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Abstract In this survey we describe two applications of the concept of conjugate
differential forms. Namely, after describing the concept of conjugate and self-
conjugate differential forms, we consider an extension of the Brothers Riesz theorem
to higher real dimension and Riesz-type inequalities for differential forms.

1 Introduction

Many years ago, looking for a generalization of the Brothers Riesz theorem in higher
real dimension, I was led to consider the concept of conjugate differential forms
[5]. Such concept has been already used in the previous paper [4], in which I had
to construct a reducing operator for a particular singular integral operator. This is
why I began to study in detail conjugate differential forms and self-conjugate (non-
homogeneous) differential forms [7].

Later on I have used such forms in several different problems. They concern,
besides the extension of the Brothers Riesz theorem in higher real dimension,
the concept of conjugate Laplace series in R

n [2, 3, 6, 9], potential theory with
applications to several BVPs for different PDEs [1, 11, 13–20], and Riesz-type
inequalities for differential forms [12].

In this brief survey I will just consider the Brothers Riesz theorem and Riesz-
type inequalities. The first section is devoted to the concept of conjugate and self-
conjugate differential forms.

For a survey on the applications in potential theory connected to BVPs I refer to
[10].

A. Cialdea (�)
Dipartimento di Matematica, Economia ed Informatica, Università della Basilicata, Potenza, Italy

© Springer Nature Switzerland AG 2019
K.-O. Lindahl et al. (eds.), Analysis, Probability, Applications, and Computation,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-04459-6_9

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04459-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-04459-6_9


98 A. Cialdea

2 Self-Conjugate Differential Forms

The idea of considering conjugate differential forms in order to extend the concept
of conjugate harmonic functions dates back to Volterra [31]. Following this order of
ideas, we say that a k-form u (i.e., a differential form of degree k) and a (k+2)-form
v are conjugate in Ω ⊂ R

n if

du = δv, δu = 0, dv = 0, (1)

where d is the differential operator and δ is the co-differential (actually this concept
is slightly different from the one given by Volterra: in fact u and v are conjugate in
the sense of Volterra if du = δv, see [31], pp. 87–90). If n = 2, f (z) = u(x, y) +
iv(x, y) is a holomorphic function and we identify v with a 2-form, then du = δv

is just the Cauchy–Riemann equation, while δu = 0 and dv = 0 are automatically
satisfied.

The system (1) includes several real generalizations of the Cauchy system.
For example, this concept of conjugate forms is more general than the concept

of harmonic vectors considered by Stein and Weiss in the paper [28], i.e., of vectors
(w1, . . . , wn) satisfying the system

n∑

i=1

∂wi

∂xi

= 0,
∂wi

∂xj

= ∂wj

∂xi

(i �= j) . (2)

In fact, if we identify (w1, . . . , wn) with the 1-form u = whdxh, the system (2)
is nothing but du = 0, δu = 0. In other words Stein and Weiss have considered only
the forms which are of degree 1 and conjugate to v = 0.

More generally, the k-form

uk = 1

k! ws1 . . .sk dxs1 . . . dxsk

is conjugate to uk+2 ≡ 0 if, and only if, duk = 0 and δuk = 0. These are the
so-called harmonic forms.

If we consider n = 3 and u0 ≡ u, u2 = v1dx2dx3 + v2dx3dx1 + v3dx1dx2,

we have that u0 and u2 are conjugate if, and only if div(v1, v2, v3) = 0, grad u =
curl(v1, v2, v3), i.e., if, and only if, the vector (u, v1, v2, v3) satisfies the Moisil-
Theodorescu system.

The concept of conjugate differential forms can be further generalized. Let us
consider a non-homogeneous differential form belonging to C1

0 (Ω) ⊕ . . . ⊕ C1
n(Ω)

U =
n∑

k=0

uk
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where uk is a differential form of degree k. We say that U is self-conjugate if dU =
δU, i.e., if δu1 = 0, duk = δuk+2 (k = 0, . . . , n − 2), and dun−1 = 0.

It is clear that if U = uk + uk+2, then U is self-conjugate if and only if uk and
uk+2 are conjugate in the sense of (1).

If n = 4 and U = u0 + u2 + u4, where

u0 = f0, u4 = f0dx0dx1dx2dx3

u2 = f1(dx0dx1 − dx2dx3) + f2(dx0dx2 − dx3dx1) + f3(dx0dx3 − dx1dx2),

the non-homogeneous form U is self-conjugate if, and only if,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂f0
∂x0

− ∂f1
∂x1

− ∂f2
∂x2

− ∂f3
∂x3

= 0
∂f0
∂x1

+ ∂f1
∂x0

− ∂f2
∂x3

+ ∂f3
∂x2

= 0
∂f0
∂x2

+ ∂f1
∂x3

+ ∂f2
∂x0

− ∂f3
∂x1

= 0
∂f0
∂x3

− ∂f1
∂x2

+ ∂f2
∂x1

+ ∂f3
∂x0

= 0 .

This shows that U is self-conjugate if, and only if, the vector (f0, f1, f2, f3)

satisfies the Fueter system.
A similar computation shows that the form U = u0 + u2 + u4, where

u0 = f0, u4 = −f0dx0dx1dx2dx3

u2 = f1(dx0dx1 + dx2dx3) − f2(dx0dx2 + dx3dx1) + f3(dx0dx3 + dx1dx2),

is self-conjugate if and only if the vector (f0, f1, f2, f3) satisfies the Cimmino
system (see [1]).

In what follows we shall use also the concept of k-measure, which was
introduced by Fichera (see [22, 23]). Roughly speaking a k-measure is a differential
form whose coefficients are measures and we refer to Fichera’s papers for the precise
definition and for several properties.

3 The Brothers Riesz Theorem

In their only joint paper [26] F. Riesz and M. Riesz proved this famous result:

Theorem 1 If a trigonometric series and its conjugate series

a0

2
+

∞∑

k=1

(ak cos kϑ + bk sin kϑ) ,

∞∑

k=1

(ak sin kϑ − bk cos kϑ)

are both Fourier–Stieltjes series, then they are ordinary Fourier series.
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In other words, if we have two real measures α, β defined on the Borel sets of
[0, 2π] such that

∫ 2π

0
cos kϑ dα =

∫ 2π

0
sin kϑ dβ,

∫ 2π

0
sin kϑ dα = −

∫ 2π

0
cos kϑ dβ

(k = 1, 2, . . .),

(3)

then these measures have to be absolutely continuous, i.e., there exist two real valued
L1 functions f and g such that

α(E) =
∫

E

f (ϑ) dϑ, β(E) =
∫

E

g(ϑ) dϑ

for any Borel set E ⊂ [0, 2π]. The interest of this result in the theory of Fourier
series is evident. Theorem 1 can be easily rewritten in a “complex” form:

Theorem 2 If μ is a complex measure defined on the Borel sets of the unit circle
C = {z ∈ C | |z| = 1} such that

∫

C

eikϑdμ = 0 k = 1, 2, . . . ,

then μ is absolutely continuous, i.e., there exists a function f ∈ L1(C) such that

μ(E) =
∫

E

f (ϑ)dϑ

for any Borel set E of C.

This beautiful theorem gave rise to a long series of papers and “in its direct
applications as well as the generalizations it has inspired, this has proved to be
one of the more important theorems of the century” (R. B. Burckel, Math. Rev.,
96k:43009). For a survey of several results connected to the Brothers Riesz theorem,
see [8] and the references therein.

The classical Brothers Riesz theorem can be stated also in the following way: if
u(x, y) and v(x, y) are two conjugate real harmonic functions in a domain Ω and
both of them have traces on ∂Ω in the sense of measures, then these measures have
to be absolutely continuous.

Such a result was proved for conjugate differential forms and—more generally—
for non-homogeneous self-conjugate differential forms in [5]. The result is the
following. Here Ω is a bounded domain in R

n with a Lyapunov boundary and
Mk(Σ) denotes the space of k-measures defined on the Borel sets of Σ .
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Theorem 3 If U ∈ C1
0 (Ω) ⊕ . . . ⊕ C1

n(Ω) is self-conjugate and U and ∗U admit
traces on Σ = ∂Ω in the sense of k-measures:

{
U

∣∣
Σ

= α ∈ M0(Σ) ⊕ . . . ⊕ Mn−1(Σ)

∗U
∣∣
Σ

= α̃ ∈ M0(Σ) ⊕ . . . ⊕ Mn−1(Σ),

then the k-measures α and α̃ have to be absolutely continuous.

4 Conjugate Laplace Series

Given a trigonometric series, the conjugate trigonometric series can be considered
as the “trace” of the harmonic function conjugate to the harmonic function whose
trace is the given trigonometric series. Following this definition and hinging on the
theory of conjugate differential forms, a new definition of conjugate Laplace series
was given in [6].

Let us recall it. Consider a harmonic function u defined in the unit ball B =
{x ∈ R

n
∣∣ |x| < 1}, it is well known that it can be expanded by means of harmonic

polynomials:

u(x) =
∞∑

h=0

|x|h
pnh∑

k=1

ahkYhk

(
x

|x|
)

, (4)

where pnh = (2h+n− 2)
(h+n−3)!
(n−2)!h! and {Yhk} is a complete system of ultraspherical

harmonics. We suppose {Yhk} orthonormal, i.e.,

∫

Σ

YhkYrs dσ

{
= 1 if h = r and k = s

= 0 otherwise.

The “trace” of u on Σ = {x ∈ R
n

∣∣ |x| = 1} is given by the expansion

∞∑

h=0

pnh∑

k=1

ahkYhk(x) (|x| = 1). (5)

Let us consider the 2-form

v =
∞∑

h=0

pnh∑

k=1

ahk

(h + 2)(n + h − 2)
dYhk

(
x

|x|
)

∧ d(|x|h+2) (6)
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and its adjoint

∗ v =
∞∑

h=0

pnh∑

k=1

ahk

(h + 2)(n + h − 2)
∗

(
dYhk

(
x

|x|
)

∧ d(|x|h+2)

)
. (7)

It is possible to show that dv = 0 and δv = du in B, i.e., the non-homogeneous
form u + v is self-conjugate.

If n = 2 the series which is obtained by taking |x| = 1 in (7) is just the
trigonometric series conjugate to (5). In general, for any n, we say that

∞∑

h=0

pnh∑

k=1

ahk

(h + 2)(n + h − 2)
∗

(
dYhk

(
x

|x|
)

∧ d(|x|h+2)

) ∣∣∣∣
|x|=1

(8)

is the series conjugate to (4); it represents the “restriction” of ∗v on Σ , while the
“restriction” of v, provided it does exist, is equal to 0, as it follows immediately
from (6).

Several properties of the conjugate Laplace series (8) have been obtained (see
[2, 3, 9]). They concern the Abel convergence, the pointwise convergence, and the
convergence in Lp norm.

Here we mention a result (see [6]) which extends the original Brothers Riesz
Theorem 1 to Laplace series and which is a consequence of Theorem 3:

Theorem 4 Let (5) be a Laplace series of a measure μ ∈ M(Σ), i.e.,

ahk =
∫

Σ

Yhk dμ .

If there exists an (n − 2)-measure β ∈ Mn−2(Σ) such that

∫

+Σ

Yhk dμ = 1

h

∫

+Σ

β ∧ dYhk (h = 1, 2, . . . ; k = 1, . . . , pnh) (9)

and
∫

+Σ

β ∧ ∗
Σ

γ = 0 (10)

for any γ ∈ C∞
n−2(R

n) such that dγ = 0 on Σ , then μ and β are absolutely
continuous.

We remark that in the case n = 2, conditions (9) are nothing but (3), while
(10) is not restrictive (the only closed 0-forms on the unit circle are the constants).
However, if n ≥ 3 condition (10) cannot be omitted.
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5 Riesz-Type Inequalities

The classical Riesz inequality is well known:

‖g‖Lp(S) ≤ C‖f ‖Lp(S), (11)

the function f + ig being holomorphic in the unit disc D, continuous up to the
boundary S = ∂D, and g(0) = 0 (1 < p < ∞).

Another inequality, which—as we shall see—is related to (11), concerns normal
derivative ∂

∂ν
and tangential gradient grad∂Ω of a harmonic function defined on a

sufficiently smooth bounded domain Ω ⊂ R
n. Namely, we have

∥∥∥∥
∂ω

∂ν

∥∥∥∥
Lp(∂Ω)

≤ C‖grad∂Ω ω‖Lp(∂Ω), (12)

for any harmonic function ω ∈ C1(Ω) ∩ C2(Ω). Inequality (12) was proved by
Vishik [30] for p = 2 when ∂Ω is a sphere, conjectured by Mikhlin in [24, p. 210]
for 1 < p < ∞, and established by De Vito [21] in the general case 1 < p < ∞
when ∂Ω is the boundary of a C2,λ-domain. Later Verchota [29] proved (12) on
Lipschitz domains (1 < p ≤ 2).

In [12] inequalities of this type have been obtained in the frame of conjugate
differential forms. Namely, let Ω ⊂ R

n be a bounded C1 domain and let uk and
vk+2 be two C1 conjugate differential forms defined in Ω , continuous up to the
boundary Σ . The following inequalities hold:

inf
α∈N +

k

‖uk + α‖L
p

k (Σ) ≤ C
{
‖ ∗ uk‖L

p

n−k(Σ) + ‖ ∗ vk+2‖L
p

n−k−2(Σ)

}
,

inf
β∈N +

k+2

‖vk+2 + β‖L
p
k+2(Σ) ≤ C

{
‖uk‖L

p
k (Σ) + ‖ ∗ vk+2‖L

p
n−k−2(Σ)

}
,

inf
α∈N +

n−k

‖ ∗ uk + α‖L
p
n−k(Σ) ≤ C

{
‖uk‖L

p
k (Σ) + ‖ ∗ vk+2‖L

p
n−k−2(Σ)

}
,

inf
β∈N +

n−k−2

‖ ∗ vk+2 + β‖L
p
n−k−2(Σ) ≤ C

{
‖uk‖L

p
k (Σ) + ‖vk+2‖L

p
k+2(Σ)

}
.

Here N +
k is the kernel of the singular integral equation:

−1

2
φk(x) +

∫

Σ

φk(y) ∧ ∗
y
dysk(x, y) = 0, a.e. x ∈ Σ ,
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where sk(x, y) is the Hodge double form

sk(x, y) =
∑

j1<...<jk

s(x, y)dxj1 . . . dxjkdyj1 . . . dyjk .

As proved in [25, 27], the dimension of N +
k is equal to b−

k , the kth Betti number
of Ω . It is clear that such inequalities generalize (11).

If ω is an harmonic k-form, we have that δω and −dω are conjugate. Therefore
the inequalities we have obtained for conjugate differential forms lead to

inf
α∈N +

k−1

‖δωk + α‖L
p
k−1(Σ) ≤ C

{
‖d ∗ ωk‖L

p
n−k+1(Σ) + ‖ ∗ dωk‖L

p
n−k−1(Σ)

}
,

inf
β∈N +

k+1

‖dωk + β‖L
p
k+1(Σ) ≤ C

{
‖δωk‖L

p
k−1(Σ) + ‖ ∗ dωk‖L

p
n−k−1(Σ)

}
,

inf
η∈N +

n−k+1

‖d ∗ ωk + η‖L
p
n−k+1(Σ) ≤ C

{
‖ ∗ dωk‖L

p
n−k−1(Σ) + ‖δωk‖L

p
k−1(Σ)

}
,

inf
γ∈N +

n−k−1

‖ ∗ dωk + γ ‖L
p
n−k−1(Σ) ≤ C

{
‖dωk‖L

p
k+1(Σ) + ‖δωk‖L

p
k−1(Σ)

}
.

Suppose b−
n−1 = 0; the last inequality for k = 0 reads as follows:

‖ ∗ dω0‖L
p

n−1(Σ) ≤ C‖dω0‖L
p

1 (Σ) (13)

for any scalar harmonic function ω0. This is nothing but the Vishik–Mikhlin–De
Vito formula (12).

We remark that, if b−
n−1 �= 0, inequality (13) does not hold. Consider Ω = {x ∈

R
n : r < |x| < R} and take

ω0(x) =
{

log |x| if n = 2 ,

|x|2−n if n ≥ 3 .
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