = 21 that

7

(
η3η

3
7

η3
1η21

− 1

)
= G21,2, (90)

33
(

η7
3η7

η7
1η21

− 1

)
= G21,4 + G21,3 + 2G21,2, (91)

72
(

η2
3η

6
7

η6
1η

2
21

− 1

)
= G21,4 + 2G21,3 + 5G21,2, (92)

337η4
3η

2
21

η6
1

= G21,4 − 2G21,3 − G21,2, (93)

3372η3η
5
21

η5
1η7

= G21,4 − 5G21,3 + 5G21,2, (94)

337η6
3η

2
7

η8
1

= G21,5 − 2G21,2, (95)

3372η3
3η7η

3
21

η7
1

= G21,5 − 3G21,4 + 4G21,2. (96)

For each level N with genus 1, we found that (X , Y ) = (GN ,2, GN ,3) is a point
on an elliptic curve EN specified in Table 4 and verified up to O(q20000). More-
over GN ,M = P0(X ) + P1(X )Y where P0 and P1 are polynomials with degrees not
exceeding M /2 and (M − 3)/2, respectively.

With N = 21, relations (90)–(92) show that X = G21,2 is determined by an eta
quotient and that Y = G21,3 is determined by 3 eta quotients. The transformation
(X , Y ) = (x − 5, y − x − 3) yields aminimalmodel y2 + xy = x3 − 4x − 1,whose
small coefficients were noted in [19].
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Applying the ellak procedure of Pari-GP to EN , we reproduce the Fourier
coefficients of fN = ∑

M>0 CN ,M qM . Thanks to work recorded at OEIS, we are able
to provide formulas for fN in the 4 cases where a single eta quotient does not suffice,
namely for N = 17, 19, 21, 49:

f17 = η1η17 (ψ2φ17 − ψ34φ1) , f19 = (ψ4φ38 − ψ1ψ19 + ψ76φ2)
2 , (97)

f21 = 3(η3
7η

3
9 + η1η

2
7η

2
9η63 + η2

1η7η9η
2
63)

2η3η21
− η4

3η
2
7

2η2
1

+ 7η3η7η
3
21

2η1
− 3η4

3η7η63

2η1η9
, (98)

f49 = θ3
7,14

(
qθ21,28 + q2θ14,35 − q4θ7,42

)
, (99)

ψn = η2
2n

ηn
, φn = η5

2n

η2
nη

2
4n

, θa,b =
∞∑

n=−∞

(−qa
)(n2+n)/2 (−qb

)(n2−n)/2
, (100)

with (99) recorded in [14]. AtN = 49, we have complexmultiplication, withC49,p =
0 for prime p = 3, 5, 6 mod 7. Moreover we have a pair of eta quotients,

x = η49

η1
= G49,2

7
, y = η4

7

η4
1

= G49,7

72
, (101)

with Fourier coefficients given by Rademacher sums. The latter is determined by
G49,2 and G49,3. Hence the elliptic curve E49 provides an algebraic relation between
these eta quotients, namely

(2y − 7x − 35x2 − 49x3)2 = (4x + 21x2 + 28x3)(1 + 7x + 7x2)2. (102)

At N = 21, we found 2937 eta quotients whose Fourier coefficients are linear
combinations of R21,M (n) with M ≤ 50. Including the unit quotient, the tally of
2938 is the coefficient of x50 in the generating function

T21(x) = 1 − x + x2 − x3 + 2x4

(1 − x)2(1 − x4)2
(103)

which predicts a total of 22126 eta quotients with Fourier coefficients determined by
R21,M (n) forM ≤ 100. We have identified all of these.

At N = 36, with 9 divisors, the corresponding tallies of eta quotients are spectac-
ularly large. Using Padé approximants, the generating function was found to be

T36(x) = H (x) + x18H (1/x)

(1 − x)4(1 − x3)2(1 − x4)2(1 − x12)
, (104)

H (x) = 1 − 3x + 6x2 − 3x3 + 6x4 + x5 + x6 + 4x7 + 4x8 + x9, (105)

giving 49307076 eta quotients with Fourier coefficients determined by R36,M (n) for
M ≤ 50 and 8204657877 for M ≤ 100. We were able to identify all of these, by
taking products of 78 eta quotients found at M ≤ 12 and eliminating redundancies.
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Usingmore refinedmethods, we also validated the monstrous tally of 180919436828
forM ≤ 150.

From the denominator of T36(x) = ∑
n≥0(c(M ) + 1)xM it is clear that the number

c(M ) of non-trivial eta quotients determined by our procedures may be found by
polynomial interpolation at integers with the same residue modulo 12.We denote the
result by c(M ) = p(M ) + qr(M )/12 forM = r mod 12, with a leading polynomial

p(n) = (n + 1)(n + 3)(n + 5)(n + 7)(n + 9)(n + 11)((n + 6)2 − 7)

1935360
− 1 (106)

of degree 8 and sub-dominant terms that are at most quadratic:

q0(n) = q3(n) + q4(n) + 5, (107)

q1(n) = q5(n) = q7(n) = q11(n) = 0, (108)

q2(n) = q10(n) = 2(n + 6)2 − 5

512
, (109)

q3(n) = q9(n) = (n + 3)(n + 9)

9
, (110)

q4(n) = q8(n) = q2(n) + (n + 4)(n + 8)

16
, (111)

q6(n) = q2(n) + q3(n) + 1. (112)

The situation at the prime levels N = 11, 17, 19 is rather different. Here we have
a wealth of Rademacher sums but only one eta quotient. Consider the case N = 19.
Since f19 = q + O(q3), we have C19,2 = 0 and hence R19,2(n) yields integers. As
noted, the sequence R19,2(n)/19 begins with

1, 4, 10, 25, 55, 116, 229, 440, 809, 1455, 2541, 4354, 7300, 12050, . . .

This sequence may be developed using η4
19/η

4
1, which is determined by G19,2 and

G19,3. The elliptic curve relating the latter pair gives an algebraic relation between
G19,2 and the eta quotient, namely

s3/e19 = 1 + 8s + 19e19, s = G19,2/19, e19 = η4
19/η

4
1, (113)

from which the expansion of s = q + O(q2) is easy developed, iteratively.
Similarly, at N = 11 and N = 17 we obtain the algebraic relations

t5/e11 = 1 + 13t + 34t2 + 112e11, t = G11,2/11
2, e11 = η12

11/η
12
1 , (114)

u4/e17 = 16 + 64u + 34u2 − 172e17, u = G17,2/17, e17 = η6
17/η

6
1, (115)

and hence develop the expansions of t = q + O(q2) and u = 2q + O(q2).
Intermediate between the plethora of eta quotients at N = 36, with 9 divisors,

and their relative scarcity at N = 11, 17, 19, 49, with less than 4 divisors, sit the
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remaining genus 1 levels, N = 14, 15, 20, 21, 24, 27, 32. Proceeding as for N = 21,
we found the generating functions

T14(x) = 1 + x3 + 2x4 + x6 + x7

(1 − x)(1 − x2)(1 − x3)(1 − x6)
, (116)

T15(x) = T21(x) = 1 − x + x2 − x3 + 2x4

(1 − x)2(1 − x4)2
, (117)

T20(x) = 1 − x + x2 + 4x3 + 2x4 + 3x6 + x7 + x8

(1 − x)2(1 − x2)2(1 − x3)(1 − x6)
, (118)

T24(x) = (1 + x3)
(
h(x) + x6h(1/x)

)
(1 − x)3(1 − x2)3(1 − x4)2

, h(x) = 1 − 2x + 3x2 + 2x3, (119)

T27(x) = 1 − x11

(1 − x)(1 − x2)(1 − x3)(1 − x5)(1 − x6)
, (120)

T32(x) = 1 − x + x2 + 2x3 + x4 − x5 + x6

(1 − x)2(1 − x2)2(1 − x4)2
, (121)

with the coefficient of xm in TN (x) giving the number of eta quotients whose Fourier
coefficients are determined by linear combinations of the Rademacher sumsRN ,M (n)
withM ≤ m.

3.4 Rational Rademacher Sums

There are 5 levels with genus greater than 0 for which it appears that the Rademacher
sumsRN ,M (n) are rational for all positive integersM andn, namelyN = 27, 32, 36, 49
with genus 1 and N = 64 with genus 3. At genus 1, we convert these rationals to the
integers

RN ,M (n) = RN ,M (n) − CN ,MRN ,1(n), (122)

which vanish at M = 1. The rationals R64,M (n) do not form integer sequences for
M = 1, 2, 5 mod 8. To remedy this, we define

g8k+r =
∑
n>0

(
R64,8k+r(n) − ck,rR64,r(n)

)
qn, (123)

ck,1 =C32,8k+1, ck,2 = C32,4k+1, ck,5 = −C32,8k+5/2, (124)

with k ≥ 0, r ∈ [1, 8] and ck,r = 0 for r = 3, 4, 6, 7, 8. Then gM has integer Fourier
coefficients, which vanish forM = 1, 2, 5. Eta quotients appear in

g3
2

= η2η
2
4

η21η8

− 1,
g4
8

= η2η
2
16

η21η8

,
g6
4

= η22η
4
4

η41η
2
8

− 1,
g7
4

= η72

η61η8

− 1,
g8
32

= η22η
4
8

η41η
2
4

.

(125)
Moreover, g6 = (4 + g3)g3, g7 = 2g3 + (2 + g3)g4, g8 = (4 + g4)g4.
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We found that (X ,Y ) = (g3 + 2, g4 + 2) is a point on the genus 3 curve

Y (Y 2 + 4) = X 4 (126)

and that gM = P0(X ) + P1(X )Y + P2(X )Y 2, withPn a polynomial of degree at most
�(M − 4n)/3
. Every eta quotient of that form has Fourier coefficients that are linear
combinations of Rademacher sums at N = 64.

3.5 Genus 2

It is instructive to compare the genus 3 case N = 64 with the genus 2 case N = 50.
For the latter we construct integer sequences as follows:

R50,M (n) =
⎧⎨
⎩
R50,M (n) − d(M )R50,1(n), for M = 1, 4 mod 5,
R50,M (n) + d(M )R50,2(n), for M = 2, 3 mod 5,
R50,M (n), for M = 0 mod 5,

(127)

∑
M>0

d(M )qM = f50 = q − q2 + q3 + q4 − q6 + 2q7 − q8 − 2q9 + O(q11), (128)

where f50 is the weight 2 level 50 Hecke eigenform whose Fourier coefficients d(M )

are obtained from the L-series of the elliptic curve y(y + x + 1) = x3 − x − 2. Then
G50,M = ∑

n>0 R50,M (n)qn vanishes by construction atM = 1, 2 and yields eta quo-
tients at M = 3, 5, with

G50,3

5
= η2η

2
25

η2
1η50

− 1,
G50,5

20
= η2η

3
10

η3
1η5

. (129)

The Fourier coefficients of G50,4 are also identified by an eta quotient: R50,4(n)/10
is the coefficient of q2n in the Fourier expansion of η25/η1.

We found that (X ,Y ) = (G50,3,G50,4) is a point on the curve

Y 3 + 4(X + 5)Y 2 + 2(X + 5)(X + 10)Y = X (X + 5)(X 2 + 8X + 20) (130)

which Sage confirmed as having genus 2.
Proceeding similarly for (X ,Y ) = (GN ,3,GN ,4) we found the curves

Y 3 + 55Y 2 − 2(X 2 + 11X − 484)Y = X (X 3 + 34X 2 + 473X + 2904) (131)

Y 3 + 2(4X + 69)Y 2 + (9X 2 + 460X + 4761)Y = X (X 3 + 55X 2 + 1035X + 6348)
(132)

Y 3 + 8(X + 13)Y 2 + 4(X + 13)(3X + 52)Y = X (X + 13)(X 2 + 28X + 208) (133)

Y 3 + 21Y 2 + (5X 2 + 70X + 392)Y = X (X + 14)(X 2 + 14X + 56) (134)
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Y 3 + 2(2X + 29)Y 2 − (4X 2 − 58X − 841)Y = X (X 3 + 31X 2 + 406X + 1682) (135)

Y 3 + 2(4X + 31)Y 2 + (11X 2 + 217X + 961)Y = X (X 3 + 31X 2 + 310X + 961) (136)

Y 3 − 8XY 2 − X (2X + 259)Y = X (X 3 − 10X 2 + 148X + 1369) (137)

at N = 22, 23, 26, 28, 29, 31, 37, respectively. All have genus 2.

3.6 Genus 3

We found these genus 3 curves for N = 30, 33, 34, 35, 39, 40, 41, 43, 45, 48, 64:

Y 2(Y − 2X )(Y − 3X ) + X (7X 2 − 30X + 75)Y

= X 5 + 25X (4X − 5), with (X ,Y ) = (G30,4 + 5,G30,5 + 10), (138)

Y 4 + X (5X − 11)Y 2 − X 2(4X − 11)Y

= X 3(X 2 − 11X + 22), with (X ,Y ) = (G33,4 + 11,G33,5 + 11), (139)

Y 4 + 10XY 3 + X (21X − 221)Y 2 + 2X (3X 2 − 119X + 867)Y

= X (X 4 − 2X 3 + 51X 2 − 578X + 4913), with (X ,Y ) = (G34,4 + 17,G34,5 + 17),
(140)

Y 4 + 10(X − 3)Y 3 + (31X 2 − 210X + 800)Y 2 + (12X 3 + 25X 2 + 200X − 2000)Y

= X (X 4 − 5X 3 − 15X 2 − 200X − 2000), with (X ,Y ) = (G35,4 + 20,G35,5 + 10),
(141)

Y 4 + 5XY 3 + 3X (X + 13)Y 2 − X (19X 2 − 234X + 507)Y

= X (X 4 − 14X 3 + 234X 2 − 1690X + 2197), with (X ,Y ) = (G39,4 + 13,G39,5 + 13),
(142)

Y 4 = X (X + 5)(X 2(X + 4) − 4Y 2), with (X ,Y ) = (G40,4,G40,5), (143)

Y 4 + (10X − 41)Y 3 + X (30X − 451)Y 2 + X 2(11X − 1681)Y

= X 3(X 2 + 70X + 2214), with (X ,Y ) = (G41,4,G41,5 + 41), (144)

32Y 4 + (40X + 43)Y 3 + (94X 2 + 1591X + 9245)Y 2 + X (49X 2 + 946X + 5547)Y

= X 3(X 2 + 21X + 129), with (X ,Y ) = (G43,3,G43,5 − 2G43,3), (145)

(Y 2 + 5X )2 = X 3(X 2 − Y ), with (X ,Y ) = (G45,4 + 5,G45,5 + 5), (146)

Y 4 = X 3(X − 3)(X − 4), with (X ,Y ) = (G48,4 + 6,G48,5 + 6), (147)

Y (Y 2 + 4) = X 4, with (X ,Y ) = (G64,3 + 2,G64,4 + 2), (148)

where the final curve at N = 64 was already given in (126) and was obtained by
subtractions that make G64,M vanish at M = 1, 2, 5. At N = 43, the subtractions
make G43,M vanish at M = 1, 2, 4. In all other cases with genus 3, GN ,M vanishes
forM = 1, 2, 3.
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3.7 Genus 4

At N = 81, we found that (X ,Y ) = (G81,5,G81,6) lies on the genus 4 curve

Y 3(Y + 3)2 + 3(X + 3)3(Y + 3)(2Y + 3) = (X + 3)6,
Y

3
= η4

3

η3
1η9

− 1. (149)

The Fourier coefficients of X /9 form an integer sequence beginning with

1, 2, 4, 7, 13, 21, 35, 55, 87, 132, 200, 295, 434, 625, 897, 1267, 1782, 2475, . . .

for n = 1 to 18. The general term is given by Rademacher sums as

R81,5(n) + R81,2(n)

9
= exp(4π

√
5n/9)

27(4n3/5)1/4

(
1 − 27

32π
√
5n

+ O(1/n)

)
. (150)

The Fourier coefficients of Y /9 form an integer sequence beginning with

1, 3, 6, 13, 24, 45, 77, 132, 216, 351, 552, 861, 1313, 1986, 2952, 4354, 6336, . . .

for n = 1 to 17. The general term is given by a Rademacher sum

R81,6(n)

9
= exp(4π

√
6n/9)

27(2n3/3)1/4

(
1 − 27

32π
√
6n

+ O(1/n)

)
. (151)

3.8 Genus 5

At N = 72, with genus 5, we obtain integer Fourier coefficients in

G72,M =
∑
n>0

R72,M (n)qn, R72,M (n) = R72,M (n) −
∑

r=1,2,3,5,7

pr(M )R72,r(n),

(152)

η2
12η

4
18/η

2
36 =

∑
n>0

p1(n)q
n, η4

12 =
∑
n>0

p2(n)q
n, η6η12η18η36 =

∑
n>0

p3(n)q
n,

(153)

η2
6η

4
36/η

2
18 =

∑
n>0

p5(n)q
n, η4

6 =
∑
n>0

(p1(n) − 4p7(n)) q
n. (154)

Then G72,M vanishes for M = 1, 2, 3, 5, 7. Moreover (G72,4, G72,6) is a point on
the elliptic curve E36, while (G72,6, G72,9) lies on E24. Eliminating G72,6, we obtain
a genus 5 curve from the resultant:
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(
Y 2 + 12Y + 34 − 2(X + 2)3

)2 = (
(X + 2)3 + 1

) (
(X + 2)3 − 2

)2
, (155)

X = G72,4 = 6η2η3η
2
18

η2
1η6η9

, Y = G72,9 = 6η5
2η

2
3η6

η6
1η4η12

− 6. (156)

The Fourier coefficients of X /6 are the integers R18,1(n)/6 = A128129(n). The
Fourier coefficients of Y /12 form an integer sequence beginning with

3, 11, 33, 87, 210, 473, 1008, 2055, 4035, 7674, 14196, 25629, 45282, 78472, . . .

for n = 1 to 14. The general term is given by Rademacher sums as

R24,3(n) + R24,1(n)

12
= exp(π

√
2n)

24(2n3)1/4

(
1 − 3

8π
√
2n

+ O(1/n)

)
. (157)

3.9 Genus 6

Moving on to the genus 6 caseN = 121, we determined that subtractions of R121,r(n)
are needed for the 6 values r = 1, 2, 3, 4, 6, 11. The coefficients of these subtractions
are determined by four new forms and two old forms of weight 2 and level 121. The
new forms are the L-series of the elliptic curves y2 + xy + y = x3 + x2 − 30x − 76,
y2 + y = x3 − x2 − 7x + 10, y2 + xy = x3 + x2 − 2x − 7 and y2 + y = x3 − x2 −
40x − 221. The old forms are (η1η11)

2 and (η11η121)
2. The first two non-zero integer

series are

R121,5(n) = R121,5(n) − R121,4(n) − R121,3(n), R121,7(n) = R121,7(n) + R121,6(n).
(158)

We expect their generators, G121,5 and G121,7, to define a curve of genus 6 with
degree 7 in G121,5 and degree 5 in G121,7. This is indeed the case. We found that
(X ,Y ) = (G121,5/11,G121,7/11) is a point on the curve

Y 5 − 20XY 4 + 5X (10X − 9)Y 3 = X (132X 3 − 64X 2 − 33X + 31)Y 2

+ X (33X 4 + 95X 3 − 48X 2 − 5X + 9)Y

+ X (121X 6 − 66X 5 + 23X 4 + 18X 3 − 9X 2 + 1) (159)

whichSage confirmedas havinggenus 6. Since integer combinations ofRademacher
sums are computable with ease, we are able to validate this curve up to O(q1000) in
a matter of seconds.
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3.10 Genus 7

In the genus 7 caseN = 100,wedetermined that subtractions ofR100,r(n) are required
for the 7 values r = 1, 2, 3, 4, 5, 7, 9, with coefficients determined by 6 old forms of
weight 2 and level 100 and a new form

f100 = q + 2q3 − 2q7 + q9 − 2q13 + 6q17 − 4q19 − 4q21 − 6q23 − 4q27 + 6q29 + O(q31)
(160)

which is the L-series of the elliptic curve y2 = x3 − x2 − 33x + 62.
We found that (X ,Y ) = (G100,6 + 5,G100,15 + 10) lies on the genus 7 curve

Y 6 = X (3X 4 − 90X 3 + 415X 2 − 560X + 200)Y 4

− X (3X 9 + 20X 8 − 350X 7 + 1795X 6 − 4790X 5

+ 7805X 4 − 8350X 3 + 7325X 2 − 4625X + 1375)Y 2

+X (X 2 + 2X+5)(X 4 − 6X 3 + 14X 2 − 10X + 5)2(X 4 − 5X 3 + 15X 2 − 25X + 25),
(161)

with X /5 = η2η
2
25/(η

2
1η50) and the Fourier coefficients of Y /10 given by

1, 6, 26, 88, 258, 686, 1688, 3904, 8594, 18142, 36946, 72952, 140184, 262948, . . .

for n = 0 to 13, and in general by (R100,15(n) + 2R100,5(n))/10 for n > 0.

3.11 Genus 8

When N = p2 with prime p = 12k + 1, the genus of Γ0(N ) is given by g0(N ) =
3k(4k − 1) − 1. Setting k = 1, we obtain g0(169) = 8. Moreover N = 169 is the
largest level with genus 8.We devised a procedure of 8 subtractions that gives integer
sequences R169,M (n) by subtracting multiples of R169,r(n), with r = 1, 2, 3, 4, 5,
6, 8, 9. The subtraction coefficients are determined by 8 modular forms of level
169 and weight 2, of which two have Fourier coefficients in Q(

√
3). The rest have

coefficients in the cubic number fields x(x2 − 1) = ±(1 − 2x2).
Our first non-zero integer sequence occurs atM = 7, where

R169,7(n) = R169,7(n) − R169,6(n) − R169,5(n) + R169,2(n) (162)

is the coefficient of qn in G169,7 = 13η169/η1. There is no subtraction at M = 13,
where G169,13 = G13,1 = 13η2

13/η
2
1.

We found that (X ,Y ) = (G169,7/13,G169,13/13) is point on a genus 8 curve with
degree 13 in X and degree 7 in Y , namely

Y 7 = 143XY 6 + 156X (39X 2 − 17X + 3)Y 5 + X
6∑

k=2

Pk (X )Y 6−k , (163)
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P2(X ) = 26(3211X 4 − 2249X 3 + 819X 2 − 173X + 19), (164)

P3(X ) = 26(21970X 6 − 18759X 5 + 8619X 4 − 2743X 3 + 663X 2 − 111X + 10), (165)

P4(X ) = 26(169X 4 − 104X 3 + 39X 2 − 8X + 1)(507X 4 − 169X 3 + 26X 2 − 13X + 3),
(166)

P5(X ) = 13(371293X 10 − 371293X 9 + 199927X 8 − 81289X 7

+ 28561X 6 − 8619X 5 + 2197X 4 − 481X 3 + 91X 2 − 13X + 1), (167)

P6(X ) = 4826809X 12 − 4826809X 11 + 2599051X 10 − 1113879X 9 + 428415X 8

− 142805X 7 + 41743X 6 − 10985X 5 + 2535X 4 − 507X 3 + 91X 2 − 13X + 1. (168)

3.12 Genus 13

Finally,we studiedN = 144,with genus 13. Integer sequences are obtained after sub-
tractions at r = 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 19, with coefficients determined
by 11 old forms and two new forms. The old forms were already encountered as
eta quotients at N = 48 and N = 72. They determine the subtractions for R144,M (n)
when M is divisible by 3 or 2. The new forms relate to the subtractions that are
needed when M is coprime to 6. One of these new forms is the eta quotient

f144a = η12
12

η6
4η

4
24

= q + 4q7 + 2q13 − 8q19 − 5q25 + 4q31 + · · · (169)

The other has Fourier coefficients determined by the L-series of the elliptic curve
y2 = x3 + 6x + 7, which gives

f144b = q + 2q5 + 4q11 − 2q13 − 2q17 + 4q19 − 8q23 − q25 − 6q29 − 8q31 + . . .

(170)
We reduced this to a telling combination of 5 eta quotients with weight 2:

f144b = η3
24η

2
36η72

η48η144
+ 2η12η

2
24η

4
72

η36η48η144
+ 4η2

12η48η72η144

η24
− 2η12η

3
24η72η

2
144

η36η
2
48

+ 4η2
12η

4
144

η2
72
(171)

withC1(M ) + 2C5(M ) + 4C11(M ) − 2C13(M ) + 4C19(M )giving the coefficient of
qM in (171),whereCr(M )R144,r(n) is subtracted fromR144,M (n) tomakeR144,M (n) an
integer sequence. The subtraction at r = 7 is determined by the eta quotient in (169)
where the coefficient of qM isC1(M ) + 4C7(M ) + 2C13(M ) − 8C19(M ). Hence we
determine all the subtractions by eta quotients.

We are left with 6 values of M < 20 for which G144,M = ∑
n>0 R144,M (n)qn is

non-zero, namelyM = 8, 12, 15, 16, 17, 18. To produce a genus 13 curve we should
choose a coprime pair ofM values. The simplest choice is the pair (8, 15). We know
that (G144,8,G144,18) = (G72,4,G72,9) gives a point on the genus 5 curve (155) found
at N = 72. Moreover (G144,15,G144,18) = (G48,5,G48,6) gives a point on a genus 3
curve that is not hard to determine. Then, by taking a resultant to eliminate G144,18,
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we determined that (X ,Y ) = (G144,8 + 2,G144,15 + 6) lies on the genus 13 curve

(Y 4 − 8(X 3 + 1)2)2 = (X 3 + 1)(X 6 + 20X 3 − 8)2 (172)

neatly parametrized by eta quotients as follows

X

2
= η3

2η3

η3
1η6

,
Y

6
= η2

2η
4
6

η4
1η

2
12

. (173)

3.13 Remarks

Remark 1. After we completed this work, Yajun Zhou kindly called our attention
to [17, Theorem 8.12]. The methods used there may be capable of furnishing proofs
of some of our empirical findings in Sect. 3, following the approach that Knopp [22]
attributes to Rademacher [28] as an “entirely fresh viewpoint”, namely by adopt-
ing formulas (53), (54) as definitions of Fourier coefficients of objects GN ,M and
demonstrating that the latter have the required modular properties. At genus 0, with
a unique Hauptmodul, that could furnish a proof of Table1. At higher genera, more
work might be needed.

Remark 2.We conclude this section with a note on the approach in [32, 33] tomodu-
lar curves. In [33, Section4.1], Yifan Yang gives modular curves, up to levelN = 50,
that are parametrized by quotients of “generalized” Dedekind eta functions [32], in
the many cases where the eta function itself is insufficient to solve the problem.
Moreover his q-expansions are highly singular as q → 0. Our approach was quite
different. We began with an explicit formula (53) that reproduces, at M = 1, the
Fourier coefficients of the genus 0 eta quotients taken as “canonical” Hauptmoduln
in [24, Table 8], which vanish as q → 0. At genus 1, after subtraction of the non-
integer sequence RN ,1(n), we obtained GN ,M = ∑

n>0 RN ,M (n)qn as Fourier series
with integer coefficients, vanishing at q = 0. Then GN ,2 and GN ,3 parametrize our
modular curve. We were able to extend this to higher genera. It may be that our
explicit Fourier coefficients are capable of reproducing those of Yang’s “general-
ized” Dedekind eta quotients, after performing a Fricke involution z �−→ −1/(Nz)
on his Ansätze.We have not investigated this, since it lay outside the remit of our title.

4 Conclusions

1. Eta quotients on Γ0(6), with 4 cusps, neatly solve the equal-mass two and three
loop sunrise problems, whose differential equations with respect to the external
energy have 4 singular points. This cannot continue, since at higher loops there
is more than one pseudo-threshold.

2. Atkin–Lehner transformations on Γ0(6) yield optimal nomes.
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3. For the on-shell problem, Eichler integrals of eta quotients on Γ0(6) yield Bessel
moments at 4 and 6 loops that are periods or quasi-periods.

4. Rademacher sums yield the Fourier coefficients of a Hauptmodul for Γ0(6) and
for all other levels of genus 0.

5. After subtractions determined by weight 2 cusp forms, they yield the Fourier
coefficients of vast numbers of eta quotients.

6. They yield the Fourier coefficients of parametrizations of modular curves, irre-
spective of whether the Fourier series are eta quotients.
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On a Class of Feynman Integrals
Evaluating to Iterated Integrals
of Modular Forms

Luise Adams and Stefan Weinzierl

Abstract In this talk we discuss a class of Feynman integrals, which can be
expressed to all orders in the dimensional regularisation parameter as iterated inte-
grals of modular forms. We review the mathematical prerequisites related to elliptic
curves and modular forms. Feynman integrals, which evaluate to iterated integrals
of modular forms go beyond the class of multiple polylogarithms. Nevertheless, we
may bring for all examples considered the associated system of differential equations
by a non-algebraic transformation to an ε-form, which makes a solution in terms of
iterated integrals immediate.

1 Introduction

It is an open and interesting question towhich class of transcendental functions Feyn-
man integrals evaluate. At present, we do not have a general answer. However, there
are sub-classes of Feynman integrals for which the class of functions is known. First
of all, there is the class of Feynman integrals evaluating to multiple polylogarithms.
This covers in particular all one-loop integrals. Starting from two-loops, there are
Feynman integrals which cannot be expressed in terms of multiple polylogarithms.
The simplest example is given by the two-loop equal-mass sunrise integral [1–20].
Integrals, which do not evaluate to multiple polylogarithms are now an active field
of research in particle physics [21–42] and string theory [43–48]. In this talk we
focus on a class of Feynman integrals which evaluate to iterated integrals of modular
forms. Feynman integrals of this class are associated to one elliptic curve and depend
on one scale x = p2/m2. They can be seen as generalisations of single-scale Feyn-
man integrals evaluating to harmonic polylogarithms [49, 50]. We expect that all our
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examples are equally well expressible in terms of elliptic polylogarithms [14–17,
21, 23, 37–40, 51–56]. The representation in terms of iterated integrals of modular
forms has certain advantages:

1. It combines nicely with the technique of differential equations, which by now
is the main tool for solving Feynman integrals [57–67]. In fact, for all examples
consideredwe are able to bring the system of differential equations into an ε-form.

2. It only involves a finite number of integration kernels. The integration kernels are
modular forms.

3. It allows for an efficient numerical evaluation through the q-expansion around
the cusps [25].

Let us also mention, that albeit an important sub-class, this class is not the end of the
story. Multi-scale integrals beyond the class of multiple polylogarithms may involve
more than one elliptic curve, as seen for example in the double box integral relevant
to top-pair production with a closed top loop [27, 28].

2 Periodic Functions and Periods

Let us consider a non-constant meromorphic function f of a complex variable z. A
period ω of the function f is a constant such that

f (z + ω) = f (z) (1)

for all z. The set of all periods of f forms a lattice Λ, which is either

1. trivial: Λ = {0},
2. a simple lattice, generated by one period ω : Λ = {nω | n ∈ Z},
3. a double lattice, generated by two periods ω1, ω2 with Im(ω2/ω1) �= 0:

Λ = {n1ω1 + n2ω2 | n1, n2 ∈ Z}. (2)

It is common practice to order these two periods such that Im(ω2/ω1) > 0.

An example for a singly periodic function is given by

exp (z) . (3)

In this case the simple lattice is generated by ω = 2π i . An example for a doubly
periodic function is given byWeierstrass’s℘-function. LetΛ be the lattice generated
by ω1 and ω2 Then

℘ (z) = 1

z2
+

∑

ω∈Λ\{0}

(
1

(z + ω)2
− 1

ω2

)
. (4)
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℘(z) is periodic with periods ω1 and ω2. Of particular interest are also the corre-
sponding inverse functions. These are in general multivalued functions. In the case
of the exponential function x = exp(z), the inverse function is given by

z = ln (x) . (5)

The inverse function toWeierstrass’s elliptic function x = ℘(z) is an elliptic integral
given by

z =
∞∫

x

dt√
4t3 − g2t − g3

(6)

with

g2 = 60
∑

ω∈Λ\{0}

1

ω4
, g3 = 140

∑

ω∈Λ\{0}

1

ω6
. (7)

In both examples the periods can be expressed as integrals involving only algebraic
functions. For the first examplewemay express the period of the exponential function
as

2π i = 4i

1∫

0

dt√
1 − t2

. (8)

For the second example of Weierstrass’s ℘-function let us assume that g2 and g3 are
two given algebraic numbers. The periods are expressed as

ω1 = 2

t2∫

t1

dt√
4t3 − g2t − g3

, ω2 = 2

t2∫

t3

dt√
4t3 − g2t − g3

, (9)

where t1, t2 and t3 are the roots of the cubic equation 4t3 − g2t − g3 = 0.
The representation of the periods of exp(z) and℘(z) in the form of Eqs. (8) and (9)

is the motivation for the following generalisation, due to Kontsevich and Zagier [68]:
A numerical period is a complex number whose real and imaginary parts are

values of absolutely convergent integrals of rational functions with rational coef-
ficients, over domains in R

n given by polynomial inequalities with rational coef-
ficients. Domains defined by polynomial inequalities with rational coefficients are
called semi-algebraic sets.

We denote the set of numerical periods by P. The numerical periods P are a
countable set of numbers. We may replace in the above definition every occurrence
of “rational function” with “algebraic function” and every occurrence of “rational
number” with “algebraic number” without changing the set of numbers P. Then it is
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clear, that the integrals in Eqs. (8) and (9) are numerical periods in the sense of the
above definition, and so is for example ln 2, since

ln 2 =
2∫

1

dt

t
. (10)

3 Elliptic Curves

A double lattice Λ arises naturally from elliptic curves. Let us consider the elliptic
curve

E : w2 − (z − z1) (z − z2) (z − z3) (z − z4) = 0, (11)

where the roots z j may depend on variables x = (x1, . . . , xt ):

z j = z j (x) , j ∈ {1, 2, 3, 4}. (12)

We set

Z1 = (z3 − z2) (z4 − z1) , Z2 = (z2 − z1) (z4 − z3) , Z3 = (z3 − z1) (z4 − z2) . (13)

Note that we have Z1 + Z2 = Z3. We define the modulus and the complementary
modulus of the elliptic curve E by

k2 = Z1

Z3
, k̄2 = 1 − k2 = Z2

Z3
. (14)

Note that there are six possibilities of defining k2. Our standard choice for the periods
ψ1, ψ2 is

ψ1 = 4K (k)

Z
1
2
3

, ψ2 = 4i K
(
k̄
)

Z
1
2
3

, (15)

where K (x) denotes the complete elliptic integral of the first kind. These two periods
generate a lattice Λ = {n1ψ1 + n2ψ2 | n1, n2 ∈ Z}. We denote the ratio of the two
periods and the nome squared by

τ = ψ2

ψ1
, q = e2iπτ . (16)
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Fig. 1 The periods (1, τ )

and (1, τ ′) generate the same
lattice

1

τ τ ′

Let us note that our choice of periods is not unique. Any other choice related to the
original one by

(
ψ ′

2
ψ ′

1

)
=

(
a b
c d

) (
ψ2

ψ1

)
,

(
a b
c d

)
∈ SL (2,Z) (17)

generates the same lattice Λ. This is shown in Fig. 1. In terms of τ and τ ′ = ψ ′
2/ψ

′
1

the transformation in Eq. (17) reads

τ ′ = aτ + b

cτ + d
(18)

and equals a Möbius transformation. In this talk we are in particular interested in the
situation, where the roots z j in Eq. (12) depend only on a single variable x . In this
case we may exchange the variable x for the variable τ and study our problem as a
function of τ .

4 Modular Forms

Let us now consider functions of τ . We are interested in functions with “nice” prop-
erties under transformations of the form as in Eq. (18). We denote by H = { τ ∈
C | Im(τ ) > 0 } the complex upper half plane and by H the extended upper half
plane

H = H ∪ {∞} ∪ Q. (19)

A meromorphic function f : H → C is a modular form of modular weight k for
SL (2,Z) if
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(i) f transforms under Möbius transformations as

f

(
aτ + b

cτ + d

)
= (cτ + d)k · f (τ ) for

(
a b
c d

)
∈ SL (2,Z) (20)

(ii) f is holomorphic on H,
(iii) f is holomorphic at ∞.

We may also look at subgroups of SL (2,Z). The standard congruence subgroups
are defined by

Γ0(N ) =
{(

a b
c d

)
∈ SL (2,Z) : c ≡ 0 mod N

}
,

Γ1(N ) =
{(

a b
c d

)
∈ SL (2,Z) : a, d ≡ 1 mod N , c ≡ 0 mod N

}
,

Γ (N ) =
{(

a b
c d

)
∈ SL (2,Z) : a, d ≡ 1 mod N , b, c ≡ 0 mod N

}
. (21)

Let us also introduce the following notation: For an integer k and a matrix γ ∈
SL (2,Z) we define f |kγ by

( f |kγ )(τ ) = (cτ + d)−k · f (γ (τ )). (22)

With this definition we may re-write the condition (i) in Eq. (20) as

f |kγ = f for all γ ∈ SL (2,Z) . (23)

We may now define modular forms for a congruence subgroup Γ of SL (2,Z). A
meromorphic function f : H → C is a modular form of modular weight k for Γ if

(i) f transforms as

f |kγ = f for all γ ∈ Γ. (24)

(ii) f is holomorphic on H,
(iii) f |kα is holomorphic at ∞ for all α ∈ SL (2,Z).

For each congruence subgroup Γ of SL (2,Z) there is a smallest positive integer N ,
such that Γ (N ) ⊆ Γ . The integer N is called the level of Γ . A modular form f for
the congruence subgroup Γ of level N has the Fourier expansion

f (τ ) =
∞∑

n=0

anq
n
N with qN = e2π iτ/N . (25)

f is called a cusp form, if a0 = 0 in the Fourier expansion of f |kα for all α ∈
SL (2,Z).
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5 Iterated Integrals

We review Chen’s definition of iterated integrals [69]: Let M be a t-dimensional
manifold and

γ : [0, 1] → M (26)

a path with start point xi = γ (0) and end point x f = γ (1). Suppose further that
ω1, . . . , ωk are differential 1-forms on M . Let us write

f j (λ) dλ = γ ∗ω j (27)

for the pull-backs to the interval [0, 1]. For λ ∈ [0, 1] the k-fold iterated integral of
ω1, . . . , ωk along the path γ is defined by

Iγ (ω1, . . . , ωk; λ) =
λ∫

0

dλ1 f1 (λ1)

λ1∫

0

dλ2 f2 (λ2) . . .

λk−1∫

0

dλk fk (λk) . (28)

We define the 0-fold iterated integral to be

Iγ (; λ) = 1. (29)

We have

d

dλ
Iγ (ω1, ω2, . . . , ωk; λ) = f1 (λ) Iγ (ω2, . . . , ωk; λ) . (30)

Let us now discuss two special cases: Multiple polylogarithms and iterated integrals
of modular forms. Multiple polylogarithms are iterated integrals, where all differen-
tial one-forms are of the form

γ ∗ω j = dλ

λ − z j
. (31)

For zw �= 0 they are defined by [70–74]

G(z1, . . . , zw; y) =
y∫

0

dy1
y1 − z1

y1∫

0

dy2
y2 − z2

. . .

yw−1∫

0

dyw
yw − zw

. (32)

The number w is referred to as the weight of the multiple polylogarithm or the depth
of the integral representation. Let us introduce the short-hand notation

Gm1,...,mk (z1, . . . , zk; y) = G(0, . . . , 0︸ ︷︷ ︸
m1−1

, z1, . . . , zk−1, 0 . . . , 0︸ ︷︷ ︸
mk−1

, zk; y), (33)
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where all z j for j = 1, . . . , k are assumed to be non-zero. This allows us to relate
the integral representation of the multiple polylogarithms to the sum representation
of the multiple polylogarithms. The sum representation is defined by

Lim1,...,mk (x1, . . . , xk) =
∞∑

n1>n2>···>nk>0

xn11
n1m1

. . .
xnkk
nkmk

. (34)

The number k is referred to as the depth of the sum representation of the multiple
polylogarithm, the weight is now given bym1 + m2 + · · ·mk . The relations between
the two representations are given by

Lim1,...,mk (x1, . . . , xk) = (−1)kGm1,...,mk

(
1

x1
,

1

x1x2
, . . . ,

1

x1 . . . xk
; 1

)
,

Gm1,...,mk (z1, . . . , zk; y) = (−1)k Lim1,...,mk

(
y

z1
,
z1
z2

, . . . ,
zk−1

zk

)
. (35)

If one further sets g(z; y) = 1/(y − z), then one has

d

dy
G(z1, . . . , zw; y) = g(z1; y)G(z2, . . . , zw; y) (36)

and

G(z1, z2, . . . , zw; y) =
y∫

0

dy1 g(z1; y1)G(z2, . . . , zw; y1). (37)

One can slightly enlarge the set ofmultiple polylogarithms and defineG(0, . . . , 0; y)
with w zeros for z1 to zw to be

G(0, . . . , 0; y) = 1

w! (ln y)w . (38)

This permits us to allow trailing zeros in the sequence (z1, . . . , zw) by defining the
function G with trailing zeros via Eqs. (37) and (38).

Our second example are iterated integrals of modular forms. Let f1(τ ),
f2(τ ), . . . , fk(τ ) be modular forms of a congruence subgroup. Let us further assume
that fk(τ )vanishes at the cusp τ = i∞. For iterated integrals ofmodular formswe set

ω j = 2π i f j (τ ) dτ. (39)

Thus the k-fold iterated integral of modular forms is given by

(2π i)k
τ∫

i∞
dτ1 f1 (τ1)

τ1∫

i∞
dτ2 f2 (τ2) . . .

τk−1∫

i∞
dτk fk (τk) . (40)
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The case where fk(τ ) does not vanishes at the cusp τ = i∞ is discussed in [24, 75]
and is similar to trailing zeros in the case of multiple polylogarithms.

6 Precision Calculations

Due to the smallness of all coupling constants g, we may compute at high energies
an infrared-safe observable (for example the cross section σ for a particular process)
reliable in perturbation theory:

σ =
( g

4π

)4
σLO +

( g

4π

)6
σNLO +

( g

4π

)8
σNNLO + · · · (41)

The cross section is related to the square of the scattering amplitude

σ ∼ |A |2 , (42)

and the perturbative expansion of the cross section follows from the perturbative
expansion of the amplitude

A = g2A (0) + g4A (1) + g6A (2) + . . . , (43)

where A (l) contains l loops. The computation of the tree amplitude A (0) poses no
conceptional problem. For loop amplitudes we have to calculate Feynman integrals.
Let us write

A (l) =
∑

j

c j I j , (44)

where the I j ’s are Feynman integrals and the c j ’s are coefficients, whose computation
is tree-like. Without loss of generality we may take the set of Feynman integrals
{I1, I2, . . .} to consist of scalar integrals [76, 77]. Let us now look closer on the
Feynman integrals. A Feynman graph G with n external lines, r internal lines and
l loops corresponds (up to prefactors) in D space-time dimensions to the family of
Feynman integrals, indexed by the powers of the propagators ν j

I Gν1ν2...νr =

r∏
j=1

Γ (ν j )

Γ (ν − lD/2)

(
μ2

)ν−lD/2
∫ l∏

s=1

dDks

iπ
D
2

r∏

j=1

1

(−q2
j + m2

j )
ν j

, (45)

with ν = ν1 + · · · + νr . The momenta flowing through the internal lines can be
expressed through the independent loop momenta k1, . . . , kl and the external
momenta p1, . . . , pn as
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qi =
l∑

j=1

λi j k j +
n∑

j=1

σi j p j , λi j , σi j ∈ {−1, 0, 1}. (46)

After Feynman parametrisation we obtain

I Gν1ν2...νr =
∫

Δ

Ω

⎛

⎝
r∏

j=1

x
ν j−1
j

⎞

⎠ U ν−(l+1)D/2

F ν−lD/2
. (47)

The prefactors in the definition of the Feynman integral in Eq. (45) are chosen such
that after Feynman parametrisation we obtain an expression without prefactors, as
can be seen from Eq. (47). In Eq. (47) the integration is over

Δ = {
[x1 : x2 : . . . : xr ] ∈ P

r−1|xi ≥ 0
}
. (48)

Here,Pr−1 denotes the real projective spacewith r − 1 dimensions.Ω is a differential
(r − 1)-form given by

Ω =
r∑

j=1

(−1) j−1 x j dx1 ∧ . . . ∧ d̂x j ∧ . . . ∧ dxr , (49)

where the hat indicates that the corresponding term is omitted. The functionsU and
F are obtained from first writing

r∑

j=1

x j (−q2
j + m2

j ) = −
l∑

a=1

l∑

b=1

kaMabkb +
l∑

a=1

2ka · Qa − J, (50)

where M is a l × l matrix with scalar entries and Q is a l-vector with D-vectors as
entries. We then have

U = det(M), F = det(M)
(−J + QM−1Q

)
/μ2. (51)

U and F are the first and second graph polynomial of the Feynman graph G [78].
The Feynman integral defined in Eq. (47) has an expansion as a Laurent series in

the parameter ε = (4 − D)/2 of dimensional regularisation:

I Gν1ν2...νr =
∞∑

j= jmin

f jε
j . (52)

The coefficients f j are in general functions of the Lorentz invariants

sJ =
⎛

⎝
∑

j∈J

p j

⎞

⎠
2

, (53)
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7

Fig. 2 If for some exponent we have ν j = 0, the corresponding propagator is absent and the
topology simplifies

where the sum runs over a subset J of the external momenta, the internal masses mi

and the scale μ. We are interested in the question, to which class of functions the
coefficients f j belong. Let us first consider the situation, where we keep all Lorentz
invariants, all masses and the scale fixed. Suppose that (i) all kinematical invariants
sJ are negative or zero, (ii) all masses mi and μ are positive or zero (μ �= 0) and
(iii) all ratios of invariants and masses are rational, then it can be shown that all
coefficients f j in Eq. (52) are numerical periods [79].

Let us now return to the original problem and view the coefficients f j as functions
of the Lorentz invariants sJ , the internal massesmi and the scaleμ. Let us consider a
family of Feynman integrals I Gν1ν2...νr , including all its sub-topologies. A sub-topology
G ′ is obtained by pinching in the graphG one or several internal lines. In the Feynman
integral the corresponding propagators are then absent and the associated exponents
ν j are zero. This is shown in Fig. 2. Integration-by-parts identities [80, 81] allow us
to express the Feynman integrals from the family I Gν1ν2...νr as a linear combination of
a few master integrals, which we denote by I = {I1, . . . , IN }. Let us further denote
by x = (x1, . . . , xt ) the vector of kinematic variables the master integrals depend
on. The method of differential equations [57–65, 67] is a powerful tool to find the
functions f j in Eq. (52). Let xk be a kinematic variable. Carrying out the derivative
∂ Ii/∂xk under the integral sign and using integration-by-parts identities allows us to
express the derivative as a linear combination of the master integrals:

∂

∂xk
Ii +

N∑

j=1

ai j I j = 0. (54)

Repeating the above procedure for everymaster integral and every kinematic variable
we obtain a system of differential equations of Fuchsian type

(d + A) I = 0, (55)

where A is a matrix-valued one-form

A =
t∑

i=1

Aidxi . (56)

Thematrix-valued one-form A satisfies the integrability condition d A + A ∧ A = 0.
Geometrically we have a vector bundle with a flat connection: The base space is

parametrised by the coordinates x = (x1, . . . , xt ), the fibre is a N -dimensional vector
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space with basis I = (I1, . . . , IN ), the flat connection is given by A and called the
Gauß–Manin connection.

Suppose A is of the form

A = ε
∑

j

C j d ln p j (x) , (57)

where all ε-dependence is in the prefactor, theC j ’s are matrices with constant entries
and the p j (x)’s are polynomials in the external variables x , then the system of
differential equations is easily solved in terms of multiple polylogarithms [63].

In this talk we consider the situation, where the master integrals depend only on
a single variable τ and the connection one-form A is of the form

A = ε
∑

j

Fj (2π i) dτ, (58)

where as before all ε-dependence is in the prefactor and the Fj ’s are matrices, whose
entries are modular forms. In this case the system of differential equations is easily
solved in terms of iterated integrals of modular forms.

A system of differential equations, where the only ε-dependence is in a prefactor
like in Eq. (57) or Eq. (58) is said to be in ε-form. Clearly, it is advantageous to have
the system in ε-form. There are two operations at our disposal to transform a system
of differential equations, which follow from the geometric picture described above:
Wemay change the variables in the base manifold and/or we may change the basis of
the vectorspace in the fibre. A change of variables in the base manifold introduces a
Jacobian: If τ ′ = γ (τ) (for simplicity we consider the case where the base manifold
is one-dimensional) we have

A′ = A
∂τ ′

∂τ
. (59)

A change of the basis of the vectorspace in the fibre

I ′ = U I (60)

transforms the connection into

A′ = U AU−1 +UdU−1. (61)

7 Picard–Fuchs Operators

An extremely helpful tool for Feynman integral computations within the approach
based on differential equations are the factorisation properties of Picard–Fuchs oper-
ators [66]. Let us consider an (unknown) function f (λ) of a single variable λ, which
obeys a (known) homogeneous differential equation of order r
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r∑

j=0

p j (λ)
d j

dλ j
f (λ) = 0, (62)

where the p j ’s are polynomials in λ, such that the differential equation is of Fuchsian
type. We call the differential operator

L =
r∑

j=0

p j (λ)
d j

dλ j
(63)

a Picard–Fuchs operator. Suppose that this operator factorises into linear factors:

L =
(
ar (λ)

d

dλ
+ br (λ)

)
. . .

(
a2(λ)

d

dλ
+ b2(λ)

)(
a1(λ)

d

dλ
+ b1(λ)

)
. (64)

Such a differential equation is easily solved. Let us denote the homogeneous solution
of the j th factor by

ψ j (λ) = exp

⎛

⎝−
λ∫

0

dκ
b j (κ)

a j (κ)

⎞

⎠ . (65)

Then the full solution is given by iterated integrals as

f (λ) = C1ψ1(λ) + C2ψ1(λ)

λ∫

0

dλ1
ψ2(λ1)

a1(λ1)ψ1(λ1)

+C3ψ1(λ)

λ∫

0

dλ1
ψ2(λ1)

a1(λ1)ψ1(λ1)

λ1∫

0

dλ2
ψ3(λ2)

a2(λ2)ψ2(λ2)
+ · · · (66)

From Eq. (36) we see that multiple polylogarithms are of this form, i.e. have Picard–
Fuchs operators, which factorise into linear factors.

The next more complicated situation is the case, where the Picard–Fuchs operator
contains one irreducible second-order differential operator

a j (λ)
d2

dλ2
+ b j (λ)

d

dλ
+ c j (λ). (67)

As an example consider the differential equation

[
λ

(
1 − λ2

) d2

dλ2
+ (

1 − 3λ2
) d

dλ
− λ

]
f (λ) = 0 (68)
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This second-order differential operator is irreducible. The solutions of the differential
equation are K (λ) and K (

√
1 − λ2), where K (λ) is the complete elliptic integral of

the first kind:

K (λ) =
1∫

0

dx√(
1 − x2

) (
1 − λ2x2

) . (69)

Let us now return to a system of differential equations as in Eq. (55). In general,
such a system may depend on several kinematic variables x = (x1, . . . , xt ). We may
reduce a multi-scale system to a single-scale system by setting xi (λ) = αiλ with
α = [α1 : . . . : αt ] ∈ CP

t−1 and by viewing the master integrals as functions of λ.
For the derivative with respect to λ we have

d

dλ
I = BI, B =

t∑

i=1

αi Ai . (70)

In addition we may assume that the ε-dependence of the matrices A and B is poly-
nomial, if this is not the case, a rescaling of the master integrals with ε-dependent
prefactors will achieve this situation. Let us write

B = B(0) +
∑

j>0

ε j B( j). (71)

A system of ordinary first-order differential equations is easily converted to a higher-
order differential equation for a single master integral. We may work modulo sub-
topologies, therefore the order of the differential equation is given by the number
Ns of master integrals in this sector. In order to find the required transformation
we work in addition modulo ε-corrections, i.e. we focus on B(0). Let I be one of
the master integrals {I1, . . . , INs }. We determine the largest number r , such that
the matrix which expresses I , (d/dλ)I, . . . , (d/dλ)r−1 I in terms of the original
set {I1, . . . , INs } has full rank. It follows that (d/dλ)r I can be written as a linear
combination of I, . . . , (d/dλ)r−1 I . This defines the Picard–Fuchs operator L for the
master integral I with respect to λ:

L I = 0, L =
r∑

k=0

pk(λ)
dk

dλk
. (72)

L is easily found by transforming to a basis which contains I, . . . , (d/dλ)r−1 I .
Although the Picard–Fuchs operator is a differential operator of order r , it is very
often the case that this operator factorises. The factorisation can be obtained with
standard algorithms [82]. Let us write for the factorisation into irreducible factors

L = L1L2 . . . Ls, (73)
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where the differential operators Li are irreducible. Since we started from the
ε-independent matrix B(0), the differential operators Li are ε-independent.

8 Feynman Integrals Evaluating to Iterated Integrals
of Modular Forms

Let us now consider a few examples. We consider the Feynman integrals shown in
Fig. 3. These are two-loop two-point or three-point integrals, depending on a single
dimensionless variable

x = p2

m2
. (74)

All examples shown in Fig. 3 contain the equal-mass sunrise graph as a subtopology
and are – as we will see – expressible in terms of iterated integrals of modular forms.
In order to proceed we would like to

1. verify that the integrals depend only on a single elliptic curve,
2. identify the elliptic curve,
3. change the variable of the base manifold from x to the modular parameter τ ,
4. change the basis of master integrals such that the transformed system of differ-

ential equations is in ε-form.

These steps can be done systematically. Let us start with the first step. In order to
verify that the integrals depend only on a single elliptic curve we construct for all
integrals (including all sub-topologies) thePicard–Fuchs operators as described in the
previous section.We recall that for a specific integralweworkmodulo sub-topologies
and modulo ε-corrections. We then look at the factorisations of the various Picard–
Fuchs operators and verify, that there is only one second-order irreducible factor.
All other factors are first order. The irreducible second-order differential operator is
associated with the sunrise graph.

In the second step we identify the elliptic curve. For the sunrise graph this can
be done either from the maximal cuts [83–89] or from the Feynman parameter rep-
resentation. The former method generalises easily to more complicated Feynman
integrals [27, 28] and we discuss it here. One finds for the sunrise integral in two
space-time dimensions

MaxCutC I = u

π2

∫

C

dz

z
1
2 (z + 4)

1
2
[
z2 + 2 (1 + x) z + (1 − x)2

] 1
2

, (75)

where u is an (irrelevant) phase and C an integration contour. The denominator of
the integrand defines an elliptic curve, which we denote by Ex :

Ex : w2 − z (z + 4)
[
z2 + 2 (1 + x) z + (1 − x)2

] = 0. (76)
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p2 p2

p2

m2

p2

m2

Fig. 3 Examples of Feynman integrals evaluating to iterated integrals of modular forms. Internal
solid lines correspond to a propagator with massm2, internal dashed lines to a massless propagator.
External dashed lines indicate a light-like external momentum

We denote the roots of the quartic polynomial in Eq. (76) by

z1 = −4, z2 = − (
1 + √

x
)2

, z3 = − (
1 − √

x
)2

, z4 = 0. (77)

We consider a neighbourhood of x = 0 without the branch cut of
√
x along the neg-

ative real axis. The correct physical value is specified by Feynman’s iδ-prescription:
x → x + iδ. The periods ψ1, ψ2 and the modular parameter τ are then defined by
Eqs. (15) and (16), respectively.

In the third step we change the variable of the basemanifold from x to themodular
parameter τ . We recall that τ as a function of x is given by Eq. (16):

τ = ψ2

ψ1
. (78)

In a neighbourhood of x = 0 we may invert Eq. (78). This gives

x = 9
η (6τ)8 η (τ)4

η (2τ)8 η (3τ)4
, (79)

where η denotes Dedekind’s eta-function. For the Jacobian we have

dτ

dx
= W

ψ2
1

, (80)

where the Wronskian W is given by
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W = ψ1
d

dx
ψ2 − ψ2

d

dx
ψ1 = − 6π i

x (x − 1) (x − 9)
. (81)

In the fourth step we change the basis of master integrals such that the transformed
system of differential equations is in ε-form. The essential new ingredient is the
appropriate definition of the master integrals corresponding to the second-order irre-
ducible differential operator. We need two master integrals for this case. The first
master integralmay be taken as the sunrise integral in D = 2 − 2ε space-time dimen-
sions divided by the ε0-term of its maximal cut. This is familiar from the case of
Feynman integrals, which evaluate to multiple polylogarithms. The difference lies
in the fact, that for Feynman integrals, which evaluate to multiple polylogarithms,
the maximal cut is an algebraic function, while in the case of the sunrise integral it
is given by a complete elliptic integral. We thus set

I1 = ε2
π

ψ1
S111 (2 − 2ε, x) , (82)

where S111(2 − 2ε, x) denotes the sunrise integral in D = 2 − 2ε space-time dimen-
sions with ν1 = ν2 = ν3 = 1. Let us turn to the second master integral: It is well-
known in mathematics, that the first cohomology group for a family of elliptic curves
Ex , parametrised by x , is generated by the holomorphic one form dz/w and its x-
derivative. This motivates an ansatz, consisting of I1 and its τ -derivative. One finds
for the second master integral in the elliptic sector

I2 = 1

ε

1

2π i

d

dτ
I1 + 1

24

(
3x2 − 10x − 9

) ψ2
1

π2
I1. (83)

The full set of master integrals is completed by transforming in addition the master
integrals in the non-elliptic sectors. The entries on the diagonal of the transformation
matrix for the non-elliptic sectors can be read off from the linear factors appearing
in the factorisation of the Picard–Fuchs operators [66]. The non-diagonal entries are
obtained from an ansatz along the lines of [90, 91].

Let us look at a specific example. We denote the two-loop tadpole integral by

I0 = 4ε2S110 (2 − 2ε, x) . (84)

Then we have for I = (I0, I1, I2)

1

2π i

d

dτ
I = ε A I, (85)

where the matrix A is ε-independent and is given by

A =
⎛

⎝
0 0 0
0 − f2 1

1
4 f3 f4 − f2

⎞

⎠ . (86)
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The entries of A are given by

f2 = 1

2iπ

ψ2
1

W

(
3x2 − 10x − 9

)

2x (x − 1) (x − 9)
,

f3 = ψ3
1

4πW 2

6

x (x − 1) (x − 9)
,

f4 = 1

576

ψ4
1

π4
(x + 3)4 . (87)

One checks that f2, f3 and f4 are modular forms of Γ1(6) of modular weight 2, 3
and 4, respectively. We introduce a basis {e1, e2} for the modular forms of modular
weight 1 for the Eisenstein subspace E1(Γ1(6)):

e1 = E1 (τ ;χ0, χ1) , e2 = E1 (2τ ;χ0, χ1) , (88)

where E1(τ, χ0, χ1) and E1(2τ, χ0, χ1) are generalised Eisenstein series [92] and χ0

and χ1 denote primitive Dirichlet characters with conductors 1 and 3, respectively.
The integration kernels may be expressed as polynomials in e1 and e2:

f2 = −6
(
e21 + 6e1e2 − 4e22

)
,

f3 = 36
√
3

(
e31 − e21e2 − 4e1e

2
2 + 4e32

)
,

f4 = 324e41. (89)

The solution for these Feynman integrals in terms of iterated integrals of modular
forms follows now directly from the differential equation (85). The q-expansion
of the iterated integrals provides an efficient method for the numerical evaluation
[25, 93].

Let us close this paragraph with the observation that the integration kernels

ω0 = dx

x
, ω0 = dx

x − 1
(90)

may also be expressed as modular forms:

ω0 = g2,0 2π i dτ, ω0 = g2,1 2π i dτ. (91)

The modular forms g2,0 and g2,1, both of modular weight 2, are given by

g2,0 = 1

2iπ

ψ2
1

W

1

x
= −12

(
e21 − 4e22

)
,

g2,1 = 1

2iπ

ψ2
1

W

1

x − 1
= −18

(
e21 + e1e2 − 2e22

)
. (92)

This shows that the harmonic polylogarithms [49, 50] in the letters 0 and 1 are a
subset of the iterated integrals of modular forms discussed in this talk.
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9 Conclusions

In this talk we considered a class of Feynman integrals, which evaluate to iterated
integrals ofmodular forms.TheseFeynman integrals are beyond the class of Feynman
integrals, which evaluate to multiple polylogarithms. However, several important
properties, known from the case of multiple polylogarithms, carry over: The system
of differential equations can be brought into an ε-form, the iterated integrals satisfy
a shuffle algebra and there is an efficient method for the numerical evaluation of the
iterated integrals of modular forms based on the q-expansion. We considered single-
scale integrals. We may view these Feynman integrals, which evaluate to iterated
integrals of modular forms as generalisations of Feynman integrals, which may be
expressed in terms of harmonic polylogarithms in the letters 0 and 1.

Acknowledgements S.W. would like to thank the organisers and KMPB for the organisation of
the inspiring conference.
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Iterative Non-iterative Integrals in
Quantum Field Theory

Johannes Blümlein

Abstract Single scale Feynman integrals in quantum field theories obey difference
or differential equations with respect to their discrete parameter N or continuous
parameter x . The analysis of these equations reveals to which order they factorize,
which can be different in both cases. The simplest systems decouple to linear differ-
ential equations which factorize to first-order. For them complete solution algorithms
exist. The next interesting level is formed by those cases that decouple to linear dif-
ferential equations in which also irreducible second-order factors emerge. We give a
survey on the latter case. The solutions can be obtained as general 2F1 solutions. The
corresponding solutions of the associated inhomogeneous differential equations form
so-called iterative non-iterative integrals. There are known conditions under which
one may represent the solutions by complete elliptic integrals. In this case one may
find representations in terms of meromorphic modular forms, out of which special
cases allow representations in the framework of elliptic polylogarithms with gener-
alized parameters. These are in general weighted by a power of 1/η(τ), where η(τ)

is Dedekind’s η-function. Single scale elliptic solutions emerge in the ρ-parameter,
which we use as an illustrative example. They also occur in the 3-loop QCD correc-
tions to massive operator matrix elements and the massive 3-loop form factors.

1 Introduction

In this paper a survey is presented on the classes of special functions, represented
by particular integrals, to which presently known single scale Feynman-integrals
evaluate. Zero-scale integrals, also playing an important role in elementary parti-
cle physics, are given by special numbers, see e.g. [1–5]. To this class the expan-
sion coefficients of the β-functions [6–8] and the renormalized masses, as well as
(g − 2) [5], do belong. Single scale quantities depend on one additional parameter as
e.g. the Mellin variable N , a momentum fraction or scale-ratio x ∈ [0, 1] and
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similar quantities. To this class contribute e.g. the massless Wilson coefficients [9],
the anomalous dimensions [10–12], and the massive Wilson coefficients at large
virtualities Q2 [13–17].

It is now interesting to see which function spaces span the analytic results of
these quantities. Traditionally two representations are studied: (i) the Mellin space
representation following directly from the light cone expansion [18] and (ii) itsMellin
inversion, the x-space representation, with x the Bjorken variable or another ratio of
invariants, which in particular has phenomenological importance.

In the first case the quantities considered obey difference equations, while in the
second case the corresponding equations are differential equations which are related
to the former ones [19]. In all the cases quoted above either the recurrences or the
differential operators or both factorize at first-order after an appropriate applica-
tion of decoupling formalisms [20–22]. Due to this all these cases can be solved
algorithmically in any basis of representation, as has been shown in Ref. [23]. In
N -space the solution is then possible using C. Schneider’s packages Sigma [24,
25], EvaluateMultiSum and SumProduction [26]. Corresponding solutions
in x-space can be obtained by using the method of differential equations [23, 27].
This applies both to the direct calculation of the Feynman diagrams as well as to the
calculation of their master integrals which are obtained using the integration by parts
relations [28].

The above class of problems is the first one in a row. In general, the differ-
ence and differential equation systems do not decouple at first-order, but will have
higher order subsystems, i.e. of second-, third-, fourth-order etc., cf. [29]. Since
the first-order case is solved completely [23], it is interesting to see which math-
ematical spaces represent the solution. In N -space next to pure rational function
representations the nested harmonic sums emerge [30, 31]. They correspond to the
harmonic polylogarithms in x-space [32]. At the next level generalized harmonic
sums and iterated integrals of the Kummer-Poincaré type appear [3, 33, 34]. These
are followed by iterated integrals over cyclotomic letters [2] and further by square-
root valued letters, cf. [4], and their associated sums and special constants, cf. also
[29, 35, 36]. This chain of functions is probably not complete yet, as one might
think of more general Volterra-iterated integrals and their associated nested sums,
which are also obeying first-order factorization. The main properties of these func-
tions, such as their shuffling relations [37, 38] and certain general transforma-
tions are known. Most of the corresponding mathematical properties to effectively
handle these special functions are implemented in the package HarmonicSums
[2–4, 39, 40].

The next important problem is, how to dealwith cases inwhich neither recurrences
in N -space nor differential equations in x-space factorize at first-order. Here, the gen-
eral solution can be given by so-called iterative non-iterative integrals,1 implied by
the representation of the solution through the variation of constant [42] for factoriza-

1Iterative non-iterative integrals have been introduced by the author in a talk on the 5th International
Congress onMathematical Software, held at FUBerlin, July 11–14, 2016,with a series of colleagues
present, cf. [41].
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tions to irreducible factors at any order. This, of course, is a quite general statement,
calling for refinement w.r.t. the corresponding special functions at factorizations with
irreducible factors at second-, third- etc. order. In this article we will deal with the
2nd order case, discussing results, which have been obtained in Refs. [43, 44] and
by other authors recently. At present, in the single variate case, the highest order of
irreducible factors being observed is second order, see e.g. Refs. [43–66].

2 Second-Order Differential Equations and 2F1 Solutions

We consider the non-factorizable problem of order two in x-space. It is given by a
corresponding differential equation of second-order, usually with more than three
singularities. Below we will give illustrations for equations which emerge in the
calculation of the ρ-parameter [44, 67]. These are Heun differential equations [68].
A second-order differential equation with three singularities can be mapped into a
Gauß’differential equation [69]. In the case of more singularities, this is possible
too, however, the argument in the 2F1 function is a rational function through which
the other singularities are described. It is of advantage to look for the latter type
solutions, since the properties of the 2F1 function are very well known [70–74].

We consider the non-factorizable linear differential equations of second-order

[
d2

dx2
+ p(x)

d

dx
+ q(x)

]
ψ(x) = N (x) , (1)

with rational functions r(x) = p(x), q(x), which may be decomposed into2

r(x) =
nr∑
k=1

b(r)
k

x − a(r)
k

, a(r)
k , b(r)

k ∈ Z . (2)

The homogeneous equation is solved by the functions ψ
(0)
1,2(x), which are linearly

independent, i.e. their Wronskian W obeys

W (x) = ψ
(0)
1 (x)

d

dx
ψ

(0)
2 (x) − ψ

(0)
2 (x)

d

dx
ψ

(0)
1 (x) �= 0 . (3)

The homogeneous Eq. (1) determines the well-known differential equation forW (x)

d

dx
W (x) = −p(x)W (x) , (4)

2In the present case only single poles appear; for Fuchsian differential equations q(x) may have
double poles.
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which, by virtue of (2), has the solution

W (x) =
np∏
k=1

(
1

x − a(p)
k

)b(p)
k

, (5)

normalizing the functions ψ
(0)
1,2 accordingly. A particular solution of the inhomoge-

neous equation (1) is then obtained by Euler–Lagrange variation of constants [42]

ψ(x) = ψ
(0)
1 (x)

[
C1 −

∫
dx ψ

(0)
2 (x)n(x)

]
+ ψ

(0)
2 (x)

[
C2 +

∫
dx ψ

(0)
1 (x)n(x)

]
, (6)

with

n(x) = N (x)

W (x)
(7)

and two constants C1,2 to be determined by special physical requirements. As exam-
ples we consider the systems of differential equations given in [67] for the O(ε0)

terms in the dimensional parameter. These are master integrals determining the ρ-
parameter at general fermionmass ratio at 3-loop order. The corresponding equations
read

0 = d2

dx2
f8a(x) + 9 − 30x2 + 5x4

x(x2 − 1)(9 − x2)

d

dx
f8a(x) − 8(−3 + x2)

(9 − x2)(x2 − 1)
f8a(x)

− 32x2

(9 − x2)(x2 − 1)
ln3(x) + 12(−9 + 13x2 + 2x4)

(9 − x2)(x2 − 1)
ln2(x)

−6(−54 + 62x2 + x4 + x6)

(9 − x2)(x2 − 1)
ln(x) + −1161 + 251x2 + 61x4 + 9x6

2(9 − x2)(x2 − 1)
(8)

f9a(x) = −5

8
(−13 − 16x2 + x4) + x2

2
(−24 + x2) ln(x) + 3x2 ln2(x) − 2

3
f8a(x)

+ x

6

d

dx
f8a(x). (9)

Here, lnk(x) = Hn
0 (x) = n!H0, …,0︸︷︷︸

n

(x) is a harmonic polylogarithm.

There are more equations contributing to the problem, cf. [43], in which in the
inhomogeneity more harmonic polylogarithms Ha(x) [32] contribute. Equation (8)
is a Heun equation in x2. Its homogeneous solutions, [43], are:

ψ
(0)
1a (x) =

√
2
√
3π

x2(x2 − 1)2(x2 − 9)2

(x2 + 3)4
2F1

[ 4
3 ,

5
3

2
; z

]
(10)

ψ
(0)
2a (x) =

√
2
√
3π

x2(x2 − 1)2(x2 − 9)2

(x2 + 3)4
2F1

[ 4
3 ,

5
3

2
; 1 − z

]
, (11)
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with

z = z(x) = x2(x2 − 9)2

(x2 + 3)3
. (12)

The Wronskian for this system is

W (x) = x(9 − x2)(x2 − 1). (13)

These are single-2F1 solutions, however, they are not given by single elliptic integrals.
One first uses contiguous relations and thenmappings according to the triangle group
[75–77] and the algorithm described in Appendix A of [43] to obtain the solutions

ψ
(0)
1b (x) =

√
π

4
√
6

{
−(x − 1)(x − 3)(x + 3)2

√
x + 1

9 − 3x
2F1

[ 1
2 ,

1
2

1
; z

]

+(x2 + 3)(x − 3)2
√

x + 1

9 − 3x
2F1

[ 1
2 ,− 1

2

1
; z

]}
(14)

ψ
(0)
2b (x) = 2

√
π√
6

{
x2

√
(x + 1)(9 − 3x)2F1

[ 1
2 ,

1
2

1
; 1 − z

]

+1

8

√
(x + 1)(9 − 3x)(x − 3)(x2 + 3)2F1

[ 1
2 ,− 1

2

1
; 1 − z

]}
, (15)

where

z(x) = − 16x3

(x + 1)(x − 3)3
(16)

and

2F1

[ 1
2 ,

1
2

1
; z

]
= 2

π
K(z) (17)

2F1

[ 1
2 ,− 1

2

1
; z

]
= 2

π
E(z) , (18)

cf. [78]. Here K denotes the elliptic integral of the first and E the elliptic integral of
the second kind.3

Analyzing the criteria given in [79, 80] one finds, that the solution (14,15) cannot
be rewritten such, that the elliptic integral of the second kind,E(z), does not emerge in
the solution. The corresponding inhomogeneous solution is now obtained by Eq. (6).

3Here we use the notation applied by Mathematica. In some part of the literature one defines:

2F1

[
1
2 ,

1
2

1
; k2

]
= 2

π
K(k), etc.
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We would like to end this section by a remark on simple elliptic solutions, which
are sometimes also obtained in x-space. They are given by complete elliptic integrals
K and E of the argument 1 − x or x . In Mellin space, they correspond to a first-order
factorizable problem, cf. [64] for an example. The Mellin transform

M[ f (x)](N ) =
∫ 1

0
dxxN−1 f (x) (19)

yields

M[K(1 − z)](N ) = 24N+1

(1 + 2N )2
(
2N

N

)2 (20)

M[E(1 − z)](N ) = 24N+2

(1 + 2N )2(3 + 2N )

(
2N

N

)2 , (21)

since

K(1 − z) = 1

2

1√
1 − z

⊗ 1√
1 − z

(22)

E(1 − z) = 1

2

z√
1 − z

⊗ 1√
1 − z

. (23)

The Mellin convolution is defined by

A(x) ⊗ B(x) =
∫ 1

0
dz1

∫ 1

0
dz2δ(x − z1z2)A(z1)B(z2). (24)

Equations (20) and (21) are hypergeometric terms in N , which has been shown
already in Ref. [35] for K(1 − x), see also [4]. As we outlined in Ref. [23] the
solution of systems of differential equations or difference equations can always be
obtained algorithmically in the case either of those factorizes to first-order. The tran-
sition to x-space is then straightforward.

3 Iterative Non-iterative Integrals

Differential operators factorizing at first-order, occurring in quantum-field theoretic
calculations, have iterative integral solutions of the kind

Fa1,...,ak (x) =
∫ x

0
dy1 fa1(y1)

∫ y1

0
dy2 fa2(y2) . . .

∫ yk−1

0
dyk fak (yk), (25)
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whereA is a certain alphabet and ∀ fl(x) ∈ A. The functions fl(x) are hyperexponen-
tial, i.e. (1/ fl(x))d fl(x)/dx is a rational function. These solutions are d’Alembertian
[81], and are covered by the Liouvillian solutions [82]. In particular, the spaces of
iterative integrals discussed in Refs. [2, 4, 32, 34, 35] are examples for this.

As well-known, the integral representation of the 2F1-function in the cases having
been discussed above

2F1

[
a, b

c
; z

]
= Γ (x)

Γ (b)Γ (c − b)

∫ 1

0
dttb−1(1 − t)c−b−1(1 − zt)−a (26)

cannot be rewritten as an integral in which the z dependence is just given by its
boundaries.4 Therfore Eq. (6) contains definite integrals, over which one integrates
iteratively. We have called these iterative non-iterative integrals in [41, 43]. They
will also occur in the case that the degree of non-factorization is larger than one by
virtue of the corresponding formula of the variation of the constant; the corresponding
solutions of the homogeneous equations will have (multiple) integral representations
with the same property like for Eq. (26).

The new iterative integrals are given by

Ha1,...,am−1;{am ;Fm (r(ym ))},am+1,...,aq (x) =
∫ x

0
dy1 f̂a1(y1)

∫ y1

0
dy2 . . .

∫ ym−1

0
dym f̂am (ym)

×Fm[r(ym)]Ham+1,...,aq (ym), (27)

and cases in which more than one definite integral Fm appears. Here the f̂ai (y)
are the usual letters of the different classes considered in [2–4, 32] multiplied by
hyperexponential pre-factors

r(y)yr1(1 − y)r2 , ri ∈ Q, r(y) ∈ Q[y] (28)

and F[r(y)] is given by

F[r(y)] = F[r(y); g] ≡
∫ 1

0
dzg(z, r(y)), r(y) ∈ Q[y], (29)

such that the y-dependence cannot be transformed into one of the integration bound-
aries completely.We have chosen here r(y) as a rational function because of concrete
examples in this paper, which, however, is not necessary.

The further analytic representation of the functionsHwill be subject to the iterated
functions f̂l and Fm . We will turn to this in the case of the examples (6) for ψ1(2)b in
Sect. 5.

4This will not apply to simpler cases like 2F1

[
1,1
2 ; −z

]
= ln(1 + z)/z or 2F1

[ 1
2 ,1
3
2

; z
]

=
arctan(z)/z, however.
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4 Numerical Representation

For physical applications numerical representations of the Feynman integrals have
to be given. The use of integral-representations in Mathematica or Maple is pos-
sible, but usually too slow. One aims on efficient numerical implementations. In the
case of multiple polylogarithms it is available in Fortran [83, 84], for cyclotomic
polylogarithms in [84], where in the first case the method of Bernoulli-improvement
is used [85]. For generalized polylogarithms a numerical implementation was given
in [86]. All these representations are series representations. Furthermore, there exist
numerical implementations for the efficient use of harmonic sums in complex contour
integral calculations [87].

Also in the case of the solutions (6) analytic series representations can be given.
This has been already the solution-strategy in [67], using power-series Ansätze,
without further reference to the expected mathematical structure. It turns out, that
series expansions around x = 0, 1 are not convergent in thewhole interval x ∈ [0, 1].
However, they have a sufficient region of overlap. Some series expansions of the inho-
mogeneous solution even exhibit a singularity, cf. [43], although this singularity is an
artefact of the series expansion only. Yet these solutions can be obtained analytically
and they evaluate very fast numerically.

The first terms of the expansion of f8a around x = 0 read

f8a(x) =
−√

3

[
π3

(
35x2

108
− 35x4

486
− 35x6

4374
− 35x8

13122
− 70x10

59049
− 665x12

1062882

)
+

(
12x2 − 8x4

3

−8x6

27
− 8x8

81
− 32x10

729
− 152x12

6561

)
Im

[
Li3

(
e− iπ

6√
3

)]]
− π2

(
1 + x4

9
− 4x6

243
− 46x8

6561

−214x10

59049
− 5546x12

2657205

)
+

(
3

2
+ x4

6
− 2x6

81
− 23x8

2187
− 107x10

19683
− 2773x12

885735

)
ψ(1)

(
1

3

)

−√
3π

(
x2

4
− x4

18
− x6

162
− x8

486
− 2x10

2187
− 19x12

39366

)
ln2(3) −

[
33x2 − 5x4

4
− 11x6

54

−19x8

324
− 751x10

29160
− 2227x12

164025
+ π2

(
4x2

3
− 8x4

27
− 8x6

243
− 8x8

729
− 32x10

6561
− 152x12

59049

)

+
(

−2x2 + 4x4

9
+ 4x6

81
+ 4x8

243
+ 16x10

2187
+ 76x12

19683

)
ψ(1)

(
1

3

)]
ln(x) + 135

16
+ 19x2

−43x4

48
− 89x6

324
− 1493x8

23328
− 132503x10

5248800
− 2924131x12

236196000
−

(
x4

2
− 12x2

)
ln2(x)

−2x2 ln3(x) + O
(
x14 ln(x)

)
. (30)
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Fig. 1 The inhomogeneous solution of Eq. (8) as a function of x . Left panel: Red dashed line:
expansion around x = 0; blue line: expansion around x = 1. Right panel: illustration of the relative
accuracy and overlap of the two solutions f8a(x) around 0 and 1

Likewise, one may expand around y = 1 − x = 0 and obtains

f8a(x) = 275

12
+ 10

3
y − 25y2 + 4

3
y3 + 11

12
y4 + y5 + 47

96
y6 + 307

960
y7 + 19541

80640
y8

+ 22133

120960
y9 + 1107443

7741440
y10 + 96653063

851558400
y11 + 3127748803

34062336000
y12

+7

(
2y2 − y3 − 1

8
y4 − 1

64
y6 − 1

128
y7 − 3

512
y8 − 1

256
y9 − 47

16384
y10

− 69

32768
y11 − 421

262144
y12

)
ζ3 + O(y13) . (31)

In Fig. 1 a numerical illustration for the function f8a(x) is given together with
the validity of the two expansions taking into account 50 terms. For many physics
applications one would proceed in the above way and stop here. However, from the
point of view of mathematics further interesting aspects arise to which we turn now.

5 Representation in Terms of Modular Forms

The iterative non-iterative integral (6) is non-iterative by virtue of the emergence of
the two complete elliptic integrals K(z) and E(z), with the modulus squared

k2 = z(x) (32)

given by the rational function (16). Accordingly, the second solution depends on the
functions K′(z) = K(1 − z) and E′(z) = E(1 − z). One may re-parameterize the
problem referring to the nome

q = exp(iπτ), (33)
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as the new variable with

τ = i
K(1 − z(x))

K(z(x))
with τ ∈ H = {z ∈ C, Im(z) > 0} . (34)

All functions contributing to the solutions (6, 14, 15) have now to be translated from
x to q.

5.1 The Mathematical Framework

For the further discussion, a series of definitions is necessary, see alsoRefs. [88–110].
We will use Dedekind’s η-function [111]

η(τ) = q
1
12

φ(q2)
, φ(q) =

∞∏
k=1

1

1 − qk
, (35)

to express all quantities in the following. Here φ(q) denotes Euler’s generating
function of the partition function [112].

Definition 1 Let r = (rδ)δ|N be a finite sequence of integers indexed by the divisors
δ of N ∈ N\{0}. The function fr (τ )

fr (τ ) :=
∏
δ|N

η(δτ)rδ , δ, N ∈ N\{0}, rδ ∈ Z, (36)

is called η-ratio. The η-ratios, up to differential operators in q, will represent all
expressions in the following.

Let

SL2(Z) =
{
M =

(
a b
c d

)
, a, b, c, d ∈ Z, det(M) = 1

}
.

SL2(Z) is the modular group.

For g =
(
a b
c d

)
∈ SL2(Z) and z ∈ C ∪ {∞} one defines the Möbius transfor-

mation

gz �→ az + b

cz + d
.

Let

S =
(
0 −1
1 0

)
, and T =

(
1 1
0 1

)
, S, T ∈ SL2(Z).



Iterative Non-iterative Integrals in Quantum Field Theory 61

The polynomials of S and T span SL2(Z).
For N ∈ N\{0}one considers the congruence subgroupsofSL2(Z),Γ0(N ),Γ1(N )

and Γ (N ), defined by

Γ0(N ) :=
{(

a b
c d

)
∈ SL2(Z), c ≡ 0 (mod N )

}
,

Γ1(N ) :=
{(

a b
c d

)
∈ SL2(Z), a ≡ d ≡ 1 (mod N ), c ≡ 0 (mod N )

}
,

Γ (N ) :=
{(

a b
c d

)
∈ SL2(Z), a ≡ d ≡ 1 (mod N ), b ≡ c ≡ 0 (mod N )

}
,

with SL2(Z) ⊇ Γ0(N ) ⊇ Γ1(N ) ⊇ Γ (N ) and Γ0(N ) ⊆ Γ0(M), M |N .
If N ∈ N\{0}, then the index of Γ0(N ) in Γ0(1) is

μ0(N ) = [Γ0(1) : Γ0(N )] = N
∏
p|N

(
1 + 1

p

)
.

The product is over the prime divisors p of N .

Definition 2 Let x ∈ Z\{0}. The analytic function f : H → C is a holomorphic
modular form of weight w = k for Γ0(N ) and character a �→ (

x
a

)
if

1.

f

(
az + b

cz + d

)
=

( x
a

)
(cz + d)k f (z), ∀z ∈ H, ∀

(
a b
c d

)
∈ Γ0(N ).

2. f (z) is holomorphic in H
3. f (z) is holomorphic at the cusps of Γ0(N ).

Here
(
x
a

)
denotes the Jacobi symbol. A modular form is called a cusp form if it

vanishes at the cusps.
For any congruence subgroup G of SL2(Z) a cusp of G is an equivalence class in

Q ∪ {∞} under the action of G.

Definition 3 Ameromorphic modular function f for Γ0(N ) and weightw = k obeys

1. f (γ z) = (cz + d)k f (z), ∀z ∈ H and ∀γ ∈ Γ0(N )

2. f is meromorphic in H
3. f is meromorphic at the cusps of Γ0(N ).

The q-expansion of a meromorphic modular form has the form

f ∗(q) =
∞∑

k=−N0

akq
k, for some N0 ∈ N.
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Lemma 1 ([91, 94, 109]) The set of functionsM (k; N ; x) forΓ0(N ) and character
x, defined above, forms a finite dimensional vector space over C. In particular, for
any non-zero function f ∈ M (k; N ; x) we have

ord( f ) ≤ b = k

12
μ0(N ). (37)

The bound (37) on the dimension can be refined, see e.g. [105–108] for details.5

The number of independent modular forms f ∈ M (k; N ; x) is ≤ b, allowing for a
basis representation in finite terms.

For any η-ratio fr one can prove that there exists a minimal integer l ∈ N, an
integer N ∈ N and a character x such that

f̄r (τ ) = ηl(τ ) fr (τ ) ∈ M (k; N ; x)

is a holomorphic modular form. All quantities which are expanded in q-series below
will be first brought into the above form. In some cases one has l = 0. This form is of
importance to obtain Lambert-Eisenstein series [114, 115], which can be rewritten
in terms of elliptic polylogarithms [116].

A basis of the vector space of holomorphic modular forms is given by the associ-
ated Lambert-Eisenstein series with character and binary products thereof [89, 109].

The Lambert-Eisenstein series are given by

∞∑
k=1

kαqk

1 − qk
=

∞∑
k=1

σα(k)qk, σα(k) =
∑
d|k

dα, α ∈ N. (38)

They can be rewritten in terms of elliptic polylogarithms,

ELin;m(x; y; q) :=
∞∑
k=1

∞∑
l=1

xk

kn
yl

lm
qkl (39)

by

∞∑
k=1

kαqk

1 − qk
=

∞∑
k=1

kαLi0(q
k) =

∞∑
k,l=1

kαqkl = ELi−α;0(1; 1; q), (40)

with Li0(x) = x/(1 − x). It also appears useful to define [61],

En;m(x; y; q) =
{ 1

i [ELin;m(x; y; q) − ELin;m(x−1; y−1; q)], n + m even

ELin;m(x; y; q) + ELin;m(x−1; y−1; q), n + m odd.
(41)

5The dimension of the corresponding vector space can be also calculated using the Sage program
by W. Stein [113].
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The multiplication relation of elliptic polylogarithms is given by [116]

ELin1,...,nl ;m1,...,ml ;0,2o2,...,2ol−1(x1, . . . , xl; y1, . . . , yl; q) =
ELin1;m1(x1; y1; q)ELin2,...,nl ;m2,...,ml ;2o2,...,2ol−1(x2, . . . , xl; y2, . . . , yl; q), (42)

with

ELin,...,nl ;m1,...,ml ;2o1,...,2ol−1(x1, . . . , xl; y1, . . . , yl; q) (43)

=
∞∑
j1=1

. . .

∞∑
jl=1

∞∑
k1=1

. . .

∞∑
kl=1

x j1
1

j n11
. . .

x jl
l

j nll

yk11
km1
1

ykll
kml
l

q j1k1+···+ql kl∏l−1
i=1( ji ki + · · · + jlkl)oi

, l > 0.

The logarithmic integral of an elliptic polylogarithm is given by

ELin1,...,nl ;m1,...,ml ;2(o1+1),2o2,...,2ol−1(x1, . . . , xl; y1, . . . , yl; q) =∫ q

0

dq ′

q ′ ELin1,...,nl ;m1,...,ml ;2o1,...,2ol−1(x1, . . . , xl; y1, . . . , yl; q ′). (44)

Similarly, cf. [61],

En1,...,nl ;m1,...,ml ;0,2o2,...,2ol−1(x1, . . . , xl; y1, . . . , yl; q) =
En1;m1(x1; y1; q)En2,...,nl ;m2,...,ml ;2o2,...,2ol−1(x1, . . . , xl; y1, . . . , yl; q)

(45)

En1,...,nl ;m1,...,ml ;2(o1+1),2o2,...,2ol−1(x1, . . . , xl; y1, . . . , yl; q) =∫ q

0

dq ′

q ′ En1,...,nl ;m1,...,ml ;2o1,...,2ol−1(x1, . . . , xl; y1, . . . , yl; q ′)

(46)

holds.
The integral over the product of two more general elliptic polylogarithms is given

by

∫ q

0

dq̄

q̄
ELim,n(x, q̄

a, q̄b)ELim ′,n′(x ′, q̄a′
, q̄b′

) =
∞∑
k=1

∞∑
l=1

∞∑
k ′=1

∞∑
l ′=1

xk

km
x ′k

k ′m ′
qal

ln
qa′l ′

l ′n

× qbkl+b′k ′l ′

al + a′l ′ + bkl + bk ′l ′
. (47)

Integrals over other products are obtained accordingly.
In the derivation often the argument qm, m ∈ N,m > 0, appears, which shall be

mapped to the variable q. We do this for the Lambert series using the replacement
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Li0(x
m) = xm

1 − xm
= 1

m

m∑
k=1

ρk
mx

1 − ρk
mx

= 1

m

m∑
k=1

Li0(ρ
k
mx), (48)

with

ρm = exp

(
2π i

m

)
. (49)

One has

∞∑
k=1

kαqmk

1 − qmk
= ELi−α;0(1; 1; qm) = 1

mα+1

m∑
n=1

ELi−α;0(ρn
m; 1; q) . (50)

Relations like (48, 50) and similar ones are the sources of themth roots of unity,which
correspondingly appear in the parameters of the elliptic polylogarithms through the
Lambert series.

Furthermore, the following sums occur

∞∑
m=1

(am + b)l qam+b

1 − qam+b
=

l∑
n=1

(
l

n

)
anbl−n

∞∑
m=1

mnqam+b

1 − qam+b
, a, l ∈ N, b ∈ Z (51)

and

∞∑
m=1

mnqam+b

1 − qam+b
= ELi−n;0(1; qb; qa) = 1

an+1

a∑
ν=1

ELi−n;0(ρν
a ; qb; q) . (52)

Likewise, one has

∞∑
m=1

(−1)mmnqam+b

1 − qam+b
= ELi−n;0(−1; qb; qa) (53)

= 1

an+1

{
2a∑

ν=1

ELi−n;0(ρν
2a; qb; q) −

a∑
ν=1

ELi−n;0(ρν
a ; qb; q)

}
.

In intermediate representations also Jacobi symbols appear, obeying the identities

( −1

(2k) · n + (2l + 1)

)
= (−1)k+l;

(−1

ab

)
=

(−1

a

) (−1

b

)
. (54)

In the case of an even value of the denominator onemay factor
(−1

2

) = 1 and consider
the case of the remaining odd-valued denominator.
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We found also Lambert series of the kind

∞∑
m=1

q(c−a)m

1 − qcm
= ELi0;0(1; q−a; qc) = 1

c

c∑
n=1

ELi0;0(ρn
c ; q−a; q) (55)

∞∑
m=1

(−1)m
q(c−a)m

1 − qcm
= ELi0;0(1;−q−a; qc) = 1

c

c∑
n=1

ELi0;0(ρn
c ;−q−a; q),

a, c ∈ N\{0} (56)

in intermediate steps of the calculation.
Also the functions

Ym,n,l :=
∞∑
k=0

(mk + n)l−1qmk+n

1 − qmk+n

= nl−1Li0(q
n) +

l−1∑
j=0

(
l − 1

j

)
nl−1− jm jELi− j;0(1; qn; qm) (57)

Zm,n,l :=
∞∑
k=1

km−1qnk

1 − qlk
= ELi0;−(m−1)(1; qn−l; ql) (58)

Tm,n,l,a,b :=
∞∑
k=0

(mk + n)l−1qa(mk+n)

1 − qb(mk+n)
= nl−1qn(a−b)Li0

(
qnb

)

+qn(a−b)
l−1∑
j=0

(
l − 1

j

)
m jnl−1− jELi− j;0

(
qm(a−b); qnb; qmb

)
(59)

contribute. Note that (part of) the parameters (x; y) of the elliptic polylogarithms can
become q-dependent, unlike the case in [54, 61]. The elliptic polylogarithms rather
form a suitable frame here, while we give preference to the Lambert-Eisenstein
series. The q-dependence of x(y) does not spoil the integration relations, which can
be generalized in the case the factors 1/η(τ) do not occur in addition.

5.2 The q-Representation of the Inhomogeneous Solution

Now we turn to (6) again and express all quantities in terms of the variable q.
The modulus is given by, cf. Eq. (32),

k = 4η8(2τ)η4
(

τ
2

)
η12(τ )

, k ′ = η4(2τ)η8
(

τ
2

)
η12(τ )

, (60)

which implies the following relation by k ′ = √
1 − k2 for η functions
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1 = η8
(

τ
2

)
η8(2τ)

η24(τ )

[
16η8(2τ) + η8

(τ

2

)]
. (61)

The elliptic integral of the first kind has the representation [78], sometimes also
written using Jacobi’s ϑi -functions [117],

K(k2) = π

2

η10(τ )

η4
(
1
2τ

)
η4(2τ)

, K′(k2) = − 1

π
K(k2) ln(q) . (62)

The elliptic integrals of the 2nd kind, E and E′ are given by [118, 119]

E(k2) = K(k2) + π2q

K(k2)

d

dq
ln [ϑ4(q)] (63)

and the Legendre identity [120]

K(z)E(1 − z) + E(z)K(1 − z) − K(z)K(1 − z) = π

2
, (64)

to express E′,

E′(k2) = π

2K(k2)

[
1 + 2 ln(q) q

d

dq
ln [ϑ4(q)]

]
, (65)

where the Jacobi ϑ functions are given by

ϑ2(q) = 2η2(2τ)

η(τ )
, ϑ3(q) = η5(τ )

η2
(
1
2τ

)
η2(2τ)

, ϑ4(q) = η2
(

τ
2

)
η(τ)

. (66)

We have now to determine the kinematic variable x = x(q) analytically. This is
not always possible for other choices of the definition ofq, cf. [59]. In the present case,
however, a cubic Legendre-Jacobi transformation [121, 122]6 allows the solution.
Following [51, 52, 126, 127]

16y

(1 − y)(1 + 3y)3
= ϑ4

2 (q)

ϑ4
3 (q)

(67)

is solved by

y = ϑ2
2 (q

3)

ϑ2
2 (q)

≡= 1

3x
. (68)

6This is, besides the well-know Landen transformation [78, 123], the next higher modular transfor-

mation; for a survey cf. [124]. Also for the hypergeometric function 2F1

[
1
r ,1− 1

r
1

; z(x)
]
there are

rational modular transformations [125].
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Both the expressions (67, 68) are modular functions. For definiteness, we consider
the range in q

q ∈ [−1, 1] which corresponds to y ∈ [
0, 1

3

]
, x ∈ [1,+∞] (69)

in the following. Here the variable x lies in the unphysical region. However, the
nome q has to obey the condition (69). Other kinematic regions can be reached by
performing analytic continuations.

One obtains

x = 1

3

η4(2τ)η2(3τ)

η2(τ )η4(6τ)
. (70)

By this all ingredients of the inhomogeneous solution (6) can now be rewritten in q.
Using the on-line encyclopedia of integer sequences [128] one finds in particular for
entry A256637

√
(1 − 3x)(1 + x) = 1

i
√
3

η
(

τ
2

)
η

(
3τ
2

)
η(2τ)η(3τ)

η(τ )η3(6τ)

∣∣∣∣∣
q→−q

(71)

and for terms in the inhomogeneity and the Wronskian A187100, A187153
[128]

1

1 − x
= −3

η2(τ )η
(
3
2τ

)
η3(6τ)

η3
(
1
2τ

)
η(2τ)η2(3τ)

(72)

1

1 − 3x
= −

[
η(τ)η

(
3
2τ

)
η2(6τ)

]3
η

(
1
2τ

)
η2(2τ)η9(3τ)

. (73)

This method can be applied since the q-series of the associated holomorphic modular
form to these expressions factoring off a power of 1/η(τ) is determined by a finite
number of expansion coefficients since the dimension of the associated linear space
is finte, cf. Lemma1.

Next we would like to investigate which kind of modular form the solution ψ(x)
is. Some of its building blocks, like K, are holomorphic modular forms [88, 89],
while others, like E, are meromorphic modular forms. In the case in which a solution
can be thoroughly expressed by holomorphic modular forms, as e.g. in the case of
the sun-rise graph studied in Refs. [54, 59], one has then the possibility to express
the result in terms of polynomials of Lambert–Eisenstein series [114, 115], which
are given by elliptic polylogarithms [116] and their generalizations, cf. e.g. [61] and
references therein.

The elliptic integral of the first kind can be expressed by E or E-functions only.

K(z) = π

2

[
1 + 2E0;0(i; 1; q)

]
, (74)
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On the other hand, this is not the case for 1/K(z), a function needed to represent E:

1

K(z)
= 2

πη12(τ )

{
5

48

{
1 − 24ELi0;−1(1; 1; q) − 4

[
1 − 3

2

[
ELi0;−1(1; 1; q)

+ELi0;−1(1; i; q) + ELi0;−1(1; −1; q) + ELi0;−1(1; −i; q)
]]}{

−1

+4
[
−1

2

[
ELi−2;0(i; 1/q; q) + ELi−2,0(−i; 1/q; q)

]
+

[
ELi−1;0(i; 1/q; q)

+ELi−1;0(−i; 1/q; q)
]

− 1

2

[
ELi0,0(i; 1/q; q) + ELi0,0(−i; 1/q; q)

]]}

− 1

16

{
5 + 4

[
−1

2

[
ELi−4;0(i; 1/q; q) + ELi−4;0(−i; 1/q; q)

]

+2
[
ELi−3;0(i; 1/q; q) + ELi−3,0(−i; 1/q; q)

]
− 3

[
ELi−2;0(i; 1/q; q)

+ELi−2,0(−i; 1/q; q)
]

+ 2
[
ELi−1;0(i; 1/q; q) + ELi−1;0(−i; 1/q; q)

]

−1

2

[
ELi0;0(i; 1/q; q) + ELi0,0(−i; 1/q; q)

]}}
. (75)

Here and in a series of other building blocks the factor 1/η12(τ ) emerges through
which the corresponding quantity becomes a meromorphic modular form [43].

Still one has to express the inhomogeneities of the corresponding differential
equations. They are given by harmonic polylogarithms Ha(x) and rational pre-factors
in x . In the variable q = q(x) they will be different, cf. [43, 59], depending on the
definition of q.

Since for the q-series of 1/η(τ) no closed form expression of the expansion
coefficients is known, one cannot write down a closed form integration relation
for polynomials out of quantities like this, unlike the case for polynomials out of
Lambert-Eisenstein series, see Ref. [43] for details. Therefore, a closed analytic
solution of the inhomogeneous solution using structures like elliptic polylogarithms,
cf. Sect. 5.1, cannot be given. Yet, one may use q-series in the numerical represen-
tation expanding to a certain power. This, however, is equivalent to the numerical
representation given in Sect. 4, where no further analytic continuation is necessary.

6 The ρ-Parameter

Finally we would like to present numerical results on the ρ-parameter with a finite
quark mass ratio, given in Ref. [44]. The ρ-parameter is defined by

ρ = 1 + Π Z
T (0)

M2
Z

− ΠW
T (0)

M2
W

≡ 1 + Δρ, (76)
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with Π k
T (0) the respective transversal self energies at zero momentum and Mk the

masses of the Z and W bosons. Here the correction is given by

Δρ = 3GFm2
t

8π2
√
2

(
δ(0) + αs

π
δ(1) +

(αs

π

)2
δ(2) + O(α3

s )

)
, (77)

whereGF is the Fermi-constant,mt denotes the heavy fermionmass, and x = m2
b/m

2
t

the ratio of the masses of the light and the heavy partner squared.
The radiative corrections allow to set limits on heavy fermions in the case of

doublet mass splitting, which was important to determine the precise mass region of
the top-quark [129]. Radiative corrections were calculated in Refs. [67, 129–135].
In Ref. [43] we calculated the analytic form of the yet missing master integrals. They
can now be evaluated numerically starting from a complete analytic representation.
We insert our results into the representation given in [67].

The expression for the δ(2), Eq. (77), in terms of the master integrals in the MS
scheme, is given byEq. (78),whereweonly show the contributions due to the iterative
non-iterative integrals.

δ(2)(x) = · · · + CF

(
CF − CA

2

) [
11 − x2

12(1 − x2)2
f8a(x) + 9 − x2

3(1 − x2)2
f9a(x)

+ 1

12
f10a(x) + 5 − 39x2

36(1 − x2)2
f8b(x) + 1 − 9x2

9(1 − x2)2
f9b(x) + x2

12
f10b(x)

]

+ CFTF
9(1 − x2)3

[
(5x4 − 28x2 − 9) f8a(x) + 1 − 3x2

3x2
(9x4 + 9x2 − 2) f8b(x)

+(9 − x2)(x4 − 6x2 − 3) f9a(x) + 1 − 9x2

3x2
(3x4 + 6x2 − 1) f9b(x)

]
. (78)

The different functions fi (a) are given in Ref. [43]. The behaviour of the correc-
tion term δ(2)(x) is shown in Fig. 2. The color factor signals that it stems from the

Fig. 2 The two-mass
contributions to δ(2) as a
function of x
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non-planar part of the problem. In the limit of mt → ∞ the numerical value
δ(2)(0) = −3.969 is obtained in agreement with [131]. In the limit of zero mass
splitting the correction vanishes.

7 Conclusions

In the analytic calculation of zero- and single-scale Feynman diagrams in the most
simple cases iterative integral and indefinite nested sum representations are sufficient.
Here either the system of differential or difference equations factorizes to first-order
[29]. All these cases can be solved algorithmically, cf. [23], in whatsoever basis. The
function spaces, which represent the solutions for the cases having been studied so
far, are completely known and the associated numerical implementations are widely
available.

At present an important target of research are the cases in which the level of non-
factorization is of second- or higher order. Also in these cases the general structure of
the formal solutions is known. In the case of the differential equations they are given
by the variation of constant, over the solutions of the homogeneous equations. Here
the latter ones have no iterative solutions. They can be written as (multiple) Mellin-
Barnes [136] integrals [137] and by this cast into a multiple integral representation in
which the next integration variable cannot be completely transformed into the integral
boundaries. Therefore, these integrals are of non-iterative character. In summary,
one obtains iterative integrals over these non-iterative integrals as the main structure
[41, 43].

From the mathematical point of view one would like to understand the non-
iterative integrals emerging on the different levels of non-factorization inmore detail.
In the 2nd order case the corresponding differential equations have 2F1-solutionswith
specific rational parameters and rational functions in x as argument. This is generally
due to the fact that the corresponding differential equations have more than three
singularities. There is a decision algorithm, cf. [43, 76, 77], whether or not the 2F1-
solutions can be mapped on complete elliptic integrals or not. Furthermore, one may
investigate, using the criteria given in [79, 80], whether representations in terms
of complete elliptic integrals of the first kind are sufficient in special cases. In the
elliptic case one may consider representations in terms of modular forms, which
are in general meromorphic. A sub-class of only holomorphic modular forms, cf.
e.g. [54, 61], also exists in a series of interesting cases. Finally, complete elliptic
integrals of the first and second kind with argument x or (1 − x) do not form a
2nd order problem, if considered in N space, where they have a representation in
hypergeometric terms.

The level of non-factorization for single-scale Feynman integrals at secondorder is
widely understood and throughly tied upwith 2F1-solutions. Their properties allow to
derive also analytic solutions. Corresponding series expansions in the complex plane
allow for numerical implementations since their convergence regions do overlap
sufficiently.
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Much less is known in the case of third and higher order non-factorization. Cases
of this kind will emerge in future calculations. Here one is not advised to apply the
pure integral approach of differential equations [23, 27]. To recognize the nature of
the integrals contributing here it is useful to apply the dispersive approach to the cor-
responding integrals first [138]. Even multiple cuts may be necessary to unravel the
emerging structures. In thisway, once again, non-iterative integrals are obtained. This
has been the easiest approach to solve the sun-rise graph also, cf. [48]. This method
will be of use to unravel further levels and to establish the links needed to known
mathematical structures or at least to guide the way to work out the corresponding
mathematics, if it is not know yet.

Again the analytic calculation of Feynman integrals shows the rich mathematical
structures behind these quantities and leads to an intense cooperation between the-
oretical physics, different branches of mathematics and computer algebra. During
the last 30 years an enormous development has been taking place, but much more is
going to come.
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Analytic Continuation of the Kite Family

Christian Bogner, Armin Schweitzer and Stefan Weinzierl

Abstract We consider results for the master integrals of the kite family, given in
terms of ELi-functions which are power series in the nome q of an elliptic curve.
The analytic continuation of these results beyond the Euclidean region is reduced to
the analytic continuation of the two period integrals which define q. We discuss the
solution to the latter problem from the perspective of the Picard–Lefschetz formula.

1 Introduction

In this talk, we consider the family of Feynman integrals associated to the kite graph,
shown in Fig. 1c. Certain master integrals of this family have recently served as
interesting showcases for the problem that multiple polylogarithms are not always
sufficient to express the coefficients of Feynman integrals in the Laurent expansion in
ε of dimensional regularization. Elliptic generalizations of (multiple) polylogarithms
can be used to express these integrals instead. In [5] a way to recursively obtain the
master integrals of this family to arbitrary order in ε was presented for the Euclidean
kinematic region. This computation and previous related work on the sunrise integral
[6–9] rely crucially on properties of an underlying elliptic curve and its periods,which
were pointed out in [17]. The results for the master integrals of the kite family are
expressed in terms of a class of functions defined in [9] as power series in the nome q
of this elliptic curve. Alternative expressions in terms of iterated integrals of modular
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forms were found in [12] and results for the first order of the Laurent expansion were
previously derived in [42].

Here we focus on the analytic continuation of the results for the kite family
[18] beyond the Euclidean region. By considering the periods of the underlying
elliptic curve, we can reduce the analytic continuation of the Feynman integrals to
the question how cycles on the elliptic curve behave under the variation of a kinematic
invariant. The answer to this question is then very simple and can be deduced from
an application of the Picard–Lefschetz formula [35], as we want to emphasise with
this presentation. In this way we arrive at analytic results for the master integrals
which can be evaluated numerically at any real value of the kimematic invariant, the
singular points being the only exceptions.

Under certain conditions, which are met in our problem, the Picard–Lefschetz
formula determines the variation undergone by integration domains when an unin-
tegrated variable of the integral is sent on a path in the complex plane around a
value, where a pinch singularity of the integral occurs. It was known for a long time
that at least in some well behaved cases, the formula would apply to Feynman inte-
grals and predict their analytic structure. With this motivation in mind, the theory
was extended by Fotiadi, Froissart, Lascoux and especially by Pham [29, 38, 39] in
the sixties, using results of Thom [44] and Leray [36]. Related literature from the
sixties and seventies shows that already for rather simple Feynman integrals a prac-
tical application of Picard–Lefschetz theory is far from trivial.

Since then, other methods to determine the analytic properties of Feynman inte-
grals have become more important. Cutkosky rules predict the discontinuities in a
handy, graphical way in terms of cut-integrals. Furthermore, if the Feynman integral
can be computed in the Euclidean region in terms of sufficiently well-known func-
tions such as multiple polylogarithms, the analytic continuation to other regions can
be deduced from the analytic properties of these functions. However, the mentioned
theory framework around the Picard–Lefschetz theorem seems to experience new
attention in the recent literature on Feynman integrals. Extended Picard–Lefschetz
theory was used in a recent proof of the Cutkosky rules in [16]. Furthermore, in a
series of articles [2–4] which employs Leray’s residue theory for the definition of cut
integrals, it is suggested that the discontinuities play a crucial role in a conjectured
co-product structure on Feynman integrals, motivated from the co-product on poly-
logarithms.We take these recent developments as additional motivation to emphasise
the role of homology in our application.

Our presentation is organized as follows: In the next section, we review the family
of Feynman integrals associated to the kite graph and its underlying family of elliptic
curves. In Sect. 3 we reduce the problem of the analytic continuation of the master
integrals of the kite family to the question how the periods of the elliptic curve behave
under a particular variation of a kinematic parameter. Section 4 discusses the latter
problem as an application of the Picard–Lefschetz formula.
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2 The Kite Family and Its Elliptic Curve

We consider the family of Feynman integrals associated to the kite graph of Fig. 1c.
The same particle mass m is assigned to each of the three solid internal edges while
the propagators drawn with dashed lines are massless. The graph has one external
momentum p and we define t = p2. The integrals of this family in D-dimensional
Minkowski space are

I (ν1, ν2, ν3, ν4, ν5) = (−1)ν
∫

d Dl1d Dl2(
iπ

d
2

)2

5∏
i=1

D−νi
i

with inverse propagators D1 = l21 − m2, D2 = l22 , D3 = (l1 − l2)2 − m2, D4 =
(l1 − p)2, D5 = (l2 − p)2 − m2 and ν = ∑5

i=1 νi . The integration is over loop-
momenta l1, l2. These integrals are obviously functions of D, t and m2 which is sup-
pressed in our notation. By integration-by-parts reduction, the integrals of this family
with νi ∈ Z can be expressed as linear combinations of eight master integrals, which
can be chosen as I (2, 0, 2, 0, 0), I (2, 0, 2, 1, 0), I (0, 2, 2, 1, 0), I (0, 2, 1, 2, 0),
I (2, 1, 0, 1, 2), I (1, 0, 1, 0, 1), I (2, 0, 1, 0, 1), I (1, 1, 1, 1, 1).The first five of these
integrals can be expressed in terms of multiple polylogarithms [30, 31]

Lin1,...,nr (z1, ..., zr ) =
∑

j1> j2>...> jr >0

z j1
1 ...z jr

r

j n1
1 ... j nr

r
for |zi | < 1.

The latter three integrals correspond to the graphs in Fig. 1 respectively. For the
computation of these integrals, multiple polylogarithms are not sufficient. In partic-
ular the sunrise integral I (1, 0, 1, 0, 1) has been essential in recent developments to
extend the classes of functions applied in Feynman integral computations beyond
multiple polylogarithms. We refer to [1, 10, 11, 13–15, 20–26, 37, 40, 41, 43] for
some of these recent developments in quantum field theory and string theory.

The master integrals of the kite family can be computed by use of the method of
differential equations, deriving a system of ordinary first-order differential equations
in the variable t. It was shown in [5, 42] that certain changes of the basis of master
integrals simplify the system of equations and in [13] it was shown that by a non-
algebraic change of variables, the system can even be written in canonical form [32].
Results for the master integrals were given in terms of elliptic generalizations of
(multiple) polylogarithms. In [5] it was shown that in the Euclidean region where
t < 0 the master integrals can be expressed in terms of functions

ELin;m(x; y; q) =
∞∑
j=1

∞∑
k=1

x j

j n

yk

km
q jk =

∞∑
k=1

yk

km
Lin(q

k x), (1)

and multi-variable generalizations
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(a) (b) (c)

Fig. 1 The sunrise graph (a), the sunrise with one raised index (b), and the kite graph (c)

ELin1,...,nl ;m1,...,ml ;2o1,...,2ol−1 (x1, ..., xl; y1, ..., yl; q)

=
∞∑

j1=1

...

∞∑
jl=1

∞∑
k1=1

...

∞∑
kl=1

x j1
1

j n1
1

...
x jl

l

j nl
l

yk1
1

km1
1

..
ykl

l

kml
l

q j1k1+...+ jl kl∏l−1
i=1 ( ji ki + ... + jlkl)

oi
(2)

to all orders in ε = (4 − D)/2. Results in terms of iterated integrals over modular
formswere derived in [12]. For the purpose of this presentation, aiming at the analytic
continuation of the results beyond the Euclidean region, the precise shape of the
results for the master integrals is not relevant. The following discussion merely uses
the fact that up to simple prefactors the results can be expressed as power series in
q = q(t) which is the nome of a family of elliptic curves, with the parameter of the
family being the kinematic invariant t.

This family of elliptic curves is derived from the sunrise integral I (1, 0, 1, 0, 1)
following [17]. The second Symanzik polynomial reads

F = −x1x2x3t + m2 (x1 + x2 + x3) (x1x2 + x2x3 + x1x3) .

A change of variables transforms the equationF = 0 to theWeierstrass normal form

y2 = 4 (x − e1) (x − e2) (x − e3)

with the three roots

e1 = 1

24

(
−t2 + 6m2t + 3m4 + 3

(
m2 − t

) 3
2
(
9m2 − t

) 1
2

)

e2 = 1

24

(
−t2 + 6m2t + 3m4 − 3

(
m2 − t

) 3
2
(
9m2 − t

) 1
2

)

e3 = 1

24

(
2t2 − 12m2t − 6m4

)

of the cubical polynomial in x, satisfying e1 + e2 + e3 = 0. The family of elliptic
curves degenerates at the values 0, m2, 9m2, ∞ of the parameter t. In the Euclidean
region t < 0 the three roots are real and separated as e1 > e3 > e2. Here we define
the period integrals

ψ1 = 2
∫ e3

e2

dx

y
, ψ2 = 2

∫ e3

e1

dx

y
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which evaluate to

ψ1 = 4(
m2 − t

) 3
4
(
9m2 − t

) 1
4

K (k), ψ2 = 4i(
m2 − t

) 3
4
(
9m2 − t

) 1
4

K (k ′)

with the complete elliptic integral of the first kind

K (k) =
∫ 1

0

dt√(
1 − t2

) (
1 − k2t2

) (3)

where the modulus k and the complementary modulus k ′ are given by

k = e3 − e2
e1 − e2

, k ′2 = 1 − k2 = e1 − e3
e1 − e2

.

With these periods we introduce

τ = ψ2

ψ1
, q = eiπτ .

The mentioned results of [5] for the eight master integrals in the Euclidean region
are expressed in terms of the functions of Eqs. 1 and 2 with the nome q.Up to simple
general prefactors involving the first period ψ1, this is their only dependence of the
kinematic invariant t.

3 Analytic Continuation

The previous section has shown that the analytic continuation of the eight master
integrals of the kite family can be reduced to the analytic continuation of the two
period integrals ψ1, ψ2. We are interested in the analytic behaviour of the periods
ψ1, ψ2 as t varies along the real axis beyond the Euclidean region. As singular points
and branch cuts of the period integrals correspond to real values of t,we consider the
variation of t in the complex t-plane and shift the contour of this variation slightly
away from the real axis by Feynman’s prescription t → t + iδ. Here δ is small, real,
positive and sent to zero in the end for evaluations on the real axis. We choose the
contour such that it furthermore circumvents the singular points in small half circles.
Fig. 2 shows the contour of the variation of t.

In order to discuss the branch cut behaviour of the periods, it is furthermore useful
to consider the complete elliptic integral of the first kind in Eq. 3 as a function of k2

and note that it has only one branch cut [1,∞[ in the complex k2-plane. We study the
question, where along the variation of t this branch cut is crossed for the two periods.
Figure 3 shows the behaviour of k2 and k ′2 as t is varied along the contour of Fig. 2.
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Fig. 2 Variation contour in the complex t-plane
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Fig. 3 Variations in the complex plane of k2 and k′2

We notice that k ′2 does not cross the branch cut of the complete elliptic integral at
all. The variable k2 crosses the branch cut only once. This happens as t is varied on
the half circle C1 around the singular point t = m2. Therefore it is this piece of the
contour of t along which we have to study the behaviour of the first period ψ1 more
closely.

The three quarters of the circle which k2 takes in Fig. 3 may be deformed to a
full circle for convenience. In order to study this variation, we consider the Legendre
form

y2 = x(x − λ)(x − 1)

of the family of elliptic curves, where λ = k2. As t varies along C1, the parameter λ

moves in a small circle around 1. Equivalently, we can describe this variation by

y2 = x(x − e1(ϕ))(x − e2(ϕ))

with e1(ϕ) = 1 − reiϕ, e2(ϕ) = 1 + reiϕ where r is a small, positive, real number
and ϕ is an angle whose value is 0 in the beginning and monotonously rises to 2π. In
order to observe the change of the two periods along this variation, it is convenient
to write them as integrals over cycles δ1, δ2 which form a basis of the first homology
group of the elliptic curve. We introduce
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e1(0) e2(0) ∞ 0

δ2(0)
δ1(0)

Fig. 4 The cycles δ1 and δ2 before the variation

P1(ϕ) =
∫

δ1

dx

y
, P2(ϕ) =

∫
δ2

dx

y
, y = −√

x
√

x − e1(ϕ)
√

x − e2(ϕ),

where the cycles δ1, δ2 are oriented such that

P1(0) = 2
∫ e1(0)

0

dx

y
= −2

∫ ∞

e2(0)

dx

y
and P2(0) = 2

∫ e1(0)

e2(0)

dx

y

with the integration contour on the right-hand side slightly shifted by a negative
imaginary part for x . Figure 4 shows the cycles δ1, δ2 on the elliptic curve. The use
of dashed and straight lines indicates that δ1 has two parts in two different Riemann
sheets of the elliptic curve, separated by the branch cuts. The question is: How do the
two cycles change under the mentioned variation? This will be discussed in Sect. 4.
Therewewill see that δ1 becomes δ1 − 2δ2 while δ2 remains unchanged.We therefore
obtain:

P1(2π) = P1(0) − 2P2(0) and P2(2π) = P2(0).

This is the behaviour of the periods as t varies around the critical point t = m2. The
above discussion has shown that the behaviour along all other pieces of the variation
is trivial. We hence arrive at the analytic continuation of the two period integrals:

(
ψ2(t + iδ)
ψ1(t + iδ)

)
= 4(

m2 − t − iδ
) 3

4
(
9m2 − t − iδ

) 1
4

Mt

(
i K

(
k ′ (t + iδ)

)
K (k (t + iδ))

)

with

Mt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 0

0 1

)
for − ∞ < t < m2,

(
1 0

−2 1

)
for m2 < t < ∞.
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Fig. 5 The real and imaginary parts of the ε0-term of the kite integral. The dashed vertical lines
indicate t = m2 and t = 9m2. The blue line is our analytic result and the red dots are numerical
data produced with the program SecDec [19]

Applying this result in terms of

q(t + iδ) = eiπ ψ2(t+iδ)
ψ1(t+iδ)

to the functions in Eqs. 1 and 2, we obtain the analytic continuation of the results for
the master integrals of the kite family. As an example, the results for the ε0-term for
the kite integral I (1, 1, 1, 1, 1) in 4 − 2ε dimensions are plotted in Fig. 5.

4 An Application of the Picard–Lefschetz Formula

Before we discuss the deformation of δ1 which was left open in the previous section,
let us recall the main idea of the Picard–Lefschetz formula with the help of a classical
example1 [34]. We consider the integral

I (λ) =
∫ b

a

1

x2 − λ
dx = 1

2
√

λ
ln

⎛
⎝

(
a + √

λ
) (

b − √
λ
)

(
a − √

λ
) (

b + √
λ
)
⎞
⎠

with real b > a > 0 depending on a complex parameter λ. We are interested in the
point λ = 0where the two singular points e1 = −√

λ and e2 = √
λ coincide. As long

as the integration contour from a to b is not in between e1 and e2, this contour is not
trapped when the two singular points approach each other. This is the situation of
Fig. 6a, corresponding to the principal sheet of the logarithm. There is no square-root
singularity in this case.

The more interesting situation is shown in Fig. 6b where the integration contour
is in between the points e1 and e2 and will be trapped for λ = 0. (This picture is

1Thorough introductions to Picard–Lefschetz theory can be found in [28, 39].
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Fig. 6 Contours in the complex x-plane

obtained after sending λ in a small circle around a2 in anti-clockwise direction.)
The situation at λ = 0 is known as a simple pinch and it gives rise to a square-root
singularity.

Let us now send λ in a small circle around 0 in anti-clockwise direction. We
will call this the variation of λ. This causes the points e1 and e2 to rotate around
each other in anti-clockwise direction until they have changed positions. The result
of this movement is shown in Fig. 6c. The integration contour is deformed by this
rotation as shown in the figure. Along the variation of λ, the integral I (λ) picks
up a discontinuity, which is an integral with the same integrand and the integration
contour given by two small cycles c1, c2 around e1, e2 with orientations shown in
Fig. 6d. It is easy to see that these two cycles are in a homological sense the difference
between the integration contours of I (λ) before and after the variation of λ.

It is this change of integration contours after variations around a simple pinch
which is computed in the Picard–Lefschetz formula. The formula can be written as

c → c + k · h, (4)

where c is a path or cycle, in our case the contour of integration of I (λ), the arrow
indicates the change along the variation of λ, k is an integer and h is another cycle.
Both, the integer k and the cycle h are determined from a so-called vanishing cycle
associated to the pinch situation. In our simple example, the relevant vanishing cycle
is the straight line s oriented from e1 to e2 as shown in Fig. 6d. This line is indeed
vanishing if λ goes to zero and it is a relative cycle in the relative homology of the
complex plane modulo the set of points {e1, e2}. We may consider s as an oriented
1-simplex and obtain its boundary as

∂s = e2 − e1. (5)
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The last ingredient in the construction of the cycle h is the co-boundary operator δ

of Leray [36]. The co-boundary of an n-dimensional cycle can be thought of as an
(n + 1)-dimensional tube wrapped around the cycle. In our case, we only need to
construct the co-boundary of a point, which is a small circle around this point with
anti-clockwise orientation. We obtain

h = δ (∂s) = c1 + c2

where the minus sign in Eq. 5 is reflected in the clockwise orientation of c1.
It remains to determine the integer k in the Picard–Lefschetz formula. Up to a

sign, which depends on the dimension of the problem, this number is an intersec-
tion number or Kronecker index, depending only on the relative orientation of the
cycle c and the vanishing cycle at their intersection. In our case one simply obtains
k = 1. In conclusion, the Picard–Lefschetz formula predicts c → c + c1 + c2 which
is precisely what we have deduced from the figures above.

We are only two steps away from the answer to the question left open in Sect. 3.
On the elliptic curve, the points e1(λ), e2(λ) coincide for λ = 1 and trap the cycle δ1
in a simple pinch, similar to the above example. In contrast to the warm-up example,
these two points make not half of a rotation but a full rotation around each other
as λ is sent around the pinch point. We therefore have an additional factor 2 in the
Picard–Lefschetz formula and obtain

δ1(0) → δ1(2π) = δ1(0) + 2 (c1 + c2)

where c1 and c2 are the small circles around e1 and e2 again. The series of snapshots
in Fig. 7 shows in more detail how after half of a rotation, these circles arise in the
deformation of δ1 and from these pictures it is clear, that c1 and c2 are located in
different Riemann sheets. In order to express the change of δ1 in terms of the basis
of the first homology group, δ1(0), δ2(0), we may pull c1 over to the same sheet as
c2. This is the step from in Fig. 7c to d. We see that they combine to the cycle−δ2(0)
and arrive at the result

δ1(0) → δ1(2π) = δ1(0) − 2δ2(0)

applied in Sect. 3.
We remark that this deformation on the elliptic curve is also a well-known exam-

ple. Detailed discussions with slightly different visualizations can be found e.g. in
[27, 45] where the Riemann sheets, glued together to a torus, are viewed as twisted
against each other.
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Fig. 7 The deformation of δ1 on the elliptic curve
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A Four-Point Function for the Planar
QCDMassive Corrections to Top-Antitop
Production in the Gluon-Fusion Channel

Roberto Bonciani, Matteo Capozi and Paul Caucal

Abstract In these proceedings we present the study of a four-point function that is
involved in the evaluation of the Master Integrals necessary to compute the two-loop
massive QCD planar corrections to t t̄ production in the gluon fusuin channel, at
hadron colliders. The solution involves complete elliptic integrals of the first and
second kind and one- or two-fold integrations of such elliptic integrals multiplied by
ratios of polynomials, inverse square roots and logarithms or dilogarithms.

1 Introduction

The NNLO QCD corrections to the production of a t t̄ pair in hadronic collisions
are known since some years [1–8]. In these works, all the calculations used to eval-
uate the different ingredients contributing to the corrections to inclusive and more
exclusive observables, were done using semi-numerical methods. A complete ana-
lytic computation of the cross section at that perturbative order is not yet available,
although many ingredients are present in the literature. In particular, the matrix ele-
ments for the one-loop 2 → 3 process are known since thework in [9–12]; progresses
are also done in the determination of the infra-red (IR) subtraction terms [13–16],
needed to cure IR divergences in collinear and soft regions of the phase space dur-
ing the integration; finally the one-loop squared matrix elements were calculated in
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[17–19]. The genuinely two-loop part of the calculation, i.e. the interference between
the two-loop 2 → 2 diagrams and the tree-level, are known only partially.

AtNNLO inQCD, two-loop contributions to the t t̄ production process in hadronic
collisions come from two partonic channels: qq̄ → t t̄ (quark-annihilation channel)
and gg → t t̄ (gluon fusion channel).

The interference of the two-loop amplitude in the quark-annihilation channel
with the corresponding tree-level amplitude can be expressed in terms of ten gauge
independent color factors. The color structure in the gluon-fusion channel is more
complicated, and it can be expressed in terms of sixteen color factors.

All the ten color coefficients of the qq̄ channel are known numerically [20] and
their infrared poles are known analytically [21, 22]. For eight out of the ten color
coefficients a complete analytic expression, written in terms of generalized harmonic
polylogarithms (GPLs) [23–26], was found in [27, 28].

All of the sixteen color coefficients appearing in the two-loop corrections in the
gluon-fusion channel are known numerically [29] and the analytic expression of
all the infrared poles was evaluated in [21, 22]. In addition, a complete analytic
expression (again written in terms of GPLs) is known for ten out of the sixteen color
coefficients [30–32]. The remaining six color coefficients in this partonic channel
are known to involve elliptic integrals. Very recently, the master integrals (MIs)
for planar topologies that involve a closed heavy fermionic loop were evaluated in
[33–35]. They contribute to one of the six unknown color coefficients.

In these proceedings, we give a short description of the computation of one of
the four-point functions at 5 denominators that enter the calculation of the massive
two-loop QCD planar corrections to the t t̄-pair production at hadron colliders.

2 Notations

We consider the process g(p1) + g(p2) → t (p3) + t̄(p4) in which the external par-
ticles are on their mass-shell p21 = p22 = 0, p23 = p24 = m2

t and wheremt is the mass
of the top quark.

The squared matrix element, summed over spin and colour, can be expanded in
powers of the strong coupling constant αs according to

∑ ∣∣M
(
s, t,m2

t , ε
)∣∣2 = 16π2α2

s

[
A0 + αs

π
A1 +

(αs

π

)2
A2 + O

(
α3
s

)]
, (1)

where ε = (4 − d)/2 indicates the dimensional regulator and where the functions
Ai depend upon s, t , m2

t , ε. After UV renormalization, the terms Ai still include
IR divergences, which appear as poles in ε. These divergences cancel only after the
virtual corrections are added to the real emission ones.

The term A2 in Eq. (1) can be further split in the sum of two contributions

A2 = A (2×0)
2 + A (1×1)

2 . (2)
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Fig. 1 Examples of Feynman diagrams contributing to the calculation of the color coefficients Eh ,
Fh , Gh

A (1×1)
2 arises from the interference of one loop diagrams and was evaluated in [17–

19]. The color structure of the interference of two-loop and tree-level diagrams,
A (2×0)

2 , is the following

A
(2×0)
2 =

(
N 2
c − 1

) {
N 3
c A + NcB + 1

Nc
C + 1

N 3
c
D + N 2

c Nl El + N 2
c Nh Eh + Nl Fl + NhFh

+ Nl

N 2
c
Gl + Nh

N 2
c
Gh + NcN

2
l Hl + NcN

2
h Hh + NcNl NhHlh + N 2

l

Nc
Il

+ N 2
h

Nc
Ih + Nl Nh

Nc
Ilh

}
, (3)

where Nc indicates the number of colors, Nl the number of massless flavor quarks
(in our case Nl = 5) and Nh the number of quarks of mass mt (Nh = 1). The sixteen
gauge-invariant color coefficients A, B, . . . , Ilh are functions of s, t ,m2

t and ε. Todate,
only the leading color coefficient, A and the seven color coefficients proportional to
Nl : El , Fl , Gl , Hl , Hlh , Il and Ilh were calculated analytically [30–32].

In these proceedings, we focus on the QCD corrections at two loops in which a
top-quark loop is present. Some examples of Feynman diagrams belonging to this set
are shown in Fig. 1. These contributions enter the calculation of the color coefficients
Eh , Fh , Gh . In particular, the planar diagrams, such as the ones in Fig. 1a, c, d, f . . .

contribute to all of the three color coefficients, while the crossed diagrams, b, e, . . .
contribute only to Fh and Gh . This means that, computing the planar diagrams we
are able to give an analytic expression for the coefficient Eh . In these proceedings
we focus on the planar corrections.

We introduce the Mandelstam invariants

s = (p1 + p2)
2 , t = (p1 − p3)

2 , u = (p1 − p4)
2 , (4)

where s + t + u = 2m2
t .

The interference of the two-loop Feynman diagrams contributing to the NNLO
QCD planar heavy-loop corrections to g + g → t + t̄ can be expressed in terms of
scalar integrals belonging to the following 9-denominators family:

∫
Ddk1D

dk2
1

Da1
1 Da2

2 Da3
3 Da4

4 Da5
5 Da6

6 Da7
7 Da8

8 Da9
9

, (5)
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Fig. 2 Seven- and
six-denominator topologies

where ai , with i = 1, . . . , 9, are integer numbers. The Di , i = 1, . . . , 9, are the
denominators involved, d is the dimension of the space-time, and the normalization
is such that

Ddki = ddki

iπ
d
2

eεγE

(
m2

t

μ2

)ε

. (6)

The routing that we used for the propagators is the following:

{
−k21 + m2

t ,−(p1 + k1)
2 + m2

t ,−k22 + m2
t ,−(p1 + k1 − k2)

2,

−(p1 − p3 + k1 − k2)
2 + m2

t ,−(p2 − k1 + k2)
2,−(p2 − k1)

2 + m2
t ,

−(k1 − k2)
2,−(p3 + k1)

2
}

, (7)

where the momenta k1 and k2 are the loop momenta.
There are two 7-denominator and one 6-denominator new topologies involved

in this calculation. They are shown in Fig. 2. Other topologies at 6 denominators
that enter the calculation are the three-point functions studied for the NLO QCD
corrections to Higgs production in gluon fusion [36, 37].

The reduction to the MIs of the families in Eq. (5) was performed using the com-
puter programs1 FIRE [42–44] andReduze 2 [45, 46], that implement integration-
by-parts identities [47–49] and Lorentz-invariance identities [50]. We find 55 MIs,
shown in Fig. 3. Some of theseMIs were known in the literature from previous works
[27, 28, 30–32, 51–60].

3 The Differential Equations

The MIs shown in Fig. 3 were calculated using the differential equations method
[50, 61–64]. Some of the MIs lead to differential equations that admit solutions
defined by elliptic integrals. Therefore, for some of the MIs in Fig. 3 a second order
linear differential equation has to be solved. With this respect is worth to notice
that we can distinguish among three different groups of MIs. The first group of
MIs is constituted by the diagrams in Fig. 3 (T1)–(T6), (T9)–(T14), (T17)–(T27),

1Other public programs for the reduction to the MIs can be found in [38–41].
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Fig. 3 Master integrals in pre-canonical form. Internal plain thin lines represent massless propa-
gators, while thick lines represent the top propagator. External plain thin lines represent massless
particles on their mass-shell. External thick lines represents the top quark on its mass-shell

(T29)–(T32), (T44)–(T47). For these MIs, the system of differential equations can be
cast in canonical form [65] (see also [66–75]). The solution is expressed in terms
of GPLs with maximum weight 4. We checked our results against the numerical
program FIESTA4 [76–78] finding complete agreement within the error quoted by
FIESTA4 both in the Euclidean andMinkowski regions. The analytic continuation to
Minkowski regionwas done numerically, adding to s a small imaginary part, s + i0+,
according to the causal prescription.

The second group of MIs is constituted by the diagrams in Fig. 3 (T15), (T16),
(T28), (T48)–(T50). TheseMIs have homogeneous equation with solution that do not
involve elliptic integrals, but in the non-homogeneous part of the differential equation
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they contain elliptic integrals, in particular the equal-mass sunrise diagrams (T7) and
(T8).

The last group is constituted by the diagrams in Fig. 3 (T33)–(T43) and (T51)–
(T55). TheseMIs have solutions of the homogeneous part of the differential equations
that are expressed in terms of elliptic integrals and, moreover, also the non homoge-
neous parts contain elliptic integrals.

In these proceedings we will focus on the study of the MIs (T33)–(T35).

3.1 Second Order Differential Equation

The three MIs (T33)–(T35) satisfy a system of coupled first-order linear differential
equations. With the basis choice presented in Fig. 3 we are able to decouple one of
the three, the scalar T33, from the other two, that remain coupled. This is the best
we can do, and therefore, order-by-order in ε, we have to solve a second-order linear
differential equation in s and one in t . The differential equation in s forT34 atO(ε0)

is the following:

d2

ds2
F + p(s, t)

d

ds
F + q(s, t)F = Ω(s, t) , (8)

where

p(s, t) = − 1

(s − 4)
− 2

s
− 1(

s − 4 t−1
t−9

) − 1(
s + (t−1)2

t

) + 1(
s + 4 t+1

t+3

) , (9)

q(s, t) = − 1

4s2
− (t − 9)5

(256(t − 3)3(4 − 9s − 4t + st))

− (3 + t)5

(64(−4 + 3s + 4t + st)(−3 − 2t + t2)2)

+ (5 − 10t + 2t2)

(4s(t − 1)2)
+ (−25 − 77t − 27t2 + t3)

(128(−4 + s)(1 + t)2)

− ((t − 9)2(−1971 + 1944t − 534t2 + 48t3 + t4))

(256(4 + s(t − 9) − 4t)(t − 3)3(t − 1))

+ (9t2 + 6t3 + 2t4 − 6t5 + t6)

((t − 3)2(t − 1)2(1 + t)2(1 − 2t + st + t2))

− ((3 + t)2(135 + 192t − 10t2 − 72t3 + 11t4))

(64(t − 3)2(t − 1)(1 + t)2(−4 + 4t + s(3 + t)))
, (10)

and where the non-homogeneous part Ω(s, t) contains the master integrals of the
subtopologies, namely T1, T3, T7, T8, T9, T11, T15, T21, T22. The differential
equation in t has an analogous structure.
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Equation (8) is complicated to solve. The rational functions p(s, t) and q(s, t)
have many divergence points and it is not easy in general to find two independent
solutions of the homogeneous part. A strategy for the reduction of the number of
singularities in p(s, t) and q(s, t), like the one used in [79], does not work in this
case. Therefore, we have to find another approach in order to be able to solve the
homogeneous part of Eq. (8) and then integrate the particular solution with the Euler
method.

3.2 Homogeneous Solution and Maximal Cut

A possibility to find the solution of the second-order linear differential equation was
pointed out in [80–83]. It is based on the fact that themaximal cuts of the diagramswe
are interested on are a solution of the homogeneous part of the system of first-order
linear differential equations they satisfy and, therefore, of the associated second-
order differential equations for the single MIs. In particular, the MI T34 is finite,
and therefore we use directly the technique proposed in [81]. The four-dimensional
maximal cut can be expressed as follows:

Cut (s, t) = 1

R(s, t)
K (ω) , (11)

where

K (ω) =
∫ 1

0

dx√
(1 − x2)(1 − ωx2)

(12)

is the complete elliptic integral of the first kind and where

ω(s, t) = N (s, t)

D(s, t)
, (13)

R(s, t) = 2
√
s D(s, t) (14)

with

N (s, t) = 16
√
s(t2 + (s − 2)t + 1) , (15)

D(s, t) = 4(t − 1)

(
2

t − 1

s + t − 1

√
s(t2 + (s − 2)t + 1) − t + 1

)

+s

(
t2 + 8

√
s(t2 + (s − 2)t + 1)

(s + t − 1)
− 6t − 3

)
. (16)
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In Eqs. (15), (16) we considered m2
t = 1.

The two independent solutions of the homogeneous part of Eq. (8) are then

ψ1(s, t) = 1

R(s, t)
K (ω) , ψ2(s, t) = 1

R(s, t)
K (1 − ω) (17)

and they are solution also for the homogeneous part of the second-order linear dif-
ferential equation in t .

3.3 Complete Solution

Once the solutions for the homogeneous differential equations are found, we can
proceed to the integration of the particular solution using the Euler method of varia-
tion of the arbitrary constants. For convenience we introduce the two dimensionless
variables, x and y, such that

s = −m2
t

(1 − x)2

x
, t = −m2

t y . (18)

x and y are useful for the removal of the square roots in the differential equations
for the MIs belonging to sub-topologies that appear in the non-homogeneous part of
Eq. (8).

The particular solution is then written as

F(x, y) = c1ψ1 + c2ψ2 − ψ1

∫
dξ

W (ξ, y)
ψ2(ξ, y)Ω(ξ, y)

+ψ2

∫
dξ

W (ξ, y)
ψ1(ξ, y)Ω(ξ, y), (19)

where c1, c2 are arbitrary functions of y and W (x, y) is the Wronskian of the two
solutions ψ1 and ψ2:

W (x, y) = π

32

x2[y − 3 − 2x(3y − 1) + x2(y − 3)]
(x − 1)3(x + 1)(x + y + x2y + xy2)[y + 9 + 2x(y − 7) + x2(y + 3)] . (20)

Imposing the regularity in s = 0, forces c1 = c2 = 0. Therefore, the solution of
the MI T34 is given by

F(x, y) = −ψ1(x, y)
∫

dξ

W (ξ, y)
ψ2(ξ, y)Ω(ξ, y)

+ψ2(x, y)
∫

dξ

W (ξ, y)
ψ1(ξ, y)Ω(ξ, y) . (21)
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3.3.1 Structure of the Integrals

Let us comment briefly on the structure of the integral solution in Eq. (21).
Firstly, we remark the fact that the solution we found is given in terms of a single

integration in the variable x . The other variable, y, is not involved in the integration
procedure. The functional dependence on t is exact. At this order in ε, Ω(x, y) is
a function that can be expressed in terms of rational functions, logarithms (or at
most Li2 functions for the following order in ε) and elliptic integrals of the first and
second kind (or one-fold integration over the elliptic kernel for the following order
in ε). These latters come from the solution of the sunrise with equal masses, which
is present as subtopology. However, the equal-mass sunrise appears as a function of
y only and, therefore, it is not directly involved in the integration, which is done in
x . At this order in ε we have to perform one-dimensional integrals of the product of
the homogeneous solution and rational or logarithmic functions

F(x, y) ∼
∫ x

1
dξ

{
P(ξ, y)

Q(ξ, y)
; log ξ

}
1

R(ξ, y)
K (ω(ξ, y)) . (22)

The numeric integration of a form such as the one in Eq. (22) is extremely fast.
Moreover, it is suitable for the analytic continuation in the Minkowski space. For the
computation of the color factors, the following order in ε of T34 (as well as of T33

and T35) is needed. We do not consider the order ε in these proceedings.
We checked our results against the results obtained with the program FIESTA4

[76–78] and we found complete agreement, within the number of digits given by
FIESTA4, in the Euclidean region.

The structure of the functions that appear in our result as iterated integrals over
elliptic kernels was studied very recently in [84–88].

3.4 The MIs T33 and T35

Once the solution for T34 is found, we have to find the solution for the other two
masters of the same topology. In principle, the problem is solved. Knowing the solu-
tion for T34 we can find, for instance, the solution for T35, which is the MI directly
coupled to T34 in the system of differential equations, using the first-order differen-
tial equation for T34 and therefore expressing T35 as a combination of T34 and its
derivative with respect to x . This implies thatT35 can be expressed as a combination
of the same kind of integrals encountered in the expression of T34 with the addition
of complete elliptic integrals of the second kind. For T33, however, the situation is
different. Since it is decoupled from the other twoMIs,T33 can be calculated using a
first-order linear differential equation, in which the non homogeneous part contains
the other two MIs T34 and T35. A direct consequence of this fact is that T33 has
an additional integration with respect to T34 and T35 and therefore its functional
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structure is more complicated, employing up to three-fold integrations in x . This
problem can affect the speed of the numeric integration.

In order to have an homogeneous number of parametric integrations for all the
three MIs, we adopted the following strategy. We know that the basis of the MIs
chosen is completely arbitrary. Therefore, we can find different basis in which one
MI is decoupled from the other two, that are coupled between each other. We chose
two different basis, the first one constituted by T33, T34 and T35 and the second
one constituted by T33, T34 and another master, which is finite in four dimensions,
that we will call T35bis . In both sets, T33 is decoupled from the other two. Having
calculated T34 with the maximal cut and then with parametric integrations as in
Eq. (22), we can find both T34 and T35bis from simple derivative with respect to x .
The basis constituted byT34,T35 and T35bis is then expressed in terms of a numeric
integration of a form such as the one in Eq. (22).

We checked our results for the remaining two MIs, T35 and T35bis , against the
results obtained with the program FIESTA4 and we found complete agreement in
the Euclidean region.

4 Conclusions

In these proceedings, we presented the calculation of three 5-denominators two-loop
box diagrams that enter the computation of the NNLO QCD corrections to three of
the sixteen color coefficients in terms of which we can express the partonic cross
section for the production of a top-antitop pair in gluon fusion.

The calculation was performed using the differential equations method. A part
of the MIs could be calculated using standard methods that involve the construction
of the canonical basis and its solution in terms of GPLs of maximum weight 4.
For some MIs, however, this was not possible and we had to solve second-order
linear differential equations that admit solutions in terms of iterated integrations over
elliptic kernels. In particular, we focused on the study of an elliptic box. Calculating
its maximal cut, wewere able to find two independent solutions for the homogeneous
part of the second-order differential equations (one in s and the other in t) that thisMI
has to satisfy. Imposing initial conditions, then, we found a suitable representation
for this class of integrals, which is based on one- or two-fold integration of elliptic
integrals multiplied by rational functions, logarithms and dilogarithms, in the single
variable s. The dependence on t remains exact. This form is particularly good for
fast numeric integrations and allows for a straightforward analytic continuation of
the formulas in the physical region of the phase space.
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1 Introduction

Recently, a lot of progress has been made in understanding elliptic multiple poly-
logarithms (eMPLs) [20], and in particular their use in the calculation of multiloop
Feynman integrals [11–13]. As of today, a clear formulation for these functions is
available in two different languages. The first, as iterated integrals over a set of
kernels defined on a torus, is preferred in the mathematics community and finds
natural applications in the calculation of one-loop open-string scattering amplitudes
[14–16]. The second, as iterated integrals on an elliptic curve defined as the zero-set
of a polynomial equation of degree three or four, is more natural in the context of
the calculation of multiloop Feynman integrals by direct integration (for example
over their Feynman-Schwinger parameter representation). In spite of this impressive
progress, it remains not obvious how to connect these two languages to that of the
differential equations method [23–25, 30], which constitutes one of the most pow-
erful tools for the computation of large numbers of complicated multiloop Feynman
integrals.

It is well known that Feynman integrals fulfil systems of linear differential equa-
tions with rational coefficients in the kinematical invariants and the dimensional
regularization parameter ε. Once the differential equations are expanded in ε, a
straightforward application of Euler’s variation of constants allows one to naturally
write their solutions as iterated integrals over rational functions and (products of)
their homogeneous solutions. The homogeneous solutions can in turn be inferred by
the study of the maximal cut of the corresponding Feynman integrals [29] and are in
general given by non-trivial transcendental functions of the kinematical invariants.
When dealing with Feynman integrals which evaluate to ordinary multiple polylog-
arithms (MPLs), the homogeneous solutions are expected to be algebraic functions
(or at most logarithms). In the ellipitic case, they are instead given by (products of)
complete elliptic integrals [5, 6, 10, 26, 28, 31, 33]. The iterated integrals arising
naturally from this construction have been studied in the literature in different spe-
cial cases [4, 32], and are particular instances of the ‘iterative non-iterative integrals’
considered in Refs. [3, 4]. A natural question is how and when these new types of
iterated integrals can be written in terms of the eMPLs defined in the mathemati-
cal literature. In other words, is it possible to phrase the solution of the differential
equations for elliptic Feynman integrals directly in terms of eMPLs, and if yes under
which conditions? An obstacle when trying to address this question is that the kernels
defining eMPLs do not present themselves in terms of complete elliptic integrals. A
first possible hint to an answer to this apparent conundrum comes from the obser-
vation that elliptic polylogarithms evaluated at some special points can always be
written as iterated integrals of modular forms [17], and a representation of the equal-
mass sunrise in terms of this class of iterated integrals also exists [7, 8, 17]. It is
therefore tantalising to speculate that the new class of iterated integrals showing up
in Feynman integrals are closely connected to iterated integrals of modular forms
and generalisations thereof.
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In these proceedings, we start investigating the fascinating problem of how to
relate iterated integrals of modular forms to iterated integrals over rational/algebraic
functions and products of complete elliptic integrals. We mostly focus here on a
simpler subproblem, namely on how to express modular forms in terms of powers
of complete elliptic integrals, multiplied by suitable algebraic functions. This is a
first step towards classifying the new classes of integration kernels that show up in
Feynman integral computations, and how these new objects are connected to classes
of iterated integrals studied in the mathematics literature. As a main result, we will
show that, quite in general, modular forms admit a representation in terms of linearly
independent products of elliptic integrals and algebraic functions. The advantage of
this formulation of modular forms (for applications to Feynman integrals) lies in
the fact that we can describe them in “purely algebraic terms”, where all quanti-
ties are parametrised by variables constrained by polynomial equations – a setting
more commonly encountered in physics problems than the formulation in terms of
modular curves encountered in the mathematics (and string theory) literature. At the
same time, since this formulation is purely algebraic, it lends itself more directly
to generalisations to cases that cannot immediately be matched to the mathematics
of modular forms, e.g., in cases of Feynman integrals depending on more than one
kinematic variable.

This contribution to the proceedings is organised as follows: in Sect. 2 we provide
a brief survey of the necessary concepts such as congruence subgroups of SL(2,Z),
modular forms, Eisenstein and cuspidal subspaces and modular curves. Section 3
contains the main part of our contribution: we will show that one can indeed find
suitable one-forms in an algebraic way, which we demonstrate to be in one-to-one
correspondence with a basis of modular forms. Finally, we briefly discuss three
applications in Sect. 4 and present our conclusions in Sect. 5.

2 Terms and Definitions

2.1 The Modular Group SL(2,Z) and Its Congruence
Subgroups

In these proceedings we are going to consider functions defined on the extended
upper half-plane H = H ∪ Q ∪ {i∞}, where H = {τ ∈ C | Im τ > 0}. The modular
group SL(2,Z) acts on the points in H through Möbius transformations of the form

γ · τ = aτ + b

cτ + d
, γ = (

a b
c d

) ∈ SL(2,Z). (1)

In the following, we will be interested in subgroups of the full modular group. Of
particular interest are the so-called congruence subgroups of level N of SL(2,Z),
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Γ0(N ) = {(
a b
c d

) ∈ SL(2,Z) : c = 0 mod N
}

,

Γ1(N ) = {(
a b
c d

) ∈ SL(2,Z) : c = 0 mod N and a = d = 1 mod N
}

,

Γ (N ) = {(
a b
c d

) ∈ SL(2,Z) : b = c = 0 mod N and a = d = 1 mod N
}

. (2)

It is easy to see that Γ ⊆ SL(2,Z) acts separately on H and Q ∪ {i∞}. The action
of Γ decomposes Q ∪ {i∞} into disjoint orbits. We refer to the elements of the
coset-space (Q ∪ {i∞})/Γ (i.e., the space of all orbits) as cusps of Γ . By abuse
of language, we usually refer to the elements of the orbits also as cusps. We note
here that the number of cusps is always finite for any of the congruence subgroups
considered in Eq. (2).

Example 1 One can show that for every rational number a
c ∈ Q, there is a matrix(

a b
c d

) ∈ SL(2,Z) such that a
c = limτ→i∞ aτ+b

cτ+d . Hence, under the action of the group
Γ (1) � SL(2,Z) every rational number lies in the orbit of the point i∞, and soΓ (1)
has a single cusp which we can represent by the point i∞ ∈ H, often referred to as
the cusp at infinity.

At higher levels a congruence subgroup usually has more than one cusp. For
example, the group Γ (2) has three cusps, which we may represent by τ = i∞,
τ = 0 and τ = 1. Representatives for the cusps of congruence subgroups of general
level N can be obtained from SAGE [1].

2.2 Modular Curves

Since the action of any congruence subgroup Γ of SL(2,Z) allows us to identify
points in the (extended) upper half-plane H (H), it is natural to consider its quotient
by Γ , commonly referred to as a modular curve,

XΓ = H/Γ and YΓ = H/Γ . (3)

In the cases where Γ is any of the congruence subgroups in Eq. (2), the correspond-
ing modular curves are usually denoted by X0(N ) = XΓ0(N ), X1(N ) = XΓ1(N ) and
X (N ) = XΓ (N ).

There is a vast mathematical literature on modular curves (see, for example
Ref. [22]), and we content ourselves here to summarise the main results which we
will use in the remainder of these proceedings. It can be shown that YΓ always defines
a Riemann surface, which can be compactified by adding a finite number of points
to YΓ , which are precisely the cusps of Γ . In other words, while YΓ is in general not
compact, XΓ always defines a compact Riemann surface. Hence, we can apply very
general results from the theory of compact Riemann surfaces to the study of modular
curves, as we review now.

In principle, there are two ways to describe the modular curve XΓ : either as the
quotient of the extended upper half plane, or as the projective curveC inCP2 defined
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by the polynomial equation Φ(x, y) = 0. Hence, there must be a map from H/Γ to
C which assigns to τ ∈ H/Γ a point (x(τ ), y(τ )) ∈ C such thatΦ(x(τ ), y(τ )) = 0.
Since two points inH/Γ are identified if they are related by aMöbius transformation
for Γ , the functions x(τ ) and y(τ ) must be invariant under modular transformations
for Γ , e.g.,

x

(
aτ + b

cτ + d

)
= x(τ ) , ∀ ( a b

c d

) ∈ Γ , (4)

and similarly for y(τ ). A meromorphic function satisfying Eq. (4) is called a mod-
ular function for Γ . Equivalently, the modular functions for Γ are precisely the
meromorphic functions on XΓ . Note that since XΓ is compact, there are no non-
constant holomorphic functions on XΓ (because they would necessarily violate
Liouville’s theorem). Modular functions can easily be described in terms of the
algebraic curve C : they are precisely the rational functions in (x, y) subject to the
constraint Φ(x, y) = 0. Equivalently, the field of modular functions for XΓ is the
field C(x(τ ), y(τ )). In particular, we see that the field of meromorphic functions
of a modular curve (or of any compact Riemann surface) has always (at most) two
generators x and y.

Example 2 It can be shown that the modular curve X0(2) is isomorphic to the alge-
braic variety C described by the zero-set of the polynomial

Φ2(x, y) = x3 + y3 − 162000(x2 + y2) + 1488xy(x + y) − x2y2 + 8748000000(x + y)

+ 40773375xy − 157464000000000 . (5)

In general, the coefficients of the polynomials describing modular curves are very
large numbers, already for small values of the level N . The map from the quotient
space H/Γ0(2) to the curve C is given by1

τ 	→ (x, y) = ( j (τ ), j ′(τ )) = ( j (τ ), j (2τ)) , (6)

where j : H → C denotes Klein’s j-invariant. The field of meromorphic functions
of X0(2) is the field of rational functions in two variables (x, y) subject to the
constraintΦ2(x, y) = 0, or equivalently the fieldC( j (τ ), j ′(τ )) of rational functions
in ( j (τ ), j ′(τ )).

In general, the polynomials ΦN (x, y) describing the classical modular curves
X0(N ) can be constructed explicitly, cf. e.g. Refs. [18, 21], and they are avail-
able in computer-readable format up to level 300 [2]. The zeroes of ΦN (x, y) are
parametrised by ( j (τ ), j ′(τ )) = ( j (τ ), j (Nτ)), the field of meromorphic functions
is C( j (τ ), j ′(τ )).

In some cases it is possible to find purely rational solutions to the polynomial
equation Φ(x, y) = 0, i.e., one can find rational functions (X (t),Y (t)) such that

1The notation j ′(τ ) = j (2τ) is standard in this context in the mathematics literature, though we
emphasise that j ′(τ ) does not correspond to the derivative of j (τ ).
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Φ(X (t),Y (t)) = 0 for all values of t ∈ Ĉ = C ∪ {∞}. In such a scenario we have
constructed a map from the Riemann sphere Ĉ to the curveC , and so we can identify
the curveC , and thus the correspondingmodular curve XΓ , with theRiemann sphere.
By a very similar argument one can conclude that there must be a modular function
t (τ ) for Γ which allows us to identify the quotient H/Γ with the Riemann sphere.
Such amodular function is called aHauptmodul forΓ . It is easy to see that in this case
the field of meromorphic functions reduces to the field C(t (τ )) of rational functions
in the Hauptmodul, in agreement with the fact that the meromorphic functions on
the Riemann sphere are precisely the rational functions.

Example 3 It is easy to check that Eq. (5) admits a purely rational solution of the
form [27]

(x, y) = (X (t),Y (t)) =
(

(t + 16)3

t
,
(t + 256)3

t2

)
. (7)

We have thus constructed a map from the Riemann sphere to the modular curve
X0(2), and so X0(2) is a curve of genus zero. A Hauptmodul for X0(2) can be
chosen to be [27]

t2(τ ) = 212
(

η(2τ)

η(τ )

)24

, (8)

where η denotes Dedekind’s η-function.

It is possible to compute the genus of a modular curve. In particular, it is possible
to decide for which values of the level N the modular curves associated to the
congruence subgroups in Eq. (2) have genus zero. Here is a list of results:

• X0(N ) has genus 0 iff N ∈ {1, . . . , 10, 12, 13, 16, 18, 25}.
• X1(N ) has genus 0 iff N ∈ {1, . . . , 10, 12}.
• X (N ) has genus 0 iff N ∈ {1, 2, 3, 4, 5}.
Hauptmodule for these modular curves have been studied in the mathematics litera-
ture. In particular, the complete list of Hauptmodule for the modular curves X0(N )

of genus zero can be found in Ref. [27] in terms of η-quotients. Other cases are also
known in the literature, but they may involve Hauptmodule that require generalisa-
tions of Dedekind’s η-function, see e.g. Ref. [35].

Example 4 The modular curves X (1) and X (2) have genus zero, and the respective
Hauptmodule are Klein’s j-invariant j (τ ) and the modular λ-function,

λ(τ) = θ4
2 (0, τ )/θ4

3 (0, τ ) = 24
(

η(τ/2) η(2τ)2

η(τ)3

)8

, (9)

where θn(0, τ ) are Jacobi’s θ -functions.
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2.3 Modular Forms

One of the deficiencieswhenworkingwithmodular curves is the absence of holomor-
phic modular functions on XΓ . We can, however, introduce a notion of holomorphic
functions by relaxing the condition on how the functions should transform under Γ .
For every non-negative integer k, we can define an action of Γ on functions onH by

( f |kγ )(τ ) = (cτ + d)−k f (γ · τ) , γ = (
a b
c d

) ∈ Γ . (10)

A meromorphic function H → C is called weakly modular of weight k for Γ if it is
invariant under this action,

( f |kγ )(τ ) = f (τ ). (11)

Note that weakly modular functions of weight zero are precisely the modular func-
tions for Γ .

Amodular form of weight k forΓ is, loosely speaking, a weaklymodular function
of weight k that is holomorphic on H. In particular it is holomorphic at all the cusps
of Γ . We denote theQ-vector space of modular forms of weight k for Γ byMk(Γ ).
It can be shown that this space is always finite-dimensional. We summarise here
some properties of spaces of modular forms that are easy to prove and that will be
useful later on.

1. The space of all modular forms is a graded algebra,

M•(Γ ) =
∞⊕

k=0

Mk(Γ ), with Mk(Γ ) · M
(Γ ) ⊆ Mk+
(Γ ). (12)

2. If Γ ′ ⊆ Γ , then Mk(Γ ) ⊆ Mk(Γ
′).

3. If
( −1 0

0 −1

) ∈ Γ , then there are no modular forms of odd weight for Γ .

A modular form that vanishes at all cusps of Γ is called a cusp form. The space of
all cusp forms of weight k for Γ is denoted by Sk(Γ ). The space of all cusp forms
S•(Γ ) = ⊕∞

k=0 Sk(Γ ) is obviously a graded subalgebra ofM•(Γ ) and an ideal in
M•(Γ ). The quotient space is the Eisenstein subspace:

E•(Γ ) � M•(Γ )/S•(Γ ). (13)

Note that at each weight the dimension of the Eisenstein subspace for Γ is equal2 to
the number of cusps of Γ .

Example 5 Let us analyse modular forms for Γ (1) � SL(2,Z). There are no mod-
ular forms for Γ (1) of odd weight. Since Γ (1) has only one cusp, there is one
Eisenstein series for every even weight, the Eisenstein series G2m ,

2There are exceptions for small values of the weight and the level.
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G2m(τ ) =
∑

(α,β)∈Z2\{(0,0)}

1

(α + βτ)2m
. (14)

It is easy to check that G2m(τ ) transforms as a modular form of weight 2m, except
when m = 1, which will be discussed below. The first cusp form for Γ (1) appears
at weight 12, known as the modular discriminant,

Δ(τ) = 212 η(τ)24 = 10 800
(
20G4(τ )3 − 49G6(τ )2

)
. (15)

In the sameway as the Eisenstein subspace forΓ (1) is generated by the Eisenstein
series G2m(τ ), there exist analogues for the Eisenstein subspaces for congruence
subgroups.

G2(τ ) is an example of a quasi-modular form. A quasi-modular form of weight
n and depth p for Γ is a holomorphic function f : H → C that transforms as,

( f |nγ )(τ ) = f (τ ) +
p∑

r=1

fr (τ )

(
c

cτ + d

)r

, γ = (
a b
c d

) ∈ Γ , (16)

where f1, . . . , f p are holomorphic functions. In the case of the Eisenstein series
G2(τ ) we have,

G2

(
aτ + b

cτ + d

)
= (cτ + d)2

(
G2(τ ) − 1

4π i

c

cτ + d

)
. (17)

Comparing Eqs. (17) to (16), we see that G2(τ ) is a quasi-modular form of weight
two and depth one.

It is easy to check that any congruence subgroupΓ of level N contains the element

T N = (
1 N
0 1

)
, (18)

which generates the Möbius transformation τ → τ + N . Consequently, modular
forms of level N are periodic functions with period N and thus admit Fourier expan-
sions of the form

f (τ ) =
∞∑

m=0

ame
2π imτ/N =

∞∑

m=0

amq
m
N , (19)

with q = exp(2π iτ) and qN = q1/N , which are called q-expansions.

Example 6 The Eisenstein series for Γ (1) admit the q-expansion

G2m(τ ) = 2ζ2m + 2 (2π i)2m

(2m − 1)!
∞∑

n=1

σ2m−1(n) qn , (20)

where σp(n) = ∑
d|n d p is the divisor sum function.
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In the previous section we have argued that modular curves admit a purely
algebraic description in terms of zeroes of polynomials in two variables. For practical
applications in physics such an algebraic description is often desirable, because con-
crete applications often present themselves in terms of polynomial equations. Such
an algebraic description also exists for (quasi-)modular forms. In particular, every
modular form of positive weight k satisfies a linear differential equation of order
k + 1 with algebraic coefficients. More precisely, consider a modular form f (τ ) of
weight k for Γ . We can pick a modular function t (τ ) for Γ and locally invert it to
express τ as a function of t . Then the function F(t) = f (τ (t)) satisfies a linear dif-
ferential equation in t of degree k + 1 with coefficients that are algebraic functions
in t . In the case where Γ has genus zero3 we can choose t (τ ) to be a Hauptmodul,
in which case the coefficients of the differential equation are rational functions. We
emphasise that the function F(t) is only defined locally, and in general it has branch
cuts.

One of the goals of these proceedings is to make this algebraic description of
modular forms concrete and to present a way how it can be obtained in some specific
cases. For simplicity we only focus on the genus zero case, because so far modular
forms corresponding to congruence subgroups of higher genus have not appeared in
Feynman integral computations. We emphasise, however, that this restriction is not
essential and it is straightforward to extend our results to congruence subgroups of
higher genus.

3 An Algebraic Representation of Modular Forms

3.1 General Considerations

In this section, we will make the considerations at the end of the previous section
concrete, and we are going to construct a basis of modular forms of given weight for
different congruence subgroups of SL(2,Z) in terms of objects that admit a purely
algebraic description. More precisely, consider a modular form f of weight k for Γ ,
where Γ can be any of the congruence subgroups in Eq. (2). Then, at least locally,
we can find a modular function x(τ ) for Γ and an algebraic function A such that

f (τ ) = K(λ(τ ))k A(x(τ )) , (21)

where λ denotes the modular λ function of Eq. (9) and K is the complete elliptic
integral of the first kind,

K(λ) =
∫ 1

0

1
√

(1 − t2)(1 − λ t2)
dt . (22)

3We define the genus of a congruence subgroup Γ to be the genus of the modular curve XΓ .
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Note that locally we can write λ as an algebraic function of x , so that the argument
of the complete elliptic integral can be written as an algebraic function of x . Since
K satisfies a linear differential equation of order two, it is then easy to see that the
right-hand side of Eq. (21) satisfies a linear differential equation of order k + 1 in x
with algebraic coefficients. The existence of the local representation in Eq. (21) can
be inferred from the following very simple reasoning. First, since Γ (N ) ⊆ Γ1(N ) ⊆
Γ0(N ) it is sufficient to discuss the case of the groupΓ (N ). Next, letM = lcm(4, N )

be the least commonmultiple of 4 and N . SinceΓ (M) ⊆ Γ (N ), f is a modular form
ofweight k forΓ (M). One can check thatK(λ(τ )) is amodular formofweight one for
Γ (4), and therefore also for Γ (M). The ratio f (τ )/K(λ(τ ))k is then a modular form
of weight zero forΓ (M), and thus amodular function, i.e., an element of the function
fieldC(x(τ ), y(τ )) of Γ (M). Hence we have f (τ )/K(λ(τ ))k = R(x(τ ), y(τ )). y is
an algebraic function of x (because they are related by the polynomial equation
Φ(x, y) = 0 that defines X (M)), and so we can choose A(x(τ )) = R(x(τ ), y(τ ))

in Eq. (21).
While the previous argument shows that a representation of the form (21) exists for

anymodular formof level N , finding this representation in explicit cases can be rather
hard. Our goal is to show that often one can find this representation using analytic
constraints, which allow us to infer the precise form of the algebraic coefficient A.
We focus here exclusively on congruence subgroups of genus zero, but we expect
that similar arguments apply to higher genera. In the next paragraphs, we are going to
describe the general strategy. In subsequent sections we will illustrate the procedure
on concrete examples, namely the congruence subgroups Γ (2) and Γ0(N ) for N ∈
{2, 4, 6}, as well as the group Γ1(6) which is relevant for the sunrise graph [7, 9]. In
particular, we will construct an explicit basis of modular forms for these groups for
arbitrary weights.

Assume that we are given a modular form B(τ ) of weight p for Γ , which we call
seed modular form in the following. In the argument at the beginning of this section
the seed modular form is K(λ(τ )), assuming that Γ contains Γ (4) as a subgroup.
It is however useful to formulate the argument in general without explicit reference
to K(λ(τ )). Next, consider a modular form f (τ ) of weight k for Γ with p|k. Then
by an argument very similar to the one presented at the beginning of this section we
conclude that there is a modular function x(τ ) for Γ and an algebraic function A(x)
such that

A(x(τ )) = f (τ )

B(τ )k/p
. (23)

If Γ has genus zero and x is a Hauptmodul for Γ , then the function A is a rational
function of x . From now onwe assume for simplicity that weworkwithin this setting.

Up to now the argument was similar to the one leading to the form (21), and we
have not constrained the form of the rational function A. We now discuss how this
can be achieved. Being a modular form, f (τ ) needs to be holomorphic everywhere.
Correspondingly, the rational function A(x(τ )) can have poles at most for B(τ ) = 0.
In applications, the location of the poles is usually known (see the next sections). Let
us denote them by τi , and we set xi = x(τi ) (with xi �= ∞). We must have
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A(x) = P(x)
∏

i (x − xi )ni
, (24)

where P(x) is a polynomial. The degree of P is bounded by analysing the behaviour
of the seed modular form at points where x(τ ) = ∞, where both f and B must be
holomorphic. Finally, the modular form f (τ ) can be written as

f (τ ) = B(τ )k/p
∏

i (x(τ ) − xi )ni
[
d0 + d1 x(τ ) + · · · + dm x(τ )m

]
, (25)

where the di are free coefficients. In the next sections we illustrate this construction
explicitly on the examples of the congruence subgroups Γ (2), Γ0(N ), N ∈ {2, 4, 6}
and Γ1(6). However, before we do so, let us make a few comments about Eq. (25).
First, we see that we can immediately recast Eq. (25) in the form (21) if we know
how to express the seed modular form B in terms of the complete elliptic integral
of the first kind. While we do not know any generic way of doing this a priori, in
practical applications the seed modular formwill usually be given by a Picard–Fuchs
equation whose solutions can be written in terms of elliptic integrals. Second, we
see that Eq. (25) depends on m + 1 free coefficients, and so dimMk(Γ ) = m + 1.
Finally, let us discuss how cusp forms arise in this framework. Let us assume that
Γ has nC cusps, which we denote by τr , 1 ≤ r ≤ nC . For simplicity we assume
that cr = x(τr ) �= ∞, though the conclusions will not depend on this assumption.
Then f is a cusp form if f (τr ) = 0 for all 1 ≤ r ≤ nC . It can easily be checked that,
by construction, the ratio multiplying the polynomial in Eq. (25) can never vanish.
Hence, all the zeroes of f are encoded into the zeroes of the polynomial part in
Eq. (25). Therefore f is a cusp form if and only if it can locally be written in the
form

f (τ ) = B(τ )k/p
∏

i (x(τ ) − xi )ni

⎡

⎢
⎣

nC∏

r=1
cr �=∞

(x(τ ) − cr )

⎤

⎥
⎦

⎡

⎣
m−nc−δ∞∑

j=1

d j x(τ ) j

⎤

⎦ , (26)

with

δ∞ =
{
1 , if cr = ∞ for some r ,

0 , otherwise .
(27)

3.2 A Basis for Modular Forms for Γ (2)

In this section we derive an algebraic representation for all modular forms of weight
2k for the group Γ (2), and we present an explicit basis for such modular forms
for arbitrary weights. As already mentioned in Example4, the modular curve X (2)
has genus zero and the associated Hauptmodul is the modular λ-function. Since( −1 0

0 −1

) ∈ Γ (2), there are no modular forms of odd weight. The group Γ (2) has
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three cusps, which are represented by τ = i∞, τ = 1 and τ = 0. Under the modular
λ function the cusps are mapped to

λ(i∞) = 0 , λ(0) = 1 , λ(1) = ∞ . (28)

Next, we need to identify our seed modular form. One can easily check that
B(τ ) = K(λ(τ ))2 is a modular form of weight two for Γ (2). If f denotes a modular
form of weight 2k for Γ (2), then we can form the ratio

R(λ(τ )) = f (τ )

B(τ )k
= f (τ )

K(λ(τ ))2k
, (29)

where R is a rational function in the Hauptmodul λ.
In order to proceed, we need to determine the pole structure of R, or equivalently

the zeroes of the seed modular form B, i.e., of the complete elliptic integral of the
first kind. The elliptic integral K(
) has no zeroes in the complex plane. Furthermore,
it is not difficult to show that K(
) behaves like 1/

√

 for 
 → ∞. So the function

B(τ ) becomes zero only at λ(τ) = ∞, which corresponds to τ = 1mod Γ (2). We
thus conclude that R(λ(τ )) cannot have poles at finite values of λ(τ), and so it must
be a polynomial. The degree of the polynomial is bounded by the requirement that
the ratio in Eq. (29) has no pole at τ = 1. Starting from a polynomial ansatz

R(λ(τ )) =
m∑

n=0

anλ(τ)n (30)

we find

f (τ ) = K(λ(τ ))2k
m∑

n=0

anλ(τ)n
τ→1∼

(
1√
λ(τ)

)2k

amλ(τ)m = amλ(τ)m−k . (31)

We see that f (τ ) is holomorphic at τ = 1 if and only if the degree of R is at most
k. Thus, we can write the most general ansatz for the modular form of weight 2k for
Γ (2):

f (τ ) = K(λ(τ ))2k
k∑

n=0

cnλ(τ)n . (32)

In turn, this allows to infer the dimension of the space of modular forms of weight
2k:

dim M2k(Γ (2)) = k + 1, k > 1 , (33)

and we see that the modular forms

K(λ(τ ))2k λ(τ)n , 0 ≤ n ≤ k + 1 , (34)

form a basis forM2k(Γ (2)).
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Finally, let us comment on the space of cusp forms of weight 2k for Γ (2). Using
Eq. (26), we conclude that the most general element ofS2k(Γ (2)) has the form

K(λ(τ ))2k λ(τ) (1 − λ(τ))

k−3∑

n=0

an λ(τ)n . (35)

We see that there are k − 2 cups forms forΓ (2) ofweight 2k > 2. This number agrees
with the data for the dimensions of Eisenstein and cuspidal subspaces delivered by
SAGE [1]. Moreover, we can easily read off a basis of cusp forms for arbitrary
weights.

Example 7 Every Eisenstein series for Γ (1) (see Eq. (14)) is a modular form for
Γ (2), and so we can write them locally in the form

G2k(τ ) = K(λ(τ ))2k G2k(λ(τ )) , k > 1 , (36)

where G2k(
) is a polynomial of degree k. For example, for low weights we find

G4(
) = 16

45
(
2 − 
 + 1) ,

G6(
) = 64

945
(
 − 2)(
 + 1)(2
 − 1) ,

G8(
) = 256

4725
(
2 − 
 + 1)2 . (37)

In this basis the modular discriminant of Eq. (15) takes the form

Δ(τ) = 65 536K(λ(τ ))12 λ(τ)2 (1 − λ(τ))2 , (38)

in agreementwithEq. (35). Finally, theEisenstein series ofweight two is notmodular,
so it cannot be expressed in terms of the basis in Eq. (34). We note however that one
can write

G2(τ ) = 4K(λ(τ ))E(λ(τ )) + 4

3
(λ(τ ) − 2)K(λ(τ ))2 , (39)

where E denotes the complete elliptic integral of the second kind

E(λ) =
∫ 1

0
dt

√
1 − λ t2

1 − t2
. (40)
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3.3 A Basis for Modular Forms for Γ0(2)

In this section we perform the same analysis for the congruence subgroup Γ0(2). The
analysis will be very similar to the previous case, so we will not present all the steps
in detail. However, there are a couple of differences which we want to highlight.

We start by reviewing some general facts about Γ0(2). First, there are no modular
forms of odd weight. Second, Γ0(2) has genus zero (cf. Sect. 2.2), and a Hauptmodul
for Γ0(2) is the function t2 defined in Eq. (8). Since Γ (2) ⊆ Γ0(2), the Hauptmodul
t2 is a modular function for Γ (2), and so it can be written as a rational function of
λ, the Hauptmodul for Γ (2). Indeed, one finds

t2(τ ) = 16
λ(τ)2

1 − λ(τ)
. (41)

Inverting the previous relation, we find

λ(τ) = 1

32

[√
t2(τ )(t2(τ ) + 64) − t2(τ )

]
− 2 . (42)

We see that λ(τ) is an algebraic function of the Hauptmodul t2.
Next, let us identify a seed modular form B0(τ ). As can be checked for example

with SAGE, there is a unique modular form of weight 2 for Γ0(2) (up to rescaling).
Since Γ (2) ⊆ Γ0(2), this form has to be in the space M2(Γ (2)), so we can – using
the results from the previous subsection – write the ansatz

B0(τ ) = K(λ(τ ))2(c0 + c1λ(τ)) . (43)

The coefficients can be fixed bymatching q-expansionswith the expression delivered
by SAGE and one finds that M2(Γ0(2)) is generated by

B0(τ ) = K(λ(τ ))2(λ(τ ) − 2) . (44)

Equipped with the seed modular form B0, we can now repeat the analysis from the
previous subsection. For a modular form f (τ ) of weight 2k for Γ0(2), the function

R(t2(τ )) = f (τ )

B0(τ )k
(45)

is meromorphic and has weight 0, thus it must be a rational function of the Haupt-
modul t2. In order to fix the precise form of R(t2), let us again consider the pole
structure of the right-hand side of Eq. (45): since both f (τ ) and B0(τ ) are holomor-
phic, poles in R(τ ) can appear only for B0(τ ) = 0, which translates into

λ(τ) = 2 or K(λ(τ )) = 0 . (46)
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As spelt out in the previous subsection, the second situation is realised for λ → ∞,
i.e., for τ → 1. Considering this limit, we find

lim
τ→1

B0(τ ) = lim
τ→1

K(λ(τ ))2(λ(τ ) − 2) ∼ λ(τ)
( 1√

λ(τ)

)2 = O(1) , (47)

and we see that B0(τ ) does not vanish in the limit K(λ(τ )) → 0. As K(λ(τ )) is finite
for λ(τ) = 2, B0 will have a simple zero there. As a function of the Hauptmodul t2,
however, B0(t2) behaves like

B0(t2)
t2→−64∼ √

t2 + 64 , (48)

which can be seen by expanding Eq. (42) around t2 = −64. Accordingly, R(t2) can at
most have a pole of order �k/2� at t2 = −64. Hence, we canwrite down the following
ansatz for R(t2),

R(t2) = P(t2)

(t2 + 64)�k/2�
, (49)

where P(t2) is a polynomial in the Hauptmodul. Its degree can be bounded by
demanding regularity for t2 → ∞. We obtain in this way the most general form for
a modular form of weight 2k for Γ0(2):

f (τ ) = K(λ(τ ))2k
(λ(τ ) − 2)k

(t2(τ ) + 64)�k/2�

�k/2�∑

m=0

cmt2(τ )m . (50)

In particular we see that

dimM2k(Γ0(2)) = �k/2� + 1 , (51)

and an explicit basis forM2k(Γ0(2)) is

K(λ(τ ))2k
(λ(τ ) − 2)k t2(τ )m

(t2(τ ) + 64)�k/2�
, 0 ≤ m ≤ �k/2� . (52)

We have checked up to weight 10 that our results are in agreement with the explicit
basis for modular forms for Γ0(2) obtained by SAGE. Finally, let us comment on
the cusp forms for Γ0(2). Γ0(2) has two cusps, which can be represented by τ = i∞
and τ = 0. The Hauptmodul t2 maps the cusps to

t2(i∞) = 0 and t2(0) = ∞ . (53)
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We then see from Eq. (26) that a basis forS2k(Γ0(2)) is

K (λ(τ ))2k
(λ(τ ) − 2)k t2(τ )m

(t2(τ ) + 64)�k/2�
, 1 ≤ m ≤ �k/2� − 1 . (54)

Example 8 Since Γ (2) ⊆ Γ0(2), we haveM2k(Γ0(2)) ⊆ M2k(Γ (2)). In particular,
this means that we must be able to write every basis element for M2k(Γ0(2)) in
Eq. (52) in terms of the basis for M2k(Γ (2)) in Eq. (34). Indeed, inserting Eq. (41)
into (52), we find,

(λ − 2)k tm2
(t2 + 64)�k/2�

= 16m−�k/2� λ2m (1 − λ)�k/2�−m (λ − 2)k−2�k/2� . (55)

It is easy to see that the previous expression is polynomial in λ provided that 0 ≤
m ≤ �k/2�. Hence, we see that every element in Eq. (52) can be written in terms of
the basis in Eq. (34).

3.4 A Basis for Modular Forms for Γ0(4) and Γ0(6)

In this section we discuss the congruence subgroups Γ0(4) and Γ0(6). The analysis
is identical to the case of Γ0(2) in the previous section, so we will be brief. There are
no modular forms of odd weight and both groups have genus zero. The respective
Hauptmodule t4 and t6 can be found in Ref. [27] in terms of η-quotients, though their
explicit forms are irrelevant for what follows. Here we only mention that we can
write the Hauptmodul t2 as a rational function in either t4 or t6 [27]

t2 = t4(t4 + 16) = t6(t6 + 8)3

t6 + 9
. (56)

Since Γ0(2N ) ⊆ Γ0(2), the modular form B0(τ ) in Eq. (44) is a modular form of
weight two for Γ0(2N ) for any value of N . Hence, we can choose B0(τ ) as our
seed modular form, and so if f ∈ M2k(Γ0(2N )), then f (τ )/Bk

0 (τ ) is a modular
function for Γ0(2N ). In the cases N = 2, 3 which we are interested in this implies
that f (τ )/Bk

0 (τ ) is a rational function in the Hauptmodul t2N ,

R(t2N (τ )) = f (τ )

B0(τ )k
, N = 4, 6 . (57)

Let us now analyse the pole structure of R(t4). From the last section we know that
B0(τ ) has a simple zero at λ(τ) = 2, or equivalently t2 = −64, and Eq. (56) then
implies t4 = −8. Writing down an ansatz for R(t4) and bounding the degree of the
polynomial in the numerator in the usual way, one finds that a basis of modular forms
of weight 2k for Γ0(4) is
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K(λ(τ ))2k
(

λ(τ) − 2

t4(τ ) + 8

)k

t4(τ )m , 0 ≤ m ≤ k . (58)

Γ0(4) has three cusps which can be represented by τ ∈ {i∞, 1, 1/2} and which
under t4 are mapped to

t4(i∞) = 0 t4(1) = ∞ , t4(1/2) = −16 . (59)

Hence a basis forS2k(Γ0(4)) is

K(λ(τ ))2k
(

λ(τ) − 2

t4(τ ) + 8

)k

t4(τ )m (t4(τ ) + 16) , 1 ≤ m ≤ k − 2 . (60)

As a last example, let us have a short peek at Γ0(6). Equation (56) implies that
B0(τ ) has simple poles for

t6(τ ) = −6 ± 2
√
3 . (61)

The argument proceeds in the familiar way, with the only difference that now there
are two distinct poles. The most general ansatz for a modular form of weight 2k for
Γ0(6) reads

f (τ )

Bk
0 (τ )

= P(t6(τ ))

[(t6(τ ) + 6 − 2
√
3)(t6(τ ) + 6 + 2

√
3)]k = P(t6(τ ))

(t6(τ )2 + 12t6(τ ) + 24)k
,

(62)
where the degree of the polynomial P can again be bounded by the common holo-
morphicity argument. This leads to the following basis for modular forms of weight
2k for Γ0(6),

K(λ(τ ))2k
(

λ(τ) − 2

t6(τ )2 + 12t6(τ ) + 24

)k

t6(τ )m , 0 ≤ m ≤ 2k . (63)

The cusps of Γ0(6) are represented by τ ∈ {i∞, 1, 1/2, 1/3}, or equivalently

t6(i∞) = 0 , t6(1) = ∞ , t6(1/2) = −8 , t6(1/3) = −9 . (64)

Hence a basis forS2k(Γ0(6)) is, with 1 ≤ m ≤ 2k − 3,

K(λ(τ ))2k
(

λ(τ) − 2

t6(τ )2 + 12t6(τ ) + 24

)k

t6(τ )m (t6(τ ) + 8) (t6(τ ) + 9) . (65)
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3.5 A Basis for Modular Forms for Γ1(6)

As a last application we discuss the structure of modular forms for Γ1(6), which is
known to be relevant for the sunrise and kite integrals [7, 9]. The general story will be
very similar to the examples in previous sections. In particular, Γ1(6) has genus zero,
and Γ1(6) and Γ0(6) have the same Hauptmodul t6 [9]. Here we find it convenient
to work with an alternative Hauptmodul t which is related to t6 by a simple Möbius
transformation [7, 27],

t = t6
t6 + 8

. (66)

The main difference in comparison to the previous examples – in particular to Γ0(6)
– lies in the fact that

( −1 0
0 −1

)
/∈ Γ1(6), and so Γ1(6) admits modular forms of odd

weight. In particular, it is known thatM1(Γ1(6)) is two-dimensional (this can easily
be checked with SAGE for example). Therefore, we would like to choose our seed
modular form to have weight one. We find it convenient to choose as seed modular
form a solution of the Picard–Fuchs operator associated to the sunrise graph [9, 26].
A particularly convenient choice is

B1(τ ) = Ψ1(t (τ )) , (67)

where

Ψ1(t) = 4

[(t − 9)(t − 1)3]1/4 K
(
t2 − 6t − 3 +√

(t − 9)(t − 1)3

2
√

(t − 9)(t − 1)3

)

. (68)

It can be shown that Ψ1(t (τ )) is indeed a modular form of weight one for Γ1(6) [7].
Next consider a modular form f (τ ) of weight k for Γ1(6). Following the usual

argument, the ratio

R(t (τ )) = f (τ )

B1(τ )k
(69)

is a rational function in the Hauptmodul t with poles at most at points where Ψ1(t)
vanishes. It is easy to check that the only zero of Ψ1(t) is at t = ∞, and we have

Ψ1(t)
t→∞∼ 1/t . (70)

Hence, R(t) must be a polynomial in t whose degree is bounded by requiring that
Ψ1(t)k R(t) be free of poles at t = ∞. It immediately follows that a basis of modular
forms of weight k for Γ1(6) is

Ψ1(t (τ ))k t (τ )m , 0 ≤ m ≤ k . (71)
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The cusps ofΓ1(6) can be represented by τ ∈ {i∞, 1, 1/2, 1/3}, and they aremapped
to

t (i∞) = 0, t (1) = 1 , t (1/2) = ∞ , t (1/3) = 9 . (72)

So a basis of cusp forms of weight k for Γ1(6) is

Ψ1(t (τ ))k t (τ )m (t (τ ) − 1) (t (τ ) − 9) , 1 ≤ m ≤ k − 3 . (73)

Let us conclude by commenting on the structure of the modular forms for Γ1(6),
and their relationship tomodular forms forΓ0(6). SinceΓ1(6) ⊆ Γ0(6)we obviously
haveMk(Γ0(6)) ⊆ Mk(Γ1(6)).Moreover, fromEqs. (63) to (71)we see that for even
weights these spaces have the same dimension, and so we conclude that

M2k(Γ1(6)) = M2k(Γ0(6)) . (74)

There is a similar interpretation of the modular forms of odd weights. It can be shown
that the algebra of modular forms for Γ1(N ) admits the decomposition [34]

Mk(Γ1(N )) =
⊕

χ

Mk(Γ0(N ), χ) , (75)

where the sum runs over all Dirichlet characters modulo N , i.e., all homomorphisms
χ : Z×

N → C
×. Here Mk(Γ0(N ), χ) denotes the vector space of modular forms of

weight k for Γ0(N ) with character χ , i.e., the vector space of holomorphic functions
f : H → C such that

f

(
aτ + b

cτ + d

)
= χ(d) (cτ + d)k f (τ ) ,

(
a b
c d

) ∈ Γ0(N ) . (76)

For N = 6 there are two Dirichlet characters modulo 6,

χ0(n) = 1 and χ1(n) = (−1)n . (77)

Hence, in the case we are interested in, Eq. (75) reduces to

Mk(Γ1(6)) = Mk(Γ0(6), χ0) ⊕ Mk(Γ0(6), χ1) = Mk(Γ0(6)) ⊕ Mk(Γ0(6), χ1) .

(78)
We then conclude that

M2k(Γ0(6), χ1) = 0 and M2k+1(Γ0(6), χ1) = M2k+1(Γ1(6)) . (79)
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4 Some Examples and Applications

4.1 Elliptic Multiple Zeta Values as Iterated Integrals Over
Modular Forms for Γ (2)

Elliptic multiple zeta values have appeared in calculations in quantum field theory
and string theory in various formulations during the last couple of years. While
initially formulated as special values of elliptic multiple polylogarithms, they can be
conveniently rewritten as iterated integrals over the Eisenstein series G2k defined in
Eq. (20) [16]. In other words, elliptic multiple zeta values are iterated integrals over
modular forms for Γ (1) = SL(2,Z) (though it is known that not every such integral
defines an element in the space of elliptic multiple zeta value [19]).

We have seen in Example7 that every modular form for Γ (1) is a modular form
for Γ (2). In particular, for k > 1 we can always write G2k as the 2kth power of
K(λ(τ )) multiplied by a polynomial G2k of degree k in λ(τ) (see Eq. (36)). The case
k = 1 is special, and involves the elliptic integral of the second kind, see Eq. (39).

As a consequence, we can write every iterated integral of Eisenstein series of
level N = 1, and thus every elliptic multiple zeta value, as iterated integrals over
integration kernels that involve powers of complete elliptic integrals of the first kind
multiplied by the polynomials G2k(λ(τ )). More precisely, consider the one-forms
dτ G2k(τ )which define iterated integrals of Eisenstein series of level one. Changing
variables from τ to 
 = λ(τ), we obtain, for k > 1,

dτ G2k(τ ) = iπ d


4 
 (
 − 1)
K(
)2k−2 G2k(
) , (80)

where Jacobian is given by

2π i∂τλ(τ ) = 8λ(τ)(λ(τ) − 1)K(λ(τ ))2 . (81)

Note that we also need to include the Eisenstein series of weight zero, G0(τ ) = −1,
and Eq. (80) remains valid if we let G0(
) = −1. For k = 1 we can derive from
Eq. (39) a similar relation involving the complete elliptic integral of the second kind.
As a conclusion, we can always write iterated integrals of Eisenstein series of level
one in terms of iterated integrals involving powers of complete elliptic integrals
multiplied by rational functions. We stress that this construction is not specific to
level N = 1 or to Eisenstein series, but using the results from previous sections it is
possible to derive similar representations of ‘algebraic type’ for iterated integrals of
general modular forms.
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4.2 A Canonical Differential Equation for Some Classes
of Hypergeometric Functions

As an example of how the ideas from previous sections can be used in the context of
differential equations, let us consider the family of integrals

T (n1, n2, n3) =
∫ 1

0
dx x−1/2+n1+a ε(1 − x)−1/2+n2+b ε(1 − z x)−1/2+n3+c ε . (82)

This family is related to a special class of hypergeometric functions whose ε-ex-
pansion has been studied in detail in Refs. [11, 12]. It is easy to show that all integrals
in Eq. (82), for any choice of n1, n2, n3, can be expressed as linear combination of
two independent master integrals, which can be chosen as

F1 = T (0, 0, 0) and F2 = T (1, 0, 0) . (83)

The two masters satisfy the system of two differential equations,

∂z F = (A + εB)F , with F = (F1, F2)
T , (84)

where A, B are two 2 × 2 matrices

A = 1

z

(
0 0
1/2 −1

)
+ 1

z − 1

(−1/2 1/2
−1/2 1/2

)
, (85)

B = 1

z

(
0 0
a −a − b

)
+ 1

z − 1

(−a a + b + c
−a a + b + c

)
. (86)

A suitable boundary condition for the differential equations (84) can be determined
by computing directly the integrals in Eq. (82) at z = 0

lim
z→0

F = Γ
(
aε + 1

2

)
Γ
(
bε + 1

2

)

Γ (1 + (a + b)ε)

(
1,

2aε + 1

2ε(a + b) + 2

)T

. (87)

We are now ready to solve the differential equations. It is relatively easy to see
that by performing the following change of basis

F = MG , G = (G1,G2)
T , (88)

with

M = 1

(2(a + b + c)ε + 1)

⎛

⎝
2K (z)(2(a + b + c)ε + 1) 0

ε
2zK (z) − 2E(z)

z + 2((a+b)ε+(a+c)zε+1)K (z)
z

ε
2 z K (z)

⎞

⎠ ,

(89)
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the new master integrals G1,G2 fulfil the system of differential equations

∂zG = ε

2 z (z − 1) K (z)2
Ω G , (90)

where the matrix Ω can be written as

Ω = Ω0 + Ω1 + Ω2 , (91)

with

Ω0 = 1

4

(
1 1

−1 −1

)
, Ω1 = (a + b + (c − a)z) K (z)2

(
1 0
0 1

)
,

Ω2 = 4
(
(a + b)2 + (a + c)2z2 − 2

(
a2 + ba + ca − bc

)
z
)
K (z)4

(
0 0
1 0

)
.

(92)

We stress that the differential equations in Eq. (90) are ε-factorised.
In order to solve Eq. (90), let us change variable from z to τ via z = λ(τ), where

λ denotes the modular λ-function. Using the form of the Jacobian in Eq. (81), we
find that the differential equations become

∂τG = 2 ε

π i
Ω G . (93)

As the last step, we know from the discussion in Sect. 3.2 that a basis of modular
forms of weight 2k for Γ (2) is given by λ(τ)pK (λ(τ ))2k , with 0 ≤ p ≤ k. Using
this, we see that the entries of Ω are indeed linear combinations of modular forms of
Γ (2). The boundary condition at z = 0 in Eq. (87) translates directly into a boundary
condition in τ = i∞. Hence, we have proved that the two entries of the vector G
can be written, to all orders in ε, in terms of iterated integrals of modular forms for
Γ (2).

4.3 Modular Forms for Γ1(6) and the Sunrise and the Kite
Integrals

In section 3 of Ref. [8] the kite integral family has been investigated, and it was
shown that all the kernels presented in eq. (34) of Ref. [8] are modular forms for
the congruence subgroup Γ1(6). This can also been seen upon integration of the
Feynman parameters for the kite and the sunrise integral: the resulting elliptic curves
agree.

The analysis of Ref. [8] relies on a direct matching of the kernels that appear in the
sunrise and kite integrals to the basis of Eisenstein forΓ1(6) given in themathematics
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literature. In Sect. 3.5 we have constructed an alternative basis for Γ1(6), and so we
must be able to write all the integration kernels that appear in the sunrise integral in
terms of our basis. This is the content of this section, and we argue that our basis
makes the fact that the sunrise and kite integrals can be expressed in terms of iterated
integrals of modular forms for Γ1(6) completely manifest.

In order to make our point, we proceed by example, and we consider in particular
the function f2 defined in eq. (34) of Ref. [8]. This function is one of the coefficients
that appear in the differential equation satisfied by the master integrals of the kite
topology, after the differential equations have been transformed to ε-form [8, 24]. All
other coefficients appearing in the system of differential equations can be analysed
in the same way. The function f2 is defined as

f2(x) = 1

24π2
Ψ1(x)

2
(
3x2 − 10x − 9

)
(94)

where x = p2/m2, with m the mass of the massive state flowing in the loop and p
the external momentum, and (in our notations) Ψ1 was defined in Eq. (68) (note that
compared to Ref. [8] we have explicitly inserted the expression for the Wronskian
W as a function of x into the definition of f2). From the form of Eq. (94) we can
immediately read off that f2 defines a modular form for Γ1(6). Indeed, changing
variables to x = t (τ ), where t (τ ) is theHauptmodul forΓ1(6) introduced in Sect. 3.5,
we see that f2(t (τ )) takes the form Ψ1(t (τ ))2 P(t (τ )), where P is a polynomial of
degree two. Thus f2(t (τ )) can be written as a linear combination of the basis of
modular forms ofweight two forΓ1(6) given in Eq. (71), and so f2(t (τ )) itself defines
a modular form of weight two for Γ1(6). It is easy to repeat the same analysis for
all the coefficients that appear in the system of differential equations for sunrise and
kite integrals, and we can conclude that the sunrise and kite integrals can be written
in terms of iterated integrals of modular forms to all orders in ε. We emphasise that
we have reached this conclusion solely based on the knowledge of the Hauptmodul
of Γ1(6) and the fact that Ψ1(t (τ )) defines a modular form of weight one for Γ1(6).
The rest follows from our analysis performed in Sect. 3.5, and we do not require any
further input from the mathematics literature on the structure of modular forms for
Γ1(6).

5 Conclusions and Outlook

In this contribution to the proceedings of the conference “Elliptic integrals, elliptic
functions and modular forms in quantum field theory”, we presented a systematic
way of writing a basis of modular forms for congruence subgroups of the modular
group SL(2,Z) in terms of powers of complete elliptic integrals of the first kind
multiplied by algebraic functions.We considered congruence groups whose modular
curves have genus zero and as such all modular forms can be written as powers of
complete elliptic integrals of the first kind multiplied by rational functions of their
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corresponding Hauptmodule. Our construction relied simply on the knowledge of
a seed modular form of lowest weight for each congruence group and its analytic
properties. This, put together with the holomorphicity condition for modular forms,
allowed us to write a general ansatz for a basis of modular forms.

We presented concrete examples for the congruence groups Γ (2), Γ0(N ) for
N = 2, 4, 6, and finally Γ1(6) which features in physical applications such as the
sunrise and kite integrals. By this method we showed how to write elliptic multiple
zeta values as iterated integrals of rational functions weighted by complete elliptic
integrals. Likewise, rewriting the differential equations of the sunrise and kite inte-
grals, we were able to show that to all orders in ε these can be written as iterated
integrals of modular forms for Γ1(6), confirming the findings of [7, 8].

We hope that our construction constitutes a first step into clarifying the connec-
tion between solutions of differential equations for elliptic Feynman integrals and
elliptic multiple polylogarithms, allowing for a systematic application of this class
of functions to realistic physical problems.
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One-Loop String Scattering Amplitudes
as Iterated Eisenstein Integrals

Johannes Broedel and Oliver Schlotterer

Abstract In these proceedings we review and expand on the recent appearance of
iterated integrals on an elliptic curve in string perturbation theory. We represent
the low-energy expansion of one-loop open-string amplitudes at multiplicity four
and five as iterated integrals over holomorphic Eisenstein series. The framework of
elliptic multiple zeta values serves as a link between the punctured Riemann surfaces
encoding string interactions and the iterated Eisenstein integrals in the final results.
In the five-point setup, the treatment of kinematic poles is discussed explicitly.

1 Introduction

Open-string scattering amplitudes at the one-loop level have proven to be a valuable
laboratory for the application of techniques related to iterated elliptic integrals and
elliptic multiple zeta values. Although elliptic curves and the classical elliptic inte-
grals are one of the best-studied topics of 18th/19th-century mathematics, iterated
integrals on elliptic curves and their associated special values are still a prominent
topic in the recent mathematics literature, see for instance Refs. [1–3].

In high-energy physics, several integrals related to various scattering amplitudes
in QCD have been solved using methods and techniques inherent to the elliptic
curve. The concept of iterated integrals on an elliptic curve, however, made a first
appearance in physics via one-loop scattering amplitudes in open-superstring theory
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in [4]. Since then, several refinements and extensions of the techniques have been
put forward from different perspectives, see for examples Refs. [5–10].

Moreover, first connections between the open-string setup of iterated integrals and
non-holomorphic modular invariants encountered in closed-string amplitudes have
been investigated in Ref. [11]. The modular invariants in closed-string calculations
are formulated in the framework of modular graph functions [12, 13], where tremen-
dous progress in understanding their multiloop systematics has been made during
the last couple of months [14, 15].

The low-energy expansion of one-loop scattering amplitudes in open-superstring
theory gives rise to iterated elliptic integrals evaluated at special points: those func-
tions of the modular parameter τ of the elliptic curve are called elliptic multiple zeta
values and come in a twisted and an untwisted version. Both, untwisted and twisted
elliptic multiple zeta values, however, allow for an alternative representation in terms
of iterated integrals over the modular parameter τ : iterated Eisenstein integrals.

In these proceedings we are extending earlier results in two directions: we present
low-energy expansions for the planar and non-planar five-point amplitudes, and we
cast the four- and five-point expressions in the language of iterated Eisenstein inte-
grals.

The current proceedings are structured as follows: in Sect. 2 we provide back-
ground information and define the mathematical setting for the calculation of
one-loop open-string amplitudes at various multiplicities. We classify the occur-
ring integrals and state the integral contributions to be evaluated at the four- and
five-point level. In Sect. 3 a short introduction to twisted and untwisted elliptic mul-
tiple zeta values is provided. We relate these special values to iterated integrals over
different flavors of Eisenstein series. This representation allows to infer relations
between different twisted and untwisted elliptic multiple zeta values, which paves
the way towards a canonical representation. Accordingly, in Sects. 4 and 5we present
and discuss the results of the four- and five-point integrals from Sect. 2 and represent
them in terms of conventional elliptic multiple zeta values as well as iterated integrals
over Eisenstein series.

2 One-Loop Open-String Amplitudes, Planar
and Non-planar

2.1 General Setup, Planar and Non-planar

Scattering amplitudes in string theories are derived frompuncturedRiemann surfaces
called worldsheets whose genus corresponds to the loop order in perturbation theory.
In these proceedings we are going to consider the one-loop order exclusively, where
the relevant topology for closed strings is a torus, and open-string amplitudes receive
contributions fromworldsheets of cylinder- andMœbius-strip topologies. In all cases,
the punctures correspond to the insertion of external states on the worldsheet via
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Fig. 1 The worldsheets for one-loop scattering of open strings include the topology of a cylinder.
Conformal invariance on the worldsheet can be used to map external states to punctures on the
cylinder boundaries. If vertex operators are inserted on one boundary only, the situation is referred
to as the planar cylinder whereas the second topology is called the non-planar cylinder

vertex operators; those are conformal primary fields that carry the information on
the external momenta and polarizations. For open strings, the vertex operators are
inserted on the worldsheet boundaries, see Fig. 1. Moreover, each external open-
string state carries additional degrees of freedom encoded in Lie-algebra generators
ta , called Chan–Paton factors. They enter scattering amplitudes in the form of traces,
where the ordering of the generators reflects the distribution of vertex operators over
the boundaries [16]. We will only consider massless vibration modes of the open
superstring as an external state, i.e. one-loop scattering of gauge bosons and their
superpartners. Accordingly, the Chan–Paton degrees of freedom of the external states
are often referred to as color.

Having a single boundary only, the Mœbius strip can only contribute single traces
to the n-point amplitude

Mn
Moeb = −32

∑

ρ∈Sn−1

Tr(t1tρ(2)tρ(3) . . . tρ(n))AMoeb(1, ρ(2), ρ(3), . . . , ρ(n)) , (1)

while the two boundary components of the cylinder admit double traces in the color
decomposition. Accordingly, for a four-point amplitude the planar and non-planar
cylinder contributions read

M4
cyl =

∑

ρ∈S3

{
N Tr(t1tρ(2)tρ(3)tρ(4))Acyl(1, ρ(2), ρ(3), ρ(4))

+ Tr(t1tρ(2))Tr(tρ(3)tρ(4))Acyl(1, ρ(2)|ρ(3), ρ(4))
}

(2)

+ {
Tr(t1)Tr(t2t3t4)Acyl(1|2, 3, 4) + (1 ↔ 2, 3, 4)

}
.



136 J. Broedel and O. Schlotterer

Re(z)

Im(z)

• • • •
z1 z2 z3 zn· · · |

1

−t
2

−t

|| ||

||

||

Re(z)

Im(z)

• • • •
z1 z2 z3 z j· · ·

•
z j+1 •

z j+2 •zn· · ·

|
1

−t
2

−t

|| ||

||

||

Fig. 2 In the boundary parametrization Eq. (4), worldsheets of cylinder topology are mapped to
the shaded regions in the left (right) panel for the planar (non-planar) case. These regions cover

half of a torus with modular parameter τ = i t and identifications of edges marked by and ,
respectively. The Mœbius-strip topology is not drawn here as its contributions to the amplitude can
be inferred from the planar cylinder [17], cf. Eqs. (6) and (8)

At higher multiplicity n, the analogous double-trace expressions in

Mn
cyl = N

∑

ρ∈Sn−1

Tr(t1tρ(2) . . . tρ(n))Acyl(1, ρ(2), . . . , ρ(n)) + double traces , (3)

comprise all partitions of the external states over the two boundaries along with
all cyclically inequivalent arrangements. For instance, the double-trace sector of
the five-point amplitude features permutations of Tr(t1t2)Tr(t3t4t5)Acyl(1, 2|3, 4, 5)
and Tr(t1)Tr(t2t3t4t5)Acyl(1|2, 3, 4, 5), with an obvious generalization to higher
multiplicity.

The number N of colors in the single-trace sector of Eqs. (2) and (3) arises from
the trace over the identity matrix corresponding to the empty boundary component.
The color-ordered amplitudes AMoeb and Acyl in Eqs. (1) and (3) are determined by
integrating a correlation function of vertex operators over the punctures such that
their cyclic ordering on each boundary component matches the accompanying color
traces [16]. In the parametrization of the cylinder as half of a torus with purely
imaginary modular parameter τ = i t, t ∈ R, see Fig. 2, the integration domains for
the punctures are of the form

D(1, 2, . . . , j | j+1, . . . , n) = {zi ∈ C , Im z1,2,..., j = 0 , Im z j+1,...,n = t
2 ,

0 ≤ Re z1 < Re z2 < · · · < Re z j < 1 , 0 ≤ Re z j+1 < · · · < Re zn < 1} .

(4)

In particular, Eq. (4) refers to the non-planar amplitude Acyl(1, 2, . . . , j | j+
1, . . . , n) alongwith the double traceTr(t1t2 . . . t j )Tr(t j+1 . . . tn)with j = 1, 2, . . . ,
n−1. We will also write D(1, 2, . . . , n) = D(1, 2, . . . , n|∅) for the integration
domain of the planar cylinder amplitude Acyl(1, 2, . . . , n) in Eq. (3).
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The correlation functions in the integrand will be denoted by Kn . They depend
on the punctures z j , the modular parameter τ as well as the external polarizations
and momenta of the gauge supermultiplet. For the cylinder topology, the integration
domain for modular parameters τ = i t is t ∈ R+ or

q = e2π iτ = e−2π t , q ∈ (0, 1) . (5)

Then, the expression for color-ordered cylinder amplitudes reads

Acyl(1, 2, . . . , j | j+1, . . . , n) =
∫ 1

0

dq

q

∫

D(1,2,..., j | j+1,...,n)

dz1 dz2 . . . dzn δ(z1)Kn ,

(6)
where translation invariance on a genus-one surface has been used to fix z1 = 0
through a delta-function insertion. We will also express the punctures in Eq. (4) in
terms of real variables xi ∈ (0, 1) and parametrize D(1, 2, . . . , j | j+1, . . . , n) via

zi =
{

xi : i=1,2,..., j
τ
2+xi : i= j+1,...,n , 0 ≤ x1 < x2 < · · · < x j < 1 , 0 ≤ x j+1 < · · · < xn < 1 .

(7)
For single-trace amplitudes in Eq. (6) with j = n, the integration over q introduces
endpoint divergences as q → 0. The latter cancel against the divergent contributions
from the Mœbius strip in Eq. (1)

AMoeb(1, 2, . . . , n) =
∫ −1

0

dq

q

∫

D(1,2,...,n)

dz1 dz2 . . . dzn δ(z1)Kn (8)

if N = 32, i.e. if the gauge group1 is taken to be SO(32) [17]. The change of variables
leading to the range q ∈ (−1, 0) in Eq. (8) can also be found in the reference.

In this work, we will be interested in the low-energy expansion of the integrals
over the cylinder punctures in Eq. (6) at fixed value of q but unspecified choice of
the gauge group. For instance, the integrals over D(1, 2, 3|4) turn out to have an
interesting mathematical structure, even though their coefficients ∼Tr(t4) vanish for
the physically preferable gauge group SO(32). At the level of the integrand w.r.t. q,
the Mœbius-strip results in Eq. (8) can be inferred from the planar instance of Eq. (6)
by sending q → −q [17].

2.2 Four-Point Amplitudes

The four-point cylinder amplitude Eq. (6) of massless open-superstring states is
governed by the correlation function

1The choice of gauge group SO(32) also ensures that the hexagon gauge anomaly in (n ≥ 6)-point
open-superstring amplitudes cancels [18, 19].
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K4 = s12 s23 A
tree
SYM(1, 2, 3, 4)

4∏

i< j

exp
(
1
2 si jG(zi j , τ )

)
, (9)

which has firstly been derived for external bosons in 1982 [20]. The exponentials of
Eq. (9) involve dimensionless Mandelstam variables si j

si j = 2α′ki · k j (10)

with inverse string tension α′. Moreover, Eq. (9) features the bosonic Green function
on a genus-one worldsheet

G(z, τ ) = log

∣∣∣∣
θ1(z, τ )

θ ′
1(0, τ )

∣∣∣∣
2

− 2π

Im τ
(Im z)2 (11)

with zi j = zi − z j as its first argument, where θ1 is the odd Jacobi function

θ1(z, τ ) = 2q1/8 sin(π z)
∞∏

n=1

(1 − qn)(1 − 2qn cos(2π z) + q2n) . (12)

Finally, external polarizations enter Eq. (9) through the color-ordered (super-)Yang–
Mills tree-level amplitude Atree

SYM(1, 2, 3, 4).
With respect to relabeling of the external legs, there are three inequivalent rep-

resentatives for the planar and non-planar four-point amplitudes. Using Eqs. (6) and
(9), they can be written as

Acyl(1, 2, 3, 4) = s12s23A
tree
SYM(1, 2, 3, 4)

∫ 1

0

dq

q
I1234(si j , q)

Acyl(1, 2, 3|4) = 1

2
s12s23A

tree
SYM(1, 2, 3, 4)

∫ 1

0

dq

q
I123|4(si j , q) (13)

Acyl(1, 2|3, 4) = 1

2
s12s23A

tree
SYM(1, 2, 3, 4)

∫ 1

0

dq

q
I12|34(si j , q) ,

where the integrals over the positions of the punctures defined in Eq. (7) read

I1234(si j , q) =
∫ 1

0
dx4

∫ x4

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1 δ(x1) exp

⎛

⎝
4∑

i< j

si j
2
G(xi j )

⎞

⎠

I123|4(si j , q) =
⎛

⎝
4∏

l=1

∫ 1

0
dxl

⎞

⎠ δ(x1) exp

⎛

⎝
3∑

i< j

si j
2
G(xi j ) +

3∑

j=1

s j4
2

G( τ
2+xi j )

⎞

⎠ (14)

I12|34(si j , q) =
⎛

⎝
4∏

l=1

∫ 1

0
dxl

⎞

⎠ δ(x1) exp

⎛

⎜⎜⎝
s12
2

G(x12) + s34
2

G(x34) +
∑

i=1,2
j=3,4

si j
2
G( τ

2+xi j )

⎞

⎟⎟⎠ .
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Here and below, the dependence on τ in the Green functions is left implicit for
ease of notation. The factors of 1

2 in Eq. (13) are introduced to obtain a more
convenient descriptionof the integrationdomain for the non-planar cases I123|4(si j , q)

and I12|34(si j , q): The natural integration domains 0 ≤ x1 < x2 < x3 < 1 and 0 ≤
x3 < x4 < 1 expected from Tr(t1t2t3) and Tr(t3t4) can be rewritten to yield an inde-
pendent integration of all the xi over (0, 1) when taking the symmetry of the color
factors or the integrands into account.

The integrals in Eq. (14) are the central four-point quantities in these proceedings.
In Sect. 4, we are going to review and extend the results of Refs. [4, 6] on their
low-energy expansion around α′ = 0, i.e. the Taylor expansion in the dimensionless
Mandelstam invariants Eq. (10). Note that momentum conservation and the choice of
massless external states in Eq. (9) with k2j = 0 ∀ j = 1, 2, 3, 4 relate the four-point
Mandelstam invariants

4∑

j=1

k j = 0 ⇒ s12 = s34 , s14 = s23 , s13 = s24 = −s12 − s23 . (15)

Accordingly, the integrand in Eq. (9) is unchanged if the Green function is shifted by
G(z, τ ) → G(z, τ ) + f (τ ) as long as f (τ ) does not depend on the position of the
punctures.

2.3 Five-Point Amplitudes

The massless five-point correlator for the cylinder amplitude Eq. (6) is given by2

[23, 24]

K5 = [
f (1)
23 s23 C1|23,4,5 + (23 ↔ 24, 25, 34, 35, 45)

] 5∏

i< j

exp
(
1
2 si jG(zi j )

)
, (16)

where theGreen function is defined inEq. (11) andwe use the following shorthand for
doubly-periodic functions of the punctures with a simple pole at zi − z j ∈ Z + τZ

f (1)
i j = ∂z log θ1(zi j , τ ) + 2π i

Im zi j
Im τ

= ∂zG(zi j , τ ) . (17)

The kinematic factors in Eq. (16) obey symmetries C1|23,4,5 = C1|23,5,4 = −C1|32,4,5
and can be expressed in terms of (super-)Yang–Mills tree-level amplitudes [24]

C1|23,4,5 = s45
[
s24 A

tree
SYM(1, 3, 2, 4, 5) − s34 A

tree
SYM(1, 2, 3, 4, 5)

]
. (18)

2Earlier work on five- and higher-point correlation functions for one-loop open-superstring ampli-
tudes includes Refs. [21, 22].
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The color decomposition of the five-point cylinder amplitude is a straightforward
generalization of Eq. (2), and we collectively denote the color-ordered amplitudes
by Acyl(λ) with λ = 1, 2, 3, 4, 5 in the planar and λ = 1, 2, 3, 4|5 or λ = 1, 2, 3|4, 5
in the non-planar sector. Then, one can combine Eqs. (16) and (18) to bring all the
cylinder contributions to the five-point amplitude into the form

Acyl(λ) =
∫ 1

0

dq

q

[
I 23λ (si j , q) Atree

SYM(1, 2, 3, 4, 5) + I 32λ (si j , q) Atree
SYM(1, 3, 2, 4, 5)

]

(19)
for some integrals I 23λ (si j , q) and I 32λ (si j , q) over the punctures whose domain D(λ)

is defined by Eq. (4). The color-ordered (super-)Yang–Mills amplitudes obtained
from relabelings of Eq. (18) have been written in terms of a two-element basis of
Atree
SYM(1, 2, 3, 4, 5) and Atree

SYM(1, 3, 2, 4, 5) using Bern–Carrasco–Johansson (BCJ)
relations [25]. For planar choices of λ, for example, both I 23λ (si j , q) and I 32λ (si j , q)

can be reduced to the following permutation-inequivalent integrals

H 12
12345(si j , q) =

∫ 1

0
dx5

(
4∏

l=1

∫ xl+1

0
dxl

)
δ(x1) f (1)

12 exp

⎛

⎝
5∑

i< j

si j
2
G(xi j )

⎞

⎠ (20)

Ĥ 13
12345(si j , q) =

∫ 1

0
dx5

(
4∏

l=1

∫ xl+1

0
dxl

)
δ(x1) f (1)

13 exp

⎛

⎝
5∑

i< j

si j
2
G(xi j )

⎞

⎠ . (21)

The hat-notation in (21) and (23) below is used to distinguish integrals Ĥ i j
λ with a

regular Taylor expansion around si j = 0 from cases Hi j
λ with kinematic poles of the

form s−1
i j , see Sect. 5.1. In the non-planar sector with λ = 1, 2, 3|4, 5, on the other

hand, I 23λ (si j , q) and I 32λ (si j , q) can be assembled from permutations of

H12
123|45(si j , q) =

(
5∏

l=3

∫ 1

0
dxl

)∫ x3

0
dx2

∫ x2

0
dx1 δ(x1) f (1)

12 exp

⎛

⎝
5∑

i< j

si j
2
G(δi j

τ
2+xi j )

⎞

⎠ (22)

Ĥ14
123|45(si j , q) =

(
5∏

l=3

∫ 1

0
dxl

)∫ x3

0
dx2

∫ x2

0
dx1 δ(x1) f (1)

14 exp

⎛

⎝
5∑

i< j

si j
2
G(δi j

τ
2+xi j )

⎞

⎠ ,

(23)

where δ12 = δ13 = δ23 = δ45 = 0 and δi j = 1 if i = 1, 2, 3 and j = 4, 5. The anal-
ogous non-planar integral with f (1)

45 in the place of f (1)
12 and f (1)

14 vanishes, because
the integration measure is symmetric in 4, 5 while f (1)

45 = − f (1)
54 ,

(
5∏

l=3

∫ 1

0
dxl

)∫ x3

0
dx2

∫ x2

0
dx1 δ(x1) f (1)

45 exp

⎛

⎝
5∑

i< j

si j
2
G(δi j

τ
2 + xi j )

⎞

⎠ = 0 .

(24)
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Note that there are five independentMandelstam variables for fivemassless particles,
for example s12, s23, s34, s45, s51,

5∑

j=1

k j = 0 ⇒ s13 = s45 − s12 − s23 and cyc(1, 2, 3, 4, 5) . (25)

Similarly, the non-planar sector with λ = 1, 2, 3, 4|5 admits three topologies of
permutation-inequivalent integrals: with insertions f (1)

12 , f (1)
13 and f (1)

45 beyond the
Koba–Nielsen-factor, respectively.

2.4 Higher-Point Amplitudes

Starting from six external states, the correlators Kn no longer boil down to tree-
level amplitudes Atree

SYM(. . .) in (super-)Yang–Mills theory. Instead, one finds a more
general class of kinematic factors, see Refs. [26, 27] for their precise form and the
accompanying functions of the punctures at six points.

3 Mathematical Tools/Objects

Employing the form of the open-string one-loop propagator in Eq. (9) and expanding
the exponentials of the propagators in powers of α′ [cf.Eq. (10)], one finds all inte-
grals in the previous section to boil down to iterated integrals on the elliptic curve. The
integration kernels f (1)

i j in Eq. (17) and their higher-weight generalizations are canon-
ical differentials on the elliptic curve that can be generated by a non-holomorphic
extension of the Eisenstein–Kronecker series [1, 28]

Ω(z, α, τ ) = exp

(
2π iα

Im z

Im τ

)
θ ′
1(0, τ )θ1(z + α, τ)

θ1(z, τ )θ1(α, τ )
=

∞∑

n=0

αn−1 f (n)(z, τ ) . (26)

The expansion in the second equality yields doubly-periodic functions

f (n)(z, τ ) = f (n)(z + 1, τ ) = f (n)(z + τ, τ ) , f (n)(−z, τ ) = (−1)n f (n)(z, τ ) ,

(27)
for example f (0) = 1and f (1)(z, τ ) = ∂z log θ1(z, τ ) + 2π i Im z

Im τ
. Equation (17) arises

from the shorthand f (n)
i j = f (n)(zi − z j , τ ). The Fay relations of the Eisenstein–

Kronecker series [1, 29]

Ω(z1, α1, τ )Ω(z2, α2, τ )=Ω(z1, α1+α2, τ )Ω(z2−z1, α2, τ )+(z1, α1↔z2, α2)

(28)
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imply the following component relations when Laurent expanded in the bookkeeping
variables αi [4]:

f (n)
i j f (m)

jl = − f (m+n)
il +

n∑

k=0

(−1)k
(
m − 1 + k

k

)
f (n−k)
il f (m+k)

jl

+
m∑

k=0

(−1)k
(
n − 1 + k

k

)
f (m−k)
il f (n+k)

i j . (29)

As already noted for the Green function after Eq. (14), all functions considered in
these proceedings are functions of the modular parameter τ , which we will suppress
here and below. Using the integration kernels f (n)(z) and the following definition of
elliptic iterated integrals3 with � ( ; z) = 1,

�
( n1 n2 ... n�

b1 b2 ... b�
; z) =

∫ z

0
dt f (n1)(t − b1) �

( n2 ... n�

b2 ... b�
; t) , z ∈ [0, 1] , (30)

one can solve the integrals over the punctures z j in one-loop open-superstring ampli-
tudes order by order in α′. In particular, it will be explained in detail in Sect. 4 how
the mathematical tools of this section yield a recursive and algorithmic procedure to
expand the four-point integrals Eq. (14) to any desired order in α′.

Allowing for rational values si and ri in the fundamental elliptic domain only,
twists bi = si + riτ with ri , si ∈ [0, 1) lead to the notion of twisted elliptic multiple
zeta values or teMZVs [6]:

ω
( n1, n2, ..., n�

b1, b2, ..., b�

) =
∫

0≤zi≤zi+1≤1

f (n1)(z1 − b1)dz1 f (n2)(z2 − b2)dz2 . . . f (n�)(z� − b�)dz�

= �
( n� n�−1 ... n1
b� b�−1 ... b1 ; 1) . (31)

If there are no twists, that is, bi = 0 ∀ i , one obtains untwisted elliptic multiple
zeta values or eMZVs, for which a simplified notation is used [4, 5]:

ω(n1, n2, . . . , n�) = �
( n� ... n2 n1

0 ... 0 0 ; 1) = �(n�, . . . , n2, n1; 1) . (32)

For eMZVs and teMZVs defined in Eqs. (31) and (32), the quantities w = ∑�
i=1 ni ,

and the number � of integrations in are referred to as weight and length of the elliptic
iterated integral and the corresponding (t)eMZV, respectively.

In view of the simple pole of f (1)(z, τ ) at z = 0, 1, eMZVs with entries n1 = 1
or n� = 1 suffer from endpoint divergences, whose regularization was discussed in

3The iterated integrals in Eq. (30) are not homotopy invariant. Still, one can find a homotopy-
invariant completion for each �

( n1 n2 ... n�

b1 b2 ... b�
; z) from the generating series in Ref. [1] (see also sub-

section 3.1 of Ref. [4]).
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Ref. [4]. Similarly, a regularization scheme for the divergences caused by twists
b ∈ R in Eq. (31) can be found in Ref. [6].

3.1 Elliptic Multiple Zeta Values in Terms of Iterated
Eisenstein Integrals

While teMZVs can be represented as iterated integrals over the positions zi of vertex
operators, the analytically favorable way is to convert them to iterated integrals in the
modular parameters τ . The main reason is, that the integration kernels appearing in
this setting are very well-known objects: holomorphic Eisenstein series for congru-
ence subgroups of SL2(Z) of various levels M . For level 1, iterated τ -integrals over
Eisenstein series do not satisfy any relations except for shuffle [30], hence, represent-
ing these (untwisted) eMZVs in terms of iterated Eisenstein integrals automatically
exposes all their relations over the rational numbers. For levels M > 1, however, the
Eisenstein series are not independent, when evaluated at rational points of the lattice.
These relations have been investigated and discussed in Ref. [10] and allow to relate
different iterated integrals, even between different levels M .

There does exist a straightforward method for converting iterated z-integrals
underlying (t)eMZVs to iterated Eisenstein integrals E0 over Eisenstein series [2,
5, 6]: since the resulting “number” is still going to be a function of the modular
parameter τ , one can conveniently take a derivative with respect to τ . Let us make
this construction precise in the next paragraphs.

Given a teMZVof the form (31), let us take all of the twists bi froma rational lattice
ΛM = {

r
M + τ s

M : r, s = 0, 1, 2, . . . , M−1
}
within the elliptic curve characterized

by an integer level M ∈ N. The derivative in τ of the teMZV is most conveniently
expressed in terms of functions4

h(n)(bi , τ ) = (n − 1) f (n)(bi , τ ) , (33)

evaluated at lattice points bi ∈ ΛM , that is, Eisenstein series for congruence sub-
groups of SL2(Z) [6]:

2π i∂τ ω
( n1, ..., n�

b1, ..., b�

) = h(n�+1)(−b�) ω
(
n1, ..., n�−1
b1, ..., b�−1

)
− h(n1+1)(−b1) ω

( n2, ..., n�

b2, ..., b�

)

+
�∑

i=2

⎡

⎣θni≥1

ni−1+1∑

k=0

(
ni + k − 1

k

)
h(ni−1−k+1)(bi−bi−1) ω

(
n1, ..., ni−2, ni+k, ni+1, ..., n�

b1, ..., bi−2, bi , bi+1, ..., b�

)

− θni−1≥1

ni+1∑

k=0

(
ni−1 + k − 1

k

)
h(ni−k+1)(bi−1−bi ) ω

(
n1, ..., ni−2, ni−1+k, ni+1, ..., n�

b1, ..., bi−2, bi−1, bi+1, ..., b�

)

4Note that the normalization conventions of the functions h(n)(b, τ ) in Eq. (33) and Ref. [6] differ
from the definition of the Eisenstein series h(n)

M,r,s = f (n)( r
M + s

M τ, τ ) for congruence subgroups
of SL2(Z) in Ref. [10].
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+(−1)ni+1θni−1≥1θni≥1h
(ni−1+ni+1)(bi−bi−1) ω

(
n1, ..., ni−2, 0, ni+1, ..., n�

b1, ..., bi−2, 0, bi+1, ..., b�

)]
. (34)

We have introduced θn≥1 = 1 − δn,0 for non-negative n, indicating that ni = 0 cause
certain terms in the last three lines to vanish. For teMZVs of length � > 1 on the
left-hand side of Eq. (34), each teMZV on the right-hand side has lower length �−1.
Hence, Eq. (34) allows to recursively convert teMZVs to iterated integrals over the
functions h(k)(b, τ ), terminating with a vanishing right-hand side for � = 1. Upon
evaluation at fixed lattice points bi ∈ ΛM , the functions h(k)(b, τ ) are holomorphic
in the modular parameter τ . For any k > 2, they can be conveniently represented as
a lattice sum

h(k)
( r

M
+ τ

s

M
, τ
)

= (k − 1)
∑

(m,n)
=(0,0)

e2π i
r m−s n

M

(n + mτ)k
. (35)

In order to render the corresponding expression finite for k = 2, the summation
prescription has to be modified. Alternatively, level-M Eisenstein series have series
expansions in q1/M [6], for example one finds

h(4)
(τ

2
, τ
)

= ζ4

4

(
7−240 q1/2−240 q−6720 q3/2−240 q2−30240 q5/2 + · · · ) .

(36)
For r = s = 0, one recovers the usual holomorphic Eisenstein series [cf.Eq. (35)]

h(k)(0, τ )

1 − k
= Gk(τ ) =

∑

(m,n)
=(0,0)

1

(n + mτ)k
, k ≥ 3 . (37)

Correspondingly, Eq. (34) reduces to the differential equation for eMZVs stated in
eq. (2.47) of Ref. [5]. Nicely, the situation k = 2 in the equation above does not occur,
when considering the τ -derivative Eq. (34) of convergent eMZVs.

Considering the differential equation (34) and the identification (37), one can
finally rewrite every eMZV in terms of iterated integrals of Eisenstein series [5]:

E0(k1, k2, . . . , kr ; q) := −
∫ q

0

dqr
qr

G0
kr (qr )

(2π i)kr
E0(k1, k2, . . . , kr−1; qr ) (38)

= (−1)r
∫

0≤q1≤q2≤···≤qr≤q

dq1
q1

· · · dqr
qr

G0
k1(q1)

(2π i)k1
· · · G

0
kr (qr )

(2π i)kr
.

The recursion starts with E0(; τ) = 1, and the non-constant parts of Eisenstein series
are defined as

G0
2n(τ ) = G2n(τ ) − 2 ζ 2n , G0(τ ) = G0

0(τ ) = −1 (39)
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with n ∈ N. For iterated integrals E0(k1, k2, . . . , kr ; q) in Eq. (38), the number of
non-zero entries (k j 
= 0) is called the depth of the iterated Eisenstein integral.

The iterated Eisenstein integrals E0(k1, . . . , kr ; q) with k1 
= 0 are nicely con-
vergent and do not need to be regularized. Even more, the conversion of untwisted
eMZVs to iterated Eisenstein integrals provides an easy way to identify their rela-
tions [5, 30, 31]. Many of such eMZV relations are available in digital form [32]
similar to the datamine of multiple zeta values [33].

In the same way as one can rewrite untwisted eMZVs as iterated integrals over
the Eisenstein series Eq. (37), one can rewrite teMZVs as iterated integrals over
the level-M Eisenstein series defined in Eq. (36). In contrast to the situation for
usual holomorphic Eisenstein series, there are several linear relations between level-
M Eisenstein series, which are discussed in Ref. [10] and which need to be taken
into account when deriving functions relations in general. In the realm of string
amplitudes discussed in the next subsection, we will however encounter only one
particular Eisenstein series at level two, which does not require these additional
relations in order to reach a canonical representation.

3.2 Eisenstein Series of Level two in the String Context

Although the differential equation (34) is applicable to Eisenstein series evaluated
at points of any sublattice ΛM , let us focus on the lattice Λ2 suitable for string
amplitudes. As will be elaborated in Sect. 4, the parametrization of the cylinder
worldsheet in Fig. 2 gives rise to teMZVs with twists b ∈ {0, τ/2} in the non-planar
amplitudes. Hence, the differential equation (34) allows to express the α′-expansion
in terms of iterated Eisenstein integrals involving h(k)

(
τ
2 , τ

)
and h(k) (0, τ ) =

(1 − k)Gk(τ ).
When expressing the teMZVs from the non-planar integrals in terms of a basis

of iterated Eisenstein integrals, the contributions from h(k)
(

τ
2 , τ

)
turn out to cancel.

In other words, even for the non-planar integrals I12|34 and I123|4 of Eq. (14), the
α′-expansions shown in the next section are expressible in terms of untwisted eMZVs
or iterated integrals over Gk(τ ) exclusively. In spite of the cancellation of all non-
trivial twists, the representation of intermediate results in terms of Eisenstein series
for congruence subgroups of SL2(Z) has been indispensable to attain a canonical
form for all contributions.

As an example for the τ -derivative in Eq. (34), let us take the teMZVs

2π i
∂

∂τ
ω
( 0, 1, 1
0, τ/2, τ/2

) = h(2)
(τ

2
, τ
)

ω
( 0, 1
0, τ/2

)− ω
( 2, 1

τ/2, τ/2

)
and

2π i
∂

∂τ
ω
( 0, 1
0, τ/2

) = h(2)
(τ

2
, τ
)

− ζ2 . (40)

Since intermediate steps in the expansion of I123|4 and I12|34 turn out to involve

the rigid combination 2ω
( 0, 1, 1
0, τ/2, τ/2

)− ω
( 0, 1
0, τ/2

)2
, the contribution of h(2)

(
τ
2 , τ

)
in
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Eq. (40) cancels. Moreover, the relation 2ω
( 0, 1, 1
0, τ/2, τ/2

)− ω
( 0, 1
0, τ/2

)2 = ω(0, 0, 2)+ ζ2
3

can be checked by taking higher τ -derivatives of the left-hand side.
Similarly, the τ -derivative Eq. (34) and the decomposition described in the previ-

ous subsection yield

ω(0, 0, 2) = −ζ2

3
− 6E0(4, 0; τ)

ω(0, 1, 0, 0) = 3ζ3
4π2

− 9

2π2
E0(4, 0, 0; τ) (41)

ω(0, 3, 0, 0) = 180 E0(6, 0, 0; τ) .

The terms− ζ2
3 and 3ζ3

4π2 at the order of q0 exemplify that integration constants have to
be taken into account when expressing teMZVs as integrals over their τ -derivatives
Eq. (34). For the twists b ∈ {0, τ/2} of our interest, the integration constants are ratio-
nal combinations of (2π i)−1 and multiple zeta values that can be determined by the
techniques in Section2.3 of Ref. [5] and section3.2 of Ref. [6].

4 Four-Point Results in Different Languages

In this section, we apply the mathematical framework of Sect. 3 to the α′-expansion
of the four-point cylinder integrals Eq. (14). In order to relate the Green function
Eq. (11) to the constituents of teMZVs, we use momentum conservation Eq. (15) to
rewrite the target integrals5 as

I1234(si j , q) =
∫ 1

0
dx4

∫ x4

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1 δ(x1) exp

⎛

⎝
4∑

i< j

si j P(xi j , q)

⎞

⎠

I123|4(si j , q) =
(

4∏

l=1

∫ 1

0
dxl

)
δ(x1) exp

⎛

⎝
3∑

i< j

si j P(xi j , q) +
3∑

j=1

s j4Q(xi j , q)

⎞

⎠ (42)

I12|34(si j , q) = q
s12
4

(
4∏

l=1

∫ 1

0
dxl

)
δ(x1) exp

⎛

⎜⎝
∑

(i, j)=
(1,2),(3,4)

si j P(xi j , q) +
∑

i=1,2
j=3,4

si j Q(xi j , q)

⎞

⎟⎠ ,

with the expressions

G(z, τ ), Im z = 0 � P(x, q) = �
(
1
0 ; x)− ω(1, 0) (43)

5The derivation of Eq. (42) from Eq. (14) is discussed on in Ref. [6]. The only difference is that the
present definitions of P(x, q) and Q(x, q) in Eqs. (44) and (43) deviate from those in the reference
by an additive constant. Instead, the objects P(x, q) and Q(x, q) defined in Eqs. (44) and (43)
match the expressions in Ref. [11] up to an overall minus sign.
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G(z, τ ), Im z = Im τ

2
� Q(x, q) = �

(
1

τ/2 ; x
)− ω

( 1, 0
τ/2, 0

)
, (44)

where x = Rez (cf. Eq. (7)), and the Green functions P(x, q) and Q(x, q) con-
nect punctures on the same and on different cylinder boundaries, respectively. Both
summands�

(
1
0 ; x) andω(1, 0) in Eq. (44) individually represent divergent integrals

whose regularization is discussed in detail in section4.2 of [6]. As visualized in Fig. 2,
the twists τ/2 in Eq. (43) stem from the displacement of the two cylinder boundaries
in our parametrization through a rectangular torus. Accordingly, the factor of qs12/4

in the above expression for the non-planar contribution I12|34(si j , q) can be traced
back to the term ∼(Im z)2 in the Green function Eq. (11).

When inserting the differences xi j = xi − x j of the cylinder punctures into the
Green functions P(x, q) and Q(x, q), the following representations turn out to be
particularly convenient for the α′-expansion of Eq. (42)

P(xi j , q) = �
( 1
x j

; xi
)+ �

(
1
0 ; x j

)− ω(1, 0) , 1 < i < j (45)

Q(xi j , q) = �
( 1
x j+τ/2 ; xi

)+ �
(

1
τ/2 ; x j

)− ω
( 1, 0

τ/2, 0

)
, 1 < i < j . (46)

4.1 The Proof of Concept

The α′-expansion of the open-string integrals Eq. (42) at fixed6 τ can be obtained by
Taylor-expanding the exponentials in the integrand w.r.t. si j and employing the rep-
resentations of the Green functions in Eqs. (44)–(46). The order-by-order integration
can be reduced to the definitions of elliptic iterated integrals and teMZVs in Sect. 3
as soon as the following technical subtleties have been settled:

• The recursive definition Eq. (30) of elliptic iterated integrals cannot be used for
integrands of the form dt f (n)(t−b1) f (m)(t−b2) with multiple occurrence of the
integration variable t as arguments of different integration kernels in Eq. (26). This
situation can be remedied by using the Fay relation (29), which can be viewed as
the elliptic analogue of partial-fraction relations 1

(t−b1)(t−b2)
+ cyc(t, b1, b2) = 0.

Then, each term on the right-hand side of the Fay relation can be recursively
integrated via Eq. (30).

• The integration variable of Eq. (30) is not allowed to show up in the shifts bi of the
iterated integralΓ in the integrand. Therefore one has to derive functional relations
between different iterated integrals. The main mechanism to derive relations like

�
( 3, 1
0, z ; z

) = −4�
( 0, 4
0, 0 ; z)+ �

( 1, 3
0, 0 ; z)− �

( 2, 2
0, 0 ; z)− �

( 4, 0
0, 0 ; z) (47)

6Given that the α′-expansions in this work are performed at fixed τ , our results do not expose the
branch cuts of the loop amplitudes which result from the integral over q in Eqs. (13) and (19). In
the terminology of the closed-string literature [12], the analysis of these proceedings is restricted
to the analytic dependence of the one-loop amplitudes on the kinematic invariants.
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consists of writing Γ as an integral over its own z-derivative and using again Fay
relations on the integration kernels f (n) before integrating back [4]. The need for
relations like Eq. (47) arises less frequently if the representations Eqs. (44) and
(43) are used for propagators at argument x1 j with j 
= 1 and Eqs. (45) and (46)
for propagators at argument xi j with 1 < i < j .

• The association of 1 < i < j with Eqs. (45) and (46) is adapted to an integration
region where 0 < x2 < x3 < x4 < 1. The non-planar integrals I123|4 and I12|34,
however, additionally involve situations where x j > x j+1. Still, the cubical inte-
gration region x j=2,3,4 ∈ (0, 1) of I123|4 and I12|34 can be decomposed into six sim-
plices 0 < xi < x j < xk < 1 with some permutations (i, j, k) of (2, 3, 4). Each
of these simplicial contributions in turn can then be reduced to the situation where
0 < x2 < x3 < x4 < 1 by simultaneous relabeling of the integration variables and
the Mandelstam variables si j .

Further details and examples of this rather technical procedure can be found in
Refs. [4, 6, 11]. For the purpose of these proceedings, let us just note that all integrals
resulting from the α′-expansion of the integrands in Eq. (42) can be treated in this
way; thus integration using Eq. (30) is possible.

Since the upper limit for the outermost integration in each term of Eq. (42) is
x j = 1, the elliptic iterated integrals in the α′-expansions ultimately boil down to
teMZVs Eq. (31). Once the punctures x2, x3, x4 are all integrated out, the leftover
shifts b j can take the values 0 and τ/2. In the planar case I1234 with all integrations
on the same boundary, there are no shifts; thus the α′-expansions are manifestly
expressible in terms of untwisted eMZVs Eq. (32).

Note that the representation of the Green function used in the first discussion of
the planar case [4] did not involve the subtraction of ω(1, 0) in Eqs. (44) and (45).
As a virtue of the Green function P(xi j , q) including −ω(1, 0), divergent eMZVs
ω(1, . . .) orω(. . . , 1) (cf. the discussion prior to Sect. 3.1) automatically cancel from
the α′-expansion along with each monomial in the si j . In other words, short-distance
finiteness of the integrals is manifest term by term7 without further use of momentum
conservation.

Finally, the expansion of the non-planar integrals benefits from the particular
choice of Green functions in Eqs. (44) and (43): The vanishing of

∫ 1
0 dx P(x, q) and∫ 1

0 dx Q(x, q) [11] systematically bypasses various spurious terms, which appear in
intermediate steps when using the representation of Green functions from Ref. [6].

4.2 Plain Results

Following the steps outlined in the previous section, the α′-expansion of the integral
I1234 for the planar four-point cylinder amplitude Eq. (13) can be brought into the

7For instance, the contributions s12P(x12, q) and s13P(x13, q) from the exponentials in the rep-
resentation Eq. (42) of I1234(si j , q) integrate to ω(1, 0, 0, 0) − 1

6 ω(1, 0) = − 1
3 ω(0, 1, 0, 0) and

ω(1, 0, 0, 0) + ω(0, 1, 0, 0) − 1
6 ω(1, 0) = 2

3 ω(0, 1, 0, 0), respectively.
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following form [4]

I1234(si j , q) = 1

6
+ 2ω(0, 1, 0, 0) s13

+ 2ω(0, 1, 1, 0, 0)
(
s212 + s223

)− 2ω(0, 1, 0, 1, 0) s12s23 (48)

+ β5 (s312+2s212s23+2s12s
2
23+s323) − β2,3 s12s23s13 + O(α′4) ,

where we have used the following shorthands for the third order in α′

β5 = 4

3

[
ω(0, 0, 1, 0, 0, 2) + ω(0, 1, 1, 0, 1, 0) − ω(2, 0, 1, 0, 0, 0) − ζ2 ω(0, 1, 0, 0)

]

β2,3 = ζ3

12
+ 8ζ2

3
ω(0, 1, 0, 0) − 5

18
ω(0, 3, 0, 0) . (49)

In the non-planar four-point integrals of Eq. (13), the teMZVs obtained in intermedi-
ate steps are found to cancel by employing the canonical representation in terms of
iterated Eisenstein integrals. With two punctures on each boundary, the cancellations
of teMZVs in

q− s12
4 I12|34(si j , q) = 1 + s212

(
7ζ2
6

+ 2ω(0, 0, 2)

)
− 2 s13s23

(
ζ2

3
+ ω(0, 0, 2)

)
(50)

− 4ζ2ω(0, 1, 0, 0)s312 + s12s13s23

(
5

3
ω(0, 3, 0, 0) + 4ζ2ω(0, 1, 0, 0) − ζ3

2

)
+ O(α′4)

are guaranteed to extend to all orders in α′ by the factorization argument in
section4.3.5 of [6]. The other non-planar topology with three punctures on the same
boundary exhibits the same kinds of cancellations [6]

I123|4(si j , q) = 1 + (s212 + s12s23 + s223)

(
7ζ2
6

+ 2ω(0, 0, 2)

)
(51)

− s12s23s13

(
4ζ2ω(0, 1, 0, 0) − 5

3
ω(0, 3, 0, 0) + ζ3

2

)
+ O(α′4)

which might have an all-order explanation from the monodromy relations [34–36]
among one-loop open-string amplitudes. The above results have been checked to
reproduce the degeneration limits q → 0 known from the literature, i.e. the zero’th
order in the q-expansions of I1234(si j , q), I123|4(si j , q) and q− s12

4 I12|34(si j , q) agrees
with the expressions in Refs. [37] and [35], respectively.

4.3 Results in Terms of Iterated Eisenstein Integrals

In this section, we rewrite the above α′-expansions in a canonical form by converting
the eMZVs to a basis of iterated Eisenstein integrals (38). The planar integral Eq. (48)
then takes the form
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I1234(si j , q) = 1

6
+ 3s13

2π2

(
ζ3 − 6E0(4, 0, 0; q)

)+ (s212+s12s23+s223)

(
ζ2

6
−2E0(4, 0; q)

)

+ 1

π2 (s212 + 4s12s23 + s223)

(
60E0(6, 0, 0, 0; q) − ζ4

2

)

+ s12s13s23

(
2E0(4, 0, 0; q) + 50E0(6, 0, 0; q) − 5ζ3

12

)
(52)

+ 1

π2 (s312+2s212s23+2s12s
2
23+s323)

(
216E0(4, 0, 4, 0, 0; q) + 648E0(4, 4, 0, 0, 0; q)

+ 3

5
E0(4, 0, 0, 0, 0; q) − 108E0(4, 0; q)E0(4, 0, 0; q) + 2016E0(8, 0, 0, 0, 0; q)

+ 18E0(4, 0; q)ζ3 − 5ζ5
2

)
+ O(α′4) ,

where the third order inα′ exhibits integralsE0(4, 4, 0, 0, 0; q) andE0(4, 0, 4, 0, 0; q)

of depth two. The non-planar integral Eq. (50) in turn contains shorter eMZVs and
iterated Eisenstein integrals at the orders under consideration, cf.Eq. (41),

q− s12
4 I12|34(si j , q) = 1 + s212

(
ζ2

2
− 12E0(4, 0; q)

)
+ 12 s13s23E0(4, 0; q) (53)

+ s312

(
3E0(4, 0, 0; q) − ζ3

2

)
+ s12s13s23 ( 300E0(6, 0, 0; q) − 3E0(4, 0, 0; q) ) + O(α′4) ,

and a similar structure can be found for Eq. (51):

I123|4(si j , q) = 1 + (s212 + s12s23 + s223)

(
ζ2

2
− 12E0(4, 0; q)

)
(54)

+ s12s23s13
(
300E0(6, 0, 0; q) + 3E0(4, 0, 0; q) − ζ3

)
+ O(α′4) .

Note that the α′-expansions of both non-planar integrals q− s12
4 I12|34(si j , q) and

I123|4(si j , q) take a form very similar to the symmetrized version of the planar integral
Eq. (52):

I1234(si j , q) + perm(2, 3, 4) = 1 + (s212 + s12s23 + s223)
(
ζ2 − 12E0(4, 0; q)

)

(55)

+ s12s23s13

(
12E0(4, 0, 0; q) + 300E0(6, 0, 0; q) − 5ζ3

2

)
+ O(α′4) .

In fact, taking the differences betweenEqs. (55) and (53) or (54), they are proportional
to ζ2, which might become visible only after using relations like ζ2 ω(0, 1, 0, 0) =
ζ3
8 − 3

4E0(4, 0, 0). This observation is related to the expectation on the corresponding
closed-string integral [12, 13] to follow from open-string quantities under a suitably
chosen single-valued projection: The agreement of Eqs. (55) and (53) or (54) modulo
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ζ2 is argued in Ref. [11] to pave the way towards a tentative single-valued projection
for eMZVs.

While there is no bottleneck in obtaining higher orders in α′ from the same meth-
ods, it would be desirable to construct cylinder integrals directly from the elliptic
associators [38]. This would generalize the representations of disk integrals in terms
of the Drinfeld associator [39] and should explain the patterns of iterated Eisenstein
integrals in the above equations.

5 Five-Point Results in Different Languages

In this section, we discuss the applicability of the setup of teMZVs to string ampli-
tudes of multiplicities higher than four. The main novelties for maximally supersym-
metric amplitudes at n ≥ 5 points are kinematic poles of the worldsheet integrals
and higher-dimensional bases of tensor structures for the external polarizations. The
appearance of both of these features is captured by the subsequent discussion of
five-point one-loop amplitudes of the open superstring.

We will focus on the α′-expansion of the prototype integrals in Eqs. (20)–(23)
which are more conveniently written in terms of the propagators in Eqs. (44)–(46),

H 12
12345(si j , q) =

∫ 1

0
dx5

(
4∏

l=1

∫ xl+1

0
dxl

)
δ(x1) f (1)

12 exp

⎛

⎝
5∑

i< j

si j P(xi j )

⎞

⎠ (56)

Ĥ 13
12345(si j , q) =

∫ 1

0
dx5

(
4∏

l=1

∫ xl+1

0
dxl

)
δ(x1) f (1)

13 exp

⎛

⎝
5∑

i< j

si j P(xi j )

⎞

⎠ (57)

H 12
123|45(si j , q) = q

s45
4

(
5∏

l=3

∫ 1

0
dxl

)∫ x3

0
dx2

∫ x2

0
dx1 δ(x1) f (1)

12 (58)

× exp

⎛

⎜⎝
3∑

i< j

si j P(xi j ) + s45P(x45) +
∑

i=1,2,3
j=4,5

si j Q(xi j )

⎞

⎟⎠

Ĥ 14
123|45(si j , q) = q

s45
4

(
5∏

l=3

∫ 1

0
dxl

)∫ x3

0
dx2

∫ x2

0
dx1 δ(x1) f (1)

14 (59)

× exp

⎛

⎜⎝
3∑

i< j

si j P(xi j ) + s45P(x45) +
∑

i=1,2,3
j=4,5

si j Q(xi j )

⎞

⎟⎠ .
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5.1 Kinematic Poles

When reproducing field-theory amplitudes from the α′ → 0 limit of string theories,
Feynman propagators arise from the boundaries of the moduli spaces. For instance,
the s-channel pole in a four-point open-string tree amplitude arises from the region
in the disk integral

∫ 1

0

dz2
z2

zs122 (1 − z2)
s23 = 1

s12
+ O(α′) , (60)

where the puncture z2 collides with z1 = 0. Since the emergence of kinematic poles
s−1
i j is solely dictated by local properties of the worldsheet and the short-distance
behavior of the Green function, the pole structure of loop amplitudes can be analyzed
by the same methods as their tree-level counterparts.8

In contrast to the one-loop four-point integrands, the prototype integrals at five
points in Eqs. (56)–(59) exhibit additional factors of f (1)

i j with

f (1)
i j = 1

zi − z j
+ O(|zi − z j |) (61)

which modify the singularity structure at the boundary of the moduli space. In partic-
ular, the worldsheet singularities of f (1)

12 es12P(x12) translate into kinematic poles∼ s−1
12

in the five-point one-loop integrals Eqs. (56)–(58) along the lines of the tree-level
mechanism in Eq. (60). As a convenient way of capturing the α′-expansion of such
singular integrals, we split the integrand of H 12

12345 in Eq. (56) as

f (1)
12 e

∑5
i< j si j P(xi j ) = f (1)

12 es12P(x2)
[
Φ(x2, x3, x4, x5) − Φ(0, x3, x4, x5) + Φ(0, x3, x4, x5)

]

Φ(x2, x3, x4, x5) = exp

⎛

⎝
5∑

l=3

s1l P(xl ) +
5∑

2≤i< j

si j P(xi j )

⎞

⎠ , (62)

where we remind the reader that we fixed x1 = 0. Then, for the last term of the
first line, the integral over x2 becomes elementary by recognizing f (1)

12 es12P(x2) =
− 1

s12
∂

∂x2
es12P(x2) and leads to the following singular part of H 12

12345:

∫ 1

0
dx5

(
4∏

l=1

∫ xl+1

0
dxl

)
δ(x1) f (1)

12 es12P(x2) Φ(0, x3, x4, x5) (63)

= − 1

s12

∫ 1

0
dx5

∫ x5

0
dx4

∫ x4

0
dx3 exp

⎛

⎝s12P(x3) +
5∑

l=3

(s1l+s2l)P(xl ) +
5∑

3≤i< j

si j P(xi j )

⎞

⎠ .

The right-hand side of the equation above can in turn be identified with the planar
four-point integral in Eq. (14) after relabeling the Mandelstam invariants as

8See [40, 41] for two related approaches to treat the poles of n-point open-string tree amplitudes.
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χ :
{ s12 → s123 , s13 → s14+s24 , s14 → s15+s25
s23 → s34 , s24 → s35 , s34 → s45

(64)

with s123 = s12+s13+s23. We have assumed s12 to have a positive real part in discard-
ing the boundary term es12P(x2)

∣∣
x2=0 in Eq. (63)which exhibits the same short-distance

behavior xs122 as seen in the tree-level integrand Eq. (60). Hence, the integral Eq. (20)
can be split into a pole part and a regular part according to

H12
12345 = H12,reg

12345 − I1234(χ(si j ), q)

s12
(65)

H12,reg
12345 =

∫ 1

0
dx5

(
4∏

l=2

∫ xl+1

0
dxl

)
f (1)(x2) e

s12P(x2)
[
Φ(0, x3, x4, x5) − Φ(x2, x3, x4, x5)

]
.

In reconstructing the α′-expansion of the polar part from a four-point computation,
the Mandelstam invariants of I1234 have to be transformed according to Eq. (64)
instead of using four-point momentum conservation Eq. (15). This is the reason for
obtaining

I1234(χ(si j ), q) = 1

6
+ ω(0, 1, 0, 0)(s12 − 2s34 − 2s45) (66)

+ ω(0, 1, 1, 0, 0)(s212−2s12s34+2s234+2s245) + ω(0, 1, 0, 1, 0)(s12−2s34)s45 + O(α′3)

instead of Eq. (48) after using five-point momentum conservation Eq. (25). The non-
planar integral H 12

123|45 with a kinematic pole defined in Eq. (58) will be addressed by
a similar decomposition of the integrand as in Eq. (62)

f (1)
12 e

∑5
i< j si j P(xi j ) = f (1)

12 es12P(x2)
[
Ψ (x2, x3, x4, x5) − Ψ (0, x3, x4, x5) + Ψ (0, x3, x4, x5)

]

Ψ (x2, x3, x4, x5) = exp

⎛

⎜⎝s13P(x3) +
∑

(i, j)=
(2,3),(4,5)

si j P(xi j ) +
∑

j=4,5

s1 j Q(x j ) +
∑

i=2,3
j=4,5

si j Q(xi j )

⎞

⎟⎠ .

(67)

Again, one can find a primitive w.r.t. x2 for the last term in the first line and arrive at
a decomposition analogous to Eq. (65)

H12
123|45 = H12,reg

123|45 − I12|34(χ(si j ), q)

s12
(68)

H12,reg
123|45 = q

s45
4

(
5∏

l=3

∫ 1

0
dxl

)∫ x3

0
dx2 f (1)(x2) e

s12P(x2)
[
Ψ (0, x3, x4, x5) − Ψ (x2, x3, x4, x5)

]
,

with the same mapping Eq. (64) of the Mandelstam invariants that governed the
planar counterpart H 12

12345. The function I12|34(χ(si j ), q) of five-particle Mandelstam
invariants along with s−1

12 is still expressible in terms of untwisted eMZVs,
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I12|34(χ(si j ), q) = q
s45
4

{
1 + s245

(
ω(0, 0, 2) + 5ζ2

6

)
(69)

+1

2

[
(s14 + s24)

2 + (s15 + s25)
2 + s234 + s235

] (
ω(0, 0, 2) + ζ2

3

)
+ O(α′3)

}
,

see Eq. (53) for the analogous four-point expansion.

5.2 The Regular Parts

For the regular parts H 12,reg
12345 and H 12,reg

123|45 of the five-point integrals over f (1)
12 defined

in Eqs. (65) and (68), the integrands

Φ(0, x3, x4, x5) − Φ(x2, x3, x4, x5) = −
5∑

j=3

s2 j �
( 1
x j

; x2
)+ O(α′2)

Ψ (0, x3, x4, x5) − Ψ (x2, x3, x4, x5) = − s23 �
(

1
x3 ; x2

)− s24 �
(

1
x4+τ/2 ; x2

)
(70)

− s25 �
(

1
x5+τ/2 ; x2

)+ O(α′2)

manifestly vanish as x2 → 0. Hence, they cancel the singularity of the integrands
f (1)(x2) in Eqs. (65) and (68), and the integrations over x3, x4, x5 yield convergent
eMZVs at all orders, starting with9

H 12,reg
12345 = (s23 − s25)

[
ω(0, 1, 0, 1, 0) + 2ω(0, 1, 1, 0, 0)

]+ O(α′2) (71)

H 12,reg
123|45 = O(α′2) . (72)

The leading three orders in the low-energy expansion of the planar integral H 12
12345

can then be assembled by inserting Eqs. (66) and (71) into Eq. (65). Likewise, the
non-planar integral H 12

123|45 follows from plugging Eqs. (69) and (72) into Eq. (68).
The kinematic poles of the integrals H 12

12345 and H 12
123|45 only arise because the vari-

ables x1 and x2 of the worldsheet singularity f (1)
12 ∼ x−1

12 are neighbors in the integra-
tion domain 0 < x2 < x3 < x4 < x5 < 1. In contrast, the integrals Ĥ 13

12345 and Ĥ
14
123|45

in Eqs. (57) and (59), do not acquire any kinematic pole in this way. Accordingly,
Taylor expanding the exponentials in the integrand automatically yields convergent
eMZVs order by order in α′ upon integration over x2, x3, x4, x5, e.g.

9The convergent integrals leading to Eq. (72) can be performed via rearrangements such as [4]
�
(
1 1
0 z ; z) = −2�

(
0 2
0 0 ; z)− �

(
2 0
0 0 ; z)− ζ2, which is yet another example from the class of iden-

tities discussed around Eq. (47). Note that the singular integration kernels f (1) manifestly drop out
from this identity.
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Ĥ 13
12345 = −ω(0, 1, 0, 0) + (s12 + s23 + s45) ω(0, 1, 1, 0, 0) (73)

+ (s12 − s15 + s23 − s34 − s45) ω(0, 1, 0, 1, 0) + O(α′2)

Ĥ 14
123|45 = q

s45
4

{
(s24 − s34)

(
ω(0, 0, 2) + ζ2

3

)
+ O(α′2)

}
. (74)

Note that to the orders considered, the α′-expansions of the five-point integrals can
be easily confirmed to preserve the integration-by-parts relations

0 =
∫

D(λ)

5∏

j=1

dz j
∂

∂z2
δ(z1)

5∏

i< j

exp
( si j

2 G(zi j )
)

(75)

=
∫

D(λ)

5∏

j=1

dz j δ(z1)
[
s23 f

(1)
23 +s24 f

(1)
24 +s25 f

(1)
25 −s12 f

(1)
12

] 5∏

i< j

exp
( si j

2 G(zi j )
)
.

Such relations are crucial formanifesting the gauge invariance of the string amplitude.
They do not depend on the planar or non-planar ordering λ in the integration region
D(λ), cf. Eq. (6). Each of the summands in Eq. (75) is expressible as a relabeling
of one of the prototype integrals in Eqs. (56)–(59). It does not require much effort
to show that non-planar integrals with a domain of the form D(1, 2, 3, 4|5) can be
expanded using the same methods.

5.3 Putting Everything Together

Given the low-energy expansion of all the permutation-inequivalent prototype inte-
grals Eqs. (56)–(59), one can expand the five-point cylinder amplitude Eq. (19) at
the level of the integrand w.r.t. q: The coefficients I ρ(2,3)

λ (si j , q) of the independent
kinematic factors Atree

SYM(1, ρ(2, 3), 4, 5) with permutation ρ ∈ S2 are linear combi-
nations of the Hi j

λ and Ĥ i j
λ implicitly defined by combining Eqs. (16) and (18) with

BCJ relations of the Atree
SYM.

Also the five-point tree amplitudes of the open superstring can be expanded in a
BCJ basis of (super-)Yang–Mills amplitudes [42]: When considering the two single-
trace orderings Atree

open(1, τ (2, 3), 4, 5) of disk amplitudes, the relation to their field-
theory counterparts Atree

SYM(1, ρ(2, 3), 4, 5) is encoded in 2 × 2 matrices (Pw)τ
ρ and

(Mw)τ
ρ indexed by the permutations τ, ρ ∈ S2 [43],

Atree
open(1, τ (2, 3), 4, 5) =

∑

ρ∈S2
(1 + ζ2P2 + ζ3M3 + ζ 2

2 P4 + O(α′5))τ ρ

× Atree
SYM(1, ρ(2, 3), 4, 5) . (76)
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The entries of the 2 × 2 matrices Pw and Mw are degree-w polynomials in si j with
rational coefficients, e.g.

P2 =
(
s12s34 − s34s45 − s51s12 s13s24

s12s34 s13s24 − s24s45 − s51s13

)
, (77)

and analogous expressions for matrices at higher order in α′ or multiplicity can be
downloaded from [44].

The same matrices P2, M3, P4 governing the low-energy expansion of tree ampli-
tudes Eq. (76) can be found in the planar sector at one loop: It is convenient to focus
on the two choices λ = 1, 2, 3, 4, 5 and λ = 1, 3, 2, 4, 5 of the single-trace ordering
which line up with the basis Atree

SYM(1, ρ(2, 3), 4, 5) of kinematic factors in Eq. (19).
Doing so, the α′-expansions of the planar integrals H 12

12345 and Ĥ 13
12345 uplift the rela-

tion Eq. (76) between open-string and (super-)Yang–Mills tree-level amplitudes to
one loop

Acyl(1, τ (2, 3), 4, 5) =
∫ 1

0

dq

q

∑

ρ∈S2
I1τ(23)45

ρ(si j , q)Atree
SYM(1, ρ(2, 3), 4, 5) (78)

with the leading low-energy orders [4]

−I1τ(23)45
ρ(si j , q) = 1

6
P2 +

(
3ζ3
2π2

− 9E0(4, 0, 0; q)

π2

)
M3

+
(

π2

18
− 5E0(4, 0; q) + 150

π2
E0(6, 0, 0, 0; q)

)
P4 (79)

+
(
3

2
E0(4, 0; q) − 225

π2
E0(6, 0, 0, 0; q)

)
L4 + O(α′5) .

At order α′4, we encounter a new matrix L4 with entries

(L4)23
23 = s212s

2
23 + 2s212s23s24 + s212s

2
24 + 2s212s23s34 + 2s12s13s23s34 + 2s12s

2
23s34

+ 2s212s24s34 + s12s13s24s34 + 2s12s23s24s34 + s212s
2
34 + 2s12s13s

2
34

+ s213s
2
34 + 2s12s23s

2
34 + 2s13s23s

2
34 + s223s

2
34 (80)

(L4)23
32 = −s13s24(3s12s23 + s13s23 + s223 + 2s12s24 + s13s24 + s23s24

+ 3s12s34 + 2s13s34 + 3s23s34) (81)

and (L4)32
32 = (L4)23

23
∣∣
2↔3 as well as (L4)32

23 = (L4)23
32
∣∣
2↔3. The q-expansion

of its coefficient does not have any zero mode, consistent with the fact that the q0

order of Eq. (79) has to match the α′-derivative of the tree-level amplitude [37].
Cylinder diagrams as drawn in Fig. 1 can be interpreted not only as a one-loop

process involving open strings but also as a tree-level exchange of closed strings
[16]. In particular, the non-planar cylinder diagram gives rise to a propagator ∼s−1

12
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of gravitational states upon integration over q. Accordingly, the low-energy limit
of double-trace open-string amplitudes at one loop reproduces the corresponding
double-trace amplitudes in Einstein–Yang–Mills field theory [45]

Atree
EYM(1, 2, 3|4, 5) = s24A

tree
SYM(1, 3, 2, 4, 5) − s34A

tree
SYM(1, 3, 2, 4, 5) . (82)

Indeed, the α′-expansions of the non-planar integrals H 12
123|45 and Ĥ 14

123|45 give rise to

Acyl(1, 2, 3|4, 5) = −1

2

∫ 1

0

dq

q
q

s45
4

{
s45 A

tree
EYM(1, 2, 3|4, 5)

+
(

ζ2

2
− 12E0(4, 0; q)

)
s345 A

tree
EYM(1, 2, 3|4, 5) (83)

+ 12E0(4, 0; q)
[
s34(s12s23s45+2s12s24s45+s45s

2
34+s245s34+3s12s24s15)

× Atree
SYM(1, 2, 3, 4, 5) − (2 ↔ 3)

]+ O(α′5)
}

and match the desired Einstein–Yang–Mills limit Eq. (82) by means of the integral∫ 1
0 dq q

s45
4 −1 = 4

s45
at the leading order. It would be interesting to explore the higher-

order structure of the α′-expansion at one loop, in particular, if it exhibits an echo of
the tree-level pattern of Refs. [43, 46] under the motivic coaction.

6 Summary

In these proceedings,we investigate the appearanceof eMZVs inone-loop amplitudes
of the open superstring. In reviewing earlier results on the planar [4] and non-planar
cylinder diagram [6], we streamline intermediate steps of the computations provided
in the references, thus allowing amore efficient calculation.We extend their results in
two directions: First, the treatment of kinematic poles in planar and non-planar five-
point integrals is carefully explained. Second, the final expressions for the low-energy
expansions at four and five points are cast into the language of iterated Eisenstein
integrals.
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Expansions at Cusps and Petersson
Products in Pari/GP

Henri Cohen

Abstract We begin by explaining how to compute Fourier expansions at all cusps of
any modular form of integral or half-integral weight thanks to a theorem of Borisov–
Gunnells and explicit expansions of Eisenstein series at all cusps. Using this, we
then give a number of methods for computing arbitrary Petersson products. All this
is available in the current release of the Pari/GP package.

1 Introduction

In this paper we consider the practical problem of numerically computing Petersson
products of twomodular forms whenever it is defined. In some cases this can be done
using the Rankin–Selberg convolution of the forms, but in general this is not always
possible nor practical.

We will describe three methods. The first is applicable when both forms are cusp
forms, and is a variant of the well-known formulas of Haberland. The second is a
modification of the first, necessary when at least one of the forms is not a cusp form.
Both of these methods need the essential condition that the weight k be integral and
greater than or equal to 2. The third method is due to P. Nelson and D. Collins
[1, 2]. It has the great advantage of being also applicable when k = 1 or k half-
integral, but the great disadvantage of being much slower when k is integral and
greater than or equal to 2.

All of these methods require the possibility of computing the Fourier expansion
of f |kγ for an arbitrary γ in the full modular group. The method used in Pari/GP
[3] is to express any modular form (possibly multiplied by a known Eisenstein or
theta series) as a linear combination of products of two Eisenstein series, which is
always possible thanks to a theorem of Borisov–Gunnells [4, 5], so we will begin by
studying this in detail here, so that the formulas can be recorded.
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2 Eisenstein Series

2.1 Introduction

In the sequel, we let χ1 and χ2 be two primitive characters modulo N1 and N2

respectively. For k ≥ 3 we define

Gk(χ1, χ2)(τ ) = 1

2

∑′

N1|c, d

χ1(d)χ2(c/N1)

(cτ + d)k
,

and for k = 2 and k = 1 we define Gk by analytic continuation to s = 0 of the same
sum with an extra factor |cτ + d|−2s (Hecke’s trick). We will always assume that
χ1χ2(−1) = (−1)k , otherwise the series is identically zero.

If k �= 2 or k = 2 and χ1 and χ2 are not both trivial, then Gk ∈ Mk(Γ0(N1N2),

χ1χ2) (if k = 2 and χ1 and χ2 are both trivial we have a nonanalytic term in 1/�(τ )).
The Fourier expansion at infinity is given by

Gk(χ1, χ2)(τ ) =
(−2π i

N1

)k g(χ1)

(k − 1)! Fk(χ1, χ2)(τ ),

where g(χ) is the standard Gauss sum associated to χ ,

Fk(χ1, χ2)(τ ) = δN2,1
L(χ1, 1 − k)

2
+

∑

n≥1

σk−1(χ1, χ2, n)qn,

where δ is the Kronecker delta, and

σk−1(χ1, χ2, n) =
∑

d|n, d>0

dk−1χ1(d)χ2(n/d) .

By convention, we will set F0 = 1.
An important theorem of Borisov–Gunnells [4, 5] says that in weight k ≥ 3,

and very often also in weight 2, any modular form f ∈ Mk(Γ0(N ), χ) is a lin-
ear combination of F	(χ1, χ2)(eτ)Fk−	(χ

′
1, χ

′
2)(e

′τ) for suitable characters χ , 	, e
and e′.

If we are in the unfavorable case of the theorem (only in weight 2), or in weight 1,
we can simply multiply by a known Eisenstein series (of weight 1 or 2) to be in a case
where the theorem applies. Similarly, if we are in half-integral weight, we simply
multiply by a suitable power of θ ∈ M1/2(Γ0(4)) to be able to apply the theorem.

For us, the main interest of this theorem is that the Fourier expansion of Fk |kγ
as well as that of θ |1/2γ can be explicitly computed for all γ ∈ Γ , the full modular
group, so this allows us to compute f |kγ for any modular form f , and in particular
find the Fourier expansions at any cusp.
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2.2 Expansion of Fk|kγ

As usual we denote by N1 and N2 the conductors of χ1 and χ2. For simplicity of
notation we will set Fk(χ1, χ2, e)(τ ) := Fk(χ1, χ2)(eτ) and N = N1N2e, so that
Fk(χ1, χ2, e) ∈ Mk(Γ0(N ), χ1χ2). Note that in the application using the Borisov–
Gunnells theorem N will only be a divisor of the level.

We now let γ ∈ GL+
2 (Q) be any matrix with rational coefficients and strictly

positive determinant. We want to compute the Fourier expansion at infinity of
Fk(χ1, χ2, e)|kγ . For this, we first make three reductions. First, trivially the action
of γ is homogeneous, so possibly after multiplying γ by a common denominator we
may assume that γ = (

A B
C D

) ∈ M+
2 (Z). Second, by Euclid we can find integers u, v,

and g such that gcd(A, C) = g = u A + vC , and we have the matrix identity
(

A B
C D

)
=

(
A/g −v
C/g u

) (
g u B + vD
0 (AD − BC)/g

)
,

where we note that the first matrix is in Γ . Since the second one is upper triangular,
its action on a Fourier expansion is trivial to write down, so we are reduced to the
case where γ ∈ Γ .

The third and last reduction is based on the following easy lemma:

Lemma 2.1 Let γ ∈ Γ . There exist β ∈ Γ0(N ) and m ∈ Z such that

γ = β

(
A B
C D

)
T m

with C | N, C > 0, and N | B.

Since the action of β = (
a b
c d

) ∈ Γ0(N ) on Mk(Γ0(N ), χ) is simplymultiplication
by χ(d), and since once again the action of the translation T m is trivial to write down
on Fourier expansions, this lemma allows us to reduce to γ ∈ Γ with the additional
conditions C | N , C > 0, and N | B.

To state the main result we need to introduce an additional function needed to
express the constant terms:

Definition 2.2 Let χ be a Dirichlet character modulo M , let f be its conductor, and
let χ f be the primitive character modulo f equivalent to χ . We define

Sk(χ) = (M/ f )kg(χ f )
Bk(χ f )

k

∏

p|N

(
1 − χ f (p)

p

)
,

where as usual Bk(χ f ) is the χ f -Bernoulli number and the product is over the prime
divisors of N .

Note that Sk(χ)= − (2(k−1)!Mk/(−2π i)k)L(χ, k), butwehavepreferred togive
it in the above form to emphasize the fact that it belongs to a specific cyclotomic field.

We are now ready to state the main result, where we always use the convention
qx = e2π iτ x when x ∈ Q:
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Theorem 2.3 Set N = eN1N2, and let γ = (
A B
C D

) ∈ Γ be such that C | N, C >

0, and N | B. Set g = gcd(e, C), g1 = gcd(N1g, C), and g2 = gcd(N2g, C). If
(k, χ1, χ2) �= (2, 1, 1) we have

Fk(χ1, χ2, e)|kγ = 1

zk(χ1, χ2, C)

∑

n≥0

aγ (n)qg1g2n/N ,

where

1.
zk(χ1, χ2, C) = 2(N2e/g2)

k−1(e/g)g(χ1)g(χ2) ,

2. For n ≥ 1

aγ (n) = ζ
A−1(g1g2/C)n
N

∑

m|n, m∈Z
sign(m)mk−1c(n, m) , with

c(n, m) =
∑

s1 mod C/g
(N1g/g1)s1≡n/m (mod C/g1)

χ1((n/m − (N1g/g1)s1)/(C/g1))·

·
∑

s2 mod C/g
(N2g/g2)s2≡m (mod C/g2)

χ2((m − (N2g/g2)s2)/(C/g2))ζ
−(Ae/g)−1s1s2
C/g .

3. Set

Tk(χ1, χ2) =
⎧
⎨

⎩
(−1)k−1 g(χ2)

N2(g2/g)k−1
χ1(−Ae/g)Sk(χ1χ2) if C/g = N1 ,

0 if C/g �= N1 .

We have

aγ (0) =
{

Tk(χ1, χ2) if k > 1 ,

T1(χ1, χ2) + T1(χ2, χ1) if k = 1 .

Note that (k, χ1, χ2) = (2, 1, 1) corresponds to the quasimodular form F2 (or E2)
which can be easily treated directly thanks to the first matrix identity given above
applied to γ = (

eA eB
C D

)
.

2.3 Rationality Questions

To use this theorem in algorithmic practice, we need to make a choice. As can be
seen on the expression of aγ (n), the coefficients of the expansion belong to the large
cyclotomic field Q(ζN , ζφ(N )), which is in fact also the field which contains Gauss
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sums of characters modulo N . When N is not tiny, say when N is a prime around
1000, this is a very large number field, so it seems almost impossible to work with
exact elements of the field. In our implementation we thus have chosen to work with
approximate complex values having hopefully sufficient accuracy (note that this is
sufficient in the application to Petersson products). At the end of the computation of
f |kγ we may however want to recover the exact algebraic values. This can of course
be done using LLL-type algorithms, with an a priori guess of the field of coefficients.
But this can be done rigorously by using the following results.

First, assume that gcd(N/ gcd(N , C), C) = 1, or equivalently (N , C2) = (N , C)

(so that the cusp A/C will be regular). We then have the following two results:

Lemma 2.4 Assume that gcd(N/ gcd(N , C), C) = 1, and set g = gcd(N , C) and

Q = N/g. There exist an Atkin–Lehner matrix of the form WQ =
(

Qx y
N Q

)
, a matrix

δ = (
a b
c d

) ∈ Γ0(N ), and an integer v, such that

γ = WQδ
(
1/Q v/Q
0 1

)
,

and we have d ≡ Q−1D (mod N/Q), where Q−1 is an inverse of Q modulo C.

As usual, since the action of δ on Mk(Γ0(N ), χ) is multiplication by χ(d) and
the action of an upper triangular matrix on Fourier expansions is trivial to write,
we are reduced to computing the field of coefficients of f |k WQ . This is given by a
theorem essentially due to Shimura and Ohta, and extended to cover half-integral
weight as well. We first define a normalizing constant C(k, χ, WQ) as follows. First
recall that if gcd(Q, N/Q) = 1, which is the case here, we can write in a unique
way χ = χQχN/Q with χQ defined modulo Q and χN/Q modulo N/Q.

Definition 2.5 Let WQ =
(

Qx y
N z Qt

)
be a general Atkin–Lehner matrix.

1. We set s(k, WQ) = 1 unless k is a half integer, in which case we set s(k, WQ) =
i (x−1)/2 if Q is odd, and s(k, WQ) = 1 + (−1)k+y/2i if 4 | Q (note that we cannot
have Q ≡ 2 (mod 4)).

2. We define C(k, χ, WQ) = s(k, WQ)/(g((χQ) f )Qk/2), where (χQ) f is the prim-
itive character equivalent to χQ .

The theorem is as follows:

Theorem 2.6 Let F ∈ Mk(Γ0(N ), χ) with k integral or half integral, set K =
Q(F), let Q‖N be a primitive divisor of N , and let WQ =

(
Qx y
N z Qt

)
be a general

Atkin–Lehner matrix. We have Q(C(k, χ, WQ)F |k WQ) ⊂ K .

In the general case we cannot use Atkin–Lehner involutions, but again using
the Borisov–Gunnells theorem F. Brunault and M. Neururer recently proved the
following theorem, and we thank them for permission to include it here. Their proof
will be given in a separate paper.
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Theorem 2.7 Let γ = (
A B
C D

) ∈ Γ , denote by M | N the conductor of χ , and as
in the previous theorem set K = Q(F). If F ∈ Mk(Γ0(N ), χ) with k integral the
Fourier coefficients of F |kγ belong to the cyclotomic extension K (ζR), where R =
lcm(N/ gcd(N , C D), M/ gcd(M, BC)).

2.4 Eisenstein Series Over Γ1(N)

Instead of using products of two Eisenstein series over Γ0(N ) as above (which
corresponds to the present implementation (June 2018) in Pari/GP), one can
also use products of two Eisenstein series over Γ1(N ) instead, and then project
on Mk(Γ0(N ), χ). This corresponds in fact to the Eisenstein series used by Borisov–
Gunnells, and will probably replace the previous implementation. Once again, we
give the precise formulas.

For the level N being understood, for k ≥ 3 we define

Gk(a) = 1

N

∑′

N |c, d

ζ−ad
N

(cτ + d)k
,

and for k = 2 and k = 1 we define Gk by analytic continuation to s = 0. This will be
holomorphic unless k = 2 and N | a. Otherwise Gk(a) belongs to Mk(Γ1(N )), and
its Fourier expansion at infinity is given by Gk(a) = ((−2π i/N )k/(k − 1)!)Fk(a),
with

Fk(a) = −N k−1Bk({a/N })/k +
∑

n≥1

qn
∑

m|n
mk−1(δm,a + (−1)kδm,−a) ,

where δm,a = 1 if and only if m ≡ a (mod N ), and 0 otherwise.
For k = 2 and a ≡ 0 (mod N ), we understand Fk(a) as meaning Fk(a) − 2E2

with E2 the usual quasi-modular form of weight 2 on the full modular group, which
will be both holomorphic and in M2(Γ1(N )).

Definition 2.8 Let χ be a Dirichlet character modulo N . We set

φ	(a, b) =
∑

A∈(Z/NZ)×
χ(A)F	(Aa)Fk−	(Ab) .

It is clear that φ	(a, b) ∈ Mk(Γ0(N ), χ). An imprecise reformulation of the
Borisov–Gunnells theorem is as follows:

Theorem 2.9 (Borisov–Gunnells) The C-vector space spanned by the φ	(a, b)

for 1 ≤ 	 ≤ k/2, a | N and 0 ≤ b < N/a, which is a subspace of Mk(Γ0(N ), χ),
contains Sk(Γ0(N ), χ), except possibly for some well-understood exceptions when
k = 2.
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As mentioned in the introduction, the exceptions do not matter since we can
multiply by some known Eisenstein series so as to be in higher weight, and simi-
larly multiply by θ if we are in half-integral weight. Also, to obtain the whole of
Mk(Γ0(N ), χ) we must add a number of other completely explicit Eisenstein series,
whose behavior under |kγ is also known.

Thus, as in the previous section, we need to give the expansion of Fk(a)|kγ . The
result is as follows.

Theorem 2.10 Let γ = (
A B
C D

) ∈ Γ and set g1 = gcd(C, N ) and w1 = N/g1. For
(k, a) �= (2, 0 mod N ) (otherwise simply subtract 2E2) we have Fk(a)|kγ = s(0) +∑

n≥1 s(n)qn/w1 , where:

1. For n ≥ 1,

s(n) = 1

w1

∑

m|n, m∈Z
Dm≡a (mod g1)

sign(m)mk−1ζ ((Dm−a)/g1)(n/m)(C/g1)−1

w1
,

where (C/g1)−1 is the inverse modulo N/g1 = w1.
2. For n = 0,

s(0) = −gk
1

N

Bk({a A/g1})
k

+ δk,1δ(a/g1)

w1
T

with

T =
{

−1/(1 − ζ
(a/g1)(C/g1)−1

w1 ) if N � a ,

−1/2 if N | a .

From this theorem we deduce the expansion of φ	(a, b)|kγ in integral powers
of q1/w1 , and it is then immediate to obtain from this an expansion of the form
qα

∑
n≥0 c(n)qn/w0 , with w0 = N/ gcd(C2, N ) and α some rational number in [0, 1[

with denominator divisible by w1.

2.5 Expansion of θ |1/2γ

For completeness, we also give the expansion of θ |1/2γ which is needed in the
half-integral weight case. Thanks to the first two reductions above (the third is not
necessary) we may assume that γ = (

A B
C D

) ∈ Γ . We recall that the theta multiplier
vθ (γ ) is given by

vθ (γ ) =
(−4

D

)−1/2 (
C

D

)
,

where we always choose the principal branch of the square root. The result is then
as follows:
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Proposition 2.11 1. If 4 | C we have

θ |1/2γ = vθ (γ )θ = vθ (γ )

(
1 + 2

∑

n≥1

qn2

)
.

2. If C ≡ 2 (mod 4), set α = (
A−2B B
C−2D D

)
. Then

θ |1/2γ = 2vθ (α)
∑

n≥0

q(2n+1)2/4 .

3. If 2 � C, let λ ≡ −D/C (mod 4), and set D′ = D + λC, B ′ = λA, and α =( −B ′ A
−D′ C

)
. Then

θ |1/2γ = 1 − i

2
vθ (α)

(
1 + 2

∑

n≥1

i−λn2
qn2/4

)
.

2.6 Fourier Expansion of f |kγ

We need to recall some notation relative to the Fourier expansion of f |kγ for γ ∈ Γ

and f ∈ Mk(Γ0(N ), χ). It is easy to show that it has the form

f |kγ (τ) = qα(γ )
∑

n≥0

aγ (n)qn/w(γ ) ,

where w(γ ) is the width of the cusp γ (i∞) and α(γ ) is a rational number in [0, 1[,
which by definition is different from 0 if and only the cusp is irregular. For γ =(

A B
C D

)
, these quantities are given by the formulas

w(γ ) = N

gcd(N , C2)
and e2π iα(γ ) = χ

(
1 + ANC

gcd(N , C2)

)
= χ(1 + ACw(γ )) .

In addition, note that the denominator of α(γ ) divides gcd(N , C2)/ gcd(N , C), and
that w(γ ) and α(γ ) only depend on the representative c of the cusp γ (i∞) = A/C ,
so we will denote them w(c) and α(c).

2.7 Computation of all f |kγ j

In the application to Petersson products we will need to compute all the Fourier
expansions of f |kγ j for a system of right coset representatives ofΓ0(N )\Γ , i.e., such
that Γ = ⊔r

j=1 Γ0(N )γ j . Although the formulas that we will give are independent
of this choice, for efficiency reasons it is essential to do it properly.
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Let C be a set of representatives of cusps of Γ0(N ) (which is much smaller than
the set of cosets: for instance if N is prime we have N + 1 cosets but only 2 cusps),
and for each c ∈ C let γc ∈ Γ such that γc(i∞) = c, and as above let w(c) be the
width of the cusp c. We claim that the (γcT m)c∈C, 0≤m<w(c) form a system of right
coset representatives of Γ0(N )\Γ . Indeed, let γ ∈ Γ , and let c be the representative
of the cusp γ (i∞). By definition this means that there exists δ ∈ Γ0(N ) such that
γ (i∞) = δ(c) = δγc(i∞), so γ = δγcT m for some integer m, and by definition of
the width γcT w(c)γ −1

c ∈ Γ0(N ), so we can always reduce m modulo w(c), proving
our claim since

∑
c∈C w(c) = [Γ : Γ0(N )].

Thus, we simply compute

f |kγc(τ ) = qα(c)
∑

n≥0

aγc(n)qn/w(c) ,

and we deduce that

f |k(γcT m)(τ ) = e2π imα(c)qα(c)
∑

n≥0

aγc(n)ζ nm
w(c)q

n/w(c)

with ζw(c) = e2π i/w(c), so we only need to compute |C | expansions and not [Γ :
Γ0(N )].

3 Petersson Products: Haberland-Type Formulas

Now that we know how to compute the Fourier expansion of f |kγ for any γ ∈ Γ

(and even γ ∈ GL+
2 (Q)), we apply this to the computation of Petersson products.

3.1 Preliminary Formulas

Although this has been explained in several places, for instance in [6–8], it is nec-
essary to reproduce the statements and proofs, since we will need some important
modifications. In this section we always assume that k is an integer such that k ≥ 2,
so that (X − τ)k−2 is a polynomial.

In what follows, f and g will denote two modular forms in the space
Mk(Γ0(N ), χ), and as above we denote by (γ j )1≤ j≤r a set of right coset repre-
sentatives of the full modular group Γ modulo Γ0(N ), so that Γ = ⊔r

j=1 Γ0(N )γ j .
Finally, we set f j = f |kγ j and g j = g|kγ j .

It is clear that for any α ∈ Γ there exist an index which by abuse of notation we
will write as α( j), and an element δ j (α) ∈ Γ0(N ) such that γ jα = δ j (α)γα( j), and
the map j �→ α( j) is a bijection of [1, r ].
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Definition 3.1 For any j ∈ [1, r ] and Z j ∈ H we define

G j (Z j ; τ) =
∫ τ

Z j

g j (τ2)(τ − τ2)
k−2 dτ2 .

Note that this function is essentially an Eichler integral of g j , so will have quasi-
modularity properties in weight 2 − k. More precisely:

Proposition 3.2 Keep the above notation. We have

(G j (Z j ; τ)|2−kα)(τ) = χ(δ j (α))
(
Gα( j)(Zα( j); τ) − Pα( j)(α; τ)

)
,

where as usual χ
((

a b
c d

)) = χ(d), and Pj is the polynomial in τ

Pj (α; τ) =
∫ α−1

(
Zα−1( j)

)

Z j

g j (τ2)(τ − τ2)
k−2 dτ2 .

Corollary 3.3 Keep the notation of the proposition. For any A and B in H we have

(∫ B

A
−

∫ α(B)

α(A)

) ∑

1≤ j≤r

f j (τ )G j (Z j ; τ) dτ =
∫ B

A

∑

1≤ j≤r

f j (τ )Pj (α; τ) dτ .

The main theorem proved for instance in [7], but which is an immediate conse-
quence of Stokes’s theorem, is the following:

Theorem 3.4 Let H be some subgroup of Γ of finite index s = [Γ : H ], and let
D(H) denote a fundamental domain for H whose boundary ∂(D(H)) is a hyperbolic
polygon. Then for any choice of the Z j we have

rs(2i)k−1 < f, g >Γ0(N )=
∫

∂(D(H))

∑

1≤ j≤r

f j (τ )G j (Z j ; τ) dτ .

Note that the subgroup H can be chosen arbitrarily. To simplify, we will choose it
so that ∂(D(H)) is a hyperbolic quadrilateral (A1, A2, A3, A4) such that there exist
an element α1 ∈ Γ sending [A1, A2] to [A3, A2] and α2 ∈ Γ sending [A3, A4] to
[A1, A4]. We thus have

∫

∂(D(H))

=
(∫ A2

A1

−
∫ α1(A2)

α1(A1)

)
+

(∫ A4

A3

−
∫ α2(A4)

α2(A3)

)
.

Applying the above corollary and the theorem we deduce the following.
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Definition 3.5 The forms f and g being implicit, we define

G j (A, B; C, D) =
∫ B

A

∫ D

C
f j (τ )g j (τ2)(τ − τ2)

k−2 dτ dτ2 .

Corollary 3.6 We have

rs(2i)k−1 < f, g >Γ0(N )=
∑

1≤ j≤r

(I j ( f, g) + Jj ( f, g)) ,

where

I j ( f, g) = G j

(
A1, A2; Z j , α

−1
1

(
Zα−1

1 ( j)

))

Jj ( f, g) = G j

(
A3, A4; Z j , α

−1
2

(
Zα−1

2 ( j)

))
.

3.2 The Cuspidal Case

We now distinguish whether both f and g are cusp forms or otherwise.
Assume first that f and g are both cusp forms. As in [7] we choose H = Γ (2),

which has index 6 in Γ , and we can take for D(H) the hyperbolic quadrilateral with
A1 = 1, A2 = i∞, A3 = −1, and A4 = 0, so that α1 = T −2 = (

1 −2
0 1

)
and α2 =(

1 0
2 1

)
. We also choose Z j = 0 for all j , so that α−1

2 (Zα−1
2 ( j)) = α−1

2 (0) = 0, hence
Pj (α2; τ) = 0, so that Jj ( f, g) = 0 for all j . On the other hand

Pj (α1; τ) =
∫ 2

0
g j (τ2)(τ − τ2)

k−2 dτ2 ,

so that
6r(2i)k−1 < f, g >Γ0(N )=

∑

1≤ j≤r

G j (1, i∞; 0, 2) .

Shifting both τ and τ2 by 1 gives the following:

Corollary 3.7 Assume that f and g are both cusp forms. We then have

6r(2i)k−1 < f, g >Γ0(N ) =
∑

1≤ j≤r

G j (0, i∞; −1, 1)

=
∑

1≤ j≤r

∫ i∞

0

∫ 1

−1
f j (τ )g j (τ2)(τ − τ2)

k−2 dτ dτ2

=
∑

1≤ j≤r

∑

0≤n≤k−2

(−1)n
(

k − 2

n

)
Ik−2−n(0, i∞, f j )In(−1, 1, g j ) ,
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where we have set

In(A, B, f ) =
∫ B

A
τ n f (τ ) dτ .

The essential advantage of this formula is that we have reduced the computation
of a Petersson product, which is a double integral, to a small finite number of single
integrals, which are essentially the periods associated to f and g; this is in fact exactly
the statement of Haberland’s theorem.

The main problem is that, even though the Petersson product is defined when only
one of f and g is a cusp form, we cannot apply the above formula since the period
integrals will diverge for non cusp forms. We thus consider the general case.

3.3 The Noncuspidal But Convergent Case

We now assume that f and g are in Mk(Γ0(N ), χ), not necessarily cusp forms. For
the Petersson product to converge it is necessary and sufficient that at each cusp either
f or g vanishes. Equivalently, for each j ∈ [1, r ] either f j or g j vanishes as τ → i∞.
We denote by E the subset of j ∈ [1, r ] such that f j vanishes as τ → i∞, so that if
j /∈ E then g j vanishes as τ → i∞. Consider now T = (

1 1
0 1

)
the usual translation

by 1. As usual γ j T = δ j (T )γT ( j) for some bijection j �→ T ( j) and δ j (T ) ∈ Γ0(N ).
Thus f j |k T = χ(δ j (T )) f |T ( j), and it follows that both E and its complement are
stable by the bijection induced by T .

For simplicity, we are going to choose H = Γ , and as fundamental domain the
usual fundamental domain of the modular group, which has the advantage of having
a single cusp on its boundary. Thus as above, setting as usual ρ = e2π i/3, we have
A1 = ρ + 1, A2 = i∞, A3 = ρ, and A4 = i , with α1 = T −1 and α2 = S = (

0 −1
1 0

)
.

We will choose Z j = i if j ∈ E and Z j = i∞ if j /∈ E . With the notation of
Corollary 3.6 we have

I j ( f, g) =
∫ i∞

ρ+1
f j (τ )Pj (T

−1; τ) dτ ,

with

Pj (T
−1; τ) =

∫ ZT ( j)+1

Z j

g j (τ2)(τ − τ2)
k−2 dτ2 .

Note that if j ∈ E there is no convergence problem since f j (τ ) tends to 0 exponen-
tially fast. On the other hand, if j /∈ E we have chosen Z j = i∞, and we also have
T ( j) /∈ E by what we said above, so Pj (T −1; τ) vanishes in that case. We thus have

∑

1≤ j≤r

I j ( f, g) =
∑

j∈E

G j (ρ + 1, i∞; i, i + 1) ,

and we can again expand this by the binomial theorem as a linear combination of
products of two simple integrals, since the integral of f j (τ ) converges at i∞.
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Similarly, we have

Jj ( f, g) =
∫ i

ρ

f j (τ )Pj (S; τ) dτ ,

with

Pj (S; τ) =
∫ −1/ZS( j)

Z j

g j (τ2)(τ − τ2)
k−2 dτ2 .

Here we must distinguish four cases.

1. If j ∈ E and j ∈ S(E) (or equivalently S( j) ∈ E) then Z j = i and ZS( j) = i so
−1/ZS( j) = i , hence Pj (S; τ) = 0.

2. If j ∈ E and j /∈ S(E), so that S( j) /∈ E we have Z j = i , ZS( j) = i∞, so Pj is an
integral from i to 0 hence Jj ( f, g) = G j (ρ, i; i, 0). Note that since S( j) /∈ E by
assumption gS( j) vanishes at i∞, or equivalently g j vanishes at 0 so the integral
makes sense.

3. If j /∈ E and j ∈ S(E), we have Z j = i∞, ZS( j) = i , so Jj ( f, g) = G j (ρ, i;
i∞, i) = −G j (ρ, i; i, i∞).

4. If j /∈ E and j /∈ S(E), we have Z j = i∞, ZS( j) = i∞, so Jj ( f, g) = G j (ρ, i;
i∞, 0).

The changes of variable τ �→ S(τ ) and τ2 �→ S(τ2) show that G j (ρ, i; i, 0) =
GS( j)(ρ + 1, i; i, i∞). Thus

∑

j∈E, j /∈S(E)

Jj ( f, g) =
∑

j /∈E, j∈S(E)

G j (ρ + 1, i; i, i∞) .

Combining with (3), it follows by transitivity that

⎛

⎝
∑

j∈E, j /∈S(E)

+
∑

j /∈E, j∈S(E)

⎞

⎠ Jj ( f, g) =
∑

j /∈E, j∈S(E)

G j (ρ + 1, ρ; i, i∞) .

We have thus shown the following:

Theorem 3.8 We have

r(2i)k−1 < f, g >Γ0(N )= S1 + S2 + S3

with

S1 =
∑

j∈E

G j (ρ + 1, i∞; i, i + 1) ,

S2 =
∑

j /∈E, j∈S(E)

G j (ρ + 1, ρ; i, i∞) ,
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S3 =
∑

j /∈E, j /∈S(E)

G j (ρ, i; i∞, 0) ,

and each G j can be expressed as a linear combination of products of two convergent
single integrals by using the binomial theorem.

Note that if f is a cusp form we have E = [1, r ] and only S1 contributes, and if
both f and g are cusp forms, we can either use this theorem or the formula given in
Corollary 3.7.

3.4 Computation of Partial Periods

In all of the above formulas, using the notation of Corollary 3.7 we need to compute
integrals of the form In(a, b, f j ) and In(a, b, g j ) for specific values of (a, b) in the
completed upper half-plane. Putting them together for 0 ≤ n ≤ k − 2, this means
that we must compute the partial periods

P(a, b, F)(X) =
∫ b

a
(X − τ)k−2F(τ ) dτ

for F = f j and all j . For future reference, note the following important but trivial
identity:

Lemma 3.9 For any γ ∈ Γ we have

P(a, b, F |kγ )(X) = P(γ (a), γ (b), F)|2−kγ (X) .

We also have the following immediate lemma:

Lemma 3.10 Let Rk−2(X) = ∑
0≤n≤k−2 Xn/n! be the (k − 2)nd partial sum of the

exponential series. For all m > 0 we have

∫ i∞

a
(X − τ)k−2e2πmiτ dτ = −e2πmia (k − 2)!

(2πmi)k−1
Rk−2(2πmi(X − a)) .

We consider several cases. Keep in mind that in all the formulas that we use for
computing Petersson products the endpoints of integration are either cusps or points
in H with reasonably large imaginary part (at least

√
3/2).

1. If a ∈ H and b = i∞ (or the reverse), we write as usual f j (τ ) = ∑
n≥0 aγ

(n)qα(c)+n/w(c) (where c = γ j (i∞)), so that

∫ b

a
(X − τ)k−2 f j (τ ) dτ =

∑

n≥0

aγ (n)

∫ i∞

a
(X − τ)k−2e2π i(α(c)+n/w(c))τ dτ ,
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and the inner integral is given by the lemma. The dominant term in the resulting
series is e2π(α(c)+n/w(c))ia , so the convergence will be in e−2π�(a)n/w(c).

2. If a ∈ H and b is a cusp (or the reverse), we choose γ ∈ Γ such that b = γ (i∞),
make the change of variable τ = γ (τ ′), and we are reduced to (1) with fγ ( j)

instead of f j .

3. If a and b are in H we simply write
∫ b

a = ∫ i∞
a − ∫ i∞

b and use (1).

4. If a = 0 and b = i∞ (or the reverse), we write the integral as
∫ i t0
0 + ∫ i∞

i t0
. The

second integral is treated as in (1), so with convergence in e−2π t0n/w(c). In the
first integral we make the change of variable τ �→ S(τ ) = −1/τ , and we again
treat the resulting integral as in (1), with convergence in e−2π(1/t0)n/w(S(c)), where
w(S(c)) is the width of the cusp S(c) = γ j (S(i∞)). To optimize the speed, we
thus choose t0 = (w(c)/w(S(c)))1/2, so that the convergence of both integrals
will be in e−2πn/(w(c)w(S(c)))1/2 .

5. Finally, if a and b are both cusps, we use the well-known Manin decomposition
of a modular symbol as a sum of Manin symbols. More precisely, we proceed as
follows. Write a = A/C and b = B/D with gcd(A, C) = gcd(B, D) = 1. Then
if AD − BC = 1 we set γ = (

A B
C D

)
, and using Lemma 3.9 we transform our

integral into an integral from 0 to i∞, so we apply (4) (similarly if AD − BC =
−1). Otherwise, setting Δ = AD − BC and using u and v such that u A + vC =
1, we write

(
A B
C D

)
=

(
A −v
C u

) (
1 u B + vD
0 Δ

)
= γ

(
1 B ′
0 Δ

)

for B ′ = u B + vD, where γ ∈ Γ . Let (p j/q j )−1≤ j≤m be the convergents of the
regular continued fraction expansion of B ′/Δwith p−1/q−1 = 1/0 and pm/qm =
B ′/Δ, and let M j be the matrix

M j =
(

(−1) j−1 p j p j−1

(−1) j−1q j q j−1

)
∈ Γ .

It is then immediate to show that

P(A/C, B/D, F)(X) =
∑

0≤ j≤m

P(0, i∞, F |k(γ M j ))|2−k(γ M j )
−1(X) ,

so once again we can apply (4).

Note that in Theorem 3.8 we need to use (1), (3), and (4), while in Corollary
3.7 we need to use (4) and (5), and in (5) we have (a, b) = (−1, 1) so the Manin
decomposition consists here simply in writing

∫ 1
−1 = ∫ 0

−1 + ∫ 1
0 , both integrals being

then sent to integrals from 0 to i∞ by suitable γ ∈ Γ .
In practice, the computation of these integrals forms only a very small part of the

computation time.Almost all of the time is spent in computing the Fourier expansions
at infinity of f |kγ j , for instance using products of two Eisenstein series as we do in
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this package. Note that there is of course no need to rationalize the expansions, and
to compute all these expansions at once we use the specific choice of the γ j explained
in Sect. 2.7.

4 Petersson Products: The Method of Nelson and Collins

4.1 The Basic Formula

Recall that the completed zeta function Λ(s) defined by Λ(s) = π−s/2Γ (s/2)ζ(s)
satisfies Λ(1 − s) = Λ(s). Nelson’s method, completed by Collins [1, 2], is based
on the following proposition, essentially due to Rankin:

Proposition 4.1 Let F(τ ) be a bounded measurable function on H invariant by the
modular group Γ , and such that for some fixed α > 0 we have F(x + iy) = O(y−α)

for almost all τ = x + iy with y ≥ 1. Denote by a(0; F)(y) the constant term of
the Fourier expansion of F(τ ) and by M (a(0; F))(s) = ∫ ∞

0 ysa(0, F)(y)dy/y its
Mellin transform. For any δ > 0 we have

∫

Γ \H
F(τ ) dμ =

∫

�(s)=1+δ

(4s − 2)Λ(2s)M (a(0; F))(s − 1) ds ,

where dμ = dxdy/y2 is the usual invariant hyperbolic measure.

Proof Recall that the standard nonholomorphic Eisenstein series of weight 0 is
defined by E(s) = ∑

γ∈Γ∞\Γ �(γ τ)s , and its completed functionE (s) = Λ(2s)E(s)
satisfies E (1 − s) = E (s) and has only two poles, which are simple, at s = 0 and
s = 1 with residues −1/2 and 1/2 respectively. Standard unfolding shows that

∫

Γ \H
E(s)(τ )F(τ ) dμ =

∫ ∞

0
ys−2

∫ 1

0
F(x + iy) dx dy .

The inner integral is equal to a(0; F)(y) so that

∫

Γ \H
E(s)(τ )F(τ ) dμ = M (a(0; F))(s − 1) .

On the other hand, by the residue theorem if Cδ is the infinite vertical contour whose
vertical sides are�(s) = −δ and�(s) = 1 + δ, by the residue theorem we first have

1

2π i

∫

Cδ

sE (s) ds = Ress=0 sE (s) + Ress=1 sE (s) = 1/2 ,

and on the other hand, sinceE decreases exponentially when |�(s)| → ∞ andE (1 −
s) = E (s), this integral is equal to
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1

2π i

∫

�(s)=1+δ

(2s − 1)E (s) ds .

Multiplying the resulting identity by 2F(τ ) and integrating on Γ \H gives

1

2π i

∫

�(s)=1+δ

(4s − 2)Λ(2s)
∫

Γ \H
E(s)F(τ ) ds dμ =

∫

Γ \H
F(τ ) dμ ,

hence
∫

Γ \H
F(τ ) dμ = 1

2π i

∫

�(s)=1+δ

(4s − 2)Λ(2s)M (a(0; F))(s − 1) ds ,

proving the proposition. �
Corollary 4.2 Let G be a subgroup of finite index of Γ , let C(G) be a system
of representatives of the cusps of G, and for each c ∈ C(G) let γc ∈ Γ such that
γc(i∞) = c. If F(τ ) is a bounded measurable function invariant by G we have

∫

G\H
F(τ ) dμ = 1

2π i

∫

�(s)=1+δ

(4s − 2)Λ(2s)
∑

c∈C

w(c)M (a(0; F |γc))(s − 1)ds ,

where w(c) is the width of the cusp c.

Proof Immediate by applying the proposition to F1 = ∑
γ∈G\Γ F |γ , noting that∫

Γ \H F1(τ ) dμ = ∫
G\H F(τ ) dμ, and that a(0; F |γ ′

c) = a(0; F |γc) for any γ ′
c such

that γ ′
c(i∞) = γc(i∞) = c. �

4.2 Collins’s Formula

We are of course going to apply the above corollary to the function F(τ ) =
f (τ )g(τ )yk , with y = �(τ ). Recall from Sect. 2.6 that we have expansions

f |kγ (τ) = qα(c)
∑

n≥0

aγ (n)qn/w(c) and g|kγ (τ) = qα(c)
∑

n≥0

bγ (n)qn/w(c)

with the same α(c) and w(c). It follows that the constant term aγ (0; F) is given by

aγ (0, F) = yk
∑

n≥0

aγ (n)bγ (n)e−4πy(α(c)+n/w(c)) ,

so that

M (aγ (0; F))(s) = Γ (s + k)

(4π)s+k

∑

n≥0

aγ (n)bγ (n)

(α(c) + n/w(c))s+k
.
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We must now be careful about convergence of the Petersson product. When k ≥ 1,
the necessary and sufficient condition is that at every cusp either f or g vanishes,
or equivalently that for every γ at least one of the forms f |kγ and g|kγ vanishes
at infinity. In these cases, if α(c) = 0 we have necessarily aγ (0)bγ (0) = 0, which
means that we omit the term n = 0, while if α(c) �= 0 we must keep it.

However the Petersson product also converges without any condition on f and g if
k = 1/2. In that case, ifα(c) = n = 0 the contribution to aγ (0; F) is aγ (0)bγ (0)y1/2,
and although the Mellin transform is divergent, we will need to take a limit as we
will see below.

We deduce from the above corollary and the explicit expression of Λ(2s) the
following temporary result:

Proposition 4.3 Keep the above assumptions and notation. We have

< f, g >Γ0(N ) = 1

[Γ : Γ0(N )]
∑

c∈C(G)

w(c)
∑

n≥0

aγc(n)bγc(n)

(4π(α(c) + n/w(c)))k−1
·

· 1

2π i

∫

�(s)=1+δ

(4s − 2)
Γ (s)Γ (k + s − 1)ζ(2s)

(4π2(α(c) + n/w(c)))s
ds .

There are now two ways to continue, and we consider both.
First, we write ζ(2s) = ∑

m≥1 m−2s , so that the integral is equal to the sum from
m = 1 to ∞ of the inverse Mellin transform at x = 4π2m2(α(c) + n/w(c)) of the
function (4s − 2)Γ (s)Γ (k + s − 1). Since this inverse Mellin transform is equal to

4x (k−1)/2(2x1/2Kk−2(2x1/2) − Kk−1(2x1/2)) ,

we obtain our final theorem, due to D. Collins, although in a slightly different form:

Theorem 4.4 Let f and g be in Mk(Γ0(N ), χ) such that either f g vanishes at all
cusps or k = 1/2, and keep all the above notation. We have

< f, g >Γ0(N ) = 4(8π)−(k−1)

[Γ : Γ0(N )]
∑

c∈C(G)

w(c)·

·
∑

n≥0

aγc(n)bγc(n)

((α(c) + n/w(c)))k−1
Wk(4π(α(c) + n/w(c))1/2) ,

where Wk(x) = ∑
m≥1(mx)k−1(mx Kk−2(mx) − Kk−1(mx)). In the special case

k = 1/2, α(c) = 0, and n = 0, the term (n/w(c))1/2W1/2(4π(n/w(c))1/2 is to be
interpreted as its limit as n → 0, in other words as 1/(4(2π)1/2).

We will study the function Wk(x) and its implementation below.
But there is another way to continue. Assume for simplicity that α(c) = 0 (so that

the sum starts at n = 1). We can write
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ζ(2s)
∑

n≥1

aγc(n)bγc(n)

ns+k−1
=

∑

N≥1

Aγc(N )

N s+k−1
,

with
Aγc(N ) =

∑

m2|N
m2(k−1)aγc(N/m2)bγc(N/m2) .

Once aγc(n) and bγc(n) computed, the computation of Aγc(N ) takes negligible
time. The advantage is that ζ(2s) has disappeared, and we now obtain a for-
mula involving only the term m = 1 in the definition of Wk , i.e., the function
Vk(x) = xk−1(x Kk−2(x) − Kk−1(x)).

When α(c) �= 0 a similar but more complicated formula can easily be written.
Since anyway as we will see the function Wk(x) can be computed essentially as fast
as the function Vk(x), we have not used this other method.

4.3 Computation of the Function Wk(x)

First note that Wk(x) is exponentially decreasing at infinity, more precisely thanks
to the corresponding result for the K -Bessel function it is immediate to show that as
x → ∞ we have

Wk(x) ∼ √
π/2xk−1/2e−x .

To compute Wk(x) we introduce the simpler function Uk(x) = ∑
m≥1(mx)k

Kk(mx), and thanks to the recursions for the K -Bessel functions we have Wk(x) =
Uk(x) − (2k − 1)Uk−1(x), so we must compute Uk(x). We distinguish between k
half-integral and k integral. For k half-integralwe have the following easy proposition
which comes from the fact that Kk is an elementary function:

Proposition 4.5 Define polynomials Pk(x) by P0(x) = 1 and the recursion
Pk+1(x) = x((k + 1)Pk(x) − (x − 1)P ′

k(x)) for x ≥ 0, and set Sk(x) = Pk(x)/(x −
1)k+1. For all k ≥ 0 integral we have

Uk+1/2(x) =
√

π

2

∑

0≤ j≤k

xk− j (k + j)!
j !(k − j)!2 j

Sk− j (e
x ) .

This makes the computation of Uk+1/2(x) essentially trivial.

We now consider the slightly more difficult problem of computing Uk(x) when
k is integral. Since Kk(mx) tends exponentially fast to 0 we could of course simply
sum (mx)k Kk(mx) until the terms become negligible with respect to the desired
accuracy, using the Pari/GP built-in function besselk for computing K -Bessel
functions. But there is a way which is at least an order of magnitude faster. First note
the following lemma, which comes directly from the integral representation of the
K -Bessel function:



180 H. Cohen

Lemma 4.6 We have

Uk(x) = xk

2

∫ ∞

−∞
Sk(e

x cosh(t)) cosh(kt) dt ,

where the functions Sk are as above.

Note that as t → ±∞ the function ex cosh(t) tends to infinity doubly exponen-
tially, and since Sk(X) = Pk(X)/(X − 1)k+1, the integrand tends to 0 doubly-
exponentially. This is exactly the context of doubly exponential integration, except
that here there is no change of variable to be done. The basic theorem, due to Taka-
hashi and Mori, states that the fastest way to compute this integral is as a Riemann
sum h

∑
−N≤ j≤N Rk( jh), where Rk is the integrand and h and N are chosen appro-

priately (we do not need the theorem since we compute the errors explicitly, but it
is reassuring that we do not have a better way). An easy study both of the speed of
doubly-exponential decrease and of the Euler–MacLaurin error made in approximat-
ing the integral by Riemann sums gives the following:

Proposition 4.7 Set Rk(x) = Sk(ex cosh(t)) cosh(kt), where Sk is given by Propo-
sition 4.5. Let B > 0 and set C = B + k log(x)/ log(2) + 1, D = C log(2) + 2.06,
E = 2((C − 1) log(2) + log(k!))/x, T = log(E)(1 + (2k/x)/E), N = �(T/π2)

(D + log(D/π2))�, and h = T/N. There exists a small (explicit) constant ck such that

|Uk(x) − xkh(Rk(0)/2 +
∑

1≤ j≤N

Rk(hj))| < ck2
−B .

Note that in practice, sincewe need both, it is faster to computeUk(x) andUk−1(x)

simultaneously.

4.4 Conclusion: Comparison of the Methods

After explaining how to expand f |kγ using products of two Eisenstein series, we
have given twomethods to compute Petersson products. The first is limited to integral
weight k ≥ 2, while the second is applicable to any k integral or half-integral. In
fact, the second method is applicable to more general modular forms, for instance to
modular formswithmultiplier system ofmodulus 1 (such as η(τ) andmore generally
eta quotients), since the only thing that we need is that f (τ )g(τ )yk be invariant by
some subgroup of Γ . For instance, this implies formulas such as

∑

m≥1, m≡±1 (mod 6)

m

e2πm/
√
6 − 1

= 1

12
,

which can easily be proved directly.
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In both methods we need to compute the Fourier expansions of ( f |kγc)c∈C for a
system of representatives c of cusps, the Fourier expansions of f |kγ j for a complete
system of coset representatives, necessary in the Haberland case, being trivially
obtained from those. Thiswill be by far themost time-consuming part of themethods.
The computation of the integrals in the Haberland case, or of the infinite series
involving the transcendental function Wk(x) in the Nelson–Collins case will in fact
require little time in comparison.

The main difference between the methods comes from the speed of convergence.
In the Haberland case, we have seen that the convergence is at worse in e−2πn/N

(when the width of the cusp is equal to N , for instance for the cusp 0), and for this to
be less than e−E , say, we need n > (E/(2π))N , proportional to E . On the other hand,
in the Nelson–Collins case the convergence is at worse in e−4π(n/N )1/2 , so here we
need n > (E/(4π))2N , proportional to E2. Thus this latter method is considerably
slower than the former, especially in high accuracy, hence must be used only when
Haberland-type methods are not applicable, in other words in weight 1 and half-
integral weight.

As a typical timing example, in level 96, weight 4, computing a Petersson product
at 19 decimal digits (using Haberland) requires 1.29s and at 38 decimal digits 2.27s.
On the other hand, in level 96 weight 5/2, computing a Petersson product at 19
decimal digits (using Nelson–Collins) requires 3.56s, but at 38 decimal digits 16.2 s.
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CM Evaluations of the Goswami-Sun
Series

Madeline Locus Dawsey and Ken Ono

Abstract In recent work, Sun constructed two q-series, and he showed that their
limits as q → 1 give new derivations of the Riemann-zeta values ζ(2) = π2/6 and
ζ(4) = π4/90. Goswami extended these series to an infinite family of q-series, which
he analogously used to obtain new derivations of the evaluations of ζ(2k) ∈ Q · π2k

for every positive integer k. Since it is well known that Γ
(
1
2

) = √
π, it is natural

to seek further specializations of these series which involve special values of the
Γ -function. Thanks to the theory of complex multiplication, we show that the values
of these series at all CM points τ , where q := e2πiτ , are algebraic multiples of spe-
cific ratios of Γ -values. In particular, classical formulas of Ramanujan allow us to
explicitly evaluate these series as algebraic multiples of powers of Γ

(
1
4

)4
/π3 when

q = e−π , e−2π .

1 Introduction and Statement of Results

Recently, Sun [10] obtained two q-series identities which allowed him to prove that

lim
q→1
|q|<1

(1 − q)2
∞∑

n=0

qn(1 + q2n+1)

(1 − q2n+1)2
= 3

2
ζ(2) = π2

4
(1)

and

lim
q→1
|q|<1

(1 − q)4
∞∑

n=0

q2n(1 + 4q2n+1 + q4n+2)

(1 − q2n+1)4
= 45

8
ζ(4) = π4

16
. (2)
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Sun’s formulas lead to the natural question: Are these q-series a glimpse of an infinite
family that offers new derivations for the evaluations of ζ(2k) for all positive integers
k? Goswami elegantly answered this problem in [5]; he defined a natural family of
identities whose limits as q → 1 with |q| < 1 give Euler’s formula for the Riemann-
zeta values at all even integers.

These results have been described as q-analogues of Euler’s identities for ζ(2k).
Here we offer further support of this view. Namely, to be a strong q-analogue, one
hopes for further specializations of q which are expressions in related special func-
tions. We address this question by observing that ζ(2k) ∈ Q · π2k = Q · Γ

(
1
2

)4k
,

and we ask if Goswami’s series have evaluations involving algebraic multiples of
naturally corresponding Γ -values. We show that this is indeed the case, thanks to
the theory of complex multiplication and modular forms.

In order to state our results, we first recall the q-series that Goswami assembled
which extended Sun’s original identities into an infinite family. Throughout, k is a
positive integer. If we denote the Stirling numbers of the second kind by

{
n
k

}
, then

we define ak(m) and bk(�) by

ak(m) :=
2k−1∑

j=0

j !(−1) j
{ 2k−1

j

} (
j
m

)
,

bk(�) :=
2k−1∑

m=0

(−1)mak(m)
(
2k−m−1

�

) ∈ Z.

Using these quantities, we define the degree 2k − 2 polynomial

Pe
2k−2(z) :=

2k−1∑

�=1

(−1)�bk(�)z
�−1,

and the degree 4k − 2 polynomial

Po
4k−2(z) := (1 + z)2k Pe

2k−2(z) − 22k−1zPe
2k−2

(
z2

)
.

For notational convenience, we define Goswami’s q-series as follows.

G2k(q) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

n=0

q2n+1Po
4k−2

(
q2n+1

)

(
1 − q4n+2

)2k , if k is odd.

22k−1
∞∑

n=0

q4n+2Pe
2k−2

(
q4n+2

)

(
1 − q4n+2

)2k , if k is even,

(3)

Remark. When k = 1 and k = 2, these are essentially Sun’s q-series. A critical
feature of the results obtained here is that the G2k(q) are holomorphic modular forms
on Γ0(4) of integer weight 2k.
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As usual, we let Q denote the algebraic closure of the field of rational numbers.
Suppose that D < 0 is the fundamental discriminant of the imaginary quadratic field
Q(

√
D). Let h(D) denote the class number of Q(

√
D), and define h′(D) := 1/3

(resp. 1/2) when D = −3 (resp. −4), and h′(D) := h(D) when D < −4. We then
let

ωD := 1√
π

⎛

⎝
|D|−1∏

j=1

Γ

(
j

|D|
)χD( j)

⎞

⎠

1
2h′(D)

, (4)

where χD(•) := (
D
•
)
. In terms of this notation, we obtain the following theorem.

Theorem 1.1 If D < 0 is a fundamental discriminant and τ ∈ H ∩ Q(
√
D), then

G2k
(
e2πiτ

) ∈ Q · ω2k
D .

Thanks to classical formulas of Ramanujan [1], it is simple to explicitly evaluate
G2k

(
e−π

)
and G2k

(
e−2π

)
. To make this precise, we define the rational number1

Z(2k) := − (−16)k B2k
(
4k − 1

)

8k
= 4k−1

(
4k − 1

)
(2k)! · ζ(2k)

π2k
, (5)

where B2k is the index 2k Bernoulli number. Furthermore, we let (a; q)∞ :=∏
n≥0 (1 − aqn) denote the usual infinite q-Pochhammer symbol. If k ≥ 2, then

define α2k(1), . . . ,α2k(k − 1) to be the unique rational numbers satisfying

k−1∑

j=1

α2k( j) · q
j
(
q4; q4

)16 j
∞ (q; q)

8 j
∞

(
q2; q2

)24 j
∞

=
(

G2k(q) − Z(2k) · q
k
(
q4; q4

)8k
∞(

q2; q2
)4k
∞

)

· (q; q)8k∞
(
q4; q4

)8k
∞(

q2; q2
)20k
∞

.

Since the j th summand on the left is of the form α2k( j)q j + O
(
q j+1

)
, the α2k( j)

are easily computed by diagonalization. In the case where k = 1, there simply are
no α2k( j) numbers. In terms of this notation, we obtain the following corollary.

Corollary 1.2 If k is a positive integer and a := √
2 − 1, then

G2k
(
e−π

) =
⎛

⎝Z(2k)

27k
+ 1

22k

k−1∑

j=1

α2k( j)

25 j

⎞

⎠ ·
(

Γ
(
1
4

)4

π3

)k

,

1In [5], Goswami refers to Z(2k) as dk . We use Z(2k) to emphasize that these numbers are simple
rational multiples of ζ(2k)/π2k .



186 M. L. Dawsey and K. Ono

G2k
(
e−2π

) =
⎛

⎝Z(2k)a2k

29k
+ 1

25ka2k

k−1∑

j=1

α2k( j)a4 j

24 j

⎞

⎠ ·
(

Γ
(
1
4

)4

π3

)k

.

Examples. Here we illustrate Corollary1.2 for k = 3 and 4. If k = 3, then we have
that

G6
(
e−π

) =
(Z(6)

221
+ 1

212

)
·
(

Γ
(
1
4

)4

π3

)3

,

G6
(
e−2π

) =
⎛

⎜
⎝
Z(6)

(√
2 − 1

)6

227
+

1 −
(√

2 − 1
)4

219
(√

2 − 1
)2

⎞

⎟
⎠ ·

(
Γ

(
1
4

)4

π3

)3

.

If k = 4, then we have that

G8
(
e−π

) =
(Z(8)

228
+ 1

212

)
·
(

Γ
(
1
4

)4

π3

)4

,

G8
(
e−2π

) =
⎛

⎜
⎝
Z(8)

(√
2 − 1

)8

236
+

1 −
(√

2 − 1
)4

221

⎞

⎟
⎠ ·

(
Γ

(
1
4

)4

π3

)4

.

These examples will be explained further in Sect. 5.

This paper is organized as follows. In Sect. 2,we recall theGoswami-Sun identities
and the relation between G2k(q) and modular forms. In Sect. 3, we recall essential
facts about modular forms, and in Sect. 4, we use these results to prove Theorem1.1
and Corollary1.2. In Sect. 5, we conclude with a discussion of the examples given
above.

2 The Goswami-Sun Identities

We now recall Goswami’s work. Let Tn = n(n + 1)/2 denote the nth triangular
number, and define the generating function of Tn to be

ψ(q) :=
∑

n≥0

qTn .

Then Goswami [5, Theorems 3.1 and 3.2] proves the following theorem.

Theorem 2.1 For any positive integer k, we have that

T2k(τ ) := G2k(q) − Z(2k) · qkψ
(
q2

)4k



CM Evaluations of the Goswami-Sun Series 187

is the Fourier expansion of a weight 2k cusp form on Γ0(4), where q := e2πiτ and
τ ∈ H.

In Sect. 3, we apply the theory of modular forms and complex multiplication to
study T2k(τ ) and qkψ

(
q2

)4k
at all CM points.

3 Some Facts About Modular Forms

Here we recall some basic facts about modular forms.

3.1 CM Values of Modular Forms

In Goswami’s work [5], the limit of the q-series identity in Theorem2.1 as q → 1
gives the constant term of a weight 2k Eisenstein series, which is described in terms
of ζ-values. Our work depends on the values of modular forms at CM points.

Classically, the Chowla-Selberg formula [3] was developed in order to evaluate
the Dedekind eta-function

η(τ ) := q1/24
∞∏

n=1

(
1 − qn

)

at CM points whose discriminants are fundamental discriminants. This was refined
by van der Poorten and Williams [9, Theorem 9.3], who gave a closed formula for
values of η(τ ) in which τ is still required to be a CM point whose discriminant
is fundamental. More generally, we have the following theorem (for example, see
p. 84 of [2]) regarding evaluations of all modular forms at all CM points.

Theorem 3.1 Suppose that D < 0 is the fundamental discriminant of the imaginary
quadratic field Q(

√
D). Then the number ΩD ∈ C∗ defined by

ΩD := 1√
2π|D|

⎛

⎝
|D|−1∏

j=1

Γ

(
j

|D|
)χD( j)

⎞

⎠

1
2h′(D)

has the property that f (τ ) ∈ Q · Ωk
D for all τ ∈ H ∩ Q(

√
D), all k ∈ Z, and all

modular forms f of weight k with algebraic Fourier coefficients.

In the special cases of the CMpoints τ ∈ {i/2, i, 2i, 4i}, Theorem3.1 can bemade
explicit using the following formulas of Ramanujan (see p. 326 of [1]),

f
(−e−π

) = π
1
4 e

π
24

2
3
8 Γ

(
3
4

) ,
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f
(−e−2π

) = π
1
4 e

π
12

2
1
2 Γ

(
3
4

) ,

f
(−e−4π

) = π
1
4 e

π
6

2
7
8 Γ

(
3
4

) ,

f
(−e−8π

) =
π

1
4

(√
2 − 1

) 1
4
e

π
3

2
21
16 Γ

(
3
4

) ,

where f (−q) := ∏
n≥1 (1 − qn). The above formulas can be rewritten in terms of

the Dedekind eta-function by noticing that η(τ ) = q1/24 f (−q). By applying the
functional equation of the Γ -function, namely Γ (1 − z)Γ (z) = π/ sin(πz) for z /∈
Z, in terms of

Ω−4 = 1

2
√
2π

· Γ
(
1
4

)

Γ
(
3
4

) ,

we obtain

η(i/2) = 2
1
8 · Ω

1
2−4, η(i) = Ω

1
2−4, η(2i) = 1

2
3
8

· Ω
1
2−4,

η(4i) =
(√

2 − 1
) 1

4

2
13
16

· Ω
1
2−4. (6)

We shall make use of these formulas to prove Corollary1.2.

3.2 Modular Forms on Γ0(4)

Here we recall standard facts about modular forms on Γ0(4). Recall that the theta
function given by

θ(τ ) :=
∞∑

n=−∞
qn2

is a weight 1
2 modular form on Γ0(4), and that the weight 2 Eisenstein series

F(τ ) :=
∞∑

n=0

σ1(2n + 1)q2n+1

is a modular form on Γ0(4) as well, where σ1(n) denotes the sum of the positive
divisors of n. It is known that every modular form on SL2(Z) and Γ0(4) can be
expressed as a rational function in η(τ ), η(2τ ), and η(4τ ) (see [8, Theorem 1.67] for
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SL2(Z) and [7] for Γ0(4)). In the case of Γ0(4), this fact relies on the observation that
F(τ ) and θ(τ ) are given in terms of Dedekind eta-quotients in the following way:

θ(τ ) = η(2τ )5

η(τ )2η(4τ )2
, F(τ ) = η(4τ )8

η(2τ )4
. (7)

It is also very well known that the two Eisenstein series E4(τ ) and E6(τ ) generate
the algebra of all modular forms on SL2(Z) (for example, see [8, Theorem 1.23]).
The analogous statement for modular forms on Γ0(4) involves the forms F(τ ) and
θ(τ ). Namely, the following complete description of the spaces Mk (Γ0(4),ψk) for
k ∈ 1

2N and

ψk :=
{

χ0, if k ∈ 2Z or k ∈ 1
2 + Z,

(−4
•

)
, if k ∈ 1 + 2Z,

where χ0 is the trivial character, is proved in [4, 6]. As a graded algebra, we have
that ⊕

k∈ 1
2Z

Mk (Γ0(4),ψk) ∼= C[F, θ].

Moreover, we have the following proposition (see [7, Corollary3.3]) describing
canonical representations of modular forms on Γ0(4) in terms of F(τ ) and θ(τ ).

Proposition 3.2 If k ∈ 1
2N, then each f (τ ) ∈ Mk (Γ0(4),ψk) has a unique expan-

sion in terms of F(τ ) and θ(τ ) of the form

f (τ ) =
[k/2]∑

j=0

αk( j)F(τ ) jθ(τ )2k−4 j . (8)

Moreover, f (τ ) is a cusp form if and only if the coefficients αk( j) satisfy:

(i) αk(0) = 0,

(ii) αk(k/2) = 0 when k ∈ 2Z, and

(iii)
[k/2]∑

j=0
αk( j)

(
1
16

) j = 0.

Combining the above decomposition in terms of F(τ ) and θ(τ ) for the cusp form
T2k(τ ) with the eta-quotients in (7), we obtain new expressions for the series G2k(q)

in Sect. 4.
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4 Proof of Theorem1.1 and Corollary1.2

We may write the product on the right hand side of Theorem2.1 in terms of eta-
quotients as follows:

Z(2k) · qkψ
(
q2

)4k = Z(2k) · qk
∞∏

n=1

(
1 − q4n

)4k
(
1 − q4n−2

)4k = Z(2k) · η(4τ )8k

η(2τ )4k
. (9)

Now, by (8)2 we can express the cusp form T2k(τ ) as

T2k(τ ) =
k∑

j=0

α2k( j)F(τ ) jθ(τ )4k−4 j , (10)

and by (7) we can write (10) in terms of eta-quotients in the following way:

T2k(τ ) = η(2τ )20k

η(τ )8kη(4τ )8k

k∑

j=0

α2k( j) · η(4τ )16 jη(τ )8 j

η(2τ )24 j
.

By Proposition3.2(i) and (ii), we may simplify this expression to

T2k(τ ) = η(2τ )20k

η(τ )8kη(4τ )8k

k−1∑

j=1

α2k( j) · η(4τ )16 jη(τ )8 j

η(2τ )24 j
. (11)

Now, combining (9) with (11), we see that the series G2k(q) can be expressed as

G2k(q) = Z(2k) · η(4τ )8k

η(2τ )4k
+ η(2τ )20k

η(τ )8kη(4τ )8k

k−1∑

j=1

α2k( j) · η(4τ )16 jη(τ )8 j

η(2τ )24 j
. (12)

From the above expression for G2k(q), it is clear that if k ≥ 1, then the α2k( j) are
the unique rational numbers such that

k−1∑

j=1

α2k( j) · η(4τ )16 jη(τ )8 j

η(2τ )24 j
=

(
G2k(q) − Z(2k) · η(4τ )8k

η(2τ )4k

)
· η(τ )8kη(4τ )8k

η(2τ )20k
.

This implies the definition for the α2k( j) in (6).
Theorem3.1 along with (12) immediately imply that evaluations of the Goswami-

Sun series at CM points τ ∈ H ∩ Q(
√
D) give values in Q · Ω2k

D , which proves
Theorem1.1 because

ω2k
D = 2k |D|k · Ω2k

D .

�

2The weights in Theorem 1.1 are 2k as opposed to k in the section above.
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Proof (of Corollary1.2) If D = −4, then Q(
√
D) = Q(i) and by (4) we have

ω−4 = 1√
π

· Γ
(
1
4

)

Γ
(
3
4

) .

We apply the functional equation of the Γ -function to rewrite ω−4 as

ω−4 = Γ
(
1
4

)2
√
2π3/2

.

In particular, applying the values of η(τ ) in (6) to all of the eta-functions in (12), we
evaluate G2k

(
e2πiτ

)
at τ = i

2 and τ = i to obtain the values in Corollary1.2. �

5 Examples

Example 5.1 If k = 3, then Theorem1.1 becomes

G6(q) = Z(6) · η(4τ )24

η(2τ )12
+ η(2τ )60

η(τ )24η(4τ )24

(
α6(1) · η(4τ )16η(τ )8

η(2τ )24

+α6(2) · η(4τ )32η(τ )16

η(2τ )48

)
,

and we calculate that α6(1) = 1 and α6(2) = −16. Then we have that

G6(q) = Z(6) · η(4τ )24

η(2τ )12
+ η(2τ )60

η(τ )24η(4τ )24

(
η(4τ )16η(τ )8

η(2τ )24
− 16 · η(4τ )32η(τ )16

η(2τ )48

)
.

Corollary1.2 in this case gives

G6
(
e−π

) =
(Z(6)

221
+ 1

212

)
·
(

Γ
(
1
4

)4

π3

)3

= 0.0633804556 . . .

and

G6
(
e−2π

) =
⎛

⎜
⎝
Z(6)

(√
2 − 1

)6

227
+

1 −
(√

2 − 1
)4

219
(√

2 − 1
)2

⎞

⎟
⎠ ·

(
Γ

(
1
4

)4

π3

)3

= 0.0018690318 . . . .
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Example 5.2 If k = 4, then Theorem1.1 becomes

G8(q) = Z(8) · η(4τ )32

η(2τ )16
+ η(2τ )80

η(τ )32η(4τ )32

(
α8(1) · η(4τ )16η(τ )8

η(2τ )24

+α8(2) · η(4τ )32η(τ )16

η(2τ )48
+ α8(3) · η(4τ )48η(τ )24

η(2τ )72

)
,

and we calculate that α8(1) = 0, α8(2) = 128, and α8(3) = −2048. Then we have
that

G8(q) = Z(8) · η(4τ )32

η(2τ )16
+ η(2τ )80

η(τ )32η(4τ )32

(
128 · η(4τ )32η(τ )16

η(2τ )48

−2048 · η(4τ )48η(τ )24

η(2τ )72

)
.

Corollary1.2 in this case gives

G8
(
e−π

) =
(Z(8)

228
+ 1

212

)
·
(

Γ
(
1
4

)4

π3

)4

= 0.2980189122 . . .

and

G8
(
e−2π) =

⎛

⎜
⎝
Z(8)

(√
2 − 1

)8

236
+

1 −
(√

2 − 1
)4

221

⎞

⎟
⎠ ·

(
Γ

(
1
4

)4

π3

)4

= 0.0004465790 . . . .
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Automatic Proof of Theta-Function
Identities

Jie Frye and Frank Garvan

Abstract This is a tutorial for using two new MAPLE packages, thetaids and
ramarobinsids. The thetaids package is designed for proving generalized
eta-product identities using the valence formula for modular functions. We show
how this package can be used to find theta-function identities as well as prove them.
As an application, we show how to find and prove Ramanujan’s 40 identities for his
so called Rogers–Ramanujan functions G(q) and H(q). In his thesis Robins found
similar identities for higher level generalized eta-products. Our ramarobinsids
package is for finding and proving identities for generalizations ofRamanujan’sG(q)

and H(q) and Robin’s extensions. These generalizations are associated with certain
real Dirichlet characters. We find a total of over 150 identities.

1 Introduction

The Rogers–Ramanujan functions are

G(q) =
∞∑

n=0

qn2

(q; q)n
=

∞∏

n=0

1

(1 − q5n+1)(1 − q5n+4)
, (1.1)

H(q) =
∞∑

n=0

qn(n+1)

(q; q)n
=

∞∏

n=0

1

(1 − q5n+2)(1 − q5n+3)
.
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The ratio of these two functions is the famous Rogers–Ramanujan continued fraction
[1]

G(q)

H(q)
=

∞∏

n=0

(1 − q5n+2)(1 − q5n+3)

(1 − q5n+1)(1 − q5n+4)

= 1 + q

1 + q2

1 + q3

1 + q4

1 + . . .

Ramanujan also found

H(q)G(q)11 − q2G(q)H(q)11 = 1 + 11G(q)6H(q)6 (1.2)

and
H(q)G(q11) − q2G(q)H(q11) = 1, (1.3)

and remarked that “each of these formulae is the simplest of a large class”. Here we
have used the standard q-notation

(a; q)n :=
n−1∏

j=0

(1 − aq j ) (a; q)∞ :=
∞∏

j=0

(1 − aq j ).

In 1974 Birch [7] published a description of somemanuscripts of Ramanujan includ-
ing a list of forty identities for the Rogers–Ramanujan functions. Biagioli [6] showed
how the theory of modular forms could be used to prove identities of this type effi-
ciently. See [2, 5] for recent work. It is instructive to write the Rogers–Ramanujan
functions in terms of generalized eta-products.

The Dedekind eta-function is defined by

η(τ) = q
1
24

∞∏

n=1

(1 − qn),

where τ ∈ H := {τ ∈ C : Im τ > 0} and q := e2π iτ , and the generalized Dedekind
eta function is defined to be

ηδ;g(τ ) = q
δ
2 P2(g/δ)

∏

m≡±g (mod δ)

(1 − qm), (1.4)

where P2(t) = {t}2 − {t} + 1
6 is the second periodic Bernoulli polynomial, {t} =

t − [t] is the fractional part of t , g, δ,m ∈ Z
+ and 0 < g < δ. The function ηδ;g(τ )

is amodular function (modular form ofweight 0) on SL2(Z)with amultiplier system.
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Ramanujan’s identities (1.2) and (1.3) can be rewritten as

1

η5;2(τ )η5;1(τ )11
− 1

η5;1(τ )η5;2(τ )11
= 1 + 11

η(5τ)6

η(τ)6
(1.5)

and
1

η5;2(τ )η5;1(11τ)
− 1

η5;1(τ )η5;2(11τ)
= 1. (1.6)

It is natural to consider higher level analogues of Ramanujan’s identities (1.2) and
(1.3). The following are nice level 13 analogues:

1

η13;2,5,6(τ )η13;1,3,4(τ )3
− 1

η13;1,3,4(τ )η13;2,5,6(τ )3
= 1 + 3

η(13τ)2

η(τ)2
(1.7)

and
1

η13;2,5,6(τ )η13;1,3,4(3τ)
− 1

η13;1,3,4(τ )η13;2,5,6(3τ)
= 1. (1.8)

Here we have used the notation

ηδ;g1,g2,...,gk (τ ) = ηδ;g1(τ ) ηδ;g1(τ ) · · · ηδ;gk (τ ).

Equation (1.7) was found by Ramanujan [3, Eq. (8.4), p. 373], and Eq. (1.8) is due
to Robins [20], who considered more general identities. The following is a level 17
analogue of (1.8) and appears to be new.

1

η17;3,5,6,7(τ )η17;1,2,4,8(2τ)
− 1

η17;1,2,4,8(τ )η17;3,5,6,7(2τ)
= 1. (1.9)

Motivated by these examples and other work of Robins [20] one is led naturally to
consider

G(n, N , χ) = G(n) :=
∏

χ(g)=1
0<g< N

2

1

ηN ;g(nτ)
, H(n, N , χ) = H(n) :=

∏

χ(g)=−1
0<g< N

2

1

ηN ;g(nτ)
,

(1.10)
where χ is a non-principal real Dirichlet character mod N satisfying χ(−1) = 1.
Ratios of functions of this type were studied by Huber and Schultz [13]. They found
the following level 17 identity:

(r2 + 8 r − 1)2 s2 − 2 r (r2 + 1) s + r2 = 0, (1.11)
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where

r = H
(
1, 17,

( ·
17

))

G
(
1, 17,

( ·
17

)) , s = η(17τ)3

η(τ)3
.

Themain goal of the thetaidsmaplepackage is to automatically prove identi-
ties for generalized eta-products using the theory ofmodular functions. In Sects. 3 and
4 we describe the ramarobinsids package, which uses the thetaids package
to search for and prove identities for general functions G(n, N , χ) and H(n, N , χ)

that are like the theta-function identities considered by Ramanujan [5] and Robins
[20].

Wenote that Liangjie [22] gave an algorithm for proving relations for certain theta-
functions and their derivatives using a different method. We also note that Lovejoy
and Osburn [15–18], have used an earlier version of the thetaids package to
prove theta-functions identities that were needed to establish an number of results
for mock-theta functions.

1.1 Installation Instructions

First install the qseries package from

http://qseries.org/fgarvan/qmaple/qseries

and follow the directions on that page. Before proceeding it is advisable to become
familiar with the functions in the qseries package. See [9] for a tutorial. Then go
to

http://qseries.org/fgarvan/qmaple/thetaids

to install the thetaids package. In Sect. 3 you will need to install the
ramarobinsids package from

http://qseries.org/fgarvan/qmaple/ramarobinsids

2 Proving Theta-Function Identities

To prove a given theta-function identity one needs to basically do the following.

(i) Rewrite the identity in terms of generalized eta-functions.
(ii) Check that each term in the identity is amodular function on some groupΓ1(N ).
(iii) Determine the order at each cusp of Γ1(N ) of each term in the identity.
(iv) Use the valence formula to determine up to which power of q is needed to verify

the identity.
(v) Finally prove the identity by carrying out the verification.

http://qseries.org/fgarvan/qmaple/qseries
http://qseries.org/fgarvan/qmaple/thetaids
http://qseries.org/fgarvan/qmaple/ramarobinsids
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In this section we explain how to carry out each of these steps in maple. Then we
show how the whole process of proof can be automated.

2.1 Encoding Theta-Functions, Eta-Functions
and Generalized Eta-Functions

We recall Jacobi’s triple product for theta-functions:

∞∏

n=1

(1 − zqn−1)(1 − z−1qn)(1 − qn) =
∞∑

n=−∞
(−1)nznqn(n−1)/2, (2.1)

so that

∞∏

n=1

(1 − qδn−g)(1 − qδn+g−δ)(1 − qδn) =
∞∑

n=−∞
(−1)nq

1
2 n(δn−δ+2g)

. (2.2)

In the qseries maplepackage the function on the left side of (2.2) is encoded
symbolically as JAC(g, δ,infinity). This is the building block of the functions
in our package. In the qseries package JAC(0,δ,infinity) corresponds
symbolically to

∞∏

n=1

(1 − qδn) =
∞∑

n=−∞
(−1)nq

δ
2 n(3n+1)

, (2.3)

which is Euler’s Pentagonal Number Theorem.

Function Symbolic maple form
∞∏

n=1

(1 − qδn−g)(1 − qδn+g−δ)(1 − qδn) JAC(g, δ, infinity)

∞∏

n=1

(1 − qδn) JAC(0, δ, infinity)

ηδ;g(τ ) GETA(δ,g)
η(δτ) EETA(δ)

We will also consider generalized eta-products. Let N be a fixed positive integer.
A generalized Dedekind eta-product of level N has the form

f (τ ) =
∏

δ|N
0<g<δ

η
rδ,g
δ;g (τ ), (2.4)
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where

rδ,g ∈
{

1
2Z if g = δ/2,

Z otherwise.
(2.5)

In maplewe represent the generalized eta-product

ηN ;g1(τ )r1 ηN ;g2(τ )r2 · · · ηN ;gm (τ )rm

symbolically by the list

[[N , g1, r1], [N , g2, r2] . . . , [N , gm, rm]].

We call such a list a geta-list.

2.2 Symbolic Product Conversion

jac2eprod—Converts a quotient of theta-functions in JAC notation to a product
of generalized eta-functions in EETA and GETA notation. We illustrate the use of
this function using the Rogers–Ramanujan functions G(q), H(q) defined in (1.1).
Before applying the jac2eprod function we first use the jacprodmake function
from the qseries package to convert G(q), H(q) to JAC notation.

EXAMPLE:
> with(qseries):
> with(thetaids):
> G:=q->add(q∧(n∧2)/aqprod(q,q,n),n=0..10):
> H:=q->add(q∧(n∧2+n)/aqprod(q,q,n),n=0..10):
> JG:=jacprodmake(G(q),q,50);

J AC(0, 5,∞)

J AC(1, 5,∞)

> JH:=jacprodmake(H(q),q,50);

J AC(0, 5,∞)

J AC(2, 5,∞)

> JP:=jacprodmake(H(q)*G(q)∧(11),q,80);

(JAC (0, 5,∞))12

(JAC (1, 5,∞))11 JAC (2, 5,∞)
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> GP:=jac2eprod(JP);

1

(GETA (5, 1))11 GETA (5, 2)

In the example above we found that

JG = J AC(0, 5, ∞)

J AC(1, 5, ∞)
, JH = J AC(0, 5,∞)

J AC(2, 5, ∞)
, JP = (JAC (0, 5,∞))12

(JAC (1, 5, ∞))11 JAC (2, 5, ∞)
.

This means that it appears that

G(q) =
∞∏

n=0

(1 − q5n)

(1 − q5n+1)(1 − q5n+4)(1 − q5n)
=

∞∏

n=0

1

(1 − q5n+1)(1 − q5n+4)
,

H(q) =
∞∏

n=0

(1 − q5n)

(1 − q5n+2)(1 − q5n+3)(1 − q5n)
=

∞∏

n=0

1

(1 − q5n+2)(1 − q5n+3)
,

H(q)G(q)11 =
∞∏

n=0

1

(1 − q5n+1)11(1 − q5n+4)11(1 − q5n+2)(1 − q5n+3)
,

as expected. The jac2eprod function was used to convert this last function to
symbolic GETA notation.

jac2getaprod — Converts a quotient of theta-function in JAC notation to a
product of generalized eta-functions in standard notation.

EXAMPLE:
> jac2getaprod(JP);

1

η5,1 (τ )11 η5,2 (τ )

GETAP2getalist — Converts a product of generalized eta-functions into a
list as described above.
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EXAMPLE:
> GETAP2getalist(GP);

[[5, 1,−11], [5, 2,−1]]

The list [[5, 1, -11], [5, 2, -1]] simply corresponds to

(GETA (5, 1))−11 GETA (5, 2)−1 = 1

η5,1 (τ )11 η5,2 (τ )
.

2.3 Processing Theta-Functions

There are twomain functions in thethetaidspackage for processing combinations
of theta-functions.

mixedjac2jac — Converts a sum of quotients of theta-functions written in
terms of JAC(a,b,infinity) to a sum with the same base b. The functions
jac2series and jacprodmake from the qseries package are used.

EXAMPLE:
>Y1:=1+jacprodmake(G(q),q,100)*jacprodmake(H(q∧2),q,100);

1 + JAC (0, 5, ∞) JAC (0, 10, ∞)

JAC (1, 5, ∞) JAC (4, 10, ∞)

> Y2:=mixedjac2jac(Y1);

1 + (JAC (0, 10, ∞))3

JAC (1, 10, ∞) (JAC (4, 10, ∞))2

processjacid—Processes a theta-function identitywritten as a rational func-
tion of JAC-functions using mixedjac2jac and renormalizing by dividing by the
term with the lowest power of q.
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As an example, we consider the well-known identity

θ3(q)4 = θ2(q)4 + θ4(q)4. (2.6)

EXAMPLE:
> with(qseries):
> with(thetaids):
> F1:=theta2(q,100)∧4:
> F2:=theta3(q,100)∧4:
> F3:=theta4(q,100)∧4:
> findhom([F1,F2,F3],q,1,0);

{X1 − X2 + X3}
> JACID0:=qs2jaccombo(F1-F2+F3,q,100);

16
q (JAC (0, 4,∞))6

(JAC (2, 4,∞))2
− (JAC (0, 4,∞))6 (JAC (2, 4,∞))6

(JAC (1, 4,∞))8
+ (JAC (1, 2,∞))4

> JACID1:=processjacid(JACID0);

−16
q (JAC (1, 4,∞))8

(JAC (2, 4,∞))8
+ 1 − (JAC (1, 4,∞))16

(JAC (0, 4,∞))12 (JAC (2, 4,∞))4

> expand(jac2getaprod(JACID1));

−η4;1(τ )16

η4;2(τ )4
+ 1 − 16

η4;1(τ )8

η4;2(τ )8

We see that (2.6) is equivalent to the identity

η4;1(τ )16

η4;2(τ )4
+ 16

η4;1(τ )8

η4;2(τ )8
= 1. (2.7)

2.4 Checking Modularity

Robins [21] has found sufficient conditions under which a generalized eta-product
is a modular function on Γ1(N ).

Theorem 2.1 ([21] Theorem 3) The function f (τ ), defined in (2.4), is a modular
function on Γ1(N ) if
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(i)
∑

δ|N
g

δP2(
g
δ
)rδ,g ≡ 0 (mod 2), and

(ii)
∑

δ|N
g

N

δ
P2(0)rδ,g ≡ 0 (mod 2).

The functions on the left side of (i), (ii) above are computed using the maple
functions vinf and v0 respectively. Suppose f (τ ) is given as in (2.4) and this
generalized eta-product is encoded as the geta-list L . Recall that each item in the
list L has the form [δ, g, rδ,g]. The syntax is vinf(L,N) and v0(L,N). As an
example we consider the two generalized eta-products in (2.7).

EXAMPLE:
> L1:=[[4,1,16],[4,2,-4]];

[[4, 1, 16], [4, 2,−4]]

> vinf(L1,4),v0(L1,4);

0, 2

> L2:=[[4,1,8],[4,2,-8]];

[[4, 1, 8], [4, 2,−8]]

> vinf(L2,4),v0(L2,4);

2, 0

The numbers 0, 2 are even and we see that both generalized eta-products in (2.7)
are modular functions on Γ1(4) by Theorem2.1.

Gamma1ModFunc(L,N)—Checks whether a given generalized eta-product is
a modular function on Γ1(N ). Here the generalized eta-product is encoded as the
geta-list L . The function first checks whether each δ is a divisor of N and checks
whether both vinf(L,N) and v0(L,N) are even. It returns 1 if it is a modular
function on Γ1(N ) otherwise it returns 0. If the global variable xprint is set to true
then more detailed information is printed. Thus here and throughout xprint can
be used for debugging purposes.
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EXAMPLE:
> Gamma1ModFunc(L1,4);

1

> xprint := true:
> Gamma1ModFunc(L1,4);
* starting Gamma1ModFunc with L=[[4, 1, 16], [4, 2,
-4]] and N=4
All n are divisors of 4
val0=2
which is even.
valinf=0
which is even.
It IS a modfunc on Gamma1(4)

1

2.5 Cusps

Cho, Koo and Park [8] have found a set of inequivalent cusps for Γ1(N ) ∩ Γ0(mN ).
The group Γ1(N ) corresponds to the case m = 1.

Theorem 2.2 ([8] Corollary 4, p. 930) Let a, c, a′, c ∈ Z with (a, c) = (a′, c′) = 1.

(i) The cusps a
c and a′

c′ are equivalent mod Γ1(N ) if and only if

(
a′
c′

)
≡ ±

(
a + nc

c

)
(mod N )

for some integer n.
(ii) The following is a complete set of inequivalent cusps mod Γ1(N ).

S =
{
yc, j
xc,i

: 0 < c | N , 0 < sc,i , ac, j ≤ N , (sc,i , N ) = (ac, j , N ) = 1,

sc,i = sc,i ′ ⇐⇒ sc,1 ≡ ±sc′,i ′ (mod N
c ),

ac, j = ac, j ′ ⇐⇒
{
ac, j ≡ ±ac, j ′ (mod c), if c = N

2 or N ,

ac, j ≡ ac, j ′ (mod c), otherwise,

xc,i , yc, j ∈ Z chosen s.th. xc,i ≡ csc,i , yc, j ≡ ac, j (mod N ), (xc,i , yc, j ) = 1

}
,
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(iii) and the fan width of the cusp a
c is given by

κ( ac , Γ1(N )) =
{
1, if N = 4 and (c, 4) = 2,

N
(c,N )

, otherwise.

In this theorem, it is understood as usual that the fraction ±1
0 corresponds to ∞.

cuspequiv1(a1, c1, a2, c2, N ) — determines whether the cusps a1/c1 and
a2/c2 are Γ1(N )-equivalent using Theorem2.2(i).

EXAMPLE:
> cuspequiv1(1,3,1,9,40);

f alse

> cuspequiv1(1,9,2,9,40);

true

We see that modulo Γ1(40) the cusps 1
3 and 1

9 are inequivalent and the cusps 1
9

and 2
9 are equivalent.

Acmake(c,N) — returns the set {ac, j } where c is a positive divisor of N .
Scmake(c,N) — returns the set {sc,i } where c is a positive divisor of N .
newxy(x,y,N) — returns [x1, y1] for given (x, y, N ) = 1 such that x1 ≡ x

(mod N ) and y1 ≡ y (mod N ).
cuspmake1(N) — returns a set of inequivalent cusps for Γ1(N ) using

Theorem2.2. Each cusp a/c in the list is represented by [a, c], so that ∞ is rep-
resented by [1, 0]. This mapleprocedure uses the functions Acmake, Scmake and
newxy.

cuspwid1(a,c,N) — returns the width of the cusp a/c for the group Γ1(N )

using Theorem2.2(iii).

EXAMPLE:
> C10:=cuspmake1(10);

{[0, 1], [1, 0], [1, 2], [1, 3], [1, 4], [1, 5], [2, 5], [3, 10]}

> for L in C10 do lprint(L,cuspwid1(L[1],L[2],10));od;
[0, 1], 10
[1, 0], 1
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[1, 2], 5
[1, 3], 10
[1, 4], 5
[1, 5], 2
[2, 5], 2
[3, 10], 1

We have the following table of cusps for Γ1(10).

cusp cusp-width
0 10
∞ 1
1
2 5

1
3 10

1
4 5

1
5 2

2
5 2

3
10 1

CUSPSANDWIDMAKE(N) — returns a set of inequivalent cusps for Γ1(N ), and
corresponding widths. Output has the form [CUSPLIST,WIDTHLIST].

EXAMPLE:
> CUSPSANDWIDMAKE1(10);

[[
oo, 0,

1

2
,
1

3
,
1

4
,
1

5
,
2

5
,
3

10

]
, [1, 10, 5, 10, 5, 2, 2, 1]

]

2.6 Orders at Cusps

We will use Biagioli’s [6] results for theta-functions to calculate orders at cusps of
generalized eta-products. We define the theta-function

θδ;g(τ ) = q(δ−2g)2/(8δ)
∞∏

m=1

(1 − qmδ−g)(1 − qmδ−(δ−g))(1 − qmδ), (2.8)
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for 0 < g < δ. This corresponds to Biagioli’s function fδ,g [6, p. 277]. The classical
Dedekind eta-function can be written as

η(τ) = θ3;1(τ ), (2.9)

and the generalized Dedekind eta-function can be written as

ηδ;g(τ ) = θδ;g(τ )

η(δτ)
= θδ;g(τ )

θ3δ;δ(τ )
. (2.10)

Biagioli [6] has calculated the invariant order of θδ;g(τ ) at any cusp. Using (2.10)
this gives a method for calculating the invariant order at any cusp of a generalized
eta-product.

Theorem 2.3 ([6] Lemma 3.2, p. 285) The order at the cusp s = b
c (assuming

(b, c) = 1) of the theta function θg;δ(τ ) (defined above and assuming δ � g) is

ord (θg;δ(τ ), s) = e2

2δ

(
bg

e
−

[
bg

e

]
− 1

2

)2

, (2.11)

where e = (δ, c) and [ ] is the greatest integer function.

Bord(δ, g, a, c)—returns the order of θδ;g(τ ) at the cusp a/c, assuming (a, c) =
1 and δ � g.

getacuspord(δ, g, a, c) — returns the order of the generalized eta-function
ηδ,g(τ ) at the cusp a/c, assuming (a, c) = 1 and δ � g.

EXAMPLE:
> getacuspord(50,1,4,29);

1

600

We see that

ord

(
η50;1(τ ),

4

29

)
= 1

600
.

Let G be a generalized eta-product corresponding to the getalist L . The following
MAPLE procedure calculates the invariant order ord (G, ζ ) for any cusp ζ .
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getaprodcuspord(L,cusp)— returns of the generalized eta-product cor-
responding to the geta-list L at the given cusp. The cusp is either a rational or oo
(infinity).

EXAMPLE:
> GL:=[[4,1,16],[4,2,-4]];

[[4, 1, 16], [4, 2,−4]]

> getaprodcuspord(GL,1/2);

−1

We see that

ord

(
η4;1(τ )16

η4;2(τ )4
,
1

2

)
= −1.

Following [6, p. 275], [19, p. 91] we consider the order of a function f with
respect to a congruence subgroup Γ at the cusp ζ ∈ Q ∪ {∞} and denote this by

ORD ( f, ζ, Γ ) = κ(ζ, Γ ) ord ( f, ζ ). (2.12)

getaprodcuspORDS(L , S,W ) — returns a list of orders ORD (G, ζ, Γ1(N ))

where G is the generalized eta-product corresponding to the getalist L , ζ ∈ S (list
of inequivalent cusps of Γ1(N )) and W is a list of corresponding fan-widths.

EXAMPLE:
> CW4:=CUSPSANDWIDMAKE1(4);

[[
∞, 0,

1

2

]
, [1, 4, 1]

]

> GL:=[[4,1,16],[4,2,-4]];

[[4, 1, 16], [4, 2,−4]]

> getaprodcuspORDS(GL,CW4[1],CW4[2]);

[0, 1,−1]
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We know that the generalized eta-product

f (τ ) = η4;1(τ )16

η4;2(τ )4

is a modular function on Γ1(4). We calculated ORD ( f, ζ, Γ1(4)) at each cusp ζ of
Γ1(4).

ζ ORD ( f, ζ, Γ1(4)
∞ 0
0 1
1
2 −1

Observe that the total order of f with respect to Γ1(4) is 0:

ORD ( f, Γ1(4)) =
∑

ζ∈S
ORD ( f, ζ, Γ1(4)) = 0 + 1 − 1 = 0,

in agreement with the valence formula. See Theorem2.4 below. HereS is the set of
inequivalent cusps of Γ1(4).

2.7 Proving Theta-Function Identities

Our method for proving theta-function or generalized eta-product identities depends
on

Theorem 2.4 (The Valence Formula [19] (p. 98)) Let f �= 0 be a modular form of
weight k with respect to a subgroup Γ of finite index in Γ (1) = SL2(Z). Then

ORD ( f, Γ ) = 1

12
μ k, (2.13)

where μ is the index of Γ̂ in Γ̂ (1),

ORD ( f, Γ ) :=
∑

ζ∈R∗
ORD ( f, ζ, Γ ),

R∗ is a fundamental region for Γ , and ORD ( f, ζ, Γ ) is given in Eq. (2.12).

Remark 2.1 For ζ ∈ h, ORD ( f, ζ, Γ ) is defined in terms of the invariant order
ord ( f, ζ ), which is interpreted in the usual sense. See [19, p. 91] for details of this
and the notation used.
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Since any generalized eta-product has weight k = 0 and has no zeros and no poles
on the upper-half plane we have

Corollary 2.5 Let f1(τ ), f2(τ ), . . . , fn(τ ) be generalized eta-products that are
modular functions on Γ1(N ). Let SN be a set of inequivalent cusps for Γ1(N ).
Define the constant

B =
∑

s∈S N
s �=∞

min
({
ORD ( f j , s, Γ1(N )) : 1 ≤ j ≤ n

} ∪ {0}) , (2.14)

and consider

g(τ ) := α1 f1(τ ) + α2 f2(τ ) + · · · + αn fn(τ ) + 1, (2.15)

where each α j ∈ C. Then
g(τ ) ≡ 0

if and only if
ORD (g(τ ),∞, Γ1(N )) > −B. (2.16)

To prove an alleged theta-function identity, we first rewrite it in the form

α1 f1(τ ) + α2 f2(τ ) + · · · + αn fn(τ ) + 1 = 0, (2.17)

where each αi ∈ C and each fi (τ ) is a generalized eta-product of level N . We use
the following algorithm:

STEP 1. Use Theorem2.1 to check that f j (τ ) is a generalized eta-product on Γ1(N )

for each 1 ≤ j ≤ n.

STEP 2. Use Theorem2.2 to find a setSN of inequivalent cusps for Γ1(N ) and the
fan width of each cusp.

STEP 3. Use Theorem2.3 to calculate the invariant order of each generalized eta-
product f j (τ ) at each cusp of Γ1(N ).

STEP 4. Calculate

B =
∑

s∈S N
s �=∞

min
({
ORD ( f j , s, Γ1(N )) : 1 ≤ j ≤ n

} ∪ {0}) .

STEP 5. Show that
ORD (g(τ ),∞, Γ1(N )) > −B
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where
g(τ ) = α1 f1(τ ) + α2 f2(τ ) + · · · + αn fn(τ ) + 1.

Corollary2.5 then implies that g(τ ) ≡ 0 and hence the theta-function identity (2.17).
To calculate the constant B in (2.14) and STEP 4 we use
mintotORDS(L,n)— returns the constant B in Eq. (2.14) where L is an array

of ORDS:
L := [ORD ( f1),ORD ( f2), . . . ,ORD ( fn)],

where

ORD ( f ) = [ORD ( f, ζ1, Γ1(N )),ORD ( f, ζ2, Γ1(N )), . . . ,ORD ( f, ζm, Γ1(N ))]

and ζ1, ζ2, . . . , ζm are the inequivalent cusps of Γ1(N ). Each ORD ( f ) is computed
using getaprodcuspORDS.
EXAMPLE: As an example we prove Ramanujan’s well-known identity

∞∏

n=1

(1 − qn)

(1 − q25n)
= R(q5) − q − q2

R(q5)
, (2.18)

where

R(q) =
∞∏

n=1

(1 − q5n−2)(1 − q5n−3)

(1 − q5n−1)(1 − q5n−4)
.

We rewrite this identity as

η(τ)

η(25τ)
= η25;10(τ )

η25;5(τ )
− 1 − η25;5(τ )

η25;10(τ )
. (2.19)

Let
g(τ ) = f1(τ ) − f2(τ ) + f3(τ ) + 1, (2.20)

where

f1(τ ) = η(τ)

η(25τ)
=

12∏

j=1

η25, j (τ ), f2(τ ) = η25;10(τ )

η25;5(τ )
, f3(τ ) = 1

f2(τ )
= η25;5(τ )

η25;10(τ )
.

STEP 1. We check that each function is a modular function on Γ1(25).

> f1:=mul(GETA(25,j), j=1..12):
> f2:=GETA(25,10)/GETA(25,5):
> f3:=1/f2:
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> GP1:=GETAP2getalist(f1):
> GP2:=GETAP2getalist(f2):
> GP3:=GETAP2getalist(f3):
> Gamma1ModFunc(GP1,25),Gamma1ModFunc(GP2,25),

Gamma1ModFunc(GP3,25);

1, 1, 1

STEP 2. We find a set of inequivalent cusps for Γ1(25) and their fan widths.

> CW25:=CUSPSANDWIDMAKE1(25):
> cusps25:=CW25[1];

[oo, 0,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9
,
1

10
,
1

11
,
1

12
,
2

5
,
2

25
,
3

5
,
3

10
,
3

25
,
4

5
,
4

25
,
6

25
,
7

10
,
7

25
,
8

25
,

9

10
,
9

25
,
11

25
,
12

25
]

> widths25:=CW25[2];

[1, 25, 25, 25, 25, 5, 25, 25, 25, 25, 5, 25, 25, 5, 1, 5, 5, 1, 5, 1, 1, 5, 1, 1, 5, 1, 1, 1]

STEP 3. We compute ORD ( f j , ζ, Γ1(25)) for each j and each cusp ζ of Γ1(25).

> ORDS1:=getaprodcuspORDS(GP1,cusps25,widths25);

[−1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0,−1, 0, 0,−1, 0,−1,−1, 0,−1,−1, 0,−1,−1,−1]

> ORDS2:=getaprodcuspORDS(GP2,cusps25,widths25);

[−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, −1, −1, 0, 1, 1, 0, −1, −1, 1]

> ORDS3:=getaprodcuspORDS(GP3,cusps25,widths25);

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, 0, 0, −1, 0, 1, 1, 0, −1, −1, 0, 1, 1,−1]
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STEP 4. We calculate the constant B in (2.14).

> mintotORDS([ORDS1,ORDS2,ORDS3],3);

−9

STEP 5. To prove the identity (2.18) we need to verify that

ORD (g(τ ),∞, Γ1(25)) > 9.

> JACL:=map(getalist2jacprod,[GP1,GP2,GP3]):
> JACID:=JACL[1]-JACL[2]+JACL[3]+1:
> QJ:=jac2series(JACID,100):
> series(QJ,q,100);

O
(
q99)

This completes the proof of the identity (2.18). We only had to show that the
coefficient of q j was zero in the q-expansion of g(τ ) for j ≤ 10. We actually did it
for j ≤ 98 as a check.

STEPS 1–5 may be automated using
provemodfuncid(JACID,N) — returns the constant B in Eq. (2.14) and

prints details of the verification and proof of the identity corresponding to JACID,
which is a linear combination of symbolic JAC-functions, and N is the level. If
xprint=true then more details of the verification are printed. When this function
is called there is a query asking whether to verify the identity. Enter yes to carry
out the verification.

EXAMPLE:
> provemodfuncid(JACID,25);
"TERM ", 1, "of ", 4, " *****************"
"TERM ", 2, "of ", 4, " *****************"
"TERM ", 3, "of ", 4, " *****************"
"TERM ", 4, "of ", 4, " *****************"
"mintotord = ", -9
"TO PROVE the identity we need to show that
v[oo](ID) > ", 9
*** There were NO errors.
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*** o Each term was modular function on
Gamma1(25).
*** o We also checked that the total order of
each term was zero.
*** o We also checked that the power of q was
correct in
each term.
"*** WARNING: some terms were constants. ***"
"See array CONTERMS."
To prove the identity we will need to verify if up
to
q∧(9).
Do you want to prove the identity? (yes/no)
You entered yes.
We verify the identity to O(q∧(59)).
RESULT: The identity holds to O(q∧(59)).
CONCLUSION: This proves the identity since we had
only
to show that v[oo](ID) > 9.

9
provemodfuncidBATCH(JACID,N)—is a version of provemodfuncid

that prints less detail and does not query.

EXAMPLE:
> provemodfuncidBATCH(JACID,25);
*** There were NO errors. Each term was modular
function on
Gamma1(25). Also -mintotord=9. To prove the identity
we need to check up to O(q∧(11)).
To be on the safe side we check up to O(q∧(59)).
*** The identity is PROVED!

printJACIDORDStable() — prints an ORDs table for the f j and lower
bound for g after provemodfuncid is run. Formatted output from our example
is given below in Table1. By summing the last column we see that B = −9, which
confirms an earlier calculation using mintotORDS.
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Table 1 Orders at the cusps of Γ1(25) of the functions f1, f2, f3 and g in (2.20) needed in the
proof of Ramanujan’s identity (2.19). This table was produced by printJACIDORDStable()
ζ ORD ( f1, ζ ) ORD ( f2, ζ ) ORD ( f3, ζ ) Lower bound for ORD (g, ζ )

1
2 1 0 0 0

1
3 1 0 0 0

1
4 1 0 0 0

1
5 0 0 0 0

1
6 1 0 0 0

1
7 1 0 0 0

1
8 1 0 0 0

1
9 1 0 0 0

1
10 0 0 0 0

1
11 1 0 0 0

1
12 1 0 0 0

2
5 0 0 0 0

2
25 −1 1 −1 −1

3
5 0 0 0 0

3
10 0 0 0 0

3
25 −1 1 −1 −1

4
5 0 0 0 0

4
25 −1 −1 1 −1

6
25 −1 −1 1 −1

7
10 0 0 0 0

7
25 −1 1 −1 −1

8
25 −1 1 −1 −1

9
10 0 0 0 0

9
25 −1 −1 1 −1

11
25 −1 −1 1 −1

12
25 −1 1 −1 −1
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3 Generalized Ramanujan–Robins Identities

As an application of our thetaids package we show how to find and prove gener-
alized eta-product identities due to Ramanujan and Robins, and some natural exten-
sions. In Sect. 1 we defined the functions G(n, N , χ) and H(n, N , χ), where χ is
a non-principal real Dirichlet character mod N satisfying χ(−1) = 1. Robins [20]
proved the following striking analogue of Ramanujan’s identity (1.3) (or (1.6)):

G(3) H(1) − G(1) H(3) = 1, (3.1)

where

G(n) = 1

η13;1,3,4(nτ)
, H(n) = 1

η13;2,5,6(nτ)
.

Equation (3.1) is a restatement of (1.8). In this case N = 13 and χ = ( ·
13

)
is the

Legendre symbol.
We will also consider

G∗(n, N , χ) = G∗(n) :=
∏

χ(g)=1
0<g< N

2

1

η∗
N ;g(nτ)

, H∗(n, N , χ) = H∗(n) :=
∏

χ(g)=−1
0<g< N

2

1

η∗
N ;g(nτ)

,

(3.2)
where

η∗
δ;g(τ ) = q

δ
2 P2(g/δ)

∏

m≡±g (mod δ)

(1 − (−q)m). (3.3)

We note that
η∗

δ;g(τ ) = ωδ;gηδ;g(τ + π i),

where ωδ;g is a root of unity. Using the notation (1.10) (with N = 5 and χ(·) = ( ·
5

)
,

the Legendre symbol) we may rewrite Ramanujan’s identities (1.2), (1.3) as

G(1)11H(1) − G(1)H(1)11 = 1 + 11G(1)6H(1)6,

H(1)G(11) − G(1)H(11) = 1,

respectively.
We have written a number of specialized functions for the purpose of finding and

proving identities for these more general G- and H -functions. We have collected
these functions into the new ramarobinsids package. Go to

http://qseries.org/fgarvan/qmaple/ramarobinsids

and follow the directions on that page. This package requires both the qseries and
thetaids packages.

http://qseries.org/fgarvan/qmaple/ramarobinsids
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3.1 Some MAPLE Functions

Geta(g,d,n)— returns the generalized eta-function ηd;g(nτ) in symbolic JAC-
form.

GetaB(g,d,n) — returns Geta(g,d,n) without the the q
d
2 P2(g/d) factor.

GetaL(L,d,n) — returns the generalized eta-product corresponding to the
geta-list in JAC-form with τ replaced by nτ .

GetaBL(L,d,n) — returns the generalized eta-product GetaL(g,d,n)
without the q-factor.

GetaEXP(g,d,n) — returns lowest power of q in ηd;g(nτ).
GetaLEXP(L,d,n) — returns lowest power of q for the generalized eta-

product corresponding to GetaL(L,d,n).
MGeta(g,d,n) — η∗ analogue of Geta(g,d,n)
MGetaL(L,d,n) — η∗ analogue of GetaL(L,d,n)
Eeta(n) — returns Dedekind eta-function η(nτ) in JAC-form.

EXAMPLE:
> with(ramarobinsids):
> Geta(1,5,2);

q1/30 J AC(2, 10,∞)

J AC(0, 10,∞)

> GetaB(1,5,2);
J AC(2, 10,∞)

J AC(0, 10,∞)

> GetaEXP(1,5,2);
1

30

> GetaL([1,3,4],13,1);

q1/4

J AC(0, 13,∞)3
J AC(1, 13,∞)J AC(3, 13,∞)J AC(4, 13,∞)

> GetaLB([1,3,4],13,1);

J AC(1, 13,∞)J AC(3, 13,∞)J AC(4, 13,∞)

J AC(0, 13,∞)3

> GetaLEXP([1,3,4],13,1);

1

4
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> MGeta(1,5,2);

q1/30JAC (2, 10,∞) JAC (4, 40,∞) (JAC (0, 20,∞))2

JAC (0, 10,∞) JAC (0, 40,∞) (JAC (2, 20,∞))2

> MGetaL([1,3,4],13,1);

4
√
qJAC (1, 13,∞) JAC (2, 52,∞) JAC (0, 26,∞) JAC (3, 13,∞) JAC (6, 52,∞)

JAC (0, 13,∞) JAC (0, 52,∞) (JAC (1, 26,∞))2 (JAC (3, 26,∞))2

(JAC (4, 26,∞))2 JAC (8, 26,∞)

JAC (4, 13,∞) JAC (8, 52,∞)

> Eeta(3);
q1/8 J AC(0, 3,∞)

CHECKRAMIDF(SYMF,ACC,T)— checks whether a certain symbolic expres-
sion ofG- and H -functions is an eta-product. This assumes thatG(n), H(n),GM(n),
HM(n) have already been defined. GM and HM are the η∗ analogues of G, H . The
SYMF symbolic form is written in terms of _G, _H , _GM , _HM . ACC is an upper-
bound on the absolute value of exponents allowed in the formal product, T is highest
power of q considered. This procedure returns a list of exponents in the formal
product if it is a likely eta-product otherwise it returns NULL. A number of global
variables are also assigned. The main ones are

• _JFUNC: JAC-expression of SYMF.
• LQD: lowest power of q.
• RID: the conjectured eta-product.
• ebase: base of the conjectured eta-product.
• SYMID: symbolic form of the identity

EXAMPLE:
> with(qseries):
> with(thetaids):
> with(ramarobinsids):
> G:=j->1/GetaL([1,3,4],13,j): H:=j->1/GetaL([2,5,6],13,j):
> GM:=j->1/MGetaL([1,3,4],13,j): HM:=j->1/MGetaL([2,5,6],13,j):
> GE:=j->-GetaLEXP([1,3,4],13,j): HE:=j->-GetaLEXP([2,5,6],13,j):
> GHID:=(_G(1)*_G(2)+_H(1)*_H(2))/(_G(2)*_H(1)-_G(1)*_H(2));

GH I D := _G (1)_G (2) + _H (1)_H (2)

_G (2)_H (1) − _G (1)_H (2)

> CHECKRAMIDF(GHID,10,50);
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[−2, 0,−2, 0,−2, 0,−2, 0,−2, 0,−2, 0, 0, 0,−2, 0,−2, 0,

− 2, 0,−2, 0,−2, 0,−2, 0,−2, 0,−2, 0,−2, 0,−2, 0,−2, 0,−2, 0, 0]

> ebase;
26

> _JFUNC;

(−q3JAC (1, 13, ∞) JAC (3, 13,∞) JAC (4, 13,∞) JAC (2, 26,∞) JAC (6, 26,∞) JAC (8, 26,∞)

− JAC (2, 13, ∞) JAC (5, 13,∞) JAC (6, 13,∞) JAC (4, 26, ∞) JAC (10, 26,∞) JAC (12, 26,∞))

/q (qJAC (2, 26, ∞) JAC (6, 26,∞) JAC (8, 26,∞) JAC (2, 13,∞) JAC (5, 13,∞) JAC (6, 13,∞)

−JAC (1, 13, ∞) JAC (3, 13,∞) JAC (4, 13,∞) JAC (4, 26,∞) JAC (10, 26,∞) JAC (12, 26,∞))

> LDQ;
−1

> RID;
(η (13 τ))2 (η (2 τ))2

(η (26 τ))2 (η (τ ))2

> SYMID;

_G (1)_G (2) + _H (1)_H (2)

_G (2)_H (1) − _G (1)_H (2)
= (η (13 τ))2 (η (2 τ))2

(η (26 τ))2 (η (τ ))2

> etamake(jac2series(_JFUNC,1001),q,1001);

η (13 τ)2 η (2 τ)2

η (26 τ)2 η (τ)2

It seems that

G (1)G (2) + H (1) H (2)

G (2) H (1) − G (1) H (2)
= η (13 τ)2 η (2 τ)2

η (26 τ)2 η (τ)2
(3.4)

when N = 13 and χ(·) = ( ·
13

)
, at least up to q1000.

EXAMPLE:
> RRID1:=_JFUNC-Eeta(13)∧2*Eeta(2)∧2/E8888eta(26)∧2/Eeta(1)∧2:
> JRID1:=processjacid(RRID1):

> jmxperiod;

26
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> provemodfuncidBATCH(JRID1,26);
*** There were NO errors. Each term was modular
function on
Gamma1(26). Also -mintotord=18. To prove the
identity
we need to check up to O(q∧(20)).
To be on the safe side we check up to O(q∧(70)).
*** The identity is PROVED!

Thus identity (3.4) is proved.
The search for and proof of such identities may be automated.

3.2 Ten Types of Identities for Ramanujan’s Functions
G(q) and H(q)

We consider ten types of identities. We write a maple function to search for and
prove identities of each type. Here we assume N = 5 and χ(·) = ( ·

5

)
. We continue

to use the notation (1.10).
In this section

G(1) = G(1, 5,

( ·
5

)
) = 1

η5;1(τ )
= q−1/60

(q, q4; q5)∞
, and

H(1) = H(1, 5,

( ·
5

)
) = 1

η5;2(τ )
= q11/60

(q2, q3; q5)∞
.

EXAMPLE:
> with(qseries):
> with(thetaids):
> with(ramarobinsids):
> G:=j->1/GetaL([1],5,j): H:=j->1/GetaL([2],5,j):
> GM:=j->1/MGetaL([1],5,j): HM:=j->1/MGetaL([2],5,j):
> GE:=j->-GetaLEXP([1],5,j): HE:=j->-GetaLEXP([2],5,j):

3.2.1 Type 1

We consider identities of the form

G(a) H(b) ± G(b) H(a) = f (τ ),
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where f (τ ) is an eta-product and a, b are positive relatively prime integers.
findtype1(T) — cycles through symbolic expressions

_G(a) _H(b) + c _G(b) _H(a)

where 2 ≤ n ≤ T , ab = n, (a, b) = 1, b < a, c ∈ {−1, 1}, and

GE(a) + HE(b) − (GE(b) + HE(a)) = 1

5
(b − a) ∈ Z, (3.5)

using CHECKRAMIDF to check whether the expression corresponds to a likely eta-
product, and if so uses provemodfuncidBATCH to prove it. Condition (3.5)
eliminates the case of fractional powers of q, which in our casemeans a ≡ b mod 5.
The procedure also returns a list of [a,b,c] which give identities.

EXAMPLE:
> proveit:=true:
> findtype1(11);
*** There were NO errors. Each term was modular
function on
Gamma1(30). Also -mintotord=8. To prove the identity
we need to check up to O(q∧(10)).
To be on the safe side we check up to O(q∧(68)).
*** The identity below is PROVED!
[6, 1, -1]

_G(6)_H(1) − _G(1)_H(6) = η(6τ)η(τ )

η(3τ)η(2τ)

*** There were NO errors. Each term was modular
function on
Gamma1(55). Also -mintotord=40. To prove the
identity
we need to check up to O(q∧(42)).
To be on the safe side we check up to O(q∧(150)).
*** The identity below is PROVED!
[11, 1, -1]

_G(11)_H(1) − _G(1)_H(11) = 1

[[6, 1,−1], [11, 1,−1]]
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> myramtype1 :=findtype1(36);

myramtype1 := [[6, 1,−1], [11, 1,−1], [7, 2, −1], [16, 1, −1], [8, 3, −1], [9, 4,−1],
[36, 1, −1]]

This also produced the following identities with proofs (some output omitted):

G(6) H(1) − G(1) H(6) = η(τ)η(6τ)

η(2τ)η(3τ)
, Γ1(30), −B = 8,

(3.6)

G(11) H(1) − G(1) H(11) = 1, Γ1(55), −B = 40,
(3.7)

G(7) H(2) − G(2) H(7) = η(τ)η(14τ)

η(2τ)η(7τ)
, Γ1(70), −B = 48,

(3.8)

G(16) H(1) − G(1) H(16) = η(4τ)2

η(2τ)η(8τ)
, Γ1(80), −B = 64,

(3.9)

G(8) H(3) − G(3) H(8) = η(τ)η(4τ)η(6τ)η(24τ)

η(2τ)η(3τ)η(8τ)η(12τ)
, Γ1(120), −B = 128,

(3.10)

G(9) H(4) − G(4) H(9) = η(τ)η(6τ)2η(36τ)

η(2τ)η(3τ)η(12τ)η(18τ)
, Γ1(180), −B = 288,

(3.11)

G(36) H(1) − G(1) H(36) = η(4τ)η(6τ)2η(9τ)

η(2τ)η(3τ)η(12τ)η(18τ)
, Γ1(180), −B = 288.

(3.12)

We have included the relevant groups Γ1(N ) and values of B (see (2.14) and
(2.16)). These identities are known and are Eqs. (3.9), (3.5), (3.10), (3.6), (3.12),
(3.14), and (3.15) in [5] respectively.

3.2.2 Type 2

We consider identities of the form

G(a)G(b) ± H(a) H(b) = f (τ ),

where f (τ ) is an eta-product and a, b are positive relatively prime integers.
findtype2(T) — cycles through symbolic expressions
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_G(a) _G(b) + c _H(a) _H(b)

where 2 ≤ n ≤ T , ab = n, (a, b) = 1, a ≤ b, c ∈ {−1, 1}, and

GE(a) + GE(b) − (HE(a) + HE(b)) = −1

5
(a + b) ∈ Z, (3.13)

using CHECKRAMIDF to check whether the expression corresponds to a likely eta-
product, and if so uses provemodfuncidBATCH to prove it. Condition (3.13)
eliminates the case of fractional powers of q, which in our case means a ≡ −b
mod 5. The procedure also returns a list of [a,b,c] which give identities.

> findtype2(24);

[[1, 4,−1], [1, 4, 1], [2, 3, 1], [1, 9, 1], [1, 14, 1], [1, 24, 1]]

This also produces the following identities with proofs:

G(1)G(4) − H(1) H(4) = η(10τ)5

η(2τ)η(5τ)2η(20τ)2
, Γ1(20), −B = 4,

(3.14)

G(1)G(4) + H(1) H(4) = η(2τ)4

η(τ)2η(4τ)2
, Γ1(20), −B = 4,

(3.15)

G(2)G(3) + H(2) H(3) = η(2τ)η(3τ)

η(τ )η(6τ)
, Γ1(30), −B = 8,

(3.16)

G(1)G(9) + H(1) H(9) = η(3τ)2

η(τ)η(9τ)
, Γ1(45), −B = 24,

(3.17)

G(1)G(14) + H(1) H(14) = η(2τ)η(7τ)

η(τ )η(14τ)
, Γ1(70), −B = 48,

(3.18)

G(1)G(24) + H(1) H(24) = η(2τ)η(3τ)η(8τ)η(12τ)

η(τ )η(4τ)η(6τ)η(24τ)
, Γ1(120), −B = 128,

(3.19)

These identities are known and are Eqs. (3.4), (3.3), (3.8), (3.7), (3.11), and (3.13) in
[5] respectively.
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3.2.3 Type 3

We consider identities of the form

G(a1)G(b1) ± H(a1) H(b1)

G(a2) H(b2) ± H(a2)G(b2)
= f (τ ),

which are not a quotient of Type 1 and 2 identities, and where f (τ ) is an eta-product,
a1, b1, a2, b2 are positive relatively prime integers, and a1b1 = a2b2.

findtype3(T) — cycles through symbolic expressions

_G(a1) _G(b1) + c1 _H(a1) _H(b1)

_G(a2) _H(b2) + c2 _H(a2) _G(b2)

where 2 ≤ n ≤ T , a1b1 = a2b2 = n, (a1, b1, a2, b2) = 1, a1 ≤ b1, b2 < a2, c1, c2 ∈
{−1, 1}, and

GE(a1) + GE(b1) − (HE(a1) + HE(b1)), GE(a2) + HE(b2) − (HE(a2) + GE(b2) ∈ Z,

(3.20)
and [a2, b2, c2] is not an element of the list myramtype1 (found earlier by
findtype1), using CHECKRAMIDF to check whether the expression corresponds
to a likely eta-product, and if so uses provemodfuncidBATCH to prove it. The
procedure also returns lists [a1, b1, c1, a2, b2, c2] which correspond to identities.

> findtype3(126);

[[3, 7, 1, 21, 1, −1], [2, 13, 1, 26, 1,−1], [1, 34, 1, 17, 2, −1], [1, 39, 1, 13, 3,−1],
[1, 54, 1, 27, 2, −1], [7, 8, 1, 56, 1, −1], [3, 22, 1, 11, 6,−1], [2, 33, 1, 66, 1, −1],
[4, 21, 1, 12, 7, −1], [1, 84, 1, 28, 3,−1], [3, 32, 1, 96, 1,−1], [7, 18, 1, 14, 9, −1],

[2, 63, 1, 126, 1,−1]]

This also produces the following identities with proofs:

G(3)G(7) + H(3) H(7)

G(21) H(1) − H(21)G(1)
= 1, Γ1(105), −B = 192,

(3.21)

G(2)G(13) + H(2) H(13)

G(26) H(1) − H(26)G(1)
= 1, Γ1(130), −B = 240,

(3.22)

G(1)G(34) + H(1) H(34)

G(17) H(2) − H(17)G(2)
= η(2τ)η(17τ)

η(τ )η(34τ)
, Γ1(170), −B = 448,

(3.23)
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G(1)G(39) + H(1) H(39)

G(13) H(3) − H(13)G(3)
= η(3τ)η(13τ)

η(τ )η(39τ)
, Γ1(195), −B = 768,

(3.24)

G(1)G(54) + H(1) H(54)

G(27) H(2) − H(27)G(2)
= η(2τ)η(3τ)η(18τ)η(27τ)

η(τ )η(6τ)η(9τ)η(54τ)
,

Γ1(270), −B = 1008, (3.25)



G(7)G(8) + H(7) H(8)

G(56) H(1) − H(56)G(1)
= η(2τ)η(28τ)

η(4τ)η(14τ)
, Γ1(280), −B = 1152,

(3.26)

G(3)G(22) + H(3) H(22)

G(11) H(6) − H(11)G(6)
= η(2τ)η(33τ)

η(τ )η(66τ)
, Γ1(330), −B = 1600,

(3.27)

G(2)G(33) + H(2) H(33)

G(66) H(1) − H(66)G(1)
= η(3τ)η(22τ)

η(6τ)η(11τ)
, Γ1(330), −B = 1600,

(3.28)



G4)G(21) + H(4) H(21)

G(12) H(7) − H(12)G(7)
= η(2τ)η(3τ)η(7τ)η(12τ)η(28τ)η(42τ)

η(τ )η(4τ)η(6τ)η(14τ)η(21τ)η(84τ)
,

Γ1(420), −B = 2688, (3.29)



G(1)G(84) + H(1) H(84)

G(28) H(3) − H(28)G(3)
= η(2τ)η(3τ)η(7τ)η(12τ)η(28τ)η(42τ)

η(τ )η(4τ)η(6τ)η(14τ)η(21τ)η(84τ)
,

Γ1(420), −B = 2688, (3.30)



G(3)G(32) + H(3) H(32)

G(96) H(1) − H(96)G(1)
= η(2τ)η(8τ)η(12τ)η(48τ)

η(4τ)η(6τ)η(16τ)η(24τ)
,

Γ1(480), −B = 3072, (3.31)



G(7)G(18) + H(7) H(18)

G(14) H(9) − H(14)G(9)
= η(2τ)η(3τ)η(42τ)η(63τ)

η(τ )η(6τ)η(21τ)η(126τ)
,

Γ1(630), −B = 5760, (3.32)
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G(2)G(63) + H(2) H(63)

G(126) H(1) − H(126)G(1)
= η(3τ)η(7τ)η(18τ)η(42τ)

η(6τ)η(9τ)η(14τ)η(21τ)
,

Γ1(630), −B = 5760. (3.33)

The equations marked 
 appear to be new. The other equations correspond to (3.16),
(3.18), (3.35), (3.22), (3.41), (3.40) and (3.39) in [5], and (1.24) in [20] respectively.
We have corrected the statement of equation [20, (1.24)].

3.2.4 Type 4

We consider identities of the form

G∗(a) H∗(b) ± G∗(b) H∗(a) = f (τ ),

where f (τ ) is an eta-product, a, b are positive relatively prime integers, and at least
one of a, b is even.

findtype4(T) — cycles through symbolic expressions

_GM(a) _HM(b) + c _GM(b) _HM(a)

where 2 ≤ n ≤ T , ab = n, (a, b) = 1, b < a, c ∈ {−1, 1},

GE(a) + HE(b) − (GE(b) + HE(a)) ∈ Z, (3.34)

and at least one of a, b is even, usingCHECKRAMIDF to checkwhether the expression
corresponds to a likely eta-product, and if so uses provemodfuncidBATCH to
prove it. The procedure also returns a list of [a,b,c] which give identities.

> findtype4(24);
[[6, 1,−1]]

This also produces the following identity with proof:

G∗(6) H∗(1) − G∗(1) H∗(6) = η(τ)η(4τ)3η(6τ)3η(24τ)

η(2τ)3η(3τ)η(8τ)η(12τ)3
, Γ1(120), −B = 128.

(3.35)
This corresponds to Eq. (3.28) in [5].
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3.2.5 Type 5

We consider identities of the form

G∗(a)G∗(b) ± H∗(a) H∗(b) = f (τ ),

where f (τ ) is an eta-product, a, b are positive relatively prime integers, and at least
one of a, b is even.

findtype5(T) — cycles through symbolic expressions

_GM(a) _GM(b) + c _HM(a) _HM(b)

where 2 ≤ n ≤ T , ab = n, (a, b) = 1, a ≤ b, c ∈ {−1, 1},

GE(a) + GE(b) − (HE(a) + HE(b)) ∈ Z, (3.36)

and at least one of a, b is even, usingCHECKRAMIDF to checkwhether the expression
corresponds to a likely eta-product, and if so uses provemodfuncidBATCH to
prove it. The procedure also returns a list of [a,b,c] which give identities.

> findtype5(24);

[[1, 4, 1], [2, 3, 1]]

This also produces the following identities with proof:

G∗(1)G∗(4) + H∗(1) H∗(4) = η(4τ)2

η(2τ)η(8τ)
, Γ1(80), −B = 64,

(3.37)

G∗(2)G∗(3) + H∗(2) H∗(3) = η(2τ)3η(3τ)η(8τ)η(12τ)3

η(τ)η(4τ)3η(6τ)3η(24τ)
, Γ1(120), −B = 128.

(3.38)

These correspond to Eqs. (3.26) and (3.27) in [5].

3.2.6 Type 6

We consider identities of the form

G(a) H∗(b) ± G∗(a) H(b) = f (τ ),
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where f (τ ) is an eta-product, and a, b are positive relatively prime integers.
findtype6(T) — cycles through symbolic expressions

_G(a) _HM(b) + c _GM(a) _H(b)

where 2 ≤ n ≤ T , ab = n, (a, b) = 1, a ≥ b, c ∈ {−1, 1}, using CHECKRAMIDF
to check whether the expression corresponds to a likely eta-product, and if so
uses provemodfuncidBATCH to prove it. The procedure also returns a list of
[a,b,c] which give identities.

> findtype6(24);

[[1, 1,−1], [1, 1, 1]]

This also produces the following identities with proof:

G(1) H∗(1) − G∗(1) H(1) = 2
η(20τ)2

η(2τ)η(10τ)
, Γ1(20), −B = 4, (3.39)

G(1) H∗(1) + G∗(1) H(1) = 2
η(4τ)2

η(2τ)2
, Γ1(20), −B = 4. (3.40)

These are equivalent to Eqs. (3.25) and (3.24) in [5].

3.2.7 Type 7

We consider identities of the form

G∗(a)G(b) ± H∗(a) H(b) = f (τ ),

where f (τ ) is an eta-product, and a, b are positive relatively prime integers.
findtype7(T) — cycles through symbolic expressions

_GM(a) _G(b) + c _HM(a) _H(b)

where 2 ≤ n ≤ T , ab = n, (a, b) = 1, a ≤ b, c ∈ {−1, 1}, and both a, b are odd,
using CHECKRAMIDF to check whether the expression corresponds to a likely eta-
product, and if so uses provemodfuncidBATCH to prove it. The procedure also
returns a list of [a,b,c] which give identities.
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> findtype7(24);
[[1, 9,−1]]

This also produces the following identity with proof:

G∗(1)G(9) − H∗(1) H(9) = η(τ)η(12τ)η(18τ)2

η(2τ)η(6τ)η(9τ)η(36τ)
, Γ1(180), −B = 288.

(3.41)
This corresponds to (3.29) in [5].

3.2.8 Type 8

We consider identities of the form

G(1)a H(a) ± H(1)a G(a) = f (τ ),

where f (τ ) is an eta-product, and a > 1 is an integer.
findtype8(T) — cycles through symbolic expressions

_G(1)a _H(a) + c _H(1)a _G(a)

where 2 ≤ a ≤ T , and c ∈ {−1, 1}, using CHECKRAMIDF to check whether
the expression corresponds to a likely eta-product, and if so uses
provemodfuncidBATCH to prove it. The procedure also returns a list of [a,c]
which give identities.

> findtype8(24);
[[3,−1]]

This also produces the following identity with proof:

G(1)3 H(3) − H(1)3 G(3) = 3
η(15τ)3

η(τ)η(3τ)η(5τ)
, Γ1(15), −B = 4. (3.42)

This is equivalent to Eq. (1.27) in Robin’s thesis [20].
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3.2.9 Type 9

We consider identities of the form

G(1)a H(1)b − H(1)a G(1)b + x = f (τ ),

where f (τ ) is an eta-product, and a, b are positive integers, and x = 0 or x = −1.
findtype9() — determines whether

_G(1)a _H(1)b − _H(1)a _G(1)b + x

is a likely eta-product for x = 0 or x = −1 with a, b smallest such positive integers,
using CHECKRAMIDF to check whether the expression corresponds to a likely eta-
product, and if so uses provemodfuncidBATCH to prove it. The procedure also
returns a list of [a,b,x] which give identities.

> findtype9();
[[11, 1, 1]]

This also produces the following identity with proof:

G(1)11 H(1)1 − H(1)11 G(1)1 − 1 = 11
η(5τ)6

η(τ)6
, Γ1(5), −B = 2. (3.43)

This is Eq. (3.1) in [5].

3.2.10 Type 10

We consider identities of the form

G(a1) H(b1) ± H(a1)G(b1)

G(a2) H∗(b2) ± H(a2)G∗(b2)
= f (τ ),

in which the numerator is not a Type 1 identity, and where f (τ ) is an eta-product,
a1, b1, a2, b2 are positive relatively prime integers, and a1b1 = a2b2.

findtype10(T) — cycles through symbolic expressions

_G(a1) _H(b1) + c1 _H(a1) _G(b1)

_G(a2) _HM(b2) + c2 _H(a2) _GM(b2)
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where 2 ≤ n ≤ T , a1b1 = a2b2 = n, (a1, b1, a2, b2) = 1, a1 > b1, b2 < a2, c1, c2 ∈
{−1, 1}, and

GE(a1) + HE(b1) − (HE(a1) + GE(b1)), GE(a2) + HE(b2) − (HE(a2) + GE(b2)) ∈ Z,

(3.44)
and [a1, b1, c1] is not an element of the list myramtype1 (found earlier by
findtype1), using CHECKRAMIDF to check whether the expression corresponds
to a likely eta-product, and if so uses provemodfuncidBATCH to prove it. The
procedure also returns a list of [a1, b1, c1, a2, b2, c2] which give identities.

> qthreshold:=3000:
> findtype10(120);

[[19, 4,−1, 76, 1, 1], [28, 3,−1, 12, 7, 1], [12, 7,−1, 28, 3, 1]]

This also produces the following identities with proof:

G(19) H(4) − H(19)G(4)

G(76) H∗(1) + H(76)G∗(1)
= η(2τ)η(76τ)

η(4τ)η(38τ)
, Γ1(380), −B = 2160,



G(28) H(3) − H(28)G(3)

G(12) H∗(7) + H(12)G∗(7)
= η(τ)η(4τ)η(6τ)η(14τ)2η(21τ)

η(2τ)2η(3τ)η(7τ)η(28τ)η(42τ)
,

Γ1(420), −B = 2400, (3.45)



G(12) H(7) − H(12)G(7)

G(28) H∗(3) + H(28)G∗(3)
= η(τ)η(6τ)2η(14τ)η(21τ)η(84τ)

η(2τ)η(3τ)η(7τ)η(12τ)η(42τ)2
,

Γ1(420), −B = 2400. (3.46)

Equation (3.45) is (3.38) in [5]. The other type 10 identities appear to be new.

4 More Generalized Ramanujan–Robins Identities

Weconsider generalizedRamanujan–Robins identities associatedwith non-principal
real Dirichlet characters χ mod N for N ≤ 60, that satisfy χ(−1) = 1. We found
David Ireland’s Dirichlet Character Table Generator [14] useful. See the website

http://www.di-mgt.com.au/dirichlet-character-generator.html

http://www.di-mgt.com.au/dirichlet-character-generator.html
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4.1 Mod 8

There is only one non-principal character mod 8 that satisfies χ(−1) = 1, namely
χ(·) = (

8
·
)
. Here

(
8
·
)
is the Kronecker symbol. In this section

G(1) = G

(
1, 8,

(
8

·
))

= 1

η8;1(τ )
= q−11/48

(q, q7; q8)∞
, and

H(1) = H

(
1, 8,

(
8

·
))

= 1

η8;3(τ )
= q13/48

(q3, q5; q8)∞
.

These functions were considered by Robins [20, pp. 16–17]. They are also related
to the Göllnitz–Gordon functions [10, 11]:

S(q) =
∞∑

n=0

(−q; q2)n

(q2; q2)n
qn2 = 1

(q, q4, q7; q8)∞
,

T (q) =
∞∑

n=0

(−q; q2)n

(q2; q2)n
qn2+2n = 1

(q3, q4, q5; q8)∞
.

The ratio of these two functions is the famous Ramanujan–Göllnitz–Gordon contin-
ued fraction [4, Eq. (9.3)]

S(q)

T (q)
=

∞∏

n=0

(1 − q8n+3)(1 − q8n+5)

(1 − q8n+1)(1 − q8n+7)

= 1 + q + q2

1 + q4

1 + q3 + q6

1 + q8

1 + . . .

.

Some of the identities given in this section are due Robins [20], and many are due
to Huang [12]. Any identities that appear to be new are marked 
.

4.1.1 Type 1

G(3) H(1) − G(1) H(3) = η(τ)η(12τ)2

η(3τ)η(8τ)η(24τ)
, Γ1(24), −B = 6,

(4.1)
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G(3) H(1) + G(1) H(3) = η(2τ)η(4τ)2η(6τ)2

η(τ)η(3τ)η(8τ)2η(12τ)
, Γ1(24), −B = 6,

(4.2)

G(5) H(1) − G(1) H(5) = η(2τ)η(10τ)η(20τ)

η(5τ)η(8τ)η(40τ)
, Γ1(40), −B = 20,

(4.3)

G(7) H(1) − G(1) H(7) = η(4τ)η(28τ)

η(8τ)η(56τ)
, Γ1(56), −B = 36,

(4.4)

G(9) H(1) − G(1) H(9) = η(4τ)η(6τ)2η(36τ)

η(3τ)η(8τ)η(12τ)η(72τ)
, Γ1(72), −B = 60,

(4.5)

G(5) H(3) − G(3) H(5) = η(τ)η(4τ)η(6τ)η(10τ)η(15τ)η(60τ)

η(2τ)η(3τ)η(5τ)η(24τ)η(30τ)η(40τ)
,

Γ1(120), −B = 144. (4.6)

4.1.2 Type 2

G(1)G(1) − H(1) H(1) = η(4τ)6

η(τ)η(2τ)η(8τ)4
, Γ1(8), −B = 1,

(4.7)

G(1)G(1) + H(1) H(1) = η(2τ)6

η(τ)3η(4τ)η(8τ)2
, Γ1(8), −B = 1,

(4.8)

G(1)G(3) − H(1) H(3) = η(2τ)2η(6τ)η(12τ)2

η(τ)η(3τ)η(4τ)η(24τ)2
, Γ1(24), −B = 6,

(4.9)

G(1)G(3) + H(1) H(3) = η(3τ)η(4τ)2

η(τ)η(8τ)η(24τ)
, Γ1(24), −B = 6,

(4.10)

G(1)G(5) + H(1) H(5) = η(2τ)η(4τ)η(10τ)

η(τ )η(8τ)η(40τ)
, Γ1(40), −B = 20,

(4.11)

G(1)G(9) + H(1) H(9) = η(2τ)η(3τ)η(12τ)η(18τ)

η(τ )η(8τ)η(9τ)η(72τ)
, Γ1(72), −B = 60,

(4.12)
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G(1)G(15) + H(1) H(15) = η(2τ)η(3τ)η(5τ)η(12τ)η(20τ)η(30τ)

η(τ )η(6τ)η(8τ)η(10τ)η(15τ)η(120τ)
,

Γ1(120), −B = 144. (4.13)

4.1.3 Type 3



G(3)G(5) − H(3) H(5)

G(15) H(1) + H(15)G(1)
= η(4τ)η(60τ)

η(12τ)η(20τ)
, Γ1(120), −B = 256,

(4.14)

G(3)G(5) + H(3) H(5)

G(15) H(1) − H(15)G(1)
= η(8τ)η(12τ)η(20τ)η(120τ)

η(4τ)η(24τ)η(40τ)η(60τ)
,

Γ1(120), −B = 224, (4.15)



G(1)G(15) − H(1) H(15)

G(5) H(3) + H(5)G(3)
= η(4τ)2η(6τ)η(10τ)η(24τ)2η(40τ)2η(60τ)2

η(2τ)η(8τ)2η(12τ)2η(20τ)2η(30τ)η(120τ)2
,

Γ1(120), −B = 192, (4.16)



G(3)G(7) + H(3) H(7)

G(21) H(1) − H(21)G(1)
= η(8τ)η(21τ)η(28τ)η(168τ)

η(7τ)η(24τ)η(56τ)η(84τ)
,

Γ1(168), −B = 528, (4.17)



G(1)G(21) + H(1) H(21)

G(7) H(3) − H(7)G(3)
= η(3τ)η(4τ)η(24τ)η(56τ)

η(τ )η(8τ)η(12τ)η(168τ)
,

Γ1(168), −B = 528, (4.18)

G(1)G(39) + H(1) H(39)

G(13) H(3) − H(13)G(3)
= η(2τ)η(3τ)η(13τ)η(24τ)η(78τ)η(104τ)

η(τ )η(6τ)η(8τ)η(26τ)η(39τ)η(312τ)
,

Γ1(312), −B = 1632, (4.19)

G(1)G(55) + H(1) H(55)

G(11) H(5) − H(11)G(5)
= η(2τ)η(5τ)η(11τ)η(40τ)η(88τ)η(110τ)

η(τ )η(8τ)η(10τ)η(22τ)η(55τ)η(440τ)
,

Γ1(440), −B = 3680. (4.20)

4.1.4 Type 8


 G(1)3 H(3) − H(1)3 G(3) = 3
η(2τ)3η(4τ)η(6τ)η(24τ)2

η(τ)2η(3τ)η(8τ)4
,

Γ1(24), −B = 10. (4.21)
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4.2 Mod 10

There is only one real non-principal character mod 10 that satisfies χ(−1) = 1,
namely the character χ10 induced by the Legendre symbol mod 5. In this section

G(1) = G(1, 10, χ10) = 1

η10;1(τ )
= q−23/60

(q, q9; q10)∞
, and

H(1) = H(1, 10, χ10) = 1

η10;3(τ )
= q13/60

(q3, q7; q10)∞
.

All the identities in this section appear to be new.

4.2.1 Type 1

G(6) H(1) − G(1) H(6) = η(4τ)η(5τ)η(12τ)η(30τ)3

η(6τ)η(10τ)2η(15τ)η(60τ)2
, Γ1(60), −B = 40.

(4.22)

4.2.2 Type 2

G(2)G(3) − H(2) H(3) = η(4τ)η(10τ)3η(12τ)η(15τ)

η(2τ)η(5τ)η(20τ)2η(30τ)2
, Γ1(60), −B = 40,

(4.23)

G(1)G(9) − H(1) H(9) = η(2τ)η(3τ)η(5τ)η(18τ)η(30τ)2η(45τ)

η(τ )η(9τ)η(10τ)2η(15τ)η(90τ)2
,

Γ1(90), −B = 96. (4.24)

4.2.3 Type 5

G∗(1)G∗(4) − H∗(1) H∗(4) = η(τ)η(4τ)3η(10τ)η(16τ)η(40τ)

η(2τ)2η(5τ)η(8τ)2η(20τ)η(80τ)
,

Γ1(80), −B = 64. (4.25)
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4.2.4 Type 6

G(1) H∗(1) − G∗(1) H(1) = 2
η(20τ)2

η(10τ)2
, Γ1(20), −B = 4, (4.26)

G(1) H∗(1) + G∗(1) H(1) = 2
η(4τ)2

η(2τ)η(10τ)
, Γ1(20), −B = 4. (4.27)

4.2.5 Type 8

G(1)2 H(2) − H(1)2 G(2) = 2
η(2τ)η(5τ)η(20τ)2

η(τ)η(10τ)3
, Γ1(20), −B = 4,

(4.28)

G(1)2 H(2) + H(1)2 G(2) = 2
η(4τ)2η(5τ)

η(τ )η(10τ)2
, Γ1(20), −B = 4,

(4.29)

G(1)3 H(3) − H(1)3 G(3) = 3
η(2τ)3η(5τ)2η(6τ)η(15τ)η(30τ)

η(τ )2η(3τ)η(10τ)5
,

Γ1(30), −B = 16. (4.30)

4.3 Mod 12

There is only one non-principal character mod 12 that satisfies χ(−1) = 1, namely
χ(·) = (

12
·
)
. In this section

G(1) = G

(
1, 12,

(
12

·
))

= 1

η12;1(τ )
= q−13/24

(q, q11; q12)∞
, and

H(1) = H

(
1, 12,

(
12

·
))

= 1

η12;5(τ )
= q11/24

(q5, q7; q12)∞
.

These functions were considered by Robins [20, p17], who found (4.33), (4.34),
(4.39), (4.40). The remaining identities appear to be new and are marked 
.
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4.3.1 Type 1


 G(2) H(1) − G(1) H(2) = η(τ)η(4τ)η(6τ)

η(2τ)η(12τ)2
, Γ1(24), −B = 4,

(4.31)


 G(2) H(1) + G(1) H(2) = η(3τ)2η(4τ)

η(τ )η(12τ)2
, Γ1(24), −B = 4,

(4.32)

G(3) H(1) − G(1) H(3) = η(2τ)η(18τ)

η(12τ)η(36τ)
, Γ1(36), −B = 12,

(4.33)

G(3) H(1) + G(1) H(3) = η(4τ)η(6τ)5η(9τ)2

η(2τ)η(3τ)2η(12τ)3η(18τ)2
,

Γ1(36), −B = 12, (4.34)


 G(4) H(1) − G(1) H(4) = η(3τ)η(16τ)

η(12τ)η(48τ)
, Γ1(48), −B = 24, (4.35)


 G(5) H(1) − G(1) H(5) = η(4τ)η(6τ)η(10τ)η(15τ)

η(5τ)η(12τ)2η(60τ)
,

Γ1(60), −B = 40, (4.36)


 G(3) H(2) − G(2) H(3) = η(τ)η(6τ)η(8τ)η(9τ)η(12τ)η(72τ)

η(2τ)η(3τ)η(24τ)2η(36τ)2
,

Γ1(72), −B = 48, (4.37)


 G(6) H(1) − G(1) H(6) = η(8τ)η(9τ)

η(12τ)η(72τ)
, Γ1(72), − B = 60. (4.38)

4.3.2 Type 2

G(1)2 − H(1)2 = η(2τ)3η(6τ)3

η(τ)2η(12τ)4
, Γ1(12), −B = 2,

(4.39)
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G(1)2 + H(1)2 = η(2τ)η(3τ)4η(4τ)

η(τ )2η(6τ)η(12τ)3
, Γ1(12), −B = 2,

(4.40)


 G(1)G(2) − H(1) H(2) = η(3τ)2η(8τ)2

η(τ)η(12τ)η(24τ)2
, Γ1(24), −B = 8,

(4.41)


 G(1)G(3) − H(1) H(3) = η(2τ)η(4τ)η(9τ)η(18τ)

η(τ )η(12τ)η(36τ)2
, Γ1(36), −B = 18,

(4.42)


 G(1)G(5) − H(1) H(5) = η(2τ)η(3τ)η(20τ)η(30τ)

η(τ )η(12τ)η(60τ)2
, Γ1(60), −B = 40.

(4.43)

4.3.3 Type 3

G(1)G(10) − H(1) H(10)

G(5) H(2) − H(5)G(2)
= η(2τ)η(5τ)η(24τ)2η(60τ)2

η(τ)η(10τ)η(12τ)2η(120τ)2
,

Γ1(120), −B = 256, (4.44)

G(5)G(7) − H(5) H(7)

G(35) H(1) − H(35)G(1)
= η(12τ)η(420τ)

η(60τ)η(84τ)
, Γ1(420), −B = 3648,

(4.45)

G(1)G(35) − H(1) H(35)

G(7) H(5) − H(7)G(5)

= η(3τ)η(4τ)η(5τ)η(7τ)η(60τ)2η(84τ)2η(105τ)η(140τ)

η(τ )η(12τ)2η(15τ)η(20τ)η(21τ)η(28τ)η(35τ)η(420τ)2
,

Γ1(420), −B = 2880. (4.46)

4.3.4 Type 4


 G∗(2) H∗(1) − G∗(1) H∗(2) = η(τ)η(6τ)η(8τ)3η(48τ)

η(2τ)η(4τ)η(16τ)η(24τ)3
,

Γ1(48), −B = 24. (4.47)
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4.3.5 Type 5


 G∗(1)G∗(2) − H∗(1) H∗(2) = η(τ)η(6τ)η(16τ)

η(2τ)η(12τ)η(48τ)
, Γ1(48), −B = 24.

(4.48)

4.3.6 Type 6


 G(1) H∗(1) − G∗(1) H(1) = 2
η(4τ)2η(6τ)2η(24τ)3

η(2τ)η(8τ)η(12τ)5
, Γ1(24), −B = 4,

(4.49)


 G(1) H∗(1) + G∗(1) H(1) = 2
η(4τ)η(6τ)2η(8τ)η(24τ)

η(2τ)η(12τ)4
, Γ1(24), −B = 4.

(4.50)

4.3.7 Type 7


 G∗(1)G(1) − H∗(1) H(1) = η(8τ)η(12τ)4

η(4τ)η(6τ)η(24τ)3
, Γ1(24), −B = 4,

(4.51)


 G∗(1)G(1) + H∗(1) H(1) = η(4τ)4η(6τ)

η(2τ)2η(8τ)η(12τ)η(24τ)
, Γ1(24), −B = 4.

(4.52)

4.3.8 Type 8


 G(1)2 H(2) − H(1)2 G(2) = 2
η(3τ)η(4τ)2η(6τ)η(24τ)3

η(τ)η(8τ)η(12τ)5
,

Γ1(24), −B = 4, (4.53)


 G(1)2 H(2) + H(1)2 G(2) = 2
η(3τ)η(4τ)η(6τ)η(8τ)η(24τ)

η(τ )η(12τ)4
,

Γ1(24), −B = 4, (4.54)
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 G(1)3 H(3) − H(1)3 G(3) = 3
η(2τ)2η(3τ)η(4τ)η(6τ)η(9τ)η(36τ)2

η(τ)2η(12τ)5η(18τ)
,

Γ1(36), −B = 18. (4.55)

4.4 Mod 13

There is only one non-principal character mod 13 that satisfies χ(−1) = 1, namely
χ(·) = ( ·

13

)
. In this section

G(1) = G

(
1, 13,

( ·
13

))
= 1

η13;1,3,4(τ )
= q−1/4

(q, q3, q4, q9, q10, q12; q13)∞
, and

H(1) = H

(
1, 13,

( ·
13

))
= 1

η13;2,5,6(τ )
= q3/4

(q2, q5, q6, q7, q8, q11; q13)∞
.

These functions were considered by Robins [20, p. 18], who found the one identity
(4.56). The remaining four identities appear to be new and are marked 
.

4.4.1 Type 1

G(3) H(1) − G(1) H(3) = 1, Γ1(39), −B = 24. (4.56)

4.4.2 Type 3



G(1)G(2) + H(1) H(2)

G(2) H(1) − H(2)G(1)
= η(2τ)2η(13τ)2

η(τ)2η(26τ)2
, Γ1(26), −B = 18,

(4.57)



G(2)G(5) + H(2) H(5)

G(10) H(1) − H(10)G(1)
= 1, Γ1(130), −B = 432,

(4.58)
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G(1)G(14) + H(1) H(14)

G(7) H(2) − H(7)G(2)
= η(2τ)η(7τ)η(26τ)η(91τ)

η(τ )η(13τ)η(14τ)η(182τ)
,

Γ1(182), −B = 864. (4.59)

4.4.3 Type 9


 G(1)3 H(1) − H(1)3 G(1) − 1 = 3
η(13τ)2

η(τ)2
, Γ1(13), −B = 6. (4.60)

4.5 Mod 15

There is only one real non-principal character mod 15 that satisfies χ(−1) = 1,
namely the one induced by the Legendre symbol mod 5:

χ15(n) =

⎧
⎪⎨

⎪⎩

1, n ≡ ±1, 4 (mod 15),

−1, n ≡ ±2, 7 (mod 15),

0, otherwise.

Thus in this section

G(1) = G(1, 15, χ15) = 1

η15;1,4(τ )
= q−17/30

(q, q4, q11, q14; q15)∞
, and

H(1) = H(1, 15, χ15) = 1

η15;2,7(τ )
= q7/30

(q2, q7, q8, q13; q15)∞
.

All the identities in this section appear to be new.

4.5.1 Type 2

G(1)G(4) − H(1) H(4) = η(2τ)η(3τ)η(10τ)η(12τ)η(30τ)2

η(τ)η(4τ)η(15τ)2η(60τ)2
,

Γ1(60), −B = 48. (4.61)
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4.5.2 Type 3

G(2)G(3) − H(2) H(3)

G(6) H(1) − H(6)G(1)
= η(6τ)η(10τ)η(15τ)3η(90τ)

η(3τ)η(5τ)η(30τ)3η(45τ)
, Γ1(90), −B = 120.

(4.62)

4.5.3 Type 6

G(1) H∗(1) − G∗(1) H(1) = 2
η(4τ)η(6τ)3η(10τ)η(60τ)2

η(2τ)2η(12τ)η(30τ)4
, Γ1(60), −B = 48.

(4.63)

4.5.4 Type 8

G(1)2 H(2) + H(1)2 G(2) = 2
η(3τ)2η(6τ)η(10τ)2

η(τ)η(2τ)η(15τ)3
, Γ1(30), −B = 12.

(4.64)

4.6 Mod 17

There is only one non-principal character mod 17 that satisfies χ(−1) = 1, namely
χ(·) = ( ·

17

)
. In this section

G(1) = G

(
1, 17,

( ·
17

))
= 1

η17;1,2,4,8(τ )

= q−2/3

(q, q2, q4, q8, q9, q13, q15, q16; q17)∞
, and

H(1) = H

(
1, 17,

( ·
17

))
= 1

η17;3,5,6,7(τ )

= q4/3

(q3, q5, q6, q7, q10, q11, q12, q14; q17)∞
.
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These functions were not considered by Robins [20]. Nonetheless we find one
identity.

4.6.1 Type 1

G(2) H(1) − G(1) H(2) = 1, Γ1(34), −B = 16. (4.65)

4.7 Mod 21

There is only one non-principal character mod 21 that satisfies χ(−1) = 1, namely
χ(·) = (

21
·
)
. In this section

G(1) = G

(
1, 21,

(
21

·
))

= 1

η21;1,4,5(τ )
= q−5/4

(q, q4, q5, q16, q17, q20; q21)∞
, and

H(1) = H

(
1, 21,

(
21

·
))

= 1

η21;2,8,10(τ )
= q3/4

(q2, q8, q10, q11, q13, q19; q21)∞
.

4.7.1 Type 1

G(2) H(1) − G(1) H(2) = η(3τ)η(6τ)η(7τ)2

η(2τ)η(21τ)3
, Γ1(42), −B = 24,

(4.66)

G(4) H(1) − G(1) H(4) = η(6τ)2η(7τ)η(28τ)

η(2τ)η(21τ)η(42τ)η(84τ)
, Γ1(84), −B = 96.

(4.67)

4.7.2 Type 2

G(1)G(2) − H(1) H(2) = η(3τ)η(6τ)η(14τ)2

η(τ)η(42τ)3
, Γ1(42), −B = 24.

(4.68)
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4.7.3 Type 7

G∗(1)G(1) − H∗(1) H(1) = η(6τ)2η(14τ)3η(84τ)

η(2τ)η(28τ)η(42τ)4
, Γ1(84), −B = 96.

(4.69)

4.8 Mod 24

There are three real non-principal characters mod 24 that satisfy χ(−1) = 1.

(i) The character χ24,1(·) induced by
(
8
·
)
.

(ii) The character χ24,2(·) = (
12
·
)
covered previously in Sect. 4.3.

(iii) The character χ24,3(·) = (
24
·
)
.

4.8.1 χ24,1

We have

G(1) = G(1, 24, χ24,1) = 1

η24;1,7(τ )
= q−25/24

(q, q7, q17, q23; q24)∞
, and

H(1) = H(1, 24, χ24,1) = 1

η24;5,11(τ )
= q23/24

(q5, q11, q13, q19; q24)∞
.

Type 1

G(2) H(1) − G(1) H(2) = η(3τ)η(12τ)2

η(6τ)η(24τ)2
, Γ1(48), −B = 24, (4.70)

G(2) H(1) + G(1) H(2) = η(4τ)3η(6τ)4

η(2τ)2η(3τ)η(8τ)η(12τ)2η(24τ)
,

Γ1(48), −B = 24, (4.71)

G(3) H(1) − G(1) H(3) = η(4τ)η(6τ)2η(9τ)η(36τ)

η(3τ)η(8τ)η(12τ)η(18τ)η(72τ)
,

Γ1(72), −B = 60. (4.72)
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Type 2

G(1)G(1) − H(1) H(1) = η(2τ)2η(3τ)2η(4τ)η(12τ)2

η(τ)2η(6τ)η(8τ)η(24τ)3
, Γ1(24), −B = 12.

(4.73)

Type 6

G(1) H∗(1) − G∗(1) H(1) = 2
η(4τ)2η(12τ)2η(48τ)2

η(2τ)η(8τ)η(24τ)4
, Γ1(48), −B = 24,

(4.74)

G(1) H∗(1) + G∗(1) H(1) = 2
η(4τ)η(6τ)2η(16τ)η(48τ)

η(2τ)η(8τ)η(24τ)3
, Γ1(48), −B = 24.

(4.75)

Type 7

G∗(1)G(1) − H∗(1) H(1) = η(4τ)2η(24τ)2

η(2τ)η(8τ)η(48τ)2
, Γ1(48), −B = 24,

(4.76)

G∗(1)G(1) + H∗(1) H(1) = η(6τ)2η(8τ)2

η(2τ)η(12τ)η(16τ)η(48τ)
, Γ1(48), −B = 24.

(4.77)

Type 8

G(1)2 H(2) − H(1)2 G(2) = 2
η(3τ)η(4τ)2η(12τ)2η(48τ)2

η(τ)η(6τ)η(8τ)η(24τ)4
,

Γ1(48), −B = 24, (4.78)

G(1)2 H(2) + H(1)2 G(2) = 2
η(3τ)η(4τ)η(6τ)η(16τ)η(48τ)

η(τ )η(8τ)η(24τ)3
,

Γ1(48), −B = 24. (4.79)

Type 10

G(3) H(2) + H(3)G(2)

G(6) H∗(1) − H(6)G∗(1)
= η(4τ)η(6τ)3η(9τ)η(24τ)2η(36τ)η(144τ)2

η(2τ)η(3τ)η(12τ)2η(18τ)2η(48τ)2η(72τ)2
,

Γ1(144), −B = 360. (4.80)
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4.8.2 χ24,3

We have

G(1) = G(1, 24, χ24,3) = 1

η24;1,5(τ )
= q−37/24

(q, q5, q19, q23; q24)∞
, and

H(1) = H(1, 24, χ24,3) = 1

η24;7,11(τ )
= q35/24

(q7, q11, q13, q17; q24)∞
.

Type 1

G(2) H(1) − G(1) H(2) = η(3τ)η(4τ)2

η(2τ)η(24τ)2
, Γ1(48), −B = 24,

(4.81)

G(2) H(1) + G(1) H(2) = η(6τ)3η(8τ)η(12τ)

η(2τ)η(3τ)η(24τ)3
, Γ1(48), −B = 24,

(4.82)

G(3) H(1) − G(1) H(3) = η(6τ)2η(8τ)η(9τ)η(36τ)

η(3τ)η(18τ)η(24τ)2η(72τ)
, Γ1(72), −B = 72.

(4.83)

Type 2

G(1)G(1) − H(1) H(1) = η(2τ)2η(3τ)2η(8τ)η(12τ)3

η(τ)2η(6τ)η(24τ)5
, Γ1(24), −B = 12.

(4.84)

Type 6

G(1) H∗(1) − G∗(1) H(1) = 2
η(6τ)2η(8τ)2η(12τ)η(48τ)3

η(2τ)η(16τ)η(24τ)6
, Γ1(48), −B = 24,

(4.85)

G(1) H∗(1) + G∗(1) H(1) = 2
η(4τ)η(8τ)η(12τ)3η(48τ)2

η(2τ)η(24τ)6
, Γ1(48), −B = 24.

(4.86)

Type 7

G∗(1)G(1) − H∗(1) H(1) = η(4τ)η(6τ)2η(16τ)η(24τ)3

η(2τ)η(8τ)η(12τ)2η(48τ)3
, Γ1(48), −B = 24,

(4.87)
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G∗(1)G(1) + H∗(1) H(1) = η(4τ)η(8τ)η(12τ)

η(2τ)η(48τ)2
, Γ1(48), −B = 24.

(4.88)

Type 8

G(1)2 H(2) − H(1)2 G(2) = 2
η(3τ)η(6τ)η(8τ)2η(12τ)η(48τ)3

η(τ)η(16τ)η(24τ)6
,

Γ1(48), −B = 24, (4.89)

G(1)2 H(2) + H(1)2 G(2) = 2
η(3τ)η(4τ)η(8τ)η(12τ)3η(48τ)2

η(τ)η(6τ)η(24τ)6
,

Γ1(48), −B = 24. (4.90)

4.9 Mod 26

There is only one non-principal character mod 26 that satisfies χ(−1) = 1, namely
the character χ26 induced by

( ·
13

)
. In this section

G(1) = G(1, 26, χ26) = 1

η26;1,3,9(τ )
= q−7/4

(q, q3, q9, q17, q23, q25; q26)∞
, and

H(1) = H(1, 26, χ26) = 1

η26;5,7,11(τ )
= q5/4

(q5, q7, q11, q15, q19, q21; q26)∞
.

We find only one identity.

4.9.1 Type 10

G(3) H(2) − H(3)G(2)

G(6) H∗(1) + H(6)G∗(1)
= η(26τ)3η(156τ)3

η(52τ)3η(78τ)3
, Γ1(156), −B = 576.

(4.91)

4.10 Mod 28

There is only one non-principal character mod 28 that satisfies χ(−1) = 1, namely
the character χ(·) = (

28
·
)
. In this section
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G(1) = G

(
1, 28,

(
28

·
))

= 1

η28;1,3,9(τ )
= q−17/8

(q, q3, q9, q19, q25, q27; q28)∞
, and

H(1) = H

(
1, 28,

(
28

·
))

= 1

η28;5,11,13(τ )
= q15/8

(q5, q11, q13, q15, q17, q23; q28)∞
.

4.10.1 Type 1

G(2) H(1) − G(1) H(2) = η(4τ)2η(7τ)η(14τ)

η(2τ)η(28τ)3
, Γ1(56), −B = 48.

(4.92)

4.10.2 Type 6

G(1) H∗(1) − G∗(1) H(1) = 2
η(4τ)4η(14τ)3η(56τ)3

η(2τ)2η(8τ)η(28τ)7
, Γ1(56), −B = 48.

(4.93)

4.10.3 Type 7

G∗(1)G(1) − H∗(1) H(1) = η(4τ)η(8τ)η(28τ)2

η(2τ)η(56τ)3
, Γ1(56), −B = 48. (4.94)

4.10.4 Type 8

G(1)2 H(2) − H(1)2 G(2) = 2
η(4τ)4η(7τ)η(14τ)2η(56τ)3

η(τ)η(2τ)η(8τ)η(28τ)7
, Γ1(56), −B = 48.

(4.95)

4.11 Mod 30

There is only one real non-principal character mod 30 that satisfies χ(−1) = 1,
namely the character χ30 induced by the Legendre symbol mod 5. Thus in this
section
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G(1) = G(1, 30, χ30) = 1

η30;1,11(τ )
= q−31/30

(q, q11, q19, q29; q30)∞
, and

H(1) = H(1, 30, χ30) = 1

η30;7,13(τ )
= q41/30

(q7, q13, q17, q23; q30)∞
.

4.11.1 Type 6

G(1) H∗(1) − G∗(1) H(1) = 2
η(4τ)η(6τ)2η(60τ)2

η(2τ)η(12τ)η(30τ)3
, Γ1(60), −B = 48.

(4.96)

4.11.2 Type 8

G(1)2 H(2) − H(1)2 G(2) = 2
η(3τ)η(4τ)η(5τ)η(6τ)η(60τ)2

η(τ)η(10τ)η(12τ)η(15τ)η(30τ)2
,

Γ1(60), −B = 48. (4.97)

4.12 Mod 34

There is only one real non-principal character mod 34 that satisfies χ(−1) = 1,
namely the character χ34 induced by the Legendre symbol mod 17.

G(1) = G(1, 34, χ34) = 1

η34;1,9,13,15(τ )

= q2/3

(q, q9, q13, q15, q19, q21, q25, q33; q34)∞
, and

H(1) = H(1, 34, χ34) = 1

η34;3,5,7,11(τ )

= q−4/3

(q3, q5, q7, q11, q23, q27, q29, q31; q34)∞
.
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4.12.1 Type 1

G(2) H(1) − G(1) H(2) = −η(2τ)2η(17τ)

η(τ )η(34τ)2
, Γ1(68), −B = 64. (4.98)

4.12.2 Type 7

G∗(1)G(1) − H∗(1) H(1) = − η(4τ)

η(68τ)
, Γ1(68), −B = 64. (4.99)

4.12.3 Type 9

G(1)2 H(1) − H(1)2 G(1) = −η(2τ)2η(17τ)

η(τ )η(34τ)2
, Γ1(34), −B = 16. (4.100)

4.13 Mod 40

There are three real non-principal characters mod 40 that satisfy χ(−1) = 1.

(i) The character χ40,1(·) induced by
( ·
5

)
. This is actually a character mod 10. See

Sect. 4.2.
(ii) The character χ40,2(·) induced by

(
8
·
)
.

(iii) The character χ40,3(·) = (
40
·
)
.

4.13.1 χ40,2

G(1) = G(1, 40, χ40,2) = 1

η40;1,7,9,17(τ )

= q−19/12

(q, q7, q9, q17, q23, q31, q33, q39; q40)∞
, and
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H(1) = H(1, 40, χ40,2) = 1

η40;3,11,13,19(τ )

= q17/12

(q3, q11, q13, q19, q21, q27, q29, q37; q40)∞
.

Type 1

G(2) H(1) − G(1) H(2) = η(4τ)2η(10τ)2

η(2τ)η(8τ)η(20τ)η(40τ)
, Γ1(80), −B = 80.

(4.101)

Type 6

G(1) H∗(1) + G∗(1) H(1) = 2
η(8τ)3η(10τ)η(20τ)3η(80τ)3

η(2τ)η(16τ)η(40τ)8
,

Γ1(80), −B = 112. (4.102)

Type 7

G∗(1)G(1) + H∗(1) H(1) = η(4τ)η(8τ)η(10τ)

η(2τ)η(16τ)η(80τ)
, Γ1(80), −B = 80.

(4.103)
Type 8

G(1)2 H(2) + H(1)2 G(2) = 2
η(4τ)2η(5τ)η(16τ)η(20τ)η(80τ)

η(τ )η(8τ)2η(40τ)3
,

Γ1(80), −B = 80. (4.104)

4.13.2 χ40,3

G(1) = G(1, 40, χ40,3) = 1

η40;1,3,9,13(τ )
,

= q−43/12

(q, q3, q9, q13, q27, q31, q37, q39; q40)∞
, and

H(1) = H(1, 40, χ40,3) = 1

η40;7,11,17,19(τ )

= q41/12

(q7, q11, q17, q19, q21, q23, q29, q33; q40)∞
.
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Type 1

G(2) H(1) − G(1) H(2) = η(4τ)η(8τ)η(10τ)2

η(2τ)η(40τ)3
, Γ1(80), −B = 112.

(4.105)

Type 6

G(1) H∗(1) + G∗(1) H(1) = 2
η(8τ)3η(10τ)η(20τ)3η(80τ)3

η(2τ)η(16τ)η(40τ)8
,

Γ1(80), −B = 112. (4.106)

Type 7

G∗(1)G(1) + H∗(1) H(1) = η(4τ)η(10τ)η(16τ)η(40τ)

η(2τ)η(80τ)3
, Γ1(80), −B = 112.

(4.107)
Type 8

G(1)2 H(2) + H(1)2 G(2) = 2
η(5τ)η(8τ)3η(20τ)3η(80τ)3

η(τ)η(16τ)η(40τ)8
,

Γ1(80), −B = 112. (4.108)

4.14 Mod 42

There is only one real non-principal character mod 42 that satisfies χ(−1) = 1,
namely the one induced by the mod 21 character χ42(·) = ( ·

3

) ( ·
7

)
.

In this section

G(1) = G(1, 42, χ42) = 1

η42;1,5,17(τ )
= q−11/4

(q, q5, q17, q25, q37, q41; q42)∞
, and

H(1) = H(1, 42, χ42) = 1

η42;11,13,19(τ )
= q13/4

(q11, q13, q19, q23, q29, q31; q42)∞
.

4.14.1 Type 1

G(2) H(1) − G(1) H(2) = η(4τ)η(6τ)2η(7τ)

η(2τ)η(12τ)η(21τ)η(42τ)
, Γ1(84), −B = 96.

(4.109)
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4.14.2 Type 7

G∗(1)G(1) − H∗(1) H(1) = η(4τ)η(6τ)η(28τ)

η(2τ)η(84τ)2
, Γ1(84), −B = 96.

(4.110)

4.15 Mod 56

There are three real non-principal characters mod 56 that satisfy χ(−1) = 1.

(i) The character
(
56
·
)
.

(ii) The character induced by the mod 28 character
(
28
·
)
. See Sect. 4.10.

(iii) The character induced by the mod 8 character
(
8
·
)
.

Only the third character led to new identities. In this section we assume χ is the mod
56 character induced by

(
8
·
)
. Thus in this section

G(1, 56, χ) = G(1) = 1

η56;1,9,15,17,23,25(τ )

= q11/8

(q, q9, q15, q17, q23, q25, q31, q33, q39, q41, q47, q55; q56)∞
, and

H(1, 56, χ) = H(1) = 1

η56;3,5,11,13,19,27(τ )

= q−13/8

(q3, q5, q11, q13, q19, q27, q29, q37, q43, q45, q51, q53; q56)∞

4.15.1 Type 1

G(2) H(1) + G(1) H(2) = η(2τ)η(4τ)η(14τ)

η(τ )η(8τ)η(56τ)
, Γ1(112), −B = 144.

(4.111)
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4.15.2 Type 6

G(1) H∗(1) − G∗(1) H(1) = 2
η(4τ)η(14τ)η(16τ)η(112τ)

η(8τ)2η(56τ)2
,

Γ1(112), −B = 144. (4.112)

4.15.3 Type 7

G∗(1)G(1) − H∗(1) H(1) = − η(8τ)η(14τ)η(56τ)

η(16τ)η(28τ)η(112τ)
, Γ1(112), −B = 144.

(4.113)

4.15.4 Type 8

G(1)2 H(2) − H(1)2 G(2) = 2
η(2τ)η(4τ)η(7τ)η(16τ)η(112τ)

η(τ )η(8τ)2η(56τ)2
,

Γ1(112), −B = 144. (4.114)

4.16 Mod 60

There are three real non-principal characters mod 60 that satisfy χ(−1) = 1.

(i) The character induced by
( ·
5

)
.

(ii) The character χ60,2(·) = (
60
·
)
.

(iii) The character χ60,3(·) induced by the mod 12 character
(
12
·
)
.

Only (ii), (iii) seem to lead to new identities.

4.16.1 χ60,2

In this section

G(1, 60, χ60,2) = G(1) = 1

η60;1,7,11,17(τ )

= q−35/6

(q, q7, q11, q17, q43, q49, q53, q59; q60)∞
, and
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H(1, 60, χ60,2) = H(1) = 1

η60;13,19,23,29(τ )

= q37/6

(q13, q19, q23, q29, q31, q37, q41, q47; q60)∞
.

Type 1

G(2) H(1) − G(1) H(2) = η(4τ)η(6τ)η(10τ)η(30τ)

η(2τ)η(60τ)3
, Γ1(120), −B = 192.

(4.115)

Type 6

G(1) H∗(1) − G∗(1) H(1) = 2
η(4τ)η(12τ)2η(20τ)2η(30τ)3η(120τ)4

η(2τ)η(24τ)η(40τ)η(60τ)9
,

Γ1(120), −B = 192. (4.116)

Type 7

G∗(1)G(1) − H∗(1) H(1) = η(4τ)η(6τ)η(10τ)η(24τ)η(40τ)η(60τ)3

η(2τ)η(12τ)η(20τ)η(30τ)η(120τ)4
,

Γ1(120), −B = 192. (4.117)

Type 8

G(1)2 H(2) − H(1)2 G(2)

= 2
η(3τ)η(4τ)η(5τ)η(12τ)2η(20τ)2η(30τ)4η(120τ)4

η(τ)η(6τ)η(10τ)η(15τ)η(24τ)η(40τ)η(60τ)9
,

Γ1(120), −B = 192. (4.118)

4.16.2 χ60,3

In this section

G(1, 60, χ60,3) = G(1) = 1

η60;1,11,13,23(τ )

= q−17/6

(q, q11, q13, q23, q37, q47, q49, q59; q60)∞
, and
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H(1, 60, χ60,3) = H(1) = 1

η60;7,17,19,29(τ )

= q19/6

(q7, q17, q19, q29, q31, q41, q43, q53; q60)∞
.

Type 1

G(2) H(1) − G(1) H(2) = η(4τ)η(6τ)2η(10τ)

η(2τ)η(12τ)2η(60τ)
, Γ1(120), −B = 160.

(4.119)

Type 6

G(1) H∗(1) − G∗(1) H(1) = 2
η(4τ)η(6τ)2η(20τ)2η(24τ)η(30τ)η(120τ)2

η(2τ)η(12τ)3η(40τ)η(60τ)4
,

Γ1(120), −B = 160. (4.120)

Type 7

G∗(1)G(1) − H∗(1) H(1) = η(4τ)η(6τ)η(10τ)η(40τ)η(60τ)2

η(2τ)η(20τ)η(24τ)η(30τ)η(120τ)2
,

Γ1(120), −B = 160. (4.121)

Type 8

G(1)2 H(2) − H(1)2 G(2)

= 2
η(3τ)η(4τ)η(5τ)η(6τ)η(20τ)2η(24τ)η(30τ)2η(120τ)2

η(τ)η(10τ)η(12τ)3η(15τ)η(40τ)η(60τ)4
,

Γ1(120), −B = 160. (4.122)
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The Generators of all Polynomial
Relations Among Jacobi Theta Functions

Ralf Hemmecke, Cristian-Silviu Radu and Liangjie Ye

Abstract In this article, we consider the classical Jacobi theta functions θi (z),
i = 1, 2, 3, 4 and show that the ideal of all polynomial relations among them with
coefficients in K := Q(θ2(0|τ ), θ3(0|τ ), θ4(0|τ )) is generated by just two polyno-
mials, that correspond to well known identities among Jacobi theta functions.

1 Introduction

Let θ j (z|τ ) ( j = 1, . . . , 4, z ∈ C, τ ∈ H) denote the four classical Jacobi theta func-
tions where H denotes the upper complex half plane. In this article we show that if
p ∈ K [T1, T2, T3, T4] is a polynomial with coefficients in K := Q(θ2(0|τ ), θ3(0|τ ),

θ4(0|τ )) such that for every z ∈ C and every τ ∈ H

p(θ1(z|τ ), θ2(z|τ ), θ3(z|τ ), θ4(z|τ )) = 0, (1)

then p = p1b1 + p2b2 for some p1, p2 ∈ K [T1, T2, T3, T4] where

b1 := θ2(0|τ )2 T 2
2 − θ3(0|τ )2 T 2

3 + θ4(0|τ )2 T 2
4 , (2)

b2 := θ2(0|τ )2 T 2
1 + θ4(0|τ )2 T 2

3 − θ3(0|τ )2 T 2
4 . (3)
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Note that b1 and b2 correspond to [1, Eq. 20.7.1] and [1, Eq. 20.7.2], respectively.
The polynomials b1 and b2 form a Gröbner basis of the ideal of all such relations.

Thus, one can check whether a relation of the form (1) holds by simply reducing p
by b1 and b2. The result of the reduction is zero if and only if the identity holds.

After introducing some notation, we give the precise formulation of our problem
in Sect. 2. In Sect. 3, we reduce the problemof finding relations among theta functions
to finding relations among quotients of theta functions that, additionally are elliptic.
In Sect. 4, we then show that the ideal of relations among elliptic theta quotients is
generated by two elements. These two elements are then used to setup the generators
for the ideal of polynomial relations among Jacobi theta functions in Sect. 5. To
actually, compute the Gröbner basis of this ideal, we show computability of K in
Sect. 6. Eventually, we show the steps to compute the polynomials b1 and b2 in the
computer algebra system FriCAS.

2 Notation and Problem Formulation

The classical Jacobi theta functions θ j (z|τ ) ( j = 1, . . . , 4) are defined as follows.

Definition 1 (cf. [1, Eq. 20.2(i)]) Let τ ∈ H := {z ∈ C | �(z) > 0 } and q := eπiτ ,
then

θ1(z, q) := θ1(z|τ ) := 2
∞∑

n=0

(−1)nq(n+ 1
2 )2 sin((2n + 1)z),

θ2(z, q) := θ2(z|τ ) := 2
∞∑

n=0

q(n+ 1
2 )2 cos((2n + 1)z),

θ3(z, q) := θ3(z|τ ) := 1 + 2
∞∑

n=1

qn2 cos(2nz),

θ4(z, q) := θ4(z|τ ) := 1 + 2
∞∑

n=1

(−1)nqn2 cos(2nz).

For simplicity, we write θ j (z) := θ j (z|τ ).
Throughout the paper, we use multi-index notation, i.e., for n ∈ N, α ∈ Zn and

objects x1, . . . , xn we simply write xα instead of xα1
1 . . . xαn

n . We mostly use n = 3
or n = 4. In particular, if α ∈ Z4,

θ(z)α := θ1(z)
α1θ2(z)

α2θ3(z)
α3θ4(z)

α4 . (4)

If L is a ring and S is a subset of an L-module, we denote by 〈S〉L the set of
L-linear combinations of elements of S. If L is a field, then 〈S〉L is a vector space.
If S ⊂ L , then 〈S〉L is an ideal of L .
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We define the field K := Q(θ2(0), θ3(0), θ4(0)) and set

θ := {θi (z) | i = 1, 2, 3, 4 } ,

T := {T1, T2, T3, T4} ,

φ : K [T ] → K [θ], Ti 	→ θi (z), i = 1, 2, 3, 4.

The problem we are dealing with in this article is to determine (algorithmically)
the set ker φ ⊂ K [T ]. Note that ker φ is an ideal of K [T ] and, thus, by Hilbert’s
basis theorem, finitely generated.

In order to describe ker φ, we first consider the map

Φ : K [T, T−1] → K [θ, θ−1], Ti 	→ θi (z), i = 1, 2, 3, 4.

Note that φ = Φ|K [T ] and ker φ = kerΦ ∩ K [T ]. Define L := K [T, T−1]. For p ∈
L , we sometimes write p(θ) instead of Φ(p).

3 Reduction to Elliptic Theta Quotients

Definition 2 Ameromorphic function f onC is called elliptic, if there are two non-
complex numbers ω1 and ω2 with ω1

ω2
/∈ R such that f (z + ω1) = f (z) and f (z +

ω2) = f (z) for all z ∈ C.

In [2], an algorithmwas given to decide whether f = 0 for f ∈ K [θ] by reducing
the problem to such f that are additionally, “quasi-elliptic” functions.More precisely,
for our problem it is enough to find all relations among quotients of theta functions
that are elliptic.

In view of the following lemma, we can connect theta functions with elliptic
functions. Note that whenever we say elliptic function, we mean elliptic function
with respect to the argument z.

Lemma 1 (cf. [3, p. 465]) Let N := e−πiτ−2i z . For j ∈ {1, 2, 3, 4} we have θ j (z +
πτ |τ ) = ε1( j)θ j (z|τ ) and θ j (z + π|τ ) = ε2( j)θ j (z|τ ) where ε1( j) and ε2( j) are
defined in the following table.

j 1 2 3 4
ε1( j) −N N N −N
ε2( j) −1 −1 1 1

Definition 3 (cf. [2, Def. 2.2]) Given α,β ∈ Z4, we say that α and β are similar,
denoted byα ∼ β, ifα1 + α2 + α3 + α4 = β1 + β2 + β3 + β4,α1 + α2 ≡ β1 + β2

(mod 2), and α1 + α4 ≡ β1 + β4 (mod 2).
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It is easy to prove that ∼ is a congruence relation on the Z-module Z4.
The conditions inDefinition 3 have been chosen according to the table inLemma1,

so that θ(z)α is elliptic if α ∼ 0, cf. Lemma 3.1 in [2]. Similar to Definition 4.1 in
[2] we define R∗ := {

α ∈ Z4
∣∣α ∼ 0

}
.

Theorem 2.7 from [2] can be formulated as follows.

Theorem 1 Let M beafinite subset of Z4, M/∼ = {M1, . . . , Mn}. For i ∈ {1, . . . , n}
let pi = ∑

α∈Mi
cαT α with cα ∈ K and let p = ∑n

i=1 pi . Then p(θ) = 0 if and only
if pi (θ) = 0 for all i ∈ {1, . . . , n}.

With the same notation as in Theorem1 we can write

p =
n∑

i=1

pi =
n∑

i=1

T βi
pi
T βi

=
n∑

i=1

T βi
∑

α∈Mi

cαT
α−βi

for some βi ∈ Mi . Note that if α ∈ Mi , then α − βi ∈ R∗.
Let L∗ be the set of K -linear combinations of monomials T α ∈ L with α ∈ R∗.

Theorem1 says that kerΦ = 〈L∗ ∩ kerΦ〉L .
Lemma 2 (cf. [2, Lemma 4.2]) The set R∗ forms an (additive) Z-module that is
generated by the vectors ι1 = (−2, 2, 0, 0), ι2 = (−2, 0, 2, 0), ι3 = (−3, 1, 1, 1),
i.e., R∗ = 〈ι1, ι2, ι3〉Z.
Proof Clearly, 〈ι1, ι2, ι3〉Z ⊆ R∗. For R∗ ⊆ 〈ι1, ι2, ι3〉Z note that if α ∈ R∗, then

α = ι1
α2 − α4

2
+ ι2

α3 − α4

2
+ ι3α4.

4 The Ideal of Relations Among Elliptic Theta Quotients

From Lemma2 follows L∗ = K [T ι1 , T ι2 , T ι3 ], i.e.,

kerΦ = 〈K [T ι1 , T ι2 , T ι3 ] ∩ kerΦ〉L .

In other words, any relation among theta functions can be expressed as a L-linear
combination of polynomials in T ι1 , T ι2 , T ι3 whose coefficients are in K . We would
like to find polynomials p in T ι1 , T ι2 , T ι3 such that Φ(p) = 0.

Let us define the elliptic functions corresponding to the above generators.

j1(z) := Φ(T ι1) = θ(z)ι1 = θ2(z)2

θ1(z)2
,

j2(z) := Φ(T ι1) = θ(z)ι2 = θ3(z)2

θ1(z)2
,
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j3(z) := Φ(T ι1) = θ(z)ι2 = θ2(z)θ3(z)θ4(z)

θ1(z)3
.

Let J = {J1, J2, J3} be a new set of indeterminates. As an intermediate step
to solve our original problem, we consider the map Ψ : K [J, J−1] → K [θ, θ−1],
which is defined by Ψ = Φ ◦ σ for the ring homomorphism σ : K [J, J−1] → L∗,
Ji 	→ T ιi , i = 1, 2, 3. Note that because L∗ = K [T ι1 , T ι2 , T ι3 ], σ is surjective,
i.e., p ∈ K [T ι1 , T ι2 , T ι3] ∩ kerΦ, there exists f ∈ K [J, J−1] such that σ( f ) = p.
Therefore, σ(kerΨ ) = K [T ι1 , T ι2 , T ι3] ∩ kerΦ.

Clearly, Ψ maps Ji to ji (z), i = 1, 2, 3. In the following we are going to show
that kerΨ is an ideal in K [J, J−1] that is generated by the two polynomial

h1 := J2 − c3 J1 − c4, (5)

h2 := J 2
3 − J1 J2(c4 J1 + c3) (6)

where c3 = θ3(0)2

θ2(0)2
, c4 = θ4(0)2

θ2(0)2
.

Let IΨ := 〈h1, h2〉K [J,J−1]. One can verify byAlgorithm6.6 from [2] thatΨ (h1) =
0, and Ψ (h2) = 0. Hence IΨ ⊆ kerΨ . In order to prove kerΨ ⊆ IΨ , assume that
f ∈ kerΨ . Because h1 ∈ IΨ , we have

f (J1, J2, J3) + IΨ = f (J1, c3 J1 + c4, J3) + IΨ = Jα1
1 Jα3

3 f̃ (J1, J3) + IΨ

for some α1,α3 ∈ Z and f̃ ∈ K [J1, J3].
Clearly, we can split f̃ with respect to even and odd powers of J3 in such a way

that for some polynomials f̃1 and f̃2 we have the representation

f̃ (J1, J3) = f̃1(J1, J
2
3 ) + J3 f̃2(J1, J

2
3 ).

Since h1, h2 ∈ IΨ , we can replace J 2
3 by J1(c3 J1 + c4)(c4 J1 + c3) ∈ K [J1] and

obtain
f̃ (J1, J3) + IΨ = f1(J1) + J3 f2(J1) + IΨ

for some f1, f2 ∈ K [J1]. Hence,

f (J1, J2, J3) + IΨ = Jα1
1 Jα3

3 ( f1(J1) + J3 f2(J1)) + IΨ

From f ∈ kerΨ and IΨ ⊆ kerΨ , we conclude

jα1
1 jα3

3 ( f1( j1) + j3 f2( j1)) = 0.

Since jα1
1 jα3

3 is a nonzero meromorphic function, it follows that

f1( j1) + j3 f2( j1) = 0. (7)
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Note that expanding j1(z) and j3(z) as Laurent series in z with coefficients in K ,
we observe that

j1(z) = z−2 + higher order terms

and
j3(z) = z−3 + higher order terms.

If we assume that f1, f2 �= 0 and deg( f1) = d1 and deg( f2) = d2 for d1, d2 ∈ N then

f1( j1(z)) = c1z
−2d1 + higher order terms

and
j3(z) f2( j1(z)) = c2z

−2d2−3 + higher order terms

for some c1, c2 ∈ K \ {0}.
Since −2d1 is even and −2d2 − 3 is odd, the leading terms cannot cancel and,

therefore, f1( j1(z)) + j3(z) f2( j1(z)) �= 0. Thus, either f1 = 0 or f2 = 0. However,
if one of these polynomials is zero, the other must also be zero, since otherwise the
respective leading term of the Laurent series expansion cannot be made to vanish as
required by (7).

In summary, for f ∈ kerΨ we have shown

f (J1, J2, J3) + IΨ = Jα1
1 Jα3

3 f̃ (J1, J3) + IΨ
= Jα1

1 Jα3
3 ( f1(J1) + J3 f2(J1)) + IΨ

= Jα1
1 Jα3

3 (0 + J3 · 0) + IΨ
= 0 + IΨ .

Therefore f ∈ IΨ and kerΨ = IΨ = 〈h1, h2〉K [J,J−1].

5 The Ideal of Relations Among Theta Functions

From the previous section we have σ(kerΨ ) = K [T ι1 , T ι2 , T ι3 ] ∩ kerΦ and, there-
fore, kerΦ = 〈σ(IΨ )〉L . Let HL := {

hL
1 , hL

2

}
for hL

1 := σ(h1), hL
2 := σ(h2).

We are left with the problem of computing
〈
HL

〉
L ∩ K [T ] = ker φ.

A solution of this problem is well-known in the computer algebra commu-
nity. Let us denote by P = K [S, T ] the polynomial ring in the indeterminates
S = {S1, S2, S3, S4} and T = {T1, T2, T3, T4}. Let U = {1 − Si Ti | i ∈ {1, 2, 3, 4} }
and I = 〈U 〉P be the ideal generated by the elements of U . By [4, Proposition 7.1],
ker χ = I for the surjective homomorphism χ : P → L with χ(Si ) = T−1

i and
χ(Ti ) = Ti for i ∈ {1, 2, 3, 4}, i.e., P/I ∼= L .

Let χ′ : L → P be such that χ′(Ti ) = Ti , χ′(T−1
i ) = Si , i.e., χ(χ′(p)) = p for

every p ∈ L . Then ker φ = kerΦ ∩ K [T ] = 〈
χ′(HL) ∪U

〉
P ∩ K [T ]. Note that
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χ′(hL
1 ) := S21T

2
3 − c3S

2
1T

2
2 − c4,

χ′(hL
2 ) := (S31T1T2T3)

2 − (S21T
2
2 )(S21T

2
3 )(c4S

2
1T

2
2 + c3).

A generating set for the latter intersection can be computed by Buchberger’s
algorithm (cf. [5] or [6]) applied to χ′(HL) ∪U with respect to a term ordering such
that monomials with indeterminates exclusively from the set T are smaller than any
monomial involving indeterminates from S. Then by [6, Cor. 5.51] the polynomials
g1, . . . , gt in this Gröbner basis that only involve indeterminates from the set T form
a Gröbner basis G of all the relations among the theta functions θ1, θ2, θ3, θ3 with
coefficients in K .

6 Computability of K

Up to now the field of coefficients has not played an essential role in the derivation.
However, in order to actually compute the Gröbner basis from the previous section,
we must find a good representation of the elements of K . Note that θ2(0), θ3(0), and
θ4(0), and therefore, also c3 and c4 are actually Puiseux series in q.

In the following, we employ results from [7] in order to show that the well known
Jacobi identity

θ2(0|τ )4 − θ3(0|τ )4 + θ4(0|τ )4 = 0

is a “factor” of any other identity among θ2(0), θ3(0), and θ4(0) and then use it to
model K in a finitary way.

Let

η : H → C, τ 	→ exp

(
πiτ

12

) ∞∏

n=1

(1 − e2πin)

be the Dedekind eta function and denote for δ = 1, 2, 4 by ηδ : H → C the function
ηδ(τ ) := η(δτ ).

By simple rewriting of formulas for theta functions in Section 21.42 of [3] or
rewriting of q-series expansions from Entry 22 together with formulas (0.12) and
(0.13) of Chapter 20 of [8], we can express the Jacobi theta functions in terms of in
Dedekind η functions:

θ2(0|τ ) = 2η(2τ )2

η(τ )
, θ3(0|τ ) = η(τ )5

η( 12τ )2η(2τ )2
, θ4(0|τ ) = η( 12τ )2

η(τ )
. (8)

The relations among the theta functions are given by the kernel of the following
map.

ξ : Q[t2, t3, t4] → Q[θ2(0), θ3(0), θ4(0)],
t j 	→ θ j (0), j = 2, 3, 4,

where t2, t3, t4 are indeterminates. In order to find ker ξ, we extend this map to
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Ξ : Q[Y, E, t] → Q[η−1, η, θ],
Yδ 	→ ηδ(τ/2)−1, Eδ 	→ ηδ(τ/2), δ = 1, 2, 4, t j 	→ θ j (0|τ ), j = 2, 3, 4.

Define r := E24
2 − E16

1 E8
4 − 16E8

1E4
16 and the ideal I = 〈W1 ∪ W2 ∪ W3〉Q[Y,E,t]

in Q[Y, E, t] where

W1 := {
t2 − 2Y2E

2
4 , t3 − Y 2

1 Y
2
4 E

5
2 , t4 − Y2E

2
1

}
,

W2 := {YδEδ − 1 | δ = 1, 2, 4 } ,

W2 := {r} .

W1 encodes the relations (8) and W2 just says that Yδ models the inverse of Eδ .
Computing the relations among eta functions of level 4 as described in [7] leads

to an ideal that is generated by only one polynomial, namely r , i.e.,

ker(Ξ |Q[E]) = 〈r〉Q[E] (9)

where Ξ |Q[E] denotes the restriction of the map Ξ to Q[E].
Clearly, I ⊆ kerΞ . To prove kerΞ ⊆ I , consider f ∈ kerΞ . ByW1 we can find

a polynomial f1 ∈ Q[Y, E] with f + I = f1 + I . Note that by W2 we have YδEδ +
I = 1 + I . Thus, similar to “clearing a common denominator”, by multiplication
of each term of f1 with an appropriate power of YδEδ , we can find a polynomial
f2 ∈ Q[E] and a vector α ∈ N3 such that f + I = Y α f2 + I . Since Ξ(Y α) �= 0, it
follows Ξ( f2) = 0 and, thus, f2 ∈ ker(Ξ |Q[E]). From (9) we conclude that there is
p̃ ∈ Q[E] such that f2 = p̃ · r . Therefore, f ∈ I = kerΞ .

Sincewe are actually interested in ker ξ = kerΞ ∩ Q[t], we can simply compute a
Gröbner basis of I and intersectwithQ[t].Wefind I ∩ Q[t] = 〈

t42 − t43 + t44
〉
Q[t]. This

polynomial corresponds to [1, Eq. 20.7.5]. In particular, that result says that there is
no polynomial p ∈ Q[t2, t4] such that p(θ2(0), θ4(0)) = 0. Hence, F := Q(t2, t4) is
isomorphic toQ(θ2(0), θ4(0)). Since t42 − t43 + t44 is irreducible over F[t3], it follows
from the First Isomorphism Theorem that

K ∼= F(θ3(0|τ )) ∼= F[t3]/
〈
t42 − t43 + t44

〉
. (10)

7 Computation of the Ideal of Relations in FriCAS

Having a finite (and computable) representation for the coefficient field K , we now
demonstrate the steps to compute ker φ in the computer algebra system FriCAS.1

Due to its type system, FriCAS allows to almost naturally enter the respective data
structures in order to compute the Gröbner basis of ker φ.

1FriCAS 1.3.4 [9].
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We try to use almost the same identifiers in the following FriCAS session as we
use in the mathematical notation above.

Let us start with setting up the field K and the two coefficients c3 and c4 that are
used in the definition of h1 and h2 in (5) and (6).

1 N ==> NonNegativeInteger; Q ==> Fraction Integer
2 D ==> HomogeneousDistributedMultivariatePolynomial ([t2,t4], Q)
3 F ==> Fraction D; R ==> UnivariatePolynomial (’t3 , F)
4 r: R := t2^4 -t3^4 + t4^4;
5 K := SimpleAlgebraicExtension(F, R, r)
6 t2: K := ’t2; t3: K := ’t3; t4: K := ’t4::K
7 c3 := (t3/t2)^2; c4 := (t4/t2)^2;

Next, we create the data structure for P = K [S, T ].
8 vars := [S1, S2 , S3 , S4 , T1 , T2 , T3 , T4];
9 E ==> SplitHomogeneousDirectProduct (8, 4, N)
10 P ==> GeneralDistributedMultivariatePolynomial (vars , K, E)

Now, we setup the generators of kerΦ and compute a Gröbner basis.

11 U: List(P) := [S1*T1 -1, S2*T2 -1, S3*T3 -1, S4*T4 -1]
12 h1: P := (S1*T3)^2 - c3*(S1*T2)^2 - c4
13 h2: P := (S1^3*T2*T3*T4)^2 - (c4*S1^2*T2^2+c3)*S1^4*T2^2*T3^2
14 B := groebner(concat [U, [h1 , h2]])

Eventually, we compute a Gröbner basis of the intersection ker φ = kerΦ ∩ K [T ]
and take advantage of the fact that, if B is a Gröbner basis with respect to a termorder
where any term that involves only variables from the set T is smaller than any term
that involves at least one variable from the set S, then B ∩ K [T ] is a Gröbner basis.
We have defined the terms E in line 9 in exactly such away, i.e., we can simply extract
all the polynomials from B that have a vanishing total degree in the indeterminates
S.
15 G := [x for x in B | zero? reduce(_+, degree(x, vars (1..4)))]
16 G := [(t2::K)^2*x for x in G] -- make it denominator -free

The computation returns the polynomials

g1 := t22T
2
1 + t24T

2
3 − t23T

2
4 ,

g2 := t22T
2
2 − t23T

2
3 + t24T

2
4 .

as generators of ker φ, i.e., G := 〈g1, g2〉K [T ]. In view of the isomorphism given in
(10), these are exactly the polynomials b1 and b2 as given by (2) and (3).

Having aGröbner basis of the ideal of all polynomial relations among the classical
Jacobi theta functions with coefficients involving θ2(0), θ3(0), and θ4(0), allows for
a simple decision procedure to check whether a given polynomial expression p in
θ2(0), θ3(0), θ4(0), θ1(z), θ2(z), θ3(z), θ4(z) is zero or not. One would simply have
to translate this expression into a polynomial p in t2, t3, t4, T1, T2, T3, T4 and then
apply the function normalForm in FriCAS.

As an example, take the identity [1, Eq. 20.7.3]. We can enter it into FriCAS like

17 p: P := t3^2*T1^2 + t4^2*T2^2 - t2^2*T4^2
18 normalForm(p, G)
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FriCAS returns 0 if an only if identity p(θ) = 0 holds. In this case 0 is indeed
computed.

One can easily program an extended normalform computation that collects the
cofactors during the normalform computation and that leads to a representation of
the form p = p2g1 + p2g2. In the above, we get p1 = c3 and p2 = c4.

8 Conclusion

We have shown that any polynomial identity in Jacobi theta functions can be
expressed as a K [T ]-linear combination of just two polynomials. Moreover such
a linear combination can be computed algorithmically by a simple reduction pro-
cess.
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Numerical Evaluation of Elliptic
Functions, Elliptic Integrals and
Modular Forms

Fredrik Johansson

Abstract We describe algorithms to compute elliptic functions and their
relatives (Jacobi theta functions, modular forms, elliptic integrals, and the arithmetic-
geometric mean) numerically to arbitrary precision with rigorous error bounds for
arbitrary complex variables. Implementations in ball arithmetic are available in the
open source Arb library. We discuss the algorithms from a concrete implementation
point of view, with focus on performance at tens to thousands of digits of precision.

1 Introduction

The elliptic functions and their relatives have many applications in mathematical
physics and number theory. Among the elliptic family of special functions, we count
the elliptic functions proper (i.e. doubly periodic meromorphic functions) as well as
the quasiperiodic Jacobi theta functions, the closely related classical modular forms
and modular functions on the upper half plane, and elliptic integrals which are the
inverse functions of elliptic functions.

Our goal is to give a modern treatment of numerical evaluation of these functions,
using algorithms that meet several criteria:

• Full domain. We should be able to compute the functions for arbitrary complex
values of all parameters where this is reasonable, with sensible handling of branch
cuts for multivalued functions.

• Arbitrary precision. Precisionmuch higher than 16-digit (or 53-bit) machine arith-
metic is sometimes needed for solving numerically ill-conditioned problems. For
example, extremely high precision evaluations are employed in mathematical
physics to find closed-form solutions for sums and integrals using integer relation
methods [2]. Computations with elliptic functions and modular forms requiring
hundreds or thousands of digits are commonplace in algebraic and analytic number
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theory, for instance in the construction of discrete data such as class polynomials
from numerical approximations [10].

• Rigorous error bounds.Whenwe compute an approximation y ≈ f (x), we should
also be able to offer a bound |y − f (x)| ≤ ε, accounting for all intermediate
rounding and approximation errors in the algorithm.

• Efficiency. The algorithms should be robust and efficient for arguments that are
very small, large, or close to singularities. For arbitrary-precision implementations,
a central concern is to ensure that the computational complexity as a function of the
precision does not grow too quickly. At the same time, we must have in mind that
the algorithms with the best theoretical asymptotic complexity are not necessarily
the best in practice, and we should not sacrifice efficiency at moderate precision
(tens to hundreds of digits).

It turns out that these goals can be achieved simultaneously and with reasonable
implementation effort thanks to the remarkable amount of structure in the elliptic
function family — in contrast to many other problems in numerical analysis!

The present author has implemented routines for elliptic functions, Jacobi theta
functions, elliptic integrals and commonly-used modular forms and functions as part
of the open source Arb library for arbitrary-precision ball arithmetic [16].1 The idea
behind ball arithmetic is to represent numerical approximations with error bounds
attached, as in π ∈ [3.14159265358979 ± 3.57 · 10−15]. The algorithms use ball
arithmetic internally for automatic propagation of error bounds, in combination with
some pen-and-paper bounds mainly for truncations of infinite series.2

The functions in Arb can be used directly in C or via the high-level wrappers in
Sage [29] or the Julia package Nemo [12]. As an example, we use the Arb interface
in Sage to evaluate the Weierstrass elliptic function ℘ on the lattice (1, τ ) with
τ = 1

2 (1 + √
3i). We check ℘(z) = ℘(z + 5 + 6τ) at the arbitrarily chosen point

z = 2 + 2i , here using 100-bit precision:

sage: C = ComplexBallField(100)

sage: tau = (1 + C(-3).sqrt())/2

sage: z = C(2 + 2*I)

sage: z.elliptic_p(tau)

[-13.7772161934928750714214345 +/- 6.41e-26] + [+/- 3.51e-26]*I

sage: (z + 5 + 6*tau).elliptic_p(tau)

[-13.777216193492875071421435 +/- 9.69e-25] + [+/- 4.94e-25]*I

This text covers the algorithms used in Arb and discusses some of the implemen-
tation aspects. The algorithms are general andworkwell inmost situations. However,

1Available at http://arblib.org. The functionality for modular forms and elliptic functions can be
found in the acb_modular (http://arblib.org/acb_modular.html) and acb_elliptic (http://
arblib.org/acb_elliptic.html) modules.
2Of course, for applications that do not require rigorous error bounds, all the algorithms can just as
well be implemented in ordinary floating-point arithmetic.

http://arblib.org
http://arblib.org/acb_modular.html
http://arblib.org/acb_elliptic.html
http://arblib.org/acb_elliptic.html
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we note that the code in Arb does not use the best available algorithms in all cases,
and we will point out some of the possible improvements.

There is a vast body of literature on elliptic functions and integrals, and we will
not be able to explore the full breadth of computational approaches. We will, in par-
ticular, focus on arbitrary-precision arithmetic and omit techniques that only matter
in machine precision. A good overview and a comprehensive bibliography can be
found in chapters 19, 20, 22 and 23 of the NIST Handbook of Mathematical Func-
tions [23] or its online counterpart, the Digital Library of Mathematical Functions.3

Cohen’s book on computational number theory [5] is also a useful resource.
Many other packages and computer algebra systems also provide good support

for evaluating elliptic and related functions, though not with rigorous error bounds;
we mention Pari/GP [28] and of course Maple and Mathematica. For a nice applica-
tion of Weierstrass elliptic functions in astrodynamics and a fast machine-precision
implementation of these functions, we mention the work by Izzo and Biscani [13].

The algorithms that we review are well known, but they are sometimes described
without discussing arbitrary complex variables, variable precision, or error bounds.
We attempt to provide an account that is complementary to the existing literature,
and we also discuss some minor improvements to the algorithms as they are usually
presented. For example, we have optimized Carlson’s algorithm for symmetric ellip-
tic integrals to reduce the asymptotic complexity at high precision (Sect. 6.3), and
we make several observations about the deployment of ball arithmetic.

2 General Strategy

Algorithms for evaluating mathematical functions often have two stages: argument
reduction, followed by evaluation of a series expansion [3, 21].

Minimax polynomial or rational function approximations are usually preferred for
univariate functions in machine precision, but truncated Taylor series expansions are
the tools of choice in arbitrary-precision arithmetic, for two reasons. First, precom-
puting minimax approximations is not practical, and second, we can exploit the fact
that the polynomials arising from series expansions of special functions are typically
not of generic type but highly structured.

Argument reduction consists of applying functional equations to move the argu-
ment to a part of the domain where the series expansion converges faster. In many
cases, argument reduction is needed to ensure convergence in the first place. Argu-
ment reduction also tends to improve numerical stability, in particular by avoiding
alternating series with large terms that would lead to catastrophic cancellation.

The classical elliptic and modular functions are no exception to this general pat-
tern, as shown in Table1. For elliptic integrals, the argument reduction consists
of using contracting transformations to reduce the distance between the function
arguments, and the series expansions are hypergeometric series (in one or several

3https://dlmf.nist.gov/.

https://dlmf.nist.gov/
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Table 1 Methods for computation of elliptic functions and integrals. This table illustrates the
analogies between the elliptic function and elliptic integral cases, and the simplifications between
the general (arbitrary parameters) and special (some parameters fixed at special values) cases

Elliptic functions Elliptic integrals

General case Elliptic functions,
Jacobi theta functions

Incomplete elliptic integrals

Argument reduction Reduction to standard domain
(modular transformations,
periodicity)

Contraction of parameters
(linear symmetric transformations)

Series expansions Theta function q-series Multivariate hypergeometric series

Special case Modular forms and functions,
theta constants

Complete elliptic integrals,
arithmetic-geometric mean

Argument reduction Reduction to standard domain
(modular transformations)

Contraction of parameters
(quadratic transformations)

Series expansions Theta constant and eta function
q-series

Classical 2F1 hypergeometric
series

variables). For the elliptic and modular functions, the argument reduction consists of
using modular transformations and periodicity to move the lattice parameter to the
fundamental domain and the argument to a lattice cell near the origin, and the series
expansions are the sparse q-series of Jacobi theta functions.

In the following text, we will first discuss the computation of elliptic functions
starting with the special case of modular forms and functions before turning to
general elliptic and Jacobi theta functions. Then, we discuss elliptic integrals, first
covering the easier case of complete integrals before concluding with the treatment
of incomplete integrals.

We comment briefly on error bounds. Since ball arithmetic automatically tracks
the error propagation during series evaluation and through argument reduction steps,
the only error analysis that needs to be done by hand is to bound the series truncation
errors. If f (x) = ∑∞

k=0 tk(x), we compute
∑N

k=0 tk(x) and then add the ball [±ε]
or [±ε] + [±ε]i where ε is an upper bound for |RN (x)| = |∑∞

k=N+1 tk(x)|. Such
a bound is often readily obtained by comparison with a geometric series, i.e. if
|tk(x)| ≤ ACk with 0 ≤ C < 1, then |RN (x)| ≤ ∑

k=N+1 AC
k = ACN/(1 − C). In

some cases, further error analysis can be useful to improve the quality (tightness) of
the ball enclosures.

For arbitrary-precision evaluation, we wish to minimize the computational com-
plexity as a function of the precision p. The complexity is often measured by count-
ing arithmetic operations. The actual time complexity must account for the fact that
arithmetic operations have a bit complexity of Õ(p) (where the Õ notation ignores
logarithmic factors). In some situations, it is better to use a model of complexity that
distinguishes between “scalar” arithmetic operations (such as addition of two p-bit
numbers or multiplication of a p-bit number by a small integer) and “nonscalar”
arithmetic operations (such as multiplication of two general p-bit numbers).



Numerical Evaluation of Elliptic Functions, Elliptic Integrals … 273

2.1 The Exponential Function

We illustrate these principles with a commonly used algorithm to compute the expo-
nential function ex of a real argument x to p-bit precision.

• Argument reduction. We first use ex = 2net with t = x − n log(2) and n =
�x/ log(2)� which ensures that t ∈ [0, log(2)). At this point, the usual Taylor
series et = 1 + t + 1

2 t
2 + · · · does not suffer from cancellation, and we only need

O(p/ log p) terms for a relative error of 2−p independent of the initial size of |x |.
As a second argument reduction step, we write et = (eu)2

r
with u = t/2r , which

reduces the number N of needed Taylor series terms to O(p/r).
Balancing N = O(p/r) against the number r of squarings needed to reconstruct
et from eu , it is optimal to choose r ≈ p0.5. This gives an algorithm for ex requir-
ing O(p0.5) arithmetic operations on p-bit numbers, which translates to a time
complexity of Õ(p1.5).

• Series evaluation. As an additional improvement, we can exploit the structure
of the Taylor series of the exponential function. For example,

∑8
k=0

1
k! x

k can be
evaluated as

1 + x + 1
2

(
x2 + 1

3 x
3
(
1 + 1

4

(
x + 1

5

(
x2 + 1

6 x
3
(
1 + 1

7

(
x + 1

8 x
2
))))))

(1)

where we have extracted the power x3 repeatedly and used the fact that the ratios
between successive coefficients are small integers. As a result, we only need four
nonscalar multiplications involving x (to compute x2, x3, and for the two multi-
plications by x3), while the remaining operations are scalar divisions. With further
rewriting, the scalar divisions can be replaced by even cheaper scalar multiplica-
tions.
In general, to evaluate a polynomial of degree N with scalar coefficients at a

nonscalar argument x , we can compute x2, . . . , xm once and then use Horner’s
rule with respect to xm , form ≈ N 0.5, which reduces the total number of nonscalar
multiplications to about 2N 0.5 [24]. This trick is sometimes called rectangular
splitting. To motivate this terminology, picture the terms of the polynomial laid
out as a matrix with m columns and N/m rows.

In view of this improvement to the series evaluation, it turns out to be more
efficient in practice to choose the tuning parameter r used for argument reduction
et = (et/2

r
)2

r
slightly smaller, say about r ≈ p0.4 for realistic p. The algorithm

combining optimal argument reduction with rectangular splitting for evaluation of
elementary functions such as ex is due to Smith [26].
There are asymptotically faster algorithms that permit evaluating elementary

functions using only O(log p) arithmetic operations (that is, in Õ(p) time), for
instance based on the AGM (discussed in Sect. 5 for computing elliptic integrals),
but Smith’s algorithm is more efficient in practice for moderate p, and in some
situations still wins for p as large as 105.
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3 Modular Forms and Functions

A modular transformation g is a linear fractional transformation on the upper
half plane H = {τ : C : Im(τ ) > 0} of the form g(τ ) = (aτ + b)/(cτ + d) where
a, b, c, d are integers with ad − bc = 1. We can assume that c ≥ 0. The group of
modular transformations (known as the modular group) can be identified with the
projective special linear group PSL(2,Z), where g is represented by the matrix

(
a b
c d

)

and composition corresponds to matrix multiplication.
A modular form (of weight k) is a holomorphic function onH satisfying the func-

tional equation f (g(τ )) = (cτ + d)k f (τ ) for every modular transformation g, with
the additional technical requirement of being holomorphic as τ → i∞. A modular
form of weight k = 0 must be a constant function, but nontrival solutions of the
above functional equation are possible if we allow poles. A meromorphic function
on H satisfying f (g(τ )) = f (τ ) is called a modular function.

Every modular form or function is periodic with f (τ + 1) = f (τ ) and has a
Fourier series (or q-series)

f (τ ) =
∞∑

n=−m

anq
n, q2π iτ (2)

where m = 0 in the case of a modular form. The fundamental tool in numerical
evaluation of modular forms and functions is to evaluate a truncation of such a q-
series. Since τ has positive imaginary part, the quantity q always satisfies |q| < 1,
and provided that an explicit bound for the coefficient sequence an is known, tails of
(2) are easily bounded by a geometric series.

3.1 Argument Reduction

The q-series (2) always converges, but the convergence is slow for τ close to the
real line where |q| ≈ 1. However, we can always find a modular transformation g
that moves τ to the fundamental domain {τ ∈ H : |τ | ≥ 1, |Re(τ )| ≤ 1

2 } (see Fig. 1).
This ensures |q| ≤ e−π

√
3 ≈ 0.00433 whichmakes the convergence extremely rapid.

Technically, the fundamental domain does not include half of the boundary (mean-
ing thatH is tiled by copies of the fundamental domain under the action of themodular
group), but this does notmatter for the algorithm. In fact, it is sufficient to put τ within
some small distance ε of the fundamental domain, and this relaxation is especially
useful in ball arithmetic since a ball may overlap with the boundary.

The well-known algorithm to construct g (see Cohen [5, Algorithm7.4.2]) repeat-
edly applies the generators τ → τ + 1 and τ → −1/τ of the modular group:

1. Set g ← (
1 0
0 1

)
.

2. Set τ ← τ + n, g ← (
1 n
0 1

)
g where n = − ⌊

Re(τ ) + 1
2

⌋
.
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Fig. 1 The shaded region
shows the canonical
fundamental domain for the
action of the modular group
on the upper half plane

-2 -1 0 1 2

3. If |τ | < 1 − ε, set τ ← −1/τ and g ← (
0 −1
1 0

)
g and go to step 2; otherwise, stop.

Exact integer operations should be used for the matrices, but we can perform all
operations involving τ in this algorithm using heuristic floating-point approxima-
tions, starting with the midpoint of the initial ball. Once g has been constructed, we
evaluate g(τ ) and f (g(τ )) as usual in ball arithmetic.

Indeed, it is important to construct the transformation matrix g separately and
then apply the functional equation for the modular form in a single step rather than
applying the generating transformations iteratively in ball arithmetic. This both serves
tominimize numerical instability and to optimize performance. The precision needed
to construct g only depends on the size of the entries of g and not on the precision
for evaluating f (τ ). If τ ≈ 2−pi , we only need about 2p bits to construct g even if
the overall precision is thousands of digits. The implementation in Arb uses virtually
costless machine floating-point arithmetic to construct g when 53-bit arithmetic is
sufficient, switching to arbitrary-precision arithmetic only when necessary.

3.2 Standard Functions

Several commonly-used modular forms and functions are implemented in Arb. The
basic building blocks are the Dedekind eta function

η(τ) = eπ iτ/12
∞∑

n=−∞
(−1)nq(3n2−n)/2, q = e2π iτ , (3)

and the theta constants θ j ≡ θ j (τ ),

θ2(τ ) = eπ iτ/4
∞∑

n=−∞
qn(n+1), θ3(τ ) =

∞∑

n=−∞
qn2 , θ4(τ ) =

∞∑

n=−∞
(−1)nqn2 (4)

in which (as a potential source of confusion) q = eπ iτ .



276 F. Johansson

It is useful to represent other modular forms in terms of these particular functions
since their q-series are extremely sparse (requiring only O(p0.5) terms for p-bit
accuracy, which leads to Õ(p1.5) bit complexity) and only have coefficients ±1. We
give a few examples of derived functions:

• Modular functions are precisely the rational functions of the j-invariant

j (τ ) = 32
(θ8

2 + θ8
3 + θ8

4 )
3

(θ2θ3θ4)8
, j

(
aτ + b

cτ + d

)

= j (τ ). (5)

• The modular discriminant is a modular form of weight 12, given by

Δ(τ) = η(τ)24, Δ

(
aτ + b

cτ + d

)

= (cτ + d)12Δ(τ). (6)

• Eisenstein series are modular forms of weight 2k for k ≥ 2, given by

G2k(τ ) =
∑

m2+n2 
=0

1

(m + nτ)2k
, G2k

(
aτ + b

cτ + d

)

= (cτ + d)2kG2k(τ ) (7)

where we compute G4(τ ), G6(τ ) via theta constants using

G4(τ ) = π4

90

(
θ8
2 + θ8

3 + θ8
4

)
, G6(τ ) = π6

945

(−3θ8
2 (θ

4
3 + θ4

4 ) + θ12
3 + θ12

4

)

and obtain the higher-index values using recurrence relations.

The Dedekind eta function itself transforms as

η

(
aτ + b

cτ + d

)

= ε(a, b, c, d)
√
cτ + d η(τ) (8)

where ε(a, b, c, d) = exp(π i R/12) is a 24th root of unity. The integer R (mod 24)
can be computed using Kronecker symbols [25, section74]. The modular transfor-
mations for theta constants are a special case of the formulas for theta functions
given below in Sect. 4.1. However, we avoid using these transformations directly
when computing the functions (5)–(7): it is better to apply the simpler argument
reductions for the top-level functions and then evaluate the series expansions (3) or
(4) when τ is already reduced.

3.3 Fast Evaluation of q-Series

The powers of q appearing in (3) and (4) are easily generated using two multiplica-
tions per term since the exponents are successive values of quadratic polynomials.
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The cost can nearly be halved using short addition sequences [11, Algorithm2]. The
cost can be reduced even further by combining addition sequences with rectangular
splitting[11, section5]. Here, the idea is to factor out some power qm as in (1), butm
must be chosen in a particular way — for example, in the case of the theta series∑∞

n=1 q
n2 , m is chosen so that there are few distinct quadratic residues modulo m.

In Arb, these optimizations save roughly a factor four over the naive algorithm.

4 Elliptic and Theta Functions

Anelliptic functionwith respect to a lattice inCwith periodsω1, ω2 is ameromorphic
function satisfying f (z + mω1 + nω2) = f (z) for all z ∈ C and all m, n ∈ Z. By
making a linear change of variables, we can assume that ω1 = 1 and ω2 = τ ∈ H.
The elliptic functions with a fixed lattice parameter τ form a field, which is generated
by the Weierstrass elliptic function

℘(z, τ ) = 1

z2
+

∑

n2+m2 
=0

[
1

(z + m + nτ)2
− 1

(m + nτ)2

]

(9)

together with its z-derivative ℘ ′(z, τ ).
The building blocks for elliptic functions are the Jacobi theta functions

θ1(z, τ ) =
∞∑

n=−∞
eπ i[(n+ 1

2 )2τ+(2n+1)z+n− 1
2 ] = 2q4

∞∑

n=0

(−1)nqn(n+1) sin((2n + 1)π z)

= −iq4

∞∑

n=0

(−1)nqn(n+1)(w2n+1 − v2n+1),

θ2(z, τ ) =
∞∑

n=−∞
eπ i[(n+ 1

2 )2τ+(2n+1)z] = 2q4

∞∑

n=0

qn(n+1) cos((2n + 1)π z)

= q4

∞∑

n=0

qn(n+1)(w2n+1 + v2n+1), (10)

θ3(z, τ ) =
∞∑

n=−∞
eπ i[n2τ+2nz] = 1 + 2

∞∑

n=1

qn2 cos(2nπ z) = 1 +
∞∑

n=1

qn2(w2n + v2n),

θ4(z, τ ) =
∞∑

n=−∞
eπ i[n2τ+2nz+n] = 1 + 2

∞∑

n=1

(−1)nqn2 cos(2nπ z)

= 1 +
∞∑

n=1

(−1)nqn2(w2n + v2n),
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where q = eπ iτ , q4 = eπ iτ/4, w = eπ i z , v = w−1. The theta functions are
quasielliptic functions of z, having period or half-period 1 and quasiperiod τ (a shift
by τ introduces an exponential prefactor). With z = 0, the theta functions θ2, θ3, θ4
reduce to the corresponding theta constants, while θ1(0, τ ) = 0 identically.

Arb provides a complete implementation of the Jacobi theta functions themselves
as well as the Weierstrass elliptic function which is computed as

℘(z, τ ) = π2θ2
2 (0, τ )θ2

3 (0, τ )
θ2
4 (z, τ )

θ2
1 (z, τ )

− π2

3

[
θ4
2 (0, τ ) + θ4

3 (0, τ )
]
. (11)

For all these functions, Arb also allows computing an arbitrary number of z-
derivatives. Derivatives are handled byworkingwith θ j (z + x, τ ) and℘(z + x, τ ) as
elements ofC[[x]] (truncated to some length O(xD)), using power series arithmetic.

Arb also implements the quasiellipticWeierstrass zeta and sigma functions ζ(z, τ )

and σ(z, τ ) as well as the lattice invariants g2, g3 (which are essentially Eisen-
stein series) and lattice roots 4z3 − g2z − g3 = 4(z − e1)(z − e2)(z − e3) arising in
the differential equation [℘ ′(z, τ )]2 = 4[℘(z, τ )]3 − g2℘(z, τ ) − g3. The inverse
Weierstrass elliptic function is also available; see Sect. 6.

The Jacobi elliptic functions sn, cn, . . . are not currently part of the library, but
users can compute them via theta functions using formulas similar to (11).

4.1 Argument Reduction

As the first step when computing theta functions or elliptic functions, we reduce τ to
the fundamental domain using modular transformations. This gives us a new lattice
parameter τ ′ and a new argument z′. As a second step, we reduce z′ modulo τ ′, giving
an argument z′′ with smaller imaginary part (it is not necessary to reduce z′ modulo
1 since this is captured by the oscillatory part of exponentials). We can then compute
θ j (z′′, τ ′) using the theta series (10).

These steps together ensure that both |q| and max(|w|, |w|−1) will be small. It
is important to perform both transformations. Consider τ = 0.07 + 0.003i and z =
3.14 + 2.78i : without the modular transformation, the direct series evaluation would
use 3710 terms for machine precision.4 With the modular transformation alone, it
would use 249 terms. With both reductions, only 6 terms are used! Depending on
the arguments, the numerical stability may also be improved substantially.

Modular transformations have the effect of permuting the theta functions and intro-
ducing certain exponential prefactors. It is easy to write down the transformations for
the generators τ + 1, −1/τ , but the action of a composite transformation involves

4The number is somewhat smaller if the series is truncated optimally using a relative rather than an
absolute tolerance.
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a certain amount of bookkeeping. The steps have been worked out by Rademacher
[25, chapter 10]. We reproduce the formulas below.5

We wish to write a theta function with lattice parameter τ in terms of a theta
function with lattice parameter τ ′ = g(τ ), given some g = (

a b
c d

) ∈ PSL(2,Z). For
j = 0, 1, 2, 3, there are R j , Sj ∈ Z depending on g such that

θ1+ j (z, τ ) = exp(π i R j/4) · A · B · θ1+Sj (z
′, τ ′) (12)

where if c = 0,
z′ = z, A = 1, B = 1, (13)

and otherwise (if c > 0),

z′ = −z

cτ + d
, A =

√
i

cτ + d
, B = exp

(

−π ic
z2

cτ + d

)

. (14)

We always have B = 1 when computing theta constants which have z = 0.
The parameters R j , Sj are computed from g as follows. If c = 0, we have

θ j (z, τ ) = exp(−π ib/4)θ j (z, τ + b) for j = 1, 2, whereas θ3 and θ4 remain
unchanged when b is even and swap places with each other when b is odd. For
the c > 0 case, it is helpful to define the function θm,n(z, τ ) for m, n ∈ Z by

θ0,0(z, τ ) = θ3(z, τ ), θ0,1(z, τ ) = θ4(z, τ ), (15)

θ1,0(z, τ ) = θ2(z, τ ), θ1,1(z, τ ) = iθ1(z, τ ),

θm+2,n(z, τ ) = (−1)nθm,n(z, τ ) θm,n+2(z, τ ) = θm,n(z, τ ).

With this notation, we have

θ1(z, τ ) = ε1ABθ1(z
′, τ ′), θ2(z, τ ) = ε2ABθ1−c,1+a(z

′, τ ′), (16)

θ3(z, τ ) = ε3ABθ1+d−c,1−b+a(z
′, τ ′), θ4(z, τ ) = ε4ABθ1+d,1−b(z

′, τ ′)

where εk is an 8th root of unity. If we denote by ε(a, b, c, d) = exp(π i R(a, b, c, d)/

12) the 24th root of unity in the transformation (8) of the Dedekind eta function, then

ε1(a, b, c, d) = exp(π i[R(−d, b, c,−a) + 1]/4),
ε2(a, b, c, d) = exp(π i[−R(a, b, c, d) + (5 + (2 − c)a)]/4),
ε3(a, b, c, d) = exp(π i[−R(a, b, c, d) + (4 + (c − d − 2)(b − a))]/4), (17)

ε4(a, b, c, d) = exp(π i[−R(a, b, c, d) + (3 − (2 + d)b)]/4).

5We give the inverse form of the transformation.
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Finally, to reduce z′, we compute n = �Im(z′)/ Im(τ ′) + 1/2� and set z′′ = z′ − nτ ′.
In this step, all theta functions pick up a prefactor exp(π i[−τn2 − 2nz]) (this data
may be combined with B) while θ1 and θ2 pick up the additional prefactors (−1)n

(this data may be combined with R j ).
When computing z-derivatives of theta functions, the same formulas are applied

in power series arithmetic. That is, if the initial argument consists of the formal power
series z + x , then the scaling factor−1/(cτ + d) is applied coefficient by coefficient,
while B = B0 + B1x + · · · is obtained by squaring the power series z + x , scaling,
and then evaluating a power series exponential.

As with modular forms, the transformations should be applied at the highest pos-
sible level. For example, when computing a quotient of two theta functions of the
same z, τ , the prefactors A and B in (12) cancel out (and the leading roots of unity
possibly also simplify). We should then simplify the expression symbolically and
avoid computing A and B altogether, since this both saves time and improves numer-
ical stability in ball arithmetic (in particular, e f (z)/e f (z) evaluated in ball arithmetic
will not give 1 but rather a ball which can be extremely wide).

Since the description of the algorithm given above is quite terse, the reader may
find it helpful to look at the code in Arb to see the concrete steps.

4.2 Theta Function Series Evaluation

Algorithm1 implements the expansions (10), with the optimization that we combine
operations to save work when computing all four functions and their derivatives
simultaneously (a single theta function could be computed slightly faster, but com-
puting all four functions is barely more work than it would be to compute a pair
containing either θ1 or θ2 and either θ3 or θ4). This is essentially the algorithm used
in Arb for z 
= 0, while more optimized code is used for theta constants.

The main index k runs over the terms in the following order:

θ1, θ2 q0 (w1 ± w−1)

k = 0 θ3, θ4 q1 (w2 ± w−2)

k = 1 θ1, θ2 q2 (w3 ± w−3)

k = 2 θ3, θ4 q4 (w4 ± w−4)

k = 3 θ1, θ2 q6 (w5 ± w−5)

k = 4 θ3, θ4 q9 (w6 ± w−6)

k = 5 θ1, θ2 q12 (w7 ± w−7)

The algorithm outputs the range of scaled derivatives θ
(r)
j (z, τ )/r ! for 0 ≤ r < D.

The term of index k in the main summation picks up a factor ±(k + 2)r from r -fold
differentiation ofwk+2. Another factor (π i)r/r ! is needed to convert to a z-derivative
and a power series coefficient, but we postpone this to a single rescaling pass at the
end of the computation. In the main summation, we write the even cosine terms
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as w2n + w−2n , the odd cosine terms as w(w2n + w−2n−2), and the sine terms as
w(w2n − w−2n−2), postponing a multiplication by w for θ1 and θ2 until the end, so
that only even powers of w and w−1 are needed.

For some integer N ≥ 1, the summation is stopped just before term k = N . Let
Q = |q|,W = max(|w|, |w−1|), E = �(N + 2)2/4� and F = �(N + 1)/2� + 1.The
error of the zeroth derivative can be bounded as

2QEWN+2
[
1 + QFW + Q2FW 2 + · · · ] = 2QEWN+2

1 − QFW
(18)

provided that the denominator 1 − QFW is positive. For the r th derivative, including
the factor (k + 2)r gives the error bound

2QEWN+2(N + 2)r
[

1 + QFW
(N + 3)r

(N + 2)r
+ Q2FW 2 (N + 4)r

(N + 2)r
+ · · ·

]

(19)

which by the inequality (1 + m/(N + 2))r ≤ exp(mr/(N + 2)) can be bounded as

2QEWN+2(N + 2)r

1 − QFW exp(r/(N + 2))
, (20)

again valid when the denominator is positive.

Algorithm 1 Computation of Jacobi theta functions (using series evaluation)

Require: z, τ ∈ Cwith Im(τ ) > 0 (can be arbitrary, but should be reduced for best performance),
integer D ≥ 1 to output the D first terms in the Taylor expansions with respect to z, precision
p

Ensure: θ j = [α0, . . . , αD−1] represents θ j (z + x, τ ) = α0 + α1x + · · · + αD−1xD−1, for 1 ≤
j ≤ 4

1: q4 ← eπ iτ/4; q ← q44 ; w ← eπ i z; v ← w−1; Q ← |q|; W ← max(|w|, |v|)
2: Choose N with E = �(N + 2)2/4� and F = �(N + 1)/2� + 1 such that QEWN+2 < 2−p

and α = QFW exp(r/(N + 2)) < 1
3: for 0 ≤ r < D do ε[r ] ← 2QEWN+2(N + 2)r/(1 − α) end for � Error bounds
4: w ← [1,w2,w4, . . . ,w2K−2]; v ← [1, v2, v4, . . . , v2K ] for K = �(N + 3)/2� �

Precompute powers
5: θ1 ← [0, . . . , 0]; θ2 ← [0, . . . , 0]; θ3 ← [0, . . . , 0]; θ4 ← [0, . . . , 0]; � Arrays of length

D
6: for 0 ≤ k < N do
7: m ← �(k + 2)2/4�; n ← �k/2� + 1
8: Compute qm � Use addition sequence [11, Alg. 2] to build qm from previous powers.
9: t ← (w[n] + v[n + (k mod 2)])qm
10: u ← (w[n] − v[n + (k mod 2)])qm � Skip when k mod 2 = 0 if D = 1.
11: if k mod 2 = 0 then
12: for 0 ≤ r < D do
13: if r mod 2 = 0 then
14: if r 
= 0 then t ← 4n2t end if
15: θ3[r ] ← θ3[r ] + t; θ4[r ] ← θ4[r ] + (−1)�(k+2)/2�t
16: else
17: if r = 1 then u ← 2nu else u ← 4n2u end if
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18: θ3[r ] ← θ3[r ] + u; θ4[r ] ← θ4[r ] + (−1)�(k+2)/2�u
19: end if
20: end for
21: else
22: for 0 ≤ r < D do
23: if r mod 2 = 0 then
24: θ1[r ] ← θ1[r ] + (−1)�(k+1)/2�u; θ2[r ] ← θ2[r ] + t
25: else
26: θ1[r ] ← θ1[r ] + (−1)�(k+1)/2�t; θ2[r ] ← θ2[r ] + u
27: end if
28: t ← (2n + 1)t; u ← (2n + 1)u
29: end for
30: end if
31: end for
32: for 0 ≤ r < D do
33: θ1[r ] ← θ1[r ]w + (w − (−1)r v) � Adjust power of w and add leading terms
34: θ2[r ] ← θ2[r ]w + (w + (−1)r v)
35: for 1 ≤ j ≤ 4 do θ j [r ] ← θ j [r ] + [±ε[r ]] + [±ε[r ]]i end for � Add error bounds
36: C ← (π i)r/r ! � Final scaling factors
37: θ1[r ] ← −iq4Cθ1[r ]; θ2[r ] ← q4Cθ2[r ]; θ3[r ] ← Cθ3[r ]; θ4[r ] ← Cθ4[r ]
38: end for
39: θ3[0] ← θ3[0] + 1; θ4[0] ← θ4[0] + 1 � Add leading terms

end

The time complexity of the algorithm is Õ(p1.5) (with all inputs besides p fixed).
By employing fast Fourier transforms cleverly, the complexity of evaluating theta
functions from their series expansions can be reduced to Õ(p1.25), but that method
is only faster in practice for p exceeding 200000 bits [22]. See also Sect. 8.1 below
concerning methods that are even faster asymptotically.

5 Complete Elliptic Integrals and the AGM

Complete elliptic integrals arise in period relations for elliptic functions. The com-
plete elliptic integral of the first kind is K (m) = 1

2π2F1(
1
2 ,

1
2 , 1,m) and the complete

elliptic integral of the secondkind is E(m) = 1
2π2F1(− 1

2 ,
1
2 , 1,m)where 2F1 denotes

the Gauss hypergeometric function, defined for |z| < 1 by

2F1(a, b, c, z) =
∞∑

k=0

(a)k(b)k
(c)k

zk

k! , (x)k = x(x + 1) · · · (x + k − 1) (21)

and elsewhere by analytic continuation with the standard branch cut on [1,∞).
The 2F1 function can be computed efficiently for any z ∈ C using a combination

of argument transformations, analytic continuation techniques, and series expan-
sions (where the rectangular splitting trick (1) and other accelerations methods are
applicable). A general implementation of 2F1 exists in Arb [15]. However, it is more
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efficient to compute the complete elliptic integrals by exploiting their connection
with the arithmetic-geometric mean (AGM) described below.

A third complete elliptic integral Π(n,m) is also encountered, but this is a more
complicated function that is not a special case of 2F1, and we handle it later in terms
of an incomplete integral without using a dedicated algorithm for the complete case.

The arithmetic-geometric mean M(x, y) of two nonnegative real numbers x, y is
defined as the common limit of the sequences

an+1 = an + bn
2

, bn+1 = √
anbn (22)

with initial values a0 = x, b0 = y. In different words, the AGM can be computed by
repeatedly applying the functional equation M(x, y) = M

(
(x + y)/2,

√
xy

)
. It is a

well known fact that each step of the AGM iteration roughly doubles the number of
accurate digits in the approximation an ≈ bn ≈ M(x, y), so it only costs O(log(p))
arithmetic operations to compute the AGM with an accuracy of p bits, resulting in a
bit complexity of Õ(p).

For complex x , y, defining the AGM becomes more difficult since there are two
possible choices for the square root in each step of the iteration, and these choices
lead to different limits. However, it turns out that there is an “optimal” choice which
leads to a well-defined and useful extension of the AGM to complex variables. We
rely on several properties of this function proved in earlier work [6–8].

With complex variables, it is convenient to work with the univariate function
M(z) = M(1, z), with a branch cut on (−∞, 0]. The general case can be recovered
as M(x, y) = xM(1, y/x). The complete elliptic integrals (with the conventional
branch cuts on [1,∞)) are now given by

K (m) = π

2M(
√
1 − m)

, E(m) = (1 − m)(2mK ′(m) + K (m)). (23)

For implementing the functionM(z), we can further assume that Re(z) ≥ 0 holds.
If this is not the case, we first apply the functional equation M(z) = (z + 1)M(u)/2
where u = √

z/(z + 1). The correct square root in the AGM iteration is now always
equal to

√
an

√
bn , written in terms of the usual principal square root function. This

can be computed as
√
anbn , i

√−anbn , −i
√−anbn ,

√
an

√
bn respectively if both an

and bn have positive real part, nonnegative imaginary part, nonpositive imaginary
part, or otherwise. When the iteration is executed in ball arithmetic, the computed
balls may end up containing points with negative real part, but this just inflates the
final result and does not affect correctness.

The iteration should be terminated when an and bn are close enough. For positive
real variables, we can simply take lower and upper bounds to get a correct enclosure.
For complex variables, it can be shown [8, p. 87] that |M(z) − an| ≤ |an − bn| if
Re(z) ≥ 0, giving a convenient error bound. However, instead of running the AGM
iteration until an and bn agree to p bits, it is slightly better to stop when they agree
to about p/10 bits and end with a Taylor series. With t = (a − b)/(a + b), we have
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M(a, b) = (a + b)π

4K (t2)
,

π

4K (t2)
= 1

2 − 1
8 t

2 − 5
128 t

4 − 11
512 t

6 − 469
32768 t

8 + · · · (24)

which is valid at least when |t | < 1 and a, b have nonnegative real part, and where
the tail (. . .) is bounded by

∑∞
k=10 |t |k/64.

This algorithm follows the pattern of argument reduction and series evalua-
tion. However, unlike the elementary functions and the incomplete elliptic integrals
described below, there is no asymptotic benefit to using more terms of the series. The
quadratic convergence of the AGM iteration is so rapid that we only get a speedup
from trading O(1) of the O(log p) square roots for lower-overhead multiplications.
Although there is no asymptotic improvement, the order-10 series expansion never-
theless gives a significant speedup up to a few thousand bits.

For computing the second elliptic integral E(m) or the first derivative M ′(z)
of the AGM, a simple method is to use a central finite difference to compute
(M(z), M ′(z)) ≈ (M(z + h) + M(z − h))/2, (M(z + h) − M(z − h))/(2h). This
requires two evaluations at 1.5 times increased precision, which is about three times
as expensive as evaluating M once. Error bounds can be obtained using the Cauchy
integral formula and the inequality |M(z)| ≤ max(1, |z|)which is an immediate con-
sequence of the AGM iteration. This method has been implemented in Arb. A more
efficient method is to compute E(m) using an auxiliary sequence related to the AGM
iteration, which also generalizes to computingΠ(n,m) [23, 19.8.6 and 19.8.7]. This
method has not yet been implemented in Arb since it requires some additional error
analysis and study for complex variables.

Higher derivatives of the arithmetic-geometric mean or the complete elliptic
integrals can be computed using recurrence relations. Writing W (z) = 1/M(z)
and W (z + x) = ∑∞

k=0 ckx
k , we have −2z(z2 − 1)c2=(3z2 − 1)c1+zc0,−(k + 2)

(k + 3)z(z2 − 1)ck+3 = (k + 2)2(3z2 − 1)ck+2 + (3k(k + 3) + 7)zck+1 + (k + 1)2

ck when z 
= 1 and−(k + 2)2ck+2 = (3k(k + 3) + 7)ck+1 + (k + 1)2ck when z = 1.

6 Incomplete Elliptic Integrals

A general elliptic integral is an integral of the form
∫ b
a R(t,

√
P(t))dt where R is a

bivariate rational function and P is a cubic or quartic polynomial without repeated
roots. It is well known that any elliptic integral can be expressed in terms of integrals
of rational functions and a finite set of standard elliptic integrals.

Such a set of standard integrals is given by the Legendre incomplete elliptic
integrals of the first, second and third kind

F(φ,m) =
∫ φ

0

dt
√
1 − m sin2 t

, E(φ,m) =
∫ φ

0

√
1 − m sin2 t dt, (25)
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Π(n, φ,m) =
∫ φ

0

dt

(1 − n sin2 t)
√
1 − m sin2 t

. (26)

The complete elliptic integrals are the special cases E(m) = E(π/2,m), K (m) =
F(π/2,m), and Π(n,m) = Π(n, π/2,m).

The definitions for complex variables do not appear to be standardized in the
literature, but following the conventions used in Mathematica [31], we may fix
an interpretation of (25)–(26) on −π/2 ≤ Re(φ) ≤ π/2 and use the quasiperi-
odic extensions F(φ + kπ,m) = 2kK (m) + F(φ,m), E(φ + kπ,m) = 2kE(m) +
E(φ,m), Π(n, φ + kπ,m) = 2kΠ(n,m) + Π(n, φ,m) for k ∈ Z.6

The Legendre forms of incomplete elliptic integrals are widely used by tradition,
but they have some practical drawbacks. Since they have a complicated (and not
standardized) complex branch structure, transforming their arguments using func-
tional equations or using them to represent other functions often requires making
complicated case distinctions. As a result, it is cumbersome both to compute the
functions themselves and to apply them, outside of a restricted parameter range.

We remark that F and E can be expressed in terms of the Appell F1 hypergeomet-
ric function of two variables, whileΠ can be expressed in terms of the three-variable
Lauricella hypergeometric function F (3)

D , generalizing the 2F1 representations for the
complete integrals. Such formulas are by themselves mainly useful when the hyper-
geometric series converge, and provide no insight into the analytic continuations.

In the 1960s, Carlson introduced an alternative set of standard elliptic integrals in
which all or some of the variables are symmetric [4]. The Carlson incomplete elliptic
integrals are

RF (x, y, z) = 1

2

∫ ∞

0

dt√
(t + x)(t + y)(t + z)

(27)

and

RJ (x, y, z, p) = 3

2

∫ ∞

0

dt

(t + p)
√

(t + x)(t + y)(t + z)
(28)

together with three special cases RD(x, y, z) = RJ (x, y, z, z), RC(x, y) =
RF (x, y, y), and

RG(x, y, z) = zRF (x, y, z) − 1

3
(x − z)(y − z)RD(x, y, z) +

√
x
√
y√

z
. (29)

The Carlson forms have several advantages over the Legendre forms. Symmetry
unifies and simplifies the argument transformation formulas, and the Carlson forms
also have a simpler complex branch structure, induced by choosing the branch of the
square root in (27) and (28) to extend continuously from +∞. We can define and
compute the Legendre forms from the Carlson forms using

6For Π , Mathematica restricts this quasiperiodicity relation to hold only for −1 ≤ n ≤ 1.
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F(φ,m) = sRF (x, y, 1),

E(φ,m) = sRF (x, y, 1) − 1
3ms3RD(x, y, 1), (30)

Π(n, φ,m) = sRF (x, y, 1) + 1
3ns

3RJ (x, y, 1, p)

on −π/2 ≤ Re(φ) ≤ π/2 (with the quasiperiodic extensions elsewhere) where
x = c2, y = 1 − ms2, p = 1 − ns2 and s = sin(φ), c = cos(φ). This is the approach
used to implement the Legendre forms in Arb. The Carlson forms themselves are
also exposed to users. Formulas for other elliptic integrals can be found in [4].

Elliptic integrals can also be characterized as the inverse functions of elliptic
functions. For example, the inverse of the Weierstrass elliptic function, which by
definition satisfies ℘(℘−1(z, τ ), τ ) = z, is given by the elliptic integral

℘−1(z, τ ) = 1

2

∫ ∞

z

dt√
(t − e1)(t − e2)(t − e3)

= RF (z − e1, z − e2, z − e3).

(31)
The implementation in Arb simply computes the lattice roots e1, e2, e3 using theta
constants and then calls RF . The inverses of Jacobi’s elliptic functions can be com-
puted similarly, but at this time they are not implemented in Arb.

Carlson gives algorithms for computing RF and RJ using argument reduction and
series evaluation [4]. The algorithm for RF is correct for all complex x, y, z (Carlson
restricts to the cut plane with (−∞, 0) removed, but it is clear that the algorithm also
works on the branch cut by continuity). The algorithm for RJ is not correct for all
values of the variables, but it is always correct when computing RD (otherwise, a
sufficient condition is that x, y, z have nonnegative real part while p has positive
real part). Carlson also provides modifications of the algorithms for computing the
Cauchy principal values of the integrals.

We will now describe Carlson’s algorithm for RF and adapt it to the setting of
arbitrary precision and ball arithmetic. The algorithm given in [4] for RJ and RD

works analogously, but we do not reproduce all the steps here since the formulas
would be too lengthy (the code in Arb can be consulted for concrete details).

6.1 Argument Reduction

Argument reduction for RF uses the symmetric “duplication formula”

RF (x, y, z) = RF

(
x + λ

4
,
y + λ

4
,
z + λ

4

)

(32)

where λ = √
x
√
y + √

y
√
z + √

z
√
x . Each application of (32) reduces the distance

between the arguments by roughly a factor 4. The analogous formula for RJ reads

RJ (x, y, z, p) = 1

4
RJ

(
x + λ

4
,
y + λ

4
,
z + λ

4
,
p + λ

4

)

+ 6

d
RC(1, 1 + e) (33)
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where λ is defined as above and d, e are certain auxiliary terms (see [4, (24)–(28)]).
The formulas (32) and (33) are iterated until all the parameters are close so that a
series expansion can be used, as detailed in the next subsection. It is interesting to
note the similarity between (32) and the AGM iteration, although the convergence
rate of (32) only is linear.

When computing RC or RD , some redundant operations in the reductions for
RF and RJ can be avoided. RC(x, y) can also be expressed piecewise using
inverse trigonometric and hyperbolic functions. The special case RC(1, 1 + t) =
atan(

√
t)/

√
t = 2F1(1, 1

2 ,
3
2 ,−t) is particularly important, as it is needed in the eval-

uation of RJ . This function is better computed via the inverse tangent function (or a
direct Taylor series for small |t |) than by invoking Carlson’s general method for RF .

6.2 Series Expansions

Carlson’s incomplete elliptic integrals are special cases of a multivariate hypergeo-
metric function that may be written as

R−a(z1, . . . , zn) = A−a
∞∑

N=0

(a)n

( 12n)N
TN (Z1, . . . , Zn) (34)

where A = 1
n

∑n
j=1 z j , Z j = 1 − z j/A, and

TN (Z1, . . . , Zn) =
∑

m1+···+mn=N
m1,...,mn≥0

n∏

j=1

( 12 )m j

m j ! Z
m j

j . (35)

We have RF (x, y, z) = R−1/2(x, y, z) and RJ (x, y, z, p) = R−3/2(x, y, z, p, p).
The crucial property of this hypergeometric representation is that the expansion point
is the arithmetic mean of the arguments. After sufficiently many argument reduc-
tion steps have been performed, we will have z1 ≈ z2 ≈ . . . ≈ zn which ensures
|Z1|, . . . , |Zn| � 1 and rapid convergence of the series. A trivial bound for the
terms is |TN (Z1, . . . , Zn)| ≤ p(N )max(|Z1|, . . . , |Zn|)N , where p(N ) denotes the
number of partitions of N which is bounded by O(cN ) for any c > 1. An explicit
calculation shows, for example, that the error when computing either RF or RJ is
bounded by

2A−a
∞∑

N=B

(
9
8 max(|Z1|, . . . , |Zn|)

)N
(36)

if the summation in (34) includes the terms of order N < B.
For the evaluation of (35), Carlson noted that it is more efficient to work

with elementary symmetric polynomials E j = E j (Z1, . . . , Zn) instead of the direct
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variables Z1, . . . , Zn , giving

TN (Z1, . . . , Zn) =
∑

m1+2m2+···+nmn=N
m1,...,mn≥0

(−1)M+N ( 12 )M

n∏

j=1

E
m j

j

m j ! . (37)

The key observation is that the symmetric choice of expansion variables Z j with
respect to z1, . . . , zn implies that E1 = 0, which eliminates most of the terms in
(37).7 This dramatically reduces the amount of work to compute TN compared to
(35). For the R−1/2 series, there are (N + 1)(N + 2)/2 terms in (35) and roughly
N/6 terms in (37); for example, if N = 8, there are 45 terms in the former and only
two nonzero terms (with monomials E1E2

2 and E4
1) in the latter.

6.3 Series Evaluation and Balanced Argument Reduction

The argument reduction effectively adds 2B bits per step if a series expansion of order
B is used. In otherwords, roughly p/(2B) argument reduction steps are needed for p-
bit precision. Carlson suggests using a precomputed truncated series of order B = 6
or B = 8, which is a good default at machine precision and up to a few hundred bits.
At higher precision, we make the observation that it pays off to vary B dynamically
as a function of p and evaluate the series with an algorithm.

Algorithm 2 Computation of RF (x, y, z)

1: Choose series truncation order B optimally depending on the precision p
2: Apply argument reduction (32) until x, y, z are close (until ε ≈ 2−p below)
3: A ← (x + y + z)/3; (X, Y, Z) ← (1 − x/A, 1 − y/A, 1 − z/A); (E2, E3) ← (XY − Z2, XY Z)

4: ε ← 2
∑∞

k=B

( 9
8 max(|X |, |Y |, |Z |))k � Series error bound

5: procedure RSum(E2, E3, B) � Compute R = ∑B−1
N=0

[
( 12 )N /( 32 )N

]
TN

6: Precompute Ek
2 for 2 ≤ k ≤ �(B − 1)/2�

7: R ← 0; c3 ← ( 12 )�(B−1)/3�/(�(B − 1)/3�)!
8: for (m3 ← �(B − 1)/3�; m3 ≥ 0; m3 ← m3 − 1) do
9: if m3 
= �(B − 1)/3� then
10: c3 ← c3 · (2m3 + 2)/(2m3 + 1)
11: end if
12: s ← 0; c2 ← c3
13: for (m2 ← 0; 2m2 + 3m2 < B; m2 ← m2 + 1) do
14: s ← s + Em2

2 · (−1)m2 c2/(4m2 + 6m3 + 1)
15: c2 ← c2 · (2m2 + 2m3 + 1)/(2m2 + 2)
16: end for
17: R ← (R · E3) + s
18: end for
19: return R
20: end procedure
21: return A−1/2 (RSum(E2, E3, B) + [±ε] + [±ε]i) � Include prefactor and error bound

end

7This is an algebraic simplification, sowe can take E1 = 0 even if the input argument are represented
by inexact balls.
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Fig. 2 Exponents
2m2 + 3m3 < B appearing
for B = 10

m2

m3

Algorithm2 gives pseudocode for the method implemented in Arb to compute
RF using combined argument reduction and series evaluation. The subroutine RSum
evaluates the series for R−1/2 truncated to an arbitrary order B using rectangular split-
ting combined with recurrence relations for the coefficients (one more optimization
used in the implementation but omitted from the pseudocode is to clear denomina-
tors so that all coefficients are small integers). The exponents of Em2

2 Em3
3 appearing

in the series (Fig. 2) are the lattice points m2,m3 ∈ Z≥0 with 2m2 + 3m3 < B: we
compute powers of E2 and then use Horner’s rule with respect to E3.

We now consider the choice of B. Since the series evaluation costs O(B2) oper-
ations and the argument reduction costs O(p/B) operations, the overall cost is
O(N 2 + p/N ) operations, which is minimized by setting B ≈ p1/3; this gives us
an O(p1.667) bit complexity algorithm for evaluating RF . With rectangular splitting
for the series evaluation, the optimal B should be closer to B ≈ p0.5 for moder-
ate p. Timings in Arb show that expanding to order B = 2p0.4 for real variables
and B = 2.5p0.4 for complex variables is nearly optimal in the range 10 ≤ p ≤ 106

bits. Compared to the fixed order B = 8, this results in a measured speedup of 1.5,
4.0, 11 and 31 times at a precision of 100, 1000, 10000 and 100000 decimal digits
respectively.

The algorithm for the RJ series is essentially the same, except that the sum-
mation uses four nested loops instead of two to iterate over the exponents with
2m2 + 3m3 + 4m4 + 5m5 < B, with corresponding nested recurrence relations to
update coefficients c2, c3, c4, c5 (see the Arb source code for details). In this case,
rectangular splitting is used to split the number of variables in half by precomputing a
twodimensional array of powers Em2

2 Em3
3 and using the Horner scheme with respect

to E4 and E5. The speedup of combining rectangular splitting with optimal argument
reduction is smaller for RJ than for RF but still appreciable at very high precision.

7 Arb Implementation Benchmarks

Table2 compares the performance of different functions implemented in Arb.
The complete elliptic integrals of the first and second kind are about as fast as

the elementary functions at high precision due to the Õ(p) AGM algorithm.8 The
modular forms and functions which use Õ(p1.5) algorithms with very low overhead
are nearly as fast as complete elliptic integrals in practice.

8At precision up to about 1000 digits, the elementary functions in Arb are significantly faster than
the AGM due to using precomputed lookup tables and many low-level optimizations [14].
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Table 2 Time in seconds to evaluate the function (or tuple of function values simultaneously) at d
decimal digits of precision (p = �d log2 10� bits) for d between 10 and 100000. The arguments are
set to generic complex numbers x = √

2 + √
3i, y = √

3 + √
5i, z = √

5 + √
7i, t = √

7 + i/
√
11

Function d = 10 d = 102 d = 103 d = 104 d = 105

Elementary
functions

exp(x) 7.7 · 10−7 2.9 · 10−6 0.00011 0.0062 0.24

log(x) 8.1 · 10−7 2.8 · 10−6 0.00011 0.0077 0.27

Modular
forms and
functions

η(t) 6.2 · 10−6 1.99 · 10−5 0.00037 0.015 0.69

j (t) 6.3 · 10−6 2.3 · 10−5 0.00046 0.022 1.1

(θi (0, t))
4
i=1 7.6 · 10−6 2.7 · 10−5 0.00044 0.022 1.1

Elliptic and
theta
functions

(θi (x, t))
4
i=1 2.8 · 10−5 8.1 · 10−5 0.0016 0.089 5.4

℘(x, t) 3.9 · 10−5 0.00012 0.0021 0.11 6.6

(℘ (x, t), ℘′(x, t)) 5.6 · 10−5 0.00017 0.0026 0.13 7.3

ζ(x, t) 7.5 · 10−5 0.00022 0.0028 0.14 7.8

σ(x, t) 7.6 · 10−5 0.00022 0.0030 0.14 8.1

Complete
elliptic
integrals

K (x) 5.4 · 10−6 2.0 · 10−5 0.00018 0.0068 0.23

E(y) 1.7 · 10−5 6.1 · 10−5 0.00072 0.025 0.71

Π(x, y) 7.0 · 10−5 0.00046 0.014 3.6 563

Incomplete
elliptic
integrals

℘−1(x, t) 3.1 · 10−5 0.00014 0.0025 0.20 20

F(x, y) 2.4 · 10−5 0.00011 0.0022 0.19 19

E(x, y) 5.6 · 10−5 0.00030 0.0070 0.76 97

Π(x, y, z) 0.00017 0.00098 0.030 5.6 895

RF (x, y, z) 1.6 · 10−5 9.5 · 10−5 0.0020 0.18 18

RG (x, y, z) 4.7 · 10−5 0.00027 0.0067 0.75 95

RD(x, y, z) 2.1 · 10−5 0.00016 0.0046 0.57 78

RJ (x, y, z, t) 3.4 · 10−5 0.00031 0.012 2.6 428

Elliptic functions and Jacobi theta functions, also implementedwith Õ(p1.5) algo-
rithms, are some 5–10 times slower than the special case of theta constants ormodular
forms. The incomplete elliptic integrals based on the RF function implemented with
O(p1.667) complexity have similar performance to the elliptic functions at moderate
precision with a slight divergence becoming visible only at several thousand dig-
its. Indeed, ℘(x, t) and ℘−1(x, t) have virtually identical performance although the
algorithms are completely independent.
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The incomplete elliptic integrals based on the RJ function stand out as being
noticeably slower than the other functions, as a result of the more complicated argu-
ment reduction and high-dimensional series expansion.

8 Other Methods

Many numerical techniques apart from those covered in this text are useful in con-
nection with elliptic functions and modular forms. Without going into detail, we
sketch a few important ideas.

8.1 Quadratically Convergent Methods and Newton Iteration

The algorithms described above for complete elliptic integrals have quasioptimal
Õ(p) bit complexity owing to the quadratically convergent AGM iteration, while
the algorithms for all other functions have Õ(p1.5) or worse bit complexity. In fact,
it is possible to compute general elliptic functions, modular forms and incomplete
elliptic integralswith Õ(p)bit complexity using generalizations of theAGMiteration
togetherwithNewton’smethod for inverse functions.We have omitted thesemethods
in the presentwork since they aremore complicated, especially for complex variables,
and not necessarily faster for p encountered in practice.

The asymptotically fast computation of modular forms and modular functions is
discussed by Dupont [9], and Labrande [18] has given algorithms for general theta
functions and elliptic functions. An important special case is the inverse Weierstrass
elliptic function in the form of the elliptic logarithm, which can be computed using
a simple AGM-type algorithm [7]. For the Legendre incomplete elliptic integrals,
algorithms based on the quadratic Landen transformations are classical and have been
described in several other works; they have the disadvantage of involving trigono-
metric functions, not having a straightforward extension to complex variables, and
in some regions suffering from precision loss.

8.2 Numerical Integration

Direct numerical integration is a viable way to compute elliptic integrals. Numer-
ical integration is generally slower than the more specialized algorithms already
presented, but with a robust general-purpose integration algorithm, we can just plug
in the formula for any particular elliptic integral. Specifying an explicit contour of
integration also provides full control over branch cuts.

The double exponential or tanh-sinh quadrature method [1, 27] is ideal for elliptic
integrals since it is extremely simple and converges rapidly even if the integrand has
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algebraic singularities of unknown type at one or both endpoints. The quadrature error
in the double exponential method can be estimated quite reliably using heuristics,
and effective rigorous error bounds are also known [19]. Alternatively, Gauss-Jacobi
quadrature can be used for integrals with known algebraic singularities. Recently,
Molin and Neurohr have studied use of both double exponential and Gauss-Jacobi
quadrature with rigorous error bounds for integration of algebraic functions in the
context of computing period matrices for hyperelliptic curves [20]. Rigorous numer-
ical integration code also exists in Arb [17], but endpoint singularities requiremanual
processing.

For integrals of smooth periodic functions, including integrals of analytic func-
tions on closed circular contours, direct application of the trapezoidal rule is often
the best choice. We conclude with the anecdote that Poisson already in the 1820s
demonstrated the use of the trapezoidal rule to approximate the elliptic integral

1

2π

∫ 2π

0

√

1 − 0.36 sin2(θ)dθ

which is equal to 2
π
E(0.36) in the Legendre notation. Poisson derived an error bound

for the N -point trapezoidal approximation and showed that N = 16 gives an error
less than 4.84 · 10−6 for this integral (in fact, nine digits are correct). Due to sym-
metry, just three nontrivial evaluations of the integrand are required for this level of
accuracy! Trefethen and Weideman [30] discuss this example and provide a general
error analysis for the trapezoidal rule applied to periodic functions.

Acknowledgements The author thanks the organizers of the KMPB Conference on Elliptic Inte-
grals, Elliptic Functions and Modular Forms in Quantum Field Theory for the invitation to present
this work at DESY in October 2017 and for the opportunity to publish this extended review in the
post-conference proceedings.
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Multi-valued Feynman Graphs
and Scattering Theory

Dirk Kreimer

Abstract We outline ideas to connect the analytic structure of Feynman amplitudes
to the structure of KarenVogtmann’s andMarc Culler’sOuter Space.We focus on the
role of cubical chain complexes in this context, and also investigate the bordification
problem in the example of the 3-edge banana graph.

1 Motivation and Introduction

This is a write-up of two talks given recently in Zeuthen and in Les Houches. It
contains results and ideas which are partially published and which will be elaborated
on in future work.

Wewant to establish a conceptual relation between scattering theory for Feynman
amplitudes (see for example [1] and references there for an introduction) and the
structure of suitable Outer Spaces, motivated by [2–5].

In particular we want to incorporate in the analysis the structure of amplitudes as
multi-valued functions. We use this term for the study of functions defined by the
evaluation of a Feynman graph Γ ∈ H by renormalized Feynman rules,

ΦR : H → C.

Here, H is a suitable Hopf algebra of Feynman graphs.
ΦR(Γ ), ∀Γ ∈ H depends on kinematics: p ∈ QΓ , ΦR(Γ ) = ΦR(Γ )(p), where

QΓ is a real vectorspace [6],

QΓ ∼ R
vΓ (vΓ −1)/2+eΓ ,
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generated by all scalar products of externalmomenta, and internalmasses ofΓ . Here,
vΓ , eΓ are the number of vertices and edges of Γ . We assign an external momentum
to each vertex of the graph. They can be set to zero when needed.

The analysis will proceed by regarding such an amplitude ΦR(Γ ) as an iterated
integral.What is to be iterated are not differential one-forms though, as in the example
of the study of generalized polylogarithms, but elementary amplitudes ΦR(γ ) built
from particularly simple Feynman graphs γ : one-loop graphs which form the basis
primitive elements of the core Hopf algebra Hcore defined below.

ΦR(Γ ) is not uniquely defined as an iterated integral as there are many distinct
flags [7, 8] which describe possible sequences of iteration to obtain ΦR(Γ ).

Wewill remedy this below by defining a suitable equivalence relation using equal-
ity along principal sheets. The latter equality reflects Fubini’s theorem in the context
of renormalized amplitudes.

Our claim is that this iteration gives ΦR(Γ ) -the evaluation of Γ by renormalized
Feynman rules- a structure which reflects the structure of a suitable Outer Space
built on graphs. Here, the graphs are metric marked graphs with colored edges, and
without mono- or bi-valent vertices.

The full amplitude contributing at a given loop order is obtained by summing
graphs which all have the same loop order and the same number of external edges.
Suitably interpreted, the full amplitude is obtained as an integral over all cells of
Outer Space, in a piecewise linear manner as exhibited in [9].

Such Outer Spaces are used in mathematics to study, amongst many things, the
representation theory of the free group FnΓ

. In the course of such studies graph
complexes arise which have bearing in their own right in the investigation ofΦR(Γ ).
This includes

• Outer Space itself as a cell-complex with a corresponding spine and partial order
defined from shrinking edges [2];

• a cubical chain complex resulting from a boundary d which acts on pairs (Γ, F),
F a spanning forest of Γ [3];

• a bordification which blows up missing cells at infinity [4].

The use of metric graphs suggests itself in the study of amplitudes upon using the
parametric representation: the parametric integral is then the integral over the volume
of the open simplex σΓ , the cell assigned to each graph Γ in Outer Space, which
itself is a union of such cells.

Colored edges reflect the possibility of different masses in the propagators
assigned to edges. External edges are not drawn in the coming pictures. Momen-
tum conservation allows us to incorporate them by connecting external vertices to a
distinguished vertex v∞. We come back to this elsewhere.
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2 b2: The Bubble

We first discuss the elementary monodromy of the simplest one-loop graph.1 So we
start with the 2-edge banana b2, a bubble on two edges with two different internal
masses mb,mr , indicated by two different colors:

The incoming external momenta at the two vertices of b2 are q,−q.
We assign to b2 a one-dimensional cell, an open line segment, and glue in its

two boundary endpoints, to which the two tadpoles on the two different masses are
assigned, obtained by either shrinking the blue or red edge. The vertex at each tadpole
is then 4-valent, with no external momentum flow through the graph.

The fundamental group
Π1(b2) ∼ Z

of b2 has a single generator. This matches with the monodromy of the function
ΦR(b2) as we see in a moment.

Indeed, the Feynman integral we consider is coming from renormalized Feynman
rules ΦR(b2), where we implement a kinematic renormalization scheme by subtrac-
tion at μ2 < (mb − mr )

2 (so that the subtracted terms does not have an imginary
part, as μ2 is even below the pseudo threshold):

ΦR(b2) =
∫

d4k

⎛
⎜⎜⎜⎝

1

k2 − m2
r︸ ︷︷ ︸

Q1

1

(k + q)2 − m2
b︸ ︷︷ ︸

Q2

− {q2 → μ2}

⎞
⎟⎟⎟⎠ .

We set s := q2 and demand s > 0, and also set s0 := μ2.
We write k = (k0,k)T , t := k · k. As the 4-vector q is assumed time-like (as

s > 0) we can work in a coordinate system where q = (q0, 0, 0, 0)T and get

ΦR(b2)= 4π
∫ ∞

−∞
dk0

∫ ∞

0

√
tdt

(
1

k20 − t − m2
r

1

(k0 + q0)2 − t − m2
b

− {s → s0}
)

.

We define the Kȧllen function

λ(a, b, c) := a2 + b2 + c2 − 2(ab + bc + ca),

1This material is standard for physicists. It is included here for the benefit of mathematicians who
are usually not exposed to the monodromy of Feynman amplitudes.
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and find by explicit integration

ΦR(b2)(s, s0;m2
r ,m

2
b) =

=

⎛
⎜⎜⎜⎜⎜⎜⎝

√
λ(s,m2

r ,m
2
b)

2s
ln

m2
r + m2

b − s −
√

λ(s,m2
r ,m

2
b)

m2
r + m2

b − s +
√

λ(s,m2
r ,m

2
b)

− m2
r − m2

b

2s
ln

m2
r

m2
b

︸ ︷︷ ︸
B2(s)

−{s → s0}︸ ︷︷ ︸
B2(s0)

⎞
⎟⎠ .

The principal sheet of the above logarithm is real for s ≤ (mr + mb)
2 and free of

singularities at s = 0 and s = (mr − mb)
2. It has a branch cut for s ≥ (mr + mb)

2.
The threshold divisor defined by the intersection Q1 ∩ Q2 where the zero locii

of the quadrics meet is at s = (mb + mr )
2. This is an elementary example of the

application of Picard–Lefschetz theory [6, 10].
Off the principal sheet, we have a pole at s = 0 and a further branch cut for

s ≤ (mr − mb)
2.

It is particularly interesting to compute the variation using Cutkosky’s theorem
[6]

Var(ΦR(b2)) = 4π
∫ ∞

0

√
zdz

∫ ∞

−∞
dk0δ+(k20 − t − m2

r )δ+((k0 − q0)
2 − t − m2

b).

Integrating k0 using k0 + q0 > 0 and k0 = −q0 +
√
t + m2

b, delivers

Var(ΦR(b2)) =
∫ ∞

0

√
tdtδ((q0 −

√
t + m2

b)
2 − t − m2

r )
1√

t + m2
b

.

With (
q0 −

√
t + m2

b

)2

− t − m2
r = s − 2

√
s
√
t + m2

b + m2
b − m2

r ,

we have from the remaining δ-function,

0 ≤ t = λ(s,m2
r ,m

2
b)

4s
,

whenever the Kȧllen λ(s,m2
r ,m

2
b) function is positive.
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The integral gives

Var(ΦR(b2))(s,m
2
r ,m

2
b) =

=:Vrb(s;m2
r ,m

2
b)︷ ︸︸ ︷⎛

⎝
√

λ(s,m2
r ,m

2
b)

2s

⎞
⎠ ×Θ(s − (mr + mb)

2).

We emphasize that Vrb has a pole at s = 0 with residue |m2
r − m2

b|/2 and note
λ(s,m2

r ,m
2
b) = (s − (mr + mb)

2)(s − (mr − mb)
2).

We regain ΦR(b2) from Var(ΦR(b2)) by a subtracted dispersion integral:

ΦR(b2) = s − s0
π

∫ ∞

0

Var(ΦR(b2)(x))

(x − s)(x − s0)
dx .

Belowwewill also study the contributions of non-principal sheets and relate them
to the bordification of Outer Space.

In preparation we note that non-principal sheets give a contribution

2 jπ ıVrb(s), j ∈ Z
×,

where ı is the imaginary unit, ı2 = −1.
We hence define a multi-valued function

ΦR(b2)
mv(s,m2

r ,m
2
b) := ΦR(b2)(s,m

2
r ,m

2
b) + 2π ıZVrb(s).

Sometimes it is convenient to write this as

ΦR(b2)
mv(s,m2

r ,m
2
b) := ΦR(b2)(s,m

2
r ,m

2
b) + 2π ıZ

(
Jrb1 (s) + Jrb2 (s) + Jrb3 (s)

)
,

with

Jrb1 (s) := Vrb(s)Θ((mr − mb)
2 − s), (1)

Jrb2 (s) := Vrb(s)Θ(s − (mr − mb)
2)Θ((mr + mb)

2 − s), (2)

Jrb3 (s) := Vrb(s)Θ(s − (mr + mb)
2). (3)

From the definition of the Kȧllen function, we conclude:

Jrb1 ∈ R+ is positive real,
Jrb3 (s) ∈ R+ likewise and
Jrb2 (s) ∈ ıR+ is positive imaginary.
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3 The Pole at s = 0

In the above, we saw already a pole in s appear for the evaluation along non-principal
sheets for the amplitudes coming from the graph b2. Actually, such poles are a general
phenomenon as we want to exhibit now before we discuss the relation between the
sheet structure of amplitudes and the structure of graph complexes apparent in colored
variants of Outer Spaces.

We proceed using the parametric representation of amplitudes through graph
polynomials as for example given in [11].

Let
ΦΓ = φΓ + A · MψΓ ,

be the second Symanzik polynomial with masses and consider the amplitude

AΓ :=
∫

PΓ

ln ΦΓ

Φ0
Γ

ψ2
Γ

ΩΓ .

As ψΓ and Φ0
Γ are both strictly positive in the domain of integration (the latter by

choice of a renormalization scheme which subtracts at a kinematic point p0 ∈ QΓ

below all thresholds), we conclude

�AΓ :=
∫

PΓ

Θ(ΦΓ )

ψ2
Γ

ΩΓ .

Let dA1
Γ be the affine measure setting A1 = 1, and let e �= e1 be an edge e ∈ EΓ ,

and A
1 be the corresponding positive hypercube.

We have ψΓ = Aeψγ−e + ψΓ/e. Then,

�AΓ =
∫

A1

∂AeΘ(ΦΓ )

ψΓ ψΓ −e
dA1

Γ + boundary,

where we note ∂AeΘ(ΦΓ ) = −δ(ΦΓ )∂Ae(ΦΓ ). With ΦΓ being a quadratic polyno-
mial in Ae,

ΦΓ = Z A2e − Y Ae − X = Z

(
Ae + Ỹ

2
+ 1

2

√
Ỹ 2 − 4X̃

) (
Ae + Ỹ

2
− 1

2

√
Ỹ 2 − 4X̃

)
,

we set

A±
e := − Ỹ

2
± 1

2

√
Ỹ 2 − 4X̃ .
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As δ( f (x)) = ∑
{x0| f (x0)=0}

1
| f ′(x0)|δ(x − x0), we get

�AΓ =
∫

A1
e

∑
±

−∂Ae(ΦΓ )(A±
e )

| − ∂Ae(ΦΓ )(A±
e )|

1

(ψΓ ψΓ −e)(A
±
e )

.

At Ae = A±
e , we have ΦΓ = 0, and therefore φΓ = A · MψΓ , or

ψΓ = φΓ

A · M ,

hence
1

ψΓ ψΓ −e
= 1

ψΓ −e

A · M
φΓ

.

For a two-point function associated to a two-point graph Γ we have φΓ = sψΓ• .
Here Γ• is the graph where the two external edges of Γ are identified. We conclude

�AΓ ∼ 1

s
.

For a n-point function, regarded as a function of a kinematical scale s and angles
ϑi j = qi · q j/s [11], we find similarly2

1

ψΓ ψΓ −e
= 1

s

1

ψΓ −e

A · M
φΓ ({ϑi j }) .

An immediate calculation gives that the boundary term remaining from the above,

∫
PΓ/e

Θ(ΦΓ/e)

ψΓ/eψΓ −e
ΩΓ/e,

leads to an iteration akin to linear reduction as studied by Brown and Panzer [12–14].
We have just proven that the two point function has a pole at s = 0 in its imaginary

part. Thiswill have consequences belowwhenwe investigate in particular the analytic
structure of the multi-edge banana graphs b3, the story is similar for generic bn .

4 The Basic Set-Up: Outer Space

We now first describe Outer Space. What we use is actually a variant in which there
are external edges at vertices, and internal edges are colored to allow for different

2This explains the Omnès factor 1/
√

λ(q21 , q22 , q23 ) in the computation of the anomalous threshold
of the triangle graph.
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types of internal propagators. Here, different colors indicate generic different internal
masses, but could also be used as placeholders for different spin and more.3

4.1 The Set-Up of Colored Outer Space

Outer Space can be regarded as a collection of open simplices. For a graph with k
edges, we assign an open simplex of dimension k − 1. We can either demand that
the sum of edge lengths (given by parametric variables Ae) adds to unity, or work in
projective space P

k−1(R+) in such a cell. Each graph comes with a metric, and one
moves around the cell by varying the edge lengths.

Edge lengths are allowed to become zero but we are not allowed to shrink loops.
When an edge say between two three-valent vertices shrinks to zero length, there

are several ways to resolve the resulting 4-valent vertex to obtain a new nearby graph:
assume we have a 4-valent vertex in a graph G sitting in a (k − 1)-dimensional cell.
Then, this cell can be glued in as a common boundary of three other k-dimensional
cells with corresponding graphs Gi , i ∈ {s, t, u}, which have an edge e connecting
two 3-valent vertices, such that Gi/e = G, where Gi/e is the graph where edge e
shrinks to zero length.

For a formal definition of Outer Space we refer to [2].We emphasize that a crucial
role is played by the fundamental group of the graph, generated by its loops. A choice
of a spanning tree T of a graph with m independent loops li determines m edges ei
not in the spanning tree. The loops li = li (ei ) are uniquely given by the edge ei and
the path in T connecting the two endpoints of ei . An orientation of ei orients the
loop, and shrinking all edges of T to zero length gives a rose Rm , a graph with one
vertex andm oriented petals ei . The inverse of this map gives a marking to the graph,
which for us determines a choice for a basis of loops we integrate in a Feynman
integral. The homotopy equivalence of such markings is reflected by the invariance
of the Feynman integral under the choice how we route our momenta through the
graph.

In Outer Space graphs are metric graphs, where the metric comes from assigning
an edge length to each edge, and using the parametric integrand for Feynman graph,
the Feynman integral becomes an integral over the volume of the open simplex
assigned to the graph, with a measure defined by the parametric representation. All
vertices we assume to be of valence three or higher.

Each edge-path li (ei ) defines a one-loop sub-integral which is multi-valued and
an ordered sequence of petals of Rm defines an iterated integral of multi-valued one-
loop integrals. Using Fubini this is a well-defined integral for any ordering of the
loops along the principal sheets of these loop evaluations.

Let us discuss these notions on the example of theDunce’s cap graph, towhich just
one of the many simplices of Outer Space is assigned. It is a graph dc on four edges,
accordingly, the open simplex assigned to it is a tetrahedron. The codimension-one

3See [15] for first introductory explorations of Outer Space with colored edges in this context.
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boundaries are four triangles, to which we assign reduced graphs dc/e in which one
of the four edges e has zero length.

A B

C

D

A

B

C

A

B

D

B

C

D

A

D

C

a

b

c

The codimension-two boundaries are six edges, to which in five cases a two-petal
rose R2 is assigned, of the form dc/e/ f , by shrinking two of the four edges. We can
not shrink the green and red edges, as this would shrink a loop. So the edge BC
(indicated by a wavy line) with the rose on blue and yellow petals is actually not part
of Outer Space.

The codimension-three boundaries are the four corners A, B,C, D and are not
part of Outer Space either. The graph dc allows for five spanning trees, each of which
determines a loop basis for H 1(dc). For any of the five choices of a spanning tree,
there are two edges e, f say not in the spanning tree. They define two loops le, l f ,
by the edge path through the spanning tree which connects the endpoints of e and f .

To translate this to Feynman graphs, we route all external momenta through edges
of the spanning tree, and assign a loop momentum to each loop le, l f . Any choice of
order in which to carry out the loop integrations defines an iterated integral over two
four-forms given by the corresponding loop integrals.

4.2 Example: The Triangle Graph

The above example discusses the structure of one cell togetherwith its boundary com-
ponents. We now look at the example of a triangle graph, and discuss its appearance
in different cells.
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a

b

c

a

b

c

a

b

c

∼ ∼

b

a ∪ c

a ∪ b

c

+
+

+− −
−

a b ∪ c ∼ a b ∪ c

a

b

c

a
b ∪ c

a

b

c

Here, the boundaries of the triangular cell belong themselves to OS: the three edges
of the triangular cell are a cell for the indicated 1-loop graphs on two graph-edges,
the vertices correspond to colored 1-petal roses.

We have given two triangular cells in the picture. Both are associated to a triangle
graph. The boundary in between is associated to the graph on a red and yellow edge
as indicated. It is obtained by shrinking the blue edge. On the left- and righthand
side of the boundary the triangle has permuted its internal red and yellow edge,
with a corresponding orientation change x → x−1 of the single marking assigned to
the graph. Gluing cells for the six possible permutations we obtain a hexagon, with
alternating orientations as indicated.

We also give the OS equivalence relation where spanning trees are indicated by
double-edges, for the triangle and for the example of the red-yellow graph on the
boundary.

We omit the triangular cells corresponding to not bridge-free (not core) graphs.
Each choice of a spanning tree and choice of an ordering of its (two) edges gives

rise to a Hodge matrix corresponding to the evaluation of this graph as a dilogarithm
[7]. The entries are formed from the graphs apparent in the corresponding cubical
cell complex which we describe in a moment.

The sheet structure of the normal threshold of a two-edge graph on a boundary
edge of the triangular cell is a 2π ıZ logarithmic ambiguity, the triangle provides a
further anomalous threshold which is of similar nature.

In this way the generators of the simple fundamental group of this one-loop graph
map to generators of themonodromygenerated by the normal or anomalous threshold
divisors of the amplitude obtained from the graph.
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4.3 Analytic Structure

We consider the Feynman integral in momentum space and define the following
quadrics.

Q1 := k20 − t − m2
1 + iη,

Q2 := (k0 + q0)
2 − t − m2

2 + iη,

Q3 := (k0 + p0)
2 − t − p2 − 2

√
tp2z − m2

1 + iη,

where s = q2
0 . The independent external momenta are p and q. q2 = q2

0 is time-like
as before, and we compute in the rest-frame of q. q is the momentum at vertex a, p
the momentum at vertex c and −(q + p) the momentum incoming at vertex b.

Themeasure d4k is transferred to dk0d3k, and in the three-dimensional space-like
part we choose spherical coordinates with k2 =: t . z = cos(Θ) = p · k/

√
p2k2 the

cosine of the angle between k,p.
We are interested in the following integrals (subtractions at s0 understood when

necessary):
(i) ∫ ∞

∞
dk0

∫ ∞

0

√
tdt

∫ 1

−1
dz

∫ 2π

0
dφ

1

Q1Q2
= ΦR(b2),

(ii) ∫ ∞

∞
dk0

∫ ∞

0

√
tdt

∫ 1

−1
dz

∫ 2π

0
dφδ+(Q1)δ+(Q2) = Var(ΦR(b2)),

(iii)

∫ ∞

∞
dk0

∫ ∞

0

√
tdt

∫ 1

−1
dz

∫ 2π

0
dφ

1

Q1Q2Q3
=: I3(s, p2, (p + q)2;m2

b,m
2
r ,m

2
y),

(iv)

Var12(I3) :=
∫ ∞

∞
dk0

∫ ∞

0

√
tdt

∫ 1

−1
dz

∫ 2π

0
dφδ+(Q1)δ+(Q2)

1

Q3
.

(v)

Var123(I3) :=
∫ ∞

∞
dk0

∫ ∞

0

√
tdt

∫ 1

−1
dz

∫ 2π

0
dφδ+(Q1)δ+(Q2)δ+(Q3).

Note that for (i), (ii) the integrand neither depends on z, nor onφ, so these integrals
have a factor 4π = Vol(S2) in their evaluation.

Most interesting are the integrals in (iii)–(v). I3 is a dilogarithm, see [7] for its
properties.
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Let us start with Var12(I3). The two δ+-functions constrain the k0- and t-variables,
so that the remaining integrals are over the compact domain S2.

As the integrand does not depend on φ, this gives a result of the form

2πC
∫ 1

−1

1

α + βz
dz

︸ ︷︷ ︸
:=J (z)

= 2πC
ln α+β

α−β

β
,

where C is intimately related to Var(ΦR(b2)) = 2C , and the factor 2 here is
Vol(S2)/Vol(S1).

Then, we get a Hodge matrix for a triangle graph Δ

⎛
⎜⎜⎜⎜⎜⎝

1 0 0
ΦR(b2)(s,m2

r ,m
2
y) Vry(s,m2

r ,m
2
y) 0

I3 Vry(s,m2
r ,m

2
y)

ln α+β

α−β

β

1√
s, p2, (p + q)2︸ ︷︷ ︸

=Vry(s,m2
r ,m

2
y)×VarJ (z)

⎞
⎟⎟⎟⎟⎟⎠

∼
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

a
b ∪ c a

b ∪ c

0

b

c

a

b

c

a

b

c

a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, α and β are given through l1 := λ(s, p2b, p
2
c ) and l2 := λ(s,m2

y,m
2
r ) as

α := (m2
y − m2

r − s − pa .pc)
2 − l1 − l2, β := 2

√
l1l2.

The amplitude of the triangle graph in a chosen triangular cell is the lower left entry in
this Hodgematrix. The leftmost column of this matrix was obtained by first shrinking
the blue edge, and then the red one. This fixes the other columns which are defined
by the Cutkosky cuts -the variations- of the column to the left.

The triangle graph has a single loop and its fundamental group a single generator.
Accordingly, we find a single generator for the monodromy in the complement of
the threshold divisors: either for the normal threshold at s0 = (mr + my)

2 or for
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the anomalous threshold at s1, with lr = p2 − m2
r − m2

b, ly = (p + q)2 − m2
y − m2

b,
λ1 = λ(p2,m2

r ,mbv2), λ1 = λ((p + q)2,m2
y,mbv2) it is [6] given as,

s1 = (mr + my)
2 + 4m2

b(
√

λ2mr − √
λ1my)

2 − (
√

λ1ly + √
λ2lr )2

4m2
b

√
λ1

√
λ2

. (4)

The function J (z) has no pinch singularity and does not generate a new vanishing
cycle. In general, a one-loop graph generates one pinch singularity through its normal
threshold given by a reduced graph b2, and as many anomalous thresholds as there
are further edges in the graph.

This structure iterates upon iterating one-loop graphs to multi-loop graphs. For
multi-loop graphs, we discuss later only the example of the three-edge banana b3,
which only has a normal cut on the principal sheet, but a rather interesting structure
on other sheets. The general picture will be discussed elsewhere. An algorithm to
compute anomalous thresholds as s1 is contained in [6].

Returning to the triangle graph, there are three different spanning trees on two
edges for the triangle graph, and for each spanning tree two possibilities which edge
to shrink first. This gives us six such matrices. To see the emergence of such matrices
from the set-up of Outer Space turn to the cubical chain complex associated to the
spine of Outer Space [3].

5 The Cubical Chain Complex

Consider the cell (itself an open triangle) assigned to one triangle graph. Let us
assume we put the graph in the barycentric middle of the cell. At the codimension-
one boundaries of the cell we glue edges, and put the corresponding graphs in their
(barycentric) middle.

These boundaries correspond to edges ei = 0, i ∈ {r, b, y} as indicated in the
figure.

At the codimension-two corners we find tadpoles. When we move the triangle
towards the blue corner say, its spanning tree must be on the yellow and red edges
(edges in spanning trees are indicated by a double edge in the figure), which are the
ones allowed to shrink.

When we move towards say the barycentric middle of the boundary defined by
ey = 0, only the yellow edge is part of a spanning forest, to the left of it the red edge
is spanning as well, to the right the blue one.

The dashed lines connecting the barycentre of the triangular cell with the barycen-
tres of its codimension-one boundaries partitions the triangular cell into three regions.
Each such region has four corners and four line segments connections them, and an
interior, to which pairs of the triangle graph Δ and a spanning tree are assigned as
indicated.
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er = 0 eb = 0

ey = 0

eb > ey

ey > eb

ey > er

er > ey

er > ebeb > er

Such a decomposition of sectors exists for any cell in Outer space. If a graph Γ has
m spanning trees on n edges, we havem × n! paths from the barycentre of the Γ -cell
to a rose. To this, we can assign m cubes, which decompose into n! simplices, and
we get m × n! Hodge matrices as well, n! for each cosen spanning tree, for example
two for a pair of a triangle and a chosen spanning tree (containing two edges) for it:

In the figure, we have marked the edges connecting different components of a span-
ning forest by cuts. The two triangular Hodge matrices on the left in the figure
correspond to the two possible choices which edge to shrink first. Both Hodge matri-
ces contain the three graphs as entries which populate the diagonal of the cube. The
other entries are from above or below the diagonal.

The entries of the cube, and therefore the entries of the Hodge matrices describing
variations of the accompanying Feynman integrals, are generated from a boundary
operator d, d ◦ d = 0, which acts on pairs (Γ, F) of a graph and a spanning forest
[3].
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d(Γ, F) =
|EF |∑
j=1

(−1) j ((Γ /e, F/e) ⊗ (Γ, F\e))

In our Hodge matrices, the left-most columns are distinguished, as in them only
pairs (Γ, F) appear in which F is a spanning tree of Γ , while all other entries have
spanning forests consisting of more than a single tree, corresponding to graphs with
Cutkosky cuts.

This suggests to bring this into a form of coaction (see also [16]), which looks as
follows:

= + +

= +

= +

=

=

= =

=

(5)

Before we comment on this in any further detail, we have to collect a few more
algebraic properties of Feynman graphs.

6 Hopf Algebra Structure for 1PI Graphs

We start with the renormalization and core Hopf algebras.

6.1 Core and Renormalization Hopf Algebras

Consider the free commutative Q-algebra

H = ⊕i≥0H
(i), H (0) ∼ QI, (6)

generated by 2-connected graphs as free generators (disjoint union is product m,
labelling of edges and of vertices by momenta as declared).
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Consider the Hopf algebras H(m, I,Δ, Î, S) and H(m, I,Δcore, Î, Sc), given by

I : Q → H, q → qI, (7)

Δ : H → H ⊗ H,Δ(Γ ) = Γ ⊗ I + I ⊗ Γ +
∑

γ �Γ,γ=∪iγi ,w(γi )≥0

γ ⊗ Γ/γ, (8)

Δcore : H → H ⊗ H,Δcore(Γ ) = Γ ⊗ I + I ⊗ Γ +
∑

γ �Γ,γ=∪iγi

γ ⊗ Γ/γ, (9)

Î : H → Q, qI → q, H> → 0, (10)

S : H → H, S(Γ ) = −Γ −
∑

γ �Γ,γ=∪iγi ,w(γi )≥0

S(γ )Γ/γ, (11)

Score : H → H, S(Γ ) = −Γ −
∑

γ �Γ,γ=∪iγi

Score(γ )Γ/γ, (12)

where H> = ⊕i≥1H (i) is the augmentation ideal.
Both Hopf algebras will be needed in the following for renormalization in the

presence of variations.
They both have a co-radical filtration, which for the renormalization Hopf algebra

delivers the renormalization group, and for the core Hopf algebra the flags of all
decompositions of a graph into iterated integrals of one-loop graphs. We often use
Sweedler’s notation: ΔΓ = Γ ′ ⊗ Γ ′′.

6.2 Hopf Algebras and the Cubical Chain Complex of Graphs

Let us return to graphs with spanning forests. For a spanning tree of length j , there
are j ! orderings of it edges. To such a spanning tree, we assign a j-dimensional cube
and to each of the j ! ordering of its edges a matrix as follows. We follow [6].

Let (Γ, T ) be a pair of a graph and a spanning tree for it with a choice of ordering
for its edges. Let F(Γ,T ) be the set of corresponding forests obtained by removing
edges from T in order.

Then, to any pair (Γ, F), with F a k-forest (1 ≤ k ≤ vΓ ), F ∈ F(Γ,T ) we can
assign a set of k disjoint graphs Γ F . We let ΓF := Γ/Γ F be the graph obtained by
shrinking all internal edges of these graphs.

For each such F , we call EΓF a cut. In particular, for F the unique 2-forest assigned
to T (by removing the first edge from the ordered edges of T ), we call ε2 = EΓF the
normal cut of (Γ, T ).

Note that the ordering of edges defines an ordering of cuts ∅ = ε1 � ε2 � · · · �

εk = EΓ .
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For a normal cut, we have Γ F = (Γ1, Γ2) and we call

s =
⎛
⎝ ∑

v∈VΓ1

qv

⎞
⎠

2

=
⎛
⎝ ∑

v∈VΓ2

qv

⎞
⎠

2

(13)

the channel associated to (Γ, T ).
These notions are recursive in an obvious way: the difference between a k and a

k + 1 forest defines a normal cut for some subgraph.
We then get a lower triangular matrix with entries from pairs (Γ, F) by shrinking

edges of the spanning tree from bottom to top in order, and removing edges from the
spanning tree from left to right in reverse order.

To set up Feynman rules for pairs (Γ, F) we need an important lemma.
We define |Γ F | = ∑

γ∈Γ F |γ |. Also, we let Fk(Γ ) be the set of all k-forests for
a graph Γ .

For a disjoint union of r graphs γ = ∪r
i=1γi , we say a disjoint union of trees

T = ∪i ti spans γ and write T |γ , if ti is a spanning tree for γi .
We have then an obvious decomposition of all possible spanning forests using the

coproduct Δcore. A spanning forest decomposes into a spanning forest which leaves
no loop intact in the cograph together with spanning trees for the subgraph [17, 18]:

Lemma 1

∑
T |Γ ′

⎛
⎝Γ, T ∪

vΓ∑
k=2

∑
F∈F k (Γ ′′),|ΓF |=0

F

⎞
⎠ =

vΓ∑
k=2

∑
F∈F k (Γ )

(Γ, F). (14)

Remark 1 On the right, we have a sum over all (k ≥ 2)-forests, and therefore a sum
over all possible Cutkosky cuts. On the left, we have the same using that the set of
all sub-graphs Γ ′ which have loops left intact appear on the lhs of the core Hopf
algebra co-product, with intact spanning trees T , whilst Γ ′′ has no loops left intact,
|ΓF | = 0.

Remark 2 The lemma ensures that uncut subgraphs which have loops can have their
loops integrated out. The resulting integrals are part of the integrand of the full graph
and its variations determined by the cut edges. Understanding the variations for cuts
which leave no loop intecat suffices to understand the variations in the general case.

We set
vΓ∑
k=1

∑
F∈F k (Γ )

(Γ, F) =: Disc(Γ ),

for the sum of all cuts at a graph.
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6.3 Graph Polynomials and Feynman Rules

We turn to Feynman rules, therefore from graphs and their combinatorial properties
to the analytic structure of the amplitudes associated to graphs.

6.3.1 Renormalized Feynman Rules

For graphs of a renormalizable field theory, we get renormalized Feynman rules
for an overall logarithmically divergent graph Γ (w(Γ ) = 0) with logarithmically
divergent subgraphs as

ΦR =
∫

PΓ

∑
F∈FΓ

(−1)|F |
ln ΦΓ/FψF+Φ0

FψΓ/F

Φ0
Γ/FψF+Φ0

FψΓ/F

ψ2
Γ/Fψ2

F

ΩΓ . (15)

Formula for other degrees of divergence for sub- and cographs can be found in [11].
In particular, also overall convergent graphs are covered. It is important that we use
a kinematic renormalization scheme such that tadpole integrals vanish [11, 19].

The Hopf algebra in use in the above is based on the renormalization
coproduct Δ.

The antipode S(Γ ) in this Hopf algebra can be written as a forest sum:

S(Γ ) = −Γ −
∑
F∈FΓ

(−1)|F |F × (Γ /F). (16)

6.3.2 Renormalized Feynman Rulesfor Pairs (Γ, F)

We now give the Feynman rules for a graph with some of its internal edges cut. This
can be regarded as giving Feynman rules for a pair (Γ, F).

Υ F
Γ :=

∫ ⎛
⎝ΦR(Γ ′)

∏
e∈(Γ ′′−EΓF )

1

P(e)

∏
e∈EΓF

δ+(P(e))

⎞
⎠ d4|Γ/Γ ′|k. (17)

We use Sweedler’s notation for the copoduct provided by Δcore.
Note that in this formula ΦR(Γ ′) has to stay in the integrand. The internal loops

of Γ ′ have been integrated out by ΦR , but ΦR(Γ ′) is still an obvious function of
loop momenta apparent in Γ/Γ ′. The existence of this factorization into integrated
subgraphs times cut cographs is a consequence of Lemma 1.



Multi-valued Feynman Graphs and Scattering Theory 313

7 Graph Amplitudes and Fubini’s Theorem

This section just mentions an important point often only implicitly assumed. For a
k-loop graphΓ , acting withΔk−1 gives a sum over k-fold tensorproducts of one-loop
graphs, each of which corresponding to a possibility to write ΦR(Γ ) as an iterated
integral of one-loop amplitudes.

Below, we study the 3-edge banana as an explicit example. Each of these pos-
sibilities evaluate to the same physical amplitude ΦR(Γ ) uniquely defined on the
principal sheet. We need Fubini’s theorem for that, and the existence of the operator
product expansion (OPE).

Consider the Dunce’s cap.

a

b

c

a

b

c
a

b

c
a

b

c
a

b

c

a

b

c
x

y y

xy

yx
y

xy
x

yx−1

Its five spanning trees give five choices for a basis for its two loops. The loop to be
integrated out first is a function of the next loop’s loop momentum.

If we integrate out first the loop based on three edges, say lx : eb, er , ey (a triangle),
this is a finite integral which does not need renormalization. The second loop is
ly : er , eg and carries the overall divergence after integrating lx .

Still, the counterterm for the subloop based on the two edges er , eg is needed.
Indeed, it corresponds to a limit where vertices b, c collapse, a limit in which the
Hopf algebra of renormalization needs to provide the expected counterterm, even if
the iterated integral ly ◦ lx has no divergent subintegral.

We need the operator product expansion to work precisely in the way it does to
have the freedom to use Fubini to come to uniquely defined renormalized amplitudes.

8 Cutkosky’s Theorem

In [6], Cutkosky’s theorem for a graph G is proven in a particular straightforward
way for cuts which leave no loop intact, so |GF | = 0. We quote

Theorem 1 (Cutkosky)Assume GF has a non-degenerate physical singularity at an
external momentum point p′′ ∈ QGF . Let p ∈ QG be an external momentum point
for G lying over p′′. Then the variation of the amplitude I (G) around p is given by
Cutkosky’s formula

var(I (G)) = (−2π i)#EGF

∫ ∏
e∈EG\EGF

δ+(�e)∏
e∈EGF

�e
. (18)
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For the set-up of Cutkosky’s theorem in general, we can proceed using Lemma 1:

• either a renormalized subgraph is smooth at the threshold divisors of the co-graph:
then we can apply Cutkosky’s theorem on the nose, and get a variation which is
parametrized by the renormalization conditions for these subgraphs with loops;

• or it is not smooth. Then, necessarily, its disconitinuity is described by a cut on
this subgraph, and hence it has no loops, adding its cut to the cut for the total.

9 Galois Co-actions and Symbols

In the above, we allow |EΓF | internal edges e ∈ EΓF to be on-shell. Other authors
[16] also allow to put internal edges on shell such that they do not separate the graph.
This gives no physical variation as one easily proves [6]. If one allows for variations
of masses as well, in particular in the context of non-kinematical renormalization
schemes, then such more general cuts can be meaningful though. Here, we restrict
to variations coming from varying external momenta for amplitudes renormalized
with kinematic renormalization schemes.

It is of interest to study a coaction. It is often simply written as a Hopf algebra
[16, 20] and then for general cuts the coproduct Δco has the incidence form

Δco(Γ, E) =
∑

F⊆(EΓ \E)

(Γ /(EΓ \(E ∪ F)), E) ⊗ (Γ, E ∪ F),

where E is a set of edges, and F a subset of the complement EΓ \E . A pair (Γ, E)

is to be regarded as a graph with the set of edges E put on-shell.
Restricting on-shell edges to originate from cuts EΓF allows to read off Δco from

our lower triangular Hodge matrices in an obvious way, as in the example for the
triangle above (Eq. (5)).

This co-product fulfills

Δco ◦ Disc = (Disc ⊗ id) ◦ Δco,

and
Δco ◦ /e = (id ⊗ /e) ◦ Δco,

where Disc as before is the map which sends a Feynman graph to a sum over all cut
graphs obtained from all spanning k-forests of the graph, k ≥ 2. Furthermore, /e is
the map which sums over all ways of shrinking an (uncut) edge.

We canmake this into a proper coaction (see [20, 21] for an overview of coactions
in the context of Feynman amplitudes)

ρ : V → V ⊗ H, (ρ ⊗ id) ◦ ρ = (id ⊗ Δ) ◦ ρ.
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Here, it suggests itself to take for V the vector space of uncut Feynman graphs, and
for H the Hopf algebra of cut graphs with a coproduct as above.

For one-loop graphs, these graphical coactions are in accordancewith the structure
of the dilogarithms into which these graphs evaluate as was observed by Abreu et.al.,
see [16].

The Hodge matrices resulting from the cubical chain complex can be constructed
for every graph, and from it the corresponding coaction can be constructed. On the
analytic side, the hope is that this confirms the set-up suggested by Brown [21].

For cuts, these coactions in accordance with the cubical chain complex.
Iterating this coaction in accordance with the co-radical filtration of the Hopf

algebra suggests then to define symbols graphically, a theme to be pursued further.

10 3-Edge Banana

In the process of the blow-up of missing cells in Outer Space a graph polytope is
generated [4]. Such polytopes combine to jewels. One can use the blow-up to store
the complete sheet structure of the amplitude.

As an example we consider the construction of colored jewel J2, generated by the
3-edge banana graph.

10.1 Existence of the Banana Monodromy

Let us first collect an elementary result.

Lemma 2 The integral for the cut n-edge banana

∫
MD(n−1)

dD(n−1)k
n∏

i=1

δ+(ki ) ≡ Var(ΦR(bn))

exists for any positive integer D.

Proof We have n − 1 loop momenta k1, . . . , kn−1, and the measure is dD(n−1)x =
dDk1 · · · dDkn−1. The δ+-distributions give n constraints. The n − 1 integrations over
the 0-components of the loop momenta can be constrained by n − 1 of the δ+ distri-
butions. The remaining spacelike integrals are over an Euclidean space R

(D−1)(n−1)

and can be done in spherical coordinates. The angle integrations are over a compact
sphere, and the one remaining δ+-distribution fixes the radial integration.

The argument obviously generalizes to graphs with n − 1-loops in which n cuts cut
all the loops.
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10.2 b3: Three Edges

We now consider the 3-edge banana b3 on three different masses.

As we will see, the resulting function ΦR(b3) has a structure very similar to the
dilogarithm function Li2(z). As a multi-valued function, we can write the latter as

Limv
2 (z) = Li2(z) + 2π ıZ ln z + (2π ı)2Z × Z,

or more explicitly

Limv
2 (z)(n1, n2) = Li2(z) + 2π ın1 ln z + (2π ı)2n1n2.

The variable n1 stores the sheet for the evaluation of the sub-integral Li1(x) apparent
in the iterated integral representation

Li2(z) =
∫ z

0

Li1(x)

x
dx .

The sheet for the evaluation of ln z is stored by n2 and only contributes for n1 �= 0.
Very similarly we will establish the structure of the multi-valued functions

assigned to b3 as iterated integrals, with ΦR(b2)mv(k2,m2
i ,m

2
j ) apparent as a one-

loop sub-integral in the two-loop integration assigned to b3 and playing the role of
Li1(x).

We will find multi-valued functions

Ii jk (n1, n2)(s) = ΦR(b3)(s) + 2π ın1

∫ Var(ΦR(b2))(k2;m2
i ,m

2
j )

(k + q)2 − m2
k

d4k (19)

+(2π ı)2
|m2

k − s||m2
i − m2

j |
2s

n1n2.

Here, i, j, k take values in the index set {b, y, r} labelling the three different masses,
and we regard the three functions

Ibyr (n1, n2)(s) ∼ Iyrb (n1, n2)(s) ∼ Irby (n1, n2)(s)

as equivalent, with equivalence established by equality along the principal sheet.
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Let us come back to b3. Here, the fundamental group has two generators, the
interesting question is how to compare this with the generators of monodromy for
ΦR(b3) and how this defines corresponding multi-valued functions as above.

We start by using the fact that we can disassemble b3 in three different ways into
a b2 sub-graph, with a remaining edge providing the co-graph.

Any two of the three edges of the graph b3 can be regarded as a subgraph b2 � b3.
This is in accordance with the flag structure of b3 generated from an application of
Δcore, which gives a set of three flags (see [7]):

{(
,

)
,

(
,

)
,

(
,

)}
.

Let us compute

Var(ΦR(b3)(s,m
2
r ,m

2
b,m

2
y)) =

∫
d4kd4lδ+(k2 − m2

b)δ+(l2 − m2
r )δ+((k − l + q)2 − m2

y),

an integral which exists by the above Lemma.
Using Fubini, this can be written in three different ways in accordance with the

flag structure:

Var(ΦR(b3)) =
∫

d4kVar(ΦR(b2))(k
2,m2

r ,m
2
b)δ+((k + q)2 − m2

y),

or

Var(ΦR(b3)) =
∫

d4kVar(ΦR(b2))(k
2,m2

b,m
2
y)δ+((k + q)2 − m2

r ),

or

Var(ΦR(b3)) =
∫

d4kVar(ΦR(b2))(k
2,m2

y,m
2
r )δ+((k + q)2 − m2

b).

The integrals are well-defined by the above Lemma and give the variation and hence
imaginary part of ΦR(b3), which can be obtained from it by a twice subtracted
dispersion integral (the renormalized function and its first derivative must vanish as
s = s0)

ΦR(b3)(s, s0) = (s − s0)2

π

∫ ∞

0

Var(ΦR(b3)(x))

(x − s)(x − s0)2
dx .

Computing ΦR(b3) directly from ΦR(b2) as an iterated integral can be done accord-
ingly in three different ways:

ΦR(b3)(s, s0;m2
r ,m

2
b,m

2
y) =

=
∫

d4k
B2(k2,m2

r ,m
2
b)

(k + q)2 − m2
y

=
∫

d4k
B2(k2,m2

b,m
2
y)

(k + q)2 − m2
r

=
∫

d4k
B2(k2,m2

y,m
2
r )

(k + q)2 − m2
b

,
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with subtractions at s = s0 understood.
There is a subtlety here: this is only correct in a kinematic renormalization scheme

where subtractions are done by a Taylor expansion of the integrand around s = s0
[11, 19].

This implies that the co-graphs in the flag structure of b3 fulfil

as tadpoles are independent of the kinematic variable s. Hence b3 can be regarded
as a primitive element under renormalization.

To study the sheet structure for b3 we now define three different multi-valued
functions as promised above

I i jk = I ji
k =

∫
Φmv

R (b2)(k2,m2
i ,m

2
j )

(k + q)2 − m2
k + iη

d4k,

with subtractions at s = s0 understood as always such that the integrals exist.
For later use in the context of Outer Space we represent them as

Ibry
Iyrb Ibyr

It is convenient to rewrite them as,

I i jk =
∫

ΦR(b2)(k2,m2
i ,m

2
j )

(k + q)2 − m2
k + iη

d4k + 2π ıZ
3∑

u=1

J i j;uk ,

with

J i j;uk =
∫

d4k
J i ju (k2)

(k + q)2 − m2
k + iη

,

see Eqs. (1)–(3).
Note that by the above,

ΦR(b3) =
∫

ΦR(b2)(k2,m2
i ,m

2
j )

(k + q)2 − m2
k + iη

d4k,
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is well-defined no matter which of the two edges we choose as the sub-graph, and
Cutkosky’s theorem defines a unique function Vrby(s),

�(ΦR(b3)(s)) = Vrby(s)Θ(s − (mr + mb + my)
2).

Before we start computations, we note that we expect that the integrals for
J i j;2k , J i j;3k have no monodromy as there are no endpoint singularities as the inte-
grand vanishes at the endpoints of the domain of integration, and there are no pinch
singularities by inspection.

But for J i j;1k we expect monodromy: The denominator of Vi j is k2. So we get
monodromy from the intersection of the zero locus k2 = 0 (which now lies in the
domain of integration as k2 is only bounded from the above by (mi − m j )

2) and the
zero locus (k + q)2 − m2

k = 0.

10.3 Computation

Wenowgive computational details for the 3-edge banana graph.4 We start by comput-
ing �(ΦR(b3)(s)) = Vrby(s)Θ(s − (mr + mb + my)

2), or equivalently �(J i j;3k )(s).
Consider ∫

d4k
Θ(k2 − (mi + m j )

2)

2k2
δ+((k + q)2) − m2

k).

The δ+ distribution demands that k0 + q0 > 0, and therefore we get

∫ ∞
−q0

dk0

∫ ∞
0

dt
√
t
Θ(k20 − t − (mi + m j )

2)
√

λ(k20 − t,m2
i ,m

2
j )

2(k20 − t)
δ((k0 + qo)

2 − t − m2
k ).

As a function of k0, the argument of the δ-distribution has two zeroes: k0 = −q0 ±√
t + m2

k .

As k0 + q0 > 0, it follows k0 = −q0 +
√
t + m2

k . Therefore, k
2
0 − t = q2

0 + m2
k −

2q0
√
t + m2

k .
For our desired integral, we get

∫ ∞

0
dt

√
tΘ(q2

0 + m2
k − 2q0

√
t + m2

k − (mi + m j )
2)×

×

√
λ(q2

0 + m2
k − 2q0

√
t + m2

k,m
2
i ,m

2
j )

2(q2
0 + m2

k − 2q0
√
t + m2

k)

√
t + m2

k

.

4Further computational results can be found in [22, 23].
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The Θ-distribution requires

q2
0 + m2

k − (mi + m j )
2 ≥ 2q0

√
t + m2

k .

Solving for t , we get

t ≤ λ(s,m2
k, (mi + m j )

2)

4s

As t ≥ 0, we must have for the physical threshold s > (mk + mi + m j )
2 (which is

indeed completely symmetric under permutations of i, j, k, in accordance for what
we expect for �(ΦR(b3)(s))). We then have

�(J i j;3k )(s) =
∫ λ(s,m2

k ,(mi+m j )
2)

4s

0

√
λ(s + m2

k − 2
√
s
√
t + m2

k,m
2
i ,m

2
j )

2(s + m2
k − 2

√
s
√
t + m2

k)

√
t + m2

k

√
tdt.

There is also a pseudo-threshold at s < (mk − mi − m j )
2.

Note that the integrand vanishes at the upper boundary λ(s,m2
k ,(mi+m j )

2)

4s , and the
integral has a pole at s = 0 (see below) as for s = 0 the integral would not converge.
The integrand is positive definite in the interior of the integration domain and free of
singularities.

The computation of �(J i j;2k )(s) proceeds similarly and gives

�(J i j;2k )(s) =
∫ λ(s,m2

k ,(mi−m j )
2)

4s

λ(s,m2
k ,(mi+m j )

2)

4s

√
λ(s + m2

k − 2
√
s
√
t + m2

k,m
2
i ,m

2
j )

2(s + m2
k − 2

√
s
√
t + m2

k)

√
t + m2

k

√
tdt.

The integrand vanishes at the upper and lower boundaries. The integrand is positive
definite in the interior of the integration domain and free of singularities.

Most interesting is the computation of �(J i j;1k )(s). It gives

�(J i j;1k )(s) =
∫ ∞

λ(s,m2
k ,(mi−m j )

2)

4s

√
λ(s + m2

k − 2
√
s
√
t + m2

k,m
2
i ,m

2
j )

2(s + m2
k − 2

√
s
√
t + m2

k)

√
t + m2

k

√
tdt.

The integrand vanishes at the lower boundary λ(s,m2
k ,(mi−m j )

2)

4s , and the integral again

has a pole at s = 0. But now the integrand has a pole as q2
0 + m2

k − 2q0
√
t + m2

k is

only constrained to≤ (mi − m j )
2, and hence can vanish in the domain of integration.
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This gives us a new variation apparent in the integration of the loop in the co-graph

Var(J i j;1k )(s) =
∫ √

λ(k2,m2
i ,m

2
j )δ(k

2)δ+((k + q)2 − m2
k)d

4k,

which evaluates to

Var(J i j;1k )(s) =

√
λ(0,m2

i ,m
2
j )︷ ︸︸ ︷

|m2
i − m2

j |

√
λ(s,m2

k ,0)︷ ︸︸ ︷
|s − m2

k |
2s

Θ(s − m2
k) .

Adding the contributions, we confirm our expectations Eq. (19).

11 Markings and Monodromy

Consider the equivalence relation for b3 in Outer Space.

x

y

xy

y x

xy

∼ ∼

The three possible choices for a spanning tree of b3 result in three different but
equivalent markings of b3 regarded as a marked metric graph in (colored) Outer
Space.5 Each different choice corresponds to a different choice of basis for H 1(b3).
The markings given in this picture determine all markings in subsequent picture,
where they are omitted.

The choice of a spanning tree together with an ordering of the roses then deter-
mines uniquely a single element in the set of ordered flags of subgraphs, and hence
determines one iterated Feynman integral describing the amplitude in question.

For their evaluation along principal sheets equality of these integrals follows by
Fubini, which gives equality along the principal sheet and implies an equivalence
relation for evaluation along the non-principal sheets.

On the level of amplitudes, a basis for the fundamental groupof the graph, provided
by a marking, translates to a basis for the fundamental group for the complement of
the threshold divisors of the graph.

Concretely, for the amplitude generated by b2, this is trivial: we have a single
generator for the one loop, and this maps to a generator for the monodromy of the
corresponding amplitude.

5For the notion of equivalence in Outer Space refer to [2].
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For b3, we get two generators. A choice as which two edges form the subgraph
b2 then determines the iterated integral. The equivalence of markings in Outer Space
becomes the Fubini theorem of iterated integrals for the evaluation along principal
sheets, and the corresponding equivalence off principal sheets else.

Iybr

Ibry

Iryb

Let us have a closer look at this corresponding cell in Outer Space. In the barycenter
of the triangle we indicate the graph b3. The green lines form the spine, connecting
the graph at the barycenter to the barycenters of the codimension-one edges of the
triangle, which are cells marked by the indicated colored 2-petal roses.

The corners of the triangle are not part of Outer Space, as we are not allowed to
shrink loops. In fact, they are blown up to arcs, which are cells populated by graphs
for which the choice is obvious as to which two edges are the subgraphs - the corners
are the intersections of two edge variables becoming small as compared to the third.
The three different iterated integrals are hence assigned to those arcs in a natural
manner.

For example for the lower left corner, the edge variable Ab is much greater than
the edge variables Ar , Ay . Along the arc, an equivalence relation operates as well,
as the loop formed by edges er , ey can have either of the two edges as its spanning
tree. The endpoints of these arcs form the vertices of the cell, which is a hexagon. To
those vertices we assign roses as indicated, with one small and one big petal, which
indicates an order on the petals.

Note that moving along an arc can be regarded as movement in a fibre given by
the chosen subgraph b2, while moving the arc away or toward the barycenter of the
triangle is movement in the base.

Moving fromone corner to another utilizes a non-trivial equivalence of our iterated
integrals.

We indicate the markings only for some of the graphs, and only for the choice of
the red edge as the spanning tree.
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Let us have a still closer look at the corners:

∼

Iryb Iryb

The equivalence relation is an equivalence relation for the twomarkedmetric graphs,
which is indeed coming froman equivalence relation for the two choices of a spanning
tree for the 2-edge subgraph on the red and yellow edges, while the corresponding
analytic expression is equal for both choices: I ryb .

Moving to a different corner by shrinking the size of the blue edge and increasing
say the size of the red edge moves to a different corner while leaving the marking
equal. This time we have an equivalence relation between the analytic expressions:

I ryb ∼ I byr .

Moving along an arc uses equivalence based on homotopy of the graph, moving
along an edge leaves the marking equal, but uses equivalence of analytic expressions
I γ

Γ/γ , here I ryb ∼ I byr .6

The complete sheet structure including non-principal sheets is always rather subtle
and is reflected by a jewelled space J2 as we discuss now.

6In this example the cograph was always a single-edge tadpole whose spanning tree is a single
vertex and therefore the equivalence relation from the 1-petal rose R1 to the co-graph is in fact the
identity. In general, the decomposition of a graph into a subgraph γ and cograph Γ/γ corresponds
to a factorization into equivalence classes for the subgraph and equivalence classes for the cograph
familiar from [5].
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A crucial aspect of Outer Space is that cells combine to spaces, and that these
spaces provide information, for example on the representation theory of the free
group in the case of traditional Outer Space, and on the sheet structure of amplitudes
in our case. In particular, the bordification of Outer Space as studied by [4], motivates
to glue the cell studied above to a ‘jewel’:

The Euclidean simplices are put in a Poincaré disk as hyperbolic triangles. We only
give markings for a few graphs in the center. To not clutter the figure, we have not
given the graphs for the vertices in this figure which are all marked ordered roses as
indicated above, by a result of [4].
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Interpolated Sequences and Critical
L-Values of Modular Forms

Robert Osburn and Armin Straub

Abstract Recently, Zagier expressed an interpolated version of the Apéry numbers
for ζ(3) in terms of a critical L-value of a modular form of weight 4. We extend
this evaluation in two directions. We first prove that interpolations of Zagier’s six
sporadic sequences are essentially critical L-values of modular forms of weight 3.
We then establish an infinite family of evaluations between interpolations of leading
coefficients of Brown’s cellular integrals and critical L-values of modular forms of
odd weight.

1 Introduction

For x ∈ C, consider the absolutely convergent series

A(x) =
∞∑

k=0

(
x

k

)2(x + k

k

)2

. (1)

If x = n ∈ Z≥0, this series terminates at k = n and agreeswith thewell-knownApéry
numbers A(n) for ζ(3) [5, 35]. Let

f (τ ) =
∑

n≥1

anq
n ∈ Sk(Γ1(N )), q = e2πiτ ,

be a cusp form of weight k and level N , and
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L( f, s) :=
∑

n≥1

an
ns

be the L-function for f defined for Re s large. FollowingDeligne, we say that L( f, j)
is a critical L-value if j ∈ {1, 2, . . . , k − 1}. For a beautiful exposition concerning
the importance of these numbers, see [22]. Zagier [40, (44)] recently showed that the
interpolated Apéry numbers (1) are related to the critical L-value of a modular form
of weight 4. Specifically, he proved the following intriguing identity:

A(− 1
2 ) = 16

π2
L( f, 2), (2)

where
f (τ ) = η(2τ )4η(4τ )4 =

∑

n≥1

αnq
n (3)

is the unique normalized Hecke eigenform in S4(Γ0(8)) and η(τ ) is the Dedekind
eta function. We note that, expressing the left-hand side as a hypergeometric series,
the identity (2) was previously established by Rogers, Wan and Zucker [29]. The
evaluation (2) can be seen as a continuous counterpart to the congruence

A(
p−1
2 ) ≡ αp (mod p), (4)

which holds for primes p > 2 and was established by Beukers [9], who further
conjectured that the congruence (4) actually holds modulo p2. This supercongruence
was later proven by Ahlgren and Ono [2] using Gaussian hypergeometric series.

Zagier indicates that Golyshev predicted an evaluation of the form (2) based
on motivic considerations and the connection of the Apéry numbers with the double
covering of a related family of K3 surfaces. Here, we do not touch on these geometric
considerations (see [40, Section 7] for further details), but only note that Golyshev’s
prediction further relies on the Tate conjecture, which remains open in the required
generality. Identity (2), and similar ones to be explored in this paper, might therefore
serve as evidence supporting the motivic philosophy and the Tate conjecture.

The goal of this paper is to extend Zagier’s evaluation (2) in two directions. Firstly,
in Sect. 2, we consider the six sporadic sequences that Zagier [39] obtained as integral
solutions to Apéry-like second order recurrences. Based on numerical experiments,
we observe that each of these sequencesC∗(n) appears to satisfy congruences like (4)
connecting them with the Fourier coefficients of a modular form f∗(τ ) of weight 3.
For three of these sequences these congruences were shown by Stienstra and Beukers
[34], while the other three congruences do not appear to have been recorded before.
We prove two of these new cases, one using a general result of Verrill [36] and the
other via p-adic analysis and comparison with another case. Our main objective is to
show that in each case there is a version of Zagier’s evaluation (2). For x ∈ C, there
is a natural interpolation C∗(x) of each sequence and the value C∗(−1/2) can in five
of the six cases be expressed as α

π2 L( f∗, 2) for α ∈ {6, 8, 12, 16}. In the remaining
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case, C∗(x) has a pole at x = −1/2. Remarkably, the residue of that pole equals
6
π2 L( f∗, 1).

Secondly, Brown [13] recently introduced cellular integrals generalizing the lin-
ear forms used in Apéry’s proof of the irrationality of ζ(3) as well as many other
constructions related to the irrationality of zeta values. These are linear forms in
multiple zeta values and their leading coefficients Aσ(n) are generalizations of the
Apéry numbers. McCarthy and the authors [27] proved that, for a certain infinite
family of these cellular integrals, the leading coefficients Aσ(n) satisfy congruences
like (4) with Fourier coefficients of modular forms fk(τ ) of odd weight k ≥ 3. In
Sect. 3, we review these facts and prove an analogue of Zagier’s evaluation (2) for all
of these sequences. Finally, in Sect. 4, we conclude with several directions for future
study.

2 Zagier’s Sporadic Sequences

2.1 The Congruences and L-Value Relations

In addition to A(n), Apéry [5] introduced a second sequence which allowed him
to reprove the irrationality of ζ(2). This sequence is the solution of the three-term
recursion, for (a, b, c) = (11, 3,−1),

(n + 1)2un+1 = (an2 + an + b)un − cn2un−1, (5)

with initial conditions u−1 = 0, u0 = 1. Inspired by Beukers [10], Zagier [39] con-
ducted a systematic search for parameters (a, b, c) which similarly result in integer
solutions to the recurrence (5). After normalizing, and apart from degenerate cases,
he discovered four hypergeometric, four Legendrian and six sporadic solutions. It
remains an open question whether this list is complete. The six sporadic solutions
are listed in Table 1. As in [39], we use the labels A–F and index the sequences
accordingly.

For each of these sequences, a binomial sum representation is known. For instance,
if (a, b, c) = (11, 3,−1), then

CD(n) =
n∑

k=0

(
n

k

)2(n + k

k

)
. (6)

Following Zagier’s approach for (1), we obtain an interpolation of a sporadic
sequence by replacing the integer n in the binomial representation with a complex
number x and extending the sum to all nonnegative integers k. Note that some care
is needed for sequence C (see Example 2 in Sect. 2.4). The resulting interpolations
are recorded in Table 1. We note that this construction depends on the binomial sum
which is neither unique nor easily obtained from the recursion (5). The fact that we
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Table 1 Zagier’s six sporadic sequences [39] and their interpolations

* C∗(n) C∗(x)

A
n∑

k=0

(n
k

)3 ∑
k≥0

(x
k

)3

B
�n/3�∑
k=0

(−1)k3n−3k
( n
3k

)
(3k)!
k!3

∑
k≥0

(−1)k3x−3k
( x
3k

)
(3k)!
k!3

C
n∑

k=0

(n
k

)2(2k
k

)
Re 3F2

[−x,−x,1/2
1,1

∣∣∣4
]

D
n∑

k=0

(n
k

)2(n+k
k

) ∑
k≥0

(x
k

)2(x+k
k

)

E
n∑

k=0

(n
k

)(2k
k

)(2(n−k)
n−k

) ∑
k≥0

(x
k

)(2k
k

)(2(x−k)
x−k

)

F
n∑

k=0
(−1)k8n−k

(n
k

)
CA(k)

∑
k≥0

(−1)k8x−k
(x
k

)
CA(k)

Table 2 The weight 3, level N∗ newforms f∗ with their L-values

* f∗(τ ) N∗ L( f∗, 2) α∗

A η(4τ )5η(8τ )5

η(2τ )2η(16τ )2
32

Γ 2
(
1
8

)
Γ 2

(
3
8

)

64
√
2π

8

B η(4τ )6 16
Γ 4

(
1
4

)

64π 8

C η(2τ )3η(6τ )3 12
Γ 6

(
1
3

)

217/3π2 12

D η(4τ )6 16
Γ 4

(
1
4

)

64π 16

E η(τ )2η(2τ )η(4τ )η(8τ )2 8
Γ 2

(
1
8

)
Γ 2

(
3
8

)

192π 6

F q − 2q2 + 3q3 + . . . 24
Γ

(
1
24

)
Γ

(
5
24

)
Γ

(
7
24

)
Γ

(
11
24

)

96
√
6π

6

can relate the value of these interpolations at x = −1/2 to critical L-values, as in
Zagier’s evaluation (2), indicates that our choices are natural. We offer some more
comments on these interpolations in Sect. 2.4.

Our first main result is the following.

Theorem 1 LetC∗(n)be the sporadic sequence inTable 1 and f∗(τ ) = ∑
n≥1 γn,∗qn

be the weight 3, level N∗ newform listed in Table 2 where the label ∗ is A, B, C , D
or E. Then, for all primes p > 2,

C∗( p−1
2 ) ≡ γp,∗ (mod p). (7)

We note that the congruences (7) hold modulo p2 only for sequence D [1]. The-
orem 1 is known to be true for sequences C and D by work of Stienstra and Beukers
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[34], and we show in Sect. 2.2 that the congruences for sequence A can be deduced
from their work. The other three cases, including F, appear not to have been con-
sidered before. We also show in Sect. 2.2 that a general result of Verrill [36] can be
used to prove the modular congruences of Theorem 1 for sequences C and E. As
she points out with sequence A, the same approach does not apply in the other cases.
Verrill indicates that the modular congruences for sequence A can be explained by
Atkin-Swinnerton-Dyer congruences [25, Section 5.8]. We expect that similar ideas
can be applied to the case F, for whichwe have numerically observed that Theorem 1
holds as well.

For our secondmain result,we have the following analogues ofZagier’s evaluation
(2).

Theorem 2 Let C∗(x) be the interpolated sequence in Table 1 and f∗(τ ) be the
weight 3, level N∗ newform listed in Table 2 where the label ∗ is A, B, C, D or F.
Then

C∗(− 1
2 ) = α∗

π2
L( f∗, 2). (8)

For sequence E,

res
x=−1/2

CE(x) = 6

π2
L( fE, 1). (9)

We prove Theorem 2 in Sect. 2.3. The proof for sequence F, using a modular
parametrization from [14], is due to Wadim Zudilin. We note from Table 2 that α∗
divides N∗ in all cases except E. It is natural to wonder if a uniform explanation can
be given for this observation.

Finally, we note that for sequence E, (9) can be written in terms of L( fE, 2) by
virtue of the relation

L( fE, 1) =
√
2

π
L( fE, 2). (10)

This is an instance of a general principle, briefly discussed at the end of Sect. 3,
which implies that the normalized critical L-values of fE(τ ) are algebraic multiples
of each other.

2.2 Proof of Theorem 1

Zagier showed that each of the sporadic sequences C∗(n) in Table 1 has a modular
parametrization, that is, there exists a modular function x(τ ) such that

y(τ ) :=
∞∑

n=0

C(n)x(τ )n (11)



332 R. Osburn and A. Straub

is a modular form of weight 1. In cases C and E, these are connected to the corre-
sponding modular form f∗(τ ) in Table 2 in such a way that we can apply a general
result of Verrill [36] to prove the modular congruences claimed in Theorem 1. This
general result is an extension of Beukers’ proof [9], which we revisit in Example 1,
of the congruences (4) for the Apéry numbers.

Theorem 3 ([36, Theorem 1.1]) Let y(τ ) be a modular form of weight k and x(τ ) a
modular function of level N , and define C(n) by (11). Suppose that, for some integers
M and ad ,

y
q

x

dx

dq
=

∑

d|M
ad f (dτ ),

where f (τ ) = ∑
γnqn is a weight k + 2, level N Hecke eigenform with character

χ. Then,

C(mpr ) − γpC(mpr−1) + χ(p)pk+1C(mpr−2) ≡ 0 (mod pr ),

for any prime p � NM and integers m, r . In particular, if C(1) = 1, then

C(p) ≡ γp (mod p).

In the next example, we apply Theorem 3 to deduce the congruences (4) for the
Apéry numbers A(n) (see also [36, Section 2.1]).

Example 1 As shown in [9], the Apéry numbers A(n) have themodular parametriza-
tion (11) with

x(τ ) = η(τ )12η(6τ )12

η(2τ )12η(3τ )12
, y(τ ) = η(2τ )7η(3τ )7

η(τ )5η(6τ )5
.

Observe that, defining x̃(τ ) and ỹ(τ ) by

x̃(τ )2 = x(2τ ), ỹ(τ ) = x̃(τ )y(2τ ),

we have from (11) that

ỹ(τ ) =
∞∑

n=0
n odd

A( n−1
2 )x̃(τ )n.

It then follows from

ỹ
q

x̃

dx̃

dq
= f (τ ) − 9 f (3τ ),

where f (τ ) is given by (3), and Theorem 3 that the congruences (4) hold for primes
p > 3. This is the proof given in [9], which is generalized to Theorem 3 in [36].

We now proceed with the proof of Theorem 1.
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Proof (of Theorem 1) We first recall that the cases C and D were already proved in
[34]. To alternatively deduce case C from Theorem 3, we note that CC(n) has the
modular parametrization (11) with (see [39])

x(τ ) = η(τ )4η(6τ )8

η(2τ )8η(3τ )4
, y(τ ) = η(2τ )6η(3τ )

η(τ )3η(6τ )2
.

Defining x̃(τ ) and ỹ(τ ) from x(τ ) and y(τ ) as in Example 1, it then follows from

ỹ
q

x̃

dx̃

dq
= fC(τ )

and Theorem 3 that the congruences (7) hold for sequence C.
Similarly, it is shown in [39] that CE(n) has the modular parametrization (11)

with

x(τ ) = η(τ )4η(4τ )2η(8τ )4

η(2τ )10
, y(τ ) = η(2τ )10

η(τ )4η(4τ )4
.

Again, defining x̃(τ ) and ỹ(τ ) as in Example 1, it follows from

ỹ
q

x̃

dx̃

dq
= fE(τ ) + 2 fE(2τ )

and Theorem 3 that the congruences (7) hold for sequence E. We now claim that

CA(
p−1
2 ) ≡ γp,A (mod p), (12)

where γp,A is the pth Fourier coefficient of fA(τ ). To see this, note that (see [34])
for primes p > 2,

(−1)(p−1)/2CA(
p−1
2 ) ≡ γp,E (mod p), (13)

(this congruence is recorded in [36, (4.55)] with the sign missing) where γp,E is the
pth Fourier coefficient of fE(τ ). Now, observe the relation

(−1)(n−1)/2γn,A = γn,E + 2γn/2,E

for all integers n ≥ 1. In particular, for odd n, γn,E = (−1)(n−1)/2γn,A. Thus, (13)
is equivalent to (12). We note that (13) provides a quick alternative proof of the
congruences for sequence E by showing that

CE(
p−1
2 ) ≡ (−1)(p−1)/2CA(

p−1
2 ) (mod p).

This congruence can be deduced directly from the binomial sums recorded in Table 1
and the fact that the congruences hold termwise.
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Finally, let us prove the congruences for sequence B. Expressing the defining
binomial sum hypergeometrically, we have

CB(
p−1
2 ) = 3(p−1)/2

3F2

[
1−p
6 ,

3−p
6 ,

5−p
6

1, 1

∣∣∣∣∣1
]

.

Because the hypergeometric series is a finite sum (one of the top parameters is a
negative integer), it follows that

CB(
p−1
2 ) ≡ 3(p−1)/2

3F2

[
1−p
6 ,

3−p
6 ,

5−p
6

1 − p
6 , 1 − p

3

∣∣∣∣∣1
]

(mod p).

By specializing Watson’s identity (see, for instance, [4, Theorem 3.5.5(i)]), we find
that this hypergeometric sum has the closed form evaluation

3F2

[
1−p
6 ,

3−p
6 ,

5−p
6

1 − p
6 , 1 − p

3

∣∣∣∣∣1
]

=
(

Γ ( 12 )Γ (1 − p
6 )

Γ (
7−p
12 )Γ (

11−p
12 )

)2

. (14)

If p ≡ 3(mod 4), then p ≡ 7, 11(mod 12) and we see that the right-hand side of (14)
is zero, so thatCB(

p−1
2 ) vanishes modulo p. Suppose that p ≡ 1(mod 4). With some

care, we are able to write

Γ ( 12 )Γ (1 − p
6 )

Γ (
7−p
12 )Γ (

11−p
12 )

≡ Γp(
1
2 )Γp(1 − p

6 )

Γp(
7−p
12 )Γp(

11−p
12 )

≡ − Γp(
1
2 )

Γp(
7
12 )Γp(

11
12 )

(mod p),

where Γp is Morita’s p-adic gamma function (see, for instance, [15, 11.6] or [21,
IV.2]). Since Γp(1/2)2 = (−1)(p+1)/2, it follows that, if p ≡ 1(mod 4), then

CB(
p−1
2 ) ≡ − 3(p−1)/2

Γp(
7
12 )

2Γp(
11
12 )

2
≡ −3(p−1)/2Γp(

1
12 )

2Γp(
5
12 )

2 (mod p),

where we used the p-adic version of the reflection formula for the final congruence.
On the other hand, it follows from the p-adicGauss–Legendremultiplication formula
(see, for instance, [15, 11.6.14] or [21, p. 91]) that, for primes p ≡ 1(mod 4),

Γp(
1
12 )

2Γp(
5
12 )

2 = ( 3
p )Γp(

1
4 )

4.

Since 3(p−1)/2 ≡ ( 3
p )(mod p), we conclude that, modulo p,

CB(
p−1
2 ) ≡

{−Γp(
1
4 )

4, if p ≡ 1(mod 4),
0, if p ≡ 3(mod 4).
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Comparing with the congruences established for sequence D in [34, (13.4)], we
arrive at

CB(
p−1
2 ) ≡ CD(

p−1
2 ) (mod p), (15)

which implies the claimed congruences for sequence B.

2.3 Proof of Theorem 2

This section is devoted to proving Theorem 2. We first prove case D in detail, then
briefly indicate how to establish cases A, B, C and E. We conclude with a sketch
of case F. We note that the relation of the hypergeometric series, which arise for
sequences A, C , D, and the corresponding L-values already appears in [42].

Proof (of Theorem 2) We first claim that

CD(− 1
2 ) = 16

π2
L( fD, 2). (16)

Expressing the defining binomial sum hypergeometrically, we have

CD(x) = 3F2

[−x,−x, x + 1

1, 1

∣∣∣∣1
]

,

so that, in particular,

CD(− 1
2 ) = 3F2

[ 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣1
]

.

We could evaluate the right-hand side using hypergeometric identities (such as, in
this case, [4, Theorem 3.5.5]). Instead, here and in subsequent cases, we find it more
fitting to the overall theme to employ modular parametrizations. As such, applying
Clausen’s identity (see, for instance, [12, Proposition 5.6])

3F2

[ 1
2 , s, 1 − s

1, 1

∣∣∣∣4x(1 − x)

]
= 2F1

[
s, 1 − s

1

∣∣∣∣x
]2

, (17)

with s = 1/2 and the modular parametrization (see [11], [38, p.63] or [40, (37)])

2F1

[ 1
2 ,

1
2

1

∣∣∣∣λ(τ )

]
= θ3(τ )2, (18)

where θ2(τ ) = ∑
n∈Z+1/2 q

n2/2, θ3(τ ) = ∑
n∈Z qn2/2 and λ(τ ) =

(
θ2(τ )

θ3(τ )

)4
, we find

that
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CD(− 1
2 ) = 2F1

[ 1
2 ,

1
2

1

∣∣∣∣
1

2

]2

=
(

Γ 2( 14 )

2π3/2

)2

, (19)

upon taking τ = i , in which case λ(i) = 1
2 and θ3(i)2 = Γ 2(1/4)

2π3/2 . On the other hand,
it is shown by Rogers, Wan and Zucker [29] that

L( fD, 2) = Γ 4( 14 )

64π
.

In light of (19), this proves (16). Next, we claim that

CA(− 1
2 ) = 8

π2
L( fA, 2). (20)

Proceeding as above, we find that

CA(− 1
2 ) = 3F2

[ 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣−1

]
.

Employing (17) and the modular parametrization, we obtain

CA(− 1
2 ) = 2F1

[ 1
2 ,

1
2

1

∣∣∣∣
1−√

2
2

]2

= θ3

(
1 + i

√
2
)4 = Γ 2( 18 )Γ

2( 38 )

8
√
2π3

. (21)

Again, up to the factor 8/π2, this matches the corresponding L-value evaluation [29]

L( fA, 2) = Γ 2( 18 )Γ
2( 38 )

64
√
2π

.

This proves (20). Now, in order to see

CB(− 1
2 ) = 8

π2
L( fB, 2), (22)

we begin with

CB(x) = 3x 3F2

[− x
3 ,− x−1

3 ,− x−2
3

1, 1

∣∣∣∣1
]

and hence

CB(− 1
2 ) = 3−1/2

3F2

[
1
6 ,

1
2 ,

5
6

1, 1

∣∣∣∣∣1
]

.

Let j (τ ) denote Klein’s modular function. By [12, Theorem 5.7], we have
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3F2

[
1
6 ,

1
2 ,

5
6

1, 1

∣∣∣∣∣
1728

j (τ )

]
= √

1 − λ(τ )(1 − λ(τ )) 2F1

[ 1
2 ,

1
2

1

∣∣∣∣λ(τ )

]2

,

which specialized to τ = i , and combined with (18), yields

CB(− 1
2 ) = 3−1/2

3F2

[
1
6 ,

1
2 ,

5
6

1, 1

∣∣∣∣∣1
]

= 1

2
θ3(i)

4 = Γ 4( 14 )

8π3
.

Up to the factor 8/π2, this equals the L-value evaluation [29]

L( fB, 2) = Γ 4( 14 )

64π
.

Thus, (22) follows. To prove

CC(− 1
2 ) = 12

π2
L( fC , 2), (23)

we first observe

CC(− 1
2 ) = Re 3F2

[ 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣4
]

.

Employing (17) and the modular parametrization, we obtain

3F2

[ 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣4
]

= 2F1

[ 1
2 ,

1
2

1

∣∣∣∣
1−i

√
3

2

]2

= θ3

(
− 1−i

√
3

2

)4 =
(
3 − i

√
3
)

Γ 6( 13 )

211/3π4
.

Up to the factor 12/π2, the real part of this equals the L-value evaluation [29]

L( fC , 2) = Γ 6( 13 )

217/3π2
.

This yields (23). Next, to deduce

res
x=−1/2

CE(x) = 6

π2
L( fE, 1), (24)

we start with

CE(x) =
(
2x

x

)
3F2

[
−x,−x, 1

2
1
2 − x, 1

∣∣∣∣∣−1

]

and hence
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res
x=−1/2

CE(x) = 1

2π
3F2

[ 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣−1

]
= Γ 2( 18 )Γ

2( 38 )

16
√
2π4

,

where the second equality is a consequence of (21). Up to the factor 6/π2, this equals

L( fE, 1) = Γ 2( 18 )Γ
2( 38 )

96
√
2π2

,

which follows from (10) and the value for L( fE, 2) obtained in [29]. This proves
(24). Finally, we claim that (see also [37, 41])

CF(− 1
2 ) = 6

π2
L( fF, 2) = Γ ( 1

24 )Γ ( 5
24 )Γ ( 7

24 )Γ ( 1124 )

16
√
6π3

. (25)

To begin with, note that

CF(− 1
2 ) = 1√

8

∞∑

k=0

2−5k

(
2k

k

)
CA(k) = 1√

8
g

(
1

32

)
,

where

g(z) =
∞∑

k=0

zk
(
2k

k

) k∑

j=0

(
k

j

)3

.

In [14, Theorem 2.1], the modular parametrization

g

(
x(τ )

(1 − x(τ ))2

)
= 1

6
(6E2(6τ ) + 3E2(3τ ) − 2E2(2τ ) − E2(τ )),

with

x(τ ) =
(

η(τ )η(6τ )

η(2τ )η(3τ )

)12

, E2(τ ) = 1 − 24
∞∑

n=1

nqn

1 − qn
,

is obtained. Specializing this parametrization at τ = τ0 = i/
√
6, we obtain the

desired value g(1/32). It then is a standard application of the Chowla–Selberg for-
mula [31] to show that

3E2(3τ0) − E2(τ0) = 6E2(6τ0) − 2E2(2τ0) =
√
3Γ ( 1

24 )Γ ( 5
24 )Γ ( 7

24 )Γ ( 1124 )

8π3
,

which implies

CF(− 1
2 ) = Γ ( 1

24 )Γ ( 5
24 )Γ ( 7

24 )Γ ( 1124 )

16
√
6π3

. (26)
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That the right-hand side equals the claimed L-value then follows from work of
Damerell [17] because L( fF, s) can be viewed as a Hecke L-series on the field
Q(

√−6) (see also [7, 30]).

2.4 Interpolating the Sporadic Sequences

Zagier’s interpolated series (1) is absolutely convergent for all x ∈ C (as a con-
sequence of (30)) and defines a holomorphic function satisfying the symmetry
A(x) = A(−x − 1). Zagier shows the somewhat surprising fact that A(x) does not
satisfy the same recurrence as the Apéry numbers, but instead the inhomogeneous
functional equation

P(x, Sx )A(x) = 8

π2
(2x + 3) sin2(πx) (27)

for all complex x , where

P(x, Sx ) = (x + 2)3S2x − (2x + 3)(17x2 + 51x + 39)Sx + (x + 1)3 (28)

is Apéry’s recurrence operator, and Sx denotes the (forward) shift operator in x ,
meaning that Sx f (x) = f (x + 1).

Remark 1 Let us illustrate how one can algorithmically derive and prove (27). Let
D(x, k) be the summand in the sum defining A(x). Creative telescoping applied to
D(x, k) determines the operator P(x, Sx ) given in (28) as well as a rational function
R(x, k) such that

P(x, Sx )D(x, k) = (1 − Sk)R(x, k)D(x, k). (29)

It follows that

P(x, Sx )
K−1∑

k=0

D(x, k) = R(x, 0)D(x, 0) − R(x, K )D(x, K ) = −R(x, K )D(x, K ),

and it remains to compute the limit of the right-hand side as K → ∞. Using basic
properties of the gamma function, as done in [40], one obtains

D(x, k) =
[
sin(πx)

πk

]2

+ O

(
1

k3

)
, k → ∞, (30)

from which we deduce that −R(x, K )D(x, K ) approaches 8(2x + 3) sin2(πx)/π2

as K → ∞. The following lines of Mathematica code use Koutschan’s Mathematica
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package HolonomicFunctions [23] to perform all of these computations auto-
matically:

Dxk = Binomial[x,k]ˆ2 Binomial[x+k,k]ˆ2
{{P}, {R}} = CreativeTelescoping[Dxk, S[k]-1, {S[x]}]
{R} = OrePolynomialListCoefficients[R]
Limit[-R Dxk, k->Infinity, Assumptions->Element[k,Integers]]

Remark 2 We note that the sum in (1) actually has natural boundaries, meaning that
the range of summation can be extended from nonnegative integers to all integers
without changing the sum. The reason is that the summand vanishes for all x ∈ C if k
is a negative integer.More specifically, if k is a negative integer, then

(x+k
k

) = 0 for all
x ∈ C\{−k − 1,−k − 2, . . . , 1, 0}, while (x

k

) = 0 for all x ∈ C\{−1,−2, . . . , k}.
For more details on binomial coefficients with negative integer entries, we refer to
[18, 26].

Somewhat unexpectedly, there aremarked differences when considering the inter-
polations of the sporadic sequences given in Table 1. For illustration, consider
sequence D with interpolation

CD(x) =
∞∑

k=0

(
x

k

)2(x + k

k

)
. (31)

In this case, we find that, as k → ∞,

(
x

k

)2(x + k

k

)
∼ Γ (x + 1)

kx

[
sin(πx)

πk

]2

,

which implies that the series (31) converges if Re x > −1 but diverges if Re x < −1.
Moreover, proceeding as in the case of theApéry numbers A(n), it follows thatCD(x)
satisfies the homogeneous functional equation

[(x + 2)2S2x − (11x2 + 33x + 25)Sx − (x + 1)2]CD(x) = 0

for all complex x withRe x > −1. This is recurrence (5)with (a, b, c) = (11, 3,−1).
The situation is similar for our interpolations of the sequences A, B and E. In

each case, the defining series (see Table 1) converges if Re x > −1 and one finds, as
in the case of sequence D, that the interpolation satisfies the recurrence (5) for the
appropriate choice of (a, b, c).

Example 2 Some care is required for sequence C, which has the binomial sum
representation

CC(n) =
n∑

k=0

(
n

k

)2(2k
k

)
.
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In this case, letting n be a complex variable and extending the summation over all
nonnegative integers k never yields a convergent sum (unless n is a nonnegative
integer, in which case the sum is a finite one). However, the binomial sum can be
expressed hypergeometrically as

CC(n) = 3F2

[−n,−n, 1
2

1, 1

∣∣∣∣4
]

. (32)

For integers n ≥ 0, this hypergeometric series is a finite sum. For other values of
n, we can make sense of the hypergeometric function (32) by replacing 4 with a
complex argument z (the series converges for |z| < 1) and analytic continuation to
z = 4. As usual, the principal branch of the hypergeometric function is chosen by
cutting from z = 1 to z = ∞ on the real axis. As a consequence, there is a choice to
approach z = 4 from either above or below the real axis, and the two resulting values
are complex conjugates of each other. We avoid this ambiguity, as well as complex
values, by defining

CC(x) = Re 3F2

[−x,−x, 1
2

1, 1

∣∣∣∣4
]

.

That this is a sensible choice of interpolation is supported by Theorem 2.

Example 3 For sequence F, let us consider the interpolation

CF(x) =
∞∑

k=0

(−1)k8x−k

(
x

k

)
CA(k), (33)

where CA(n) are the Franel numbers

CA(n) =
n∑

k=0

(
n

k

)3

= 2
√
3

π

23n

3n

(
1 + O

(
1

n

))
.

It follows that, as k → ∞,

(−1)k8x−k

(
x

k

)
CA(k) = 2

π
√
3

8x

Γ (−x)

1

kx+2

(
1 + O

(
1

k

))
,

from which we deduce that, once more, the series (33) converges if Re x > −1.
Consequently, we expect that the truncation

CF(x; N ) =
N∑

k=0

(−1)k8x−k

(
x

k

)
CA(k),

as N → ∞, has an asymptotic expansion of the form
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CF(x; N ) = CF(x) + b1(x)

Nx+1
+ b2(x)

Nx+2
+ . . .

Using this assumption, we can speed up the convergence of CF(−1/2; N ) by con-
sidering the sequence cn = CF(−1/2; n2) and approximating its limit via the differ-
ences (Sn − 1)mnmcn/m! for suitable choices of m and n. This allows us to compute
CF(−1/2) to, say, 50 decimal places. Namely,

CF(− 1
2 ) = 0.50546201971732600605200405322714025998512901481742 . . .

This allowed us to numerically discover (8) for sequence F. For comparison, sum-
ming the first 100, 000 terms of the series only produces three correct digits.

3 Cellular Integrals

Recently, Brown [13] introduced a program where period integrals on the moduli
spaceM0,N of curves of genus 0 with N marked points play a central role in under-
standing irrationality proofs of values of the Riemann zeta function. The idea is
to associate a rational function fσ and a differential (N − 3)-form ωσ to a given
permutation σ = σN on {1, 2, . . . , N }. Consider the cellular integral

Iσ(n) :=
∫

SN

f nσ ωσ,

where
SN = {(t1, . . . , tN−3) ∈ R

N−3 : 0 < t1 < . . . < tN−3 < 1}.

By [13, Corollary 8.2], Iσ(n) is a Q-linear combination of multiple zeta values of
weight less than or equal to N − 3. Suppose that this linear combination is of the form
AσN (n)ζσ(N − 3), with AσN (n) ∈ Q, plus a combination of multiple zeta values of
weight less than N − 3. We then say that Aσ(n) = AσN (n) is the leading coefficient
of the cellular integral Iσ(n). For example, if N = 5, then σ5 = (1, 3, 5, 2, 4) is the
unique convergent permutation, Iσ5(n) recovers Beukers’ integral for ζ(2) [8] and
the leading coefficients Aσ5(n) are the Apéry numbers CD(n) in (6).

In [27], an explicit family σN of convergent configurations for odd N ≥ 5 is con-
structed such that the leading coefficients AσN (n) are powers of the Apéry numbers
CD(n), that is,

AσN (n) = CD(n)(N−3)/2. (34)

The first main result in [27] extends Theorem 1 for sequence D to a supercongruence
for all odd weights greater than or equal to 3. Specifically, for odd k = N − 2 ≥ 3,
consider the binary theta series
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fk(τ ) = 1

4

∑

(n,m)∈Z2

(−1)m(k−1)/2(n − im)k−1qn2+m2 =:
∑

n≥1

γk(n)qn . (35)

Theorem 4 ([27, Theorem 1.1]) For each odd integer N ≥ 5, let AσN (n) and fk(τ )

be as in (34) and (35), respectively. Then, for all primes p ≥ 5,

AσN (
p−1
2 ) ≡ γk(p) (mod p2). (36)

Using the interpolation (31) for CD(n) and (34), we have the following analogue
of (2) for all odd N ≥ 5.

Theorem 5 Let N ≥ 5 be an odd positive integer, k = N − 2 and fk(τ ) be as in
(35). Then,

AσN (− 1
2 ) = αk

πk−1
L( fk, k − 1), (37)

where αk is an explicit rational number given as follows:

αk = 2(k+1)/2(k − 2)

{
2/r(k−1)/2, if k ≡ 1 (mod 4),
1/s(k−1)/2, if k ≡ 3 (mod 4).

(38)

Here, rn is defined by r2 = 1/5, r3 = 0 and

(2n + 1)(n − 3)rn = 3
n−2∑

k=2

rkrn−k (39)

for n ≥ 4, and sn is defined by s1 = 1/4, s2 = 11/80, s3 = 1/32 and the same recur-
sion (39) for n ≥ 4.

Proof (of Theorem5) Since f3(τ ) = η(4τ )6, the case N = 5 is (16). Thus,we assume
N > 5. As a consequence of (19) and (34), we have

AσN (− 1
2 ) =

(
Γ 2( 14 )

2π3/2

)N−3

=
(√

2ω

π

)k−1

, (40)

where

ω = 2
∫ 1

0

dx√
1 − x4

= Γ 2( 14 )

2
√
2π

is the lemniscate constant. On the other hand, it follows from the representation (35)
that
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L( fk, k − 1) = 1

4

∑

(n,m)�=(0,0)

(−1)m(k−1)/2 (n − im)k−1

(n2 + m2)k−1

= 1

4

∑

(n,m)�=(0,0)

(−1)m(k−1)/2 1

(n + im)k−1
.

In other words, these L-values are values of the Eisenstein series

G�(τ ) =
∑

(n,m)�=(0,0)

1

(n + mτ )�

of even weight �. Specifically, since

2G�(2τ ) − G�(τ ) =
∑

(n,m)�=(0,0)

(−1)m

(n + mτ )�
,

we have

L( fk, k − 1) = 1

4

{
Gk−1(i), if k ≡ 1 (mod 4),
2Gk−1(2i) − Gk−1(i), if k ≡ 3 (mod 4).

We note that, if k ≡ 3(mod 4), then Gk−1(i) = 0 because, writing k = 4� + 3,

Gk−1(i) =
∑

(n,m)�=(0,0)

1

(n + mi)4�+2

=
∑

(n,m)�=(0,0)

1

i4�+2(m − ni)4�+2
= −Gk−1(i).

For n ≥ 4, we have (see [6, Theorem 1.13])

(4n2 − 1)(n − 3)G2n = 3
n−2∑

k=2

(2k − 1)(2n − 2k − 1)G2kG2(n−k),

which, upon setting Hk = (2k − 1)G2k , takes the simplified form

(2n + 1)(n − 3)Hn = 3
n−2∑

k=2

HkHn−k . (41)

In terms of the functions Hk , we have

L( fk, k − 1) = 1

4(k − 2)

{
H2�(i), if k = 4� + 1,
2H2�+1(2i), if k = 4� + 3.
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Note that the required values of Hk(τ ) at τ = i and τ = 2i are determined by the
recursive relation (41) once we know the initial cases k = 2 and k = 3. It is shown,
for instance, in [24, Theorem 6] that

H2(i) = 3G4(i) = ω4

5
,

and our earlier discussion implies H3(i) = 5G6(i) = 0. Similarly, one shows that

H2(2i) = 3G4(2i) = 11ω4

80
, H3(2i) = 5G6(2i) = ω6

32
.

In light of these initial values, the recurrence (41) implies that, for n ≥ 2, the values
Hn(i) and Hn(2i) are rational multiples of ω2n . Moreover, the rational factors are
given by the sequences rn and sn:

rn = Hn(i)

ω2n
, sn = Hn(2i)

ω2n
.

Thus,

L( fk, k − 1) = ωk−1

4(k − 2)

{
r2�, if k = 4� + 1,
2s2�+1, if k = 4� + 3,

and the claim then follows from comparison with (40).

Remark 3 Let us indicate that the rational numbers featuring in Theorem 5 are
arithmetically interesting in their own right, and analogous to Bernoulli numbers.
The values G4�(i) were first explicitly evaluated by Hurwitz [20] (see [24] for a
modern account), who showed that

G4�(i) =
∑

(n,m)�=(0,0)

1

(n + im)4�
= (2ω)4�

(4�)! E�, (42)

where the E� are positive rational numbers characterized by E1 = 1/10 and the
recurrence

En = 3

(2n − 3)(16n2 − 1)

n−1∑

k=1

(4k − 1)(4n − 4k − 1)

(
4n

4k

)
EkEn−k .

In terms of the numbers rn defined in Theorem 5, we have

En = (4n)!
24n

r2n
4n − 1

.

Equation (42), defining the Hurwitz numbers E�, can be seen as an analog of
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∑

n �=0

1

n2�
= (2π)2�

(2�)! B�

characterizing the Bernoulli numbers B�. In other words, in the theory of Gaus-
sian integers the Hurwitz numbers E� play a role comparable to that played by the
Bernoulli numbers for the usual integers. That this analogy extends much further,
including to the theorem of von Staudt–Clausen, is beautifully demonstrated by Hur-
witz [20].

Example 4 Let us make the case N = 7 of Theorem 5 explicit. The leading coef-
ficients Aσ7(n) are the squares of the Apéry numbers CD(n) and the modular form
f5(τ ) can alternatively be expressed as

f5(τ ) = η(τ )4η(2τ )2η(4τ )4.

The Zagier-type L-value evaluation proven in Theorem 5 is

Aσ7(− 1
2 ) = 240

π2
L( f5, 4).

It is observed in [29] that this and many other L-values are naturally expressed in
terms of integrals of the complete elliptic integral K ; for instance,

L( f5, 4) = 1

30

∫ 1

0
K ′(k)3dk = 1

9

∫ 1

0
K (k)3dk.

Example 5 The values of the first several αk in Theorem 5 are α3 = 16, α5 = 240,
α7 = 2560, α9 = 33600, α11 = 491520, α13 = 6864000 and α15 = 1022361600

11 .

Let L∗( f, s) = (2π)−sΓ (s)L( f, s) be the normalized L-function for f . It follows
from the work of Eichler, Shimura and Manin on period polynomials (for example,
see [33]) that the critical L-values L∗( f, s) for odd s (as well as those for even s) are
algebraic multiples of each other. Moreover, if f has odd weight k, then by virtue of
the functional equation all critical L-values L∗( f, s) are algebraic multiples of each
other. In particular, it follows that (37) can be rewritten as

AσN (− 1
2 ) = βk

L( fk, 2)

π2

for some algebraic numbers βk . In fact, it appears that the βk’s are rational numbers.

Example 6 Numerically, the first several values of βk are β3 = 16, β5 = 48, β7 = 4,
β9 = 14, β11 = 1

33 , β13 = 11
18 , β15 = 1

33156 . These values, as well as the relations
indicated in Example 7, may in principle be rigorously obtained using, for instance,
Rankin’s method [32].
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Example 7 As indicated above, all critical L-values L∗( fk, s) are algebraicmultiples
of each other. In fact, numerical computations suggest that all critical L-values are
rationally related. The first few cases are:

L( f5, 4) = 2π

5
L( f5, 3) = π2

5
L( f5, 2) = π3

6
L( f5, 1),

L( f7, 6) = 3π

10
L( f7, 5) = 3π2

40
L( f7, 4) = π3

80
L( f7, 3) = π4

640
L( f7, 2)

= π5

3840
L( f7, 1),

L( f9, 8) = 3π

10
L( f9, 7) = 3π2

35
L( f9, 6) = 4π3

175
L( f9, 5) = π4

175
L( f9, 4)

= π5

700
L( f9, 3) = π6

2400
L( f9, 2) = π7

5040
L( f9, 1).

We thank Yifan Yang for pointing out that one can prove the relation

L( f5, 4) = π2

5
L( f5, 2)

using Theorem 2.3 in [19].

4 Outlook

There are numerous directions for future study. First, motivated by Beukers’ and
Zagier’s numerical investigation of (5), Almkvist, Zudilin [3] and Cooper [16]
searched for parameters (a, b, c, d) such that the three-term relation

(n + 1)3un+1 = (2n + 1)(an2 + an + b)un − n(cn2 + d)un−1, (43)

with initial conditions u−1 = 0, u0 = 1, produces only integer solutions. For
(a, b, c, d) = (17, 5, 1, 0), we obtain the Apéry numbers A(n). In total, there are
nine sporadic cases for (43). It is not currently known if each of these cases has
an interpolated version which is related (similar to (2)) to the critical L-value of a
modular form of weight 4. Second, we echo the lament in [28] concerning the lack of
algorithmic approaches in directly proving congruences, such as (15), between bino-
mial sums. Third, can one extend the results in [19] to verify the cases in Example 7
and, more generally, find an explicit formula for the ratio L( fk, k − 1)/L( fk, 2) in
terms of a rational number and a power of π? Fourth, in the context of Sect. 3,
a supercongruence (akin to (36)) has been proven in [27] between the leading
coefficient
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Aσ8(n) =
n∑

k1,k2,k3,k4=0
k1+k2=k3+k4

4∏

i=1

(
n

ki

)(
n + ki
ki

)

and η(2τ )12, the unique newform in S6(Γ0(4)). Does there exist a version of
Theorem 5 in this case? Fifth, Zudilin [42] recently considered periods of certain
instances of rigid Calabi–Yau manifolds, which are expressed in terms of hyperge-
ometric functions. In these instances, he conjecturally indicated a relation between
special bases of the hypergeometric differential equations and all critical L-values
of the corresponding modular forms (these relations include those that we observed
during the proof of Theorem 2). From our present perspective of interpolations of
sequences, can one similarly engage all of the critical L-values? Finally, it would be
highly desirable to have a more conceptual understanding of the connection between
these (and potentially other) interpolations and L-values.
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Towards a Symbolic Summation Theory
for Unspecified Sequences

Peter Paule and Carsten Schneider

Abstract The article addresses the problem whether indefinite double sums involv-
ing a generic sequence can be simplified in terms of indefinite single sums.Depending
on the structure of the double sum, the proposed summation machinery may provide
such a simplification without exceptions. If it fails, it may suggest a more advanced
simplification introducing in addition a single nested sum where the summand has
to satisfy a particular constraint. More precisely, an explicitly given parameterized
telescoping equation must hold. Restricting to the case that the arising unspecified
sequences are specialized to the class of indefinite nested sums defined over hyper-
geometric, multi-basic or mixed hypergeometric products, it can be shown that this
constraint is not only sufficient but also necessary.

1 Introduction

Over recent years the second named author succeeded in developing a difference field
(resp. ring) theory which allows to treat within a common algorithmic framework
summation problems with elements from algebraically specified domains as well
as problems involving concrete sequences which are analytically specified (e.g.,
from quantum field theory, combinatorics, number theory, and special functions).
In this article we establish a new algebraic/algorithmic connection between this
setting and summation problems involving generic sequences. We feel there is a
high application potential for this connection. One future domain for algorithmic
discovery (as described below) might be identities involving elliptic functions and
modular forms.
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In the course of a project devoted to an algorithmic revival of MacMahon’s par-
tition analysis, Andrews and Paule showed in [5] that a variant of partition analysis
can be applied also for simplification of multiple combinatorial sums. Starting with
the pioneering work of Abramov [3, 4], Gosper[7], Karr [8, 9], and Zeilberger [24],
significant progress has been made. In particular, in the context of summation in
difference fields and, more generally, difference rings [19, 21, 22] Schneider has
developed substantial extensions and generalizations [15, 17, 18, 20] of Karr’s sem-
inal work. Owing to such an algorithmic machinery, the summation problems treated
in [5] can nowadays be done in a jiffy with Schneider’s Sigma package [16].

Nevertheless, the present article connects to [5] in various ways. First, it also
considers a class of summation identities related to the celebrated Calkin sum which
is the case � = 3 of

C�(n) :=
n∑

k=0

⎛

⎝
k∑

j=0

(
n

j

)⎞

⎠
�

.

More generally, we will focus also on the truncated versions

C�(a, n) :=
a∑

k=0

⎛

⎝
k∑

j=0

(
n

j

)⎞

⎠
�

.

And second, similarly to [5] presenting a “non-standard” variation of the method of
partition analysis,wepresent “non-standard”variations of differencefield summation
techniques.

The first “non-standard” ingredient is the aspect of “generic” summation in dif-
ference fields and rings. First pioneering steps in this direction were made by Kauers
and Schneider; see [10, 11].

To illustrate the generic aspect, consider the problem of simplifying the sums

C1(a, n) =
a∑

k=0

k∑

j=0

(
n

j

)
and C1(n) =

n∑

k=0

k∑

j=0

(
n

j

)
.

Arewriting ofC1(a, n) is obtained by specializingYk = 1 and X j = (n
j

)
in the generic

summation relation

a∑

k=0

⎛

⎝
k∑

j=0

X j

⎞

⎠ Yk =
(

a∑

k=0

Yk

)⎛

⎝
a∑

j=0

X j

⎞

⎠ +
a∑

k=0

Yk Xk −
a∑

k=0

Xk

⎛

⎝
k∑

j=0

Y j

⎞

⎠ . (1)

Pictorially, (1) corresponds to summing over a square shaped grid in two different
ways; see Fig. 1.
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j

k

=

j

k

+

j

k

j

k

−

Fig. 1 Summing over a rectangular grid in two different ways

Specializing (1) as proposed results in

C1(a, n) =(a + 1)
a∑

j=0

(
n

j

)
+

a∑

k=0

(
n

k

)
−

a∑

k=0

(
n

k

)
(k + 1)

=(a + 1)
a∑

k=0

(
n

k

)
−

a∑

k=0

k

(
n

k

)
.

This means that the application of (1) indeed results in a simplification: the original
double sum is expressed in terms of single sums. Specializing a = n the single sums
in turn simplify further by the binomial theorem:

n∑

k=0

k

(
n

k

)
= n

n∑

k=1

(
n − 1

k − 1

)
= n

n−1∑

k=0

(
n − 1

k

)
= n 2n−1.

This yields

C1(n) = C1(n, n) = (n + 1)2n − n 2n−1 = 2n−1(n + 2).

We remark that the generic formula (1) can be obtainedwith theSigma package1:

In[1]:= << Sigma.m

Sigma - A summation package by Carsten Schneider © RISC-JKU

In[2]:= mySum1 = SigmaSum[Y[k]SigmaSum[X[j], {j, 0,k}], {k, 0, a}]

Out[2]=

a∑

k=0

( k∑

j=0

X[j]
)
Y[k]

In[3]:= res1 = SigmaReduce[mySum1,XList → {X,Y},XWeight → {2, 1},
SimplifyByExt → MinDepth,SimpleSumRepresentation → True]

Out[3]= −
a∑

i=0

( i∑

j=0

Y[j]
)
X[i] +

( a∑

i=0

X[i]
)( a∑

i=0

Y[i]
)

+
a∑

i=0

X[i]Y[i]

1Freely available with password request at http://www.risc.jku.at/research/combinat/software/
Sigma/.

http://www.risc.jku.at/research/combinat/software/Sigma/
http://www.risc.jku.at/research/combinat/software/Sigma/
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Remark 1.1 Applying SigmaReduce with the option XList → {X,Y} one activates
the summation algorithms given in [11, 18] by telling Sigma that X [ j](= X j ) and
Y [k](= Yk) are generic sequences.With the optionSimplifyByExt→MinDepth
the underlying algorithms try to simplify the sum In[2] so that the nested depth
(i.e., the number of nested sum quantifiers) is minimized. Moreover, the option
SimpleSumRepresentation→True implies that the found sum representa-
tions have only denominators, if possible, that are linear. For this particular instance,
the underlying algorithm would detect that the input expression cannot be simplified
further if X and Y are considered as equally complicated. However, using in addi-
tion the option XWeight → {2, 1} one tells Sigma that X [k] is counted as a more nested
expression than Y [k]. This extra information will finally produce the output given
in Out[3] by introducing the sum

∑a
i=0

(∑i
j=0 Y [ j])X [i] which is considered as

simpler than the sum In[2].

Next we apply the same strategy to

C2(a, n) =
a∑

k=0

⎛

⎝
k∑

j=0

(
n

j

)⎞

⎠
2

and C2(n) =
n∑

k=0

⎛

⎝
k∑

j=0

(
n

j

)⎞

⎠
2

.

A generic formula for this situation is obtained from (1) by replacing Yk with
Yk

∑k
j=0 X j , and by rewriting the resulting right-hand side by using (1) together

with some manipulation. Doing this by hand already becomes quite tedious; so we
use Sigma to carry out this task automatically:

In[4]:= mySum2 =
a∑

k=0

( k∑

j=0

X[ j]
)2

Y[k];

In[5]:= res2 = SigmaReduce[mySum2,XList → {X,Y},XWeight → {2, 1},
SimplifyByExt → DepthNumberDegree, SimpleSumRepresentation → True]

Out[5]= −2
a∑

i=0

( i∑

j=0

X[j]
)( i∑

j=0

Y[j]
)
X[i] + 2

a∑

i=0

( i∑

j=0

X[j]
)
X[i]Y[i]

+
a∑

i=0

( i∑

j=0

Y[j]
)
X[i]2 +

( a∑

i=0

X[i]
)2( a∑

i=0

Y[i]
)

−
a∑

i=0

X[i]2Y[i]

Remark 1.2 If we execute SigmaReduce with the same options as described in
Remark 1.1, we would fail for this input sum: there is no alternative expression in
terms of nested sums where the nesting depth is simpler – even with the assumption
that X [k] is considered asmore nested thanY [k].2 However, inserting the extra option
SimplifyByExt → DepthNumberDegree one aims at a simplification where the degree of the
most complicated sum

∑k
j=0 X [ j] in In[4] is minimized; in addition, extra sums

with lower nesting depth will be used (exploiting the fact that Y [ j] is less nested
than X [ j]) whenever such a degree reduction can be performed. This simplification

2If a simpler expression exists, Sigma would find it with the same options as described in
Remark 1.1.
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strategy can be set up by combining the enhanced telescoping algorithms from [15,
Section 5] with [17] to make Sigma compute Out[5] as an alternative presentation
of

a∑

k=0

Yk

⎛

⎝
k∑

j=0

X j

⎞

⎠
2

. (2)

Specializing Yk = 1 and X j = (n
j

)
in this generic relation Out[5] gives

C2(a, n) = (a + 1)

(
a∑

k=0

(
n

k

))2

− 2
a∑

k=0

k

(
n

k

) k∑

j=0

(
n

j

)
+

a∑

k=0

k

(
n

k

)2

. (3)

The specialization a = n is treated algorithmically in Sect. 3.2 resulting in the pre-
sentation (35) for C2(n).

The paper is organized as follows. After introducing the basic notions and con-
structions for setting up summation problems in terms of generic sequences in Sect. 2,
in Sect. 3 we explain the basic simplification machinery to reduce double sums to
expressions in terms of single nested sums. In Sect. 4 we reformulate this simplifica-
tion methodology in the setting of abstract difference rings, and in Sect. 5 we connect
these ideas with the ring of sequences utilizing an advanced difference ring theory;
further supporting tools and notions (like RΠΣ-rings) can be found in Sect. 8 of
the Appendix. Putting everything together will enable us to show that the suggested
simplification strategy forms a complete algorithm for inputs that are given in terms
of indefinite nested sums defined over hypergeometric products, multibasic products
and their mixed versions. In Sect. 6 we give further details how this simplification
engine is implemented in the package Sigma and elaborate various concrete exam-
ples. In Sect. 7 the paper concludes by giving some pointers to future research.

2 Generic Sequences and Sums

We want to model sequences and sums generically. To this end we introduce a set X
of indeterminates indexed over Z together with the ring of multivariate polynomials
in these symbols over K,3

X := {X j } j∈Z and KX := K[X ]. (4)

It will be convenient to consider bilateral sequences f : Z → KX , j �→ f ( j). The
set of bilateral sequences is denoted by K

Z

X . In the following we only speak about
“sequences”; whether a sequence is bilateral or not will be always clear from the
context.

3
K is a field of characteristic 0.
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Convention 2.1 We fix k as a “generic” symbol which in this article we overload
with three different meanings which will be always clear from the context:

• As in Sect. 1, k can stand for an integer; i.e., k ∈ Z.
• It stands for the bilateral sequence k : Z → KX , j �→ j .
• More generally, k stands for a generic variable, respectively index; i.e., for a
sequence P = (P( j)) j∈Z ∈ K

Z

X we alternatively write P(k) (= P); see
Example 2.6.

In particular, the latter meaning arises in generic sequences and sums defined in
Definitions 2.2 and 2.5, respectively.

Definition 2.2 (generic sequences) The symbol Xk with generic index k and its
shifted versions Xk+l , l ∈ Z, denote bilateral sequences in K

Z

X defined as Xk+l :
Z → KX , j �→ X j+l . The set of all such generic sequences is denoted by the symbol
“{Xk}”; i.e., {Xk} := {Xk+l}l∈Z.
The ring KX [k, {Xk}] of polynomials in k and in generic sequences from {Xk} is a
subring of the ring of sequencesKZ

X with the usual (component-wise) plus and times.

Example 2.3 P(k) = k2X0Xk−1Xk+1 − kX−3X2
k + X3 − 2 ∈ KX [k, {Xk}] repre-

sents the sequence (p( j)) j∈Z,

P(k) : Z → KX , j �→ p( j) = j2X0X j−1X j+1 − j X−3X
2
j + X3 − 2.

Lemma 2.4 Let P(k) ∈ KX [k, {Xk}] be such that

P( j) = 0 for all j ≥ μ

for some μ ∈ Z≥0. Then P(k) = 0, the zero sequence.

Proof The statement is obvious if one views P(k) as a polynomial in k over the
integral domain KX [{Xk}]. �

Definition 2.5 (generic sums) Given P(k) ∈ K
Z

X , for a, b ∈ Z the generic sum∑k+b
l=a P(l) denotes a sequence in KZ

X defined as

k+b∑

l=a

P(l) : Z → KX , j �→
{∑ j+b

l=a P(l), if a ≤ j + b

0, otherwise.
(5)

Example 2.6 For any P(k) ∈ K
Z

X and

( fP(k))k∈Z :=
k∑

l=0

P(l) −
k−1∑

l=0

P(l)
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one has

fP( j) =
{
P( j), if j ≥ 0

0, otherwise.

In other words, in the context of generic sequences and sums,

k∑

l=0

P(l) −
k−1∑

l=0

P(l) �= P(k). (6)

This leads us to introducing an equivalence relation “≡” such that in situations as
in Example 2.6, [

k∑

l=0

P(l)

]
−

[
k−1∑

l=0

P(l)

]
≡ [P(k)], (7)

where we write [ f ] for the equivalence class of a sequence f ∈ K
Z

X .

Definition 2.7 For f = ( f ( j)) j∈Z, g = (g( j)) j∈Z ∈ K
Z

X define

f ≡ g :⇔ ∃λ ∈ Z : f ( j) = g( j) for all j ≥ λ.

Obviously this introduces an equivalence relation on K
Z

X . Equivalence classes are
denoted by [ f ], the set of equivalence classes by Seq(KX ); i.e.,

Seq(KX ) = {[ f ] : f ∈ K
Z

X }.

Clearly, Seq(KX ) forms a commutative ring with 1, which is defined by extending
the usual (componentwise) sequence operations plus and times in an obvious way
by [ f ] + [g] := [ f + g] and [ f ][g] := [ f g].

The shift operator

S : Seq(KX ) → Seq(KX ), [ f ] �→ S[ f ] := [S f ] (8)

where S f = ( f ( j + 1)) j∈Z if f = ( f ( j)) j∈Z, is a ring automorphism, a property
which is inherited from the shift operator on sequences from K

Z

X . For f (k) =
( f ( j)) j∈Z ∈ K

Z

X and m ∈ Z we often write f (k + m) instead of Sm f (k) = ( f ( j +
m)) j∈Z.
Convention. If things are clear from the context, for equivalence classes from
Seq(KX ) we will simply write f instead of [ f ]. Nevertheless, we will continue
to use “≡” to express equality between equivalence classes. For example, instead of
(7) we write,

k∑

l=0

P(l) −
k−1∑

l=0

P(l) ≡ P(k). (9)
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In the same spirit, given f (k) ∈ K
Z

X and m ∈ Z, we will write

f (k + m) instead of [ f (k + m)],

provided that the meaning f (k + m) ∈ Seq(KX ) is clear from the context.
Summation methods often rely on coefficient comparison. To apply this tech-

nique one usually exploits algebraic independence; for instance, equivalence classes
[ f ] of generic sums like f = ∑k

l=0 Xl ∈ K
Z

X are algebraically independent over
(KX [k, {Xk}],≡).4 Slightly more generally, we prove the following

Lemma 2.8 Let P(k) ∈ KX [k]\{0}. Then
[

k∑

l=0

P(l)Xl

]
is transcendental over (KX [k, {Xk}],≡).

Proof For F(k) := ∑k
l=0 P(l)Xl ∈ K

Z

X suppose that

0 ≡ q0(k) + q1(k)F(k) + · · · + qd(k)F(k)d (10)

for polynomials qi (k) ∈ KX [k, {Xk}] with qd(k) �≡ 0.5 Let d ≥ 1 be the minimal
degree such that a relation like (10) holds. Denoting the sequence on the right side
of (10) by ( f ( j)) j∈Z, we have that there is a k0 ∈ Z such that

f ( j) = 0 for all j ≥ k0.

Define
l0 := max{l ∈ Z : Xl divides some monomial of some qi (k)},

and set
j0 := max{0, k0, l0 + 1}.

Then

0 = coefficient of Xd
j0 in f ( j0) = qd( j0)P( j0)

d ,

0 = coefficient of Xd
j0 in f ( j0 + 1) = qd( j0 + 1)P( j0 + 1)d ,

etc.

Since P(k) ∈ KX [k]has atmost finitelymany integer roots (if any), there is aμ ∈ Z≥0

such that
qd( j) = 0 for all j ≥ μ.

4The quotient ring of KX [k, {Xk}] subject to the equivalence relation ≡; this ring is a subring of
Seq(KX ).
5This means that qd (k) is not equivalent to the 0-sequence (. . . , 0, 0, 0, . . . ) ∈ K

Z

X .
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Consequently, qd(k) ≡ 0, a contradiction to qd(k) �≡ 0. Therefore d = 0, and the
statement follows from Lemma 2.4. �

3 The Basic Simplification

In the following, instead of considering sums like (2), we will restrict to a slightly
less general class of sums by setting Y j = 1 for all j ≥ 0, i.e., we will explore for
p = 1, 2 the sums

a∑

j=0

(
j∑

l=0

Xl

)p

(11)

involving the generic sequence Xk . Obviously, for fixed p this sum can be viewed as
a sequence s(a) = (s(a))a∈Z ∈ K

Z

X .
6 So, more precisely, we will investigate if and

how sequences from K
Z

X given by such sum expressions can be simplified in terms
of “simpler” generic sums.

3.1 Simplifications by Sum Extensions

We start to look at the case p = 1 of (11), respectively C1(a, n), by considering the
following problem.

Given a generic sum F(k) = ∑k
l=0 Xl ∈ K

Z

X ; find G(k) ∈ K
Z

X , “as simple as pos-
sible”, such that

G(k + 1) − G(k) ≡ F(k + 1). (12)

Trivially,

G(k) =
k∑

j=0

F( j) ∈ K
Z

X (13)

is always a solution to (12). So the problem splits into two parts: (a) to specify a
concrete meaning of “as simple as possible”, and (b) to compute solutions which
meet this specification.

For part (a), for the given problem we start by considering solutions of the form

G(k) = G0(k) + G1(k)F(k) (14)

with G j (k) ∈ KX [k, {Xk}] to be determined, the latter task being part (b) of the
problem.

6Note that s(a) = 0 if a < 0.
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In practice the specifications given to settle part (a) of the problem are motivated
by the context of the problem, but also driven by theory. For instance, here Lemma 2.8
implies that there is no solutionG(k) ∈ KX [k, {Xk}] to the telescoping equation (12).
In this sense,7 the ansatz in (14) is the best possible we can achieve.

To execute part (b) of the problem we proceed by coefficient comparison. To this
end, we substitute the ansatz (14) into (12) to obtain:

(G1(k + 1) − G1(k))F(k) + G0(k + 1) − G0(k) + G1(k + 1)Xk+1

≡ F(k) + Xk+1. (15)

Owing to Lemma 2.8 we can do coefficient comparison with respect to powers of
F(k) and obtain,

G1(k + 1) − G1(k) ≡ 1.

It is straightforward to verify that

G1(k) = k + d, with d ∈ KX arbitrary,

describes all the solutions inKX [k, {Xk}] = KX [{Xk}][k]. To keep things simple we
set d = 0, and substituting G1(k) = k into (15) yields

G0(k + 1) − G0(k) ≡ −kXk+1. (16)

Using a similar idea as used in the proof of Lemma 2.8 reveals that (16) admits no
solution G0(k) ∈ KX [k, {Xk}]. So we are led to relax our specification of “simple”
and— in view of (13)— set G0 to the trivial solution of (16); i.e., to the generic sum

G0(k) = −
k∑

j=0

j X j + F(k)
(

≡ −
k∑

j=0

( j − 1)X j

)
.

Putting things together,

G(k) = G0(k) + G1(k)F(k) = −
k∑

j=0

j X j + (k + 1)F(k) ∈ K
Z

X (17)

is a solution of (12).
Finally, we convert (12) into the form of a summation identity. Passing from the

generic sequence variable k to concrete integers k ∈ Z, using (17) we can easily
verify that for all k ≥ 0,8

7By difference ring theory (see Lemma 4.13 below) the exponent with which F(k) can appear in
G(k) is at most 2. As it turns out, exponent 1 suffices here to obtain a solution of the desired form.
8Note that F(−1) = 0 by definition of a generic sum.
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G(k) − G(k − 1) = −kXk + (k + 1)F(k) − kF(k − 1)

= −kXk + (k + 1)(F(k − 1) + Xk) − kF(k − 1)

= Xk + F(k − 1) = F(k).

Summing this telescoping relation over k from 0 to a ∈ Z, a ≥ 0, produces9

a∑

k=0

k∑

j=0

X j =
a∑

k=0

F(k) = G(a) − G(−1) = G(a)

= −
a∑

j=0

j X j + (a + 1)F(a) = −
a∑

j=0

j X j + (a + 1)
a∑

j=0

X j .

Finally, observe that the generic sequence Xk can be replaced by any concrete
sequence (X̄k)k≥0 with X̄k ∈ K yielding the identity

a∑

k=0

k∑

j=0

X̄ j = −
a∑

j=0

j X̄ j + (a + 1)
a∑

j=0

X̄ j . (18)

With Sigma this can be obtained automatically. Namely, the package allows one
to activate the desired mechanism by entering the sum

In[6]:= mySum =
a∑

k=0

k∑

j=0

X[ j];

and executing the function call

In[7]:= SigmaReduce[mySum,XList → {X},SimpleSumRepresentation → True]

Out[7]= (a + 1)

a∑

i=0

Xi −
a∑

i=0

iXi.

3.2 Simplifications by Introducing Constraints and Sum
Extensions

Next, in view of the sum
a∑

k=0

k

(
n

k

) k∑

j=0

(
n

j

)
,

arising in the presentation (3) for C2(a, n), we look at the following problem.

Given a generic sum F(k) = k Xk
∑k

j=0 X j ∈ K
Z

X ; find G(k) ∈ K
Z

X , as simple as
possible, such that

9According to (17): G(−1) = 0.
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G(k + 1) − G(k) ≡ F(k + 1). (19)

This time we start by considering solutions of the form

G(k) = G0(k) + G1(k)S(k) + G2(k)S(k)2 (20)

with S(k) := ∑k
j=0 X j , and where we again try to find the coefficients G j (k) of

polynomial form such that G j (k) ∈ KX [k, {Xk}].
To this end, we again proceed by coefficient comparison; i.e., we substitute the

ansatz (20) into (19) to obtain:

(G2(k + 1) − G2(k)) S(k)2 + (
G1(k + 1) − G1(k) + 2G2(k + 1)Xk+1

)
S(k) (21)

+ G0(k + 1) − G0(k) + G1(k + 1)Xk+1 + G2(k + 1)X2
k+1

≡ (k + 1)Xk+1S(k) + (k + 1)X2
k+1. (22)

Owing to Lemma 2.8 we again can do coefficient comparison. With respect to S(k)2

we obtain,
G2(k + 1) − G2(k) ≡ 0. (23)

This has G2(k) = c, c ∈ KX arbitrary, as the general solution in KX [k, {Xk}] =
KX [{Xk}][k].

Coefficient comparison with respect to S(k) in (21) gives

G1(k + 1) − G1(k) ≡ (k + 1 − 2c)Xk+1. (24)

In order to proceed, we suppose that the generic sequence Yk ∈ K
Z

X is a solution to
(24) and set G1(k) := Yk .

Finally, coefficient comparison with respect to S(k)0 in (21) gives

G0(k + 1) − G0(k) ≡ (k + 1 − c)X2
k+1 − Yk+1Xk+1. (25)

Similarly to the situation in Eq. (16) we relax our specification of “simple” and set
G0 to the trivial solution of (25); i.e., to the generic sum

G0(k) =
k∑

j=0

( j − c)X2
j −

k∑

j=0

X jY j .

Combining all these ingredients yields the solution

G(k) = c
( k∑

j=0

X j
)2 + Yk

k∑

j=0

X j +
k∑

j=0

(−cX2
j + j X2

j − X jY j ) ∈ K
Z

X , (26)
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under the assumption that

Yk ∈ K
Z

X and c ∈ KX are chosen so that (24) holds. (27)

Finally, as in Sect. 3.1 we convert (19) into a summation identity. Passing from
the generic sequence variable k to concrete integers k ∈ Z, using (26) we can easily
verify that telescoping yields for all integers a ≥ 0,

a∑

k=0

k Xk

k∑

j=0

X j = c
( a∑

j=0

X j
)2 − c

a∑

j=0

X2
j −

a∑

j=0

X jY j + Ya

a∑

j=0

X j +
a∑

j=0

j X2
j

(28)
under the constraint that the sequence values Yk ∈ KX and c ∈ KX are chosen such

Yk+1 − Yk = (k + 1 − 2c)Xk+1 for all k ≥ 0. (29)

Using Sigma this solution strategy can be automatically applied to the sum

In[8]:= mySum =
a∑

k=0

kX[k]
k∑

j=0

X[ j];

with the procedure call10

In[9]:= {closedForm, constraint} = SigmaReduce[mySum,XList → {X},ExtractConstraints → {Y},
SimpleSumRepresentation → False,RefinedForwardShift → False]

Out[9]= {c (

a∑

i=0

X[i])2 + Y[a]
a∑

i=0

X[i] +
a∑

i=0

(−cX[i]2 + iX[i]2 − X[i]Y[i]),
{Y[a + 1] − Y[a] = (1 + a)X[a + 1] − 2cX[a + 1]}}

This yields the identity (26) with the constraint (29).
To produce the output in exactly the same form as in identity (28), one can use

the option SimpleSumRepresentation→True to the derived result:

In[10]:= SigmaReduce[closedForm, a,XList → {X,Y}, SimpleSumRepresentation → True]

Out[10]= c
( a∑

i=0

X[i])2 − c
a∑

i=0

X[i]2 −
a∑

i=0

X[i]Y[i] + ( a∑

i=0

X[i])Y[a] +
a∑

i=0

iX[i]2

Further details on the calculation steps in the setting of difference rings will be given
in Sect. 6.1.

As a consequence, one can now fabricate specialized identities with the following
strategy. Choose a concrete sequence X̄k ∈ K such that one finds a “nice” solution
Ȳk ∈ K and c ∈ K for

10By using the option RefinedForwardShift→False, Sigma follows the calculation steps
carried out above. Without this option a more complicated (but more efficient) strategy is used that
produces a slight variation of the output.
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Ȳk+1 − Ȳk = (1 + k)X̄k+1 − c 2X̄k+1. (30)

This will yield the specialized identity

a∑

k=0

k X̄k

k∑

j=0

X̄ j = c
( a∑

j=0

X̄ j
)2 − c

a∑

j=0

X̄2
j −

a∑

j=0

X̄ j Ȳ j + Ȳa

a∑

j=0

X̄ j +
a∑

j=0

j X̄2
j .

(31)

Example 3.1 Taking X̄k = (n
k

)
in (31) leads to solving

Ȳk+1 − Ȳk = (k + 1 − 2c)

(
n

k + 1

)
for all k ≥ 0 (32)

which can be done by Sigma as follows:

In[11]:= ParameterizedTelescoping[{(k + 1)SigmaBinomial[n, k + 1], −2SigmaBinomial[n, k + 1]},k]

Out[11]= {{1,
n

4
, −1

2
(k + 1)

(
n

k + 1

)
}}

The output Out[11] means that as a solution to (32) we have

Ȳk = −1

2
(k + 1)

(
n

k + 1

)
= −1

2

(
n

k

)
(n − k) and c = n

4
.

Remark. Alternatively, one can use the RISC package fastZeil [13] by

In[12]:= << RISC‘fastZeil‘

Fast Zeilberger Package version 3.61 written by Peter Paule, Markus Schorn, and Axel
Riese ©RISC-JKU

In[13]:= Gosper[Binomial[n, k + 1],k, 1]
Out[13]= (−2 − 2k + n)Binomial[n,1 + k] == k[(1 + k)Binomial[n,1 + k]]

In[13] calls an extended version of Gosper’s algorithm. In the given example the last
entry “1” asks the procedure to compute - in case it exists - a polynomial p1(n)k +
p0(n) of order 1 in k such that the polynomial times the summand

( n
k+1

)
telescopes.

In Out[13] this polynomial is determined to be (−2)k + n − 2; (Δk f )(k) = f (k +
1) − f (k) is the forward difference operator.

This turns (31) into

a∑

k=0

k

(
n

k

) k∑

j=0

(
n

j

)
= n

4

( a∑

j=0

(
n

j

))2 + n

4

a∑

j=0

(
n

j

)2

(33)

+ 1

2

a∑

j=0

j

(
n

j

)2

− n − a

2

(
n

a

) a∑

j=0

(
n

j

)
.
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For a = n we have, using
∑m

j=0

(a
j

)( b
m− j

) = (a+b
m

)
and

(n
j

) = n
j

(n−1
j−1

) = n
j

(n−1
n− j

)
,

n∑

k=0

k

(
n

k

) k∑

j=0

(
n

j

)
= n

4
22n + n

4

(
2n

n

)
+ n

2

(
2n − 1

n

)
= n 4n−1 + n

(
2n − 1

n

)
.

Finally, substituting (33) into Eq. (3) yields,

C2(a, n) =
(
a + 1 − n

2

)
⎛

⎝
a∑

j=0

(
n

j

)⎞

⎠
2

− n

2

a∑

j=0

(
n

j

)2

+ (n − a)

(
n

a

) a∑

j=0

(
n

j

)
.

(34)
Similarly to before, for a = n this simplifies to

C2(n) = C2(n, n) =
(n
2

+ 1
)
22n − n

2

(
2n

n

)
= (n + 2)22n−1 − n

(
2n − 1

n

)
.

(35)

Example 3.2 Taking X̄k = Hk := ∑k
i=1

1
i in (31) leads to solving

Ȳk+1 − Ȳk = (k + 1 − 2c)Hk+1 for all k ≥ 0.

The solution

Ȳk = 1

4

( − k2 + 2k(k + 1)Hk + k − 5
)
and c = 0

turns (31) into

a∑

k=0

k Hk

k∑

j=0

Hj =1

4

( − 5 + a − a2 + 2a(a + 1)Ha
) a∑

j=0

Hj +
a∑

j=0

j H 2
j

−
a∑

j=0

1

4

( − 5 + j − j2 + 2 j (1 + j)Hj
)
Hj

Sigma= − (2a+1)(5a2+5a−6)
18 Ha + a(20a2+3a−59)

108 + a(a+1)(a+2)
3 H 2

a .

The second equality is obtained by applying SigmaReduce to the specialized
expression. Here the underlying difference ring theory [22] is utilized in order to
return an expression in terms of sums which are algebraically independent among
each other.

Example 3.3 Taking X̄k = (n
k

)2
in (31) leads to solving

Ȳk+1 − Ȳk = (k + 1 − 2c)

(
n

k + 1

)2

for all k ≥ 0.
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The solution

Ȳk = − (n − k)2

2n

(
n

k

)2

and c = n

4

turns (31) into

a∑

k=0

k

(
n

k

)2 k∑

j=0

(
n

j

)2

= −
(n
a

)2

n

1

2
(−a + n)2

a∑

j=0

(
n

j

)2

+ 1

4
n
( a∑

j=0

(
n

j

)2)2

− 1

4
n

a∑

j=0

(
n

j

)4

+
a∑

j=0

j

(
n

j

)4

−
a∑

j=0

−
(n
j

)4
(− j + n)2

2n

Sigma= −a2 + 2an − n2

2n

(
n

a

)2 a∑

i=0

(
n

i

)2

+ 1

2n

a∑

i=0

i2
(
n

i

)4

+ n

4

( a∑

i=0

(
n

i

)2)2 + n

4

a∑

i=0

(
n

i

)4

which holds for all a, n ∈ Z≥0 with n �= 0.

4 A Reformulation in Abstract Difference Rings

In the following we plan to gain more insight into when the double sums under
consideration can be simplified to single sums. So far, we showed that the double
sum on the left-hand side of (31) in terms of a sequence (X̄k)k≥0 with X̄k ∈ K can
be simplified to the right-hand side of (31) in terms of single nested sums provided
that for c ∈ K and Ȳk ∈ K the parameterized telescoping equation (30) holds. In
the following we will show that for certain classes of sequences X̄k and Ȳk the
constraint (30) is not only sufficient but also necessary; see Theorem 5.7 below. In
order to accomplish this task, wewill utilize new results of difference ring theory [12,
19, 21, 22]; compare also [23]. To warm up, we first rephrase the constructions of
the previous sections in the difference ring setting.

Definition 4.1 A difference ring (resp. field) (A, σ ) is a ring (resp. field)A equipped
with a ring (resp. field) automorphism σ : A → A.

In fact, in Sect. 2 we introduced the difference ring (Seq(KX ), S) where Seq(KX )

is the ring of (equivalent) sequences equipped with the ring automorphism defined
in (8). In addition, we considered the subring A1 := (KX [k, {Xk}],≡) of Seq(KX ).
Since A1 is closed under S, the restricted version of S to A1 forms a ring automor-
phism. In short, we obtain the difference ring (A1, S) which is a subdifference ring
of (Seq(KX ), S).
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Definition 4.2 A difference ring (A′, σ ′) is called a subdifference ring of (A, σ ) if
A

′ is a subring of A and σ ′(a) = σ(a) for all a ∈ A
′. Conversely, (A, σ ) is called

a difference ring extension of (A′, σ ′). Since σ ′ agrees with σ on A
′, we usually do

not distinguish anymore between them.

Further, by Lemma 2.8 the sequence
∑k

l=0 Xl ∈ Seq(KX ) is transcendental over
A1. Thus the smallest subring of Seq(KX ) that contains A1 and

∑k
l=0 Xl forms a

polynomial ring which we denote by

A2 := KX [k, {Xk}]
[

k∑

l=0

Xl

]
. (36)

Then using the fact that

S
k∑

l=0

Xl ≡
k+1∑

l=0

Xl ≡
k∑

l=0

Xl + Xl+1 (37)

holds with Xl+1 ∈ KX [k, {Xk}] it follows that A2 is closed under S and thus (A2, S)

is a subdifference ring of (Seq(KX ), S). Summarizing, we obtain the following chain
of difference ring extensions:

(KX , S) ≤ (A1, S) ≤ (A2, S) ≤ (Seq(KX ), S)

where (KX , S) is the trivial difference ring with S( f ) ≡ f for all f ∈ KX , i.e., the
elements in KX are precisely the constant sequences.

In the light of these constructions, we can reformulate the problem in Sect. 3.2
within the difference ring (A2, S) as follows: Given the sequence F(k) = k Xk∑k

j=0 X j ∈ A2, find a sequence G(k) ∈ A2 or in a suitable subring of Seq(KX )

such that
G(k + 1) − G(k) ≡ F(k).

Here we found out that we can choose (26) with Yk ∈ Seq(KX ) and c ∈ KX which
satisfies the constraint (27). Thus specializing Xk to concrete sequences (X̄k)k≥0

with X̄k ∈ K such that there is a nice sequence (Ȳk)k≥0 with Ȳk ∈ K that satisfies
property (30) for some c ∈ K will lead to the simplification (31).

In the following we denote by Seq(K) the subset of all sequences of Seq(KX )

whose entries are from K. Then it follows that Seq(K) is a subring of Seq(KX ) and
that S : Seq(KX ) → Seq(KX ) restricted to Seq(K) forms a ring automorphism. Thus
(Seq(K), S) forms a subdifference ring of (Seq(KX ), S). Sometimes (Seq(K), S) is
also called the difference ring of sequences.

Remark 4.3 Usually, the difference ring (Seq(K), S) is defined by starting with the
commutative ring KZ≥0 with 1 and defining the equivalence relation

f ≡ g :⇔ ∃λ ∈ Z≥0 : f ( j) = g( j) for all j ≥ λ
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for f = ( f ( j)) j≥0, g = (g( j)) j≥0 ∈ K
Z≥0 ; compare [14]. It is easily seen that the

set of equivalence classes [ f ]with f ∈ K
Z≥0 forms a commutative ring with 1 which

is isomorphic to Seq(K). In a nutshell, we can either choose (an)n∈Z≥0 or (an)n∈Z in
order to describe the equivalence classes of Seq(K).

Subsequently, we will pursue a more general and ambitious goal. Namely, we
will show that our new method produces constraints given in terms of parameterized
telescoping equations that provide not only sufficient but also necessary conditions
in order to simplify a nested sum in terms of generic sequences to an expression
in terms of single nested sums over the given summand objects. In order to derive
this extra insight, we will consider not an arbitrary specialization of Xk,Yk to gen-
eral sequences (X̄k)k≥0, (Ȳk)k≥0 ∈ Seq(K) but only to those sequences that can be
generated by expressions in terms of indefinite nested sums defined over products.
Typical examples are, e.g., the left- and right-hand sides of (33), and (34); for a more
precise definition we refer to Definition 5.3 below. With this restriction, we will then
utilize Schneider’s newly established difference ring results [12, 19, 21, 22] to show
that (31) is the only possible simplification of a double sum in terms of single sums.

In Schneider’s difference ring approach sequences are represented by elements
from a ring A which is given either by certain rational function field extensions,
polynomial ring extensions or by polynomial ring extensions factored out by certain
ideals. In addition, a so-called evaluation function ev : A × Z≥0 → K accompanies
this ring construction that links the generators (variables) of the ring to the sequence
interpretation. We will not give a full account on all the construction aspects [21,
22], but will emphasize only the key steps that are relevant for our considerations
below. Further details can be found in the Appendix 8 below.

Example 4.4 Consider the rational function field A = K(k) in the variable k. Then
we define the evaluation function ev : A × Z≥0 → K by

ev( p
q , i) =

{
0 if q(i) = 0
p(i)
q(i) if q(i) �= 0; (38)

where p, q ∈ K[k] are polynomials with q �= 0; here p(i), q(i) are the usual evalu-
ations of polynomials at i ∈ Z≥0. Note that here we introduce yet another meaning
of k, different from those introduced in Convention 2.1: k is an algebraic variable
(indeterminate) that produces the rational function field K(k). E.g., f = 1 + k + k2

in this context is considered as a polynomial in the variable k with integer coeffi-
cients and s = (ev( f, i))i≥0 ∈ Seq(K) provides us with the corresponding sequence
interpretation. With our earlier notations from Convention 2.1 we could simply write
P(k) = 1 + k + k2 to abbreviate the same sequence s.

Besides such a ring A, also a ring automorphism σ : A → A is introduced which
scopes the shift behavior accordingly: for any x ∈ A we will take care that

(ev(σ (x), i))i≥0 ≡ (ev(x, i + 1))i≥0 = (ev(x, i))i≥1 (39)
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holds. In addition, the construction is carried out so that the set of constants11

const(A, σ ) = {c ∈ A| σ(c) = c}

of the difference ring (A, σ ) equals precisely the field K in which the sequences
are evaluated. All these properties hold, for instance, for the ground field A = K(k)
given in Example 4.4.

Example 4.5 Consider for instance the sequence (X̄i )i≥0 with X̄0 = 0 and X̄i = 1
i

for i ≥ 1. Then we can choose the rational function x := 1
k ∈ A. In particular, we

get (39). Further, we have K = const(K(k), σ ).

In the following we will reconsider the calculation steps of Sect. 3 within such
abstract difference rings. In this contextwewill consider Xk not as a generic sequence,
but as a sequence (X̄i )i≥0 ∈ Seq(K) which can be modeled by an element x ∈ A of
a given difference ring (A, σ ) with K = const(A, σ ).

Definition 4.6 Let (A, σ ) be a difference ring with constant field K and equipped
with an evaluation function ev satisfying (39). We say that a sequence X̄k ∈ K is
modeled by x ∈ A if X̄k = ev(x, k) for all k from a certain point on.

In particular, X̄k+i with i ∈ Z is then modeled by σ i (x) ∈ A. What we understand
by “modeled by” has been illustrated also in the Example 4.5.

Remark 4.7 Note that the generic aspect is moved from a generic sequence Xk to
a “generic” difference ring (A, σ ) and choosing an x ∈ A from this ring A. This
change of paradigm will be very useful in Sect. 5 in order to show that the found
simplifications are optimal in the sequence world.

Next we explain how to adjoin the formal sum12

k∑

i=0

X̄i (40)

to such an arbitrary ring A with the shift behavior

k+1∑

i=0

X̄i ≡
k∑

i=0

X̄i + X̄k+1. (41)

To this end, we introduce a new variable s being transcendental over A and consider
the polynomial ring A[s]. More precisely, using the fixed element x ∈ A, we define

11Note that const(A, σ ) in general is a subring of A.
12Note that K ⊆ KX and thus the evaluation of a sum has been defined already in (5).
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ev(s, i) :=
i∑

j=1

ev(x, j) =
i∑

j=1

X̄ j (42)

in order to give s the sequence meaning of our sum (40). More precisely, we extend
this definition of s to A[s] by

ev

(
d∑

l=0

fl s
l , i

)
=

d∑

l=0

ev( fl , i) ev(s, i)
l (43)

for any polynomial
∑d

l=0 fl sl ∈ A[s] with fl ∈ A.
Finally, we extend also the automorphism σ : A → A to σ ′ : A[s] → A[s] with

σ ′(h) = σ(h) for all h ∈ A and

σ ′(s) = s + σ(x). (44)

Note that to define the shift operator, we again used the fixed element x ∈ A. More
precisely, there is exactly one such automorphism where for f = ∑d

l=0 fl sl we
obtain the map

σ ′( f ) =
d∑

l=0

σ( fl)(s + σ(x))l;

since σ and σ ′ agree on A, we do not distinguish them anymore. In particular, by
our construction it follows that

(ev(σ ( f ), i))i≥0 ≡ (ev( f, i + 1))i≥0 = (ev( f, i))i≥1

for all f ∈ A[s].
Summarizing, we constructed a difference ring extension (A[s], σ ) of (A, σ )

where smodels the sum (40): ev provides the sequence representation andσ describes
the corresponding shift behavior.

Note that this abstract construction can be turned to concrete applications.

Example 4.8 We specialize (A, σ ) to A = K(k) and σ(k) = k + 1. Starting with
this ring, we want to model the harmonic numbers Hk = ∑k

i=1 X̄i with X̄i = 1
i .

Thus we set x := 1
k and follow the above construction, i.e., we take the difference

ring extension (A[s], σ ) of (A, σ ) with s being transcendental over A and with
σ(s) = s + β where β := σ(x) = 1

k+1 . Further, we extend ev fromA toA[s] by (42)
and (43). For f = k s this yields, e.g., ev( f, i) = i Hi for i ≥ 0.Moreover, we obtain
ev(σ ( f ), i) = ev((i + 1)Hi+1, i) = ev(i Hi , i + 1) for all i ≥ 0. In a nutshell, we
have rephrased the sequence of harmonic numbers Hk by s inA[s]where ev provides
the sequence representation and σ describes the corresponding shift behavior.

Weemphasize that this elementary construction is still too naive for our subsequent
considerations. Namely, a key feature will be that
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const(A[s], σ ) = const(A, σ ) (45)

holds. Together with our earlier assumption that const(A, σ ) = K holds, this will
imply that in (A[s], σ ) the set of constants is precisely K. We install this special
construction in the form of a definition.

Definition 4.9 Let (A[s], σ ) be a difference ring extension of (A, σ ) with s being
transcendental over A and σ(s) = s + β for some β ∈ A. Then this extension is
called a Σ-extension if (45) holds.

In the following we will rely heavily on the following result [21, Thm. 2.12]; for the
field version see [8].

Theorem 4.10 Let (A, σ ) be a difference ringwith constant fieldK and let (A[s], σ )

be a difference ring extension of (A, σ ) with s being transcendental over A and
with σ(s) = s + β where β ∈ A. Then this is a Σ-extension (i.e., const(A[s], σ ) =
const(A, σ )) iff there is no g ∈ A with σ(g) = g + β.

Remark 4.11 Consider the difference ring extension (A2, S) of (A1, S) with (36)
and (37). By Lemma 2.8 A2 is a polynomial ring over the coefficient domain A1.
One can show that const(A2, S) = const(A1, S) = KX which implies that (A2, S)

is a Σ-extension of (A1, S). By Theorem 4.1013 this implies that the generic sum∑k
i=0 Xk cannot be simplified via telescoping in the difference ring (A1, S). However,

specializing Xk to a particular sequence (X̄k)k≥0, the situation might be different.

Let us turn back to our generic construction: we are given an arbitrary difference
ring (A, σ ) in which we choose x ∈ A which models the desired sequence X̄k .
Suppose that there exists14 a g ∈ A such that σ(g) = g + σ(x) holds. In this case one
can model the sum (40) having the shift-behavior as in (41) by g with σ(g) = g + β.
In other words, the double sum on the left-hand side of (18) turns into a single sum
in (A, σ ). In the following we will ignore this degenerated case and assume that such
a g does not exist.

More precisely,we suppose thatwe are given adifference ring (A, σ )with constant
field K with the following properties:

1. const(A, σ ) = K;
2. there is a k ∈ A with σ(k) = k + 1;
3. the sequence X̄k ∈ K for k ≥ 0 can be modeled by an x ∈ A;
4. there is no g ∈ A with σ(g) = g + σ(x), i.e., we cannot represent the sum (40)

in (A, σ ).

13In the theorem we require that the set of constants form a field. However, if const(A[s], σ ) =
const(A, σ ), to prove the non-existence of a telescoping solution one does not need to assume that
const(A, σ ) is a field.
14In Sigma the existence can be decided constructively by efficient telescoping algorithms [17,
20] provided that (A, σ ) is a simple RΠΣ-ring; see Appendix 8.
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The third assumption together with Theorem 4.10 implies that one can construct the
Σ-extension (A[s], σ ) of (A, σ ) with σ(s) = s + σ(x). This means that A[s] is a
polynomial ring and const(A[s], σ ) = K.

Example 4.12 Consider our concrete difference ring extension (A[s], σ ) of (A, σ )

from Example 4.5 with A = K(k) and σ(s) = s + β with β = 1
k+1 . Using Sigma

(or, e.g., Abramov’s or Gosper’s algorithms [3, 7, 13]), one can verify that there
is no g ∈ K(k) with σ(g) = g + β. Hence by Theorem 4.10 our extension is a Σ-
extension.

Within such a difference ring setting the telescoping problem in Sect. 3.2 can be
rephrased as follows.

Given (A[s], σ ) with the properties (1)–(4) from above and f = k x s ∈ A[s].
Find a g ∈ A[s] such that

σ(g) − g = σ( f ) (46)

holds (note: σ( f ) = (k + 1)σ (x)(s + σ(x))).

Now we repeat the calculation steps of Sect. 3.2 within this (more abstract) dif-
ference ring exploiting the following extra insight [21, Lemma 7.2].

Lemma 4.13 Let (A[s], σ ) be aΣ-extension of (A, σ ) and f, g ∈ A[s]with σ(g) −
g = f . Then deg(g) ≤ deg( f ) + 1.

Thus any solution g ∈ A[s] of (46) must have the form

g = g0 + g1 s + g2 s
2;

compare (14). Plugging g into (46) we get

σ(g2)(s + σ(x))2 + σ(g1 s + g0) − [
g2 s

2 + g1 s + g0
] = (k + 1) σ (x)(s + σ(x)).

The polynomials on the left- and right-hand sides agree if they agree coefficient-
wise. Thus comparing coefficients with respect to s2, it follows that σ(g2) = g2
which implies that g2 ∈ K. Thus we take an undetermined parameter c ∈ K and set
g2 := c. Using this information we get

[
σ(g1)(s + σ(x)) + σ(g0)

] − [
g1 s + g0

]

= (k + 1)σ (x)(s + σ(x)) + c
[ − σ(x)2 − 2σ(x) s

]
.

(47)

Again by coefficient comparison with respect to s we obtain the constraint

σ(g1) − g1 = (1 + k − 2c)σ (x); (48)

compare with (24). Now suppose we find a c ∈ K and a y ∈ A such that
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σ(y) − y = (1 + k)σ (x) − 2 cσ(x) (49)

holds. Consequently, we get the general solution g1 = y + d of (48) for some unde-
termined constant d ∈ K. Plugging the solution into (47) yields

σ(g0) − g0 = (k + 1 − c)σ (x)2 − σ(x)σ (y) − d σ(x); (50)

this is equivalent to (25) when d = 0. At this point two scenarios may happen.

Case 1.Wefind a g0 ∈ A and d ∈ K such that (50) holds. Then combining the derived
sub-results provides the solution

g = c s2 + (y + d) s + g0. (51)

Case 2. We do not find a g0 ∈ A and d ∈ K such that (50) holds. Then we can
construct the polynomial ring A[s][t] and extend the automorphism σ from A[s] to
A[s][t] subject to the relation

σ(t) = t +
(
σ(x)2 − cσ(x)2 + kσ(x)2 − σ(x)σ (y)

)
. (52)

By Theorem 4.10 it follows that this extension is a Σ-extension. Namely, we have
const(A[s][t], σ ) = K. This, in particular, implies the solution g0 = t and d = 0
for (50). Finally, in this case, combining the obtained representations of the coeffi-
cients produces the solution

g = c s2 + y s + t (53)

within the difference ring (A[s][t], σ ) where c ∈ K and y are a solution of (49);
compare with (26).

The previous considerations can be summarized as follows.

Theorem 4.14 Let (A, σ ) be a difference ring with constant fieldK and with k ∈ A

where σ(k) = k + 1. Let (A[s], σ ) be aΣ-extension of (A, σ )with σ(s) = s + σ(x)
for some x ∈ A. Then the following holds.

(1) There is a g ∈ A[s] with σ(g) − g = σ(k x s) iff the following two statements
hold:

(a) there is a y ∈ A and c ∈ K with (49),
(b) and there is a g0 ∈ A and d ∈ Kwith (50) (where c is the one from part (a)).

If (a) and (b) hold, we get the solution g as given in (51).
(2) There is aΣ-extension (A[s][t], σ ) of (A[s], σ )with σ(t) − t ∈ A together with

a g ∈ A[s][t] \ A[s] with σ(g) − g = σ(k x s) iff the following two statements
hold:

(a) there is a y ∈ A and c ∈ K with (49),
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(b) there is no g0 ∈ A and d ∈ K with (50) (where c is the one from part (a)).

If (a) and (b) hold, we get the solution g as given in (53) with (52).

Part 2 of the theorem describes the situation where one can adjoin a Σ-extension
with the generator t in order to gain a parameterized telescoping solution for (50).
Using the following extra insight from difference ring theory, we can generalize this
situation if one allows a tower of single nested Σ-extensions.

Theorem 4.15 Let (A, σ ) be a difference ring with constant fieldK and with k ∈ A

where σ(k) = k + 1. Let (A[s], σ ) be a Σ-extension of (A, σ ) such that σ(s) =
s + σ(x) for some x ∈ A. Then there is a tower ofΣ-extensions (A[s][t1] . . . [te], σ )

of (A[s], σ ) with σ(ti ) − ti ∈ A for 1 ≤ i ≤ e together with a g ∈ A[s][t1, . . . , te] \
A[s] with σ(g) − g = σ(k x s) iff the following two statements hold:

(a) there is a y ∈ A and c ∈ K with (49),
(b) there is no g0 and d ∈ K with (50) (where c is the one from part (a)).

If (a) and (b) hold, we obtain the solution g as given in (53) with (52) (i.e., e := 1
and t1 := t).

Proof If statements (a) and (b) hold, we can take (52) and get the solution g as given
in (53). What remains to show is the other direction. Suppose that there is a tower of
Σ-extensions (A[s][t1] . . . [te], σ ) of (A, σ )with βi = σ(ti ) − ti ∈ A for 1 ≤ i ≤ e.
Assume further that there is a g ∈ A[s][t1, . . . , te] \ A[s] with σ(g) − g = σ(k x s).
By [2, Prop. 1] it follows that

g = g′ + κ1 t1 + · · · + κe te (54)

for some g′ ∈ A[s] and (κ1, . . . , κe) ∈ K
e \ {(0, . . . , 0)}. Take the polynomial ring

A[s][t] and extend σ from A[s] to A[s][t] subject to the relation σ(t) = t + h with
h := κ1 β1 + · · · + κe βe. By construction we have that

σ(g′ + t) − (g′ + t) = σ(g′) − g′ + κ1 β1 + · · · + κe βe = σ(g) − g = σ(k x s).
(55)

Now suppose that (A[s][t], σ ) is not a Σ-extension of (A[s], σ ). Then there is a
γ ∈ A[s] with σ(γ ) − γ = κ1 β1 + · · · + κe βe. Let j be maximal such that κ j is
non-zero. Then we conclude that σ(γ ′) − γ ′ = β j with

γ ′ := 1

κ j
(γ − κ1 t1 − · · · − κ j−1 t j−1) ∈ A[s][t1] . . . [t j−1]

which implies that (A[s][t1] . . . [t j ], σ ) is not aΣ-extension of (A[s][t1] . . . [t j−1], σ )

by Theorem 4.10; a contradiction. Thus (A[s][t], σ ) is a Σ-extension of (A[s], σ ).
Together with (55) we can apply part 2 of Theorem 4.14. This concludes the proof.

�
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5 A Refinement to the Class of Indefinite Nested Sums
Over Mixed (Q–)Hypergeometric Products

In Theorems 4.14 and 4.15we established criteria for the simplification of our double
sum in the setting of difference rings. More precisely, we assumed that we are given
a Σ-extension (A[s], σ ) of (A, σ ) with σ(s) = s + σ(x) for some fixed x ∈ A and
derived criteria when one can find a g ∈ A[s] or in an appropriate Σ-extension
such that g solves the telescoping equation (46) with f = k x s. In the following we
will transfer this result from the difference ring (A[s], σ ) to the ring of sequences
(Seq(K), S). To this end, we assume that we are given a ring embedding, i.e., an
injective ring homomorphism τ from A into Seq(K) with the additional property
that τ(σ ( f )) ≡ S(τ ( f )) holds for all f ∈ A, i.e., we require that the diagram

A

τ

σ
A

τ

Seq(K)
S

Seq(K)

commutes. In addition, we assume naturally that τ(c) ≡ (c)n≥0 holds for all c ∈ K.
Such a map τ is also called a K-embedding (it is called a K-homomorphism if the
injectivity of τ is dropped). Note that for such aK-embedding it follows that τ(A) is
a subring of Seq(K) and S restricted to τ(A) forms a ring automorphism. Note that
(A, σ ) and (τ (A), S) are the same up to renaming of the elements by τ .

Example 5.1 Consider the difference field (K(k), σ ) from Example 4.4 with the
evaluation function ev : K(k) × Z≥0 → K as in (38). Thenwe can define themap τ :
K(k) → Seq(K)with τ( f ) = (ev( f, i))i≥0 for f ∈ K(k). One can easily see that τ is
a ring homomorphism and with (39) it follows that τ is aK-homomorphism. Finally,
τ( f ) ≡ 0 implies that f = 0 since the numerator and denominator of f can have
only finitely many roots. Consequently, τ is aK-embedding. The subdifference ring
(τ (K(k)), S) of (Seq(K), S) is also called the difference ring of rational sequences.

Example 5.2 Consider the Σ-extension (K(k)[s], σ ) of (K(k), σ ) from Exam-
ple 4.12 (see also Example 4.4) with the corresponding evaluation function ev :
K(k)[s] × Z≥0 → K that models the harmonic numbers Hk with s. Then using sim-
ilar arguments as in Example 5.1 we conclude that τ : K(k)[s] → Seq(K) defined
by τ( f ) = (ev( f, i))i≥0 for f ∈ K(k)[s] is a K-homomorphism. By difference ring
theory [22] it follows that τ is injective, and thus τ is a K-embedding.

More generally, we succeeded in such a construction in [22] not only for the
harmonic numbers Hk as elaborated in Example 5.2 but for the general class
of sequences that can be given in terms of nested sums over hypergeometric/q-
hypergeometric/mixed-hypergeometric products.
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Definition 5.3 Let K = K
′(q1, . . . , qv) be a rational function field where K

′ is a
field of characteristic 0. A product

∏k
j=l f ( j, q

j
1 , . . . , q

j
v ), l ∈ Z≥0, is called mixed-

multibasic hypergeometric [6] (in short mixed hypergeometric) in k over K if
f (y, z1, . . . , zv) is an element from the rational function fieldK(y, z1, . . . , zv)where
the numerator and denominator of f ( j, q j

1 , . . . , q
j
v ) are nonzero for all j ∈ Z with

j ≥ l. Such a product is evaluated to a sequence following the rule

k∏

j=l

f ( j, q j
1 , . . . , q

j
v ) : Z → K,m �→

{∏m
j=l f ( j, q

j
1 , . . . , q

j
v ), if l ≤ m

1, otherwise.

Further, such a product is called q-hypergeometric if f is free of y, v = 1 and q1 = q,
i.e., f ∈ K(z1) withK = K

′(q). It is called hypergeometric if v = 0, i.e., f ∈ K(y)
with K = K

′.
An expression in terms of nested sums over hypergeometric/q-hypergeometric/

mixed hypergeometric products in k over K is composed recursively by the three
operations (+,−, ·) with
• elements from the rational function field K(k),
• hypergeometric/q-hypergeometric/mixed hypergeometric products in k over K,
• and sums of the form

∑k
j=l f ( j) with l ∈ Z≥0 where f ( j) is an expression in

terms of nested sums over hypergeometric/q-hypergeometric/mixed hypergeo-
metric products in j over K; here it is assumed that the evaluation15 of f ( j)| j �→λ

for all λ ∈ Z with λ ≥ l does not introduce any poles.

Given such an expression F(k) the evaluation F(k)|k �→λ might be only defined
for all λ ≥ l for some l ∈ Z≥0. In order to obtain an evaluation for all λ ∈ Z≥0, we
set F(k)|k �→λ = 0 for λ = 0, . . . , l − 1. Similarly to Definition 2.5 we will give such
products and sums defined over such products two different meanings. They form
expressions that evaluate to sequences as introduced above, or they are just shorthand
notations for the underlying sequences (F(k)|k �→λ)λ≥0. The meaning (expression or
sequence) of such sums or products will be always clear from the context. E.g., the
harmonic numbers Hn or the left- and right-hand sides of (33) and (34) are either
expressions in terms of indefinite nested sums over hypergeometric products in a
over K = Q(n) or they are shorthand notations for sequences in K.

In general, as the sum Hk ∈ Seq(K) can be rephrased in the difference ring
(K(k)[s], σ ) given in Example 5.2, we can represent nested sums as defined in
Definition 5.3 in a particular class of difference rings called simple RΠΣ-rings;
for their definition we refer to the Appendix 8. At this point we want to emphasize
only the following crucial properties [12, 22] of simple RΠΣ-rings that enable one
to treat the above class of nested sums in full generality.

15Note that K ⊆ KX and thus the evaluation of a sum has been defined already in (5).
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Theorem 5.4 Let X̄k(= X̄(k)) ∈ Seq(K) be a sequence given in terms of nested
sums over hypergeometric (resp. q-hypergeometric or mixed hypergeometric) prod-
ucts where K is algebraically closed.16 Then the following holds.
(1) There is a simple RΠΣ-ring (A, σ ) with constant field K equipped with a K-

embedding τ : A → Seq(K) and with x ∈ A such that τ(x) ≡ X̄k holds.

Moreover, for this τ one has:

(2a) For any h ∈ A there is a sequence H(k) expressible in terms of nested sums over
hypergeometric (resp. q-hypergeometric or mixed hypergeometric) products
with τ(h) ≡ H(k).

(2b) If the difference ring extension (A[s], σ ) of (A, σ ) with s being transcendental
over A and σ(s) = s + σ(x), x as in part (1), forms a Σ-extension, then the
difference ring homomorphism τ ′ : A[s] → Seq(K) defined by τ ′|A = τ and
τ ′(s) ≡ ∑n

k=0 X̄k forms a K-embedding.17

In particular, the simple RΠΣ-ring (A, σ ) with f and the embedding τ can be
computed explicitly; for further details see Appendix 8.

Note that part (1) implies that a finite number of nested sums over hypergeometric,
q-hypergeometric or mixed hypergeometric can be always formalized in a simple
RΠΣ-ring, and part (2a) states that any element in such a ring can be reinterpreted
as such a sum or product. This representation justifies the following definition.

Definition 5.5 A sub-difference ring (S, S) of (Seq(K), S) is called a product-sum
sequence ring, if there is a simple RΠΣ-ring (A, σ ) with constant field K together
with a K-embedding τ : A → Seq(K) with τ(A) = S.

Now let us reconsider our difference ring calculations of Sect. 4 within such a
product-sum sequence ring (S, S) where X̄k stands for a sequence that is given in
terms of nested sums over products. According to Theorem 5.4, this means that there
is a simple RΠΣ-ring (A, σ ) with constant field K equipped with a K-embedding
τ : A → Seq(K) andwith an x ∈ A such that τ(x) ≡ X̄k holds. Suppose the decision
procedure implemented in Sigma tells us (as above in Example 4.12) that there is
no g ∈ A such that σ(g) = g + σ(x) holds. Note that this implies that there is no
sequenceG(k) ∈ τ(A) expressible in terms of nested sumswithG(k + 1) − G(k) ≡
X̄k+1 or equivalently it follows that

k∑

i=0

X̄i /∈ τ(A).

Furthermore, we conclude by part (2b) of Theorem 5.4 that we can extend the K-
embedding τ from A to A[s] with τ(s) ≡ ∑k

i=0 X̄k . From this it can be derived that

16Algorithmically, one starts with a base field K (like Q or Q(n)) and constructs —if necessary—
a finite algebraic extension of it such that statement (1) is true.
17This means that τ(

∑r
i=0 fi si ) ≡ ∑r

i=0 τ( fi )
(( ∑n

k=0 X̄k
)i )

n≥0 for f0, . . . , fr ∈ A.



378 P. Paule and C. Schneider

(A[s], σ ) and (τ (A[s]), S) are isomorphic, i.e., the difference rings are the same up
to renaming of the objects using τ .

With this background we restart our calculations to obtain a solution g of the
telescoping equation

σ(g) − g = (k + 1) σ (x s) = (k + 1)σ (x)(s + σ(x)). (56)

In the first major step we assumed that we can find a c ∈ K and a y ∈ A such that (49)
holds. Now let Ȳk be the sequence in terms of nested sums with τ(y) ≡ Ȳk ∈ τ(A).
Then by construction it follows that (30) holds for Ȳk and c.

We proceed with our calculations by entering in the already worked out case
distinction.
Case 1.We can compute a d ∈ K and g0 ∈ Awith (50). Then for the sequenceG0(k)
with τ(g0) = G0(k) in terms of nested sums we obtain

G0(k + 1) − G0(k) ≡ X̄2
k+1 − cX̄2

k+1 + k X̄2
k+1 − X̄k+1Ȳk+1 − d X̄k+1. (57)

Further, the g ∈ A[s] with (51) is a solution of (56) under the assumption that c ∈ K

and y are a solution of (49). This implies that

S(τ (g)) − τ(g) ≡ τ((k + 1) σ (x) (s + σ(x)) ≡ ((k + 1) X̄k+1 (

k∑

i=0

X̄i + X̄k+1))k≥0.

By construction, we obtain τ(g) ≡ G(k) ∈ τ(A[s]) with G(k) = c
( ∑k

i=0 X̄i

)2 +
(Ȳk + d)

∑k
i=0 X̄i + G0(k), and thus G(k) is a solution of

G(k + 1) − G(k) ≡ (k + 1) X̄k+1

( k∑

j=0

X̄ j + X̄k+1

)
(58)

under the constraint that (30) holds for Ȳk and c ∈ K. Passing from the generic
sequence variable k to concrete integers k ∈ Z, using (58) we can check that tele-
scoping yields

a∑

k=0

k X̄k

k∑

j=0

X̄ j = G(a) − G(−1) = c
( a∑

i=0

X̄i

)2 + (Ȳa + d)

a∑

i=0

X̄i + G0(a) − G0(−1).

(59)
Case 2. There does not exist a d ∈ K and g0 ∈ A with (50). By Theorem 5.4 we can
extend the K-embedding from A[s] to A[s][t] with τ(t) ≡ G0(k) where

G0(k) =
k∑

i=0

(−cX̄2
i + i X̄2

i − X̄i Ȳi ). (60)
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In particular, we conclude that G0(k) /∈ τ(A). Moreover, the solution (53) of (56)
yields the solution (26) of (58) under the constraint that (30) holds for Ȳk and c ∈ K.
Finally, we arrive at our simplification given in (31).

In Theorem 4.14 of Sect. 4 we summarized the considerations leading to cases
(1) and (2). Before we can reformulate these cases in the context of sequences, we
collect some key properties indicated already above.

Lemma 5.6 Let (A, σ ) be a simple RΠΣ-ring (see Definition 8.2) with constant
field K, and let τ : A → Seq(K) be a K-embedding. Set S = τ(A) and let f ∈ A

with τ( f ) ≡ F = (F(k))k≥0 ∈ S and define S̄ := (
∑k

j=0 F( j))k≥0 ∈ Seq(K). Then
the following statements are equivalent.

(1) There is a Σ-extension (A[s], σ ) of (A, σ ) with σ(s) = s + σ( f ).
(2) There is no G ∈ S with S(G) − G ≡ S(F).
(3) S[S̄] forms a polynomial ring.
(4) S̄ /∈ S.

Proof (1) ⇔ (2): There is a Σ-extension (A[s], σ ) of (A, σ ) iff there is no g ∈ A

with σ(g) = g + σ( f ) by Theorem 4.10. Since τ is aK-embedding, the latter condi-
tion is equivalent to saying that there is no G ∈ τ(A) with S(G) − G ≡ τ(σ ( f )) ≡
S(τ ( f )) ≡ S(F).
(1) ⇒ (3): By part (2b) of Theorem5.4 one can extend τ fromA toA[s] by τ(s) ≡ S.
Since A[s] is a polynomial ring, S[S̄] forms a polynomial ring.
(3) ⇒ (4) holds trivially.
(4) ⇒ (2): Suppose that there is a G ∈ S with S(G) − G ≡ τ(σ ( f )). Since S(S̄) ≡
S̄ + (F(k + 1))k≥0 ≡ S̄ + (F(k))k≥1 ≡ S̄ + S(τ ( f )) ≡ S̄ + τ(σ ( f )), we conclude
that S(S̄ − G) ≡ S̄ − G and thus S̄ ≡ G + (c, c, c, . . . ) for some c ∈ K. Hence
S̄ ∈ S. �

With Lemma 5.6 and the above considerations the statements of part 1 of Theo-
rems 4.14 and 4.15 (which is a slightly more general version of part 2 of Theo-
rem 4.14) translate directly to the corresponding statements of the following Theo-
rem 5.7.

Theorem 5.7 Let (S, S) be a product-sum sequence ring containing the sequence
k with S(k) = k + 1. Let X̄k ∈ S and suppose that

∑k
i=0 X̄i /∈ S. Then within the

polynomial ring S′ := S[∑k
i=0 X̄i ] the following two statements hold:

(1)
∑a

k=0 k X̄k
∑k

i=0 X̄i ∈ S
′ iff

(a) there is a Ȳk ∈ S and c ∈ K with (30),
(b) and there is a G0(k) ∈ S and d ∈ K with (57) (where c is the one from part

(a)).

If (a) and (b) hold, we get the simplification given in (59).
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(2) Suppose that Za := ∑a
k=0 k X̄k

∑k
i=0 X̄i /∈ S

′. Then the sequence Za can be
given in terms of single nested sums whose summands are from S iff the fol-
lowing two statements hold:

(a) there is a Ȳk ∈ S and c ∈ K with (30),
(b) there is no G0(k) ∈ S and d ∈ K with (57) (where c is the one from part

(a)).

If (a) and (b) hold, we obtain the simplification (28).

6 Using the Sigma Package

6.1 The Symbolic Approach with Sigma

As already demonstrated in In[7] the difference ring machinery is activated in
Sigma by executing the function call SigmaReduce to the given summation prob-
lem. If a generic sequence Xk arises within the summation problem, this informa-
tion has to be passed to SigmaReduce with the option XList→ {X}. Then the
generic sequence Xk and its shifted versions . . . , Xk−2, Xk−1, Xk, Xk+1, Xk+2, . . .

are represented by the variables . . . , x−2, x−1, x0, x1, x2, . . . , respectively. Namely,
asworked out in [10, 11]Sigma takes the fieldG = K(. . . , x−2, x−1, x0, x1, x2, . . . )
with infinitely many variables and uses the field automorphism σ : G → G with
σ(xi ) = xi+1 for all i ∈ Z and σ(c) = c for all c ∈ K. The obtained difference field
(G, σ ) with const(G, σ ) = K is also called the difference field of free sequences.
In order to define the underlying evaluation function for G, the constant field
K has to be constructed accordingly. Here one takes the rational function field
K = K

′(. . . , X−2, X−1, X0, X1, X2, . . . ) again with infinitely many variables where
K

′ is a field of characteristic 0; note that K′
X (see our earlier Definition 4) and K

are closely related: K′
X is the polynomial ring in the variables Xi with i ∈ Z and

K is simply its quotient field. The evaluation function ev for G is provided with
ev(xi , j) = Xi+ j for i, j ∈ Z.

Usually, in generic summation problems as considered in this article, the summa-
tion input of SigmaReduce depends not only on generic sequences, but on generic
sums (see Definition 2.5) and more generally, on nested sums and products defined
over generic sequences. In this case, the input expression is represented accordingly
with a tower of RΠΣ-extensions over (G, σ ), see the Appendix 8, which leads to
a difference ring (A, σ ). This construction can be carried out automatically by the
tools given in [19, 21, 22] in combination with the machinery described in [10, 11].
Finally, Sigma tries to simplify the given summation problem using the different
telescoping algorithms from [17, 18, 20].

Calculation steps for Sect.3.1: In order to tackle the sum on the left-hand side of (18)
Sigma represents X j by x0 ∈ G. By default the difference field extension (G(k), σ )

of (G, σ ) with σ(k) = k + 1 and const(G(k), σ ) = K is adjoined automatically.
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Furthermore, the Σ-extension (G(k)[s], σ ) of (G(k), σ ) with σ(s) = s + x1 is con-
structed to model the generic sum

∑k
j=0 X j with

∑k+1
j=0 X j = ∑k

j=0 X j + Xk+1;
internally Theorem 4.10 is applied to check that this is indeed a Σ-extension. As
a consequence, we have that const(G(k)[s], σ ) = K. Now exactly the steps from
Sect. 3.1 with f = σ(s) = s + x1 are carried out in this difference ring, and the
expression (18) (with the options SimpleSumRepresentation→True and
SimplifyByExt→MinDepth activated; see Remark 1.1 for further explana-
tions) is returned.

Calculation steps for Sect.3.2: The tactic of Sect. 3.1 fails for the double sum on
the left-hand side of (28). But, using in addition the Sigma-option Extract
Constraints→ {Y }, as demonstrated in In[9], the new machinery introduced
in Sect. 4 is activated. Internally, again the difference ring (G(k)[s], σ ) with con-
stant field K is constructed, and the computation steps are carried out with σ( f ) =
(k + 1)x1(s + x1) (instead of σ( f ) = (k + 1)σ (x)(s + σ(x)). They are precisely
the same as in Sect. 4. In this process we produce the constraint

σ(g1) − g1 = (1 + k)x1 − 2 c x1;

compare with (48). Since Sigma does not find a solution g1 ∈ G(k)[s], it extends
the underlying difference field G by the new variables . . . , y−2, y−1, y0, y1, y2, . . .
and extends the automorphism σ with σ(yi ) = yi+1 for all i ∈ Z. Now we continue
our calculation with g1 = yi + d and a new variable c (i.e., we extend the constant
field K by c) and obtain the constraint

σ(g0) − g0 = x21 − cx21 + kx21 − x1y1 − d x1

of g0; compare with (50). Since we do not find a g0 ∈ G(k)(s) (with the updated G

containing now also the variables yi with i ∈ Z and the new constant c) and d ∈ K(c),
we construct the Σ-extension (G(k)[s][t], σ ) of (G(k)[s], σ ) with

σ(t) = t + (x21 − cx21 + kx21 − x1y1).

This finally produces the solution g = c s2 + y0 s + t . Reinterpreting this result in
terms of the generic sequences Xk and Yk produces the output Out[9].

Concerning this concrete summation problem the following remarks are relevant.

1. The output Out[9] provides the full information that is needed to apply Theo-
rem 5.7 taking care of the two possible scenarios. Specializing Xk and Yk (where
Yk and c are solutions of the constraint (30)) to concrete sequences in (S, S), it
might happen that the found sum extension simplifies further in the given ring S.
This situation is covered by part (1) of Theorem 5.7. Otherwise, if the sum cannot
be simplified in S, part (2) of the Theorem 5.7 can be applied.

2. Fix a product-sum sequence ring (S, S). If
∑k

j=0 X̄ j /∈ S, the output gives a full

characterization when the sum
∑a

k=0 X̄k
∑k

j=0 X̄ j can bewritten as an expression
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in terms of single nested sums; see Theorem 5.7 for further details. However, if
we enter the special case

∑k
j=0 X̄ j ∈ S, then the result provides only a sufficient

criterion to get such a simplification. Still the toolbox can be applied also in such
a case as worked out in Example 3.2; there we chose X j = Hj for which the
simplification

∑k
j=0 X̄ j = −n + (1 + n)Hn is possible.

3. Specializing the identities in (18) to concrete sequences X̄k often leads to further
simplifications.

We considered the very special case of the input expression
∑a

k=0 k Xk
∑k

i=0 Xi .
However, the proposed method works for any input sum

∑a
k=0 f (k) where the sum-

mand f (k) is built by a finite number of generic sequences, say X,Y, . . . , Z , and over
nested sums over hypergeometric/q-hypergeometric/mixed hypergeometric prod-
ucts. A typical function call, for instance, is In[3]. Here the same ideas are applied as
in Sect. 3 where instead of

∑k
i=0 Xi the most nested sum (and among the most nested

sums the one with highest degree) of the summand f (k) is chosen. In particular, the
following refinements can be activated.

1. In Sect. 3.2 we combined the telescoping algorithm from [20] with our new idea to
extract constraints in form of parameterized telescoping equations and to encode
these constraints in the output expression by using new generic sequences.Within
Sigma also other enhanced telescoping strategies for simplification [15, 17, 20]
can be combined with this new feature. For further details on the possible options
we refer also to Remarks 1.1 and 1.2.

2. In Sect. 3.2 the most complicated sum occurs only linearly. As a consequence
we run into three constraints given by step-wise coefficient comparison. Namely,
for our ansatz (20) we get the constraint (23), which can always be treated, the
constraint (24) where we introduced a generic sequence Yk subject to the param-
eterized telescoping relation (29), and the constraint (25) which we could handle
by the sum extension (60). More generally, if the most complicated sum occurs
with degree d > 1, one ends up with d + 2 constraints. Some of them can be
solved directly by Sigma within the given difference ring, but in general there
will remain constraints which can only be treated by introducing a new generic
sequence that must satisfy a certain parameterized telescoping equation. Activat-
ing the option ExtractConstraints→ {Y (1), . . . , Y (l)}, SigmaReduce is
allowed to provide (if necessary) up to l constraints in form of parameterized tele-
scoping equations, each onewith a different generic sequence fromY (1), . . . ,Y (l).
If not successful, i.e., if more than l generic sequences are needed, Sigma gives
up and returns the input expression.

6.2 Discovery of Identities

We illustrate how the presented techniques can support the (re)discovery of numerous
identities. We start with the generic sum
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In[14]:= mySum =
a∑

k=0

( k∑

j=0

X[ j]
)2;

and obtain the following general simplification formula

In[15]:= {closedForm, constraint} = SigmaReduce[mySum,XList → {X},ExtractConstraints → {Y},
SimpleSumRepresentation → False,RefinedForwardShift → False]

Out[15]= {(a + c)
( a∑

i=0

X[i])2 +
a∑

i=0

(
X[i]2 − cX[i]2 − iX[i]2 − X[i]Y[i]) + Y[a]

a∑

i=0

X[i],
{Y[a + 1] − Y[a] == −2aX[a + 1] − 2cX[a + 1]}}

The result can be simplified further to the form

In[16]:= SigmaReduce[closedForm, a,XList → {X,Y}, SimpleSumRepresentation → True]

Out[16]= (a + c)
( a∑

i=0

X[i])2 − c
a∑

i=0

X[i]2 −
a∑

i=0

X[i]Y[i] + Y[a]
a∑

i=0

X[i] +
a∑

i=0

X[i]2 −
a∑

i=0

iX[i]2

This means that the identity

a∑

k=0

( k∑

j=0

X̄ j

)2 = (a + c)
( a∑

k=0

X̄k
)2 − c

a∑

k=0

X̄2
k −

a∑

k=0

X̄k Ȳk + Ȳa

a∑

k=0

X̄k +
a∑

k=0

X̄2
k −

a∑

k=0

k X̄2
k

(61)
holds for any sequences (X̄k)k≥0, (Ȳk)k≥0 with X̄k, Ȳk ∈ K and c ∈ K if c and Ȳk are
a solution of the parameterized telescoping equation

Ȳk+1 − Ȳk = −2k X̄k+1 − 2 c X̄k+1. (62)

Even more holds by a straightforward variant of Theorem 5.7: if one takes a product-
sum sequence ring (S, S) and takes a sequence X̄k which is in S but where the
sequence of

∑k
j=0 X̄ j is not in S, then the double sum on the left-hand side of (61)

can be simplified to single nested sums defined over S if and only if there is a solution
c ∈ K and Ȳk in S of (62). In this case the right-hand side of (62) with the explicitly
given c and Ȳk produces such a simplification.

Example 6.1 X̄k = (n
k

)
: Plugging the solution c = 2−n

2 and Ȳk = (n
k

)
(−k + n)of (62)

into (61) yields

a∑

k=0

( k∑

j=0

(
n

j

))2

= (−a + n)

(
n

a

) a∑

k=0

(
n

k

)
+

(
a + 2 − n

2

)( a∑

k=0

(
n

k

))2

+
a∑

k=0

(
n

k

)2

− 2 − n

2

a∑

k=0

(
n

k

)2

−
a∑

k=0

k

(
n

k

)2

−
a∑

k=0

(
n

k

)2

(−k + n)

Sigma=
(
n

a

)
(−a + n)

a∑

k=0

(
n

k

)
+ 1

2
(2 + 2a − n)

( a∑

k=0

(
n

k

))2

− 1

2
n

a∑

k=0

(
n

k

)2

which is valid for all a, n ∈ Z≥0. Following the same tactic, we “discover” the
identities
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a∑

k=0

( k∑

j=0

x j

(
n

j

))2

= − nx

x + 1

a∑

k=0

x2k
(
n

k

)2

+ (1+a+x+ax−nx)
x+1

( a∑

k=0

xk
(
n

k

))2

+ x − 1

x + 1

a∑

k=0

kx2k
(
n

k

)2

−2xa+1(a − n)

x + 1

(
n

a

) a∑

k=0

xk
(
n

k

)
,

a∑

k=0

( k∑

j=0

(−1) j
(
n

j

))2

= n

2(2n − 1)

a∑

k=0

(
n

k

)2

− (2a − 3n + 2)(a − n)2

2n2(2n − 1)

(
n

a

)2

;

the first identity holds for x ∈ K \ {−1} and a, n ∈ Z≥0 and the second holds for
a, n ∈ Z≥0 with n �= 0. Furthermore we obtain

a∑

k=0

( k∑

j=0

x j

(n
j

)
)2

=1 + n + x

x + 1

a∑

k=0

x2k
(n
k

)2 + x − 1

x + 1

a∑

k=0

kx2k
(n
k

)2

+ a − n + 2x + ax

x + 1

( a∑

k=0

xk(n
k

)
)2

− 2(a + 1)xa+1

(x + 1)
(n
a

)
a∑

k=0

xk(n
k

) ,

a∑

k=0

( k∑

j=0

(−1) j(n
j

)
)2

= (n+1)2(4an2+22an+30a+3n2+23n+38)
2(n+2)2(n+3)(2n+5) + 2(−1)a(a+1)(a+2)(n+1)

(n+2)2(n+3)

1(n
a

)

+ (a + 1)2(6 + 2a + n)

2(n + 2)2(2n + 5)

1
(n
a

)2 + n + 2

2(2n + 5)

a∑

k=0

1
(n
k

)2

for all x ∈ K \ {−1} and a, n ∈ Z≥0 with a ≤ n.

Similarly, for the generic double sum

In[17]:= mySum =
a∑

k=0

(−1)k
( k∑

j=0

X[ j]
)2;

Sigma finds the general simplification

In[18]:= {closedForm, constraint} = SigmaReduce[mySum,XList → {X},ExtractConstraints → {Y},
SimpleSumRepresentation → False,RefinedForwardShift → False]

Out[18]= {−1

2
c
( a∑

i=0

X[i])2 + 1

2
(−1)a

( a∑

i=0

X[i])2 + 1

2

a∑

i=0

(
(−1)iX[i] + cX[i] + Y[i])X[i] − 1

2
Y[a]

a∑

i=0

X[i],

{Y[a + 1] − Y[a] == 2(−1)aX[a + 1] − 2cX[a + 1]}}.

where the result can be simplified further to

In[19]:= SigmaReduce[closedForm, a,XList → {X,Y}, SimpleSumRepresentation → True]

Out[19]=
(− c

2
+1

2
(−1)a

)( a∑

i=0

X[i])2+1

2
c

a∑

i=0

X[i]2 + 1

2

a∑

i=0

(−1)iX[i]2 + 1

2

a∑

i=0

X[i]Y[i] − 1

2
Y[a]

a∑

i=0

X[i]

This means that for any sequences X̄k ∈ K, Ȳk ∈ K and c ∈ K with
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Ȳk+1 − Ȳk = 2(−1)k X̄k+1 − 2 c X̄k+1, (63)

we obtain the simplification

a∑

k=0

(−1)k
( k∑

j=0

X̄ j

)2 = ( − c

2
+ 1

2
(−1)a

)( a∑

k=0

X̄k
)2

+1

2
c

a∑

k=0

X̄2
k + 1

2

a∑

k=0

(−1)k X̄2
k + 1

2

a∑

k=0

X̄k Ȳk − 1

2
Ȳa

a∑

k=0

X̄k .

(64)

In addition, by a slight modification of Theorem 5.7 we obtain the following stronger
statement for any product-sum sequence ring (S, S) under the assumption that X̄k is
in S, but

∑k
j=0 X̄ j is not in S: the double sum can be simplified to single nested sums

defined over S if and only if (64) holds and there are Ȳk ∈ S and c ∈ K with (63).
Again proceeding as above one can find, for instance, the following identities:

a∑

k=0

(−1)k
( k∑

j=0

(
n

j

))2

= (−a + n)(−1)a
(n
a

)

n

a∑

k=0

(
n

k

)
+ (−1)a

2

( a∑

k=0

(
n

k

))2

− 1

2

a∑

k=0

(−1)k
(
n

k

)2

+ 1

n

a∑

k=0

(−1)kk

(
n

k

)2

,

a∑

k=0

(−1)k
( k∑

j=0

(−1) j
(
n

j

))2

=1

2

a∑

k=0

(−1)k
(
n

k

)2

− 1

n

a∑

k=0

(−1)kk

(
n

k

)2

+ (−1)a
(n
a

)2
(−a + n)2

2n2
,

a∑

k=0

(−1)k
( k∑

j=0

1(n
j

)
)2

= (a + 1)(−1)a

(n + 2)
(n
a

)
a∑

k=0

1(n
k

) + (−1)a

2

( a∑

k=0

1(n
k

)
)2

+ n

2(n + 2)

a∑

k=0

(−1)k
(n
k

)2 − 1

n + 2

a∑

k=0

(−1)kk
(n
k

)2 ,

a∑

k=0

(−1)k
( k∑

j=0

(−1) j(n
j

)
)2

= − n

2(n + 2)

a∑

k=0

(−1)k
(n
k

)2 + 1

n + 2

a∑

k=0

(−1)kk
(n
k

)2

+ n + 1

n + 2

a∑

k=0

1(n
k

) + (a + 1)(n + 1)

(n + 2)2
(n
a

)

+ (n + 1)2(−1)a

2(n + 2)2
+ (a + 1)2(−1)a

2(n + 2)2
(n
a

)2 ,
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where the first two identities are valid for a, n ∈ Z and n �= 0 and the last two
identities are valid for a, n ∈ Z with a ≤ n.

7 Conclusion

In this article, under the umbrella of algorithmic symbolic summation, we estab-
lished new algebraic connections between summation problems involving generic
sequences and difference field/ring theory taking special care of concrete sequences
arising in contexts like analysis, combinatorics, number theory and special functions.
We feel this is only the “first word” in view of the high potential for applications
of various kinds. One future application domain is summation identities involving
elliptic functions or modular forms. This will be especially interesting in upcoming
calculations [1] emerging in renormalizable Quantum Field Theories. Another more
concrete application domain is the area of q-identities involving q-hypergeometric
series and sums. But already for q = 1 one can study aspects of definite summa-
tion. We plan to investigate these questions in forthcoming articles. For example, if
we specialize our sums to definite versions by setting a = n (and possibly consider
the even or odd case), further simplifications can be achieved by Sigma. Typical
examples are

n∑

k=0

( k∑

j=0

1(n
j

)
)2

= 3(n + 1)3(n + 2)

4(2n + 1)(2n + 3)
(2n
n

)
n∑

k=1

(2k
k

)

k
+ 2−n−1(n + 1)

n∑

k=1

2k

k

+ 2−2n−3(n + 1)2(n + 2)

( n∑

k=1

2k

k

)2

+ n2 + 6n + 6

2(2n + 3)
,

2n∑

k=0

(−1)k
( k∑

j=0

1
(2n
j

)
)2

= 2−2n−2(2n + 1)(4n + 3)

n + 1

2n∑

k=1

2k

k

+ 2−4n−3(2n + 1)2
( 2n∑

k=1

2k

k

)2

+ 3n + 2

2(n + 1)
,

2n∑

k=0

(−1)k
( k∑

j=0

(
2n

j

))2

= 24n−1,

where the first two identities are valid for n ≥ 0 and the last identity holds for n ≥ 1.
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8 Appendix: Simple RΠΣ-Rings and Algorithmic
Properties

For a given difference ring (resp. field) (A, σ ), i.e., a ring (resp. field) A equipped
with a ring (resp. field) automorphism σ : A → A the set of constants K :=
const(A, σ ) = {c ∈ A| σ(c) = c} forms a subring (resp. subfield) ofA. In this article
we suppose that A contains the rational numbers Q as a subfield. Since σ(1) = 1,
this implies that Q ⊆ K always holds. Moreover, by construction we will take care
that K will be always a field which will be called the constant field of (A, σ ).

In the following we introduce the class of simple RΠΣ-rings that forms the fun-
dament of Sigma’s difference ring engine. Depending on the given input problem,
the ground field is chosen accordingly among one of the following three difference
fields.

Definition 8.1 Weconsider the following three difference fields (F, σ )with constant
field K.

(1) The rational case: F = K(k) whereK(k) is a rational function field and σ(k) =
k + 1.

(2) Theq-rational case:F = K(z)whereK(z) is a rational functionfield,K = K
′(q)

is a rational function field (K′ is a field) and σ(z) = q z.
(3) The mixed case: (K(k)(z1, . . . , zv), σ ) where K(k)(z1, . . . , zv) is a rational

function field, K = K
′(q1, . . . , qv) is a rational function field (K′ is a field),

σ(k) = k + 1, and σ(zi ) = qi zi for 1 ≤ i ≤ v.

We remark that these difference fields can be embedded into the ring of sequences
(Seq(K), S) as expected. For the rational case see Example 5.1, and for the other
two cases we refer to [22, Ex. 5.3]. Further aspects can be found in [6].

On top of such a ground field, a tower of extensions is built recursively depending
on the input that is passed toSigma. Let (A, σ ) be the already constructed difference
ring with constant field K. Then the tower can be extended by one of the following
three types of extensions [8, 21]; compare Definition 4.9.

(1) Σ-extension: Given β ∈ A, take the polynomial ring A[t] (t is transcendental
over A) and extend the automorphism σ from A to A[t] subject to the relation
σ(t) = t + β. If const(A[t], σ ) = const(A, σ ), the difference ring (A[t], σ ) is
called a Σ-extension of (A, σ ).

(2) Π -extension: Given a unit α ∈ A
∗, take the Laurent polynomial ring A[t, t−1]

(t is transcendental over A) and extend the automorphism σ from A to A[t, t−1]
subject to the relation σ(t) = α t (and σ(t−1) = 1

α
t−1). If const(A[t, t−1], σ ) =

const(A, σ ), the difference ring (A[t, t−1], σ ) is called aΠ -extension of (A, σ ).
(3) R-extension: Given a primitiveλth root of unityα ∈ Kwithλ ≥ 2, take the alge-

braic ringA[t] subject to the relation tλ = 1 and extend the automorphismσ from
A toA[t] subject to the relation σ(t) = α t . If const(A[t], σ ) = const(A, σ ), the
difference ring (A[t], σ ) is called an R-extension of (A, σ ).
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More generally, we call a difference ring (E, σ ) an RΠΣ-extension of a difference
ring (A, σ ) if it is built by a tower

A = E0 ≤ E1 ≤ · · · ≤ Ee = E (65)

of R-, Π -, and Σ-extensions starting from the difference ring (A, σ ). Note that by
construction we have that const(E, σ ) = const(A, σ ) = K. Finally, we restrict to the
following case that is relevant for this article.

Definition 8.2 We call a difference ring (E, σ ) a simple RΠΣ-ring with constant
field K if it is an RΠΣ-extension of a difference ring (A, σ ) built by the tower (65)
with the following properties:

(1) (A, σ ) is one of the three difference fields from Definition 8.1;
(2) for i with 1 ≤ i ≤ e the following holds: if (Ei , σ ) is aΠ -extension of (Ei−1, σ )

with Ei = Ei−1[ti , t−1
i ], then σ(ti )/ti ∈ A

∗.

Note that within such a simple RΠΣ-ring the generators of

(a) R-extensions model algebraic products of the form αk where α is a primitive
root of unity;

(b) Π -extensions model (q–)hypergeometric/mixed hypergeometric products
depending on the chosen base field (A, σ );

(c) Σ-extensions represent nested sums whose summands are built recursively by
polynomial expressions in terms of objects that are introduced in (a), (b) and (c).

Given such a simple RΠΣ-ring with constant fieldK, we can exploit the algorith-
mic properties summarized in Theorem 5.4 that are incorporated within the summa-
tion package Sigma. For a detailed description of parts (1) and (2a) of Theorem 5.4
we refer to [22, Section 7.2]; for part (2b) of Theorem 5.4 we refer to [22, Section 5].

In the following we sketch some further aspects. Namely, given an expression
X (k)(= Xk) in terms of nested sums over hypergeometric (resp. q-hypergeometric
or mixed hypergeometric) products, one can always construct algorithmically an
RΠΣ-ring (E, σ ) together with an evaluation function ev : E × Z≥0 → K with the
following two properties (A) and (B).

(A) (E, σ ) is constructed explicitly by the tower of extensions (65) with the
generators ti (Ei = Ei−1[ti ] for R- or Σ-extensions and Ei = Ei−1[ti , t−1

i ] for a Π -
extension) where for 1 ≤ i ≤ e, there is an explicitly given product or a nested sum
over products, say Fi (k), and a λi ∈ Z≥0 such that ev(ti , k) = Fi (k) holds for all
k ≥ λi . In particular, the resulting map τ : E → Seq(K) with τ( f ) ≡ (ev( f, k))k≥0

yields a K-embedding.

Example 8.3 Consider the RΠΣ-ring (K(k)[s], σ ) from Example 4.8. There we
obtained ev with ev(s, k) = Hk for all k ≥ λ with λ = 0.

(B) One can construct an element x ∈ E and a λ ∈ Z≥0 such that X (i) = ev(x, i)
holds for all i ≥ λ. In particular, this x ∈ E can be rephrased again as an expression in
terms of products or sums defined over such products in the following way: replacing
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the generators ti in f by the attached sums or products18 one gets an expression X ′(k)
in terms of nested sums over products such that X (k) = ev(x, k) = X ′(k) holds for
all k ∈ Z≥0 with k ≥ λ.

In addition, the summation paradigms of refined parameterized telescoping [17–
22] and recurrence solving can be carried out in such simple RΠΣ-rings. In a
nutshell, we can solve the telescoping problem and enhanced versions of it in the
RΠΣ-ring (E, σ ) or equivalently in the product-sum sequence ring (S, S). This
enables one to discover, e.g., the identities given in Sect. 7.

Furthermore, the difference ring algorithms combined with the algorithms given
in [11] work also for difference rings where one starts with the free difference field
(G, σ ) introduced in Sect. 6.1 as base field, adjoins the generators given in Defini-
tion 8.1, and puts a tower of RΠΣ-extensions on top; compare Sect. 6.1.
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Differential Equations and Dispersion
Relations for Feynman Amplitudes

Ettore Remiddi

Abstract The derivation of the Cutkosky’s cutting rule by means of the Veltman’s
Largest Time Equation is described in detail, and the use of cut graphs, imaginary
parts and dispersive representations within the Differential Equation approach to the
evaluation of Feynman graph amplitudes is discussed.

1 Introduction

The explicit evaluation of the imaginary part of a Feynman graph amplitude can
be significantly simpler than the evaluation of the whole amplitude; the imaginary
part can then be used, by means of a dispersion relation, to reconstruct the whole
amplitude.

This talk will discuss the possibility of using imaginary parts and dispersive repre-
sentation within the differential equations approach to Feynman amplitudes; indeed,
it turns out that in some cases (when the unitarity cuts are also maximal cuts) the
imaginary part can provide with the solutions of the associated homogeneous equa-
tion, while quite in general writing a dispersive representation for the inhomogeneous
terms may be of great help in obtaining the whole solution when using the Euler’s
variation of the constants approach.

Section 2 contains a thorough description of the derivation of the unitarity cutting
rules by Dick Cutkosky [1] obtained through the Largest Time Equation of Tini
Veltman [2], and some examples of its application. Section 3 discusses in details the
1-loop Bubble amplitude with its unitary and generalised (maximal) cuts, Sect. 4
the role of the imaginary parts within the Differential Equation approach.
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Section 5 deals with the Sunrise amplitude and its connections to the elliptic
functions, Sect. 6 with the 3-loop Banana graph. Section 7, finally, describes the
dispersive representations and their use when dealing with the inhomogeneous terms
of the Differential Equations.

2 Veltman’s Largest Time Equation

Cut graphs and cut propagators were introduced in 1960 by Dick Cutkosky in his
paper Singularities and discontinuities of Feynman amplitudes [1], whose Abstract
says “It is shown that the discontinuity across a branch cut starting from any Landau
singularity is obtained by replacing Feynman propagators by delta functions for
those lines which appear in the Landau diagram. The general formula is a simple
generalization of the unitarity condition”.

The word cut appears already in the abstract, but refers, in the analytic function
terminology, to the discontinuity of the considered Feynman amplitude. If such an
amplitude is given by a complex function f (s) of some Mandelstam variable s, for
s real and above a threshold s0, i.e. for s > s0 one has

2iIm f (s) = f (s + iε) − f (s − iε)

where 2iIm f (s) is the discontinuity of f (s) across the cut s0 < s < +∞.
The propagators, to be replaced by delta functions (the mass-shell conditions

for the propagating particles) for obtaining the imaginary part (also equal to the
discontinuity of the graph), are usually called cut propagators; further, they cut the
Feynman graph into the product of two subgraphs (the unitarity cut), and the whole
result is referred to as the Cutkosky cutting rule.

The Cutkosky derivation relies on analytic functions theory; in his paper of 1963,
Unitarity and causality in a renormalizable field theory with unstable particles [2]
Tini Veltman recovered the Cutkosky rule by using only the space-time properties
of the Feynman propagators. The Veltman’s derivation will be shortly described in
this Section, following closely the treatment of [3].

To start with, let us write the (scalar) Feynman propagator as

Δ(x) =
∫

d4 p

(2π)4

−i

p2 + m2 − iε
ei px ,

with p2 = p · x − p0x0. The above formula refers to 1 + 3 = 4 dimensions, but it is
of immediate extension to continuous dimensions d with 1 time and (d − 1) space
dimensions.

From the definition, one immediately derives the following formulas

Δ(x) = Δ(−x) =
∫

d4 p

(2π)4

−i

p2 + m2 − iε
ei px , (1)
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Δ(x) = θ(x0)Δ
+(x) + θ(−x0)Δ

−(x) , (2)

Δ+(x) =
∫

d4 p

(2π)4
(2π)θ(+p0) δ(p2 + m2)ei px , (3)

Δ−(x) =
∫

d4 p

(2π)4
(2π)θ(−p0) δ(p2 + m2)ei px , (4)

Δ+(−x) = Δ−(x) , (5)

Δ∗(x) = Δ∗(−x) =
∫

d4 p

(2π)4

i

p2 + m2 + iε
ei px , (6)

Δ∗(x) = θ(x0)Δ
−(x) + θ(−x0)Δ

+(x) . (7)

( Δ+(x) )∗ = Δ−(x) . (8)

The functions Δ(x),Δ±(x) etc. will be graphically represented with the following
lines

(9)

(10)

(11)

(12)

The first line, is not oriented, i.e. it corresponds to the propagator
Δ(x1 − x2) from x1 to x2, or, which the same, the propagator Δ(x2 − x1) from x2 to
x1, and the same applies to .

The last two lines, on the contrary, are oriented; corresponds to
Δ−(x1 − x2) from x1 to x2, or Δ+(x2 − x1) from x2 to x1, while
corresponds to Δ+(x1 − x2) from x1 to x2, or Δ−(x2 − x1) from x2 to x1. As we will
see, they correspond to the cut propagators.

In the momentum representation, one has

(13)

showing that in a cut propagator (i.e. a line joining an uncircled to a circled vertex)
according to Eqs. (3), (4) there is a positive energy flow towards the circled vertex,
while in a line without circled vertices or with both vertices circled, according to
Eqs. (2), (7) the energy can flow in both directions.
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Graphically, Eq. (2) can be represented as

(14)

and Eq. (7) as

(15)

Given two points x, xM , with xM0 > x0, thanks to the above equations one finds,
again in the graphic representation, the relations

(16)

the above relations tell us that, if xM0 > x0, the presence of a (red) circle on xM
makes no difference, independently from the presence, or absence, of a circle on x ,
the other extreme of the line.

A Feynman graph in configuration space is given by N interaction vertex points
x1, x2, .., xN , suitably joined by propagator lines. The corresponding Feynman graph
amplitude F(x) (where x stands for all the N vertex points, considering for simplicity
the scalar case only, and omitting coupling constants) is the product of

• a factor i for each interaction vertex,
• a (scalar) propagator for each line
joining any two points xi , x j .

As a consequence of Eq. (9), in particular,

F(−x) = F(x) . (17)

As a further simplification, all the propagators will be given a same mass m, but
the discussion which will follow applies to the case of different masses as well. The
above amplitude F(xi ) must then be integrated on all the internal points (i.e. the
points not connected to the external particle lines).
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Given an N vertices graph, consider the set of all the 2N related graphs, obtained
by taking the original graph and putting a (red) circle on each of the N vertices, in
all the possible ways, and for each of the 2N new graph define a new amplitude,
by following the graphical representations of Eqs. (9)–(12), as the product of the
following factors:

• a factor i for each original vertex, (−i) for each circled vertex;
• a factor for each line joining two
uncircled vertices (xi , x j );

• for each line joining a circled xi to
an uncircled x j ; or, which is the same

• for each line joining an uncircled xi
to a circled x j ;

• for each line joining two circled
vertices (xi , x j ).

As it is easy to check, the circling operation is related to complex conjugation;
given any graph with a subset of circled vertices, the corresponding graph where the
vertices of that subset are without circles, and all the others vertices are with circles is
its complex conjugate. In particular, if the amplitude of the original Feynman graph
with N vertices is F(x), the amplitude of the graph with N circles is F∗(x), i.e.

F(x) + F∗(x) = 2ReF(x) . (18)

Let us recall that (in the S-matrix contest) one is usually interested in a quantity

A(x) = −i F(x) , (19)

so that

F(x) = i A(x) ,

ReF(x) + iImF(x) = iReA(x) − ImA(x) ,

ReF(x) = −ImT (x) ; (20)

for that reason, the real part of F(x) is usually referred to as the imaginary part, or
discontinuity, see Sect. 7, of the amplitude.

If if F̃(p) is then the Fourier transform of F(x)

F̃(p) =
∫

dx F(x)e−i px

one has, recalling in particular Eq. (17)
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(
F̃(p)

)∗
=

∫
dx

(
F(x)e−i px

)∗

=
∫

dx
(
F(x)

)∗
ei px

=
∫

dx
(
F(−x)

)∗
e−i px

=
∫

dx F∗(x) e−i px ,

so that

ReF̃(p) =
∫

dx ReF(x)e−i px ,

ImF̃(p) =
∫

dx ImF(x)e−i px , (21)

i.e. the real part of the Fourier transform of the amplitude is the Fourier transform of
the real part of the amplitude (and the same applies to the imaginary part).

The Veltman’s Largest Time Equation states that the sum of all the 2N circled
amplitudes defined above, including the original amplitude F(xi ), vanishes. The
proof can best be followed in a first simple and explicit example, the one-loop bubble,
for which the largest time equation can be graphically represented as

(22)

Now the proof: let x0,M be the largest of all the x0,i times, say x0,2 > x0,1 in the above
example. Take (in any order) the first of the 2N circled graphs in which the vertex xM
is not circled, say graph (a) above, and look for its partner graph in which the vertex
xM is circled, but all the other vertices xi have the same circles; in our example,
it corresponds to graph (c). According to the rules defining the circled graphs and
Eq. (14), because x20 > x1,0,the amplitude of graph (a) is

Δ(x2 − x1) Δ(x2 − x1) = Δ+(x2 − x1) Δ+(x2 − x1)
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while the amplitude for the graph (c), remembering the factor −1 due to the circle
in x2, is

−Δ+(x2 − x1) Δ+(x2 − x1) .

The sum of the amplitudes corresponding to the two graphs (a) and (b) therefore
vanishes.

Consider then the next graph without a circle on the vertex x2, graph (b) in our
example, pair it with its partner, which is graph (d): for the same reasons as for the
first pair of graphs, the sum of the amplitudes corresponding to (b) and (d) also
vanishes; and so until all the other circled graphs (if any) are paired and found to
cancel each other, so that the sum of all the 2N−1 pairs formed by the 2N circled
graphs vanishes.

Equation (22) can then be rewritten as

(23)
Recalling that the amplitude (d) is the complex conjugate of the amplitude (a),

From now on, having in mind Eqs. (19)–(21), let us define, in the momentum
representation,

(24)

where p is the momentum entering in the graph; the largest time equation then gives

(25)

where, in the second line, the two cut propagator lines are joined to give a cut graph.
From Eq. (24) one has (in d continuous dimensions, and in the different masses

case, with M > m)

A(p) = −i
∫

ddk

(2π)d

1

D1 − iε

1

D2 − iε
, (26)
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with

D1 = k2 + m2 = −k20 + k2 + m2 ,

D2 = (p − k)2 + M2 = −(p0 − k0)
2 + (p − k)2 + M2 ,

where k stands for the (d − 1) space dimensions of the d-dimensional vector k, so
that finally

(27)

(28)

Quite in general, the δ-function constraints

δ(D1) = δ(k2 + m2) = −k20 + k2 + m2 ,

δ(D2) = δ((p − k)2 + M2) = −(p0 − k0)
2 + (p − k)2 + M2 ,

imply
|k0| > m , |p0 − k0| > M . (29)

Let us consider, for simplicity, only the case of timelike p in its restframe, where
it has components p = (p0, 0). In Eq. (27), due to the presence of the factors
θ(−k0), θ(−(p0 − k0)) the conditions (29) require, to be satisfied, p0 < −(M + m),
in agreement with Eq. (13) (in a cut propagator, the energy flows towards the cir-
cle, and, due to energy conservation, the energy must leave the graph along the
incoming external particle line). Similarly, Eq. (28) is different from zero only if
p0 > (M + m) (or above threshold). In both cases, if u = −p2 = p20 is the Mandel-
stam variable associated to the vector p, one has that the condition u > (M + m)2

must be satisfied for obtaining a non vanishing result.
As another example, consider the two loop (massive) kite graph, whose largest

time equation can be depicted as
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The kite has 4 vertices, so there are 24 = 16 circled graphs; but many of them vanish.
One has, for instance,

indeed, all the three cut lines meeting in the upper vertex according to Eq. (13) carry
positive energy there, violating energy conservation at that vertex. Similarly,

because there is an energy flow to the upper or lower vertices and among them,
according to Eq. (7), but no way of leaving them. Further, for timelike p = (p0, 0)
with p0 > 0,
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as the energy from the incoming particle and the two cut propagator lines flows to
the left vertex and has no way of leaving it.

For timelike p = (p0, 0) with p0 > 0, dropping the circled graphs which vanish,
the largest time equation becomes

Let us comment that the amplitudes corresponding to

are the complex conjugate of each other, so that their sum is real (as it should be...),
and are different from zero if p0 > 2m (two particle cut), while for p0 > 3m (three
particle cut) also the last two graphs contribute.

As one more example, consider the 1-loop vertex

The largest time equation is immediately written
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(30)

but the discussion of its meaning is less immediate than in the self-mass case.
The vertex amplitude is a function of the three Mandelstam variables (−p2),

(−q2
1 ), (−q2)2, and any of the above circled graphs can contribute to the imaginary

part depending, on equal footing, of the actual values of those variables. The complete
discussion of the general dependence on the three variables is highly non trivial; a
practical approach might be to start from the region in which all the three variables
are in the Euclidean region, where all the circled graphs vanish, and then moving
judiciously one of the variables at the time to the Minkosky region ...

Considering the case in which all the internal masses are equal to m, one can
arrive for instance at the kinematical region in which the vector p is timelike and has
components p = (p0, 0), with p0 > 2m and, say, (−q2

1 ) = (−q2)2 = m2; the largest
time Eq. (30) then becomes

where the cut graph does not vanish if p0 > 2m.

3 The 1-Loop Bubble

In this section we consider again, in some more details but in d = 2 dimensions, the
amplitude A(p) with timelike p = (p0, 0) already introduced in Eq. (26)

A(p) = −i
∫

dk0dkz
(2π)2

1

D1 − iε

1

D2 − iε
, (31)

D1 = −k20 + k2z + m2 ,

D2 = −(p0 − k0)
2 + k2z + M2 .
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The largest time equation reads

ImA(p) = 1

2

∫
dk0dkz θ(−k0)δ(D1)θ(k0 − p0)δ(D2)

+ 1

2

∫
dk0dkz θ(k0)δ(D1)θ(p0 − k0)δ(D2) , (32)

and an explicit (simple) calculation gives

ImA(p) = 1

2
θ(+p0 − (M + m))

1√
(p20 − (M + m)2)(p20 − (M − m)2)

+ 1

2
θ(−p0 − (M + m))

1√
(p20 − (M + m)2)(p20 − (M − m)2)

. (33)

It can be of interest to compare the previous result with the explicit calculation of
the whole amplitude; recalling

1

x − iε
= x + iε

x2 + ε2
= P

(
1

x

)
+ iπδ(x)

where P(1/x) stands for the principal value, and by writing accordingly any propa-
gator 1/(D − iε) as

1

D − iε
= P

(
1

D

)
+ iπδ(D) , (34)

Equation (31) becomes

A(p) =
∫

dk0dkz
(2π)2

[
π P

(
1

D1

)
δ(D2) + πδ(D1)P

(
1

D2

)

+ i

(
π2δ(D1)δ(D2) − P

(
1

D1

)
P

(
1

D2

))]
. (35)

The direct calculation gives, for p0 = Z > (M + m)

ReA(p) =
∫

dk0dkz
(2π)2

[
π P

(
1

D1

)
δ(D2) + πδ(D1)P

(
1

D2

)]

= − 1

2π
√

(Z2 − (M − m)2)(Z2 − (M + m)2)

× ln

√
Z2 − (M − m)2 + √

Z2 − (M + m)2√
Z2 − (M − m)2 − √

Z2 − (M + m)2
(36)
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and

∫
dk0dkz
(2π)2

[
π2δ(D1)δ(D2)

]
= 1

4
√

(Z2 − (M − m)2)(Z2 − (M + m)2)
(37)

∫
dk0dkz
(2π)2

[
P

(
1

D1

)
P

(
1

D2

)]
= − 1

4
√

(Z2 − (M − m)2)(Z2 − (M + m)2)

(38)

so that

ImA(p) =
∫

dk0dkz
(2π)2

[
π2δ(D1)δ(D2) − P

(
1

D1

)
P

(
1

D2

)]

= 1

2
√

(Z2 − (M − m)2)(Z2 − (M + m)2)
, (39)

in agreement (of course) with Eq. (33) for p0 = Z > (M + m).

It is to be noted that in the “naive” decomposition of A(p) into its real and
imaginary part, Eq. (35), the imaginary part receives two contributions, Eqs. (37)
and (38), while the Cutkosky–Veltman cutting rule Eqs. (32), (33) for p0 > (M +
m) gives a single contribution, corresponding, as Eq. (37), to the product of two
δ-functions, but with different numerical factors and positivity conditions on the
energies.

The two contributions to the imaginary part (37), (38) are always present, but their
difference, see Eqs. (35), (39), vanishes when the condition |p0| > (M + m) is not
satisfied. If, for instance, 0 < p0 = U < (M − m), an explicit calculation gives that
the two expressions take the same value,

∫
dk0dkz
(2π)2

[
π2δ(D1)δ(D2)

]
= 1

4
√

((M − m)2 −U 2)((M + m)2 −U 2)
(40)

∫
dk0dkz
(2π)2

[
P

(
1

D1

)
P

(
1

D2

)]
= 1

4
√

((M − m)2 −U 2)((M + m)2 −U 2)
(41)

so that their difference, se Eqs. (35), (39), vanishes as expected.

4 Imaginary Parts of the Amplitudes and Differential
Equations

Take some Feynman amplitude A(u) which satisfies a given differential equation
in the variable u; the equation will have, in general, a homogeneous part, involving
only A(u), and an inhomogenous part, involving simpler amplitudes, supposedly



404 E. Remiddi

known, corresponding to graphs in which some of the propagators appearing in A(u)

are missing.
As ReA(u), ImA(u) satisfy separately the real and imaginary parts of the equa-

tion, the equation for ImA(u) it is expected to be simpler than the original equation.
In the simplest cases, as for instance the 1-loop Bubble, the inhomogeneous terms
are just real tadpoles, whose imaginary part vanishes, and the differential equation
for the imaginary part of A(u) is just the homogeneous part of the complete equation.
More in general, however, also the inhomogeneous terms can develop an imaginary
part, anyhow expected to be somewhat simpler than the full amplitude, so that the
resulting equation is somewhat (or just marginally?) simpler than the original equa-
tion.

If all the inhomogeneous terms are tadpoles, (so that the differential equation for
the imaginary part of the amplitude is exactly the homogeneous part of the equation),
and one is able to evaluate directly the imaginary part of the graph (say by using the
largest time equation), one can relay on that calculation for obtaining a first solution
of the homogeneous equation, as a first step of the discussion and understanding of
the complete equation.

The first obvious examples are the Bubble, Sunrise and Banana
amplitudes

Let us start from theBubble amplitudeBub(u), for differentmasses but considering
only the d = 2 limit for simplicity; the homogeneous part of the equation for Bub(u)

is
d

du
Bub(u) = −1

2

(
1

u − (M + m)2
+ 1

u − (M − m)2

)
Bub(u) , (42)

whose solution, up to a multiplicative constant, irrelevant here, for u > (M + m)2 is

Bub(u) = 1√
(u − (M + m)2)(u − (M − m)2)

. (43)

(Let us recall that, when considering only the real solutions of the previous equation,
the multiplicative constants must be specified separately for each of the u intervals
with end points −∞, (M − m)2, (M + m)2 and ∞).

The result is obviously in agreement with the already seen imaginary part of A(p),
Eqs. (33), (39) obtained, according to the largest time equation, by considering the
cut graphs with the proper signs of the energy solutions of the δ-function conditions.
However, also Eqs. (37), (40), corresponding to the integrals of the same δ-functions,
but without physical conditions on the signs of the energy solutions (and therefore
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not directly related to the Feynman amplitude) are proportional to the same square
root Eq. (43) and are therefore solutions of the homogeneous equation (42).

To clarify this point, recall that the equation for the original Feynman amplitude
was obtained by repeated use of the IBP’s (Integration by Parts Identities) [4] for the
integral of the product of two propagators in the loop variable ddk with integration
contours from−∞ to+∞ specified around the propagator poles by the usualm2 →
m2 − iε Feynman prescription. An essential feature of those IBP’s is the absence of
end point contributions, as the integrands of the Feynman graphs can be considered as
vanishing at infinity as a consequence of the properties of the continuous dimensional
integration.

But end point contributions are absent alsowhen the integration contour is a closed
loop which does not cross a discontinuity cut of the integrand, (anyhow absent in
the Feynman graph amplitudes), but containing some singularity (in our case the
poles of the propagators), so that the integrals do not vanish trivially, symbolically
something like ∮

C1

dz
d f

dz
=

∮
C2

dz
d f

dz
= 0 ,

where C1 is the contour from −∞ to +∞ and C2 the contour around some pole(s).
By writing a Feynman propagator as 1/(D − iε), where D is a quadratic polynomial
in the integration loop momentum, say D = k2 + m2 = −(k20 − K 2 − m2)with two
poles at k0 = ±√

K 2 + m2, in the Feynman amplitude the integration contour C1

of k0 runs along the real axis passing passing below and above the negative and
positive poles. Replacing the Feynman propagator 1/(D − iε) by, say, θ(k0)δ(D)

amounts to keep the same factor 1/(D − iε) in the intagrand, but to replace the
previous standard integration path of k0 by a (small) circle around the positive k0
pole; similarly, replacing 1/(D − iε) by δ(D) = (θ(−k0) + θ(k0)) δ(D) amounts
to integrate on two (small) circles around both zeroes, etc. for the other propagators.

As the integrands do not change, and end point contributions are always absent, the
structure of the IBP’s for the integrals with the modified contours are the same as the
IBP’s for the original Feynman amplitude; therefore, also the differential equations
for the modified countours are, at least formally, the same differential equations
obtained for the original Feynman amplitude.

Why formally?
The IBP’s can generate, among many other terms, a numerator consisting of

polynomials in the scalar products of the various occurring vectors. Assume that
there is a propagator 1/(D − iε) in the integrand of the original Feynman amplitude,
and that a factor D is generated by the IBP’s in the numerator; as

D
1

D − iε
= 1

in the resulting term the propagator 1/(D − iε) is missing, so that the resulting term
belongs to a (socalled) subtopology of the considered Feynman amplitude, ending
up, in the equation for the amplitude, to an inhomogeneous term.
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In the amplitudes inwhich the propagator is cut , i.e. inwhich 1/D − iε is replaced
by δ(D) (with or without θ -function specifications of the sign of the roots), the
would-be inhomogeneous term, corresponding to D/(D − iε) = 1 in the original
amplitude, is missing, because

D δ(D) = 0 .

In the case of the Bubble, the double cut δ(D1)δ(D2) implies that any inhomoge-
neous term corresponding to the absence of one of the propagators is absent; as the
two propagators are both cut (so called maximal cut, or maximally cut graph), there
are no inhomogeneous terms. The homogeneous equation for the imaginary part is
so recovered.

As the equation is a first order equation, with just one solution, there is no surprise
that all the cut amplitudes, being all solutions of a same homogeneous equation, are
equal (more exactly, proportional).

5 Sunrise

Now the Sunrise (scalar, equal masses) amplitude .

The largest time equation has the same structure as the Bubble, and gives

so that

or
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Introducing the momenta as in the equal mass case the three prop-

agators are

D1 = k2 + m2, D2 = q2 + m2, D3 = (p − k − q)2 + m2

In d = 2 dimensions (for simplicity; and neglecting further the overall normaliza-
tion), with u = W 2 = (−p2), the Sunrise amplitude is

Sun(u) = −i
∫

d2k d2q

(D1 − iε)(D2 − iε)(D3 − iε)
.

The homogeneous (second order) differential equation for Sun(u) is (in d = 2
dimensions)

{
d2

du2
+

[
1

u
+ 1

u − m2
+ 1

u − 9m2

]
d

du

+ 1

m2

[
− 1

3u
+ 1

4(u − m2)
+ 1

12(u − 9m2)

]}
Sun(u) = 0

The triple cut of the largest time equation (which is also a maximal cut) is nothing but
the physical three particle phase space at energy W > 3m, u = W 2 > 9m2, know
long since as the Dalitz–Fabri plot for the 3π ’s K -meson decay [5, 6].

Calling I0(u) that phase space, for u = W 2,W > 3m one has, again up to a
normalization factor,

ImSun(u) = I0(u) =
∫ (W−m)2

4m2

db√
R4(u, b)

, (44)

where R4(u, b) is the fourth order polynomial in b

R4(u, b) = b(b − 4m2)((W − m)2 − b)((W + m)2 − b).

One can check [7, 8] that I0(u) is indeed a solution, by using a kind of suitable
integration by parts identities involving R4(u, b), in which the vanishing of R4(u, b)
at the end-points of the integration interval plays an essential role. Therefore, also
all the integrals in b of the same integrand between any other two zeroes of R4(u, b)
(or any other contour including those points) are solutions of the equation.

Standard considerations for contour integrals along a closed path show then that
only two of them are independent, say the previous I0(u) and, for instance
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J0(u) =
∫ 4m2

0

db√−R4(u, b)
.

Once the integral representation of the two independent solutions of the homogeneous
equation is obtained, one can switch to special function mathematics, which gives

I0(u) = 2√
(W + 3m)(W − m)3

K

(
(W − 3m)(W + m)3

(W + 3m)(W − m)3

)
,

J0(u) = 2√
(W + 3m)(W − m)3

K

(
1 − (W − 3m)(W + m)3

(W + 3m)(W − m)3

)
, (45)

where K (x) is a complete elliptic integral.
Knowing the homogeneous solutions, one can then use the Euler’s formulas for

obtaining the solution of the complete inhomogeneous equation, as well as the next
terms in the (d − 2) expansion etc., as suitable repeated integrations of rational frac-
tions times the homogeneous solutions in d = 2 dimensions seen above, I0(u) and
J0(u). As I0(u) and J0(u) are complete elliptic integrals, it is natural to call, some-
what loosely, (generalized) Elliptic Polylogarithms all the (new) integrals appearing
when following the Euler’s method, by analogy with the (generalized) Polyloga-
rithms appearing when the solutions of the differential equations can be expressed
as repeated integrals of rational functions only.

More rigorous, unambiguous definitions of Elliptic Polylogarithms exist, linking
them to the general theory and formalism of elliptic functions. In the impossibility
of providing a comprenssive list of the many contributions to this field, let us just
recall, among the first, the paper by David Broadhurst [9] and then jump to almost
all the contributors to this Conference, in particular Johannes Blümlein [10], Pierre
Vanhove [11] and Stefan Weinzierl [12], and their references to previous works.

6 The Banana Amplitude

A few words on the (equal mass) Banana amplitude.

The Banana graph

The homogeneous equation for the Banana scalar amplitude with equal masses
is a third order equation, at first sight of impossible solution. But, as an obvious
extension of the Sunrise case, we find that the imaginary part of the amplitude is
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the maximally cut graph, which therefore satisfies the homogeneous equation. On
the other hand, that imaginary part is also the 4-body equal mass physical phase
space, which can be easily evaluated as the merging of two 2-particles phase spaces.

By following that approach, Primo and Tancredi [13] obtained, in a relatively
simple way, a double integral representation for the phase space, whose integrand is
the (inverse) square root of a sixth order polynomial in the two integration variables.
By suitably changing the integration regions they succeeded also in obtaining three
linearly independent integrals, corresponding to the three independent solutions of
the third order equation, which were found to be the products of two complete elliptic
integrals of appropriate arguments.

Even in this case, a bottom up approach, relying on physical and mathematically
simple considerations (such as the phase space of four equalmass particles), provided
a first step in the solution of an otherwise daunting mathematical problem.

7 Dispersion Relations and Differential Equations

Let us consider again the scalar self-mass amplitude of Eq. (31) in the simple d = 2
case, depending on a single external vector pwith components p = (p0, pz) through
the Mandelstam variable u = p20 − p2z , written, with a minor change of notation, as

B(u) = −i
∫

dk0dkz
(2π)2

1

D1 − iε

1

D2 − iε
, (46)

where D1, D2 are the same as in Eq. (31).
If p is spacelike, p = (0, V ), u = −V 2 < 0, an explicit calculation gives

B(−V 2) = 1

2π
√

((M + m)2 + V 2)((M − m)2 + V 2)

× ln

√
(M + m)2 + V 2 + √

(M − m)2 + V 2√
(M + m)2 + V 2 − √

(M − m)2 + V 2
. (47)

The above quantity is surely real; as p0 = 0, we can perform a Wick rotation on
the time component k0 = −ik4. dk0 = idk4, after which the denominators of the
propagators become positive definite, all the iε can be ignored and the integrand is
real and regular in the whole integration region. The Feynman graph integral (46)
defines for p spacelike and u = −V 2 a real function of u, B(−V 2) = B(u) which
can however be analytically continued to any value (positive or even complex) of u;
if we call the continuation B(u), we have

if :u < 0 B(u) = B(u) . (48)
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But the Feynman integral (46) is well defined for any real value of the components
of p, including of course the case of p timelike, say p = (W, 0), with u = W 2 > 0.
In this case the inverse propagators can vanish, them2 − iε prescription matters, and
according to Eq. (34) an imaginary part is anyhow present in the integrand and, as in
the case of Eqs. (36), (39), the final result can be complex if u > u0, where u0 is a
threshold depending on the masses. So that in general for W 2 > u0 one can write

B(W 2) = ReB(W 2) + iθ(W 2 − u0)ImB(W 2) . (49)

By comparison of Eqs. (36), (39), (47) and (48) one finds, for any real value of u

B(u + iε) = ReB(u) + iθ(u − u0)ImB(u) , (50)

B(u − iε) = ReB(u) − iθ(u − u0)ImB(u) , (51)

where, let us repeat oncemore,ReB(u),ImB(u) are defined by the original Feynman
graph (which is a function of the real parameter u through the real components of
the vector p), so that the physical amplitude is B(u + iε).

From Eqs. (50), (51) one sees that the functionB(u) has a cut along the positive
real axis starting at u0, with discontinuity equal to 2iImB(u), the imaginary part
of the graph given by the unitarity cutting rules discussed in the previous sections
and therefore entirely fixed by the Feynman graph amplitude, As a consequence, the
function B(u) satisfies the dispersion relation

B(u) = 1

π

∫ ∞

u0

dv

v − u
ImB(v) , (52)

valid for any value of u, where u0 is a threshold and the imaginary part ImA(v),
discussed in the previous sections, is the discontinuity in u of the amplitude. Let us
recall, again, that the values provided by the Feynman graph correspond, see Eq. (50),
toB(u + iε) for u real (and +iε irrelevant if u < u0).

It is immediate to derive from Eq. (52) a subtracted dispersion relation, such as

B(u) = B(0) + u
1

π

∫ ∞

u0

dv

v(v − u)
ImB(v)

which can be useful to fix boundary conditions or convergence problems.
A first (obvious) use of the dispersion relations is to evaluate ImB(v), and then try

to obtain the complete amplitude by evaluating the dispersive integral; but that relays
on the actual evaluation of the imaginary part itself, and within a differential equation
approach the equation for the imaginary part is not particularly simpler or easier to
solve than the complete equation when inhomogeneous terms are also present.

A second approach looks more promising: write the inhomogeneous terms in
dispersive form. To illustrate this possibility with an example, let us look at the
vertex amplitude, already introduced in Sect. 2,
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(53)
where ddk refers to the d-dimensional integration and normalization factors, in the
kinematical configuration q = p1 + p2, p21 = p22 = 0 and −q2 = s (q2 is positive
when q is spacelike). The complete differential equation for Vrt(d; s) reads

d

ds
Vrt(d; s) = −1

s
Vrt(d; s) + (d − 2)

8m4

(
1

s − 4m2
− 1

s

)
Tad(d;m)

+ (d − 3)

4m2

(
1

s − 4m2
− 1

s

)
B(d; s) ,

where B(d; s) is the analog of Eq. (46) in d-dimensions, while Tad(d;m) is the
tadpole of mass m

Tad(d;m) = −i
∫

ddk

k2 + m2
,

independent of s. By writing B(d; s) in dispersive form, see Eq. (52), the equation
for Vrt(d; s) becomes

d

ds
Vrt(d; s) = −1

s
Vrt(d; s) + (d − 2)

8m4

(
1

s − 4m2
− 1

s

)
Tad(d;m)

+ (d − 3)

4m2

1

π

∫ ∞

u0

dv ImB(d, v)

(
1

s − 4m2
− 1

s

)
(−1)

s − v
. (54)

As a first step, the equation in s can be solved by fully ignoring the integration in v
and the actual value of ImB(d, v), treating the new factor depending on s, 1/(s − v)
on the same footing as the factors 1/s and 1/(s − 4m2) already appearing in the
equation, i.e. considering the quantity v as a kind of new constant or parameter. Only
after the accomplishment of the first step one has to consider the actual value of
ImB(d, v), and worry about the integration in v.

Another, less trivial example, is given by the family of the scalar integrals present
in the QED 2-loop self-mass kite, already studied by Sabry [14]
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where the thick line is the electron line, and the thin lines are the massless photon
propagators of the two loops (the imaginary part of the equal mass kite graph was
already discussed in Sect. 2).

In the d-continuous dimensional regularization [16], the problem involves a total
of 8 Master Integrals, among them the scalar amplitude with all the 5 propagators
at the first power, which will be called f8(d; u), and the scalar (equal mass) sunrise,
to be called here f6(d; u). In QED one is (obviously) interested in the d → 4 limit;
as in that limit f6(d; u) develops an u.v. double pole, it can be convenient (even
if also somewhat confusing...) to rescale all the amplitudes by suitable powers of
(d − 4), so that the rescaled set of equations has a finite limit at d = 4. (As a further
simplification, whichmight however increase the potential confusion, it is also useful
to use the Tarasov dimensional shift [15] from d = 4 to d = 2). In terms of the
rescaled amplitudes, the equation for f8(d; u) reads

d

du
f8(d; u) = (d − 4)

(
1

u − m2
− 1

2u

)
f8(d; u)

+ (d − 4)3

24

(
1

m2
− 8

u − m2

)
f6(d; u)

+ ... (55)

where the dots stand for a few inhomogeneous terms which turn out to be expressible
with ordinary Polylogarithms (of no interest here).

The homogeneous equation for f8(d; u) is simple, the non trivial part is within
the inhomogeneous term f6(d; u), which is the elliptic Sunrise.

When expanding Eq. (55) in powers of (d − 4), the first non trivial order, corre-
sponding to (d − 4)3, is

d

du
f (3)
8 u) =

(
1

m2
− 8

u − m2

)
f (0)
6 (u)

+ 1

u − m2

(
π2

96
− 1

16
G(0,m2, u)

)
+ 1

8u
G(m2,m2, u) (56)

where G(0,m2, u),G(m2,m2, u) are ordinary Polylogarithms, while f (0)
6 (u) is the

(scalar) amplitude of the sunrise ind = 2 dimensions.At this point, recallingEq. (44),
one can write f (0)

6 (u) through the dispersion relation

f (0)
6 (u) =

∫ ∞

9m2

dv

v − u
I0(v).

When the above relation is inserted into Eq. (56), the integration of the differential
equation becomes trivial and gives
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f (3)
8 u) = 1

8
G(0,m2,m2, u) − 1

16
G(m2, 0,m2, u) − π2

96
G(m2, u)

− 1

24

∫ ∞

9m2
dv I0(v)

(
1

m2
− 8

v − m2

)
G(v, u) ,

where the dispersive kernel I0(v) of the sunrise dispersive representation is com-
pletely factorised, a feature which remains valid at higher orders in (d − 4), with
I0(v) replaced by the imaginary part of the sunrise at the corresponding order.

8 Conclusions

We have recalled the derivation by Tini Veltman [2] of the Largest Time Equation
for a Feynman graph amplitude, and its equivalence to the Unitarity Cutting Rules
of Dick Cutkosky [1], accompanying the discussion with a number of examples.

The cut graph amplitudes (both the unitarity and the generalised cuts) are simpler
to evaluate than the original amplitudes, but they still contain significant information
on their structure, which can be used in the solution of their differential equations.

In the best cases, they are closely related to simple and well known physical quan-
tities, such as the many particle phase space, which can then provide with a valuable
hint in solving the associated homogeneous equation, the first step in studying the
differential equations for the concerned amplitudes through the Euler’s variation of
the constants approach.

The dispersion relation representation, based on the previous evaluation of the
relevant imaginary part of the amplitude, can further be used as a kind of universal tool
for “merging” the amplitudes of the subtopology, corresponding to the inhomogenous
terms of the differential equation for the whole amplitude, into the complete solution
of the equation. When following this approach, the contribution of each subtopology
is written as ∫

dv K (v)
1

v − u
= −

∫
dv K (v)

1

u − v
,

where u is the variable of the differential equation, v, K (v) are the dispersive vari-
able and the imaginary part of the subtopology. The dispersive factor 1/(u − v) fits
naturally in the by now well established frame of the Generalised Polylogarithms in
the variable u, introducing only one more parameter (or letter) v. The equation in u
can be solved without worrying about the actual value of K (v), and the problem of
the integration in v can be tackled once the equation in u is solved. The procedure
does not require the explicit knowledge of the dispersive kernel, and can be used
even for kernels whose analytic structure is still to be investigated.
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Feynman Integrals, Toric Geometry
and Mirror Symmetry

Pierre Vanhove

Abstract This expository text is about using toric geometry andmirror symmetry for
evaluating Feynman integrals.We show that themaximal cut of a Feynman integral is
a GKZ hypergeometric series. We explain how this allows to determine the minimal
differential operator acting on the Feynman integrals. We illustrate the method on
sunset integrals in two dimensions at various loop orders. The graph polynomials
of the multi-loop sunset Feynman graphs lead to reflexive polytopes containing the
origin and the associated variety are ambient spaces for Calabi-Yau hypersurfaces.
Therefore the sunset family is a natural home for mirror symmetry techniques. We
review the evaluation of the two-loop sunset integral as an elliptic dilogarithm and as
a trilogarithm. The equivalence between these two expressions is a consequence of
(1) the local mirror symmetry for the non-compact Calabi-Yau three-fold obtained
as the anti-canonical hypersurface of the del Pezzo surface of degree 6 defined by
the sunset graph polynomial and (2) that the sunset Feynman integral is expressed
in terms of the local Gromov-Witten prepotential of this del Pezzo surface.

1 Introduction

Scattering amplitudes are fundamental quantities used to understand fundamental
interactions and the elementary constituents inNature. It is well known that scattering
amplitudes are used in particle physics to compare the theoretical predictions to
experimental measurements in particle colliders (see [1] for instance). More recently
the use of modern developments in scattering amplitudes have been extended to
gravitational physics like unitarity methods to gravitational wave physics [2–6].
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The l-loop scattering amplitude AD
n,l(s,m

2) between n fields in D dimensions is
a function of the kinematics invariants s = {si j = (pi + p j )

2, 1 ≤ i, j ≤ n} where
pi are the incoming momenta of the external particle, and the internal masses m2 =
(m1, . . . ,mr ).

We focus on the questions : what kind of function is a Feynman integral? What
is the best analytic representation?

The answer to these questions depend very strongly on which properties one
wants to display. An analytic representation suitable for an high precision numerical
evaluation may not be the one that displays the mathematical nature of the integral.

For instance the two-loop sunset integral has received many different, but equiv-
alent, analytical expressions: hypergeometric and Lauricella functions [7, 8], Bessel
integral representation [9–11],Elliptic integrals [12, 13], Elliptic polylogarithms [14–
20] and trilogarithms [20].

The approach that we will follow here will be guided by the geometry of the graph
polynomial using the parametric representation of the Feynman integral. In Sect. 2
we review the description of the Feynman integral IΓ for a graph Γ in parametric
space. We focus on the properties of the second Symanzik polynomial as a prepa-
ration for the toric approach used in Sect. 3. In Sect. 2.2 we show that the maximal
cut πΓ of a Feynman integral has a parametric representation similar to the one of
the Feynman integral IΓ where the only difference is the cycle of integration. The
toric geometry approach is described in Sect. 3. In Sect. 3.2 we explain that the maxi-
mal cut integral is an hypergeometric series from the Gel’fand-Kapranov-Zelevinski
(GKZ) construction. In Sect. 3.4.2, we show on examples how to derive the minimal
differential operator annihilating the maximal cut integral. In Sect. 4 we review the
evaluation of the two-loop sunset integral in two space-time dimensions. In Sect. 4.1
we give its expression as an elliptic dilogarithm

I�(p2, ξ 2
1 , ξ 2

2 , ξ 2
3 ) ∝ �

6∑

i=1

ci
∑

n≥1

(Li2(q
nzi ) − (Li2(−qnzi )) (1)

where � is a period of the elliptic curve defined by the graph polynomial, q the
nome function of the external momentum p2 and internal masses ξ 2

i for i = 1, 2, 3.
In Sect. 4.2we show that the sunset integral evaluates as sumof trilogarithm functions
in (163)

I�(p2, ξ 2
1 , ξ 2

2 , ξ 2
3 ) ∝ � (3(log Q)3

+
∑

(n1,n2,n3)≥0

(
dn1,n2,n3 + δn1,n2,n3 log(−p2)

)
Li3

( 3∏

i=1

ξ
2ni
i Qni

)
.

(2)

In Sect. 4.3 we show that the equivalence between theses two expression is the
result of a local mirror map, q ↔ Q in (165), for the non-compact Calabi-Yau
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three-fold obtained as the anti-canonical bundle over the del Pezzo 6 surface
defined by the sunset graph polynomial. Remarkably the sunset Feynman inte-
gral is expressed in terms of the genus zero local Gromov-Witten prepotential [20].
Therefore this provides a natural application for Batyrev’s mirror symmetry tech-
niques [21]. One remarkable fact is that the computation can be done using the
existing technology of mirror symmetry developed in other physical [22–24] or
mathematics [25] contexts.

2 Feynman Integrals

A connected Feynman graph Γ is determined by the number n of propagators (inter-
nal edges), the number l of loops, and the number v of vertices. The Euler charac-
teristic of the graph relates these three numbers as v = n − l + 1, therefore only the
number of loops l and the number n of propagators are needed.

In a momentum representation an l-loop with n propagators Feynman graph reads

IΓ (s, ξ 2, ν, D) := (μ2)ω

π
lD
2

∏n
i=1 Γ (νi )

Γ (ω)

∫

(R1,D−1)l

∏l
i=1 d

D	i∏n
i=1(q

2
i − m2

i + iε)νi
, (3)

where D is the space-time dimension, and we set ω := ∑n
i=1 νi − lD/2 and qi is

the momentum flowing in between the vertices i and i + 1. With μ2 a scale of
dimensionmass squared. Fromnowwe setm2

i = ξ 2
i μ2 and pi → piμ,with these new

variables the μ2 dependence disappear. The internal masses are positive ξ 2
i ≥ 0 with

1 ≤ i ≤ n. Finally +iε with ε > 0 is the Feynman prescription for the propagators
for a space-time metric of signature (+ − · · · −). The arguments of the Feynman
integral are ξ 2 := {ξ 2

1 , . . . , ξ 2
n } and ν := {ν1, . . . , νn} and s := {si j = (pi + p j )

2}
with pi with i = 1, . . . , ve with 0 ≤ ve ≤ v the external momenta subject to the
momentum conservation condition p1 + · · · + pve = 0. There are n internal masses
ξ 2
i with 1 ≤ i ≤ n, is ve is the number of external momenta we have ve external
masses p2i with 1 ≤ i ≤ ve (some of the mass could vanish but we do a generic
counting here), and ve(ve−3)

2 independent kinematics invariants si j = (pi + p j )
2. The

total number of kinematic parameters is

NΓ (n, l) = n + ve(ve − 1)

2
≤ NΓ (n, l)max = n + (n − l + 1)(n − l)

2
. (4)

We set
IΓ (s,m, D) := IΓ (s,m, 1, . . . , 1, D) , (5)

and for νi positive integers we have

IΓ (s,m, ν, D) =
n∏

i=1

(
∂

∂(ξ 2
i )

)νi

IΓ (s,m, D) . (6)
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2.1 The Parametric Representation

Introducing the variables xi with 1 ≤ i ≤ n such that

n∑

i=1

xi (q
2
i − ξ2i ) = (	

μ
1 , . . . , 	

μ
l ) · Ω · (	

μ
1 , . . . , 	

μ
l )T + (	

μ
1 , . . . , 	

μ
l ) · (Qμ

1 , . . . , Qμ
l ) − J,

(7)
and performing standard Gaussian integrals on the xi (see [26] for instance) one
obtains the equivalent parametric representation that we will use in these notes

IΓ (s, ξ , ν, D) =
∫

Δn

ΩΓ , (8)

the integrand is the n − 1-form

ΩΓ =
n∏

i=1

xνi−1
i

U ω− D
2

Fω
Ω0, (9)

where Ω0 is the differential n − 1-form on the real projective space Pn−1

Ω0 :=
n∑

j=1

(−1) j−1 x j dx1 ∧ · · · ∧ d̂x j ∧ · · · ∧ dxn , (10)

where d̂x j means that dx j is omitting in this sum. The domain of integration Δn is
defined as

Δn := {[x1, · · · , xn] ∈ P
n−1|xi ∈ R, xi ≥ 0}. (11)

The second Symanzik polynomialF = U
(
(Qμ

1 , . . . , Qμ

l ) · Ω−1 · (Qμ
1 , . . . , Qμ

l )T

− J
)
, takes the form

F (s, ξ 2, x1, . . . , xn) = U (x1, . . . , xn)

(
n∑

i=1

ξ 2
i xi

)
−

∑

1≤i≤ j≤n

si jGi j (x1, . . . , xn)

(12)
where the first Symanzik polynomial U (x1, . . . , xn) = detΩ and Gi j (x1, . . . , xn)
are polynomial in the xi variables only.

• The first Symanzik polynomial U (x1, . . . , xn) is an homogeneous polynomial of
degree l in the Feynman parameters xi and it is at most linear in each of the xi
variables. It does not depend on the physical parameters. This polynomial is also
known as the Kirchhoff polynomial of graph Γ . Which is as well the determinant
of the Laplacian of the graph see [27, Eq. (35)] for a definition.

• The polynomialU (x1, . . . , xn) can be seen as the determinant of the periodmatrix
Ω of the punctured Feynman graph [26], i.e. the graph with amputated external
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legs. Or equivalently it can be obtained by considering the degeneration limit of
a genus l Riemann surfaces with n punctures. This connection plays an important
in understanding the quantum field theory Feynman integrals as the α′ → 0 limit
of the corresponding string theory integrals [28, 29].

• The graph polynomial F is homogeneous of degree l + 1 in the variables
(x1, . . . , xn). This polynomial depends on the internal masses ξ 2

i and the kine-
matic invariants si j = (pi · p j )/μ

2. The polynomials Gi j are at most linear in all
the variables xi since this is given by the spanning 2-trees [27]. Therefore if all
internal masses are vanishing then F is linear in the Feynman parameters xi .

• The U and F are independent of the dimension of space-time. The space-time
dimension enters only in the powers of U and F in the parametric representa-
tion for the Feynman graphs. Therefore one can see the Feynman integral as a
meromorphic function of (ν, D) in C1+n as discussed in [30].

• All the physical parameters, the internal masses ξ 2
i and the kinematic variables

si j = (pi · p j )/μ
2 (that includes the external masses) enter linearly. This will be

important for the toric approach described in Sect. 3.

2.2 Maximal Cut

We show that the maximal cut of a Feynman graph has a nice parametric represen-
tation. Let us consider the maximal cut

πΓ (s, ξ 2, D) := 1

Γ (ω)(2iπ)nπ
lD
2

∫

(R1,D−1)L

l∏

i=1

dD	i

n∏

i=1

δ(q2
i − m2

i + iε), (13)

of the Feynman integral IΓ (s, ξ 2, D) which is obtained from the Feynman integral
in (3) by replacing all propagators by a delta-function

1

d2
= 1

2iπ
δ(d2). (14)

Using the representation of the δ-function

δ(x) =
∫ +∞

−∞
dweiwx , (15)

we obtain that the integral is

πΓ (s,m, D) := 1

Γ (ω)(2iπ)nπ
lD
2

∫

R(1,D−1)L
e−i

∑n
i=1 xi (	

2
i +m2

i −iε)
l∏

i=1

dD	i

n∏

i=1

dxi .

(16)
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At this stage the integral is similar to the one leading to the parametric represen-
tation with the replacement xr → i xr with xr ∈ R. Setting x̃r = i xr and performing
the Gaussian integrals over the loop momenta, we get

πn(s, ξ
2, D) := 1

(2iπ)n

∫

iRn

Ũ ω− D
2

F̃ω

n∏

i=1

δ

(
1 −

n∑

i=1

x̃i

)
dx̃i . (17)

using the projective nature of the integrand we have Ũ ω−D/2

F̃ ω
= i−n U ω−D/2

F ω and the
integral can be rewritten as the torus integral

πΓ (s, ξ 2, D) := 1

(2iπ)n

∫

|x1]=···=|xn−1|=1

U ω−D/2

Fω

n−1∏

i=1

dxi . (18)

This integral shares the same integrand with the Feynman integral IΓ in (8) but
the cycle of integration differs since we are integrating over a n-torus. We show in
Sect. 3.2 that this maximal cut arises naturally from the toric formalism.

2.3 The Differential Equations

In general a Feynman integral IΓ (s, ξ 2, ν, D) satisfies an inhomogeneous system of
differential equations

LΓ IΓ = SΓ , (19)

where the inhomogeneous term SΓ essentially arises from boundary terms corre-
sponding to reduced graph topologies where internal edges have been contracted.
Knowing the maximal cut integral allows to determine differential operatorsLΓ

LΓ πΓ (s, ξ 2, D) = 0, (20)

This fact has been exploited in [31–34] to obtain the minimal order differential
operator. The important remark in this construction is to use that the only difference
between the Feynman integral IΓ and the maximal cut πΓ is the choice of cycle of
integration. Since the Picard–Fuchs operator LΓ acts as

LΓ πΓ (s, ξ 2, D) =
∫

γn

LΓ ΩF =
∫

γn

d(βΓ ) = 0 (21)

this integral vanishes because the cycle γn = {|x1| = · · · = |xn| = 1} has no bound-
aries ∂γn = ∅. In the case of the Feynman integral IΓ this is not longer true as

LΓ IΓ (s, ξ 2, D) =
∫

Δn

d(βΓ ) =
∫

∂Δn

βΓ = SΓ �= 0 . (22)
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The boundary contributions arises from the configurationwith someof the Schwinger
coordinate xi = 0 vanishing which corresponds to the so-called reduced topologies
that are known to ariseswhen applying the integration-by-part algorithm (see [35–37]
for instance).

We illustrate this logic on some elementary examples of differential equations for
multi-valued integrals relevant for the one- and two-loop massive sunset integrals
discussed in this text.

2.3.1 The Logarithmic Integral

We consider the integral

I1(t) =
∫ b

a

dx

x(x − t)
, (23)

and its cut integral

π(t) =
∫

γ

dx

x(x − t)
, (24)

where γ is a cycle around the point x = t . Clearly we have

d

dx

(
1

t − x

)
= 1

x(x − t)
+ t

d

dt

(
1

x(x − t)

)
, (25)

therefore the integral π(t) satisfies the differential equation

t
d

dt
π(t) + π(t) =

∫

γ

d

dx

(
1

t − x

)
= 0 , (26)

and the integral I1(t) satisfies

t
d

dt
I1(t) + I1(t) =

∫ b

a

d

dx

(
1

t − x

)
= 1

b(b − t)
− 1

a(a − t)
. (27)

Changing variables from t to p2 or an internal mass will give the familiar differential
equation for the one-loop bubble that will be commented further in Sect. 3.4.

2.3.2 Elliptic Curve

The second example is the differential equation for the period of an elliptic curve
E : y2z = x(x − z)(x − t z) which is the geometry of the two-loop sunset integral.
Consider the differential of the first kind on the elliptic curve
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ω = dx√
x(x − 1)(x − t)

, (28)

this form can be seen as a residue evaluated on the elliptic curve ω = ResE Ω of the
form on the projective space P2

Ω = Ω0

y2z − x(x − z)(x − t z)
. (29)

where Ω0 = zdx ∧ dy + ydz ∧ dx + xdy ∧ dz is the natural top form on the pro-
jective space [x : y : z]. Systematic ways of deriving Picard–Fuchs operators for
elliptic curve is given by Griffith’s algorithm [38]. Consider the second derivative
with respect to the parameter t

d2

dt2
Ω = 2

x2(x − z)2z2

(y2z − x(x − z)(x − t z))2
Ω0 (30)

the numerator belongs to the Jacobian ideal1 of the polynomial p(x, y, z) := y2z −
x(x − z)(x − t z), J1 = 〈∂x p(x, y, z) = −3x2 + 2(t + 1)xz − t z22, ∂y p(x, y, z) =
2yz, ∂z p(x, y, z) = (t + 1)x2 + y2 − 2t xz〉, since

x2(x − z)2z2 = m1
x∂x p(x, y, z) + m1

y∂y p(x, y, z) + m1
z∂z p(x, y, z) . (31)

This implies that

d2

dt2
Ω = ∂xm1

x + ∂ym1
y + ∂zm1

z

(y2z − x(x − z)(x − t z))2
Ω0

+ d

(
(ym1

z − zm1
y)dx + (zm1

x − xm1
z )dy + (xm1

y − ym1
x )dz

(y2z − x(x − z)(x − t z))2

)

(32)

therefore

1An ideal I of a ring R, is the subset I ⊂ R, such that 1) 0 ∈ I , 2) for all a, b ∈ I then
a + b ∈ I , 3) for a ∈ I and b ∈ R, a · b ∈ R. For P(x1, . . . , xn) an homogeneous polynomial
in R = C[x1, . . . , xn] the Jacobian ideal of P is the ideal generated by the first partial derivative
{∂xi P(x1, . . . , xn)} [39]. Given a multivariate polynomial P(x1, . . . , xn) its Jacobian ideal is easily
evaluated using Singular command jacob(P). The hypersuface P(x1, · · · , xn) = 0 for an
homogeneous polynomial, like the Symanzik polynomials, is of codimension 1 in the projective
space Pn−1. The singularities of the hypersurface are determined by the irreducible factors of the
polynomial. This determines the cohomology of the complement of the graph hypersurface and the
number of independent master integrals as shown in [40].
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d2

dt2
Ω + p1(t)

d

dt
Ω = −p1(t)x(x − z)z + ∂xm1

x + ∂ym1
y + ∂zm1

z

(y2z − x(x − z)(x − t z))2
Ω0

+ d

(
(ym1

z − zm1
y)dx + (zm1

x − xm1
z )dy + (xm1

y − ym1
x )dz

(y2z − x(x − z)(x − t z))2

)
.

(33)

One easily derives that ∂xm1
x + ∂ym1

y + ∂zm1
z is in the Jacobian ideal generated by

J1 and x(x − z)z with the result that

∂xm
1
x + ∂ym

1
y + ∂zm

1
z = m2

x∂x p(x, y, z) + m2
y∂y p(x, y, z) + m2

z∂z p(x, y, z)

+ 2t − 1

t (t − 1)
x(x − z)z,

(34)

therefore p1(t) = 2t−1
t (t−1) and the Picard–Fuchs operator reads

d2

dt2
Ω + 2t − 1

t (t − 1)

d

dt
Ω − ∂xm2

x + ∂ym2
y + ∂zm2

z

(y2z − x(x − z)(x − t z))2
Ω0 =

d

(
(ym1

z − zm1
y)dx + (zm1

x − xm1
z )dy + (xm1

y − ym1
x )dz

(y2z − x(x − z)(x − t z))2

)

+ d

(
(ym2

z − zm2
y)dx + (zm2

x − xm2
z )dy + (xm2

y − ym2
x )dz

y2z − x(x − z)(x − t z)

)
.

(35)

since ∂xm2
x + ∂ym2

y + ∂zm2
z = − 1

4t (t−1) we have that

(
4t (t − 1)

d2

dt2
− 4(2t − 1)

d

dt
+ 1

)
ω = −2∂x

(
y

(x − t)2

)
. (36)

For α and β a (sympletic) basis of H1(E ,Z) the period integrals �1(t) := ∫
α
ω and

�2(t) := ∫
β
ω both satisfy the differential equation

(
4t (t − 1)

d2

dt2
− 4(1 − 2t)

d

dt
+ 1

)
�i (t) = 0 . (37)

Again this differential operator acting on an integral with a different domain of
integration can lead to an homogeneous terms as this is case for the two-loop sunset
Feynman integral.

The all procedure is easily implemented in Singular [41] with the following
set of commands
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In [1]: // Griffith-Dwork method for
deriving the Picard-Fuchs operator for the elliptic curve
yˆ2z=x(x-z)(x-tz)

In [2]: ring A=(0,t),(x,y,z),dp;

In [3]: poly f=yˆ2*z-x*(x-z)*(x-t*z);

In [4]: ideal I1=jacob(f); I1

Out[4]: I1 [1]=-3*x2+(2t+2)*xz+(-t)*z2
I1 [2] =2*yz
I1 [3] =(t+1)*x2+y2+(-2t)*xz

In [5]: matrix M1=lift(I1,xˆ2*(x-z)ˆ2*zˆ2); M1

Out[5]: M1 [1,1]=2/(3t+3)*xz3
M1[1,2]=-1/(2t+2)*x2yz+1/(6t+6)*yz3
M1[3,1]=1/(t+1)*x2z2-1/(3t+3)*z4

In [6]: // checking the decomposition
xˆ2*(x-z)ˆ2*zˆ2-M1[1,1]*I[1]-M1[1,2]*I[2]-M1[1,3]*I[3]

Out[6]: 0

In [7]: poly dC1=diff(M [1,1],x) +diff(M [2,1],y)
+diff(M [3,1],z);
dC1

Out[7]: dC1=3/(t+1)*x2z-1/(t+1)*z3

In [8]: ideal I2=jacob(f),x*(x-z)*z;

In [9]: matrix M2=lift(I2,dC1); M2

Out[9]: M2 [1,1]=1/(2t2+2t)*z
M2 [2,1]=1/(4t2-4t)*y
M2[3,1]=-1/(2t2-2t)*z
M2[4,1]=(2t-1)/(t2-t)

In [10]: // checking the decomposition
dC1-M2[1,1]*I[1]-M2 [2,1]*I[2]-M2[1,3]*I[3]
-M2[4,1]*x*(x-z)*z

Out[10]: 0

In [11]: poly
dC2=diff(M2[1,1],x)+diff(M2[2,1],y)
+diff(M2 [3,1],z);
dC2

Out[11]: -1/(4t2-4t)
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3 Toric Geometry and Feynman Graphs

We will show how the toric approach provides a nice way to obtain this maximal cut
integral. The maximal cut integral πΓ (s, ξ 2, D) is the particular case of generalised
Euler integrals ∫

σ

r∏

i=1

Pi (x1, . . . , xn)
αi

n∏

i=1

xβi
i dxi (38)

studied by Gel’fand, Kapranov and Zelevinski (GKZ) in [42, 43]. There
Pi (x1, . . . , xn) are Laurent polynomials, αi and βi are complex numbers and σ is a
cycle. The cycle entering the maximal cut integral in (18) is the product of circles
σ = {|x1| = |x2| = · · · = |xn| = 1}. But other cycles arise when considering differ-
ent cuts of Feynman graphs. The GKZ approach provides a totally combinatorial
approach to differential equation satisfied by these integrals.

Aswell in the casewhen P(x, z) = ∑
i zi1,...,ir

∏n
i=1 x

αi
i is the Laurent polynomial

defining a Calabi-Yau hypersurface {P(x, z) = 0}, Batyrev showed that there is one
canonical period integral [44, 45]

Π(z) := 1

(2iπ)n

∫

|x1|=···=|xn |=1

1

P(x, z)

n∏

i=1

dxi
xi

. (39)

This corresponds to the maximal cut integral (18) In the case where ω = D/2 = 1
which is satisfied by the (n − 1)-loop sunset integral D = 2 dimensions. The graph
hypersurface of the (n − 1)-loop sunset (see (47)) is always a Calabi-Yau (n − 1)-
fold. See for more comments about this at the end of Sect. 4.3.1. We refer to the
reviews [46, 47] for some introduction to toric geometry for physicts.

3.1 Toric Polynomials and Feynman Graphs

The second Symanzik polynomial F (s, ξ 2, x1, . . . , xn) defined in (12) is a special-
isation of the homogeneous (toric) polynomial2 of degree l + 1 at most quadratic in
each variables in the projective variables (x1, . . . , xn) ∈ P

n−1

2Consider an homogeneous polynomial of degree d

P(z, x) =
∑

0≤ri≤n
r1+···+rn=d

zi1,...,in

n∏

i=1

xrii

this is called a toric polynomial if it is invariant under the following actions

zi →
n∏

j=1

t
αi j
i zi ; xi →

n∏

j=1

t
βi j
i xi
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F toric
l (z, x1, . . . , xn) = U tor

l (x1, . . . , xn)

(
n∑

i=1

ξ 2
i xi

)
− V tor

l (x1, . . . , xn), (40)

where for l ≤ n

U tor
l (x1, . . . , xn) :=

∑

0≤ri≤1
r1+···+rn=l

ui1,...,in

n∏

i=1

xrii , (41)

where the coefficients ui1,...,in ∈ {0, 1}. The expression in (40) is the most generic
form compatible with the properties of the Symanzik polynomials listed in Sect. 2.1.

There are n!
(n−l)!l! independent coefficient in the polynomialU tor

l (x1, . . . , xn). Of
course this is a huge over counting, as this does not take into account the symmetries
of the graphs and the constraints on the non-vanishing of some coefficients. This will
be enough for the toric description we are using here. In order to keep most of the
combinatorial power of the toric approach we will only do the specialisation of the
toric coefficientswith the physical slice corresponding of Feynman graph polynomial
at the end on solutions. This will avoid having to think at constrained system of
differential equations which is a difficult problem discussed recently in [40].

The kinematics part has the toric polynomial

V tor
l (x1, . . . , xn) :=

∑

0≤ri≤1
r1+···+rn=l+1

zi1,...,in

n∏

i=1

xrii , (42)

where the coefficients zi1,··· ,in ∈ C. The number of independent toric variables zi in
V tor (x1, . . . , xn) is n!

(n−l−1)!(l+1)! .

3.1.1 Some Important Special Cases

There are few important special cases.

• At one-loop order l = 1 and the number of independent toric variables in V tor

(x1, . . . , xn) is exactly the number of independent kinematics for an n-gon one-
loop amplitude

In this case the most general toric one-loop polynomial is

for (t1, . . . , tn) ∈ C
n and αi j and βi j integers. The second Symanzik polynomial have a natural

torus action acting on the mass parameters and the kinematic variables as we will see on some
examples below. We refer to the book [39] for more details.
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F tor
1 (x1, · · · , xn) =

(
n∑

i=1

xi

) (
n∑

i=1

ξ 2
i xi

)
− V tor

1 (x1, · · · , xn). (43)

• For l = n there is only one vertex the graph is n-bouquet which is a product of n
one-loop graphs. These graphs contribute to the reduced topologies entering the
determination of the inhomogeneous termSΓ of the Picard–Fuchs equation (19).
They don’t contribute to the maximal cut πΓ for l > 1.

• The case l = n − 1 corresponds to the (n − 1)-loop two-point sunset graphs

In that case the kinematic polynomial is just

V tor
n−1(x1, . . . , xn) = z1,...,1x1 · · · xn, (44)

and the toric polynomial

F tor
n−1(x1, . . . , xn) = x1 · · · xn

(
n∑

i=1

u1,...,0,...,1
xi

)(
n∑

i=1

ξ 2
i xi

)
− z1,...,1x1 · · · xn,

(45)
where the index 0 in u1,...,0,...,1 is at position i . Actually by redefining the parameter
z1,...,1 the generic toric polynomial associated to the sunset graph are

F tor
� (x1, . . . , xn) = x1 · · · xn

⎛

⎜⎝
∑

1≤i, j≤n
i �= j

zi j
xi
x j

− z0

⎞

⎟⎠ , (46)

where zi j ∈ C and z0 ∈ C\{0}. This polynomial has 1 − n + n2 parameters where
a sunset graph as n + 1 physical parameters given by n masses and one kinematics
invariant
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F l
�(p2, ξ 2, x) = x1 · · · xl+1

(
l+1∑

i=1

1

xi

) (
l+1∑

i=1

ξ 2
i xi

)
− p2x1 · · · xl+1 . (47)

So there are too many parameters from n ≥ 3 but this generalisation will be useful
for the GKZ description used in the next sections.

3.2 The GKZ Approach : A Review

In the section we briefly review the GKZ construction based on [42, 43] see as
well [48]. We consider the Laurent polynomial of n − 1 variables P(z1, . . . , zr ) =
F tor z, x1, . . . , xn/(x1 · · · xn) from the toric polynomial of Sect. 3.1. The coefficients
of monomials are zi (by homogeneity we set xn = 1)

P(z1, . . . , zr ) =
∑

a=(a1,...,an−1)∈A
zaaa

n−1∏

i=1

xaii , (48)

with a = (a1, . . . , an−1) is an element of A = (a1, . . . , ar ) a finite subset of Zn−1.
The number of elements in A is r the number of monomials in P(z1, . . . , zr ).

We consider the natural fundamental period integral [49]

Π(z) := 1

(2iπ)n−1

∫

|x1|=···=|xn−1|=1
P(z1, . . . , zr )

m
n−1∏

i=1

dxi
xi

, (49)

which is the same as maximal cut πΓ in (18) for D = 2ω = −m. The derivative with
respect to za reads

∂

∂zaaa
Π(z) = 1

(2iπ)n−1

∫

|x1|=···=|xn−1|=1
mP(z1, . . . , zr )

m−1
n−1∏

i=1

xaii
dxi
xi

, (50)

therefore for every vector 			 = (	1, . . . , 	r ) ∈ Z
n−1 such that

	1 + · · · + 	r = 0, 	1a1 + · · · + 	rar = 			 · A = 0, (51)

then holds the differential equation
⎛

⎝
∏

li>0

∂ li
zi −

∏

li<0

∂−li
zi

⎞

⎠ Π(z) = 0. (52)
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Introducing the so-called A -hypergeometric functions3 ΦL,γ (z1, . . . , zr ) of r
complex variables (z1, . . . , zr ) ∈ C

r

ΦL,γγγ (z1, . . . , zr ) =
∑

(	1,...,	r )∈L

r∏

j=1

z
γ j+	 j

j

Γ (γ j + 	 j + 1)
, (53)

depending on the complex parameters γγγ := (γ1, . . . , γr ) ∈ C
r and the lattice

L := {(	1, . . . , 	r ) ∈ Z|
r∑

i=1

	iai = 0, 	1 + · · · + 	r = 0}, (54)

with r elements {a1, . . . , ar } ∈ Z
n . These functions are solutions of the so-called

A -hypergeometric system of differential equations given by a vector c ∈ C
n and :

• For every 			 = (	1, . . . , 	r ) ∈ L there is one differential operator

�			 :=
∏

	i>0

∂	i
zi −

∏

	i<0

∂−	i
zi , (55)

such that �			ΦL,γ (z1, . . . , zr ) = 0
• n differential operators E := (E1, . . . , En−1)

E := a1z1
∂

∂z1
+ · · · + ar zr

∂

∂zr
, (56)

such that for c = (c1, . . . , cn−1) we have

(E − c)ΦL,γ (z1, . . . , zr ) = 0. (57)

Notice that E1 = ∑n
i=1 zi

∂
∂zi

is the Euler operator and c1 is the degree of homo-
geneity of the hypergeometric function.
These operators satisfy the commutation relations

zuE − Ezu = −(A · u) zu,

∂u
z E − E∂u

z = (A · u) ∂u
z , (58)

with zu := ∏r
i=1 z

ur
r and ∂u

z := ∏r
i=1 ∂ur

zr .

Using the GKZ construction one can easily derive a system of differential opera-
tor annihilating the maximal of any Feynman integral after identification of the toric
variables with the physical parameters. The system of differential operators obtained
from the GKZ system can be massaged into a set of Picard–Fuchs differential oper-
ators in a spirit similar to the one used in mirror symmetry [22, 39, 51].

3The convergence of these series is discussed in [50, §3–2] and [48, §5.2].
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Since it is rather complicated to restrict differential operators but it is easier to
restrict functions, it is therefore preferable to determine the A -hypergeometric rep-
resentation of the maximal cut integral and derive the minimal differential operator
annihilating this integral. For well chosen vector 			 ∈ L the differential operator fac-
torises with a factor being given by the minimal (Picard–Fuchs) differential operator
acting on the Feynman integral.

An important remark is that the maximal cut integral

πΓ =
∫

|x1|=···=|xn−1|=1

1

FΓ

n−1∏

i=1

dxi , (59)

is a particular case of fundamental period Π(z) in (49) with m = −1 and therefore
is given by aA -hypergeometric function once we have identified the toric variables
zi with the physical parameters.

In the next section we illustrate this approach on some simple but fundamental
examples.

3.3 Hypergeometric Functions and GKZ System

The relation between hypergeometric functions and the GKZ differential system can
be simply understood as follows (see [48, 52, 53]).

3.3.1 The Gauß Hypergeometric Series

Consider the case ofL = (1, 1,−1, 1)Z ⊂ Z
4 and thevectorγ = (0, c − 1,−a,−b)

∈ C
4 and c a positive integer. The GKZ hypergeometric function is

ΦL,γ (u1, . . . , u4) =
∑

n∈Z

un1u
1−c+n
2 u−a−n

3 u−b−n
4

Γ (1 + n)Γ (c + n)Γ (1 − n − a)Γ (1 − n − b)
, (60)

which can be rewritten as

ΦL,γ (u1, . . . , u4) = uc−1
2 u−a

3 u−b
4

Γ (c)Γ (1 − a)Γ (1 − b)
2F1

(
a, b

c

∣∣∣
u1u2
u3u4

)
. (61)

The GKZ system is

(
∂2

∂u1∂u2
− ∂2

∂u3∂u4

)
ΦL,γ (u1, . . . , u4) = 0,

(
u1

∂

∂u1
− u2

∂

∂u2
+ 1 − c

)
ΦL,γ (u1, . . . , u4) = 0,
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(
u1

∂

∂u1
+ u3

∂

∂u3
+ a

)
ΦL,γ (u1, . . . , u4) = 0,

(
u1

∂

∂u1
+ u4

∂

∂u4
+ b

)
ΦL,γ (u1, . . . , u4) = 0 . (62)

By differentiating we find

(
u2

∂2

∂u1∂u2
− u1

∂2

∂u21
+ c

∂

∂u1

)
ΦL,γ (u1, . . . , u4) = 0,

(
u3u4

∂2

∂u3∂u4
−

(
u1

∂

∂u1
+ a

) (
u1

∂

∂u1
+ b

))
ΦL,γ (u1, . . . , u4) = 0 . (63)

combining these equations one finds

(
u21

∂

∂u1
+ (1 + a + b)u1

∂

∂u1
+ ab

)
ΦL,γ (u1, . . . , u4)

= u3u4
u2

(
u1

∂2

∂u21
+ c

∂

∂u1

)
ΦL,γ (u1, . . . , u4). (64)

Setting F(z) = Γ (c)Γ (1 − a)Γ (1 − b)ΦL,γ (z, 1, 1, 1)gives that F(z) = 2F1(
a b
c |z)

satisfies the Gauß hypergeometric differential equation

z(z − 1)
d2F(z)

dz2
+ ((a + b + 1)z + c)

dF(z)

dz
+ abF(z) = 0 . (65)

3.4 The Massive One-Loop Graph

In this section we show how to apply the GKZ formalism on the one-loop bubble
integral

3.4.1 Maximal Cut

The one-loop sunset (or bubble) graph as the graph polynomial

F◦(x1, x2, t, ξ 2
1 , ξ 2

2 ) = p2x1x2 − (ξ 2
1 x1 + ξ 2

2 x2)(x1 + x2) . (66)
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The most general toric degree two polynomial in P2 with at most degree two mono-
mial is given by

F tor
◦ (x1, x2, z1, z2, z3) = z1x

2
1 + z2x

2
2 + z3x1x2 . (67)

This toric polynomial has three parameters which is exactly the number of indepen-
dent physical parameters. The identification of the variables is given by

z1 = −ξ 2
1 , z2 = −ξ 2

2 , z3 = p2 − (ξ 2
1 + ξ 2

2 ) , (68)

We consider the equivalent toric Laurent polynomial

P(x1, x2) = F tor◦
x1x2

=
3∑

i=1

zi x
a1i
1 x

a2i
2 , (69)

so that p2 in (66) corresponds to the constant term (or the origin theNewton polytope)
and setting ai = (1, a1i , a

2
i ) we have

A◦ =
⎛

⎝
a1
a2
a3

⎞

⎠ =
⎛

⎝
1 −1 1
1 1 −1
1 0 0

⎞

⎠ . (70)

The lattice is defined by

L◦ := {			 := (	1, 	2, 	3) ∈ Z
3|	1a1 + 	2a2 + 	3a3 = 			 · A◦ = 0} . (71)

This means that the elements of L◦ are in the kernel ofA◦. This lattice in Z3 has rank
one

L◦ = (1, 1,−2)Z . (72)

Notice that all the elements automatically satisfy the condition 	1 + 	2 + 	3 = 0.

Because the rank is one the GKZ system of differential equations is given by

e1 := ∂2

∂z1∂z2
− ∂2

(∂z3)2
,

d1 :=
3∑

r=1

zr
∂

∂zr
,

d2 := z1
∂

∂z1
− z2

∂

∂z2
, (73)

By construction for α ∈ C
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e1(F
tor
◦ )α = 0,

d1(F
tor
◦ )α = α (F tor

◦ )α, (74)

and

d2(F
tor
◦ )α = 1

2

(
∂x1(x1(F

tor
◦ )α) − ∂x2(x2(F

tor
◦ )α)

)
, (75)

therefore the action of the derivative d2 vanishes on the integral but not the integrand

d2

∫

γ

(F tor
◦ )α = 0 for ∂γ = ∅ . (76)

The GKZ hypergeometric series is defined as for γi /∈ Z

Φ◦
L,γγγ =

∑

			∈L◦

3∏

i=1

zli+γi
i

Γ (li + γi + 1)
, (77)

in this sum we have 			 = n(1, 1,−2) with n ∈ Z, and the condition
∑3

i=1 γiai =
(0, 0,−1) which can be solved using γγγ = (γ1, γ2, γ3) = γ (1, 1,−2) + (0, 0,−1),
leading to

Φ◦
L,γγγ = 1

z3

∑

n∈Z

un1
Γ (n + γ + 1)2Γ (−2n + γ )

, (78)

where we have introduced the new toric coordinate

u1 := z1z2
z23

= ξ 2
1 ξ 2

2(
p2 − (ξ 2

1 + ξ 2
2 )

)2 . (79)

This is the natural coordinate dictated by the invariance of the period integral under
the transformation (x1, x2) → (λx1, λx2) and (z1, z2, z3) → (z1/λ, z2/λ, z3/λ).

This GKZ hypergeometric function is a combination of 3F2 hypergeometric func-
tions

Φ◦
L,γγγ = 1

z1−2γ
3

(
uγ−1
1

Γ (γ )Γ (γ + 2)
3F2

(
1, 1 − γ, 1 − γ

1 + γ

2 , 3
2 + γ

2

∣∣∣
1

4u1

)

+ uγ

1

Γ (γ + 1)2
3F2

(
1, 1

2 − γ

2 , 1
2 − γ

2

1 + γ, 1 + γ

∣∣∣4u1
))

.

(80)

For γ = 0 the series is trivially zero as the system is resonant and needs to be
regularised [50, 54] . The regularisation is to use the functional equation for the
Γ -function Γ (z)Γ (1 − z) = π/ sin(π z) to replace the pole term by
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lim
ε→0

Γ (ε)

Γ (−2n + ε)
= Γ (1 + 2n), n ∈ Z\{0}, (81)

and write the associated regulated period as

π◦ = lim
ε→0

1

z3

∑

n∈N

un1Γ (ε)

Γ (n + 1)2Γ (−2n + ε)
, (82)

which is easily shown to be

π◦(z1, z2, z3) = 1

z3
2F1

( 1
2 1

1

∣∣∣4u1
)

= 1√
z23 − 4z1z2

,

= 1√
(p2 − (ξ1 + ξ2)2)(p2 − (ξ1 − ξ2)2)

. (83)

This expression of course matches the expression for the maximal cut (18) integral
π◦(p2, ξ 2

1 , ξ 2
2 , 2) in two dimensions

π◦(p2, ξ 2
1 , ξ 2

2 , 2) = 1

(2iπ)2

∫

|x1|=|x2|=1

dx1dx2
F◦(x1, x2)

. (84)

3.4.2 The Differential Operator

From the expression of the maximal cut π◦ in (83) as an hypergeometric series,
which satisfies a second order differential equation (65), we can extract a differ-
ential operator with respect to p2 or the masses ξ 2

i annihilating the maximal cut.
This differential equation is not the minimal one as it can be factorised leaving
minimal order differential operators are annihilating the maximal cut are such that
L◦
PF,(1)π◦(p2, ξ 2

1 , ξ 2
2 ) = 0 and L◦

PF,(2)π◦(p2, ξ 2
1 , ξ 2

2 ) = 0 with

L◦
PF,(1) = p2

d

dp2
+ p2(p2 − ξ 2

1 − ξ 2
2 )

(p2 − (ξ1 + ξ2)2)(p2 − (ξ1 − ξ2)2)
, (85)

and

L◦
PF,(2) = ξ 2

1
d

dξ 2
1

− ξ 2
1 (p2 − ξ 2

1 + ξ 2
2 )

(p2 − (ξ1 + ξ2)2)(p2 − (ξ1 − ξ2)2)
, (86)

with of course a similar operator with the exchange of ξ1 and ξ2. These operators do
not annihilate the integrand but lead to total derivatives

L◦
PF,(1)

1

F◦(x, p2, ξ2)
= ∂x1

(
p2(2ξ22 − (p2 − (ξ21 + ξ22 ))x1)

(p2 − (ξ1 + ξ2)
2)(p2 − (ξ1 − ξ2)

2)F2(x1, 1, p2, ξ2)

)
,

(87)
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and

L◦
PF,(2)

1

F◦(x, p2, ξ2)
= ∂x1

(
((p2 − ξ22 )2 − ξ21 (p2 + ξ22 ))x1 − ξ22 (p2 + ξ21 − ξ22 )

(p2 − (ξ1 + ξ2)
2)(p2 − (ξ1 − ξ2)

2)F2(x1, 1, p2, ξ2)

)
.

(88)

These operators can be obtained from the operator td/dt + 1 derived in Sect. 2.3.1

and the change of variables t =
√
(p2−ξ 2

1 −ξ 2
2 )

2−4ξ 2
1 ξ 2

2

ξ 2
1

. For the boundary term one needs
to pay attention that the shift induces a dependence on the physical parameters in the
domain of integration.

3.4.3 The Massive One-Loop Sunset Feynman Integral

Having determined the differential operators acting on the maximal cut it is now
easy to obtain the action of these operators on the one-loop integral. The action of
the Picard–Fuchs operators on the Feynman integral I◦(p2, ξ 2

1 , ξ 2
2 , 2) are given by

L◦
PF,(1) I◦(p

2, ξ 2
1 , ξ 2

2 , 2) = − 2

(p2 − (ξ1 + ξ2)2)(p2 − (ξ1 − ξ2)2)
, (89)

and

L◦
PF,(2) I◦(p

2, ξ 2
1 , ξ 2

2 , 2) = ξ 2
1 − ξ 2

2 − p2

(p2 − (ξ1 + ξ2)2)(p2 − (ξ1 − ξ2)2)
. (90)

It is then easy to obtain that in D = 2 dimensions the one-loop massive bubble
evaluates to

I◦(p2, ξ 2
1 , ξ 2

2 ) = 1√
(p2 − (ξ1 + ξ2)2)(p2 − (ξ1 − ξ2)2)

× log

(
p2 − (ξ 2

1 + ξ 2
2 ) − √

(p2 − (ξ1 + ξ2)2)(p2 − (ξ1 − ξ2)2)

p2 − (ξ 2
1 + ξ 2

2 ) + √
(p2 − (ξ1 + ξ2)2)(p2 − (ξ1 − ξ2)2)

)
.

(91)

3.5 The Two-Loop Sunset

The sunset graph polynomial is the most general cubic in P2 with maximal order two
degree for each variables

F�(x1, x2, x3, t, ξ
2) = x1x2x3

(
p2 − (ξ 2

1 x1 + ξ 2
2 x2 + ξ 2

3 x3)

(
1

x1
+ 1

x2
+ 1

x3

))
,

(92)
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which corresponds to the toric polynomial

F tor
� = x1x2x3

(
x3z1
x1

+ x2z2
x1

+ x3z3
x2

+ x1z4
x3

+ x2z5
x3

+ x1z6
x2

+ z7

)
. (93)

To the contrary to the one-loop case there are more toric parameters zi than physical
variables. The identification of the physical variables is

− ξ 2
1 = z4 = z6, −ξ 2

2 = z2 = z5, −ξ 2
3 = z1 = z3, p2 − (ξ 2

1 + ξ 2
2 + ξ 2

3 ) = z7,
(94)

As before writing the toric polynomial as

P� =
7∑

i=1

zi x
a1i
1 x

a2i
2 x

a3i
3 , (95)

and setting ai = (1, a1i , a
2
i , a

3
i ) we have

A� =
⎛

⎜⎝
a1
...

a7

⎞

⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 1
1 −1 1 0
1 0 −1 1
1 1 0 −1
1 0 1 −1
1 1 −1 0
1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (96)

The lattice is now defined by

L� := {			 := (	1, . . . , 	7) ∈ Z
7|	1a1 + · · · + 	7a7 = 			 · A� = 0} . (97)

This lattice in Z7 has rank four L� = ⊕4
i=1LiZ with the basis

⎛

⎜⎝
L1
...

L4

⎞

⎟⎠ =

⎛

⎜⎜⎝

1 0 0 0 1 1 −3
0 1 0 0 0 1 −2
0 0 1 0 1 0 −2
0 0 0 1 −1 −1 1

⎞

⎟⎟⎠ , (98)

From this we derive the sunset GKZ system

e1 := ∂3

∂z1∂z5∂z6
− ∂3

(∂z7)3
,

e2 := ∂2

∂z2∂z6
− ∂2

(∂z7)2
,
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e3 := ∂2

∂z3∂z5
− ∂2

(∂z7)2
,

e4 := ∂2

∂z4∂z7
− ∂2

∂z5∂z6
(99)

by construction ei (F tor
� )α = 0withα ∈ C for 1 ≤ i ≤ 4.Wehave aswell this second

set of operators from the operators

d1 :=
7∑

r=1

zr
∂

∂zr
,

d2 := z1
∂

∂z1
+ z2

∂

∂z2
− z4

∂

∂z4
− z6

∂

∂z6
,

d3 := z2
∂

∂z2
− z3

∂

∂z3
+ z5

∂

∂z5
− z6

∂

∂z6
,

d4 := z1
∂

∂z1
+ z3

∂

∂z3
− z4

∂

∂z4
− z5

∂

∂z5
(100)

The interpretation of these operators is the following

• The Euler operator d1F α
tor = αF α

tor for α ∈ C.
• To derive the action of these operators on the maximal cut period integral

π tor
� (z1, . . . , z7) = 1

(2iπ)3

∫

γ

1

F tor
�

3∏

i=1

dxi , (101)

we remark that ifF tor
� = x1x2x3 P� we have

d

(
1

P�

dx1
x1

)
= −z1x1/x2 + z3x2 + z4x2/x1 − z6/x2

P2
�

dx1
x1

∧ dx2
x2

,

d

(
1

P�

dx1
x1

)
= − z1x1/x2 + z2x1 − z4x2/x1 − z5/x1

P2
�

dx1
x1

∧ dx2
x2

, (102)

therefore since the cycle γ has no boundary

d2π
tor
� =

∫

γ

d

(
1

P�

dx1
x1

)
= 0,

d3π
tor
� = −

∫

γ

d

(
1

P�

dx2
x2

)
= 0,

d4π
tor
� =

∫

γ

d

(
1

P�

(
dx1
x1

+ dx2
x2

))
= 0 . (103)

• The natural toric coordinates are
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u1 := z1z5z6
z37

, u2 := z2z6
z27

, u3 := z3z5
z27

, u4 := z4z7
z5z6

, (104)

which reads in terms of the physical parameters

u2 = ξ 2
1 ξ 2

2(
p2 − (ξ 2

1 + ξ 2
2 + ξ 2

3 )
)2 , u3 = ξ 2

2 ξ 2
3(

p2 − (ξ 2
1 + ξ 2

2 + ξ 2
3 )

)2 ,

u4 = p2 − (ξ 2
1 + ξ 2

2 + ξ 2
3 )

ξ 2
2

, u1 = u2u3u4. (105)

They are the natural variables associated with the toric symmetries of the period
integral

(x1, x2) → (λx1, x2), (z1, z2, z3, z4, z5, z6, z7) → (z1/λ, z2/λ, z3, z4λ, z5λ, z6, z7),

(x1, x2) → (x1, λx2), (z1, z2, z3, z4, z5, z6, z7) → (z1λ, z2, z3/λ, z4/λ, z5, z6λ, z7),

(x1, x2) → (λx1, λx2), (z1, z2, z3, z4, z5, z6, z7) → (z1, z2/λ, z3/λ, z4, z5λ, z6λ, z7).
(106)

The sunset GKZ hypergeometric series is defined as for γi /∈ Z with 1 ≤ i ≤ 7

Φ
�
L,γγγ (z1, . . . , z7) =

∑

			∈L

7∏

i=1

zli+γi
i

Γ (li + γi + 1)
, (107)

in this sum we have 			 = ∑4
i=1 ni Li with ni ∈ Z, and the condition

∑7
i=1 γiai

= (−1, 0, 0, 0)which canbe solvedusingγγγ = (γ1, . . . , γ7) = ∑4
i=1 γiLi + (0, . . . ,

0,−1). Using the leading to toric variables the solution reads

Φ
�
L,γγγ

(z1, . . . , z7) = 1

z7

∑

(n1,...,n4)∈Z

un1+γ1
1 un2+γ2

2 un3+γ3
3 un4+γ4

4∏4
i=1 Γ (ni + γi + 1)

×

× 1

Γ (n1 + n2 − n4 + γ1 + γ2 − γ4 + 1)Γ (n1 + n3 − n4 + γ1 + γ3 − γ4 + 1)

× 1

Γ (−3n1 − 2n2 − 2n3 + n4 − 3γ1 − 2γ2 − 2γ3 + γ4)
. (108)

With γγγ = (0, 0, 0, 0, 0, 0, 0) the series is trivially zero as being resonant. The reso-
lution is to the regularise the term has a zero by using for 	7 < 0

lim
ε→0

Γ (ε)

Γ (	7 + ε)
= (−1)	7Γ (1 − 	7) , (109)

and write the associated regulated period as
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π
(2)
� (p2, ξ 2) = lim

ε→0

∑

(n1,n2,n3,n4)∈N

(ξ 2
1 )n1+n2(ξ 2

2 )n1+n2+n3−n4(ξ 2
3 )n1+n3

∏4
i=1 Γ (1 + ni )

× (p2 − (ξ 2
1 + ξ 2

2 + ξ 2
3 ))−3n1−2n2−2n3+n4−1(−1)−3n1−2n2−2n3+n4Γ (ε)

Γ (1 + n1 + n2 − n4)Γ (1 + n1 + n3 − n4)Γ (−3n1 − 2n2 − 2n3 + n4 + ε)
.

(110)

One can expand this expression as a series near t = ∞ to get that

π
(2)
� (p2, ξ 2

1 , ξ 2
2 , ξ 2

3 ) =
∑

n≥0

(p2)−n−1
∑

n1+n2+n3=n

(
n!

n1!n2!n3!
)2

ξ
2n1
1 ξ

2n2
2 ξ

2n3
3 , (111)

which is the series expansion of the maximal cut integral

π
(2)
� (p2, ξ 2) = 1

(2iπ)3

∫

γ

1

F�

3∏

i=1

dxi , (112)

where γ = {|x1| = |x2| = |x3| = 1}. The construction generalises easily to the case
of the higher loop sunset integral in an easy way [55].

3.5.1 The Differential Operators

Now that we have the expression for the maximal cut it is easy to derive the min-
imal order differential operator annihilating this period. There are various methods
to derive the Picard–Fuchs operator from the maximal cut. One method is to use the
series expansion of the period around s = 1/t = 0. Another method is to reduce the
GKZ system of differential operator in similar fashion as shown for the hypergeomet-
ric function in Sect. 3.3.1. This method leads to a fourth order differential operator
which factorises a minimal second order operator. We notice that this approach is
similar to the integration-by-part based approach

The minimal order differential operator is of second order

L �
PF =

(
p2

d

dp2

)2

+ q1(p
2, ξ 2)

(
p2

d

dp2

)
+ q0(p

2, ξ 2) , (113)

with the coefficients given in [20, 56]. The action of this differential operator on the
maximal cut is given by

L �
PFπ

(2)
� = 1

(2iπ)3

∫

γ

L �
PF

1

F�

3∏

i=1

dxi = 1

(2iπ)3

∫

γ

(
3∑

i=1

∂iβi

)
3∏

i=1

dxi = 0 .

(114)
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The action of this operator on the Feynman integral is given by then we find that that
full differential operator acting on the two-loop sunset integral is given by

L �
PF I�(p2, ξ 2) =

∫

x1≥0
x2≥0

(
3∑

i=1

∂iβi

)
δ(x3 = 1)

3∏

i=1

dxi = S� , (115)

where the inhomogeneous term reads

S� = Y�(p2, ξ 2) + c1(p
2, ξ 2) log

(
m2

1

m2
3

)
+ c2(p

2, ξ 2) log

(
m2

2

m2
3

)
, (116)

with the Yukawa coupling4

Y�(p2, ξ 2) = 6(p2)2 − 4p2(ξ 2
1 + ξ 2

2 + ξ 2
3 ) − 2

∏4
i=1 μi

(p2)2
∏4

=1(p
2 − μ2

i )
, (117)

where (μ1, . . . , μ4) = ((−ξ1 + ξ2 + ξ3)
2), (ξ1 − ξ2 + ξ3)

2), (ξ1 + ξ2 − ξ3)
2), (ξ1 +

ξ2 + ξ3)
2)). A geometric interpretation is the integral [20]

Y�(p2, ξ 2) =
∫

E�
Ω� ∧ p2

d

p2
Ω� , (118)

where Ω� is the sunset residue differential form

Ω� = ResE�=0
x1dx2 ∧ dx3 + x3dx1 ∧ dx2 + x2dx3 ∧ dx1

F�
, (119)

on the sunset elliptic curve

E� := {p2x1x2x3 − (ξ 2
1 x1 + ξ 2

2 x2 + ξ 2
3 x3)(x1x2 + x1x3 + x2x3)|(x1, x2, x3) ∈ P

2} .

(120)
The Yukawa coupling satisfies the differential equation

p2
d

p2
Y�(t) = (2 − q1(p

2, ξ 2))Y�(p2, ξ 2) . (121)

The coefficients c1 and c2 in (116) are the integral of the residue one form between
the marked points on Q1 = [0,−ξ 2

3 , ξ 2
2 ], Q2 = [−ξ 2

3 , 0, ξ 2
1 ] and Q3 = [−ξ 2

2 , ξ 2
1 , 0]

on the elliptic curve [20]

4This quantity is the usual Yukawa coupling of particle physics and string theory compactification.
TheYukawacoupling is determinedgeometrically by the integral of thewedgeproduct of differential
forms over particular cycles [57]. The Yukawa couplings which depend non-trivially on the internal
geometry appear naturally in the differential equations satisfied by the periods of the underlying
geometry as explained for instance in these reviews [46, 58].
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c1(p
2, ξ 2) := p2

d

p2

∫ Q3

Q1

Ω�, c2(p
2, ξ 2) := p2

d

p2

∫ Q3

Q2

Ω� . (122)

3.6 The Generic Case

In this section we show how to determine the differential equation for the l-loop
sunset integral from the knowledge of the maximal cut. The maximal cut of the
l-loop sunset integral is given by

π
(l)
� (p2, ξ 2) =

∑

n≥0

t−n−1 A�(l, n, ξ 2
1 , . . . , ξ 2

l+1) , (123)

with

A�(l, n, ξ 2
1 , · · · , ξ 2

l+1) :=
∑

r1+···+rl+1=n

(
n!

r1! · · · rl+1!
)2 l+1∏

i=1

ξ
2ri
i . (124)

3.6.1 The All Equal Mass Case

For the all equal mass case one can easily determine the differential equation to all
order [26] using the Bessel integral representation of [9]. We present here a different
derivation.

For the all equal masses the coefficient of the maximal cut satisfies a nice recur-
sion [59]

∑

k≥0

⎛

⎜⎝nl+2
∑

1≤i≤k

∑

ai+bi=l+2
1<ai+1+1<ai≤l+1

k∏

i=1

(−aibi )

(
n − i

n − i + 1

)ai−1

⎞

⎟⎠ A�(l, n − k, 1) = 0,

(125)
where ai ∈ N. Standard method gives that the associated differential operator acting
on tπ l

�(t, 1, . . . , 1) = ∑
n≥0(p

2)−n A(l + 1, n, 1, . . . , 1) reads

L (l),1mass
PF,� =

∑

k≥0

(p2)k
∑

1≤i≤k

∑

ai+bi=l+2,ak+1=0
1<ai+1+1<ai≤l+1

(
k − p2

d

p2

)l+2−a1

×
k∏

i=1

(−aibi )

(
k − i − p2

d

dp2

)ai−ai+1

. (126)

This operator has been derived in [26, §9] using different method.
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They are differential operators of order l, the loop order, in d/dp2 and the coeffi-
cients are polynomials of degree l + 1

L (l),1mass
PF = (−p2)�l/2�−1

�l/2�+1∏

i=1

(p2 − μ2
i )

(
d

dp2

)l

+ · · · (127)

where μ2
i := (±1 ± 1 · · · ± 1)2 is the set of the different thresholds. The operator

L (2),1mass
PF is the Picard–Fuchs operator of the family of elliptic curves for Γ1(6)

for the all equal mass sunset [60], the operator L (3),1mass
PF of the family of K3 sur-

faces [61]. Having determined the Picard–Fuchs operator it is not difficult to derive
its action on the Feynman integral with the result that [26]

L (l),1mass
PF (I�(p2, 1, . . . , 1)) = −(l + 1)! . (128)

3.6.2 The General Mass Case

For unequalmasses the recursion relation does not close only on the coefficients (124)
and no simple closed formula is known for the differential operator on the maximal
cut. The minimal differential operator annihilating the π

(l)
� (t, ξ 2) can be obtained

using the GKZ hypergeometric function discussed in the previous section.
For the l-loop sunset integral the GKZ lattice has rank l2, L = ∑l2

i=1 ni Li . For
instance for the three-loop sunset the regulated hypergeometric series representation
of the maximal cut reads

π
(3)
� (p2, ξ2) = − lim

ε→0

∑

(n1,...,n9)∈N9

(ξ21 )n1+n2+n3(ξ22 )n1+n3+n4+n6−n7−n8+n9

∏9
i=1 Γ (1 + ni )

× (ξ23 )n2+n5+n8(ξ24 )n1+n4+n6

Γ (n1 + n4 + n6 − n7 − n8 + 1)Γ (n2 + n5 − n6 + n8 − n9 + 1)

×
Γ (n1 + n3 − n5 + n6 − n7 − n8 + n9 + 1)

× (−p2 + ξ21 + ξ22 + ξ23 + ξ24 )−3n1−2n2−2n3−2n4−n5−2n6+n7−n9−1Γ (ε)

Γ (−3n1 − 2n2 − 2n3 − 2n4 − n5 − 2n6 + n7 − n9 + ε)
.

(129)

The minimal order differential operator annihilating the maximal cut p2π(3)
� (p2, ξ 2)

with generic mass configurations, ξ1 �= ξ2 �= ξ3 �= ξ4 and all the masses non vanish-
ing, is an operator of order 6, with polynomial coefficients ck(t) of degree up to 29

L3
PF,� =

6∑

k=0

ck(t)

(
t
d

t

)k

. (130)
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For instance the differential operator for themass configuration ξi = i with 1 ≤ i ≤ 4
is given by

c6 = (t − 100)(t − 36)(t − 64)(t − 4)2(t − 16)2

× (
345t12 − 10275t11 + 243243t10 + 700860t9 − 289019444t8 + 9517886160t7

− 169244843904t6 + 2163112875520t5 − 24375264125952t4

+ 198627459010560t3 − 896517312217088t2

+ 1570362910310400t − 1192050032640000
)
, (131)

and

c5 = (t − 4)(t − 16)
(
7245t17 − 1461150t16 + 108842709t15 − 4073021820t14

+ 79037467036t13 + 706049613520t12 − 122977114948800t11

+ 4897976525794560t10 − 118057966435402752t9

+ 2042520337021317120t8 − 28129034886941589504t7

+ 321784682881513881600t6 − 2877522528057659228160t5

+ 17978948962533528043520t4 − 69950845277551433089024t3

+ 151178557780128065126400t2 − 182250696371318292480000t

+ 96676211287130112000000
)
, (132)

and

c4 = 2
(
23460t19 − 4086975t18 + 273974766t17 − 9833465295t16

+ 173874227860t15 + 3780156754180t14

− 419091386081744t13 + 16647873781420800t12

− 425729411677916160t11 + 8098824799795968000t10

− 125136842089603031040t9 + 1631034274362173030400t8

+ 17364390414642101354496t7 + 140612615518097533829120t6

− 807868060015143792148480t5 + 3100095209313936311582720t4

− 7563751451192001262780416t3 + 11448586013594218187980800t2

− 9812428506034109153280000t + 3374878648568905728000000
)
,

(133)

and

c3 = 12
(
8970t19 − 1147050t18 + 56442264t17 − 1477273050t16 − 447578647t15

+ 2416587481200t14 − 130189239609348t13 + 4001396495500560t12

− 86975712270293184t11 + 1511724058206439680t10
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− 22690173944998831104t9 + 289974679497600921600t8

− 2900762618196498137088t7 + 20882244400635484241920t6

− 101090327023260610854912t5 + 308760428925736546467840t4

− 559057237244267332632576t3 + 533177283118109609164800t2

− 133034777312420167680000t − 140619943690371072000000
)
, (134)

and

c2 = 24
(
3105t19 − 260100t18 + 8740695t17 − 121279200t16 − 8982728081t15

+ 771645247175t14 − 29786960482306t13 + 741851366254700t12

− 14140682364004072t11 + 237224880534337760t10

− 3605462277123620992t9 + 44725169880349560320t8

− 405767142088142927872t7 + 2549108215435181793280t6

− 11307241496864563101696t5 + 40972781273200446013440t4

− 141797614014479525216256t3 + 363118631232748702924800t2

− 415180490608717332480000t + 210929915535556608000000
)
, (135)

and

c1 = 24
(
345t19 − 15000t18 + 345675t17 + 7323600t16 − 3165461083t15

+ 184943420750t14 − 5084383561348t13 + 91042473303800t12

− 1344824163401536t11 + 17444484465759680t10

− 146155444722244096t9 − 426434786380119040t8

+ 31798683088486989824t7 − 488483076656283893760t6

+ 5136134162164414021632t5 − 40834519838668015534080t4

+ 222597043391679285952512t3 − 685074395310881085849600t2

+ 830360981217434664960000t − 421859831071113216000000
)
, (136)

and

c0 = 1728
(
21908444t15 − 1482071825t14 + 40507170144t13 − 668436089250t12

+ 8209054542408t11 − 65000176183240t10 − 503218239747392t9

+ 31962708303867520t8 − 619576476284137472t7 + 7554395788685281280t6

− 73455221906789646336t5 + 571135922816871792640t4

− 3095113137012548304896t3 + 9514922157095570636800t2

− 11532791405797703680000t + 5859164320432128000000
)
. (137)
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A systematic study of the differential operators for the l loop sunset integral will
appear in [55].

4 Analytic Evaluations for Sunset Integral

In this section we give different analytic expressions for the two-loop sunset integral.
In one form the two-loop sunset integral is given by an elliptic dilogarithmas review in
Sect. 4.1 or as a ordinary trilogarithm as review in Sect. 4.1. In Sect. 4.3 we explain
that the equivalence between the two expressions is a manifestation of the mirror
symmetry proven in [20].

4.1 The Sunset Integral as an Elliptic Dilogarithm

The geometry of the graph hypersurface is a family of elliptic curves

E� := {p2x1x2x3 − (ξ 2
1 x1 + ξ 2

2 x2 + ξ 2
3 x3)(x1x2 + x1x3 + x2x3)|(x1, x2, x3) ∈ P

2} .

(138)
One can use the information from the geometry of the graph polynomial and use a
parameterisation of the physical variables making the geometry of the elliptic curve
explicit.

The elliptic curve E� can be represented as C×/qZ where q = exp(2iπτ) and τ

is the period ratio of the elliptic curve. There a six special points on the elliptic curve
E� the three points that intersect the domain of integration

P1 := [0, 0, 1], P2 := [0, 0, 1], P3 := [0, 0, 1], (139)

and three other points outside the domain of integration

Q1 := [0,−ξ 2
3 , ξ 2

2 ], Q2 := [−ξ 2
3 , 0, ξ 2

1 ], Q3 := [−ξ 2
1 , ξ 2

2 , 0]. (140)

If one denotes by x(Pi ) the image of the point Pi in C×/qZ and x(Qi ) the image of
the point Qi we have x(Pi ) = −x(Qi ) with i = 1, 2, 3

(
θ1(x(Pi )/x(Pj ))

θc(x(Pi )/x(Pj ))

)2

= ξk√
tξiξ j

, (141)

with (i, j, k) a permutation of (1, 2, 3) and c a permutation of (2, 3, 4).5 It was shown
in [20] that the sunset Feynman integral is given by

5The Jacobi theta functions are defined by θ2(q) := 2q
1
8

∏
n≥1(1 − qn)(1 + qn)2, θ3(q) :=

∏
n≥1(1 − qn)(1 + qn− 1

2 )2 and θ4(q) := ∏
n≥1(1 − qn)(1 − qn− 1

2 )2.
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I�(p2, ξ2) ≡ i�r

π

(
Ê2

(
x(P1)

x(P2)

)
+ Ê2

(
x(P2)

x(P3)

)
+ Ê2

(
x(P3)

x(P1)

))
mod periods ,

(142)
where Ê2(x) is the elliptic dilogarithm

Ê2(x) =
∑

n≥0

(
Li2

(
qnx

) − Li2
(−qnx

)) −
∑

n≥1

(
Li2

(
qn/x

) − Li2
(−qn/x

))
.

(143)

The J -invariant of the sunset elliptic curve is

J� = 256
(3 − u2�)3

4 − u2�
, (144)

where the Hauptmodul is

u� = (p2 − ξ 2
1 − ξ 2

2 − ξ 2
3 )2 − 4(ξ 2

1 ξ 2
2 + ξ 2

1 ξ 2
3 + ξ 2

2 ξ 2
3 )√

16tξ 2
1 ξ 2

2 ξ 2
3

, (145)

given in term of Jacobi theta functions

u3,4� = θ4
3 + θ4

4

θ2
3 θ

2
4

, u2,3� = −θ4
3 + θ4

2

θ2
3 θ

2
2

, u2,4� = i
θ4
2 − θ4

4

θ2
2 θ

2
4

, (146)

and the period is given for each pair (a, b) = (3, 4), (2, 3), (2, 4) by

�r = t
1
4 πθaθb

(ξ 2
1 ξ 2

2 ξ 2
3 )

1
4

, (147)

is the elliptic curve period which is real on the line t < (ξ1 + ξ2 + ξ3)
2.

By using the dilogarithm functional equations one can bring the expression (142)
in a form similar to the one used in [62]

3∑

i=1

∑

n∈Z
Li2(q

nxi ) . (148)

This representation needs to be properly regularised as discussed in [62] whereas
the representation in (143) is a converging sum. An equivalent representation used
multiple elliptic polylogarithms [14–19] this representation has the advantage of
generalising to other graphs [63–68].

For the all equal masses case, 1 = ξ1 = ξ2 = ξ3, the family of elliptic curves

E� := {p2x1x2x3 − (x1 + x2 + x3)(x1x2 + x1x3 + x2x3) = 0|(x1, x2, x3) ∈ P
2},

(149)
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defines a pencil of elliptic curves in P
2 corresponding to a modular family of ellip-

tic curves f : E� → X1(6) = {τ ∈ C|�m(τ ) > 0}/Γ1(6) (see [60]). When all the
masses are equal themap is easier since the elliptic curve is amodular curve forΓ1(6)
and the coordinates of the points are mapped to sixth root of unity x(Pr ) = e

2iπr
6 and

x(Qr ) = −e
2iπr
6 with r = 1, 2, 3.

The integral is expressed as the following combination of elliptic dilogarithms

I�(p2, 1, 1, 1) = �r (t)(iπ − log q) − 6
�r (p2)

π
E�(q) , (150)

where the Hauptmodul

p2 = 9 + 72
η(q2)

η(q3)

(
η(q6)

η(q)

)5

, (151)

and the real period for p2 < ξ 2
1 + ξ 2

2 + ξ 2
3

�r (p
2) = π√

3

η(q)6η(q6)

η(q2)3η(q3)2
. (152)

In this case the elliptic dilogarithm is given by

E�(q) = − 1

2i

∑

n≥0

(
Li2

(
qnζ 5

6

) + Li2
(
qnζ 4

6

) − Li2
(
qnζ 2

6

) − Li2
(
qnζ6

))

+ 1

4i

(
Li2

(
ζ 5
6

) + Li2
(
ζ 4
6

) − Li2
(
ζ 2
6

) − Li2 (ζ6)
)

. (153)

which we can write as a q-expansion

E�(q) = 1

2

∑

k∈Z\{0}

(−1)k−1

k2
sin( nπ

3 ) + sin( 2nπ
3 )

1 − qk
. (154)

4.2 The Sunset Integral as a Trilogarithm

In this section we evaluate the sunset two-loop integral in a different way, leading
to an expression in terms of trilogarithms. We leave the interpretation of the two
equivalence with the previous evaluation to Sect. 4.3 where we explain that these
results are a manifestation of local mirror symmetry.

We introduce the quantity the logarithmic Mahler measure R0(p2, ξ 2)
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R0(p
2, xi2) = −iπ +

∫

|x |=|y|=1
log(p2 − (ξ21 x + ξ22 y + ξ23 )(x−1 + y−1 + 1))

d log xd log y

(2π i)2
,

(155)
which evaluates to

R0 = log(−p2) −
∑

n≥1

(p2)−n

n
A�(2, n, ξ 2

1 , ξ 2
2 , ξ 2

3 ) , (156)

where A�(2, n, ξ 2
1 , ξ 2

2 , ξ 2
3 ) is defined in (124). Differentiating with respect to p2

leads to maximal cut

d

dp2
R0(p

2, ξ 2
1 , ξ 2

2 , ξ 2
3 ) = π

(2)
� (p2, ξ 2

1 , ξ 2
2 , ξ 2

3 ), (157)

where π
(2)
� (p2, ξ 2

1 , ξ 2
2 , ξ 2

3 ) is defined in (123). It was shown in [20] that the sunset
integral has the expansion

I�(p2, ξ 2) = −2iπ π
(2)
� (t, ξ 2)

⎛

⎜⎝3R3
0 +

∑

	1+	2+	3=	>0

(	1 ,	2 ,	3)∈N3\(0,0,0)

	(1 − 	R0)N	1,	2,	3

3∏

i=1

ξ
2	i
i e	i R0

⎞

⎟⎠ ,

(158)
where the invariant numbers N	1,	2,	3 can be computed from the Yukawa cou-
pling (118) using [20, proposition 7.6]

6 −
∑

	1+	2+	3=	>0

(	1,	2 ,	3)∈N3\(0,0,0)

	3N	1,	2,	3 R
	
0

3∏

i=1

ξ
2	i
i = (6(p2)2 − 4p2(ξ21 + ξ22 + ξ23 ) + 2μ1 · · ·μ4)

p2
∏4

i=1(p
2 − μ2

i ) (π
(2)
� (p2, ξ2))3

.

(159)
These quantities can be expressed in terms of the virtual integer numbers of rational
curves of degree 	 = 	1 + 	2 + 	3 by the covering formula

N	1,	2,	3 =
∑

d|	1,	2,	3

1

d3
n 	1

d ,
	2
d ,

	3
d

. (160)

A first few Gromov-Witten numbers are given by (these invariants are symmetric in
their indices so list only one representative)

(	1, 	2, 	3) (100)
k>0

(k00) (110) (210) (111) (310) (220) (211) (221)
N	1,	2,	3 2 2/k3 −2 0 6 0 −1/4 −4 10
n	1,	2,	3 2 0 −2 0 6 0 0 −4 10

(161)
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(	1, 	2, 	3) (410) (320) (311) (510) (420) (411) (330) (321) (222)
N	1,	2,	3 0 0 0 0 0 0 −2/27 −1 −189/4
n	1,	2,	3 0 0 0 0 0 0 0 −1 −48

(162)

Introducing the variables Qi = ξ 2
i e

R0 we can rewrite the sunset integral as

− I�(p2, ξ 2)

2iππ
(2)
� (p2, ξ 2)

= 3R3
0 +

∑

	1+	2+	3=	>0

(	1 ,	2 ,	3)∈N3\(0,0,0)

	(1 − 	R0)N	1,	2,	3

3∏

i=1

ξ
2	i
i e	i R0

= 3R3
0 +

∑

(n1,n2,n3)≥(0,0,0)

(dn1,n2,n3 + δn1,n2,n3 log(−p2))Li3(Q
n1
1 Qn2

2 Qn3
3 ) , (163)

where Li3 = ∑
n≥1 x

n/n3 is the trilogarithm and the first coefficients are given by

(	1, 	2, 	3) (100) (110) (200) (111) (210) (300) (400) (220) (310) (211)

d	1,	2,	3 2 0 9/4 −6 −6 58/27 79/48 0 −8/3 40
δ	1,	2,	3 −2 2 8 −54 0 −16/27 −3/8 3 0 64

(164)

In Sect. 4.3 we will explain that these numbers are local Gromov-Witten numbers
N	1,	2,	3 and the sunset Feynman integral is the Legendre transformation of the local
prepotential as shown [20].

Using the relation between the complex structure of 2iπτ = log q of the elliptic
curve and R0 (see [20, proposition 7.6] and Sect. 4.3)

log q = 2
3∑

i=1

log(Q2
i ) −

∑

	1+	2+	3=	>0

(	1 ,	2 ,	3)∈N3\(0,0,0)

	2N	1,	2,	3

3∏

i=1

Q	i
i , (165)

one can check the equivalence between the expressions (142) and (158).

4.2.1 The All Equal Masses Case

In this section we compute the local invariants for the all equal masses case ξ1 =
ξ2 = ξ3 = 1 the sunset integral reads

I�(p2, 1, 1, 1) = π
(2)
� (p2, 1, 1, 1)

⎛

⎜⎝3R3
0 +

∑

	1+	2+	3=	>0

(	1 ,	2 ,	3)∈N3\(0,0,0)

	(1 − 	 log Q)N	1,	2,	3 Q
	
0

⎞

⎟⎠ .

(166)
with Q0 = exp(R0) where



450 P. Vanhove

R0 = − log(−p2) +
∑

	>0

(p2)−	

	

∑

p1+p2+p3=	

(
	!

p1!p2!p3!
)2

, (167)

and using the expression for p2 in (151) we have that

R0(q) = iπ + log q −
∑

n≥1

(−1)n−1

(−3

n

)
n Li1

(
qn

)
, (168)

where
(−3

n

) = 0, 1,−1 for n ≡ 0, 1, 2 mod 3. The maximal cut in (111) reads

p2π(2)
� (p2, 1, 1, 1) = η(q2)6η(q3)

η(q)3η(q6)2
. (169)

We recall the p2 is the hauptmodul in (151). The Gromov-Witten invariant N	 can
be computed using [20, proposition 7.6]

6 −
∑

	≥1

	3N	Q
	 = 6

p2(p2 − 1)(p2 − 9) (π
(2)
� (q))3

. (170)

Introducing the virtual numbers n	 of degree 	

N	 =
∑

d|	

1

d3
n 	

d
, (171)

we have

nk/6 = 1,−1, 1,−2, 5,−14, 42,−136, 465,−1655, 6083,−22988, (172)

88907,−350637, 1406365,−5724384, 23603157,−98440995,

414771045,−1763651230, 7561361577,−32661478080,

142046490441,−621629198960, 2736004885450,

− 12105740577346, 53824690388016, . . .

The relation between Q and q

Q = −q
∏

n≥1

(1 − qn)nδ(n); δ(n) := (−1)n−1

(−3

n

)
, (173)

which we will interpret as a mirror map in Sect. 4.3, in the expansion in (166) gives
the dilogarithm expression in (150).
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Fig. 1 The Newton
polyhedron associated with
the sunset second Symanzik
polynomial. The coordinates
(a, b) of the vertices we the
powers of xa yb and we give
the value of the coefficient in
φ�(p2, ξ2, x, y, 1)

x

y

p2 − ∑3
i=1 ξ2i

(0, 0) −ξ21

(1, 0)

−ξ21 (1,−1)

−ξ22 (0, 1)−ξ22

(−1, 1)

−ξ23

(−1, 0)

−ξ23 (0,−1)

4.3 Mirror Symmetry and Sunset Integral

In this section we review the result of [20] where it was shown that the sunset two-
loop integral is the Legendre transform of the local Gromov-Witten prepotential and
that the equivalence between the elliptic dilogarithm expression and the trilogarithm
expansion of the previous section is a manifestation of local mirror symmetry. The
techniques used in this section are standard in the study of mirror symmetry in string
theory. We refer to the physicists oriented reviews [46, 47] for some presentation of
the mathematical notions used in this section.

4.3.1 The Sunset Graph Polynomial and del Pezzo Surface

To the sunset Laurent polynomial

P�(p2, ξ 2, x1, x2, x3) = p2 − (x1ξ
2
1 + x2ξ

2
2 + x3ξ

2
3 )

(
1

x1
+ 1

x2
+ 1

x3

)
, (174)

we associate the Newton polyhedron in Fig. 1. The vertices of the polyhedron are the
powers of the monomial in x1 and x2 with x3 = 1.

This corresponds to a maximal toric blow-up of three points in P
2 leading to a

del Pezzo surface of degree 6B3.6 The hexagon in Fig. 1 resulted from the blow-up
(in red on the figure) of a triangle at the points P1 = [1 : 0 : 0], P2 = [0 : 1 : 0] and

6A del Pezzo surface is a two-dimensional Fano variety. A Fano variety is a complete variety whose
anti-canonical bundle is ample. The anti-canonical bundle of a non-singular algebraic variety of
dimension n is the line bundle defined as the nth exterior power of the inverse of the cotangent
bundle. An ample line bundle is a bundle with enough global sections to set up an embedding of its
base variety or manifold into projective space.
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P3 = [0 : 0 : 1] by the mass parameters see [60, §6] and [20, §4]. The del Pezzo 6
surfaces are rigid.7

Notice that the external momentum p2 appears only in the centre of the Newton
polytope making this variable special.

One can construct a non-compact Calabi-Yau three-foldM� defined as the anti-
canonical hypersurface over the del Pezzo surfaceB3. This non-compact three-fold
is obtained as follows [20, §5]. Consider the Laurent polynomial

F� = a + bu2v−1 + cu−1v + u−1v−1φ�(p2, ξ 2, x1, x2, x3), (175)

with a, b, c ∈ C
∗. Its Newton polytope Δ is the convex hull of {(0, 0, 2,−1),

(0, 0,−1, 1),Δ� × (−1,−1)} where Δ� is the Newton polytope given by the
hexagon in Fig. 1. The newton polytope Δ is reflexive because its polar polytope
Δ◦ := {y ∈ R

4|〈y, x〉 ≥ −1,∀x ∈ Δ} = convex hull{(0, 0, 1, 0), (0, 0, 0, 1), 6Δ◦
�

× (−2,−3)} is integral. Notice that for the sunset polytope is self-dual Δ� = Δ◦
�.

A triangulation of Δ gives a complete toric fan8 on Δ◦, which then provides Fano
varietyPΔ of dimension four [70]. For general a, b, c and the generic physical param-
eters p2, ξ 2

1 , ξ 2
2 , ξ 2

3 in the sunset graph polynomial, the singular compactification
M� := {F = 0} is a smooth Calabi-Yau three-fold. This non-compact Calabi-Yau
three-fold can be seen as a limit of compact Calabi-Yau three-fold following the
approach of [23] to local mirror symmetry. One can consider a semi-stably degen-
erating a family of elliptically-fibered Calabi-Yau three-foldsMz to a singular com-
pactification M� for z = 0 and to compare the asymptotic Hodge theory9 of this
B-model to that of the mirror (elliptically fibered) A-model Calabi-Yau M ◦

�. Both
M� and M ◦

� are elliptically fibered over the del Pezzo of degree 6 B3. Under
the mirror map we have the isomorphism of A- and B-model Z-variation of Hodge
structure [20]

H 3(Mz0)
∼= Heven(M ◦

q0) . (176)

This situation is not unique to the two-loop sunset. The sunset graph have a reflex-
ive polytopes containing the origin. The origin of the polytope is associated with the
coefficient p2 − ∑n

i=1 ξ 2
i , and plays a very special role. The ambient space of the sun-

set polytope defines a Calabi-Yau hypersurfaces (the anti-canonical divisor defines
a Gorenstein toric Fano variety). Therefore they are a natural home for Batyrev’s
mirror symmetry techniques [21].

7The graph polynomial (47) for higher loop sunset graphs defines Fano variety, which is as well a
Calabi-Yau manifold.
8The fan of a toric variety is defined in the standard reference [69] and the review oriented to a
physicts audience in [47].
9Feynman integrals are period integrals of mixed Hodge structures [26, 71]. At a singular point
some cycles of integration vanish, the so-called vanishing cycles, and the limiting behaviour of the
period integral is captured by the asymptotic behaviour of the cohomological Hodge theory. The
asymptotic Hodge theory inherit some filtration and weight structure of the original Hodge theory.
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4.3.2 Local Mirror Symmetry

Putting this into practise means recasting the computation in Sect. 4.2 and the mirror
symmetry description in [20, §7] in the language of [24], matching the computation
of the Gromov-Witten prepotential in [24, §6.6].

The first step is to remark that the holomorphic (3, 0) period of Calabi-Yau three-
fold M� reduces to the third period R0 once integrated on a vanishing cycle [72,
Appendix A], [73, §4] and [20, §5.7]

∫

vanishing cycle
ResF�=0

(
1

F�

du ∧ dv ∧ ∧dx1 ∧ dx2
uvx1x2

)
∝ R0(p

2, ξ 2), (177)

where F� is given in (175) and R0(p2, ξ 2) is given in (155). This second period is

related to the analytic period near p2 = ∞ by π
(2)
� (p2, ξ 2) = d

dp2 R0(p2, ξ 2).10

The Gromov-Witten invariant evaluated in (161) Sect. 4.2 are actually the BPS
numbers for the del Pezzo 6 case evaluated in [24, §6.6] since

∑

	1+	2+	3=	>0

(	1 ,	2 ,	3)∈N3\(0,0,0)

N	1,	2,	3R
	
0

3∏

i=1

ξ
2	i
i =

∑

(	̃1,	̃2,	̃3)∈N3\(0,0,0)
n	̃1,	̃2,	̃3

Li3

( 3∏

i=1

ξ
2	̃i
i e	̃i R0

)
, (178)

where we used the covering relation (160).With the following identifications11 Q1 =
1, Q2 = ξ 2

1 e
R0 , Q3 = ξ 2

2 e
R0 and Q4 = ξ 2

3 e
R0 , the expression in (178) reproduces the

local genus 0 prepotential F0 = Fclass
0 + ∑

βββ∈H 2(M ,Z) n
βββ
gLi3(

∏4
r=1 Q

βr
r ) computed

in [24, eq.(6.51)] with Fclass
0 = ∏3

i=1(R0 + log(ξ 2
i )) in our case.

From the complex structure of the elliptic curve we define the dual period
π1(p2, ξ 2) = 2iπτπ

(2)
� (p2, ξ 2) one the other homology cycle. Which gives the dual

third period R1, such thatπ
(2)
1 (p2, ξ 2) = d

dp2 R1(p2, ξ 2). This dual period R1 is there-
fore identified with the derivative of local prepotential F0

2iπR1 = ∂

∂R0
F0 (179)

=
∑

1≤i< j≤3

(R0 + log(ξ 2
i ))(R0 + log(ξ 2

j )) −
∑

	1+	2+	3=	>0

(	1 ,	2 ,	3)∈N3\{0,0,0}

	N	1,	2,	3

3∏

i=1

ξ
2	i
i e	i R0 ,

10It has been already noticed in [74] the special role played by the Mahler measure and mirror
symmetry.
11Wewould like to thankAlbrechtKlemm for discussions and communication that helped clarifying
the link between the work in [20] and the analysis in [24].
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as shown in [20, theorem 6.1] and [20, Corollary 6.3]. With these identifications it is
not difficult to see that the sunset Feynman integral is actually given by the Legendre
transform of R1

I�(p2, ξ 2) = −2iππ
(2)
� (p2, ξ 2)

(
∂R1

∂R0
R0 − R1

)
. (180)

This shows the relation between the sunset Feynman integral computes the local
Gromov-Witten prepotential. The local mirror symmetry map Q ↔ q given in the
relations (165) and (173) maps the B-model expression, where the sunset Feynman
integral is a elliptic dilogarithm function of the complex structure log(q)/(2iπ) of
the elliptic curve and the A-model expansion in terms of the Kähler moduli Qi .

5 Conclusion

In this textwe have reviewed the toric approach to the evaluation of themaximal cut of
Feynman integrals and the derivation of theminimal order differential operator acting
on the Feynman integral. On the particular example of the sunset integral we have
shown that the Feynman integral can take two different but equivalent forms. One
form is an elliptic polylogarithm but it can as well expressed as standard trilogarithm.
We have explained that mirror symmetry can be used to evaluate around the point
where p2 = ∞. The expressions there makes explicit all the mass parameters. One
remarkable fact is that the computation can be done using the existing technology of
mirror symmetry developed in other physical [22–24] or mathematics [25] contexts.
This analysis extends naturally to the higher loop sunset integrals [55]. The elliptic
polylogarithm representation generalises to other two-loop integrals like the kite
integral [75–77] or the all equal masses three-loop sunset [61]. This representation
leads to fast numerical evaluation [76]. But it has the disadvantage of hiding all
the physical parameters in the geometry of the elliptic curve. The expression using
the trilogarithm has the advantage of making all the mass parameters explicit and
generalising to all loop orders since the expansion of the higher-loop sunset graphs
around p2 = ∞ is expected to involve polylogarithms of order l at l-loop order [25,
55].
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Modular and Holomorphic Graph
Functions from Superstring Amplitudes

Federico Zerbini

Abstract We compare two classes of functions arising from genus-one superstring
amplitudes: modular and holomorphic graph functions. We focus on their analytic
properties, we recall the known asymptotic behaviour ofmodular graph functions and
we refine the formula for the asymptotic behaviour of holomorphic graph functions.
Moreover, we give new evidence of a conjecture appeared in [4] which relates these
two asymptotic expansions.

1 Introduction

The computation of the perturbative expansion of superstring scattering amplitudes
constitutes an extremely fertile field of interaction betweenmathematicians and theo-
retical physicists. From a mathematician’s viewpoint, this is partly due to the appeal-
ing and simple form of the Feynman-like integrals appearing in this expansion, but
most remarkably to the fact that the mathematics unveiled is right at the boundary of
our present knowledge: it constitutes both an astonishing concrete example of certain
new abstract constructions from algebraic geometry, and at the same time it points
towards new frontiers to be investigated. In this paper, besides presenting a detailed
review of the state of art of number theoretical aspects of superstring amplitudes, we
will recall and refine recent results and conjectures presented in [4, 43]. We hope
that this will be useful to understand the connection between genus-one superstring
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amplitudes and a new class of functions introduced by Brown in the context of his
research on mixed modular motives [14].

It was observed in [4] that the real-analytic single-valued functions arising from
genus-one closed-string amplitudes, called modular graph functions, seem to be
related in a simple and intriguing way to a seemingly artificial combination of the
holomorphic multi-valued functions arising from genus-one open-string amplitudes.
This would extend the observation already made at genus zero that closed-string
amplitudes seem to be a single-valued version of open-string amplitudes. After intro-
ducing some mathematical background and recalling the genus-zero case, we will
define modular and holomorphic graph functions, originating from genus-one closed
and open-string amplitudes, respectively. Holomorphic graph functions are divided
into A-cycle and B-cycle graph functions. The main theorems are the following:

Theorem 1 The modular graph function associated to a graph Γ with l edges has
the asymptotic expansion

DΓ (τ ) =
l∑

k=1−l

∑

m,n≥0

d(m,n)
k (Γ ) ykqmqn,

where τ ∈ H, q = exp(2π iτ), y = π Im(τ ) and the coefficients d(m,n)
k (Γ ) are cyclo-

tomic multiple zeta values.

Theorem 2 The B-cycle graph function associated to a graph Γ with l edges has
the asymptotic expansion

BΓ (τ ) =
l∑

k=−l

∑

m≥0

b(m)
k (Γ ) T kqm,

where T = π iτ and the coefficients b(m)
k (Γ ) are multiple zeta values.

Theorem 1 is a generalization of the main result of [42] and is already contained in
the PhD thesis [43], while Theorem 2 builds on previous results contained in [4, 43]
but is ultimately new: its novelty consists in the explicit bound on the powers of T
in terms of the number of edges l of the graph, which is obtained by exploiting an
explicit formula for the open-string propagator.

In [42] it is conjectured that all d(m,n)
k (Γ ) belong to a small subset of multiple zeta

values called single-valuedmultiple zeta values. One of themain achievements of [4]
is to give great evidence of a (partly) stronger statement, which relates open-string
amplitudes to closed-string amplitudes:

Conjecture 1 Let sv : ζ(k) → ζsv(k). Then for any graph Γ with l edges and all
−l < k < l we have1

1The reason for the rational coefficient appearing in Eq. (1) is that we want to follow the notation
adopted in the modular graph function literature. Setting y = −2π Im(τ ), which mathematically
would be a more natural choice, one would get a cleaner statement.
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sv(b(0)
k (Γ )) = (−2)−kd(0,0)(Γ )

k . (1)

We call this the (Laurent-polynomial) esv conjecture, where the “e” stands for
elliptic. This is not the only relationship observed in [4] between holomorphic and
modular graph functions; in particular, it seems that for graphs with up to six edges
one can obtain modular graph function from holomorphic graph functions by apply-
ing a very simple set of “esv rules”. However, we prefer to be cautious and content
ourselves to consider here and call conjecture only the Laurent-polynomial version.

In the last section of the paper we will recall the construction due to Brown of
a single-valued analogue of certain holomorphic functions on the upper half plane
H (iterated Eichler integrals of modular forms). We will argue that this construction
should be related to our esv conjecture, and mention various open questions and
possible directions originating from this observation.

2 Feynman Periods

One of the origins of the interaction between physicists working on scattering ampli-
tudes andmathematicians is the fact that Feynman integrals of quantum field theories
are period functions of the kinematic variables (e.g. masses, momenta).

Periods can be defined elementarily as absolutely convergent integrals of algebraic
functions over domains given by polynomial inequalities with integer coefficients
[31]. When the integrands depend algebraically on parameters, we call the integrals
period functions, and for algebraic values of the parameters we get actual periods.
Concretely, periods constitute a countable subring P of C, which contains Q as
well as many (often conjecturally) transcendental numbers of geometric or number
theoretical interest, such as π = ∫∫

x2+y2≤1 dxdy or special values of various kinds of
L-functions. It is important to remark that the representation of a period as an integral
is far from being unique: for instance, one also has π = ∫

−1≤x≤1(1 − x2)−1/2dx . As
a consequence of this, it is often very difficult to “recognize” a period, i.e. to notice
that a complicated integral can be written in terms of known periods.

The great mathematical relevance of this class of numbers comes from the fact
that they can be dubbed, in a precise sense, as the numbers which come from “geom-
etry”. Indeed, they can always be obtained from the comparison2 between algebraic
de Rham cohomology (related to algebraic differential forms) of an algebraic variety
X and Betti cohomology (related to topological cycles) of the complex points X (C).
Oneof themost important consequences of this fact is that period functions, and there-
fore Feynman integrals, satisfy special differential equations, called Picard-Fuchs
equations. Moreover, periods are strictly related to one of Grothendieck’s deepest
contributions to mathematics: the concept of motives. Motives can be thought of as
abstract linear algebra structures which encode the same kind of information as (all
possible) cohomology theories of an algebraic variety, and which can conjecturally

2After tensoring with C, more generally considering “relative cohomologies”.



462 F. Zerbini

always be obtained as pieces of cohomologies of an actual (non-unique) algebraic
variety. Therefore motives come equipped with a “de Rham” and a “Betti” vector
space, isomorphic asC-vector spaces, and from this one can define abstract analogues
of periods, called motivic periods, whose study has surprisingly deep consequences
in the computation of Feynman integrals (motivic coaction, motivic f-alphabets..).

Originally, notably after the work of Broadhurst and Kreimer in the 1990s [3],
computations of Feynman integrals in the simplest (massless) cases seemed to assign
a very special role to certain periods, first considered byEuler and then systematically
studied by Zagier [38], called multiple zeta values (MZVs). They are defined as the
absolutely convergent nested sums

ζ(k1, . . . , kr ) =
∑

0<v1<···<vr

1

vk11 · · · vkrr
, (2)

where k := (k1, . . . , kr ) ∈ N
r and kr ≥ 2. The rational vector space which they

span will be denoted by Z . One can easily demonstrate that this vector space is
closed under the operation of taking products; in other words, Z is a Q-algebra,
which is conjecturally graded by the weight k1 + · · · + kr . If we call r the depth of
ζ(k1, . . . , kr ), we can immediately see that depth-one MZVs are nothing but special
values of the Riemann zeta function

ζ(s) =
∑

v≥1

1

vs
,

which are easily shown to be periods, because for each k ≥ 2, using geometric series,

ζ(k) =
∫

[0,1]k
dx1 · · · dxk
1 − x1 · · · xk .

In fact, similar integral representations allow us to write all MZVs as periods. Physi-
cists very quickly realized the convenience of trying to write down Feynman periods
as MZVs, because of a nice explicit (conjectural) description of all relations in Z ,
and especially because of the astonishing precision to which MZVs can be numeri-
cally approximated (thousands of digits within few seconds). The ubiquity of these
numbers led to ask deep questions about their nature. Mathematicians realized that
they are (geometric) periods of compactified moduli spaces of genus-zero Riemann
surfaces with marked points M0,n and that they can be seen as (real analogues of)
motivic periods of a certain class of motives (mixed Tate motives overZ, orMT (Z)),
which are in some sense the simplest class of motives beyond those described by
Grothendieck (called pure motives) [17, 28]. A very good reason for the ubiquity
of MZVs was given by Brown, who proved first that all periods of M0,n belong
to Z [2π i] and then that all periods of MT (Z) belong to Z [1/2π i] [9, 10]. Both
viewpoints inspired the development of powerful techniques, which can now be used
to compute in a surprisingly short time vast classes of Feynman integrals. On the
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other side, these numbers are not sufficient to describe all interactions of particles,
not even in the simplest models (scalar massless ϕ4) [2, 11].

Studying Feynman integrals beyond MZVs, studying periods of moduli spaces of
Riemann surfaces beyond genus zero and studying motives beyond the mixed Tate
case turned out to be different facets of the same problem. The study of superstring
amplitudes seems to combine all these themes in a beautiful way.

3 Superstring Amplitudes

Scattering amplitudes in perturbative superstring theory can be approximated by a
Feynman-like infinite sum of integrals over compactified moduli spaces of Riemann
surfaces3 withmarked points. Eachmarked point represents a string state, and strings
can be roughly divided between open strings and closed strings: this distinction trans-
lates into that between Riemann surfaces with and without boundaries, respectively,
as shown in the figure below (Figs. 1 and 2).

To each pair (g, n) given by fixing the genus g and the number of punctures n,
one would like to associate a quantity A•

g,n(s): the genus–g amplitude of n open or
closed strings (• stands for op or cl, respectively), i.e. a function of theMandelstam
variables s = (s1, s2, . . .), which are complex numbers encoding the fundamental
string tension α′ and the momenta of the strings. It is important to mention that it
is not clear how to define A•

g,n(s) for g ≥ 3 [26]. This paper is mainly concerned
with the study of the mathematics associated with (g, n) = (1, 4). In order to speak
of genus one it is useful to recall what is known about the mathematical structure
of genus-zero amplitudes, which will be done in the next subsection. We would also

Fig. 1 Four closed strings: Riemann surfaces without boundaries

Fig. 2 Four open strings: Riemann surfaces with boundaries, punctures lie on boundaries

3More precisely, it should be super-Riemann surfaces, but this does not matter here.
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like to mention that very encouraging progress has recently been made in genus
two [18–20].

3.1 Genus Zero

Multiple zeta values (see Eq. (2)) can be thought of as special values at z = 1 of
(one-variable) multiple polylogarithms, defined for |z| < 1 and k ∈ N

r by

Lik(z) =
∑

0<v1<···<vr

zkr

vk11 · · · vkrr
.

These functions can be analytically extended to holomorphic functions on the
punctured Riemann sphere P

1
C

\ {0, 1,∞} by writing them as iterated integrals on
paths from 0 to z, but the analytic continuation depends on the homotopy class
of the path. We say that they define multi-valued functions on P

1
C

\ {0, 1,∞}.
Using their iterated-integral representation there is a natural way to make sense
of their special values at z = 1, which gives back our definition of MZVs when-
ever kr ≥ 2. Note that for instance Li1(z) = − log(1 − z) for |z| < 1, which obvi-
ously extends to a multi-valued holomorphic function on the punctured Riemann
sphere. There is a standard way to kill its monodromy and end up with a honest
single-valued function: add its complex conjugate − log(1 − z) and therefore get
−2Re(log(1 − z)) = − log |1 − z|2. The price to pay is that we are giving up holo-
morphicity: we are left with a real analytic function onP1

C
\ {0, 1,∞} (which extends

continuously toC). There is a natural generalization of this construction to all multi-
ple polylogarithms Li k(z) [12].We denote the single-valued analogues byLk(z), we
call them single-valued multiple polylogarithms and we call single-valued multiple
zeta values their (regularized) special values at z = 1:

ζsv(k1, . . . , kr ) := L k1,...,kr (1).

It turns out that these special values are contained in Z [13], and actually form a
much smaller sub-algebra, which we denote by Z sv. For instance, one can prove
that ζsv(2k) = 0 and ζsv(2k + 1) = 2ζ(2k + 1) for all k ≥ 1.

As we have mentioned, string scattering amplitudes should be given by certain
integrals overmoduli spaces ofRiemann surfaces. In practice, it is convenient to think
of these integrals as divided into a first integration over all the possible positions of the
marked points (string insertions) on a fixed (genus–g) Riemann surface, and then a
second integral over all possible (complex structures of) genus–g Riemann surfaces.
In genus zero, there is only one possible Riemann surface: the Riemann sphere P1

C

in the closed-string case and the unit disc in the open-string case, which requires
boundaries. The integral needs to be invariant under the SL2(C)-action (SL2(R) for
open strings), so we can fix three points and finally think of our genus-zero n-point
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amplitudes as integrals over possible configurations of n − 3points onP1
C

\ {0, 1,∞}
in the closed-string case, or as (all possible) integrals of n − 3 ordered points in the
interval [0, 1] in the open-string case.

For what concerns the integrand, we will be even more sketchy. The general idea
is that it depends on the Mandelstam variables and on two-variable functions, called
propagators, that are applied to pairs of marked points on the surface. Propagators
are defined in terms of suitable Green functions. The closed-string genus-zero prop-
agator is Gcl

0 (z1, z2) = log |z1 − z2|2, while the open-string analogue is given by
Gop

0 (x1, x2) = log(x1 − x2) for 0 ≤ x2 < x1 ≤ 1.
For instance, simplifying a bit, the genus-zero four-point open-string scattering

amplitude (or Veneziano amplitude) is given by

∫ 1

0
exp((s1 − 1) log x + (s2 − 1) log(1 − x)) dx (3)

and the closed-string analogue (Virasoro amplitude) is given by

− 1

2π i

∫

P
1
C

exp((s1 − 1) log |z|2 + (s2 − 1) log |z − 1|2) dzdz (4)

People are interested in the asymptotic expansion of scattering amplitudes as the
Mandelstamvariables approach the origin. For instance, onefinds that Eqs. (3) and (4)
can be written, respectively, as

s1 + s2
s1s2

exp

( ∑

n≥2

(−1)nζ(n)

n

(
sn1 + sn2 − (s1 + s2)

n
))

, (5)

s1 + s2
s1s2

exp

(
− 2

∑

n≥1

ζ(2n + 1)

(2n + 1)
(s2n+1

1 + s2n+1
2 − (s1 + s2)

2n+1)

)
. (6)

These are actually the only caseswherewe are able towrite down a closed formula for
the asymptotic expansion in the Mandelstam variables. A simple crucial observation
is the following: if we define a single-valued map

sv : ζ(k) → ζsv(k),

and we extend it to the amplitude by leaving Mandelstam variables and rational
numbers untouched, we conclude that the single-valued image of the open-string
amplitude (5) is precisely the closed-string amplitude (6). It is known (as a corol-
lary of the work of Brown on the periods of M0,n [9]) that, for any number n of
string insertions, the coefficients appearing in the asymptotic expansion of genus-
zero open-string amplitudes areMZVs [8].Moreover, extending the trivial four-point
observation made above by some “motivic reasoning” and many computer experi-
ments, Schlotterer and Stieberger conjectured that the coefficients of the asymptotic
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expansion of genus-zero closed-string amplitudes should be given for any number
of punctures by single-valued MZVs, and the closed-string amplitude should be (in
a precise sense) the single-valued image of the open-string amplitude [36, 37].

3.2 Genus One

In genus one the structure of themoduli spaces getsmore complicated, in particular in
the open-string case, where wemust take into account both oriented and non-oriented
Riemann surfaces (cylinders andMöbius strips). In the closed-string case, after fixing
one marked point in order to insure translation invariance of the integrals, we are
left with a first integration over n − 1 marked points on a fixed complex torus4 Eτ =
C/(τZ + Z), where τ ∈ H, and then a second integration over the (compactification
of the) moduli space M1,1 = SL2(Z) \ H of complex tori. This second integration
is not trivial anymore, but in this paper we will only focus on the first integration,
whose result will therefore depend on a parameter τ ∈ H. For what concerns the
open-string case, not only we will focus on the first integral over the position of
the insertions, but we furthermore restrict our analysis to the cylinder case with all
insertions on one of the two boundary components. The complex structure of the
cylinder will depend on a parameter τ ∈ iR (one should think of a cylinder as “half
a torus” whose complex parameter τ is purely imaginary). We refer to [5] for more
details about the general case.

Once again, the integrands of these amplitudes are written in terms ofMandelstam
variables and propagators, i.e. Green functions depending on two marked points on
the surface. In the closed-string case the propagator is given by [29]

Gcl
1 (z1, z2; τ) = − log

∣∣∣∣
θ(z1 − z2, τ )

η(τ )

∣∣∣∣
2

+ 2π(Im(z1) − Im(z2))2

Im(τ )
, (7)

where the odd Jacobi θ -function and the Dedekind η-function are defined for z ∈ C,
τ ∈ H, q = exp(2π iτ) and u = exp(2π i z) by

θ(z, τ ) = q1/8(u1/2 − u−1/2)
∏

j≥1

(1 − q j )(1 − q ju)(1 − q ju−1), (8)

η(τ) = q1/24
∏

j≥1

(1 − q j ).

In the open-string case the propagator is usually defined as a “regularized integral”:
one can prove that for small ε and z ∈ (0, 1) there exists K ∈ Z≥0 such that

4It is well known that any punctured genus-one Riemann surface can be realized as a complex torus.
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∫ z

ε

θ ′(w, τ )

θ(w, τ )
dw =

K∑

k=0

gk(z, τ ) logk(2π iε) + O(ε). (9)

Then one defines5 the open-string genus-one propagator as [6]

Gop
1 (z1, z2; τ) = −g0(z1 − z2, τ ). (10)

The reason in [6] for giving such a non-explicit formula for the open-string propagator
is that Eq. (10) is themost convenient form to show that the open-string amplitude can
be expressed in terms of elliptic multiple zeta values (as defined by Enriquez [27]).
It is however useful for our purposes to work out the regularized integral (9), which
gives the explicit formula

Gop
1 (z1, z2; τ) = − log

(
θ(z1 − z2, τ )

η3(τ )

)
. (11)

We will now define the genus-one Feynman-like integrals coming from string ampli-
tudes which inspired the theory of modular and holomorphic graph functions.

The integral over the positions of the marked points on a fixed complex torus
contributing to the four-point genus-one closed-string amplitude is given by [29]

∫

(E τ )3
exp

(
s1(G

cl
1 (z1, 0; τ) + Gcl

1 (z2, z3; τ)) + s2(G
cl
1 (z2, 0; τ) + Gcl

1 (z1, z3; τ))

+ s3(G
cl
1 (z3, 0; τ) + Gcl

1 (z1, z2; τ))
)
d2z1d

2z2d
2z3,

(12)

where we define d2z := dzdz/Im(τ ) and the Mandelstam variables must satisfy the
relation s1 + s2 + s3 = 0.

On the other side, the integrals over the positions of the ordered marked points on
one boundary of the cylinder topology, which contribute to the four-point genus-one
open-string amplitude, are given by integrals like [6]

∫

0≤z1≤z2≤z3≤1
exp

(
s1(G

op
1 (z1, 0; τ) + Gop

1 (z2, z3; τ)) + s2(G
op
1 (z2, 0; τ)

+ Gop
1 (z1, z3; τ)) + s3(G

op
1 (z3, 0; τ) + Gop

1 (z1, z2; τ))
)
dz1dz2dz3, (13)

where again we impose s1 + s2 + s3 = 0. Different orderings of the zi ’s give rise to
different contributions.

The theory of modular and holomorphic graph functions was born out of the study
of the expansion of the integrals (12) and (13), respectively, when the Mandelstam
variables si → 0.

5Note that we have changed the sign of the propagator w.r.t. [6], following [4].
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4 Modular Graph Functions

Let us consider a connected undirected graph Γ with no self-edges, possibly with
multiple edges connecting the same pair of vertices. If we choose a labelling
z1, . . . , zn of the n vertices, then for i < j we have li, j edges between zi and z j ,
with the total number of edges given by the weight of the graph

l :=
∑

1≤i< j≤n

li, j .

Definition 1 (D’Hoker–Green–Gürdoğan–Vanhove 2015) Let Γ be a graph as
above. We define its modular graph function as

DΓ (τ ) =
∫

(E τ )n−1

∏

1≤i< j≤n

Gcl
1 (zi , z j ; τ)li, j d2z1 · · · d2zn−1, (14)

where d2zi = dzidzi/Im(zi ) and we have fixed zn ≡ 0.

It is obvious that this definition does not depend on the labelling. It will often be
convenient to write a modular graph function DΓ (τ ) as D[Γ ], dropping the depen-
dence of the function on τ and explicitly drawing the graph Γ , as in the following
examples:

The definition of this class of functions originated from the study of the contribu-
tion to the genus-one four-point closed-string integral given by Eq. (12)
[21, 29, 30]. Indeed, if we expand the exponential in the integrand of (12) as a
power series in the Mandelstam variables, the coefficients of this expansion are pre-
cisely the modular graph functions associated to graphs with at most four vertices.
Modular graph functions associated to a higher number of vertices do not suffice to
describe higher-point analogues of (12): one must introduce other functions called
modular graph forms [22], but for the purpose of this paper it is enough to focus on
modular graph functions. As anticipated in the introduction, recent considerations by
Brown, contained in [14, 15], seem to assign to this class of functions an important
role in the study of mixed motives. We will come back to this in Sect. 6.

So far we have only partially justified the origin of the name of these functions:
it is clear that they are related to graphs, but something must be said about the
word modular. To begin with, one can show [39] that, if we denote Λτ = Z + τZ,
Λ∗

τ = Λτ \ {(0, 0)} and we define for z ∈ C the character on Λτ given for ω ∈ Λ∗
τ

by

χz(ω) := exp
(2π i(ω̄z − ωz̄)

τ − τ̄

)
,

then

G(z1, z2; τ) = Im(τ )

π

∑

ω∈Λ∗
τ

χz1−z2(ω)

|ω|2 . (15)
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Let us now introduce some more notation attached to the graph Γ . Choosing a
labelling z1, . . . , zn of the n vertices induces an orientation on the edges: we orient
them from zi to z j whenever i < j . Therefore we can construct the incidence matrix

(Γi,α)1≤i≤n
1≤α≤l

of Γ by choosing any labelling eα on the set of edges, and by setting Γi,α = 0 if
eα does not touch zi , Γi,α = 1 if eα is oriented away from zi and Γi,α = −1 if eα is
oriented towards zi . It is now not difficult to show that

DΓ (τ ) =
( Im(τ )

π

)l ∑

ω1,...,ωl∈Λ∗
τ

l∏

α=1

|ωα|−2
n∏

i=1

δ
( l∑

β=1

Γi,βωβ

)
, (16)

where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise. From Eq. (16) it is easy to see that
modular graph functions are indeed modular invariant, i.e. DΓ (γ τ) = DΓ (τ ) for all
γ ∈ SL2(Z), where γ τ is the Möbius action of the modular group SL2(Z) on H.

Let us now observe some simple consequences of the graphical nature of these
functions. We call reducible a graph Γ such that the removal of a vertex would
disconnect the graph, as in the figure below.

When a graph is reducible, one can prove from the sum representation (16) that
the associated modular graph function factors into the product of the irreducible
components. For instance, in the case of the figure above the modular graph function

associated is . Note also that the normalization of the Green function given
by Eq. (7) is chosen in such a way that

∫

E τ

Gcl
1 (z, 0; τ)dz = 0.

This, together with the factorization for reducible graphs, implies that DΓ (τ ) = 0
whenever there exists any edge whose removal would disconnect the graph (physi-
cists would call such graphs one-particle reducible). Belowwe have pictures of these
situations:

Let us now give some concrete examples. For all graphs with n vertices along one
cycle, as in the figure
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we get by Eq. (16) that

DΓ (τ ) =
(
Im(τ )

π

)n ∑

ω∈Λ∗
τ

1

|ω|2n .

This is precisely the definition of the special values at integers n of the non-
holomorphic Eisenstein series E(n, τ ). There are two well known results about
non-holomorphic Eisenstein series which we want to underline, as some of their
features are conjectured to extend to all modular graph functions:

(1) Let Δτ := 4(Im(τ ))2 ∂2

∂τ ∂τ
be the hyperbolic Laplacian. Then

(Δτ − n(n − 1))E(n, τ ) = 0. (17)

(2) Let y = π Im(τ ), Bk be the kth Bernoulli number and σ j (k) := ∑
d|k d j . Then

E(n, τ ) =
[
(−1)n−1 B2n

(2n)! (4y)
n + 4(2n − 3)!

(n − 2)!(n − 1)! ζ(2n − 1)(4y)1−n

+ 2

(n − 1)!
∑

k≥1

kn−1σ1−2n(k)(q
k + qk)

n−1∑

m=0

(n + m − 1)!
m!(n − m − 1)! (4ky)

−m
]
. (18)

Laplace equations like (17) were shown to hold for many other examples of modular
graph functions. For instance, we have

(19)

as well as inhomogeneous equations like

and (infinitely) many others [1, 23, 25]. It is generally believed that the algebra
generated bymodular graph functions over the ringZ of multiple zeta values should
be closed under the action of Δτ .6

6Recent indications suggest that considering only the action of the Laplace operator we lose some
information, and it is instead better to consider the action of the Cauchy-Riemann derivative ∇τ =
2i(Im(τ ))2∂τ and of its complex conjugate ∇τ [22, 25].
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On the other side, the form of the asymptotic expansion (18) of non-holomorphic
Eisenstein series generalizes to all modular graph functions. Indeed, as announced in
the introduction, it was shown in [42] for up to four vertices and in [43] in the general
case that the asymptotic expansion of a modular graph function has the following
form:

Theorem 3 ([43]) Let Z∞ be the Q-algebra generated by all cyclotomic multiple
zeta values, i.e. all convergent series given for k1, . . . , kr , N1, . . . , Nr ∈ N by

∑

0<v1<···<vr

e2π iv1/N1 · · · e2π ivr /Nr

vk11 · · · vkrr
.

Then for a graph Γ with weight l, setting y = π Im(τ ), we have

DΓ (τ ) =
l∑

k=1−l

∑

m,n≥0

d(m,n)
k (Γ ) ykqmqn,

where d(m,n)
k (Γ ) ∈ Z∞.

The idea of the proof is to use the alternative representation of the propagator [30]

G1(z, τ ) = 2π Im(τ )B2(r) + Q(z, τ ), (20)

where B2(x) is the only 1-periodic continuous function coinciding with the second
Bernoulli polynomial B2(x) in the interval [0, 1], z = s + rτ (s, r ∈ [0, 1]) and

Q(z, τ ) =
∑

m∈Z\{0}
k∈Z

exp(2π im((k + r)Re(τ ) + s))

|m| e−2π Im(τ )|m||k−r |. (21)

The integral can be thought of as an integral over r ∈ [0, 1] and s ∈ [0, 1]. One
can therefore substitute B2(r) with the polynomial B2(r) = r2 − r + 1/6. Using
the binomial theorem to compute the powers of the propagator in terms of B2(r)
and Q(z, τ ) and interchanging integration with all summations introduced by the
functions Q, one is left with integrals that evaluate to an asymptotic expansion of
the form

l∑

k=−l

∑

u∈Z
v≥1

δ
(u,v)
k (Γ ) yke2π iuRe(τ )e−2πvIm(τ ),
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where δ
(u,v)
k (Γ ) are certain explicitly determined complex numbers given in terms

of complicated multiple sums and u, v are subject to certain explicit constraints. To
conclude the proof, one must first of all do the relatively easy exercise of showing
that δ

(u,v)
−l (Γ ) = 0, that v ≥ |u| and that u ≡ v mod 2: we need the last two condi-

tions because e2π iuRe(τ )e−2πvIm(τ ) = qmqn with m = (u + v)/2 and n = (v − u)/2,
and we want to get m, n ∈ Z≥0. The last step consists in proving that the coeffi-
cients are cyclotomic MZVs, but this is non-elementary and relies on a result of
Terasoma [35]. The reader can find the details in [43]. However, later we will see
that this is (conjecturally) not the best possible result.

The main contribution to this asymptotic expansion as y → ∞ is given by the
Laurent polynomial

d[Γ ] :=
l∑

k=1−l

d(0,0)
k (Γ ) yk, (22)

and great effort was spent on its computation, justified by the fact that all known
differential and algebraic relations among modular graph functions can be predicted
from its knowledge.7 The first computations were made in [29, 30]. In particular,
in the appendix of [30] Zagier gave a general formula in terms of MZVs for d[Γ ]
when Γ is a “banana” graph consisting only on two vertices and l edges between
them. Later on, Zagier also proved that one can be more precise and write d[Γ ]
for all banana graphs in terms of odd Riemann zeta values ζ(2k + 1) [40], just like
the case of non-holomorphic Eisenstein series. Computations by hands for graphs
with three and four vertices seemed to confirm the appearence of odd Riemann zeta
values only [30]. A more systematic computation of the Laurent polynomials d[Γ ],
however, revealed that already for graphs with three vertices one can get MZVs of
higher depth [42]. For instance,8

7It is however believed that this should not always be true.
8There is a typo in the coefficient of y−4 in the corresponding formula in [42].
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The key observation made in [42] is that one can rewrite

(23)
This observation extends to all graphs computed so far. Moreover, it also seems
to extend to all other Laurent polynomials appearing in the expansion, and it is
consistent with the genus-zero case. This led to the following conjecture (initially
stated only in the four-point case [42]):

Conjecture 2 (Z. 2015) The coefficients d(m,n)
k (Γ ) given by Theorem 3 belong to

the algebra Z sv of single-valued MZVs.

It is important to remark that this conjecture is much stronger than the statement of
Theorem 3, which does not even imply that the coefficients of the asymptotic expan-
sion are MZVs. Arguments supporting or proving special cases of this conjecture
were given in [21, 24, 40].

We conclude this section by mentioning that an explicit computation of (part of)
the asymptotic expansions, together with the differential relations among modular
graph functions, allow us to prove algebraic relations such as

which can be deduced using the differential Eqs. (17) and (19) and the knowledge of

[23].9

5 Holomorphic Graph Functions

Let us consider a graph Γ as in the beginning of Sect. 4. Recall that in genus
zero we had (special values of) holomorphic multi-valued multiple polylogarithms
on the open-string side and real-analytic single-valued multiple polylogarithms
on the closed-string side. These two sides were related by the sv map. Since
modular graph functions are real-analytic modular functions, i.e. single-valued on

9This identity was first proven by Zagier by a complicated direct computation (private communi-
cation).
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M1,1 = SL2(Z) \ H, in order to make an analogy with genus zero we would like to
associate to any graphΓ a holomorphicmulti-valued function onM1,1, together with
a map going from one space to the other, which we would like to call esv (elliptic
single-valued map). Moreover, we would like these holomorphic graph functions to
arise from open-string amplitudes, as this would make the analogy with genus zero
satisfactory also from the string-theory viewpoint.

A suggestion to achieve all this was given in [4], where not just one but two kinds
of holomorphic graph functions, related to each other by a modular transformation,
were defined. In order to give the definition, we first need to introduce a modified
version of the open-string propagator Gop

1 (zi , z j ; τ):

P(z1, z2; τ) := Gop
1 (zi , z j ; τ) − 2 log(η(τ )) + iπτ

6
+ iπ

2
(24)

Definition 2 ([4]) Let z1, . . . , zn ∈ [0, 1] be the vertices of a graph Γ , let us fix
zn ≡ 0 and for i < j let us denote the number of edges between zi and z j by li, j . For
such Γ we define its A-cycle graph function as

AΓ (τ ) =
∫

[0,1]n−1

∏

1≤i< j≤n

P(zi , z j ; τ)li, j dz1 · · · dzn−1, (25)

and its B-cycle graph functions as

BΓ (τ ) = AΓ (−1/τ). (26)

We will often make use also of the alternative notations A[Γ ] and B[Γ ]. Note
that in general the integral (25) may diverge. In this case we consider instead its
ε-regularized version given by the same procedure already explained in the defini-
tion of Gop

1 (z1, z2; τ) (see Eq. (9)).
Without going into details, A-cycle graph functions can be thought of as restric-

tions of the integral on a torus which defines modular graph functions, given by
Eq. (14), to the “A-cycle” [0, 1] of the torus, while B-cycle graph functions as restric-
tions of (14) to the “B-cycle” [0, τ ]. This is a first reason why it is worth introducing
both notions, even though one can be obtained from the other by a simple modu-
lar transformation. We will see later that another very important reason is given by
their radically different asymptotic expansions. However, since Eq. (26) implies that
these two classes of functions share many properties, we will sometimes refer to
both of them as just holomorphic graph functions: indeed, by the definition (24) of
P(z1, z2; τ), both A-cycle and B-cycle graph functions are holomorphic functions
of τ ∈ H.

Let us now see how holomorphic graph functions are related to the four-point
open-string integral (13). First of all, note that adding any (zi , z j )-independent
term to the open-string propagator Gop

1 (zi , z j ; τ) does not modify the open-string
integral (13), because of the kinematic condition s1 + s2 + s3 = 0 on theMandelstam
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variables. Thus considering the modified propagator P(z1, z2; τ) does not affect the
amplitude. Let us now define the abelianization of (13) as

∫

[0,1]3
exp

(
s1(P(z1, 0; τ) + P(z2, z3; τ)) + s2(P(z2, 0; τ) + P(z1, z3; τ))

+ s3(P(z3, 0; τ) + P(z1, z2; τ))
)
dz1dz2dz3.

(27)

This is nothing but the sum over all possible orderings of the open-string positions on
the cylinder’s boundary [0, 1] of the integrals of the kind (13); it is called “abelian-
ization” because it would correspond in physics to the amplitude of so-called abelian
particle states, like photons, which are however not included in superstring theories.
Even though the integral (27) is not “physical”, it is clearly related to the open-string
amplitude. Expanding (27) as a power series in the Mandelstam variables and allow-
ing τ ∈ H, by a computation which is completely similar to that of the closed-string
case we find that the coefficients are given by A-cycle graph functions (associated to
graphs with at most four vertices), hence the connection between holomorphic graph
functions and genus-one open-string amplitudes.

The reason for the normalization (24) of the propagator is given by the fact that

∫ 1

0
P(z, 0; τ) dz = 0, (28)

which implies, as in the case of modular graph functions, that holomorphic graph
functions vanish identically whenever they are associated to graphs that can be dis-
connected by removing one edge. The proof of Eq. (28) using the ε-regularization
procedure (9) is left as an exercise to the reader.

In order to talk about non-trivial examples of holomorphic graph functions, we
should first of all recall the observation, made in [6], that the coefficients of the
power series expansion in the Mandelstam variables of the genus-one open-string
integral (13), and therefore also A-cycle graph functions,10 can be written in terms
of A-elliptic multiple zeta values. These are holomorphic functions on H defined by
Enriquez which generalize MZVs to genus one [27]. The “A” in their name comes
from the fact that A-elliptic MZVs are given by certain iterated integrals over the
A-cycle [0, 1] of a torus Eτ . There exists also a B-cycle version given by iterated
integrals over [0, τ ]: they are called B-elliptic multiple zeta values and they are
related to their A-cycle counterparts by the modular transformation S : τ → −1/τ .
Giving the definition of elliptic MZVs is not necessary here; we will just recall in
the next paragraphs the properties needed in our presentation of holomorphic graph
functions, and refer the interested reader to [27, 34, 43].

10This is only true for graphs with at most four vertices, but there is an obvious n-point version
of the integral (27) whose coefficients, i.e. all possible graph functions, must be combinations of
A-elliptic MZVs.
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The main property that we will need is that elliptic MZVs can be written as
(iterated) integrals of Eisenstein series. We recall that Eisenstein series are given for
even k ≥ 4 by

Gk(τ ) =
∑

(r,s)�=(0,0)

1

(r + sτ)k
= 2ζ(k) + 2(2π i)k

(k − 1)!
∑

m,n≥1

nk−1qmn .

They are weight k modular forms w.r.t. the modular group SL2(Z), i.e. they are holo-
morphic functions on H ∪ i∞ such that G2k(τ )|2k γ = G2k(τ ), where the weight k

right action |k γ of the modular group is defined for γ =
(
a b
c d

)
∈ SL2(Z) by

f (τ )|k γ = (cτ + d)−k f

(
aτ + b

cτ + d

)
.

SettingG0(τ ) := −1, iterated Eisenstein integrals are defined in [7] for k1, . . . , kr ∈
{0, 4, 6, 8, . . .}11 by the recursive formula

E (k1, . . . , kr ; τ) =
∫ −→

1 ∞

τ

Gk(z)

(2π i)k−1
E (k1, . . . , kr−1; z) dz, (29)

where following [16] we define for f (τ ) = ∑
j≥0 a j (τ )q j and a j (τ ) ∈ C[τ ]12

∫ −→
1 ∞

τ ′
f (τ ) dτ :=

∫ i∞

τ ′

∑

j≥1

a j (τ )q j dτ −
∫ τ ′

0
a0(τ ) dτ. (30)

Writing down A-cycle graph functions in terms of the iterated integrals E (k; τ) is
very convenient, because all algebraic relations among the E (k; τ)’s are known [32]
andbecause their asymptotic expansion canbe explicitlyworkedout [4, 7].Moreover,
most importantly for us, this is a good viewpoint if one is interested in the modular
behaviour of A-cycle graph functions, for instance in order to compute B-cycle graph
functions [4].

Let us now consider a simple example: one can show by direct computation that

(31)

= ζ(2)

2
+ 2q + 9

2
q2 + · · · (32)

11Here we deviate from [7] and we prefer to exclude the quasi-modular form G2(τ ).
12Since H is simply connected, we can choose arbitrary paths from τ ′ to i∞ and from 0 to τ ′.
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The fact that the first term of the right-hand side of (31) disappears in (32) is not an
accident: it is coherent with the fact, proven by Enriquez [27], that A-elliptic MZVs
(and therefore A-cycle graph functions) admit an asymptotic expansion

∑

j≥0

a jq
j , (33)

where a j ∈ Z [(2π i)−1].13 As we have mentioned, writing down A-cycle graph
functions in terms of iterated Eisenstein integrals is the key to compute B-cycle graph

functions. In order to get , all we need to do is to compute E (4, 0;−1/τ). Let
us see some details of this computation, which nicely illustrates various features of
the general case. Directly from the definition, one gets

E (4, 0; τ) = 1

(2π i)2

∫ −→
1 ∞

τ

(τ − z)G4(z) dz.

Therefore, making use of the change of variables z → −1/z and of the modular
properties of G4(τ ), we can write

E (4, 0;−1/τ) = 1

(2π i)2

∫ −→
1 ∞

−1/τ

(
− 1

τ
− z

)
G4(z) dz = τ−1

(2π i)2

∫ S
−→
1 ∞

τ

z(τ − z)G4(z) dz,

where S
−→
1 ∞ is the image of the (tangential base point at the) cusp under the modular

transformation S : τ → −1/τ : one should think of it as the point 0, together with
additional informations about the regularization of the integral, similar to those of
Eq. (30) [16]. Since these integrals are all homotopy invariant, we can choose a path

which passes through the cusp
−→
1 ∞ and split the integral as

E (4, 0;−1/τ) = τ−1

(2π i)2

(∫ −→
1 ∞

τ

z(τ − z)G4(z) dz −
∫ −→

1 ∞

S
−→
1 ∞

z(τ − z)G4(z) dz

)

(34)
Using the fact that

2E (4, 0, 0; τ) = 1

2π i

∫ −→
1 ∞

τ

(τ − z)2G4(z) dz

= 1

2π i

∫ −→
1 ∞

τ

τ (τ − z)G4(z) dz − 1

2π i

∫ −→
1 ∞

τ

z(τ − z)G4(z) dz,

one immediately sees that the first integral of Eq. (34) can be written as E (4, 0; τ) −
(π iτ)−1E (4, 0, 0; τ). The evaluation of the second integral of Eq. (34) can be done

13While for A-elliptic MZVs we know that inverting 2π i is necessary, we suspect that no inverse
powers of 2π i should appear in the asymptotic expansion of A-cycle graph functions.
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using the functional equation of the L-functions associated to Eisenstein series: the
computation is completely similar to that of period polynomials of Eisenstein series
(see [41]). This is not a coincidence, because E (4, 0, 0; τ) is essentially an Eichler
integral of G4(τ ). The general theory of iterated Eichler integrals of modular forms,
developedbyManin andBrown [16, 33], provides the tools to understand themodular
behaviour of the functions E (k, τ ). It is crucial to remark that not all the E (k, τ )’s
can be written in terms of iterated Eichler integrals, and indeed not all of them
share the same nice modular behaviour of our example E (4, 0; τ): it is an instructive
exercise to see how the steps of the computations ofE (4, 0;−1/τ) cannot be repeated
for E (4, 0, 0, 0;−1/τ). Fortunately, a result by Brown implies that A-cycle graph
functions can always be written in terms of the “good E (k, τ )’s”, i.e. those which
are iterated Eichler integrals [15]. We refer to [4] for a detailed analysis of the
relationship between the E (k, τ )’s and iterated Eichler integrals à la Manin–Brown.
The final result is that

(35)

where T := π iτ . We can already see from this simple example that the asymptotic
expansion of B-cycle graph functions is substantially different from that of their A-
cycle counterpart. In particular, B-cycle graph functions are not invariant under the
transformation τ → τ + 1. Far from being an issue, this is actually the main reason
behind the introduction of B-cycle graph functions in [4]: an expansion like (35),
unlike Eq. (33), reminds the asymptotic behaviour of modular graph functions. We
will indeed see in the next section that this simple observation has astonishing con-
sequences. The main result of this section is the following refinement of a formula
stated in [4] for the asymptotic expansion of B-cycle graph functions.

Theorem 4 For a graph Γ with weight l, setting T = π iτ , we have

BΓ (τ ) =
l∑

k=−l

∑

m≥0

b(m)
k (Γ ) T kqm,

where b(m)
k (Γ ) ∈ Z .

Proof It was demonstrated in [4] that

BΓ (τ ) =
K∑

k=−K

∑

m≥0

b(m)
k (Γ ) T kqm (36)

for some K ∈ N, where b(m)
k (Γ ) ∈ Z , so all we need to prove is that we can

choose K = l. In order to do this, let us recall the modular properties of θ and η:
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θ(z/τ,−1/τ) = −i
√−iτ exp

(
2π i z2

2τ

)
θ(z, τ ),

η(−1/τ) = √−iτ η(τ).

Using these transformations together with Eqs. (24) and (8) we deduce that

P(zi , z j ;−1/τ) = −π i

6τ
+ π i

2

− log

(
ieπ iτ(zi−z j )2q1/12

(
ũ−1/2
i j − ũ1/2i j

) ∏

n≥1

(1 − ũi j q
n)(1 − ũ−1

i j q
n)

)
, (37)

where ũi j := exp(2π iτ(zi − z j )). Therefore, setting zi j := zi − z j , we can write

P(zi , z j ;−1/τ) = L(zi j ; τ) + S(zi j ; τ), (38)

where we define for T = π iτ and ũ = exp(2π iτ z)

L(z, τ ) = −T
(
z2 − z + 1

6

)
+ ζ(2)

T
, (39)

S(z, τ ) =
∑

m≥1

ũm

m
+

∑

n,m≥1

ũmqnm

m
+

∑

n,m≥1

ũ−mqnm

m
. (40)

In order to compute B-cycle graph functions, we need to take powers of the propa-
gator. We have

P(zi , z j ;−1/τ)l = (L(zi j ; τ) + S(zi j ; τ))l =
∑

r+s=l

l!
r !s! L(zi j , τ )r S(zi j , τ )s

=
∑

a+b+c+d+s=l

l!
a!b!c!d!s!

(−1)a+c

6c
ζ(2)d z2a+b

i j T a+b+c−d S(zi j , τ )s . (41)

Therefore, if for instance we want to know the asymptotic expansion of

∫ 1

0
P(z, 0;−1/τ)l dz,

i.e. 2-point B-cycle graph functions, we are left with computing integrals of the kind

∫ 1

0
z2a+bS(z, τ )s dz.

If s = 0 this integral evaluates to a rational numbers; thusweget aLaurent polynomial
with powers ranging from −l (when d = l) to l (when d = 0). Now let s ≥ 1. Since
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for all α ∈ Z

∫ 1

0
z2a+be2π iατ z dz = (2a + b)!

(−2π iατ)2a+b+1
−

2a+b∑

j=0

(2a + b) j
(−2π iατ) j+1

e2π iατ , (42)

where (k) j := k(k − 1) · · · (k − j + 1) is the descending Pochhammer symbol,
exchanging integration and summations in (40) we get negative contributions to
the powers of T ranging from 1 to 2a + b + 1. The lowest possible power that arises
from these contributions is then given, because of Eq. (41), by

a + b + c − d − 2a − b − 1 = c − a − d − 1 ≥ −l + s − 1 ≥ −l.

This concludes the proof when the graphs Γ has only two vertices. The proof for the
general case goes along the same lines and is left to the reader. �

6 The esv Conjecture

The main contribution to the asymptotic expansion of B-cycle graph functions B[Γ ]
when Im(τ ) → ∞ is given by the first Laurent polynomial

b[Γ ] :=
l∑

k=−l

b(0)
k (Γ ) T k . (43)

For instance, in the case of the weight l = 2 B-cycle graph function we deduce
by Eq. (35) that

On the other side, we have mentioned in Sect. 4 that and therefore
by Eq. (18) we have

Let us nowdefine amapZ [T ] → Z sv[y] by sending ζ(k) → ζsv(k) and T → −2y.
We call this map esv. Using the fact that ζsv(2k) = 0 and ζsv(2k + 1) = 2ζ(2k + 1),

one can easily check that . This was the starting point of an
extensive series of computations, which led to the following apparently surprising
statement [4]:

Conjecture 3 (Brödel–Schlotterer-Z. 2018) For all graphs Γ we have
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esv(b[Γ ]) = d[Γ ] (44)

For the rest of the paper we will refer to this statement as the esv conjecture. We
would like to remark, in order to avoid possible confusion, that the presentation given
here of this conjecture is quite different to that given in [4], because the esv “rules”
defined in [4] (which contain the esvmap defined above) act on the whole asymptotic
expansion of B-cycle graph functions, while herewewill consider only the restriction
to the first Laurent polynomial. Note that the esv conjecture would imply the part of
Conjecture 2 concerning the coefficients d(m,n)

k (Γ ) of the first Laurent polynomial,
i.e. when (m, n) = (0, 0).

The esv conjecture was checked for all graphs up to weight six, as well as for the
“crucial” weight-seven example14 (compare with Eq. (23))

(45)
Let us now make two remarks in order to support the conjecture. First of all, it is
straightforward to check that the appearence of the second Bernoulli polynomials
in both Eqs. (20) and (38) implies that, for a fixed weight l graph, the coefficient
of T l in (43) is equal to the coefficient of (−2y)l in (22). Moreover, note that the
lowest power of T appearing in the expansion (43) is −l, while the lowest power
of y appearing in the expansion (22) is 1 − l. This means that the esv conjecture
implies that sv(b(0)

−l (Γ )) = 0. We have seen in the proof of Theorem 4 that there are
two sources of contribution to the coefficient of T−l in (43). The first one (obtained
when s = 0) is given by

∏
ζ(2)li, j , while the second one originates from the integrals

of products (for all i, j) of the kind

L(zi j ; τ)li, j−1S(zi j ; τ).

14This case could only be checked numerically, for about five-hundred digits.
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From the same kind of computation seen in the proof of Theorem 4 we can conclude
that the contribution to the coefficient of T−l (which is given by setting for all i, j
ai, j = li, j − 1 − di, j in Eq. (42)) is a rational linear combination of ζ(2(l − d))ζ(2)d

for 0 ≤ d ≤ l − 1. This implies that the coefficient of T−l is a rational multiple of
ζ(2l), which is indeed sent to 0 by the sv map. In other words, we have proven:

Proposition 1 For any weight l graph Γ we have esv(b(0)
l (Γ ) T l) = d(0,0)

l (Γ ) yl

and esv(b(0)
−l (Γ ) T−l) = 0.

We want to conclude by explaining that the esv conjecture should be related to
Brown’s recent construction of a new class of functions in the context of his research
on mixed modular motives [14].

Definition 3 ([15]) Let f : H −→ C be a real analytic function. We call it modular

of weights (r, s) if for every γ =
(
a b
c d

)
∈ SL2(Z) it satisfies

f (γ τ) = (cτ + d)r (cτ + d)s f (τ ). (46)

We denote Mr,s the space of modular functions of weights (r, s) which admit an
expansion of the form

f (q) ∈ C[[q, q]][y±1], (47)

where we recall that y = π Im(τ ). We also define the bigraded algebra

M =
⊕

r,s

Mr,s .

Note that Theorem 3 implies that all modular graph functions belong to M0,0.
The main result of [14] tells us, among other things, that there exists a subalgebra

MI E ⊂ M generated over Z sv by certain computable linear combinations of
products of real and imaginary parts of iterated Eichler integrals of Eisenstein series,
such that:

• It carries a grading by a certainM-degree and a filtration by the length (number of
integrations) of the iterated integrals, denoted byMI E

k ⊂ MI E .
• Every element of MI E admits an expansion of the form

f (q) ∈ Z sv[[q, q]][y±1]

• The sub-vector space of elements of fixed modular weights and M-degree ≤ m is
finite dimensional.

• Every element F ∈ MI E
k satisfies an inhomogeneous Laplace equation of the

form
(Δ + w)F ∈ (E + E)[y] × MI E

k−1 + EE[y] × MI E
k−2,

where E denotes the space of holomorphic Eisenstein series for SL2(Z).
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The elements of this algebra are called equivariant iterated Eichler integrals of
Eisenstein series. Their properties remind very much the conjectural properties of
modular graph functions. In fact, in [14] it is conjectured that modular graph func-
tions should belong to the weight (0, 0) subalgebra of MI E (which would imply
that Conjecture 2 is true). This is not surprising, if we think of the general philoso-
phy of string amplitudes: closed-string amplitudes are expected to be a single-valued
non-holomorphic version of open-string amplitudes; since genus-one open-string
amplitudes can be written in terms of (holomorphic) iterated Eichler integrals of
Eisenstein series, wewould therefore expect that the closed-string counterpart should
be given by real-analytic single-valued (i.e. modular) analogues, and the most nat-
ural candidate is given by the elements of the algebra MI E . However, the map
which associates to a given iterated Eichler integral its equivariant image is rather
involved beyond the simplest case of classical Eichler integrals,15 and this has ini-
tially discouraged the first attempts to use it to explicitly relate open-string integrals to
closed-string integrals. On the other side, we have seen that by the surprisingly simple
esv conjecture we can obtain (the asymptotically big part of) modular graph func-
tions from holomorphic graph functions, i.e. from special combinations of iterated
Eichler integrals. We believe that, despite their apparently different origin, Brown’s
“equivariant map” and our esv map should be related. Hopefully, understanding this
link should pave the way towards proving both Conjecture 2 and the esv conjecture.

Finally, we want to remark that all this suggests, as anticipated in Sect. 2, that
genus–g superstring amplitudes for g = 0, 1 seem to be be related to mixed motives
associated to moduli spaces of genus–g Riemann surfaces. It would be extremely
interesting to understand whether (and how) this will hold for higher genera, where
the analogous mathematical structures have not been understood yet.
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Some Algebraic and Arithmetic
Properties of Feynman Diagrams

Yajun Zhou

Abstract This article reports on some recent progresses in Bessel moments, which
represent a class of Feynman diagrams in 2-dimensional quantum field theory. Many
challenging mathematical problems on these Bessel moments have been formulated
as a vast set of conjectures, by David Broadhurst and collaborators, who work at
the intersection of high energy physics, number theory and algebraic geometry. We
present the main ideas behind our verifications of several such conjectures, which
revolve around linear and non-linear sum rules ofBesselmoments, aswell as relations
between individual Feynman diagrams and critical values of modular L-functions.

1 Introduction

1.1 Bessel Moments and Feynman Diagrams

In perturbative quantum field theory (pQFT), we use Feynman diagrams to quantify
the interactions among elementary particles [1, 13, 31, 37]. In this survey, we will
focus on 2-dimensional pQFT, where the propagator of a free particle with proper
mass m0 takes the following form:

1

(2π)2
lim

ε→0+

∫∫
R2

ei p·x−ε| p|2d2 p
| p|2 + m2

0

= K0(m0|x|)
2π

(1)

for x ∈ R
2

� {0}. Here, K0(t) := ∫ ∞
0 e−t cosh udu, t > 0 is the modified Bessel func-

tion of the second kind and zeroth order.
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Some results in 2-dimensional pQFT also find their way into the finite part of
renormalized perturbative expansions of (4 − ε)-dimensional quantum electrody-
namics [36]. For example, in Stefano Laporta’s recent computation of the 4-loop
contribution to electron’s magnetic moment [37], one of the master integrals is the
4-loop sunrise diagram for 2-dimensional pQFT:

��

��

��

��
�� := 24

∫ ∞

0
I0(t)[K0(t)]5tdt

=
∫ ∞

0

dx1
x1

∫ ∞

0

dx2
x2

∫ ∞

0

dx3
x3

∫ ∞

0

dx4
x4

1(
1 + ∑4

k=1 xk
)(
1 + ∑4

k=1
1
xk

) − 1
. (2)

Here, the single integral over the variable t represents the Feynman diagram in
configuration space (see [1, §1], [15, §9.2] or [13, (84)]), and I0(t) = 1

π

∫ π

0 et cos θdθ
is the modified Bessel function of the first kind and zeroth order; alternatively, a
quadruple integral over a rational function in the variables x1, x2, x3 and x4 represents
the same Feynman diagram in the Schwinger parameter space (see [15, §9.1] or [44,
§8]).

On one hand, Feynman diagrams provide us with many physically meaningful
multiple integrals over rational functions, which are special cases ofmotivic integrals
[3, 44], playing prominent rôles in the arena for algebraic geometers. On the other
hand, certain Feynman diagrams are (conjecturally or provably) related to arithmeti-
cally interesting objects [13, 42, 52], such as special values of modular L-functions
inside their critical strips, inviting pilgrims to the pantheon of number theorists.

After high-precision computations of Feynman diagrams, Bailey–Borwein–
Broadhurst–Glasser [1], Broadhurst [13, 15], Broadhurst–Schnetz [18] and
Broadhurst–Mellit [17] had formulated various conjectures on Bessel moments

IKM(a, b; n) :=
∫ ∞

0
[I0(t)]a[K0(t)]btndt (3)

with a, b, n ∈ Z≥0. The last few years had witnessed rapid progress in these conjec-
tures proposed by David Broadhurst and coworkers. In Sects. 1.2 and 1.3 below, we
give precise statements of some recently proven conjectures about Bessel moments,
before presenting in Sect. 1.4 a road map for their mathematical understanding.

1.2 Some Algebraic Relations Involving Bessel Moments

The following theorem about linear sum rules for Besselmoments grew out of numer-
ical conjectures by Bailey–Borwein–Broadhurst–Glasser [1, (220)], Broadhurst–
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Mellit [17, (7.10)] andBroadhurst–Roberts [9,Conjecture 2]. Thefirst proof appeared
in [48].

Theorem 1 (Generalized Bailey–Borwein–Broadhurst–Glasser sum rules and gen-
eralized Crandall numbers)

(a) We have

∫ ∞

0

[π I0(t) + i K0(t)]m + [π I0(t) − i K0(t)]m

i
[K0(t)]mtndt = 0 (4)

for m ∈ Z>1, n ∈ Z≥0,
m−n
2 ∈ Z>0, and

∫ ∞

0

[π I0(t) + i K0(t)]m − [π I0(t) − i K0(t)]m

i
[K0(t)]mtndt = 0 (5)

for m ∈ Z>0, n ∈ Z≥0,
m−n−1

2 ∈ Z>0, which generalize the Bailey–Borwein–
Broadhurst–Glasser sum rule [1, (220)].

(b) The Crandall numbers (OEIS A262961 [43])

A(n) :=
(
2

π

)4 ∫ ∞

0

{[π I0(t)]2 − [K0(t)]2
}

I0(t)[K0(t)]5 (2t)2n−1dt (6)

are integers for all n ∈ Z>0. More generally, the integral

Cm,n = 21+2(n−1)[1−(−1)m ]

πm+1

∫ ∞

0

[π I0(t) + i K0(t)]m − [π I0(t) − i K0(t)]m

i
×

× [K0(t)]m(2t)2n+m−3dt
(7)

evaluates to a positive integer for each m, n ∈ Z>0.

The next theorem includes two sets of non-linear sum rules, which were originally
discovered by Broadhurst–Mellit [17, (6.12) and (7.13)] through numerical experi-
ments on moderate-sized determinants. An analytic proof has recently been found
[53] for Broadhurst–Mellit determinants that come in arbitrary sizes.

Theorem 2 (Broadhurst–Mellit determinant formulae) Define Mk and Nk as k × k
matrices with elements

(Mk)a,b :=
∫ ∞

0
[I0(t)]a[K0(t)]2k+1−at2b−1dt, (8)

(Nk)a,b :=
∫ ∞

0
[I0(t)]a[K0(t)]2k+2−at2b−1dt. (9)



488 Y. Zhou

Then we have the following determinant formulae:

detMk =
k∏

j=1

(2 j)k− jπ j√
(2 j + 1)2 j+1

, (10)

detNk = 2π(k+1)2/2

�((k + 1)/2)

k+1∏
j=1

(2 j − 1)k+1− j

(2 j) j
, (11)

where Euler’s gamma function1 is defined by �(x) := ∫ ∞
0 t x−1e−tdt for x > 0.

1.3 Some Arithmetic Properties of Bessel Moments

In what follows, we write fk,N for a modular form (see Sect. 2.3 for technical details)
of weight k and level N , and define its L-function through a Mellin transform:

L( fk,N , s) := (2π)s

�(s)

∫ ∞

0
fk,N (iy)ys−1dy. (12)

A special L-value L( fk,N , s) is said to be critical, if s ∈ Z ∩ (0, k). In this survey,
we will be interested in the following three special modular forms:

f3,15(z) = [η(3z)η(5z)]3 + [η(z)η(15z)]3, (13)

f4,6(z) = [η(z)η(2z)η(3z)η(6z)]2, (14)

f6,6(z) = [η(2z)η(3z)]9
[η(z)η(6z)]3 + [η(z)η(6z)]9

[η(2z)η(3z)]3 , (15)

where the Dedekind eta function is defined as η(z) := eπ i z/12 ∏∞
n=1(1 − e2π inz) for

complex numbers z satisfying Im z > 0. For y > 0, one can deduce

fk,N

(
i

N y

)
= (

√
N y)k fk,N (iy) (16)

from the modular transformation η(−1/τ) = √
τ/ iη(τ) for τ/ i > 0. Consequently,

the L-functions attached to these three modular forms satisfy the following reflection
formulae [13, (95), (106), (138)]:

�( fk,N , s) :=
(√

N

π

)s

�
( s

2

)
�

(
s + 1

2

)
L( fk,N , s) = �( fk,N , k − s). (17)

1Throughout this survey, we reserve the upright � for Euler’s gamma function, and write Γ in
slanted typeface for congruence subgroups (to be introduced in Sect. 2.3).
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The studies of the Bessel moments IKM(1, 4; 1) and IKM(2, 3; 1) had been
initiated by Bailey–Borwein–Broadhurst–Glasser [1, §5]. Back in 2008, it was ana-
lytically confirmed that

IKM(2, 3; 1) =
√
15π

2
C (18)

where

C = 1

240
√
5π2

�

(
1

15

)
�

(
2

15

)
�

(
4

15

)
�

(
8

15

)
(19)

is the Bologna constant attributed to Broadhurst [1, 16] and Laporta [36]. Later
on, it was realized that (18) can be rewritten as IKM(2, 3; 1) = 3

4 L( f3,15, 2) =
3π

2
√
15

L( f3,15, 1) [13, (96)–(97)], thanks to the work of Rogers–Wan–Zucker [41,

Theorem 5]. An innocent-looking conjecture IKM(1, 4; 1) = 2π√
15
IKM(2, 3; 1)was

proposed in 2008 [1, (95)], but was not resolved until Bloch–Kerr–Vanhove carried
out a tour de force in motivic cohomology during 2015 [3], and Samart elucidated
the computations of special gamma values in 2016 [42]. We have recently simplified
[52, Theorem 2.2.2] the result of Bloch–Kerr–Vanhove and Samart, as stated in the
theorem below.

Theorem 3 (3-loop sunrise via Bologna constant) We have

IKM(1, 4; 1) = π2C = π2

5
L( f3,15, 1) = 3π

2
√
15

L( f3,15, 2). (20)

Basedon adiscussionwithFrancisBrownatLesHouches in 2010, and encouraged
by a result of Zhiwei Yun published in 2015 [47], David Broadhurst discovered some
relations between IKM(a, 6 − a; 1) and L( f4,6, s) [13, §7.3], as well as between
IKM(a, 8 − a; 1) and L( f6,6, s) [13, §7.6]. All these conjectures have been verified
recently [52, §§4–5], so they are included in the theorem below.

Theorem 4 (Critical L-values for 6-Bessel and 8-Bessel problems)

(a) We have

3

π2
IKM(1, 5; 1) = IKM(3, 3; 1) = 3

2
L( f4,6, 2), (21)

IKM(2, 4; 1) = π2

2
L( f4,6, 1) = 3

2
L( f4,6, 3), (22)

where the first equality in (21) comes from Theorem 1(a), and the last equality
in (22) descends from (17).

(b) We have
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Table 1 Organizational chart

IKM(4, 4; 1) = L( f6,6, 3), (23)

1

π2
IKM(1, 7; 1) = IKM(3, 5; 1) = 9

4
L( f6,6, 4), (24)

IKM(2, 6; 1) = 27

4
L( f6,6, 5), (25)

where the first equality in (24) follows from Theorem 1(a),

1.4 Plan of Proofs

To help our readers navigate through this survey, we present the Leitfaden in Table1.
In Sect. 2.1,we beginwith a summary of useful analytic properties forBessel func-

tions, which result in a proof of Theorem 1(a).We then presentWick rotations, which
are special contour deformations connecting moment problems for IKM(a, b; n) to
those for

JYM(α, β; n) :=
∫ ∞

0
[J0(t)]α[Y0(t)]β tndt, (26)

where a + b = α + β, and J0(x) := 2
π

∫ π/2
0 cos(x cosϕ)dϕ, Y0(x) := − 2

π∫ ∞
0 cos(x cosh u)du are Bessel functions of the zeroth order, defined for x > 0.
The JYM problems have some desirable properties [6, 51], which lead us to a quick
proof of Theorem 3. Further applications of Wick rotations are given in Sect. 3, in
the context of Theorem 1.
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In Sect. 2.2, we give a brief overview of Vanhove’s differential equations [44,
§9], and compute certain Wrońskian determinants involving Bessel moments. These
preparations allow us to present the main ideas behind the proof of Theorem 2, in
Sect. 4.

In Sect. 2.3, we describe how to obtain critical L-values via integrations over
products of certain modular forms, illustrating our general procedures with the proof
of Theorem 4(b). Some extensions in Sect. 5 then lead to a sketched proof of all the
statements in Theorem 4.

In Sect. 6, we wrap up this survey with some open questions on Bessel moments.

2 Toolkit

2.1 Wick Rotations of Bessel Moments

As we may recall, for ν ∈ C,−π < arg z < π , the Bessel functions Jν and Yν are
defined by

Jν(z) :=
∞∑

k=0

(−1)k

k!�(k + ν + 1)

( z

2

)2k+ν

, Yν(z) := lim
μ→ν

Jμ(z) cos(μπ) − J−μ(z)

sin(μπ)
,

(27)

which may be compared to the modified Bessel functions Iν and Kν :

Iν(z) :=
∞∑

k=0

1

k!�(k + ν + 1)

( z

2

)2k+ν

, Kν(z) := π

2
lim
μ→ν

I−μ(z) − Iμ(z)

sin(μπ)
. (28)

Here, the fractional powers of complex numbers are defined through wβ =
exp(β logw) for logw = log |w| + i argw, where | argw| < π .

The cylindrical Hankel functions H (1)
0 (z) = J0(z) + iY0(z) and H (2)

0 (z) =
J0(z) − iY0(z) are both well defined for −π < arg z < π . In view of (27) and (28),
we can verify

J0(i x) = I0(x) and
π i

2
H (1)

0 (i x) = K0(x) (29)

along with

H (1)
0 (±x + i0+) = ±J0(x) + iY0(x) (30)

for x > 0.
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As |z| → ∞,−π < arg z < π , we have the following asymptotic expansions [46,
§7.2]:

⎧⎪⎨
⎪⎩

H (1)
0 (z) =

√
2

π z
ei(z− π

4 )

{
1 +

N∑
n=1

[
�
(
n + 1

2

)]2
(2i z)nπn! + O

(
1

|z|N+1

)}
,

H (2)
0 (z) =

√
2

π z
ei( π

4 −z)

{
1 +

N∑
n=1

[
�
(
n + 1

2

)]2
(−2i z)nπn! + O

(
1

|z|N+1

)}
,

(31)

which allow us to establish a vanishing identity

∫ i∞

−i∞
[H (1)

0 (z)H (2)
0 (z)]m zndz = 0, n ∈ Z ∩ [0, m − 1) (32)

by closing the contour rightwards. One can transcribe the last vanishing integral into
the statements in Theorem 1(a), bearing in mind that

H (1)
0 (i t)H (2)

0 (i t) = 4K0(|t |)
π2

[
K0(|t |) − π i t

|t | I0(|t |)
]

, ∀t ∈ (−∞, 0) ∪ (0,∞).

(33)

Lemma 1 (An application of Wick rotation)We have the following relation between
IKM and JYM:

(
2

π

)4

IKM(1, 4; 1) = −JYM(5, 0; 1) + 6JYM(3, 2; 1) − JYM(1, 4; 1). (34)

Proof From (29), we know that

(
2

π

)4

IKM(1, 4; 1) = −Re
∫ i∞

0
J0(z)[H (1)

0 (z)]4zdz, (35)

where the contour runs along the positive Im z-axis.
Noting that the asymptotic behavior of J0(z) = [H (1)

0 (z) + H (2)
0 (z)]/2 can be

inferred from (31), we can rotate the contour 90◦ clockwise, from the positive Im z-
axis to the positive Re z-axis (see Fig. 1a), thereby equating (35) with

−Re
∫ ∞

0
J0(x)[H (1)

0 (x)]4xdx = −Re
∫ ∞

0
J0(x)[J0(x) + iY0(x)]4xdx, (36)

hence the right-hand side of (34). �

Proposition 1 (Evaluation of IKM(1, 4; 1)) We have

IKM(1, 4; 1) = π4

30
JYM(5, 0; 1) = π2C, (37)

where C is the Bologna constant defined in (19).
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Rez

Imz

Rez

Imz
(a) (b)

Fig. 1 a Wick rotation that turns an IKM to a sum of several JYM’s. Note that the contribution
from the circular arc tends to zero as |z| → ∞, thanks to Jordan’s lemma being applicable to
the asymptotic behavior of Hankel functions. b Contour of integration that leads to a cancelation
formula for JYM’s

Proof For �, m, n ∈ Z≥0 satisfying either � − (m + n)/2 < 0; m < n or � − m =
� − n < −1, we can prove

∫ i0++∞

i0+−∞
[J0(z)]m[H (1)

0 (z)]nz�dz := lim
ε→0+

lim
R→∞

∫ iε+R

iε−R
[J0(z)]m[H (1)

0 (z)]nz�dz = 0,

(38)

by considering the contour in Fig. 1b. According to (30) and J0(−x) = J0(x), we
may reformulate (38) as

∫ ∞

0
[J0(x)]m

{[J0(x) + iY0(x)]n + (−1)�[−J0(x) + iY0(x)]n
}

x�dx = 0, (38′)

which is a convenient cancelation formula for JYM’s.
With J (J 4−6J 2Y 2 + Y 4) − 2J 2

3 [(J + iY )3 − (−J + iY )3]− (J+iY )5−(−J+iY )5

10 =
− 8J 5

15 in hand, we can identify the right-hand side of (34) with 8
15JYM(5, 0; 1).

This proves the first equality in (37). The second equality can be directly deduced
from [6, (5.2)]. �

So far, we have recapitulated an analytic proof of Theorem 3, as originally given
in [52, §2]. It is worth pointing out that Kluyver’s function [35]

pn(x) =
∫ ∞

0
J0(xt)[J0(t)]n xtdt (39)

characterizes the probability density of the distance x traveled by a rambler, who
walks in the Euclidean plane, taking n consecutive steps of unit lengths, aiming
at uniformly distributed random directions. The analytic properties of such proba-
bility densities have been extensively studied [5–8, 49]. Recently, we have shown
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Table 2 The first few
Vanhove differential
operators (abridged from [44,
§9, Table 1])

n L̃n

1 u(u − 4)D1 + (u − 2)D0

2 u(u − 1)(u − 9)D2 + (3 u2 − 20u + 9)D1 + (u − 3)D0

3 u2(u − 4)(u − 16)D3 + 6u(u2 − 15u + 32)D2 +
(7u2 − 68u + 64)D1 + (u − 4)D0

4 u2(u − 1)(u − 9)(u − 25)D4 + 2u(5u3 − 140u2 +
777u − 450)D3 + (25u3 − 518u2 + 1839u −
450)D2 + (3u − 5)(5u − 57)D1 + (u − 5)D0

[49, Theorem 5.1] that pn(x) is expressible through Feynman diagrams when n is
odd, as stated in the theorem below.

Theorem 5 (p2 j+1(x) as Feynman diagrams) For each j ∈ Z>1, the function
p2 j+1(x), 0 ≤ x ≤ 1 is a unique Q-linear combination of

∫ ∞

0
I0(xt)[I0(t)]2m+1

[
K0(t)

π

]2( j−m)

xtdt, where m ∈ Z ∩
[
0,

j − 1

2

]
. (40)

(When j = 1, the same is true for 0 ≤ x < 1.)

2.2 Vanhove’s Differential Equations and Wrońskians
of Bessel Moments

In [44, §9], Vanhove has constructed nth order differential operators L̃n (written in
the variable u in this survey) so that the relation

L̃n

∫ ∞

0
I0(

√
ut)[K0(t)]n+1tdt = const (41)

holds for all n ∈ Z>0 and u ∈ (0, (n + 1)2). The first few Vanhove operators L̃n are
listed in Table2, where Dn = ∂n/∂un for n ∈ Z>0 and D0 is the identity operator.

In general, for each n ∈ Z≥1, Vanhove’s operator L̃n satisfies

{
t L̃n I0(

√
ut) = (−1)n

2n L∗
n+2

I0(
√

ut)
t ,

t L̃n K0(
√

ut) = (−1)n

2n L∗
n+2

K0(
√

ut)
t ,

(42)

where L∗
n+2 is the formal adjoint to the Borwein–Salvy operator Ln+2 [4], the lat-

ter of which is the (n + 1)-st symmetric power of the Bessel differential operator
(t∂/∂t)2 − t2 that annihilates both I0(t) and K0(t). Using the Bronstein–Mulders–
Weil algorithm [19] for symmetric powers, we have shown [53, Lemma 4.2] that the
following homogeneous differential equations
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L̃n

[∫ ∞

0
I0(

√
ut)[K0(t)]n+1tdt + (n + 1)

∫ ∞

0
K0(

√
ut)I0(t)[K0(t)]ntdt

]
= 0,

(43)

L̃n

∫ ∞

0
I0(

√
ut)[I0(t)] j−1[K0(t)]n+2− j tdt = 0, ∀ j ∈ Z ∩

[
2,

n

2
+ 1

]
,

(44)

L̃n

∫ ∞

0
K0(

√
ut)[I0(t)] j [K0(t)]n+1− j tdt = 0, ∀ j ∈ Z ∩

[
2,

n + 1

2

]

(45)

hold for u ∈ (0, 1).
For N ∈ Z>1, we write W [ f1(u), . . . , fN (u)] for the Wrońskian determinant

det(Di−1 f j (u))1≤i, j≤N . In [53, §4.1], we have constructed some Wrońskians as
precursors to Broadhurst–Mellit determinants detMk and detNk (see Theorem 2).
Concretely speaking, for each k ∈ Z≥2, we set

⎧⎪⎨
⎪⎩

μ�
k,1(u) = 1

2k+1

∫ ∞
0 {I0(

√
ut)K0(t) + 2kK0(

√
ut)I0(t)}[K0(t)]2k−1t2�−1dt,

μ�
k, j (u) = ∫ ∞

0 I0(
√

ut)[I0(t)] j−1[K0(t)]2k+1− j t2�−1dt,∀ j ∈ Z ∩ [2, k],
μ�

k, j (u) = ∫ ∞
0 K0(

√
ut)[I0(t)] j−k+1[K0(t)]3k−1− j t2�−1dt, ∀ j ∈ Z ∩ [k + 1, 2k − 1],

(46)

and

⎧⎨
⎩

ν�
k,1(u) = 1

2(k+1)

∫ ∞
0 {I0(

√
ut)K0(t) + (2k + 1)K0(

√
ut)I0(t)}[K0(t)]2k t2�−1dt,

ν�
k, j (u) = ∫ ∞

0 I0(
√

ut)[I0(t)] j−1[K0(t)]2k+2− j t2�−1dt,∀ j ∈ Z ∩ [2, k + 1],
ν�

k, j (u) = ∫ ∞
0 K0(

√
ut)[I0(t)] j−k[K0(t)]3k+1− j t2�−1dt,∀ j ∈ Z ∩ [k + 2, 2k],

(47)

and consider theWrońskian determinantsΩ2k−1(u) := W [μ1
k,1(u), . . . , μ1

k,2k−1(u)],
ω2k(u) := W [ν1

k,1(u), . . . , ν1
k,2k(u)]. For k ∈ Z≥2, Vanhove’s operators L̃2k−1 and

L̃2k take the following forms [44, (9.11)–(9.12)]:

L̃2k−1 = m2k−1(u)D2k−1 + 2k − 1

2

dm2k−1(u)

du
D2k−2 + L .O.T ., (48)

L̃2k = n2k(u)D2k + k
dn2k(u)

du
D2k−1 + L .O.T ., (49)

where

m2k−1(u) = uk
k∏

j=1

[u − (2 j)2], n2k(u) = uk
k+1∏
j=1

[u − (2 j − 1)2], (50)

and “L .O.T .” stands for “lower order terms”. Therefore, we have the following
evolution equations for Wrońskians:
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D1Ω2k−1(u) = 2k − 1

2
Ω2k−1(u)D1 log

1

uk
∏k

j=1[(2 j)2 − u] , (51)

D1ω2k(u) = kω2k(u)D1 log
1

uk
∏k+1

j=1[(2 j − 1)2 − u] , (52)

where 0 < u < 1. These differential equations will play crucial rôles in the proof of
Theorem 2 in Sect. 4.

2.3 Modular Forms and Their Integrations

Let

Γ0(N ) :=
{(

a b
c d

)∣∣∣∣ a, b, c, d ∈ Z; ad − bc = 1; c ≡ 0 (modN )

}
(53)

be the Hecke congruence group of level N ∈ Z>0. For a given Dirichlet character
χ , a modular form Mk,N (z) of weight k, level N and multiplier χ is a holomorphic2

function that transforms like3

Mk,N

(
az + b

cz + d

)
= (cz + d)kχ(d)Mk,N (z), (54)

where
(

a b
c d

)
runs over all the members of Γ0(N ), and z is an arbitrary point in the

upper half-plane H := {w ∈ C|Imw > 0}. Modular forms of weight 0 (relaxing the
requirement on holomorphy at cusps) are called modular functions. These Γ0(N )-
invariant modular functions are effectively defined on the moduli space Y0(N )(C) =
Γ0(N )\H (see Fig. 2) for isomorphism classes of complex elliptic curves.

Following the notation of Chan–Zudilin [20], we write Ŵ3 = 1√
3

(
3 −2
6 −3

)
and con-

struct a group Γ0(6)+3 = 〈Γ0(6), Ŵ3〉 by adjoining Ŵ3 to Γ0(6). This group is of
particular importance to the following motivic integral [3, §2]:

∫ ∞

0
I0(

√
ut)[K0(t)]4tdt

= 1

8

∫ ∞

0

dX

X

∫ ∞

0

dY

Y

∫ ∞

0

dZ

Z

1

(1 + X + Y + Z)
(
1 + 1

X + 1
Y + 1

Z

) − u
.

(55)

2For technical requirements on holomorphy at i∞ (more precisely, the Γ0(N ) images of i∞,
namely, the cusps Γ0(N )\P

1(Q) = Γ0(N )\(Q ∪ {i∞})), see [23, Definition 1.2.3].
3For the modular forms f4,6(z) in (14) and f6,6(z) in (15), the multiplier is the trivial Dirichlet
character χ(d) ≡ 1. For the modular form f3,15(z) in (13), we have χ(d) = ( d

15

)
[38, Proposition

5.1], where the Dirichlet character is defined through a Jacobi–Kronecker symbol.
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(a)

(c) (d) (e) (f)

(b)

Fig. 2 (Adapted from [26, Fig. 61].) a Fundamental domainD of Γ0(1) = SL(2, Z). The moduli
space Y0(1)(C) = SL(2, Z)\H is a quotient space of D that identifies the corresponding sides
of the boundary ∂D along the arrows. b Tessellation of the upper half-plane H by successive
translations [generator T̂ = τ̂−1 : z �→ z + 1] and inversions [generator Ŝ = Ŝ−1 : z �→ −1/z] of
the fundamental domain D. Each tile is subdivided and painted in gray or white according as the
pre-image satisfies Re z < 0 or Re z > 0 in the fundamental domain D. c Fundamental domain
D6 of Γ0(6), dissected with SL(2, Z)-tiles (cf. panel b). Gluing the three pairs of boundary sides
of D6 along the arrows, one obtains the moduli space Y0(6)(C) = Γ0(6)\H. d–f Fundamental
domainsD6,k for the Chan–Zudilin groups Γ0(6)+k = 〈Γ0(6), Ŵk〉, where Ŵ2z = (2z − 1)/(6z −
2), Ŵ3z = (3z − 2)/(6z − 3), and Ŵ6z = −1/(6z)

As pointed out in Verrill’s thesis [45, Theorems 1 and 2], the differential equation
L̃3 f (u) = 0 (cf. Table2) is the Picard–Fuchs equation for a pencil of K3 surfaces:

XA3 : (1 + X + Y + Z)

(
1 + 1

X
+ 1

Y
+ 1

Z

)
= u, (56)

whose monodromy group is isomorphic to Γ0(6)+3, the image of Γ0(6)+3 after quo-
tienting out by scalars. As a consequence, the general solutions to L̃3 f (u) = 0 admit
a modular parametrization

f (u) = Z6,3(z)(c0 + c1z + c2z2), (57)
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where c0, c1, c2 ∈ C are constants, and

u = −64X6,3(z) := −
[
2η(2z)η(6z)

η(z)η(3z)

]6
, (58)

Z6,3(z) := [η(z)η(3z)]4
[η(2z)η(6z)]2 . (59)

Here, X6,3(z) is a modular function onΓ0(6)+3 [20, (2.2)], while Z6,3(z) is a modular
form of weight 2 and level 6 [20, (2.5)].

Since
∫ ∞
0 J0(

√−ut)I0(t)[K0(t)]3tdt is annihilated byVanhove’s operator L̃3, we
can establish the following modular parametrization

∫ ∞

0
J0

(
8
√

X6,3(z)t
)

I0(t)[K0(t)]3tdt = π2

16
Z6,3(z) (60)

through asymptotic analysis of both sides near the infinite cusp z → i∞ [where-
upon the left-hand side tends to

∫ ∞
0 I0(t)[K0(t)]3tdt = IKM(1, 3; 1) and the right-

hand side tends to π2

16 = IKM(1, 3; 1)]. Here, the positive Im z-axis corresponds to√−u = 8
√

X6,3(z) ∈ (0,∞). In a similar fashion, one can show that

∫ ∞

0
J0

(
8
√

X6,3(z)t
)

[I0(t)]2[K0(t)]2tdt = π z

4i
Z6,3(z) (61)

holds for z/ i > 0. Now, we can prove Theorem 4(b) by throwing (60)–(61) into the
Parseval–Plancherel identity for Hankel transforms [1, (16)]

∫ ∞

0
f (t)g(t)tdt =

∫ ∞

0

[∫ ∞

0
J0(xt) f (t)tdt

] [∫ ∞

0
J0(xτ)g(τ )τdτ

]
xdx, (62)

and noting that [52, Theorem 5.1.1]

[Z6,3(z)]2 dX6,3(z)

dz
= 2π i f6,6(z). (63)

Actually, we can say a little more about the 8-Bessel problem than what has
been stated in Theorem 4(b). With heavy use of Wick rotations and integrations
of f6,6(z)zn, n ∈ {0, 1, 2, 3, 4} over the boundary ∂D6,3 of the fundamental domain
D6,3 (Fig. 2e), one may show that [52, §5]

L( f6,6, 5)

L( f6,6, 3)
= 2π2

21
. (64)

Comparing this to Theorem 4(b), one confirms a sum rule 9π2IKM(4, 4; 1) =
14IKM(2, 6; 1), which was originally proposed in 2008 [1, at the end of §6.3,
between (228) and (229)].
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3 Some Linear Sum Rules of Feynman Diagrams

The contour integral in (32) is no longer convergent when n ∈ Z ∩ [m,∞), so the
methods in Sect. 2.1 do not directly apply to Theorem 1(b), which involves Bessel
moments IKM(a, b; n) with high orders n ≥ (a + b − 2)/2. In [48, §3], I used a
real-analytic approach (basedonHilbert transforms), to circumvent divergent contour
integrals while handling Theorem 1(b). After email exchanges with Mark van Hoeij
on Oct. 24, 2017, about the asymptotic expansion of [I0(x)K0(x)]4 for large and
positive x (see van Hoeij’s update on [43], dated Oct. 23, 2017), I realized that the
divergence problem in the complex-analytic approach can be amended by subtracting
Laurent polynomials from [H (1)

0 (z)H (2)
0 (z)]m . This amendment is described in the

lemma below.

Lemma 2 (Asymptotic expansions and Bessel moments) We have the following
asymptotic expansion as |z| → ∞,−π < arg z < π :

(π

2

)2m [H (1)
0 (z)H (2)

0 (z)]m

=
N∑

n=1

(−1)n+1

z2n+m−2

∫ ∞

0

[π I0(t) + i K0(t)]m − [π I0(t) − i K0(t)]m

π i
[K0(t)]mt2n+m−3dt

+ O

(
1

|z|2N+m

)
,

(65)

where m, N ∈ Z>0.

Proof From (31), we know that as |z| → ∞,−π < arg z < π , there exist certain
constant coefficients am,n such that the following relation holds:

Fm,N (z) := [H (1)
0 (z)H (2)

0 (z)]m −
N∑

n=1

am,n

z2n+m−2
= O

(
1

|z|2N+m

)
. (66)

To determine am,N , we consider

lim
ε→0+

lim
T →∞

(∫ −iε

−iT
+

∫
Cε

+
∫ iT

iε

)
Fm,N (z)z2N+m−3dz, (67)

where Cε is a semi-circular arc in the right half-plane, joining −iε to iε. For each
fixed ε > 0, the contour integral in question tends to zero, as T → ∞, becausewe can
close the contour to the right. Recalling (33), and integrating the Laurent polynomial
over Cε, we arrive at the claimed result. �

Before moving onto the proof of Theorem 1(b) in the next proposition, we point
out that one can also generalize the method in the last lemma into other cancelation
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formulae. For example, in [50, Lemma 3.3], we used a vanishing contour integral

lim
T →∞

∫ iT

−iT
H (1)

0 (z)H (2)
0 (z)

{
[H (1)

0 (z)H (2)
0 (z)]2 − 4

π2z2

}
z3dz = 0 (68)

to prove

∫ ∞

0
I0(t)[K0(t)]5t3dt = π2

3

∫ ∞

0
I0(t)K0(t)

{
[I0(t)]2[K0(t)]2 − 1

4t2

}
t3dt, (69)

which paved way for the verification of a conjecture [50, (1.11)] due to Laporta [37,
(29)] and Broadhurst (private communication on Nov. 10, 2017).

Thanks to van Hoeij’s observation that led to Lemma 2, we see that the expression
Cm,n in (7) evaluates to a rational number [cf. (31)], and these sequences of rational
numbers satisfy a discrete convolution relation with respect to the power m. To show
that Cm,n is in fact a positive integer, it now suffices to prove that, for each � ∈ Z>0,

C1,� = [(2� − 2)!]3
22�−2[(� − 1)!]4 = [(2� − 3)!!]2

(
2� − 2

� − 1

)
(70)

and

C2,� = 1

24(�−1)

�∑
k=1

[(2� − 2k)!]3
[(� − k)!]4

[(2k − 2)!]3
[(k − 1)!]4 (71)

are both integers. Here, we have
(n

k

) := n!
k!(n−k)! ∈ Z for n ∈ Z≥0, k ∈ Z ∩ [0, n], and

(2n − 1)!! := (2n)!/(n!2n) ∈ Z for n ∈ Z≥0, so the statement C1,� ∈ Z holds true.
The integrality of C2,� will be explained below.

Proposition 2 (An integer sequence) For each � ∈ Z>0, the number α� := C2,� is a
positive integer.

Proof In [40, Theorem 3.1],MathewRogers has effectively shown that the following
identity holds for |u| sufficiently small:

∞∑
�=1

α�+1 − �2α�

(�!)2 u� = 3
∞∑

n=1

[(2n − 1)!!]2
(
3n − 1

2n

)
1

(n!2n)2

u2n

(1 − u)3n
. (72)

Comparing the coefficients of un on both sides, we see that, for each n ∈ Z>0, the
expression αn+1 − n2αn equals a sum of finitelymany terms, each of which is an inte-
ger multiple of (k!!)2 ∈ Z for a certain odd positive integer k less than n. Therefore,
we have α1 = 1, α�+1 − �2α� ∈ Z for � ∈ Z>0, which entails the claimed result. �
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4 Some Non-linear Sum Rules of Feynman Diagrams

Aswe did in Sect. 3, wewill build non-linear sum rules of Feynman diagramswithout
evaluating individual Bessel moments in closed form. In what follows, we describe a
key step towards the proof of Broadhurst–Mellit determinant formulae (Theorem 2),
namely, the asymptotic analysis of the Wrońskians Ω2k−1(u) and ω2k(u) introduced
in Sect. 2.2.

As in [53, §4], we differentiate (46) with respect to u and define

μ́�
k, j (u) := 2

√
u D1μ�

k, j (u), ∀ j ∈ Z ∩ [1, 2k − 1]. (73)

Through iterated applications of the Bessel differential equations (u D2 + D1)

I0(
√

ut) = t2

4 I0(
√

ut) and (u D2 + D1)K0(
√

ut) = t2

4 K0(
√

ut), we can verify

(2
√

u)(k−1)(2k−1)Ω2k−1(u) = det

⎛
⎜⎜⎝

μ1
k,1(u) · · · μ1

k,2k−1(u)

μ́1
k,1(u) · · · μ́1

k,2k−1(u)

· · · · · · · · · · · · · · · · · · · · ·
μk

k,1(u) · · · μk
k,2k−1(u)

⎞
⎟⎟⎠ , (74)

where the μ (resp. μ́) terms occupy the odd-numbered (resp. even-numbered) rows.
Since W [I0(u), K0(u)] = −I0(u)K1(u) − K0(u)I1(u) = −1/u, we can show that

{
μ�

k, j (1) = μ�
k,k+ j−1(1),

μ́�
k,k+ j−1(1) − μ́�

k, j (1) = −μ�
k−1, j−1(1)

(75)

for all j ∈ Z ∩ [2, k]. Thus, we obtain, after column eliminations and row bubble
sorts,

2(k−1)(2k−1)Ω2k−1(1)

= det

⎛
⎜⎜⎝

μ1
k,1(1) · · · μ1

k,k(1) 0 · · · 0
μ́1

k,1(1) · · · μ́1
k,k(1) −μ1

k−1,1(1) · · · −μ1
k−1,k−1(1)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
μk

k,1(1) · · · μk
k,k(1) 0 · · · 0

⎞
⎟⎟⎠

= (−1)
k(k−1)

2 det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

MT
k O

μ́1
k,1(1) · · · μ́1

k,k(1)
· · · · · · · · · · · · · · · · · ·
μ́k−1

k,1 (1) · · · μ́k−1
k,k (1)

−MT
k−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (76)
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which factorizes into

Ω2k−1(1) = (−1)
(k−1)(k−2)

2
detMk−1

2(k−1)(2k−1)
detMk (77)

for each k ∈ Z≥2. By a similar procedure (see [53, Proposition 4.4] for detailed
asymptotic analysis), one can show that

lim
u→0+

uk(2k−1)/2Ω2k−1(u) = (−1)
(k−1)(k−2)

2
k[�(k/2)]2
(2k + 1)

(detNk−1)
2

2(k−1)(2k−1)+1
. (78)

Consequently, the evolution equation in (51) admits a solution

Ω2k−1(u) = (−1)
(k−1)(k−2)

2 k[�(k/2)]2
uk(2k−1)/2(2k + 1)

(detNk−1)
2

2(k−1)(2k−1)+1

k∏
j=1

[
(2 j)2

(2 j)2 − u

]k− 1
2

(79)

for u ∈ (0, 1].
Comparing (77) and (79), we arrive at

detMk−1 detMk = k[�(k/2)]2(detNk−1)
2

2(2k + 1)

k∏
j=1

[
(2 j)2

(2 j)2 − 1

]k− 1
2

, (80)

for all k ∈ Z≥2. A similar service [53, §4.3] on ω2k(u) then brings us

detNk−1 detNk = 2k + 1

k + 1

(detMk)
2

(k − 1)!
k+1∏
j=2

[
(2 j − 1)2

(2 j − 1)2 − 1

]k

. (81)

The last pair of equations, togetherwith the initial conditions detM1 = IKM(1, 2; 1)
= π

3
√
3
[1, (23)] and detN1 = IKM(1, 3; 1) = π2

24 [1, (55)], allow us to prove Theo-
rem 2 by induction.

As a by-product, we see from (79) that Ω2k−1(u) = W [μ1
k,1(u), . . . , μ1

k,2k−1(u)]
is non-vanishing for u ∈ (0, 1]. Therefore, the functions μ1

k,1(u), . . . , μ1
k,2k−1(u)

(restricted to the interval (0, 1]) form a basis for the kernel space of L̃2k−1. Con-
sequently, for each k ∈ Z≥2, the function p2k(

√
u)/

√
u, 0 < u ≤ 1 (where p2k(x) =∫ ∞

0 J0(xt)[J0(t)]2k xtdt is Kluyver’s probability density) is an R-linear combination
of the functions μ1

k,1(u), . . . , μ1
k,2k−1(u). Unlike our statement in Theorem 5, where

the Bessel moment representation of p2 j+1(x), j ∈ Z≥2 leaves a convergent Taylor
expansion for 0 ≤ x ≤ 1, the representation of p2k(x), 0 ≤ x ≤ 1 through a linear
combination of Bessel moments may involve O(x log x) singularities in the x → 0+
regime, attributable to the Bessel function K0. Such logarithmic singularities had
been previously studied by Borwein–Straub–Wan–Zudilin [6].
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5 Critical Values of Modular L-Functions and Multi-loop
Feynman Diagrams

As in the proof of Theorem 4(b) in Sect. 2.3, we need to fuse Hankel transforms in
the Parseval–Plancherel identity to prove (22).

Fusing the following Hankel transform (cf. [52, (4.1.16)])
∫ ∞

0
J0

(
3[η(w)]2[η(6w)]4
[η(3w)]2[η(2w)]4 i t

)
I0(t)[K0(t)]2tdt = π

3
√
3

η(3w)[η(2w)]6
[η(w)]3[η(6w)]2 (82)

(where w = 1
2 + iy, y > 0 corresponds to 0 <

3[η(w)]2[η(6w)]4
[η(3w)]2[η(2w)]4 i < ∞) with itself, we

obtain (cf. [52, Proposition 4.2.1])

IKM(2, 4; 1) = π3i

3

∫ 1
2 +i∞

1
2

f4,6(w)dw. (83)

This is not quite the statement in (22) yet, as the integration path still sits on the
“wrong” portion of ∂D6,2 (Fig. 2d). To compensate for this, we need another Hankel
fusion, together with some modular transforms on the Chan–Zudilin group Γ0(6)+2,
to construct an identity [52, Proposition 4.2.2]:

JYM(6, 0; 1) = 12

π i

∫ i∞

0
f4,6(w)dw − 6

π i

∫ 1
2 +i∞

1
2

f4,6(w)dw. (84)

Now that Wick rotation brings us IKM(2, 4; 1) = π4

30 JYM(6, 0; 1) [52, (4.1.1)], we
can deduce (22) from the last two displayed equations.

It takes slightly more effort to verify (21). Towards this end, we need a “Hilbert
cancelation formula” [52, Lemma 4.2.4]

∫ ∞

0

[∫ ∞

0
J0(xt)F(t)tdt

] [∫ ∞

0
Y0(xτ)F(τ )τdτ

]
xdx = 0 (85)

for functions F(t), t > 0 satisfying certain growth bounds, along with modular
parametrizations of some generalized Hankel transforms, such as (cf. [52, (4.1.31)])

∫ ∞

0
J0

(
3[η(w)]2[η(6w)]4
[η(3w)]2[η(2w)]4 i t

)
[K0(t)]3tdt

− 3π

2

∫ ∞

0
Y0

(
3[η(w)]2[η(6w)]4
[η(3w)]2[η(2w)]4 i t

)
I0(t)[K0(t)]2tdt

= π2(2w − 1)

2
√
3i

η(3w)[η(2w)]6
[η(w)]3[η(6w)]2 (86)

for w = 1
2 + iy, y > 0. We refer our readers to [52, Proposition 4.1.3 and Theorem

4.2.5] for detailed computations that lead to (21).
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6 Outlook

6.1 Broadhurst’s p-adic Heuristics

In Sect. 1.3, the modular forms f3,15, f4,6 and f6,6 were not picked randomly, but
were discovered by Broadhurst via some deep insights into p-adic analysis and étale
cohomology [21, 32]. In short, Broadhurst’s computations of Bessel moments over
finite fields led him to local factors in the Hasse–Weil zeta functions, which piece
together into the modular L-functions, namely, L( f3,15, s) for the 5-Bessel problem,
L( f4,6, s) for the 6-Bessel problem, and L( f6,6, s) for the 8-Bessel problem.

On the arithmetic side, Broadhurst investigated Kloosterman moments (“Bessel
moments over finite fields”), with extensive numerical experiments [13, §§2–6]. A
Bessel function over a finite field [39], with respect to the variable a ∈ Fq = Fpk , is
defined by the following Kloosterman sum:

Kl2(Fpk , a) :=
∑

x1,x2∈F×
q ,x1x2=a

e
2π i

p TrFq /Fp (x1+x2) =
∑
x∈F×

q

e
2π i

p TrFq /Fp (x+ a
x ) (87)

where the Frobenius trace TrFq/Fp acts on an element z ∈ Fq as TrFq/Fp (z) :=∑k−1
j=0 z p j

. Writing Kl2(Fpk , a) = −αa − βa where αaβa = q, and introducing the

n-th symmetric power Kln2 := Symn(Kl2) as Kln2(Fpk , a) := ∑n
j=0 α

j
aβ

n− j
a , we may

further define Bessel moments over a finite field as the following Kloosterman
moments:

Sn(q) :=
∑
a∈F×

q

Kln2(Fpk , a) =
∑
a∈F×

q

n∑
j=0

α j
aβn− j

a . (88)

With cn(q) = − 1+Sn(q)

q2 for a prime power q = pk , one defines the Hasse–Weil local
factor by a formula

Zn(p, T ) := exp

(
−

∞∑
k=0

cn(pk)

k
T k

)
. (89)

Following the notations of Fu–Wan [28], we set L p(P
1
Fp

� {0,∞},Symn(Kl2), s) =
1/Zn(p, p−s), and define the Hasse–Weil zeta function

ζn,1(s) :=
∏

p

L p(P
1
Fp

� {0,∞},Symn(Kl2), s) =
∏

p

1

Zn(p, p−s)
, (90)

where the product runs over all the primes. It is known that ζ5,1(s) = L( f3,15, s)
[38] and ζ6,1(s) = L( f4,6, s) [34]. The structure of ζ7,1(s), which involves a Hecke
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eigenform of weight 3 and level 525, had been conjectured by Evans [25, Conjecture
1.1], before being completely verified by Yun [47, §4.7.7]. The story for the 8-Bessel
problem is much more convoluted (see [47, Theorem 4.6.1 and Appendix B] as well
as [13, §7.6]).

On the geometric side, Broadhurst’s L-functions L( f3,15, s) and L( f4,6, s) are
closely related to the étale cohomologies of certain Calabi–Yau manifolds. Con-
cretely speaking, one may regard the 4-loop sunrise [quadruple integral in (2)] as a
motivic integral over the Barth–Nieto quintic variety [2, 30, 34], which is defined
through a complete intersection

N :=
{

[u0 : u1 : u2 : u3 : u4 : u5] ∈ P
5

∣∣∣∣∣
5∑

k=0

uk =
5∑

k=0

1

uk
= 0

}
. (91)

The projective variety N has a smooth Calabi–Yau model Y . Its third étale cohomol-
ogy group H 3

ét(Y ) is related to 2-dimensional representations of Gal(Q/Q) [34, §3],
so that for each prime p ≥ 5, one has L p(H 3

ét(Y ), s) = [1 − ap(Y )p−s + p3−2s]−1

for

ap(Y ) = tr(Frob∗
p, H 3

ét(Y )) = 1 + 50p + 50p2 + p3 − #Y (Fp), (92)

where #Y (Fp) counts the number of points within Y over the finite field Fp. The
modular L-function L( f4,6, s) coincides with L(H 3

ét(Y ), s) = ∏
p L p(H 3

ét(Y ), s) for
all the local factors L p(·, s) corresponding to primes p ≥ 5 and Re s sufficiently
large. A similar p-adic reinterpretation for L( f3,15, s) also exists. Let An be the
Fourier coefficient in f3,15(z) = ∑∞

n=1 Ane2π inz , and
( p
3

)
be the Legendre symbol

for a prime p other than 3 and 5, then [38, Theorem 5.3]

1 + p2 + p
(
16 + 4

( p

3

))
+ Ap (93)

counts the number ofFp-rational points of a K3 surface that is theminimal resolution
of singularities of

{
[u0 : u1 : u2 : u3 : u4] ∈ P

4

∣∣∣∣∣
4∑

k=0

uk =
4∑

k=0

1

uk
= 0

}
. (94)

Behind the aforementioned results on p-adic Bessel moments is a long and heroic
tradition of algebraic geometry. Back in the 1970s, building upon the theories of
Dwork [24] and Grothendieck [32, 33], Deligne interpreted Hasse–Weil L-functions
as Fredholm determinants of Frobenius maps [22, (1.5.4)]. This tradition has been
continued by Robba [39], Fu–Wan [27–29] and Yun [47], in their studies of p-adic
Bessel functions and Kloosterman sheaves.

While Broadhurst’s p-adic heuristics give strong hints that L( f3,15, s), L( f4,6, s)
and L( f6,6, s) are appropriate mathematical models for 5-, 6- and 8-Bessel problems,
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our proofs of Theorems 3 and 4 described in this survey do not touch upon the p-
adic structure. It is perhaps worthwhile to rework these proofs from the Hasse–Weil
perspective, using local-global correspondence. We call for this effort because there
are still many conjectures of Broadhurst (see Sect. 6.2 for a partial list) that go beyond
the reach of this survey, but might appear tractable to specialists in p-adic analysis
and étale cohomology.

6.2 Open Questions

There are three outstanding problems involving 5-, 6- and 8-Bessel factors, originally
formulated by Broadhurst–Mellit [17, (4.3), (5.8), (7.15)] and Broadhurst [13, (101),
(114), (160)].

Conjecture 1 (Broadhurst–Mellit) The following determinant formulae hold:

det

(
IKM(0, 5; 1) IKM(0, 5; 3)
IKM(2, 3; 1) IKM(2, 3; 3)

)
?= 45

8π2
L( f3,15, 4), (95)

det

(
IKM(0, 6; 1) IKM(0, 6; 3)
IKM(2, 4; 1) IKM(2, 4; 3)

)
?= 27

4π2
L( f4,6, 5), (96)

det

(
IKM(0, 8; 1) IKM(0, 8; 3) − 2IKM(0, 8; 5)
IKM(2, 6; 1) IKM(2, 6; 3) − 2IKM(2, 6; 5)

)
?= 6075

128π2
L( f6,6, 7). (97)

Here, one might wish to compare the last conjectural determinant evaluation to
the following proven result:

5π8

2193
= detN3 = det

⎛
⎝IKM(1, 7; 1) IKM(1, 7; 3) IKM(1, 7; 5)
IKM(2, 6; 1) IKM(2, 6; 3) IKM(2, 6; 5)
IKM(3, 5; 1) IKM(3, 5; 3) IKM(3, 5; 5)

⎞
⎠

= π2

28
det

(
IKM(1, 7; 1) IKM(1, 7; 3) − 2IKM(1, 7; 5)
IKM(2, 6; 1) IKM(2, 6; 3) − 2IKM(2, 6; 5)

)
. (98)

To arrive at the last step, we have used the Crandall number relations [Theorem 1(b)]
IKM(3, 5; 1) − IKM(1,7;1)

π2 = 0, IKM(3, 5; 3) − IKM(1,7;3)
π2 = π2

27 , IKM(3, 5; 5)
− IKM(1,7;5)

π2 = π2

28 , along with row and column eliminations.
The special L-values L( fk,N , s) in Conjecture 1 all lie outside the critical strip

0 < Re s < k, so they do not yield to the methods given in Sect. 2.3 or Sect. 5.
Working with Anton Mellit at Mainz, David Broadhurst has discovered a numer-

ical connection (see [17, (6.8)] or [13, (129)]) between ζ7,1(s) = ∏
p

1
Z7(p,p−s )

and
the 7-Bessel problem, which still awaits a proof.
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Conjecture 2 (Broadhurst–Mellit) We have

IKM(2, 5; 1) ?= 5π2

24
ζ7,1(2). (99)

In a recent collaboration with David Roberts [9–12, 14], David Broadhurst has
discovered a lot more empirical formulae relating determinants of Bessel moments to
special values of Hasse–Weil L-functions, which are outside the scope of the current
exposition. Nevertheless, we believe that one day such determinant formulae will
reveal deep p-adic structures of Bessel moments, as foreshadowed by pioneering
works on Hasse–Weil L-functions and Fredholm determinants for Frobenius maps
[22, 27–29, 34, 38, 39, 47].

Acknowledgements This research was supported in part by the Applied Mathematics Program
within theDepartment ofEnergy (DOE)OfficeofAdvancedScientificComputingResearch (ASCR)
as part of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4).
My work on Bessel moments and modular forms began in 2012, in the form of preliminary research
notes at Princeton. I thank Prof. Weinan E (Princeton University and Peking University) for running
seminars onmathematical problems in quantumfield theory at Princeton, and for arrangingmy stays
at both Princeton and Beijing.
I amgrateful toDr.DavidBroadhurst for fruitful communications on recent progress in the arithmetic
studies of Feynman diagrams [9–12, 14]. It is a pleasure to dedicate this survey to him, in honor of
his 70th birthday.

References

1. D.H. Bailey, J.M. Borwein, D. Broadhurst, M.L. Glasser, Elliptic integral evaluations of Bessel
moments and applications. J. Phys. A 41(20), 205203 (46pp) (2008), arXiv:0801.0891v2 [hep-
th]

2. W. Barth, I. Nieto, Abelian surfaces of type (1, 3) and quartic surfaces with 16 skew lines. J.
Algebr. Geom. 3(2), 173–222 (1994)

3. S. Bloch, M. Kerr, P. Vanhove, A Feynman integral via higher normal functions. Compos.
Math. 151(12), 2329–2375 (2015), arXiv:1406.2664v3 [hep-th]

4. J.M.Borwein,B. Salvy,Aproof of a recurrence forBesselmoments. Exp.Math. 17(2), 223–230
(2008), arXiv:0706.1409v2 [cs.SC]

5. J.M. Borwein, A. Straub, C. Vignat. Densities of short uniform random walks in higher dimen-
sions. J. Math. Anal. Appl. 437(1), 668–707 (2016), arXiv:1508.04729v1 [math.CA]

6. J.M. Borwein, A. Straub, J. Wan, W. Zudilin, Densities of short uniform random walks.
Can. J. Math. 64(5), 961–990 (2012), (With an appendix by Don Zagier) arXiv:1103.2995v2
[math.CA]

7. J.M. Borwein, D. Nuyens, A. Straub, J. Wan, Some arithmetic properties of random walk
integrals. Ramanujan J. 26, 109–132 (2011)

8. J.M. Borwein, A. Straub, J. Wan, Three-step and four-step random walk integrals. Exp. Math.
22(1), 1–14 (2013)

9. D. Broadhurst, L-series from Feynman diagrams with up to 22 loops, in Workshop on Multi-
loop Calculations: Methods and Applications, Séminaires Internationaux de Recherche de
Sorbonne Universités, Paris, France, 7 June 2017, https://multi-loop-2017.sciencesconf.org/
data/program/Broadhurst.pdf

http://arxiv.org/abs/0801.0891v2
http://arxiv.org/abs/1406.2664v3
http://arxiv.org/abs/0706.1409v2
http://arxiv.org/abs/1508.04729v1
http://arxiv.org/abs/1103.2995v2
https://multi-loop-2017.sciencesconf.org/data/program/Broadhurst.pdf
https://multi-loop-2017.sciencesconf.org/data/program/Broadhurst.pdf


508 Y. Zhou

10. D. Broadhurst, Combinatorics of Feynman integrals, in Combinatoire Algébrique, Résur-
gence, Moules et Applications, Centre International de Rencontres Mathématiques,
Marseille-Luminy, France, 28 June 2017, http://library.cirm-math.fr/Record.htm?idlist=29&
record=19282814124910000969

11. D. Broadhurst, Combinatorics of Feynman integrals, in Programme on Algorithmic and
Enumerative Combinatorics, Erwin Schrödinger International Institute for Mathematics
and Physics, Vienna, Austria, 17 October 2017, http://www.mat.univie.ac.at/~kratt/esi4/
broadhurst.pdf

12. D. Broadhurst, Feynman integrals, L-series and Kloosterman moments, in Elliptic Integrals,
Elliptic Functions and Modular Forms in Quantum Field Theory, KMPBConference at DESY,
Zeuthen, Germany, 23 October 2017, https://indico.desy.de/getFile.py/access?contribId=3&
resId=0&materialId=slides&confId=18291

13. D. Broadhurst, Feynman integrals, L-series and Kloosterman moments. Commun. Number
Theory Phys. 10(3), 527–569 (2016), arXiv:1604.03057v1 [physics.gen-ph]

14. D. Broadhurst, Feynman integrals, beyond polylogs, up to 22 loops, in Amplitudes 2017, Higgs
Centre for Theoretical Physics, Edinburgh, Scotland, UK, 12 July 2017, https://indico.ph.ed.
ac.uk/event/26/contribution/21/material/slides/0.pdf

15. D. Broadhurst, Multiple zeta values and modular forms in quantum field theory, in Computer
Algebra in Quantum Field Theory. Texts andMonographs in Symbolic Computation, ed. by C.
Schneider, J. Blümlein (Springer, Vienna, 2013), pp. 33–73, https://link.springer.com/chapter/
10.1007%2F978-3-7091-1616-6_2

16. D. Broadhurst, Reciprocal PSLQ and the tiny nome of Bologna, in International Workshop
Frontiers in Perturbative Quantum Field Theory, Zentrum für interdisziplinäre Forschung in
Bielefeld, Germany, 14 June 2007, http://www.physik.uni-bielefeld.de/igs/schools/ZiF2007/
Broadhurst.pdf

17. D. Broadhurst, A. Mellit, Perturbative quantum field theory informs algebraic geometry, in
Loops and Legs in Quantum Field Theory. PoS (LL2016) 079 (2016), https://pos.sissa.it/
archive/conferences/260/079/LL2016_079.pdf

18. D. Broadhurst, O. Schnetz, Algebraic geometry informs perturbative quantum field theory, in
Loops and Legs in Quantum Field Theory. PoS (LL2014) 078 (2014)

19. M. Bronstein, T. Mulders, J.-A. Weil, On symmetric powers of differential operators, Proceed-
ings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI)
(ACM, New York, 1997), pp. 156–163

20. H.H. Chan, W. Zudilin, New representations for Apéry-like sequences. Mathematika 56(1),
107–117 (2010)

21. P. Deligne,Cohomologie étale, vol. 569, LectureNotes inMathematics (Springer, Berlin, 1977)
22. P. Deligne, La conjecture de Weil. I. Inst. Ht. Études Sci. Publ. Math. 43, 273–307 (1974)
23. F. Diamond, J. Shurman, A First Course in Modular Forms, vol. 228, Graduate Texts in Math-

ematics (Springer-Verlag, New York, NY, 2005)
24. B. Dwork, On the rationality of the zeta function of an algebraic variety. Am. J. Math. 82,

631–648 (1960)
25. R. Evans, Seventh power moments of Kloosterman sums. Isr. J. Math. 175, 349–362 (2010)
26. R. Fricke, Die elliptischen Funktionen und ihre Anwendungen (Die funktionentheoretischen

und analytischen Grundlagen. B. G. Teubner, Leipzig, Germany), (Erster Teil, 1916)
27. L. Fu, D. Wan, L-functions for symmetric products of Kloosterman sums. J. Reine Angew.

Math. 589, 79–103 (2005)
28. L. Fu, D. Wan, L-functions of symmetric products of the Kloosterman sheaf over Z . Math.

Ann. 342(2), 387–404 (2008)
29. L. Fu, D. Wan, Trivial factors for L-functions of symmetric products of Kloosterman sheaves.

Finite Fields Appl. 14(2), 549–570 (2008)
30. V. Gritsenko, K. Hulek. The modular form of the Barth–Nieto quintic. Int. Math. Res. Notices,

(17), 915–937 (1999, arXiv:math/9806011v1 [math.AG]
31. S. Groote, J.G.Körner, A.A. Privovarov, On the evaluation of a certain class of Feynman

diagrams in x-space: sunrise-type topologies at any loop order. Ann. Phys. 322, 2374–2445
(2007), arXiv:hep-ph/0506286v1

http://library.cirm-math.fr/Record.htm?idlist=29&record=192828141249100 00969
http://library.cirm-math.fr/Record.htm?idlist=29&record=192828141249100 00969
http://www.mat.univie.ac.at/~kratt/esi4/broadhurst.pdf
http://www.mat.univie.ac.at/~kratt/esi4/broadhurst.pdf
https://indico.desy.de/getFile.py/access?contribId=3&resId=0&materialId =slides&confId=18291
https://indico.desy.de/getFile.py/access?contribId=3&resId=0&materialId =slides&confId=18291
http://arxiv.org/abs/1604.03057v1
https://indico.ph.ed.ac.uk/event/26/contribution/21/material/slides/0.p df
https://indico.ph.ed.ac.uk/event/26/contribution/21/material/slides/0.p df
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007%2F978-3-7091-1616-6_2
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007%2F978-3-7091-1616-6_2
http://www.physik.uni-bielefeld.de/igs/schools/ZiF2007/Broadhurst.pdf
http://www.physik.uni-bielefeld.de/igs/schools/ZiF2007/Broadhurst.pdf
https://pos.sissa.it/archive/conferences/260/079/LL2016_079.pdf
https://pos.sissa.it/archive/conferences/260/079/LL2016_079.pdf
http://arxiv.org/abs/math/9806011v1
http://arxiv.org/abs/hep-ph/0506286v1


Some Algebraic and Arithmetic Properties of Feynman Diagrams 509

32. A. Grothendieck, Cohomologie l-adique et fonctions L , Lecture Notes in Mathematics, vol.
589 (Springer, Berlin, 1977)

33. A. Grothendieck, Formule de Lefschetz et rationalité des fonctions L , Dix Exposés sur la
Cohomologie des Schémas, Advanced Studies in Pure Mathematics, vol. 3 (North-Holland,
Amsterdam, 1968), pp. 31–45

34. K. Hulek, J. Spandaw, B. van Geemen, D. van Straten, The modularity of the Barth–Nieto
quintic and its relatives. Adv. Geom. 1(3), 263–289 (2001), arXiv:math/0010049v1 [math.AG]

35. J.C. Kluyver, A local probability problem. Nederl. Akad. Wetensch. Proc. 8, 341–350 (1905),
http://www.dwc.knaw.nl/DL/publications/PU00013859.pdf

36. S. Laporta, Analytical expressions of three- and four-loop sunrise Feynman integrals and
four-dimensional lattice integrals. Int. J. Modern Phys. A 23(31), 5007–5020 (2008),
arXiv:0803.1007v4 [hep-ph]

37. S. Laporta, High-precision calculation of the 4-loop contribution to the electron g − 2 in QED.
Phys. Lett. B 772(Supplement C), 232–238 (2017), arXiv:1704.06996 [hep-th]

38. C. Peters, J. Top, M. van der Vlugt, The Hasse zeta function of a K3 surface related to the
number of words of weight 5 in the Melas codes. J. Reine Angew. Math. 432, 151–176 (1992)

39. P. Robba, Symmetric powers of the p-adic Bessel equation. J. Reine Angew. Math. 366, 194–
220 (1986)

40. M.D. Rogers, New 5F4 hypergeometric transformations, three-variable Mahler measures, and
formulas for 1/π . Ramanujan J. 18(3), 327–340 (2009), arXiv:0704.2438v4 [math.NT]

41. M. Rogers, J.G. Wan, I.J. Zucker, Moments of elliptic integrals and critical L-values. Ramanu-
jan J. 37(1), 113–130 (2015), arXiv:1303.2259v2 [math.NT]

42. D. Samart, Feynman integrals and critical modular L-values. Commun. Number Theory Phys.
10(1), 133–156 (2016), arXiv:1511.07947v2 [math.NT]

43. N.J.A. Sloane, Sequence A262961—Crandall numbers. TheOn-line Encyclopedia of Integer
Sequences. https://oeis.org/A262961. Accessed Apr and Oct 2017

44. P. Vanhove, The physics and the mixed Hodge structure of Feynman integrals, String-Math
2013, Proceedings of Symposia in Pure Mathematics, vol. 88 (AmericanMathematical Society,
Providence, 2014), pp. 161–194, arXiv:1401.6438 [hep-th]

45. H.A. Verrill, Root lattices and pencils of varieties. J. Math. Kyoto Univ. 36(2), 423–446 (1996)
46. G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edn. (Cambridge University

Press, Cambridge, 1944)
47. Z. Yun, Galois representations attached to moments of Kloosterman sums and conjec-

tures of Evans. Compos. Math. 151(1), 68–120 (2015), (Appendix B by Christelle Vincent)
arXiv:1308.3920v2 [math.NT]

48. Y. Zhou, Hilbert transforms and sum rules of Besselmoments. Ramanujan J. (2017) (to appear).
https://doi.org/10.1007/s11139-017-9945-y, arXiv:1706.01068 [math.CA]

49. Y. Zhou,OnBorwein’s conjectures for planar uniform randomwalks (2017), arXiv:1708.02857
[math.CA]

50. Y. Zhou, On Laporta’s 4-loop sunrise formulae. Ramanujan J . (2018) (to appear). https://doi.
org/10.1007/s11139-018-0090-z, arXiv:1801.02182 [math.CA]

51. Y. Zhou, Two definite integrals involving products of four Legendre functions. Ramanujan J.
45(2), 299–317 (2018), arXiv:1603.03547v2 [math.CA]

52. Y. Zhou,Wick rotations, Eichler integrals, and multi-loop Feynman diagrams. Commun. Num-
ber Theory Phys. 12(1), 127–192 (2018), arXiv:1706.08308 [math.NT]
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